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Introduction

We begin by outlining the structure of digital communication systems and end the
first chapter with an outline of Shannon’s information theory, which includes some
aspects of elementary channel and source coding. The second chapter contains the
rest of our material on traditional coding theory: a consideration of BCH codes and
some material on convolutional codes. The main intent ofthe first two chaptersis
to supply the reader with the necessary backgroundin information theory and error
correction coding to understand the theory of trellis-coded modulation. Another
goal is to provide the essentials of information theory and coding where the book
is used for a single course on these subjects that contains a significant component
on trellis-coded modulation.

1.1 Digital Communications Structure

Digital communications systems have a definite structure and knowledge ofthis
structure is helpful in understanding the role of coding and modulation systems.
The simplest structure, shown in Fig. 1.1, is for a point-to-point communication
system—notthat for a communications network or a point-to-multipoint system.
We have a transmitter, 7,, a receiver, R,, and a channelthat links the transmitter
and receiver.

The transmitter, channel, and receiver shown in Fig. 1.1 can be further subdi-
vided. Let us begin by considering a subdivision of the transmitter structure (Fig.
1.2). We have an information source that we will take as binary, which meansthat
its output is a sequence in which the only elements are 1s and Os. The sourceis
followed by a source encoder, a channel encoder, and a modulator. We now de-
scribe the function of each of these entities. Note that if the source is analog —for

example, a speech or video source—weshall assume that it has been digitized.

 
FIGURE 1.1 Simplest digital communications structure.
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FIGURE 1.2 Transmitter block diagram.

1.1.1 Source Encoder

A good, or desirable source is random—such sources have maximum informa-
tion. Clearly, if a | and a 0 have an equal probability of occurrence, knowledge
of the source output provides a maximum amountof information. For instance, if
the source nearly always outputs a 1, its output can be predicted and knowledge
of the output providesvery little information. Usually, sources are not randomand
contain significant amounts of redundancy. For example, in a video image. neigh-
boring picture elements are usually strongly related. The role of a source encoderis
to randomize the source. A measure of randomnessis entropy, a concept borrowed
from thermodynamics. The function of a source encoder, then, is as illustrated in
Fig. 1.3.

Why do we want the source to be encoded to a disordered state? The answer
lies in the utilization of one of the scarce resources of the telecommunications

problem—the channel. We should not waste the scarce resources of the channel by
sending predictable quantities over this link between the receiver and the transmitter.
The channel should only be used to carry the unpredictable information from the
source, that is, the output from the source encoder,

1.1.2 Channel Encoder

The goal of the channel encoderis to introduce an error correction capability into
the source encoder output to combat channel transmission errors. To achieve this
goal, some redundancy mustbe addedto the source encoder output. This may seem
confusing at first because we have just arguedthat all redundancy mustbe stripped
from the source outputs for efficient channel transmission. Indeed, this book is
about a technique, trellis coding, for adding redundancy to the source outputs so
that the channelis utilized from a very efficient point of view. However, thefirst
two chapters are aboutthe traditional way of adding redundancy, through parity
checks, and then transmitting the information plus parity bits across the channel in

 

 

  
 
 

 

Source
encoder  Entropy

E,2E,

 

Entropy
E\

FIGURE 1.3 Function of a source encoder.
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0 0

Pp (3, 1) Repetition code
0—000

P l—e111

l |

l-p

FIGURE 1.4 BSC plus (3, 1) repetition code.

a time-serial manner. Note that the same parity bits will be appended to a unique
collection of source output bits called the message. In this way, the redundancy
we add to the message is controlled and thereceiver will have knowledge of the
structure of this redundancy. This is the difference between the original redundancy
in the source symbols, whichis not controlled, and the redundancy addedin channel
coding, whichis controlled. Let us consider a simple example of channel coding.
The binary symmetric channel (BSC)plus a (3, 1) repetition codeareillustrated in
Fig. 1.4.

