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A"BSTRACT

Error control coding has been used extensively in digital communication systems because of its
cost-effectiveness in achieving efficient, reliable digital transmission. Coding now plays an important
role in the design of modern communication systems. This paper reviews the development of basic
coding theory and state-of-art coding techniques. The applications of coding to communication systems
and future trends are also discussed.

1. INTRODUCTION

1.1 The Coding Problem

Error control coding is concerned with methods of
delivering information from a source to a destination
with a minimum of errors. Error control coding can be
categorized as forward error correction (FEe),
automatic repeat request (ARQ), or as a combination
of FEC and ARQ (hybrid).

The communication system depicted in Fig. 1
employs FEe. The source generates data bits or
messages that must be transmitted to a distant user over
a noisy channel. Generally speaking, a specific signal
is assigned to each of M possible messages that can be
emitted by the source. The selection rule that assigns
a transmitted signal to each message is the code. The
encoder implements the selection rule, while the
decoder performs the corresponding inverse mapping.
Because of channel noise, the transmitted signals may
not arrive at the receiver exactly as transmitted, causing
errors to occur at the decoder input. A natural design
objective is to select the code such that most of the
errors occuring at the decoder input can be corrected
by the decoder. thereby providing an acceptable level
of reliabilty.
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Figure 1. Digital communication usingforward error control coding.

Coding is a design technique which can
fundamentally change the trade-offs in a digital
communication system. The most trivial example of
coding is the repetition of the same message on the
transmission channel. Here it is clear that redundancy,
and therefore reliability, is obtained at the expense of
transmission efficiency, or bandwidth utilization. In
general, error control coding can increase signal quality
from problematic to acceptable levels. If the attendant
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increase in complexity at the transmitter and receiver
is economically viable, and bandwidth utilization is not
unduly compromised, useful perfo.rmance
improvements may result. For example, with coding,
less power may be required to communicate between
a satellite and a mobile terminal. Furthermore, coding
may result in an increase in the maximum number of
mobile terminals per satellite

The study of error control coding began in 1948with
Claude Shannon) who demonstrated the existence of
codes achieving reliable communication whenever the
code rate is smaller than a threshold Ccalled the channel
capacity. For the additive white Gaussian noise
(AWGN).channel, the channel capacity is given by

r S]C = B log, L _ +
.N

Where B is the channel bandwidth, and SIN is the
ratio of signal to noise power falling within the
bandwidth. This remarkable result indicates that the
ultimate performance limit caused by channel noise is
not reliability, as generally believed before Shannon's
work, but the rate at which data can be reliably
transmitted.

The concept of channel capacity is fundamental to
communication theory and is surprisingly powerful and
general. It can be applied to a large class of channel
models, whether memoryless or not, discrete or
nondiscrete. However, Shannon's celebrated coding
theorems are only existence theorems; they do not show
how promising coding schemes can be constructed.
Since the publication of Shannon's result, a considerable
amount of research has addressed the design and
analysis of practical coding and decoding techniques
permitting reliable communication at the data rates
promised by the theory 2-4.

1.2 Basic Coding Process

In addition to the FECIARQ categorisation
mentioned earlier, coding systems have traditionally
been separated into block and convolutional
error-correction techniques.

In an (n, k) linear block code, a sequence of k
information bits is used to obtain a set of n-k parity
bits, yielding an encoded block of n bits. Usually
modulo-Z arithmetic is used to compute the parity bits.
Modulo-Z arithmetic is particularly suited to digital
logic; addition corresponds to the EXCLUSIVE-QR
operation, while multiplication can be realised as an
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AND operation. The code rate r is defined as r = kin
where n is called the block length. Linear codes form
a linear vector space; two code words can be added
(modulo-Z) to produce a third code word.

