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Preface

[tis well knownthat in the 1960s the advent of the semiconductor computerand the space program
swiftly brought the field ofdigital image processing into public focus. Since then the field has
experienced rapid growth and has entered into every aspect of modern technology. Since the early
1980s, digital image sequence processing has been an attractive research area because an image
sequence, as a collection of images, may provide more information than a single image frame. The
increased computational complexity and memory space required for image sequence processing
are becoming more attainable, This is due to more advanced, achievable computational capability
resulting from the continuing progress made in technologies, especially those associated with the
VLSIindustry and information processing.

In addition to image and image sequence processing in the digitized domain, facsimile trans-
mission has switched from analog to digital since the 1970s. However, the conceptofhigh definition
television (HDTV) whenproposed in the late 1970s and early 1980s continued to be analog. This
has since changed, In the U.S., the first digital system proposal for HDTV appeared in 1990. The
Advanced Television Standards Committee (ATSC), formed by the television industry, recom-
mended the digital HDTY system developed jointly by the seven Grand Alliance members as the
standard, which was approved by the Federal Communication Commission (FCC) in 1997. Today's
worldwide prevailing concept of HDTV 1s digital. Digital television (DTV) provides the signal that
can be used in computers. Consequently, the marriage of TV and computers has begun, Direct
broadcasting by satellite (DBS), digital video disks (DVD), video-on-demand (VOD), video games,
and other digital video related media and services are available now, or soon will be.

As in the case of image and video transmission andstorage, audio transmission and storage
through some media have changed from analog to digital. Examples include entertainment audio
on compact disks (CD) and telephone transmission over long and medium distances. Digital TV
signals, mentioned above, provide another example since they include audio signals, ‘Transmission
and storage of audio signals through some other media are about to change to digital, Examples
ofthis include telephone transmission through local area and cable TY.

Although most signals generated from various sensors are analog in nature, the switching from
analog to digital is motivated by the superiority of digital signal processing and transmission over
their analog counterparts, The principal advantage ofthe digital signal is ils robustness against
various noises. Clearly, this results from the fact that only binary digits exist in digital format and
it 1s mucheasier to distinguish one state from the other than to handle analog signals.

Anotheradvantageofbeing digital is ease of signal manipulation. In addition to the development
ofa variety ofdigital signal processing techniques (including image, video, andaudio) andspecially
designed software and hardware that may be well known, the following development Is an example
of this advantage. The digitized information format, i-e., the bitstream, often in a compressed
version, is a revolutionary change in the video industry that enables many manipulations which
are either impossible or very complicated to execute in analog format. For instance, video, audio,
and other data can befirst compressed to separate bitstreams and then combined to form a signal
bitstream, thus providing a multimedia solution for many practical applications. Information from
different sources and to different devices can be multiplexed and demultiplexed in terms ofthe
bitstream. Bitstream conversion in terms ofbit rate conversion, resoluuion conversion, and syntax

conversion becomes feasible. In digital video, content-based coding, retrieval, and manipulation
and the ability to edit video in the compressed domain becomefeasible. All system-timing signals
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in the digital systems can be included in the bitstream instead of being transmitted separately as
in traditional analog systems.

The digital format is well suited to the recent development of modern telecommunication
structures as exemplified by the Internet and World Wide Web (WWW), Therefore, we can seethat
digital computers, consumerelectronics (including television and video games), and telecommu-
nications networks are combined to produce an information revolution, By combining audio, video,
and other data, multimedia becomesanindispensable element of modern life, While the pace and
the future of this revolution cannot be predicted, one thing is certain: this process is going to
drastically change many aspects of our world in the next several decades.

One of the enabling technologies in the information revolution is digital data compression,
since the digitization of analog signals causes data expansion. In other words, storage and/or
transmission ofdigitized signals require more storage space and/or bandwidth than the original
analog signals.

The focus of this book is on image and video compression encountered in multimedia engi-
neering. Fundamentals, algorithms, and standardsare the three emphases ofthe book, It is intended
lo serve as a senior/graduate-level text, Its material is sufficient for a one-semester or one-quarter
graduate course on digital image and video coding. For this purpose, at the end of each chapter
there is a section of exercises containing problems and projects for practice, and a section of
references for further reading.

Based onthis book, a short course entitled “Image and Video Compression for Multimedia,”
was conducted at Nanyang Technological University, Singapore in March and April, 1999. The
response (o the short course was overwhelminglypositive.
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Content and Organization
of the Book

The entire book consists of 20 chapters which can be grouped into four sections:

I. Fundamentals,

Il. Still Image Compression,
III. Motion Estimation and Compensation, and
IV. Video Compression.

In the following, we summarize the aim and content of each chapter and each part, and the
relationships between some chapters and between the four parts.

Section I includes the first six chapters. It provides readers with a solid basis for understanding
the remaining three parts of the book. In Chapter 1, the practical needs for image and video
compression is demonstrated. The feasibility of image and video compression is analyzed. Specif-
ically, both statisucal and psychovisual redundancies are analyzed and the removal ofthese redun-
dancies leads to image and video compression. In the course of the analysis, some fundamental
characteristics of the human visual system are discussed. Visual quality measurement as another
important concept in the compression is addressed in both subjective and objective quality measures.
The new trend in combining the virtues of the two measures also is presented, Some information
theory results are presented as the final subject of the chapter.

Quantization, as a crucial step in lossy compression, is discussed in Chapter 2. It is known that
quantization has a direct impact on both the coding bit rate and quality of reconstructed frames.
Both uniform and nonuniform quantization are covered. The issues of quantization distortion,
optimum quantization, and adaptive quantization are addressed, The final subject discussed in the
chapteris pulse code modulation (PCM) which, as the earliest, best-established, and most frequently
applied coding system normally serves as a standard against which other coding techniques are
compared.

Twoefficient coding schemes, differential coding and transform coding (TC), are discussed in
Chapters 3 and 4, respectively. Both techniques utilize the redundancies discussed in Chapter|.
ihus achieving data compression, In Chapter 3, the formulation of general differential pulse code
modulation (DPCM) systemsis describedfirst, followed by discussions of optimum linear predic-
lion and several implementationissues. Then, delta modulation (DM), an important, simple, special
case of DPCM, is presented. Finally, application of the differential coding technique to interframe
coding and information-preserving differential coding are covered.

Chapter 4 begins with the introduction of the Hotelling transform, the discrete version ofthe
optimum Karhunen and Loevetransform. Throughstatistical, geometrical, and basis vector (image)
interpretations, this introduction providesa solid understanding ofthe transform coding technique.
Several linear unitary transformsare thenpresented, followed by performance comparisons between
these transforms in terms of energy compactness, mean square reconstruction error, and compula-
tional complexity. It is demonstrated that the discrete cosine transform (DCT) performs better than
others, in general. In the discussion of bit allocation, anefficient adaptive scheme is presented
using thresholding coding devised by Chen and Pratt in 1984, which established a basis for the
internationalstill image coding standard, Joint Photographic (image) Experts Group (JPEG). The
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comparison between DPCM and TCis given. The combination of these two techniques (hybrid
transform/waveform coding), and ils application in image and video coding also are described.

The last two chapters in the first part cover some coding (codeword assignment) techniques.
In Chapter 5, two types of variable-length coding techniques, Huffman coding and arithmetic
coding, are discussed. First, an introduction to some basic coding theory is presented, which can
be viewed as a continuation of the information theory results presented in Chapter |. Then the
Huffmancode,as an optimum andinstantaneous code, and a modified version are covered. Huffman
coding is a systematic procedure for encoding a source alphabet with each source symbol having
an occurrence probability. As a block code (a fixed codeword having an integer number ofbits ts
assigned to a source symbol), it is optimum in the sense that it produces minimumcoding redun-
dancy. Some limitations of Huffman coding are analyzed. As a stream-based coding technique,
arithmetic codingis distinct fromand is gaining more popularity than Huffman coding. It maps a
string of source symbols into a string of code symbols, Free of the integer-bits-per-source-symbo]
restriction, arithmetic coding is moreefficient. The principle of arithmetic coding and someolits
implementation issues are addressed.

While the two types of variable-length coding techniques introduced in Chapter 5 can be
classified as fixed-length to variable-length coding techniques, both run-length coding (RLC) and
dictionary coding, discussed in Chapter6, can be classified as variable-length to fixed-length coding
techniques. The discrete Markoy source model(another portion ofthe information theory results)
that can be used to characterize 1-D RLC, is introduced at the beginning of Chapter 6. Both |-D
RLC and 2-D RLC are then introduced. The comparison between 1-D and 2-D RLC is made in
terms of coding efficiency and transmission error effect. The digital facsimile coding standards
based on 1-D and 2-D RLCare introduced. Another focus of Chapter 6 is on dictionary coding.
Two groupsof adaptive dictionary coding techniques, the LZ77 and LZ78algorithms, are presented
and their applications are discussed. Atthe end ofthe chapter, a discussionofinternational standards
for lossless still image compression is given. For both lossless bilevel and multilevel still image
compression,the respective standardalgorithms and their performance comparisons are provided.

Section IT of the book (Chapters7, 8, and 9) is devotedto still image compression. In Chapter7.
the international still image coding standard, JPEG, is introduced, Two classes of encoding: lossy
and lossless; and four modes of operation: sequential DCT-based mode, progressive DCT-based
mode, lossless mode, and hierarchical mode are covered. The discussion in the first part of the
book is very useful in understanding whatis introduced here for JPEG.

Dueto its higher codingefficiency and superior spatial and quality scalability features over the
DCTcoding technique, the discrete wavelet transform (DWT) coding has been adopted by JPEG-
2000still image coding standards as the core technology. Chapter 8 begins with an introduction to
wavelet transform (WT), which includes a comparison between WT and the short-time Fourier
transform (STFT), and presents WT asa unification of several existing techniques known as filter
bank analysis, pyramid coding, and subband coding. Then the DWT for still image coding is
discussed. In particular, the embedded zerotree wavelet (EZW) technique and set partitioning in
hierarchical trees (SPIHT) are discussed. The updated JPEG-2000 standard activity is presented.

Chapter 9 presents three nonstandard still image coding techniques: vector quantization (VQ),
fractal, and model-based image coding. All three techniques have several important features such
as very high compressionratios for certain kinds of images, and very simple decoding procedures.
Due to some limitations, however, they have not been adopted by thestill image coding standards.
On the other hand, the facial model and face animation technique have been adopted by the MPEG-4
video standard.

Section III, consisting of Chapters 10 through 14, addresses the motion estimation and motion

compensation — keyissues in modern video compression. In this sense, Section III is a prerequisite
to Section IV, which discusses various video coding standards. The first chapter in Section III,
Chapter 10, introduces motion analysis and compensation in general. The chapter begins with the
concept of imaging space, which characterizes all images andall image sequences in temporal and
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spatial domains. Both temporal and spatial image sequences are special proper subsets of the
imaging space. A single image becomes merely a specific cross section of the imaging space. Two
techniques in video compression utilizing interframe correlation, both developed in the late !960s
and early 1970s, are presented. Frame replenishment is relatively simpler in modeling and imple-
mentation. However, motion compensated coding achieves higher coding efficiency and better
quality in reconstructed frames with a 2-D displacement model. Motion analysis is then viewed
from the signal processing perspective. Three techniques in motion analysis are briefly discussed,
They are block matching, pel recursion, and optical flow, which are presented in detail in
Chapters 1], 12, and 13, respectively. Finally, other applications of motion compensation to image
sequence processing are discussed.

Chapter 11 addresses the block matching technique, which presently is the most frequently
used motion estimation technique, The chapterfirst presents the original block matching technique
proposed by Jain and Jain. Several different matching criteria and search strategies are then
discussed. A thresholding multiresolution block matching algorithm ts described in some detail so
as lo provide an insight into the technique. Then, the limitations of block matching techniques are
analyzed, from which several new improvements are presented. They include hierarchical block
matching, multigrid block matching, predictive motion field segmentation, and overlapped block
matching. All of these techniques modify the nonoverlapped, equally spaced, fix-sized, small
rectangular block model proposed by Jain and Jain in some way so that the motion estimation is
more accurate and has fewer block artifacts and less overhead side information.

The pel recursive techniqueis discussed in Chapter 12. First, determination of 2-D displacement
vectors is converted via the use ofthe displaced frame difference (DFD) concept to a minimization
problem, Second, descent methods tn optimization theory are discussed. In particular, the steepest
descent method and Newton-Raphson method are addressed in terms of algorithm, convergence,
and implementation issues such as selection of step-size and initial value. Third, the first pel
recursive techniques proposed by Netravali and Robbins are presented. Finally, several improvement
algorithms are described.

Optical flow,the third technique in motion estimationfor video coding, is covered in Chapter 13.
First, some fundamental issues in motion esumation are addressed, They include the difference

and relationships between 2-D motion and optical flow, the aperture problem, and the ill-posed
nature of motion estimation. The gradient-based and correlation-based approaches to optical flow
determination are then discussed in detail. For the former, the Horn and Schunck algorithm is
illustrated as a representative technique and some other algorithms are briefly introduced. For the
latter, the Singh method is introduced as a representative technique. In particular, the concepts of
conservation information and neighborhood information are emphasized. A correlation-feedback
algorithm is presented in detail (o provide an insight into the correlation technique. Finally, multiple
attributes for conservation information are discussed.

Chapter 14, the last chapter in Section III, provides a further discussion and summary of 2-D
motion estimation. First, a few features common to all three major techniques discussed in
Chapters 11, 12, and 13 are addressed. They are the aperture and 1ll-posed inverse problems,
conservation and neighborhood information, occlusion and disocclusion, rigid and nonrigid motion.
Second,a variety ofdifferent classifications of motion estimation techniques is presented. Frequency
domain methods are discussed as well. Third, a performance comparison between the three major
techniques in motionestimation is made, Finally, the new trends in motion estimationare presented.

Section IV, discussing various video coding standards, is covered in Chapters 15 through 20.
Chapter 15 presents fundamentals of video coding,First, digital video representation is discussed.
Second, the rate distortion function of the video signal is covered — the fourth portion of the
information theory results presented in this book. Third, various digital video formats are discussed.
Finally, the current digital image/video coding standards are summarized. The full names and
abbreviations of some organizations, the completion time, and the major features of various
image/video coding standards are listed in two tables.
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Chapter 16 is devoted to video coding standards MPEG-1/2, which are the most widely used
video coding standardsat the present. The basic technique of MPEG-1/2 is a full-motion-compen-
sated DCT and DPCM hybrid coding algorithm. The features of MPEG-1 (including layered data
structure) and the MPEG-2 enhancements(including field/frame modes for supportingthe interlaced
video input and scalability extension) are described. Issues ofrate control, optimum modedecision,
and multiplexing are discussed.

Chapter 17 presents several application examples of MPEG-1/2 video standards. They are the
ATSC DTV standard approved by the FCCin the U.S., transcoding, the down-conversion decoder,
and error concealment. Discussion of these applications can enhance the understanding and mas-
tering of MPEG-1/2 standards. Some research work is reported that may be helpful for graduate
students to broaden their knowledgeofdigital video processing — an active research field.

Chapter 18 presents the MPEG-4 video standard. The predominant feature of MPEG-4, content-
based manipulation, is emphasized. The underlying concept of audio/visual objects (AVOs) Is
introduced. The important functionalities of MPEG-4: content-based interactivity (including bit-
stream editing, synthetic and natural hybrid coding [SNHC]), content-based coding efficiency, and
universal access (including content-based scalability), are discussed. Since neither MPEG-! nor
MPEG-2 includes synthetic video and content-based coding, the most important application of
MPEG-4 is in a multimedia environment.

Chapter 19 introduces ITU-T video coding standards H.261 and H.263, which are utilized
mainly for videophony and videoconferencing. The basic technical details of H.261, the earliest
video coding standard, are presented. The technical improvements by which H.263 achieves high
coding efficiency are discussed, Features of H.263+, H.263++, and H.26L are presented.

Chapter 20 covers the systems part of MPEG — multiplexing/demultiplexing and synchronizing
the coded audio and video as well as other data, Specifically, MPEG-2 systems and MPEG-4
systems are introduced. In MPEG-2 systems, two forms: Program Stream and Transport Stream,
are described. In MPEG-4 systems, some multimedia application related issues are discussed.
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Introduction

Image and video data compression* refers to a process in which the amountofdata usedto represent
image and video is reduced to meet a bit rate requirement (below or at most equal to the maximum
available bit rate), while the quality of the reconstructed image or videosatisfies a requirementfor
a certain application and the complexity of computation involved is affordable for the application.
The block diagram in Figure 1.1 shows the functionality of image and video data compression in
visual transmission and storage. Image and video data compression has been found to be necessary
in these important applications, because the huge amount of data involved in these and other
applications usually greatly exceeds the capability of today’s hardware despite rapid advancements
in the semiconductor, computer, and other related industries.

{tis noted that information and data are two closely related yet different concepts. Data represent
information, and the quantity of data can be measured. In the context of digital image and video,
data are usually measured by the numberofbinary units (bits). Information is defined as knowledge,
facts, and news according to the Cambridge International Dictionary of English. That is, while data
are the representations of knowledge, facts, and news, information ry the knowledge, facts, and
news. Information, however, may also be quantitatively measured.

The bit rate (also known as the coding rate), is an important parameter in image and video
compression and is often expressed in a unit of bits per second, which is suitable in visual
communication. In fact, an example in Section 1.1 concerning videophony (a case of visual trans-
mission) uses the bit rate in terms of bits per second (bits/sec, or simply bps). In the application
of image storage, the bit rate is usually expressed in a unil of bits per pixel (bpp). The term pixel
is an abbreviation for picture element and is sometimes referred to as pel. In information source
coding, the bil rate is sometimes expressed in a unit of bits per symbol. In Section 1.4.2, when
discussing noiseless source coding theorem, we consider the bit rate as the average length of
codewords in the unit ofbits per symbol.

The required quality of the reconstructed image and video is application dependent. In medical
diagnoses and some scientific measurements, we may need the reconstructed image and video to
mirror the original image and video. In other words, only reversible, information-preserving
schemesare allowed. This type of compression 1s referred to as lossless compression. In applications
such as motion pictures and television (TV), a certain amountof information loss is allowed. This
type of compression is called lossy compression.

From its definition, one can see that image and video data compression involves several
fundamental concepts including information, data, visual quality of image and video, and compu-
tational complexity. This chapter is concerned with several fundamental concepts in image and
video compression. First, the necessity as well as the feasibility of image and video data compression
are discussed. The discussion includes the utilization of several types of redundancies inherent in
image and video data, and the visual perception of the human visual system (HVS). Since the
quality of the reconstructed image and video is one of our main concerns, the subjective and
objective measuresof visual quality are addressed. Then wepresent some fundamental information
theory results, considering that they play a key role in image and video compression.

 

* In this book, the terms image and video data compression, image and yideo compression, and image and video coding
are. synonymous,
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FIGURE 1.1 Image and video compression for visual transmission and storage.

1.1 PRACTICAL NEEDS FOR IMAGE AND VIDEO COMPRESSION

Needlessto say, visual informationis of vital importance if humanbeingsare to perceive, recognize,
and understand the surrounding world. With the tremendous progress that has been made in
advanced technologies, particularly in very large scale integrated (VLSI)circuits, and increasingly
powerful computers and computations, it is becoming more than ever possible for video to be
widely utilized in our daily lives. Examples include videophony, videoconferencing, high definition
TV (HDTV), and the digilal video disk (DVD), to name a few.

Video as a sequence of video frames, however, involves a huge amount of data, Let us take a
look at an illustrative example. Assume the present switch telephone network (PSTN) modemcan
Operate al a maximumbit rate of 56,600 bits per second. Assume each video frame has a resoluuon
of 288 by 352 (288 lines and 352 pixels per line), which is comparable with that of a normal TV
picture and is referred to as commonintermediate format (CIF). Each ofthe three primary colors
RGB (red, green, blue) is represented for | pixel with 8 bits, as usual, and the frame rate in
transmission is 30 frames per second to provide a continuous motion video, The required bit rate,
then, is 288 x 352 x 8 x 3 x 30 = 72,990,720 bps, Therefore, the ratio between the required bit
rate and thelargest possible bit rate is about 1289. This implies that we have to compressthe video
data byat least 1289 times in order to accomplish the transmission described in this example. Note
that an audio signal has not yet been accounted for yet in this illustration.

With increasingly complex video services such as 3-D movies and 3-D games, and high video
quality such as HDTV, advanced image and video data compression is necessary. It becomes an
enabling technology to bridge the gap between the required huge amount of video data and the
limited hardware capability.

1.2 FEASIBILITY OF IMAGE AND VIDEO COMPRESSION

In this section weshall see that image and video compressionis not only a necessity for the rapid
growth ofdigital visual communications,but it is also feasible. Its feasibility rests with two types
of redundancies,i.¢., statistical redundancy and psychovisual redundancy. By eliminating these
redundancies, we can achieve image and video compression.

1.2.1 StATistiCAL REDUNDANCY

Statistical redundancy can beclassified into two types: interpixel redundancy and coding redun-
dancy. By interpixel redundancy we meanthat pixels of an image frame and pixels of a group of
successive image or video frames are notstatistically independent. On the contrary, they are
correlated to various degrees. (Note that the differences and relationships between image and video
sequences are discussed in Chapter 10, when we begin lo discuss video compression.) This type
of interpixel correlation is referred to as interpixel redundancy. Interpixel redundancy can be divided
into two categories, spatial redundancy and temporal redundancy, By coding redundancy we mean
the statistical redundancy associated with coding techniques.
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1.2.1.1 Spatial Redundancy

Spatial redundancy represents the statistical correlation between pixels within an image frame.
Henceit is also called intraframe redundancy.

It is well known that for most properly sampled TV signals the normalized autocorrelation
coefficients along a row (or a column) with a one-pixel shift is very close to the maximum value
of I. Thatis, the intensity values of pixels along a row (or acolumn)have a very high autocorrelation
(close to the maximum autocorrelation) with those of pixels along the same row (or the same
column), but shifted by a pixel. This does not comeas a surprise because mostof the intensity
values change continuously from pixel to pixel within an image frame except for the edge regions.
This is demonstrated in Figure 1.2. Figure 1.2(a) is a normal picture — a boy and agirl in a park,
and is of a resolution of 883 by 710. The intensity profiles along the 318th row and the 262nd
columnare depicted in Figures |.2(b) and (c), respectively. For easy reference, the positions ofthe
318th row and 262nd column in the picture are shown in Figure 1.2(d). That is, the vertical axis
represents intensity values, while the horizontal axis indicates the pixel position within the row or
the column, These two plots (shown in Figures 1.2(b) and 1.2(c)) indicate that intensity values
often change gradually from one pixel to the other along a row and along a column.

The study ofthe statistical properties ofvideo signals can be traced back to the 1950s. Knowing
that we must study and understand redundancy in order to remove redundancy, Kretzmer designed
some experimental devices such as a picture autocorrelator and a probabiloscope to measure several

statistical quantities of TV signals and published his outstanding work in (Kretzmer, 1952), He
found that the autocorrelation in both horizontal and vertical directions exhibits similar behaviors,

as shown in Figure |,3. Autocorrelation functions of several pictures with different complexities
were measured. It was found that from picture to picture, the shape of the autocorrelation curves
ranges from remarkably linear (o somewhat exponential. The central symmetry with respect to the
vertical axis and the bell-shaped distribution, however, remains generally the same. Whenthepixel
shifting becomes small, it was found that the autocorrelation is high. This “local”autocorrelation
can be as high as 0.97 to 0.99 for one- or two-pixel shifting. For very detailed pictures,it can be
from 0.43 to 0.75. It was also found that autocorrelation generally has no preferred direction.

The Fourier transform of autocorrelation, the power spectrum, is known as another important
function in studying statistical behavior, Figure 1.4 shows a typical power spectrum ofatelevision
signal (Fink, 1957; Connoret al., 1972). It is reported that the spectrum ts quite flat until 30 kHz
for a broadcast TY signal. Beyond this line frequency the spectrum starts to drop at a rate of around
6 dB per octave. This reveals the heavy concentration of video signals in low frequencies, consid-
ering a nominal! bandwidth of 5 MHz,

Spatial redundancy implies that the intensity value of a pixel can be guessed fromthatofits
neighboring pixels. In other words, it is nol necessary to represent each pixel in an image frame
independently. Instead, one can predict a pixel fromits neighbors, Predictive coding, also known
as differential coding, is based on this observation and is discussed in Chapter 3. The direct
consequence of recognition of spatial redundancy is that by removing a large amount of the
redundancy (or utilizing the high correlation) within an image frame, we may save a lot of data in
representing the frame, thus achieving data compression.

1.2.1.2 Temporal Redundancy

Temporal redundancy is concerned with the statistical correlation between pixels from successive
frames in a temporal imageor video sequence. Therefore, it is also called interframe redundancy,

Considera temporal image sequence. That is, a camerais fixed in the 3-D world and it takes
pictures of the scene one by one as time goes by. As long as the time interval between two
consecutive pictures is short cnough,i.e., the pictures are taken densely enough, we can imagine
that the similarity between two neighboring framesis strong, Figures 1.5(a) and (b) show, respectively,
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FIGURE 1.2 (a) A picture of “Boy andGirl,” (b) Intensity profile along 318th row, (c) Intensity profile
-along 262nd column, (d) Positions of 318th row and 262nd column.
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FIGURE1.2 (continued)
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FIGURE 1.3 Autocorrelation in the horizontal direction for some pictures. (After Kretzmer, 1952.)

the 21st and 22nd frames of the “Miss America” sequence. The frames have a resolution of 176
by 144. Amongthetotal of 25,344 pixels, only 3.4% change their gray value by more than 1% of
the maximum gray value (25S in this case) from the 21st frame to the 22nd frame. This confirms
an observation made in (Mounts, 1969): for a videophone-like signal with moderate motionin the
scene, on average, less than 10% of pixels changetheir gray values between twoconsecutive frames
by an amountof1%of the peak signal. The high interframecorrelation was reported in (Kretzmer,
1952). There, the autocorrelation between two adjacent frames was measured for two typical
motion-picture films. The measured autocorrelations are 0.80 and 0.86. In summary, pixels within
successive frames usually bear a strong similarity or correlation.

As aresult, we may predict a frame fromits neighboring frames along the temporal dimension.
This is referred to as interframe predictive coding andis discussed in Chapter 3. A moreprecise,
hence, more efficient interframe predictive coding scheme, which has been in developmentsince
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FIGURE 1.4 Typical power spectrum of a TV broadcast signal. (Adapted from Fink, D.G,, Television
Engineering Handbook, McGraw-Hill, New York, 1957.)

 
FIGURE 1.5 (a) The 21st frame. and (b) 22nd frame of the “Miss America” sequence

the 1980s, uses motion analysis. That is, it considers that the changes from one frame to the next
are mainly due to the motion of some objects in the frame. Taking this motion information into
consideration, we refer to the method as motion compensated predictive coding. Both interframe
correlation and motion compensated predictive coding are covered in detail in Chapter10.

Removing a large amount of temporal redundancy leads to a great deal of data compression.
At present, all the international video coding standards have adopted motion compensatedpredictive
coding, which has beenavital factor to the increased use ofdigital video in digital media.

1.2.1.3. Coding Redundancy

As we discussed, interpixel redundancy is concerned with the correlation between pixels. That is.
some information associated with pixels is redundant. The psychovisual redundancy, which is
discussed in the next subsection,is related to the information that is psychovisually redundant, i.e.,
to which the HVSis not sensitive. Hence, it is clear that both the interpixel and psychovisual
redundancies are somehow associated with some information contained in the image and video.

Eliminating these redundancies, orutilizing these correlations, by using fewerbits to represent the
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information results in image and video data compression. In this sense, the coding redundancyis
different. It has nothing to do with information redundancy but with the representation of infor-
mation, 1.c., coding itself. To see this, let us take a look at the following example.
 

TABLE 1.1

An Illustrative Example

Symbol Occurrence Probability Code 1 Code 2

a 0.1 000 0000
ay 02 001 ol

a 05 O10

ay 0,05 on 000!
ils 0.15 100 00!

Oneillustrative example is provided in Table |.1. The first columnlists five distinct symbols
that need to be encoded, The second column contains occurrence probabilities of these five symbols.
The third columnlists code |, a set of codewords obtained by using uniform-length codeword
assignment. (This code is known as the natural binary code.) ‘The fourth column shows code 2,in
which each codeword has a variable length. Therefore, code 2 is called the variable-length code.
It is noted that the symbol with a higher occurrence probability is encoded with a shorter length.
Let us examine the efficiency of the two different codes. That is, we will examine which one
provides a shorter average length of codewords.It is obvious that the average length of codewords
in code I, L is three bits. The average length of codewords in code 2, L,,,., can be calculated
as follows.

avg da

Layo = 4% 0.142 x 0.241% 0544 x 0.05+3 x 0.15S=1.95 bits persymbol (1.1)

Therefore, il is concluded that code 2 with variable-length coding is more efficient than code |
with natural binary coding.

From this example, we ean see that for the same set of symbols different codes may perform
differently. Some may be moreefficient than others. For the same amount ofinformation, code |
contains some redundancy. That is, some data in code | are not necessary and can be removed
without any effect. Huffman coding and arithmetic coding, two variable-length coding techniques,
will be discussed in Chapter5.

From the study of coding redundancy,it is clear that we should search for more efficient coding
techniques in order to compress image and video dala,

1.2.2 PsycHovisuAL REDUNDANCY

While interpixel redundancy inherently rests in image and video data, psychovisual redundancy
originates from the characteristics of the humanvisual system (HVS).

