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| Block Matching
As mentionedin the previous chapter, displacement vector measurement andits usage in motion
compensation in interframe coding for a TV signal can be traced back to the 1970s. Netravali and
Robbins (1979) developed a pel-recursive technique, whichestimates the displacement vector for
eachpixel recursively fromits neighboring pixels using an optimization method. Limb and Murphy
(1975), Rocca and Zanoletti (1972), Cafforio and Rocea (1976), and Brofferio and Rocca (1977)
developed techniques for the estimation of displacement vectors of a block ofpixels. In the latter
approach, an image is first segmented into areas with each having an approximately uniform
translation. Then the motion vector is estimated for each area. The segmentation and motion
estimation associated withthese arbitrarily shaped blocks are very difficult. When there are muluple
moving areas in images, the situation becomes more challenging. In addition to motion vectors,
the shape information of these areas needs to be coded. Hence, when moving areas have various
complicated shapes, both computational complexity and coding load will increase remarkably.

In contrast, the block matching technique, which is the focus of this chapter, is simple,
straightforward, and yet very efficient. It has been by far the most popularly uulized motion
estimation technique in video coding. In fact, it has been adopted by all the international video
coding standards; ISO, MPEG-I and MPEG-2, and ITU H.261, and H.263. These standards will
be introduced in detail in Chapters 16, 17, and 19, respectively.

It is interesting to note that even nowadays, with the tremendous advancements in multimedia
engineering, object-based and/or content-based manipulation of audiovisual informationis still very
demanding, particularly in audiovisual data storage, retrieval, and distribution. The applications
include digital library, video on demand, audiovisual databases, and so on. Therefore, the coding
of arbitrarily shaped objects has attracted great researchattention these days. It has been included
in the MPEG-4 activities (Brailean, 1997), and will be discussed in Chapter 18,

In this chapter various aspects of block matching are addressed. They include the concept and
algorithm, matching criteria, searching strategies, limitations, and new improvements.

11.1 NONOVERLAPPED, EQUALLY SPACED, FIXED SIZE,
SMALL RECTANGULAR BLOCK MATCHING

To avoid the kind of difficulties encountered in motion estimation and motion compensation with
arbitrarily shaped blocks, the block matching technique was proposed by Jain and Jain (1981) based
on the following simple motion model.

An imageis partitioned into a set of nonoverlapped, equally spaced,fixed size, small rectangular
blocks; and the translation motion within each block is assumed to be uniform. Althoughthis simple
model considers translation motion only, other types of motions, such as rotation and zooming of
large objects, may be closely approximated by the piecewise translation of these small blocks
provided that these blocks are small enough. This observation, originally made by Jain and Jain,
has been confirmed again and again since then.

Displacement vectors for these blocks are estimated by finding their best matched counterparts
in the previous frame. In this manner, motion estimation is significantly easier than that for
arbitrarily shaped blocks. Since the motion of each block is described by only one displacement
vector, the side information on motion vectors decreases. Furthermore, the rectangular shape
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FIGURE 11.1 Block matching.

information is knownto both the encoderand the decoder, and hence does not needto be encoded,
which saves both computation load and side information,

The block size needs to be chosen properly. In general, the smaller the block size, the more
accurate is the approximation. It is apparent, however, that the smaller block size leads to more
motion vectors being estimated and encoded, which means an increase in both computation and
side information. As a compromise,a size of 16 x 16 is considered to be a good choice. (This has
been specified in international video coding standards such as H.261, H.263, and MPEG-1 and
MPEG-2.) Notethat for finer estimation a block size of 8 x 8 is sometimes used.

Figure 11.1 is utilized to illustrate the block matching technique. In Figure !1.1(a) an image
frame at moment£, is segmented into nonoverlapped p x g rectangular blocks. As mentioned above,
in commonpractice, square blocks of p = q = 16 are used most often. Consider one of the blocks
centered at (x, y). It is assumed that the block is translated as a whole. Consequently, only one
displacement vector needsto be estimated for this block. Figure | 1.1(b) shows the previous frame:
the frame at momentt,.,. In order to estimate the displacement vector, a rectangular search window
is opened in the framer,, and centered at the pixel (x, y). Consider a pixel in the search window,
a rectangular correlation window of the same size p x q is opened with the pixel located in its
center. A certain type ofsimilarity measure (correlation) is calculated, After this matching process
has been completed for all candidate pixels in the search window,the correlation window corre
spondingto thelargest similarity becomesthe best matchof the block under consideration in frame
1,. The relative position betweenthese two blocks(the block and its best match) gives the displace-
ment vector. This is shown in Figure 11.1(b).

The size of the search window is determined by the size of the correlation window and the
maximum possible displacementalongfour directions: upward, downward, rightward, and lefuward.
In Figure 11.2 these four quantities are assumed to be the same and are denoted by d. Notethat d
is estimated from a priori knowledge about the translation motion, which includes the largest
possible motion speed and the temporal interval between two conseculive frames, 1-€., fy ~ Unt:

11.2} MATCHING CRITERIA

Block matching belongs to image matching and can be viewed from a wider perspective. In many
image processing tasks, we need to examine two imagesor twoportions of images on a pixel-by-pixel
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FIGURE11.2 Search window and correlation window,

basis. These two images or two image regions canbe selected from a spatial image sequence, i.e.,
from twoframes taken at the same time with \wo different sensors aiming at the same object, or
from a temporal image sequence,i.c., from two frames taken al Lwo different moments by the same
sensor. The purpose ofthe examinationis to determinethe similarity between the two images or
two portions of images. Examples of this type of application include image registration (Pratt,
1974) and template matching (Jain, 1989). The former deals with spatial registration of images,
while the latter extracts and/or recognizes an object in an image by matching the object template
and a certain area ofthe image.

The similarity measure, or correlation measure, is a key element in the matching process, The
basic correlation measure between two images1, and f,,, C (s, 0), is defined as follows (Anuta, 1969).

= Pa2a (11.1)
[SFShnoe! Or Deeines

Thisis also referred to as a normalized two-dimensionalcross-correlation function (Musmannet al.,
1985).

Instead offinding the maximum similarity or correlation, an equivalent but yet more compu-
tationally efficient way of block matchingis to find the minimumdissimilarity, or matchingerror.
The dissimilarity (sometimesreferred to as the error, distortion, or distance) between (wo images
i, and t,.,, D (s, t) is defined as follows.

r=LYmi(Kfatnk+0), (11.2)
j=l k=l

where M(u,v)is a metric that measures the dissimilarity between the two arguments u and v. The
D (s, t) is also referred to as the matchingcriterion or the D values.

In the literature there are several types of matching criteria, among which the mean square
error (MSE) (Jain and Jain, 1981) and mean absolute difference (MAD) (Koga et al., 1981) are
used mostoften. It is noted that the sum of the squared difference (SSD) (Anandan, 1987) or the
sum of the squared error (SSE) (Chanet al., 1990) is essentially the same as MSE. The mean
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absolute difference is sometimes referred to as the mean absolute error (MAB) in the literature

(Nogaki and Ohta, 1972).
In the MSE matchingcriterion, the dissimilarity metric M (u, v) 1s defined as

M(u,v)=(u—v)’. (11.3)

In the MAD,

M(u,v)=|u—y. (11.4)

Obviously,both criteria are simpler than the normalized two-dimensional cross-correlation measure
defined in Equation 11.1.

Before proceeding to the next section, acommentontheselection ofthe dissimilarity measure
is due. A study based on experimental works reported that the matching criterion does not signif-
icantly affect the search (Srinivasan, 1984). Hence, the MADis preferred due toits simplicity in
implementation (Musmannetal,, 1985),

11.3. SEARCHING PROCEDURES

The searching strategy is another importantissue to deal with in block matching. Several searching
Strategies are discuused below.

11.3.1 Futt Searcy

Figure 11.2 showsa search window, a correlation window,andtheir sizes. In searching for the best
match,the correlation window is moved to each candidate position within the search window. That
is, there are a total (2 d+1) x (2 d+!) positions that need to be examined. The minimum dissimilarity
gives the best match. Apparently, this full search procedureis brute force in nature. While the full
search delivers good accuracy in searching for the best match (thus, good accuracy in motion
estimation), a large amount of computation is involved.

In order to lower computational complexity, several fast searching procedures have been
developed. They are introduced below.

11.3.2 2-D LocaritHmic SearcH

Jain and Jain (1981) developed a 2-D logarithmic searching procedure. Based on a 1-D logarithmic
search procedure (Knuth, 1973), the 2-D procedure successively reduces the search area, thus
reducing the computational burden, Thefirst steps computes the matching criteria for five points
in the search window.Thesefive points are as follows: the central point of the search window and
the four points surroundingit, with each being a midpoint between the central point and one of
the four boundaries of the window. Amongthesefive points, the one corresponding to the minimum
dissimilarity is picked as the winner, In the next step, surrounding this winner, anotherset of five
points are selected in a similar fashionto that in thefirst step, with the distances between the five
points remaining unchanged. The exception takes place wheneither a central point of a set of five
points or a boundary pointofthe search window gives a minimumDvalue.In these circumstances,
the distances betweenthe five points need to be reduced, The procedure continues until the final
step, in whicha set of candidate points are located in a 3 x 3 2-D grid. Figure 11.3 demonstrates
two cases of the procedure. Figure 11.3(a) shows that the minimum D value takes place on 4
boundary, while Figure 11.3(b) shows the minimum D valuein the central position,
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(b)

FIGURE 11.3 (a) A 2-D logarithmic search procedure, Points at (j, k+2), (+2, k+2), (+2, k+4), and G+1,
k+4) are foundto give the minimum dissimilarity in steps 1, 2, 3, and 4, respectively. (>) A: 2-D loganthmte

‘ search procedure, Pointsat (j, k-2), (j+2, k-2), and (+2, k-1) are found to give the minimum dissimilarity in
Steps 1, 2, 3, and 4, respectively.

A convergenceproofofthe procedureis presented by Jain and Jain (1981), underthe assumption
that the dissimilarity monotonically increases as the search point moves away from the point
corresponding to the minimum dissimilarity.
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FIGURE 11.4 Three-step search procedure. Points (j+4, k-4), (j+4, k-6), and (j+5, k-7) give the minimum
dissimilarity in steps 1, 2, and 3, respectively.
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11.3.3 Coarse-Fine THree-Step SEARCH

Another important work on the block matching technique was completed at almost the same time
by Koga et al. (1981). A coarse-fine three-step procedure was developed for fast searching.

The three-step search is very similar to the 2-D logarithm search. There are, however, three
main differences between the two procedures.First, each step in the three-step search comparesa
set of nine points that form a 3 x 3 2-D grid structure. Second, the distances between the points in
the 3 x 3 2-D grid structurein the three-step search decrease monotonically in steps 2 and 3. Third,
a total of only three steps are carried out. Obviously, these three itemsare different from the 2-D
logarithmic search described in Section 11.3.2. Anillustrative example of the three-step search is
shown in Figure 11.4.

11.3.4 Conyucate Direction SEARCH

The conjugate direction search is another fast search algorithm that was developed by Srinivasan
and Rao (1984). In principle, the procedure consists of two parts. In the first part, it finds the
minimum dissimilarity along the horizontal direction with the vertical coordinatefixed at aninitial
position. In the second part, it finds the minimum D value along the vertical direction with the
horizontal coordinate fixed in the position determined in the first part. Starting with the vertical
direction followed by the horizontaldirection is, of course, functionally equivalent. It was reported
that this search procedure works quite efficiently (Srinivasan and Rao, 1984).

Figure 11.5 illustrates the principle of the conjugate direction search. In this example, each
step involves a comparison between three testing points. If a point assumes the minimum D ae
compared with both of its two immediate neighbors (in one direction), then it is considered e e
the best match along this direction, and the search along anotherdirection is started. See y:
the procedure starts to compare the D values for three points (j, k-1), (j, k), and G, k+1). I ay
value of point (j, kK-1) appears to be the minimum amongthe three, then points (j, k-2), U, ;
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FIGURE 11.5 Conjugate direction search.

and (j, k) are examined. The procedure continues, finding point (j, k-3) as the best match along
the horizontal direction since its D value is smaller than that of points (j, k-4) and (j, k-2), The
procedure is then conducted alongthe vertical direction. In this example the best matchingis finally
found at point (j+2, k—3).

11.3.5  SuBsamMPLING IN THE CORRELATION WINDOW

In the evaluation of the matching criterion, either MAD or MSE,all pixels within a correlation
windowatthe f,.; frame and an original blockatthe ¢, frame are involved in the computation. Note
that the correlation window and theoriginal block are the samesize (refer to Figure 11.1). In order
to further reduce the computational effort, a subsampling inside the window and the block is
performed (Bierling, 1988). Aliasing effects can be avoided by using low-passfiltering. For instance,
only every second pixel, both horizontally and vertically inside the window and the block,is taken
into account for the evaluation of the matching criterion. Obviously, by using this subsampling
technique, the computational burdenis reduced by a factor of 4. Since 3/4 of the pixels within the
window and the block are not involved in the matching computation, however, the use of such a
subsampling procedure may affect the accuracy ofthe estimated motion vectors, especially in the
case of small-size blocks. Therefore, the subsampling technique is recommended only for those
cases with a large enough blocksize so that the matching accuracy will not be seriously affected.
Figure 11.6 shows an example of 2 x 2 subsampling applied to both an original block of 16x 16
at the 1, frame and a correlation window of the samesize at the f,_, frame.

11.3.6 MuttiresoLuTION BLock MATCHING

Tt is well known that a multiresolution structure, also known as a pyramid structure, is a very
powerful computational configuration for various image processing tasks, To save computation in
block matching,it is natural to resort to the pyramid structure. In fact, the multiresolution technique
has been regarded as one of the most efficient methods in block matching (Tzovaras et al., 1994).
In a named top-down multiresolution technique, a typical Gaussian pyramid is formed first.
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an original block

a corelation window

 
(a) An original block of 16%16 in frame alt, (b) A correlation window of 146%16 in frameat t

FIGURE 11.6 An example of 2x 2 subsampling in the original block and correlation window for a fast
search.

Before diving into further description, let us pause here to give those readers who have not been
exposed to the Gaussian pyramid a short introduction to the concept. For those who knowthe
concept, this paragraph can be skipped. Briefly speaking, a Gaussian pyramid can be understood
as a set of images with different resolutions related to an original image in a certain way. The
original image has the highestresolution and is considered as the lowest level, sometimes called
the bottom level, in the set. From the bottom level to the top level, the resolution decreases
monotonically. Specifically, between two consecutive levels, the upper level is half as large as the
lower level in both horizontal and vertical directions. The upper level is generated by applying a
low-passfilter (which has a groupofweights) to the lowerlevel, followed by a 2 x 2 subsampling.
That is, cach pixel in the upperlevel is a weighted average of some pixels in the lower level. In
general, this iterative procedure of generating a level in the set is equivalent to convolving a specific
weight function with the original imageat the bottom level followed by an appropriate subsampling.
Undercertain conditions, these weight functions can closely approximate the Gaussian probability
density function, which is why the pyramid is namedafter Gauss. (For a detailed discussion, readers
are referred to Burt and Adelson [1983, 1984].) A Gaussian pyramid structure 1s depicted in
Figure 11.7. Note that the Gaussian pyramid depicted in Figure 11.7 resembles a so-called quad-
tree structure in which each node hasfourchildren nodes. In the simplest quad-tree pyramid, each
pixel in an upperlevel is assigned an average valueofils corresponding four pixels in the next
lowerlevel,

Nowlet’s return to our discussion on the top-down multiresolution technique. After a Gaussian
pyramid has been constructed, motion search rangés are allocated among the different pyramid
levels. Block matchingis initiated at the lowest resolution level to obtain an initial estimation of
motion vectors. These computed motion vectors are then propagated to the next higher resolution
level, where they are corrected and then propagated to the next level. This procedure continues
until the highest resolution level is reached. As a result, a large amount of computation can be
saved. Tzovaras et al. (1994) showed that a two-level Gaussian pyramid outperforms a three-level
pyramid. Compared with full search block matching, the top-down multiresolution block search
sayes up to 67% of computations withoutseriously affecting the quality ofthe reconstructed images.

In conclusion,it has been demonstrated that multiresolution is indeedan efficient computational
Structure in block matching. This once again confirms the high computational efficiency of the
multiresolution structure.
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FIGURE 11.7 Gaussian pyramid structure.

11.3.7 THRESHOLDING MULTIRESOLUTION BLock MATCHING

Withthe multiresolution technique discussed above, the computed motion vectors at any interme-
diate pyramid level are projected to the next higher resolution level. In reality, some computed
motion vectors at the lower resolution levels may be inaccurate and have to be further refined,
while others may be relatively accurate and able to provide satisfactory motion compensation for
the corresponding block. From a computation-saving point of view,for the latter class it may not
be worth propagating the motion vectors to the next higher resolution level for further processing.

Motivated by the above observation, a new multiresolution block matching method with a
thresholding technique was developed by Shi and Xia (1997). The thresholding technique prevents
those blocks, whose estimated motion vectors provide satisfactory motion compensation, from
further processing, thus saving a lot of computation. In what follows, this technique is presented
in detail so as to provide readers with an insight to both multiresolution block matching and
thresholding multiresolution block matching techniques.

Algorithm — Letf,(x, y) be the frame of an image sequence al current moment n.First, two
Gaussian pyramids are formed, pyramids n and n — 1, from image frames f(x, y) and f,_\(x,y),
respectively, Let the levels of the pyramids be denoted by /, /= 0, I, ..., L, where 0 is the lowest
resolution level (top level), L is the full resolution level (bottom level), and L+1 is the total number
of layers in the pyramids. If(i, j) are the coordinates of the upper-left corner of a block at level /
of pyramid , the block is referred to as block(i, j)!. The horizontal and vertical dimensions ofa
block at level / are denoted by b! and b!, respectively. Like the variable block size method (refer
to Method | in Tzovarasetal. [1994]), the size of the block in this work varies with the pyramid
levels. Thatis, if the size of a block at level/ is b!, then the size ofthe blockat level / + 1 becomes
2b; x 2b). The variable block size methodis used becauseit gives more efficient motion estimation
than the fixed block size method. Here, the matching criterion used for motion estimation is the
MADbecauseit does not require multiplication and performs similar to the MSE. The MAD
between block (i, j)'b! of the current frame and block (i + v,,j + vy)'b}_; of the previous frame at
leyel / can be calculated as
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plat bi-1

MAD, (“=o SYelithit m) = fy_,(i+ k+vij+m+ vi) (11,5)
]

I x
b, xb, k=0 m=0

where V' = (vj, vj) is one ofthe candidates of the motion vector of block (i, j)},, v/, wf are the two
components of the motion vector along the x and y directions, respectively.

A block diagram of the algorithm is shown in Figure 11.8. The threshold in terms of MAD
needs to be determined in advance according to the accuracy requirementof the motion estimation
Determining the threshold is discussed below in Part B of this subsection. Gaussian pyramids are
formed for two consecutive frames of an image sequence [rom which motion estimationis desired
Block matching is then performed at the top level with the full-search scheme. ‘The estimated
motion vectors are checkedto see if they provide satisfactory motion compensation. If the accuracy
requirementis met, then the motion vectors will be directly wansformed to the bottomlevel ofthe
pyramid, Otherwise, the motion vectors will be propagated to the next higher resolution level for
further refinement. This thresholding process is discussed below in Part C ofthis subsection. The
algorithm continuesin this fashion until either the threshold has beensatisfied or the bottomlevel
has been reached. The skipping of someintermediate-level calculations provides for computational
saving. Experimental work with quite different motion complexities demonstrates that the proposed
algorithm reducesthe processing time from 14 to 20%, while maintaining almost the same quality
in the reconstructed image compared with the fastest existing multiresolution block matching
algorithm (Tzovaras et al., 1994),
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FIGURE 11.8 Block diagram fora three-level threshold multiresolution block matching.
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a

TABLE 11.1

Parameters Used in the Experiments

Parameters at Level Low Resolution Level_Full Resolution Level

Miss America

Search range 3x3 Ix]
Block size 4x4 8x8

Thresholding value 2 None (not applicable)

Train

Search range 4x4 Ixl
Block size 4x4 8x8

Thresholding value 3 None (not applicable)

Football

Search range 4x4 Ixl
Block size 4x4 gx 8

Thresholding value 4 None (not applicable) 

Threshold Determination — The MADaccuracycriterion is used in this work for the sake of
Saving computations. The threshold value has a direct impact on the performance ofthe proposed
algorithm. A small threshold value can improve the reconstructed image quality at the expense of
increased computational effort, On the other hand, a large threshold value can reduce the compu-
tational complexity, but the quality of the reconstructed image may be degraded. One possible way
to determine a threshold value, which was used in many experiments by Shi and Xia (1997), is as
follows.

The peak signal-to-noise ratio (PSNR) is commonly used as a measure of the quality of the
reconstructed image. As introduced in Chapter1, it is defined as

255°

MSE
PSNR =10102,, (11.6)

Fromthe given required PSNR, one can find the necessary MSE value. A square rootofthis
MSEvalue can be chosen as a threshold value, which is applied to the first two images from the
sequence. If the resulting PSNR and required processing timeare satisfactory, it is then used for
the rest of the sequence. Otherwise, the threshold can be slightly adjusted accordingly and applied
to the secondand third imagesto check the PSNRand processing time. It was reported in numerous
experiments that this adjusted threshold value was accurate enough, and that there was no need for
further adjustment. As shown in Table 11.1, the threshold values used for the “Miss America,”
“Train,” and “Football” sequences(three sequences having quite different motion complexities) are
2, 3, and 4, respectively. They are all determined in this fashion and give satisfactory performance,
as shown in the three rows marked “New Method (TH=2),” “New Method (TH=3)” and “New
Method (TH=4),” respectively, in Table 11.2. That is, the PSNR experiences only about 0.1 dB loss
and the processing time decreases drastically. In the experiments, the threshold value of 3, i.e., the
average value of 2, 3, and 4, was also tried. Refer to the three rows marked “New Method (TH=3)"
in Table 11.2. It is noted that this average threshold value 3 has already given satisfactory perfor-
mance for all three sequences. Specifically, for the “Miss America” sequence, since the criterion
increases from 2 to 3, the PSNRloss increases from 0.12 to 0.48 dB, and the reductionin processing
lime increases from 20 to 38%. For the “Football” sequence, since the criterion decreases from
4 to 3, the PSNRloss decreases from 0.08 to 0.05 dB, and the reduction in processing time decreases
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from 14 to 9%. Obviously, for the “Train” sequence, the criterion, as well as the performance,
remains the same. One can therefore conclude that the threshold determination may not require
much computation atall.

Thresholding — Motion vectors estimated at each pyramid level will be checked to see if they
provide satisfactory motion compensation. Assume V!(i,j) =(v{, v\) is the estimated motion vector
for block (i, j)', at level / of pyramid n. For thresholding, V! (/,/) should be directly projected to
the bottom level L. The corresponding motion vector for the same block at the bottom level of
pyramid n will be V4 (2¢-? 7,2) j), and is given as

ye(atte get j) = att yl(i, 9) (11.7)

The MAD betweentheblockat the bottom pyramid level of the current frame and its counterpart
in the previous frame can be determined according to Equation 11.5, where the motion vectoris
VE = VE (2) |,20-1) Ff). This computed MADvalue can be compared with the predefined threshold.
If this MAD valueis less than the threshold, the computed motion vector V5 (2!) 7.2" j) wall
be assigned to block (2i,2"j)- at level L in the current frame and motion estimation for this
block will be stopped. If not, the estimated motion vector V!(i, }) at level / will be propagated to
level / + | for further refinement. Figure 11.9 gives an illustration ofthe above thresholding process.

Experiments — Toverify the effectiveness of the proposed algorithm, extensive experiments have
been conducted. The performance of the new algorithm is evaluated and compared with that of
Method1, oneofthe mostefficient multiresolution block matching methods (Tzovaraset al., 1994)
in terms of PSNR,error image entropy, motion vector entropy, the number of blocks stopped at
the top level vs. the total number of blocks, and processing time. The number of blocks stopped
at the top level is the number of blocks withheld from further processing, while the total number
of blocks is the numberofblocks existing at the top level. It is noted that the (otal number of
blocksis the samefor each levelin the pyramid. The processing time is the sum ofthe total number
of additions involved in the evaluation of the MADand the thresholding operation.

In the experiments, two-level pyramids are used since they give better performance for motion
estimation purposes (Tzovaras et al., 1994). The algorithms are tested on three video sequences
with different motion complexities, i.e., the “Miss America,” “Train,” and “Football.” The “Miss
America” sequence has a speaker imposed on a static background and contains less motion. The
“Train” sequence has moredetail and contains a fast-moving object (train). The 20th frameof the
sequenceis shownin Figure 11.10. The “Football” sequence contains the most complicated motion

Pyramid Pyramid Pyramid
n-] n level

Estimation of motion vector
ofa block at level |
 

LE LF
Projection of
the block and
its estimated
motion vector
at level L

Calculation of the MAD of
the block at level L

  
FIGURE 11.9 Thethresholding process.
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FIGURE 11.10 The 20th frame of the “Train” sequence.

etee tttaseealaneecoed

 
FIGURE 11.11 The 20th frame in the “Football” sequence.

compared with the other two sequences. The 20th frame is shown in Figure 11.11. Table 11.1 is
the list of implementing parameters used in the experiments. Tables 11.2 and 11.3 give the perfor-
manceofthe proposed algorithm compared with Method1. In all three cases, the motion estimation
has a half-pixel accuracy, the meaning of which will be explained in the next section. All perfor-
mance measureslisted there are averaged for the first 25 frames ofthe testing sequences.

Each frameof the “Miss America” sequence is of 360 x 288 pixels. For convenience, only the
central portion, 320 x 256 pixels, is processed. Using the operational parameters listed in Table 11.1
(with a criterion value of 2), 38% of the total blocks at the top level satisfy the predefined criterion
and are not propagated to the bottom level. The processing time needed by the proposed algorithm
is 20% less than Method ‘1, while the PSNR, the error image entropy, and the vector entropy are
almost the same. Compared with Method 1, an extra amount of computation (around 0.16 x 10°
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TABLE 11.2

Experimental Results (1)

Error Image Processing Times
PSNR Entropy Vector Entropy Block Stopped at (No. of
(dB) (bits per pixel) (bits/vector) Top Level/Total Block Additions, 10°)

Miss America Sequence

Method | (Tzovaras 38.91 3.311 6,02 0/1280 10.02
etal,, 1994)

New method (TH=2) 38.79 3.319 5.65 487/1280 8.02

New method (TH=3) 38.43 3.340 5.45 679/1280 6.17

Train Sequence
Method | (Tzovaras 27.37 4.692 6.04 0/2560 22.58

etal., 1994)

New method (TH=3) 27.27 4.788 5.65 )333/2560 18.68

Football Sequence
Method | (Tzovaras 24.26 5.379 7.68 0/3840 30.06

etal, 1994)
New method (TH=4)=.24.18 5.483 7.58 1464/3840 25.90

New method (TH=3) 24.21 5.483 7.57 1128/3840 27.10 

additions) is conducted on the thresholding operation, but a large computational savings (around
2.16 x 108 additions) is achieved by withholding from further processing those blocks whose MAD
valuesat the full resolution level are less than the predefined accuracycriterion.

The framesof the “Train” sequence are 720 x 288 pixels, and only the central portion, 640 x
256 pixels, is processed. Using the operational parameters listed in Table 11.1 (with a criterion
value of 3), about 52% of the total blocks are stopped at the top level. The processing time is
reduced about 17% by the new algorithm, compared with Method |. The PSNR,the error image
entropy, and the vector entropy are almost the same.

The frames of the “Football” sequence are 720 x 480 pixels, and only the central portion,
640 x 384pixels, is processed, Using the operational parameterslisted in Table 11.1 (with acritenion
value of 4), about 38% ofthe total blocks are stoppedatthe top level. The processing time is about
14% less than that required by Method |, while the PSNR,the error image entropy, and the vector
entropy are almost the same.

Asdiscussed, the experiments with a single accuracy criterion of3 also producesimilarly good
performancefor the three different image sequences.

In summary,it is clear that with the three different testing sequences, the thresholding mult-
resolution block matching algorithm works faster than the fastest existing top-down multiresoluuion
block matching algorithm while achieving almostthe same quality of the reconstructed image.

11.4 MATCHING ACCURACY

Apparently, the two componentsofthe displacementvectors obtained using the technique described
aboveare an integer multipleofpixels. Thisis referred to as one-pixel accuracy.If a higher accuracy
is desired, i,e., the components ofthe displacement vectors may be a non-integer multiple ofpixels,
then spatial interpolation is required. Not only will more computation be involved, but also more
bits will be required to represent motion vectors. The gain is a more accurate motion estimation,
henceless prediction error. In practice, half-pixel or quarter-pixel accuracy are two widely utilized
accuracies other than one-pixel accuracy.
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11.5. LIMITATIONS WITH BLOCK MATCHING TECHNIQUES

Although very simple, straightforward, andefficient, hence. utilized most widely in video coding,
the block matching motion compensation technique has its drawbacks. First, it has an unreliable
motion vector field with respect to the true motion in 3-D world space. In particular, it has
unsatisfactory motion estimation and compensation along moving boundaries. Second, it causes
block artifacts. Third, it needs to handle side information, That is, it needs to encode and transmit

motion vectors as an overhead to the receiving end, thus making it difficult to use smaller block

size to achieve higher accuracy in motion estimation.
All these drawbacks are dueto its simple model: each block is assumedto experience a uniform

translation and the motion vectors of partitioned blocks are estumated independently of each other.
Unreliable motion estimation, particularly along moving boundaries, causes more prediction error,
hence reduced coding efficiency.

The block artifacts do not cause severe perceptual degradation to the human visual system
(HVS) when the available coding bit rate is adequately high. This is because, with a highbit rate,
a sufficient amount of the motion-compensated prediction error can be transmittedto the receiving
end, hence improving the subjective visual effect to such an extent that the block artifacts do not
appearto be annoying. However, whentheavailablebit rate is low, particularly lower than 64 kbps,
the artifacts become visually unpleasant. In Figure 11.12, a reconstructed frame of the “Miss
America” sequence at a low bit rate is shown, Obviously, block artifacts are very annoying,

 
FIGURE 11.12 The 21st reconstructed frame of the “Miss America” sequence using a codec following
H,263.
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especially where the mouth and hair are involved, The sequence was coded and decoded by using
a codec following ITU-T Recommendations H.263, an international standard in which block
matchingis utilized for motion estimation,

The assumption that motion within each block is uniform requires a small block size such as
16 x 16 and 8 x 8. A small blocksize leads to a large number of motion vectors, however, resulting
in a large overhead ofside information. A study by Chan etal. (1990) indicated that 8 x 8 block
matching performs muchbetter than 16 x 16 in terms of decoded image qualily due to better motion
estimation and compensation. The bits used for encoding motion vectors, however, increase sig-
nificantly (about four times), which may be prohibitive for very low bit rate coding since the total
bit rate needed for both prediction error and motion vectors may exceed the available bit rate. It
is noted that whenthe codingbit rate is quite low, say, on the order of 20 kbps, the side information
becomes compatible with the main information (prediction error) (Lin et al, 1997).

Tremendousresearch efforts have been made to overcome the limitations of block-matching

techniques. Some improvements have been achieved and are discussed next. It should be kept in
mind, however, that block matchingis still by far the most popular and efficient motion esumation
and compensation technique utilized for video coding, and it has been adopted for use by various
international coding standards. In other words, block matching ts the most appropriate technique
in the framework offirst-generation video coding (Dufaux and Moscheni, 1995).

11.6 NEW IMPROVEMENTS

11.6.1 Hberarcuicat Brock MATCHING

Bierling (1988) developed the hierarchical search based on the following two observations. On the
one hand, for a relatively large displacement, accurate block matching requires a relatively large
block size. This is conceivable if one considers its opposite case: a large displacement with a small
correlation window. Underthis circumstance, the search range is large. Therefore the probability
of finding multiple matchesis high, resulting in unreliable motion estimation. On the other hand,
a large block size may violate the assumptionthatall pixels in the block share the same displacement
vector. Hencearelatively small block size is required in order to meet the assumption. These
observations shed light on the problem of using a fixed block size, which maylead to unreliable
motion estimation.

To satisfy these two contradicting requirements simultaneously, in a hierarchical search proce-
dure a setof different sizes of blocks and correlation windowsis utilized. To facilitate the discussion,
consider a three-level hierarchical block-matching algorithm, in which three block-matching pro-
cedures are conducted, each with its own parameters. Block matching isfirst conducted with respect
to the largest size of blocks and correlation windows. Using the estimated displacement vectoras
an initial vector at the secondlevel, a new searchis carried out with respect to the second largest
size of blocks and correlation windows. The third search procedure is carried out similarly, based
on the results of the second search. An example with three correlation windowsisillustrated in
Figure 11.13.It is noted that the resultant displacementvector is the sum ofthe three displacement
vectors determined by three searches.

The parameters in these three levels are listed in Table 11.4. The algorithm is described below
with an explanationofthe various parametersin Table 11.4. Prior to cach block matching,a separate
low-passfilter is applied to the whole imagein orderto achieve reliable block matching. The low-
pass filtering usedis simply a local averaging. Thatis, the gray value of every pixel is replaced by
the mean value ofthe gray values ofall pixels within a square area centeredat the pixel to which
the mean valueis assigned. In calculating the matchingcriterion D value, a subsampling 1s applied
to the original block andthe correlation windowin order to save computation, which was discussed
in Section 11.3.5.
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(a) framet; (b) framet;.,

FIGURE 11.13 Hierarchical block matching.

  

TABLE 11.3

Experimental Results (I!)

Total Blocks Stopped Saved Processing Time Compared
at Top Level with Method 1 in Tzovaras et al. (1994)

Frames Tested (%) (%)

“Miss America” sequence 38 20
{TH = 2)

“Train” sequence §2 17
(TH = 3)

“Football” sequence 38 14
(TH = 4)
 

In the first level, for every 8th pixel horizontally and vertically (a step size of 8 x 8), block
matching is conducted with the maximum displacement being +7pixels,a correlation window size
of 64 x 64, and a subsampling factor of 4x 4. A 5x5 averaging low-passfilter is applied prior
to first level block matching. Second-level block matching is conducted with respect to every 4th
pixel horizontally and vertically (a step size of 4x 4). Note that for a pixel whose displacement
vectorestimate has not been determinedin first-level block matching, an averageofthe four nearest
neighboring estimates will be taken asits estimate, All the parameters for the second level are
listed in Table 11.4. One thing that needs to be emphasizedis that in block matching at this level
the search window should be displaced by the estimated displacement vector obtained in the first
level. Third-level block matching is dealt with accordingly for every 2nd pixel horizontally ang
vertically (a step size of 2x2), The different parameters are listed in Table 11.4. In each of the
three levels, the three-step search discussed in Section 11.3.3 is utilized. ee

Experimental work has demonstrated a more reliable motion estimation due i Tete :
set of different sizes for both the original block and the correlation window. eeets Pos
large window size and a large displacementrange determines major POON © pee fanges
vector reliably. The successive levels with smaller window sizes and smaller displac
are capable of adaptively estimating motion vectors more locally. _ three levels, respectively,

Figure 11.14 showsa portion of an image with pixels processed in the suet so that a motion
Itis noted thatit is possible to apply one more interpolation after thes¢ three Se Saas aoe
vectorfield of full resolution is available. Such a full-resolution mouon e
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TABLE 11.4

Parameters Used in a Three-Level Hierarchical Block Matching
Hierarchical Maximum Correlation

Level Displacement Window Size Step Size LPF Window Size  Subsampling

1 +7 pel 64 x 64 8 5=5 4x4

2 +3 pel 28 x 28 4 5x5 4x4
3 +1 pel 12% 12 2 3x3 2x2

Source: Data from Bierling (1988).

  
(3) Processed in cach processed in processed in level 3ofthree levels. levels 2 and 3

FIGURE 11.14 A portion ofan image withpixels processedin all three levels.

such applications as motion-compensated interpolation in the context of videophony. There, in
order to maintain a low bit rate some frames are skipped for transmission. At the receiving end
these skipped frames need to beinterpolated. As discussed in Chapter 10, motion-compensated
interpolation is able to produce better frame quality than that achievable by using weighted linear
interpolation.

11.6.2 Mutticrin Buock MatcHiNc

Multigrid theory was developed originally in mathematics (Hackbusch and Trottenberg, 1982). It
is a useful computational structure in image processing besides the multiresolution one described
in Section 11.3.6. A diagram with three different levels used to illustrate a multigrid structure is
shownin Figure 11.15. Although it is also a hierarchical structure, each level within the hierarchy
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FIGURE11.15 Illustration of a three-level hierarchical structure.

is of the same resolution. A few algorithms based on multigrid structure have been developed in
order to improve the block-matching technique. Two advanced methodsare introduced below.

Thresholding Multigrid Block Matching — Realizing that the simple block-based motion model
(assuming a uniform motion within a fixed-size block) in the block matching technique causes
several drawbacks, Chanetal, (1990) proposed a variable size block matching technique. The main
idea is using a split-and-merge strategy with a multigrid structure in order to segment an image
into a set ofvariable size blocks, each of which has an approximately uniform motion. A binary
tree (also Knownas bin-trec) structure is used to record the relationship between these blocks of
different sizes.

Specifically, an image frame is initially split into a set of square blocks by cutting the image
alternately horizontally and vertically. With respect to each block thus generated, a block matching
IS performed in conjunction with its previous frame. Then the matching accuracy in terms ofthe
sum squared error is compared withapreset threshold. If it is smaller than or equal to the threshold,
the block remains unchanged in the whole process and the estimated motion vector is final.
Otherwise, the block will be split into two blocks, and a new run ofblock matching is conducted
for each of these wo children blocks. The process continues until either the estimated vector
satisfies a preset accuracy requirement or the block size has reached a predefined minimum. At
this point, a merge process is proposed by Chan et al. Neighboring blocks under the same inter-
mediate nodes in the bin-tree are checked to see if they can be merged,i-e., if the merged block
can be approximated with adequate accuracy by a block in the reconstructed previous frame. It is
noted that the merge operation may be optional depending on the specific application.

A block diagram of multigrid block matching is shownin Figure 11.16. Note thatit is similar
to that shown in Figure 11.8 for the thresholding multiresolution block matching discussed in
Section 11.3.6, This observation reflects the similarities between multigrid and multiresoluvon
structures: both are hierarchical in nature and the splitting and merging can be easily performed,
An example of an image decomposition and its corresponding bin-tree are shown in Figure !1.17,

It was reported by Chanet al. (1990) that, with respect to a picture of a computer mouse and
a coin, the proposedvariable size block matching achieves up to a 6-dB improvement in SNR and
about 30% reduction in required bits compared with fixed-size (16 x 16) block matching. Forseveral
typical videoconferencing sequences, the proposed algorithm constantly performs better than the
fixed-size block matching technique in terms of improved SNR of reconstructed frames with the
same bil rate.

A similar algorithm was reported by Xia and Shi (1996) where a quad-tree-based segmentation
is used. The thresholding techniqueis similar to that used by Shi and Xia (1997) and the emphasis
is placed on the reduction of computational complexity. It was found that for the head-shoulder
type of videophonysequencesthe thresholding multigrid block matching algorithmperforms better
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 Initialization with an intermediate level in
the multigrid

Block matching

Is the preset
accuracycriterion

satisfied?

Does the block size

$ reach a presetminimum?

Splitting the block
(binary or quaternary)

Completion ofmatching for the
block

FIGURE 11.16 Flow chart of multigrid block matching.

 
   
  

than the thresholding multiresolution block matching algorithm. For video sequences that contain
more complicated details and motion, however, the performance comparison turns out to be
reversed.

A few remarks can be made as a conclusion for the thresholding technique. Althoughit needs
to encode and transmit the bin-tree or quad-tree as a portion of side information, and it has to
resolve the preset threshold issue, overall, the proposed algorithms achieve better performance
compared with fixed-size block matching. With the flexibility provided through the variable-size
methodology, the proposed approachis capable of making the modelof the uniform motion within
each block moreaccurate than fixed-size block matching can do.

Optimal Multigrid Block Matching — Aspointed out in Chapter 10, the ultimate goal of motion
estimation and motion compensation in the context of video coding is to provide a high code
efficiency in real time. In other words, accurate true motion estimation is not the final goal, although
accurate motion estimation is certainly desired. This point was presented by Bierling ( 1988) as
well. There, the different requirements with respect to motion-compensated coding and motion-
compensated interpolation were discussed. While the former requires motion vector estimation
leading to minimum prediction error and at the same time a low amount of motion vector infor-
mation, the latter requires accurate estimation of true vectors and a high resolution of the mouon

vectorfield. , : ai
This point was very muchemphasized by Dufaux and Moscheni (1995). They clearly sta

that in the context of video coding,estimationoftrue motion in 3-D world spaceis not the ultimate
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(a) An example ofa decomposition

 
(b) The corresponding bin-tree

FIGURE 11.17. Thresholding multigrid block matching.

goal. Instead, motion estimation should be able to provide good temporalprediction and at the
samelime require low overhead information. In a word,the total amountof information that needs
to be encoded should be minimized. Based on this observation, a multigrid block matching technique
with an advanced entropy criterion was proposed.

Since it belongs to the category of thresholding multigrid block matching, it shares many
similarities with those of Chan et al. (1990) and Xia and Shi(1996). It also bears some resemblance
to thresholding multiresolution block matching (Shi and Xia, 1997). Whatreally distinguishes this
approach from other algorithms is its segmentation decision rule. Instead of a preset threshold,the
algorithm works with an adaptive entropy criterion, which aimsat controlling the segmentation in
order to achieve an optimal solution in such a way that the total number of bits needed for
representing both the prediction error and motion overhead is minimized. The decision ofsplitting
a block is made only when the extra motion overhead involved in the splitting is lower than the
Zain obtained from less prediction error due to more accurale motion estimation. Not only is it
optimal in the sense of bit saving, butit also eliminates the need for setting a threshold.

The numberof bits needed for encoding motion informationcan beestimatedin a straightfor-
ward manner. As far as the prediction error is concerned, the bils required can be represented by
a total entropy of the prediction error, which can be estimated by using an analytical expression
Presented by Dufaux (1994) and Moschenietal. (1993). Note that the coding cost for quad-tree
Segmentation informationis negligible compared with that used for encoding prediction error and
motion vectors and, hence, is omilted in determining thecriterion.
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FIGURE 11.18 The 20th frame of the “Flower Garden” sequence

In addition to this entropy criterion, a more advanced procedure is adopted in the algonthm
for down-projecting the motion vectors between two consecutivegrids in the coarse-to-fine iteralive
refinement process.

Both qualitative and quantitative assessments in experiments demonstrate 1s good performance.
It was reported that, when the PSNR is fixed, the bit rate saving for the sequence “Flower Garden”
is from 10 to 20%, for “Mobile Calendar” from 6 to 12%. and for “Table Tennis” up to 8%. This
can be translated into a gain in the PSNR ranging from 0.5 to 1.5 dB. Subjectively, the visual
quality is improvedgreatly. In particular, moving edges become much sharper. Figures 11.18, 11, 19,
and 11.20 show a frame from “Flower Garden,” “Mobile Calendar,” and “Table Tennis” sequences,
respectively.

11.6.3 Prepictive MOTION FIELD SEGMENTATION

Aspointedat the beginning of Section 11.5, the block-based model, which assumesconstant motion
within each block, leads to unreliable motion estimation and compensation. This block effect
becomes more obviousandsevere for motion-discontinuousareas in image frames. This is because
there are two or more regionsin a block in the areas, each having a different motion. Using one
motion vector to represent and compensate for the whole block results in a significant prediction
error increase.

Orchard (1993) proposed a predictive motionfield segmentation technique to improve motion
estimation and compensation along boundaries of moving objects. Significant improvementin the
accuracy of the motion-compensated frame was achieved through relaxing the restrictive block-
based model along moving boundaries. Thatis, for those blocks involving moving boundaries, the
motion field assumespixel resolution instead of block resolution. S

Two key issues haveto be resolved in order to realize the idea. One is the segmentation Issue.
It is knownthat the segmentation information is needed at the receiving end for motion compen-
sation. This givesrise to a large increase in side information. To maintain almost the same amount
of coding cost as the conventional block matching technique, the motion field segmentation was
proposed to be conducted based on previously decoded frames. This scheme is based on the
following observation: the shape of a moving object does not change from frame to frame.
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Mae?) 22 2, 
FIGURE 11.20 The 20th frame of the “Table Tennis” sequence.

This segmentation is similar to the pel recursive technique (which will be discussed in detail
in the next chapter) in the sense that both techniques operate backwards: based on previously
decoded frames. The segmentation is different from the pel recursive method in thatit only uses
previously decoded framesto predict the shape of discontinuity in the motion field; not the whole
motion field itself. Motion vectors are still estimated using the current frame at the encoder.
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Consequently, this schemeis capable of achieving high accuracy in motion estimation, and at the
sametime it does not cause a large increase in side information due to the motion field segmentation

Another key issue is how to achieve a reconstructed motion field with pixel resolution along
moving boundaries. In orderto avoid extra motion vectors that need to be encoded and transmitted,
the motion vectors applied to these segmented regions in the areas of motion discontinuity are
selected from a set of neighboring motion vectors. As a result, the proposed technique is capable
of reconstructing discontinuities in the motion field at pixel resolution while maintaining the same
amount of motion vectors as the conventional block matching technique.

A numberofalgorithms using this type of motion field segmentation technique have been
developed and their performance has been tested and evaluated on some real video sequences
(Orchard, 1993). Two of the 40-frame test sequences used were the ‘Table Tennis” and the
“Football” sequences. The former containsfast ball motion and camera zooming. while the latter
contains small objects with relatively moderate amounts of motion and camera panning. Several
proposed algorithms were compared with conventional block matching in terms of average pixel
prediction error energy and bits per frame required for coding prediction error. For the average
pixel prediction errorenergy, the proposedalgorithmsachieve a significant reduction, ranging from
-0.7 to -2.8 dB with respect to the “Table Tennis” sequence, and from —1.3 to 4.8 dB with the
“Football” sequence. For bits per frame required for coding prediction error. a reduction of 20 to
30% was reported.

11.6.4 Overtapreo Brock MATCHING

All the techniques discussed so far in this section aim at more reliable motion estimation. As a
result, they also alleviate annoying block artifacts to a certain extent. In this subsection we discuss
a group oftechniques, termed overlapped block matching, developedto alleviate or eliminate block
artifacts (Watanabe, 1991; Nogaki and Ohta, 1992; Auyeunget al., 1992).

The ideais to relax the restriction of a nonoverlapped block partition imposed in the block-
based model in block matching. After the nonoverlapped, fixed size, small rectangular block
partition has been made, each block is enlarged along all four directions from the center of the
block. Refer to Figure 11.21. Both motion estimation (block matching) and motion-compensated
prediction are conducted in the same mannerasthat in block matching except for the inclusion of

an original non-overlapped block estimated motion vector

Sa a neighboring overlapped block

best matched enlarged block

 
(a) frame att, (b) frame att,.,,

FIGURE 11.21 Overlapped block matching.
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a window function. Thatis, a 2-D window function is utilized in order to maintain an appropriate
quantitative level along the overlapped portion. The window function decays towards the bound-
aries. In (Nogaki and Ohta, 1992) a sine-shaped window function was used,

Next, we use the algorithm proposed by Nogaki and Ohta as an exampleto specifically illustrate
this type of technique, Consider one of the enlarged, overlapped original (also known as target)
blocks, T(x,y), with a dimension of/ x /. Assumethat a vectorv, is one of the candidate displacement
vectors under consideration. The predicted version of the target block with y, is denoted by v,, f,
(x, y). Thus, the prediction error with v;, E, (x, y) can be calculated according to the following
equation

E(x y)=F(uy) -Thyy) (11.8)

The window function W(x, y) is applied at this stage as follows, resulting in a window-operated
prediction error with v,, WE,

WE,(x,y) =,(x,y) * W(x.y) (11.9)

Assume that the MADis used as the matching criterion. It can then be determined as usual by
using the window-operated prediction error WE,, (x, y). Thatis,

| / i

mada, DWE, (11,10)
The best match, which corresponds to the minimum MAD,producesthe displacement vectory.
In motion-compensated prediction, the predicted version of the enlarged target block, P, (x, y)

is derived from the frame at t,, by using estimated vector vy. The same window function W (x, y)
is used to generatethe final window-operated predicted version of the target block. Thatis,

WP(x, y) = P(x,y) x W(x.) (11.11)

It was reported by Nogaki (1992) that the luminance signal of an HDTV sequencewas used
in computer simulation. A block size of 16x 16 was used for conventional block matching, while
a block size of 32 x 32 was employed for the proposed overlapped block matching. The maximum
displacement range d was taken as d = 15, i.c., from —15 to +15 in both the horizontal and vertical
directions, The simulation indicated a reduction in the powerof the prediction error by about 19%.
Subjectively, it was observed that the blocking edges originally existing in the prediction error
signal with conventional block matching was largely removed with the proposed overlapped block
matching technique.

11.7, SUMMARY

By far, block matching is used more frequently than any other motion estimation technique in
motion-compensated coding. By partitioning a frame into nonoverlapped, equally spaced, fixed
size, small rectangular blocks and assuming that all the pixels in a block experience the same
translational motion, block matching avoids the difficulty encountered in motion estimationof
arbitrarily shaped blocks, Consequently, block matching is much simpler and involves less side
information compared with motion estimation with arbitrarily shaped blocks.
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Althoughthis simple model considers translauon motion only, other types of motions, such as
rotation and zooming oflarge objects, may be closely approximated by the piecewise translauion
of these small blocks, provided that these blocks are small enough. This important observation,
originally made by Jain and Jain, has been confirmed again and again since then.

Various issues related to block matching such as selection of block sizes, matching criteria,
search strategies, matching accuracy, and its limitations and improvements are discussed in this
chapter. Specifically, a block size of 16 x 16 is used most often, For more accurate Moon estimation,
the size of 8 X 8 is used sometimes.In the latter case, more accurate MOUON estimation 1s obtained

at the cost of more side information and higher computational complexity.
There are several different types of matching criteria that can be used in block matching. Since

it was shownthat the different criteria do not cause significant differences in block matching, the
mean absolute difference is hence preferred due to its simplicity in implementation.

Onthe one hand,a full-search procedure delivers good accuracy tn searching for the best match.
On the other hand, it requires a large amount of computation, In order to lower computational
complexity, several fast searching procedures were developed: 2-D logarithmic search, coarse-fine
three-step search, and conjugate direction search, to name a few,

Besides these suboptimum search procedures, there are some other measures developed to
lower computation. One of themis subsampling in the original blocks and the correlation windows.
By subsampling, the computational burden in block matching can be reduceddrastically, while the
accuracy of the estimated motion vectors maybe affected, Therefore, the subsampling procedure
is only recommendedfor the case with a large block size.

Naturally, the multiresolution structure, a powerful computational configuration in image pro-
cessing,lends itself well toa fast search in block matching. It significantly reduces the computations
involved. Thresholding multiresolution block matching further saves computation.

In terms of matching accuracy, several common choices are one-pixel, half-pixel, and quarter-
pixel accuracies. Spatial interpolation is usually required for half-pixel and quarter-pixel accuracies
Thatis, a higher accuracy is achieved with more compulation.

Limitations with block matching techniques are mainly an unreliable motion vectorfield and
block artifacts. Both are caused by the simple model: each block is assumed to experience a uniform
translation. Much efforts have been made to improve these drawbacks. Several techniques that are
an improvementover the conventional block matching technique are discussedin this chapter.

In the hierarchical block matching technique,a sct ofdifferent sizes for both the original block
and the correlation windoware used. The first level in the hierarchy with a large window size and
a large displacementrange determines a major portion ofthe displacement vector reliability, The
successive levels with smaller window sizes and smaller displacement ranges are capable of
adaptively estimating motion vectors more locally.

The multigrid block matching technique uses multigrid structure, another powerful computa-
tional structure in image processing, to provide a variable size block matching. With a split-and-
merge strategy, the thresholding multigrid block matching technique segments an image into a set
ofvariable size blocks,each of which experiences an approximately uniform motion. A tree structure
(bin-tree or quad-tree)is used to record the relationship between these variable size blocks. With
theflexibility provided through the variable-size methodology, the thresholding block matching
techniqueis capable of making the motion mode! ofthe uniform motion within each block more
accurate than fixed-size block matching can do.

Aspointed out in Chapter10, the ultimate goal of motion compensation in video coding is to
achieve a high codingefficiency. In other words, accurate true motion estimation is not the final
goal. From this point of view, in the above-mentioned multigrid block matching, the decision of
splitting a block is made only whenthebits used to encode extra motion vectors involved in the
splitting are less than the bits saved from encoding reduced prediction error due to more accurate
estimation. To this end, an adaptive entropycriterion is proposed and used in the optimal multigrid
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block matching technique. Not only is it optimal in the sense ofbit saving, but it also eliminates
the need for setting a threshold.

Apparently the block-based model encounters a more severe problem along moving boundaries,
To solye the problem, the predictive motionfield segmentation technique makethe blocks involving
moving boundaries have the motionfield measured with pixel resolution instead of block resolution.
In order to save shape overhead, segmentation is carried out backwards,i.e., based on previously
decoded frames. In order to avoid a large increase of side information associated with extra motion
vectors, the motion vectors applied to these segmented regions along moving boundariesare selected
from a set of neighboring motion vectors. As a result, the technique is capable of reconstructing
discontinuities in the motionfield at pixel resolution while maintaining the same amount ofmotion
vectors as the conventional block matching technique,

Thelast improvement over conventional block matching discussed in this chapter is overlapped
block matching. In contrast to dealing with blocks independently of each other, the overlapped
block matching technique enlarges blocks so as to make them overlap. A window function is then
constructed and used in both motion estimation and motion compensation. Because it relaxes the
restricuion of a nonoverlappedblock partition imposed by conventional block matching, it achieves
better performance than the conventional block matching.

11.8 EXERCISES

11-1. Refer to Figure 11.2. It is said that there are a total of (2d + 1) x (2d + 1) positions that
necdto be examined in block matching withfull search if one-pixel accuracy is required.
How many positions are there that need to be exmined in block matching with full
searchif half-pixel and quarter-pixel accuracies are required?

11-2. What are the two effects that subsampling in the original block andthe correlation block
may bring out?

11-3, Read Burt and Adelson (1983) or Burt (1984), and explain why the pyramid is named
alter Gauss,

11-4. Read Burt and Adelson (1983) or Burt (1984), and explain why a pyramid structure is
considered as a powerful computational configuration. Specifically, in multiresolutional
block matching, how and to what extent doesit save computation dramatically, compared
with the conventional block matching technique? You may want to refer to
Section | 1.3.7.

