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The Complexity of Error-Correcting Codes

Daniel A. Spielman1

Massachusetts Institute of Technology

Abstract. By concatenating linear—time codes with small, good codes,
it is possible to construct in polynomial time a family of asymptotically
good codes that approach the Shannon bound that can be encoded and
decoded in linear time. Moreover, their probability of decoder error is
exponentially small in the block length of the codes. In this survey, we
will explain exactly what this statement means, how it is derived, and
what problems in the complexity of error—correcting codes remain open.
Along the way, we will survey some key developments in the complexity
of error—correcting codes.

1 Introduction

Error—correcting codes are the means by which we compensate for the cor—

ruption that occurs in communication over imperfect channels. In a coding

system, a message first passes through an encoder, which transforms it

into a codeword; this codeword is then transmitted over the channel. The

channel modifies the codeword by adding noise, so that the received word

received by the receiver may differ from the codeword that was transmit-

ted. The received word is processed by a decoder, which uses the received

word to guess which codeword was transmitted, and outputs its guess.

Much of the research on error-correcting codes is devoted to improving

the trade-off between the probability that the decoder7s guess is correct

and the complexity of the encoders and decoders.

In this survey, we examine the software complexity1 of this problem

from an asymptotic perspective. We will restrict our attention to commu-

nication over the binary symmetric channel (BSC), as it seems natural

to most computer scientists.2 A channel is binary if it allows the trans-

mission of only two symbols, which we take to bc 0 and l. The binary

symmetric channel with error-probability p (BSCp) is the channel that

1 We should point out that, at the present time, almost every implementation of error-
correcting codes uses special—purpose hardware. Moreover, coding schemes that are
efficient in software can be inefficient in hardware, and vice verso.

2 Results similar to those in this survey may be obtained for any reasonable memoryless
channel.
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transmits one bit at a time and flips the value of that bit with proba—

bility p. If it does not flip a bit, then it transmits the bit correctly. For

each bit transmitted by the channel, the probability that it is flipped is

independent of the others.

In the rest of this introduction, we will review the definitions needed

to describe the types of error-correcting codes we will use and then state

the complexity and coding problems we will consider. We will conclude

the introduction with an overview of the rest of the paper.

The framework presented in this survey builds on those developed

in [4] and [29,30]. Most of the material in Sections 2 and 3 can be found

in those papers. The material in Section 2 is standard, and we refer the

reader to a reference such as [21], [40], or [3] for a more thourough treat-

ment. We also recommend the recent survey by Vardy [41]. For references

on error-correcting codes that emphasize an engineer’s perspective, we

recommend [26], [42] and [6].

1.1 Coding Definitions

A code is an injective mapping from strings to strings. We will consider

families of block codes over the alphabet {0, 1}. A binary block code is

one whose messages are strings over {0,1}m and whose codewords are

strings over {0,1}", for some n 2 m; the length of the code is n, and

its rate is n/m. The strings of {0, 1}m are the possible messages, and we

assume that each is equally likely.3 Each image of a string from {0, 1}m is
a codeword, and the word “code” is sometimes used to refer just to the set

of codewords. An encoder maps a message to its codeword, and a decoder

maps a word in {0, 1}" to either a codeword or a message indicating that
it cannot decide on a codeword.

A family of codes can be defined as an infinite sequence of codes, each

of a difierent length, indexed by their length. A code constructor for a

family of codes is a device that takes as input a block length, and outputs

a description of an encoder and a decoder for the code in the family

of that length. We do not insist that this decoder be the best possible

decoder for the resulting code, as we will measure the quality of the coding

system by the number of errors that the decoder can actually correct. By

measuring the complexity of the code constructor, we allow ourselves

3 The task of adjusting one’s message space so that each message is equally likely
is that of compression. Compression schemes need to take advantage of the special
structure of the data to which they are applied. We would like to avoid such concerns.
In situations in which error—free communication is desired, it is reasonable to assume
that data has been compressed before it is encoded with an error—correcting code.
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to consider the non—uniform complexity of the encoder and decoder. We

separate the complexity of constructing the encoders and decoders from

the complexities of these devices themselves because this is how they are

used: the same encoders and decoders are used many times to transmit

messages of the same block length In particular, a long message is usually

broken up into a sequence of blocks which are then transmitted separately.