It is knownthat the HVSperceives the outside world in a rather complicated way. Its response
to visual stimuli is not a linear function ofthe strength of some physical attributes of the sumuli,
suchas intensity and color. HVS perceptionis different from camera sensing. In the HVS,visual
information is not perceived equally, some information may be more important than other infor-
mation. This implies that if we apply fewer data to represent less important visual information,
perception will not be affected, In this sense, we see that somevisual information is psychovisually
redundant. Eliminating this type of psychovisual redundancy leads to data compression.

In order to understand this type of redundancy, let us study some properties of the HVS. We
may model the human vision system as a cascade oftwo units (Lim, 1990), as depicted in Figure 1.6.
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FIGURE 1.6. A two-unil cascade model of the human visual system (IVS),

Thefirst one is a low-level processing unit which conyerts incident light into a neural signal. The
second oneis a high-level processing unit, which extracts information from the neural signal. While
much research has been carried out to investigate low-level processing, high-level processing
remains wide open. The low-level processing unit is known as a nonlinear system (approximately
logarithmic, as shown below). While a great body of literature exists, we will limit our discussion
only to video compression-related results. That is, several aspects of the HVS whichare closely
related to image and video compression are discussed in this subsection. They are luminance
masking, texture masking, frequency masking, temporal masking, and color masking. Their rele-
vance in image and video compression is addressed. Finally, a summary is provided in whichit is
pointed out thatall of these features can be unified as one: differential sensitivity. This seems to
be the most important feature of human visual perception.

1.2.2.1 Luminance Masking

Luminance masking concernsthe brightness perception ofthe HVS, which is the most fundamental
aspect among the five to be discussed here. Luminance masking is also referred to as luminance
dependence (Connoret al,, 1972), and contrast masking (Legge and Foley, 1980, Watson, 1987).
As pointed in (Legge and Foley, 1980), the term masking usually refers to a destructive interaction
or interference amongstimuli that are closely coupled in time or space. This mayresult in a failure
in detection, or errors in recognition. Here, we are mainly concerned with the detectability of one
stimulus when another stimulus is present simultaneously. The effect of one stimulus on the
detectability of another, however, does not have to decrease detectability. Indeed, there are some
cases in which a low-contrast masker increases the detectability of a signal. This is sometimes
referred to as facilitation, but in this discussion we only use the term masking.

Consider the monochrome image shownin Figure 1.7. There, a uniform disk-shaped object
with a gray level(intensity value) /, is imposed on a uniform background with a gray level /,. Now
the question is under what circumstances can the disk-shaped object be discriminated from the
background by the HVS? Thatis, we wantto study the effect of one stimulus (the backgroundin
this example, the masker) on the detectability of another stimulus (in this example, the disk). Two
extreme cases are obvious. Thatis, if the difference between the two graylevels is quite large, the
HVShas no problem with discrimination, or in other words the HVS notices the object from the
background. If, on the other hand, the twogray levels are the same, the HVS cannot identify the
existence of the object. What we are concerned with hereis the critical threshold in the gray level
difference for discrimination to take place.

If we define the threshold A/ as such a gray level difference A/ = /, — J, that the object can be
noticed by the HVS with a 50% chance, then we have the following relation, known as contrast
sensitivity function, according to Weber's law:

a = constant (1.2)
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FIGURE 1.7 A uniform object with gray level 1, imposed on a uniform background with gray levelI,

where the constant is about 0.02. Weber's law states that for a relatively very wide range ofI, the
threshold for discrimination, A/, is directly proportionalto the intensity /. The implication ofthis
result is that When the background is bright, a larger difference in gray levels is needed for the
HVSto discriminate the object from the background. On the other hand, the intensity difference
required could be smallerif the backgroundis relatively dark. It is noted that Equation |.2 implies
a logarithmic response of the HVS, and Weber’s law holds for all other human senses as well.

Further research has indicated that the luminance threshold A/ increases more slowly than is
predicted by Weber’s law. Some more accurate contrastsensitivity functions have been presented
in the literature. In (Legge and Foley, 1980), it was reported that an exponential function replaces
the linear relation in Weber’s law. The following exponential expression is reported in (Watson,
1987).

a

!Al = I, max (2) : (1.3)0

where J, is the luminance detection threshold when the gray level of the background is equal to
zero, i.e., J =0, and & is a constant, approximately equal to 0.7.

Figure 1.8 showsa picture uniformly corrupted by additive white Gaussian noise (AWGN).It
can be observedthat the noise is more visible in the dark areas than in the bright areas if comparing,
for instance, the dark portion and the bright portion of the cloud above the bridge. This indicates
that noise filtering is more necessary in the dark areas than in the bright areas. The lighter areas
can accommodate moreadditive noise before the noise becomes visible. This property has found

application in embedding digital watermarks (Huang and Shi, 1998).
The direct impact that luminance masking has on image and video compressionis related to

quantization, which is covered in detail in the next chapter. Roughly speaking, quantization is a
process that converts a continuously distributed quantity into a set of manyfinitely distinct quan-
lities. The numberofthese distinct quantities (known as quantization levels) is one of the keys in
quantizerdesign.It significantly influences the resulting bit rate and the quality of the reconstructed
image and video. An effective quantizer should be able to minimize the visibility of quantization
error, The contrast sensitivity function provides a guideline in analysis ofthe visibility of quanti-
zation error. Therefore, it can be applied to quantizer design. Luminance masking suggests a
nonuniform quantization schemethattakes the contrastsensitivity function into consideration. One
such example was presented in (Watson, 1987),
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FIGURE 1.8 The Burrard bridge in Vancouver. (a) Original picture (courtesy of Minhuai Shi). (b) Picture
uniformly corrupted by additive white Gaussian noise.

1.2.2.2 Texture Masking

Texture masking is sometimesalso called detail dependence (Connoretal., 1972), spatial masking
(Netravali and Presada, 1977; Lim, 1990), or activity masking (Mitchell et al., 1997). It states that
the discrimination threshold increases withincreasing picture detail. Thatis, the stronger the texture,
the larger the discrimination threshold. In Figure 1.8, it can be observed that the additive random
noise is Jess pronouncedin the strongly textured area than in the smooth area if comparing, for
instance, the dark portion of the cloud (the upper-right corner of the picture) with the water area
(the lower right comerofthe picture). This is a confirmation of texture masking.

In Figure 1.9(b), the number of quantization levels decreases from 256, as in Figure1.9(a), to
16. Thatis, we use only fourbits instead ofeight bits to represent the intensity value for each pixel.
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) i

FIGURE1.9 Christmas in Winorlia. (a) Original. (b) Four-bit quantized. (c) Improved IGS quantized with
four bits.

The unnatural contours caused by coarse quantization canbe noticed in the relatively uniformregions,
compared with Figure 1.9(a). This phenomenonwasfirst noted in (Goodall, 1951) and is called false
contouring (Gonzalez and Woods, 1992). Now wesee that the false contouring can be explained by
using texture masking, since texture masking indicates that the human eye is more sensitive to the
smooth region thanto the textured region, where intensity exhibits a high variation. A direct impact
on image and video compression is that the number of quantization levels, which affects the bit rate
significantly, should be adapted according to the intensity variation of image regions.

1.2.2.3. Frequency Masking

While the above two characteristics are picture dependent in nature, frequency maskingis picture
independent.It states that the discrimination threshold increases with frequency increase.It is also
referred to as frequency dependence.
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FIGURE1.9 (continued)

Frequency masking can be well illustrated in using Figure |.9 above. In Figure 1.9(c), high-
frequency randomnoise has been addedtothe original image before quantization. This methodis
referred to as the improved gray-scale (IGS) quantization (Gonzalez and Woods, 1992). With the
same number of quantization levels, 16, as in Figure |.9(b), the picture quality of Figure 1.9(c) is
improved dramatically compared with that of Figure |.9(b): the annoying false contours have
disappeared despite an increase in the root mean square value ofthe total noise in Figure 1.9(c).
This is due to the fact that the low-frequency quantization error is convertedto the high-frequency
noise, and that the HVSisless sensitive to the high-frequency content. We thus see. as pointed out
in (Connor, 1972), that our human eyes function like a low-passfilter.

Owingto frequency masking in the transform domain, say, the discrete cosine transform (DCT)
domain, we can drop some high-frequency coefficients with small magnitudes to achieve data
compression without noticeably affecting the perception of the HVS. This leads to whatis called
transform coding, which is discussed in Chapter4.

1.2.2.4 Temporal Masking

Temporal masking is another picture-independent feature of the HVS. It states that it takes a while
for the HVSto adaptitself to the scene when the scene changes abruptly. During this transition
the HVSisnotsensitive to details. The maskingtakes place both before and after the abrupt change.
It is called forward temporal masking if it happensafter the scene change. Otherwise,it is referred
to backward temporal masking (Mitchell et al., 1997).

This implies that one should take temporal masking into consideration when allocating datain
image and video coding.

1.2.2.5 Color Masking

Digital color image processing is gaining increasing popularity due to the wide application of color
images in modern life. As mentioned at the beginning ofthe discussion about psychovisual redun-
dancy, we are not going to coverall aspects of the perception of the HVS. Instead, we cover only
those aspects related to psychovisual redundancy, thus to image and video compression. Therefore,
our discussion here on color perception is by no means exhaustive.
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In physics, it is known that any visible light corresponds to an electromagnetic spectral distri-
bution. Therefore, a color, as a sensation ofvisible light, is an energy with an intensity as well as
a set of wavelengths associated with the electromagnetic spectrum. Obviously, intensity is an
attribute of visible light. The composition of wavelengths is anotherattribute: chrominance. There
are two elements in the chrominanceattribute: /ive and saturation, The hueofa coloris characterized
by the dominant wavelength in the composition. Saturation is a measure of the purity of a color.
A pure color has a saturation of 100%, whereas white light has a saturation of 0.

RGB model — The red-green-blue (RGB) primary color system is the best known ofseveral
color systems. This is due to the following feature of the human perception ofcolor. The color-
sensitive area in the HVS consists of three different sets of cones and eachsetis sensitive to the
light of one of the three primary colors: red, green, and blue. Consequently, any color sensed by
the HVS can be consideredas a particular linear combination of the three primary colors. Many
research studies are available, the CIE (Commission Internationale de |'Eclairage) chromaticity
diagrambeing a well-known example. Theseresults can be easily found in many classic optics and
digital image processing texts,

The RGB model is used mainly in color image acquisition anddisplay.In color signal processing
including image and video compression, however, the luminance-chrominance color systemis more
efficient and, hence, widely used. This has something to do withthe color perception of the HVS.
It is Known that the HVS is more sensitive to green than to red, and ts least sensilive to blue. An

equal representation ofred, green, and blue leads to inefficient data representation when the HVS
is the ultimate viewer. Allocating data only to the information that the HVS ean perceive, on the
other hand, can make video coding more efficient.

Luminance is concerned with the perceived brightness, while chrominanceis related to the
perception of hue and saturation of color. Roughly speaking, the luminance-chrominancerepresen-
tation agrees more with the color perception of the HVS. This feature makes the luminance-
chrominance color models more suitable for color image processing, A good example was presented
in (Gonzalez and Woods, 1992), about histogram equalization, It is well known that applying
histogram equalization can bring out some details originally hidden in dark regions, Applying
histogram equalization to the RGB components separately can certainly achieve the goal, In doing
so, however, the chrominance clements, hue and saturation, have been changed, thus leading to
color distortion, With a luminance-chrominance model, histogram equalization can be applied fo
the Juminance component only, Hence, the details in the dark regions are brought out, whereas the
chrominance elements remain unchanged, producing no color distortion. With the luminance com-
ponent Y serving as a black-white signal, a luminance-chrominance color modeloffers compatibility
with black and white TV systems. This is another virtue of luminance-chrominance color models.

It is known that a nonlinear relationship (basically a power function) exists betweenelectrical
signal magnitude and light intensity for both cameras and CRT-based display monitors (Haskell
etal., 1997). Thatis, the light intensity is a linear function of the signal voltage raised to the power
ofy. It is a commonpractice to correct this nonlinearity before transmission. This is referred to as
gamma correction. The gamma-corrected RGB components are denoted by R’, G’, and B’, respec-
tively. They are used in the discussion on various color models. For the sake of notational brevity,
we simply use R, G, and B instead of R’, G’ and B’ in the following discussion, while keeping the
gamma-correction in mind.

Discussed next are several different luminance-chrominance color models: HSI, YUV, YCbCr,
and Y¥YDbDr.

HSI model — In this model, | stands for the intensity component, H for the hue component,
and § for saturation. One merit ofthis color systemis that the intensity componentis decoupled
from the chromatic components. As analyzed above,this decoupling usually facilitates color image
processing tasks. Another merit is that this model is closely related to the way the HVSperceives
color pictures. Its main drawback is the complicated conversion between ROB and HS! models. A
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detailed derivation of the conversion may be found in (Gonzalez and Woods, 1992). Because of
this complexity, the HSI model is not used in any TV systems.

YUV model — In this model, Y denotes the luminance component, and U and V are the two
chrominance components. The luminance Y can be determined from the RGB model via the
following relation:

¥ = 0.299 R+0.587G+0.114B (1.4)

It is noted that the three weights associated with the three primary colors, R, G, and B, are not the
same. Their different magnitudes reflect different responses of the HVSto different primarycolors.

Instead of being directly related to hue and saturation, the other two chrominance components,
U andV,are defined as color differences as follows.

U =0.492(B— Y) (1.5)

V =0.877(R-Y) (1.6)

In this way, the YUV model lowers computational complexity. It has been used in PAL (Phase
Alternating Line) TV systems. Note that PAL is an analog composite color TV standard and is
used in most European countries, some Asian countries, and Australia. By composite systems, we
mean both the luminance and chrominance componentsof the TV signals are multiplexed within
the same channel. For completeness, an expression of YUV in terms of RGBis listed below.

Y 0.299 0.587 O.114\(R

U\=|-0.147 —0.289 0.436||G (1.7)

Vv 0.615 -O515 -0.100)\ B

YIQ model — This color space has been utilized in NTSC (National Television Systems
Committee) TV systems for years. Note that NTSC is an analog composite color TV standard and
is used in North America and Japan. The Y componentisstill the luminance. The two chrominance
componentsare the linear transformation of the U and V components defined in the YUV model.
Specifically,

1=-0,545U +0.839V (1.8)

Q = 0.839U +0.545V (1.9)

Substituting the U and V expressed in Equations 1.4 and 1.5 into the above two equations, we can
express YIQ directly in terms of RGB. Thatis,

Y 0.299 0.587 0.114\(R

1 \=|0.596 -0.275 -0.321]| G (1.10)

Q)° \0.212 -0.523 0.311)\ B

YDbDr model — The YDbDr modelis used in the SECAM (Sequential Couleur a Memoire)
TV system. Note that SECAM isused in France, Russia, and some eastern European countries.
Therelationship between YDbDr and RGB appearsbelow.
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Y 0).299 0.587 O.114\(R

Db |=|-0.450 —-0.883 1.333 /|G (1. 11)
Dr —|.333 11168-—O.217/\B

Thatis,

Db =3.059U (1.12)

Dr =-2.169V (1.13)

YCbCr model — Fromthe above, we can seethat the U and V chrominance componentsare
differences between the gamma-corrected color B and the luminance Y, and the gamma-corrected
R and the luminance Y, respectively. The chrominance componentpairs I and Q, and Db and Drare
both linear transforms of U and V. Hencethey are very closely related to eachother.It is noted that
U and V may be negative as well. In order to make chrominance components nonnegative, the Y, U,
and V are scaled and shifted to produce the YCbCr model, whichis usedin the international coding
standards JPEG and MPEG.(These two standards are covered in Chapters 7 and 16, respectively.)

Y 0.257 0.504 0.098\(R)(16

Ch }=|-0.148 -0.291 0.439||G]+| 128 (1.14)

Cr 0.439 -0.368 -0.071)(B) \128

1.2.2.6 Color Masking and Its Application in Video Compression

It is well-known that the HVS is much more sensitive to the luminance component than to the
chrominance components. Following Van Ness and Bouman (1967) and Mullen (1985), there is a
figure in Mitchell et al. (1997) to quantitatively illustrate the above statement. A modified version
is shown in Figure 1.10. There, the abscissa represents spatial frequency in the unit of cycles per
degree (epd), while the ordinate is the contrast threshold for a just detectable changein the sinusoidal
testing signal. Two observations are in order. First, for each of the three curves,i.e., curves for the
luminance componentY and the opposed-color chrominance,the contrast sensilivily increases when
spatial frequency increases, in general. This agrees with frequency masking discussed above.
Second, for the same contrast threshold, we see that the luminance component corresponds to a

much higher spatial frequency. This is an indication that the HVS is much more sensitive to
luminance than to chrominance. This statement can also be confirmed, perhaps more easily, by
examining those spatial frequencies at whichall three curves have data available, Then we can see
that the contrast threshold of luminance is much lower than, that of the chrominance components.

The direct impact of color masking on image and video coding is that by utilizing this
psychovisual feature we can allocate morebits to the luminance componentthan to the chrominance
components. This leads to a commonpractice in color image and video coding: using full resolution
for the intensity component, while using a 2 by | subsampling both horizontally and vertically for
the two chrominance components. This has been adoptedin related international coding standards,
which will be discussed in Chapter 16.

1.2.2.7 Summary: Differential Sensitivity

In this subsection we discussed Juminance masking, texture masking, frequency masking, temporal
masking, and color masking. Before we enter the next subsection, let us summarize what we have
discussed so far.

IPR2018-01413

Sony EX1008 Page 43



IPR2018-01413 
Sony EX1008 Page 44

18 Image and Video Compression for Multimedia Engineering

Blue-YellowContrastsensitivity    
0.1 0.3 | 3 10 30 100

Spatial frequency (cycles per degree (cpd))

FIGURE 1.10 Contrast sensitivity vs. spatial frequency. (Revised from Van Ness and Bouman [1967] and
Mullen [1985].)

Weseethat luminance masking, also knownascontrast masking, is of fundamental importance
among several types of masking.It states that the sensitivity of the eyes to a stimulus depends on
the intensity of another stimulus. Thus it is a differential sensitivity. Both the texture (detail or
activity) and frequency of anotherstimulussignificantly influence this differential sensitivity. The
same mechanism exists in color perception, where the HVS is much moresensitive to luminance
than to chrominance. Therefore, we conclude that differential sensitivity is the key in studying
human visual perception. Thesefeatures can be utilized to eliminate psychovisual redundancy, and
thus compress image and videodata.

It is also noted that variable quantization, which dependson activity and luminance in different
regions, seems to be reasonable from a data compression point ofview, Its practical applicability,
however, is somehow questionable. That is, some experimental work does not support this expec-
tation (Mitchell et al., 1997).

It is noted that this differential sensitivity feature of the HVS is common to human perception.
For instance, there is also forward and backward temporal masking in human audio perception.

1.3. VISUAL QUALITY MEASUREMENT

Asthe definition of image and video compressionindicates, image and video quality is an important
factor in dealing with image and video compression. For instance, in evaluating two different
compression methods we have to base the evaluation on some definite image and video quality.
When both methodsachieve the same quality of reconstructed image and video,the one that requires
less data is considered to be superiorto the other. Alternatively, with the same amountofdata the
method providing a higher-quality reconstructed image or video is considered the better method.
Note that here we havenotconsidered other performancecriteria, such as computational complexity.
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Surprisingly, however, it turns out that the measurement of image and video quality is not
straightforward. There are two types of visual quality assessments, One is objective assessment
(using electrical measurements), and the other is subjective assessment (using human observers).
Eachhasits merits and drawbacks. A combination of these two methodsis now widely utilized in
practice,In this section wefirst discuss subjective visual quality measurement, followed by objective
quality measurement.

1.3.1 Susyective QuAuiTy MEASUREMENT

[1s natural that the visual quality of reconstructed video frames should be judged by human viewers
if they are to be the ultimate receivers of the data (see Figure 1.1). Therefore, the subjective visual
quality measure plays an important role in visual communications.

In subjective visual quality measurement,a set ofvideo frames is generated with varying coding
parameters. Observers are invited to subjectively evaluate the visual quality of these frames.
Specifically, observers are asked to rate the pictures by giving some measure of picture quality.
Alternatively, observers are requested to provide some measure of impairment to the pictures. A
live-scale rating system of the degree of impairment, used by Bell Laboratories, is listed below
(Sakrison, 1979), It has been adopted as one of the standard scales in CCIR Recommendation
500-3 (CCIR, 1986). Note that CCIR is now ITU-R (International Telecommunications Union —
Recommendations).

Impairment is not noticeable
Impairment is just noticeable
Impairment is definitely noticeable, but not objectionable
Impairment is objectionable
Impairment is extremely objectionable

vbw=
In regard to the subjective evaluation, there are a few things worth mentioning. In most

applications there is a whole array of pictures simultaneously available for evaluation, These pictures
are generated withdifferent encoding parameters. By keeping some parameters fixed while making
one parameter (or a subset of parameters) free to change, the resulting quality rating can be used
to study the effect of the one parameter (or the subset of parameters) on encoding. An example
using this method for studying the effect of varying numbers of quantization levels on image quality
can be found in (Gonzalez and Woods, 1992).

Another possible way to study the effeet is to identify pictures with the same subjective quality
measure from the whole array of pictures, From this subset of test pictures we can produce, in the
encoding parameter space, isopreference curves that can be used to study the effect of the param-
eter(s) under investigation. An example using this methodto study the effect of varying both image
resolution and numbers of quantization levels on image quality can be found in (Huang, 1965).

In this rating, a whole array of pictures is usually divided into columns, with each column
sharing some common conditions. The evaluation starts within each column with a pairwise
comparison. This is because a pairwise comparison is relatively easy for the eyes. As a result,
pictures in one columnare arranged in an order accordingto visual quality, and quality or impair-
ment measuresare then assigned to the pictures in that one column, After each column has been
rated, a unification between columnsis necessary. Thatis, different columnsneed to have a unified
quality measurement. As pointed out in (Sakrison, 1979), this task is nol easy since it means we
may need to equate impairment that results from different types of errors.

Onething can be understood from the above discussion: subjective evaluation ofvisual quality
is'costly. It needs a large numberofpictures and observers. The evaluation takes a long time because
human eyes are easily fatigued and bored. Some special measures have to be taken in order to
arrive al an accurate subjective quality measurement. Examplesin this regard include averaging
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FIGURE 1.11 An image processing system.

subjective ratings and taking their deviation into consideration. For further details on subjective
visual quality measurement, readers may refer to Sakrison (1979), Hidaka and Ozawa(1990), and
Websteret al. (1993).

1.3.2 Objective QUALITY MEASUREMENT

In this subsection, wefirst introduce the conceptofsignal-to-noise ratio (SNR), whichis a popularly
utilized objective quality assessment. Then we present a promising new objective visual quality
assessment technique based on human visual perception.

1.3.2.1 Signal-to-Noise Ratio

Consider Figure 1.11, where f (x, y) is the input image to a processing system. The system can be
a low-passfilter, a subsampling system, or a compression system. It can even represent a process
in which additive white Gaussian noise corrupts the inpul image. The g(x, y) is the output of the
system. In evaluating the quality of g(x, y), we define an error function e(x, y) as the difference
between the input and the output. Thatis,

e(x, y)= f(x.) —2(x,y) (1.15)

The mean squareerroris defined as E,,,:

M-| N-I
I 2

*=0) y=0

where M andWNare the dimensionsof the imagein the horizontal and vertical directions. Note that
it is sometimes denoted by MSE. The root mean squareerroris defined asE,,,,:

Be (1.17)

It is sometimes denoted by RMSE.
As noted earlier, SNR is widely used in objective quality measurement. Depending whether

mean squareerror or root mean squareerroris used, the SNR maybe called the mean squaresignal-
to-noise ratio, SNVR,,,, or the root mean square signal-to-noise ratio, SNR,,,,. We have

M-l N-I

SYYale)
SNR, =10log,, Se L (1.18)
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and

SNR,,,, =4/SNR,,, (1.19)

In image and video data compression, another closely related term, PSNR(peak signal-to-noise
ratio), which is essentially a modified version of SNR,,,, is widely used, It is defined as follows.

2 2PSNR = 0105923 (1.20)AL

The interpretation of the SNA» is that the larger the SVR (SNR,,,, SNR,,,,, or PSNR) the better
the quality of the processed image, g(x, y’); that is, the closer the processed image g(x,y) is to the
original image f(x, y). This seems to be correct. However, from our above discussion about the

features of the HVS, we know that the HVS does not respond to visual stimuli in a straightforward
way. Its low-level processing unit is known to be nonlinear. Several masking phenomena exist.
Each confirms that the visual perception of the HVS is not simple. It is worth noting that our
understanding of the high-level processing unit of the HVS is far from complete. Therefore, we
may understand that the SNR does not always provide us withreliable assessments of image quality.
One good example is presented in Section 1.2.2.3, which uses the IGS quantization technique to
achieve high compression (using only four bits for quantization instead of the usual eight bits)
without introducing noticeable false contouring. In this case, the subjective quality is improved,
and the SVR decreases due to the additive high-frequency random noise. Another example, drawn
from our discussion about the masking phenomena, is that some additive noise in bright areas or
in highly textured regions may be masked, while some minorartifacts in dark and uniform regions
may turn out to be quite annoying. In this case, the SNR cannottruthfully reflect visual quality, as
well,

Onthe one hand, weseethal objective quality measurement does not always providereliable
picture quality assessment. On the other hand, however, ils implementation is much faster and
easier than that of the subjective quality measurement. Furthermore, objective assessment Is repeat-
able. Owing to these merits, objective quality assessment is still widely used despite this drawback.

It is noted that combining subjective and objective assessments has been a common practice
in international coding-standard activity.

1.3.2.2 Objective Quality Measurement Based on Human Visual Perception

Introduced here is a new development in visual quality assessment, which is an objective quality
measurement based on human visual perception (Webster etal., 1993). Since it belongs to the
category of objective assessment, il possesses virtues such as repeatability and fast and easy
implementation. Because it is based on humanvisual perception, on the other hand,ils assessment
of visual quality agrees closely to that of subjective assessment, In this sense the new method
attempts to combine the merits of the two different types of assessment.

Motivation — Visual quality assessment is best conducted via the subjective approach since
in this case the HVSis the ultimate viewer. The implementation of subjective assessment, however,
is time-consuming,costly, and lacks repeatability. On the other hand, although not always accurate,
objective assessmentis fast, casy, and repeatable. The motivation here is to develop an objective
quality measurement system such thatits quality assessmentis very close to thal obtained by using
subjective assessment. In order to achieve this goal, this objective system is based on subjective
assessment. Thatis, it uses the rating achieved via subjective assessmentas a criterion to search
for new objective measurements so as to have the objective rating as close to the subjective one as
possible.
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FIGURE 1.12 Block diagram of objective assessment based on subjective assessment.

Methodology — The derivation of the objective quality assessment system is shown in
Figure 1.12. The input testing video goes through a degradation block, resulting in degraded input
video. The degradation block, or impairmentgenerator,includes various video compression codecs
(coder-decoderpairs) with bil rates ranging from 56 kb/sec to 45 Mb/sec and other video operations.
The input video and degraded input video forma pair of testing videos, whichis sent to a subjective
assessmentblock as well as a statistical feature selection block.

A normal subjective visual quality assessment as introduced in the previous subsection ts
performed in the subjective assessment block, which involves a large panel of observers, ¢.¥..
48 observers in Websteret al. (1993). In the statistical feature selection block,a variety ofstatistical
operations are conducted and variousstatistical features are selected. Examples cover Sobelfiltering,
Laplacian operator, first-order differencing, moment calculation, fast Fourier transform, etc. Sta-
tistical measurements are then selected based on these statistical operations and features. An
objective assessmentis formed as follows:

/

$=a,+ >) ay,, (1.21)

where S denotes the outputrating ofthe object assessment,or simply the objective measure, which
is supposed to be a good estimate of the corresponding subjective score. The n,, i= 1, «--, / are
selected objective measurements. The ay, 4;, i= 1, ---, | are coefficients in the linear model of the
objective assessment.

Theresults of the objective assessment and subjective assessmentare appliedtoastatistical
analysis block. In the statistical analysis block, the objective assessment rating is compared with
that of the subjective assessment. Theresult of the comparisonis fed back to the statistical feature
selection block. The statistical measurements obtained in the statistical feature selection block are

examined according to their performancein the assessment.Astatistical measurementis regarded
to be goodif it can reduce by a significant amount ofthe difference betweenthe objective assessment
and the subjective assessment, The best measurementis determined via an exhaustive search among
the various measurements. Note that the coefficients in Equation 1.2! are also examined in the
Statistical analysis block in a similar mannerto that used for the measurements.
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The measurements and coefficients determinedafter iterations result in an optimal objective
assessment via Equation 1.21, which is finally passed to the last block as the output of the system.
The whole process will become muchclearer below.

Results

The results reported by Webster (1993) are introduced here.
Information features — As mentioned in Section |.2.2, differential sensitivity is a key in

humanvisual perception, Twoselected features: perceived spatial information (the amountof spatial
detail) and perceived temporal information (the amount of temporal luminancevariation), involve
pixel differencing. Spaual information (SI) is defined as shown below.

Si(f,) = STD,{Sobel(f,)} (1.22)

where STD, stands tor the standard deviation operator in the spatial domain, Sebel denotes the
Sobel operation, and f, represents the nth video frame. Temporal information (TI) is defined
similarly:

TI(f,) = STD, {af,} (1.23)

where Af, =f, —f,1, b-e., the successive frame difference.

Determined Measurements

The parameter / in Equation 1,21 is chosen as three, Thatis

$= dy + Qn, + a,N, + any (1.24)

The measurements ,, 2, and ", are formulated based on the above-defined information features,
SI and TI, as follows:

|, Measurement n,:

Si(of,)— SI(df,) <2sI(of,) Ben= aus sa   
where RMS, represents the root mean square value taken over the time dimension, and
of, and df, denote the original nth frame and the degraded nth frame, respectively. It is
observed that n, is a measure ofthe relative change in the spatial information between
the original frame and the degraded frame.