11-5. Howis the threshold determined in the thresholding multidimensional block matching
technique (refer to Section 11.3.7). It is said that the square root of the MSE value,
derived from the given PSNR according to Equation 11.6,is used as aninitial threshold
value. Justify the necessity of the square root operation.

11-6, Refer to Section 11.6.1 or the paper by Bierling (1988). State the different requirements
in the applications of motion-compensated interpolation and motion-compensated cod-
ing. Discuss wherea full resolution ofthe translational motion vector field may be used?

11-7, Read the paper Dufaux and Moscheni (1995), and explain the main feature of optimal
multigrid block matching. State how the adaptive entropy criterion is established. Imple-
ment the algorithm and compareits performance with that presented by Chan etal.
(1990).

11-8. Learn the predictive motion field segmentation technique (Orchard, 1993). Explain how
the algorithms avoid a large increase in overhead due to motion field segmentation.

11-9. Implement the overlapped block matching algorithm introduced by Nogaki (1992).
Compareits performance with that of the conventional block matching technique.
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2 Pel Recursive Technique

As discussed in Chapter10, the pel recursive technique is one ofthe three major approachesto
two-dimensional displacement estimation in image planes for the signal processing community.
Conceptually speaking, it is one type of region-matching technique. In contrast to block matching
(which was discussed in the previous chapter), it recursively estimates displacement vectors for
each pixel in an image frame. The displacement vector of a pixel is estimated by recursively
minimizing a nonlinear function of the dissimilarity between twocertain regions located in two
consecutive frames, Note that region means a group ofpixels, but it could be as small as a single
pixel. Also note that the terms pel andpixel have the same meaning. Both termsare used frequently
in the field of signal and image processing.

This chapter is organized as follows. A general description ofthe recursive techniqueis provided
in Section 12.1, Some fundamental techniques in optimization are covered in Section 12.2.
Section 12.3 describes the Netravali and Robbins algorithm, the pioneering work in this category.
Several other typical pel recursive algorithms are introduced in Section 12.4. In Section 12.5, a
performance comparison betweenthese algorithms is made,

12.1. PROBLEM FORMULATION

In 1979 Netravali and Robbins published the first pel recursive algorithmto estimate displacement
vectors for motion-compensated interframe image coding. Netravali and Robbins (1979) defined a
quantity, called the displaced frame difference (DFD), as follows.

DFD( x, y:d,.d,) = f,(a))- fea—-da- 4) (12.1)

where the subscript and 1 — 1 indicate two moments associated with (wo successive frames based
on which motion vectors are to be estimated; x, y are coordinates in image planes, d,, d, are the
two components of the displacement vector, ¢d, along the horizontal and vertical directions in the
image planes, respectively. DFD(x, y; d,, d,) can also be expressed as DFD(x, y; d. Whenever it
does not cause confusion, it can be written as DFD forthe sake ofbrevity. Obviously, if there Is
no errorin the estimation, i.c., the estimated displacement vectoris exactly equal to the true motion
vector, then DFD will be zero.

A nonlinear function of the DFD was then proposed as a dissimilarity measure by Netravali
and Robbins (1979), which is a square function of DFD,i.e., DFD*. —e

Netravali and Robbins thus converted displacement estimation into a minimization problem.
Thatis, each pixel corresponds to a pair of integers (x, ¥), denoting its spatial positionin the image
plane. Therefore, the DFD is a function of d. The estimated displacement vector d = (dy d,)’,
where ( )7 denotes the transposition of the argument vector or matrix, can be determined by
minimizing the DFD?. This is a typical nonlinear programming problem, on which a large body
of research has been reported in the literature. In the next section, several techniques that rely on
a method, called descent method, in optimization are introduced. The Netravali and Robbins
algorithm can be applied to a pixel once or iteratively applied several times for displacement
estimation. Thenthe algorithm moves to the next pixel. The estimated displacement vector of a
pixel can be used as aninitial estimate for the next pixel. This recursion can be carried out

251
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FIGURE 12.1 Three types of recursions: (a) horizontal; (b) vertical; (c) temporal.

horizontally, vertically, or temporally. By temporally, we mean that the estimated displacement
vector can be passed to the pixel of the samespatial position within image planes in a temporally
neighboring frame. Figure 12.1 illustrates these three different types of recursion.

12.2 DESCENT METHODS

Consider a nonlinear real-valued function z of a vector variable x,

z= f(z), (12.2)

with * € R*, where R” represents the set ofall n-tuples of real numbers. The question we face now
is how to find such a vector denoted by X* that the function z is minimized. This is classified as
an unconstrained nonlinear programming problem.

12.2.1  First-Orper Necessary CONDITIONS

Accordingto the optimization theory,iff(X) has continuousfirst-order partial derivatives, then the
first-order necessary conditionsthat x* has to satisfy are

Vf(x’) =0, (12.3)
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where V denotesthe gradient operation with respect to ¥ evaluated at ¥*, Note that wheneverthere
is only one vector variable in the function z to whichthe gradient operator is applied, the sign V
would remain without a subscript, as in Equation 12.3, Otherwise,i.e., if there is more than one
vector variable in the function, we will explicitly write out the variable, to which the gradient
operator is applied, as a subscript of the sign V. In the component form, Equation 12.3 can be
expressed as

of(¥) _ 5
dx,

A(x) _ 9
dx, (12.4)

The:

12.2.2 SecoNvo-Orpver SurricigNt CONDITIONS

If F(X) has second-order continuous derivatives, then the second-order sufficient conditions for
F(x*) to reach the minimum are known as

Vf(x")=0 (12.5)
and

H(z") >0, (12.6)

where H denotes the Hessian matrix and is defined as follows.

  

   

  

f(s) OFF)2S)
ax, OxOX, dx,0x,

f(z) A(R) . F(X)
H(x)=| dx,dx, d°x, . dx,0x, | (12.7)

re) af) 2*f(3)
dx dx, AX,0X, ax,

Wecanthussee that the Hessian matrix consists ofall the second-orderpartial derivatives offwith
respect to the components of ¥. Equation 12.6 meansthat the Hessian matrix H is positive definite.

12.2.3 UNDERLYING STRATEGY

Ouraimis to deriveaniterative procedure for the minimization. That is, we want to find a sequence

(12.8)Kip Apageeae ee

such that

f(%)> f(%) > F(%)>> FG) >> (12.9)

and the sequence converges to the minimum off(x), f(**).
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FIGURE 12.2 Descent method.

A fundamental underlying strategy for almostall the descent algorithms (Luenberger, 1984) 1s
described next. We start with an initial point in the space; we determine a direction to move
according to a certain rule; then we movealongthe direction to arelative minimumofthe function
z. This minimum point becomesthe initial point for the next iteration.

This strategy can be better visualized using a 2-D example, shown in Figure 12.2. There, ¥ =
(x,, X2)'. Several closed curves are referred to as contour curves or level curves, That ts, each of
the curves represents

f(xy) =e, (12.10)

with c being a constant.
Assumethat at the kth iteration, we have a guess: ¥*. Forthe (& + I)th iteration, we need to

* Find a search direction, pointed by a vector @*;
* Determine an optimal step size of with a> 0,

suchthat the next guess X**! is

x= FX +04 Oo (12.11)

and x**! satisfies f(x*) > f(x**').
In Equation 12.11, x* can be viewed as a prediction vector for x**', while of @* an update

vector, v*, Hence, using the Taylor series expansion, we can have

f(x*") = f(3")+(Ve(2"),8")+e, (12.12)

where(s, f) denotes the inner product between vectors 5 and f; and € represents the higher-order
terms in the expansion. Consider that the increment of a @* is small enough and, thus, € can be
ignored. From Equation 12.10,it is obvious that in order to have f(x**!) < F(x*) we must have
(Vf(x*), a@*) < 0. Thatis,

f(2**") < f(%*) = (VA(z'),0G") < 0. (12.13)
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Choosing a different update vector, i.¢., the product of the @vector and the step size of, results
in a different algorithm in implementing the descent method.

In the same category ofthe descent method,a variety of techniques have been developed, The
reader may refer to Luenberger (1984) or the many other existing books on optimization. Two
commonly used techniques ofthe descent method are discussed below. Oneis called the steepest
descent method, in which the search direction represented by the @ vector is chosen to be opposite
to that of the gradient vector, and a real parameter of the step size of is used; the otheris the
Newton-Raphson method, in which the update vector in estimation, determined jointly by the
searchdirection and the stepsize, is related to the Hessian matrix, defined in Equation 12,7. These
(wo techniques are further discussed in Sections 12.2.5 and 12.2.6, respectively.

12.2.4 CONveRGENCE SPEED

Speed of convergence is an important issue in discussing the descent method. It is utilized to
evaluate the performance ofdifferent algorithms.

Order of Convergence — Assume a sequenceofvectors { X*}, with k = 0,1, ---, ee, converges to
a minimum denoted by x*. We say that the convergence is oforder pif the following formula
holds (Luenberger, 1984):

— iaideale (12.14)

where pis posilive, lim denotes the limit superior, and | | indicates the magnitude or norm of a

vector argument. For the two latler notions, more descriptions [ollow.
The concept of the limit superior is based on the concept of supremum. Hence,let us first

discuss the supremum. Consideraset of real numbers, denoted by Q, that is bounded above. Then
there must exist a smallest real number @ suchthat for all the real numbers in the set Q, i.e., g €
Q, we have g < a. This real number ais referred to as the least upper bound or the supremumof
the set Q, and is denoted by

sup{g:g€Q} or sup,eo(4): (12.15)

Now turn to a real bounded above sequence r*, k = 0,1,-++,9. Ifs*=sup{r: j 2 k}, then the sequence
(s*} converges to a real number s*, This real number s* is referred to as the limit superior of the
sequence {7*} and is denoted by

limsn=(r*). (12.16)

The magnitude or norm ofa vector ¥, denoted by|x|, is defined as

|x| =(X, 2), (12.17)

where(s, #) is the inner product between the vector 5 and ¢. Throughoutthis discussion, when we
say vector we mean column vector. (Row vectors can be handled accordingly.) The inner product
is therefore defined as

(5,0) =5.0 (12,18)
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with the superscript 7 indicating the transposition operator.
With the definitions ofthe limit superior and the magnitude ofa vector introduced, we are now

in a position to understandeasily the conceptofthe order of convergence defined in Equation12.14,
Since the sequences generated by the descent algorithms behave quite well in general (Luenberger,
1984), the limit superior is rarely necessary. Hence, roughly speaking, instead ofthe limit superior,
the limit may be used in considering the speed of convergence.

Linear Convergence — Among the various orders of convergence, the order of unity is of
importance, andis referred to as linear convergence. Its definition is as follows. Ifa sequence ( ¥*),
k= 0,1,---,0, converges to ¥* with

[e**! —x"|
NM ee ie = =y<1, (12.19)ai  

then we say thatthis sequence convergeslinearly with a convergence ratio y. Thelinear convergence
is also referred to as geometric convergence because a linear convergent sequence with convergence
ralio y convergesto its limit at least as fast as the geometric sequences cy’, with ¢ being a constant.

12.2.5 Steerest Descent METHOD

The steepest descent method, often referred to as the gradient method, is the oldest and simplest
one among various techniques in the descent method. As Luenberger pointed out in his book, it
remains the fundamental method in the category for the following two reasons. First, because of
its simplicity, it is usually the first method attempted for solving a new problem. This observation
is very true. As we shall see soon, when handling the displacement estimation as a nonlinear
programming problem in the pel recursive technique, the first algorithm developed by Netravalt
and Robbinsis essentially the steepest descent method. Second, because of the existence of a
satisfactory analysis for the steepest descent method, it continues to serve as a reference for
comparing and evaluating various newly developed and more advanced methods.

Formula — In the steepest descent method, @ is chosen as

@=-Vf(z"), (12.20)

resulting in

sls'*!)=s(5')- ot95"), ee

where the step size ois a real parameter, and, with our rule mentioned before, the sign V here
denotes a gradient operator with respect to x#. Since the gradient vector points to the direction
along which the function f(x) has greatest increases,it is naturally expected that the selection of
the negative direction of the gradient as the search direction will lead to the steepest descent of
f(x). This is where the term steepest descentoriginated.

Convergence Speed — It can be shownthatif the sequence { x} is bounded above, then the steepest
descent method will converge to the minimum. Furthermore, it can be shown that the steepest
descent methodis linear convergent.

Selection of Step Size — It is worth noting that the selection of the step size a has significant
influence on the performanceof the algorithm. In general, if it is small, it produces an accurate
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FIGURE 12.3 Anillustration ofeffect of selection of step size on minimization performance. Too small ©
requires more steps to reach x*. Too large @ may cause overshooting.

estimate of x¥*. But a smaller step size meansit will take longer for the algorithm to reach the
minimum. Although a larger step size will make the algorithm converge faster, it may lead to an
estimate with large error. This situation can be demonstrated in Figure 12.3. There, for the sake of
an easy graphical illustration, x is assumed to be one dimensional. Two cases of too small (with
subscript 1) and too large (with subscript 2) step sizes are shown for comparison.

12.2.6 Newton-RapHson’s METHOD

The Newton-Raphson method is the next most popular method among various descent methods.

Formula — Consider xat the kth iteration. The & + Ith guess, x¥**!, is the sum of X* and p*,

xieloxtsye, (12.22)

where > is an update vector as shown in Figure 12.4. Now expandthe x**! into the Taylor series
explicitly containing the second-order term.

Ae)1(84)+(p.9) +5(HR ).7) +0, 12.23)
where @ denotes the higher-order terms, V the gradient, and H the Hessian matrix. If ¥ is small
enough, we can ignore the . Accordingto thefirst-order necessary conditions for x**! to be the
minimum, discussed in Section 12.2.1, we have

Vf(#1 +0) =Ve(*) +(x")? =0, (12.24)

FIGURE 12.4 Derivation of the

Newton-Raphson method.
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where V, denotes the gradient operator with respect to v, This leads to

p=-H"'(x*)Vs(¥"), (12.25)

The Newton—Raphson method is thus derived below.

f(e*") = f(x*)-Br'(x*ve(x*). (12.26)

Another loose and intuilive way to view the Newton—Raphson methodts that 1s format is similar
to the steepest descent method, except that the step size of 1s now chosen as H~! (¥*), the inverse
of the Hessian matrix evaluated at X*.

The idea behind the Newton—Raphson method is that the function being minimized is approx-
imated locally by a quadratic function and this quadratic function is then minimized. It is noted
that any function will behave like a quadratic function when it is close to the minimum. Hence,
the closer to the minimum, the more efficient the Newton—Raphson method. This is the exact
opposite of the steepest descent method, which works more efficiently at the beginning, andless
efficiently when close to the minimum, The price paid with the Newton—Raphson method 1s the
extra calculation involved in evaluating the inverse of the Hessian matrix at x*.

Convergence Speed — Assume that the second-order sufficient conditions discussed in
Section 12.2.2 are satisfied. Furthermore, assumethat the initial point x” is sufficiently close to
the minimum x*. Then it can be shown that the Newton-Raphson method converges with an order
of at least two. This indicates that the Newton-Raphson method converges faster than the steepest
descent method,

Generalization and Improvements — In Luenberger (1984), a general class of algorithms ts
defined as

xM'=3* alGve(x'), (12.27)

where G denotes an n x n matrix, and a positive parameter. Both the steepest descent method
and the Newton—Raphson methodfall into this framework.It is clear that if G is an n X n identical
matrix I, this general form reduces to the steepest descent method. If G = H and ao = | then this
is the Newton—Raphson method,

Although it descends rapidly near the solution, the Newton-Raphson method may not descend
for points far away from the minimum becausethe quadratic approximation may notbe valid there.
The introduction ofthe a, which minimizes f, can guarantee the descent off at the general points.
Another improvementis to set G = (CT + H(x*)}-! with C > 0. Obviously, this is a combination of
the steepest descent method and the Newton—Raphson method. Two extreme ends are that the
steepest method (very large Ct) and the Newton-Raphson method (Ck = 0). For most cases, the
selection of the parameter Caims at making the G matrix posilive definite.

12.2.7. OtHer MetHODS

There are other gradient methods such as the Fletcher-Reeves method (also knownas the conjugate
gradient method) and the Fletcher—Powell—Davidon method (also known as the variable metric
method). Readers may refer to Luenberger (1984) or other optimization text.

12.3. THE NETRAVALI-ROBBINS PEL RECURSIVE ALGORITHM

Having had anintroduction to somebasic nonlinear programming theory, we now turn to the pel
recursive technique in displacement estimation from the perspective of the descent methods. Let
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us take a lookat the first pel recursive algorithm, the Netravali-Robbinspel recursive algorithm.
ltactually estimates displacement vectors using the steepest descent method to minimize the squared
DFD. Thatis,

d= d'—* a¥ DFD*(x,y,d"), (12.28)

where VjDFD*(x, y, d*) denotes the gradient of DFD? with respect to d evaluated at d', the
displacement vector at the Ath iteration, and © is positive. This equation can be further written as

d‘*\=d' ~aDFD(x,y,d*)V, DFD(x,y,d"), (12.29)

A a result of Equation 12.1, the above equation leads to

d‘*'=d‘ -aDFD(x,y,d*)V,,f.(x-d,,y-4,); (12.30)

Where V,, means a gradient operator with respect to x and y. Netravali and Robbins (1979) assigned
a constant of ‘ios to a, te., ‘ors,

12.3.1 INCLUSION OF A NEIGHBORHOOD AREA

To make displacement estimation more robust, Netravali and Robbins considered an area for
evaluating the DFD? in calculating the update term. More precisely, they assume the displacement
vector is constant within a small neighborhood Q ofthe pixel for whichthe displacement is being
estimated. Thatis,

d'=d*-5 av, ne w.DFD? (x, yd oh (12.31)
hayent

where i represents an index for the ith pixel (x, y) within Q, and w, is the weightforthe ith pixel
in £2. All the weights satisfy the following two constraints.

w, 20 (12.32)

Si=. (12.33)
ieQ

This inclusion ofa neighborhoodarea also explains why pel recursive technique is classified into
the category of region-matching techniques as we discussed at the beginning of this chapter.

12.3.2 INTERPOLATION

It is noted that interpolation will be necessary when the displacement vector components d, and
d, are not integer numbers ofpixels. A bilinear interpolation technique is used by Netravali and
Robbins (1979), For the bilinear interpolation, readers may refer to Chapter 10.

12.3.3 SIMPLIFICATION

To make the proposed algorithm moreefficient in computation, Netravali and Robbins also proposed
simplified versions of the displacement estimation and interpolation algorithms in their paper.
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One simplified version of the Netravali and Robbins algorithmis as follows:

a'=d' ~atsign{ DFD(x,.d")sign{V,,, falx-d, ad, }. (12.34)

where sign{s} = 0, 1, -1, depending on s = 0, s > 0, s <0,respectively, while the sign of a vector
quantity is the vector of signs of its components. In this version the update vectors can only assume
an angle whichis an integer multiple of 45°. As shown in Netravali and Robbins (1979), this version
is effective.

12.3.4 PERFORMANCE

The performance of the Netravali and Robbins algorithm has been evaluated using computer
simulation (Netravali and Robbins, 1979). Two video sequences with different amounts and different
types of motion are tested. In either case, the proposed pel recursive algorithm displays superior
performance over the replenishment algorithm (Mounts, 1969; Haskell, 1979), which was discussed
briefly in Chapter 10. The Netravali and Robbinsalgorithm achievesa bit rate which is 22 to 50%
lower thanthat required by the replenishment techniquewith the simple frame difference prediction.

12.4 OTHER PEL RECURSIVE ALGORITHMS

The progress andsuccessof the Netravali and Robbins algorithm stimulated great research interests
in pel recursive techniques. Manynew algorithms have been developed. Some ofthemare discussed
in this section.

12.4.1 THe BERGMANN AtcoritHm (1982)

Bergmann modified the Netravali and Robbins algorithm by using the Newton—Raphson method
(Bergmann, 1982). In doing so, the following difference between the fundamental framework of
the descent methods discussed in Section 12.2 and the minimization problem in displacement
estimation discussed in Section 12.3 need to be noticed. Thatis, the object function f(x) discussed
in Section 12.2 now becomes DFD*(x, y, d). The Hessian matrix H, consisting of the second-order
partial derivatives of the f() with respectto the components of x now become the second-order
derivatives of DFD? with respect to d, and d,. Since the vector d is a 2-D column vector now, the
H matrix is hence a 2 x 2 matrix. That is, _

d° DFD*(x,y,d) 2° DFD*(x,y,d)
2

H = a d. S dd,dd, s . ( 12.35)
Q°DFD*(x,y,d) 9°DFD*(x,y,d)

dd,dd, dvd,

As expected, the Bergmann algorithm (1982) converges to the minimum faster than the steepest
descent method since the Newton-Raphson method converges with an order ofat least two.

12.4.2 THe BERGMANN AtGcoriTHM (1984)

Based on the Burkhard and Moll algorithm (Burkhard and Moll, 1979), Bergmann developed an
algorithm that is similar to the Newton-Raphson algorithm. The primary difference is that an
average of two second-orderderivatives is used to replace those in the Hessian matrix. In this sense,
it can be considered as a variation of the Newton-Raphsonalgorithm.
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12.4.3) THe CArForio AND Rocca ALGORITHM

Based ontheir early work (Cafforio and Rocca, 1975), Cafforio and Rocca proposed an algorithm
in 1982, whichis essentially the steepest descent method. That is, the step size & is defined as
follows (Cafforio and Rocca, 1982):

fs (12,36)
Wh, (x —d.,¥— d,) +7

with 1)? = 100. The addition of 1? is intended to avoid the problem that would have occurred in a
uniform region where the gradients are very small.

12.4.4 THe Waker AND Rao ALGORITHM

Walker and Rao developed an algorithm based on the steepest descent method (Walker and Rao,
1984; Tekalp, 1995), and also with a variable step size. Thatis,

o ! ri (12,37)
: WWF, (x=ad,)

where

7 2

. --d.y—d. of, c—d., y— dd.Wra(x-d..y-4,)= ale) + I, i(x = ) ,)y
(12.38)

It is observed that this step size is variable instead of being a constant. Furthermore, this variable
step size is reverse proportional to the norm square of the gradient of f,_, (x — d,, y — a) with
respectto x, y. That means this type of step size will be small in the edge or rougharea, and will
be large in the relatively smooth area. These features are desirable.

Althoughit is quite similar to the Cafforio and Rocca algorithm, the Walker and Rao algorithm
differs in the following two aspects.First, the & is selected differently. Second, implementation of
the algorithm is different. For instance,instead of putting an 7)? in the denominatorof a, the Walker
and Raoalgorithm uses a logic. 2 .

As a result of using the variable step size a, the convergence rate is improved substantially.
This implies fast implementation and accurate displacement estimation.It was reportedthat usually
Oneto three iterations are able to achieve quite satisfactory results in mostcases. .

Another contribution is that the Walker and Rao algorithm eliminates the need to transmit
explicit address information to bring out higher coding efficiency.

12.5 PERFORMANCE COMPARISON

A comprehensive survey of various algorithms using the pel recursive technique can be found in
a paper by Musmann,Pirsch, and Grallert (1985). There, two performancefeatures are compared
among the algorithms, One is the convergence rate and hence the accuracy of displacement
estimation. The otheris the stability range. By stability range, we mean a rangestarting from which
an algorithm can converge to the minimum of DFD”, or the true displacement vector.

Compared with the Netravali and Robbins algorithm, those improved algorithms discussed in
the previous section do notuse a constant step size, thus providing better adaptation to local image
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TABLE 12.1

Classification of Several Pel Recursive Algorithms

Category | CategoryIl
Algorithms Steepest Descent Based Newton-Raphson Based

Netravali and Robbins—Steepest descent

Bergmann (1982) Newton-Raphson
Walker and Rao Variation ofsteepest descent

Cafforio and Rocca Variation of steepest descent

Bergmann (1984) Variation of Newlon-Raphson 

statistics. Consequently, they achieve a better convergence rate and more accurate displacement
estimation. According to Bergmann (1984) and Musmannet al. (1985), the Bergmann algorithm
(1984) performs best amongthese various algorithms in terms of convergence rate and accuracy.

According to Musmannetal. (1985), the Newton-Raphson algorithmhas a relatively smaller
stability range than the other algorithms. This agrees with our discussion in Section 12.2.2, That
is, the performance of the Newton—Raphson method improves when it works in the area close to
the minimum. The choice of the initial guess, however, is relatively more restricted.

12.6 SUMMARY

Thepel recursive techniqueis one ofthree major approaches todisplacement estimation for mouion
compensation, It recursively estimates displacement vectors in a pixel-by-pixel fashion, There are
three types of recursion: horizontal, vertical, and temporal. Displacement estimationIs carried out
by minimizing the square of the displaced frame difference (DFD). Therefore, the steepest descent
method and the Newton—Raphson method, the two most fundamental methods in optimization,
naturally find their application in pel recursive techniques. The pioneering Netravali and Robbins
algorithm and several other algorithms such as the Bergmann (1982), the Cafforio and Rocea, the
Walker and Rao, and the Bergmann (1984) are discussed in this chapter. They can be classified
into one of two categories: the steepest-descent-based algorithms or the Newton—Raphson-based
algorithms. Table 12.1 contains a classification of these algorithms.

Note that the DFD can be evaluated within a neighborhoodofthe pixel for which a displacement
vector is being estimated. The displacement vectoris assumed constant within this neighborhood.
This makes the displacement estimation more robust against various noises.

Compared with the replenishment technique with simple frame difference prediction (the first
real interframe coding algorithm), the Netravali and Robbins algorithm (the first pel recursive
technique) achieves much higher coding efficiency. Specifically, a 22 to 50% savings in bil rate
has been reported for some computer simulations. Several new pel recursive algorithms have made
further improvements in termsof the convergencerate and the estimation accuracy throughreplace-
ment of the fixed step size utilized in the Netravali and Robbins algorithm, which make these
algorithms more adaplive to the local statistics in image frames.

12.7 EXERCISES

12-1. Whatis the definition ofthe displaced frame difference? Justify Equation 12.1.
12-2. Why doesthe inclusion of a neighborhood area make the pel recursive algorithm more

robust against noise?
12-3. Compare the performanceofthe steepest descent method with that of the Newton—Raph-

son method.
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12-4. Explain the function of1? in the Cafforio and Roccaalgorithm.
12-5. What is the advantage you expect to have from the Walker and Rao algorithm?
12-6, What is the difference between the Bergmann algorithm (1982) and the Bergmann

algorithm (1984)?

12-7.. Why does the Newton-Raphson method have a smallerstability range?
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3 Optical Flow
As mentioned in Chapter 10, optical flow is one of three major techniques that can be used to
estimate displacement vectors from successive image frames. As opposedto the other two displace-
ment estimation techniques discussed in Chapters 11 and 12, block matching and pel recursive
method, however, the optical flow technique was developed primarily for 3-D motion estimation
in the computer vision community. Although it provides a relatively more accurate displacement
estimation than the other two techniques, as we shall see in this and the next chapter, optical flow
has not yet found wide applications for motion-compensated video coding. This is mainly due to
the fact that there are a large number of motion vectors (one vector per pixel) involved, hence, the
more side information that needs to be encoded and transmitted. As emphasized in Chapter 11, we
should notforget the ultimate goal in motion-compensated video coding: to encode video data with
a fotal bit rate as low as possible, while maintaining a satisfactory quality of reconstructed video
frames at the receiving end. If the extra bits required for encoding a large amount ofoptical flow
vectors counterbalance the bils saved in encoding the prediction error (as a result of more accurate
motion estimation), then the usageofoptical flow in motion-compensated codingis not worthwhile.
Besides, more computation is required in optical flow determination. These factors have prevented
optical flow from beingpractically utilized in motion-compensated video coding. With the continued
advance in technologies, however, we believe this problem may be resolved in the near future. In
fact, an initial, successful attempt has been made(Shiet al,, 1998).

On the other hand, in theory, the optical flow technique is of great importance in understanding
the fundamental issues in 2-D motion determination, such as the aperture problem, the conservation
and neighborhood constraints, and the distinction and relationship between 2-D motion and 2-D
apparent motion,

In this chapter we focus on the optical flow technique. In Section 13.1, as stated above, some
fundamentalissues associated with optical flow are addressed. Section 13.2 discusses the differential
method. The correlation method is covered in Section 13.3. In Section 13.4, a multiple attributes

approach is presented. Some performance comparisons between various techniques are included
in Sections 13.3 and 13.4. A summary is given in Section 13.5.

13,1 FUNDAMENTALS

Optical flow is referred to as the 2-D distribution of apparent velocities of movement ofintensity
patterns in an imageplane (Horn and Schunck, 1981). In other words, an optical flow field consists
of a dense velocity field with one velocity vector for each pixel in the image plane. If we know
the time interval between two conseculive images, which is usually the case, then velocity vectors
and displacement vectors can be converted from one to another. In this sense, optical flow is one
of the techniques used for displacementestimation.

13.1.1 2-D Motion AND Optical Frow

In the above definition, it is noted that the word apparent is used and nothing about 3-D motion
in the sceneis stated. The implication behind this observation is discussed in this subsection. We
Start with the definition of 2-D motion. 2-D motionis referred to as motion in a 2-D image plane
caused by 3-D motion in the scene. That is, 2-D motion is the projection (commonly perspective
projection) of 3-D motion in the scene onto the 2-D image plane. This can beillustrated by using

265
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FIGURE13.1 2-D motion vs. 3-D motion

a very simple example, shown in Figure 13.1. There the world coordinate system O-XYZ and the
camera coordinate systems o-xyz are aligned. The point C is the optical center of the camera, A
point A, movesto A;, while its perspective projection moves correspondingly from a, to a, We
then see that a 2-D motion (froma, to ay) in image plane ts invoked by a 3-D motion (from A, to
A;) in 3-D space. By a 2-D motionfield, or sometimes image flow, we mean a dense 2-D motion
field: One velocity vector for each pixel in the image plane,

Optical flow, according to its definition, is caused by movement ofintensity patterns in an
image plane. Therefore 2-D motion(field) and optical flow(field) are generally different. To support
this conclusion, let us consider the following two examples. One is given by Horn and Schunck
(1981). Imagine a uniformsphererotating with a constant speed in the scene. Assume the luminance
and all other conditions do not change at all whenpictures are taken, Then, there is no change in
brightness patterns in the images. According to the definition ofoptical flow, the optical flow is
zero, whereas the 2-D motionfield is obviously not zero. At the other extreme, considera stationary
scene; all objects in 3-D world spacearestill. [f illuminance changes when pictures are taken in
such a waythat there is movement of intensity patterns in image planes, as a consequence, optical
flow may be nonzero. This confirms a statement made by Singh (1991): the scene does not have
to be in motion relative to the image forthe optical flow field to be nonzero, It can be shown that
the 2-D motion field and the optical flow field are equal under certain conditions. Understanding
the difference betweenthe two quantities and the conditions under which theyare equal is important.

This understanding can provide us with some sort of guide to evaluate the reliability of
estimating 3-D motion from optical flow. This is because, in practice, time-varying image sequences
are only what we have at hand. The task in computer vision is to interpret 3-D motion from tme-
varying sequences. Therefore, we can only work with optical flow in estimating 3-D motion. Since
the main focusofthis book is on image and video coding, we do not cover these equality conditions
here. Interested readers may refer to Singh (1991). In motion-compensated video coding, it 1s
likewise true that the image frames andvideo data are only what we have at hand. We also, therefore,
have to work with optical flow. Our attention is thus turned to optical flow determination and its
usage in video data compression.

13.1.2 Aperture Prosliem

The aperture problem is an importantissue, originating in optics. Since it is inherent in the local
estimationofoptical flow, we addressthis issue in this subsection. In optics, apertures are openings
in flat screens (Bracewell, 1995). Therefore, apertures can have various shapes, such as circular,
semicircular, and rectangular. Examples of apertures includea thin slit or array ofslits In a screen.
A circular aperture, a round hole made on the shutter of a window, was used by Newtonto study
the composition ofsunlight. It is also well known thal the circular aperture is of special interest In
studying the diffraction pattern (Sears et al., 1986).
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Roughly speaking, the aperture problem in motion analysis refers to the problem that occurs
When viewing motion via an aperture, Le., a small opening in a flat screen. Marr (1982) states that
When a straight moving edge is observed through an aperture, only the component of motion
orthogonal to the edge can be measured. Let us examine some simple examples depicted in
Figure 13.2, In Figure 13.2(a), a large rectangular ABCDis locatedin the XOZ plane. A rectangular
screen EFGH with a circular aperture is perpendicular to the OY axis. Figure 13,2(b) and (c) show,
respectively, what is observed through the aperture when the rectangular ABCD is moving along
the positive X and Z directions with a uniform speed. Since the circular opening is small and the
line AB is very long, no motion will be observed in Figure 13.2(b), Obviously, in Figure 13.2(c)
the upward movement can be observed clearly. In Figure 13.2(d), the upright cornerof the rectangle
ABCD, angle B, appears. At this time the translation along any direction in the XOZ plane can be
observed clearly. The phenomena observed in this example demonstrate that it is sometimes
impossible to estimate motion of a pixel by only observing a small neighborhood surroundingit.
The only motion that can be estimated from observing a small neighborhood is the motion
arthogonal to the underlying moving contour, In Figure 13.2(b), there is no motion orthogonal to
the moving contour AB; the motion is aligned with the moving contour AB, which cannot be
observed through the aperture. Therefore, no motion can be observed through the aperture. In
Figure 13.2(c), the observed motion ts upward, which is perpendicular to the horizontal moving
contour AB. In Figure |3.2(d), any translation in the XOZ plane can be decomposed into horizontal
and vertical components. Either of these two components is orthogonal to one of the two moving
contours: AB or BC.

A more accurate statement on the aperture problem needs a definition of the so-called normal
optical flow. The normal optical flow refers to the component ofoptical flow along the direction
Pointed by the local intensity gradient. Now we can make a more accurate statement: the only
motion in an image plane that can be determined is the normal optical flow.

In general, the aperture problem becomes severe in image regions where strong intensity
gradients exist, such as at the edges. In image regions with strong higher-orderintensity variations,
such as corners or textured areas, the true motion can be estimated. Singh (1991) provides a more

elegant discussion on the aperture problem, in which he argues that the aperture problem should
be considered as a continuous problem(it alwaysexists, but in varying degrees of acuteness) instead
ofa binary problem (either it exists or it does nol).

13.1.3 Iu-Posep INVERSE ProBLem

Motionestimation from image sequences, including optical flow estimation, belongs in the category
of inverse problems. This is because we want to infer motion from given 2-D images, which is the
perspective projection of 3-D motion. According to Hadamard (Berteroet al., 1988), a mathematical
problemis well posed ifit possesses the following three characteristics:

1. Existence. That is, the solution exists.

2. Uniqueness. Thatis, the solution is unique.
3. Continuity, That is, when the error in the data tends toward zero, then the induced error

in the solution tends toward zero as well.

Inverse problems usually are not well posed in that the solution may not exist. In the example
discussed in Section 13.1.1, i.¢., a uniform sphere rotated with illuminance fixed, the solution to
motion estimation does not exist since no motion can be inferred from given images. The aperture
problem discussed in Section 13.1.2 is the case in whichthe solution to the motion may not be unique.
Let us take a look at Figure 13.2(b). Fromthe givenpicture, one cannot tell whether the straight line
ABisstatic, or is moving horizontally. If it is moving horizontally, one cannot tell the moving speed.
In other words, infinitely many solutions exist for the case: In optical Now determination, we will
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(a) 
FIGURE 13.2 (a) Aperture problem:A large rectangle ABCDis located in the XOZ plane. A rectangular
screen EFGH with a circular aperture is perpendicular to the OY axis. (b) Aperture problem: No motion can
be observed throughthecircular aperture when the rectangular ABCD is moving alongthe positive X direction.
(c) Aperture problem: The motion can be observed through the circular aperture when the ABCDis moving
along the positive Z direction. (d) Aperture problem:Thetranslation of ABCD alongany direction in the XOZ
plane can be observed through the circular aperture when the upright cornerof the rectangle ABCD,angle B,
appears in the aperture.

see that computationsare noise sensitive, That is, even a small error in the data can produce an
extremely large errorin the solution. Hence, wesee that the motion estimation from image sequences
suffers from all three aspects just mentioned: nonexistence, nonuniqueness, and discontinuity. The
last term is also referred to asthe instability of the solution.
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It is pointed out by Berteroet al, (1988) that all the low-level processing (also known as early
vision) in computational vision are inverse problems and are oftenill posed. Examples in low-level
processing include motion recovery, computation of optical flow, edge detection, structure from
Stereo, structure from motion, structure from texture, shape from shading, and so on. Fortunately,
the problem with early vision is mildly ill posed in general. By mildly, we mean that a reduction
oferrors in the dala can significantly improve the solution,

Since the early 1960s, the demand for accurate approximates and stable solutions in areas such
as optics, radioastronomy, microscopy, and medical imaging has stimulated great research efforts
in inverse problems, resulting in a unified theory: the regularization theory of ill-posed problems
(Tikhonov and Arsenin, 1977). In the discussion of optical flow methods, we shall see that some
regularization techniques have been posed and have improved accuracy in flow determination.
More-advanced algorithms continue to come,

13.1.4 CLassification oF Opticat Fuow TECHNIQUES

Optical flow in image sequences provides important information regarding both motion and struc-
ture, and jt is useful in such diversefields as robot vision, autonomous navigation, and video coding.
Although this subject has been studied for more than a decade, reducing the error in the flow
estimation remains a difficult problem. A comprehensive review and a comparison of the accuracy
of various optical flow techniques have recently been made (Barron et al., 1994). So far, most of
the techniques in the optical flow computations use one of the following basic approaches:

* Gradient-based (Horn and Schunck, 1981; Lucas and Kanade, 1981; Nagel and Enkel-
man, 1986; Uras et al., 1988; Szeliski et al., 1995; Black and Anandan, 1996),

* Correlation-based (Anandan, 1989; Singh, 1992; Pan et al., 1998),
* Spatiotemporal energy-based (Adelson and Bergen, 1985; Heeger, 1988; Bigun etal.,

1991),
* Phase-based (Waxmanet al., 1988; Fleet and Jepson, 1990).

Besides these deterministic approaches, there is the stochastic approachto optical flow com-
putation (Konrad and Dubois, 1992). In this chapter we focus our discussion ofoptical flow on the
gradient-based and correlation-based techniques because oftheir frequent applications in practice
and fundamental importancein theory, We also discuss multiple attribute techniques in optical flow
determination. The other two approaches will be briefly touched upon when we discuss new
techniques in motion estimation in the next chapter.

13.2 GRADIENT-BASED APPROACH

It is noted that before the methods ofoptical flow determination were actually developed, optical
flow had been discussed and exploited for motion and structure recovery from image sequences in
computer vision for years, Thatis, the optical flow field was assumedto be available in the study
of motion recovery. Thefirst type of methodsin optical flow determination is referred toas gradient-
based techniques. This is because the spatial and temporalpartial derivatives of intensity function
are utilized in these techniques. In this section, we present the Horn and Schunck algorithm.It is
regarded as the most prominentrepresentative ofthis category. After the basic concepts are pre-
sented, some other methodsin this category are briefly discussed.

13.2.1. THe Horn ann ScHuNCK MéTHOD

Weshall begin with a very general framework (Shi etal., 1994) to derive a brightness time-
invariance equation. We then introduce the Horn and Schunck method.
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13.2.1.1 Brightness Invariance Equation

Asstated in Chapter10, the imaging space can be represented by

f(xy), (13.1)

where 5 indicates the sensor’s position in 3-D world space, 1.e., the coordinates ofthe sensor center
and the orientation of the optical axis of the sensor. The 5 is a 5-D vector. That is, 5 where (x2
B, y), where x, y, and Z represent the coordinate ofthe optical center of the sensor in 3-D world
space; and B and y representthe orientation of the optical axis of the sensor in 3-D world space,
the Euler angles, pan andtilt, respectively.

With this very general notion, each picture, which is taken by a sensor located on a particular
position at a specific moment, is merely a special cross section of this imaging space. Both temporal
and spatial image sequences become a propersubset of the imaging spacc.

Assume now a world pointP in 3-D space that is perspectively projected onto the image plane
as a pixel with the coordinates x, and yp. Then, xp and y, are also dependent on t and S. Thatis,

f=S(xp(t5).yp(t.5),5). (13.2)

If the optical radiation of the world point P is invariant with respect to the timeinterval from /, to
t,, we then have

F(%p(4155)s3%o(4195) 44054) = F(p(to05 3pt555)o4-41- (13.3)

This is the brightness time-invariance equation.
Al a specific moment f,, if the optical radiation of P is isotropical we then get

F(Xp(4-5).¥o(t05)s4)-5) = F(xo(t,.) o(tH).5) (13.4)

This is the brightness space-invariance equation.
If both conditionsare satisfied, we get the brightness time-and-space-invariance equation, 1.€.,

f(x»(1,5)Yp(t»5;)s Is3,)= F(Xp(t:5,)s¥p(t+s)sto052)- (13.5)

Consider two brightness functions f(x (t, 5), y (t, 5), t, §) and f (x (t+ Ar, § + AS), y (+ AL, S+
AS), t+ At, 5 + AS) in whichthe variation in time, Ar, and the variation in the spatial position of
the sensor, AS, are very small. Dueto the time-and-space-invariance of brightness, we can get

f(x(t,5), (0,5), t,5) = f(x(0+ A1,5 + AS), y(t+ Ar, 5 + Ay), 0+ Ar,5 + 45). (13.6)

Theexpansion ofthe right-hand side ofthe above equation in the Taylor series at (4, 5) and the
use of Equation 13.5 lead to

(ziLLars[Lara %y$ea +e+Lhasse- 0, (13.7)
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where

=, BO, AP A2Ade
~ Ob at’ 5!

u’ >: si|S

If AS = 0, i.e., the sensoris static in a fixed spatial position (in other words, both the coordinate
of the optical center ofthe sensor and ils optical axis direction remain unchanged), dividing both
sides ofthe equation by Ar and evaluating the limit as Ar > 0 degenerate Equation 13.7 into

FF9,aTeee
ox oy of ma)

If Ar= 0, both its sides are divided by AS, and AS — 0 is examined. Equation 13.7 then reduces to

of : ofae.Lar ar<= v2?)
When Ar = 0), 1.e., at a specific time moment, the images generated withsensorsat different spatial
positions can be viewed as a spatial sequence of images. Equation 13.9 is, then, the equation for
the spatial sequence of images,

For the sake of brevity, we will focus on the gradient-based approachto optical flow determi-
nation with respect to temporal image sequences. Thatis, in the rest of this section we will address
only Equation |3.8. It is noted that the derivation can be extended to spatial image sequences. The
optical flow technique for spatial image sequences is useful in stereo image data compression.It
plays an important role in motion and structure recovery, Interested readers are referred to Shi et al.
(1994) and Shu and Shi (1993).

13.2.1.2 Smoothness Constraint

A careful examination of Equation 13.8 reveals that we have two unknowns: « and vy, 1.¢., the
horizontal and vertical componentsof an optical flow vector at a three-tuple (x, y, 7), but only one
equation to relate them. This once again demonstrates theill-posed nature of optical flow determi-
nation. This also indicates that there is no way to compute optical flow by considering a single
point of the brightness pattern moving independently. As stated in Section 13.1.3, some regular-
izati © an extra constraint — must be taken to overcomethe difficulty.

A most popularly used constraint was proposed by Horn and Schunckandis referred to as the
smoothness constraint. As the name implies,it constrains flow vectors to vary from oneto another
smoothly. Clearly, this is true for points in the brightness pattern most ofthe time, particularly for
points belonging to the same object. It may be violated, however, along moving boundaries.
Mathematically, the smoothnessconstraint is imposedin optical flow determination by minimizing
the square of the magnitude of the gradient of the optical flow vectors:

2 2 2

ay du (2) bs x). (13.10)oy dy

[t can be easily verified that the smootherthe flow vectorfield, the smaller these quantities, Actually,
the square of the magnitude of the gradient of intensity function with respect to the spatial
coordinates, summed over a whole image or an image region, has been used as a smoothness
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measure of the image or the imageregion in the digital image processing literature (Gonzalez and
Woods, 1992).

13.2.1.3 Minimization

Optical flow determination can then be converted into a minimization problem.
The square ofthe left-hand side of Equation 13.8, which can be derived from the brightness

lime-invariance equation, represents one type oferror. It may be caused by quantization noise or
other noises and can be written as

2_| of ofE,=-[Zurdos+) (13.11)
The smoothness measure expressed in Equation 13.10 denotes another type of error, whichis

2 a), au) (xy av)pee eau. 13.12)g =-( ay + ax + 5) (
The total error to be minimizedis

e<) Dare

“SS(Eu+¥+o)-(@Y-(2)-2)]
where @ is a weight between these two typesof errors. The optical flow quantities u and v can be
found by minimizing the total error. Using the calculus of variation, Horn and Schunck derived
the following pair of equations for two unknown u and v at each pixel in the image.

(13.13)

a =n7?V 7 —(; ut SLY aa Soh (13.14)ffyur frv=aViv— ff,

where

a 0faeGao, faaXt

V? denotes the Laplacian operator. The Laplacian operator of u and v are defined below.

Vy==+o
y (13.15)

av dy
*y=—>+—.

x? dy?
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13.2,1,4 Iterative Algorithm

Instead ofusing the classical algebraic methodto solve the pair of equations for u and v, Horn and
Schunck adopted the Gaussian Seidel (Ralston and Rabinowitz, 1978) method to have the following
iterative procedure:

— hk =< he

i age Le + FP" +]2 2 2

OE ei
—tk —k

eenue
a+ fi +f?

(13.16)

where the superscripts & and k + | are indexes of iteration and &, V are the local averages of u and
v, respectively.

Horn and Schunck define u, v as follows:

r= - {u(x, y +1)+u(x,y—1)+u(x4+1,y)+u(x- 1,y)}
+ ffx lLy- 1)+u(x- Ly tl)tu(xt ly I)+u(x+l,y+ )}

12 (13.17)
so e{v(ny+l)+ v(x,y—1) +v(x+1y)+v(x-1,y)}

+Lfoley tnehyet) tat hy D+v(et hy Hh
The estimation of the partial derivatives of intensity function and the Laplacian of flow vectors
need to be addressed. Horn and Schunck considered a 2x 2x 2 spatiotemporal neighborhood,

shownin Figure 13.3, for estimation ofpartial derivatives f,, f,, and f,. Note that replacing the first-
orderdifferentiation by the first-order difference is a commonpractice in managing digital images.
Thearithmetic average can removethe noise effect, thus making the obtained first-order differences
less sensitive to various noises.

The Laplacian of u and y are approximated by

V?u=u(x,y)—u(a,y(9) (9) (13.18)
V?v = v(x, y)—v(x,9).

Equivalently, the Laplacian of « and v, V2(u) and V?(v), can be obtained by applying a3 x3 window
operator, shown in Figure 13.4, to each point in the « and v planes, respectively. .

Similarto the pel recursive technique discussed in the previous chapter, there are two different
ways to iterate. One wayis toiterate at a pixel until a solution is steady. Another wayisto iterate
only once for each pixel. In the latter case, a good initial flow vector 1s required and is usually
derived from the previous pixel.

13.2.2. Mooirieco Horn AND SCHUNCK METHOD

Observing that the first-order difference is used to approximate the first-order differentiation in
Horn and Schunck’s original algorithm, and regarding this as a relatively crude form anda source
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f= G{[F(et by.0)-f(so.t)]+ [Plt hyve) flog]

+[f(x+ly+L)-f(xyt)]+ [fle y+brt l)— f(y + het i)}}

i= “{[/(sy+ It) f(x,y.1)]+[F(a+ Ly + be) f(x + yt)
+[f(xy +le4+l)=S(xyt+l)]+[f(x yt hrs l)— flee yet]

pe elie +1)—f(x.y.)]+[f(xthy.t+)-f(x+hy.1)]
+[f(xy+]e+l)-f(x,y+ Le)]+[f(x+ Lytlt+l)—f(x+hy+ 1,1)]}

FIGURE 13.3 Estimation of fi. fy. and f,.y

of error, Barron, Fleet, and Beauchemin developed a modified version of the Horn and Schunck
method (Barron et al., 1994),

It features a spatiotemporal presmoothing and a more-advanced approximation of differenua-
tion, Specifically, it uses a Gaussianfilter as a spatiotemporalprefilter. By the term Gaussian filter,
we mean a low-passfilter with a mask shaped similar to that of the Gaussian probability density
function. This is similar to what was utilized in the formulation of the Gaussian pyramid, which
was discussed in Chapter 11. The term spatiotemporal means that the Gaussian filter is used for
low-passfiltering in both spatial and temporal domains. ;

With respect to the more-advanced approximation ofdifferentiation, a four-point central dif-
ference operator is used, which has a mask, shown in Figure 13.5. q

As wewill see later in this chapter, this modified Horn and Schunck algorithm has achieved
better performance than the original one as a result of the two above-mentioned measures. This
successindicates that a reduction of noise in image (data) leads to a significant reduction of noise
in optical flow (solution). This example supports the statement we mentioned earlier that the ill-
posed problem in low-level computational vision is mildly ill posed.
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Res
x

if‘ #

(xt, yl) (tly)|etl, y+)

     
Veu= = [u(x Ly) +u(xy—l)+u(x,y+1)+u(x+1,y)]

+ lee ly—l)+u(x—ly+l)+u(x+ly—l)+u(x+ y+ i)]
~u(x,y)

Vev= elu(x —ly)+v(x,y—1)+ (x,y +1) +0(x4+ ))

+[e- ly-l)+v(x-Lytl)+v(x+hy—l)+v(xt+hy+ 1)}
—v(x,y)

FIGURE13.4 A 3 x3 window operation for estimation of the Laplacian of flow vector.

ath. A
12 12

FIGURE13.5  Four-point central difference operator mask.

13.2.3. THe Lucas AND KANADE METHOD

Lucas and Kanade assumea flow vectoris constant within a small neighborhoodofa pixel, denoted
by 2. Then they form a weighted object function as follows.

¥ r()|Hoe+ Tw ye Mend) ’ (13.19)
(xy)en ns .

where w(x, y) is a window function, which gives more weight to the central portion than the
surrounding portion of the neighborhood 22.

The flow determination thus becomesa problemofa least-Squ
constraint. We observe that the smoothness constraint has been imp
the flow vector is assumed to be constant within Q.

are fit of the brightness invariance
lied in Equation 13.19, where
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FIGURE 13.6 Oriented-smoothness constraint.

13.2.4 THe Nace. MetHop

Nagel first used the second-order derivatives in optical flow determination in the very early days
(Nagel, 1983). Since the brightness function f(x, y, 4, 5) is a real-valued function of muluple
variables (or a vector of variables), the Hessian matrix, discussed in Chapter 12, 1s used for the
second-orderderivatives.

An oriented-smoothness constraint was developed by Nagel that prohibits imposition of the
smoothnessconstraintacross edges,asillustrated in Figure 13.6. In the figure, an edge AB separates
two different moving regions: region | and region 2. The smoothness constraint is imposed in these
regions separately, That is, no smoothness constraint is imposed across the edge. Obviously, it
would be a disaster if we smoothed the flow vectors across the edge. As a result, this reasonable
treatment effectively improves the accuracy of optical flow estimation (Nagel, 1989).

13.2.5 THe Uras, Girosi, Verri, AND Torre METHOD

The Uras, Girosi, Verri, and Torre method is another method that uses second-order derivatives.

Based on a local procedure, it performs quite well (Uras etal., 1988).

13.3. CORRELATION-BASED APPROACH

The correlation-based approach to optical flow determination is similar to block matching, covered
in Chapter 11. As may berecalled, the conventional block-matching techniquepartitions an image
into nonoverlapped, fixed-size, rectangular blocks, Then, for each block, the best matching in the
previous image frame is found. In doing so, a search window is opened in the previous frame
according to somea priori knowledge:the time interval between the two frames and the maximum
possible moving velocity of objects in frames. Centered on cach of the candidate pixels in the
search window, a rectangle correlation window of the same size as the original block is opened.
The best-matchedblock in the search window is chosen suchthat either the similarity measureis
maximized or the dissimilarity measure is minimized. Therelative spatial position between these
two blocks(the original block in the current frame and the best-matchedonein the previous frame)
givesa translational motionvectorto the original block.In the correlation-based approachto optical
flow computation, the mechanismis very similarto that in conventional block matching. The only
differenceis that for each pixel in an image, we open a rectangle correlation window centered on
this pixel for which an optical flow vector needs to be determined. It is for this correlation window
that wefind the best match in the search window in its temporal neighboring image frame. This
is shown in Figure 13.7. A comparison between Figures 13.7 and 11.1 can convince us about the
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the pixel to which the best matching
optical flow needs correlation window
to be detennined

optical flowveclorcorrelation Window

 
 

Sw OD Fayt-t)

FIGURE13.7  Correlation-based approach to optical Now determination.

above observauion. In this section, we first briefly discuss Anandan’s method, which is pioneer
workin this category, Then Singh’s method is described. His unified view ofoptical flow compu-
tation is introduced. We then present a correlation-feedback method by Pan, Shi, and Shu, which
uses the feedback technique in flow calculation.

13.3.1) THe ANANDAN METHOD

As mentioned in Chapter 11, the sumof squared difference (SSD) 1s used as a dissimilarity measure
in (Anandan, 1987). It is essentially a simplified version of the well-known mean square error
(MSE). Due to its simplicity, it is used in the methods developed by Singh (1992), and Pan, Shi,
and Shu (1998).

In the Anandan method (Anandan, 1989), a pyramid structure is formed, and it can be used
for an efficient coarse-fine search. This is very similar to the multiresolution block-matching
techniques discussed in Chapter 11. In the higher levels (with lower resolution) of the pyramid, a
full search can be performed without a substantial increase in computation. The estimated velocity
(or displacement) vector can be propagated to the lowerlevels (with higherresolution) for further
refinement. As a result, a relatively large motion vector can be estimated with acertain degree of
accuracy.

Instead of the Gaussian pyramid discussed in Chapter | 1, however, a Laplacian pyramid is used
here. To understand the Laplacian pyramid, let us take a look at Figure 13.8(a). There two consec-
utive levels are shownin a Gaussian pyramid structure: level k, denoted by /*(x, y), and level k + 1,

f**"(x, y). Figure 13.8(b) shows how level k + | can be derived fromlevel k in the Gaussian pyramid.
Thatis, as stated in Chapter 11, level A + 1 in the Gaussian pyramid can be obtained through low-
pass filtering applied to level &, followed by subsampling. Figure 13.8(c), level k + 1 is first
interpolated, thus producing an estimate oflevel k, f*(x, y). The difference between the original
level k and the interpolated estimate of level & generates an erroratlevel k, denoted by e*(x,y). If
there are no quantization errors involved, then level k, f*(x, y) can be recovered completely from
the interpolated estimate of level k, fe, y), and the error at level&, e*(x, y). Thatis,

fay) =f (ay) +ef(xy): (13.20)

With quantization errors, however, the recoveryoflevel k, f*(x, y) is not error free. It can be shown
that coding f#(x, y) and e*(x, y) is moreefficient than directly coding f*(x,y).
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Level +I: f*"! (x,y)

(a)

Level k: f* (x,y)
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FIGURE13.8 Laplacian pyramid (level & in a Gaussian pyramid). (a) Two consecutive levels in a pyramid
structure. (b) Derivation of level k + 1 from level K. (c) Derivation oferror at level k in a Laplacian pyramid.
(d) Structure of Laplacian pyramid.