It would be reasonable to change the definition of a family of codes so that

it allows additional parameters, such as the rate of the code and perhaps

a quality parameter; in this case, the complexity of the constructor should

also be given in terms of these parameters.

Systematic codes are a particularly convenient class of codes. In a

systematic code, the message appears as a substring of the codeword.

Thus, we can divide the bits of a codeword into message bits and check

bits, where the message bits contain the message and the encoder need

only compute the check bits from the message bits. All the codes that

we consider will be linear codes, and we will see that all such codes can

easily be made systematic. Linear codes are codes in which the alphabet

is a field, such as the field GF(2), and the encoding function is a linear

map. Thus, the codewords form a vector space.

1.2 Coding Problems

lntuitively, if an error-correcting code is going to provide strong protec-

tion against errors, then most codewords should be far from every other

codeword. Our notion of distance between two words is the Hamming

distance, the number of bits in which the words differ. The decoding

algorithm for transmission over the BSC that achieves the minimal prob-

ability of error will map a received word to the codeword to which it is

closest. This approach is known as maximum likelihood decoding, as it

selects the codeword that maximizes the probability that the channel will

output the received word. If there are codewords ml and 1172 that differ

in only k places, and if 1111 is transmitted and more than [9/2 of those

bits are flipped, then the optimal decoder will return wg. On a BSC with

error probability p, the probability of this happening is at least

16 ,

(a +1>/2>p(k+1)/2(1 WW ”/27
for k: odd.

This observation led to the definition of the minimum distance of a

code: the minimum distance achieved by a pair of codewords in the code.
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If 101, 1,02, and 'v are codewords in a linear code, then

d(w17 w?) : d((w1_ ’U), (1112 _ 11)) : d(07 (w2 _ 101)),

and 1,02 — w] is a codeword; so, the minimum distance of the code is equal

to the minimum weight of a codeword, where the weight of a codeword is

equal to its distance from the all-0 word. It is possible to construct families
of codes in which the rate remains constant while the minimum distance

grows linearly with the block length. Such codes are called asymptotically

good, and we measure their minimum relative distanceitheir minimum

distance divided by their block length.

Sufliciently long codes from an asymptotically good family can pro-

vide excellent error-protection: the maximum likelihood decoder can cor-

rect any number of errors up to half the minimum distance. Moreover, if

one uses an asymptotically good code to transmit over a channel whose

error probability is less than the relative minimum distance of the code,

then the probability of decoding error decreases exponentially in the block

length of the code. Since the rate of the code remains constant, the com—

munication overhead of the code does not changeione just divides the

communication into longer blocks. Of course7 the computation time of

most decoders will increase with the block length. These observations

lead to a natural complexity of coding problem: to design asymptoti—

cally good codes that have fast encoding, decoding, and constructing al-

gorithms, where the complexity is measured in terms of the number of

message bits in the codes. In this case, we consider the number of er—

rors that the proposed decoder can correct rather than the number of

errors that the maximum likelihood decoder can correct, as this provides

a more accurate measure of the quality of the resulting coding system. Of

course, one should consider the tradeoff between the rate and minimum

distance of the codes as well, although this affects the length of the trans-

mission more than the complexity of the algorithms. Bassalygo, Zyablov,

and Pinsker [4] approached versions of this problem using random linear

codes, Reed-Solomon codes, and some graph-theoretic codes (from [12]).

A more natural problem is to measure the average-case performance

of a coding system. Rather than measure the maximum number of errors

that the decoder can correct, we will measure the number of errors that

the decoder can usually correct when the errors are chosen at random.

In his paper, “A Mathematical Theory of Communication”, Shannon [32]

proved that every channel has a fixed capacity, which is a rate beyond

which it is not possible to communicate reliably. Moreover, he demon—

strated that for every rate less than the capacity of the channel, it is

|PR2018—01474

Apple Inc. EX1017 Page 4



IPR2018-01474 
Apple Inc. EX1017 Page 5

possible to transmit information with arbitrarily small error if one uses

codes of sufficiently long block length. Thus, we are presented with a

natural complexity problem, first posed by Savage [31]: given a binary

symmetric channel with error probability p, and an error—tolerance 6, find

the coding system4 of least complexity that enables one to communicate
over the channel so that the probability that the output of the decoder
is incorrect is at most 6.