2. Measurement7:

n, =9, {0.108- max {[71(of,) -71(4f,)].0}} (1.26)
where

3, {y,}=s7D, {CONV (y,.[-1,2,-1])} (1.27)

where STD, denotes the standard deviation operator with respect to time, and CONV
indicates the convolution operation between its two arguments. It is understood that
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temporal information, TI, measures temporal luminance variation (temporal motion) and
the convolution kernel, [-1, 2, -1], enhances the variation dueto its high-passfilter nature,
Therefore, , measures the difference of TI between the original and graded frames.
Measurementn,:us

TI(df,Te) (1.28)
TH(of,)n, = MAX, 423-1

where MAX,indicatesthe taking of the maximumvalue over time. Therefore, measure-
ment n; respondsto the ratio between the temporal information of the degraded video
and thatof the original video. Distortions such as block artifacts (discussed in Chapter | 1)
and motion jerkiness (discussed in Chapter 10), which occur in video coding, will cause
n; to belarge.

Objective estimator — Theleast square error procedure is appliedto testing video sequences
with measurements n,, i = 1,2,3, determined above, to minimize the difference between the rating
scores obtained from the subjective assessment and the objective assessment, resulting in the
estimated coefficients a, and a,, i= 1,2,3. Consequently, the objective assessmentofvisual quality §
becomes

$ =4.77-0.992n, —0.272n, —0.356n, (1.29)

Reported experimental results — It was reported that the correlation coefficient between the
subjective assessmentscore and the objective assessmentscore (an estimate of the subjective score)
is in the range of 0.92 to 0.94.It is noted that a set of 36 testing scenes containing various amounts
of spatial and temporal information was used in the experiment. Hence, it is apparent that quite
good performance was achieved. Though there is surely room for'further improvement, this work
does open a new and promising wayto assessvisual quality by combining subjective and objective
approaches. Since it is objective it is fast and easy; and because it is based on the subjective
measurement,it is more accurate in termsofthe high correlation to humanperception. Theoretically,
the spatial information measure and temporal information measuredefined on differencing are very
important. They reflect the most important aspect of humanvisual perception.

1.4. INFORMATION THEORY RESULTS

In the beginning of this chapter it was noted that the term information is considered one of the
fundamental concepts in image and video compression. We will now address some information
theory results. In this section, the measure of information and the entropy of an information source
are covered first. We then introduce some coding theorems, which play a fundamentalrole in
studying image and video compression.

1.4.1 Entropy

Entropy is a very important conceptin information theory and communications. So is it in image
and video compression. Wefirst define the information content of a source symbol. Then we define
entropy as average information content per symbol for a discrete memoriless source.

1.4.1.1 Information Measure

As mentionedat the beginningof this chapter, information is defined as knowledge, fact, and news.
It ean be measured quantitatively. The carriers ofinformation are symbols, Consider a symbol with
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an occurrence probability p. Its information content (i,¢,, the amount of information contained in
the symbol), 1, is defined as follows.

!

/= log, se bits or /=—log, p bits (1.30)

wherethe bit is a contractionofbinary unit. In the above equations weset the base ofthe logarithmic
function to equal 2. It is noted that these results can be easily converted as follows for the case
where the rary digits are used for encoding. Hence, from now on, we restrict our discussion to
binary encoding.

I=—log,2-log, p__bits (1.31)

According to Equation 1.30, the informauion contained within a symbolis a logarithmic function
of its occurrence probability, The smaller the probability, the more information the symbol contains.
This agrees with commonsense. The occurrence probability is somewhatrelated to the uncertainty
of the symbol. A small occurrence probability means large uncertainty. In this way, we see that the
information content of a symbol 1s about the uncertainty of the symbol. It is noted that the
information measure defined here is valid for both equally probable symbols and nonequally
probable symbols (Lathi, 1998).

1.4.1.2. Average Information per Symbol

Nowconsider a discrete memoriless information source. By discreteness, we mean the sourceis a

countable set of symbols. By memoriless, we mean the occurrence of a symbol in the set is
independent of that of its preceding symbol. Take a look at a source of this type that contains a
possible symbols: {5,, (= 1.2-+-yn}. The corresponding occurrence probabilities are denoted by
{p,, ( = 1,2,---,m}. According to the discussion above, the information content of a symbol s,, J,
is equal to /, = -log, p, bits. Entropy is defined as the average information content per symbol of
the source. Obviously, the entropy, //, can be expressed as follows,

H=-)' p, log, p, bits (1.32)
i=

From this definition, we sce that the entropy of an informationsource is a function of occurrence
probabilities. It is straightforward to showthal the entropy reaches the maximum whenall symbols
in the set are equally probable.

1.4.2 SHANNON’s Notsetess Source CODING THEOREM

Consider a discrete, memoriless, stationary information source, In what is called source encoding,
a codewordis assigned to each symbol in the source. The numberofbils in the codewordis referred
to as the length of the codeword. The average length of codewordsis referred to as the bit rate,
expressed in the unit of bits per symbol.

Shannon’s noiseless source coding theorem states that for a discrete, memoriless, stationary
information source, the minimumbitrate required to encode a symbol, on average, is equal to the
entropy of the source. This theorem provides us with a lower bound in source coding, Shannon
showed that the lower bound can be achieved when the encoding delay extends toinfinity. By
encoding delay, we mean the encoder waits and then encodes a certain numberof symbols at once.
Fortunately, with finite encoding delay, we can already achieve an average codeword length fairly
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close to the entropy, That is, we do not have to actually sacrifice bit rate much to avoid long
encoding delay, which involves high computational complexity and a large amount of memory
space.

Note that the discreteness assumption is not necessary. We assume a discrete source simply
because digital image and video are the focus in this book. Stationarity assumption Is necessary
in deriving the noiseless source coding theorem. This assumption may not besatisfied in practice.
Hence, Shannon’s theoremis a theoretical guideline only. There is no doubt, however, that it 1s a
fundamental theoretical result in information theory.

In summary, the noiseless source coding theorem, Shannon’sfirst theorem, which was published
in his celebrated paper (Shannon, 1948), is concerned with the case where both the channel and
the coding system are noise free. The aim under these circumstances is coding compactness. The
more compactit is, the better the coding. This theorem specifies the lower bound, whichis the
source entropy, and how to reach this lower bound.

One wayto evaluate the efficiency of a coding schemeis to determineits efficiency with respect
to the lower bound,i.e., entropy. The efficiency 7) is defined as follows.

uve

where H is entropy, and L,,, denotes the average length of the codewords in the code. Since the
entropy is the lower bound,the efficiency never exceeds the unity, 1.e., 1 < 1. The same definition
can be generalized to calculate the relative efficiency between two codes. That is

E
J ave.t l 34n aa (1.34)uve .2

where L,,,., and L,,.> represent the average codeword length for code | and code 2, respectively.
We usually put the larger of the two in the denominator, and 1) is called the efficiency of code 2
with respect to code 1. A complementary parameter of coding efficiency is coding redundancy, C,
whichis defined as

1.4.3. SHANNON’S Noisy CHANNet CopiInG THEOREM

If a code has an efficiency of 1 = |, i-e., it reaches the lower boundof source encoding, then coding
redundancy is C = 0. Now consider a noisy transmission channel. In transmitting the coded symbol
through the noisy channel, the received symbols may be erroneous dueto the lack of redundancy.
Onthe otherhand,it is well knownthat by adding redundancy(e.g., parity check bits) some errors
occurring during the transmission over the noisy channel may be corrected or identified. In the latter,
the coded symbols are thenresent. In this way, we see that adding redundancy may combatnoise.

Shannon’s noisy channel coding theorem states thatit is possible to transmit symbols over a
noisy channel withouterrorif the bit rate is below a channel capacity, C. Thatis

R<C (1.36)

where R denotesthe bit rate. The channel capacity is determined by the noise and signal power.
In conclusion, the noisy channel coding theorem, Shannon’s second theorem (Shannon, 1948),

is concerned with a noisy, memoriless channel. By memoriless, we mean the channel output
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corresponding to the current input is independent of the output corresponding to previous input
symbols. Under these circumstances, the aim is reliable communication. To be errorfree, the bit
rate cannot exceed channel capacity. That is, channel capacity sets an upper bound onthe bitrate.

1.4.4 SHANNON’s Source CopING THEOREM

As seen in the previous two subsections, the noiseless source coding theorem defines the lowest
possible bit rate for noiseless source coding and noiseless channel transmission; whereasthe noisy
channel coding theorem defines the highest possible coding bit rate for error-free transmission.
Therefore, both theorems work for reliable (no error) transmission. In this subsection, we continue

to deal with discrete memoriless information sources, but we discuss the situation in which lossy
coding is encountered. As a result, distortion of the information source takes place. For instance,
quantization, which is covered in the next chapter, causes information loss. Therefore,it is concluded
that if an encoding procedure involves quantization, then it is lossy coding. That is, errors occur
during the coding process, even though the channelis error free. We want to find the lower bound
of the bit rate for this case.

The source coding theorem (Shannon, 1948) states that for a given distortion D, there exists a
rate distortion funcuion A(D) (Berger, 1971), which is the minimum bit rate required to transmit
the source with distortion less than or equal to D. That is, in order to have distortion not larger
than D, the bit rate R must satisfy the following condition:

R> R(D) (1.37)

A more detailed discussion about this theorem and the rate distortion function is given in
Chapter 15, when we introduce video coding.

1.4.5 INFORMATION TRANSMISSION THEOREM

It is clear that by combining the noisy channel coding theorem and the source coding theorem we
can derive the following relationship:

C>R(D) (1.38)

This is called the information transmission theorem (Slepian, 1973). It states that if the channel
capacity of a noisy channel, C, ts larger than the rate distortion function R(D), then it is possible
to transmit an information source with distortion D over a noisy channel.

1.5 SUMMARY

In this chapter, wefirst discussed the necessity for image and video compression. It is shown that
image and video compression becomes an enabling technique in today’s exploding number of
digital multimedia applications. Then, we show thatthe feasibility of image and video compression
resis in redundancy removal. Two types of redundancies: statistical redundancy and psychovisual
redundancy are studied. Statistical redundancy comesfrominterpixel correlation and coding redun-
dancy. By interpixel correlation, we mean correlation between pixels either located in one frame
(spatial or intraframe redundancy)orpixels located in successive frames (temporal or interframe
redundancy). Coding redundancyis related to coding technique. Psychovisual redundancyis based
on the features (several types of masking phenomena) of human visual perception, Thatis, visual
information is not perceived equally from the humanvisual point of view. In this sense, some
information is psychovisually redundant.
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The visual quality of the reconstructed image and videois a crucial criterion in the evaluation
of the performanceofvisual transmission or storage systems. Both subjective and objective assess-
ments are discussed. A new and promising objective technique based on subjective assessment is
introduced. Since it combines the merits of both types of visual quality assessment, it achieves a
quite satisfactory performance. Theselectedstatistical features reveal some possible mechanism
of the human visual perception. Further study in this regard would befruitful.

In the last section, we introduced some fundamental information theory results, relevant to
image and video compression. The results introduced include information measurement, entropy,
and several theorems. All the theorems assume discrete, memoriless, and stationary information

sources, The noiseless source coding theorem points out that the entropy of an information source
is the lower bound ofthe coding bit rate that a source encoder can achieve. The source coding
theorem deals with lossy coding applied in a noise-free channel. It states that for a given distortion,
D, there is a rate distortion function, R(D), When the bit rate in the source coding 1s greater than
R(D), the reconstructed source at the receiving end maysatisfy the fidelity requirement defined by
D. The noisy channel coding theorem states that, in order to achieve error-free performance, the
source coding bit rate must be smaller than the channel capacity. Channel capacity is a function
of noise and signal power. The information transmission theorem combines the noisy channel
coding theorem and the source coding theorem.It states that it is possible to have a reconstructed
waveform at the receiving end, satisfying the fidelity requirement corresponding to distortion D if
the channel capacity, C, is larger than the rate distortion function R(D). Though some ofthe
assumptions on which these theorems were developed may not be valid in complicated practical
situations, these theorems provide important theoretical limits for image and video coding. They
can also be used for evaluation of the performance of different coding techniques.

1.6 EXERCISES

1-1. Using your own words,define spatial and temporal redundancy, and psychovisual redun-
dancy, and state the impact they have on image and video compression.

1-2. Why is differential sensitivity considered the most important feature in human visual
perception?

1-3. From the description of the newly developed objective assessment technique based on
subjective assessment, discussed in Section 1.3, what points do you think are related to
and support the statement made in Exercise 1-27

1-4. Interpret Weber’s law using your own words,
1-5. Whatis the advantage possessed by color models that decouple the luminance component

from chrominance components.
1-6. Why has the HIS model not been adopted by any TV systems?
1-7. Whatis the problem with the objective visual quality measure of PSNR?
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Quantization

After the introduction to image and video compression presented in Chapter 1, we now address
several fundamental aspects of image and video compression in the remaining chapters of SectionI.
Chapter2, the first chapter in the series, concerns quantization. Quantization is a necessary com-
ponent in lossy coding and has a direct impact on the bit rate and the distortion of reconstructed
images or videos. We discuss concepts, principles and various quantization techniques which
include uniform and nonuniform quantizauion, optimum quantization, and adaptive quantization.

2.1 QUANTIZATION AND THE SOURCE ENCODER

Recall Figure 1.1, in which the functionality of image and video compression in the applications
of visual communications and storage 1s depicted, In the context of visual communications, the
whole system may be illustrated as shown in Figure 2.1. In the transmitter, the input analog
information source is converted to a digital format in the A/D converter block. The digital format
is compressed through the image and video source encoder. In the channel encoder, some redun-
dancy is added to help combat noise and, hence, transmission error. Modulation makes digital data
suitable for transmission through the analog channel, such as air space in the application of a TV
broadeast. At the receiver, the counterpart blocks reconstruct the input visual information. As far
as storage of visual information is concerned, the blocks of channel, channel encoder, channel
decoder, modulation, and demodulation may be omitted, as shown in Figure 2.2, If input and output
are required to be in the digital format in some applications, then the A/D and D/A converters are
omitted from the system. If they are required, however, other blocks such as encryption and
decryption can be added to the system (Sklar, 1988), Hence, what is conceptualized in Figure 2.1
is a fundamental block diagram ofa visual communication system.

In this book, we are mainly concerned with source encoding and source decoding, To this end,
we take it a step further. That is, we show block diagrams of a source encoder and decoder in
Figure 2.3. As shown in Figure 2.3(a), there are three components in source encoding: transforma-
lion, quantization, and codeword assignment, After the transformation, some form of an input
information source is presented to a quantizer. In other words, the transformation block decides
which types of quantities from the input image and video are to be encoded.It is not necessary
that the original image and video waveform be quantized and coded: we will show that some
formats obtained from the input image and video are more suitable for encoding. An exampleis
the difference signal. From the discussionofinterpixel correlation in Chapter 1, it is known that a
pixel is normally highly correlated with its immediate horizontal or vertical neighboring pixel.
Therefore, a better strategy is to cncodethe difference of gray level values betweenapixel and its
neighbor. Since these data are highly correlated, the difference usually has a smaller dynamicrange.
Consequently, the encoding is more efficient. This idea is discussed in Chapter 3 in detail.

Another example is whatis called transform coding, which is addressed in Chapter 4. There,
instead of encoding the original input image and video, we encode atransform ofthe input image
and video. Since the redundancy in the transform domainis greatly reduced, the codingefficiency
is much higher compared with directly encoding the original image and video.

Note that the term transformation in Figure 2.3(a) is sometimes referred to as mapper and
signal processing in the literature (Gonzalez and Woods, 1992; Li and Zhang, 1995). Quantization
refers to a process that converts input data into a setoffinitely different values. Often, the input
data to a quantizer are continuous in magnitude.

31
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FIGURE 2.1 Block diagram of a visual communication system.
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FIGURE 2.2 Block diagram ofa visual storage system.

Hence, quantization is essentially discretization in magnitude, which is an important step in
the lossy compression of digital image and video. (The reasonthat the term lossy compressionis
used here will be shown shortly.) The input and output of quantization can be either scalars or
vectors, The quantization with scalar input and outputis called scalar quantization, whereas that
with vector input and outputis referred to as vector quantization. In this chapter we discuss scalar
quantization. Vector quantization will be addressed in Chapter9.

After quantization, codewordsare assigned to the manyfinitely different values from the output
of the quantizer. Natural binary code (NBC) and variable-length code (VLC), introduced in
Chapter1, are two examplesofthis. Other examplesare the widely utilized entropy code (including
Huffman code and arithmetic code), dictionary code, and run-length code (RLC) (frequently used
in facsimile transmission), which are covered in Chapters 5 and 6.
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FIGURE 2.3 Block diagram of a source encoder and a source decoder.

The source decoder, as shown in Figure 2.3(b), consists of two blocks: codeword decoder and
inverse transformation. They are counterparts of the codeword assignment and transformation in
the source encoder. Note that there is no block that corresponds to quantization in the source
decoder. The implication of this observation is the following. First, quantization is an irreversible
process. That is, in general there is no way to find the original value from the quantized value.
Second, quantization, therefore, is a source of information loss. In fact, quantization is a critical
stage in image and video compression. It has significant impact on the distortion of reconstructed
image and video as well as the bit rate of the encoder. Obviously, coarse quantization results in
more distortion and a lower bit rate than fine quantization.

In this chapter, uniform quantization, which is the simplest yet the most important case, is
discussed first. Nonuniform quantization is covered after that, followed by optimum quantization
for both uniform and nonuniform cases. Then a discussion of adaptive quantization is provided.
Finally, pulse code modulation (PCM), the best established and most frequently implemented digital
coding method involving quantization, is described.

2.2 UNIFORM QUANTIZATION

Uniform quantization is the simplest and most popular quantization technique. Conceptually, it is
of great importance. Hence, we start our discussion on quantization with uniform quantization.
Several fundamental concepts of quantization are introduced in this section.

2.2.1 Basics

This subsection concerns several basic aspects of uniform quantization. These are some fundamental
terms, quantization distortion, and quantizer design.

2.2.1.1. Definitions

Take a look at Figure 2.4. The horizontal axis denotes the input to a quantizer, while the vertical
axis represents the output of the quantizer. The relationship between the input and the outputbest
characterizes this quantizer; this type of configurationis referred to as the input-output characteristic
of the quantizer. It can be seen that there are nine intervals along the x-axis. Wheneverthe input
falls in one ofthe intervals, the output assumes a corresponding value, The input-output charac-
teristic of the quantizeris slaircase-like and, hence,clearly nonlinear.
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FIGURE2.4  Input-output characteristic of a uniform midtread quanuzer.

The end points of the intervals are called decisionlevels, denoted by d; with i being the index
of intervals. The output of the quantization is referred to as the reconstruction level (also known
as quantizing level (Musmann, 1979]), denoted by y,; with / being its index. The length of the
interval is called the step size of the quantizer, denoted by A, With the above terms defined, we
can now mathematically define the function of the quantizer in Figure 2.4 as follows.

y,=O(x) if xe (a, d...) (2.1)

where i = 1,2,---,9 and Q(x) is the outputof the quantizer with respect to the input x.
It is noted that in Figure 2.4, A = 1. The decision levels and reconstruction levels are evenly

spaced. It is a uniform quantizer because it possesses the following two features.

1. Except for possibly the right-most and left-mostintervals, all intervals (hence, decision
levels) along the x-axis are uniformly spaced. That is, each inner interval has the same
length.

2. Except for possibly the outer intervals, the reconstruction levels of the quantizer are also
uniformly spaced. Furthermore, each inner reconstruction level is the arithmetic average
of the two decision levels of the corresponding interval along the x-axis.

The uniform quantizer depicted in Figure 2.4 is called midtread quantizer. Its counterpart is
called a midrise quantizer, in which the reconstructed levels do not include the value of zero. A
midrise quantizer having step size A = | is shown in Figure 2.5. Midtread quantizers are usually
utilized for an odd numberofreconstruction levels and midrise quantizers are used for an even
numberofreconstructionlevels.
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FIGURE2.5 [nput-output characteristic of a uniform midrise quantizer.

Note that the input-output characteristic of both the midtread and midrise uniform quantizers
as depicted in Figures 2.4 and 2.5, respectively, is odd symmetric with respect to the vertical axis
x = 0. In the rest of this chapter, our discussion develops under this symmetry assumption. The
results thus derived will not lose generality since we can always subtract the statistical mean of
input x from the input data and thus achieve this symmetry. After quantization, we can add the
mean value back.

Denote by N the total numberofreconstruction levels of a quantizer. A close look at Figure 2.4
and 2.5 reveals that if N is even, then the decisionlevel diy), is located in the middle of the input
x-axis. If N is odd, on the other hand, then the reconstruction level iy... = 0. This convention is
important in understanding the design tables of quantizers in the literature.

2.2.1.2 Quantization Distortion

The source coding theorempresented in Chapter | states that for a certain distortion D, there exists
a rate distortion function R(D), such that as long as the bit rate used is larger than R(D) thenit is
possible to transmit the source with a distortion smaller than D. Since we cannotafford an infinite
bit rate to representan original source, some distortion in quantization is inevitable. In other words,
we can saythat since quantization causes information loss irreversibly, we encounter quantization
error and, consequently, an issue: how do we evaluate the quality or, equivalently, the distortion
of quantization. According to our discussion on visual quality assessment in Chapter 1, we know
that there are two ways to do so: subjective evaluation and objective evaluation.

In terms of subjective evaluation, in Section 1.3.1 we introduced a five-scale rating adopted in
CCIR Recommendation 500-3. We also described the false contouring phenomenon, whichis
caused by coarse quantization. That is, our humaneyes are moresensitive to the relatively uniform
regions in an image plane. Therefore an insufficient number of reconstruction levels results in
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annoying false contours. In other words, more reconstruction levels are required in relatively
uniform regions thanin relatively nonuniform regions.

In terms of objective evaluation, in Section 1.3.2 we defined mean square error (MSE) and root
mean square error (RMSE), signal-to-noise ratio (SNR), and peak signal-to-noise ratio (PSNR). In
dealing with quantization, we define quantization error, e,, as the difference between the input
signal and the quantized output:

e, =x-Q(x), (2.2)

where x and Q(x) are input and quantized output, respectively. Quantization error is often referred
to as quantization noise. It is a commonpractice to treal input x as a randomvariable with a
probability density function (pdf)f,(x). Mean square quantization error, MSE,, can thus be expressed
as

N dig

MSE, =») J (=o) f,(x)dx (2.3)
isl

whereWNis the total number of reconstruction levels. Note that the outer decision levels may be
—co or oo, as shown in Figures 2.4 and 2.5.It is clear that when the pdf, f(x), remains unchanged,
fewer reconstruction levels (smaller N) result in more distortion, That is, coarse quantization leads
to large quantization noise. This confirms the statement that quantization is a critical component
in a source encoder and significantly influences both bit rate and distortion of the encoder. As
mentioned, the assumption we made abovethat the input-output characteristic is odd symmetric
with respectto the x = 0 axis implies that the mean of the random variable, x,is equal to zero, 1.¢.,
E(x) = 0. Therefore the mean square quantization error MSE, is the variance ofthe quantization
noise equation,i.e., MSE, = 02.

The quantization noise associated with the midtread quantizer depicted in Figure 2.4 is shown
in Figure 2.6. It is clear that the quantization noise is signal dependent.It is observed that, associated
with the inner intervals, the quantization noise is bounded by +0.SA. This type of quantization
noise is referred to as granular noise. The noise associated with the right-most and the left-most

 
FIGURE 2.6 Quantization noise of the uniform midtread quantizer shown in Figure 2.4.
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intervals are unbounded asthe input x approaches either ce or ©, This type of quantization noise
is called overload noise. Denoting the mean square granular noise and overload noise by MSE, ,
and MSE,,,, respectively, we then have the following relations:

MSE = MSE, + MSE,, (2.4)

and

wet “ie

MSE. = (x a Q(x)" Ix (x)dx (2.5)
t=2 il,

thy

MSE,,=2{ (x-O(x))" f(a 26

2.2.1.3 Quantizer Design

The design of a quantizer(either uniform or nonuniform) involves choosing the numberof recon-
struction levels, NV (hence, the numberof decision levels, N+1), and selecting the values of decision
levels and reconstruction levels (deciding where to locate them). In other words, the design of a
quantizer is equivalent to specifying its input-output characteristic.

The optimum quantizer design can be stated as follows. For a given probability density function
of the input randomvariable, f, (x), determine the numberof reconstruction levels, NV, choose a set
of decision levels (d,, i = 1,---, N+ 1} anda set of reconstruction levels {y,, i= 1, ---, WM) such
that the mean square quantization error, MSE,, defined in Equation 2.3, is minimized.

In the uniform quantizer design, the total number ofreconstruction levels, N, is usually given.
According to the two features of uniform quanitzers described in Section 2.2.1.1, we know that the
reconstruction levels of a uniform quantizer can be derived from the decision levels. Hence, only
one ofthese two sets is independent, Furthermore, both decision levels and reconstruction levels
are uniformly spaced except possibly the outer intervals. These constraints together with the
symmetry assumption lead to the following observation: There is in fact only one parameter that
needs to be decided in uniform quantizer design, which is the step size A. As to the optimum
uniform quantizer design, a different pdf leads to a different step size.

2.2.2 Optimum UNiFoRM QUANTIZER

In this subsection, we first discuss optimum uniform quantizer design when the input x obeys
uniform distribution. Then, we cover optimum uniform quantizer design when the inpulx has other
types of probabilistic distributions.

2.2.2.1 Uniform Quantizer with Uniformly Distributed Input

Let us return to Figure 2.4, where the input-output characteristic of a nine reconstruction-level
midtread quantizer is shown, Now, consider that the input x is a uniformly distributed random
variable.Its input-output characteristic is shown in Figure 2.7. We notice that the new characteristic
is restricted within a finite range of x, i.e., 4.5 <x < 4.5. This is due to the definition of uniform
distribution. Consequently, the overload quantization noise does not exist in this case, which is
shown in Figure 2.8.
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FIGURE 2.7 Input-output characteristic of a uniform midtread quantizer with input x having uniform
distribution in [-4.5, 4.5].

  
FIGURE 2.8 Quantization noise of the quantizer shown in Figure 2.7.

The mean square quantization error is found to be

dy
= oakMSE, = |(x-O(x) watt

4 (2.7)
2

MSE, = 5
12
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This result indicates that if the input to a uniform quantizer has a uniform distribution and the
number ofreconstruction levels is fixed, then the mean square quantization error is directly
proportional to the square of the quantization step size. Or, in other words, the root mean square
quantization error (the standard deviation ofthe quantization noise) is directly proportional to the
quantization step. The larger the step size, the larger (according to square law) the mean square
quantization error. This agrees with our previous observation: coarse quantization leads to large
quantization error,

As mentioned above, the mean square quantization error is equal to the variance of the
quantization noise, Le., MSE, =G,). In order to find the signal-to-noise ratio of the uniform
quantization in this case, we need to determine the variance of the input x. Note that we assume
the input x to be a zero mean uniform random variable. So, according to probability theory, we have

 
(2.8)

Therefore, the mean square signal-to-noise ratio, SNR,,,, defined in Chapter 1, is equal toans?

LA,
=iSNR,,, = 10log =10log,, N’. (2.9)o

Note that here we use the subscript mis to indicate the signal-to-noise ratio in the mean square
sense, as defined in the previous chapter, If we assume N = 2”, we then have

SNR,,, = 20log,, 2"°=6.02n dB. (2.10)

The interpretation of the above result is as follows. If we use the natural binary code to code
the reconstruction levels of a uniform quantizer with a uniformly distributed input source, then
every increased bit in the coding brings out a 6.02-dB increasein the SNR,,,. An equivalent statement
can be derived from Equation2.7. Thatis, whenever the step size of the uniform quantizer decreases
by a half, the mean square quantization error decreases four times.

2.2.2.2 Conditions of Optimum Quantization

The conditions under which the mean square quantization error MSE, is minimized were derived
(Lloyd, 1982; Max, 1960) for a given probability density function of the quantizer input, fy (x).

The mean square quantization error MSE, was given in Equation 2.3, The necessary conditions
for optimum (minimum mean square error) quantization are as follows. Thatis, the derivatives of
MSE, with respect to the d; and y, have to be zero.

2

(4,-y,..) £(d)-(4-y,) £(4)=0 t= 20-5 (2.11)

-{" (x-y,) f.(x)dx =0 i=1--,N a2)yt

The sufficient conditions can be derived accordingly by involving the second-order derivatives
(Max, 1960; Fleischer, 1964). The symmetry assumption of the input-output characteristic made
earlier holds here as well. These sufficient conditions are listed below.
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1. x, =-s0and xy,, = +00 (2.13)

iy

a3 [(«-»)AG@)arx=0 i=1,2,.,N (2.14)
ry

] j

3. d.= (143) (=2,---,N (2.15)

Note that the first condition is for an input x whose range is -22 <x < ee. The interpretation ofthe
aboveconditionsis that each decision level (except for the outer intervals) is the arithmetic average
of the two neighboring reconstruction levels, and each reconstruction level is the centroid of the
area under the probability density function f, (x) and between the twoadjacent decision levels.

Note that the above conditions are general in the sense that there is no restriction imposed on
the pdf. In the next subsubsection, we discuss the optimumuniform quantization when the input
of quantizer assumesdifferentdistributions.

