
COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

The state of the art in data compression is arithmetic coding, not the better-
known Huffman method. Arithmetic coding gives greater compression, is
faster for adaptive models, and clearly separates the model from the channel
encoding.

ARITHMETIC CODING FOR
DATA COIUPRESSION

IAN H. WIllEN, RADFORD M. NEAL, and JOHN G. CLEARY

Arithmetic coding is superior in most respects to the
better-known Huffman [lo] method. It represents in-
formation at least as compactly-sometimes consid-
erably more so. Its performance is optimal without
the need for blocking of input data. It encourages a
clear separation between the model for representing
data and the encoding of information with respect to
that model. It accommodates adaptive models easily
and is computationally efficient. Yet many authors
and practitioners seem unaware of the technique.
Indeed there is a widespread belief that Huffman
coding cannot be improved upon.

We aim to rectify this situation by presenting an
accessible implementation of arithmetic coding and
by detailing its performance characteristics. We start
by briefly reviewing basic concepts of data compres-
sion and introducing the model-based approach that
underlies most modern techniques. We then outline
the idea of arithmetic coding using a simple exam-
ple, before presenting programs for both encoding
and decoding. In these programs the model occupies
a separate module so that different models can easily
be used. Next we discuss the construction of fixed
and adaptive models and detail the compression
efficiency and execution time of the programs,
including the effect of different arithmetic word
lengths on compression efficiency. Finally, we out-
line a few applications where arithmetic coding is
appropriate.

Financial support for this work has been provided by the Natural Sciences
and E@neering Research Council of Canada.

UNIX is a registered trademark of AT&T Bell Laboratories.

0 1987 ACM OOOl-0782/87/OtiOO-0520 750

DATA COMPRESSION
To many, data compression conjures up an assort-
ment of ad hoc techniques such as conversion of
spaces in text to tabs, creation of special codes for
common words, or run-length coding of picture data
(e.g., see [8]). This contrasts with the more modern
model-based paradigm for coding, where, from an
input string of symbols and a model, an encoded string
is produced that is (usually) a compressed version of
the input. The decoder, which must have access to
the same model, regenerates the exact input string
from the encoded string. Input symbols are drawn
from some well-defined set such as the ASCII or
binary alphabets; the encoded string is a plain se-
quence of bits. The model is a way of calculating, in
any given context, the distribution of probabilities
for the next input symbol. It must be possible for the
decoder to produce exactly the same probability dis-
tribution in the same context. Compression is
achieved by transmitting the more probable symbols
in fewer bits than the less probable ones.

For example, the model may assign a predeter-
mined probability to each symbol in the ASCII
alphabet. No context is involved. These probabilities
can be determined by counting frequencies in repre-
sentative samples of text to be transmitted. Such a
fixed model is communicated in advance to both en-
coder and decoder, after which it is used for many
messages.

Alternatively, the probabilities that an adaptive
model assigns may change as each symbol is trans-
mitted, based on the symbol frequencies seen so far
in the message. There is no need for a representative

520 Communications of the ACM June 1987 Volume 30 Number 6

IPR2018-01413
Sony EX1013 Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Computing Practices

sample of text, because each message is treated as if Huffman coding were substituted. Nevertheless,
an independent unit, starting from scratch. The en- since our topic is coding and not modeling, the illus-
coder’s model changes with each symbol transmit- trations in this article all employ simple models.
ted, and the decoder’s changes with each symbol Even so, as we shall see, Huffman coding is inferior
received, in sympathy. to arithmetic coding.

More complex models can provide more accurate
probabilistic predictions and hence achieve greater
compression. For example, several characters of pre-
vious context could condition the next-symbol prob-
ability. Such methods have enabled mixed-case Eng-
lish text to be encoded in around 2.2 bits/character
with two quite different kinds of model [4, 61. Tech-
niques that do not separate modeling from coding
so distinctly, like that of Ziv and Lempel (231, do
not seem to show such great potential for compres-
sion, although they may be appropriate when the
aim is raw speed rather than compression per-
formance [22].

