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The state of the art in data compression is arithmetic coding, not the better- 
known Huffman method. Arithmetic coding gives greater compression, is 
faster for adaptive models, and clearly separates the model from the channel 
encoding. 
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DATA COIUPRESSION 
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Arithmetic coding is superior in most respects to the 
better-known Huffman [lo] method. It represents in- 
formation at least as compactly-sometimes consid- 
erably more so. Its performance is optimal without 
the need for blocking of input data. It encourages a 
clear separation between the model for representing 
data and the encoding of information with respect to 
that model. It accommodates adaptive models easily 
and is computationally efficient. Yet many authors 
and practitioners seem unaware of the technique. 
Indeed there is a widespread belief that Huffman 
coding cannot be improved upon. 

We aim to rectify this situation by presenting an 
accessible implementation of arithmetic coding and 
by detailing its performance characteristics. We start 
by briefly reviewing basic concepts of data compres- 
sion and introducing the model-based approach that 
underlies most modern techniques. We then outline 
the idea of arithmetic coding using a simple exam- 
ple, before presenting programs for both encoding 
and decoding. In these programs the model occupies 
a separate module so that different models can easily 
be used. Next we discuss the construction of fixed 
and adaptive models and detail the compression 
efficiency and execution time of the programs, 
including the effect of different arithmetic word 
lengths on compression efficiency. Finally, we out- 
line a few applications where arithmetic coding is 
appropriate. 
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DATA COMPRESSION 
To many, data compression conjures up an assort- 
ment of ad hoc techniques such as conversion of 
spaces in text to tabs, creation of special codes for 
common words, or run-length coding of picture data 
(e.g., see [8]). This contrasts with the more modern 
model-based paradigm for coding, where, from an 
input string of symbols and a model, an encoded string 
is produced that is (usually) a compressed version of 
the input. The decoder, which must have access to 
the same model, regenerates the exact input string 
from the encoded string. Input symbols are drawn 
from some well-defined set such as the ASCII or 
binary alphabets; the encoded string is a plain se- 
quence of bits. The model is a way of calculating, in 
any given context, the distribution of probabilities 
for the next input symbol. It must be possible for the 
decoder to produce exactly the same probability dis- 
tribution in the same context. Compression is 
achieved by transmitting the more probable symbols 
in fewer bits than the less probable ones. 

For example, the model may assign a predeter- 
mined probability to each symbol in the ASCII 
alphabet. No context is involved. These probabilities 
can be determined by counting frequencies in repre- 
sentative samples of text to be transmitted. Such a 
fixed model is communicated in advance to both en- 
coder and decoder, after which it is used for many 
messages. 

Alternatively, the probabilities that an adaptive 
model assigns may change as each symbol is trans- 
mitted, based on the symbol frequencies seen so far 
in the message. There is no need for a representative 
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sample of text, because each message is treated as if Huffman coding were substituted. Nevertheless, 
an independent unit, starting from scratch. The en- since our topic is coding and not modeling, the illus- 
coder’s model changes with each symbol transmit- trations in this article all employ simple models. 
ted, and the decoder’s changes with each symbol Even so, as we shall see, Huffman coding is inferior 
received, in sympathy. to arithmetic coding. 

More complex models can provide more accurate 
probabilistic predictions and hence achieve greater 
compression. For example, several characters of pre- 
vious context could condition the next-symbol prob- 
ability. Such methods have enabled mixed-case Eng- 
lish text to be encoded in around 2.2 bits/character 
with two quite different kinds of model [4, 61. Tech- 
niques that do not separate modeling from coding 
so distinctly, like that of Ziv and Lempel (231, do 
not seem to show such great potential for compres- 
sion, although they may be appropriate when the 
aim is raw speed rather than compression per- 
formance [22]. 