2.2.2.3. Optimum Uniform Quantizer with Different Input Distributions

Let’s return to our discussion on the optimum quantizerdesign whose input has uniformdistribution.
Since the input has uniform distribution, the outer intervals are also finite. For uniform distribution,
Equation 2.14 implies that each reconstruction level is the arithmetic average of the (wo corre-
sponding decision levels. Considering the two features of a uniform quantizer, presented In
Section 2.2.1.1, we see that a uniform quantizer is optimum (minimizing the mean square quanti-
zation error) when the input has uniform distribution.

Whenthe input xis uniformly distributed in [-1,1], the step size A of the optimum uniform
quantizeris listed in Table 2.1 for the numberofreconstruction levels, N, equal to 2, 4, 8, 16, and
32, From thetable, we notice that the MSE,ofthe uniform quantization with a uniformly distributed
input decreases four times as N doubles. As mentioned in Section 2.2.2.1, this is equivalent to an
increase of SNR,,,, by 6.02 dB as N doubles.

The derivation aboveis a special case,i.e., the uniform quantizer is optimum for a uniformly
distributed input. Normally,if the probability density function is not uniform, the optimum quantizer
is not a uniform quantizer. Dueto the simplicity of uniform quantization, however, it may sometimes
be desirable to design an optimum uniform quantizer for an input with an other-than-uniform
distribution.

Under these circumstances, however, Equations 2.13, 2.14, and 2.15 are not a set of simulta-
neous equations one can hope to solve with any ease. Numerical procedures were suggested lo
solve for design of optimum uniform quantizers. Max derived uniform quantization step size A for
an input with a Gaussian distribution (Max, 1960). Paez and Glisson (1972) found step size A for
Laplacian- and Gamma-distributed input signals. These results are listed in Table 2.1. Note thatall
three distributions have a zero mean and unit standard deviation. If the mean is not zero, only a
shift in input is needed when applying these results. If the standard deviation is not unity, the
tabulated step size needs to be multiplied by the standard deviation. The theoretical MSE is also

listed in Table 2.1. Note that the subscript g associated with MSE has been dropped from now on
in the chapter for the sake of notational brevity as long as it does not cause confusion.

2.3 NONUNIFORM QUANTIZATION

It is not difficult to see that, exceptfor the special case of the uniformly distributed input variable x,
the optimum (minimum MSE, also denoted sometimes by MMSE) quantizers should be nonuniform.
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nnSS————————————————Ee

TABLE 2.1

Optimal Symmetric Uniform Quantizer for Uniform Gaussian, Laplacian,
and GammaDistributions *

 Uniform Gaussian

N d; yi MSE d, yi MSE

2 -1.000 -0.500 8.33 -1.596 -0.798 0.363

0,000 0.500 x10? 0.000 0.798
1.000 1.596

4 -1,000 -0.750 2.08 -1.991 -1.494 0.119

-0.500 -(.250 x107 =—-0,.996 90.498
0.000 0.250 0.000 0.498

0.500 0.750 0.996 | .494
1.000 [.99]

8 -1,000 -0.875 421) —2.344 -2.051 4.74

“0.750 —-0.625 x10 -1.758  -1.465 x[O-
-0.500 0.375 =|.172 -0.879

“0.250 -0.125 “0.586 -0.293

0.000 0.125 (),000 0,293

0.250 0.375 0.586 0.879

0.500 0.625 1.172 1.465

0.750 O875 1.758 2.051

1.000 2.344

16 -1.000 -0.938 1.30 -2.680 -2.513 1.15

—0.875 -0.813 x10" -2.345 --2..178 «lo?

-—0.750 —0.688 =—7,010 =1.843

-0,625 -0.563 =1.675 -!.508
—0,500 -0.438 -1.340 —-1.173

-0,375 -0.313 -1.005 -0.838

-0250 -0.188 -0,670 -0.503

-0.125 -0,063 -0.335 —-0.168

0.000 0.063 0.000. 0.168

0.125 0.188 0.335 0.503

0.250 0.313 0.670 0.838

0.375 0.438 1.005 1.173

0.500 0.563 1.340 1.508
().625 0.688 1.675 1.843

0.750 0.813 2.010 2.178

0.875 0,938 2,345 2.513

1.000 2.680

d,

-1.414

0.000
1.414

-2,174
—1,087

0.000

1.087
2,174

—2.924

2.193

-1.462

-0.731

0.000
0.731

1.462

2.193
2,924

-3.648
-3.192

-2.736

-2.280

—|.824

=1.368
~0.912

-0.456
0.000

0.456

0.912

1.368

1.824

2.280

2,736

3,192
3.648

Laplacian

Yi

-0.707
0.707

-|.631

~0,544
0.544

1.631

—2.559

—1,828

-1.097

-0.366

0.366

1.097

1.828

2.559

-3.420

-2.964

-2.508

—2.052

-1.596

-1.140
-0.684

—().228

0.228

0.684

1.140

1,596
2.052

2.508

2.964

3.420,

MSE d,

0.500 -1.154

0.000

1.154

1.963 2.120

x10-"=—1.060

0,000
1.060

2.120

VAT —3.184

x10?=+2.388
—!.592

0.796

0.000

0.796

1.592

2.388
3.184

2.54 4.320

x10 3.780
3.240

—2,700

—2.160

-1.620
—1.080

—0.540

0.000

0.540

1.080
1.620

2.160

2.700

3.240

3.780

4.320

Gamma

Yi MSE

-0.577 0.668
0.577

-1,590 0.320
—0.530

0,530

1,590

2.786 0.132
-1.990

—1.194

—0.398

0.398

1,194

1,990

2.786

4.050 5.01
3.510 x10?

—2.970

2.430

—1.890

—1,350

-0.810

—0.270

0.270

0.810

1.350
1.890

2.430

2.970

3.510

4.050

Nore: The uniform distribution is between [—1,1]J, the other three distributions have zero mean and unit variance. The numbers

in bold type are the step sizes.
? Data from (Max, 1960; Paez and Glisson, 1972).
 

Consider a case in which the input random variable obeys the Gaussian distribution with a zero
mean and unit variance, and the number of reconstruction levels is finite. We naturally consider
that having decision levels more densely located around the middle of the x-axis, x = 0 (high-
probability density region), and choosing decision levels more coarsely distributed in the range far
away from the center of the x-axis (low-probability density region) will lead to less MSE, The
strategy adopted here is analogousto the superiority of variable-length codeover fixed-length code
discussed in the previous chapter.
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2.3.1 Optimum (NONUNIFORM) QUANTIZATION

Conditions for optimum quantization were discussed in Section 2.2.2.2. With some constraints,
these conditions were solved in a closed form (Panter and Dite, 1951). The equations characterizing
these conditions, however, cannot be solved in a closed form in general, Lloyd and Max proposed
an iterative procedure to numerically solve the equations. The optimum quantizers thus designed
are called Lloyd-Max quantizers.
 

 

TABLE2.2

Optimal Symmetric Quantizer for Uniform, Gaussian, Laplacian, and Gamma
Distributions*

Uniform Gaussian Laplacian Gamma

N d; yi MSE d, yi MSE d, yi MSE d, Yi MSE

2 -1.000 -0.500 8.33 —o -0.799 0.363 -— -0.707 0500 -  -0577 0,668

0.000 0.500 xl0* 0.000 0.799 0.000 0.707 0.000 0.577
1.000 20 0 oo

4  -1.000 -0.750 2.08 —o=1.510 0.118 -  -1.834 1.765 —s=2.108 0.233

-0.500 -0.250 lO? -0.982 -0.453 1.127) -0420 xl0' -1.205 -0.302
0.000 0.250 0.000 0.453 0.000 0.420 0.000=0.302
0.500 0.750 0.982 1.510 1.127 1.834 1.205 2.108
1.000 oo oo co

8 -1.000 -0.875 5.21 0 =2.152 3.45 —2a -3.087 5.48 —0s 3.799 7.12
0.750 -0.6259x10% -1.7489-1.344=x10 )=—--2.377: -1.673. x10? 2.872 -1,944. x10?
-0.500 -0,375 -1.050 -0.756 -1.253 -0.833 -1.401 -0.859
0.250 ~0.125 0.501 -0,245 -0.533 -0.233 -0.504 -0.149

0.000 0.125 0.000 0.245 0,000 0.233 0.000 0.149
0.250 0.375 0.501 0.756 0.533 0.833 0.504 0.859
0.500 0.625 1.050 1.344 1253 1.673 1.401 1.944
0.750 0.875 1.748 2.152 2.377 3.087 2872 3.799
1.000 co co co

16 -1.000 -0.938 1.30 0 —2,733 9.50 — 4.316 1.54 oo -6.085 1.96
0.875 -0.813  x107 -2401 -2.069 xl03 -3605 2905 x 10? -$.050 4.015 x10?
—0.750 -0.688 1.844 -1.618 -2.499 -2.103 -3.407 -2.798
-0.625 -0.563 -1.437 -1.256 -1.821 -1.540 2.372 1.945
—0.500 -0.438 -1.099 -0,942 -1.317  =1.095 -1.623 —-1.300
—0.375 -0313 -0.800 -0,657 -0.910 -0.726 -1,.045  -0.791
—0.250 —-O0.188 0,522 -0.388 -0.566 -0.407 -0.588 —0.386
—0.125 —-0.063 -0,258 -0.128 0.266 -0.126 -0.229  -0.072

0.000 0.063 0.000 0.128 ° 0.000 0,126 0.000 0.072
0.125 0.188 0.258 0.388 0.266 0.407 0.229 0.386
0.250 0.313 0.522 0,657 0.566 0.726 0.588 0.791
0.375 0.438 0.800 0.942 0.910 1.095 1.045 1.300
0.500 0.563 1.099 1.256 L317 1,540 1.623 1.945
0.625 0,688 1437 1.618 1821=2,103 Bienes gt98
0.750 0.813 1,844 2.069 2.499 2.895 3.407 4.015
0.875 0.938 2.401 2.733 3,605 4.316 5,050 6.085
1,000 =

Note: The uniform distribution is between [-], 1], the other three distributions have zero mean and unit variance.
* Data from Lloyd, 1957, 1982; Max, 1990; and Paez, 1972.

oo
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 Errorratio 
Number of reconstruction levels V

FIGURE 2.9 Ratio of the error for the optimal quantizer to the error for the optimum uniform quantizer
vs. the numberofreconstruction levels V. (Minimum mean square error for Gaussian-distributed input with
a zero mean and unit variance). (Data from Max, 1960.)

The solution to optimum quantizer design for many finite reconstruction levels N when input
x obeys Gaussian distribution was obtained (Lloyd, 1982; Max, 1960), Thatis, the decision levels
and reconstruction levels together with theoretical minimum MSE and optimum SNR have been
determined. Following this procedure, the design for Laplacian and Gammadistribution were
tabulated in (Paez and Glisson, 1972). These results are contained in Table 2,2. As stated before,
we see once again that uniform quantization is optimalif the input x is a uniform random variable.

Figure 2,9 (Max, 1960) gives a performance comparison between optimum uniform quantiza-
tion and optimum quantization for the case of a Gaussian-distributed input with a zero mean and
unit variance. The abscissa represents the numberof reconstruction levels, N, and the ordinate the
ratio between the error of the optimum quantizer and the error of the optimum uniform quantizer.
It can be seen that when N is small, the ratio is close to one. That is, the performancesare close.

WhenAincreases, the ratio decreases. Specifically, when AN is large the nonuniform quantizer is
about 20 to 30% more efficient than the uniform optimum quantizer for the Gaussian distribution
with a zero mean and unit variance.

2.3.2 COMPANDING QUANTIZATION

It is known that a speech signal usually has a large dynamic range. Moreover, its statistical
distribution reveals that very low speech volumes predominate most voice communications. Spe-
cifically, by a 50% chance, the voltage characterizing detected speech energy is less than 25% of
the root mean square (rms) value ofthe signal. Large amplitude values are rare: only by a 15%
chance does the voltage exceed the rms value (Sklar, 1988). These statistics naturally lead to the
need for nonuniform quantization withrelatively dense decisionlevels in the small-magnitude range
and relatively coarse decision levels in the large-magnitude range.

Whenthebitrate is eight bits per sample, the following companding technique (Smith, 1957),
which realizes nonuniform quantization, is found to be extremely useful. Though speech codingis
not the main focus ofthis book, we briefly discuss the companding technique here as an alternative
way to achieve nonuniform quantization.
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input

 
output

 
Uniform

quantization Compressing Expanding

 

Nonuniform quantization

FIGURE 2,10 Companding technique in achieving quantization.

The companding technique, also known as logarithmic quantization, consists ofthe following
three stages: compressing, uniform quantization, and expanding (Gersho, 1977), as shown in
Figure 2.10. It first compresses the input signal with a logarithmic characteristic, and then il
quantizes the compressed inputusing a uniform quantizer. Finally, the uniformly quantized results
are expandedinversely. An illustration of the characteristics of these three stages and the resultant
nonuniform quantization are shownin Figure 2.11.

C(x)

 
O[C(x)]

(a)

EfO[C(x)]} Q,(x)

ae...

FIGURE 2.11 Characteristics of companding techniques. (a) Compressing characteristic. (b) Uniform quan-
tizer characteristic. (c) Expanding characteristic. (d) Nonuniform quantizer characteristic.
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FIGURE 2.12 Compression characteristics.

In practice, a piecewise linear approximation of the logarithmic compression characteristic is
used. There are two different ways. In North America, a L-law compression characteristic is used,
whichts defined as follows:

In} + t1(|x|/sax)
e(X) = Xiu. senx, (2,16)

In(1 +p)

where sgn is a sign function defined as

+l df x20 aesgnx= ;
Bett ak oe re

The p-law compression characteristic is shown in Figure 2.12(a). The standard value of [1 is 255.
Note from the figure that the case of {t= 0 corresponds to uniform quantization.

In Europe, the A-law characteristic 1s used. The A-law characteristic is depicted in
Figure 2.12(b), and is defined as follows:

 Allsnas)nas) sgn x 0< bl < x
(x) mx t4+IndA eeome cee (2.18)cx) = *

I+ In|A(|x1/-ax) : l |x|
‘ Sx <<)

aie 1+InA A ees

It is noted that the standard value ofA is 87.6. The case ofA = | correspondsto uniform quantization.

2.4 ADAPTIVE QUANTIZATION

In the previous section, we studied nonuniform quantization, whose motivation is to minimize the
mean square quantization error MSE,. We found that nonuniform quantization is necessary if the
pdfof the input random variable x is not uniform. Consider an optimum quantizer for a Gaussian-
distributed input when the numberofreconstruction levels N is eight. Its input-output characteristic
can be derived from Table 2.2 and is shown in Figure 2.13. This plot reveals that the decision levels
are densely located in the central region of the x-axis and coarsely elsewhere. In other words,the
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FIGURE 2.13 Input-output characteristic of the optimal quantizer for Gaussian distribution with zero mean,
unit variance, and N = 8.

decision levels are densely distributed in the region having a higher probability of occurrence and
coarsely distributed in other regions. A logarithmic companding technique also allocates decision
levels densely in the small-magnitude region, which corresponds to a high occurrence probability,
but in a different way. We conclude that nonuniform quantization achieves minimum mean square
quantization error by distributing decision levels according to thestatistics of the input random
variable.

These twotypes of nonuniform quantizers are both time-invariant. Thatis, they are not designed
for nonstationary input signals. Moreover, even for a stationary inputsignal, if its pdf deviates from
that with which the optimum quantizeris designed, then what is called mismatch will take place
and the performanceof the quantizer will deteriorate. There are two main types of mismatch. One
is called variance mismatch. Thatis, the pdf of input signal is matched, while the variance is
mismatched. Another type is pdf mismatch. Noted that these two kinds of mismatch also occur in
optimum uniform quantization, since there the optimization is also achieved based on the input
Statistics assumption. For a detailed analysis of the effects of the two types of mismatch on
quantization, readers are referred to (Jayant and Noll, 1984).

Adaptive quantization attempts to makethe quantizer design adaptto the varying inpul statistics
in order to achieve better performance. It is a means to combat the mismatch problem discussed
above. By statistics, we mean thestatistical mean, variance (or the dynamic range), and type of
input pdf. When the meanof the input changes, differential coding (discussed in the next chapter)
is a Suitable methodto handle the variation. For other typesof cases, adaptive quantization is found
to be effective. The price paid for adaptive quantization is processing delays and an extra storage
requirement as seen below.

There are two different types of adaptive quantization: forward adaptation and backward
adaptation. Before we discuss these, however,let us describe an alternative way to define quanti-
zation (Jayant and Noll, 1984). Look at Figure 2.14. Quantization can be viewed as a two-stage
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  Interval index Quantization

decoderInput x Output y

 Reconstruction
level

FIGURE 2.14 A two-stage model of quantization.

process. Thefirst stage is the quantization encoder and the secondstage is the quantization decoder.
In the encoder, the input to quantization is converted to the index of an interval into which the
input x falls. This index is mapped to (the codeword that represents) the reconstruction level
corresponding tothe interval in the decoder. Roughly speaking, this definition considers a quantizer
as a communication system in which the quantization encoderis on the transmitter side while the
quantization decoder is on the receiver side. In this sense, this definition is broader than that for
quantization defined in Figure 2.3(a).

2.4.1 Forwarp ADAPTIVE QUANTIZATION

A block diagram offorward adaptive quantization is shown in Figure 2.15. There, the input to the
quantizer, x, 1s first split into blocks, each with a certain length. Blocks are stored in a buffer one
ata time. A statistical analysis is then carried out with respectto the block in the buffer. Based on
the analysis, the quantization encoderis set up, and the input data within the block are assigned
indexes ofrespective intervals. In addition to these indexes, the encodersetting parameters, derived
fromthe statistical analysis, are sent to the quantization decoderas side information. The term side
comesfromthe fact that the amountofbits used for coding the setting parameteris usually a small
fraction of the total amountofbits used.

Selection of the block size is a critical issue. If the size is small, the adaptation to the local
statistics will be effective, but the side information needs to be sent frequently. That is, more bits
are used for sending the side information. If the size is large, the bits used for side information
decrease, On the other hand, the adaptation becomesless sensitive lo changing Statistics, and both
processing delays and storage required increase. In practice, a proper compromise between the
quantity of side information and the effectiveness of adaptation produces a good selection of the
block size,

Examples of using the forward approachto adapt quantization to a changing input variance (to
combat variance mismatch) can be found in (Jayant and Noll, 1984; Sayood, 1996).

 
  

Statistical parameters

Input.x Quantization Outputy
decoder  
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FIGURE 2.15 Forward adaptive quantization,
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FIGURE 2.16 Backward adaptive quantization.

2.4.2 BACKWARD ADAPTIVE QUANTIZATION

Figure 2.16 shows a block diagram of backward adaptive quantization. A close look at the block
diagram reveals that in both the quantization encoder and decoderthe buffering and the statistical
analysis are carried out with respect to the outputof the quantization encoder. In this way, there
is no need to send side information. Thesensitivity of adaptation to the changing statistics will be
degraded, however, since instead ofthe original input, only the output of the quantization encoder
is used in thestatistical analysis. Thatis, the quantization noiseis involved in thestatistical analysis.

2.4.3. ADAPTIVE QUANTIZATION WITH A One-Word MEmorY

Intuitively, it is expected that observanceofa sufficiently large numberofinput or output (quantized)
data is necessary in order to track the changingstatistics and then adapt the quantizer setting in
adaptive quantization. Throughan analysis, Jayant showed thateffective adaptations can be realized
with an explicit memory of only one word, Thatis, either one input sample, x, in forward adaptive
quantization or a quantized output, y, in backward adaptive quantizationis sufficient (Jayant, 1973).

In (Jayant, 1984), examples on step-size adaptation (with the numberof total reconstruction
levels larger than four) were given. The ideais asfollows.If at moment 1, the input sample x; falls
into the outerinterval, then the step size at the next moment £,,, will be enlarged by a factor of mm,
(multiplying the current step size by m,, m, > 1). On the other hand, if the input x, falls into an
inner interval close to x = O then, the multiplieris less than 1, i.e., m, < 1. Thatis, the multiplier
m, is small in the interval near x = 0 and monotonically increases for an increased x. Its range
varies from a small positive numberless than | to a numberlarger than |. In this way, the quantizer
adaptsitself to the input to avoid overload as well as underload to achieve better performance,

2.4.4 SwitcHED QUANTIZATION

This is another adaptive quantization scheme. A block diagram is shownin Figure 2.17. It consists
of a bank of L quantizers. Each quantizer in the bankis fixed, but collectively they form a bank
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FIGURE 2.17 Switched quantization.

of quantizers with a variely ofinput-output characteristics. Based on a statistical analysis of recent
input Or Output samples, a swilch connects the current input to one ofthe quantizers in the bank
such that the best possible performance may be achieved, It is reported that in both video and
speech applications, this scheme has shown improved performance even when the number of
quantizers in the bank, L, is two (Jayant and Noll, 1984). Interestingly, it is noted that as L — 09,
the switched quantization converges to the adaptive quantizer discussed above.

2.5 PCM

Pulse code modulation (PCM)is closely related to quantization, the focus ofthis chapter. Further-
more, as pointed out in (Jayant, 1984), PCM is the earliest, best established, and most frequently
applied coding system despite the fact that it is the most bit-consuming digitizing system (sinceiL
encodes cach pixel independently) as well as being a very demanding system in terms ofthe bit
error rate on the digital channel. Therefore, we discuss the PCM technique in this section.

PCMis now the most important form of pulse modulation. The other forms of pulse modulation
are pulse amplitude modulation (PAM), pulse width modulation (PWM), and pulse position mod-
ulation (PPM), which are covered in most communications texts. Briefly speaking, pulse modulation
links an analog signal to a pulse train in the following way. The analog signalis first sampled (a
discretization in the time domain). The sampled values are used to modulate a pulse train. If the
modulation is carried out through the amplitude ofthe pulse train, it is called PAM.If the modified
parameterof the pulse trainis the pulse width, we then have PWM.Ifthe pulse width and magnitude
are constant — only the position of pulses is modulated by the sample values — we then encounter
PPM. Anillustration of these pulse modulations is shown in Figure 2.18.

In PCM,an analog signal is first sampled, The sampled value is then quantized. Finally the
quantized value is encoded,resulting in a bit steam. Figure 2.19 provides an example of PCM. We
see that through a sampling and a uniform quantization the PCM system converts the input analog
signal, which is continuous in both time and magnitude, into a digital signal (discretized in both
time and magnitude)in the form of a natural binary code sequence. In this way, an analogsignal
modulates a pulse train with a natural binary code.

By far, PCM is more popular than other types of pulse modulation since the code modulation
is much more robust against various noises than amplitude modulation, width modulation, and
position modulation. In fact, almost all coding techniques include a PCM component. In digital
image processing,given digital images usually appear in PCM format.It is knownthat an acceptable
PCM representation of a monochromepicture requires six to eight bits per pixel (Huang, 1975).
It is used so commonlyin practice thatits performance normally serves as a standard against which
other coding techniques are compared.
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FIGURE 2.18 Pulse modulation.

Recall the false contouring phenomenondiscussed in Chapter 1, when we discussed texture
masking.It states that our eyes are moresensitive to relatively uniform regions in an image plane.
If the numberof reconstruction levels is not large enough(coarse quantization), then some unnatural
contours will appear. When frequency masking was discussed, it was noted that by adding some
high-frequency signal before quantization, the false contouring can be eliminated to a great extent.
This techniqueis called dithering. The high-frequency signal used is referred to as a dither signal.
Both false contouring and dithering were first reported in (Goodall, 1951).

2.6 SUMMARY

Quantization is a process in which a quantity having possibly an infinite numberofdifferent values
is converted to another quantity having only finite many values.It is an important element in source
encoding that has significant impact on bothbit rate and distortion of reconstructed images and
video in visual communication systems. Depending on whetherthe quantity is a scalar or a vector,
quantizationis called either scalar quantization or vector quantization. In this chapter we considered
only scalar quantization.

Uniform quantizationis the simplest and yet the most important case. In uniform quantization,
except for outer intervals, both decision levels and reconstruction levels are uniformly spaced.
Moreover, a reconstructionlevel is the arithmetic average of the two corresponding decisionlevels.
In uniform quantization design,the stepsize is usually the only parameter that needsto be specified.
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FIGURE 2.19 Pulse code modulation (PCM).

Optimumquantization implies minimization of the mean square quantization error. When the
input has a uniformdistribution, uniform quantization is optimum. For the sake of simplicity, a
uniform optimum quantizer is sometimes desired even when the input does not obey uniform
distribution. The design under these circumstances involves an iterative procedure. The design
problem in cases where the input has Gaussian, Lapacian, or Gammadistribution was solved and
the parameters are available.

Whenthe constraint of uniform quantization is removed, the conditions for optimum quanti-
zation are derived, The resultant optimum quantizer is normally nonuniform. Aniterative procedure
to solve the design is established and the optimumdesign parameters for Gaussian, Laplacian, and
Gamma distribution are tabulated.

The companding techniqueis an alternative way to implement nonuniform quantization. Both
nonuniform quantization and compandingare time-invariant and hencenot suitable for nonstation-
ary input. Adaptive quantization deals with nonstationary input and combats the mismatch that
occurs in optimum quantization design.

In adaptive quantization, buffering is necessary to store some recent input or sampled output
data. A statistical analysis is carried out with respectto the stored recent data. Based onthe analysis,
the quantizer’s parameters are adapted to changing input statistics to achieve better quantization
performance. There are two types of adaptive quantization: forward and backward adaptive quan-
tization. With the forwardtype, the statistical analysis is derived from the original input data, while
with the backward type, quantization noise is involved in the analysis. Therefore, the forward
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technique usually achieves moreeffective adaptation than the backward manner, The latter, however,
does not need to send quantizer setting parameters as side information to the receiverside, since
the output values of the quantization encoder (based on which thestatistics are analyzed and the
quantizer’s parameters are adapted)are available in both the transmitter and receiver sides.

Switched quantization is another type of adaptive quantization. In this scheme, a bankoffixed
quantizers is utilized, each quantizer having different input-output characteristics. A statistical
analysis based on recent input decides which quantizer in the bank is suitable for the present input.
The system then connects the input to this particular quantizer.

Nowadays, pulse code modulation is the most frequently used form ofpulse modulation due
to its robustness against noise. PCM consists of three stages: sampling, quantization, and encoding.
Analog signals are first sampled with a proper sampling frequency. The sampled data are then
quantized using a uniform quantizer. Finally, the quantized values are encoded with natural binary
code.It is the best established and most applied coding system. Despite its bit-consuming feature,
it is utilized in almost all coding systems.

2.7 EXERCISES

2-1. Using your own words, define quantization and uniform quantization. What are the two
features of uniform quantization?

2-2. What is optimum quantization? Why is uniform quantization sometimes desired, even
when the input has a pdf different from uniform? How wasthis problem solved? Draw
an input-output characteristic of an optimum uniform quantizer with an input obeying
Gaussian pdf having zero mean, unit variance, and the number of reconstruction levels,
N, equal to 8.

2-3. What are the conditions of optimum nonuniform quantization? From Table 2.2, what
observations can you make?

2-4. Define variance mismatch and pdf mismatch. Discuss how you can resolve the mismatch
problem.

2-5. Whatis the difference between forward and backward adaptive quantization? Comment
on the merits and drawbacksfor each.

2-6. What are PAM, PWM,PPM, and PCM? Why is PCM the most popular type of pulse
modulation?
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3 Differential Coding
Instead of encoding asignal directly, the differential coding technique codesthe difference between
the signal itself and its prediction. Therefore it is also known as predictive coding. By utilizing
spatial and/or temporal interpixel correlation, differential coding is an efficient and yet computation-
ally simple coding technique. In this chapter, wefirst describe the differential technique in general,
Two components of differential coding, prediction and quantization, are discussed, There is an
emphasis on (optimum) prediction, since quantization was discussed in Chapter 2. Whenthe differ-
ence signal (also Knownas prediction error) is quantized, the differential coding is called differential
pulse code modulation (DPCM), Some issues in DPCMare discussed, alter which delta modulation

(DM) as a special case of DPCM is covered. The idea ofdifferential coding involving image
sequences is briefly discussed in this chapter. More detailed coverage is presented in Sections III
and TV, starung from Chapter 10. If quantization is not included, the differential coding is referred
to as information-preserving differential coding. This is discussed at the end of the chapter.

3.1 INTRODUCTION TO DPCM

As depicted in Figure 2,3, a source encoder consists of the following three components: transfor-
mation, quantization, and codeword assignment. The transformation converts input into a format
for quantization followed by codeword assignment. In other words, the componentof transformation
decides which format of input is to be encoded. As mentioned in the previous chapter, input itself
is NOL necessarily the most suitable format for encoding,

Consider the case of monochrome image encoding. The input is usually a 2-D array of gray
level values of an image obtained via PCM coding. The concept of spatial redundancy, discussed
in Section 1.2.1.1, tells us that neighboring pixels of an image are usually highly correlated.
Therefore, it is more efficient to encode the gray difference between two neighboring pixels instead
of encoding the gray level values of each pixel. At the receiver, the decoded difference is added
back to reconstruct the gray level value of the pixel, Since neighboringpixels are highly correlated,
their gray level values bear a great similarity, Hence, we expectthat the variance ofthe difference
signal will be smaller than that ofthe original signal. Assume uniform quantization and natural
binary coding for the sake ofsimplicity. Then we see that for the samebit rate (bits per sample)
the quantization error wil] be smaller, i.e., a higher quality of reconstructed signal can be achieved.
Or, for the same quality of reconstructed signal, we need a lowerbit rate.