Neither of the previous problem statements have compared the rate of

the code produced with the optimal rate possible for the channel. The rate

of the code is important as it dictates how much redundancy occurs in

the transmission. As the time required to transmit the message across the

channel may dominate the time of the computation, such factors cannot

be ignored. Moreover, part of the channel may be a network, in which case

an unnecessarily long transmission may slow the transmissions of others

using the network. Thus, our analyses should include a comparison of

the rate of our codes with the best rate possible. The existence of the

Shannon bound makes this reasonable in the analysis of the average-case

performance of a coding system. Shannon’s bound states that the capacity

of the BSCp is 1—H(p), where H(:1:) = —x log2 06— (1—56) log2(1—:v) is the

binary entropy function. It is trickier to examine the tradeoff between the
rate and minimum relative distance of a code because the best tradeoff

achieved by known codes, the Gilbert—Varshamov bound, does not meet

the best known upper bound, the Linear Programming Bound [24]. Most

linear codes meet the Gilbert-Varshamov bound, which means that their

rate 7“ and relative minimum distance 6 satisfy 7“ Z 1 — H(6) As we are

unaware of any recent advances in the construction of binary codes that

approach the Gilbert-Varshamov bound, we will not have to worry about

this problem in this survey.

All the complexity statements in this paper are designed to hold for

the unit-cost model of a RAM (see [1]) We have verified that the state-

ments of Section 5 also hold for Pointer Machines (see [16]) and, with

minor modifications of the coding system such as those outlined in [34],

for the log-cost model of a RAM [1] as well.

1.3 Overview

In Section 2, we examine the random linear codes introduced by Elias [7]

and point out that they meet both the Gilbert-Varshamov and Shannon

bounds. We then consider the Wozencraft ensemble, a smaller family of

4 Actually, Savage just considered the complexity of the decoder.
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linear codes with similar performance. and show that its complexity is

polynomially related with its probability of decoder error. In Section 37

we introduce Forney’s [9] method of concatenating codes to obtain low-

complexity codes that approach the Shannon bound and have a prob—

ability of decoder error that is almost exponential in their complexity.

Section 4 provides a very brief overview of constructions of codes based

on sparse bipartite graphs. These have been used to obtain coding systems

in which the probability of decoder error is exponential in the complex—

ity of encoding and decoding. In Section 5, we concatenate the codes of
Section 2 with the codes of Section 4 to obtain codes that do meet the

Shannon bound and have a probability of decoder error that is exponen—

tial in the complexity of encoding and decoding. We conclude by pointing

out that we have not analyzed the complexities of these codes in terms

of how much computation is required to obtain a given probability of de-

coder error at a given distance from the Shannon bound. We argue that

this is an important measure of the performance of a coding system7 and

that more work on this problem is needed.

2 Random Linear Codes

A linear code is a subspace of GF(2)". One can show that, with high

probability7 a linear code chosen uniformly at random probably meets

the Gilbert-Varshamov bound. Similarly, for any rate r < 1 — H(p)7 most
linear codes of rate r enable the maximum likelihood decoder to achieve

an error probability that decreases exponentially in the block length when

communicating over the BSCp.

A linear code is usually described by its generator matrix or its check

matrix. The generator matrix of a linear code of length n and rate r is a

matrix over GF(2) with rn rows and 71. columns such that the words of

the code are precisely the linear combinations of the rows of the matrix.