The basic concept of arithmetic coding can be 
traced back to Elias in the early 1960s (see [l, 
pp. 61-621). Practical techniques were first intro- 
duced by Rissanen [16] and Pasco [15], and de- 
veloped further by Rissanen [17]. Details of the 
implementation presented here have not appeared 
in the literature before; Rubin [2O] is closest to our 
approach. The reader interested in the broader class 
of arithmetic codes is referred to [18]; a tutorial is 
available in [l3]. Despite these publications, the 
method is not widely known. A number of recent 
books and papers on data compression mention it 
only in passing, or not at all. 

The effectiveness of any model can be measured 
by the entropy of the message with respect to it, 
usually expressed in bits/symbol. Shannon’s funda- 
mental theorem of coding states that, given messages 
randomly generated from a model, it is impossible to 
encode them into less bits (on average) than the en- 
tropy of that model [21]. 

A message can be coded with respect to a model 
using either Huffman or arithmetic coding. The for- 
mer method is frequently advocated as the best pos- 
sible technique for reducing the encoded data rate. 
It is not. Given that each symbol in the alphabet 
must translate into an integral number of bits in the 
encoding, Huffman coding indeed achieves “mini- 
mum redundancy.” In other words, it performs opti- 
mally if all symbol probabilities are integral powers 
of %. But this is not normally the case in practice; 
indeed, Huffman coding can take up to one extra bit 
per symbol. The worst case is realized by a source 
in which one symbol has probability approaching 
unity. Symbols emanating from such a source con- 
vey negligible information on average, but require at 
least one bit to transmit [7]. Arithmetic coding dis- 
penses with the restriction that each symbol must 
translate into an integral number of bits, thereby 
coding more efficiently. It actually achieves the the- 
oretical entropy bound to compression efficiency for 
any source, including the one just mentioned. 

THE IDEA OF ARITHMETIC CODING 
In arithmetic coding, a message is represented by an 
interval of real numbers between 0 and 1. As the 
message becomes longer, the interval needed’to rep- 
resent it becomes smaller, and the number of bits 
needed to specify that interval grows. Successive 
symbols of the message reduce the size of the inter- 
val in accordance with the symbol probabilities gen- 
erated by the model. The more likely symbols re- 
duce the range by less than the unlikely symbols 
and hence add fewer bits to the message. 

Before anything is transmitted, the range for the 
message is the entire interval [0, l), denoting the 
half-open interval 0 5 x < 1. As each symbol is 
processed, the range is narrowed to that portion of it 
allocated to the symbol. For example, suppose the 
alphabet is (a, e, i, O, u, !I, and a fixed model is used 
with probabilities shown in Table I. Imagine trans- 

TABLE I. Example Fixed Model for Alphabet (a, e, i, o, u, !) 

Symbol Probability Range 

.2 LO, 0.2) 

.3 [0.2, 0.5) 

.l [0.5, 0.6) 

.2 [0.6,0.8) 

.l [0.8, 0.9) 

.l [0.9, 1.0) 
In general, sophisticated models expose the defi- 

ciencies of Huffman coding more starkly than simple 
ones. This is because they more often predict sym- 
bols with probabilities close to one, the worst case 
for Huffman coding. For example, the techniques 
mentioned above that code English text in 2.2 bits/ 
character both use arithmetic coding as the final 
step, and performance would be impacted severely 

mitting the message eaii!. Initially, both encoder 
and decoder know that the range is [0, 1). After 
seeing the first symbol, e, the encoder narrows it to 
[0.2, 04, the range the model allocates to this sym- 
bol. The second symbol, a, will narrow this new 
range to the first one-fifth of it, since a has been 
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allocated [0, 0.2). This produces [O.Z, 0.26), since the Figure la. The second symbol scales it again into the 
previous range was 0.3 units long and one-fifth of range [0.2, 0.26). But the picture cannot be contin- 
that is 0.06. The next symbol, i, is allocated [0.5, 0.6), ued in this way without a magnifying glass! Conse- 
which when applied to [0.2, 0.26) gives the smaller quently, Figure lb shows the ranges expanded to 
range [0.23, 0.236). Proceeding in this way, the en- full height at every stage and marked with a scale 
coded message builds up as follows: that gives the endpoints as numbers. 