3.1.1 Simece Pixet-to-Pixe. DPCM

Denotethe gray level values of pixels along a row of an imageasz;, (= 1,--,M, where M is the
total numberofpixels within the row. Using the immediately preceding pixel’s gray level value,
2;;, a8 a prediction ofthat of the present pixel, z;, 1.¢.,

Z,=%; (3.1)

we then have the difference signal

d, =2,—%, = 2% —2; (3.2)1 i=l

55
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FIGURE 3.1 (a) Histogram of the original “boy and girl” image. (b) Histogram of the difference image
obtainedbyusing horizontal pixel-to-pixel differencing. (c) A close-up ofthe central portion of the histogram
of the difference image.

Assumea bil rate ofeight bits per sample in the quantization. Wecansee that although the dynamic
rangeofthe difference signalis theoretically doubled, from 256 to 512,the variance of the difference
signal is actually much smaller. This can be confirmed from the histograms of the “boy and girl”
image (refer to Figure 1.1) and its difference image obtained by horizontal pixel-to-pixel differ-
encing, shownin Figure 3.1(a) and (b), respectively. Figure 3.1(b) and its close-up (c) indicate that
by a rate of 42.44% the difference values fall into the range of —1, 0, and +1. In other words, the
histogram of the difference signal is much more narrowly concentrated than that ofthe original
Signal.

IPR2018-01413

Sony EX1008 Page 82



IPR2018-01413 
Sony EX1008 Page 83

Differential Coding 57

 
(a) Encoder (b) Decoder

FIGURE 3,2 Block diagram of a pixel-to-pixel differential coding system.

A block diagram of the scheme described above is shown in Figure 3.2. There z, denotes the
sequence of pixels along a row,d, is the corresponding difference signal, and d, is the quantized
version ofthe difference, i.e.,

d, = Q(d,)=d, +e, (3.3)

where @, represents the quantizationerror. In the decoder,2; represents the reconstructed pixel gray
value, and we have

Z=Z_,+d. (3.4)i “il

This simple scheme, however, suffers from an accumulated quantization error. We can sce this
clearly from the following derivation (Sayood, 1996), where we assume the initial value zg is
available for both the encoder and the decoder.

as i=l, d,=zZ,-Z,
a

d,=d,+e,, (3.5)

zy, =%+4, =Z%,+d, +e,,=2Z,+e,,

Similarly, we can have

as i=2, 2%, =%,+€,, +64 (3.6)

and, in general,

Z=24+ >4, (3.7)
jal

This problem can be remedied by the following scheme, shownin Figure 3.3. Now we see that
in both the encoder and the decoder, the reconstructed signal is generated in the same way,L.¢.,

Z=G+d (3.8)

and in the encoderthe difference signal changes to

d, =%—%. (3.9)
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(a) Encoder (b) Decoder

FIGURE 3.3 Block diagram ofa practical pixel-to-pixel differential coding system.

Thus, the previously reconstructed Z,, is used as the predictor, Z,, i.e.,

3 =z, (3.10)

In this way, we have

as i=l, d,=z,-2%

d,=d,+e,, (3.11)

Z, =z, +d, =%td,+e,,=z7A+¢,,

Similarly, we have

as 1=2, d,=z,-Z,

d,=d, +e,, (3.12)

4 =% +d, =%,+¢€,5

In general,

%=%+e,; (13)

Thus, we see that the problem of the quantization error accumulation has been resolved by
having both the encoder and the decoder work in the same fashion, as indicated in Figure 3.3, OF
in Equations 3.3, 3.9, and 3.10.

3.1.2 GenerAt DPCM Systems

In the above discussion, we can view the reconstructed neighboring pixel’s gray value as a prediction
of that of the pixel being coded. Now, wegeneralize this simple pixel-to-pixel DPCM.In a general
DPCMsystem,a pixel’s gray level valueis first predicted from the preceding reconstructed pixels’
gray level values. The difference between the pixel’s gray level value and the predicted value is
then quantized. Finally, the quantized difference is encoded andtransmitted to the receiver. A block

IPR2018-01413

Sony EX1008 Page 84



IPR2018-01413 
Sony EX1008 Page 85

Differential Coding 59

fs zZ,

 Prediction 
FIGURE 3.4 Block diagram of a general DPCM system.

diagram ofthis general differential coding scheme is shown in Figure 3.4, where the codeword
assignment in the encoder and its counterpart in decoder are not included.

It is noted that, instead of using the previously reconstructed sample, Z,_,, as a predictor, we
now have the predicted version of z,, z;, as a function of the nm previously reconstructed
samples, 2,.), Z3,°:'s Z.,. Thatis,

z; =f (Zar sZg Fen) (3.14)

Linear prediction, i.e., that the function f in Equation 3.14 is linear, is of particular interest and
is Widely used in differential coding. In linear prediction, we have

z, “Dazaz. (3.15)
where a, are real parameters, Hence, we see that the simple pixel-to-pixel differential coding is a
special case of general differential coding with linear prediction, i.e., n = 1 and a, = 1.

In Figure 3.4, d, is the difference signal and is equal to the difference between the original
signal, z,, and the prediction Z,. Thatis,

d =z,-t (3.16)a»

The quantized version of d, is denoted by d;. The reconstructed version of z; is represented
by Z,, and

Kee (3.17){= tm»

Note that this is true for both the encoder and the decoder. Recall that the accumulation of the

quantization error can be remedied by using this method,
The difference between the original input and the predicted input is called prediction error,

which is denoted by e,. Thatis,

e =2,-2 (3.18)

ee the ¢, is understood as the prediction error associated with the index é. Quantization error,, is equal to the reconstruction error or coding error, e,, defined as the difference between theacetal signal, z,, and the reconstructed signal, z,, when the transmissionis error free:
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e=d-d

=(z,-%)-(%-&) (3.19)

=2,-7, =e

This indicates that quantization error is the only source of information loss with anerror-free
transmission channel.

The DPCM system depicted in Figure 3.4 is also called closed-loop DPCM with feedback
around the quantizer (Jayant, 1984). This term reflects the feature in DPCM structure.

Before weleavethis section,let us take a look at the history of the developmentofdifferential
image coding. According to an excellent early article on differential image coding (Musmann,
1979), the first theoretical and experimental approaches to image coding involving linear prediction
began in 1952 at the Bell Telephone Laboratories (Oliver, 1952; Kretzmer, 1952: Harrison, 1952).
The concepts of DPCM and DM werealso developed in 1952 (Cutler, 1952; Dejager, 1952).
Predictive coding capable of preserving information for a PCM signal was established at the
Massachusetts Institute of Technology (Elias, 1955),

The differential coding technique has played an important role in image and video coding. In
the international coding standardforstill images, JPEG (covered in Chapter 7), we can see that
differential coding is used in the lossless mode and in the DCT-based mode for coding DC
coefficients. Motion-compensated (MC) coding has been a major development in video coding
since the 1980s and has been adoptedbyall the international video coding standards such as H.261
and H.263 (covered in Chapter 19), MPEG | and MPEG2(covered in Chapter 16). MCcoding1s
essentially a predictive coding technique applied to video sequences involving displacement motion
veclors.

3.2 OPTIMUM LINEAR PREDICTION

Figure 3.4 demonstrates that a differential coding system consists of two major components:
prediction and quantization. Quantization was discussed in the previous chapter. Hence, in this
chapter we emphasizeprediction. Below, we formulate an optimum linear prediction problem and
then present a theoretical solution to the problem.

3.2.1 FORMULATION

Optimum linear prediction can be formulated as follows. Consider a discrete-time random process
z- Ata typical momenti, it is a random variablez,, We have n previous observations Z,), Zj-2) '°"+ Sinavailable and would like to form a prediction ofz,, denoted by Z,. The output of the predictor, 2a
is a linear function of the m previous observations. Thatis,

n

Zz, = Siz, (3.20)
J=\

with a;, j = 1,2,---,n being a set of real coefficients. An illustration of a linear predictor is shown
in Figure 3.5. As defined above,the prediction error, ¢,, is

“a

e,=%-% (3.21)
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FIGURE 3.5 An illustration of a linear predictor.

The mean square prediction error, MSE,, is

MSE,= A(e,)| = él(z,-2)'| (3.22)
The optimumprediction, then, refers to the determination of a set of coefficients Gj, J = 12.0"
such that the mean square prediction error, MSE,,, is minimized,

This optimization problem turns out to be computationally intractable for most practical cases
due to the feedback around the quantizer shown in Figure 3.4, and the nonlinear nature of the
quantizer. Therefore, the optimization problemis solved in two separate stages. That is, the best
linear predictoris first designed ignoring the quantizer. Then, the quantizer is optimized for the
distribution of the difference signal (Habibi, 1971). Although the predictor thus designed is sub-
optimal, ignoring the quantizer in the optimumpredictor design allows us to substitute the recon-
structed 2, by z,; for j = 1,2,---,n, according to Equation 3.20. Consequently, we can apply the
theory of optimumlinear prediction to handle the design of the optimum predictor as shown below.

3.2.2. ORTHOGONALITY CONDITION AND MINIMUM MEAN SQUARE ERROR

By taking the differentiation of MSE, with respect to coefficient ajs, one can derive the following
necessary conditions, which are usually referred to as the orthogonality condition:

Fle, z-)|=0 for j=t2e-m (3.23)

The interpretation of Equation 3.23 is that the prediction error, ¢,, must be orthogonalto all the
observations, which are now the preceding samples: z,,, / = 1,2,-+-,7 according to our discussion
in Section 3.2.1. These are equivalentto
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fn

R(m)=¥a,R(m—-j) for m=1,2,-".n (3.24)
Jel

where R.representsthe autocorrelation function of z. Ina vector-matrix format, the above orthogonal
conditions can be written as

R.(1) R.(0) RI) os oo  R(n-l)]|4,
R.(2) R.(1) R(0) R(n—2)||a,
sare (3.25)

Bin) RHA) Rn) R.(0) a,

Equations 3.24 and 3.25 are called Yule-Walker equations.
The minimum mean square prediction error is then found to be

MSE, = R.(0)- ¥° a,R.(i) (3.26)
j=!

These results can be found in texts dealing with randomprocesses, e.g., in (Leon-Garcia, 1994).

3.2.3. SOLUTION TO Yute-Watker EQuaTioNns

Onceautocorrelationdataare available, the Yule-Walker equation can be solved by matrix inversion.
A recursive procedure was developed by Levinson to solve the Yule-Walker equations (Leon-Garcia,
1993). When the numberofprevious samples used in thelinearpredictoris large, i.e., the dimension
of the matrix is high, the Levinson recursive algorithm becomes more attractive. Note that in the
field of image codingthe autocorrelation function of various types of video frames is derived from
measurements (O’Neal, 1966; Habibi, 1971).

3.3 SOME ISSUES IN THE IMPLEMENTATION OF DPCM

Several related issues in the implementation of DPCM arediscussedin this section.

3.3.1 Optimum DPCM System

Since DPCMconsists mainly of twoparts, prediction and quantization, ils optimization should not
be carried out separately. The interaction between the two parts is quite complicated, however, and
thus combined optimization of the whole DPCM system is difficult. Fortunately, with the mean
square errorcriterion, the relation between quantization error and prediction error has been found:

9
MSE, = —, MSE (3.27)2N-

Pp

where JV is the total number of reconstruction levels in the quantizer (O’Neal, 1966; Musmann,
1979). That is, the mean square error of quantization is approximately proportional to the mean
square error of prediction. With this approximation, we can optimize the two parts separately, as
mentioned in Section 3.2.1. While the optimization of quantization was addressed in Chapter 2, the
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optimum predictor was discussed in Section 3.2. A large amount of work has been done onthis
subject, For instance, the optimumpredictor for color image coding was designed and tested in
(Pirsch and Stenger, 1977).

3.3.2. 1-D, 2-D, ann 3-D DPCM

In Section 3.1.2, we expressed linear prediction in Equation 3.15, However, so far we have not
really discussed howto predict a pixel’s gray level value by using its neighboring pixels’ coded
gray level values.

Recall that a practical pixel-to-pixel differential coding system was discussed in Section 3.1.1.
There, the reconstructed intensity of the immediately preceding pixel along the samescanline is used
us a prediction of the pixel intensity being coded. This type ofdifferential coding is referred to as
1-D DPCM. In general, 1-D DPCM may use the reconstructed gray level values of more than one of
the preceding pixels within the same scanline to predict that ofa pixel being coded, By far, however,
the immediately preceding pixel in the same sean line is most frequently used in 1-D DPCM. That
is, pixcl A in Pigure 3.6 is often used as a prediction of pixel Z, which is being DPCM coded,

Sometimes in DPCM image coding, both the decoded intensity values of adjacent pixels within
the same scan line and the decoded intensity values of neighboring pixels in different scan lines
are Involved in the prediction. This is called 2-D DPCM, A typical pixel arrangement in 2-D
predictive coding is shown in Figure 3.6. Note that the pixels involved in the prediction are restricted
to be either in the lines above the line where the pixel being coded, Z, is located or on the left-
hand side of pixel Z if they are in the same line. Traditionally, a TV frame is scanned from top to
bottom and fromleft to right. Hence, the aboverestriction indicates that only those pixels, which
have been coded and available in both the transmitter and the receiver, are used in the prediction.

In 2-D systemtheory, this support is referred to as recursively computable (Bose, 1982). An often-
used 2-D prediction involves pixels A, D, and E,

Obviously, 2-D predictive codingutilizes not only the spatial correlation existing within a scan
line but alsothat existing in neighboring scan lines, In other words, the spatial correlation ts utilized
both horizontally and vertically. [t was reported that 2-D predictive coding outperforms |-D
predictive coding by decreasing the prediction error by a factor of two, or equivalently, 3dB in
SNR. The improvement in subjective assessmentis even larger (Musmann, 1979). Furthermore, the
transmission error in 2-D predictive image coding is muchless severe than in 1-D predictive image
coding. This is discussed in Section 3.6.

In the context of image sequences, neighboring pixels may be located not only in the same
image frame but also in successive frames. That is, neighboring pixels along the time dimension
are also involved. If the prediction of a DPCM systeminvolvesthree types of neighboring pixels:
those along the same scanline,those in the different scanlines of the same image frame, and those

¥
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FIGURE 3.6 Pixel arrangement in 1-D and 2-D prediction.
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in the different frames, the DPCMis then called 3-D differential coding. It will be discussed in
Section 3.5.

3.3.3. Orpber oF Prepictor

The numberofcoefficients in the linear prediction, n, is referred to as the order of the predictor.
The relation between the mean square prediction error, MSE,,, and the order ofthe predictor, n, has
been studied. As shown in Figure 3.7, the MSE,decreases quite effectively as n increases, but the
performance improvement becomes negligible as n > 3 (Habibi, 1971).

3.3.4 ADAPTIVE PREDICTION

Adaptive DPCM meansadaptive prediction and adaptive quantization. As adaptive quantization
was discussed in Chapter 2, here we discuss adaptive prediction only.

Similar to the discussion on adaptive quantization, adaptive prediction can be done in two
different ways: forward adaptive and backward adaptive prediction. In the former, adaptation 1s
based on the input of a DPCM system, while in the latter, adaptation is based on the outputofthe
DPCM. Therefore, forward adaptive prediction is more sensitive to changes in local statistics.
Prediction parameters (the coefficients of the predictor), however, need to be transmitted as side
information to the decoder. On the other hand, quantization erroris involved in backward adaptive
prediction. Hence,the adaptationis less sensitive to local changingstatistics. But, it does not need
to transmil side information.

MSE,
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FIGURE 3.7 Mean square prediction errorvs. orderof predictor, (Data from Habibi, 1971.)
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In either case, the data (cither input or output) have to be buffered, Autocorrelation coefficients
are analyzed, based on which prediction parameters are determined.

3.3.5  Errect OF TRANSMISSION Errors

Transmission errors caused by channel noise may reverse the binary bit information from 0 to 1
or | to 0 with whatis knownas bit error probability, or bit error rate. The effect of transmission
errors On reconstructed images varies depending on different coding techniques.

In the case of the PCM-coding technique, cach pixel is coded independently of the others.
Therefore bit reversal in the transmission only affects the gray level value of the corresponding
pixel in the reconstructed image. It does notaffect other pixels in the reconstructed image.

In DPCM, however, the effect caused by transmission errors becomes more severe. Consider
a bit reversal occurring in transmission. It causes errorin the corresponding pixel. But, this is not
the end of the effect. The affected pixel causes errors in reconstructing those pixels towards which
the erroneous gray level value was used in the prediction. In this way, the transmission error
propagates.

Interestingly, it is reported that the error propagation is more severe in 1-D differential image
coding than in 2-D differential coding. This maybe explainedas follows. In 1-D differential coding,
usually only the immediate preceding pixel in the samescanline is involved in prediction. Therefore,
an error will be propagated along the scanline until the beginning ofthe next line, where the pixel
gray level value is reinitialized. In 2-D differential coding, the prediction of a pixel gray level value
depends not only on the reconstructed gray level values of pixels along the samescan line but also
on the reconstructed gray level values of the vertical neighbors. Hence, the effect caused by a bit
reversal transmission error is less severe than in the 1-D differential coding.

Forthis reason, the bit error rate required by DPCM codingis lowerthan that required by PCM
coding, For instance, while a bit error rate less (han S »10-® is normally required for PCM to provide
broadcast TV quality, for the same application a bit error rate less than 10-7 and 10-° are required
for DPCM coding with 2-D prediction and 1-D prediction, respectively (Musmann, 1979).

Channel encoding with an error correction capability was applied to lower the bit errorrate.
For instance, to lower the bil error rate from the order of 10* to the order of 10° for DPCM coding
with I-D prediction, an error correction by adding 3% redundancy in channel coding has been used
(Bruders, 1978).

3.4 DELTA MODULATION

Delta modulation (DM) is an important, simple, special case of DPCM,as discussed above.It has
been widely applied and is thus an important coding technique in andof itself.

The above discussion and characterization of DPCM systems are applicable to DM systems.
This is because DM is essentially a special type of DPCM,with the following two features.

1. The linear predictor is of the first order, with the coefficient a, equal to 1.
2. The quantizer is a one-bit quantizer. That is, depending on whetherthe difference signal

is positive or negative, the outputis either +A/2 or —A/2.

To perceive these two features, let us take a look at the block diagram of a DM system and
the input-output characteristic of its one-bit quantizer, shown in Figures 3.8 and 3.9, respectively.
Dueto the first feature listed above, we have:

2 =z, (3.28)
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(a) Encoder (b) Decoder

 
FIGURE 3.8 Block diagram of DM systems.

 
FIGURE 3.9 Input-output characteristic of two-level quantization in DM.

Next, we see thatthere are only two reconstruction levels in quantization because of the second
feature. Thatis,

= Ias if 77%,
ie 1 1 3.29

“4/2 if 4<%,

From therelation between the reconstructed value and the predicted value of DPCM, discussed
above, and the fact that DM isaspecial case of DPCM,we have

Z=i,+d, (3.30)

Combining Equations 3.28, 3.29, and 3.30, we have

= epee AZ NG 2S Zs
Vi 4/2 if 2, ¢2i-]

(3.31)
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Input z(t), output z,
   

  
               

FIGURE 3.10 DM with fixed step size.

The above mathematical relationships are of importance in understanding DM systems. For
instance, Equation 3.31 indicates that the step size A of DM is a crucial parameter. We notice that
a large step size compared with the magnitude ofthe difference signal causes granular error, as
shown in Figure 3.10. Therefore, in order to reduce the granular error we should choose a small
step size. On the other hand, a small step size compared with the magnitude ofthe difference signal
will lead to the overload error discussed in Chapter 2 for quantization. Since in DM systemsitis
the difference signal that is quantized, the overload error in DM becomesslope overload error, as
shown in Figure 3.10. That is, it takes a while (multiple steps) for the reconstructed samples to
catch up with the sudden changein input. Therefore, the step size should be large in order to avoid
the slope overload, Considering these two conflicting factors, a proper compromise in choosing
the step size is common practice in DM.

To improve the performance of DM,an oversampling technique is often applied. That is, the
input is oversampled prior to the application of DM. By oversampling, we meanthat the sampling
frequency is higher than the sampling frequency used in obtaining the original input signal. The
increased sample density caused by oversampling decreases the magnitude ofthe difference signal.
Consequently, a relatively small step size can be used so as to decrease the granular noise without
increasing the slope overload error. Thus, the resolution of the DM-coded imageis kept the same
as thatof the original input (Jayant, 1984; Lim, 1990).

To achieve better performance for changing inputs, an adaptive technique can be applied in
DM.Thatis, either input (forward adaptation) or output (backward adaptation) data are buffered
and the data variation is analyzed. The step size is then chosen accordingly. If it is forward
adaptation, side information is required for transmission to the decoder. Figure 3.11 demonstrates
step size adaptation. We see the same input as that shownin Figure 3.10. But, the step size is now
not fixed. Instead, the step size is adapted according to the varying Input. When the input changes
with a large slope, the step size increases to avoid the slope overload error. On the other hand,
when the input changes slowly, the step size decreases to reduce the granular error.
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Input z(f), output Z,
 

 
  

 

 

 
 
 

 
 
 

    
 

     
FIGURE3.11 Adaptive DM.

3.5 INTERFRAME DIFFERENTIAL CODING

As was mentioned in Section 3.3.2, 3-D differential coding involves an image sequence. Consider
a sensor located in 3-D world space. For instance, in applications such as videophony and video-
conferencing, the sensoris fixed in position for a while and it takes pictures. As time goes by, the
images form a temporal image sequence. The coding of such an image sequenceis referred to as
interframe coding. The subject of image sequence and video coding is addressed in SectionsII
and IV. In this section, we briefly discuss how differential coding is applied to interframe coding.

3.5.1 CONDITIONAL REPLENISHMENT

Recognizing the great similarity between consecutive TV frames, a conditional replenishment
coding technique was proposed and developed (Mounts, 1969). It was regarded as one of the first
real demonstrations of interframe coding exploiting interframe redundancy (Netravali and Robbins,
1979).

In this scheme,the previous frame is used as a reference for the present frame. Consider a pair
of pixels: one in the previous frame, the other in the present frame — both occupying the same
spatial position in the frames. If the gray level difference between the pair of pixels exceeds a
certain criterion, then the pixel is considered a changing pixel. The present pixel gray level value
and its position information are transmitted to the receiving side, where the pixel is replenished.
Otherwise, the pixel is considered unchanged. At the receiver its previous gray level is repeated.
A block diagram of conditional replenishment is shown in Figure 3,12. There, a frame memory
unit in the transmitter is used to store frames. The differencing and thresholding of corresponding
pixels in two consecutive frames can then be conducted there. A buffer in the transmitter is used
to smooth the transmission data rate. This is necessary because the data rate varies from region to
region within an image frame and from frame to frame within an image sequence. A buffer in the
receiver is needed for a similar consideration. In the frame memory unit, the replenishmentis
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FIGURE 3.12 Block diagram of conditional replenishment.

carried out for the changing pixels and the gray level values in the receiver are repeated for the
unchanged pixels.

With conditional replenishment, a considerable savings in bit rate was achieved in applications
such as videophony, videoconferencing, and TV broadcasting. Experiments in real time, using the
head-and-shoulder view of a person in animated conversation as the video source, demonstrated
an average bit rate of | bit/pixel with a quality of reconstructed video comparable with standard
8 bit/pixel PCM transmission (Mounts, 1969). Compared with pixel-to-pixel 1-D DPCM, the most
popularly used coding technique at the time, the conditional replenishment technique is more
efficient due to the exploitation of high interframe redundancy. As pointed in (Mounts, 1969), there
is more correlation between television pixels along the frame-to-frame temporal dimension than
there is between adjacent pixels within a signal frame. Thatis, the temporal redundancyis normally
higher than spatial redundancy for TV signals.

Tremendousefforts have been made to improve the efficiency of this rudimentary technique.
For an excellent review, readers are referred to (Haskell et al,, 1972, 1979). 3-D DPCM codingis

among the improvements and is discussed next.

3.5.2 3-D DPCM

It was soon realized thatit is more efficient to transmit the gray level difference than to transmit
the gray level itself, resulting in interframe differential coding. Furthermore,instead of treating
eachpixel independently of its neighboring pixels, it is more efficientto utilize spatial redundancy
as well as temporal redundancy,resulting in 3-D DPCM.

Consider two consecutive TV frames, each consisting of an odd and an evenfield. Figure 3.13
demonstrates the small neighborhoodofa pixel, Z, in the context. As with the 1-D and 2-D DPCM
discussed before, the prediction can only be based on the previously encodedpixels. If the pixel
underconsideration, Z, is located in the even field of the present frame, then the odd field of the
present frame and both odd and even fields of the previous frame are available. As mentioned in
Section 3.3.2, it is assumed thatin the even field of the present frame, only those pixels in the lines
above the line where pixel Z lies and those pixels left of the Z in the line where Z lies are used
for prediction.

Table 3.1 lists several utilized linear prediction schemes.It is recognized that the case of element
difference is a \-D predictor since the immediately preceding pixel is used as the predictor. The
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S =
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(i-J)th frame ith frame

FIGURE 3.13 Pixel arrangement in two TV frames. (Afler Haskell, 1979.)

field difference is defined as the arithmetic average of two immediately vertical neighboring pixels
in the previous odd field. Since the odd field is generated first, followed by the even field, this
predictor cannot be regarded as a pure 2-D predictor. Instead, it should be considered a 3-D predictor.
The remaining cases are all 3-D predictors. One thing is commonin all the cases: the gray levels
of pixels used in the prediction have already been coded and thus are available in both the transmitter
and the receiver. The prediction error of each changing pixel Z identified in thresholding process
is then quantized and coded,

An analysis of the relationship between the entropy of moving areas (bits per changing pixel)
and the speed ofthe motion (pixels per frame interval) in an image containing a moving mannequin’s
head was studied with different linear predictions, as listed in Table 3.1 in Haskell (1979). It was
found that the element difference of field difference generally corresponds to the lowest entropy,
meaning that this prediction is the most efficient. The frame difference and element difference
correspondto higher entropy.It is recognized that, in the circumstances, transmission error will be
propagatedif the pixels in the previous line are used in prediction (Connor, 1973). Hence,the linear
predictor should use only pixels from the same line or the sameline in the previous frame when
bit reversal error in transmission needs to be considered. Combining these two factors, the element
difference of frame difference prediction is preferred.

  

   

TABLE3.1

SomeLinear Prediction Schemes. (After Haskell, 1979).

Original signal (Z) Prediction signal (Z) Differential signal (d,)

Element difference Zz G Z-G

Field difference Zz Bay F E+J
2 2

Frame difference Zz Ti Z-T

Element difference of frame difference iz T+G-S§ (Z-G)-(T-S)
Line difference of frame difference zZ T+B-M (Z-B)-(T-M)

Element differenceoffield difference iz E+) Q+W ( E+ :) ( O+ ")T+ . z= -| T-——
2 2 2 2
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3.5.3 Motion-CompensatTeD Prepictive CopING

When frames are taken densely enough, changes in successive frames can be attributed to the
motion of objects during the interval between frames. Under this assumption, if we can analyze
object motion fromsuccessive frames, then we should beable to predict objects in the next frame
based on their positions in the previous frame and the estimated motion. The difference between
the original frame and the predicted frame thus generated and the motionvectorsare then quantized
and coded. If the motion estimation is accurate enough, the motion-compensated prediction error
can be smaller than 3-D DPCM. In other words, the variance of the prediction error will be smaller,
resulting in more efficient coding. Take mation into consideration — this differential techniqueis
called motion compensatedpredictive coding. This has been a major developmentin image sequence
coding since the 1980s. It has been adopted by all international video coding standards. A more
detailed discussion is provided in Chapter10.

3.6 INFORMATION-PRESERVING DIFFERENTIAL CODING

As emphasized in Chapter 2, quantization is not reversible in the sense that it causes permanent
information loss. The DPCM technique, discussed above, includes quantization, and hence is lossy
coding. In applications such as those involving scientific measurements, information preservation
is required. In this section, the following question is addressed: under these circumstances, how
should we apply differential coding in order to reduce the bit rate while preserving information?

Figure 3.14 shows a block diagram of information-preserving differential coding. First, we see
that there is no quantizer. Therefore, the irreversible information loss associated with quantization
does notexist in this technique. Second, we observe that prediction and differencing are still used.
That is, the differential (predictive) technique still applies. Hence it is expected that the variance
of the difference signal is smaller than that of the original signal, as explained in Section 3.1,
Consequently, the higher-peaked histograms make coding moreefficient. Third, an efficient lossless
coderis utilized. Since quantizers cannot be used here, PCM with natural binary coding is not used
here, Since the histogram of the difference signal is narrowly concentrated aboutits mean, lossless
coding techniques suchas an efficient Huffman coder (discussed in Chapter 5) is naturally a suitable
choice here.

Binary string

  
 Input

 

 

(a) Encoder

f : Output
Binary string

 
 

Prediction

(b) Decoder

FIGURE 3.14 Block diagram of information-preserving differential coding,
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As mentioned before, input images are normally in a PCM coded format with abit rate of
eight bits per pixel for monochrome pictures. The difference signal is therefore integer-valued
Having no quantization and using an efficient lossless coder, the coding system depicted in
Figure 3.14, therefore, is an information-preserving differential coding technique

3.7 SUMMARY

Rather than codingthe signalitself, differential coding, also known as predictive coding, encodes
the difference between the signal and its prediction. Utilizing spatial and/or temporal correlation
between pixels in the prediction, the variance ofthe difference signal can be much smaller than
that of the original signal, thus making differential coding quite efficient,

Amongdifferential coding methods, differential pulse code modulation (DPCM)is used most
widely. In DPCM coding, the difference signal is quantized and codewords are assigned to the
quantized difference. Prediction and quantizationare therefore two major componentsin the DPCM
systems. Since quantization was addressed in Chapter 2, this chapter emphasizes prediction, The
theory of optimum linear prediction is introduced. Here, optimum means minimization of the mean
square prediction error. The formulation of optimumlinear prediction, the orthogonality condition,
and the minimum mean square prediction error are presented. The orthogonality condition states
that the prediction error must be orthogonal to each observation,i.e., to the reconstructed sample
intensity values used in the linear prediction. By solving the Yule-Walker equation, the optimum
prediction coefficients may be determined.