The check matrix of such a code is a matrix of rank (1 — r)n with (1 —r)n

rows and n columns such that the codewords are exactly those words that

have inner product zero with each row of this matrix. The check matrix

is sometimes called the parity check matrir since each row indicates a

subset of the message bits whose parity must be zero in order for a word

to be a codeword. Note that elementary row operations do not change the

code defined by a generator or check matrix. Since the choices for these

matrices are not unique7 one should presume that some choices will lead

to simpler representations of the code than others.
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Encoding: By performing row operations on the check matrix of a

linear code, one can obtain a check matrix that has the (1 —r)n-by-(1—r)n

identity matrix as a submatrix. Using this check matrix, one can see that a

linear code can be made systematic: the bits corresponding to the columns

in the identity matrix can be labeled the check bits, and the other 7'71 bits

can be used as the message bits. For any setting of the Tn message bits,

there is exactly one setting of the check bits that produces a word that

has inner product 0 with each row of this check matrix; moreover, these

check bits can be computed by multiplying the vector of 7‘” message bits

by the (1 — r)n-by-rn submatrix of the check matrix corresponding to the

columns of the message bits. Thus, the code constructor could construct5

a matrix from which the encoder could encode a message in quadratic
time.

Code Construction: If we choose a linear code at random, it is

very unlikely that its performance will be much worse than that of most

linear codes. However, we know of no efficient algorithm for certifying

that a particular linear code will perform well, even assuming that we

are going to use a maximum likelihood decoder. In general, computing

the minimum distance of a binary code is NP-hard (see [41]), and we

see no reason that it should be easier for a randomly chosen code. In

fact, we know of no algorithm for approximating the minimum distance

of a linear code that is substantially faster than enumerating all low-

weight words and then checking whether they are codewords. However,

we can find explicit constructions of linear codes that meet the Gilbert—

Varshamov bound in less time than that taken by the naive algorithm that

enumerates all linear codes. An algorithm for doing this was presented

in [4]. We will present a different approach in Section 2.1.

Decoding: The best known decoding algorithms for arbitrary linear

codes require time exponential in the lengths of the codewords. One algo—

rithm is to enumerate all codewords, compute the distance of each from

the received word, and output a word closest to the received word.

If one is willing to make a decoder that uses a lot of space, then one can

speed up this algorithm by constructing a giant look-up table indexed by

every possible received word. The entry corresponding to a received word
would be the codeword closest to it. This results in a table with 2" entries.

To obtain a smaller but almost as useful table, one can use syndrome

decoding. The syndrome of a received word 11; is the vector obtained by

5 A naive algorithm will produce this matrix in time 0(n3). An asymptotic advantage
can be obtained by observing that the time required is asymptotically the same as
the time required for matrix multiplication (see [15] or [5, Section 164]).
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computing the inner product of w with each row of the check matrix.

Note that an error pattern produces the same syndrome regardless of the

codeword to which it is added. Thus7 if one associates to each syndrome

a minimal weight error—pattern that produces this syndrome, then one

can perform maximum-likelihood decoding of a linear code by mapping

each received word to the codeword obtained by adding the error pattern

associated with the received word’s syndrome. Such a list of error patterns

associated with syndromes has 2(1’7’)" entries of length at most n, and

can be produced in time at most 2” >x< n2 by enumerating all possible

error-patterns. If one just desires an exponentially decreasing probability

decoding error when using a BSC with error—probability p, then one can

speed up this algorithm by only enumerating over error-patterns of weight

at most 1) + e for some small 6 > 0.

Using syndrome decoding, one can check whether a given code meets

the Shannon bound in time O(2<1’r+6)n), for any 6 > 0. First, construct
the syndrome table for all error-patterns of weight at most (37 + e')n in

time 2(1’T+‘)”n2. Then, for each error pattern of weight at most (p +
6’)n, compute its syndrome and check whether the syndrome decoding

algorithm would decode it to the the 0 word. Using this information, one

can estimate the probability of decoding error of the syndrome decoding

algorithm.

2.1 The Wozencraft Ensemble

The Wozencraft ensemble6 is a set of codes much smaller than the set

of linear codes, but from which a randomly chosen code has an error

tolerance similar to that of a linear code chosen uniformly at random.

The property of the Wozencroft ensemble that gives its codes their power

is that a every word appears as a codeword in an equal number of codes

in the ensemble. The proof that this condition suffices is almost identical

to the proofs that a random linear code meets the Gilbert-Varsharnov
and Shannon bounds.

Theorem 1. Let S be a set of codes of length n and mte 7“ such that

|{C E S : 'w 6 CH does not depend on '11). Then,

1. a code chosen at random from S probably meets the Gilbert-Varshamov

bound, and

6 The VVozencraft ensemble was presented by Massey [23] and attributed to
VVozencraft.
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2. a code chosen at random from S probably approaches the Shannon
bound.