A set of images e*(x, y), k = 0, 1, ..., K — 1 and f¥*(x,y) forms a Laplacian pyramid.
Figure 13.8(d) displays a Laplacian pyramid with K = 5. It can be shown that Laplacian pyramids
provide an efficient way for image coding (Burt and Adelson, 1983). A more-detailed description
of Gaussian and Laplacian pyramids can be found in Burt (1984) and Lim (1990).

13.3.2 THE SINGH MéTHOD

Singh (1991, 1992) presented a unified point of view on optical flow computation. He classified
the information available in image sequences for optical flow determination into two categories:
conservation information and neighborhood information. Conservation information is the informa-
tion assumed to be conserved from one image frame to the nextin flow estimation. Intensity is an
example of conservation information, which is used most frequently in flow computation. Clearly,
the brightness invariance constraint in the Horn and Schunck methodis another way to state this
type of conservation. Some functions of intensity may be used as conservation information as well.

IPR2018-01413

Sony EX1008 Page 304



IPR2018-01413 
Sony EX1008 Page 305

Optical Flow 279

In fact, Singh uses the Laplacian of intensity as conservation information for computational sim-
plicity, More examples can be found later in Section 13.4. Other information, different from
intensity, such as color, can be used as conservation information. Neighborhood informationis the
information available in the neighborhood of the pixel from which optical flow is estimated,

These two different types of information correspond ta two steps in flow estimation. In thefirst
step, conservation information is extracted, resulting in an initial estimate of flow vector. In the
secondstep, this initial estimate is propagated into a neighborhood area andis iteratively updated.
Obviously, in the Horn and Schunck method, the smoothness constraint is essentially one type of
neighborhood information. Iteratively, estimates of flow vectors are refined with neighborhood
information so that flow estimators from areas having sufficient intensity variation, such as the
Intensily corners as shown in Figure 13.2(d) and areas with strong texture, can be propagated into
areas with relatively small intensity variation or uniformintensity distribution,

With this unified point of view on optical flow estimation, Singh treated flow computation as
parameter estimation. By applying estimation theory to flow computation, he developed an esti-
mation-theoretical method to determine optical flow.It is a correlation-based method and consists
of the above-mentioned twosteps.

13.3.2.1 Conservation Information

In the first step, for eachpixel (x, y) in the current frame f,(x, y), a correlation windowof(2/ + 1) x
(2/ + 1) is opened, centered on the pixel. A search windowof(2N+1) x (2N+1) is opened in the
previous framef,, (x, y) centered on (x, y). An error distribution ofthose (2N + 1) x (2N + 1) samples
are calculated by using SSD as follows:

I i Rh

E(u,v)= YMAtsyt)-Laenutsycvto] —-NSu,vSN. (13.21)
s=-l1=-/

A response-distribution for these (2N + 1) x (2N + 1) samplesis then calculated.

R (u, v) = gehelm) (13.22)ic

where B is a parameter, whose function and selection will be described in Section 13.3.3.1. é
According to the weighted-least-square estimation, the optical flow can be estimated in this

step as follows:

(13.23)

Assumingerrors are additive and zero-mean random noise, we can also find the covariance matrix
associated with the above estimate:
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yyR(uv)(u-u, ) pak R(uv)(u-u.\(v—v,)

ear LDA| STAtenentonn) LE Rtwono-n)
Sa) LTR)

13.3.2.2 Neighborhood Information

(13.24)

After step 1, all initial estimates are available. In step 2, they need to be refined according to
neighborhoodinformation. Foreach pixel, the method considers a (2w + 1) x (2w’ +1) neighborhood
centered onit. The opticalflow ofthe center pixel is updated fromthe estimates in the neighborhood.
A set of Gaussian coefficients is used in the method such that the closer the neighbor pixelto the
center pixel, the more influence the neighbor pixel has on the flowvector of the center pixel. The
weighted-least-square based estimate in this step is

" Ds(te, veaeSav)
(13.25)

LEA

XR(u,v)
and the associated covariance matrix is

» R, (u,, y, Ju; - i) ey R,(u,, v, Yu, - a)(v, - v)
ee— ——————eE————

SR(4%) LAI(u,, v,)
i i (13.26)

¥ LAlionAo,-*) Dal(u, y)=a ;
a R(u,.¥,)

where 1 Si S (2w + 1)?.

In implementation, Singh uses a 3 x 3 neighborhood(i.c., w = 1) centered on the pixel under
consideration. The weights are depicted in Figure 13.9.

13.3.2.3 Minimization andIterative Algorithm

According to estimation theory (Beck and Arnold, 1977), two covariance matrices, expressed in
Equations 13.24 and 13.26, respectively, are related to the confidence measure. Thatis, the recip-
rocals of the eigenvalues of the covariance matrix reveal confidence ofthe estimate along the
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FIGURE 13.9 3% 3 Gaussian mask.

direction represented by the corresponding eigenvectors. Moreover, conservation error and neigh-
borhood error can be represented as the following two quadratic terms, respectively.

(u-u,)' s\(u-u,) (13.27)

(U-T)' s(u-T), (13.28)

where U=(u, v), U. = (u,, v,), U = (at, v).
The minimization of the sum ofthese two errors over the image area leads to an optimal

estimate of optical flow. Thatis, find (u, v) such that the following error is minimized.

Y~de-4! s\(U-U,)+(U-T)" s;\(u-d)| (13.29)

Aniterative procedure according to the Gauss—Siedel algorithm (Ralston and Rabinowitz, 1978)
is used by Singh:

k+] _ [orl 1) "fot peue =[5)+5;"] [s'U,.+5,'U (13.30)
Q

U'=U..

Note that U., S. are calculated once and remain unchangedinall the iterations. On the contrary, U
and S, vary with eachiteration. This agrees with the description of the method in Section 13.3,2,2,

13.3.3. THe PAN, SHi, AND SHU METHOD

Applying feedback (a powerful technique widely used in automatic control and manyotherfields)
to a correlation-based algorithm, Pan, Shi, and Shu developed a correlation-feedback method to
compute optical flow. The methodis iterative in nature. In each iteration, the estimated optical flow
andits several variations are fed back. For eachof the varied optical flow vectors, the corresponding

sum of squared displaced framedifference (DFD), which was discussed in Chapter 12 and which
often involves bilinear interpolation, is calculated. This useful information is then utilized in a
revised version of a correlation-based algorithm (Singh, 1992). They choose to work with this
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FIGURE13.10 Block diagram of correlauion feedback technique.

fi

algorithm because it has several merits, andits estimation-theoretical computation framework lends
itself to the application of the feedback technique.

As expected, the repeated usage of two given images via the feedback iterative procedure
improves the accuracy of optical flow considerably. Several experiments on real image sequences
in the laboratory and some synthetic image sequences demonstrate that the correlation-feedback
algorithm performs better than somestandard gradient- and correlation-based algorithms in terms
of accuracy.

13.3.3.1 Proposed Framework

The block diagram of the proposed framework is shown in Figure 13.10 and described next.

Initialization — Although any flow algorithms can be used to generate an initial optical flow
field #° = (u°, v*) (even a nonzeroinitial flow field without applying any flowalgorithm may work,
but slowly), the Horn and Schunckalgorithm (Horn and Schunck, 1981), discussed in Section 13.2.1
(usually 5 to 10 iterations) is used to provide an appropriate starting point after preprocessing
(involving low-passfiltering), since the algorithm is fast and the problem caused by the smoothness
constraint is not serious in thefirst 10 to 20 iterations. The modified Horn and Schunck method,
discussed in Section 13.2.2, may also be used forthe initialization.

Observer — The DFDatthekth iteration is observed as f, (%) —f,., (X - a), where f, and f,.1
denote two conseculivedigital images, x = (x, y) denotes the spatial coordinates of the pixel under
consideration, and it* = (u*, v*) denotes the optical flow ofthis pixel estimated at the Ath iteration.
(Notethat the vector representation ofthe spatial coordinates in image planes is used quite often
in the literature, because ofits brevity in notation.) Demanding fractional pixel accuracy usually
requires interpolation. In the Pan etal. work, the bilinear interpolation is adopted. The bilinearly
interpolated image is denoted by f,,.

Correlation — Oncethebilinearly interpolated imageis available, a correlation measure needs to
be selected to search for the best match ofa given pixelinf, (x) in a search areain the interpolated
image. In their work, the sum-of-square-differences (SSD)is used. For each pixel inf,a correlation
window W,ofsize (2/ + 1) x (21 + 1) is formed, centered on thepixel.

The search window in the proposed approachis quite different from that used in the correlation-
based approach, say, that of Singh (1992). Let u be a quantity chosen from the following five
quantities:

uelu aeat SEEhutut +pu'h. ( 13.3 1)2 4 4
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Let » be a quantity chosen fromthe following five quantities:

veo af vk 1 vik yA pale osu (13.32)2 4 4 2

Hence, there are 25 (i,e,, 5X 5) possible combinations for (u, v). (It is noted that the restriction of
the nonzeroinitial flowfield mentioned above in part A comesfrom here), Note that other choices
of variations around («*, v*) are possible, Each of them corresponds to a pixel, (x—u, y—v), in
the bilinearly interpolated image plane. A correlation window is formed and centered in this pixel.
The 25 samples oferror distribution around (u*, v*) can be computed by using the SSD. Thatis,

a 3

E(u,v) = y Slheeayai —f,(x-uts,y- v+1)). (13.33)
v=—/ j=-]

The 25 samples of response distribution can be computed as follows:

Ruy) =ePh (13.34)

where B is chosen so as to make the maximum R, among the 25 samples of response distribution
be a number close tounity. The choice of an exponential function for converting the error distribution
into the response distribution is based primarily on the following consideration: the exponential
function is well behaved when the error approaches zero and all the response distribution values
are positive. The choice of § mentioned above is motivated by the following observation: in this
way, the R. values, which are the weights used in Equation 13.35, will be more effective. Thatis,
the computation in Equation 13.35 will be more sensitive to the variation ofthe error distribution
defined in Equation 13.33.

The optical flow vector derived at this correlation stage is then calculated as follows, according
lo the weighted-least-squares estimation (Singh, 1992).

5 ae a R(u,v)u ae SS YRwy
r eSRandSulabe) (13.35)

Propagation — Except in the vicinity of motion boundaries, the motion vectors associated with
neighboring pixels are expected to be similar. Therefore, this constraint can be used to regularize
the motion field. Thatis,

(xy) =>. Yoon(audetigtio"ea)= >, Vobillstirts) 0336)
i=-w j=-w j=-w j=-

where w,(i, j) is a weighting function. The Gaussian mask shown in SOaerate
weighting function w,(i, j) used in our experiments. By using this LePceates poe HeDiKEl
pixels in the neighborhoodofa pixel will be weighted according lo their ¢ ; ee Feld as well.
the larger the distance, the smaller the weight. The mask smooths the oplica .

nse distribution with a single; ic respo ;
Convergence — Under the assumption of the symmetric resp nvergence of the correlation-
maximum value assumed by the ground-truth optical flow, the co
feedback techniqueis justified by Pan et al. (1995).
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13.3.3.2 Implementation and Experiments

Implementation — To make the algorithm more robust against noise, three consecutive images
in an image sequence, denoted by f,, f,, and f;, respectively, are used to implement their algorithm
instead of the two imagesin the above principle discussion. This implementation was proposed by
Singh (1992). Assumethe time interval between f, and 7, is the same as that between f, and fy.
Also assume the apparent 2-D motion is uniform during these two intervals along the motion
trajectories. From imagesf, andf,, (it”, v’) can be computed. From (u*, v*), the optical flow estimated
during the kth iteration, and f, and f,, the response distribution, R7(u‘, v*), can be calculated as

R?(u‘,v')=exp 6y. ¥[pletayei)— Flee +s,y—vV" “al (13.37)ss-/ f=-l

Similarly, from imagesf, andf,, (-u', -v*) can be calculated. Then R,(<1, -v*) can be calculated as

! ! ~

R-(-u!,-v') = exp 3S[Aletsyt-f(x-u' +54 i! +1)) _ (13.38)
s=-! 1=-/

The responsedistribution R,(u*, v*) can then be determined as the sum of Ro (4, vt) and Ro(-u4,—-v*)-
The size of the correlation window and the weighting function is chosen to be 3x 3, Le. / = 1,
w= 1. In each search window, B is chosen so as to makethe larger one among R* and R> a number
close to unity. In the observerstage, the bilinear interpolation is used, which 1s shownto be faster
and better than the B-spline in the many experiments ofPanctal.

Experiment I — Figure 13.1] shows the three successive image frames/,, /,, and f, about a square
post. They were taken by a CCD video camera and a DATACUBE real-time image processing
system supported by a Sun workstation. The square post is moving horizontally, perpendicular to
the optical axis of the camera, in a uniform speed of2.747 pixels per frame. To remove various
noises to a certain extent and to speed up processing, these three 256 X 256 images are low-pass
filtered and then subsampled prior to optical flow estimation. That is, the intensities of every
16 pixels in a block of 4 x 4 are averaged and the average valueis assigned to represent this block.
Note that the choice of other low-passfilters is also possible. In this way, these three images are
compressed into three 64 x 64 images. The “ground-truth” 2-D motion velocity vector is hence
known as u“ = —0.6868; v" = 0.

To compare the performanceofthe correlation-feedback approach with that of the gradient-
based and correlation-based approaches, the Horn and Schunck algorithm is chosen Lo represent
the gradient-based approach and Singh’s framework to represent the correlation-based approach.
Table 13.1 showsthe results of the comparison. There, |, w, and N indicate the sizes of the correlation
window,weighting function, and search window,respectively. The program that implements Singh’s
algorithm is provided by Barron etal. (1994). In the correlation-feedback algorithm, ten iterations
of the Horn and Schunck algorithm with % = 5 areusedin the initialization. (Recall that the @ Is
a regularization parameter used by Horn and Schunck, 1981). Only the central 40 x 40 flow vector
array is used to compute u,,,,,, Which is the root mean square (RMS)errorin the vector magnitudes
between the ground-truth and estimated optical flow vectors. It is noted that the relative error in
ExperimentI is greater than 10%. This is because the denominatorin the formula calculating the
RMSerror is too small duc to the static background and, hence, there are many zero ground-truth
2-D motion velocity vectors in this experiment. Relatively speaking, the correlation-feedback
algorithm performs bestin determining optical flow for a texture post in translation. The correct
opticalflow field and thosecalculated by usingthree different algorithms are shown in Figure 13.12.
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FIGURE13.11 Texture square (a). Texture square (b). Texture square (c),

 

TABLE 13.1

Comparison in Experiment I

Gradient-Based Correlation-Based Correlation-Feedback

Techniques Approach Approach Approach

13.3.3.3 Conditions /teration ne. = 128—Iteration no, = 25 Iteration no. = 10
m=5 {=2,v=2 lteration no, (Hern) = 10

N=4 f= Rowell N=5

i, 56.37% 80.97% 44.56%emor
 

Experiment II] — The images in Figure 13.13 were obtained by rotating a CCD camera with
respect to the center of a ball. The rotating velocity is 2.5° per frame. Similarly, three 256 x 256
images are compressedinto three 64 x 64 imagesby using the averaging and subsampling discussed
above. Only the central 40 x 40 optical vector arrays are used to COMPULE Me,e- Table 13.2 reports
the results for this experiment. There, tego, 4, W, and N have the same meaning as that discussed
in ExperimentI.It is obvious that our correlation-feedback algorithm performs best in determining
optical flow for this rotating ball case.
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FIGURE 13.12 (a) Correct optical flow field. (b) Optical flow field calculated by the gradient-based
approach. (c) Opticalflow field calculated bythe correlation-based approach. (d) Optical flow field calculated
by the correlation-feedback approach.

ExperimentIII — To comparethe correlation-feedback algorithm with other existing techniques
in a more objective, quantitative manner, Pan etal, cite some results reported by Barron et al.
(1994), which were obtained by applying sometypical optical flow techniques to some image
sequences chosen with deliberation. In the meantime they reportthe results obtained by applying
their feedback techniqueto the identical image sequences with the same accuracy measurementas
used by Barron etal. (1994). .

Three image sequences used by Barron etal. (1994) were utilized here. They are named
“Translating Tree,” “Diverging Tree,” and “Yosemite.” The first two simulate translational camera
motion with respectto a textured planar surface (Figure 13.14), and are sometimes referred to as
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FIGURE13.12 (continued)

287

“Tree 2-D” sequence. Therefore, there are no occlusions and no motion discontinuities in these
two sequences. In the “Translating Tree” sequence, the camera moves normally to its line ofsight,
with velocities between 1.73 and 2.26 pixels/frameparallel to the x-axis in the image plane. In the
“Diverging Tree” sequence, the camera movesalongits line ofsight. The focus of expansionis at
the center of the image. The speeds vary from 1.29 pixels/frame on left side to 1.86 pixels/frame
on the right. The Yosemite” sequence is a more complextest case (see Figure 13.15). The motion
in the upperright is mainly divergent. The cloudstranslate to the right with a speedof| pixel/frame,
while velocities in the lower left are about 4 pixels/frame. This sequence is challenging because
of the range of velocities and the occluding edges between the mountains and at the horizon, There
is severe aliasing in the lower portion ofthe images, causing most methods to produce poorer
yelocity measurements. Note that this synthetic sequence is for quantitative study purposes since
its ground-truth flow field is known andis, otherwise, far less complex than many real-world outdoor
sequences processedin the literature.

The angular measure of the error used by Barron et al. (1994) is utilized here, as well. Let
image velocity a = (u, v) be represented as 3-D direction vectors,

IPR2018-01413

Sony EX1008 Page 313



IPR2018-01413 
Sony EX1008 Page 314

288 Image and Video Compression for Multimedia Engineering

 
FIGURE 13.13 A rotating ball in three different frames — a, b, c, The rotating velocity 1s 2.5° per frame.

TABLE 13.2

Comparison in ExperimentII

Gradient-Based Correlation-Based

Techniques Approach Approach

Conditions Iteration no. =128—Ireration no. = 25

a=5 l=2,w=2
N=4

Meroe 65.67% 55.29%

Correlation-Feedback

Approach

Iteration no, = 10

Iteration no. (Horn) = 10
h=lwet v= S5
49.80%
 

V=
1

——— u,v, 1 4Treen ) (13.39)

The angular error between the correct imagevelocity V and an estimate V, is y, = across (V.* Ve)-
It is obvious that the smaller the angular error W,, the more accurate the estimation of the optical
flow field will be. Despite the fact that the confidence measurement can beused in the correlation-
feedback algorithm, as well, Pan etal. did not consider the usage of the confidence measurement
in their work. Therefore, only the results with 100% density in Tables 4.6, 4.7, and 4.10 in the
Barronet al. (1994) paper were used in Tables 13.3, 13.4, and 13.5, respectively.
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FIGURE13.15 A frame of the “Yosemite” sequence.

Prior to computation of the optical flowfield, the “Yosemite” and “Tree 2-D”test sequences
were compressed bya factor of16 and4, respectively, using the averaging and subsampling method
discussed earlier.

As mentioned by Barron et al. (1994) the optical flow field for the “Yosemite” sequenceis
complex, and Table 13.5 indicates that the correlation-feedback algorithmevidently performsbest.
A robust method was developed and applied to a cloudless Yosemite sequence (Black and Anandan,
1996). It is noted that the performance of flow determination algorithms will be improved if the
sky is removed from consideration (Barron etal., 1994; Black and Anandan, 1996). Still, it is clear
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TABLE 13.3

Summary of the “Translating Tree” 2-D Velocity Results

Techniques Average Error, ° Standard Deviation, ° Density, %

 

 

Horn and Schunck (original) 38.72 27.67 100
Horn and Schunck (modified) 2.02 2.27 100
Uras et al. (unthresholded) 0.62 0.52 100

Nagel 2.44 3.06 100
Anandan 4.54 4.10 100

Singh (step I, / = 2, w = 2) 1.64 2.44 100
Singh (step 2, / = 2, w = 2) 1.25 3,29 100
Correlation feedback (J = 1, w = 1) 1.07 0.48 100

TABLE 13.4

Summary of the “Diverging Tree” 2-D Velocity Results

Techniques

Hom and Schunck (original)
Horn and Schunck (modified)

Uras et al. (unthresholded)

Nagel
Anandan (frames 19 and 21)

Singh (step 1, / = 2, w= 2)

Singh (step 2, | = 2, w = 2)

Pan, Shi, and Shu (/ = 1, w = 1)

Average Error, °

12.02
2.55

4.64

2,94
7.64

17.66
8.60

3.12

Standard Deviation, ° Density, “

(1.72 100
3,67 100

3.48 100

4,23 100

4.96 100

14.25 100

5.60 100

2.16 100

 

TABLE 13.5

Summaryof the “Yosemite” 2-D Velocity Results

Techniques

Horn and Schunck (original)

Horn and Schunck (modified)
Uras et al. (unthresholded)

Nagel

Anandan (frames 19 and 21)

Singh (step 1, /= 2, w = 2)
Singh (step 2, / = 2, w = 2)
Pan, Shi, and Shu (/ = 1, w= 1)

Average Error, °

32.43

11.26
10,44
11.71

15.84

18.24

13.16

7.93

Standard Deviation, * Density, %

30.28 100

16.41 100

15,00 100
10.59 100

13.46 100

17.02 100
12.07 100

6.72 100 

that the algorithm in the Black and Anandan (1996)paper achieved very good performance in terms
of accuracy. In order to make a comparison with their algorithm,the correlation-feedbackalgorithm
was applied to the same cloudless Yosemite sequence. The results were reported in Table 13.6,
from which it can be observed that the results obtained by Pan etal. are slightly better. Tables 13.3
and 13.4 indicate that the feedback technique also performs very well in translating and diverging
texture post Cases.

Experiment IV — Here,the correlation-feedback algorithm is applied to a real sequence named
Hamburg Taxi, whichis used as a testing sequence by Barron et al. (1994). There are four moving
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TABLE 13.6

Summary of the cloudless “Yosemite” 2-D Velocity Results

Techniques Average Error, ° Standard Deviation, °—Density, %

Robust formulation 4.46 4.21 100
Pan, Shi, and Shu (/ = 1, w= 1) 3.79 3.44 100

 
FIGURE 13.16 Hamburg Taxi.

objects in the scene: a moving pedestrian in the upperleft portion, a turning car in the middle, a
car moving toward right at the left side and a car moving towardleft at the right side. A frame of
the sequence and the needle diagram of flow vectors estimated by using ten iterations of the
correlation-feedback algorithm (with ten iterations of the Horn and Schunck algorithm forinitial-
ization) are shown in Figures 13.16 and 13.17, respectively. The needle diagramis printed in the
same fashion as those shown byBarronet al. (1994), It is noted that the moving pedestrian in the
upper left portion cannot be shown because of the scale used in the needle diagram. The other
three moving vehicles in the sequence are shown very clearly. The noise level is low. Compared
with those diagrams reported by Barronet al. (1994), the correlation-feedback algorithm achieves
very good results.

For a comparison ona local basis, the portion of the needle diagramassociated with the area
surrounding the turning car (a sample of the velocity fields), obtained by 50 iterations of the
correlation-feedback algorithm with five iterations of the Horn and Schunck algorithm as initial-
ization, is provided in Figure 13.18(c). Its counterparts obtained by applying the Horn and Schunck
(50 iterations) and the Singh (50 iterations) algorithms are displayed in Figure 13.18(a) and (b),
respectively. [t is observed that the correlation-feedback algorithm achievesthe best results among
the three algorithms.

13.3.3.4 Discussion and Conclusion

Althoughit uses a revised version of a correlation-based algorithm (Singh, 1992), the correlation-
feedback technique is quite different from the correlation-based algorithm (Singh, 1992) in the
following four aspects. First, different optimization criteria: the algorithm does not use the iterative
minimization procedure used in (Singh, 1992). Instead, some variations of the estimated optical
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FIGURE13.17 Needle diagramofflow field of Hamburg Taxi sequence obtained by using the correlauion-
feedback algorithm.

flow vectors are generated and fed back. The associated bilinearly interpolated displaced frame
difference for each variation is calculated andutilized. In essence, the feedback approach utilizes
two given images repeatedly, while the Singh methoduses two given images only once (x, and v,
derived from the two given imagesare only calculated once). The best local matching between the
displaced image, generated via feedback of the estimated optical flow, and the given image is
actually used as the ultimate criterion for improving optical flow accuracy in theiterative process.
Second, the search windowinthe algorithm is an adaptive “rubber” window, having a variable size
depending on(u‘, v*), In the correlation-based approaches (Singh, 1992), the search window has
a fixed size. Third, the algorithm uses a bilinear interpolation technique in the observation stage
and providesthe correlation stage with a virtually continuous image field for more accurate motion
vector computation, while that of Singh (1992) doesnot. Fourth, different performancesare achieved
when imageintensity is a linear function of image coordinates. In fact, in the vicinity of a pixel,
the intensity can usually be considered as suchalinear function. Exceptif the optical flow vectors
happen to have only an integer multiple ofpixels as their components, an analysis by Pan (1994)
showsthat the correlation-based approach (Singh, 1992) will not converge to the apparent 2-D
motion vectors and will easily have error much greater than 10%. Pan (1994) also showsthat the
linear intensity function guarantees the assumption of the symmetric response distribution with a
single maximum value assumed by the ground-truth optical flow. As discussed in Section (3.3.3.1,
underthis assumption the convergenceof the correlation-feedback technique is justified.

Numerous experiments have demonstrated the convergence and accuracy of the correlation-
feedback algorithm, and usually it is more accurate than some standard gradient- and correlation-
based approaches. In the complicated optical flow cases, specifically in the case ofthe “Yosemite”
image sequence (regarded as the mostchallenging quantitative test image sequence by Barron et al.
(1994), it performs better than all other techniques.
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(a)

FIGURE 13.18 A portion ofthe needle diagram obtained by using (a) the Horn and Schunk algorithm,
(b) the Singh algorithm, and (c) the correlation-feedback algorithm,

13.4 MULTIPLE ATTRIBUTES FOR
CONSERVATION INFORMATION

As stated at the beginning of this chapter, there are many algorithmsin optical flow computation
reported in the literature. Many more new algorithms continue to be developed. In Sections 13.2
and 13.3, we introduced sometypical algorithmsusing gradient- and correlation-based approaches.
Wewill not explore various algorithms any further here. It is hoped that the fundamental concepts
and algorithms introduced above have provided a solid base for readers to study more-advanced
techniques. ate

We would like to discuss optical flow from another point of view, however: multiple image
attributes vs. a single image attribute. All of the methods we have discussed so far use only one
kind of image attributes as conservation information in flow determination. Most methods use
intensity. Singh’s methoduses the Laplacian of intensity, whichis calculated by using the difference
of the Gaussian operation (Burt, 1984). It was reported by Weng, Ahuja,and Huang (1992) that
using a single attribute as conservation information may result in ambiguity in matching two
perspective views, while multiple attributes, which are motion insensitive, may reduce ambiguity
remarkably, resulting in better matching. An example is shown in Figure 13.19 to illustrate this
argument. In this section, the Weng etal. methodis discussedfirst. Then weintroduce the Xia and
Shi method, which uses multiple attributes in a framework based on weighted-least-square estima-
tion and feedback techniques.
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(b)

FIGURE13.18 (continued)

13.4.1. THe Wena, AHujA, AND HUANG MetHoD

Weng, Ahuja, and Huang proposed a quite different approachto image point matching (Wenget al.,
1992). Note that the image matching amounts to flow field computation since it calculates a
displacementfield for each point in image planes, whichis essentially a flow field if the time
interval between two image frames is known.

Based on an analysis indicating that using imageintensity as a single attribute is not enough
in accurate image matching, Weng, Ahuja, and Huangutilize multiple attributes associated with
images in estimation of the dense displacementfield. These image attributes are motion insensitlve;
i.e., they generally sustain only small change under motion assumed to be locally rigid. The 1mage
altributes used are imageintensity, edgeness, and cornerness. Foreach imageattribute,the algorithm
forms a residual function, reflecting the inaccuracy ofthe estimated matching. The matching 1S
then determinedvia aniterative procedure to minimize the weighted sum ofthese residual functions.
In handling neighborhoodinformation, a more-advanced smoothness constraint is used to take care
of moving discontinuities. The method considers uniform regions and the occlusion issue as well.

In addition to using multiple image attributes, the method is pointwise processing. There 1s no
need for calculation of correlation within two correlation windows, which saves computation
dramatically. However, the method also has some drawbacks.First, the edgeness and cornerness
involve calculation of the spatial gradient, whichis noise sensitive. Second, in solving for minimi-
zation, the method resorts to numerical differentiation again: the estimated displacement vectors
are updated based onthe partial derivatives of the noisy attribute images. In a word, the compula-
tional framework heavily relies on numerical differentiation, which is considered to be impractical
for accurate computation (Barronetal., 1994).
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FIGURE13.18 (continued)

(a) (b)

FIGURE13.19 Multiple attributes vs. single attribute. (a) With intensity information only, points D, E, and
F tend to match to points A, B, and C, respectively. (b) With intensity, edge and corner information points D
and E tend to match points B and C, respectively.

On the other hand, the Pan, Shi, and Shu method, discussed in Section 13.3.3 in the category
of correlation based approaches, seems to have some complementary features. It is correlation-
based. It uses intensity as a single altribute. In these two aspects the Pan et al. method is inferior
to the method by Weng, Ahuja, and Huang. The feedback technique and the weighted least-square
computation framework used in the Pan et al. method are superior, however, compared with the
method by Wenget al. Motivated by the above observations, an efficient, multiattribute feedback
method was developed by Xia and Shi (Xia and Shi, 1995; Xia, 1996), andis discussed in the next
subsection.It is expected that moreinsight into the Weng, Ahuja, and Huang method will become
clear in the discussion as well.
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13.4.2 THe X1A AND SH! MeTHOD

This method uses multiple attributes that are motion insensitive. The following five attributes are
used: image intensity, horizontal edgeness, vertical edgeness, contrast, and entropy. Thefirst three
are used by Wenget al. (1992) as well, and can be considered as structural attributes, while the
last two, which are not used by Wenget al. (1992), can be considered as textural attributes according
to Haralick (1979),

Instead of the computational framework presented by Weng et al. (1992), which, as discussed
above, maynotbe practical for accurate computation, the method uses the computational framework
of Pan (1994; 1998). Thatis, the weighted-least-squared estimation technique used by Singh (1992)
and the feedback technique used by Pan (1994; 1998) are utilized here. Unlike in the Weng etal.
(1992) method, subpixel accuracy is considered and a confidence measure is generated in the
method.

The Xia and Shi methodis also different from those algorithms presented by Singh (1992) and
Pan et al. (1995; 1998). First, there is no correlation in the method, while both Singh (1992) and
Pan et al. (1995; 1998) are correlation based. Specifically, the method is a point-wise processing.
Second, the method uses multiple attributes, while both Singh (1992) and Panet al. (1995; 1998)
use image intensity as a single attribute.

In summary, the Xia and Shi method to computeoptical flow is motivated byseveral existing
algorithms mentioned above. It does, however, differ from each of them significantly.

13.4.2.1 Multiple Image Attributes

As mentioned before, there are five imageattributes in the Xia and Shi method. They are defined
below.

Image Intensity — Theintensity at a pixel (x, y) in an imagef,(x, y), denoted by A, (x, y), Le-s
A\@, y) =f, @,y). é

Horizontal Edgeness — The horizontal edgeness at a pixel (x, y), denoted by A, (x,y), 15
defined as

A,(x.y)= te) (13.40)
i.e., the partial derivative of f (x, y) with respect to y, the second component of the gradient of
intensity function at the pixel.

Vertical Edgeness — Thevertical edgenessat a pixel (x, y), denoted by A,(x, y), is defined as

A,(x,y)=F), (13.41)
i.e., the first component of the gradientof intensity function at the pixel. Note that the partial
derivatives in Equations 13,40 and 13.41 are computed by applying a Sobel operator (Gonzalez
and Woods, 1992) in a 3x3 neighborhoodofthe pixel.

Contrast — The local contrast at a pixel (x, y), denoted by A,(x, y), is defined as

A.(x,y)= Si= i) Gus (13.42)
ijes

where S is a set of all the distinct gray levels within a 3 x 3 window centered at pixel (x,y). Cij
specifies a relative frequency with which twoneighboringpixels separated horizontally by a distance
of | occur in the 3 x 3 window, one with gray level i and the other with gray level j.
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Entropy — Thelocal entropyal a point (x, y), denoted by A, (x, y), is given by

A,(x,y)=->° p, log p,, (13.43)
eS

where S was defined above, and p, is the probability of occurrence ofthe gray level i in the 3 x3
window.

Since the intensity is assumedlo be invariant to motion, so are the horizontal edgeness,vertical
edgeness, contrast, and entropy.

As mentioned above, the intensity and edgeness are used as attributes in the Weng etal,
algorithm as well. Compared with the negative and positive cornerness used in the Wengetal.
algorithm, the local contrast and entropy need no differentiation and thereforeare less sensitive to
various noises in original images. In addition, these two attributes are inexpensive in terms of
computalion. They reflect the textural information about the local neighborhood ofthe pixel for
which the flow vector is to be estimated.

13.4.2.2 Conservation Stage

In the Xia and Shi algorithm, this stage ts similar to that in the Panet al. algorithm, Thatis, for a
flow vector estimated at the kth iteration, denoted by (u*, v*), we find its 25 variations, (1, v),
according to

é A & £
il k ul k ok it ft i

“ue ué ——u ——tu +, +
2 4 4 2

(13.44)
k k k k

. Vv . ¥ v y
vesy* ——, y§ ——urvi +—, ph +—

2 4 4 2

For each of these 25 variations, the matching error is computed as

E(u.v) = re (x, yu) + re (xyusv) +0 (x,yt Y) + ra (x,)4t¥) + rh (x,y.t¥), (13.45)

where14. %1 "acs la,» Ta, denote the residual function with respect to the five attributes, respectively.r c ¢

The residual function of intensity is defined as

Wy, (2, Yat ¥) = A, (2,9) — A,(2-4y- v=f(xy)-f4(a-ay-¥), (13.46)

where f, (x, y), f,.; (x, y) is defined as before, i-e., the intensity functionat ¢, and t,.,, respectively;
A,;,, Aj, , denote the intensity attributes on f, and f,,.;, respectively. .

It is observed that the residualerrorofintensity is essentially the DFD discussed in Chapter 12.
The rest of the residual functions are defined similarly. When subpixel accuracy is required, spatial
interpolationin the attribute images generally is necessary. Thus,the flow vector estimation is now
converted to a minimization problem. Thatis, find uw and v at pixel (x, y) such that the matching
error defined in Equation 13,45 is minimized. The weighted least-square method (Singh, 1992: Pan
et al., 1998) is then used. Thatis,

R(u,v)= (13.47)
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LEMum LTA
iA (13.48)

SST "t LA)
Since the weighted least-square method has beendiscussed in detail in Sections 13.3.2 and 13.3.3,
we will not go into moredetail here.

13.4.2.3 Propagation Stage

Similar to what was proposedin the Pan et al. algorithm, in this stage Xia and Shi form a window
W of size (2w + 1) x (2w + 1) centeredat the pixel (x, y) in the image [, (x,y). The lowestimate
at the pixel (x, y) in this stage, denoted by (u**!, v4t!), is calculated as a weighted sumof the flow
vectors of the pixel within the window W.

"SY Yogurt(x+s.y+z)} uh" (x+s.y+1)
s=-wWf=-w

“=> Ywltlx,y) f,(x+s.y+e)]-vMNxt svt),
s=-W f=-w

(13.49)

wherew,[.,.] is a weight function. For eachpoint in the window W, a weight is assigned according
to the weight function. Let (v +s, y + 1) denote a pixel within the window W,then the weightof
the pixel (a + s, y + £) is given by

| a 13.50wfLA(xy)S(x+sy+9]= e+|f,(“y)—£(x+5.y+2) = v5
where€ is a small positive numberto prevent the denominator from vanishing, cis a normalization
constant that makes the summation of all the weights in the W equal 1.

From the above equation, wesee that the weight is determined based onthe intensity difference
betweenthe pixel under consideration andits neighboring pixel, The larger the difference in the
intensity, the more likely the two points belongto different regions. Therefore, the weight will be
small in this case. On the other hand, the flow vectorin the same region will be similar since the
corresponding weightis large. Thus, the weighting function implicitly takes flow discontinuity into
account and is more advanced than that of Singh (1992) and Pan et al. (1994; 1998).

13.4.2.4 Outline of Algorithm

The following summarizes the proceduresofthe algorithm.

1. Perform a low-passprefiltering on two input images to remove various noises.
2. Generate attribute images: intensity, horizontal edgeness, vertical edgeness, local con-

trast, and local entropy. Thoseattributes are computed at each grid point of both images-
3. Set the initial flow vectors to zero. Set the maximumiteration number and/or estimation

accuracy.

4. For each pixel under consideration, generate flow variations according to Equation 13.44.
Compute matchingerror for eachflow variation according to Equation 13,45 and trans-
form them to the correspondingresponsedistribution R using Equation 13.47. Compute
the flow estimation u‘, v° using Equation 13.48.
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5. Form a (2w + 1) x (2w + 1) neighborhood windowWcentered at the pixel. Compute the
weight for each pixel within the window W using Equation 13.50. Update the flow vector
using Equation 13.49.

6. Decreasethe preset iteration number.Ifthe iteration numberts zero, the algorithm returns
with the resultant optical flow field. Otherwise, go to the nextstep,

7. If the change in flow vector over two successive iterations is Jess than the predefined
threshold, the algorithm returns with the estimated optical flow field. Otherwise, go to
step 4.

13.4.2.5 Experimental Results

To compare the method with other methods existing in the literature, similar to what has been done
by Pan etal. (1998) (discussed above in Section 13.3.3), the method was applied to three test
sequences used by Barron etal. (1994): the “Translating Tree” sequence, the “Diverging Tree”
sequence, and the “Yosemite” sequence, The same accuracy criterion 1s used as that by Barron
etal. (1994). Only those results reported by Barron et al. (1994) with 100%density are listed in
Tables 13.7, 13.8, and 13.9 for a fair and easy comparison. The Wenget al. algorithm was imple-
mented by Xia and Shi and the resulis were reported by Xia and Shi (1995).

 

TABLE 13,7

Summary of the “Translating Tree” 2D Velocity Results

Techniques Average Error, °

Horn and Schunck (original) 38.72
Horn and Schunck (modified) 2.02

Uras et al. (unthresholded) 0.62

Nagel 2.44
Anandan 4.54

Singh (step |, n = 2, w= 2) 1.64
Singh (step 2.1 = 2, w = 2) 1.25
Pan, Shi, and Shu (2 = 1, w= 1) 1.07

Weng, Ahuja, and Huang 1.81
Xia and Shi 0.55

27.67

2.27

0.52

3.06
3.10

2.44
3.29

0.48
2.03

0.52

Standard Deviation, ° Density, %

100

100

100

100
100

100
100

100
100

100
a

 

30.28

16.41

15.00

10.59

13.46
17.02

12.07

6.72

8.22
6.61

TABLE 13.8

Summaryof the “Diverging Tree” 2D Velocity Results

Techniques Average Error,°

Horn and Schunck (original) 32.43
Horn and Schunck (modified) 11.26
Uras et al. (unthresholded) 10.44

Nagel (1.71
Anandan 15.84

Singh (step 1, 1 = 2, w=2, N=4) 18.24
Singh (step 2, n = 2, w = 2, N=4) 13.16
Pan, Shi, and Shu (n= 1, w = 1) 7.93
Weng, Ahuja, and Huang BAL
Xia and Shi 7.54

Standard Deviation, ° Density, %
100

100

100

100

100

100
100

100

100
100

1ieS
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TABLE 13.9

Summaryof the “Yosemite” 2D Velocity Results

Techniques Average Error,° Standard Deviation, ° Density, ‘%

Horn and Schunck (original) 12.02 11.72 100

Horn and Schunck (modified) 2.55 3.67 100
Uras et al. (unthresholded) 4.64 3.48 100

Nagel 2.94 3,23 100
Anandan (frame 19 and 21) 7.64 4.96 100

Singh (step 1,1 =2, w= 2, N= 4) 17.66 14.25 LO)

Singh (step 2, 1 =2, w= 2, N= 4) 8.60 5.60 100
Pan, Shi, and Shu (1 = 1, w= 1) 5.12 2.16 LO)

Weng, Ahuja, and Huang 8.01 971 100
Xia and Shi 4.04 3.82 100 

13.4.2.6 Discussion and Conclusion

The above experimental results demonstrate that the Xia and Shi method outperforms both the Pan,
Shi, and Shu method and the Weng, Ahuja, and Huang methodin terms ofaccuracy ofoptical flow
determined. Computationally speaking, the Xia and Shi methodis less expensive than the Pan et al.,
since there is no correlation involved and the correlation is known to be computationally expensive.

13.5 SUMMARY

The optical flow field is a dense 2-D distribution of apparent velocities of movementofintensity
patterns in image planes, while the 2-D motion field can be understood as the perspective projection
of 3-D motion in the scene onto image planes. Theyare different. Only under certain circumstances
are they equal to each other. In practice, however, they are closely related in that image sequences
are usually the only data we have in motion analysis. Hence, we can only deal with the optical
flow in motion analysis, instead of the 2-D motion field. The aperture problem in motion analysis
refers to the problem that occurs when viewing motion via an aperture. Specifically, the only motion
we can observe from local measurementis the motion componentorthogonal to the underlying
moving contour, That is another way to manifest the ill-posed nature of optical flow computation.
In general, motion analysis from image sequences is an inverse problem, whichis ill posed.
Fortunately, low-level computational vision problems are only mildly ill posed. Hence, lowering
the noise in image dataleadsto a possible significant reduction oferrors in flow determination.

Numerousflow determination algorithms have appeared overthe course of more than a decade.
Mostof the techniques take one of the following approaches: the gradient-based approach, the
correlation-based approach,the energy-based approach, or the phase-based approach. In addition
to these deterministic approaches,there is also a stochastic approach. A unification point of view
of optical flow computationis presented in Section 13.3. Thatis, for any algorithm in optical flow
computation,there are two types of information that need to be extracted — conservation infor-
mation and neighborhood information.

Several techniques are introduced for the gradient-based approach, particularly the Horn and
Schunckalgorithm, which is a pioneer work in flow determination. There, the brightness invariant
equation is used to extract conservation information and the smoothness constraint is used to extract
neighborhood information. The modified Horn and Schunck algorithm showssignificant error
reduction in flow determination, because of a reduction ofnoise in image data, which confirmsthe
mildly ill-posed nature of optical flow computation.
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Several techniques are discussed for the correlation-based approach, The Singh algorithm is
given emphasis duetoits estimation-theoretical framework. The Pan, Shi, and Shu algorithm, which
applies the feedback techniqueto the correlation method, demonstrates an accuracy enhancement
in flow estimation,

Section 13.4 addresses the usage of multiple imageattributes vs. that of a single imageattribute
in the flow determinationtechnique. It is found that the use of multiple motion-insensitive attributes
can help reduce the ambiguity in motion analysis. The application of multiple image attributes to
conservation information turns out to be promising for flow computation.

Someexperimental works are presented in Sections 13.3 and 13.4. With Barron et al.’s recent
comprehensive survey of various existing optical flow algorithms, we can have a quantitative
assessment On various optical flow techniques.

Optical flow finds application in areas such as computervision, image interpolation, temporal
filtering, and video coding. In computational vision, raising the accuracy of optical flow estimation
is important. In video coding, however, lowering the bit rate for both prediction error and motion
overhead, while keeping certain quality of reconstructed frames, is the ultimate goal. Properly
handling the large amount ofvelocity vectors is a key issue in this regard, It is noted that the optical
flow-based motion estimation for video compression has been applied for many years. However,
the high bit overhead and computational complexity preventit from practical usage in video coding.
With the continued advance in technologies, however, we believe this problem may be resolved in
the near future. In fact, an initial, successful atternpt has been made and reported by Shietal.
(1998). There, based on a study that demonstrates that flow vectors are highly correlated and can
be modeled by afirst-order autoregressive (AR) model, the discrete cosine transform (DCT)is
applied to flow vectors. An adaptive threshold technique is developed to match optical flow motion
prediction and to minimize the residual errors. Consequently, this optical flow-based motion-
compensated video coding algorithmachieves good performancefor very low bit rate video coding.
It obtains a bit rate compatible with that obtained by an H.263 standard algorithm, which uses
block matching for motion estimation. (Note that the video coding standard H.263 is covered in
Chapter 19.) Furthermore, the reconstructed video frames by using this flow-based algorithm are
free of annoying blocking artifacts. This effect is demonstrated in Figure 13.20. Note that
Figure 13.20 (b) has appeared in Figure 11.12, where the same picture is displayed in a larger size
and the blocking artifacts are hence clearer.

13.6 EXERCISES

13-1. Whatis an optical flow field? Whatis a 2-D motion field? Whatis the difference between
the two? How are they related to each other?

13-2, Whatis an aperture problem? Give two of your own examples. :
13-3. What is the ill-posed problem? Why do we consider motion analysis from image

sequences an ill-posed problem? ¥
13-4. Is the relationship between the optical flow in an image plane and the velocities of

objects in 3-D world space necessarily obvious? Justify your answer.
13-5. What does the smoothness constraint imply? Whyis it required?
13-6. How are the derivatives of intensity function and the Laplacian of flow components

estimated in the Horn and Schunck method?
13-7. What are the differences between the Horn and Schunck original method and the

modified Horn and Schunck method? What do you observe from these differences?
13-8. What is the difference between the smoothness constraint proposed by Horn and

Schunck and the oriented smoothness constraint proposed by Nagel? Provide comments.
13-9. In your own words, describe the Singh method. What is the weighted-least-square

estimation technique?
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FIGURE13.20 (a) The 21st original frame of the Miss America sequence; (b) the reconstructed 2 Ist frame
with H.263; (c) the reconstructed 21st frame with the proposed algorithm.

13-10. In your own words, describe conservation information and neighborhood information.
Using this perspective, take a new look at the Horn and Schunck algorithm.

13-11. How is the feedback technique applied in the Panetal. algorithm?
13-12. In your own words,tell the difference between the Singh method and the Panetal.

method.

13-13. Give two of your own examplesto show that multiple imageattributes are able to reduce
ambiguity in image matching.

13-14. How does the Xia and Shi method differ from the Wenget al. method?
13-15. How does the Xia and Shi method differ from the Pan et al. method?
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A Further Discussion
and Summary on
2-D Motion Estimation

Since Chapter 10, we have been devoting our discussion to motion analysis and motion-compen-
sated coding. Following a general description in Chapter 10, three major techniques — block
matching, pel recursion, and optical flow — are covered in Chapters 11, 12, and 13, respectively.

In this chapter, before concluding this subject, we provide further discussion and a summary.
A general characterization for 2-D motion estimation, thus for all three techniques, is given in
Section 14,1, In Section 14.2, different classifications of various methods for 2-D motion analysis
are given in a wider scope. Section 14.3 is concerned with a performance comparison amongthe
three major techniques, More-advanced techniques and new trends in motion analysis and motion
compensation are introduced in Section 14.4.

14.1 GENERAL CHARACTERIZATION

A few common features characterizing all three major techniques are discussed in this section.

14.1.1. Aperture Prosiem

The aperture problem, discussed in Chapter 13, describes phenomena that occur when observing
motion through a small opening in a flat screen. That is, one can only observe normal velocity. It
is essentially a formof ill-posed problemsince it is concerned with existence and uniqueness issues,
as illustrated in Figure 13.2(a) and (b). This problem is inherent with the optical flow technique.

We note, however, that the aperture problem also exists in block matching and pel recursive
techniques. Consider an area in an image plane having strong intensity gradients. According to our
discussion in Chapter 13, the aperture problem does exist in this area no matter what type of
techniqueis applied to determine local motion. That is, motion perpendicularto the gradient cannot
be determined as long as only a local measure is utilized. It is noted that, in fact, the steepest
descent method of the pel recursive technique only updates the estimate along the gradient direction
(Tekalp, 1995).

14.1.2 Iut-Posep Inverse ProBLEM

In Chapter 13, when we discuss the optical flow technique, a few fundamental issues are raised. It
is stated that optical flow computation from image sequencesis aninverse problem, which is usually
ill-posed. Specifically, there are three problems: nonexistence, nonuniqueness, and instability. That
is, the solution may not exist; if it exists, it may not be unique. The solution may not be stable in
the sense that a small perturbation in the image data may cause a huge errorin the solution.

Now we can extend ourdiscussion to both block matching and pel recursion. This is because
both block matching and pel recursive techniques are intended for determining 2-D motion from
Image sequences, and are therefore inverse problems.

305
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14.1.3 CONSERVATION INFORMATION AND NEIGHBORHOOD INFORMATION

Becauseofthe ill-posed nature of 2-D motion estimation, a unified point of view regarding various
opticalflow algorithmsis also applicable for block matching and pel recursive techniques. Thatis,
all three major techniques involve extracting conservation information and extracting neighborhood
information.

Take a look at the block-matching technique. There, conservation information is a distribution
of somesort of features (usually intensily or functions of intensity) within blocks. Neighborhood
information manifests itself in that all pixels within a block share the same displacement. If the
latter constraint is not imposed, block matching cannot work. One exampleis the following extreme
case. Consider a block size of 1 * |, i.e., a block containing only a single pixel. It is well known
that there is no way to estimate the motion of a pixel whose movement is independent ofall its
neighbors (Horn and Schunck, 1981).

With the pel recursive technique, say, the steepest descent method, conservation information
is the intensity of the pixel for which the displacement vector is to be estimated. Neighborhood
information manifestsitself as recursively propagating displacementestimates to neighboring pixels
(spatially or temporally) as initial estimates.

In Section 12.3, it is pointed out that Netravali and Robbins suggested an alternative, called
“inclusion Of a neighborhood area.” Thatis, in order to make displacement estimation more robust,
they consider a small neighborhood ofthe pixel for evaluating the square of displaced frame
difference (DFD)in calculating the update term. They assume a constant displacement vector within
the area. The algorithm thus becomes

di =d*——aV, ¥wDED'(ny.1d'), (14.1)
haved

wherei represents an index for the /th pixel (x, y) within Q, and w,is the weight for the /th pixel
in Q. All the weights satisfy certain conditions; i.e., they are nonnegative, and their sum equals |,
Obviously, in this more-advanced algorithm, the conservation informationis the intensity distribu-
tion within the neighborhoodofthe pixel, the neighborhood informationis imposed more explicitly,
andit is stronger than that in the steepest descent method,

14.1.4 Occtusion AND DisoccLusion

The problemsofocclusion and disocclusion make motion estimation moredifficult and hence more
challenging. Here we give a brief description about these and otherrelated concepts.

Let us consider Figure 14.1, There, the rectangle ABCD represents an object in an image taken
at the momentof f,,.,, f (x, y, t,.;). The rectangle EFGH denotes the same object, which has been
translated, in the image taken at #, moment, f (x, y, f,). In the imagef (x, y, 1,), the area BFDHis
occluded by the object that newly moves in. On the other hand, in f (x,y, ¢,), the area of AECG
resurfaces and is referred to as a newly visible area, or a newly exposed area.

Clearly, when occlusion and disocclusion occur, all three major techniques discussed in this
part will encounter a fatal problem, since conservation information may be lost, making motion
estimation fail in the newly exposed areas. If image frames are taken densely enough along the
temporal dimension, however, occlusion and disocclusion may nol cause serious problems, since
the failure in motion estimation mayberestricted to some limited areas. An extra bit rate paid for
the corresponding increase in encoding prediction error is another way to resolve the problem.If
high quality and low bit rate are both desired, then some special measures have to be taken.

Oneof the techniques suitable for handling the situation is Kalmanfiltering, which is known
as the best, by almost any reasonablecriterion, technique working in the Gaussian white noise case
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An objectatt,, The objectatt ,

FIGURE14.1 Occlusion and disocelusion.

(Brown and Hwang, 1992). If we consider the system that estimates the 2-D motion to be contam-
inated by Gaussian white noise, we can use Kalmanfiltering to increase the accuracy of motion
estimation, particularly along motion discontinuities. It is powerful in doing incremental, dynamic,
and real-time estimation.

In estimating 3-D motion, Kalmanfiltering was applied by Matthieset al. (1989) and Panetal.
(1994). Kalman filters were also utilized in optical flow computation (Singh, 1992; Pan and Shi,
1994). In using the Kalmanfilter technique, the question of how to handle the newly exposed areas
was raised by Matthies et al. (1989). Pan et al. (1994) proposed one wayto handlethis issue, and
some experimental work demonstrated its effectiveness.

14.1.5 Ricip AND Nonricip MoTION

There are two types of motion: rigid motion and nonrigid motion. Rigid motion refers to motion
of rigid objects. It is known that our human vision system is capable of perceiving 2-D projections
of 3-D moving rigid bodies as 2-D movingrigid bodies. Most cases in computervision are concerned
with rigid motion. Perhapsthis is due to the fact that mostapplications in computervision fall into
this category. On the other hand, rigid motion is easier to handle than nonrigid motion. This can
be seen in the following discussion. :

Considera point P in 3-D world space with the coordinates (X,¥, Z), which can be represented
by a column vector 7:

v=(X,¥,Z)’. (14.2)

Rigid motion involves rotation and translation, and has six free motion parameters. Let R denote
the rotation matrix andTthe translational vector. The coordinates of point P in the 3-D world after
the rigid motion are denoted by v’. Then we have

y=RP4+T. (14.3)

Nonrigid motion is more complicated.It involves deformation in additionto rotation and translation,
and thus cannot be characterized by the above equation, According to the Helmholtz theory
(Sommerfeld, 1950), the counterpart of the above equation becomes

y= Ry +T+ Dy), (14.4)

where D is a deformation matrix. Note that RX, 7, and D are pixel dependent. Handling nonrigid
motion, hence, is very complicated.
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In videophony and videoconferencing applications, a typical scene might be a head-and-
shoulder view of a person imposed on a background. The facial expression is nonrigid in nature,
Model-based facial coding has been studied extensively (Aizawa and Harashima, 1994; Li et al.,
1993; Arizawa and Huang, 1995). There, a 3-D wireframe model is used for handling rigid head
motion, Li (1993) analyzes the facial nonrigid motion as a weighted linear combination of aset of
action units, instead of determining D7¥ directly, Since the number of action units is limited, the
compuatation becomesless expensive. In the Aizawa and Harashima (1989) paper, the portions in
the human face with rich expression, suchas lips, are cut and then transmitted out. At the receiving
end, the portions are pasted back in the face.