The Hamming weight of a code word c is defined
to be the number of nonzero components of c. For
example, the code word c =(110101) has a Hamming
weight of 4. The Hamming distance between two code
words c) and Cz, denoted d(ct , Cz), is the number of
positions in which they differ. For example if c) =
(110101) and Cz = (111000) then d(ct,Cz) = 3. The
minimum distance d of a linear block code is defined
to be the minimum \\ eight of its nonzero code words.
A code can correct all patterns of t or fewer random
errors and detect all patterns having no more than s
errors, provided that s+2t+ 1 ~ d. If the code is used
for error correction alone, any pattern of t or fewer
random errors can be corrected, provided that 2t+ 1~ d.

A convolutional code of rate l/v may be generated
by a K stage shift register and v modulo-Z adders.
Information bits are shifted in at the left, and for each
information bit the output of the modulo-Z adders
provides two channel bits. The constraint length of the
code is defined as the number of shifts over which a
single information bit can influence the encoder output.
For the simple binary convolutional code, the constraint
length is equal to K, the length of the shift register.

Whether block coding or convolutional coding is
used, the encoded sequence is mapped to suitable
waveforms by the modulator and transmitted over the
noisy channel. The physical channel or the waveform
channel consists of all the hardware (for example,
filtering and amplification devices) and the physical
media that the waveform passes through, from the
output of the modulator to the input of the demodulator.

The demodulator estimates which of the possible
symbols was transmitted based upon an observation of
the received signal. Finally, the decoder estimates the
transmitted information sequence from the
demodulator output. The decoder makes use of the fact
that the transmitted sequence is composed of the code
words. Transmission errors are likely to result in
reception of a noncode sequence.

1.3 Coding Gain
It is often useful to express coding performance not

in terms of the error rate reduction for a given
signal-to-noise ratio (SNR), but as the SNR difference
at a fixed bit error rate. Consider an AWGN channel
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with one-sided noise spectral density N 0 having no
bandwidth restriction. Let Eb denote the received
energy per bit. It can be shown that if the SNR EblNo
exceeds -1.6 dB, there exists a coding scheme which
allows error-free communications, while reliable
communication is not generally possible at lower SNRs.
On the other hand, it is well-known that the uncoded
phase shift keying (PSK) modulation over the same
channel requires about 9.6 dB to achieve a bit error
rate of lO,5 . Thus, as shown in Fig. 2, a potential coding

gain of 11.2 dB is theoretically possible.
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Figure 2. Performance of uncoded PSK over AWGN channel.

Coding gain is defined as the difference in value of
EblNo required to attain a particular error rate with and
without coding. Notice that coding gain is obtained at
the expense of transmission bandwidth . The bandwidth
expansion is the reciprocal of the code rate . Coding
schemes delivering 2 to R dB coding gain are widely
used in modern digital communication systems . This is
because of the phenomenal decrease in the cost of digital

hardware and the much less significant decrease in the
cost of analog components such as power amplifiers,
antennas and so on.

Practical communication systems rarely provide the
ablity to make full use of the actual analog voltages of

the received signal. The normal practice is to quantize
these voltages. If binary quantization is used, we say
that a hard decision is made at the receiver as to which

level was actually sent. For example , in coherent PSK
with equally likely transmitted symbols , the optimum
threshold is zero. The demodulator output is a one or
a zero depending on whether the voltage is above or
below the threshold . With coding, it is desirable to
maintain an indication of the reliability of this decision .
A soft-decision demodulator first decides whether the
voltage is above or below the decision threshold, and
than computes a 'confidence' number which specifies
how far from the decision threshold the demodulator
output is. This number in theory could be an analog
quantity , but in most practical applications a three-bit
(eight-level) quantization is used. It is known that soft
decision decoding is about 3 dB more efficient than
hard decision decoding at very high EblNo. A figure of
2 dB is more likely at realistic values of EJNo.