Proof. [Sketch] The probability that a randomly chosen code from S

contains a word of weight at most k; is (2)2’u’r)". Thus, the probability
that a randomly chosen code from S contains no non-zero codeword word

of weight less than 671 is at least
(in.

27(177’)n Z (n),2
2:1

which becomes less than any constant as n grows large, provided that

7" g 1 7 H(())

To prove that a code chosen at random from S probably meets the

Shannon bound, we assume, without loss of generality, that the 0 word is

transmitted over the BSCp. The expected number of errors produced by

the channel is pm, and Chebyshev’s inequality implies that the probability

that it produces more than pn+m errors is less than l/c, for any c 2 1.

Assuming that at most pn + W errors are produced by the channel,
the probability that there is another codeword closer than the 0 word to
the received word is at most

pn+\/CITH

2(1—r)77, Z (n) a. 2
1:1

which becomes less than any constant as n grows large, provided that

7" < l i H(p) Thus, the bound is obtained by letting c grow large and

then letting n grow much more quickly.

The 1/2-rate codes of length n from the Wozencraft ensemble can

be indexed by elements of the field GF(2"/2). For each element oz 6
GF(2”/2), the code W0, will consist of the binary representation of all
pairs (:5, out), where w E CF (271/2), and by 04:]; we mean 04 multiplied by
:5. Thus, :10 represents the message bits, and oar its check bits. It is clear

that each word appears as a codeword exactly once; in fact, the word

(any) appears in the code Wy/z. To produce codes of shorter length, we
can puncture the code by ignoring some check bits. If we ignore 0 check

bits, then each word will appear as a codeword 2C times. To produce

longer codes,7 we can append more check bits by constructions such as

7 These shorter and longer codes are different from those described by VVozencraft.
We have presented them because they are easier to describe in this framework. If we
use VVozencraffls original codes, we should be able to replace the r’ with r in what
follows.
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setting WW3 to be the set of words of the form (momma), where a and

B are chosen from GF(2"/2). A simple analysis shows that these codes
also meet the requirements of Theorem 1.

Encoding: The codes can be encoded using Discrete Fourier Trans—

form based algorithms for multiplication over finite fields (see [27] and [1]).

These algorithms take time O(n log n)

Decoding: We would decode these codes with the syndrome decod—

ing algorithm presented in Section 2. This algorithm takes time 0(712)

and space OOH—Mo”)7 provided that the code constructor spends time
0(2(1’T+‘)"n2), for e > 0, to build the syndrome table.

Construction: One can find a code in these ensembles that meets the

Gilbert-Varshamov bound in time 0(2(1_T/)"n2), where 7" is the greatest
reciprocal of an integer that is less than 7“. To do this7 enumerate all

words of weight at most 6717 where 11(6) 2 1 — 7’. For each of these words,

determine the codes in which it appears. Then, choose a code in which

none of these words appeared.

Finding a code in the these ensembles that meets the Shannon bound

does not seem to be as easy. One approach would be to enumerate over

the codes, and then choose one that meets the Shannon bound. If we test

the quality of a code using the syndrome decoding approach outlined at

the end of Section 27 then this algorithm takes time 2<27TLTln7 where 7"
is the greatest reciprocal of an integer that is less than 7“.

3 Concatention of Codes

Forney [9] introduced the method of concatenating codes to obtain low-

complexity codes that approach the Shannon bound. Concatenation is

a means of combining two codes. referred to as the inner code and an

outer code. We’ll assume that the inner code is a binary code with m1

message bits, rate 'r1, and length m. The outer code will be a code over

an alphabet with at most 2ml symbols. If the outer code has length 712

and rate 7‘2, then the concatenation of the inner code with the outer code

will be a binary code of rate mm with mngml message bits and length
72,1712.