Initially 1) 
After seeing e ;::2, 0.5) 

a p.2, 0.26) 
i [0.23, 0.236) 
i [0.233, 0.2336) 
! [0.23354, 0.2336) 

Figure 1 shows another representation of the en- 
coding process. The vertical bars with ticks repre- 
sent the symbol probabilities stipulated by the 
model. After the first symbol has been processed, the 
model is scaled into the range [0.2, 0.5), as shown in 

Suppose all the decoder knows about the message 
is the final range, [0.23354, 0.2336). It can -immedi- 
ately deduce that the first character was e! since the 
range lies entirely within the space the model of 
Table I allocates for e. Now it can simulate the oper- 
ation of the encoder: 

Initially P, 1) 
After seeing e [0.2, 0.5) 

This makes it clear that the second character is a, 
since this will produce the range 

After seeing a [0.2, 0.26), 

which entirely encloses the given range [0.23354, 
0.2336). Proceeding like this, the decoder can iden- 
tify the whole message. 

After 
seeing Nothing e a ’ ! 

U 

0 

i 

0 ri e 

a 

3 

FIGURE la. Representation of the Arithmetic Coding Process 

After 
seeing Nothing e a 

1 

i 

! 
u 

0 

i 

e 

a 

0 

0.5 

0.2 i 
a 

0.26 

0.2 i 

It is not really necessary for the decoder to know 
both ends of the range produced by the encoder. 
Instead, a single number within the range--for ex- 
ample, 0.23355-will suffice. (Other numbers, like 
0.23354, 0.23357, or even 0.23354321, would do just 
as well.) However, the decoder will face the problem 
of detecting the end of the message, to determine 
when to stop decoding. After all, the single number 
0.0 could represent any of a, aa, aaa, aaaa, . . . . To 
resolve the ambiguity, we ensure that each message 
ends with a special EOF symbol known to both en- 
coder and decoder. For the alphabet of Table I, ! will 
be used to terminate messages, and only to termi- 

! 
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a 

FIGURE lb. Representation of the Arithmetic Coding 
Process with the interval Scaled Up at Each Stage 
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/* ARITHMETIC ENCODING ALGORITHM. */ 

/* Call encode-symbol repeatedly for each symbol in the message. */ 
/* Ensure that a distinguished "terminator" symbol is encoded last, then */ 
/* transmit any value in the range [low, high). */ 

encode-symbol(symbo1, cum-freq) 
range = high - low 
high = low f range*cum-freq[symbol-11 
low = low f range*cum-freq(symbol1 

/* ARITHMETIC DECODING ALGORITHM. */ 

/* "Value" is the number that has been received. */ 
/* Continue calling decode-symbol until the terminator symbol is returned. */ 

decode-symbol(cum-freq) 
find symbol such that 

cum-freq[symbol] <= (value-low)/(high-low) < cum-freqrsymbol-11 
/* This ensures that value lies within the new l / 
;* (low, high) range that will be calculated by */ 
/* the following lines of code. */ 

range = high - low 
high = low t range*cum-freq[symbol-11 
1OW = low t range*cum-freq[symbol] 
return symbol 

FIGURE 2. Pseudocode for the Encoding and Decoding Procedures 

nate messages. When the decoder sees this symbol, 
it stops decoding. 

Relative to the fixed model of Table I, the entropy 
of the five-symbol message eaii! is 

-log 0.3 - log 0.2 - log 0.1 - log 0.1 - log 0.1 

= -log 0.00006 = 4.22 

(using base 10, since the above encoding was per- 
formed in decimal). This explains why it takes five 
decimal digits to encode the message. In fact, the 
size of the final range is 0.2336 - 0.23354 = 0.00006, 
and the entropy is the negative logarithm of this 
figure. Of course, we normally work in binary, 
transmitting binary digits and measuring entropy 
in bits. 