2. CODING FOR DIGITAL COMMUNICAnONS

2. Block Codes and their Decoding

The basic idea behind all block codes is illustrated
by the following example. We consider a binary code
having the eight code words ,(OO00סס) (001101),
(010011) , (011110), (100110) , (lOI011) , (llOI01) and
(11lO00) . These codes words form a vector space of
dimension three, so the code is a (6, 3) linear code .
The minimum weight of the seven nonzero code words
is 3, so the minimum distance is 3. Thus, the code is a
single error correcting code . This code is said to be in
systematic form ; the first three bits of any code word
can be considered as message bits while the last three
bits, which are uniquely determined by the first three
bib. are the redundant or parity bits.

Many of the important block codes found to date
are so-called cyclic codes or are closely related to cyclic
codes. For such codes, if an n tuple c= ('1>, cJ , 0, .. . ,
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Cn_ t is a code word, then the n tuple c'= (cn_t , Co, ct , •• . . ,

cn - Z) , obtained by cyclically shifting c one place to the
right , is also a code word. This class of codes can be
easily encoded using simple feedback shift register
circuits. Furthermore, because of their inherent
algebraic structure, the decoding of cyclic code is
straightforwarJ, both conceptually and in practice .
Examples of cyclic and related codes include the
Bose-Chaudhuri- Hocquenhem (BCH), Reed-Solomon
(RS) , Hamming, maximum-length, maximum­
distance-separable (MDS), Reed -Muller, Golay , Fire,
difference set, quadratic residue, Goppa, and
quasicyclic codes. Some of these classes form
overlapping sets. For example, RS code are a special
class of BCH codes and also belong to the class of MDS
codes. The details of these codes can be found in any
one of the standard coding references 5-8.

The first stc, of the decoding procedure involves
re-encoding the received information bits to obtain a
new parity sequence. The rnodulo-Z difference between
this parity sequence and the original parity sequence is
called the syndrome. If no errors have occurred, the
parity bits computed at the decoder will be identical to
those actually received, and the syndrome bits will be
zero. If the syndrome bits are not zero, errors have
been detected.

For error correction, the syndrome is processed
further. The algebraic constraints defining a given block
code generally yield a decoding technique or algorithm
for the code. The decoding algorithm makes further use
of the syndrome to calculate the error pattern affecting
the received word. Most decoding algorithms require
the use of binary quantization (hard decisions) at the
demodulator output. The syndrome is processed using
anyone of the following methods:

2.1.1 Table Look-Up Decoding

There is a unique correspondence between the 2n
-

k

distinct syndromes and the correctable error patterns.
Thus, for codes with small redundancy n-k, all
correctable error patterns can be stored in a read-only
memory (ROM), with the syndrome of the received
word forming the ROM address. The error pattern is
added modulo-Z to the received sequence to produce
the transmitted code word . This procedure is used in '
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some types of error correction hardware for computer
memories.

2.1.2 Algebraic Decoding

The most prominent decoding method is the iterative
algorithm for BCH codes due to Berlekamp. The basic
idea is to compute the error-locator polynomial and
solve for its roots. The complexity of this algorithm
increases only as the square of the number of errors to
be corrected. Thus, it is feasible to decode powerful
codes. The use of Fourier-like transrorms has also been
proposed to further reduce decoder complexity. The
standard version of the algorithm is a bounded-distance
algorithm. That is, not all possible error patterns can
be corrected. The algorithm does not generalise easily
to utilise soft decisions. There are several other
algebraic decoding algorithms, some of which utilize
soft decisions to improve performance. However,
Berlekamp's algorithm is perhaps the deepest and most
impressive result, and is straightforward to implement.
This algorithm has permitted the use of BCH and
Reed-Solomon codes in many applications, from the
Voyager mission to compact disks.

2.1.3 Majority Logic Decoding

Majority logic decoding is a simple form of threshold
decoding and is applicable to both block and
convolutional codes . There are codes that, because of
the special form of their parity check equations, are
majority logic decodable. Reed-Muller codes are the
most important class of codes of this type . A
Reed-Muller code was used in the Mariner mission to
encode photographs of Mars.