The transmission diagram is a summarizing diagram for transmission over the
channel, illustrating the fact that transmission errors occur with a prescribed prob-
ability of p. The channel coder appends two identical parity bits to the source
symbol, and the resulting 3-bit word is transmitted over the channel onebit at a
time (in Section 1.1.3 we show how this could be done). We can regard channel
transmission as three uses of the BSC shownin Fig. 1.4. If (0, 1, 0) is the 3-bit out-
put from three uses of the BSC, we should declare (0, 0, 0) as transmitted (denoted
as t,), since if 0 was the source bit sent, we have corrected a channel transmission

error in position 2, Thus our decoder for the BSC’s 3-bit outputs is based on ma-
jority rule and so will always result in one channel error being corrected no matter
where it appears in the 3-bit word.

The situation described above can be represented using the cube shownin Fig.
1.5. Two possible code words transmitted over the BSC are separated by a Hamming
distance, d4, of 3 and nearest-neighbor decoding results on a single error being
corrected. In general, if two code words differ in their component position, we add
one to their componentdistance, and examining all components gives the Hamming
distance between the two code words. Here we have d = 3. In general, for more
than two code words the greatest chance for error comes in comparing two code
words of least distance, aa In addition, the numberoferrors that can be corrected
by a code with the shortest Hamming distance, dH... is r = |(d4., — 1)/2], where
|x| is the largest integer less than or equal to x. In the present example we have
tf = | correctable channel transmission errors per code word received as ai. = 3)

The detection of errors is also a key item in channel coding because we could
always request, through a feedback channel, retransmission of a code word de-
tected to contain errors. In the present example only one error can be detected: for
instance, (O, 1, 1) could be received (denoted as r,) when (0, 0, 0) was transmitted,
but this error pattern is not detectable since the decoder must also consider(1, 1, 1)
as a candidate transmitted code word. Clearly, a single channel error can always

IPR2018-01474
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4 Ch.1/ Introduction

 
FIGURE 1.5 Decoding represented as points on a cube.

be detected for the present example. In general, |d4,,/2| transmission errors can
always be detected and for the present example we have onlyoneerror detected.
However, if we used the code 1 — (1, 1, 1, 1) and 0 — (0,0, 0, 0), we would have
di. = 4, and thus twoerrors detected butstill only one error corrected. Note here
that only 1 out of 4 bits sent is an information bit, and wesay that the rate of the
code is 1/4. The earlier code had rate 1/3 and thus less error detection capability
than given in the rate 1/4 case. Our conceptoferror detection here is different than
in most textbooks on coding theory, where the numberoferrors detected is taken
as d4. — 1. In traditional coding the rate 1/3 codeis transmitted by using the BSC
three times for each information bit. To realize this in practice, we must either
speed up the rate of symbol transmission by a factor of 3 or keep the same rate
of symbol transmission and be content with one-third the information transmission
rate relative to when no channel coding is used. Thus, in either case, an increased
channel bandwidth is required per information bit transmitted. This book is about
an alternative to this approach that involves no change in information transmission
rate; rather, the number of points in the signal constellation for modulation is
increased to achieve the required redundancy.

1.1.3 Modulator

In Fig. 1.2 the modulator interfaces the channel encoder to the channel. The
source, source encoder, and channel encoder taken together can be viewed as a
modified binary source that feeds the modulator, and as such, the modulator can
be regarded asinterfacing the source to the channel. Physical channels can require
electrical signals, radio signals, or optical signals. The modulator takes in the source
outputs and outputs waveformsthat suit the physical nature of the channel and are
also chosen to yield either system simplicity or optimal detection performance. A
baseband binary modulator is shownin Fig. 1.6. We call this a baseband modulator
because no sinusoidal carrier signal is involved. On a channel that has symmetric
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p(t)

A Modulation Rule
1 —— p(t)
0 ——p(r)

Line ___.
signal 

FIGURE 1.6 Baseband modulator.

interference, the signal selection in Fig. 1.6 is optimal in that it will yield for a
fixed transmitted power the least numberof errors in detection in the receiver, In
the quaternary modulator shown in Fig. 1.7, two source bits per symbol inter-
val T are required, whereas before, a single bit will do. In the quaternary case
the symbol transmission rate is 2/T bits per second (bits/s). This is an exam-
ple of pulse amplitude modulation; the amount of channel bandwidth suchsignals

1 1 — 3p(t)

Quaternary 10— p(t)
Gray
code 00— p(t)

0 1 —* -3p(r)

 
FIGURE 1.7 Quaternary modulator.
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require is related only to the rate at which the modulator signals are changed, that is,
to the rate 1/7. Thusthe quaternary case has twice the throughputofthe binary case
and clearly cannot have the sameerror performance, because the receiver must sort
out which offour signals were transmitted for the quaternary case, whereasa signal
selection over two possibilities suffices in the binary case.