Amongthe three types of techniques, block matching may be used to manage rigid motion,
while pel recursive and optical flow may be used to handle either rigid or nonrigid motion,

14.2 DIFFERENT CLASSIFICATIONS

There are various methods in motion estimation, which can be classified in many different ways.
Wediscuss some ofthe classifications in this section.

14.2.1) Deterministic METHODS vs. STOCHASTIC METHODS

Most algorithmsare deterministic in nature. To see this, let us take a look at the most prominent
algorithm for each of the three major 2-D motion estimation techniques. That is, the Jain and Jain
algorithm for the block matching technique (Jain and Jain, 1981); the Netravali and Robbins
algorithm for the pel recursive technique (Netravali and Robbins, 1979); and the Horn and Schunck
algorithm forthe optical flow technique (Horn and Schunck, 1981), All are deterministic methods.
There are also stochastic methods in 2-D motion estimation, such as the Konrad and Dubois

algorithm (Konrad and Dubois, 1992), which estimates 2-D motion using the maximuma4pasteriori
probability (MAP).

14.2.2 Spatiat Domain MetHopsvs. Frequency Domain METHODS

While mosttechniques in 2-D motionanalysis are spatial domain methods, there are also frequency
domain methods (Kughlin and Hines, 1975; Heeger, 1988; Porat and Friedlander, 1990; Girod,
1993; Kojimaet al., 1993; Koc and Liu, 1998). Heeger (1988) developed a method to determine
optical flow in the frequency domain, which is based on spatiotemporalfilters. The basic idea and
principle of the methodis introducedin this subsection. A very new and effective frequency method
for 2-D motion analysis (Koc and Liu, 1998) is presented in Section 14.4, where we discuss new
trends in 2-D motion estimation.

14.2.2.1 Optical Flow Determination Using Gabor EnergyFilters

The frequency domain methodof optical flow computation developed by Heeger is suitable for
highly textured image sequences.First, let us take a look at how motion can be detected in the
frequency domain.

Motion in the spatiotemporal frequency domain — Weinitiate our discussion with a 1-D case.
The spatial frequency ofa (translationally) moving sinusoidal signal, @,, is defined as cycles per
distance (usually cycles per pixel), while temporal frequency,,, is defined as cycles per time unil
(usually cycles per frame). Hence, the velocity of (translational) motion, defined as distance per
time unit (usually pixels per frame), canberelated to the spatial and temporal frequenciesasfollows.

v=,/@,. (14.5)
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0 o,

FIGURE 14,2 Velocity in 1-D spatiotemporal frequency domain.

A |-D moving signal with a velocity v may have multiple spatial frequency components. Each
Spatial frequency component w,,, / = 1,2,... has a corresponding temporal frequency component
@,, such that

w, =Vvo,,- (14.6)

This relation is shown in Figure 14.2. Thus, we see that in the spatiotemporal frequency domain,
velocity is the slope of a straight line relating temporal and spatial frequencies.

For 2-D moving signals, we denote spatial frequencies by @, and @,, and velocity vector by
p= (v,, v,\). The above |-D result can be extended in a straightforward manner as follows:

®,=V,0,+¥,0,. (14.7)

The interpretation of Equation 14.7 is that a 2-D translating texture pattern occupies a plane in the
spatiotemporal frequency domain.

Gabor Energy Filters — As Adelson and Bergen (1985) pointed out,the translational motion of
imagepatterns is characterized by orientation in the spatiotemporal domain. This can be seen from
Figure 14.3. Therefore, motioncan be detected by using spatiotemporally orientedfilters. Onefilter
of this type, suggested by Heeger,is the Gaborfilter.

A 1-D sine-phase Gaborfilter is defined as follows:

 a(t) =I sin(2nan)exo (14.8)
Obviously, this is a product of a sine function and a Gaussian probability density function. In the
frequency domain, this is the convolution between a pair of impulses located in @ and —@, and the
Fourier transform of the Gaussian, whichis itself again a Gaussian function. Hence, the Gabor
function is localized in a pair of Gaussian windowsin the frequency domain, This meansthat the
Gaborfilter is able to pick up some frequency componentsselectively.

A 3-D sine Gaborfunction is

 ! ie ye
Cyij= ; ral incense eena(4iy.t) Jin"a,0,6,| 2 2: o, G,

(14.9)

' sin|2ra,,XO,YF o,!)}
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FIGURE 14.3 Orientation in spatiotemporal domain. (a) A horizontal bar translating downward. (b) A
spatiotemporal cube,(c) A slice of the cube perpendicularto y axis. The orientation ofthe slant edges represents
the motion.

where 6,, G,, and 6, are, respectively, the spreads ofthe Gaussian windowalong the spatiotemporal
dimensions; and @,,, @,,, and @,, are, respectively, the central spatiotemporal frequencies. The
actual Gaborenergyfilter used by Heegeris the sum ofa sine-phasefilter (which is defined above),
and a cosine-phasefilter (which shares the same spreads and central frequenciesas that in the sine-
phasefilter, and replaces sine by cosine in Equation 14.9). Its frequency response, therefore, is as
follows.

G(o,,0,,0,) = pear—#n'|o3(0, -@,, ) + o;(o, = w,) + o;(, -0,, y
(14.10)

+ exp-4n'[o7(0, +0, ) + o;(0, +0, ) + 37 (a, +@,, )|
This indicatesthat the Gaborfilter is motion sensitive in that it responds largely to motion that has
more powerdistributed near the central frequencies in the spatiotemporal frequency domain, while
it responds poorly to motion thathaslittle power near the central frequencies.

Flow extraction with motion energy — Using a vivid example, Heeger explains in his paper why
one suchfilter is not sufficient in detection of motion. Multiple Gaborfilters must be used. In fact,
a set of 12 Gaborfilters are utilized in Heeger’s algorithm. The 12 Gaborfilters in the set have
one thing in common:

 

Oy) = 07+, (14.11)
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In other words, the 12 filters are tuned to the samespatial frequency band butto different spatial
orientation and temporal frequencies.

Briefly speaking, optical flow is determined as follows, Denote the measured motion energy
by n,,¢= 1,2...,12. Here i indicates one of the 12 Gaborfilters, The summation ofall n,is denoted by

12

i= >n,. (14.12)
t=

Denote the predicted motion energy by P;(v,, v,), and the sum ofpredicted motion energy by

P=} P(v,,v,). (14.13)

Similar to what many algorithms do,optical flow determinationis then converted to a minimization
problem. That is, optical flow should be able to minimize error between the measured and predicted
motion energies:

I{v,.¥,) = ; n ee : (14.14)
Similarly, many readily available numerical methods can be used for solving this minimization
problem,

14.2.3 REGION-BAseD APPROACHES VS. GRADIENT-BASED APPROACHES

Asstated in Chapter 10, methodologically speaking, there are generally two approaches to 2-D
motion analysis for video coding: region based and gradient based, Now that we have gone through
three majortechniques, we can seethis classification more clearly.

The region-based approach can be characterized as follows. For a region in an image frame,
we find its best match in another image frame. Therelative spatial position between these two
regions producesa displacement vector. The best matching is found by minimizing a dissimilarity
measure between the two regions, which is defined as

KS SYMFst)Alx-dxy—dyt—A0)], (14.15)
(uyjer

Where R denotes a spatial region, on which the displacement vector (d,, d,)7 estimate is based;
M{,B] denotes a dissimilarity measure between two arguments & and P; Aris the time interval
between two consecutive frames.

Block matching certainly belongsto the region-based approach. By region we mean a rectangle
block. For an original block in a (current) frame, block matching searches forits best match in
another (previous) frame among candidates. Several dissimilarity measures are utilized, among
which the mean absolute difference (MAD) is used mostoften. ;

Although it uses the spatial gradient of intensity function, the pel recursive method with
inclusion of a neighborhood area assumes the same displacement vector within a neighborhood
region. A weighted sum of the squared DFD within the region is used as a dissimilarity measure.
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By using numerical methods suchas various descent methods, the pel recursive methoditeratively
minimizes the dissimilarity measure, thus delivering displacement vectors. The pel recursive tech-
nique is therefore in the category of region-based approaches.

In optical flow computation, the two most frequently used techniques discussed in Chapter 13
are the gradient methodandthe correlation method. Clearly, the correlation methodis region based.
In fact, as we pointed out in Chapter 13, it is very similar to block matching.

As far as the gradient-based approach is concerned, we start its characterization with the
brightness invariant equation, covered in Chapter 13. Thatis, we assumethat brightness is conserved
during the time interval between two consecutive image frames.

f(x.yt)= f(x-d,,y-d,.t—Ay). (14.16)

By expanding the right-handside ofthe above equation into the Taylor series, applying the above
equation, and some mathematical manipulation, we can derive the following equation.

fut fivt f =0, (14.17)

wheref,. f,. f, are partial derivatives ofintensity function with respect to x, y, and f, respectively;
and u and v are two components ofpixel velocity. This equation contains gradients of intensity
function with respectto spatial and temporalvariables and links two components ofthe displacement
vector. The square ofthe left-hand side in the above equationis an error that needs to be minimized.
Through the minimization, we can estimate displacement vectors.

Clearly, the gradient method in optical flow determination, discussed in Chapter 13, falls into
the above framework. There, an extra constraint is imposed and includedinto the error represented
in Equation 14.17.

Table 14.1 summarizes what we discussed in this subsection.

 

 

TABLE 14.1

Region-Based vs. Gradient-Based Approaches

Optical Flow
Gradient-Based_Correlation-Based

Block Matching Pel Recursion Method Method

Regional-based approaches V V y
Gradient-based approaches v
SSSeaeeeee

14.2.4 Forwaro vs. Backwarp MOTION ESTIMATION

Motion-compensated predictive video coding may be done in two different ways: forward and
backward (Boroczky, 1991), These ways are depicted in Figures 14.4 and 14.5, respectively. With
the forward manner, motion estimation is carried out by using the original input video frame and
the reconstructed previous input video frame. With the backward manner, motion estimation 1s
implemented with two successive reconstructed input video frames.

The former providesrelatively higher accuracy in motion estimation and hence moreefficient
motion compensation than the latter, owing to the fact that the original input video frames are
utilized. However, the latter does not need to transmit motion vectors to the receiving end as an
overhead, while the former does.
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Video in f

FIGURE 14.4 Forward motion estimation and compensation,T: transformer, Q: quantizer, FB: framebuffer,
MCP: motion-compensated predictor, ME: motion estimator, e: prediction error, f: input video frame,
J, predicted video frame, f: reconstructed video frame, g: quantized transform coefficients, v: motion vector.

Block matching is used in almostall the international video coding standards, such as H.261,
H.263, MPEG 1, and MPEG 2 (which are covered in the next part of this book), as forward-motion
estimation. The pel recursive technique is used as backward-motion estimation. In this way, the
pel recursive technique avoids encoding a large amount of motion vectors. On the other hand,
however,it providesrelatively less accurate motion estimation than block matching. Optical flow
is usually used as forward-motion estimation in motion-compensated video coding. Therefore, as
expected, it achieves higher motion estimation accuracy on the one hand andit needs to handle a
large amount of motion vectors as overhead on the other hand. These will be discussed in the next
section.

It is noted that one of the new improvementsin the block-matching technique is described in
Section 11.6.3. It is called the predictive motion field segmentation technique (Orchard, 1993), and
it is motivated by backward-motion estimation. There, segmentation is conducted backward, 1.€.,
based on previously decoded frames. The purpose of this is to save overhead for shape information
of motion discontinuities.

14.3. PERFORMANCE COMPARISON AMONG THREE

MAJOR APPROACHES

14.3.1  THree REPRESENTATIVES

A performance comparison amongthe three major approaches; block matching, pel recursion, and
optical flow, was provided in a review paper by Dufaux and Moscheni (1995). Experimental work
was Carried out as follows. The conventionalfull-search block matching is chosen as a representative
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FIGURE 14.5 Backward-motion estimation and compensation, T: transformer, Q: quantizer, FB: frame
buffer, MCP: motion-compensatedpredictor, ME: motion estimator, e: prediction error, f: input video frame,
Jp: predicted video frame,f,,; reconstructed video frame, f,.: reconstructed previous video frame, g: quantized
transform coefficients.

for the block-matching approach, while the Netravali and Robbins algorithm and the modified Horn
and Schunck algorithm are chosen to represent the pel recursion and optical flow approaches,
respectively.

14.3.2 ALtGorITHM PARAMETERS

In full-search block matching, the block size is chosen as 16 x 16 pixels, the maximum displacement
is +15 pixels, and the accuracyis half-pixel. In the Netravali and Robbins pel recursion, € = 1/1024,
the update term is averaged in an area of 5x5 pixels and clipped to a maximumof 1/16 pixels
per frame, and the algorithm iterates one iteration per pixel. In the modified Horn and Schunck
algorithm, the weight o? is set to 100, and 100iterations of the Gauss and Seidel procedure are
carried out.

14.3.3 ExpeRIMENTAL ResuLTs AND OBservATIONS

The three test video sequencesare the “Mobile and Calendar,” “Flower Garden,” and “Table Tennis.”
Both subjective criteria (in terms of needle diagrams showing displacementvectors) and objective
criteria (in terms of DFD error energy) are applied to access the quality of motion estimation.

It turns out that the pel recursive algorithm gives the worst accuracy in motion estimation. In
particular, it cannot follow fast and large motions. Both block-matching and optical flow algorithms
give better motion estimation.

IPR2018-01413

Sony EX1008 Page 340



IPR2018-01413 
Sony EX1008 Page 341

SIsoo

Further Discussion and Summary on 2-D Motion Estimation 315

It is noted that we must be cautious in drawing conclusions from thesetests. This is because
different algorithms in the same category and the samealgorithm under different implementation
conditions will provide quite different performances, In the above experiments, the full-search
block matching with half-pixel accuracy is one of the better block-matching techniques. On the
contrary, there are many improved pel recursive and optical flow algorithms, which outperformthe
chosen representatives in the reported experiments.

The experiments do, however, provide an insight about the three major approaches. Pel recursive
algorithms are seldom used in video coding now, mainly because of their inaccurate motion
estimation, although they do not require transmitting motion vectors to the receiving end. Although
they can provide relatively accurate motion estimation, optical flow algorithms require a large
amount of overhead for handling dense motion vectors. This prevents the optical flow techniques
from wide and practical usage in video coding. Block matching is simple, yet very efficient for
motion estimation. It provides quite accurate and reliable motion estimation for most practical
video sequencesin spite of its simple piecewise translational model. At the same timeit does not
require much overhead, Therefore, for first-generation video coding, block matching is considered
to be the most suitable among the three approaches.

14.4 NEW TRENDS

In Chapters I 1, 12, and 13, many new,effective improvements within the three major approaches
were discussed. ‘These techniques include multiresolution block matching, (locally adaptive) mul-
tigrid block matching, overlapped block matching, thresholding techniques, (predictive) motion
field segmentation, feedback and multiple attributes in optical flow computation, subpixel accuracy,
and so on. Some improvements will be discussed in Section IV, where various international video
coding standards such as H.263 and MPEG 2, and 4 are introduced.

As pointed out by Orchard (1998), today our understanding of mouion analysis and video
compressionis still based on an ad hoc framework, in general. What today's standards have achieved
is not near the ideally possible performance. Therefore, more efforts are continuously madein this
field, seeking much simpler and more practical, and efficient algorithms.

As an example of such developments, we conclude this chapter by presenting a novel method
for 2-D motion estimation: the DCT-based motion estimation (Koc and Liu, 1998).

14.4.1. DCT-Basep Motion Estimation

Aspointed out in Section 14.2.2, as opposed to the conventional 2-D mation estimation techniques,
this methodis carried out in the frequency domain. It is also different from the Gabor energy filter
method by Heeger, discussed in Section 14,2.2.1. Without introducing Gabor filters, this mehtod
is directly DCTbased. The fundamental concepts and techniquesof this method are discussed below.

14.4.1.1 DCT and DST Pseudophases

The underlying idea behind this methodis to estimate 2-D translational motion by determining the
DCTand DST(discrete sine transform) pseudophases. Let us use the simpler I-D case to illustrate
this concept. Onceit is established, it can be easily extended to the 2-D case.

Consider a 1-D signal sequence { f(i),n © (0, 1, ---, N—1) oflength N.Its translated version
is denoted by {2(n),n © (0, 1, «++, N— 1}. The translation is defined as follows.

x={he if (n—d)e(0.1,---,N 1) (14, 18)0, otherwise
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In the above equation, d is the amount ofthetranslation andit needs to be estimated. Letus define
the following several functions before introducing the pseudophases, The DCTand the DSTofthe
second kind of g(n), G°(k), and G5(k) are defined as follows.

arte) =Z cH¥elnpood +03)| k €{0,1,---N-1} (14.19)

G*(k) =2 cw¥ansolEn05) ke{l,-N}. (14.20)
n=0

The DCT and DSTofthe first kind off(n), F&(k), and F(A) are defined as

N-1

FH(b) == U8) >. flo)cos| k €{0,1,---N—1} (14.21)

F5(b)= = Ce). f(a)si|| ke{lN}, (14.22)

In the above equations, C(k) is defined as

forn=OorNC(k) = V2 Orn=VU or . (14.23)
1 otherwise

Now weareinapositionto introducethe following equation, which relates the translational amount d
to the DCT and DSTofthe original sequence andits translated version, defined above. That 1s,

G(k)|_[Fo(k)  -F8(k)][ D°(k) . (14.24)
GS(k)||FS(k) FE(k)||DS(k)

where Dk) and D“(k) are referred to as the pseudophasesand defined as follows:

D©(k)4 cos(a2)
(14.25)

Br(k) 2 sla+ +)
Equation 14.24 can be solved for the amountoftranslation d, thus motionestimation. This becomes
clearer when we rewrite the equation in a matrix-vector format. Denote the 2 x 2 matrix In
Equation 14.24 by F(4), the 2 x 1 column vectoratthe left-hand side of the equation by G(x), and
the 2 x | column vectorat the right-handside by D(k). It is easy to verify that the matrix F(k) 1s
orthogonal by observing the following,
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AF’ (k)F(k) =I, (14.26)

where I is a 2 x 2 identity matrix and the constant is

1=— (14.27)
[F°(«)]° +[F5(&)]

We then derive the matrix-vector format of Equation 14.24 as follows:

D(k)=KE"(k)G(k) ke {lo N=1}- (14.28)

14.4,1.2 Sinusoidal Orthogonal Principle

It was shown above that the pseudophases, which contain the translation information, can be
determined in the DCT and DST frequency domain. But how the amount of the translation can be
found has not been mentioned. Here, the algorithm uses the sinusoidal principle to pick up this
information. Thatis, the inverse DSTofthe second kind of scaled pseudophase, C(k)D*(k), is found
to equal an algebraic sum of the following two discrete impulses according to the sinusoidal
orthogonal principle:

ISDT{C(k)D*(k)} = Ycwo'wsi(n43)]- 5(d—n)-8&(d+n+l). (14.29)
Since the inverse DSTis limited ton € (0, 1, ---, N—1}, the only peak value amongthis set of
N values indicates the amount ofthe translation ¢. Furthermore, the direction of the translation

(positive or negative) can be determined from the polarity (positive or negative) of the peak value,
The block diagram ofthe algorithm is shown in Figure 14.6. This technique can be extended

to the 2-D case in a straightforward manner. Interested readers should refer to Koc and Liu (1998).

14.4.1,3 Performance Comparison

The algorithm was applied to several typical testing video sequences, suchas the “Miss America”
and “Flower Garden” sequences, and an “Infrared Car” sequence. The results were compared with
the conventional full-search block-matching technique and several fast-search block-matching tech-
niques such as the 2-D logarithm search, three step search, search with subsampling in the original
block, and the correlation windows.

Prior to applying the algorithm,oneof the following preprocessing proceduresis implemented:
framedifferentiation or edge extraction. It was reported that for the “Flower Garden” and “Infrared
Car” sequences, the DCT-based algorithm achieves a higher coding efficiency than all three fast-
search block-matching methods, while for the Miss America sequence it obtains a lowerefficiency.
It was also reported that it performs well even in a noisy situation,

A lower computational complexity, O(M?) for an M x M search range, is one of the major
advantages possessed by the DCT-based motion estimation algorithm compared with conventional
full-search block matching, O(M2- N2) for an M x M search range and an N xNblocksize.

With DCT-based motion estimation, a fully DCT-based motion-compensated coder structure
becomespossible, which is expected to achieve a higher throughput and a lower system complexity.
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FIGURE 14.6 Block diagram of DCT-based motion estimation (1-D case).

14.5 SUMMARY

In this chapter, which concludes the motion analysis and compensation portion of the book, we
first generalize the discussion of the aperture problem, the ill-posed nature, and the conservation-
and-neighborhood-information unified point of view, previously made with respect to the optical
flow technique in Chapter13, to cover block-matching and pel recursive techniques. Then, occlusion
and disocclusion, and rigidity and nonrigidity are discussed with respect to the three techniques.
The difficulty of nonrigid motion estimation is analyzed. Its relevance in visual communications
is addressed.

Different classifications of various methods in the three major 2-D motion estimation tech-
niques; block matching,pel recursion,and opticalflow, are presented. Besides the frequently utilized
deterministic methods, spatial domain methods, region-based methods, and forward-motion estl-
mation, their counterparts — stochastic methods, frequency domain methods, gradient methods,
and backward motion estimation — are introduced. In particular, two frequency domain methods
are presented with some detail. They are the method using the Gabor energy filter and the DCT-
based method.

A performance comparison amongthe three techniquesis also introducedin this chapter, based
on which observations are drawn. A main pointis that block matchingis at present the most suitable
technique for 2-D motion estimation amongthe three techniques.
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14.6 EXERCISES

14-1. Whatis the difference between rigid motion and nonrigid motion? In facial encoding,
what is the nonrigid motion? How is the nonrigid motion handled?

14-2. Howis 2-D motion estimation carried out in the frequency domain? What are the
underlying ideas behind the Heeger method and the Koc and Liu method?

14-3. Why is one Gaborenergy filter not sufficient in motion estimation? Draw the power
spectrumof a 2-D sine-phase Gabor function.

14-4, Show the correspondence ofa positive (negative) peak value in the inverse DST of the
second kind of DST pseudophase to a positive (negative) translation in the 1-D spatial
domain.

14-5. How does neighborhood information manifest itselfin the pel recursive technique?
14-6. Using your own words and some diagrams, state that the translational motion of an

image pattern is characterized by orientation in the spatiotemporal domain.
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5 Fundamentals of Digital
Video Coding

In this chapter, we introduce the fundamentals of digital video coding which include digital video
representation, rate distortion theory, and digital video formats. Also, we give a brief overview of
image and video coding standards which will be discussed in the subsequent chapters.

15.1. DIGITAL VIDEO REPRESENTATION

As we discussed in previous chapters, a digital image is obtained by quantizing a continuous image
both spatially and in amplitude. Digitization of the spatial coordinates is called image sampling,
while digitization of the amplitude is called gray-level quantization. Suppose that a continuous
image is denoted by g(x, y), where the amplitude or value of g al the point (x, y) is the intensity
or brightness of an image at that point, The transformation of a conntinuous image to a digital
image can then be expressed as

flma)= Ofa(«, +mAx,y, + ndy)), (15.1)

where Q is a quantization operator, x, and y, are the origin of image plane, m and nare the discrete
values 0, 1, 2, .... and Ax and Ayare the sampling intervals in the horizontal and vertical directions,
respecuvely. If the sampling process is extended lo a third temporal direction (or the original signal
in the temporal direction is a discrete format), a sequence, f(,n,f), is obtained as introduced in
Chapter 10,

f(m,n,t) = Olax, +mAx,y, +n Ay,t, +1 At)}, (15.2)

where fis the values 0, 1, 2, ... and A fis the timeinterval.

Each point of the image or each basic elementof the imageis called as a pixelorpel. Each
individual imageis called a frame. According to the sampling theorem, the original continuous signal
can be recovered exactly from its samples if the sampling frequency is higher than twice the
bandwidthofthe original signal (Oppenheim and Schafer, 1989). The frames are normally presented
at a regular timeinterval so that the eye can perceive fluid motion. For example, the NTSC (National
Television Systems Committee) specified a temporal sampling rate of 30 frames/second and inter-
lace 2 to 1. Therefore, as a result ofthis spatio-temporal sampling, the digital signals exhibit high
Spatial and temporal correlation, just as the analog signals did before video data compression. In
the following, we discuss the theoretical basis of video digitization. An important notion is the
strong dependence between values of neighboring pixels within the same frame and between the
frames themselves; this can be regarded asstatistical redundancy of the image sequence. In the
following section, we explain how this statistical redundancy is exploited to achieve compression
of the digitized image sequence.

323
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15.2 INFORMATION THEORY RESULTS(IV): RATE DISTORTION

FUNCTION OF VIDEO SIGNAL

The principal goal in the design of a video-coding system is to reduce the transmission rate
requirements of the video source subject to some picture quality constraint. There are only two
ways to accomplishthis goal: reductionofthe statistical redundancy and psychophysical redundancy
of the video source. The video source is normally very highly correlated, both spatially and
temporally; that is, strong dependence can be regarded as statistical redundancyofthe data source.
If the video source to be coded in a transmission system is viewed by a human observer, the

perceptual limitations of humanvision can be used to reduce transmission requirements. Human
observers are subject to perceptuallimitations in amplitude, spatial resolution, and temporalacuity.
By proper design of the coding system,it is possible to discard information without affecting
perception, or at least, with only minimal degradation. In summary, we can use two factors: the
Statistical structure of the data source and the fidelity requirements of the end user, which make
compression possible. The performanceof the video compression algorithm depends onthe several
factors. First, and also fundamental, 1s the amount of redundancy contained in the video data source.
In other words, if the original source contains a large amount of information, or high complexity,
then more bits are needed to represent the compressed data. Second, if a lossy coding technique
is used, by which some amount ofloss is permitted in the reconstructed video data, then the
performance of the coding technique depends on the compression algorithm and distoruon mea-
surements. In lossy coding, different distortion measurements will perceive the loss in different
ways, giving different subjective results, The developmentof a distortion measure that can provide
consistent numerical and subjective results is a very difficult task. Moreover, the majority ofthe
video compression applications do not require lossless coding: Le., it is nol required that the
reconstructed and original images be identical or reversible.

Thisintuitive explanation of how redundancy and lossy coding methods can be used to reduce
source data is made more precise by the Shannonrate distortion theory (Berger, 1971), which
addresses the problem of how to characterize both the source and the distortion measure. Let us
consider the mode]of a typical visual communication system depicted in Figure 15.1. The source
data is fed to the encoder system, which consists of two parts: source coding and channel coding.
The function of the source coding is to remove the redundancy in boththe spatial and temporal
domains, whereas the function of channel codingis to insert the controlled redundancy, which ts
used to protect the transmitted data from the interference of channel noise. It should be noted that
according to Shannon (1948)certain conditions allow the source and channel coding operations lo
be separated without any loss of optimality, such as when the sources are ergodic. However, Shannon
did not indicate the complexity constraint on the coderinvolved. In practical systemsthat are limited

Inputdata To channel

Encoder Encoder

 
Reconstructed From channel

FIGURE 15.1 A typical visual communication system.
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by the complexity, this separation may not be possible (Viterbi and Omura, 1979). There isstill
some work on the joint optimization of the source and channel coding (Modestinoet al., 1981:
Sayood and Borkenhagen, 1991). Returning to rate-distortion theory, the problem addressed here
is the minimizing the channel capacity requirement, while maintaining the average distortion at or
below an acceptable level.

The rate distortion function R(D) is the minimum average rate (bits/element), and hence
minimum channel capacity, required for a given average distortion level D. To make this more
quantitative, we supposethatthe source is a sequence of pixels, and these values are encoded by
successive blocks of length N. Each block ofpixels is then described by one of a denumerable set
of messages, (X,}, with probability function, P(X;). For a given input source, {X;}, and output,
{Y,}, the decoder system can be described mathematically by the conditional probability, OCY,/X;).
Therefore, the probability of the output messageis

7(¥)= P(%)0(%/%): (15:3)

The information transmitted is called the average mutual information between Y and X and is
defined for a block of length N as follows:

oly./x,1,(X.¥)= SS S'P(x,)0(%,/%,) log, Sal (15.4)
i J j

In the case oferror-free encoding, Y = X and then

i fet jsatupx)={5 iei 0 T(¥,)=7(¥). (15.5)
In this case, Equation 15.4 becomes

Iy(X.¥)= ¥, ¥) P(%)lo8, P(X) = A(X), (15.6)
mf

whichis the Nth-order entropy ofthe data source. This can also be seenas the information contained
in the data source under the assumption that no correlation exists between blocks and all the
correlation between elements of each N length block is considered. Therefore,it requires at least
Hy (X) bits to code the data source without any information loss. In other words, the optimal errors
free encoder requires A,(X) bits for the given data source. In the most general case, noise in the
communication channel will result in error at least some ofthe time, causing Y # X. As a result,

1,(X,¥) = Hy(X)= Ay(X/Y), (15.7)

where Hy(X/Y) is the entropy of the source data at the condition of decoder output Y. Since the
entropyis a positive quantity, the source entropy is the upper bound to the mutual information;i.e.,

Iy(X,Y) $ Hy(X). (15.8)
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Let d (X,Y) be the average distortion between X and ¥. Then, the average distortion per pixelis
defined as

D(Q)= + Efd(x,Y)} = vo LilX,,¥,)P(x,)O(X,/¥,). (15.9)
The set of all conditional probability assignments, Q(Y/X), that yield average distortion less than
or equal to D*, can be written as:

{Q: D(Q)< D*}. (15.10)

The N-block rate distortion function is then defined as the minimum of the average mutual
information, /,(X,Y), per pixel:

D> |= — aid Di 1MP) Ma0 sip
The limiting value of the N-block rate distortion function is simply called the rate distortion function,

R(D")=Lim R,(D’). (15.12)Neo

It should be clear from the above discussion that the Shannonrate distortion function ts a lower

bound onthe transmission rate required to achieve an average distortion D whenthe blocksize is
infinite. In other words, when the block size is approaching infinity, the correlation betweenall
elements within the block is considered as the information contained in the data source. Therefore,

the rate obtained is the lowest rate or lower bound. Under these conditions, the rate at which a data

source producesinformation, subject to a requirementofperfect reconstruction, is called the entropy
of the data source,i.e., the information contained in the data source. It followsthat the rate distortion

function is a generalization of the conceptof entropy. Indeed, if the distortion measurets a perfect
reproduction, it is assigned zero distortion. Then, R(O) is equal to the source entropy H(X).
Shannon's coding theorem states that one can design a coding system with rate only negligibly
greater than R(D) which achieves the average distortion D. As D increases, R(D) decreases mono-
tonically and usually becomes zero al somefinite value ofdistortion. The rate distortion function
R(D) specifies the minimum achievable transmission rate required to transmit a data with average
distortion level D. The main value ofthis functionin a practical application is that it potentially
gives a measure for judging the performanceof a coding system. However, this potential value has
not been completely realized for video transmission. There are two reasons for this. First of all,
there currently does notexist tractable and faithful mathematical models for an image source. The
rate distortion function for Gaussian sources underthe squarederrordistortion criterion can be found,
but it is not a good modelfor images. The second reason is that a suitable distortion measure, P,
which matches the subjective evaluation of image quality, has not beentotally solved. Someresults
have been investigated for this task such as JND (just noticeable distortion) (see www.sar-
noff.com/tech_realworld/broadcast/jnd/index.html). The issue of subjective and objective assess-
ment of image quality has been discussed in Chapter |. In spite of these drawbacks, the rate
distortion theoremis still a mathematical basis for comparing the performance ofdifferent coding
systems.
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15.3. DIGITAL VIDEO FORMATS

In practical applications, most video signals are color signals. Various color systems have been
discussed in Chapter |. A color signal can be seen as a summation of light intensities of three
primary wavelength bands. There are several color representations such as YC,C,, RGB, and others.
It is commonpractice to convert one color representation to another color representation. The YC,C,
color representation is used for most video coding standards in compliance with the CCIR601
(International Radio Consultative Committee), common intermediate format (CIF), and SIF formats
that are described in the following. The Y component specifies the luminance information and the
C, and C, components specify the color information. Conversion between the YC,C, and RGB
formats can be accomplished with the following transformations, respectively.

¥ 0.257 0,504 0.098||R 16

C,|=|-0.148 -0.291=0.439||G]+} 128}; (15.13)

C 0.439 -0.368  -0.071||B 128

R 1.164 0.000 1.596 Y—16

G|=|1.164 -0,392 —0.813}) C,-128 |. (15.14)

B 1.164 2.017 0.000|]C -128

Progressive and Interlaced — Currently, most video signals that are generated by a TV camera
are interlaced. These video signals are represented at 30 frames/second for an NTSC system. Each
frame consists oftwo fields, the top field and bottom field, which are Yoo of a second apart. In the
display of an interlaced frame, the top field is scanned first and the bottomfield is scanned next.
The top and bottom fields are composed of alternating lines of the interlaced frame. Progressive
video does not consist of fields, only frames. In an NTSC system, these frames are spaced so seconds
apart. In contrast to interlaced video, every line within the frame is successively scanned.

CCIR — According to CCIR601 (see CCIR Recommendation 601-1) (CCIR is now known
as ITU-R,International Telecommunications Union-R), a color video source has three components:
a luminance component (Y) and two-color difference or chrominance components (C, and C, or U
and V in some documents). The CCIR format has two options; one for the NTSC TV system and
another for the PAL TV system; both are interlaced. The NTSC format uses 525 lines/frame at 30
frames/second, The luminance frames of this format have 720 x 480 active pixels. The chrominance
frames have 1wo kinds of formats, one has 360 x 480 active pixels and is referred as the 4:2:2
format, while the other has 360 x 240 active pixels and is referred as the 4:2:0 format. The PAL
format uses 625 lines/frame at 25 frames/second. Its luminance frame has 720 = 576 active
pixels/frame and the chrominance frame has 360 x 576 active pixels/frame for the 4:2:2 format

and 360 x 288 pixels/frame for the 4:2:0 format, both at 25 frames/second.
SIF (source input format) — SIF has luminance resolution of 360 x 240 pixels/frame at 30

frames/second or 360 x 288 pixels/frame at 25 frames/second. For both cases, the resolution of the
chrominance componentsis halfof the luminanceresolution in both horizontal and vertical dimen-
sions. SIF can easily be obtained from a CCIR format using an appropriate antialiasing filter
followed by subsampling. ;

CIF (commonintermediate format) — CIFis a noninterlaced format, Its luminance resolution
has 352 x 288 pixels/frame at 30 frames/second and the chrominance has half the luminance
resolution in both vertical and horizontal dimensions. Sinceits line valuc, 288, represents half the
active lines in the PALtelevision signal, and its picture rate, 30 frames/second,is the same as the
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NTSCtelevision signal, it is a common intermediate format for both PAL or PAL-like systems and
NTSC systems, In the NTSC systems, only a line number conversion is needed, while in the PAL
or PAL-like systems only a picture rate conversion is needed. For low-bit-rate applications, the
quarter-SIF (QSIF) or quarter-CIF (QCIF) formats may be used since these formats have only a
quarter the numberof pixels of SIF and CIF formats, respectively.

ATSC (Advanced Television Standard Committee) DTV (digital television) format — The
concept of DTV consists of SDTV (standard-definition television) and HDTV (high-definition
television). Recently, in the U.S., the FCC (Federal Communication Commission) approved the
ATSC-recommended DTV standard (ATSC, 1995). The DTV formatis not included in the standard

due to the divergent opinions of TV and computer manufacturers. Rather, it has been agreed that
the picture format will be decided by the future market. The ATSC-recommended DTV formats
including two kinds offormats: SDTV and HDTV. The ATSC DTV standard includes the following
18 formats:

For HDTV: 1920 x 1080 pixels at 23.976/24 Hz, 29.97/30 Hz, and 59.94/60 Hz progressive
scan.

For SDTV: 704 x 480 pixels with 4:3 aspect ratio at 23,976/24 Hz, 29.97/30 Hz, 59.94/60 Hz
progressive scan; 704 x 480 pixels with 16:9 aspect ratio at 23.976/24 Hz, 29.97/30 Hz,
59.94/60 Hz progressive scan; and 640 x 480 with 4:3 aspect ratio at 23.976/24 Hz,
29.97/30 Hz, 59.94/60 Hz progressive scan.

It is noted that all HDTV formats use square pixels and only part of SDTV formats uses square
pixels, The numberofpixels per line vs. the numberof lines/frame is known as the aspect ratio.

15.4 CURRENT STATUS OF DIGITAL VIDEO/IMAGE
CODING STANDARDS

The fast growth ofdigital transmission services has generated a great deal of interest in the digital
transmission ofvideo signals. Since somedigitized video source signals require very highbit rates,
ranging from more than 100 Mbps for broadcast-quality video to more than | Gbps for HDTV
signals, video compression algorithms which reducethebit rates to an affordable level on practical
communication channels are required. Digital video-coding techniques have been investigated over
several decades. There are two factors that make video compression possible: the statistical structure
of the data in the video source and the psychophysical redundancy of human vision. Video com-
pression algorithms can remove the spatial and temporal correlation that is normally present in the
video source. In addition, human observers are subject to perceptual limitations in amplitude, spatial
resolution, and temporal acuity. By proper design of the coding systemit is possible to discard
information without affecting perceived image quality or, at least, with only minimal degradation.

Several traditional techniques have been developed for image and video data compression.
Recently, with advances in data compression and VLSI(very large scale integrated) techniques,
the data compression techniques havebeenextensively applied to video signal compression. Video
compression techniques have been under developmentfor over 20 years and have recently emerged
as the core enabling technology for a new generation of DIV (both SDTV and HDTV) and
multimedia applications. Digital video systems currently being implemented (or under active
consideration) includeterrestrial broadcasting of digital HDTV in the U.S. (ATSC, 1993),satellite
DBS (Direct Broadcasting System) (Isnardi, 1993), computer multimedia (Ada, 1993), and video
via packet networks (Verbiest, 1989). In responseto the needs of these emerging markets for digital
video, several national and worldwidestandards activities have been started over the last few years-

These organizations include ISO (International Standards Organization), ITU, formally known as
CCITT,International Telegraph and Telephone Consultative Committee), JPEG (Joint Photographic
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Experts Group), and MPEG (Motion Picture Experts Group) as shown in Table 15.1. The related
standards include JPEG standards, MPEG-1,2,4 standards, and H.261 and H.263 video teleconfer-
encing coding standards as shown in Table 15.2. It should be noted that the JPEG standards are
usually used forstill image coding, but they can also be used to code video, Although the coding
efficiency would be lowered, they have been shownto be useful in some applications, e.g., studio
editing systems, Althoughthey are not video-coding standards and were discussedin Chapters 7
and 8, respectively, we include them here for completeness ofall international image and video
coding standards.

JPEG Standard: Since the mid-1980s, the ITU and ISO have been working together
to develop a joint international standard for the compression ofstill images. Officially,
JPEG (ISO/IEC, 1992a) is the ISO/IEC international standard 10918-1, “Digital Com-
pression and Coding of Continuous-Tone Still Images,” or the ITU-T recommendation
T.81. JPEG became an international standard in 1992. JPEG is a DCT-based coding
algorithm and continues to work on future enhancements, which may adopt wavelet-
based algorithms.

JPEG-2000; JPEG-2000 (see Joint Photographic Experts Group)is a new type of image
coding system under development by JPEGforstill image coding. JPEG-2000is consid-
ering using the wavelet transform as its core technique. This is because the wavelet
transformcan provide not only excellent coding efficiency, but also wonderful spatial and
quality scalable functionality. This standard is intended to meet the need for image
compression with great flexibility and efficient interchangeability. It is also intended to
offer unprecedented access into the image whilestill in a compressed domain. Thus, an
image can be accessed, manipulated, edited, transmitted, and stored in a compressed form.
MPEG-1; In 1988 ISO established the MPEG to develop standards for the coded
representation of moving pictures and associated audio information for digital storage
applications. MPEG completedthe first phase of its work in 1991, Itis known as MPEG-|
(ISO/IEC, 1992b) or ISO standard 11172, “Coding of Moving Picture and Associated

Audio.” The target application for this specification is digital storage media at bit-rates
up to about 1.5 Mbps.

* MPEG-2: MPEGstarted its second phase of work, MPEG-2 (ISO/IEC, 1994), in 1990.
MPEG-2 is an extension of MPEG-| that allows for greater input-formatflexibility,
higher data rate for SDTV or HDTV applications, and better error resilience. This work
resulted in the ISO standard 13818 or ITU-T Recommendation H.262, “Generic Coding
of Moving Pictures and Associated Audio.”
MPEG-4: MPEG is now working on its fourth phase, MPEG-4 (ISO/IEC, 1998).
MPEG-4 visual committee draft version | was approved in November 1997. The end of
1999 will define the final international standard. The MPEG-4 standard supports object-

based coding technology andis aimed at providing enabling technology for a variety of
functionalities and multimedia applications:
1. Universal accessibility and robustness in error-prone environments
2. High interactive functionality
3. Coding of natural and synthetic data or both
4. Compression efficiency.

* H.261: H.261 was adopted in 1990 and the final revision was approved in 1993 by the
ITU-T. It is designed for video teleconferencing and utilizes a DCT-based motion-
compensation scheme. Thetarget bit rates are from 64 to 1920 Kbps.
H.263, H.263 Version 2 (H.263+), H.263++ and H.26L: The H.263 video coding
standardis specifically designed for very low bit rate applications such as video confer-
encing.Its technical content was completed in late 1995 and the standard was approved
in early 1996.It is based on the H.261 standard with several added features: unrestricted
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motion vectors, syntax-based arithmetic coding, advanced prediction, and PB-frames.
The H.263 version 2 video-coding standard, also known as “H.263+," was approved in
January 1998 by the ITU-T. H.263+ includes a number of new optional features based
on the H.263. These new optional features are added to provide improved codingeffi-
ciency, a flexible video format, scalability, and backward-compatible supplemental
enhancement information. H.263++ is the extension of H.263+ and is currently scheduled
to be completed in the year 2000. H.26L is a long-term project which is looking for
more efficient video-coding algorithms.

The above organizations and standards are summarized in Tables 15.1 and 15.2, respectively.
 

TABLE 15.1

List of Some Organizations for Standardization

Organization Full Name of Organization

 

 

CCITT International Telegraph and Telephone Consultative Commutice
ITU Intemational Telecommunication Union

JPEG Joint Photographic Experts Group

MPEG Moving Picture Expens Group

ISO International Standards Organization
IEC International Electrotechnical Commission

TABLE 15.2

Video/Image Coding Standards

Name Completion Time Major Features

JPEG 1992 Forstill image coding, DCT based
JPEG-2000 2000 For still image coding, DWT based
H.261 1990 For videoconferencing, 64K bps to 1.92 Mbps
MPEG-1 199] For CD-ROM, |.5 Mbps
MPEG-2 (H.262) 1994 For DTV, 2 to 15 Mbps, most extensively used
H.263 1995 For very low bit rate coding. below 64 Kbps
H.263+ (version 2) 1998 Add new optional features to H.263
MPEG-4 1999 For multimedia, content-based coding
MPEG-4 (version 2) 2000 Adds more tools to MPEG-4

H.263-++ 2000 Adds more optional features to H.263+
H.26L 2000 Functionally different, much more efficient
MPEG-7 2001 Content description and indexing 

It should be noted that MPEG-7 in Table 15.2 is not a coding standard; it is ongoing work of
MPEG.Itis also interesting to note that in terms of video compression methods,there is a growing
convergence toward motion-compensated, interframe DCT algorithms represented by the video
coding standards. However, wavelet-based coding techniques have found recent success in the
compressionofstill image coding in both the JPEG-2000 and MPEG-4standards.This is because
it posseses unique features in terms of high coding efficiency and excellent spatial and quality
scalability. The wavelet transform has not successfully been applied to video coding due to several
difficulties. For one, it is not clear how the temporal redundancy can be removedin this domain.
Motion compensationis an effective technique for DCT-based video coding; however,it is not so
effective for wavelet-based video coding. This is because the wavelet transform uses large block
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size or full frame, but motion compensation is usually performed on a limited block size. This
mismatch would reduce the interframe coding efficiency. Many engineers and researchers are
working on these problems,

Among these standards, MPEG-2 has had a great impact on the consumerelectronics industry
since the DVD (Digital Video Disk) and DTV have adoptedit as core technology.

15.5 SUMMARY

In this chapter, several fundamental issues of digital video coding are presented. These include the
representation and rate distortion function of digital video signals and the various video formats,
whichare widely used by the videoindustry. Finally, existing and emerging video coding standards
are briefly introduced.

15.6 EXERCISES

15-1. Suppose that we have |-D digital array (it can be extended to 2-D array that may be an
image), f(i) = X,, (6 = 0, I, 2, ...). If we use the first-order linear predictor to predict
the current component value with the previous component, such as; Xj; = @ X;., + B,
where and B are two parametersfor this linear predictor, and if we want to minimize
the mean-squared error ofthe prediction E{(X, — X/)?}, what a and B do we have to
choose? Assuming that E{X,} =m, E{X;?} =o? and E{X, X,,} =p, (for /=0, 1, 2, ...),
where mm, G, and p are constant.

15-2, To get a 128 x 128 or 256 x 256 digital image, wrile a program to use two 3 x 3
operators (Sobel operator) such as:

at OK al

2 0 2

-! oO | 
to filter the image, separately. Discuss the resulting image. Whatwill be the result if
both operators are used?

15-3. The convolution of two 2-D arrays is defined as:

yt(k,J)h(m—k,n—1)=—

det
Calculate the convolution y(m,7). If AQn,n) is changed to

y(m, n)wahi
and

recalculate y(vt,).
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15-4. The entropy of an image source is defined as

Af

H= -¥P, 1083 Py
k=l

under the assumption that each pixel is an independent randomvariable. If the image
is a binary image, i.e., M = 2, and the probability p, + p, = |. If we define p, = p, then
p2=1-p,(0<p Sl). The entropy can be rewritten as

H=—p log, p—(l-p)log,(1—p).

Find several digital binary images and computetheir entropies. If one image has almost
equal numberof zeros and ones and another has a different number of zeros and ones,
which image has larger entropy? Prove that the entropy of a binary source is maximum

if the numbers of zeros and ones are equal.
15-5. A transformation defined as y = f(x), is applied to a 256 x 256 digital image, where x

is the original pixel value and yis the transformedpixel value. Obtain new images for
(a) f is a linear function, (b) fis a logarithm, and (c) fis a square function. Compare
the results and indicate subjective differences ofthe resulting images. Repeat the exper-
iments for different images and draw conclusions about possible use ofthis procedure
in image processing applications.
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7 6 Digital Video Coding
Standards — MPEG-1/2 Video

In this chapter, we introduce the ISO/IEC digital video coding standards, MPEG-1! (ISO/IEC,
1992) and MPEG-2 (ISO/IEC, 1995), whichare extensively used in the video industry for television
broadcast, visual communications, and multimediaapplications.

16.1 INTRODUCTION

As we know, MPEGhas successfully developed two standards, MPEG-1 and MPEG-2. The
MPEG-1 video standard was completed in 1991 with the developmentof the ISO/IEC specification
11172, which is the standard for coding of moving picture and associated audio for digital storage
media al up to about 1.5 Mbps, To support a wide range ofapplication profiles the user can specify
a set of input parameters including flexible picture size and frame rate. MPEG-1 was developed
for multimedia CD-ROMapplications. Important features provided by MPEG-1 include frame-
based random access of video, fast-forward/fast-reverse searches through compressed bitstreams,
reverse playback ofvideo, and editability of the compressed bitstream. MPEG-2is formally referred
to. as ISO/IEC specification 13818, which is the second phase of MPEG video coding solution for
applications not originally covered by the MPEG-1 standard. Specifically, MPEG-2 was developed
to provide video quality not lower than NTSC/PALand up to HDTV quality. The MPEG-2 standard
was completed in 1994, Its target bit rates for NTSC/PALare about 2 to 15 Mbps,and it is optimized
at about 4 Mbps. The bit rates used for HDTV signals are about 19 Mbps. In general, MPEG-2
can be seen as a superset of the MPEG-1 coding standard and is backward compatible to the
MPEG-I standard. In other words, every MPEG-2-compatible decoder is able to decode a compliant
MPEG-| bit stream,

In this chapter, we will briefly introducethe standard itself. Since many books and publications
exist for the explanation of the standards (Haskell et al., 1997; Mitchell et al., 1997), we will pay
more attention to the ulility ofthe standard, how the standard is used, and touch on someinteresting
research topics that have emerged. In other words, the standards provide the knowledge for how
to design the decoders that are able to decode the compliant MPEG bitstreams successfully. But
the standards do not specify the means of generating these bitstreams. For instance, given some
bit rate, how can one generate a bitstream that provides the best picture quality? To answerthis,
oneneeds to understand the encoding process, which is an informative part ofthe standard (referred
to as the test model), but it is very important for the content and service providers. In this chapter,
the issues related to the encoding process are described. The main contents include the following
topics: preprocessing, motion compensation, rate control, statistically multiplexing multiple pro-
grams, and optimal mode decision. Some of the sections contain the authors’ own researchresults.
These research results are useful in providing examplesfor readers to understand howthe standard
is used.

16.2 FEATURES OF MPEG-1/2 VIDEO CODING

It should be noted that MPEG-2 video coding has the feature of being backward compatible with
MPEG-1, It turns out that most of the decoders in the market are MPEG-2 compliant decoders.

333
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For simplicity, we will start to introduce the technical detail of MPEG-! and then describe the
enhanced features of MPEG-2, which MPEG-I does not have.

16.2.1 MPEG-1 Features

16.2.1.1. Introduction

The algorithms employed by MPEG-1 donot provide a lossless coding scheme, However, the
standard can support a variety of input formats and be applied to a wide range ofapplications. As
we know, the main purpose of MPEG-1 video is to code moving image sequencesor video signals.
To achieve a high compressionratio, both intraframe redundancyand interframe redundancy should
be exploited. This implies that it would notbeefficient to code the video signal with an intraframe-
coding scheme, such as JPEG. Onthe other hand,to satisfy the requirement of randomaccess, we
have to use intraframe coding from timeto time. Therefore, the MPEG-1 video algorithm is mainly
based on discrete cosine transform (DCT) coding and interframe motion compensation. The DCT
coding is used to remove the intraframe redundancy and motion compensation ts used to remove
the interframe redundancy. With regard to input picture format, MPEG-1 allows progressive pictures
only, but offers great flexibility in the size, up to 4095 x 4095 pixels. However, the coder itself Is
optimized to the extensively used video SIFpicture format. The SIF is a simple derivative ofthe
CCIR601 video format for digital television applications. According to CCIR601, a color yideo
source has three components, a luminance component (Y) and two chrominance components (C,
and C,) which are in the 4:2:0 subsampling format. Note that the 4:2:0 and 4:2:2 color formats
were described in Chapter 15.

16.2.1,2 Layered Structure Based on Group ofPictures

The MPEG coding algorithm is a full-motion-compensated DCT and DPCMhybrid coding algo-
rithm. In MPEG coding,the video sequenceis first divided into groups ofpictures or frames (GOP)
as shown in Figure 16.1. Each GOP mayinclude three types ofpictures or frames: intracoded (1)
picture or frame, predictive-coded (P) picture or frame, and bidirectionally predictive-coded (B)
picture or frame. I-pictures are coded by intraframe techniques only, with no need for previous
information. In other words,I-pictures are self-sufficient. They are used as anchors for forward
and/or backward prediction, P-pictures are coded using one-directional motion-compensatedpre-
diction from a previous anchor frame, which could be either an I- or a P-picture. The distance
between two nearest I-frames is denoted by N, which is the size of GOP, The distance between
two nearest anchorframesis denoted by M. Parameters N and M both are user-selectable parameters.
which are selected by user during the encoding. A larger number of N and M will increase the

Forward Motion Forward Motion Forward Motion
Compensation Compensation Compensation

Moealeaed.ol M3

 
idirectional Motion compensation

GOP

FIGURE 16.1 A group ofpictures of video sequence in display order.
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coding performance but cause error propagation ordrift. Usually, N is chosen from 12 to {5 and
M trom | to 3. If M is selected to be 1, this means no B-picture will be used. Last, B-pictures can
be coded using predictions fromeither past or future anchor frames (I or P), or both. Regardless
of the type offrame, each frame may be dividedinto slices; each slice consists of several macrob-
locks (MBs). There is no rule to decide the slice size. A slice could contain all macroblocks in a

row ofa frame or all macroblocks of a frame. Smaller slice size is favorable for the purpose of
error resilience, but will decrease coding performance due to higher overhead. A macroblock
contains a 16% 16 Y component and spatially corresponding 8x8 C, and C, components, A
macroblock has four luminance blocks and two chrominance blocks (for 4:2:0 sampling format)
and the macroblock ts also the basic unit of adaptive quantization and motion compensation. Each
block contains 8 x 8 pixels over which the DCToperation is performed.

To exploit the temporal redundancy in the video sequence, the motion vectorfor each macrob-
lock is estimated from two original luminance pictures using a block-matching algorithm. The
eriterion for the best match between the current macroblock and a macroblock in the anchor frame

is the minimum mean absolute error. Once the motion vector for each macroblock is estimated,

pixel values for the target macroblock can be predicted from the previously decoded frame, All
macroblocks in the [-frame are coded in intramode with no motion compensation. Macroblocks in
P- and B-frames can be coded in several modes. Among the modes are intracoded and intereoded
with motion compensation. This decision is made by mode selection, Most encoders depend on
the values of predicted differences to make this decision. Within each slice, the values of motion
vectors and DCyalues of each macroblock are coded using DPCM. The detailed specifications of
this coding can be found in the document proposed by the MPEG video committee (ISO/IEC,
1995). The structure of MPEG implies that if an error occurs within I-frame data, it will be
propagated throughall frames in the GOP. Similarly, an error in a P-frame will affect the related
P- and B-frames, while B-frame errors will be isolated.

16.2.1.3. Encoder Structure

The typical MPEG-! video encoderstructure is shownin Figure 16.2. Since the encoding order is
different fromthe display order, the input sequence has to be reordered for encoding. For example,
if we choose the GOPsize (N) to be 12, and the distance between two nearest anchor frames (M)
to be 3, the display order and encoding order are as shownin Table 16.1.