The basic concept of arithmetic coding can be
traced back to Elias in the early 1960s (see [l,
pp. 61-621). Practical techniques were first intro-
duced by Rissanen [16] and Pasco [15], and de-
veloped further by Rissanen [17]. Details of the
implementation presented here have not appeared
in the literature before; Rubin [2O] is closest to our
approach. The reader interested in the broader class
of arithmetic codes is referred to [18]; a tutorial is
available in [l3]. Despite these publications, the
method is not widely known. A number of recent
books and papers on data compression mention it
only in passing, or not at all.

The effectiveness of any model can be measured
by the entropy of the message with respect to it,
usually expressed in bits/symbol. Shannon’s funda-
mental theorem of coding states that, given messages
randomly generated from a model, it is impossible to
encode them into less bits (on average) than the en-
tropy of that model [21].

A message can be coded with respect to a model
using either Huffman or arithmetic coding. The for-
mer method is frequently advocated as the best pos-
sible technique for reducing the encoded data rate.
It is not. Given that each symbol in the alphabet
must translate into an integral number of bits in the
encoding, Huffman coding indeed achieves “mini-
mum redundancy.” In other words, it performs opti-
mally if all symbol probabilities are integral powers
of %. But this is not normally the case in practice;
indeed, Huffman coding can take up to one extra bit
per symbol. The worst case is realized by a source
in which one symbol has probability approaching
unity. Symbols emanating from such a source con-
vey negligible information on average, but require at
least one bit to transmit [7]. Arithmetic coding dis-
penses with the restriction that each symbol must
translate into an integral number of bits, thereby
coding more efficiently. It actually achieves the the-
oretical entropy bound to compression efficiency for
any source, including the one just mentioned.

THE IDEA OF ARITHMETIC CODING
In arithmetic coding, a message is represented by an
interval of real numbers between 0 and 1. As the
message becomes longer, the interval needed’to rep-
resent it becomes smaller, and the number of bits
needed to specify that interval grows. Successive
symbols of the message reduce the size of the inter-
val in accordance with the symbol probabilities gen-
erated by the model. The more likely symbols re-
duce the range by less than the unlikely symbols
and hence add fewer bits to the message.

Before anything is transmitted, the range for the
message is the entire interval [0, l), denoting the
half-open interval 0 5 x < 1. As each symbol is
processed, the range is narrowed to that portion of it
allocated to the symbol. For example, suppose the
alphabet is (a, e, i, O, u, !I, and a fixed model is used
with probabilities shown in Table I. Imagine trans-

TABLE I. Example Fixed Model for Alphabet (a, e, i, o, u, !)

Symbol Probability Range

.2 LO, 0.2)

.3 [0.2, 0.5)

.l [0.5, 0.6)

.2 [0.6,0.8)

.l [0.8, 0.9)

.l [0.9, 1.0)
In general, sophisticated models expose the defi-

ciencies of Huffman coding more starkly than simple
ones. This is because they more often predict sym-
bols with probabilities close to one, the worst case
for Huffman coding. For example, the techniques
mentioned above that code English text in 2.2 bits/
character both use arithmetic coding as the final
step, and performance would be impacted severely

mitting the message eaii!. Initially, both encoder
and decoder know that the range is [0, 1). After
seeing the first symbol, e, the encoder narrows it to
[0.2, 04, the range the model allocates to this sym-
bol. The second symbol, a, will narrow this new
range to the first one-fifth of it, since a has been

June 1987 Volume 30 Number 6 Communications of the ACM 521

IPR2018-01413
Sony EX1013 Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Computing Practices

allocated [0, 0.2). This produces [O.Z, 0.26), since the Figure la. The second symbol scales it again into the
previous range was 0.3 units long and one-fifth of range [0.2, 0.26). But the picture cannot be contin-
that is 0.06. The next symbol, i, is allocated [0.5, 0.6), ued in this way without a magnifying glass! Conse-
which when applied to [0.2, 0.26) gives the smaller quently, Figure lb shows the ranges expanded to
range [0.23, 0.236). Proceeding in this way, the en- full height at every stage and marked with a scale
coded message builds up as follows: that gives the endpoints as numbers.