Five decimal digits seems a lot to encode a mes- 
sage comprising four vowels! It is perhaps unfortu- 
nate that our example ended up by expanding 
rather than compressing. Needless to say, however, 
different models will give different entropies. The 
best single-character model of the message eaii! is 
the set of symbol frequencies (e(O.2), a(0.2), i(O.4), 
!(0.2)), which gives an entropy of 2.89 decimal digits. 
Using this model the encoding would be only three 
digits long. Moreover, as noted earlier, more sophis- 
ticated models give much better performance 
in general. 

A PROGRAM FOR ARITHMETIC CODING 
Figure 2 shows a pseudocode fragment that summa- 
rizes the encoding and decoding procedures devel- 
oped in the last section. Symbols are numbered, 1, 2, 
3 . . . The frequency range for the ith symbol is 
from cum-freq[i] to cum-freq[i - 11. As i decreases, 
cum-freq[i] increases, and cum-freq[O] = 1. (The 
reason for this “backwards” convention is that 
cum-freq[O] will later contain a normalizing factor, 
and it will be convenient to have it begin the array.] 
The “current interval” is [Zozu, high), and for both 
encoding and decoding, this should be initialized 
to [O, 1). 

Unfortunately, Figure 2 is overly simplistic. In 
practice, there are several factors that complicate 
both encoding and decoding: 

Incremental transmission and reception. The encode 
algorithm as described does not transmit anything 
until the entire message has been encoded; neither 
does the decode algorithm begin decoding until it 
has received the complete transmission. In most 
applications an incremental mode of operation is 
necessary. 

The desire to use integer arithmetic. The precision 
required to represent the [low, high) interval grows 
with the length of the message. Incremental opera- 
tion will help overcome this, but the potential for 
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overflow and underflow must still be examined 
carefully. 

Representing the model so thnt it can be consulted 
efficiently. The representation used for the model 
should minimize the time required for the decode 
algorithm to identify the next symbol. Moreover, 
an adaptive model should be organized to minimize 
the time-consuming task of maintaining cumulative 
frequencies. 

arithmetic-coding-h 

Figure 3 shows working code, in C, for arithmetic 
encoding and decoding. It is considerably lmore de- 
tailed than the bare-bones sketch of Figure Z! Imple- 
mentations of two different models are given in 
Figure 4; the Figure 3 code can use either one. 

The remainder of this section examines the code 
of Figure 3 more closely, and includes a proof that 
decoding is still correct in the integer implementa- 
tion and a review of constraints on word lengths in 
the program. 

1 /' DECLARATIONS USED FOR ARITHMETIC ENCODING AND DECODING l / 
2 
3 
4 /* SIZE OF ARITHMETIC CODE VALUES. l / 
5 
6 #define Code-value-bits 16 /* Number of bits in a code value l / 
7 typedef long code-value: /* Type of an arithmetic code value l / 
a 
9 fdefine Top-value (((long)l<<Code_value_blts)-1) /* Largest code value l / 

10 
11 
12 /' HALF AND QUARTER POINTS IN THE CODE VALUE RANGE. l / 
13 
14 *define First-qtr (Top-value/ltl) /* Point after first quarter l / 
15 #define Half (Z'First-qtr) /* Point after first half "/ 
:6 Idefine Third-qtr (3’Firat-qtr) /* Point after third quarter l / 

mode1.h 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
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/' INTERFACE TO THE MODEL. '/ 

/' THE SET OF SYMBOLS THAT MAY BE ENCODED. l / 

#define No-of-chars 256 /* Number of character symbols '/ 
#define EOF-symbol (No-of-charetl) /* Index of EOF symbol '/ 

#define No-of-symbols (No-of-charstll /* Total number of symbols */ 

/' TRANSLATION TABLES BETWEEN CHARACTERS AND SYMBOL INDEXES. l / 

int char-to-index[No-of-chars]; /* To index from character '/ 
unsigned char index_to_char[No_of_symbols+l]: /* To character from index l / 

/* CUMULATIVE FREQUENCY TABLE. */ 

Idefine Max-frequency 16383 

int cum_frsq[No_of_symbols+l]; 

/* Maximum allowed frequency count l / 
/* 2a14 - 1 l / 
/* Cumulative symbol frequencies l / 

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding 
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