It should be noted that in the encoding orderor in the bitstream the first frame in a GOP ts
alwaysan I-picture, In the display orderthefirst frame canbe eitheran I-pictureorthe first B-picture
of the consecutive series of B-pictures which immediately precedesthe first I-picture, and the last

Resequenced
input To VLC encoder 
 

 
 

 

Mouon vectors

 
 
 

 
 Mouon

compensated
predicuon

 
 
 

Motion memory |
estimation
Processor
  
 

FIGURE16.2 Typical MPEG-! encoderstructure. (From ISO/IEC, MPEG-2,Test Model 5, ISO-LEC/STCI/
$C29/WGII, April, 1993. With permission.)
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TABLE 16.1

Display Order and Encoding Order

Display Order 0 1 2 3 4 5 6 7 8 9 10 11 12

Enteding nrdér? hs 3) oh 2 kG OH SUSUMU ECU

Coding type Ny 98! “EB Be ve OB) WE) CR’ UB: GB I B B 

picture in a GOPis an anchorpicture, either an I- or P-picture. The first GOP always starts with
an J-picture and, as a consequence, this GOP will have fewer B-pictures than the other GOPs.

The MPEG-1 video compression technique uses motion compensation to removethe interframe
redundancy, The concept of motion compensation is based on the estimation of motion between
video frames. The fundamental model that is used assumesthat a translational motion can approx-
imate the motion ofa block. If all elements in a video scene are approximatelyspatially displaced,
the motion between frames can be described by a limited number of motion parameters. In other
words, the motion can be described by motion vectors for translatory motion of pixels. Since the
spatial correlation between adjacent pixels is usually very high, it is not necessary to transmit
motion information for each coded image pixel. This would be too expensive and the coder would
never be able to reach a high compression ratio. The MPEG video uses the macroblock structure
for motion compensation; i.e., for each 16 x 16 macroblock only one or sometimes two motion
vectors are transmitted. The motion vectors for any block are found within a search windowthat
can be up to 512 pixels in each direction. Also, the matching can be doneat half-pixel accuracy,
wherethe half-pixel values are computed by averaging the full-pixel values (Figure 16.3).

For interframe coding, the prediction differences or error images are coded and transmitted
with motion information. A 2-D DCTis used for coding both the intraframe pixels and the predictive
error pixels. The image to be codedisfirst partitioned into 8 x 8 blocks. Each 8 x 8 pixel block is
then subject to an 8 x 8 DCT,resulting in a frequency domain representation of the block as shown
in Figure 16.4.

The goal of the transformation is to decorrelate the block data so that the resulting transform
coefficients can be coded moreefficiently. The transform coefficients are then quantized. During

+ > +

G Q + Full pixel locations
+O+oO0O+

Half pixel locations
ooa0 SNe+ + +

FIGURE 16.3 Half-pixel locations in motion compensation.
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FIGURE 16.4 Example of 8x 8 DCT.

IPR2018-01413

Sony EX1008 Page 362



IPR2018-01413 
Sony EX1008 Page 363

Digital Video Coding Standards — MPEG-1/2 Video 337

the process of quantization a weighted quantization matrix is used, The function of quantization
matrix is to quantize high frequencies with coarser quantization steps that will suppress high
frequencies with no subjective degradation, thus taking advantage of human visual perception
characteristics. The bits saved for coding high frequencies are used for lower frequencies to obtain
better subjective coded images. There are two quantizer weighting matrices in Test Model 5 (TMS)
(ISO/IEC, 1993), an intraquantizer weighting matrix and a nonintraquantizer weighting matrix; the
latter is flatter since the energy ofcoefficients in interframe coding is more uniformly distributed
than in intraframe coding,

In intra macroblocks, the DC value, de, is an 11-bit value before quantization andit will be
quantized to 8, 9, or 10 bits according to the setting of parameter. Thus, the quantized DC value,
QDC,is calculated as

8-bit: QDC =de//8, 9-bit: QDC =de//4, or 10-bit: QDC =de//2, (16.1)

Where symbol // means integer division with rounding to the nearest integer and the half-integer
values are rounded away for zero unless otherwise specified. The AC coefficients, ac(i, /), are first
quantized by individual quantization factors to the value of ae ~ (4, j):

ac ~ (i, j)=(16* ac(i, j)\// W, (i, /), (16.2)

where W,(i, /) is the element at the (i, /) position in the intraquantizer weighting matrix shownin
Figure 16.5.

The quantized level QAC(i, j) is given by

QAC(i, j) = [ac ~(i,j)+ sign(ac ~(i,j)*((p* mquant) /1q We * mquant), (16.3)
where mquant is the quantizer scale or step which is derived for each macroblock by rate contro}
algorithm, and p = 3 and g = 4 in TMS (ISO/IEC, 1993). For nonintra macroblocks,

ac ~ (i,j) =(16*ae(i, j)) / Wy(iJ/), (16.4)

where W,,(i, /) is the nonintraquantizer weighting matrix in Figure 16.5 and

QAC(i, j)=ae ~ (i. j)/(2 * mquant). (16.5)

An example of encoding an intrablock is shownin Figure 16.6.

16 17 18 19 20 2) 22 23
17 18 19 20 2] 22 23 24

18 19 20 21 22 23 24 25
19 20 21 22 23 24 26 27

8 16 19 22 26 27 29 44

16 16 22 24 27:29 34 37
19 22 26 27 29 34 34 38

22 22 26 27 29 34 37 40
20 21 22 23 25 26 27 28
21:22 23 24 26 27 28 30

22 23 24 26 27 28 30 31
23:24 25 27 28 30 31 33

22 «26-27 29 32 35 40 48

26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69

27:29 «35 38 46 56 69 83

Intra quantizer weighting matrix Nonintra quantizer weighting matrix

 
FIGURE16.5 Quantizer matrices for intra- and nonintracoding.

IPR2018-01413

Sony EX1008 Page 363



IPR2018-01413 
Sony EX1008 Page 364

Image and Video Compression for Multimedia Engineering
338

Intra quantizer Weighting matrix

 8 16 19 22 2627 29 34
16 16 22 24 2729 34 37
1922 26 27 29 34 34 38
2222 26 27 2934 37 40
2226 27 29 3235 40 48
2627 29 32 35 40 48 58
2627 29 34 3846 56 69
2729 35 38 4656 69 83
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FIGURE 16.6 An example ofcoding an intrablock,
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FIGURE 16.7 Zigzag scans to get pairs of zero-runs and value.

The coefficients are processed in zigzag order since the most energy is usually concentrated in
the lower-ordercoefficients. The zigzag ordering of elements in an 8 x 8 matrix allows for a more
efficient run-length coder. Thisis illustrated in Figure 16.7.

With the zigzag order, the run-length coder converts the quantized frequency coefficients to
pairs of zero runs and nonzerocoefficients:

34010-11000000-10000...,

After parsing we obtain the pairs of zero runs and values:

3410 110-111T1000000-110000....

Thesepairs of runs and values are then coded by a Huffman-type entropy coder. For example,
for the above run/value, pairs are

———ee

Run/Value 34 VLC (Variable Length Code)

1,1] 0110
| Olll
0,1 110

6,-! 0001011
End of block 10
ee
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FIGURE 16.8 Description of layered structure of compressed bitstream.

 

The VLC tables are obtained by statistically opumizing a large numberoftraining video
sequences and are included in the MPEG-2 specification. The same idea is applied to code the DC
values, motion vectors, and other information. Therefore, the MPEG video standard contains a
number of VLC tables.

16.2.1,4 Structure of the Compressed Bitstream

After coding, all the information is converted to binary bits. The MPEG video bitstream consists
of several well-defined layers with headers and data fields. These layers include sequence, GOP,
picture, slice, macroblock, and block. The important syntax elements contained in cach layer can
be summarized in Table 16.2. The typical structure of the MPEG-1 vidco-compressedbitstream is
shown in Figure 16.8. The syntax elements contained in the headers and the amountofbits defined
for each element can be found in the standard.

Forpicture layer, a frameofpictureis first partitioned into macroblocks (16 x 16 for luminance
and & x 8 for chrominancein the 4:2:0 color representation). The compressed bitstream structure
at this layer is shown in Figure 16.9. It is important to note that most elements in the syntax are
coded by VLC. The tablesofthese variable run-length codes are obtained throughthe simulation
of a large numberoftraining video sequences.
ee

TABLE 16.2

Summary of Important Syntax of Each Layer

Nameof Layer Important Syntax Elements

Sequence Picture size and frame rate
Bit rate and buffering requirement

Programmable coding parameters
GOP Randomaccess unit

Time code

Picture Timing information (buffer fullness, temporal reference)
Coding type (1, P, or B)

Slice Intraframe addressing information
Coding reinitialization (error resilience)

MB Basic coding structure

Coding mode
Motion vectors

Quantization
Block DCT coefficients

 

IPR2018-01413

Sony EX1008 Page 365



IPR2018-01413 
Sony EX1008 Page 366

340 Image and Video Compression for Multimedia Engineering

  
Slice Header|Macroblock | Macroblock Slice Header Macroblock Bs  

 

 

 Quantizer Scale Coded BlockPattern

FIGURE16.9 Picture layer data structure.
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FIGURE16.10 Simplified MPEG video decoder. (From ISO/IEC, MPEG-2 Test Model 5, April, 1993. With
permission.)
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16.2.1.5 Decoding Process

The decoding processis an Inv:
is shown in Figure 16.10

ine(VLD)first decodes the coded data or video bitstream.This process
Ae neececerina ca Coefficients and motion vector data for each macroblock. The coefficients
to obtain the eae dequantized. The decoded DCTcoefficients are then inverse-transformed
reconstructed valu main pixels. If the macroblock was intracoded, these pixels represent the

©S, without any further processing. However, if the macroblock is intercoded.then motion co amMpensa a :frame or frames, Pensation is performed to add the prediction from the corresponding reference

erse procedure of encoding. The block diagram of a typical decoder

16.2.2 MPEG-2 ENHANCEMENTS
Thebasic codin S tru hsand interframe eeat:MPEG-2 video is the same as that of MPEG-1 video,that is, intraframe
video coding include. P-, and B-picturesis used. The most important features of MPEG-2
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One motion vector 

 
 

Topfield

Bottom field One or two motion vectors

FIGURE 16.11 Frame-based prediction of MPEG-1 video coding.

* Field/frame prediction modes for supporting the interlaced video input;
* Field/frame DCTcoding syntax;
* Downloadable quantization mawix and alternative scan order;
* Scalability extension.

The above enhancementitems are all coding performance improvements that are related to the
support ofinterlaced material. There are also several noncompression enhancements, which include:

* Syntax tofacilitate 3:2 pull-down in the decoder;
* Pan and scan codes with '\e pixel resolution;
* Display flags indicating chromaticity, subcarrier amplitude, and phase (for NTSC/PAL/

SECAM source material).

In the following, each ofthese enhancements is introduced.

16.2.2.1 Field/Frame Prediction Mode

In MPEG-1 video, we always code eachpicture as a frame structure, whether the original material
is progressive orinterlaced.If the original sequenceis interlaced, each frame consists of twofields:
lop field and bottom field as shown in Figure 16.11. Westill can use frame-based prediction if we
consider the two fields as a frame, such as that shown in Figure 16.11.

In Figure 16.11, three frames are coded as I-, B-, and P-frames and each frame. consists of two
fields. The P-frame is predicted with the I-frame with one motion vector. The B-frame can be
predicted only with I-frame (forward prediction) or only with P-frame (backward prediction) or
from both I- and P-picture (bidirectional prediction), the forward and backward prediction needs
only one motion vector and the bidirectional prediction needs two motion vectors.

MPEG-2 video provides an enhanced prediction mode to support interlaced material, which
uses the adaptive field/frame selection, based on the best matchcriteria. Each frame consists of
twofields; top field and bottom field. Eachfield can be predicted fromeither field of the previous
anchor frame. The possible prediction modes are shown in Figure 16.12.

In a field-based prediction, the top field of the current frame can be cither predicted from the
top field or the bottom field of an anchor frame as shown in Figure 16.12. The solid arrow represents
the prediction from the top field, and the dashed arrow represents the prediction from the bottom
field. The sameis also true for bottom field of the current frame. If the current frame 1s a P-frame,

there could be up to two motionvectors used to make the prediction (one for top field and one for
bottom field); if the current frame is a B-frame, there could be up to four motion vectors (each
field could be bidirectional prediction which needs two motion vectors). At the macroblock level
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FIGURE 16.12 Field-based prediction of enhanced option of MPEG-2 video coding.
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FIGURE 16.13 Dual prime prediction in MPEG-2 video coding

of MPEG-2, several coding modes are added to support these newfield-based predictions. Addi-
uonally, there is another new prediction mode supported by the MPEG-2 syntax, This 1s the special
prediction modereferred to as dual prime prediction. The basic idea of dual prime prediction is to
code a sel of field motion vectors with a scaling to a nearorfar ficld, plus a transmitted delta value.
Dueto the correlation ofadjacent pixels, the dual prime codingoffield vectors can save the number
of bits used for field motion vectors. The dual prime prediction is shown in Figure 16.13. In
Figure 16.13, the value of one field motion vector and the value of the delta motion vector are
transmitted; the motion vectors for other field are derived from the above two values.

It should be noted that only the P-picture is allowed to use dual prime prediction. In other
words,if the dual primeprediction is used in the encoder, there will be no B-pictures. The reason
for this restriction is to limit the required memory bandwidth for a real system implementation.

16.2.2.2 Field/Frame DCT Coding Syntax

Another important feature to support interlaced material is to allow adaptive selection of the
field/frame DCT coding as shown in Figure 16.14.

In Figure 16.14, the middle is a luminance macroblock of 16 x 16 pixels, the black rectangular
represents the 8 pixels in the top field and the white rectangular represents the 8 pixels in the
bottom field. Theleft is the field DCT in whicheach 8 x 8 block contains only the pixels from the
samefield. The eight in the frame DCT, each 8 x 8 block contains the pixels from both top field
and bottom field.

Atthe macroblocklevel for interlaced video, the field-type DCT may be selected when the
video scene containsless detail and experienceslarge motion. Since the difference between adjacent
fields may be large whenthereis large motion between fields, it may be more efficient to group
the fields together, rather than the frames. In this way, the possibility that there exists more
correlation amongthe fields can be exploited. Ultimately, this can provide much more efficient
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FIGURE 16.15 Two zigzag scan methods for MPEG-2 video coding.

coding since the block data are represented with fewer coefficients, especially if there is not much
detail contained in the scene.

16.2.2.3. Downloadable Quantization Matrix and Alternative Scan Order

A newfeature in MPEG-2 regarding the quantization matrix is that it can be downloaded for every
frame. This may be helpful if the input video characteristics are very dynamic. In general, the
quantizer matrices are different for inwacoding and nonintracoding. With 4:2:0 format, only two
matrices are used, one for the intrablocks and another for the nonintrablocks. With 4:2:2 or 4:4:4
formats four matrices are used, both an intra- and a nonintramatrix are used for the luminance and
chrominanceblocks.If the matrix load flags are notset, the decoder will use default matrices. The
formats 4:2:0, 4:2:2 are defined in Chapter 15. In the 4:4:4 format, the luminance and two chromi-
nance pictures have the samepicture size.

In the picture layer, thereis a flag that can be set for an alternative scan of DCTblocks,instead
of using the zigzag scan discussed earlier. Depending on the spectral distribution, the alternative
scan can yield run lengths that better exploit the multitude of zero coefficients. The zigzag scan
and alternative scan are shown in Figure 16.15. :

The normal zigzag scan is used for MPEG-1 and as an option for MPEG-2. The alternative
scan is not supported by MPEG-I andis an option for MPEG-2. For frame-type DCT of interlaced
video, more energy may exist at the bottom part of the block; hence the run-length coding may be
better off with the alternative scan.

16.2.2.4 Pan and Scan

In MPEG-2 there are several parameters defined in the sequence display extension and picture
display extension. These parameters are used to display a specified rectangle within a reconstructed
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16 ———____________
2

FIGURE16.16 An example of pan-scan.

frame. They include display horizontal size and display vertical size in the sequence display
extension, and frame center horizontal offset and frame center vertical offset in the picture display
extension. A typical example using pan-scan parameters is the conversion of a 16:9 frame to a 4:3
frame. The 4:3 region is defined by display horizontal size and display vertical size. and the 16:9
frame is defined by horizontalsize and vertical size. If we choose the display horizontal size to be
4 pixels less than the horizontal size, and keep the display vertical size as the same as the vertical
size, then we can obtain a 4:3 pictures on the display. Figure 16.16 shows the conversion of 16:9
to the 4:3 frame using the pan-scan parameter, but there is no center offset involved in this example.

16.2.2.5 Concealment Motion Vector

The concealment motionvectoris a new tool supported by MPEG-2, This tool ts useful in concealing
errors in the noisy channel environment where the transmitted data may be lost or corrupted. The
basic idea of a concealment motion vector is that the motion vectors are sent for the intracoded

macroblock. These motion vectors are referred to as concealment motion vectors (CMV) which

should be used in macroblocks immediately below the one in which the CMV occurs. The details
are described in the section about error concealment.

16.2.2.6 Scalability

MPEG-2 video has several scalable modes, which include spatial scalability, temporal scalability,
SNR(signal-to-noise ratio) scalability, and data partitioning, These scalability tools allow a subsel
of any bitstream to be decoded into meaningful imagery. Moreover, scalability is a useful tool for
error resilience on prioritized transmission media, The drawback ofscalability is that some coding
efficiency is lost as a result of extra overhead. Here, we briefly introduce the basic notions ofthe
above scalability features.

Spatial scalability allows multiresolution coding, which is suitable for video service internet-
working applications. In spatial scalability, a single video sourceis split into a base layer (lower
spatial resolution) and enhancementlayers (higher spatial resolution). For example, a CCIR601
video can be down-sampled to SIF format with spatialfiltering, which can serve as the base layer
video. The base layer or low-resolution video can be coded with MPEG-1 or MPEG-2, and the
higher-resolution layer must be coded by MPEG-2-supported syntax. For the up-sampled lower
layer, an additional prediction modeis available in the MPEG-2 encoder. Thisis a flexible technique
in terms ofbit rate ratios, and the enhancement layer can be used in high-quality service. The
problem with spatial scalability is that there exists somebil rate penalty due to overhead and there
is also a moderate increase in complexity. A block diagram thatillustrates encoding with spatial
scalability is shownin Figure 16.17, In Figure 16.17, the output of decoding andspatial up-sampling
block provides an additional choice of prediction for the MPEG-2 compatible coder, but not the
only choice ofprediction. The prediction can be obtained from HDTV inputitself, also depending
on the prediction select criterion such as the minimum prediction difference.
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FIGURE 16.17 Block diagram of spatial scalability encoder.
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FIGURE 16.18 Block diagram of temporal scalability.

It should be noted that the spatial scalability coding allows the base layer to be coded inde-
pendently from the enhancement layer. In other words, the base layer or lowerlayerbitstream is
generated without regard for the enhancement layer and can be decoded independently, The
enhancement layer bitstream is additional information, which can be seen as the prediction error
based on the base layer data. This implies that the enhancement layer is useless withoutthe base,
However, this type ofstructure can find a lot of applications such as error concealment, which will
be discussed in the following section.

Temporal scalability is a scalable coding technique in the temporal domain. An example ofa
two-layer temporal scalable coder is shown in Figure 16.18. The example uses temporalscalability
to decomposethe progressive image sequence to twointerlaced image sequences; then one is coded
as the base layer and one as the enhancement layer. Of course, the decomposition could be different.
For the enhancement layer, there are two choices in making predictions. One choice for prediction
is available between frames of base layer and enhancement layer, and the other is between frames
from the enhancementlayeritself. It should be noted that the spatial resolution oftwo layers is
the same and the combined temporal rate of two layers is the full temporal rate of the source.
Again, it should be notedthat the decoding output ofthe base layer bitstream by the MPEG decoder
provides an additional choice ofprediction but not the only choice of predictions.

The SNRscalability provides a mechanism for transmitting two-layer service with the same
spatial resolution but different quality levels. The lowerlayer is coded at a coarse quantization step
at 3 to 5 Mbps to provide NTSC/PAL/SECAM-quality video for low-capacity channels. In the
enhancementlayer, the difference between original and the coarse-quantizedsignals is then coded
With a finer quantizer to generate an enhancementbitstreamfor high-quality video applications.

The abovethree scalability schemesall generate at least twobitstreams, one for the base layer
and the other for the enhancement layer, and the lower-layerbitstream can be independently decoded
to provide low spatial resolution, low quality, or low framerate video, respectively. There is another
scalability scheme, data partitioning, in which the base layer bitstream cannot be independently
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decoded. In data partitioning, a single video sourceis split into a high-priority portion, which can
be better protected, and low-priority portion, whichis less important with regardto the reconstructed
video quality. The priority breakpoint in the syntax specifies which syntax elements are coded as
low priority (for example, the higher-order DCT coefficients in the intercoded blocks)

16.3 MPEG-2 VIDEO ENCODING

16.3.1 INTRODUCTION

MPEGvideo compressionis a generic standard thatis essential for the growth of the digital video
industry, as mentioned previously, Although the MPEG video coding standard recommended a
general coding methodology and syntax for the creation of a legitimate MPEG bitstream, thereare
many areas of research left open regarding how to generate high-quality MPEG bitstreams, This
allows the designers of an MPEG encoder great flexibility in developing and implementing their
own MPEG-spcecific algorithms, leading to product differentiation on the murketplauce. To design
a performance-optimized MPEG-2 encoder system, several major areas ol research have to be
considered. These include image preprocessing, molion estimauion, coding mode decisions, and
rate control. Algorithms for all of these areas in an encoder should aim to minimize subjective
distortion for a prescribed bit rate and operating delay constraint. The preprocessing includes the
noise reduction and the removal of redundant fields, which are contained in the detclecine material.

The telecine material is used for the movie industry, which contains 24 progressive frames/second.
The TV signal is 30 frames/second. The detelecine process converts the 24-frames/second film
signal to the 30-frames/second TV signal. This is also referred to as 3:2 pull-down process, Since
the 30-frames/second detelecine material only contains 24 frames/second of unique pictures, the
encoder has to detect and remove the redundant fields for obtaining better coding performance
The procession of noise reduction can reduce the bits wasted for coding random noise. Motion
compensation is used to remove the temporal redundancy in the video signals. The mouon vectors
betweenthe anchorpicture and the current picture are obtained with motion estimation algorithms.
Exceptfor I-pictures each macroblockcan be inter- or intracoded, which1s determined by the mode
decision. The investigation of motion estimation algorithms is an important research topic since
different motion estimation schemes mayresult in different coding efficiency, Rate control is always
applied for non-variable-bit rate (non-VBR) coding. The purpose ofrate control is to assign the
bits for each macroblock properly under the constraints oftotal bit rate budget and buffer size.
This is also an important topic since the optimized bit assignment scheme will result in better
coding performance and better subjective reconstruct quality at a given bit rate. In this section,
areas of preprocessing and motion estimation are covered. The topics ofrate control and optimum
mode decision are discussed in later sections.

16.3.2 Preprocessinc

For low-bit-rate video coding, preprocessing is sometimes applied to the video signals before coding
lo increase the coding efficiency. Usually, preprocessing implies a filtering of the video signals that
are corrupted by random andburst noise for various reasons, such as imperfections ofthe scanner,
transmission, or recording medium. Noise reduction not only improves the visual quality but also
increases the performance ofvideo coding, Noise reduction can be achieved byfiltering each frame
independently. There are a variety of spatialfilters which have been developed for image noise
filtering and restoration that can be used for noise reduction task (Cano and Benard, 1983; Kat-
saggelos et al., 1991). On the other hand,it is also possibletofilter the video sequence temporally
along the motiontrajectories using motion compensation (Sezan etal., 1991), However, it was
shownthat amongtherecursive stationary methods the motion-compensated spatiotemporalfiltering
performed better than spatial or motion-compensated temporal filtering alone (Ozkanetal., 1993).
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Another important type of preprocessing is detelecine processing. Since movie material is
originally shot at 24 progressive frames/second, standard conversion to television at 30 frames/sec-
ond is made by a 3:2 pull-down process, which periodically inserts a repeated field, giving
30-frames/second telecine source material. The 3:2 pull-down has been described in Chapter 10,
and will not be repeated here, Since the 30-frames/second detelecine material only contains
24 frames/secondof uniquepictures, it is necessary to detect and remove the redundantfields before
or during encoding. Rather thandirectly encoding the 30-frames/second detelecine material, one
can remove the redundant fields first and then encode 24 frames/second of unique material, thereby
realizing higher coding quality at the same bit rate. The decoder can simply reconstruct the
redundant fields before presenting them

Television broadcast programmers frequently switch between telecine material and natural
30-frames/second material, such as whensplicing to and from various sources of movies, ordinary
television programs, and commercials. An MPEG-2 encoder should be able to cope with these
transitions and consistently produce decent pictures. During movie segments, the encoder should
realize the gains from coding at the lower framerate after detelecine. Ideally, the process of source
transition from the lower 24-frames/second rate to the higher 30-frames/second rate should not
cause any quality drop of every encoded frame, The quality of encoded frames should maintain
the same as the case where the detelecine process 1s ignored andall material, regardless ofsource
type, is coded at 30 frames/second.

16.3.3. Motion Estimation AND MoTiON COMPENSATION

In principle, for coding video signals if the motion trajectory of each pixel could be measured,
then only the initial or anchor reference frame and the motion vector information need to be coded.
In such a way the inlerframe redundancy will be removed. To reproduce the pictures, one can
simply propagate each pixel along its motion trajectory. Since there is also a cost for transmitting
motion vector information, in practice one can only measure the motion vectors of a group of
pixels, which will share the cost for transmission of the motion information. Of course, at the same

lime the pixels in the same group are assumed to have the same motion information. This is Not
always true since the pixels in the block may move in different directions, or some of them may
belong to the background. Therefore, both motion vectors and the prediction difference have to be
transmitted. Usually, the block matching can be considered as the most practical method for motion
estimation because of less hardware complexity. In the block-matching method, the image frame
is divided intofixed-size small rectangular blocks such as 16 x 16 or 16x 8 in MPEG video coding.
Each block is assumed to undergo alinear translation and the displacement vector of each block
and the predictive errors aré coded and transmitted. The related issues for motion estimation and
compensation include a motion vector searching algorithm, searching range, matching ertteria and
coding method. Although the matching criteria, and searching algorithms have been discussed in
Chapter 11, we will briefly introduce them here for the sake of completeness.

16.3.3.1 Matching Criterion

The matching of the blocks can be determined according to the various criteria including the
maximum cross-correlation, the minimum mean square error (MSE), the minimum mean absolute
difference (MAD) and maximum matching pixel count (MPC), For MSE and MAD, the best
matching block is reached if the MSE or MADis minimized at that location. In practice, we use
MAD instead of MSE as the matching criterion because of ils computational simplicity. The
minimumMSEcriterion is not commonly used in hardware implementations becauseit is difficult
to realize the square operation. However, the performance ofthe MAD criterion deteriorates as the
search area becomeslarger as a result of the presence of several local minima. In the maximum
MPC criterion, each pixel in the block is classified as either a matching pixel or a mismatching
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pixel accordingto the prediction difference whether whichis smaller than a preset threshold. The
best matchingis then determined by the maximum numberof matching pixels. However, the MPC
criterion requires a threshold comparator and a counter.

16.3.3.2 Searching Algorithm

Finding the best-matching block requires optimizing the matching criterion over all possible
candidate displacement vectors at each pixel. The so-called full-search logarithmic search, and
hierarchical searching algorithms can accomplishthis.

Full search: The full-search algorithm evaluates the matching criterion for all possible values
within the predefined searching window.If the search window is restricted to a [—p, p] square, for
each motion vector there are (2p + 1)? search locations. For a block size of M x N pixels, at each
search location we compare N x M pixels. If we know the matching criterion and how many
operations are needed for each comparison, then we can calculate the computation complexity of
the full-search algorithm. Full search is computationally expensive, but guarantees finding the global
optimal matching within a defined searching range.

Logarithmic search: Actually, the expected accuracy of motion esumauion algorithms varies
according to the applications. In motion-compensated video coding, all one seeks is a matching
block in terms of some metric, even if the match does not correlate well with the actual projected
molion. Therefore, in most cases, searchstrategies faster than full searches are used, although they
lead to suboptimal solutions. These faster search algorithms evaluate the criterion function only at
a predetermined subset of the candidate motion vector locations instead ofall possible locations.
One ofthese faster search algorithmsis the logarithmic search. Its more popular formis referred
to as the three-step search. Weexplain the three-step search algorithmwiththe help of Figure 16.19,
where only the search frameis depicted. Search locations corresponding to eachofthe steps in the
three-step search procedureare labeled 1, 2, and 3. In the first step, starting from pixel 0 we compute
MAD forthe nine search locations labeled |. The spacing between these search locations here is
4. Assume that MADis minimumforthe search location (4,4) which is circled |. In the second
step, the criterion function is evaluated at eight locations around the circled | which are labeled 2.
The spacing betweenlocations is now 2 pixels. Assume now the minimum MAD isat the location
(6,2), which is also circled. Thus, the new search origin is the circled 2, which is located at (6.2).
For the third step, the spacing is now set to | and the eight locations labeled 3 are searched. The
search procedure is terminated at this point and the output of the motion vector is (7,1). Additional
steps may be incorporated into the procedure if we wish to obtain subpixel accuracy in the motion
estimations. Then, the search frame needs to be interpolated to evaluate the criterion function at
subpixel locations,

 
FIGURE 16.19 Three-step search.
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Hierarchical motionestimation: Hierarchical representations of images in the form of a Lapla-
cian pyramid or wavelettransform are also quite often used with the block-matching method for
improved motion estimation. The basic idea of hierarchical block matching is to perform motion
estimationat each level successively, starting with the lowest resolution level. The lower resolution
levels serve to determine a rough estimate of the motion information using relatively larger blocks.
The estimate of the motion vector at a lower resolution level is then passed onto the next higher
resolution level as aninitial estimate. The higher resolution levels are used to fine-tune the motion
vector estimate. At higher resolution levels, relatively smaller window sizes can be used since we
start with a good initial estimate. The hierarchical motion estimate can significantly reduce the
implementation complexity since its search method is very efficient. However, such a method
requires increased storage because ofthe need to keep picturesat different resolutions. Furthermore,
this scheme may yield inaccurate motion vectors for regions containing small objects. Since the
search starts at the lowest resolution of the hierarchy, regions containing small objects may be
eliminated and thus fail to be tracked. On the other hand, the creation of low-resolution pictures
provides some immunity to noise. Results of experiments performed by one ofthe authors have
shown that, compared With [ull-search, the two-layer hierarchical motion estimation reduces the
search complexity of factor 10 at the price of degrading reconstruction quality from about 0.2 to
0.6 dB for frame-mode coding, from 0.26 to 0.38 dB for field-mode coding, and only 0.16 to 0.37
dB for frame/field adaptive coding, for different video sequencesin the caseof a fixed bit rate of
4 Mbps. In the case of VBR coding, similar results can be observed from the rate distortion curves.

In the above discussion, we haverestricted the motion vector estimation to integer pixel grids,
or pixel accuracy. Actually, the motion vectors can be estimated with fractional or subpixel accuracy.
In MPEG-2 video codingthe half-pixel accuracy motion eslimation can be used. Half-pixel accuracy
can easily be achieved by interpolating the current and reference pictures by a factor oftwo and
then using any of the motion estimation methods described previously.

16.3.3.3 Advanced Motion Estimation

Progress has recently been made in several aspects of motion estimation, which are described as
follows.

Motion estimation using a reducedset of image data: The methodsto reduce search complexity
with subsampling and pyramid processing are well known and canbe found in the literatures (Sun,
1994), However, the reduction by lowering the precision of each sample does not appear to have
been extensively studied. Some experimental results have shown that performance degradation of
the hierarchical motion estimation algorithm is not serious when each layer up to a four-layer
pyramid is limited to 6 bits/sample. At 4 to 5 bits/sample the performance is degraded 0.2 dB over
full precision. ae <<

Overlapped mationestimation (Katto etal., 1994): A limitation of block matching is that it
generates a significant proportion of motion vectors that do not represent the {rue motion present
in the scene. One possible reason is that the motionvectors are estimated withoul reference to any
Picture data outside of the nonoverlapping blocks. This problem has been addressed by overlapped
motion estimation. In the case ofthe overlapped motion compensation, motion-compensated regions
translated by the motion vectors are overlapped with each other. Then, a window function is used
to determine the weighting factors for each vector. This technique has been adopted into the H.263
video coding standard. Some improvements have been clearly identified for low-bit-rate Bouin:

Frequency domain motion estimation: An alternative to spatial-domain block-matching meth-
odsis to estimate motion vectors in the frequency domain through calculating the cross-correlation
(Young and Kingsbury, 1993). Most international standards, such as MPEG, H.263, as well as the
proposed HDTVstandard, use the DCT and block-based motion estimation as essential elements
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to achieve spatial and temporal compression, respectively. The new motion estimation approachis
proposed in the DCT domain (Koe and Liu, 1998). This method of motion estimation has certain
merits over conventional methods. It has very low computational complexity and ts robust even in
a noisy environment. Moreover, the motion-compensation loop in the encoder is much simplified
due to replacing the IDCT outofthe loop (Koc and Liu, 1998),

Generalized block matching: In generalized block matching, the encoded frameis divided into
triangular, rectangular, or arbitrary quadrilateral patches. We then search for the best-matching
triangular or quadrilateral patchin the search frame undera given spatial transformation. The choice
of patch shape and the spatial transform are mutual related. For example, triangular patches offer
sufficient degrees of freedomwith affine transformation, whichhas only six independent parameters.
The bilinear transform has eight free parameters. Hence, it is suitable for use with rectangular or
quadrilateral patches, Generalized block matching is usually only adaptively used for those blocks
where standard block matchingis notsatisfactory for avoiding imposed computational load,

16.4 RATE CONTROL

16.4.1. INTRODUCTION oF RATE CONTROL

The purpose of rate control is to optimize the perceived picture quality and to achieve a given
constant average bit rate by controlling the allocationofthe bits. Fromthe viewpoint of rate control,
the encoding can be classified into VBR coding and constant bit rate (CBR) coding. The VBR
coding can provide a constant picture quality with variable coding bit rate, while the CBR will
provide a constant bit rate with a nonuniformpicture quality. Rate control and buffer regulation ts
an important issue for both VBR and CBR applications. In the case of VBR encoding, the rate
controller attempts to achieve optimum quality for a given target rate. In the case of CBR encoding
and real-time application, the rate control scheme has to satisfy the low-latency and VBV (video
buffering verifier) buffer constraints. The VBV is a hypothetical decoder, which is conceptually
connectedto the output of an encoder (see Appendix C of ISO/IEC, 1995). The bitstream generated
by the encoder is placed into the VBV buffer at the CBRrate thal is being used. The rate control
has to assure that the VBV will not be overflow or underflow. In addition, the rate control scheme

has to be applicable to a wide variety of sequences andbit rates. At the GOP level, the total number
of available bits is allocated among the various picture types, taking into account the constraints
of the decoder buffer, so that the perceived quality is balanced. Within eachpicture, the available
bits are allocated among the macroblocks to maximize the visual quality and to achieve the desired
target of encodedbits for the whole picture,

16.4.2 Rate ContROL oF Test Mopvet 5 FoR MPEG-2

As we described before, the standard only defines the syntax for decoding. The test modelis an
example ofthe encoder, which may not be optimal; however,it can provide a compliant compressed
bitstream. Also, the test model served as a reference during the developmentof the standard. The
TMSrate control algorithm consists of three steps to adapting the macroblock quantization param-
eter for controlling the bit rate.

16.4.2.1 Step 1: Target Bit Allocation

Thetarget bit allocationis thefirst step of rate control. Before coding a picture, we need to estimate
the number ofbits available for coding this picture. The estimation is based on several factors.
These include the picture type, buffer fullness, and picture complexity. The estimation of picture
complexity is based on the number ofbits and quantization parameter used for coding the same
type of previous picture in the GOP. Theinitial complexity values are given according to the type
of picture:
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X, = 160* bit-rate/I15

x, = 60 * bit-rate/115 (16.6)
X,, = 42 * bit-rate/115,

where the subscripts /, p, and b stand for picture types I, P, and B (this will be applied to the
formulas in this section). After a picture of a certain type (/, P, or B) is encoded, the respective
“global complexity measure”(X,, X,, and X,,) is updated as

x, = 5, Q,.X,, =5,2); and X,=5, Q,. (16.7)

where S,, 5,5, are the numberofbits generated by encoding this picture and Q,, Q,, Q, are the
average quantization parameters computed the actual quantization values used during the encoding
of all the macroblocks including the skipped macroblocks, This estimation is very intuitive since,
if the picture is more complicated, more bits are needed to encodeit. The quantization parameter
(step or interval) is used to normalize this measure because the numberofbits generated by the
encoder ts inversely proportional to the quantization step. The quantization step can also be
considered as a measure of coded picture quality. The target numberofbits for the next picture in
the GOP (T,, T,, and T),) is computed as follows:

R
= max|——>.bit-rate/8* picture-rate7=max NW ae /8*]oP

——

ER OK

R : .= ye * 2 16.8T, = max N,K,X,’ bit-rate/8* picture-rale (16.8)
N

CY OAKbe" p

R . are:
T, =max|—— eX bit-rate/8* picture-rate| ,

N + poop epb ,
XK,

where K,, and K,, are “universal” constants dependent on the quantization matrices. For the matrices
of TMS, K, = 1.0 and K,= 1.4. The Ris the remaining number ofbits assigned to the GOP and
after coding the picture this numberis updated by subtracting the bit used for the picture. N,, and
N,, are the numberofP-pictures and B-pictures remaining in the current GOP in the encoding order.
The problem ofthe abovetarget bit assignment algorithm is thatit does not handle scene changes
efficiently,

16.4.2.2 Step 2: Rate Control

Within a picture, the bits used for each macroblock is determined by the rate control algorithm.
Then a quantizerstep is derived from the numberofbits available for the macroblock to be coded.
Thefollowing is an example ofrate control for P-picture.

In Figure 16.20, d}is initial virtual bufferfullness, the 7, is thetarget bits for P-picture. B; is
the number ofbits generated by encoding all macroblocks in the picture up to and including jth
macroblock. MB_ent is the number of macroblocks in the picture. Before encoding the jth mac-
roblock the virtual buffer fullness is adjusted during the encoding according to the following
equation for the P-picture:
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FIGURE16.20 Rate control for P-picture. (From ISO/IEC, MPEG-2, Test Model S, April 1993. With
permission.)
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Then the quantization step is computed with the equation:

p

op =, (16.10)
where the “reaction parameter” r is given by r= 2 * bit-rate/picture-rate and d}’ is the fullness of
the appropriate virtual buffer. This procedure is shownin Figure 16.20, The fullness of the virtual
buffer for the last macroblock is used for encoding the next picture of the same type as theinitial
fullness.

The above example can be extendedto the general case forall I-, P-, and B-pictures. Before
encoding the jth macroblock, we computethe fullness of the appropriate virtual buffer:

T(j-1)
Raieeoat or

T(j-1at=atee—-) (16.11)
< /" MB_cnt

dé =at+p ,—nU-))
yo I MBent

Depending onthe picture type, where dj, d?, d? areinitial fullness of the virtual buffers and d;
d}, d;are the fullness ofvirtual buffer at jth macroblock — one for each picture type. From the
numberofbits of the virtual buffer fullness, we compute the quantization step Q; for macroblock j
according to the buffer fullness:

Q eesee (16.12)
r
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The initial values of the virtual buffer fullness are

d} =10-r/31

di) =K,,-dj (16.13)

dj =K,-d)

K, and K,, are constants whichare defined in Equation 16.8.

16.4.2.3 Step 3: Adaptive quantization

Adaplive quantizationis the last step of the TMS rate control, It is noted that for active areas or
busy areas, the human eyes are notso sensitive to the quantization noise, while the smooth areas
are more sensitive to the quantization noise as discussed in Chapter |. Based on this observation
we modulate the quantization step obtained from the previous step in such a wayto increase the
quantization step for active areas and reduce the quantization step for the smooth areas. In other
words, we use more bits in the smooth areas and fewerbits for the active areas. The experiment
results have shown that the subjective quality is higher with the adaptive quantization step than
without this step. The procedure of adaptive quantization in TMSis as follows. First, the spatial
activity measure for the jth macroblock is calculated from the four luminance frame—organized
subblocks and the four luminance field—-organized blocks using the intrapixel values:

act. =1+ Min (var_sblk), (16.14)J sbik=1.8

where var_sblk is the variance ofeach spatial 8 x 8 block, which valueis calculated as

lx ,
blk=— Pee oi (16.15)var_s 64 i ( k a)

and P,is the pixel valuein the original 8 x 8 block and P,,¢a, is the mean value of the block which
is calculated as

1 (cy
Pron ==DB (16.16)

The normalized activity factor N_act; is

2act+avg.act (16.17)N_act,=
~ 7 act, +2-avg_act

where avg_actis the average value of act, the last picture to be encoded. Therefore, this value will
not give good results when a scene change occurs. On thefirst picture, this parameter takes the
value of 400. Finally, we can obtain the modulated quantization step for jth macroblock:

mquant, = Q;-N_act, (16.18)

IPR2018-01413

Sony EX1008 Page 379



IPR2018-01413 
Sony EX1008 Page 380

Image and Video Compression for Multimedia Engineering
354

where Q,is the referencepenepigaes Baeeeae value ofmquant,
is clipped to the range of [1,31] and is used and coded as described in the G standard,

As we indicated before, the TMS rate control provides only al reference model. It ts not optimized
in many aspects. Therefore, there is still a lot of room for improving the rate control algorithm,
such as to provide more precise estimation of average activity by preprocessing, In the following
section, we will investigate the optimization problem for mode decision combined with rate control,
which can provide asignificant quality improvement as shown by experimental results.

16.5 OPTIMUM MODEDECISION

16.5.1 Prosiem FORMATION

This section addresses the problem of determining the optimal MPEG (ISO/IEC, 1995) coding
strategy in termsofthe selection of macroblock coding modes and quantizerscales. In the TMS,
the rate control operates independently from the coding mode selectian for each macroblock. The
coding mode is decided based only upon the energy of predictive residues, Actually, the tivo
processes, coding mode decision and rate control, are intimately related to each other and should
be determined jointly in order to achieve optimal coding performance. A constrained optimization
problem can be formulated based on the rate-distortion characteristics, or R(D) curves, for all the
macroblocks that compose the picture being coded. Distortion for the entire picture is assumed to
be decomposable and expressible as a function ofindividual macroblock distortions, with this being
the objective function to minimize. The determination of the optimal solution is complicated by
the MPEGdifferential encoding of motion vectors and de coefficients, which introduce dependen-
cies that carry over from macroblock to macroblock for a duration equal tothe slice length. As an
approximation, a near-optimum greedy algorithm can be developed. Once the upper bound in
performanceis calculated,it can be used to assess how well practical suboptimum methods perform.

Prior related work dealing with dependent quantization for MPEG include the work done by
Ramchandranet al. (1994) and Lee and Dickerson (1994). Those works treated the problemofbit
allocation where there is temporal dependency in coding complexity across J-, P-, and B-frames.
While these techniques represent the most proper bit allocation strategies across frames from a
theoretical viewpoint, no practical real-time MPEG encoding system will use even those proposed
simplified techniques because they require an unwieldy number of preanalysis encoding passes
over the windowofdependent frames (one MPEG GOP). To overcomethese computational burdens,
more pragmatic solutions that canrealistically be implemented have been considered by. Sun etal.
(1997). In this work, the major emphasis is not on the problemof bit allocation amongI-, P-, and
B-frames; rather, the authors choose to utilize the frame-level allocation method provided by the
TMS. In this way, frame-level coding complexities are estimated from past frames without any
forward preanalysis knowledgeoffuture frames. This type of analysis forms the most reasonable
set of assumptions for a practical real-time encoding system. Another method that extendsthe basic
TMSideato alter frame budgets heuristically in the case of scene changes, use of dynamic GOP
size, and temporal masking effects can be found in Wang (1995). These techniques also offer very
effective and practical solutions for implementation. Given the chosen method for frame-level bit
budgetallocation, the focusofthis section is to optimize macroblock coding modes and quantizers
jointly within each frame.

There exists many choices for the macroblock coding mode under the MPEG-2 standard for
P- and B-pictures, including intramode, no-motion-compensation mode, frame/field/dual-prime
motion compensation intermode, forward/backward/averageintermode,and field/frame DCT mode.
In the standard TM5reference (ISO/IEC, 1993), the coding mode for each macroblock is selected
by comparing the energy of predictive residuals. For example, the intra/inter decisionis determined
by a comparison of the variance of the macroblock pixels against the variance of the predictive
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FIGURE 16.21 R(D) curves for different macroblock coding modes.

residuals; the interprediction mode is selected to be the intermode that has the least predictive
residual MSE. The coding modeselected by the TMScriteria does not result in the optimal coding
performance.

In attempting to achieve optimal coding performance, it is important to realize that coding
modes should be determined jointly with rate control because the best coding mode depends upon
the operating point for rate. In deciding which ofthe various coding modesis best, one should
consider what the operating point is for distortion, and also considerthe trade-off between spending
bits for coding the prediction residuals and bits for coding motion vectors.

The numberof bits used for coding the macroblock is the sum ofbits used for coding motion
vectors and bits used for coding residuals:

R +R (16.19)MB ne residualR

For example, in Figure 16.21, consider the decision between (1) frame-mode forward prediction
and (2) field-modebidirectional prediction. Mode (2) will almost always produce a prediction that
has lower MSE than mode (1), However, mode (1) requires coding of fewer motion vectors than
mode (2). Which mode is best? The answer depends on the operating point for distortion. When
coding at a very coarse quant scale, mode (1) can perform better than mode (2) because the
difference in bits required for coding motion vectors between the two modes may be much greater
than the difference in bits required for coding residuals between the two modes. However, when
coding at a fine quant scale, mode (2) can perform better than mode (1) because mode (2) provides
a better prediction and the bits required for motion vectors would become negligible compared
with bits for coding residuals.

Coding modedecisions and rate control can be determinedjointly and optimally starting from
the basics of constrained optimization using R(D) curves. This optimal solution would be an
a posteriori solution that assumes complete knowledge of R(D). We investigate an optimal solution
for objective functions of the form:

Dire ohOats (16.20)
f=l

which states that the distortion for the picture, Dpicr, can be measured as an accumulation of
individual macroblock distortions, Djyg, for all NMB number of macroblocks in the picture. We
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minimize this objective function subject to having individual macroblock distortions being uniform
over the picture:

D, =D, =---= Dye (16.21)

and having the bils generated from coding each macroblock, Ry,,, sum to a target bit allocation for
the entire picture, Rpjcr:

> Ruwi = Reier (16.22)
rl

The choice for the macroblock distortion measure, D,,,, can be the MSE computed over the pixels
in the macroblock, or it can be a measure that reflects subjective distortion more accurately, such
as luminance- and frequency-weighted MSE. Other choices for D,,, may be the quantizer scale
used for coding the macroblock,or, better yet, the quantizer scale weighted by an activity-masking
factor. In this chapter, we select distortion for each macroblock / to be a spatial-masking-activity-
weighted quantizer scale:

Dyyg, = qscale, /N_act, , (16.23)

where N_act, € [0.5, 2.0] is the normalized spatial masking activity quantizer weighting factor, as
defined in the TMS;

2* act. +ave_actN_act =SERCHOVEEL(16.24)
act, +2 *avg_act

whereact; is the minimum lumablock spatial variance for macroblock / and avg_act is the average
value of act; over the last picture to be coded. N_act, reflects the relative amount of quantization
error that can be tolerated for macroblock i as compared with the rest of the macroblocks that
compose the picture. N_act, depends strongly on whether the macroblock belongs to a smooth,
edge, or textured region of the picture. Hence, the macroblock distortion metric is space variant
and depends on the context of the local picture characteristics surrounding each macroblock. We
assumethat maintaining the same D,,,; for all macroblocks,or selecting the quantizer scales directly
proportional to N_act, in such a manner, corresponds to maintaining uniform subjective quality
throughoutthe picture. The masking-activity-weighted quantizer scale is a somewhat coarse mea-
sure for image quality, but it reflects subjective image quality better than MSE or PSNR (peak
signal-to-noise ratio), and it is a practical metric to compute that lendsitself to an additive form
for distortion.

It is important to note that the resulting distortion measure for the picture Dpycr is really only
meaningful as a relative comparison figure for the same identical picture (thus having the same
masking activities) quantized different ways.It is not useful comparing twodifferent images. PSNR
is only useful in this sense too, although with poorer subjective accuracy.

In the following, a procedure for obtaining the optimal coding performance with the joint
optimization of coding modeselection and rate control is discussed. Since this method would be
too complex to implement,a practical suboptimal heuristic algorithmis presented. Some simulation
results and comparisons betweenthe different algorithms — TM5 algorithm, near-optimum algo-
rithm, andthe practical suboptimum algorithm are also provided to assist the reader in understanding
the differences in performance,
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16.5.2 PROCEDURE FOR OBTAINING THE OpTimMAL MODE

16.5.2.1 Optimal Solution

The solution to the optimization problem is unique because the objective function is monotonic
and the individual macroblock R(D)functions are also monotonic.InIn order to solve for the optimal
set of macroblock modes and quant-scales for the picture (mode and qscale), the differential
encoding of motion vectors and intra-de coefficients as done in MPEG should be accounted for.

According to MPEG, eachslice has its own differential encoding chain. Atthe start of each slice,
prediction motion vectors are reset to zero. As each macroblock is encoded in raster scan order,
the macroblock motion vectors are encodeddifferentially with respect to prediction motion vectors
that depend on the coding modeofthe previous macroblock. These prediction motion vectors may
be reset to zero in the case that the previous macroblock was codedasintra or skipped. Similarly,
de coefficients in continuous runs of intramacroblocks are encoded differentially with respect to
the previous intramacroblock. The intra de predictors are reset at the start of every slice, and at
inter or skipped macroblocks. Slice boundaries delimit independent self-contained decodable units.
Finding the optimal set of coding modes for the macroblocksin each slice entails a search through
a trellis of dimensions S stages by M states per stage, with S being the slice size and M being the
numberof coding modes being considered (Figure 16.22), This trellis structure arises because there
are M? distinct rate distortion, Ryryteypreviou-mode(P), Characteristic curves corresponding to each of M
coding modes, with each in turn having a different dependency for each of M coding modesofthe
previous macroblock. We nowconsider populating thetrellis links with values by sampling the set
of these M?S rate-distortion curves at a specific distortion level, For a given fixed macroblock
distortion level, Dy,,, each link on the trellis is assigned a cost equal to the numberofbits to code
a macroblock in a certain mode given the mode from whichthe preceding macroblock was coded.
For any groupoflinks entering a node,the costofthese links differs only becauseofthe difference
in bits caused by the motionvector and de coefficient coding dependency uponthe prior macroblock.

The computational requirementsperslice involve:

* To determine link costs in the trellis, the number of “code the macroblock” operations

(ie., DCT + Quantization + RLC/VLC)is equal to M78. ;
* After determiningalltrellis link costs, the number of path searches is equal to M°.

Macroblock
Number

 
 
 

  
 
 EALASANH,WXBRESaevSeae  

 
 

é o iSox pSie tyCoding ED ee oH BAMode SQBRS SRKoeDexRYBEACK  
 GRORISS 

SB The best modeat each stage

———p=The global optimum path

FIGURE 16.22 Full-search trellis, M* (M is number of modesat each stage and § is the length ofslice)
searches needed to obtain the best path,
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A general iterative procedure for obtaining the optimal solution is as follows:

1. Initialize a guess for Dyg = Daygy. Since Dyyg is the same for every macroblock in the
picture, this sets an initial guess for the operating distortion level ofthe picture.

2. Perform for eachslice in the picture:
* For each macroblock in the slice and the mode considered, determine the quantizer

scale which yields the distortion level Dy),, i-¢., ¢, =f (Ds.,), where fis the function
that describes the relationship between quantizer scale g, and distortion Dyjg. If we
use the spatial-masking-activity-weighted quantizer scale as a measure ofdistortion
(as from Equation 16.4), then g, equals N_act * Dyjg.

* Compute all the link costs in the wellis representing the slice. The link costs, Aya
(mode k | modej), represents the numberof resulting bits (total bits for coding residual,
motion vectors, and macroblock header) for coding macroblock ¢ in mode & given
that the preceding macroblock was coded in mode j.

* Search throughthetrellis to find the path that has the lowest © &,,,, over the slice.
3, Compute 2 Ryyg, for all macroblocks in the picture and compare to target Rpicp-

* If|L Rye —Reicr | <€, then the optimal mode and qscale has been foundforpicture.
Repeat the process for the next picture.

* If 2 Rag < Reycp, then decrement Dyjg = Dyjg — ADs, and go to step 2,
© If EZ Rug > Reyer, then increment Dyyg = Dyyg + ADyg and go to step 2

16.5.2.2 Near-Optimal Greedy Solution

The solution from the full exponential-order search requires an unwieldy amount of computations.
To avoid the heavy computational burden, we can use a greedy approach (Lee and Dickerson, 1994)
to simplify and sidestep the dependencyproblemsofthe full-search method. In the greedy algorithm,
the best coding modeselection for the current macroblock depends only upon the best mode of
the previous coded macroblock. Therefore, the upper bound weobtaints a near-optimumsolution
instead of a global optimum. Figure 16.23illustrates the greedy algorithm. After coding a macrob-
lock in each of the M modes, the moderesulting in the least numberofbits is chosen to be “best.”
The very next macroblock is coded with dependenciesto that chosen “best” mode. The computations
perslice are reduced to M x S “code the macroblock” operations and Mx S comparisons. A general
iterative procedure for obtaining the greedy solution is as follows:

Macroblock number

©

oO

Cats 0
°

o

e The best mode at each stage

—__— The greedy locally "best" path

FIGURE 16.23 Greedy approach, M x S comparisons needed to obtain the locally “best” path.
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1. Initialize a guess for D,,, = D
2. Perform for each macroblock:

* For cach mode considered, determine the quantizer scale that yields the distortion
level Day, L.e., g, = f(Dyy), Where f is the function we mentioned previously.

* For cach mode, code the macroblock in that mode with that g, value and record the
resulling number ofgenerated bits, Rygitmouc a mode p» Lhe macroblock is coded based
on the already determined mode of the preceding macroblock.

* The “best” mode for macroblock /is the mode for Which Ryrpimode amode jy muse 18 SMallest.
This yields Ry, bits for macroblock i.

3. Compute E Ry, for all macroblocks in the picture and compare to target Rpjc;.
* If | © Rayon — Rerer |< €, then the optimal mode and qscale has been found for the

picture, Repeat the process for the next picture.
© TFL Rug, < Rye. then decrement Dyy = Dyyy — ADyyg and go tostep 2.
© [£2 Ryp, > Royep, then increment Dyg = Dyp + ADyyg and go to step 2.