2.2 Convolutional Codes and their DecoclinI
Conovolutional codes have a much simpler

mathematical structure than all but the most trivial block
codes. Furthermore, unlike many block codes, it is
possible to make use of soft- decision information in
their decoding. For these reasons it is not surprising
that they have been widely used. Because of the
relatively small number of parameters specifying a
convolutional code, many good codes have been found
by computer search rather than by algebraic
construction.

The error-correction capability of a convolutional
code is determined in most cases by the free distance
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of the code. This is defined to be the minimum Hamming
distance between any two semi-infinite code sequences
generated by the encoder. By linearity, this is simply
the minimum Hamming weight of any nonzero code
sequence.

Three major decoding methods for convolutional
codes are briefly described in the following sections.

2.2.1 Viterbi Decoding

Viterbi decoding is presently the most widely used
decoding technique for convolutional codes. The
Viterbi decoding algorithm finds the most
likely(maximum likelihood) transmitted code sequence
by using a structure called a trellis", Each code sequence
is represented by a path through the trellis . .The degree
to which a given code sequence matches the noisy
received sequence is measured in terms of a path metric.
Paths with high path metrics correspond to the most
likely transmitted code sequences. The Viterbi
algorithm is an efficient technique for searching all
possible paths to find the most likely transmitted code
sequence. In fact, the algorithm applies to any trellis
code, not just the convolution codes . The significance
of the trellis viewpoint is that the transmitted code
sequence almost always corresponds to the path with
the highest path metric. A major advantage of the
Viterbi algorithm is the ease with which soft-decision
information may be incorporated into the path metric.
Unfortunately, the complexity of the Viterbi algorithm
has an exponential dependence on the code's constraint
length K. In practice, the Veterbi algorithm is rarely
used with codes having constraint lengths exceeding 7.
Another point worth mentioning is that Viterbi
decoding does not perform very well in a bursty channel ,
making it necessary to use interleaving. Convolutional
codes using the Viterbi algorithm are often
concatenated with powerful block codes, especially in
deep space applications.

2.2.2 Sequential Decoding

Again, code sequences are represented as paths in
a trellis. Sequential decoding makes use of the fact that
in most cases, there are only a small number of paths
with high path metrics. Therefore, by carefully
restricting the path search procedure, it is often possible
to isolate the maximum likelihood path without keeping

track of all possible paths. The complexity of sequential
decoders is relatively independent of constraint length,
so codes with large constraint lengths (up to 1(0) can
be used, yielding large coding gains. Sequential
decoding is more suitable than Viterbi decoding when
low bit error rates « 10'5) are required. However,
unlike the Viterbi algorithm, the procedure is
suboptimum; only a small fraction of the Possible code
sequences is examined at anyone time. The sequential
decoder must be capable of detecting situations when
the correct path is not in the set of sequences under
examination and 'backtracking' to the point where the
correct path was most likely lost. The decoder must
then examine a different set of paths extending from
that point. Several stages of backtracking may be
necessary to find the correct path again. A major
disadvantage of sequential decoding is that the number
of computations is an ill-behaved random variable,
necessitating a very large buffer. Consequently,
performance is limited by the probability of the buffer
overflow.

2.2.3 Threshold Decoding

Some convolutional codes are threshold decodable.
Several parity checks may be calculated for each
message bit and if they exceed a threshold, a decision
on the correctness of the bit is made. Moderate values
of coding gain (1-3 dB) can be obtained with relatively
inexpensive decoders and limited amount of
redundancy.

2.3 ARQ and Hybrid FEe ARQ Schemes

In an automatic repeat request (ARQ) scheme,
whenever the receiver detects an error in the transmitted
message, it sends a retransmission request to the trans­
mitter over a feedback channel. These requests are
repeated until the message is received correctly. Three
basic types of ARQ protocols are commonly used-stop­
and-wait, go-back-N, and selective-repeat 10-12.

Because of its simplicity, ARQ is used in many data
communications systems . However. the technique has
a major shortcoming-the throughput efficiency may be
highly dependent on channel conditions. At low SNRs,
the number of retransmissions required for correct
message transmission may be very large. Hence, a
successful transmission may involve a very long time
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