In addition, some fundamentalissues in implementing the DPCMtechnique are discussed. One
issue is the dimensionality of the predictor in DPCM. We discussed !-D, 2-D, and 3-D predictors.
DPCM with a 2-D predictor demonstrates better performance than a |-D predictor since 2-D DPCM
utilizes more spatial correlation, i.e., not only horizontally but also vertically. As a result, a 3-dB
improvement in SNR was reported. 3-D prediction is encountered in what is known as interframe
coding. There, temporalcorrelation exists. 3-D DPCM utilizes both spatial and temporal correlation
between neighboring pixels in successive frames. Consequently, more redundancy can be removed.
Motion-compensated predictive coding is a very powerful technique in video coding related to
differential coding.It uses a more advancedtranslational motion mode] in the prediction, however,
and it is covered in Sections III and 1V.

Anotherissue is the order ofpredictors andits effect on the performanceof prediction in terms
of mean square prediction error. Increasingthe prediction order can lower the mean square predic-
tion error effectively, but the performance improvement becomesinsignificant after the third order.

Adaptive prediction is another issue. Similar to adaptive quantization, discussed in Chapter 2,
we can adaptthe prediction coefficients in the linear predictor to varying localstatistics.

The last issue is concerned with the effect of transmission error. Bit reversal in transmission

causes a different effect on reconstructed images depending on the type of coding technique used.
PCM is known to be bit-consuming. (An acceptable PCM representation of monochrome images
requires six to eightbits per pixel.) But a one-bit reversal only affects an individual pixel. For the
DPCM coding technique, however, a transmission error may propagate from onepixel to the other,
In particular, DPCM witha 1-D predictor suffers from error propagation more severely than DPCM
with a 2-D predictor,

Delta modulation is an important special case of DPCM in whichthe predictor is of the first
order. Specifically, the immediately preceding coded sample is used as a prediction of the present
input sample. Furthermore, the quantizer has only two reconstructionlevels.

Finally, an information-preserving differential coding technique is discussed. As mentioned in
Chapter 2, quantization is an irreversible process: it causes information loss. In order to preserve
information, there is no quantizer in this type of system. To be efficient, lossless codes such as
Huffman code or arithmetic code should be used for difference signal encoding.
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3.8 EXERCISES

3-1. Justify the necessity of the closed-loop DPCM with feedback around quantizers. That
is, convince yourself why the quantization error will be accumulatedif, instead of using
the reconstructed preceding samples, we use the immediately preceding sample as the
prediction of the sample being coded in DPCM.

3-2. Why does the overload error encountered in quantization appearto be the slope overload
in DM?

3-3. What advantage does oversampling bring up in the DM technique?
3-4. What are the two features of DM that make it a subclass of DPCM?

3-5. Explain why DPCM with a I-D predictor suffers from bit reversal transmission error
more severely than DPCM with a 2-D predictor.

3-6, Explain why no quantizer can be used in information-preserving differential coding, and
why the differential system can work without a quantizer.

3-7, Why do all the pixels involved in prediction of differential coding have to be in a
recursively computable order {rom the point of view of the pixel being coded?

3-8. Discuss the similarity and dissimilarity between DPCM and motion compensated pre-
dictive coding.
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A Transform Coding
As introduced in the previous chapter, differential coding achieves high coding efficiency by
utilizing the correlation between pixels existing in image frames. Transform coding (TC), the focus
of this chapter, is anotherefficient coding scheme based on utilization of interpixel correlation. As
we will see in Chapter 7, TC has become a fundamental technique recommendedbytheinternational
sull image coding standard, JPEG. Moreover, TC has been foundtobeefficient in coding prediction
error in motion-compensated predictive coding. As aresult, TC was also adopted by the international
video coding standards such as H.261, H.263, and MPEG |, 2, and 4. This will be discussed in
Section IV.

4.1 INTRODUCTION

Recall the block diagram of source encoders shown in Figure 2.3. There are three components in
a source encoder: transformation, quantization, and codeword assignment. It is the transformation
component that decides which format of input source is quantized and encoded. In DPCM,for
instance, the difference between an original signal and a predicted versionofthe original signalts
quantized and encoded. As long as the prediction error is small enough,i.e., the prediction resembles
the original signal well (by using correlation between pixels), differential codingis efficient.

In transformcoding, the main ideais that if the transformed version ofa signalis less correlated
compared with the original signal, then quantizing and encoding the transformed signal may lead
to data compression. At the receiver, the encoded data are decoded and transformed back to
reconstructthe signal. Therefore, in transform coding, the transformation componentillustrated in
Figure 2.3 is a transform. Quantization and codeword assignment are carried out with respect to
the transformed signal, or, in other words, carried oul in the transform domain.

We begin with the Hotelling transform, using it as an example of how a transform may
decorrelate a signal in the transform domain,

4.1.1 HOoTettinc TRANSFORM

Consider an N-dimensional vector z,. The ensemble of such vectors, {z,} s € /, where / represents —
the set of all vector indexes, can be modeled by a random vector z with each of its component z;
1= 1, 2, ---, Nas a random variable. Thatis,

Z=(2.202y). (4.1)

where T stands for the operator of matrix transposition. The mean vector ofthe population, m3, is
defined as

mn; = E{Z]=(m,.myeevmy)” (4.2)

where E stands for the expectation operator. Note that mz is an N-dimensional vector with the ith
component, m,, being the expectation value of the ‘th random variable componentin Z.

m, = E[z,| i=),2,.--,N (4.3)

75
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The covariance matrix of the population, denoted by C;, is equal to

¢,=H{(z-m,(@-m,)} 44)
Note that the product inside the E operatoris referred to as the outer product of the vector(z —

mz). Denote an entry at the ith row and jth column in the covariance matrix by c,,. From
Equation 4.4, it can be seen that ¢,, is the covariance between the ith and jth componentsof the
random vector z. Thatis,

Gj = Elz, —m, lz, - m,)| = Cov(:,,2,;). (4.5)

On the main diagonal of the covariance matrix C,, the element ¢,, is the variance of the ith
componentof2, z,. Obviously, the covariance matrix C; is a real and symmetric matrix. It is real
because of the definition of random variables, It is symmetric because Cov(z,, z)) = Cov(z;,, 2,).
According to the theory oflinear algebra, it is always possible to find a set of N orthonormal
eigenvectors of the matrix C;, with which we can convertthe real symmetric matrix C; into a fully
ranked diagonal matrix. This statementcan be found in texts of linear algebra, e.g., in (Strang, 1998).

Denote the set of N orthonormal eigenvectors and their corresponding eigenvalues of the
covariance matrix C; by é; and A,, i = 1,2,---,N, respectively, Note that eigenvectors are column
vectors. Form a matrix ® such that its rows comprise the N transposed eigenvectors. Thatis,

@=(2,,2,,--,2,). (4.6)

Now,consider the following transformation:

j= 0(¢-m) 7

It is easy to verify that the transformed random vector ¥ has the following two characteristics:

1. The mean vector, my, is a zero vector. Thatis,

m= 0, (4.8)

2. The covariance matrix of the transformed random vector C;is

A, 0

C, = 0C,07 = s, : (4.9)

0 Ly a”

This transform is called the Hotelling transform (Hotelling, 1933), or eigenvector transform (Tasto,
1971; Wintz, 1972).

The inverse Hotelling transform is defined as

Z=O'jS+m., (4.10)im
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where ~! is the inverse matrix of ®. It is easy to see from its formation discussed above that the
matrix ® is orthogonal. Therefore, we have ®" = @-!, Hence, the inverse Hotelling transform can
be expressed as

Z=O" y+. (4.11)

Note that in implementing the Hotelling transform, the mean vector ntzand the covariance matrix
C; can be calculated approximately by using a given set of K sample vectors (Gonzalez and Woods,
1992),

K

yz (4.12)
s=1ay[n=

x

C= z S287 —mmt (4.13)

The analogoustransform for continuous data was devised by Karhunen and Loeve (Karhunen,
1947; Loeve, 1948). Alternatively, the Hotelling transform can be viewed asthe discrete version
of the Karhunen-Loeve transform (KLT). We observe that the covariance matrix Cy is a diagonal
matrix. The elements in the diagonal are the eigenvalues of the covariance matrix C;, That is, the
two covariance matrices have the same cigenvalues and eigenvectors because the two matrices are
similar. The fact that zero values are everywhere except along the main diagonal in C; indicates
that the componentsof the transformed vector y are uncorrelated. Thatis, the correlation previously
existing between the different components ofthe random vector z has been removed in the trans-
formed domain. Therefore, if the input is split into blocks and the Hotelling transform is applied
blockwise, the coding may be moreefficient since the data in the transformedblockare uncorrelated.
At the receiver, we may producea replica of the input with an inverse transform. This basic idea
behind transform codingwill be furtherillustrated next. Note that transform codingis also referred
to as block quantization (Huang, 1963).

4.1.2  STatisTICAL INTERPRETATION

Let’s continue our discussion of the 1-D Hotelling transform. Recall that the covariance matrix of
the transformed vector y, Cy, is a diagonal matrix, The elements in the main diagonal are eigen-
values of the covariance matrix C;. According to the definition of a covariance males these2

elements are the variances of the doinpenents of vector y, denoted by Oh Oya"ey oN Let us
arrange the eigenvalues (variances) in a nonincreasing order. Thatis,Ma 2A, 2 +: 2 Ay. Choose
an integer L, and L < N. Using the corresponding L eigenvectors, é, @,°", Ly we form a matrix
® with these L eigenvectors (transposed)asits L rows. Obviously, the matrix ® isofLx N. Hence,
using the matrix ® in Equation 4.7 we will have the transformed vector y of L X 1, Thatis,

: y=O(z-m,). (4.14)

The inverse transform changes accordingly:

z= O07 y+m. (4.15)
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Note that the reconstructed vector z, denoted by z’, is still an N x | column vector.It can be
shown (Wintz, 1972) that the mean square reconstruction error between the original vector z and
the reconstructed vector z is given by

MSE,=»9;,. (4.16)

This equation indicates that the mean square reconstruction error equals the sum ofvariances
of the discarded components. Note that although wediscuss the reconstruction error here, we have
nol considered the quantization error and transmission error involved, Equation 4.15 implies that
if, in the transformedvector y, the first L componentshave their variances occupyalarge percentage
of the total variances, the mean square reconstruction error will not be large even though only the
first L components are kept, i.e., the (N — L) remaining components in the y are discarded.
Quantizing and encoding only L components of vector y in the transform domain lead to higher
coding efficiency, This is the basic idea behind transform coding.

4.1.3 GEOMETRICAL INTERPRETATION

Transforming a set of statistically dependent data into another set of uncorrelated data, then
discarding the insignificant transform coefficients (having small variances) illustrated above using
the Hotelling transform, can be viewed asastatistical interpretation of transform coding. Here, we
give a geometricalinterpretation oftransform coding. Forthis purpose, we use 2-D vectors instead
of N-D vectors.

Consider a binary image of a car in Figure 4.1(a). Each pixel in the shaded object region
corresponds to a 2-D vector with ils two components being coordinates z, and z,, respectively.
Hence, the set of all pixels associated with the object forms a population of vectors. We can
determine its mean vector and covariance matrix using Equations 4.12 and 4.13, respectively. We
can then apply the Hotelling transform by using Equation 4.7. Figure 4.1(b) depicts the same object
after the application of the Hotelling transform in the y,-y, coordinate system. We notice that the
origin of the new coordinate system is now locatedat the centroid ofthe binary object. Furthermore,
the new coordinate system is aligned with the two eigenvectors of the covariance matrix C:.

As mentioned, the elements along the main diagonal of C; (two eigenvalues of the C,- and
C;) are the two variances of the two componentsofthe y population. Since the covariance matrix

%y

Z 
(a) (b)

FIGURE 4.1 (a) A binary object in the z,-z, coordinate system. (b) After the Hotelling transform, the object
is aligned with its principal axes.
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C; is a diagonal matrix, the two components are uncorrelated after the transform. Since one variance
(along the y, direction) is larger than the other (along the y, direction), it is possible for us to
achieve higher coding efficiency by ignoring the component associated with the smaller variance
without too muchsacrifice of the reconstructed image quality.

It is noted that the alignmentofthe object withthe eigenvectors of the covariance matrix is of
importance in pattern recognition (Gonzalez and Woods, 1992).

4.1.4 Basis Vector INTERPRETATION

Basis vector expansion is another interpretation of transform coding. For simplicity, in this sub-
seclion we assume a zero mean vector. Under this assumption, the Hotelling transform andits
inverse transform become

y=O7Z (4.17)

=0'F (4.18)fal

Recall that the row vectorsin the matrix @ are the transposed eigenvectors of the covariance matrix
C;. Therefore, Equation 4.18 can be written as

z=) yé. (4.19)

In the above equation, we can view vector Z as a linear combination of basis vectors €,, i =
1,2,-+-,N. The componentsof the transformed vectory, y,, (= 1,2,---,N serve as coefficients in the
linear combination, or weights in the weighted sum of basis vectors. The coefficient y,, f= 1,2,-.,V
can be produced according to Equation 4.17:

y=87e. (4.20)

That is, y, is the inner product between vectors é, and z. Therefore, the coefficient y; can be
interpreted as the amountofcorrelation between the basis vector é, and the original signal Z.

In the Hotelling transform the coefficients y,, = 1,2,--+,V are uncorrelated. The variance of y;
can be arranged in a nonincreasing order. For i > L, the variance of the coefficient becomes
insignificant. We can then discard these coefficients without introducing significant error in the
linear combination ofbasis vectors and achieve higher codingefficiency. ' ;

In the above three interpretations of transform coding, we see that the linear unitary transform
can provide the following two functions:

1. Decorrelate input data; i.e., transform coefficients are less correlated than the original
data, and

2. Have some transform coefficients more significant than others (with large variance,
eigenvalue, or weight in basis vector expansion) suchthat transform coefficients can be
treated differently: some can be discarded, some can be coarsely quantized, and some
can be finely quantized.

Note that the definition of wnitary transformis given shortly in Section 4.2.1.3.
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FIGURE 4.2 Block diagram of transform coding.

4.1.5  Procepures OF TRANSFORM CODING

Prior to leaving this section, we summarize the procedures of transform coding. There are three
steps in transform coding as shown in Figure 4.2. First, the input data (frame) are divided into
blocks (subimages). Each block is then linearly transformed. The transformed version is then
truncated, quantized, and encoded. Theselast three functions, which are discussed in Section 4.4,
can be grouped and termedasbit allocation. The output of the encoderis a bitstream.

In the receiver, the bitstream is decoded and then inversely transformed to form reconstructed
blocks. All the reconstructed blocks collectively produce a replica ofthe input image.

4.2 LINEAR TRANSFORMS

In this section, wefirst discuss a general formulationofa linear unitary 2-D imagetransform. Then,
a basis imageinterpretation of TCis given.

4.2.1 2-D IMAGE TRANSFORMATION KERNEL

There are two different ways to handle image transformation. In the first way, we convert a 2-D
array representing a digital image into a 1-D array via row-by-row stacking, for example. Thatis,
from the second row on, the beginning of each row in the 2-D array is cascaded to the end of its
previous row. Then we transform this |-D array using a 1-D transform. After the transformation,
we can convert the 1-D array back to a 2-D array. In the second way, a 2-D transform is directly

applied to the 2-D array corresponding to an input image,resulting in a transformed 2-D array.
These two ways are essentially the same. It can be straightforwardly shown that the difference
between the two is simply a matter of notation (Wintz, 1972). In this section, we use the second
way to handle image transformation. That is, we work on 2-D imagetransformation.
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Assume a digital image is represented by a 2-D array g(x, y), where (x, y) is the coordinates
ofa pixel in the 2-D array, while g is the gray level value (also often called intensity or brightness)
of the pixel. Denote the 2-D transform of g(x, y) by T(u, v), where (u, v) is the coordinates in the
transformed domain. Assumethat both g(x, y) and T(u, v) are a square 2-D array of N x N;i.e.,
O<xyuveN-—I,

The 2-D forward and inverse transforms are defined as

N=1 N=1

T(u,v) = ey Yale. y) f(x,y, ¥) (4.21)
x=0 y=0

and

N-I N=l

g(x,y) = ¥:a T(u,v)i(x,y, 4¥) (4.22)
u=0 v=0

where f(x, y, u, v) and i(x, y, , v) are referred to as the forward and inverse transformation kernels,
respectively.

A few characteristics of transforms are discussed below.

4.2.1.1 Separability

A transformation kernel is called separable (hence, the transform is said to be separable) if the
following conditions are satisfied.

f(xynury)=f(oo4), (4.23)

and

i(x,y,u,¥) = 4, (x,u)i,(y,¥). (4.24)

Note that a 2-D separable transform can be decomposed into two 1-D transforms. Thatis, a
2-D transform can be implementedby a 1-D transform rowwisefollowed by another 1-D transform
columnwise. Thatis,

N-|

7(x.v)= >alsy)A(o.»): (4.25)
y=0

where 0 S x, vy < N— 1, and

N=I

T(u,v) = ot T,(x,v) f(x). (4.26)
x=0

where 0 < u, v < N — 1. Ofcourse, the 2-D transform can also be implementedin a reverse order
with two 1-D transforms, i.e., columnwise first, followed by rowwise. The counterparts of
Equations 4.25 and 4.26 for the inverse transform can be derived similarly.
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4.2.1.2 Symmetry

Thetransformation kernel is symmetric (hence,the transformis symmetric)if the kernel is separable
and the following conditionis satisfied:

fi(y,v) = AAly,¥). (4.27)

Thatis, f, is functionally equivalentto f,.

4.2.1.3 Matrix Form

If a transformation kernel is symmetric (hence, separable) then the 2-D image transform discussed
above can be expressed compactly in the following matrix form. Denote an image matrix by G
and G = {g,,} = (g(i- 1, j — 1)}. Thatis, a typical element (at the ith row and jth column) in the
matrix G is the pixel gray level value in the 2-D array g(x, y) at the same geometrical position.
Note that the subtraction of one in the notation g(i — 1, j — 1) comes from Equations 4.21 and 4.22.
Namely, the indexes of a square 2-D imagearray are conventionally defined from 0 to N-1, while
the indexes of a square matrix are from | to N. Denote the forwardtransform matrix by F and F =
(f.;) = (f,@— 1,7 - 1)}. We then have the following matrix form of a 2-D transform:

T =F" GF (4.28)

where T on the left-hand side of the equation denotes the matrix corresponding to the transformed
2-D array in the same fashion as that used in defining the G matrix. The inverse transform can be
expressed as

G=!'TI (4.29)

where the matrix / is the inverse transform matrix and I = {i,,) = {i, G- 1, k- 1)}. The forward
and inverse transform matrices have the following relation:

[=F" (4.30)

Note that all of the matrices defined above, G, T, F, and / are of Nx N.

It is knownthatthe discrete Fourier transform involves complex quantities. In this case, the
counterparts of Equations 4.28, 4.29, and 4.30 become Equations 4.31, 4.32, and 4.33, respectively:

T=F*' GF (4.31)

G=!*" 7] (4.32)

[=F'=F*" (4,33)

where * indicates complex conjugation. Note thatthe transform matrices F and / contain complex
quantities and satisfy Equation 4.33. They are called unitary matrices and the transform is referred
to as a unitary transform.
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4.2.1.4 Orthogonality

A transform is said to be orthogonalif the transform matrix is orthogonal. Thatis,

fa (4.34)

Note that an orthogonal matrix (orthogonal transform) is a special case of a unitary matrix
(unilary transform), where only real quantities are involved, We will see that all the 2-D image
transforms, presented in Section 4,3, are separable, symmetric, and unitary.

4.2.2 Basis IMAGE INTERPRETATION

Here westudy the conceptof basis imagesor basis matrices. Recall that we discussed basis vectors
when we considered the 1-D transform. That is, the components of the transformed vector (also
referred to as the transform coefficients) can be interpreted as the coefficients in the basis vector
expansion ofthe input vector. Each coefficient is essentially the amountof correlation between the
Input vector and the corresponding basis vector. The concept ofbasis vectors can be extended to
basis images in the context of 2-D image transforms.

Recall that the 2-D inverse transform introduced at the beginning ofthis section is defined as

N=l N=1

e(x.y)= SeT(u, v)i(x,yu v) (4.35)
w=0 v=0

where 0 < x, y < N—1. This equation can be viewed as a componentform of the inverse transform.
As defined above in Section 4.2.1.3, the whole image (g(x, y)) is denoted by the image matrix G
of N x N. We now denote the “image” formed by the inverse transformation kernel {i(x, y, u, v),0 S
x,y SN- 1} asa 2-D array/,,, of NX N for a specific pair of (u, v) with 0 <u, vs N — 1. Recall
that a digital image can be represented by a 2-D array of gray level values. In turn the 2-D array
can be arranged into a matrix. Namely, wetreat the following three: a digital image, a 2-D array
(with proper resolution), and a matrix (with proper indexing), interchangeably. We then have

i(0,0, 4, v) i(0,1,u,¥) teres i(O, N —1,u, v)
i(1,0, u,v) i(J, 1,1, v) wes aae i(1,N—1,u, v)

{[ = : see ees s (4.36)

i(N-1,0,u,v) i(N=Ilujv) eo i(N-1,N—-1,u,¥)

The 2-D array/,,, is referred to as a basis image. There are N? basis images in total since OS
u,v < N — 1. Theinverse transform expressed in Equation 4.35 can then be written in a collective
form as

N-| N=I

G= >>aT(uv)I,+ (4.37)
u=0 v=0

Wecan interpret this equation as a series expansion ofthe original image G into a set of N?
basis images /,,. The transform coefficients T(u,v), OS u,v N — 1, becomethe coefficients ofAe

the expansion. Alternatively, the image G is said to be a weighted sum of basis images. Note that,
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similar to the 1-D case, the coefficient or the weight 7(W,v) is a correlation measure between the
image G andthe basis image/,,,, (Wintz, 1972).

Notethat basis images have nothing to do with the input image.Instead, it is completely defined
by the transformitself. That is, basis images are the attribute of 2-D image transforms. Different
transforms have different sets of basis images.

The motivation behind transformcoding is that with a propertransform, hence, a properset of
basis images, the transform coefficients are more independent than the gray scales of the original
input image. In the ideal case, the transform coefficientsare statistically independent. We can then
optimally encodethecoefficients independently, which can make coding moreefficient and simple.
As pointed out in (Wintz, 1972), however, this is generally impossible because ofthe following
two reasons.First, it requires the joint probability density function of the N? pixels, which have
not been deduced from basic physical laws and cannot be measured. Second, even if the joint
probability density functions were known, the problem ofdevising a reversible transformthat can
generate independentcoefficients is unsolved. The optimum linear transform we can have results
in uncorrelated coefficients. When Gaussian distribution is involved, we can have independent
transform coefficients. In addition to the uncorrelatedness of coefficients, the variance of the

coefficients varies widely. Insignificant coefficients can be ignored without introducing significant
distortion in the reconstructed image. Significant coefficients can be allocated more bits in encoding.
The coding efficiency is thus enhanced.

As shown in Figure 4.3, TC can be viewed as expanding the input image into a set ofbasis
images, then quantizing and encoding the coefficients associated with the basis images separately,
At the receiver the coefficients are reconstructed Lo produce a replica of the input image. This
strategy is similar to that of subband coding, whichis discussed in Chapter 8. From this point of
view, transform coding can be considered a special case of subband coding, though transform
coding was devised muchearlier than subband coding.

It is worth mentioning an alternative way to define basis images. That is, a basis image with
indexes (u, v), J,,,,, of a transform can be constructed as the outer productof the uth basis vector, b,,
and the vth basis vector, b,, of the transform. The basis vector, b,. is the uth column vector ofthe
inverse transform matrix J (Jayant and Noll, 1984). Thatis,

Ie = bb. (4.38)

4.2.3 Susimace Size SELection

The selection of subimage (block) size, N, is important. Normally, the larger the size the more
decorrelation the transform coding can achieve. Jt has been shown, however, that the correlation
between image pixels becomesinsignificant when the distance between pixels becomeslarge,e.g., It
exceeds 20 pixels (Habibi, 1971a). On the other hand, a large size causes some problems. In adaptive
transform coding, a large block cannot adapt to local statistics well. As will be seen later in this
chapter, a transmission error in transform coding affects the whole associated subimage. Hence a
large size implies a possibly severe effect of transmission error on reconstructed images. As will be
shown in video coding (Section III and Section IV), transform coding is used together with motion-
compensated coding. Considerthat large block size is not used in motion estimation; subimage sizes
of 4, 8, and 16 are used mostoften. In particular, N = 8 is adopted by the internationalstill image
coding standard, JPEG, as well as video coding standards H.261, H.263, MPEG 1, and MPEG2.

4.3 TRANSFORMS OF PARTICULAR INTEREST

Several commonly used image transformsare discussedin this section. They include the discrete
Fourier transform, the discrete Walsh transform,the discrete Hadamard transform, and the discrete
Cosine and Sine transforms, All of these transforms are symmetric (hence, separable as well),
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FIGURE 4.3 Basis image interpretation of TC (Q: quantizer, E; encoder, D: decoder).

unitary, and reversible. For each transform, we defineits transformation kernel and discussits basis
images.

4.3.1 Discrete Fourier TRaNsForm (DFT)

The DFT is ofgreat importance in the field of digital signal processing. Owingto the fast Fourier
transform (FFT) based onthe algorithm developed in (Cooley, 1965), the DFT is widely utilized
for various tasks of digital signal processing. It has been discussed in many signal and image
processingtexts. Here we only define it by using the transformation kerneljust introduced above,
The forward and inverse transformation kernels of the DFTare

f(%9.u¥)= =oxe{-j2n(xu+ yv)/N} (4.39)
and

i(x,y,u,¥) = =expj2m(xu-+yv)/} (4.40)
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Clearly, since complex quantities are involved in the DFT transformation kernels, the DFT is

generally complex. Hence, weuse the unitary matrix to handle the DFT (refer to Section 4.2.1.3).
The basis vector of the DFT 6, is an N x 1 column vector and is defined as

;

b, = TpbeseJ2mn(n)enja{2) (4.41)
As mentioned,the basis image with index (w,v), /,,,, is equal to b,b/. A few basis images are

listed below for N = 4.

Ftd cis

Re if YF @elteel | (4.42)
Boh we Hf

| | ] |

Weer ay
l hs

peeeh ‘ (4.43)
441 jy -l -j

ee) a

1 l I =i

fae Bh at ad! od (4.44)
“ 4) —-] | -| l

Se = Sy og

VO =F =)

Se adie 4
Ta 4.45eo ay-t ij 1 = (4.45)

flesl

4.3.2 Discrete WALSH TRANSFORM (DWT)

Thetransformation kernels of the DWT (Walsh, 1923) are defined as

1 n=l
ee PilPa- 1-4) ¢_7Pi)Pail)f(xy.) wi Il 1) (-1) | (4.46)

and

i(x,y,u,v) = f (x,y,u,v). (4.47)

where n = log, N, p,(arg) represents the ith bit in the natural binary representation of the arg, the
oth bit correspondsto theleast significant bit, and the (n-1)th bit correspondsto the mostsignificant
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FIGURE 4.4 When N = 4: a set of the 16 basis images of DWT.

bit. For instance, consider V = 16, then n = 4, The natural binary code of number8 is 1000. Hence,
Po(8) = p\(8) = p(8) = 0, and p,(8) = 1. Wesec thatif the factor 1/N is put aside then the forward
transformation kernel is always an integer: cither +1 or —]. In addition, the inverse transformation
kernel is the same as the forward transformation kernel. Therefore, we conclude that the imple-
mentation of the DWTis simple.

When WN= 4, the 16 basis images of the DWT are shownin Figure 4.4. Each corresponds to a
specific pair of (w, v) and is of resolution 4 x 4 in the x-y coordinate system. They are binary
images, where the bright represents +1, while the dark -1. The transform matrix of the DWT is
shown below for N = 4.

(4.48)

4.3.3 Discrete HADAMARD TRANSFORM (DHT)

The DHT (Hadamard, 1893) is closely related to the DWT. This can be seen from the following
definition of the transformation kernels.

LT radu) (_qyei0o)ee) 9Flxnur)=—] [rerenreno| (4.49)vl]
and

i(x,y,uv) = f(x y% v) (4.50)

where the definitions of n, i, and p,(arg) are the same as in the DWT. Forthis reason, the term
Walsh-Hadamard transform (DWHT)is frequently used to represent either of the two transforms.

IPR2018-01413

Sony EX1008 Page 113



IPR2018-01413 
Sony EX1008 Page 114

88 Image and Video Compression for Multimedia Engineering

WhenN is a powerof 2, the transform matrices of the DWT and DHT haye the same row(or
column) vectors except that the order of row (or column)vectors in the matrices are different. This
is the only difference between the DWT and DHT underthe circumstance NV = 2". Becauseofthis
difference, while the DWT can be implemented by using the FFT algorithm withastraightforward
modification, the DHT needs more work to use the FFT algorithm. On the other hand, the DHT
possesses the following recursive feature, while the DWT does not:

gal, (4.51)
ee .

and

F. F,
eae 4.52)IN he =| (

where the subscripts indicate the size of the transform matrices. It is obvious that the transform
matrix of the DHT can be easily derived by using the recursion.