AVEO

16.5.3. Practical SOLUTION WITH New CriteriA FOR THE SELECTION

of CopInc Mope

[t is obvious that the near-optimal solution discussed in the previous section is not a practical
method because ofits complexity. To determine the best mode, we have to know how manybits
it takes to code cach macroblock in every mode with the same distortion level. The total number
of bits for each macroblock, Ry,,, consists of three parts, bits for coding motion vectors, R,,,,, bits
for coding the predictive residue, R,,,, and bits for coding macroblock header information, Ryeadterr
such as macroblock type, quantizer scale, and coded-block pattern.

Rye = Ri + Rees + reader’ (16.25)

The numberofbits for motion vectors, R,,,. can be easily obtained by VLC table lookup. Butto
obtain the number ofbits for coding the predictive residue, one has to go through the three step
coding procedure: (1) DCT, (2) quantization, and (3) VLC as shownin Figure 16.24. At step 3,
R,,, is obtained with a lookup table according to the run lengthof zeros and the level of quantized
coefficients, i.e., R,,, depends on the pair of values of run andlevel;

R,., =f (run, level). (16.26)

Asstated above, to obtain the upper-bound coding performance,all three steps are needed for each
coding mode, and then the coding mode resulting in the least numberofbits is selected as the best
mode, ar

To obtain a much less computationally intensive method,it is preferred to use a statistical
mode! of DCT coefficient bit usage vs. variance ofthe prediction residual and quantizer step size.
This will provide an approximation ofthe numberofresidualbits, R,... For this purpose Wwe assume
that the run andlevel pair in Equation 16.26is strongly dependent on values of the quantizer scale,
q,, and the variance ofthe residue, V.,,, for each macroblock. Intuitively, we would expect the
numberofbits to encode a macroblock is proportional to the variance of the residual and inversely

Compressed
Predictive bitstream

FIGURE16.24 Coding stages to find bit count.
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proportional to the value of quantizer step size. Therefore, a statistical model can be constructed
by plotting R,,, vs. the independent variables V,,, and q, overa large set of representative macroblock
pixels from images typical of natural video material, This results in a scatter plot showing tight
correlation, and hence a surface can be fit through the data points, It was found that Equation 16.26
can be approximately expressed as:

Ree =F (4y:Voer) =(K/(C4, +47)Vis (16.27)

where K and C are constants found through surface-filing regression. If we assume R,,,,,,,, 18 a
relatively fixed component that does not vary much with macroblock coding mode and can be
ignored, then Equation 16.25 can be approximately replaced by:

Rue = Ruy + (K/(Ca, +9;)) Vien (16.28)

The value of Ryyg: reflects the variable portion ofbit usage that is dependent on coding mode, and
can be used as the measure for selecting the coding mode in our encoder. For a given quantizer
step size, the mode resulting in the smallest value ofR,,,: is chosen as the “best” mode. It is obvious
that, in the use of this new measurementto select the coding mode, the computational complexity
increase over the TMSis very slight (the same identical calculation for V.., is made in the TMS).res

16.6 STATISTICAL MULTIPLEXING OPERATIONS ON MULTIPLE

PROGRAM ENCODING

In this section, the strategies forstatistical multiplexing operation on the multiple program encoding
will be introduced. This topic is an extension ofrate control into the case of multiple program
encoding. First, a background survey of general encoding and multiplexing modes is reviewed,
Second, the specific algorithm used in some current systems is introduced, its shortcomings are
addressed, and possible amendments to the basic algorithm are described. Some potential research
topics such as modeling strategies and methods for solving the problem are proposed for investi-
gation. These topics may be good research topics for the interested graduate student.

16.6.1 BackGROUND OF STATISTICAL MULTIPLEXING OPERATION

In many applications, several video sources may often be combined, or multiplexed, onto a single
link for transmission. At the receiving end, the individual sources of data from the multiplexed
data are demultiplexed and supplied to the intended receivers. For example, in an ATM network
Scenario many video sources originating from a local area are multiplexed onto a wide-area
backbone trunk. In a satellite-broadcasting scenario, several video sources are multiplexed for
transmission through a transponder. In a cable TV scenario, hundreds of video programs are
broadcast onto a cable bus. Since the transmission channel, such as a trunk, a transponder, or a
cable, is always an expensive resource, the limited channel capacity should be exploited as much
as possible, The goal ofstatistical multiplexing encoding is to make the best use of the limited
channel capacity possible. There are several approaches to encoding and multiplexing a plurality
of video sources. In the following, we will compare the methods and describe the situation where
each method is applicable. The qualitative comparisons are made in terms of trade-offs among
factors of computation, implementation complexity, encoded picture quality, buffering delay, and
channel utilization. To understand thestatistical multiplexing method, wefirst introduce a simple
case of deterministic multiplexing function of a CBR encoder. The standard method for performing
the encoding and multiplexing function is to encode the source independently with a CBR. The
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FIGURE 16.25 Independent encoding/muxing of CBR sources.

CBR encoder produces an encoded bit steam, representing the video supplied to it, at a predeter-
mined CBR. To produce a CBR, the CBR encoder utilizes a rate buffer and feedback control
mechanism that continually modifies the amount of quantization applied to the video signal, as
shown in Figure 16,25,

The CBR encoderprovides a CBR with varying encoded picture quality. This meansthat the
degree of quantization applied depends upon the coding complexity of the current frame offered
to the MPEG compression algorithm. Fine quantization is then applied to those frames that have
low spatial and/or temporal coding complexity, and conversely coarse quantization is applied to
frames that possess high spatial and temporal coding complexity in order to meetthe bit rate.
However, varying {he quantization level corresponds to varying the video quality. Thus, in a CBR
encoder, spatial and temporal complexity tends to be encoded in such a mannerthat the subjective
quality of the reproduced image is lower than that of less complex images. This makes any form
ofrate control inherently bad in the sense that control is always imposed in a direction contrary
to the goal of achieving uniform image quality. Usually,bit rates for CBR encoders are chosen so
that the moderately difficult scenes can be coded to an acceptable quality level. Given that mod-
erately difficult scenes give good results, then all simpler scenes will yield even better results with
the givenrate, while very difficult scenes will result in noticeable degradation. Since CBR encoders
produce CBR, the multiplexing of a plurality of sources is very simple. The required channel
capacity would simply be the sum of all the individual CBRs. Deterministic time or frequency
division multiplexing of the individual CBR bitstreams onto the channelis a well-knownand simple
process, So with CBR encoding, uniformly consistent image quality is impossible for the video
sequence with varying scene complexity, but the reward is the ease of multiplexing. The penalty
of CBR coding with easy multiplexing may not only be nonuniform picture quality, also result in
lower efficiency of channel bandwidth employment. Better efficiency can be gained bystatistical
multiplexing, whereby each source is encoded at a VBR coding approach. The VBR coding will
result in uniformor consistent coded image quality by fixing the quantization scale or by modulating
the quantization scale to a limited extent according to activity-masking attributes of the human
visual system. Then, the bit rates generated by VBR coding vary with the coding complexity of
the incoming video source material. Statistical multiplexing is referred to as StatMux. The coding
gain of Sta(Muxis possible through sharing of the channel resource jointly among the encoders.
For example, two MPEG encoders may assign the appearanceoftheir I-pictures at different time;
this may reduce the limitation of the maximum channel bandwidth requirement since coding an
I-picture may generate a large numberofbits. This may not be a good example for practical
applications. However, this explains that the process of StatMux is nol a zero-sum game whereby
one encoder’s gain mustbe exactly another encoder's loss. In the process of StatMux, one encodet’s
gain is obtained by using the channel bandwidth that another encoder does not need at that time
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or that wouldbring a very marginal gain for another encoderatthat time. More exactly, this concept
ofgains throughsharing arises whenthe limited amountofbits is dynamically appropriated toward
encoders that can best utilize those bits in substantially improving their image quality during
complex segments and eschewed from encoders that can improve their image quality only margin-
ally during easy segments. It is obvious that the CBR-encoded sources do not need statistical
multiplexing since the bandwidth for each encoded source is well defined. The gain of statistical
multiplexing is only possible with VBR-encoded sources. In the following section, we discuss two
kinds of multiplexing with multiple VBR-encoded sources.

16.6.2 VBR Encopers In StaTMux

There are two multiplexing methods for encoding multiple sources with VBR encoders, open loop
and closed loop. Each VBR encoderin open-loop-muluplexing mode produces the most consistently
uniform predefined image quality level regardless of the coding compleaity of the incoming video
sources. The image quality is decided by fixing the quantization scale. When (he quantization scale
is fixed, the SNR is fixed under assumption of white Gaussian quantization noise. Sometimes, the
quantization scale is slightly modulated according to the image activily to match the human visual
system, for example, in the method in MPEG-2 TMS. The resulting VBRbit rate process is generated
by allowing the encoder to use freely however many bits needed to meet the predetermined quality
level. Usually, each video source encoded by a VBR encoder in the open-loop mode is not
geographically colocated and cannot be encodedjointly. However, the resulting VBR processes do
share the channel “jointly,” in the sense that the total channel bandwidth is not rigidly allocated
among the sources in a fixed mannersuch as is done in CBR operation mode, where each source
has the fixed portion of channel bandwidth. The instantaneous combined rates of all the VBR
encoders may exceed the channel capacity, especially in the case when all the encoders generate
bursts of bits at the same time. Then, the joint buffer will overflow, thereby leading to loss of data.
However, there alwaysstill exists a possibility to utilize the channel capacity more efficiently by
carefully allocating the loading conditions without loss ofdata. But totally open-loop VBR coding
is not stationary andit is hard to achieve both good channel utilization and very limited data loss-
A practical method of VBR transmission for use in the ATM environment involves placing limita-
lions on the degree ofvariability allowed in VBR processes. Figure 16.26 illustrates the idea of
self-regulating VBR encoders.

The difference between the proposed VBR encoder and a totally open-loop VBR encoder 1S
that a looser form of rate control is imposed to the VBR encoder in order to avoid violating
transmission constraints that are agreed to by the user and the network as part of the contract

Rate
control

VBR

olicing -
Encoder Bancaen Network Switch

a ltlcontrol c

VBR

MPEG Policing Policing VBR
Encoder Function Function

FIGURE 16.26 Independent encoding/muxing of geographically dispersed VBR sources.
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FIGURE 16.27 Method ofjoint rate control and multiplexing.

negotiated during the call setup stage. The rate control will match the policing function, which is
enforced by the network. Looser rate control means that the rate control is not so strict as the one
in the CBR case because it allows for the encoderto vary its output bil rate according to the coding
complexity up to a certain degree as decided by the policing function.

In some applications such as the TV broadcasting or cable TV, the video sources may be
geographically colocated at the samesite. In such scenarios, additional gains can be realized by
the StatMux in which the sources are jointly encoded and jointly multiplexed. By using a common
rate controller, all encoders operate in VBR mode but without contending and stepping over one
another as in independent VBR encoding and multiplexing. The joint rate controller assigns the
total available channel capacity to.cach encoder so that a certain commonquality level is maintained.
The bit rates assigned to each individual encoder by joint rate control dynamically change based
on the coding complexities of each video source to achieve the most uniform quality among the
encoders and along the time for each encoder. In such a joint rate control method, although each
encoder produces its own variable rate bits, the sum of bits produced by all encoders combined
together is a CBRto fit the channel capacity. Such an idea is shown in Figure 16.27.

16.6.3 ReseaRcH Topics of STATMUX

The major problem of StatMux is how to allocate the bit rate resource among the video sources
that share the common channel bit rate and are jointly encoded by ajoint rate controller. This
allocation should be based on the coding complexity of each source. Thebit rate, K;(0), for encoder
ial time ¢ according to the normalized coding complexity of all encoders for the GOPperiod ending
al time 7, such as

R(t)= See (16.29)
~ x0

where X(t) is the coding complexity of source for encoder# at the time ¢ over a GOPperiod and
C is the total channel capacity. Also the bit rate assignment has to be updated from time to time
to trace the variation of source complexity. In the following, we will discuss several topics which
may beresearch topics for graduate students.

Forward Analysis — Without forward analysis, scene transitions are unanticipated and lead to
incorrect bit allocation for a brief, transient period following the scene changes, If the bit allocation
of a current video segment is based on the complexity of previous video segments andis adjusted
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by the available bit rate resource, those video segments which change from easy coding complexity
to difficult coding complexity suffer the greatest degradation without preanalysis of upcoming
increased complexity. Preanalysis could be performed with a dual set of encoders operating with
a certain preprocessing delay ahead ofthe actual encoding process. As a simple example, westart
to assign the equalportion of bit rate for each encoder, then we can obtain the average quantization
scale for this GOP that can be considered as the forward analysis results of coding complexity
The real coding process can operate on the coding complexity obtained by the preanalysis. If we
choose one or two GOPsaccording to the synchronousstatus of the input video sources to perform
the preanalysis,it will result in small buffering delay.

Potential Modeling Strategies and Methods — Several modeling strategics and methods have
been investigated to find a suitable procedure for classifying sources and determining what groups
of sources can appropriately be jointly encoded together for transmission over a common channel
lo meet a specified image quality level. These modeling strategies and methods include modeling
of video encoding, modeling of source coding complexity, and source classification. The modeling
of a video-encoding algorithm involves measuring the operating performance of the individual
encoders or characterizing its rate distortion function for a variety of scenes, Embodiedintothis
model are the MPEGalgorithms implemented for motion estimation, mode decision, rate control,
and their joint optimization issues. It has been speculated that a hyperbolic functional form of

Rate = X/ Distortion (16.30)

would be appropriate over the normaloperating bit rate range of 3 to 7 Mbps for MPEG-2 encoded
CCIR601-sized videos. The hyperbolic shape of rate distortion curves would bealso suitable forall
video scenes. Actually, we can usea set ofcollected rate distortion data pairs with an encoder to fit
a hyperbola through the points as shown in Figure 16,28 and estimate the shape parameter X. The
value of X will be used to present the coding complexity offered to an encoder. For modeling atthe
GOPlevel, the rate would be the numberofbits used to code that GOP and the distortion can be
chosen asthe averaging quantization scale over the GOP. In someof theliterature, the distortion 1s
taken as the average PSNR over the GOPoroverall sequence.If it is assumed that the quantization
noise is modeled by white Gaussian noise, then both distortion measures are equivalent.

After obtaining the correct coding complexity parameters, we can improve the StatMuxalgo-
rithm by assigning an encoding bit budget to each encoder based on the GOPlevel normalized
complexity measure X that each encoder is encoding. The GOP level normalized complexity
measure X(n) is defined as

x(n)= ¥TAL), (16.31)
ieGOP

Bits per GOP

Averaging quantization scale
over GOP

FIGURE16.28 Rate distortion modeling of encoding algorithm and video source.

IPR2018-01413

Sony EX1008 Page 390



IPR2018-01413 
Sony EX1008 Page 391

Digital Video Coding Standards — MPEG-1/2 Video 365

where 1 is the GOP number, T(/) ts the total numberof bits used for encoding picture i, and O(i)
is the average quantization scale used for encoding picture i. Some research results have shown
that the X(m) is insensitive to the operating bit rate, therefore, X(n) is a reliable measure ofthe
loading characteristics of a video source. Therefore, the study of accurate model of the random
process of x(m) is very important for improving the operations of the StatMux algorithm, The
accurate model of X(v) reflects the loading characteristics of the video source whichdictates the
share oftotal bit budget that an encoder expects to get. Several statistical models have been proposed
to describe the complexity measure, X(v). For example, an autoregressive process modelis proposed
for the intrascene X(r) process, This proposed model is based on the following observations; the
complexity measure within a single scene has a skewed distribution by the Gamma function, and
furthermore, the complexity measure within a scene displays a strong temporal correlation and the
form ofthe correlation is essentially exponential, The definition for the Mth order autoregressive
model is

Mt

X(n) = ¥" a(m)s X(n—m)+e(n), (16.32)
m=!

where e() is the white noise process and a(t) terms are the innovationfilter coefficients, The
Statistics of the model such as the mean yalue, the variance, the correlation, and the marginal
distribution are used to match those of actual signals by adjusting the a(m) terms, e(m) and M,
Other cases, such as scene transition model, intercoded scene models, we leave as project topics
for graduate students.

16.7 SUMMARY

In this chapter, the technical details of MPEG videoare introduced, The technical detail of MPEG
standards includes the decoding process of MPEG-] and MPEG-2 video. Although the encoding
process is not a standard part, it is very important for content and service providers. Wediscuss
the most important parts of encoding techniques. Some examples such as the joint optimizing of
mode decision and rate control are good examples to understand how the standard is used.

16.8 EXERCISES

16-1. According to your understanding, give several reasons to explain why the MPEG
standards specify only decoding as a normative part and define encoding as an infor-
mative part (TMS).

16-2. Can an MPEG-2 video decoder decode a bitstream generated by an MPEG-1 video
encoder? Summarize the main difference between the MPEG-1 and MPEG-2 video

standards. '
16-3. Prefiltering may reduce the noise of original video source and increase the coding

efficiency, But at the sametime prefiltering will result in a certain information loss.
Conducta projectto investigate at whatbit rate range prefiltering may benefit the coding
efficiency for some video sources.

16-4. Use TMS rate control to encode several video sequences (such as Flower Garden
sequence) in two ways: (a) with adaptive quantization step, (b) without adaptive quan-
tization step (Equation 6.16). Compare and discuss the numerical results and subjective
results (observe the smooth areas carefully).
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16-5. Why does MPEG-2use different quantizer matrices for intra- andintercoding? Conduct
a projectto use different quantization matrices to encode several video sequences and
reportthe results.

16-6. Conduct a project to encode several video sequences (a) with B-picture; (b) without
B-picture. Compare the numerical and subjective results, Observe what difference exists
between the sequences with fast motion and the sequence with slow motion. (Typical
bit rates for CCIR601 sequences are 4 to 6 Mbps).
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Application Issues of
MPEG-1/2 Video Coding

This chapter is an extension of the previous chapter. We introduce several important application
issues Of MPEG-1/2 video which include the ATSC (Advanced Television Standard Committee)
DTV standard which has been adopted by the FCC (Federal Communications Commission)as the
TY standard in the United States, transcoding, down-conversion decoder, and error concealment.

17.1) INTRODUCTION

Digital video signal processing is an area of science and engineering that has developed rapidly
over the past decade. The maturity of the moving picture expert group (MPEG) video-coding
standard is a very important achievement for the video industry and provides strong support for
digital transmission and storage of video signals. The MPEG codingstandard is now being deployed
for a variety of applications, whichinclude high-definition television (HDTY), teleconferencing,
direct broadcasting bysatellite (DBS), interactive multimedia terminals, and digital video disk
(DVD). The commonfeature of these applications is that the different source information such as
video, audio, and data are all converted to the digital format and then mixed together to a new
format which is referred to as the bitstream. This new format of information is a revolutionary
change in the multimedia industry, since the digitized information format, 1.e., the bitstream, can
be decaded not only by traditional consumer electronic products suchas television but also by the
digital computer, In this chapter, we will present several application examples of MPEG-1/2 video
standards, which include the ATSC DTV standard, transcoding, down-conversion decoder, and error
concealment. The DTV standard is the application extension of the MPEG video standard. The
transcoding and down-conversion decoders are the practical application issues which increase the
features of compression-related products. The error concealment algorithms provide the tool for
transmitting the compressed bitstream over noisy channels.

17.2 ATSC DTV STANDARDS

17.2.1. A Brier History

The birth ofdigital television (DTV) in the U.S. has undergone several stages: the initial stage, the
competition stage, the collaboration stage, and the approval stage (Reilmeier, 1996). The concept
of high-definition television (HDTV) was proposed in Japan in the late 1970s and early 1980s.
During that period, Japan and Europe continued to make efforts in the developmentof analog
television transmission systems, such as MUSE and HD-MACsystems. In eatly 1987, U.S. broad-
casters fell behind in this field and felt they should take action to catch up with the new HDTV
technology and petitioned the FCC to reserve a spectrumforterrestrial broadcasting of HDTV. As
a result, the Advisory Committee on Advanced Television Service (ACATS) was founded in August
1987. This committee takes the role of recommending a standard to the FCC for approval. Thus,
the process ofselecting an appropriate HDTV system for the U.S. started, At the initial stage
between 1987 and 1990, there were over 23 different analog systems proposed; among these systems
two typical approaches were extended definition television (EDTV) whichfits into a single 6-MHz
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channel and the high definition television (HDTV) approach which requires two 6-MHz channels,
By 1990, ACATShad established the Advanced Television Test Center (ATTC), an official testing
laboratory sponsored by broadcasters to conduct extensive laboratory tests in Virginia and field tests
in Charlotte, NC. Also, the industry had formed the Advanced Television Standards Committee
(ATSC)to perform thetask of drafting the official standard documents ofthe selected winning system.

As weknow, the current.ATSC-proposed television standard is a digital system. In early 1990,
. the FCC issued a very difficult request to industry about the DTV standard. The FCC required the

industry to provide full-quality HDTV service in a single 6-MHz channel. Having recognized the
technical difficulty of this requirement at that time, the FCC also stated that this service could be
provided by a simulcast service in which programs would be simultaneously broadeasted in both
NTSCand the newtelevision system. However, the FCC decided not to assign new spectrumbands
for television. This means that simulcasting would occur in the already crowded VHF and UHF
spectrum. The newtelevision system had to use low-powertransmission to avoid excessive inter-
ference into the existing NTSCservices. Also, the newtelevision systemhadto use a very aggressive
compression approach to squeeze a full HDTV signal into the 6-MHz spectrum, One good thing
was that backward compatibility with NTSC was not required. Actually, under these constraints
the backward compatibility had already become impossible. Also, this goal could not be achieved
by any of the previously proposed systems and it caused most of the competing proponents to
reconsider their approaches. Engineers realized that it was almost impossible to use the traditional
analog approaches to reach this goal and that the solution may be in digital approaches. After a
few months of consideration, General Instrument announcedits first digital system proposal for
HDTV, DigiCigher, in June 1990, In the following half year, three other digital systems were
proposed: the Advanced Digital HDTV by the Advanced Television Research Consortium, which
included Thomson, Philips, Sarnoff, and NBC in November 1990; Digital Spectrum Compatible
HDTVby Zenith and AT&T in December 1990; and Channel Compatible Digicipher by General
Instrument and the Massachusetts Institute of Technology in January 1991. Thus, the competition
stage started. The prototypes of four competing digital systems and the analog system, Narrow
MUSE,proposed by NHK (Nippon Houson Kyokai, the Japan Broadcasting Corporation), were
officially tested and extensively analyzed during 1992. Afiera first round of tests, it was concluded
that the digital systems would be continued for further improvement and would be adopted. In
February 1992, the ACATS recommendeddigital HDTV for the U.S. standard. It also recommended
that the competing systems be either further improved and retested, or be combined into a new
system. In the middle of 1993, the former competitors joined in a Grand Alliance. Then the DTV
development entered the collaboration stage. The Grand Alliance began a collaborative effort to
create the best system which combinesthe best features and capabilities of the formerly competing
systems into a single “best of the best’ system. After 1 year ofjoint effort by the seven Grand
Alliance members, the Grand Alliance provided a new system that was prototyped and extensively
tested in the laboratory andfield. Thetest results showed that the system is indeed the bestof the
best compared with the formerly competing systems (Grand Alliance, 1994). The ATSC then
recommendedthis system to the FCC as the candidate HDTV standardin the United States, During
the following period, the computer industry realized that DTV provides the signals that can now
be used for computerapplications and the TV industry was invadingits terrain. It presented different
opinions aboutthe signal format and wasespecially opposed to the interlaced format. This reaction
delayed the approval of the ATSC standard. After a long debate, the FCC finally approved the
ATSCstandard in early 1997. But, the FCC did not specify the picture formats and leaves this
issue to be decided by the market.

17.2.2. TecHNicat Overview of ATSC Systems

The ATSC DTY system has been designed to salisfy the FCC requirements. The basic requirement
is that no additional frequency spectrum will be assigned for DTV broadcasting. In other words,
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during a transition period, both NTSC and DTV service will be simultaneously broadcast on
different channels and DTV can only use the taboo channels. This approach allows a smooth
transition to DTV,suchthat the services of the existing NTSC receivers will remain and gradually
be phased out ofexistence in the year 2006. The simulcasting requirement causes sometechnical
difficulties in DTV design, First, the high-quality HDTV program must be delivered in a 6-MHz
channel to makeefficient use of spectrumandto fit allocation plans for the spectrumassigned to
television broadcasting. Second, a low-power and low-interference signal must be used so that
simulcasting in the same frequency allocations as current NTSC service does not cause excessive
interference with the existing NTSC receiving, since the taboo channels are generally unsuitable
for broadcasting an NTSC signal due to highinterference. In addition to satisfying the frequency
spectrum requirement, the DTV standard has several important features, which allow DTV to
achieve interoperability with computers and data communications, Thefirst feature is the adoption
of a layered digital system architecture, Each individual layer of the system is designed to be
interoperable with other systems at the corresponding layers. For example, the square pixel and
progressive scan picture format should be provided to allow computers access to the compression
layer or picture layer depending on the capacity of the computers and the ATM-like packet format
for the ATMnetworkto accessthe transport layer. Second, the DTV standard uses a header/descrip-
lor approach to provide maximumflexible operating characteristics. Therefore, the layered archi-
tecture is the most important feature of DTV standards. The additional advantage of layering is
that the elements of the system can be combined with other technologies to create new applications.
The system of DTV standard includes four layers: the picture layer, the compression layer, the
transport layer, and the transmission layer.

17.2.2.1 Picture Layer

At the picture layer, the input video formats have been defined. The Executive Committee of the
ATSChas approved release ofstatement regarding the identification of the HDTV and Standard
Definition Television (SDTV) transmission formats within the ATSC DTV standards. There are six
video formats in the ATSC DTVstandard, which are “High Definition Television.” These formats

are listed in Table 17.1.
The remaining 12 video formats are not HDTV format, These formats represent some improve-

ments over analog NTSC and are referred to as “SDTV.” Thesearelisted in Table 17.2.
Thesedefinitions are fully supported by the technical specifications for the various formats as

measured against the internationally accepted definition of HDTV established in 1989 by the ITU
and the definitions cited by the FCC during the DTV standard development process. These formats
cover a wide variety of applications, which include motionpicture film, currently available HDTV
production equipment, the NTSC television standard, and computers such as personal computers
and workstations. However, there is no simple technique which can convert Images from one pixel

TABLE 17.1

HDTV Formats

Spatial Format Temporal Rate
(X.* ¥ active pixels) Aspect Ratio (Hz progressive scan)

1920 x 1080 (square pixcl) 16:9 23.976/24
29,97/30

59.94/60

1280 x 720 (square pixel) 16:9 23.976/24
29.97/30

59.94/60
_———
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TABLE 17.2

SDTV Formats

Spatial Format Temporal Rate
(X x ¥ active pixels) Aspect Ratio (Hz progressive scan)

704 x 480 (CCIR601) 16:9 or 4:3 23.976/24
29.97/30

5994/60

640 x 480 (VGA, square pixel) 4:3 23,976/24
29.97/30

§9.94/60

format and framerate to anotherthat achieve interoperability among film and the various worldwide
television standards. For example,all low-cost computers use square pixels and progressive scan-
ning, while current television uses rectangular pixels and interlaced scanning. The video industry
has paid a lot ofattention to developing format-converling techniques. Some techniques such as
deinterlacing, down/up-conversion for format conversion have already been developed. It should
be noted that the broadcasters, content providers, and service providers can use any one of these
DTV format. Thisresults in a difficult problem for DTV receiver manufacturers who haveto provide
all kinds of DTV receivers to decode all these formats and then to convert the decoded signal to

its particular display format. On the other hand, this requirementalso gives receiver manufacturers
the flexibility to produce a wide variety of products that have different functionality and cost, and
the consumers freedom to choose among them.

17.2.2.2 Compression Layer

The raw data rate of HDTV of 1920 x 1080 x 30 x 16 (16 bits per pixel corresponds to 4:2:2 color
format) is about | Gbps. The function of the compressionlayer is to compress the raw data from
about | Gbpsto the data rate of approximately 19 Mbpsto satisfy the 6-MHz spectrumrequirement.
This goal is achieved by using the main profile and high level of the MPEG-2 video standard.
Actually, during the developmentof the Grand Alliance HDTV system, many researchresults were
adopted by the MPEG-2standard at the same time; for example, the support for interlaced video
format and the syntax for data partitioning and scalability. The ATSC DTV standardis thefirst and
most important application example of the MPEG-2 standard. The use of MPEG-2 video compres-
sion fundamentally enables ATSC DTV devices to interoperate with MPEG-1/2 computer multi-
media applications directly at the compressed bitstream level.

17.2.2.3 Transport Layer

The transportlayer is another importantissue for interoperability. The ATSC DTV transport layer
uses the MPEG-2 system transport stream syntax. It is a fully compatible subset of the MPEG-2
transport protocol. The basic function of the transport layer is to define the basic format of data
packets. The purposes of packetization include:

.
Packagingthedatainto the fixed-sizecells or packets for forward error correction (FEC)
encoding to protectthe bit error due to the communication channel noise;

* Multiplexing the video, audio, and data of a programinto a bitstream;
* Providing time synchronization for different media elements;

Providing flexibility and extensibility with backward compatibility.
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<—<——_—_——_ 188 byte packet

—184 byte>
4 byte pack<neeet header

|video|audio|video[video|Audio|pamap]video|

FIGURE17,1 Packet structure of ATSC DTV transport layer.

 
 

Thetransport layer of ATSC DTV uses a fixed-length packet. The packetsize is 188 bytes consisting
of184 bytes of payload and 4 bytes ofheader. Within the packet header, the 13-bit packet identifier
(PID) is used to provide the important capacity to combine the video, audio, and ancillary data
streaminto a single bitstream as shown in Figure 17.1. Each packet contains only a single type of
data (video, audio, data, program guide, etc.) identified by the PID.

This type of packet structure packetizes the video, audio, and auxiliary data separately. It also
provides the basic muluplexing lunction that produces a bitstream including video, five-channel
surround-sound audio, and an auxiliary data capacity. This kind of transport layer approach also
provides complete flexibility to allocate channel capacity to achieve any mix among video, audio,
and other data services. It should be noted that the selection of 188-packet length is a trade-off
between reducing the overhead due to the transport header and increasing theefficiency oferror
correction. Also, one ATSC DTV packet can be completely encapsulated with its header within
four ATM packets by using | AAL byte per ATM headerleaving 47 usable payload bytes times4,
for 188 bytes. The details of the transport layer is discussed in the chapter on MPEGsystems.

Transmission Layer — The function of the transmission layeris to modulate the transportbitstream
into a signal that can be transmitted over the 6-MHz analog channel. The ATSC DTV system uses
a trellis-coded eight-level vestigial sideband (8-VSB) modulation technique to deliver approxi-
mately 19.3 Mbpsin the 6-MHzterrestrial simulcast channel. VSB modulation inherently requires
only processing the in-phase signal sampled at the symbolrate, thus reducing the complexity of
the receiver, and ultimately the cost of implementation. The VSB signal is organized in a data
frame that provides a training signal to facilitate channel equalization for removing multipath
distortion. However, from severalfield-test results, the multipath distortionis still a serious problem
of terrestrial simulcast receiving. The frame is organized into segments each with 832 symbols.
Eachtransmitted segmentconsists of one synchronization byte (four symbols), 187 data bytes, and
20 R-S parity bytes. This corresponds to a 188-byte packet, which is protected by 20-byte R-S
code. Interoperability at the transmission layer is required by different transmission media appli-
cations. The different media use different modulation techniques now, such as QAM forcable and
QPSK forsatellite. Even for terrestrial transmission, European DVB systems use OFDM transmis-
sion. The ATV receivers will not only be designed to receive terrestrial broadcasts, but also the
programs fromcable, satellite, and other media.

17.3. TRANSCODING WITH BITSTREAM SCALING

17.3.1. BAckGRoUND

As indicated in the previous chapters, digital video signals exist everywhere in the format of
compressedbitstreams. The compressedbitstreams of video signals are used for transmission and
storage through different media such as terrestrial TV, satellite, cable, the ATM network, and the
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Internet. The decoding ofa bitstream can be implemented in cither hardware or software. However,
for high-bit-rate compressed video bitstreams, specially designed hardwareis still the major decod-
ing approach dueto the speed limitation of current computer processors. The compressed bitstream
as a new formatof video signal is a revolutionary change to video industry since it enables many
applications. On the other hand, there is a problemofbitstream conversion. Bitstream conversion
or transcoding can be classified as bit rate conversion, resolution conversion, and syntax conversion
Bit rate conversion includes bit rate scaling and the conversion between constant bit rate (CBR)
and variable bit rate (VBR). Resolution conversion tncludes spatial resolution conversion and

temporal resolution conversion, Syntax conversion is needed between different compression stan-
dards such as JPEG, MPEG-1, MPEG-2, H.261, and H.263. In this section, we will focus on the

topic of bit rate conversion, especially on bil rate scaling sinceit finds wide application and readers
can extend the idea to other kinds of transcoding. Also, we limit ourselves to focus on the problem
of scaling an MPEG CBR-encoded bitstream down to a lower CBR, The other kind oftranscoding,
down-conversion decoder, will be presented in a separate secuon,

The basic function of bitstream scaling may be thought of as a black box, which passively
accepts a precoded MPEGbitstreamat the input and produces a scaled bitstream, which meets new
constraints that are not known a priori during the creation ofthe original precaded bitstream. The
bitstream scaler is a transcoder, or filter, that provides a match between an MPEG source bitstream
and the receiving load, The receiving load consists of the transmission channel, the destimation
decoder, and perhaps a destination storage device. The constraint on the newbiistream may be bound
by a variety of conditions. Among them are the peak or average bil rate iniposed by the communi-
cations channel, the total numberofbits imposed by the storage device, and/or the variation of bit
usage across pictures due to the amountofbuffering available at the receiving decoder.

While the idea of bitstream scaling has many concepts similar to (hose provided by the various
MPEG-2 scalability profiles, the intended applications and goals differ. The MPEG-2 scalability
methods(data partitioning, SNR scalability, spatial scalability, and temporal scalability) are aimed
at providing encoding of source video into multiple service grades (that are predefined at the ume
of encoding) and multitiered transmission for increased signal robustness. The multiple bitstreams
created by MPEG-2 scalability are hierarchically dependent in such a way that by decoding an
increasing numberofbitstreams, higher service grades are reconstructed, Bustream scaling meth-
ods, in contrast, are primarily decoder/transcoder techniques for converting an existing precoded
bitstream to anotheronethat meets newrate constraints. Several applications that motivate bitstream
scaling include the following:

1, Video-On-Demand — Consider a video-on-demand (VOD) scenario wherein a videofile
server includes a storage device containing a library of precoded MPEG bitstreams.
These bitstreamsin the library are originally coded at high quality (e.g., studio quality).
A numberof clients may request retrieval of these video programsat one particular time.
The numberofusers and the quality of video delivered 10 the users are constrained by
the outgoing channelcapacity. This outgoing channel, which may be a cable bus or an
ATM trunk, for example, must be shared among the users who are admitted to the service.
Different users may require different levels ofvideo quality, and the quality of a respective
program will be based onthe fraction of the total channel capacity allocated to each
user. To accommodate a plurality of users simultaneously,the videofile server must scale
the stored precoded bitstreams to a reduced rate before it is delivered over the channel
lo respective users, The quality of the resulting scaled bitstream should not be signifi-
cantly degraded compared with the quality of a hypothetical bitstream so obtained by
coding the original source material at the reduced rate. Complexity cost is nol such a
critical factor because onlythefile server has to be equipped with the bitstream scaling
hardware, not every user. Presumably, video service providers would be willing to pay
a high cost for delivering the possible highest-quality video at a prescribed bit rate.
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As an option, a sophisticated video file server may also perform scaling of multiple
original precodedbitstreams jointly andstatistically multiplex the resulting scaled VBR
bitstreams into the channel. By scaling the group of bitstreams jointly, statistical gains
can be achieved. Thesestatistical gains can be realized in the form of higher and more
uniform picture quality for the same channel capacity. Statistical multiplexing over a
DirecTv transponder(Isnardi, 1993) is one example ofan application of videostatistical
multiplexing.

2. Trick-play Track on Digital VTRs — In this application, the video bitstreamis scaled
to create a sidetrack on video tape recorders (VTRs). This sidetrack contains very coarse
quality video sufficient to facilitate wick-modes on the VTR (e.g., FF and REW at
different speeds). Complexity cost for the bitstream scaling hardware is of significant
concern in ts application since the VTR is a mass consumer item subject to mass
production.

3. Extended-Play Recording on Digital VTRs — In this application, video is broadcast to
users’ homes at a certain broadcast quality (~6 Mbps for standard-definition video and
~24 Mbps for high-definition video). With a bitstream scaling feature in their VTRs,
users mayrecord the video at a reducedrate, akin to extended-play (EP) mode on today's
VHS recorders, thereby recording a greater duration of video programs onto a tape at
lower quality. Again, hardware complexity costs would be a major factorhere.

17.3.2 Basic Principtes or BitstREAM SCALING

As described previously, the idea of scaling an MPEG-2-compressed bitstream down to a lower
bit rate is initiated by several applications. One problemis the criteria that should be used to judge
the performance of an architecture that can reduce the size or rate of an MPEG-compressed
bitstream. Twobasic principles ofbitstream scaling are (1) the information in the original bitstream
should be exploited as muchas possible, and (2) the resulting image quality of the new bitstream
with a lower bit rate should be as close as possible to a bitstream created by coding the original
source video at the reduced rate, Here, we assumethat for a givenrate the original source is encoded
in an optimal way. Ofcourse, the implementation of hardware complexity also has to be considered.
Figure 17.2 shows a simplified encoding structure of MPEG encoding in which the rate control
mechanism is nat shown.

In this structure, a block of imagedatais first transformed to a set of coefficients; the coefficients
are then quantized with a quantizer step whichjs decided by the given bit rate budget, or number
of bits assignedto this block. Finally, the quantized coefficients are coded in variable-length coding
to the binary format, whichis called the bitstream orbits.

 Input source

T-- transform, G- quantizer, P--moticn-compensated predictionVLC-- variable length

FIGURE17.2 Simplified encoder structure. T = transform, Q = quantizer, P = motion-compensated predic-
tion, VLC = variable length.
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Fromthis structure it is obvious that the performance of changing the quantizer step will be
better than cutting higher frequencies when the same amount ofrate needs to be reduced. In the
original bitstream the coefficients are quantized with finer quantization steps which are optimized
at the original high rate. After cutting the coefficients of higher frequencies, the rest of the
coefficients are not quantized with an optimal quantizer. In the method of requantization all
coefficients are requantized with an optimal quantizer whichis determined by the reducedrate; the
performanceof the requantization method mustbebetter than the method ofcutting high frequencies
to reach the reduced rate, The theoretical analysis is given in Section 17.3.4.

In the following, several different architectures that accomplish the bitstream scaling are
discussed. The different methods have varying hardware implementation complexities; each has its
own degree of trade-off between required hardware andresulting image quality.

17.3.3 ARCHITECTURES OF BITSTREAM SCALING

Fourarchitectures for bitstream scaling are discussed. Each of the scaling architectures described
has its own particular benefits that are suitable for a particular application.

Architecture |: The bitstream is scaled by cutting high {requencies,
Architecture 2: The bitstreamis scaled by requantization.,
Architecture 3: The bitstream is scaled by reencoding the reconstructed pictures with

motion vectors and coding decision modes extracted [romthe original high-
quality bitstream.

Architecture 4: The bitstream is scaled by reencoding the reconstructed pictures with
motion vectors extracted fromthe original high-quality bitstream, bul new
coding decisions are computed based on reconstructed pictures,

Architectures | and 2 are considered for VTR applications such as trick-play modes and EP
recording. Architectures 3 and 4 are considered for and other applicable StatMux scenarios.

17.3.3.1 Architecture 1: Cutting AC Coefficients

A block diagram illustrating architecture ] is shown in Figure 17.3a. The method of reducing the
bit rate in architecture | is based on cutting the higher-frequency coefficients. The incoming
precoded CBR stream enters a decoder rate buffer, Following the top branch leading fromthe rate
buffer, a VLD is used to parse the bits for the next framein the buffer to identify all the variable-
length codewordsthat correspondto ac coefficients used in that frame. No bits are removed from
the rate buffer. The codewords are not decoded, but just simply parsed by the VLD parser to
determine codeword lengths. The bit allocation analyzer accumulates these ac bit counts for every
macroblock in the frame and creates an ac bit usage profile as shown in Figure 17.3(b). Thatis,
the analyzer generates a running sumof ac DCTcoefficient bits on a macroblock basis:

Pv, =) ACBITS, (17.1)

where PV, is the profile value of a running sum of AC codeword bits until the macroblock WN.In
addition, the analyzer counts the sum ofall coded bits for the frame, TB (total bits). After all
macroblocksfor the frame have been analyzed, a target value TV,c, of ac DCT coefficient bits per
frame is calculated as

TV¢ = PV. -0*TB-B (17.2)EX?
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FIGURE 17.3 (a) Architecture |: cutting high frequencies. (b) Profile map.

where TV,- is the target value of AC codeword bits per frame, PV, is the profile value at the last
macroblock, @ is the percentage by which the preencoded bitstream is to be reduced, 7B is the
total bits, and B,, is the amount ofbits by whichthe previous frame missedits desired target. The
profile value of AC coefficient bits is scaled by the factor TV,¢/PV,,. Multiplying each PV, performs
scaling by that factor to generate the linearly scaled profile shown in Figure 17.3(b). Following the
bottom branch fromthe rate buffer, a delay is inserted equal to the amountof time required for
the top branch analysis processing to be completed for the current frame. A second VLD parser
accesses and removesall codeword bits from the buffer and delivers them to a rate controller. The

rate controller receives the scaled target bit usage profile for the amount of ac bits to be used within
the frame. The rate controller has memory to store all coefficients associated with the current
macroblockit is operating on. All original codeword bits al a higher level than ac coefficients (i.¢.,
all fixed-length header codes, motion vector codes, macroblock type codes,etc.) are held in memory
and will be remultiplexed with all AC codewords in that macroblockthat have not been excised to
form the outgoing scaled bitstream, The rate controller determines and flags in the macroblock
codeword memory which AC codewords to keep and whichto excise. AC codewords are accessed
from the macroblock codeword memory in the order AC//, AC/2, AC/3, ACI4, ACI5, ACI6,
AC21, AC22, AC23, AC24, AC25, AC26, AC3], AC32, AC33, etc., where ACij denotes the ith AC
codewords from jth block in the macroblock if it is present. As the AC codewords are accessed
from memory, the respective codewordbits are summed and continuously compared with the scaled
profile value to the current macroblock, less the numberofbits for insertion of EOB (end-of-block)
codewords. Respective AC codewords are flagged as kept until the running sum of AC codewords
bits exceeds the scaled profile value less EOB bits. When this condition is met, all remaining AC
codewords are marked for being excised. This process continues until all macroblocks have their
kept codewords reassembled to form the scaled bitstream.
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17.3.3.2. Architecture 2: Increasing Quantization Step

Architecture 2 is shown in Figure 17.4. The method ofbitstream scaling in architecture 2 is based
on increasing the quantization step. This method requires additional dequantizer/quantizer and
variable-length coding (VLC) hardware overthe first method. Likethefirst method, it also makes
a first VLD pass on the bitstream and obtains a similar scaled profile of target cumulative codeword
bits vs. macroblock count to be used for rate control.

The rate control mechanism differs from this point on. After the second-pass VLD is made on
the bitstream, quantized DCT coefficients are dequantized. A block of finely quantized DCT
coefficients is obtained as a result ofthis. This block of DCT coefficients 1s requantized with a
coarser quantizer scale. The value used for the coarser quantizer scale is determined adaptively by
making adjustments after every macroblock so that the scaled target profile is tracked as we progress
through the macroblocks in the frame:

Oy = Quoy + G# 5) (BU-PVWy..) : (17.3)
N-1

where Qy is the quantization factor for macroblock N, Qyoy, is an estimate of the new nominal
quantization factor for the frame, }y_,BU is the cumulative amount ofcoded bits up to macroblock
N — 1, and G is a gain factor which controls how tightly the profile curve is tracked through the
picture. QOvo,, is initialized to an average guess value before the very first frame, and updated for
the next frame by setting it to Q,, (the quantization factor for the last macroblock) from the frame
just completed. The coarsely requantized block of DCT coefficients is variable-length-coded to
generate the scaled bitstream. Therate controlleralso has provisions for changing some macroblock-
layer codewords, suchas the macroblock-type and coded-block pattern to ensure a legitimate scaled
bitstream that conforms to MPEG-2 syntax.

17.3.3.3 Architecture 3: Reencoding with Old Motion Vectors
and Old Decisions

Thethird architecturefor bitstream scaling is shownin Figure 17.5. In this architecture, the motion
vectors and macroblock coding decision modesarefirst extracted fromthe original bitstream, and
at the same time the reconstructedpictures are obtained from the normal decoding procedure. Then
the scaled bitstream is obtained by reencoding the reconstructed pictures using the old motion
vectors and macroblock decisions from the original bitstream. The benefits obtained from this
architecture compared with full decoding and reencodingis that no motion estimation and decision
computation is needed.
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FIGURE 17.5 Architecture 3.

17.3.3.4 Architecture 4: Reencoding with Old Motion Vectors
and New Decisions

Architecture 4 is a modified version ofarchitecture 3 in which new macroblock decision modes

are computed during reencoding based on reconstructed pictures. The scaled bitstreamcreated this
Way is expectedto yield an improvement in picture quality because the decision modes obtained
from the high-quality original bitstream are not optimal for reencoding at the reduced rate. For
example, at higher rates the optimal mode decision for a macroblock is morelikely to favor
bidirectional ficld motion compensation over forward frame motion compensation. But at lower
rates, only the opposite decision may be true, In.order for the reencoder to have the possibility of
deciding on new macroblock coding modes, the entire pool of motion vectors of every type must
be available. This can be supplied by augmenting the original high-quality bitstream with ancillary
data containing the entire pool of motion vectors during the me it was originally encoded. It could
be inserted into (he user data every frame. For the sameoriginal bit rate, the quality ofan original
bitstream obtained this way is degraded compared with an original bitstream obtained fromarchi-
tecture 3 because the additional overhead required for the extra motion vectors steals away bits for
actual encoding. However, the resulting scaled bitstream is expected to show quality improvement
over the scaled bitstream from architecture 3 if the gains from computing new and more accurate
decision modes can overcomethe loss in original picture quality. Table 17.3 outlines the hardware
complexity savings of each ofthe three proposedarchitectures as compared withfull decoding and
reencoding.

17.3.3.5 Comparison of Bitstream Scaling Methods

We have described four architectures for bitstream scaling which are useful for various applications
as described in the introduction. Among the four architectures, architectures | and 2 do not require
 

TABLE 17.3

Hardware Complexity Savings over Full Decoding/Reencoding
Coding Method Hardware Complexity Savings

Architecture | No decoding loop, no DCT/IDCT, no frame store memory, no encoding loop, no quantizer/dequantizer,
nO motion compensation, no VLC,simplified rate control :

Architecture 2 No decoding loop, no DCT/IDCT,no frame store memory, no encoding loop, no motion compensation,
simplified rate control

Architecture 3 No motion estimation, no macroblock coding decisions
Architecture 4 No motion estimation
ane
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entire decoding and encoding loops oF frame store memory for reconstructed pictures, thereby
savingsignificant hardware complexity. However, video quality tends to degrade throughthe group
of pictures (GOP)until the next Fpicture dueto drift in the absence of decoder/encoder loops. For
large scaling, say, for rate reduction greater than 25%, architecture produces poor-quality blocky
pictures, primarily because many bils were spent in the original high-quality bitstream on finely
quantizing the de and other very low-order ac coefficients. Architecture 2 is a particularly good
choice for VTR applications since it is a good compromise between hardware complexity and
reconstructed image quality. Architectures 3 and 4 are suitable for VOD server applications and
other StatMux applications.

17.3.4 ANaLysis

In this analysis, we assume that the optimal quantizer is obtained by assigning the numberofbits
according to the variance or energy of the coefficients. It is slightly different from MPEG standard
which will be explained later, but the principal concept is the same and the results will hold for
the MPEGstandard. Wefirst analyze the errors caused by cutting high coefficients and increasing
the quantizer step, The optimal bit assignment is given by Jayant and Noll (1984):

]
Ri=Roted

40 “avo "5 "82 7 or, k=0,1,...,.N=1, (17.4)

where N is the number ofcoefficients in the block, R,, is the number of bits assigned to the Ath
coefficient, R,,9is the average numberofbits assigned to each coefficient in the block,i.e., Ry =
N - Rag, is the total bits for this block under a certain bit rate, and o,is the variance of kth
coefficient. Underthe optimalbit assignment(17.4), the minimized average quantizererror, O-o is

N-! N-!
a es | 2 ] —2R, 2

k=l |

where Oj is the quantizer error of kth coefficient. According to Equation 17,4, we have two major
methods to reducethebit rate, cutting high coefficients or decreasing the R,,,, i-e., increasing the
quantizer step. We are now analyzing the effects on the reconstructed errors caused by the method
of cutting high-order coefficients. Assume that the number ofthe bits assigned to the blockis
reduced from Ry to Rz,. Then the bits to be reduced, AR,, are equal to Ry) — Rp.

In the case of cutting high frequencies, say, the number of coefficients is reduced from N to
M,then

N-=1

Rj =0 for K <M, and AR, = Rry Rr, = >» Ry. (17.6)
k=M

the quantizer error increased dueto the cutting is

a N= =I
a8 o 2 -2R

Ags, = 95) S40 = 77 »2 ortYo2-2 10g? (17.7)
Ano k=0k=M
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| N=! N-12 2 2=| uo2-0;
k=M k=M

N-1

en (1-2°%°).62,
Ni

where oy; is the quantizererror after cutting the high frequencies.
In the method ofincreasing quantizer step, or decreasing the average bils, from Ry» to Ryo

assigned to each coefficient, the number ofbits reduced for the block is

AR, = Bry = Ry= N(R vo — Riva) (17.8)« a

and the bits assigned to each coefficient become now

Ry = Ry +5 log,i k=0,1,...,N-1, (17.9)N-I

i=0

The corresponding quantizererror increased by the cutting bils is

i N-I N-I
Se hed y 2 Rea -5 Ro. gg?Ao,, = O72 —Sy = N 2 G, 2 Ook=0k=0)

(17.10)
N-|

=— (22 27h) .g?,
k=0

where G¥, is the quantizer error at the reducedbit rate. ay
If the same numberofbits is reduced,i.c., AR, = AR;, it is obvious that Ao,, is smaller than

AG; since Sp is the minimized value at the reduced rate. This implies that the performance of
changing the quantizerstep will be better than cutting higher frequencies when the sameamount
of rate needs to be reduced. It should be noted that in the MPEG video coding, more sophisticated
bit assignment algorithmsare used,First, different quantizer matrices are used to improvethe visual
perceptual performance. Second, different VLC tables are used to code the DC values and the AC
transform coefficients and the run-length coding is used to code the pairs of the zero-run length
and the values of amplitudes, However, in general, the bits are sull assigned according to the
Stalistical model that indicates the energy distribution of the transform coefficients. Therefore, the
above theoretical analysis will hold for the MPEG video coding.

17.4. DOWN-CONVERSION DECODER

17.4.1. Backcrouno

Digital video broadcasting has had a major impact in both academic and industrial communities.
A great deal ofeffort has been made to improve the coding efficiency al the transmission side and
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FIGURE 17.6 Decoder structures, (a) Block diagram of full-resolution decoder with down-conversion in
the spatial domain. The quality of this output will serve as a drilt-free reference. (b) Block diagram of low-
resolution decoder. Down-conversion is performed within the decoding loop andis a frequency domainprocess.
Motion compensationis performed from a low-resolution reference using motion vectors that are derived from
the full-resolution encoder. Motion compensation is a spatial domain process.

offer cost-effective implementationsin the overall end-to-end system. Along these lines, the notion
of format conversion is becomingincreasingly popular. On the transmissionside, there are a number
of different formats that are likely candidates for digital video broadcast. These formats vary in
horizontal, vertical, and temporalresolution. Similarly, on the receiving side, there are a variety of
display devicesthat the receiver should account for. In this section, weare interested in the specific
problem of how to receive an HDTVbitstream anddisplay it at a lower spatial resolution. In the
conventional method of obtaining a low-resolution image sequence, the HD bitstream Is fully
decoded; then it is simply prefillered and subsampled (ISO/IEC, 1993). The block diagram ofthis
system is shown in Figure 17.6(a); it will be referred to as a full-resolution decoder (FRD) with
spatial down-conversion, Althoughthe quality is very good, the cost is quite high due to the large
memory requirements. As a result, low-resolution decoders (LRDs) have been proposed to reduce
someofthe costs (Ng, 1993; Sun, 1993; Boyceet al., 1995; Bao etal., 1996), Although the quality
ofthe picture will be compromised, significant reductions in the amount of memory can berealized;
the block diagram for this system is shown in Figure 17.6(b). Here, incoming blocks are subject
to down-conversionfilters within the decoding loop. In this way, the down-converted blocks are
stored into memoryrather than the full-resolution blocks. To achieve a high-quality outpul with
the low-resolution decoder,it is importantto take special care in the algorithms for down-conversion
and motion compensation (MC). These two processes are of major importance to the decoder as
they have significant impactonthe final quality. Although a moderate amountof complexity within
the decoding loop is added, the reductions in external memory are expected to provide significant
cost savings, provided that these algorithms can be incorporated into the typical decoder structure
in a seamless way.

As stated above, the filters used to perform the down-conversion are an integral part of the
low-resolution decoder. In Figure 17.6(b), the down-conversion is shown to take place before the
IDCT. Although the filtering is not required to take place in the DCT domain,weinitially assume
that it takes place before the adder. In any case,it is usually more intuitive to derive a down-
conversion filter in the frequency domainrather than in the spatial domain; this has been described
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by Pang etal. (1996), Merhav and Bhaskaran (1997), and Mokry and Anastassiou (1994). The
major drawbackof these approachesis that high frequency data is lost or not preserved very well,
To overcomethis, a method of down-conversion, whichbetter preserves high-frequency data within
the macroblock has been reported by Bao et al. (1996), Vetro and Sun (1998a); this method is
referred to as {requency synthesis.

Although the above statement of the problem has only mentioned filtering-based approaches
to memory reduction within the decoding loop, readers should be aware that other techniques have
also been proposed. Forthe mostpart, these approaches rely on methods of embedded compression.
For instance, de With etal. (1998) quantized the data being written to Memory adaptively using a
block predictive coding scheme; then a segment of macroblocksis fit into a fixed length packet,
Similarly, Yu etal. (1999) proposed an adaptive min-max quantizer and edge detector. With this
method, each macroblock is compressed to afixed size to simplify memory access. Another, simpler
approach may beto truncate the 8-bit data to 7 or 6 bits. However,in this case, it is expected the
drift would accumulate very fast and result in poor reconstruction quality. Bruni et al. (1998) used
a vectors quantization method, and Lei (1999) described a wavelet-based approach. Overall, these
approaches offer exceptional techniques to reduce the memory requirements, but in most cases the
reconstructed video would still be a high-resolution signal. The reason is that compressed high-
resolution data are stored in memory rather than the raw, low-resolution data. For this reason, the
remainder ofthis section emphasizes the filtering-based approach, in which the data stored in
memory represent the actual low-resolution picture data.