To consider carrier modulation, consider the sinusoidalsignal

s(t) = A(t) cos[w.t + @(t)] (1.1)

where A(t) is the amplitude; w, is the frequency in radians per second and equals
2af-, with f, the frequency in hertz; and @(r) is the phase. In carrier modulation
we can vary anyorall of the parameters (A, w-, 6): varying A is called amplitude
modulation, varying @ is called phase modulation, and varying w. is called fre-
quency modulation; in all cases the variation is (hopefully) linearly related to the
message to be transmitted. Some examples are given in Figs. 1.8 and 1.9. Note
that binary phase modulation (called binary phase shift keying, BPSK) is equiva-
lent to binary amplitude shift keying (BASK). The type of quadrature amplitude
modulation (QAM) shownin Fig. 1.9 is called 64-QAM in that the signal constel-
lation contains 64 points. Thus 6/T bits per symbol interval T can be transmitted
over the channel. Inherent in the use of this modulation is the fact that two carrier

signals that differ in phase by 90° can be separated in the receiver to recover the
signals X(t) and Y(t), known as the in-phase and quadrature signals, respectively.
This can be donein a coherent receiver, whichis a receiver that must acquire and
track any nonmodulation phases that exist in the received signal.

1.1.4 The Communications Channel

The simplest channelis the additive noise channel: here the signal is received
with no distortion except additive noise. That is, if r(r) is the received signal,

r(t) = s(t) + n(t) (1.2)

where s(t) is the transmitted signal and n(r) is the additive noise. The classical
theory of communication over the additive noise channel is given in reference
[1]. A channel where the received signal is distorted, or at least can be distorted.
is shown in Fig. 1.10. This phenomenonis called the intersymbol interference
channel, as modulation symbols spill over into other symbolintervals, thus causing
distortion. Additive noise is also present in the received signal but is not shown on
the waveformsin Fig. 1.10.

Define the distribution of signal power as a function of frequency as the power
spectrum of a signal. A power spectrum for a QPSKsignal is displayed in Fig.
1.11. A QPSKsignal involves modulation with a discontinuous phase angle. The
other signal spectra in Fig. 1.11—minimumshift keying (MSK), duobinary min-
imum shift keying (DuMSK), and tamed frequency modulation (TFM)—involve
phase modulation with increasing smoothness[2]. This smoothness produces a more
compact spectrum. Call the bandwidth ofa signal the set of frequencies that con-
tain 98% of its power; that is, the area underthe curve overthis set of frequencies
in Fig. 1.10 that contains 98% ofthe total area. If the 3-dB bandwidth ofthe linear
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5;(t) = Acos(w,1+ a+ -2!)
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Pltete
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fr=f+id i=0,1,..., M-1

(b)

FIGURE 1.8 Digital phase and frequency modulation: (a) MPSK; (b) FSK.

s(t) =X(t) cos@_1 + @) + ¥(t) sin @,t +)

oe 
FIGURE 1.9 Quadrature amplitude modulation.
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H(f) = RC low passfilter

s(t)

y(t) HY) = I
~ iFlfy) +1

fy= 3-dB bandwidth

FIGURE 1.10 Intersymbol interference channel.

filter in Fig. 1.9 is significantly less than this bandwidth, intersymbolinterference
(ISI) results. The classical theory of communication over the ISI channel is given
in [3]; a recent textbook [2] considers additive noise, ISI, and some nonlinear
channels.