To encode the concatenated code7 one collects the message bits into

r2712 symbols in the alphabet of the outer code. These symbols are treated

as message symbols and encoded using the encoding algorithm for the

outer code, resulting in 712 symbols. Each of these 712 symbols of m1

bits each is then treated as a set of message bits and encoded using the

inner code. The code is then decoded in the reverse order. Thus7 the time
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required to encode (decode) the concatenated code is the sum of the time

required to encode (decode) the outer code and 712 times the time required

to encode (decode) the inner code. The idea behind the construction is

that the length of the inner code should be small so that its complexity is

small relative to 77.2. On the other hand, the outer code should be a code

for which correction of errors in its symbols is very simple.

As an outer code, Forney suggested the using a Reed-Solomon code.

Reed—Solomon codes can be built with any field as their alphabet, and

have length one less than the number of elements in the field. Using algo-

rithms based on the Discrete Fourier Transform, Reed-Solomon codes can

be encoded in time O(n log n log log n) and decoded in time O(n log2 n log log n).

Using a new result of Pan [25], one can decode Reed—Solomon codes over

prime fields in time O(n log n log log n). The decoding algorithm for a

Reed-Solomon code of length n and rate 7" can correct up to n — 2m — 1

errors, which is the best one could hope for.

8

We now sketch how one can use concatenated codes to approach the

Shannon bound with low complexity. For any p, find a binary code C1 of

rate 7‘1 < 1 — H(p) and length m such that the probability of decoding

error using the maximum likelihood decoder is at most 6. Concatenate this

binary code with a with a Reed Solrnon code 02 of rate 1 — 3e and length

77.2 over the field GF(2“"1) . If fewer than 36/2 of the inner code decoding

operations fail, then the decoder for the Reed-Solomon code will correctly
decode the entire code. One can use a Chernoff bound to show that the

probability that at least 36/ 2 of the inner code decoding operations fail

is exponentially small in 17.2. As the rate of the concatenated code is

(l — 36)r1, we can decrease e to obtain codes that approach the Shannon

bound. A more careful analysis reveals that, for any rate 7" < 1 — H (p)

and for sufficiently long block lengths,9 the probability that an inner

code decoding operation fails will be 01”” for some (:1 > 1. Thus, the

probability that the concatenated decoder will fail will be c;711712 for some
02 > 1.

Encoding: If we use a code from the Wozencroft ensemble as the

inner code, then the total time of the inner code encoding operations

will be 0(n2n1 log n1). As mm : [logng], the encoding time will be

dominated by the encoding time of the outer Reed-Solomon code.

8 See [14], [28], [1], [38] and [5, Chapter 3, Sections 1 and 2].
9 Note that we must have 1 — H(p) — 'r' < «pm before this analysis become applicable.

Without this restriction, there is a constant probability that the number of errors
will be more than the inner decoder can handle
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Decoding: Assuming that the code constructor has created look—up

tables to aid the decoding of the inner code, the decoding time of the

concatenated code will be dominated by the time required to encode and

decode the outer Reed—Solomon code. For sufficiently large m, we can find

primes close to and less than 27”, so we can actually use a Reed-Solomon

code over a prime field as the outer code and make use of Pan’s [25]

improved decoding algorithm.

Construction: As the total block length is n : mug and mm :

[log 712], the discussion in Section 2.1 yields an algorithm for choosing the

inner code that takes time 001,244,), Where 7" is the greatest reciprocal
of an integer such that r’ < r. This factor will dominate as it is larger

than the time required to build the decoder and the time required to
describe the Reed-Solomon codes.

While concatenation allows us to construct codes with good average-

case performance, it does not seem to help much with worst-case perfor-
mance. It would be difficult to construct new codes that beat the Gilbert—

Varshamov bound by concatenation: if the inner code has minimum rel-

ative distance 61 and the outer code has minimum relative distance 62,

then their concatenation could have minimum relative distance 6162.