The main novelty ofthe systemthat we describe is the filtering which is used to perform motion
compensation from low-resolution anchor frames. It is well known that prediction drift has been
difficult to avoid. It is partly due to the loss of high-frequency data from the down-conversion and
partly due to the inability to recoverthe lost information. Although predictiondrift cannotbe totally
avoided in a low-resolution decoder,it is possible to reduce the effects of drift significantly in
contrast lo simple interpolation methods. The solution that we described is optimal in the least-
Squares sense and is dependent on the method of down-conversion that is used (Vetro and Sun,
1998b). In its direct form, the solution cannot be readily applied to a practical decoding scheme.
However,it is shown that a cascaded realization is easily implemented into the FRD-type structure
(Vetro et al., 1998).

17.4.2 Frequency SynTHEsis Down-CONVERSION

The conceptof frequency synthesis wasfirst reported by Baoetal. (1996) andlater expandedupon
by Vetro and Sun (1998b). The basic premise is to better preserve the frequency characteristics of
a macroblock in comparison to simpler methods whichextract or cut specified frequency compo-
nents of an 8 x 8 block. To accomplishthis, the four blocks of a macroblock are subject loa global
transformation — this transformation is referred to as frequency synthesis. Essentially, a single-
frequency domain block can be realized using the information in the entire macroblock. From this,
lower-resolution blocks can be achieved by cutting out the low-order frequency components ofthe
synthesized block — this action represents the down-conversion process andis generally represented
in the following way:

=XA, (17.11)[1

where A denotes the original DCT macroblock, A denotes the down-conyerted bcT block, and X
is a matrix which contains the frequency synthesis coefficients. The original idea for frequency
synthesis down-conversion was to extract an 8x8 block directly from the 16 x 16 synthesized
block in the DCT domain as shown in Figure 17.7(a). The advantage of doing this is that the down-
converted DCTblockis directly applicable to an 8 x 8 IDCT(for whichfast algorithms exist). ae
major drawback with regard to computation is that each frequency component in the synthesize
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FIGURE 17.7 Concept of frequency synthesis down-conversion: (a) 256-tap filler applied to every frequency
componentto achieve vertical and horizontal down-conversionbya factor of twoframe-based filtering; (b) 16-tap
filter applied to frequency components in the same rowtoachieve horizontal down-conversion by two, picture
structureis irrelevant; (c) illustration that the amountofsynthesized frequency components whichare retained
is arbitrary,

block is dependent on all of the frequency components in each of the 8 * 8 blocks, Le., each
synthesized frequency componentis the result of a 256-tapfilter. The major drawback with regard
to quality is that interlaced video with field-based predictions should not be subject to frame-based
filtering (Vetro and Sun, 1998b). If frame-based filtering is used, it becomes impossible to recover
the appropriate field-based data that is required to make field-based predictions. In areas oflarge
motion, severe blocking artifacts will result,

Obviously, the original approach would incur too much computation and quality degradation,
SO, instead, the operations are performed separately and vertical down-conversion is performed on
a field basis. In Figure 17.7(b), itis shownthat a horizontal-only down-conyersion can be performed.
To perform this operation, a 16-tap filter is ultimately required. In this way, only the relevant row
information is applied as the input to the horizontal filtering operation and the structure of the
incoming video has no bearing on the down-conversion process. The reasonis that the data in each
row of a macroblock belong to the samefield; hence the format of the output block will be
unchanged.It is noteworthy that the set offilter coefficients is dependent on the particular output
frequency index. For 1-D filtering, this means that the filters used to compute the second output
index, for example, are different from those used to compute the fifth output index. Similar to the
horizontal down-conversion, vertical down-conversion can also be applied as a separate process.
As reasoned earlier,field-basedfiltering is necessary for interlaced video with field-based predictions.

However, since a macroblock consists of eight lines for the even field and eight lines for the
oddfield, and thevertical blockunitis 8, frequency synthesis cannot be applied. Frequency synthesis
is a global transformation and is only applicable when one wishes to observe the frequency
characteristics over a larger range of data than the basic unit. Therefore, to perform the vertical
down-conversion, we can simply cut the low-order frequency componentsin the vertical direction.
This loss that we acceptin the vertical directionis justified by the ability to perform accurate low-
resolution MCthat is free from severe blockingartifacts.

In the above, we have explained how the original idea to extract an 8 x § DCT blockis broken
downinto separable operations. However, since frequency synthesis provides an expression for
every frequency component in the new 16x 16 block, it makes sense to generalize the down-
conversion process so that decimation, which are multiples of ‘is can be performed. In
Figure 17-7(c), an M xNblockis extracted. Although this type of down-conversion filtering may
not be appropriate before the IDCT operation and may notbe appropriate for a bitstream containing
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FIGURE17.8 Comparison of decoding methods to achieve low-resolution image sequence. (a) FRD with
spatial down-conversion; (b) LRD, The objective is (o minimize the MSE betweenthe twooutputs by choosing
N,, Nz, Ny, and N, for a fixed down-conversion. (From Vetro, A. etal., EEE Trans. ConsumerElec., 44(3),
1998. With permission.)

held-based predictions, it may be applicable elsewhere, e.g., as a spatial domain filter somewhere
else in the system and/or for progressive material. To obtain a set of spatial domain filters, an
appropriate transformation can be applied. In this way, Equation 17.8 is expressed as

= xa, (17.12){or

where the lowercase counterparts denote spatial equivalents. The expression which transforms X
to x is derived in Appendix A, Section 17.4.6.

17.4.3 Law-Resatution MOTION COMPENSATION

The focusofthis sectionis to provide an expressionfor the optimalset of low-resolution MCfilters
given a set of down-conversionfilters. The resulting filters are optimal in the least-squares sense
as they minimize the mean squared error (MSE) betweena reference block and a block obtained
through low-resolution MC. The resulls that have been derived by Vetro and Sun (1998a) assume
that a spatial domain filter, x, is applied to incoming macroblocksto achieve the down-conversion.
The scheme shownin Figure 17.8(a) illustrates the process by which reference blocks are obtained.
First, full-resolution motion compensation is performed on macroblocksa, b, c, and dl to yield h.
To execute this process,the filters 5°, 5°, 5, and S$,” are used. Basically, these fillers represent
the masking/averaging operations of the motion compensation in a matrix form. More on the
composition of these filters can be found in Appendix B, Section 17.4.7. Once /i is obtained,it is
down-converted to fa via the spatial filter, x:

= (17.13)|=)l

The above block is considered to be the drift-free reference. On the other hand, in the scheme of
Figure 17.8(b), the blocks a, b, ¢, and d arefirst subject to the down-conversion filter, x, to yield
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the down-converted blocks, a, b, é, and d, respectively. By using these down-converted blocks as
input to the low-resolution motion compensationprocess, the following expression can be assumed:

[Spryr=[N, N, N, N,] (17.14)[Sacioe[Sie
where N,, k = 1,2,3,4 are the unknownfilters which are assumed to perform the low-resolution
motion compensation, and / is the low-resolution prediction. These fillers are solved by dilferen-
tiating the following objective function (Vetra and Sun, 1998a):

-|i-il

with respect to each unknown filter and setting each result equal to zero. It can be verified that the
optimal least-squares solution for these filters is given by

  (17.15)

ny" = x5"; No) = 55x"
(17.16)

NE?= 2500IN = ght

where

me =17 (x7) (17.17)

is the Moore—Penrose inverse (Lancaster and Tismenetsky, 1985) for an m x 1 matrix with mS 4.
In the solution of Equation 17.16, the superscript r is added to thefilters, V,, due to their dependency
on the full-resolution motion compensation filters. In using these filters to perform the low-
resolution motion compensation, the MSE between fi and # is minimized. It should be emphasized
that Equation 17.16 represents a generalized set of MC filters which are applicable to any x, which
operates on a single macroblock. For the special case of the 4x 4 cut, these filters are equivalent
to the ones that were determined by Morky and Anastassiou (1994) to minimize the drift.

In Figure 17.9, two equivalent MC schemes are shown. However,for implementation purposes,
the optimal MC schemeisrealized in a cascade form rather than a direct form. The reasonis that
the direct-form filters are dependent on the matrices, which perform full-resolution MC. Although,
these matrices were very useful in analytically expressing the full-resolution MC process, they
require a huge amountofstorage due to their dependency on the prediction mode, motion vector,
and half-pixel-accuracy, Instead, the three linear processes in Equation 17,13 are separated, so that
an up-conversion, full-resolution MC, and down-conversion can be performed. Although one may
be able to guess such a scheme, we have proved herethat it is an optimal scheme provided the up-
conversionfilter is a Moore—Penroseinverse of the down-conversionfilter, Vetro and Sun (1998b),
the optimal MC scheme, which employs frequency synthesis, to a nonoptimal MC scheme, which
employs bilinear interpolation, and an optimal MC scheme, which employs the 4 x 4 cut down-
conversion. Significant reductions in the amountofdrift were realized by both optimal MC schemes
over the method, which used bilinear interpolation as the method of up-conversion. But more
importantly, a 35% reduction in the amountofdrift was realized by the optimal MC scheme using
frequency synthesis over the optimal MC schemeusing the 4 x 4 cut.
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FIGURE 17.9 Optimal low-resolution MC scheme: direct form (top) vs. cascade form (bottom). Both forms
yield equivalent quality, but vary significantly in the amount of internal memory. (From Vetra,A., et al,, /EEE
Trans. Consumer Elec., 44(3), 1998. With permission.)

HD
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17.4.4 Ttikee-Layer Scataste DECODER

In this section, we show howthe key algorithms for down-conversion and motion compensation are
integrated into a three-layer scalable decoder, The central conceptofthis decoderis that three layers
of resolution can be decoded using a decreased amount of memoryfor the lower resolution layers.
Also, regardless of which layer is being decoded, much ofthe logic can be shared. Three possible
decoder configurations are considered: full-memory decoder (FMD), half-memory decoder (HMD),
and quarter-memory decoder (QMD). The low-resolution decoder configurations are based on the
key algorithms, which were described for down-conversion and motion compensation. In the fol-
lowing, three possible architectures are discussed that provide equal quality, but vary in system-level
complexity. The first (ARCH1) is based on the low-resolution decoder modeled in Figure 17.6(b),
the second (ARCH2)is very similar, but attempts to reduce the IDCT computation, while the third
(ARCH3)is concerned with the amount of interface with an existing high-level decoder.

With regard to functionality, all of the architectures share similar characteristics. For one, an
efficient implementation is achieved by arranging the logic in a hierarchical manner,i.c., employing
separable processing. In this way, the FMD configuration is the simplest and serves as the logic
core on which other decoder configurations are built. In the HMD configuration, an additional
horizontal down-conversion and up-conversion are performed, In the QMD configuration,all of
the logic components from the HMDareutilized, such that an additional vertical down-conversion
is performed after a horizontal down-conversion, and an additional vertical up-conversion is per-
formedafter a horizontal up-conversion. In summary, the logic for the HMDis built on the logic
for the FMD,andthe logic for the QMD isbuilt on the logic of the HMD. Thetotal system contains
a moderate increase in logic, but HD bitstreams may be decoded to a lower resolution with a smaller
amount of external memory. By simply removing external memory, lower layers can be achieved
at a reduced cost.
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FIGURE 17,10 Block diagram of various three-layer scalable decoder architectures;all architectures provide
equal quality with varying system complexity: (a) ARCHI, derived directly from block diagram of assumed
low-resolution decoder; (b) ARCH2, reduce computation of IDCT by combining down-conversion and {DCT
filters; (c) ARCH3, minimizeinterface with existing HL decoder by movinglinearfiltering for down-conversion
outside of the adder. (From Vetro,A.et al., JEEE Trans, ConsumerElec., 44(3), 1998. With permission.)
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FIGURE17.10 (continued)

The complete block diagram of ARCH! is shown in Figure 17.10(a). The diagram shown here
assumes two things: (1) the iniual system model of a low-resolution decoder from Figure 17,6(b)
is assumed, and (2) the down-conversions in the incoming branchare performedafter the IDCTto
avoid any confusion regarding macroblock format conversions in the DCT domain (Vetro and Sun,
1998b). In looking at the resulting system, it is evident that full computation of the IDCTis required,
and that two independent down-conversion operations must be performed. Thelatter is necessary
so that low-resolution predictions are added to low-resolution residuals. Overall, the increase in
logic for the added feature of memory savings is quite small. However, it is evident that ARCHI
is not the mostcost-effective implementation, but it represents the foundationof previous assump-
tions, and allows us to analyze better the impactof the two modified architectures to follow.

In Figure 17.10(b), the block diagram of ARCH2 is shown. In this system, realizing that the
IDCToperationis simply a linearfilter reduces the combined computation for the IDCT and down-
conversion, In the FMD, we knowthat a fast IDCT is applied separately to the rows and columns
of an 8 x 8 block. For the HMD,our goal is to combine the horizontal down-conversion with the
horizontal IDCT, In the I-D case, an 8 x 16 matrix can represent the horizontal down-conversion,
and an 8 x 8 matrix can representthe horizontal IDCT. Combining these processes, such that the
down-conversion operates on the incoming DCT rowsfirst, results in a combined 8 x 16 matrix.
To complete the transformation, the remaining columns can then be applied to the fast IDCT. In
the above description, computational savings are achieved in (wo places: first, the horizontal IDCT
is fully absorbedinto the down-conversion computation which musttake place anyway, and, second,
the fast IDCTis utilized for a smaller amount of columns. In the case of the QMD,these same
principles can be used to combinethe vertical down-conversion with the vertical IDCT. In this
case, one must be aware of the macroblock type (field-DCTor frame-DCT) so that an appropriate
filter can be applied. In contrast to the previous two architectures, ARCH3 assumes that the entire
front-end processing of the decoderis used; it is shown in Figure 17.5. In this way, the adder is
always a full-resolution adder, whereas in ARCH! and ARCH2, the adder neededto handle all
three Jayers of resolution. The major benefit of ARCH3is that it does not require many interfaces
with the existing decoder structure. The memory is really the only place where a new interface
needs to be defined. Essentially, a down-conversionfiltering may be applied before storing the data,
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and an up-conversionfiltering may be applied, as the data is needed forfull-resolution MC. This
final architecture is similar in principle to the embedded compression schemes that were mentioned
in the beginning ofthis section. The main difference is that the resolution of the data 1s decreased
rather than compressed. This allows a simpler means of low-resolution display.

17.4.5 Summary of Down-Conversion Decoper

A numberof integrated solutions for a scalable decoder have been presented. Each decoder is
capable of decodingdirectly to a lower resolution using a reduced amount of memoryin comparison
with the memory required by the high-level decoder. The method of frequency synthesis is suc-
cessful in better preserving the high-frequency data within a macroblock, and the filtering that is
used to perform optimal low-resolution MC is capable of minimizing the drift. It has been shown
that a realizable implementation can be achieved, such that the filters for optimal low-resolution
MCare equivalent to an up-conversion, full-resolution MC, and for down-conversion, where the
up-conversion filters are determined by a Moore—Penrose inverse of the down-conversion, The
amountof logic required by these processes is kept minimal since they are realized in a hierarchical
structure. Since the down-conversion and up-conversion processes are linear, the architecture design
is flexible in that equal quality can be achieved with varying levels of system complexity. Thefirst
architecture that we examined came fromthe initial assumptions that were made on the low-
resolution decoder, i.¢., a down-conversion is performed before the adder. It was noted that a full
IDCT computation was required and that a down-conversion must be performed in two places. As
a result, a second architecture was presented to reduce the IDCT computation, and a third was
presented to minimize the amountofinterface with the existing high-level decoder, The major point
here is that the advantages of ARCH2 and ARCH3cannotberealized by a single architecture. The
reasonis that performing a down-conversion in the incoming branch reduces the IDCT computauon;
therefore, a down-conversion must be performed after the full-resolution MC as well. In any case,
equal quality is offered by each architecture and the quality is of commercial grade.

17.4.6 DCT-to-Spatiat TRANSFORMATION

Our objective in this section is to express the following DCT domainrelationship:

M-1 N-I

A(kK)= > S[X,:(2,4)A(2.9)] (17.18)
p=0 q=0

as

M-l N-I

a(i,= > Sx,(s.dals.o)], (17-19)

where A and d are the DCT andspatial output, A and a are the DCTandspatial input, and X and
x are the DCT andspatialfilters, respectively. By definition, the M x N DCTtransformis defined by

M-1 N-1

Ak) =") Yali. swewr() (17.20)
i=0 j=0

and its inverse, the M x N IDCT by

M-1 N-l

a(i,j)=» SA.Dvi (i)w"(/), (17.21)
k=0 /=0
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where the basis function is given by

2 2viz [2aai(k) cos(aoe (17.22)
and

for k=0;
a(k)=4.J/2 = (17.23)

] for k#0.

By substituting Equation 17.22 into the expression for the IDCT yields

a(i, j)= y x wy(iw?)piyXonar)k=0 J/=0 p=0 g=0

(17.24)
M-1 N-| Mf-1 N=I

A(p |, SX(p.a)we(Aw;(4) |:
p=0 g=U k=0 [=0

Substituting the DCTdefinition into the above gives the following,

Af-| N=)|M-1 W-I M-1 N-1

ai./)= >) YY Dalsowywre(TS YS [x(ea) viOw"). 07.25)
p=0 g=0] s=0) r=0 ¥e0 Jed

Finally, Equation 17.17 can be formed with

M-1 W-l {—l yi= Svstovi0] (X,,(p.9): wesw) (17.26)k=0 /[=0 k=0 [=0

and the transformation is fully defined.

17.4.7  Futt-Resotution Motion ComPeNSATION IN MATRIX FORM

In 2-D, a motion compensated macroblock may have contributions from at most four macroblocks
per motion vector. As noted in Figure 17.11, macroblocks a, 6, c, and d include four 8 x 8 blocks
each. These subblocksare raster-scanned so that each macroblock can be represented as a vector.

According to the motion vector, (dx, dy), a local reference, ()';,)2), is computed to indicate where
the origin of the motion compensated block is located; the local reference is determined by

y, =dy-16- [Integer(dy/| 6)-y(dy)]}
(17.27)

y, =dx-16 -[Integer (dx/! 6)—y(dx)],
where

1, if d<0O and dmod16=0
= (17.28)v4) {c otherwise.
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FIGURE 17.11 Relationship between the input and output blocks of the motion compensation process in
the FRD. (From Vetro, A. etal., /EEE Trans. Consumer Elec., 44(3), 1998. With permission.)

Thereference point for this value is the origin of the upper-left-most input macroblock. With
this, the motion-compensated prediction may be expressed as

“ai a

hyh=|7|=[s) sl? se? sin). aeee (17.29)— h, 4 b c il ¢ r eke

hy d

As an example, Figure 17.11 considers (), y) € [0,7], which implies that r = 1. In this case the
motion compensation filters are given by

M M, M, M, Ce 10. DB

she Oy70. 1M; she Mat MM, 8
. 0 Oy OM Ma 6 Oo BB)

0 0 0 M, WO My 8
(17.30)

0 0) V0 0 Thee Os

SOE ew oD aie) Oe OD
€ Me) My 10) 101))" 5 ON hs > ce)

On hi eo) U0 Me sO) Or “Dp
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In the above equations, the M,, M,, My, and M, matrices operate on the relevant 8 x 8 blocks of
a, b, c, and d. Their elements will vary according to the amountof overlap as indicated by (), ¥2)
and the type ofprediction, The type of prediction may be frame based orfield based and is predicted
with half-pixel accuracy. As a result, the matrices $!”, 5{”, 8”, and S\”, are extremely sparse and
may only contain nonzero values of |, 4, and %. For different values of 6y,.¥2) the configuration
of the above matrices will change: y, € [0,7] and y, € [8,15] implies r = 2; y, € [8,15] and y2 €
[0,7] implies r = 3; y,, y € [8,15] implies ¢ = 4. The resulting matrices can easily be formed using
the concepts illustrated in Figure [7.1].

17.5 ERROR CONCEALMENT

17.5.1 BAckGROUND

Practical communications channels available for delivery of compressed digital video are charac-
terized by occasional bit error and/or packetloss, although the actual impairment mechanism varies
widely with the specific medium under consideration. The class of decoder error concealment
schemes described here is based on identification and predictive replacement of picture regions
affected bybit error or dataloss, It is noted that this approachis based on conversion(via appropriate
error/loss detection mechanisms) ofthe transmission medium into an erasure channel in whichall
error or loss events can be identified in the received bit-stream. In a block-structured compression
algorithm such as MPEG,all channel impairments are manifested as erasures ofvideo units (such
as MPEG macroblocksor slices). Concealmentat the decoderis then based on exploiting temporal
and spatial picture redundancyto obtain an estimate of erased picture areas. The efficiency oferror
concealment depends on redundanciesin pictures and on redundancies in the compressed bitstream
that are nol removed by source coding. Block compressionalgorithms do not removea considerable
amountofinter-block redundancies, such as structure, lexture, and motion information about objects
in the scene.

To be more specific, error resilience for compressed video can be achieved throughthe addition
of suitable transport and error concealment methods,as outlined in the system block diagram shown
in Figure 17.12.

The key elements of such a robust video delivery system are outlined below:

* The video signal is encoded using an appropriate video compression syntax such as
MPEG. Notethat wehaverestricted consideration primarilyto the practical case in which
the video compression processitself is not modified, and robustness is achieved through
additive wansport and decoder concealment mechanisms (except for J-frame motion
described in Section 17.4.3). This approach simplifies encoder design, sinceit separates

 
priority layer Noise, ae

inteference pronty

FIGURE17.12 System block diagram of visual communication system.
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media-independent video compression functions from media-dependent transport oper-
ations. On the receiver side, although a similar separation is substantially maintained,
the video decoder must be modified to support an “error token” interface and error
concealmentfunctionality.
Compressed video data is organized into a systematic data structure with appropriate
headersfor identification of the temporal and spatial pixel-domain location of encoded
data (Joseph et al., 1992b). When an erroneous/lost packet is detected, these video units
serve as resynchronization points for resumption of normal decoding, while the headers
provide a means for precisely locating regions of the picture that were not correctly
received. Note that two-tier systems. may require additional transport-level support for
high- and low-priority (HP/LP) resynchronization (Siracusaet al., 1993).

* The video bitstream may optionally be segregated into two layers for prioritized transport
(Ghanbari, 1989; Kishno et al., 1989; Karlsson and Vetterli, 1989, Zdepski et al., 1989;
Joseph et al., 1992a,b; Siracusa, 1993) when a high degreeoferror resilience is required.
Note that separation into high and low priorities may be achieved either by using a
hierarchical (layered) compression algorithm (Ghanbari, 1989; Siracusa, 1993) or by
direct codeword parsing (Zdepski etal., 1989; 1990). Note that both these layering
mechanisms have been accepted for standardization by MPEG-2 (ISO/TEC, 1995).

* Once the temporal and spatial location(s) corresponding to lost or incorrectly received
packets is determined by the decoder, it will execute an error-concealment procedure for
replacement of lost picture areas with subjectively acceptable material estimated from
available picture regions (Harthanck et al., 1986; Jeng and Lee, 1991; Wang and Zhu,
1991). Generally, this error concealment procedure will be applied to all erased blocks
in one-tier (single-priority) transmission systems, while for two-uier (HP/LP) channels
the concealment process may optionally ignore loss of LP data.

* In the following subsections, the technical detail of some commonly used error conceal-
mentalgorithms is provided. Specifically, we focus on the recovery of codeword errors
and errors that affect the pixels within a macroblock.

17.5.2 Error CONCEALMENT ALGORITHMS

In general, design of specific error-concealment strategies depends on the system design, For
example, if two-layered transmission is used, the receiver should be designed to conceal high-
priority error and low-priority error with different strategies. Moreover, if some redundancy (‘‘steer-
ing information”) could be added to the encoderthe concealment could be moreefficient. However,

wefirst assumethat the encoderis defined for maximum compression efficiency, and that conceal-
ment is only performed in the receiver. It should be noted that some exemptions exist for this
assumption. These exemptions includethe use of I-frame motion vectors, scalability concealment,
and limitation ofslice length (to perform acceptable concealment in the pixel domain the limitation
ofslice length exists,i.e., the length ofslices cannot be longer than one rowofpicture). Figure 17.13
shows a block diagram of a generic one/two-tier video decoder with error concealment.

Note that the figure shows two stages of decoder concealment in the codeword domain and
pixel domain, respectively. Codeword domain concealment, in which locally generated decodable
codewords(e.g., B-picture motion vectors, end-of-block code, etc.) are inserted into the bitstream,
is convenient for implementation of simple temporal replacement functions (which in principle can
also be performedin the pixel domain). The secondstage ofpixel domain processingis for temporal
and spatial operations not conveniently done in the codeword domain. Advanced spatial processing
will generally have to be performedin the pixel domain, although limited codeword domain options
can also be identified.
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FIGURE 17.13. MPEG video decoder with error concealment.

17.5.2.1 Codeword Domain Error Concealment

The codeword domain concealment receives video data and error tokens from the transport pro-
cessor/VLD. Under normal conditions, no action is taken and the data are passed along to the video
decoder. When anerror token is received, damaged data are repaired to the extent possible by
insertion of locally generated codewords and resynchronization codes, An error region ID is also
created to indicate the image region to be concealed by subsequent pixel domain processing. Two
mechanisms have been used in codeword domainerror concealment: neglect the effect of lost data
by declaring an end of block (EOB), or replace the lost data with a pseudo-code to handle the
macroblock-types or other VLC codes. If high-level data such as de or macroblock headeris lost,
the codeword domain concealment with pseudo-codes can only provide signal resynchronization
(decodability) and replaces the image scene with a fixed gray level in the error region. Obviously,
further improvement is needed in the video decoder. This task is implemented with the error
concealment in the video decoder. It is desirable to replace erased I- or P-picture regions with a
reasonably accurate estimate to minimize the impact of frame-to-frame propagation.

17.5.2.2 Spatiotemporal Error Concealment

In general, two basic approachesare used for spatial domain error concealment: temporal replace-
ment and spatial interpolation. In temporal replacement, as shown in Figure 17.14, the spatially
corresponding onesin the previously decoded data with motion compensation replace the damaged
blocks in the current frame if motion information is available. This method exploits temporal
redundancyin the reconstructed video signals and provides satisfactory results in areas with small

Frame

Memory

FIGURE 17.14 Error concealment uses temporal replenishment with motion compensation.

revious
decoded current

frame frame

 Concealed data 
Token

IPR2018-01413

Sony EX1008 Page 419



IPR2018-01413 
Sony EX1008 Page 420

394 Image and Video Compression for Multimedia Engineering

 Concealed data CJ good MB
B damaged MB
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FIGURE 17.15 Error concealmentusesspatial interpolation with the data from good neighbors, (From Sun,
H. and Kwok, W. JEEE Trans. Image Proc., 4(4), 470-477, 1995. With permission.)

motion and for which motion vectors are provided. [f motion information Is lost, this method will
fail in the moving areas. In the method ofspatial interpolation as shown in Figure 17.15, the lost
blocks are interpolated by the data from the adjacent nonerror blocks with maximally smooth
reconstruction criteria or other techniques.

In this method, the correlation between adjacent blocksin the received and reconstructed video
signals is exploited. However, severe blurring will result from this method if data in adjacent blocks
are also lost. In an MPEG decoder, temporal replacement outlined above is based on previously
decoded anchor(I, P) pictures that are available in the frame memory. If motion vectors corre-
sponding to pixelsin the erasure region can also be estimated, this temporal replacement operation
can be improved via motion compensation. Also, in the MPEG decoder, groups of video pixels
(blocks, macroblocks, orslices) are separately decoded, so that pixel values and motion information
corresponding to adjacentpicture regions are generally available for spatial concealment. However,
estimation from horizontally adjacent blocks maynot always be useful since cell loss tends to
affect a number of adjacent blocks (due to the MPEG and ATMdatastructures)! also differential
encoding between horizontally adjacentblocks tends to limit the utility of data obtained from such
neighbors. Therefore. most of the usable spatial information will be located in blocks above or
below the damagedregion. Thatis, vertical processing/concealment is found to be most useful due
to the transmission order of the data.

ForI-pictures, the damaged data can be reconstructed byeither temporal replacement from the
previously decoded anchor frame or by spatial interpolation from good neighbors. These two
methods will be discussed later. For P- and B-pictures, the main strategy to conceal the lost data
is to replace the region with pixels from the corresponding (and possibly motion-compensated)
location in the previously decoded anchor. In this replacement the motion vectors play a very
important role. In other words, if “good” estimates of motion information can be obtained, its use
may be the least noticeable correction. Since DPCM coding for motion vectors only exploited the
correlations between the horizontally neighboring macroblocks, the redundancy betweenthe vertical
neighborhood still exists after encoding. Therefore, the lost motion information can be estimated
from the vertical neighbors. In the following, three algorithms that have been developed for error
concealment in the video decoderare described.

Algorithm 1: Spatial interpolation of missing I-picture data and temporal replacement for P-
and B-pictures with motion compensation (Sun et al., 1992a):

For J-pictures, de values of damaged blockare replaced by the interpolation from the closest
top and bottom good neighbors: the ac coefficients of those blocks are synthesized from
the dc values of the surrounding neighboring blocks.

For P-pictures, the previously decoded anchorframes with motion compensation replace the
lost blocks. The lost motion vectors are estimated by interpolation of the ones from the
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top and bottom macroblocks. If motion vectors in both top and bottom macroblocks are
not available, zero motion vectors are used. The same Strategy is used for B-pictures; the
only difference is that the closest anchor frameis used. In other words,the damaged part
of the B-picture could be replaced by either the forward or backward anchor frame,
depending onits temporal position.

Algorithm 2: Temporal replacement of missing I-picture data and temporal replacement for
P- and B-pictures with top motion compensation:

For I-pictures, the damaged blocks are replaced with the colocated onesin the previously
decoded anchorframe.

For P- and B-pictures, the closest previously decoded anchor frame replaces the damaged
part with motion compensation as in the Algorithm 1. The only difference is that the
motion vectors are estimated only from the closest top macroblock insteadofinterpolation
of top and bottom motion vectors. This makes the implementation of this scheme much
easier. If these motion vectors are not available, then zero motion vectors are used.

In the above (wo algorithms, the damaged blocksin an I-picture (anchor frame) are concealed
by two methods: temporal replacementand spatial interpolation. Temporal replacementis able to
provide high-resolution image data to substitute for lost data; however, in motion areas, a big
difference might exist between the current intracoded frame and the previously decoded frame. In
this case, temporal replacement will produce large shearing distortion unless some motion-based
processing can be appliedat the decoder, However,this type of processing is not generally available
since it is a computationally demanding task to compute motion trajectories locally at the decoder.
In contrast, the spatial interpolation approach synthesizes lost data from the adjacent blocks in the
same frame. Therefore, the intraframe redundancy between blocks is exploited, while the potential
problemofsevere blurring due toinsufficient high-order ac coefficients for active areas. To alleviate
this problem, an adaptive concealment strategy can be used as a compromise;this is described in
Algorithm 3.

Algorithm 3: Adaptive spatiotemporal replacement of missing I-picture data and temporal
replacement with motion compensation for P- and B-pictures:

For I-pictures, the damaged blocks are concealed with temporal replacement or spatial
interpolation according to the decision made by the top and bottom macroblocks, which
is shown in Figure 17.16. The decision of which concealment method to use will be based
on the more cheaply obtained measures of imageactivity from the neighboring top and
bottom macroblocks. One candidate for the decision processoris to make the decision
based onprediction errorstatistics measured in the neighborhood, The decision region Is
shownin Figure 17,16, where

VAR =£{(x-3) } (17.31)
VAROR= E[x*|-p’,

a ing mac-

and x is the neighboring good macroblock data, x is the data of theAaie
roblock in the previously decoded frameat the colocated position, i. #ett appreciate
value of the neighboring good macroblock data in the current frame,‘ saci: If VAR >
that VARis indicative of the local motion and VARORofthelocal spat set to 5 in the
VARORand VAR > T, where T is a preset threshold value whieh ©7)var
experiments, the concealment methodis spatial interpolation; if VAR <
T, the concealment method is temporal replacement.
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FIGURE 17.16 Adaptive error concealmentstrategy. (From Sun, H. and Kwok, W., /EEE Trans. Image
Proc., 4(4), 470-477, 1995. With permission.)

It should be noted that the concealment for luminance is performed on a block basis instead
of macroblock basis, while the chrominanceis still on the macroblock basis. The detailed
decisions for the luminance blocks are described as follows:

* If both top and bottom are temporally replaced, then four blocks (0, 1, 2, and 3) are
replaced by the colocated ones (colocated means no motion compensation) in the pre-
viously decoded frame.

* If top is temporally replaced and bottomis spatially interpolated, then blocks 0 and |
are replaced by the colocated onesin the previously decoded anchor frame and blocks
2 and 3 are interpolated from the block boundaries.

* If top is spatially interpolated and bottom is temporally replaced, then blocks 0 and |
are interpolated from the boundaries, and blocks 2 and 3 are replaced by the colocated
onesin the previously decoded anchorframe,

* If both top and bottom are not temporally replaced,all four blocks are spatially inter-
polated.

In spatial interpolation, a maximal smoothing technique with boundary conditions under
certain smoothness measures is used. The spatial interpolation process is carried out with
two steps: the mean value of the damaged block is first bilinearly interpolated with ones
from the neighboring blocks; then spatial interpolation for each pixel is performed with
a Laplacian operator. Minimizing the Laplacian on the boundary pixels using the iterative
process (Wang and Zhu, 1991) enforces the process of maximum smoothness.

For P- and B-pictures a similar concealment methodis used as in Algorithm 2 except motion
vectors from top and bottom neighboring macroblocks are used for top two blocks and
bottom two blocks, respectively.

A schematic block diagram for implementation of adaptive error concealment for intracoded
frames is given in Figure 17.17, Corrupted macroblocksarefirst indicated by error tokens obtained
via the transport interface. Then,a decision regarding which concealment method (temporalreplace-
mentorspatial interpolation) should be usedis based on easily obtained measures of image activity

IPR2018-01413

Sony EX1008 Page 422



IPR2018-01413 
Sony EX1008 Page 423

Application Issues of MPEG-1/2 Video Coding 397

 Intra-coded
Words data

 
  

 
 

 Temporal Spatial 
  

Video

Decoder Error|Region ID

FIGURE 17.17 ‘Two-stage error concealment strategy. (From Sun, H. and Kwok, W., /EEETrans. Image
Proe., 44), 470-477, 1995, With permission.)

 replacement Interpolation

 

from the neighboring (op and bottom macroblocks. The corrupted macroblocksarefirst classified
into twoclasses according to the local activities. If local motion is smaller than spatial detail, the
corrupted macroblocksare defined as the first class and will be concealed by temporal replacement;
Whenlocal motionis greater than local spatial detail, the corrupted macroblocks are defined as the
secondclass and will be concealed by spatial interpolation. The overall concealment procedure
consists of twostages. First, temporal replacement is applied to all corrupted macroblocks of the
first class throughout the whole frame, After the temporal replacementstage, the remaining uncon-
cealed damaged macroblocks ofthe second class are morelikely to be surrounded by valid image
macroblocks. A stage ofspatial interpolation is then performed on them. This will now result in
less blurring, or the blurring will be limited to smaller areas. Therefore, a good compromise between
shearing (discontinuity or shift of edge or line) and blurring can be obtained.

17.5.3. AvGorITHM ENHANCEMENTS

As discussed above, I-picture errors, which are imperfectly concealed, will tend to propagate
throughall framesin the group ofpictures (GOP). Therefore, it is desirable to develop enhancements
for the basic spatiotemporal error concealment technique to improve further the accuracy with
which missing I-picture pixels are replaced. Three new algorithms have been developed for this
purpose. The first is an extension ofthe spatial restoration technique outlined earlier, and is based
on processing of edge information in a large local neighborhoodto obtain better restoration of the
missing data, The second andthird are variations which involve encoder modifications aimed at
improved error concealment performance. Specifically, information such as I-picture pseudo-motion
vectors, or low-resolution datain a hierarchical compression systemare addedin the encoder. These
redundancies can significantly benefit error concealment in the decoders that must operate under
higher cell loss/error conditions, while having a relatively modest impact on nominal image quality,

17.5.3.1 Directional Interpolation

Improvements in spatial interpolation algorithms (for use with MPEG I-pictures) have been pro-
posed (Kwok and Sun, 1993; Sun and Kwok, 1995). In these studies, additional smoothnesscriteria
and/ordirectionalfiltering are used for estimating the picture area to be replaced, The new algo-
rithmsutilize spatially correlated edge information from a large local neighborhood of surrounding
pixels and perform directional or multidirectional interpolation to restore the missing block. The
block diagramillustrating the general principle of the restoration process is shown in Figure 17.18.

Three parts are includedin the restoration processing: edge classification, spatial interpolation,
and pattern mixing. The function of the classifier is to select the top one, two, or three directions
that strongly characterize edge orientations in the surrounding neighborhood. Spatial interpolation
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FIGURE 17.18 The multidirectional edge restoration process. (From Sun, H and Kwok, W., /EEE Trans.
Image Proc., 4(4), 470-477, 1995. With permission.)

is performed for each of the directions determinedby the classifier. For a given direction, a series
of 1-D interpolations are carried out along that direction, All of the missing pixels are interpolated
from a weighted average of good neighborhoodpixels, The weights depend inversely on the distance
from the missing pixel to the good neighborhoodpixels. The purpose of pattern mixing Is to extract
strong characteristic features of two or more images and merge them into one image, whichis then
used to replace the corrupted one. Results showthat these algorithms are capable of providing
subjectively better edge restoration in missing areas, and maythus be useful for I-picture processing
in high-error-rate scenarios. However, the computational practicality of these edge-filtering tech-
niques needs further investigation for given application scenarios.

17.5.3.2 1-Picture Motion Vectors

Motion information is very useful in concealing losses in P- and B-frames, but is not available for
[-pictures. This limits the concealment algorithm to spatial or direct temporal replacement options
described above, which may not always be successful in moving areas ofthe picture. If motion
vectors are made available for all MPEG frames (including intracoded ones) as an aid for error
concealment (Sun etal., 1992a), good error concealment performance can be obtained without the
complexity of adaptive spatial processing. Therefore, a syntax extension has been adopted by the
MPEG-2 where motion vectors can be transmitted in an I-picture as the redundancy for error-
concealment purposes (Sun et al., 1992b). The macroblock syntax is unchanged, however, motion
vectors are interpreted in the following way: the decoded forward motion vectors belong to the
macroblock spatially below the current macroblock, and describe how that macroblock can be
replaced from the previous anchor frame in the event that the macroblock cannot be recovered.
Simulation results have shown that subjective picture quality with I-picture motion vectors is
noticeably superior to conventional temporal replacement, and that the overhead for transmitting
the additional motion vectorsis less than 0.7% ofthe total bit rate at a bit rate of about 6 to 7 Mbps.
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FIGURE 17.19 Block diagram ofspatial scalability with error concealment.

17,5.3.3 Spatial Scalable Error Concealment

This approach for error concealment of MPEG video is based on the scalability (or hierarchy)
feature of MPEG-2 (ISO/IEC, 1995). Hierarchical transmission provides more possibilities for error
concealment, when a corresponding two-tier transmission media is available. A block diagram
illustrating the general principle of coding system withspatial scalability and error concealmentis
shown in Figure 17.19.

It should be noted that the concept of scalable error concealmentis different from the two-tier
concept with datapartitioning. Scalable concealment uses the spatial scalability feature in MPEG-2,
while the two-tier case uses the data partitioning feature of MPEG-2, in whichthe data corresponds
to the same spatial resolution layer but is partitioned to two parts with a breakpoint. In spatial
scalability, the encoder produces (woseparate bitstreams: one for the low-resolution base layer and
another for the high-resolution enhancement. The high-resolution layer is encoded with an adaptive
choice of temporal prediction from previous anchor frames and compatible spatial prediction
(obtained from the up-sampled low-resolution layer) corresponding to the current temporal refer-
ence. In the decoder, redundancies that exist in the scaling data greatly benefit the error concealment
processing. In a simple experiment with spatially scalable MPEG-2, we consider a scenario in
which losses in the high-resolution MPEG-2 video are concealed with information from the low-
resolution layer, Actually, there are two kinds of information in the lower layer that can be used
(0 conceal the data loss in the high-resolution layer: up-sampled picture data and scaled motion
information, Therefore, three error concealment approachesare possible:

1. Up-sampled substitution: Lost data are replaced by colocated up-sampled data in the
low-resolution decoded frame. The up-sampled picture is obtained from the low-resolu-
tion picture with proper up-sampling filter.

2. Mixed substitution: Lost macroblocksin I-picture are replaced by colocated up-sampled
macroblocks in the low-resolution decoded frame, while lost macroblocks in P- and
B-picture are temporally replaced by the previously decoded anchor frame with the
motion vectors for the low-resolution layer. ;

3. Motion vector substitution: The previously decoded anchor frame with the motion vec-
tors replaces lost macroblocks for the low-resolution layer appropriately scaled.

Since motion vectors are not available for I-pictures, obviously, method 3 does not work for
Fpictures (unless I-picture motion vectors, concealment motion vectors, of MPEG-2 are generated
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TABLE 17.4

Subjective Quality Comparison

Picture Material Items Alg 1 Alg 2 Alg 3 Comments

Sull Blurring High None Low Temporal replacement works very well in no-
Shearing None None None motion areas

Artifact blocking Medium None Low

Slow motion Blurnng High None Low Temporal replacement works well in slow-
Shearing None Low Low mouion areas

Artifact blocking Medium None Low

Fast motion Blurring High None Medium=Temporal replacement causes more shearing,

Shearing None High ~=Low spatial interpolation results in blurring, adaptive
Artifact blocking High Low Medium strategy limits blurring in smaller areas

Overall The adaptive strategy of steering (he temporal replacement and spaual iiterpolation according to the

measures of local activity and local motion gives a good compromise between sheanng and blurmng

in encoder), Simulation results have shownthat, on average, the up-sampled substitution outper-
forms the other two, and mixed substitution also provides acceptable results in the case of video
with smooth motion.

17.5.4 SumMArY oF Error CONCEALMENT

In this section, a generalclass of error-concealment algorithms for MPEG video has been discussed.
Theerror-concealment approachesthat have been described are practical for current MPEG decoder
implementations, and have been demonstratedto provide significant robustness. Specifically, it has
been shown that the adaptive spatiotemporal algorithm can provide reasonable picture quality at
cell loss ratios (CLR) as high as 10? when used in conjunction, These results confirm that
compressed video is far less fragile than originally believed when appropriate transport and con-
cealment techniques are employed. The results can be summarized as in Table 17.4.

Several concealment algorithm extensions based on directional filtering, I-picture pseudo-
motion vectors, and MPEG-2scalability were also considered and shown to provide performance
gains that may be usefulin certain application scenarios. In view ofthe practical benefits of robust
video delivery, it is recommendedthat such error resilience functions (along with associated
transport structures) be important for implementation in emerging TV, HDTY, teleconferencing,
and multimedia systemsif the cell loss rates on these transmission systemsare significant. Partic-
ularly for terrestrial broadcasting and ATM networkscenarios, we believe that robust video delivery
based on decodererror concealment is an essential element ofa viable system design.

17.6 SUMMARY

In this chapter, several application issues of MPEG-2are discussed. The most successful application
of MPEG-2 is the U.S. HDTV standard. The other application issues include transcoding with
bitstream scaling, down-conversion decoding, and error concealment. Transcoding is a very inter-
esting topic that convertsthe bitstreams betweendifferent standards. The error concealment is very
useful in the noisy communication channels suchasterrestrial television broadcasting. The down-
conversion decoder respondsto the market requirement during the DTV transition-period and long-
term need for displaying DTV signals on computer monitors.
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17.7 EXERCISES

17-1. In DTV applications, describe the advantages and disadvantages of interlaced format
and progressive format. Explain why the computer industry favors progressive format
and TV manufacturers like interlaced format.

17-2, Do all DTV formats have square pixel format? Why is square pixel format important
for digital television?

17-3. The bitstream scaling is one kind of transcoding; according to your knowledge, describe
several other kinds of transcoding (such as MPEG-1 to JPEG) and proposea feasible
solution to achieve the transcoding requirements.

17-4. What type of MPEG-2 frames will cause a higher degree of error propagation if errors
occur? What technique oferror concealment is allowed by the MPEG-2 syntax? Using
this technique, perform simulations with several images to determine the penalty in the
case of no errors.

17-5. To reduce thedrift in a down-conversion decoder, what coding parameters can be chosen
at the encoder? Will these actions affect the coding performance?

17-6, What are the advantages and disadvantages of a down-conversion decoderin the fre-
quency domain andspatial domain?
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| 8 MPEG-4 Video Standard:
Content-Based Video Coding

This chapter provides an overview of the ISO MPEG-4 standard. The MPEG-4 work includes
natural video, synthetic video, audio and systems. Both natural and synthetic video have been
combined into a single part of the standard, whichis referred to as MPEG-4 visual (ISO/IEC,
1998a). It should be emphasized that neither MPEG-1 nor MPEG-2 considers synthetic video (or
computer graphics) and the MPEG-4is also thefirst standard to consider the problem of content-
based coding. Here, we focus on the video parts of the MPEG-4 standard.

18.1 INTRODUCTION

As we discussed in the previous chapters, MPEG has completed two standards: MPEG-! that was
mainly targeted for CD-ROM applications up to 1,5 Mbps and MPEG-2 fordigital TV and HDTV
applications at bit rates between 2 and 30 Mbps. In July 1993, MPEGstarted its new project,
MPEG-4, whichwastargeted at providing technology for multimedia applications. Thefirst working
draft (WD) was completed in November 1996, and the committee draft (CD) of version 1 was
completed in Novernber 1997. The draft international standard (DIS) of MPEG-4 was completed
in Novemberof 1998, and the international standard (IS) of MPEG-4 version 1 was completed in
February of 1999. The goal of the MPEG-4 standard is to provide the core technology thatallows
efficient content-based storage, transmission, and manipulationof video, graphics, audio, and other
data within a multimedia environment. As we mentioned before, there exist several video-coding
standards such as MPEG-1/2, H.261, and H.263. Why do we need a new standard for multimedia
applications? In other words, are there any newaltractive features of MPEG-4 that the current
standards do not have or cannot provide? The answer is yes, The MPEG-4 has many interesting
features that will be described later in this chapter. Some of these features are focused on improving
coding efficiency; some are used to provide robustness of transmission and interactivity with the
end user, However, among these features the most important one is the content-based coding.
MPEG-4 is the first standard (hat supports content-based coding ofaudio visual objects. For content
providers or authors, the MPEG-4 standard can provide greater reusability, flexibility, and man-
ageability of the content that is produced. For network providers, MPEG-4 will offer transparent
information, which can be interpreted and translated into the appropriate native signaling messages
of each network. This can be accomplished with the help of relevant standards bodies that have
the jurisdiction. For end users, MPEG-4 can provide much functionality to make the user terminal
have more capabilities of interaction with the content. To reach these goals, MPEG-4 has the
following important features: = ae Pp

The contents such as audio, video, or data are represented in the formofprimitive audio visual
objects (AVOs). These AVOs can be natural scenes or sounds, whichare recorded by video camera
or synthetically generated by computers.

The AVOs can be composed together to create compound AVOsorscenes.
The data associated with AVOs can be multiplexed and synchronized so that they can be

transported through network channels with certain quality requirements.

403
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18.2 MPEG-4 REQUIREMENTS AND FUNCTIONALITIES

Since the MPEG-4 standard is mainly targeted at multimedia applications, there are many require-
ments to ensurethatseveral important features and functionalities are offered. These features include
the allowance of interactivity, high compression, universal accessibility, and portability of audio
and video content. From the MPEG-4 video requirement document, the main functionalities can
be summarized by the following three aspects: content-based interactivity, content-based efficient
compression, and universal access.

18.2.1 COnNTENT-BASED INTERACTIVITY

In addition to provisionsfor efficient coding of conventional video sequences, MPEG-4 video has
the following features of content-based interactivity.

18.2.1.1 Content-Based Manipulation and Bitstream Editing

The MPEG-4 supports the content-based manipulation and bitstream coding without the need for
transcoding. In MPEG-1 and MPEG-2,there is no syntax and no semantics for supporting true
manipulation and editing in the compressed domain. MPEG-4 provides the syntax and techniques
to support content-based manipulation and bitstream editing. The level of access, editing, and
manipulation can be doneat the object level in connection with the features of content-based
scalability,

18.2.1.2 Synthetic and Natural Hybrid Coding (SNHC)

The MPEG-4 supports combining synthetic scenes or objects with natural scenes or objects. This
is for “compositing” synthetic data with ordinary video, allowing for interactivity. The related
techniques in MPEG-4 for supporting this feature include sprite coding, efficient coding of 2-D
and 3-D surfaces, and wavelet coding forstill textures.

18.2.1.3. Improved Temporal Random Access

The MPEG-4providesandefficient method to access randomly, within a limited time, and with
the fine resolution parts, e.g., video framesorarbitrarily shaped image objects from an audiovisual
sequence. This includes conventional random access at very low bit rate. This feature is also
important for content-based bitstream manipulation and editing.

18.2.2 Conrtent-Basep Erricient COMPRESSION

Oneinitial goal of MPEG-4is to provide a highlyefficient coding tool with high compression at
very low bit rates. But this goal has nowextended to a large range ofbit rates from 10 Kbps lo
5 Mbps, which covers QSIF to CCIR601 video formats, Two important items are included in this
requirement.

18.2.2.1 Improved Coding Efficiency

The MPEG-4 video standard provides subjectively better visual quality at comparable bit rates
compared with the existing or emergingstandards,including MPEG-1/2 and H.263. MPEG-4 video
contains many new tools, which optimize the code in different bit rate ranges. Some experimental
results have shown that it outperforms MPEG-2 and H.263at the low bit rates. Also, the content-
based coding reachesthe similar performanceof the frame-based coding.
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18.2.2.2 Coding of Multiple Concurrent Data Streams

The MPEG-4 provides the capability of coding multiple views ofa sceneefficiently. For stereo-
scopic video applications, MPEG-4 allows the ability to exploit redundancy in multiple viewing
points of the same scene, permitting joint coding solutions that allow compatibility with normal
video as. well as the ones without compatibility constraints.

18.2.3) Usiversat Access

The another important feature of the MPEG-4 video is the feature of universal access.

18,2.3.1 Robustness in Error-Prone Environments

The MPEG-4 video provides strong error robustness capabilities to allow access to applications
over a variety of wireless and wired networks and storage media, Sufficient error robustness is
provided for low-bit-rate applications under severe error conditions (e.g., long error bursts).

18.2.3.2 Content-Based Scalability

The MPEG-4 video provides the ability to achieve scalability with fine granularity in content,
quality (c.g., spatial and temporal resolution), and complexity. These scalabilities are especially
intended to result in content-based scaling of visual information.

18.2.4 Summary of MPEG-4 Features

From above description of MPEG-4features, it is obvious that the most important application of
MPEG-4 will be in a multimedia environment. The mediathat can use the coding tools of MPEG-4
include computer networks, wireless communication networks, and the Internet. Although it can
also be used for satellite, terrestrial broadcasting, and cable TV, these are still the territories of
MPEG-2 video since MPEG-2 already has made sucha large impactin the market. A large number
of silicon solutions exist and its technology is more mature compared with the current MPEG-4
Standard. From the viewpoint of coding theory, we can say there is no significant breakthrough in
MPEG-4 video compared with MPEG-2 video. Therefore, we cannot expect to have a significant
improvement of codingefficiency when using MPEG-4video over MPEG-2. Even though MPEG-4
Optimizes its performance in a certain range ofbil rates, its major strengthis that it provides more
functionality than MPEG-2. Recently, MPEG-4 added the necessary tools to support interlaced
material. With this addition, MPEG-4 video does support all functionalities already provided by
MPEG-1 and MPEG-2, including the provision to compressefficiently standard rectangular-sized
video at different levels of input formats, frame rates, and bit rales.

Overall, the incorporation of an object- or content-based coding structure is the feature that
allows MPEG-4 to provide more functionality. It enables MPEG-4 to provide the most elementary
mechanism for interactivity and manipulation with objects of images or video in the compressed
domain without the need for further segmentation or transcoding at the receiver, since the receiver
can receive separate bitstreams for different objects contained in the video. To achieve content-
based coding, the MPEG-4 usesthe concept of a video object plane (VOP). It is assumed that each
frame of an input video is first segmentedinto a set of arbitrarily shaped regions or VOPs. Each
such region could covera particular image or video objectin the scene. Therefore, the input to the
MPEG-4 encoder can be a VOP, and the shape andthe location of the VOP can vary from frame
to frame. A sequence of VOPsis referred to as a video object (VO). The different Mee ee
encodedinto separate bitstreams. MPEG-4 specifies demultiplexing and composition syntax whic
provide the tools for the receiver to decode the separate VO bitstreams and composite them into a
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FIGURE18.1 Video object definition and format: (a) video object, (b) VOPs.

frame. In this way, the decoders have moreflexibility to edit or rearrange the decoded videoobjects.
The detailed technical issues will be addressed in the following sections.

18.3 TECHNICAL DESCRIPTION OF MPEG-4 VIDEO

18.3.1 Overview or MPEG-4 VipbEO

The major feature of MPEG-4 is to provide the technology for object-based compression. which
is capable of separately encoding and decoding video objects. To explain the idea of object-based
coding clearly, we should reviewtheset of video object-related definitions. An image scene may
contain several objects. In the example of Figure 18.1, the scene contains the background and two
objects. The time instant of each video object is referred to as the VOP. The concept of a vO
provides a numberof functionalities of MPEG-4, which are either impossible or very difficult in
MPEG-! or MPEG-2 video coding. Each video object is described by the information of texture,
shape, and motion vectors. The video sequence can be encoded in a way that will allow the separate
decoding and reconstruction of the objects and allowthe editing and manipulation of the original
scene by simple operation on the compressedbitstream domain. The feature of object-based coding
is also able to support functionality such as warping of synthetic or natural text, textures, image,
and video overlays on reconstructed video objects.

Since MPEG-4 aimsat providing coding tools for multimedia environments, these tools not
only allow one to compress natural video objectsefficiently, but also to compress synthetic objects,
which are a subset ofthe larger class of computer graphics. The tools of MPEG-4 video includes
the following:

* Motion estimation and compensation
* Texture coding
* Shape coding
* Sprite coding
+ Interlaced video coding
* Wavelet-based texture coding

Generalized temporal and spatial as well as hybrid scalability
* Errorresilience.