Initially 1)
After seeing e ;::2, 0.5)

a p.2, 0.26)
i [0.23, 0.236)
i [0.233, 0.2336)
! [0.23354, 0.2336)

Figure 1 shows another representation of the en-
coding process. The vertical bars with ticks repre-
sent the symbol probabilities stipulated by the
model. After the first symbol has been processed, the
model is scaled into the range [0.2, 0.5), as shown in

Suppose all the decoder knows about the message
is the final range, [0.23354, 0.2336). It can -immedi-
ately deduce that the first character was e! since the
range lies entirely within the space the model of
Table I allocates for e. Now it can simulate the oper-
ation of the encoder:

Initially P, 1)
After seeing e [0.2, 0.5)

This makes it clear that the second character is a,
since this will produce the range

After seeing a [0.2, 0.26),

which entirely encloses the given range [0.23354,
0.2336). Proceeding like this, the decoder can iden-
tify the whole message.

After
seeing Nothing e a ’ !

U

0

i

0 ri e

a

3

FIGURE la. Representation of the Arithmetic Coding Process

After
seeing Nothing e a

1

i

!
u

0

i

e

a

0

0.5

0.2 i
a

0.26

0.2 i

It is not really necessary for the decoder to know
both ends of the range produced by the encoder.
Instead, a single number within the range--for ex-
ample, 0.23355-will suffice. (Other numbers, like
0.23354, 0.23357, or even 0.23354321, would do just
as well.) However, the decoder will face the problem
of detecting the end of the message, to determine
when to stop decoding. After all, the single number
0.0 could represent any of a, aa, aaa, aaaa, To
resolve the ambiguity, we ensure that each message
ends with a special EOF symbol known to both en-
coder and decoder. For the alphabet of Table I, ! will
be used to terminate messages, and only to termi-

!
u

0

/
i

e

a
\

i i !

!
U

/

0

i

e

\
a

FIGURE lb. Representation of the Arithmetic Coding
Process with the interval Scaled Up at Each Stage

522 Communications of the ACM June 1987 Volume 30 Number 6

IPR2018-01413
Sony EX1013 Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Computing Practices

/* ARITHMETIC ENCODING ALGORITHM. */

/* Call encode-symbol repeatedly for each symbol in the message. */
/* Ensure that a distinguished "terminator" symbol is encoded last, then */
/* transmit any value in the range [low, high). */

encode-symbol(symbo1, cum-freq)
range = high - low
high = low f range*cum-freq[symbol-11
low = low f range*cum-freq(symbol1

/* ARITHMETIC DECODING ALGORITHM. */

/* "Value" is the number that has been received. */
/* Continue calling decode-symbol until the terminator symbol is returned. */

decode-symbol(cum-freq)
find symbol such that

cum-freq[symbol] <= (value-low)/(high-low) < cum-freqrsymbol-11
/* This ensures that value lies within the new l /
;* (low, high) range that will be calculated by */
/* the following lines of code. */

range = high - low
high = low t range*cum-freq[symbol-11
1OW = low t range*cum-freq[symbol]
return symbol

FIGURE 2. Pseudocode for the Encoding and Decoding Procedures

nate messages. When the decoder sees this symbol,
it stops decoding.

Relative to the fixed model of Table I, the entropy
of the five-symbol message eaii! is

-log 0.3 - log 0.2 - log 0.1 - log 0.1 - log 0.1

= -log 0.00006 = 4.22

(using base 10, since the above encoding was per-
formed in decimal). This explains why it takes five
decimal digits to encode the message. In fact, the
size of the final range is 0.2336 - 0.23354 = 0.00006,
and the entropy is the negative logarithm of this
figure. Of course, we normally work in binary,
transmitting binary digits and measuring entropy
in bits.