3.1 Justesen Codes

Justesen [13] was the first to find an explicit construction of an asymp-

totically good family of error-correcting codes. Exactly what is meant

by emplicit construction is not completely clear, but it certainly excludes

any construction that involves a search over small codes. Ideally, it should

mean that there is a “closed form” description of the code. One might like

to formalize the notion of an explicit construction by defining it in terms

of the complexity of the code constructor. However, no such definition

will avoid the possibility of performing a constant-size search.
Justesen’s main idea was to concatenate an outer Reed-Solomon code

with many different inner codes. This is, instead of using just one inner

code, he would use a different inner code for each outer code symbol. In

particular, he used a Reed-Solomon code constructed over a field of the

form GF(2”) and the l/2-rate Wozencraft ensemble indexed by elements

of GF(2”) as the inner codes. The previous analysis proving that concate-

nated codes can be asymptotically good can easily be modified to show

that the concatenated code will be asymptotically good provided that

almost all of the inner codes are asymptotically good. While it was not

Justesen’s main objective, one can also show that his codes approach the

Shannon bound for rate 1/2 by using as an outer code a Reed-Solomon
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code of rate 1* 67 and letting 6 slowly go to zero as the block length grows

large.

4 Graph Theoretic Codes

A major advance in the development of low-complexity codes was intro-

duced in Gallager’s [11] thesis, “Low Density Parity-Check Codes”. This

led to the development of codes that we will refer to as graph—theoretic

codes. We do not have the time or space to provide a good explanation

of the development of graph-theoretic coding; soj we will just mention a

few of the points that are relevant to this work.

Gallager [11] defined a family of linear codes by setting their check

matrix to be the the bipartite adjacency matrix of a high-girth sparse

bipartite graph. If this graph is chosen at random and the codes are de—

coded by a maximum likelihood decoder, then they will approach the

Shannon bound. Gallager proved that there was a linear-time algorithm

for decoding these codes that would correct some constant fraction of ran-

domly chosen errors with probability 2‘0Wfi). As we are now beginning
to use codes of sufficiently long block lengths to make Gallagerls codes

useful, they have become the subject of many recent papers (see, for ex-

ample [10,8,20743,44]). Tanner [39] presented an important generalization

of Gallagerls construction. along with generalizations of his decoding al—

gorithms.

Zyablov and Pinsker [45] showed that, with high probability over

the choice of graph, Gallager’s decoder would alway correct some con—

stant fraction of errors, regardless of where they appeared. Sipser and

Spielman [34] analyzed Tanner’s codes in terms of the expansion of the

underlying graph and. using recent explicit constructions of expander

graphs [19,22], obtained polynomial-time constructions of low-density par-

ity check codes for which a constant fraction of errors could always be

decoded in linear time. For all of the low-density parity check codes listed

so far? no encoding algorithm was known that took time less than {2022),

until Lafferty and Rockmore [18] discovered a 0014/3) time algorithm for
encoding the codes of Sipser and Spielman.

In a few other cases7 low-density generator matrix codes have been

constructed. In these7 the sparse bipartite graph is used to define a gener-

ator matrix rather than a check matrix. These are usually not used alone,

but are combined in a recursive fashion with some other code. Gelfand7

Dobrushin, and Pinsker [12] used such techniques to present a random—
ized construction of linear-time encodable codes that meet the Gilbert-
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Varshamov bound. They proposed no decoding algorithm for these codes.

Alon et al. [2] used low-density generator matrix codes defined by ex-

pander graphs to to obtain uniformly constructive low-rate codes that lie

above the Zyablov bound for large alphabet sizes, and binary codes that

perform better than other known constructions at very low rates. In our

terms, their codes are polynomial-time constructible, where the polyno-

mial is independent of their rate. Spielman [37] observed that, by cascad-

ing low—density generator matrix codes, any construction of low—density

parity check codes can be transformed into a construction of linear-time

encodable codes with a similar rate and average decoding performance as

their check—matrix cousins. In [37], Spielman techniques related to those

in [34] and [12] to obtain a polynomial-time construction of asymptoti-

cally good codes that can be encoded and decoded in linear time.

5 Linear-Time error-Correcting Codes

In [37,35], we presented a polynomial-time algorithm that constructs en-

coders and decoders for asymptotically good codes for which the encoder

and decoder both run in time linear in the block length, and the num—

ber of errors that the decoder can always correct grows linearly with the

block length. We will call an encoder and decoder that run in linear time

a linear—time coding system and the code it uses a linear-time code. In

this section, we will concatenate these codes with codes from the Wozen—

craft ensemble to obtain a polynomial-time constructor for a linear-time

coding system that approaches the Shannon bound.