.

The technical details of these tools will be explainedin the followints: sections.
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18.3.2 Motion Estimation AND COMPENSATION

For object-based coding, the coding task includes two parts: texture coding and shape coding. The
current MPEG-4 video texture coding is still based on the combination of motion-compensated pre-
diction and translorm coding. Motion-compensated predictive coding is a well-known approach for
video coding. Motion compensationis used to removeinterframe redundancy, and transform coding
is used to remove intraframe redundancy, as in the MPEG-2 video-coding scheme. However, there are
lots of modifications and technical details in MPEG-4 for coding a very wide range of bit rates.
Moreover, MPEG-4 coding has been optimized for low-bit-rate applications with a number of new
tools, In other words, MPEG-4 video coding uses the most common coding technologies, such as
motion compensation and transform coding, but at the sametime, it modifies some traditional methods
such as advanced motion compensationand also creates some new features, such as sprite coding.

The basie technique to pertorm motion-compensated predictive coding for coding a video
sequence js mouon estimation (ME), The basic ME method used in the MPEG-4 video codingis
sull the block-matching technique. The basic principle of block matching for motion estimation is
to find the best-matched block in the previous frame for every block in the current frame. The
displacement of the best-matched block relative to the current block is referred to as the motion

vector (MV), Positive values for both motion vector components indicate that the best-matched
block is on the bottom right of the current block. The motion-compensated prediction difference
block is formed by subtracting the pixel values of the best-matched block from the current block,
pixel by pixel. The difference block is then coded by a texture-coding method. In MPEG-4 video
coding, the basic techniqueof texture coding is a discrete cosine transformation (DCT). The coded
motion vector information and difference block information is contained in the compressed bit-

stream, which is transmitted to the decoder. The majorissues in the motion estimation and com-
pensation are the same as in the MPEG-1 and MPEG-2 which include the matching criterion, the

size ofsearch window(searching range), the size of matching block,the accuracy of motion vectors
(one pixel or half-pixel), and inter/intramode decision. We are not going to repeat these topics and
will focus on the new features in the MPEG-4 video coding. The feature of the advanced motion
prediction is a new tool of MPEG-4 video. This feature includes two aspects: adaptive selection
of 16 = 16 block or four 8 x 8 blocks to matchthe current 16 x 16 block and overlapped motion
compensation for luminance block.

18.3.2.1 Adaptive Selection of 16 x 16 Block or Four 8 x 8 Blocks

The purpose of the adaptive selection of the matching block size is to enhance coding efficiency
further. The coding performance may be improvedat lowbit rate since the bits for coding prediction
difference could be greatly reduced at the limited extra cost for increasing motion vectors. Of
course, if the cost of coding motion vectors is too high, this method will not work. The decision
in the encoder should be very careful. For explaining the procedure of how to make decisions, we
define { C(i,j), i,j = 0, 1...., N— 1} to be the pixels ofthe current block and {P,/), iJ = 0, 1, en
N—~1) to bethe pixels in the search windowin the previous frame. The sumof absolute difference
(SAD)is calculated as

N=! N-I

Y Vek.) PG-7 ifsy)=(0.0)
SADy(%)=4 got (18.1

= SYlet.i)- P(i+x,j+y)] otherwise,
f=0 j=0

where (x, y) is the pixel within the range of searching window, and T is a positive constant. The
following steps then make the decision:
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Step 1: To find SAD,.(MV,, MV);
Step 2: To find SAD,(MV1,, MV1,), SAD,(MV2,, MV2,), SAD,(MV3,, MV3,), and

SAD,(MV4,, MV4,),
Step 3: If

¥sap,(mv,.mv,) < SAD,,(MV,,MV,)—128,
=l

then choose 8 x 8 prediction; otherwise, choose 16 x 16 prediction.

If the 8 x 8 prediction is chosen, there are four motion vectors for the four 8 x 8 luminance
blocks that will be transmitted. The motion vector for the two chrominance blocksis then obtained

by taking an average of these four motion vectors and dividing the average value by a factor of
two. Since each motion vector for the 8 x 8 luminance block has half-pixel accuracy, the motion
vector for the chrominance block may have a sixteenth pixel accuracy.

18.3.2.2 Overlapped Motion Compensation

This kind of motion compensation is always used for the case of four 8 x 8 blocks. The case of
one motion vector for a 16x 16 block can be considered as having four identical 8 x 8 motion
vectors, each for an 8 x 8 block. Each pixel in an 8 x 8 of the best-matched luminanceblockis a
weighted sum of three prediction values specified in the following equation:

P'(id) = (Alii): a(i.j)+ H,(i.j): (ii) + A,(i.J)-s(i.J))/8. a)

where division is with round-off. The weighting matrices are specified as:
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It is noted that H(i,j) + H,(i,j) + H,(i,j) =8forall possible(i,j). The value of (i,j), r(@J). and
s(i,j) are the values of the pixels in the previous frame at the locations,
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q(i,j) = oi +MV°,j+ mv),

r(i,j) = pli+ MV}, j+ MV}), (18,3)

s(i,j) = p(i+ MV?, [+ MV?),

where (MV°, MYV,’) is the motion vector ofthe current 8 x 8 luminance block p(i,/), (MV, MV;')
is the motion vector ofthe block either above (for j = 0,1,2,3) or below (for j = 4,5,6,7) the current
block and (MV? MV?) is the motion vectorofthe block either to the left (for i = 0,1,2,3) or right
(for i= 4,5,6,7) ofthe current block. The overlapped motion compensation can reducethe prediction
noise at a certain level.

18.3.3. Texture CopInc

Texture coding is used to code the intra-VOPs and the prediction residual data after motion
compensation, The algorithmfor video texture coding is based on the conventional 8 x 8 DCT with
motion compensation. DCT is performed for each luminance and chrominance block, where the
motion compensation is performed only on the luminance blocks. This algorithm is similar to those
in H.263 and MPEG-1 as well as MPEG-2. However, MPEG-4 video texture coding has to deal
with the requirement of object-based coding, which is not included in the other video-coding
standards. In the following we will focus on the new features of the MPEG-4 video coding. These
new features includethe intra-DC and ACprediction for I-VOP and P-VOP,the algorithm of motion
estimation and compensation for arbitrary shape VOP, and the strategy of arbitrary shape texture
coding. The definitions of I-VOP, P-VOP, and B-VOPare similar to the I-picture, P-picture, and
B-picture in Chapter 16 for MPEG-| and MPEG-2.

18.3,3.1  Intra-DC and AC Prediction

In the intramode coding, the predictive coding is not only applied on the DC coefficients but also
the AC coefficients to increase the coding efficiency. The adaptive DC prediction involves the
selection of the quantized DC (QDC)value of the immediately left block or the immediately above
block. Theselection criterion is based on comparison ofthe horizontal and vertical DC gradients
around the block to be coded. Figure 18.2 shows the three surrounding blocks “A,” “B," and “C"
to the current block “X” whose QDCis to be coded where block “A”, “B,” and “C”are the
immediately left, immediately left and above, and immediately above block to the “X,” respectively.
The QDCvalue of block “X,” QDCy, is predicted by either the QDC value of block “A,” QDC,,

Macroblock 
FIGURE 18.2 Previous neighboring blocks used in DC prediction. (From ISOMEC 14496-2 Video Verifi-
cation Model V,12, N2552, Dec. 1998. With permission.)
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or the QDCvalue of block “C,” QDC,, based on the comparison of horizontal and vertical gradients
as follows:

If jQDC, - QDC,| <|QDC, -QDC,|, QDC, = QDC,; asa)
Otherwise QDC,=QDC,.

The differential DC is then obtained by subtracting the DC prediction, QDC,, from QDC\y. If any
of block “A”, “B,” or “C” are outside of the VOP boundary, or they do not belong to an intracoded
block, their QDC value are assumed to take a value of 128 (if the pixel is quantized to $ bits) for
computing the prediction. The DC prediction is performed similarly for the luminance and each
or the two chrominance blocks.

For AC coefficient prediction, either coefficients from the first row or the first column of a
previous coded block are used to predict the cosited (same position in the block) coefficients in
the current block. On a block basis, the samerule for selecting the best predictive direction (vertical
or horizontal direction) for DC coefficients is also used for the AC coelficient prediction. A
difference between DC prediction and AC prediction is the issue of quanuizauion seale, All DC
values are quantized to the 8 bits for all blocks. However, the AC coefficients may be quantized
by the different quantization scales for the different blocks. To compensate for differences in the
quantization of the blocks used for prediction, scaling ofprediction coefficients becomes necessary.
The prediction is scaled by the ratio of the current quantization step size and the quantizauion step
size of the block used for prediction. In the cases when ACcoefficient prediction results in a larger
range of prediction errors as compared withthe original signal, it is desirable to disable the AC
prediction. The decision of AC prediction switched on or offis performed on a macroblock basis
instead of a block basis to avoid excessive overhead. The decision for switching on or off AC
prediction is based on a comparison ofthe sumofthe absolute values of all AC coclficients to be
predicted in a macroblock and that oftheir predicted differences. It should be noted that the same
DC and ACprediction algorithm is used for the intrablocks in the intercoded VOP.If any blocks
used for prediction are not intrablocks, the QDC and QAC values used for prediction are set to
128 and 0 for DC and AC prediction, respectively.

18.3.3.2 Motion Estimation/Compensation of Arbitrarily Shaped VOP

In previous sections we discussed the general issues of motion estimation (ME) and motion
compensation (MC). Here we are going to discuss the ME and MC for coding the texture in the
arbitrarily shaped VOP.In an arbitrarily shaped VOP,the shape information is given by either binary
shape information or alpha componentsofa gray-level shape information.If the shape information
is available to both encoder and decoder, three important modifications have to be considered for
the arbitrarily shaped VOP. Thefirst is for the blocks, which are located in the border of VOP. For
these boundary blocks, the block-matchingcriterion should be modified. Second,a special padding
technique is required for the reference VOP.Finally, since the VOPs have arbitrary shapes rather
than rectangular shapes, and the shapes change fromtimeto time, an agreement on a coordinate
system is necessary to ensure the consistency of motion compensation, At the MPEG-4 video, the
absolute frame coordinate system is used for referencing all of the VOPs. At each particular lime
instance, a bounding rectangle that includes the shape ofthat VOPis defined. The position of uppet
left corner in the absolute coordinate in the VOP spatial reference is transmitted to the decoder.
Thus, the motion vector for a particular block inside a VOPis referred to as the displacement of
the block in absolute coordinates.

Actually, the first and second modifications are related since the padding of boundary blocks
will affect the matching of motion estimation. The purpose of padding aims at more accurate block
matching. In the current algorithm, the repetitive padding is applied to the reference VOP for
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performing motion estimation and compensation. The repetitive padding process is performed as
the following steps:

Define any pixel outside the object boundary as a zero pixel.
Scan each horizontal line of a block (one 16x 16 for luminance and two 8 x 8 for chromi-

nance), Eachscanline is possibly composed oftwo kinds ofline segments: zero segments
and nonzero segment, Il is obvious that our task is to pad zero segments. There are two
kinds of zero segments: (1) between an end point of the scan line and the endpoint of a
nonzero segment, and (2) between the end points of two different nonzero segments. In
the first case, all zero pixels are replaced by the pixel value of the end pixel of nonzero
segment; lor the second kind of zero segment, all zero pixels take the averaged value of
the two end pixels ofthe nonzero segments,

Scan each vertical ine of the block and perform the identical procedure as described for the
horizontal line.

If a zero pixel is located at the intersection of horizontal and vertical scan lines, this zero
pixel takes the average of two possible values.

For the rest of zeropixels, find the closest nonzero pixel on the same horizontal scan line
and the same vertical scan line (if there is a lie, the nonzero pixel on theleft or the top
of the current pixel is selected). Replace the zero pixel by the average of these two nonzero
pixels.

For a fast-moving VOP, padding is further extended to the blocks outside the VOP but imme-
diately next to the boundary blocks. These blocks are padded by replacing the pixel values of
adjacent boundary blocks. This extended padding is performed in both horizontal and vertical
directions. Since block matching is replaced by polygon matching for the boundary blocksofthe
Current VOP, the SADvaluesare calculated by the modified formula:

SY Ylis)= lel alis-€ i e9) = (00)
SAD,(x. y)=4 ho hel (18.5)

» Sei, i)- pit x,j+y)- ai, j)-C—otherwise,
iQ j=l)

 

where C = N,/2 + | and Ng is the numberofpixels inside the VOPand in this block and a(7,/) 1s
the alpha component specifying the shape information, and it is not equal to zero here.

18.3.3.3 Texture Coding of Arbitrarily Shaped VOP

During encoding the VOPis represented by a bounding rectangle that is formed to PE
video object completely but with minimum number ofmacroblocks in it, as shown inpeThe detailed procedure of VOP rectangle formation is given in MPEG-4 video VM ( ‘

ee i itrar th sroblocks that
There are three types of macroblocks in the VOP with arbitrary shape: the macro 3 :

are completely located inside of the VOP, the macroblocksthat are located along the boundary 0
the VOP, and the macroblocks outside of the boundary. For the first kind of macroblock, there is
no need for any particular modified technique to code them and just use of soe
entropy coding of quantized DCT coefficients such as coding algorithm in H.263 is su ie : s :
second kind of macroblocks, which are located along the boundary, contains two kinds o ' x
blocks: the blocks lie along the boundary of VOPand the blocks do not belong ie the apes
shapebut lie inside the rectangular bounding box of the VOP, The second kind of blocksare referre
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Bounding box

Shape Video object plane
Macroblock

inside VOP Boundarymacroblock

Macroblock
outside VOP  

FIGURE 18.3 A VOPis represented by a bounding rectangular box

to as transparent blocks. For those § x 8 blocks that do lie along the boundary of VOP, there are
two different methods that have been proposed: low-pass extrapolation (LPE) padding and shape-
adaptive DCT (SA-DCT). All blocks in the macroblock outside of boundary are also referred to
as transparent blocks. The transparent blocks are skipped and not coded at all.

1. Low-pass extrapolation padding technique: This block-padding technique is applied to
intracoded blocks, which are not located completely within the object boundary. To
perform this padding technique wefirst assign the mean value of those pixels that are
located in the object boundary (both inside and outside) to each pixel outside the object
boundary. Then an average operation is applied to each pixel p(i.j) outside the object
boundary starting from the upper-left corner of the block and proceeding rowby rowto
the lower-right corner pixel:

Pli..j) =[p(i. 5-1) + pli-1,/)+ lig +1) lit L))/4. (18.6)

If one or more of the four pixels used forfiltering are outside of the block, the corre-
sponding pixels are not considered for the average operation andthe factor 4 is modified
accordingly.

2. SA-DCT: The shape-adaptive DCTis only applied to those 8 x 8 blocks that are located
on the object boundary ofan arbitrarily shaped VOP. Theidea of the SA-DCTis to apply
1-D DCTtransformation vertically and horizontally according to the number of active
pixels in the row and column ofthe block, respectively. The size of each vertical DCT
is the same as the numberofactive pixels in each column.After vertical DCTis performed
for all columns with at least one active pixel, the coefficients of the vertical DCTs with
the same frequencyindexare lined up in a row. The DCcoefficients ofall vertical DCTs
are lined upin thefirst row,the first-order vertical DCT coefficients are lined up in the
second row, and so on. After that, horizontal DCTis applied to each row. As the same
as for the vertical DCT, the size of each horizontal DCT is the same as the number of
vertical DCT coefficients lined up in the particular row. The final coefficients of SA-
DCTare concentrated into the upper-left corner of the block. This procedure is shown
in the Figure 18.4.

Thefinal numberof the SA-DCTcoefficientsis identical to the numberofactive pixels of the
image. Since the shape information is transmitted to the decoder, the decoder can perform the
inverse shape-adapted DCTto reconstructthe pixels. The regular zigzag scan is modified so that
the nonactive coefficient locations are neglected when counting the runs for the run-length coding
of the SA-DCT coefficients.It is obvious that for a block with all 8 x 8 active pixels, the SA-DCT
becomes a regular 8 x 8 DCT andthe scanningofthe coefficients is identical to the zigzag scan.
All SA-DCTcoefficients are quantized and coded in the same way as the regular DCT coefficients
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FIGURE 18.4 [ilustration of SA-DCT. (From ISO/IEC 14496-2 Video Verification Model V.12, N2552,
Dec. 1998. With permission.)

employing the same quantizers and VLC code tables. The SA-DCT is not included in MPEG-4
video version |, but it is being considered for inclusion into version 2.

18.3.4 SHarpe Covina

Shape information of the arbitrarily shaped objects is very useful not only in the field of image
analysis, computer vision, and graphics, but also in object-based video coding. MPEG-4 video
coding is the first to make an effort to provide a standardized approach to compress the shape
information of objects and contain the compressed results within a video bitstream. In the current
MPEG-4 video coding standard, the video data can be coded on an object basis. The information
in the video signal is decomposed to shape, texture, and motion. This information is then coded
and transmitted within the bitstream, The shape information is provided in binary format or gray
scale format. The binary format of shape information consists of a pixel map, which is generally
the same size as the bounding box of the corresponding VOP. Each pixel takes on one of two
possible values indicating whether it is located within the video object or not, The gray scale format
is similar to the binary format with the additional feature that each pixel can take on a range of
values, i.c., times an alphavalue. Alpha typically has a normalized value of O to 1, The alpha value
can be used to blend two images on a pixel-by-pixel basis in this way: new pixel = (alpha)(pixel A

color) + (1 — alpha)(pixel B color). ; .
Now let us discuss howto code the shape information. As we mentioned, the shape information

is classified as binary shape orgray scale shape. Both binary and gray scale shapes are referred to
as an alpha plane. The alpha plane defines the transparency of an object. Multilevel alpha maps
are frequently used to blend different images. A binary alpha map defines whether or nol a pixel
belongs to an object. The binary alpha planes are encoded by modified content-based arithmetic
encoding (CAE), while the gray scale alpha planes are encoded by motion-compensated DCT
coding, whichis similar to texture coding. For binary shape coding, a rectangular box enclosing
the arbitrarily shaped VOP is formed as shownin Figure 18.3. The bounded rectangle box is then
extended in both vertical and horizontal directions on the right-bottom side to the multiple ol

16 x 16 blocks. Each 16 x 16 block within the rectangular box is referred to as binary alpha block
(BAB). Each BABis associated with colocated macroblock. The BAB can beclassified as three

types: transparent block, opaque block, and alpha or shape block, The transparent block does 9h
contain any information about an object. The opaque blockis entirely located inside the object.
The alpha or shapeblockis located in the area ofthe object boundary; i.e.a part of blockis inside
of object and therest of block is in background. The value of pixels in the transparent region Is
zero, For shape coding,the type information will be included in the bitstream and soles to o
decoder as a macroblock type. But only the alpha blocks need to be processed by the encoder an
decoder. The methodsused for each shape format contain several encoding modes. For oe
the binary shape information can be encoded using either an intra- or intermode. Bach of wee
modes can be further divided into lossy and lossless options. Gray scale shape information also
contains intra- and intermodes; however, only a lossy option is used.
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FIGURE 18.5 Template for defining the context ofthe pixel, X, to be coded in intramode. (From ISO/IEC
14496-2 Video Verification Model V.12, N2552, Dec. 1998, With permission.)

 
18.3.4.1 Binary Shape Coding with CAE Algorithm

As mentioned previously, the CAE is used to code each binary pixel of the BAB. For a P-VOP,
the BAB may be encoded in intra- or intermode. Pixels are coded in scan-line order, ic., row by
row for both modes. The process for coding a given pixel includes three steps: (1) compute a
context number, (2) index a probability table using the context number, and (3) use the indexed
probability to drive an arithmetic encoder. In intramode, a template of 10 pixels is used to define
the causal context for predicting the shape value ofthe current pixel as shown in Figure 18.5, For
the pixels in the top and left boundary of the current macroblock, the template of causal context
will contain the pixels of the already transmitted macroblocks on the top and onthe left side of
the current macroblock. For the two rightmost columns ofthe VOP, each undefined pixel such as
C,, C;, and C,, of the context is set to the value of its closest neighbor inside the macroblock, 1.e.,
C, will take the value of Cy and C, and C, will take the value of C,.

A 10-bit context is calculated for each pixel, X as

Geee (18.7)

This causal context is used to predict the shape value ofthe current pixel. For encoding the state
transition, a context-based arithmetic encoder is used. The probability table of the arithmetic encoder
for the 1024 contexts was derived from sequences that are outside ofthe test set. Two bytes are
allocated to describe the symbol probability for each context; the table size is 2048 bytes. To
increase codingefficiency and rate control, the algorithm allows lossy shape coding. In lossy shape
coding a macroblock can be down-sampled by a factor of two or four resulting in a subblock of
size 8 x 8 pixels or 4 x 4 pixels, respectively, The subblockis then encoded using the same method
as for full-size block. The down-sampling factor is included in the encoded bitstream and then
transmitted to the decoder. The decoder decodes the shape data and then up-samples the decoded
subblock to full macroblock size according to the down-sampling factor. Obviously, it is more
efficient to code shape using a high down-samplingfactor, but the coding errors may occur in the
decoded shape after up-sampling. However, in the case of low-bit-rate coding, lossy shape coding
may be necessary since the bit budget may not be enough for lossless shape coding. Depending
on the up-samplingfilter, the decoded shape can look somewhatblocky. Several up-samplingfillers
were investigated. The best-performing filter in terms of subjective picture quality is an adaplive
nonlinear up-sampling filter. It should be noted that the coding efficiency of shape coding also
depends on the orientation of the shape data. Therefore, the encoder can choose to code the block
as described aboveor transpose the macroblockpriorto arithmetic coding. Of course, the transpose
information has to be signaled to the decoder.

For shape coding in a P-VOP or B-VOP,the intermode may be used to exploit the temporal
redundancy in the shape information with motion compensation. For motion compensation, a 2-D
integer pixel motion vector is estimated using full search for each macroblock in order to minimize
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FIGURE 18.6 Template for defining the context of the pixel, X, to be coded in intermode. (From ISO/IEC
14496-2 Video Verification Model, N2552, Dec. 1998. With permission.)

the prediction error between the previously coded VOP shape and the current VOP shape. The
shape motion vectors are predictively encoded with respect to the shape motion vectors of neigh-
boring macroblocks, If no shape motion vector is available, texture motion vectors are used as
predictors. The template for intermode differs from the one used for intramode. The intermode
template contains 9 pixels among which 5 pixels are located in the previous frame and 4 are the
current neighbors as shownin Figure 18.6.

The intermode template defines a context of 9 pixels. Accordingly, a 9-bit context or 512
contexts, can be computed in a similar way to Equation 18.7:

x

c=esa. (18.8)
£=0

The probability for one symbol is also described by 2 bytes giving a probability table size of
1024 bytes. The idea of lossy coding can also be applied to the intermode shape coding by down-
sampling the original BABs. For intermode shape coding, the total bits for coding the shape consist
of two parts, one part for coding motion vectors and another for prediction residue. The encoder
may decide that the shape representation achieved by just using motion vectors is sufficient; thus
bits for coding the prediction error can be saved. Actually, there are seven modesto code the shape
information ofeach macroblock: (1) transparent, (2) opaque,(3) intra, inter (4) with and (3) without
shape motion vectors, and inter (6) with and (7) without shape motion vectors and prediction error
coding. These different options with optional down-sampling and transposition allow for encoder
implementations ofdifferent coding efficiency and implementation complexity. Again, this is a
problemofencoder optimization, which does not belong to the standard,

18,3.4.2 Gray Scale Shape Coding

The gray scale shape information is encoded by separately encoding the shape and transparency
information as shownin Figure 18.7, For a transparent object, the shape information1s referred to
as the support function and is encoded using the binary shape-coding method. The transparency
or alpha valuesare treated as the texture of luminance and encoded using padding, motion com-
pensation, and the same 8 x 8 block DCT approach for the texture coding. For an object wa
varying alpha maps, shape information is encodedin two steps. The boundary of the objectis first
losslessly encoded as a binary shape, and then the actual alpha mapis encoded as texture coding,

The binary shape coding allows one to describe objects with constant transparency, while gray
Scale shape coding can be used to describe objects with arbitrary transparency, providing for mote
flexibility for image composition. One application exampleis a gray scale alpha shape thatae
of a binary alpha shape with the value around the edges tapered from 255. to 0 to ae : as
smooth composition with the background. The description of each video object layer inclu BS €
information to give instruction for selecting one of six modes for feathering, These six modes
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Gray-scale

Alpha

 
FIGURE 18.7 Gray scale shape coding.

include (1) no effects, (2) linear feathering, (3) constant alpha, (4) linear feathering and constant
alpha, (5) feathering filter, and (6) feathering filter and constant alpha. The detailed description of
the function of these modesare givenin the reference of version 12 (ISO/IEC, 1998b).

18.3.5 Sprite CODING

As mentioned previously, MPEG-4 video has investigated a number of newtools, which attempt
to improve the codingefficiency at low bit rates compared with MPEG-1/2 video coding. Among
these tools, sprite coding is an efficient technology to reach this goal. A sprite is a specially
composed video objectthat is visible throughout an entire piece of video sequence. For example,
the sprite generated from a panning sequence containsall the visible pixels of the background
throughoutthe video sequence. Portions of the background maynot be seen in certain frames due
to the occlusion of the foregroundobjects or the camera motion. This particular example is one of
the static sprites. In other words,a static sprite is a possible still image. Since the sprite contains
all visible background scenesofa segment video sequence where the changes within the background
content are mainly caused by camera parameters, the sprite can be used for direct reconstruction
of the background VOPsoras the prediction of the background VOPs within the video segment,
The sprite-coding technology first efficiently transmits this background to the receiver and then
stores il in a frame at both encoder and decoder. The camera parameters are then transmitted to
the decoder for each frame so that the appropriate part of the background scene canbe either used
as the direct reconstructionorasthe prediction of the background VOP. Both cases cansignificantly
save the codingbits and increase the coding efficiency, There are two typesofsprites, static sprite
and dynamic sprite, which are being considered as coding tools for MPEG-4 video.A static sprite
is used for a video sequence in which the objects in a scene can be separated into foreground
objects and a static background.A static sprite is a special VOP, which is generated by copying
the background from a video sequence. This copying includes the appropriate warping and cropping.
Therefore,astatic sprite is alwaysbuilt off-line. In contrast, a dynamic sprite is dynamically built
during the predictive coding.It can be built either online or off-line. The static sprite has shown
significant coding gain over existing compression technology for certain video sequences. The
dynamic sprite is more complicated in the real-time application due to the difficulty of updating
the sprite during the coding. Therefore, the dynamic sprite has not been adopted by version | of
the standard, Additionally, both sprites are not easily applied to the generic scene content. Also,
there is another kind ofclassification of sprite coding according to the methodofsprite gencration,
namely, off-line and online sprites. Off-line is always used for stalic sprite generation. Off-line
sprites are well suited for synthetic objects and objects that mostly undergo rigid motion. Online
sprites are only used for dynamicsprites. Online sprites provide a no-latency solution in the case
of natural sprite objects. Off-line dynamicsprites provide an enhanced predictive coding environ-
ment. The sprite is built with a similar way in both off-line and online methods. In particular, the
same global motion estimation algorithm is exploited. The difference is that the off-line sprite 3S
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FIGURE 18.8 Block diagramof encoder of wavelet-based texture coding, DWT standsfor discrete wavelet
transform,

Other bands

built before starting the encoding process while,in the online sprite case, both the encoderand the
decoder build the same sprite from reconstructed VOPs. This is why the online dynamic sprites
are more complicated in the implementation, The online sprite is not included in version 1, and
will most likely not be considered for version 2 either. In sprite coding, the chrominance components
are processed in the same way as the luminance components, with the properly scaled parameters
according to the video format.

18.3.6 INTERLACED Vipeo CopING

Since June of 1997, MPEG-4 has extendedits application to support interlaced video. Interlaced
video consists of twofields per frame, whichare referred to as the even field and the odd field.
MPEG-2 has a numberoftools, which are used to deal withfield structure of video signals. These
tools include ftrame/field-adaptive DCT coding and frame/field-adaptive motion compensation,
However,the field issue in MPEG-4 has to be considered on a VOP basis instead of the conventional

frame basis. Whenfield-based motion compensationis specified, two field motion vectors and the
corresponding reference fields are used to generate the prediction from each reference VOP. Shape
information has to be considered in the interlaced video for MPEG-4.

18.3.7. Waveter-Baseo Texture CODING

In MPEG-4 there is a texture-coding mode which is used to codethe texture orstill image such
as in JPEG. The basic technique used in this mode is wavelet-based transform coding, The reason
for adopting wavelet transform instead of DCTfor still texture coding 1s not only its high coding
efficiency, but also because the wavelet can provide excellent scalability, both spaual scalability
and SNRscalability. Since the principle of wayelet-based transform codingfor imagecompression
has been explained in Chapter8, we just briefly describe the coding procedure ofthis mode. The
block diagram of the encoder is shownin Figure 18.8.

18.3.7.1_ Decomposition of the Texture Information

The texture or still image is first decomposed into bands using a bank of analysis filters. This
decomposition can be applied recursively on the obtained bands to yield a decomposition tree of
subbands. An example of decomposition to depth 2 is shown in Figure 18.9.

#4 [13u)
2 4) 5y JG

FIGURE 18.9 An exampleof wavelet decomposition of depth 2.
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FIGURE 18.10 Adaptive DPCM codingofthe coellicients in the lowest band.

18.3.7.2 Quantization of Wavelet Coefficients

After decomposition, the coefficients of the lowest band are coded independently ofthe other bands.
These coefficients are quantized using a uniform midriser quantizer. The coelfhcients of high bands
are quantized with a multilevel quantization, The multilevel quantization provides a very flexible
approach to support the correct trade-off between levels and type of scalability, complexity, and
coding efficiency for any application. All quantizers for the higher bands are uniform midrise
quantizers with a dead zone thatis twice the quantizer step size. The levels and quantization steps
are determined by the encoder and specified in the bitstream. To achieve scalability, a bi-level
quantization schemeis used for all multiple quantizers. This quantizer is also uniform and midrise
with a dead zone that is twice the quantization step, The coefficients outside of the dead zone are
quantized to | bit. The number ofquantizers is equal to the maximum number ofbit planesin the
wavelet transform representation. In this bi-level quantizer, the maximum numberofbit planes
instead of a quantization step size is specified in the bitstream.

18.3.7.3. Coding of Wavelet Coefficients of Low—Low Band and Other Bands

The quantized coefficients at the lowest band are DPCMcoded, Each of the current coefficients Is
predicted from three other quantized coefficientsin its neighborhood in a way shownin Figure 18.10.

The coefficients in high bands are coded with the zerotree algorithm (Shapiro, 1993), which
has been discussed in Chapter8.

18.3.7.4 Adaptive Arithmetic Coder

The quantized coefficients and the symbols generated by the zerotree are coded using an adaptive
arithmetic coder, In the arithmetic coder three different tables which correspond to the different
statistical models have been utilized. The method used here is very similar to one in Chapter8.
Further detail can be found in MPEG-4 (ISO/IEC, 1998a).

18.3.8 GENERALIZED SPATIAL AND TEMPORAL SCALABILITY

Thescalability frameworkis referred to as generalized scalability that includes the spatial and the
temporal scalability similar to MPEG-2. The majordifference is that MPEG-4 extends the concept
of scalability to be content based. This unique functionality allows MPEG-4 to be able to resolve
objects into different VOPs. By using the multiple VOPstructure, different resolution enhancement
can be applied to different portions of a video scene, Therefore, the enhancement layer may only
be applied to a particular object or region ofthe base layer instead of to the entire base layer. This
is a feature that MPEG-2 does nothave.

In spatial scalability, the base layer and the enhancement layer can have different spatial
resolutions. The base-layer VOPs are encoded in the same way as the nonscalable encoding
technique described previously, The VOPs in the enhancement layer are encoded as P-VOPs or
B-VOPs, as shownin Figure 18.11. The current VOP in the enhancement layer can be predicted
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FIGURE 18.11 Illustration of spatial scalability.
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FIGURE 18.12 An example of temporal scalability. (From [ISO/IEC 14496-2 Video Verification Model V.12,
N2552. Dec. 1998. With permission.)

fromeither the up-sampled base layer VOP or the previously decoded VOPat the samelayer as
well as both of them. The down-sampling and up-sampling processing in spatial scalability is not
a part of the standard and can be defined by the user.

In temporalscalability, a subsequence of subsampled VOPinthe time domainis coded as a base
layer. The remaining VOPs can be coded as enhancementlayers. In this way, the frame rate ofa .
selected object can be enhanced so thatit has a smoother motion than other objects. An example of
temporalscalability is illustrated in Figure 18.12. In Figure 18.12, the VOL,is the entire frame with
both an object and a background, while VOL, is a particular object in VOL,. VOL,is encoded with
a low frame rate and VOL,is the enhancement layer. The high frame rate can be reached for the
Particular object by combining the decoded data from both the base layer and the enhancementlayer.
Of course, the B-VOPis also used in temporalscalability for coding the enhancementlayer, which
is another type of temporal scalability. As in spatial scalability, the enhancement layer can be used
to improveeither the entire base layer frame resolution or only a portion of the base layerresolution.

18.3.9 Error RESILIENCE

The MPEG-4 visual coding standard provides error robustness andresilience to allow access of
image and video data over a wide range of storage and transmission media. The error resilience
tool developmenteffort is divided into three major areas, which include resynchronization, data
recovery, and error concealment. As with other coding standards, MPEG-4 makes heavy use of
variable-length coding to reach high coding performance. However, if even | bit.is lost or damaged,
the entire bitstream becomes undecodable due to loss of synchronization. The resynchronization

tools attempt to enable resynchronization betweenthe decoder and the bitstreamafter a transmission
error or errors have been detected, Generally, the data between the synchronization point prior to
the error andthefirst point, where synchronizationis reestablished, are discarded, The purpose of
resynchronizationis to localize effectively the amount of data discarded by the decoder; then the
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other methods such as error concealment can be used to conceal the damaged areas of a decoded

picture. Currently, the resynchronization approach adopted by MPEG-4is referred to as a packet
approach. This approachis similar to the group of block (GOB) structure used in H.26] and H.263.
In the GOBstructure, the GOB contains a start code, which provides the location information of

the GOB, MPEG-4 adopted a similar approachin which a resynchronization markeris periodically
inserted into the bitstream atthe particular macroblock locations. The resynehronization markeris
used to indicate the start of new video packet. This marker is distinguished fromall possible VLC
codewords as well as the VOP start code. The packet header information is then provided at the
start of a video packet. The header contains the information necessary to restart the decoding
process. This includes the macroblock number of the first macroblock contained in this packet and
the quantization parameter necessary to decode the first macroblock. The macroblock number
provides the necessary spatial resynchronization while the quantizauion parameter allows the dif-
ferential decoding process to be resynchronized. [t should be noted that whenerror resilience 1s
used within MPEG-4, some ofthe compressionefficiency tools need to be modified. For example,
all predictively encoded information must be contained within a video packet to avoid error
propagation. In conjunction with the video packet approachto resynchronization, MPEG-4has also
adopted a fixed-interval synchronization method which requires that VOP start-codes and resyn-
chronization markers appear only at legal fixed-interval locations in the bitstream. This will help
to avoid the problems associated with start-code emulation. In this case, when fixed-interval
synchronization is utilized, the decoder is only required to search for a VOPstart-code at the
beginning of each fixed interval. The fixed-interval synchronization method extends this approach
to any predetermined interval.

After resynchronization is reestablished, the major problemis recovering lost data, A newtool
called reversible variable-length codes (RVLC) is developed for the purpose of data recovery. In
this approach, the variable-length codes are designed such that the codes can be read both jn the
forward and the reverse direction. An example of such a code includes codewords like 111, 101,
010. All these codewords can beread reversibly. However, it is obvious that this approach will
reduce the coding efficiency that is achieved by the entropy coder. Therefore, this approachis used
only in the cases where errorresilience is important.

. Error concealment is an important component of any error-robust video coding, The error-
concealmentstrategy is highly dependenton the performance ofthe resynchronization technique.
Basically, if the resynchronization method can efficiently localize the damageddata area, the error
concealmentstrategy becomes much moretractable. Error concealment is actually a decoderissue
if there is no additional information provided by the encoder. There are many approaches to error
concealment, which are referred to in Chapter 17.

18.4 MPEG-4 VISUAL BITSTREAM SYNTAX AND SEMANTICS

The common feature of MPEG-4 and MPEG-1/MPEG-2is the layered structure ofthe bitstream.
MPEG-4 defines a syntactic description language to describe the exact binary syntax of an audio-
visual object bitstream, as well as that of the scene description information, This provides a
consistent and uniform way to describe the syntax in a very precise form, while at the same time
simplifying bitstream compliancetesting. The visual syntax hierarchy includes the following layers:

* Video session (VS)

Video object (VO)
Video object layer (VOL) or texture object layer (TOL)
Groupof video object plane (GOV)
Video object plane (VOP)

A typical video syntax hierarchy is shown in Figure }8,13.
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Video Session Vs,

Visual Object VO,
o Vo,

Video Object Layer VO. VOL,
—____

Group of Video Object Plane GOV, Goy,

SS
Video Object Plane VOP, VOP, VOPn+1 WOP,

FIGURE 18.13 MPEG-4 video syntax hierarchy,

The video session (VS) is the highest syntactic structure of the coded video bitstream. A VS
is a collection of one or more VOs, A VO can consist of one or more layers, Since MPEG-4 is
extended from video coding to visual coding, the type of visual objects not only includes video
objects, but also still texture objects, mesh objects, and face objects. These layers can be either
video or texture. Sull texture coding 1s designed for high-visual-quality applications in transmission
and rendering oftexture. The still coding algorithm supports a scalable representation of image or
synthetic scene data such as luminance, color, and shape. This is very useful for progressive
transmission of images or 2-D/3-D synthetic scenes. The images can be gradually built up in the
terminal monitoras they are received. The bitstreams for coded meshobjects are nonscalable; they
define the structure and motion of a 2-D mesh. The texture of the mesh has to be coded asa separate

Video object. The bitstreams for face objects are also nonscalable; these bitstreams contain the face
animation parameters. VOs are coded with different types of scalability. The base layer can be
decoded independently and the enhancementlayers can only be decoded with the base layer. In
the special case ofa single rectangular VO,all of the MPEG-4 layers can be related to MPEG-2
layers. That is, VS is the same as VOsincein this case a single VO is a video sequence, VOL or
TOLis the sameas the sequence scalable extension, GOV is like the GOP, and VOPis a video
frame. VO sequence may contain one or more VOs coded concurrently. The vO header information
contains the start code followed byprofile and level identification and a VO identification toindicate
the type of object, which may be a VO, a still texture object, a mesh object, ora face object. The
VO may contain one or more VOLs. In the VOL, the VO can be coded with spatial or temporal
scalability. Also, the VO maybe encodedin several layers from coarseto fine resolution. Depending
on the application need, the decoder can choose the numberoflayers to decode. A VO ata specified
timeis called a video object plane (VOP). Thus, a VO contains many VOPs. A scene may contain
many VOs. Each VO can be encodedto an independentbitstream. A collection of VOPs ina VOL
is called a group of VOPs (GOV). This concept corresponds to the group of pictures (GOP) in
MPEG-| and MPEG-2. A VOPis then coded by shape coding andtexture coding, which is specified
at lowerlayers of syntax, such as the macroblock and block layer. The VOP or higher-than-VOP
layer always commenceswitha start code and is followed by the data of lower layers, whichis
similar to the MPEG-! and MPEG-2 syntax.

18.5 MPEG-4 VIDEO VERIFICATION MODEL

Since all video-coding standards define only the bitstream syntax and decoding process, the use of
test models to verify and optimize the algorithmsis needed during the developmentprocess. For
this purpose a commonplatform with a precise definition of encoding and decoding algorithms
has to be provided, The test model (TM) of MPEG-2 took the above-mentioned role. The TM of
MPEG-2 was updated continually from version 1.0 to version 5.0, until the MPEG-2 Video IS
(International Standard) was completed. MPEG-4 videousesa similartool during the development

IPR2018-01413

Sony EX1008 Page 447



IPR2018-01413 
Sony EX1008 Page 448

422 Image and Video Compression for Multimedia Engineering

process; this tool in MPEG-4is called the Verification Model (VM), So far, the MPEG-4 video
YM has gradually evolved fromversion 1.0 to version 12.0 and in the process has addressed an
increasing number of desired functionalities such as content-based scalability, error resilience,
coding efficiency, and so on. The material presented in this section is different from Section 18,3
Section 18.3 presented the technologies adopted or that will be adopted by MPEG-4, while this
section provides an example of howto use the standard, for example. how to encode or generate
the MPEG-4-compliant bitstream. Of course, the decoderis also included in the VM.

18.5.1 VOP-Basep ENCODING AND DecopiNnGc Process

Since the most important feature of MPEG-4 is an object-based coding method, the input video
sequenceisfirst decomposedinto separate VOs, these VOsare then encoded into separate bitstreams
so that the user can access and manipulate (cut, paste, etc.) the video sequence in the bitstream
domain. Instances of VOs in a given time are called a video object plane (VOP), The bitstream
also contains the composition information to indicate where and when each VOP ts to be displayed.
At the decoder, the user may be allowed to change the composition of the scene displayed by
interactively changing the composition information.

18.5.2 Vipeo ENcoper

For object-based coding, the encoderconsists mainly of two parts: the shape coding andthetexture
coding of the input VOP, The texture coding is based on the DCT coding with traditional motion-
compensated predictive coding. The VOPis represented by means of a bounding rectangular as
described previously. The phase between luminance and chrominance pixels of the bounding
rectangular has to be correctly set to the 4:2:0 format as in MPEG-1/2. The block diagram of
encoding structure is shown in Figure 18.14_

The core technologies used in VOP coding of MPEG-4 have been described previously. Here
we are going to discuss several encoding issucs, Although these issues are essential to the perfor-
manceand application, they are not dependenton the syntax. As a resull, they are not included as
normative parts of the standard, but are included as informative annexes.

——VOPofarbitrary shape

 
 

Shape information 
 Motion information

 
VOP

FIGURE 18.14 Block diagram of MPEG-4 video encoderstructure.
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18.5.2.1 Video Segmentation

Object-based coding is the most important feature of MPEG-4. Therefore, the tool for object
boundary detection or segmentation is a key issuein efficiently performing the object-based coding
scheme. Bul the method of decomposing a natural scene to several separate objects is not specified
by the standard since it is a preprocessing issue, There are currently two kinds of algorithms for
segmentation of video objects. One kind ofalgorithm is an automatic segmentation algorithm. In
the case ofreal-time applications, the segmentation must be done automatically. Real-time automatic
segmentation algorithms are currently not mature. An automatic segmentation algorithm has been
proposed in MPEG96/M960(Colonnese and Russo, 1996). This algorithm separates regions cor-
responding to moving objects [rom regions belonging to a static background for each frame of a
video sequence. The algorithmis based on a motion analysis for each frame, The motion analysis
is performed along several frames to track each pixel ofthe current frame and to detect whether
the pixel belongs to the moving objects.

Another kind of segmentation algorithms is one that is user assisted or “semiautomatic.” In
non-real-time applications, the semiautomatic segmentation may be used effectively and give better
results than the automatic segmentation, In the core experiments of MPEG-4, a semiautomatic
segmentation algorithm was proposed in MPEG97/M3147 (Choi et al., 1997). The block diagram
of the semiautomatic segmentation is shown in Figure 18.15.

This technique consists of two steps. First, the intraframe segmentation is applied to the first
frame, whichis considered as a [rame that cither contains newly appeared objects or a reset frame.
Then the interframe segmentationis applied to the consecutive frames. For intraframe, the segmen-
lation is processedby a user manually or semiautomatically. The user uses a graphicaluser interface
(GUI) to draw the boundaries of objects of interest. The user can mask the entire objects all the
Way around objects using a mouse with a predefined thickness ofthe line (numberof pixels). A
marked swathis then achieved by the mouse, and this marked area is assumed to contain the object
boundaries. A boundary-detection algorithm is applied to the marked areato create the real object
boundaries. For interframe segmentation, an object boundary-tracking algorithmis proposed to
obtain the object boundaries of the consecutive frames. At first, the boundary of the previous object
is extracted and the motion estimation is performed on the object boundary. The object boundary

Input video

 
  Intra-frame segmentationin initially

marked region around object boundary
by user via GUI  
 
 Inter-frame segmentation by

object boundary tracking  

 
Unsatisfactory results or

shot boundary occur?   
 

Yes

FIGURE18.15 Block diagramofa user-assisted VO segmentation method.
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of the current frameis initially obtained by motion compensation and thenrefined by using temporal
information and spatial information all the way around the object boundary. Finally, the refined
object boundary can be obtained. As mentioned previously, the segmentation technique is an
important tool for object-based processing in MPEG-4, but it is not defined by the standard. The
method described here is just an example provided by the core experiments of MPEG-4, Thereare
many other algorithms underinvestigation, such asthe circular Viterbi algorithm described by Lin
etal. (1998),

18.5.2.2 Intra/Intermode Decision

For inter-VOP coding, a macroblock can be coded in one of four modes. These four modes include
direct coding mode, forward coding, backward coding, and bidirectional coding. In the encoder
we have to decide which modeis the best. The mode decision is an important part of encoding
optimization. An example of the selection of an optimized mode decision has been given in
Chapter 17 for an MPEG-2 encoder. The same technique can be extended to an MPEG-4 encoder.
The basic idea of mode decision is to choose the coding mode that results in the best operation
point on the rate-distortion curve. For obtaining the best operation point on the rate-distortion
curve, the encoder has to compare all possible coding modes and choose the best one. This is a
yery complicated procedure. In the MPEG-2 case, we used a quadratic model to unify the measures
of bits used to code prediction residues and the mouon vectors, A simplified mode but near-
optimized mode decision method has resulted. Here, the VM.12 proposes the following steps to
make coding modedecisions.First, the motion-compensated prediction erroris calculated by each
of the four modes. Next, the SAD of each of the motion-compensated prediction macroblocksis
calculated and compared with the variance of the macroblock twbe coded. Then, a mode of
generating the smallest SAD (for direct mode, a bias is applied) is selected. For the interlaced
video, more coding modes are involved. This method of mode decision is simple, but 1 is not
optimal since the cost for coding motion vectors is not considered. Consequently, the mode may
not lie on the best operation point on the distortion curve. But again, this is an encoding issue; the
encoding designers have the freedom to use their own algorithm. The VMjust provides an example
of an encoderthat can generate the compliantbitstream.

18.5.2.3 Off-Line Sprite Generation

Thesprite is a useful tool in MPEG-4 for coding a certain kind of video sequences at very lowbit
rates. The method of generating a sprite for a video sequence is an encoder issue. The VM gives
an exampleofoff-line sprite generation. For a natural VO,a sprite is referred to as a representalive
view collected from a video sequence. Before decoding, the sprite is transmitted to the decoder.
Then the motion compensation can be performed by usingthe sprite from which the video can be
reconstructed. The effectiveness of video reconstruction depends on whether the motion of the
object can beeffectively represented by a global motion modelsuch as translation, zooming,affine,
and perspective. The key technology of the sprite generation is the motion estimation to find
perspective motion parameters. This can be implemented by many algorithms described in this
book such as the three-step matching technique. The block diagram ofsprite generation using the
perspective motion estimation is shown as in Figure 18.16.

The sprite is generated from the input video sequence by the following steps. First, the first
frame is used as the initial value of sprite. From the second frame, the motion estimationis applied
to find the perspective motion parameters between two frames. The current frame is wrapped toward
the initial sprite using the perspective motion vectors to get wrapped image, Then the wrapped
image is blended with initial sprite to obtain a updated sprite. This procedure is continued to the
entire video sequence. The final sprite is then generated.
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VOP

Sprite 
FIGURE 18.16 Block diagram of sprite generation.

18.5.2.4 Multiple VO Rate Control

As we know, the purpose ofrate control is to obtain the best coding performance for a given bit
rate in constant-bil-rate video coding, In MPEG-4 video coding, there is an additional objective
for rate control: how to assign the bits among multiple VOs. In the multiple VO video codingrate
control algorithm, the total target is first adjusted based on the buffer fullness, and then distributed
Proportional to the size ofthe object, the motion whichthe objectis experiencing,and its maximum
absolute differences. Based on the newindividual targets and second-order model parameters (Lee
etal., 1997), appropriate quantization parameters can be calculated for each VO. To compromise
the trade-offs in spatial and temporal coding, two modesofoperation have been introduced. With
these modes, suitable decisions can be madeto differentiate between low- and high-bit-rate coding.
In addition, a shape rate control algorithm has been included. The algorithm for performing the
JOINt rate control can be decomposed into a preencoding stage and a postencoding stage. The
preencoding stage consists of (1) the target bit estimation, (2) joint buffer control, (3) pre-frame-
skip control, and (4) the quantization level and alpha threshold calculation. The postencoding stage
consists of (1) updating the rate-distortion model, (2) post-frame-skip control, and (3) determining
the mode of operation. The initialization process is very similar to the single VOPinitialization
process. Since a single buffer is used, the buffer drain rate and initializations remain the same, but
many ofthe parameters are extended to vector quantities, As a means ofregulating the trade-offs
between spatial and temporal coding, two modesofoperation are introduced: low mode and high
mode. When encodingat high bit rates, the availability of bits allows the algorithmto be flexible
in ils target assignment to each VO. Under these circumstances,it is reasonable to impose homo-
geneous quality among each VO. Therefore, the inclusion of MAD2*[i] is essential to the target
distribution and should carry the highest weighting. On the other hand, when the availability of
bits is limited, it is very difficult (if not impossible) to achieve homogeneous quality among the
VOs. Under these conditions, it is desirable to spend fewerbits on the background and more bits
on the foreground. Consequently, the significance of the variance has decreased and the significance
of the motion has increased. Besides regulating the quality within each frame, it is also important
lo regulate the temporal quality as well, i.e., to keep the frame skipping to a minimum. In high
mode,this is very easy to do sincethe availability of bits is plentiful. However, in low mode, frame-
Skipping occurs much more often. In fact, the numberof frames being skipped is a good indication
in which mode the algorithm should be operating. Overall, this particular algorithm is able to
achieve the target bit rate successfully, effectively code arbitrarily shaped objects, and maintain a
stable buffer (Vetroet al., 1999).
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FIGURE18.17. VOP decoderstructure.

18.5.3 Vipeo Decoper

The decoder mainly consists of three parts: shape, motion, and texture decoding. The decoder block
diagram is shown in Figure 18.17. At the decoderthe bitstreamis first demultiplexed into shape
information and motion information as well as texture information. The reconstructed VOP 1s

obtained by the right combination of the shape, texture, and motion information. The shape decoding
is a unique feature of the MPEG-4 decoder. The basic technology of shape decoding is context-
based arithmetic decoding and block-based motion compensation.

The primary data structure is denoted is the binary alpha block (BAB). The BAB is a square
block of binary pixels representing the opacity or transparency for the pixels in a specified block-
shapedspatial region of size 16 x 16 pixels whichis colocated with each texture macroblock. The
block diagram of a texture decoder is shown in Figure 18.18.

Texture decoding is similar to the video decoder in MPEG-1I/2 except for inverse DC/AC
prediction and more quantization methods. The DC prediction is different from the one used in
MPEG-1/2. In MPEG-4 the DC coefficient is adaptively predicted from the above block or left
block. The AC prediction is similar to the one used in H.263 but is not used in the MPEG-1/2. For
motion compensation, the motion vectors must be decoded. The horizontal and vertical motion

vector components are decoded differentially by using a prediction from the spatial neighborhood
consisting of three motion vectors already decoded. The final motion vector is obtained by adding
the prediction motion vector values to the decoded differential motion values. Also, in MPEG-4
video coding the several advanced motion compensation modes, such as four 8 x 8 motion vector
compensation and overlapped motion compensation, have to be handled. Another issue of mouon
compensation in MPEG-4is raised by VOP-based coding. To perform motion-compensated pre-
diction on a VOPbasis, a special padding technique is used for each of macroblock that lies on
the shape boundary of the VOP. The padding process definesthe values of pixels, whichare located
outside the VOP for prediction of arbitrarily shaped objects. Padding for luminance pixels and
chrominance pixels is defined in the standard (ISO/IEC, 1998a). The additional decoding issues

Reconstructed VOP

Inverse
DC /AC

Prediction 
 

 Motion

Compensation

FIGURE18.18 Block diagram of texture decoding.
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Which are special for MPEG-4include sprite decoding, generalized scalable decoding, and still
texture decoding. We do not gointofurther detail for these topics. Interested readers can getdetail
from the standard documents. The outputs of decoded results are the reconstructed VOPsthat are
finally sent to the compositor. In the compositor, the VOPs are recursively blended in the order
specified by the VOP composition order, [t should be noted that the decoders could take advantage
of object-based decoding. They are able to be flexible in the composition of the reconstructed VOPs
suchas reallocating, rotation, or otherediting actions.

18.6 SUMMARY

In this chapter, the new video-coding standard, MPEG-4 is introduced. The unique feature of
MPEG-4 yideois content-based coding. This feature allows the MPEG-4 to provide muchfunc-
honality, which other video-coding standards do not have. The key technologies used in MPEG-4
video are described. These technologies provide basic tools for MPEG-4 video to provide object-
based coding functionality, Finally, the video verification model, a platform of MPEG-4 develop-
ment and an encoding and decoding example,is described.

18.7 EXERCISES

18-1. Whyis object- or content-based coding the most important feature of MPEG-4 visual
coding standard? Describe several applications for this feature.

18-2. What are the newcoding tools in MPEG-4 visual coding that are different from MPEG-2
video coding? Is MPEG-4 backward compatible with MPEG-2?

18-3. MPEG-4 video coding has the feature ofusing either a 16 x 16 block motion vector or
an 8 * 8 block motion vector. For what kind of video sequences will the 8x 8 block
motion increase coding efficiency? For what kind of video sequences will the 8 x 8
block motion compensation decrease the coding efficiency?

18-4. What approaches for error resilience are supported by the MPEG-4 syntax? Make a
comparison withthe error resilience method adopted in MPEG-2 (supported by MPEG-2
syntax), and indicate their relative advantages and disadvantages. «J

18-5. Design an arithmetic coder for zerotree coding and write a programto test it with several
images. af

18-6. The Sprite is a new feature of MPEG-4 video coding, MPEG-4 specifies the syntax eos
sprite coding, but does not give any detail about how to generate a sprite. Conduct a
project to generate an off-line sprite fora video sequence and use it for coding the video
sequence, Do you observe any increased coding efficiency? When do you expectto see
such an increase? :

18-7. Shape coding (binary-shape coding) is an important part of MPEG-4 due to ees
coding. Besides the shape coding method used in MPEG-4, name another shape co -
method. Conducta project to compare the method you know with the meted ee
in MPEG-4.(Donot expectto get better performance, bul expectto reduce the complexity.)
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