Five decimal digits seems a lot to encode a mes-
sage comprising four vowels! It is perhaps unfortu-
nate that our example ended up by expanding
rather than compressing. Needless to say, however,
different models will give different entropies. The
best single-character model of the message eaii! is
the set of symbol frequencies (e(O.2), a(0.2), i(O.4),
!(0.2)), which gives an entropy of 2.89 decimal digits.
Using this model the encoding would be only three
digits long. Moreover, as noted earlier, more sophis-
ticated models give much better performance
in general.

A PROGRAM FOR ARITHMETIC CODING
Figure 2 shows a pseudocode fragment that summa-
rizes the encoding and decoding procedures devel-
oped in the last section. Symbols are numbered, 1, 2,
3 . . . The frequency range for the ith symbol is
from cum-freq[i] to cum-freq[i - 11. As i decreases,
cum-freq[i] increases, and cum-freq[O] = 1. (The
reason for this “backwards” convention is that
cum-freq[O] will later contain a normalizing factor,
and it will be convenient to have it begin the array.]
The “current interval” is [Zozu, high), and for both
encoding and decoding, this should be initialized
to [O, 1).

Unfortunately, Figure 2 is overly simplistic. In
practice, there are several factors that complicate
both encoding and decoding:

Incremental transmission and reception. The encode
algorithm as described does not transmit anything
until the entire message has been encoded; neither
does the decode algorithm begin decoding until it
has received the complete transmission. In most
applications an incremental mode of operation is
necessary.

The desire to use integer arithmetic. The precision
required to represent the [low, high) interval grows
with the length of the message. Incremental opera-
tion will help overcome this, but the potential for

]une 1987 Volume 30 Number 6 Communications of the ACM 523

IPR2018-01413
Sony EX1013 Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Computing Practices

overflow and underflow must still be examined
carefully.

Representing the model so thnt it can be consulted
efficiently. The representation used for the model
should minimize the time required for the decode
algorithm to identify the next symbol. Moreover,
an adaptive model should be organized to minimize
the time-consuming task of maintaining cumulative
frequencies.

arithmetic-coding-h

Figure 3 shows working code, in C, for arithmetic
encoding and decoding. It is considerably lmore de-
tailed than the bare-bones sketch of Figure Z! Imple-
mentations of two different models are given in
Figure 4; the Figure 3 code can use either one.

The remainder of this section examines the code
of Figure 3 more closely, and includes a proof that
decoding is still correct in the integer implementa-
tion and a review of constraints on word lengths in
the program.

1 /' DECLARATIONS USED FOR ARITHMETIC ENCODING AND DECODING l /
2
3
4 /* SIZE OF ARITHMETIC CODE VALUES. l /
5
6 #define Code-value-bits 16 /* Number of bits in a code value l /
7 typedef long code-value: /* Type of an arithmetic code value l /
a
9 fdefine Top-value (((long)l<<Code_value_blts)-1) /* Largest code value l /

10
11
12 /' HALF AND QUARTER POINTS IN THE CODE VALUE RANGE. l /
13
14 *define First-qtr (Top-value/ltl) /* Point after first quarter l /
15 #define Half (Z'First-qtr) /* Point after first half "/
:6 Idefine Third-qtr (3’Firat-qtr) /* Point after third quarter l /

mode1.h

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

524 Communicationso~ the ACM June 1987 Volume 30 Number 6

/' INTERFACE TO THE MODEL. '/

/' THE SET OF SYMBOLS THAT MAY BE ENCODED. l /

#define No-of-chars 256 /* Number of character symbols '/
#define EOF-symbol (No-of-charetl) /* Index of EOF symbol '/

#define No-of-symbols (No-of-charstll /* Total number of symbols */

/' TRANSLATION TABLES BETWEEN CHARACTERS AND SYMBOL INDEXES. l /

int char-to-index[No-of-chars]; /* To index from character '/
unsigned char index_to_char[No_of_symbols+l]: /* To character from index l /

/* CUMULATIVE FREQUENCY TABLE. */

Idefine Max-frequency 16383

int cum_frsq[No_of_symbols+l];

/* Maximum allowed frequency count l /
/* 2a14 - 1 l /
/* Cumulative symbol frequencies l /

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding

IPR2018-01413
Sony EX1013 Page 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