Following Remark 21 of [37], we can find a constant C so that for any

rate10 7“ 2 1/4, we produce a polynomial-time constructor for a linear-

time coding system in which the decoder can correct a 0((1 —H_1(Cr))2)

fraction of errors, where H‘1 denotes the lesser inverse of the binary

entropy function. We note that this construction itself must make use of

a subcode of length 0((1 — H’1(Cr))2) and minimum relative distance

0(1 — III—1(0)) from some asymptotically good family. One could use a
search such as those described in Sections 2 and 2.1 to find this code. If

the length of the whole code is greater than an exponential in the length

of this subcode, then one can use look-up tables to perform operations on

this subcode so that the total time of the decoding algorithm is bounded

by Cn, for some absolute constant C that does not depend on the rate of
the code.

10 In the following, we will only consider the channels BSCp where 1 — HQ?) 2 1/4, as
the lower—rate cases are easier to handle.
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The construction of [37] also relies on the existence of certain families

of expander graphs. While it is known that for sufficiently long block

lengths the required families exist, the dependence of these block lengths

on 1" is not at present clear to this author.

5.1 Linear-Time Codes Approaching The Shannon Bound

To obtain linear-time coding systems at rates approaching the Shannon

bound, we concatenate a code from an asymptotically good family of

linear-time codes with a code of much smaller block length from a family

that approaches the Shannon bound. To obtain a family of linear-time

coding systems of rate 1—H (p) —e that enable reliable communication over

the B8019, we use linear—time codes of rate 1 * H(p) * 6 as outer codes

and some fixed inner code of rate w/l — H (p) — e that has a probability

of decoding error on the BSCp that is less than the fraction of errors

that the outer codes can correct. We know that such a code exists by

Shannon’s theorem, and we can use the methods of Section 2.1 to find
one.

The inner code will be fixed for the entire family. For sufficiently large

block lengths, the cost of finding this inner code will become negligible

and the polynomial-time cost of finding the outer code will dominate.

Similarly, the code constructor will create a look-up table to be used by

the encoder and decoder of the inner code, and the size of this table

will become negligible when compared with the length of the outer code.

Using this look-up table, the encoding and decoding algorithms for the
inner code will run in linear time. As the outer code was chosen to have

linear-time encoding and decoding algorithms, the encoders and decoders

of the concatenated code will also run in linear time. Moreover, for each

rate r < 1, there is a block length after which the linear time bound

on these algorithms does not depend upon the rate of the code. So long

as the number of inner code decoding errors is less than the number of

errors that the outer code can tolerate, the concatenated decoder will

decode correctly. As the probability of an inner code decoding error is

less than the fraction of errors that the outer code can correct, we can

use a Chernoff bound to show that the probability that the concatenated

decoder will fail becomes exponentially small as the length of the outer

code grows. Thus, for any rate less than the capacity of the BSCp, we can

construct a coding system that has a probability of decoding failure that

decreases exponentially with the amount of computation performed.
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6 Conclusions

A clear deficiency of the coding systems described in Section 5.1 is that

we have no bound on the block length at which they begin to exist. Also,

the dependence of the decrease in decoding error probability upon the

difference between the rate of the codes and the channel capacity is not

clear. While we know that the decoding error probability will eventually

become exponential in the block length, we have not examined what the

base of the exponential will be. For a given rate r, error probability p

of the channel, and decoder error probability E, we have no estimate on

the least complexity of a coding system that communicates at rate r over

the BSCp and has decoder error-probability E, we merely know that for

fixed r and p, the complexity of the coding system eventually becomes

logarithmic in the decoder error-probability. We have not even mentioned

the problem that the constants hidden by the big-O are enormous because

such details are usually ignored in an asymptotic analysis.

In light of these deficiencies, we propose that the average case com-

plexity of error-correcting codes be analyzed by asking:

“Determine, in terms of p, e, and E, the minimum complexity of the

constructors, encoders and decoders of coding systems that communicate

at rate 1 — H(p) — e and have decoder error probability E over the B50

with error probability p. ”

Much of the motivation for this problem statement comes from the

fact the relation between p and E is the focus of the performance curves

presented by engineers when they present error-correcting codes (see, for

example [6,42]). After all, what we really want to do is find ways to

communicate as quickly and reliably as possible.
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