Note that the numberof sign changes between consecutive entries in a row(or a column) of
a transform matrix (from positive to negative and from negalive to positive) is known as sequenicy.
It is observed that the sequency does not monotonically increase as the order numberof rows(or
columns) increases in the DHT. Since sequency bears somesimilarity to frequency in the Fourier
transform, sequencyis desired as-an increasing function of the order numberofrows (or columns).
This is realized by the ordered Hadamard transform (Gonzalez, 1992).

The transformation kernel of the ordered Hadamard transformis defined as

N-I

f(x, yi, v) = =Tl"Ke) | priori J (4.53)
i=0

wherethe definitionsof /, p,(arg) are the same as defined above for the DWT and DHT.Thed,(arg)
is defined as below.

d,(arg) = b,_,(arg)

d,(arg)=b,_,(arg)+b__,(arg) (4.54)

d,_,(arg)= b, (arg) + b,(arg)

The 16 basis images of the ordered Hadamardtransform are shown in Figure 4.5 for N = 4.It
is observed that the variation of the binary basis images becomes more frequent monotonically
when u and vy increase. Also we see that the basis image expansion is similar to the frequency
expansion ofthe Fouriertransform in the sensethat an image is decomposed into components with
different variations. In transform coding, these components with different coefficients are treated
differently,

4.3.4 Discrete Cosine TRANSFORM (DCT)

The DCT is the most commonly used transform for image and video coding.
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FIGURE 4.5 When N =4: a set of the 16 basis images of the ordered DHT.

4.3.4.1 Background

The DCT, which plays an extremely important role in image and video coding, was established by
Ahmed et al. (1974). There, it was shownthat the basis member cos[(2x + 1)ut/2N] is the uth

Chebyshey polynomial 7,,(€) evaluated at the xth zero of 7,(&). Recall that the Chebyshev poly-
nomials are defined as

T,(E) =1/2 (4.55)

T,(€) =cos[k cos (&)| (4.56)

where T,(&) is the Ath order Chebyshev polynomialand it has & zeros, starting from the /st zero
to the Ath zero. Furthermore, it was demonstrated that the basis vectors of 1-D DCT provide a good

approximation to the eigenvectors ofthe class of Toeplitz matrices defined as

| ry p° a
p | p pX
o p l pe 4 (4.57 )

ott! p” -2 ov I

where O<p <1],

4.3.4.2 Transformation Kernel

The transformation kernel of the 2-D DCT can be extended straightforwardly from that of 1-D
DCTas follows:
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FIGURE 4.6 When N=8:aset of the 64 basis images of the DCT.

f (x, y,u,v) = Cludctr)eos{OXFcod Gytive (4.58)
where

(i

N for u=0
C(u) = i> (4.59)

\w for u=1,2,---,N-]

i(x,y,u,v) = f(x,y,u,v). (4.60)

Note that the C(v) is defined the same way as in Equation 4.59. The 64 basis images of the DCT
are shownin Figure 4.6 for N = 8.

4.3.4.3 Relationship with DFT

The DCT is closely related to the DFT. This can be examined from an alternative methodofdefining
the DCT.It is known that applying the DFT to an N-point sequence gy(n), n = 0,1,---,N — 1, is
equivalent to the following:
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|, Repeating gy(n) every N points, form a periodic sequence, 2,(n), with a fundamental
period N. That is,

By(n) = ¥ay( iN). (4.61)
fae

2. Determine the Fourierseries expansion of the periodic sequence gy (n). Thatis, determine
all the coefficients in the Fourier series which are known to be periodic with the same
fundamental period N.

3. ‘Truncate the sequenceofthe Fourier series coefficients so as to have the same support
as that of the given sequence gy(n). That is, only keep the NW coefficients with indexes
O,1,-+»,N = 1 and set all the others to equal zero. These N Fourierseries coefficients form
the DFT of the given N-point sequence g, (7).

An N-point sequence gy (mt) and the periodic sequence gy (i), generated from gy(r), are shown
in Figure 4,7(a) and (b), respectively. In summary, the DFT can be viewed as a correspondence
between two periodic sequences, Oneis the periodic sequence gy(s), which is formed by period-
ically repeating g,(/1). The other is the periodic sequence of Fourier series coefficients of g,,(11).

The DCT of an N-point sequenceis obtained via the following three steps:

|. Flip over the given sequence with respect to the end point of the sequence to form a 2N-
point sequence, 25, (), as shownin Figure 4.7(c). Then form a periodic sequence g,,(n),
shown in Figure 4.7(d), according to

Baw(") = >) Bay (0—2iN) (4.62)

2. Find the Fourier series coefficients of the periodic sequences 22, (n).
3. Truncate the resultant periodic sequence of the Fourier series coefficients to have the

support of the given finite sequence gj”). That is, only keep the N coefficients with
indexes 0,],---,N — 1 and set all the others to equal zero. These N Fourier series coeffi-
cients form the DCTofthe given N-point sequence g(t).

A comparison between Figure 4,7(b) and (d) reveals that the periodic sequence gy() is not
smooth. There usually exist discontinuities al the beginning and end of each period. These end-
head discontinuities cause a high-frequencydistribution in the corresponding DFT.Onthe contrary,
the periodic sequence g,(n) does not havethis type of discontinuity due to flipping over the given
finite sequence. As a result, there is no high-frequency component corresponding to the end-head
discontinuities. Hence, the DCT possesses better energy compaction in the low frequencies than
the DFT. By better energy compaction, we mean more energy is compactedinafraction of transform
coefficients. For instance, it is known that the most energy of an image is contained in a small
region of low frequency in the DFT domain. Vivid examples can be found in (Gonzalez and Woods,
1992). In terms of energy compaction, when compared with the Karhunen-Loeve transform(the
Hotelling transform is its discrete version), which is known as the optimal, the DCT is the best
among the DFT, DWT, DHT,and discrete Haar transform.

Besides this advantage, the DCT can be implemented using the FFT. This can be seen from
the above discussion. There, it has been shown that the DCT of an N-point sequence, g,(m), can
be obtained from the DFT of the 2N-point sequence g,y(n). Furthermore, the even symmetry
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Sy (")

Ot 2 3.4/5 6 7

(a) Original 1-D input sequence

8y(n)

 
8-7 -6-§-4-3-2-1]01 2345678 910 111213 141516

(b) Formation of a periodic sequence with a fundamental period of N (DFT)

Bay")

 
012345678 9 101112131415

(c) Formation of a back-to-back 2N sequence

Bay (7)

0

(d) Formationof a periodic sequence with a fundamental period of 2N (DCT)

FIGURE 4.7 An example toillustrate the differences and similarities between DFT and DCT.

in 22)(n) makes the computation required for the DCTof an N-point equalto that required for the
DFT of the N-point sequence. Because of these two merits, the DCT is the most popular image
transform used in image and video coding nowadays.

4.3.5 PERFORMANCE COMPARISON

In this subsection, we compare the performance of a few commonly used transforms in terms of
energy compaction, mean square reconstruction error, and computational complexity.

4.3.5.1 Energy Compaction

Since all the transforms we discussed are symmetric (hence separable)and unitary, the matrix form
of the 2-D imagetransform can be expressed as T = F’GF as discussed in Section 4.2.1.3. In the
1-D case, the transform matrix F is the counterpart of the matrix ® discussed in the Hotelling
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transform. Using the F, one can transform a 1-D column vector 7 into another 1-D column vector y.
The components of the vector y are transform coefficients. The variances of these transform
coefficients, and therefore the signal energy associated with the transform coefficients, can be
arranged in a nondecreasing order. It can be shown thatthe total energy before and after the
transform remains the same. Therefore, the more energy compactedinafraction of total coefficients,
the better energy compactionthe transform has, One measure of energy compactionis the transform
coding gain Gy, whichis defined as the ratio between the arithmetic mean and the geometric mean
ofthe variancesof all the components in the transformed vector (Jayant, 1984).

2
— o,

= N 10
eo, (4.63)

N-I N

G;
a

Gie

i

A larger Gyindicates higher energy compaction. The transform coding gains for a first-order
autoregressive source with p = 0.95 achieved by using the DCT, DFT, and KLT wasreported in
(Zelinski and Noll, 1975; Jayant and Noll, 1984). The transform coding gain afforded by the DCT
compares very closely to that of the optimum KLT.

4.3.5.2 Mean Square Reconstruction Error

The performance ofthe transforms can be compared in terms of the mean square reconstruction
error as well. This was mentioned in Section 4.1.2 when we provided a statistical interpretation for
transform coding. That is, after arranging all the N transformed coefficients according to their
variancesin a nonincreasing order, if L<N and wediscardthe last (V—L) coefficients to reconstruct
the original input signal Zz (similar to what we did with the Hotelling transform), then the mean
square reconstruction error is

N

MSE, = Elz -z'"]= 5°93, (4.64)
f=Lel

where z’ denotes the reconstructed vector, Note that in the above-defined mean square reconstruc-

tion error, the quantization error and transmission error have not been included. Hence, it is
sometimes referred to as the mean square approximation error. Thereforeit is desired to choose a
transform so that the transformed coefficients are “more independent” and more energy is concen-
trated in the first L coefficients. Then it is possible to discard the remaining coefficients to save
coding bits without causing significant distortion in input signal reconstruction.

In terms of the mean square reconstruction error, the performance of the DCT, KLT, DPT,
DWT, and discrete Haar transform for the 1-D case was reported in Ahmedetal. (1974). The
variances of the 16 transform coefficients are shown in Figure 4.8 when N = 16, p = 0,95. Note

that NV stands for the dimension of the 1-D vector, while the parameter p is shown in the Toeplitz
matrix (refer to Equation 4.57). We can see that the DCT compares mostclosely to the KLT, which
is known to be optimum. , :

Notethat the unequal variance distribution among transform coefficients has also found appli-
cation in the field of pattern recognition. Similar results to those in Ahmed etal. (1974) for the
DFT, DWT, and Haartransform were reported in (Andrews, 1971).

A similar analysis can be carried out for the 2-D case (Wintz, 1972). Recall that an image
g(x, y) can be expressed as a weighted sum ofbasis images/,,,. Thatis,
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FIGURE 4.8 Transform coefficient variances when N = 16, p = 0.95, (From Ahmed, N. et al., /EEE Trans.
Comput., 90, 1974. With permission.)

N-1l N-1

G= PP7Twr)I,, (4.65)
u=0 v=0

where the weightsare transform coefficients. We arrange the coefficients according to their variances
in a nonincreasing order. For some choices of the transform (hence basis images), the coefficients
becomeinsignificantafter the first L terms, and the image can be approximated well by truncating
the coefficients after L. Thatis,

G=yyruv=S37vl (4.66)
u=0 v=0 20 v=0

The mean square reconstruction erroris given by

N-| N-1

MSE,= >62. (4.67)
L

A comparison among the KLT, DHT, and DFT in terms ofthe mean square reconstruction error
for 2-D array of 16 x 16 (i.¢., 256 transform coefficients) was reported in (Figure 5, Wintz, 1972).
Note that the discrete KLT is image dependent. In the comparison, the KLT is calculated with
respect to an image named “Cameraman.” It showsthat while the KLT achieves the best perfor-
mance, the other transforms perform closely.

In essence,the criteria of mean square reconstruction error and energy compaction are closely
related. It has been shownthatthe discrete Karhunen transform (KLT), also knownas the Hotelling
transform, is the optimum in terms of energy compaction and mean square reconstruction error.
The DWT, DHT, DFT, and DCT are close to the optimum (Wintz, 1972; Ahmed etal., 1974);
however, the DCTis the best amongthese several suboptimumtransforms.
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Note that the performance comparison among various transforms in terms of bit rate vs.
distortion in the reconstructed image wasreported in (Pearl et al., 1972: Ahmed etal., 1974). The
same conclusion was drawn. Thatis, the KLT is optimum, while the DFT, DWT, DCT, and Haar
transforms are close in performance. Among the suboptimum transforms, the DCTis the best.

4.3.5.3. Computational Complexity

Note that while the DWT, DHT, DFT, and DCTareinput image independent, the discrete KLT
(the Hotelling transform) is input dependent. More specifically, the row vectors of the Hotelling
transform matrix are transposed eigenvectors ofthe covariance matrix ofthe input random vector.
So far there is no fast transformalgorithm available. This computational complexity prohibits the
Hotelling transform [rompractical usage. It can be shown that the DWT, DFT, and DCT canbe
implemented using the FFT algorithm.

4.3.5.4 Summary

As pointed out above, the DCT is the best among the suboptimum transforms in terms of energy
compaction. Moreover, the DCT can be implemented using the FFT. Even though a 2N-point
Sequence is involved, the even symmetry makes the computation involved in the N-point DCT
equivalent to that of the N-point FFT. For these two reasons, the DCT finds the widest application
in image and video coding.

4.4 BIT ALLOCATION

As shownin Figure 4.2, in transform coding, an input imageis first divided into blocks (subimages).
Then a 2-Dlinear transformis applied to each block. The transformed blocks go throughtruncation,
quantization, and codeword assignment. The last three functions; truncation, quantization, and
codeword assignment, are combined and called bit allocation,

From the previous section, it is known that the applied transform decorrelates subimages.
Moreover, it redistributes image energy in the transform domain in such a way that most of the
energy is compacted into a small fraction of coefficients. Therefore, it is possible to discard the
majority of transform coefficients without introducing significant distortion.

As a result, we see that in transform coding there are mainly three types of errors involved.
One is due to truncation, That is, the majority ofcoefficients are truncated to zero. Others come

{rom quantization. (Note that truncation can also be considered a special type of quantization).
Transmission errors are the third type of error, Recall that the mean square reconstruction error
discussedin Section 4.3.5.2 is in fact only related to truncation error. For this reason, it was referred

lo more precisely as a mean square approximationerror. In general, the reconstruction error, 1.c.,
the error between the original image signal and the reconstructed image at the receiver, includes
three types of errors: truncation error, quantization error, and transmission error.

There are two different ways to truncate transform coefficients. One is called zonal coding,
while the other is threshold coding. They are discussed below.

4.4.1 Zonat CoviInc

In zonal coding, also known as zonal sampling, a zone in the transformed block is predefined
accordingto a statistical average obtained from many blocks. All transform coefficients in the zone
are retained, while all coefficients outside the zone are set to zero. As mentioned in Section 4.3.5.1,
the total energy of the image remains the sameafter applying the transforms discussed there. Since
it is knownthat the DC and low-frequency AC coefficients of the DCT occupy most of the energy,
the zoneis located in the top-left portion of the transformed block when the transform coordinate
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FIGURE 4.9 Twoillustrations of zonal coding.

system is set conventionally. (Note that by DC we mean uv = v = 0. By AC we mean u and y do
not equal zero simultaneously.) Thatis, the originis at the top-left cornerofthe transformed block.
Twotypical zones are shownin Figure 4.9. The simplest uniform quantization with natural binary
coding can be. used to quantize and encodethe retained transform coefficients. With this simple
technique, there is no overhead side information that needs to be sent to the receiver, since the
structure of the zone, the schemeofthe quantization, and encoding are knownat boththe transmitter
and receiver.

The codingefficiency, however, may not be very high. This is because the zone is predefined
based on averagestatistics. Therefore some coefficients outside the zone might be large in magni-
tude, while some coefficients inside the zone may be small in quantity. Uniform quantization and
natural binary encoding are simple, but they are known not to be efficient enough.

For further improvementof codingefficiency, an adaptive schemehas to be used. There, a two-
pass procedure is applied. In the first pass, the variances of transformcoefficients are measured or
estimated. Based onthestatistics, the quantization and encoding schemesare determined. In the
second pass, quantization and encoding are carried out (Habibi, 1971a; Chen and Smith, 1977).

4.4.2 THRESHOLD CopiInG

In threshold coding, also known as threshold sampling, there is not a predefined zone. Instead,
each transform coefficient is compared with a threshold.Ifit is smaller than the threshold, then it
is set to zero.If it is larger than the threshold, it will be retained for quantization and encoding.
Compared with zonal coding, this scheme is adaptive in truncationin the sense that the coefficients
with more energy are retained no matter where they are located, The addresses ofthese retained
coefficients, however, have to be sent to the receiver as side information. Furthermore, the threshold
is determined after an evaluation of all coefficients. Hence, it was usually a two-pass adaplive
technique.

Chen and Pratt (1984) devised an efficient adaptive scheme to handle threshold coding. It is a
one-pass adaptive scheme, in contrast to the two-pass adaptive schemes. Henceit is fast in imple-
mentation. With several effective techniques thatwill be addressed here, it achieved excellent results
in transform coding. Specifically, it demonstrated a satisfactory quality of reconstructed frames at
a bit rate of 0.4 bits per pixel for coding of color images, which corresponds to real-time color
television transmission over a 1.5-Mb/sec channel. This scheme has been adopted by the interna-
tional still coding standard JPEG.A block diagram ofthe threshold coding proposed by Chen and
Pratt is shown in Figure 4.10. More details and modification made by JPEG will be described in
Chapter7.
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FIGURE 4.10 Block diagram ofthe algorithm proposed by Chen and Pratt (1984).

4.4.2.1 Thresholding and Shifting

The DCTis used in the scheme because of its superiority, described in Section 4.3. Here we use
C(u,v) to denote the DCT coefficients. The DC coefficient, C(0,0), is processed differently. As
mentioned in Chapter3, the DC coefficients are encoded with a differential coding technique. For
more details, refer to Chapter 7. Forall the AC coefficients, the following thresholding and shifting
are carried out:

situomiv)-T if C(u,v)>T (4.68)0 if C(u,v)<T

where7onthe right-handside is the threshold. Note that the above equation also implies a shifting
of transform coefficients by T when C(u, v) > 7. The input-output characteristic of the thresholding
and shifting is shown in Figure 4.11.

Figure 4,12 demonstrates that more than 60% ofthe DCT coefficients normally fall below a
threshold value as low as 5. This indicates that with a properly selected threshold valueit is possible
to set mostof the DCT coefficients equal to zero. The threshold value is adjusted by the feedback
from therate buffer, or by the desired bitrate.
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C; (u,v)

C (u,v) 
FIGURE 4.11 Input-output characteristic of thresholding and shifting.

Distribution of cosine transtrom coefficients

%COEFFICIENTBELOWTHRESHOLD 
COEFFICIENT THRESHOLD

FIGURE 4.12 Amplitude distribution of the DCT coefficients.

4.4.2.2. Normalization and Roundoff

The threshold subtracted transform coefficients C,(u,v) are normalized before roundoff. The nor-
malization is implemented as follows:

Cry(ut, v) = =e?She)¥) (4.69)

where the normalization factor I’,is controlled by the rate buffer. The roundoff process converts
floating point to integer as follows.

ACoy(usROEteev)+05| if Cy(uv)20 (4.70)[Cy(uv)-0.5| if Cp(uv)<0
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Cyn (uv)

 
Cr (uv) 

FIGURE 4.13 [nput-output characteristic of (a) normalization, (b) roundoff.

wherethe operator |x| means the largest integer smaller than or equalto x, the operator [x] means
the smallest integer larger than or equal to x. The input-output characteristics of the normalization
and roundoff are shownin Figure 4.13(a) and (b), respectively.

From these input-output characteristics, we can see that the roundoff is a uniform midtread
quantizer with a unit quantization step. The combination of normalization and roundoffis equivalent
to a uniform midtread quantizer with the quantization step size equal to the normalization factor
T,.. Normalization is a scaling process, which makes the resultant uniform midtread quantizer
adapt to the dynamic range of the associated transform coefficient. It is therefore possible for one
quantizer design to be applied to various coefficients with different ranges. Obviously, by adjusting
the parameterT,,, (quantization step size) a variable bit rate and mean square quantization error
can be achieved. Hence,the selection of the normalization factors for different transform coefficients
can take the statistical feature of the images and the characteristics of the human visual system
(HVS) into consideration. In general, most image energy is contained in the DC and low-frequency
AC transform coefficients. The HVS is more sensitive to a relatively uniform region than to a
relatively detailed region, as discussed in Chapter |. Chapter 1 also mentions that, with regard to
the color image, the HVS is more sensitive to the luminance component than to the chrominance
components.

These have been taken into consideration in JPEG. A matrix consisting ofall the normalization
factors is called a quantization table in JPEG. A luminance quantization table and a chrominance
quantization table used in JPEG are shownin Figure 4.14, We observethat in general in both tables
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(a) Luminance quantization table (b) Chrominance quantization table

 
FIGURE 4.14 Quantization tables.

the small normalization factors are assigned to the DC and low-frequency ACcoefficients. The
large I's are associated with the high-frequency transform coefficients. Compared with the lumi-
nance quantization table, the chrominance quantization table has larger quantization step sizes for
the low- and middle-frequency coefficients and almost the samestep sizes for the DC andhigh-
frequency coefficients, indicating that the chrominance componentsare relatively coarsely quan-
tized, compared with the luminance component.

4.4.2.3 Zigzag Scan

As mentioned at the beginning of this section, while threshold coding is adaptive to the local
statistics and hence is moreefficient in truncation, threshold coding needs to send the addresses
of retained coefficients to the receiver as overhead side information. An efficient scheme, called

the zigzag scan, was proposed by Chen and Pratt (1984) and is shown in Figure 4.14. As shown
in Figure 4.12, a great majority of transform coefficients have magnitudes smaller than a threshold
of 5. Consequently, most quantized coefficients are zero. Hence, in the 1-D sequence obtained by
zigzag scanning, most of the numbers are zero. A code known as run-length code, discussed in
Chapter6, is very efficient under these circumstances to encode the address information of nonzero
coefficients. Run-length of zero coefficients is understood as the number of consecutive zeros in
the zigzag scan. Zigzag scanning minimizes the use of run-length codes in the block.

 Pierreee
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FIGURE 4.15 Zigzag scan of DCT coefficients within an 8 X 8 block.
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4.4.2.4 Huffman Coding

Statistical studies of the magnitude of nonzero DCTcoefficients and the run-length of zero DCT
coefficients in zigzag scanning were conducted in (Chen and Pratt, 1984). The domination ofthe
coefficients with small amplitudes and the short run-lengths was found and is shownin Figures 4.16
and 4.17. This justifies the application of the Huffman coding to the magnitudeof nonzero transform
coefficients and run-lengths of zeros.

: Niss America—- : : : :

‘Football-—NUMBEROFCOEFFICIENTS 
AMPLITUDE IN ABSOLUTE VALUE

FIGURE 4.16 Histogram of DCTcoefficients in absolute amplitude.
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FIGURE 4.17 Histogram ofzero run length.
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4.4.2.5 Special Codewords

Two special codewords were used by Chen and Pratt (1984). One is called end of block (EQB).
Anotheris called run-length prefix. Once the last nonzero DCT coefficients in the zigzag is coded,
EOBis appended,indicating the termination of coding the block. This further saves bits used in
coding. A run-length prefix is used to discriminate the run-length codewords from the amplitude
codewords.

4.4.2.6 Rate Buffer Feedback and Equalization

As shownin Figure 4.10, a rate buffer accepts a variable-rate data input fromthe encoding process
and provides a fixed-rate data output to the channel. Thestatus ofthe rate buffer 1s monitored and
fed back to control the threshold and the normalization factor. In this fashion a one-pass adaptation
is achieved,

4.5 SOME ISSUES

4.5.1 Erect OF TRANSMISSION Errors

In transform coding, each pixel in the reconstructed imagerelies on all transform coefficients in
the subimage wherethe pixel is located. Hence, a bit reversal transmission error will spread. That
is, an error in a transform coefficient will lead to errors in all the pixels within the subimage. As
discussed in Section 4.2.3, this is one of the reasons the selected subimage size cannot be very
large. Depending on which coefficientis in error, the effect caused by a bit reversal error on the
reconstructed image varies. For instance, an error in the DC or a low-frequency AC coefficient may
be objectionable, while an error in the high-frequency coefficient may be less nouceable.

4.5.2 RECONSTRUCTION Error SOURCES

As discussed, three sources: truncation (discarding transform coefficients with small variances),
quantization, and transmission contribute to the reconstruction error. It is noted that in TC the
transform is applied block by block. Quantization and encoding of transform coefficients are also
conducted blockwise. At the receiver, reconstructed blocks are put together to form the whole
reconstructed image. In the process, blockartifacts are produced. Sometimes, even though it may
not severely affect an objective assessmentof the reconstructed image quality, block artifacts can
be annoying to the HVS, especially when the codingrate is low.

To alleviate the blocking effect, several techniques have been proposed. Oneis to overlap blocks
in the source image. Anotheris to postfilter the reconstructed image along block boundaries, The
selection of advanced transformsis an additional possible method (Lim, 1990).

In the block-overlapping method, when the blocks are finally organized to form the recon-
structed image, eachpixel in the overlapped regions takes an average valueofall its reconstructed
gray level values from multiple blocks. In this method, extra bits are used for those pixels involved
in the overlapped regions. For this reason, the overlapped region is usually only one pixel wide.

Due to the sharp transition along block boundaries, block artifacts are of high frequency in
nature. Hence, low-passfiltering is normally used in the postfiltering method. To avoid the blurring
effect caused by low-passfiltering on the nonboundary image area, low-pass postfiltering is only
applied to block boundaries. Unlike the block-overlapping method, the postfiltering method does
not need extra bits. Moreover, it has been shownthatthe postfiltering method can achieve better
results in combating block artifacts (Reeve and Lim, 1984; Ramamurthi and Gersho, 1986). For
these tworeasons,the postfiltering method has been adopted by the international coding standards.
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4.5.3 Comparison Between DPCM Ano TC

As mentioned at the beginning ofthe chapter, bothdifferential coding and transformcoding utilize
interpixel correlation and are efficient coding techniques. Comparisons between these two tech-
niques have been reported (Habibi, 1971b). Take a look at the techniques discussed in the previous
chapter andin this chapter. We can see that differential coding is simpler than TC. This is because
the linear prediction and differencing involved in differential coding are simpler than the 2-D
transform involved in TC. In terms of the memory requirement and processing delay, differential
coding such as DPCM is superior to TC. That is, DPCM needs less memory andhasless processing
delay than TC. The design of the DPCM system, however,is sensitive to image-lo-image variation,
and so is its performance. Thatis, an optimum DPCM design is matched to thestatistics of a certain
image. When thestatistics change, the performance of the DPCM will be affected. On the contrary,
TC is less sensitive to the variation in the imagestatistics. In general, the optimum DPCM coding
system with a third or higher order predictor performs better than TC when the bit rate is about
{woto three bits per pixel for single images. Whenthebit rate is below twoto three bits per pixel,
TC is normally preferred. As a result, the international still image coding standard JPEG is based
on TC, whereas, in JPEG, DPCM is used for coding the DC coefficients of DCT, and information-
preserving differential coding is used forlossless still image coding.

4.5.4 Hysrio Copinc

A method called hybrid transform/waveform coding, or simply hybrid coding, was devised in order
to combine the merits of the two methods. By waveform coding, we mean coding techniquesthat
code the waveform of a signal instead ofthe transformed signal. DPCM is a waveform coding
technique. Hybrid coding combines TC and DPCM coding. That is, TC can befirst applied rowwise,
followed by DPCM coding columnwise,or vice versa. In this way, the two techniques complement
eachother, That is, the hybrid coding technique simultaneously has TC’s small sensitivity to variable
imagestatistics and DPCM’s simplicity in implementation.

Worth mentioning is a successful hybrid coding schemein interframe coding: predictive coding
along the temporal domain. Specifically, it uses moltion-compensated predictive coding. Thatis,
the motion analyzed from successive frames is used to more accurately predict a frame. The
prediction error (in the 2-D spatial domain) is transform coded. This hybrid coding scheme has
been very efficient and was adopted by the international video coding standards H.261, H.263, and
MPEG|, 2, and 4.

4.6 SUMMARY

In transform coding, instead of the original image or some function of the original image in the
spatial and/or temporal domain,the image in the transform domain is quantized and encoded. The
main idea behind transform codingis that the transformed version ofthe imageis less correlated.
Moreover, the image energy is compacted into a small proper subset of transform coefficients. :

The basis vector (1-D) and the basis image (2-D) provide a meaningful ete =
transform coding. This type of interpretation considers the original image to -a aes
basis vectors or basis images. The weights are the transformcoefficients; each of w ae essent ae
a correlation measure between the original image and the corresponding basis rites Seengee
are less correlated than the gray level values of pixels in the original image. Py Secaiees and
a great disparity in variance distribution. Some weights havelarge Sage say auntiesi
finely quantized. Some weights have small energy. They are retained ie : cbuints einictehen te
vast majority of weights are insignificant and discarded. In this way: e nee g very nonuniform
achieved in transform coding. Because the quantized nonzero coefficients NAVE *
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probability distribution, they can be encodedbyusingefficient variable-length codes, In summary,
three factors: truncation (discarding a great majority of transformcoefficients), adaptive quantiza-
tion, and variable-length coding contribute mainly to a high coding efficiency of transform coding.

Severallinear, reversible, unitary transforms have been studied andutilized in transform coding.
They include the discrete Karhunen-Loeve transform (the Hotelling transform), the discrete Fourier
transform, the Walsh transform, the Hadamard transform, and the discrete cosine transform. It 1s

shown that the KLT is the optimum.The transform coefficients of the KLT are uncorrelated. The
KLT can compact the most energy in the smallest fraction of transform coefficients. However, the
KLTis image dependent. Thereis no fast algorithm to implement it. This prohibits the KLT from
practical use in transform coding. While therest of the transforms perform closely, the DCT appears
to be the best. Its energy compactionis very close to the optimum KLTand it can be implemented
using the fast Fourier transform. The DCT has been foundto beefficient not only for sill images
coding but also for coding residual images (predictive error) in motion-compensated interframe
predictive coding. These features make the DCT the most widely used transform in image and
video coding.