Muchof this book is written for modulation and channel coding for the additive
noise channel where the additive noise is white Gaussian noise—thatis, the signal

powerspectrumisfiat over the bandwidth ofall signals sent over the channel. Very
little is considered for the ISI channel because the applicationoftrellis codes to this
channelis in the early stages of research. A channelthat will receive some attention
is the nonfrequency selective fading channel(Fig. 1.12). Indeed, the greatest gains
in performance that trellis codes have attained are for this channel. Let the input
signal be s(f) in equation (1.1); then the output or faded signal is

y(t) = G(t)A(t) cos[w.t + A(t) + W(t)). (1.3)

In (1.3) the shape of s(t) is not changed; only its amplitude and phaseare altered.
A typical fading function, G(r), for the model developed in [4] for the Canadian
Mobile Satellite Communications System is shown in Fig. 1.13. The classical
theory of fading channels in mobile radio systems is given in Jakes’s textbook
[S], and a good section on fading channels appears in [6]. In addition, material
of fading channel models can be found in Appendix A. It should be noted that
fading channels represent an example of a multiplicative noise process rather than
the additive noise case considered earlier.

In frequency-selective fading, s(r) in (1.2) is distorted as well as attenuated in a
time-varying manner. The channelin this case is a combination of the fading chan-
nel under consideration and the ISI channel. We do not consider such challenging
channels in this book.

1.1.5 The Receiver

The receiver follows the channel in the block diagram in Fig. 1.1. Now the
transmitter represents an operation on the sourceand the function of the transmitter
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FIGURE 1.11 Power spectrum of various signals.

is to invert this operation and recover the source symbols. Figure 1.2 represents
this operation by showing the transmitter in block diagram form. The inverse of
this block diagram, the receiver, is shownin Fig. 1.14. Indeed, each block in Fig.
1.14 is the inverse of a corresponding block in Fig. 1.2. The demodulatoris the
inverse of the modulation process, the channel decoder inverts the channel en-
coder process, and so on. The various blocks are viewed independently, muchas in
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FIGURE 1.12 Nonfrequency-selective fading channel.
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FIGURE 1.13 Amplitude fading function.
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FIGURE 1.14 Receiverblock diagram.
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1.2 / Discrete Memoryless Channels 11

the case of multilevel data protocols. Trellis coding serves to merge the processes
of modulation and coding, and recent work [7] is aimed at merging the roles of
source coding, channel coding, and modulation. We consider an example of a
demodulator in the next section. An example of a channel decoder was treated
earlier—the majority rule or nearest-neighbor decoder discussed in relation to
Fig. 1.4.

1.2 Discrete Memoryless Channels

An example of a discrete memoryless channel (DMC), the BSC, is given in Fig.
1.4. This channel has two inputs and two outputs. In general, a DMC can have a
finite number of inputs and outputs. In any case, all of the channels described in
Section 1.1.4 involved a continuous-time variable. In this section we show how to

derive a DMCfrom a continuous-time channel description. The latter is a physical
channel description, whereas the former is an abstract version of the channel.

1.2.1 Uncoded Baseband Communication

Consider the case of the transmitter, additive noise channel, and receiver shown

in Fig. 1.15. The modulation will be as shown in Fig. 1.6, namely, | — p(t) and
0 — —p(t), where p(t) is the rectangular pulse. The receiver is shownin Fig.
1.16; this is a matched filter and it is optimum in the sense of having the smallest
error probability amongall receivers [1]. A typical output is shown in Fig. 1.16,
together with a samplerthat is synchronous with the end of a pulse. These samples
are quantized into two levels with a threshold at zero. If the sample is positive, a
binary | is declared to have been transmitted; otherwise, a binary 0 is declared.

The BSC channel is shown in Fig. 1.4. This channel represents a summary of
binary data transmission over the continuous-time channel shownin Fig. 1.15. The
BSCis completely described by p, the probability of error per binary digit sent
over the channel. Thus, to determine the BSC, we mustfind p.

 
 
 

 

 Binary
source  Modulator

Modulation 1 — p(t)
rule 0 —-—p(t)

FIGURE 1.15 Baseband system with no coding.
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THE FIRST BOOK DEVOTED COMPLETELY TO TCM!

Appropriate for students and professionals alike, this book providesa thor-
oughintroduction to trellis-coded modulation (TCM), helping readers grasp
its theory as well as the techniques neededforits analysis. It offers both a
conceptual and practical perspective by applying TCM theory to real-world
problems andevaluating the results; examples include fading channels and
commercial modems.

Introduction to Trellis-Coded Modulation with Applications contains most
of the results of TCM research that have occurredsinceits invention. In

addition, numericalillustrations are included throughoutto help describe
results from the application ofTCM theory.
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