There are two ways to truncate transform coefficients: zonal coding and threshold coding. In
zonal coding, a zone is predefined based on averagestatistics. The transform coefficients within
the zone are retained, while those outside the zoneare discarded. In threshold coding, each transform
coefficient is compared with a threshold. Those coefficients larger than the threshald are retained,
while those smaller are discarded. Threshold coding is adaptive to local statistics. A two-pass
procedure is usually taken, Thatis, the local statistics are measured or estimated in the first pass.
The truncation takes place in the second pass. The addresses ofthe retained coefficients need to
be sent to the receiver as overhead side information,

A one-step adaptive framework of transform coding has evolved as a result of the tremendous
research efforts in image coding. It has become a base ofthe international still image coding
standard JPEG.Its fundamental components include the DCTtransform, thresholding and adaptive
quantization of transform coefficients, zigzag scan, Huffman coding of the magnitude ofthe nonzero
DCTcoefficients and run-length of zeros in the zigzag scan, the.codeword of EOB, andrate buffer
feedback control.

The threshold and the normalization factor are controlled by rate buffer feedback. Since the
threshold decides how manytransform coefficients are retained and the normalization factor 1s

actually the quantizationstep size, the rate buffer has direct impact onthe bit rate of the transform
coding system. Selection of quantization steps takes the energy compaction of the DCT and the
characteristics of the HVSinto consideration. Thatis, il uses not only statistical redundancy, but
also psychovisual redundancy to enhance coding efficiency.

After thresholding, normalization and roundoff are applied to the DCT transform coefficients
in a block; a great majority of transform coefficients are set to zero. A zigzag scan can convertthe
2-D array of transform coefficients into a 1-D sequence, The number of consecutive zero-valued
coefficients in the 1-D sequenceis referred to as the run-length of zeros and is used to provide
address information of nonzero DCTcoefficients. Both the magnitude of nonzero coefficients and
run-length information need to be coded, Statistical analysis has demonstrated that a small mag-
nitude and short run-length are dominant. Therefore,efficient lossless entropy coding methods such
as Huffman coding and arithmetic coding (the focusof the next chapter) can be applied to magnitude
and run-length.

In a reconstructed subimage, there are three types of errors involved: truncation error (some
transform coefficients have been set to zero), quantization error, and transmission error. In a broad
sense, the truncation can be viewedas a part of the quantization. Thatis, these truncated coefficients
are quantized to zero. The transmission error in termsofbit reversal will affect the whole recon-
structed subimage. This is because, in the inverse transform (such as the inverse DCT), each
transform coefficient makes a contribution.
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In reconstructing the original image all the subimagesare organized to form the whole image.
Therefore the independent processing of individual subimages causes block artifacts. Though they
may not severely affect the objective assessment of reconstructed image quality, block artifacts can
be annoying, especially in low bit rate image coding. Block overlappling and postfiltering are two
effective ways to alleviate block artifacts. In the former, neighboring blocks are purposely over-
lapped by one pixel. In reconstructing the image, those pixels that have been coded more than once
take an average of the multiple decoded values. Extra bits are used, In the latter technique, a low-
passfilter is applied along boundaries of blocks, No extra bits are required in the process and the
effect of combating block artifacts is better than with the former technique.

The selection of subimage size is an important issue in the implementation of transform coding.
In general, a large size will remove more interpixel redundancy. But it has been shown that the
pixel correlation becomesinsignificant when the distance ofpixels exceeds 20. On the other hand,
a large size is not suitable for adaptation to local statistics, while adaptation is required in handling
nonstationary images. A large size also makesthe effect of a transmission error spread more widely.
Forthese reasons, subimagesize should not be large. In molion-compensated predictive interframe
coding, motion estimation is normally carried out in sizes of 16 x 16 or 8 x 8. To be compatible,
the subimage size in transform coding is normally chosen as 8 x 8.

Both predictive codings, say, DPCM and TC, utilize interpixel correlation and are efficient
coding schemes. Compared with TC, DPCM is simpler in computation, It needs less storage and
has less processing delay. But it is more sensitive to image-to-image variation. On the other hand,
TC provides higher adaptation to statistical variation. TC is capable of removing more interpixel
correlation, thus providing higher coding efficiency. Traditionally, predictive coding is preferredif
the bit rate is in the range of two to three bits per pixel, while TC is preferred when bit rate is
below two to three bits per pixel. However, the situation changes. TC becomesthe core technology
in image and video coding. Many special VLSI chips are designed and manufactured for reducing
computational complexity. Consequently, predictive coding such as DPCM is only used in some
very simple applications,

In the contextof interframe coding, 3-D (two spatial dimensions and one temporal dimension)
transform coding has not found wide application in practice due to the complexity in computation
and storage. Hybrid transform/waveform coding has provento bevery efficient in interframe coding.
There, motion-compensated predictive coding is used along the temporal dimension, while trans-
form coding is used to code the prediction error in two spatial dimensions.

4.7 EXERCISES

4-1. Considerthe following eight points in a 3-D coordinate system: (0,0,0)’, (1,0,0)", (0,1,0)7,
(0,0,1), (0,1,1)7, (1,0,1)", (1,1,0)% (1,1, 1)" Find the mean vector and covariance matrix
using Equations 4.12 and 4.13.

4-2. For N = 4,find the basis images of the DFT, /,, when (a) u = 0, v = 0; (b) u = Lv
0; (c) u = 2, v = 2; (d) u = 3, v = 2. Use both methods discussed in the text; i.e,, the
method with basis image and the method with basis vectors.

4-3. For N=4, find the basis imagesofthe ordered discrete Hadamard transform when (a) u=
0, v= 2: (b)u=1, v= 3; (c) u=2, v= 3; (d) u=3, v= 3. Verify your results by
comparing them with Figure 4.5. .

4-4. Repeat the previous problem for the DWT,and verify your results by comparing them
with Figure 4,4,

4-5. Repeat problem 4-3 for the DCT and N = 4.
4-6. When N = 8, drawthe transform matrix F for the DWT, DHT,the order DHT, DFT, and

DCT.
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4-7. The matrix form of forward and inverse 2-D symmetric image transformsare expressed

in texts such as (Jayant and Noll, 1984) as T= FGF? and G = ITI", whicharedifferent
from Equations 4.28 and 4.29. Can you explain this discrepancy?

4-8. Derive Equation 4.64. (Hint: use the concept ofbasis vectors and the orthogonality of
basis. vectors.)

4-9. Justify that the normalization factor is the quantization step.
4-10. The transform used in TC has two functions: decorrelation and energy compaction. Does

decorrelation automatically lead to energy compaction? Comment.
4-11, Using your own words, explain the main idea behind transform coding.
4-12. Read the techniques by Chen and Pratt presented in Section 4.4.2. Compare them with

JPEG discussed in Chapter 7. Commenton the similarity and dissimilarity between them.
4-13. How is one-pass adaptation to local statistics in the Chen and Pratt algorithm achieved?
4-14, Explain why the DCT is superior to the DFT in terms of energy compaction.
4-15. Whyis the subimage size of 8 x 8 widely used?
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5 Variable-Length Coding:
Information Theory Results (II)

Recall the block diagram of encoders shown in Figure 2.3. There are three stages that take place
in an encoder: transformation, quantization, and codeword assignment. Quantization was discussed
in Chapter 2. Differential coding and transform coding using two different transformation compo-
nents were covered in Chapters 3 and 4, respectively. In differential coding it is the difference
signal that is quantized and encoded, while in transform codingit is the transformed signalthat 1s
quantized and encoded. In this chapter and the next chapter, we discuss several codeword assignment
(encoding) techniques. In this chapter we cover two types of variable-length coding: Huffman
coding and arithmetic coding.

First we introduce some fundamental concepts of encoding. After that, the rules that must be
obeyed by all optimumand instantaneous codes are discussed. Based on these rules, the Huffman
coding algorithmis presented. A modified version of the Huffman coding algorithm is introduced as
an efficient way (o dramatically reduce codebook memory while keeping almost the same optimality.

The promising arithmetic coding algorithm, which is quite different from Huffman coding, is
another focus ofthe chapter. While Huffman coding is a block-oriented coding technique, arithmetic
coding is a stream-oriented coding technique. With improvements in implementation, arithmetic
coding has gained inereasing popularity. Both Huffman coding and arithmetic coding are included in
the international still image coding standard JPEG (Joint Photographic [image] Experts Group coding).
The adaptive arithmetic coding algorithms have been adoptedbythe internationalbilevel image coding
standard JBIG (Joint Bi-level Image experts Group coding). Note that the material presented in this
chapter can be viewed as a continuation of the information theory results presented in Chapter1,

5.1 SOME FUNDAMENTAL RESULTS

Prior to presenting Huffman coding and arithmetic coding, we first provide some fundamental
concepts and results as necessary background.

5.1.1 CODING AN INFORMATION SOURCE

Consider an information source, represented by a source alphabetS.

fals.ssans| (5.1)

where s,, i = 1,2,::+,m are source symbols. Note that the terms source symbol and information
message are used interchangeably in the literature. In this book, however, we would like to
distinguish between them, Thatis, an information message can be a source symbol, or a combination
of source symbols, We denote code alphabet by A and

A={a,,a,,--,a,} (3.2)

where a, j = 1,2,---,r are code symbols, A message code is a sequence of code symbols that
represents a given information message. In the simplest case, a message consists of only a source
symbol. Encodingis then a procedure to assign a codeword to the source symbol. Namely,

107
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5, A; = (4454)95°°-s 4) (5.3)

where the codeword A;is a string of k code symbols assigned to the source symbol s;. The term
message ensemble is defined as the entire set of messages. A code, also known as an ensemble
code, is defined as a mapping ofall the possible sequences of symbols of S (message ensemble)
into the sequences of symbols in A.

Note that in binary coding, the number of code symbols ris equal to 2, since there are only
two code symbols available: the binary digits “O” and “I”. Two examples are given below to
illustrate the above concepts.

Example 5.1
Consider an English article and the ASCII code. Refer to Table 5.1. In this context, the source
alphabet consists ofall the English letters in both lower and upper cases and all the punctuation
marks. The code alphabet consists of the binary | and 0. There are a total of 128 7-bit binary
codewords. From Table 5.1, we see that the codeword assigned to the capital letter A is 1000001.
That is, A is a source symbol, while 1000001 is its codeword.

Example 5,2
Table 5.2 lists what is knownas the (5,2) code. It is a linear block code. In this example, the source
alphabet consists of the four (2?) source symbols listed in the left column ofthe table: 00, 01, 10,
and 11. The code alphabet consists of the binary | and 0, There are four codewords listed in the
right column of the table. From the table, we see that the code assigns a 5-bit codeword to each
source symbol. Specifically, the codeword of the source symbol 00 is 00000. The source symbol
O1 is encoded as 10100; 01111 is the codeword assigned to 10. The symbol |! is mapped to 11011.

5.1.2 Some Desired CHARACTERISTICS

To be practical in use, codes need to have somedesirable characteristics (Abramson, 1963). Some
of the characteristics are addressed in this subsection.

5.1.2.1 Block Code

A codeis said to be a block codeif it maps each source symbolin S into a fixed codeword in A.
Hence, the codeslisted in the above two examples are block codes.

5.1.2.2 Uniquely Decodable Code

A code is uniquely decodable if it can be unambiguously decoded. Obviously, a code has to be
uniquely decodableif it is to be of use.

Example 5.3

Table 5.3 specifies a code. Obviously it is not uniquely decodable since if a binary string “OO”is
received we do not know whichofthe following two source symbols has been sent out: 5; Or 53.

Nonsingular Code
A block code is nonsingular if all the codewordsare distinct (see Table 5.4).

Example 5.4
Table 5.4 gives a nonsingular codesince all four codewordsare distinct. If a code is not a nonsingular
code, i.c., at least two codewords are identical, then the code is not uniquely decodable. Notice,
however, that a nonsingular code does not guarantee unique decodability. The code shown in
Table 5.4 is such an example in thatit is nonsingular whileit is not uniquely decodable.It is not
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TABLE 5.1

Seven-Bit American Standard Code for Information Interchange (ASCII)

 
NUL Null, or all zeros DC! Device control |

SOH Start of heading DC2 Device control 2
STX Start of text DCc3 Device control 3

ETX End of text DC4 Device control 4

EOT End of transmission NAK Negative acknowledgment

ENQ—Enquiry SYN Synchronousidle
ACK—Acknowledge ETB Endoftransmission block
BEL Bell, or alarm CAN Cancel

BS Backspace EM End of medium
HT Honzontal tabulation SUB Substitution
LF Line feed ESC Escape

VT Vertical tabulation FS File separator
FF Form feed Gs Group separator

CR Carriage retum RS Record separator
SO Shift out US Unit separator
SI Shift in SP Space

DLE Data link escape DEL_—Delete
a

 

TABLE 5,2

A (5,2) Linear Block Code

Source Symbol Codeword

S, (0.0) 00000
S, (0 1) 10100
5, (10) Oltti
§, (1 1) 11011]ST
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TABLE 5.3

A Not Uniquely Decodable Code

Source Symbol Codeword

S, 00

S; 10

5; 00
Ss 11

TABLE 5.4

A Nonsingular Code

Source Symbol Codeword

S, 1
53 11

S 00
S, 01

uniquely decodable because oncethe binary string “11” is received, we do not knowif the source
symbols transmitted are s, followed by s, or simply s5.

The nth Extension of a Block Code

The nth extension of a block code, which maps the source symbols, into the codeword A,, is a
block code that maps the sequences of source symbols s,,5,.:-+s,, into the sequences of codewords
Aj,Aj" “Ain:

A Necessary and Sufficient Condition of a Block Code’s Unique Decodability
A block code is uniquely decodable if and only if the mth extension of the code is nonsingular for
every finite 1.

Example 5.5

The second extension of the nonsingular block code shown in Example 5.4 is listed in Table 5.5.
Clearly, this second extension ofthe code is not a nonsingular code, since the entries s)5) and 525,
are the same. This confirms the nonunique decodability of the nonsingular code in Example 5.4.

TABLE 5.5

The Second Extension of the Nonsingular Block Codein
Example 5.4

Source Symbol Codeword Source Symbol Codeword

S, 8, 11 S, 8, 001
8,5; 11 8,8, 0011
SS; 100 S, 5; 0000
aS 101 S;S, 0001
S, S, 111 5, S, O11
S, S; 1111 SaSy O1ll
S, 8; 1100 8, 8, 0100
S38; 1101 8, Ss 0101 
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TABLE 5.6

Three Uniquely Decodable Codes

Source Symbol Code1 Code2 Code 3

S) 00 |

S, 01 ol 10
8, 10 001 100

5 Lt 0001 1000

5.1.2.3 Instantaneous Codes

Definition of Instantaneous Codes

A uniquely decodable code is said to be instantaneous ifit is possible to decode each codeword
in a code symbol sequence without knowing the succeeding codewords.

Example 5.6
Table 5.6 lists three uniquely decodable codes. Thefirst one is in fact a two-bit natural binary code.
In decoding, we can immediately tell which source symbols are transmitted since each codeword
has the same length. In the second code, code symbol “1” functions like a comma. Whenever we
see a “1”, we know it is the end of the codeword. The third code is different from the previous
two codes in that if we see a “10” string we are not sure if it corresponds to s, until we see a
succeeding “1”. Specifically, if the next code symbol is “O”, we stil! cannottell if it is s, since the
next one may be “0” (hence s,) or “1” (hence s,). In this example, the next “1” belongs to the
succeeding codeword. Therefore we see that code 3 is uniquely decodable. It is not instantancous,
however.

Definition of the jth Prefix
Assume a codeword A, = a,,4;3:+-a,. Then the sequences of code symbols a,,4,5---a, with | sj Sk
is the jth order prefix of the codeword A,.

Example 5.7
If a codeword is 11001, it has the following five prefixes: 11001, 1100, 110, 11, 1. The first-order
prefix is 1, while the fifth-order prefix is 11001.

A Necessary and Sufficient Condition of Being an Instantaneous Code
A code is instantancous if and only if no codeword is a prefix of some other codeword. This
condition is often referred to as the prefix condition. Hence, the instantaneous codeis also called
the prefix condition code or sometimes simply the prefix code, In many applications, we need a
block code that is nonsingular, uniquely decodable, and instantaneous.

5.1.2.4 Compact Code

A uniquely decodable code is said to be compactifits average length ts the minimum amongall
other uniquely decodable codes based on the same source alphabet S and code alphabet A, A
compact codeis also referred to as a mininuun redundancycode, or an optimumcode.

Note that the average length of a code was defined in Chapter1 andis restated below,

5.1.3 Duscrere MemoryLess SOURCES

This is the simplest modelof an information source. In this model, the symbols generated by the
source are independentofeachother. Thatis, the source is memoryless or it has a zero memory.

Consider the information source expressed in Equation 5.1 as a discrete memoryless source.
The occurrence probabilities of the source symbols can be denoted by p(s,), P2)) --") P (s,,). The
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lengths of the codewords can be denoted by1, 1, ---, J,,. The average length of the codeis then
equal to

Line = ¥. I p(s,) (5.4)
i=]

Recall Shannon’sfirst theorem, i.e., the noiseless coding theorem described in Chapter 1. The
average length of the code is bounded below by the entropyofthe information source. The entropy
of the source S§ is defined as H(S) and

H(s)=->* pls,)l08, p(s,) (5.5)

Recall that entropy is the average amount of information contained in a source symbol. In
Chapter 1 the efficiency of a code, 1), is defined as the ratio between the entropy and the average
length ofthe code, Thatis, 1 = H(S)/L,,.. The redundancy ofthe code, C, is defined as C=1-7.

5.1.4 Extensions oF A Discrete MEMORYLESS SOURCE

Instead of coding each source symbol in a discrete source alphabet,it is often useful to code blocks
of symbols. It is, therefore, necessary to define the nth extension of a discrete memoryless source.

5.1.4.1 Definition

Consider the zero-memory source alphabet S defined in Equation 5.1. That is, S= {s,, 53, «**s Sn}-
If » symbols are grouped into a block, thenthereis a total of m” blocks. Each block is considered
as a new source symbol. These m" blocks thus form an information source alphabet, called the nth
extension of the source S, which is denoted by S”.

5.1.4.2 Entropy

Let each block be denoted by B, and

B, =(Sy.5.-° 5, ) (5.6)in

Then wehavethe following relation due to the memoryless assumption:

PAB.) = TAs) (5.7)
Hence,the relationship betweenthe entropy of the source S and the entropy ofits nth extensionis
as follows:

H(S")=n- H(S) (5.8)

Example 5.8
Table 5.7 lists a source alphabet. Its second extension is listed in Table 5.8.
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TABLE5,7

A Discrete Memoryless Source Alphabet

Source Symbol Occurrence Probability

5, 0.6

Ss, 0.4

TABLE5.8

The Second Extension of the Source

Alphabet Shownin Table 5.7

Source Symbol Occurrence Probability

5,5, 0.36
S, 8, 0.24

5, §, 0.24

S, 8, 0.16

The entropy of the source and its second extensionare calculated below.

H(S) =-0.6-log, (0.6) —0.4- log, (0.4) = 0.97

H(S?) =-0.36 - log, (0.36) —2-0.24- log, (0.24) —0.16-log,(0.16) = 1.94

It is seen that H(S*) = 2H(S).

5.1.4.3 Noiseless Source Coding Theorem

Thenoiseless source coding theorem, also known as Shannon'sfirst theorem, defining the minimum
average codeword length per source pixel, was presented in Chapter J, but without a mathematical
expression. Here, we provide some mathematical expressions in order to give more insight about
the theorem.

Fora discrete zero-memory information sourceS, the noiseless coding theorem canbe expressed
as

H(S)SL,,. < H(S)+1 (5.9)vg

Thatis, there exists a variable-length code whose average length is bounded below by the entropy
of the source (that is encoded) and bounded above by the entropy plus 1. Since the nth extension
of the source alphabet, S”, is itself a discrete memoryless source, we can apply the above result to
it. That is,

H(S")< Li, < H(S")+1 (5.10)“ve

where L” is the average codewordlength ofa variable-length codefor the S”. Since H(S") = nH(5)avy

and Li, = nL"avg, we have

avgH(S)<L < H(S)+— (5.11)
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Therefore, when coding blocks of n source symbols, the noiseless source coding theorystates that
for an arbitrary posilive number€, there is a variable-length code which satisfies the following:

H(S)SL,, <H(S)+e (5.12)

as nm is large enough. That is, the average number of bits used in coding per source symbol is
bounded below by the entropy of the source and is bounded above by the sumofthe entropy and
an arbitrary positive number. To make€ arbitrarily small, i.c., to make the average length ofthe
code arbitrarily close to the entropy, we have to make the block size large enough. This version
of the noiseless coding theorem suggests a way to make the average length of a variable-length
code approachthe source entropy. It is known, however, that the high coding complexity that occurs
when n approaches infinity makes implementation of the code impractical,

5.2 HUFFMAN CODES

Consider the source alphabet defined in Equation 5.1. The method of encoding source symbols
according to their probabilities, suggested in (Shannon, 1948; Fano, 1949), is not opumum. It
approaches the optimum, however, when the block size n approachesinfinity. This results in a large
storage requirement and high computational complexity. In many cases, we need a direct encoding
method that is optimum and instantaneous (hence uniquely decodable) for an information source
with finite source symbols in source alphabet S. Huffman codeis the first such optimum code
(Huffman, 1952), and is the technique most frequently used at present, It can be used for r-ary
encoding as r > 2. For notational brevity, however, we discuss only the Huffman coding used in
the binary case presented here.

5.2.1 Required RULes FoR Optimum INSTANTANEOUS CODES

Let us rewrite Equation 5.1 as follows:

mmS=(s,,5,,°--,5,,) (5.13)

Withoutloss of generality, assume the occurrence probabilities of the source symbols are as
follows:

p(s,) = p(s,)2---2 p(s,,,) = P(s,) (5.14)

Since we are seeking the optimum codefor S, the lengths of codewords assigned to the source
symbols should be

L<Ls--S1,_,Sl,. (5.15)a

Based on the requirements of the optimum and instantaneous code, Huffman derived the
following rules (restrictions):

m— i)lt. [sh s-<h_,=! (5.16)

Equations 5.14 and 5.16 imply that when the source symbol occurrence probabilities are
arranged in a nonincreasing order, the length of the corresponding codewords should be
in a nondecreasing order. In other words, the codeword length of a more probable source
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symbol should not be longer than that of a less probable source symbol. Furthermore,
the length ofthe codewords assigned to the two least probable source symbols should
be the same.

2. The codewordsofthe twoleast probable source symbols should be the same exceptfor
their last bits.

3. Each possible sequence oflength /,, — | bits must be used either as a codeword or must
have one ofits prefixes used as a codeword,

Rule / can be justified as follows. If the first part ofthe rule,i.e., 1) <1, <--- <1, is violated,
say, /, > /,, then we can exchange the two codewords to shorten the average length of the code.
This means the code is not optimum, which contradicts the assumption that the code is optimum,
Hence il is impossible. Thatis, the first part of Rule | has to be the case. Now assume that the
second part ofthe rule is violated, ie., /,,., <J,,. (Note that /,,., > 1,, can be shown to be impossible
by using the same reasoning We just used in proving thefirst part of the rule.) Since the codeis
instantaneous, codeword A,,_, is not a prefix of codeword A,,. This implies that the last bit in the
codeword A,, is redundant, It can be removed to reduce the average length ofthe code, implying
that the code is not optimum. This contradicts the assumption, thus proving Rule 1.

Rule 2 can be justified as follows. As in the above, A,,_, and A,, are the codewordsof the two
least probable source symbols. Assumethat they do not havethe identical prefix ofthe order /,, — 1.
Since the code is optimum and instantaneous, codewords A,,_, and A,, cannot have prefixes of any
order that are identical to other codewords. This implies that we can drop the last bits of A,,_, and
A,, to achieve a lower average length. This contradicts the optimum code assumption. It proves that
Rule 2 hasto be the case.

Rule 3 can be justified using a similar strategy to that used above. If a possible sequence of
length /,,— 1 has not been used as a codeword and any ofits prefixes have not been used as
codewords, then it can be used in place of the codeword of the mth source symbol, resulting in a
reduction ofthe average length L,,,. This is a contradiction to the optimum code assumption and
it justifies the rule.

ibe

avg’

5.2.2 HUFFMAN CODING ALGORITHM

Based on these three rules, we see that the two least probable source symbols have codewords of
equal length. These two codewords are identical except for the last bits, the binary 0 and 1,
respectively. Therefore, these two source symbols can be combined to form a single new symbol.
Its occurrence probability is the sum oftwo source symbols,i.c., P(5,,;) + p(S,)- Its codeword is
the commonprefix of order/,, — | of the two codewordsassigned to s,, and 5,,.;, respectively, The
new setof source symbols thus generated is referred to as thefirst auxiliary source alphabet, which
is one source symbol less thanthe original source alphabet. In the first auxiliary source alphabet,
we can rearrange the source symbols according to a nonincreasing order of their occurrence
probabilities. The same procedure can be applied to this newly created source alphabet. A binary
0 and a binary 1, respectively, are assigned to the lastbits of the two least probable source symbols
in the alphabet. The second auxiliary source alphabet will again have one source symbolless than
the first auxiliary source alphabet. The procedure continues. In somestep, the resultant source
alphabetwill have only two source symbols, Atthis time, we combine them to forma single source
symbol with a probability of 1. The coding is then complete. '

Let’s go through the following example toillustrate the above Huffman algorithm.

Example 5.9 siti i
Consider a source alphabet whosesix source symbols and their occurrence probabilities are listed
in Table 5.9. Figure 5.1 demonstrates the Huffman coding procedure applied. In the example, among
the two least probable source symbols encountered at cach step we assign binary O to the top
symbol and binary 1 to the bottom symbol,
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TABLE5.9

Source Alphabet and Huffman Codes in Example 5.9

Source Symbol Occurrence Probability Codeword Assigned Length of Codeword

S, 0.3 00 2
Ss; 0.1 101 3
S 0.2 ir 2

S, 0.05 1001 4

Ss 0.1 1000 4
Se 0.25 01 2 

 
FIGURE 5.1 Huffman coding procedure in Example 5.9.

5.2.2.1 Procedures

In summary, the Huffman coding algorithm consists of the following steps.

1. Arrange all source symbols in such a waythat their occurrence probabilities are in a
nonincreasing order.

2. Combine the two least probable source symbols:
* Form a new source symbol with a probability equal to the sum of the probabilities

of the two least probable symbols.
* Assign a binary 0 and a binary|to the twoleast probable symbols.

3. Repeat until the newly created auxiliary source alphabetcontains only one source symbol.
4. Start from the source symbol in the last auxiliary source alphabet and trace back to each

source symbolin the original source alphabetto find the corresponding codewords.

5.2.2.2 Comments

First, it is noted that the assignmentof the binary 0 and|to the two least probable source symbols
in the original source alphabet and each of the first (u — 1) auxiliary source alphabets can be
implemented in twodifferent ways. Here u denotes the total numberofthe auxiliary source symbols
in the procedure. Hence,there is a total of 2" possible Huffman codes, In Example 5.9, there are
five auxiliary source alphabets, henceatotal of 2° = 32 different codes. Note that each is optimum:
that is, each has the same average length.

Second, in sorting the source symbols, there may be more than one symbol having equal
probabilities. This results in multiple arrangements of symbols, hence multiple Huffman codes.
While all of these Huffman codes are optimum, they may have some other different properties.
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For instance, some Huffman codesresult in the minimum codewordlength variance (Sayood, 1996).
This property is desired for applications in which a constantbit rate is required.

Third, Huffman coding can be applied to r-ary encoding with r > 2. That is, code symbols are
r-ary with r > 2.

5.2.2.3. Applications

As a systematic procedure to encode afinite discrete memoryless source, the Huffman code has
found wide application in image and video coding, Recall that it has been used in differential
coding and transform coding. In transform coding, as introduced in Chapter 4, the magnitude of
the quantized transform coefficients and the run-length of zeros in the zigzag scan are encoded by
using the Huffman code, This has been adopted by both still image and video coding standards.

5.3. MODIFIED HUFFMAN CODES

5.3.1 Motivation

As a result of Huffman ceding, a set of all the codewords, called a codebook, is created. It is an
agreement between the transmitter and the receiver. Consider the case where the occurrence

probabilities are skewed, i.c., some are large, while some are small. Under these circumstances,
the improbable source symbols take a disproportionately large amount of memory space in the
codebook, The size of the codebook will be very large if the number of the improbable source
symbols is large, A large codebook requires a large memory space and increases the computational
complexity. A modified Huffman procedure was therefore devised in order to reduce the memory
requirement while keeping almost the same optimality (Hankamer, 1979).

Example 5.10
Consider a source alphabet consisting of 16 symbols, cach being a 4-bit binary sequence, Thatis,
S = (s,, £= 1,2,--,16}. The occurrence probabilities are

pls; ) os P(s;) =1/4.

The source entropy can be calculated as follows:

| l | | } -AsS\ S34 = —|+14-| -—log, — |=3.404 bits per symbol(S)=2 ( 5 log, ;)# ( of 082 35
Applying the Huffman coding algorithm, we find that the codeword lengths associated with

the symbols are: /, = /, = 2, |, = 4, and ly =; = +> = ig = 5, where /; denotes the length ofthe ith
codeword. The average length of Huffman codeis

Ih

a=xas,i =3.464 bits per symbol
i=]

Wesee that the average length of Huffman code is quite close to the lower entropy bound.It is
noted, however, that the required codebook memory, M (defined as the sum ofthe codewordlengths),
iS quite large:
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1h

M= 51,=73. bits
i=l

This number is obviously larger than the average codeword length multiplied by the number of
codewords. This should not comeas a surprise since the average hereis in the statistical sense instead
of in the arithmetic sense. When the total number of improbable symbols increases, the required
codebook memory space will increase dramatically, resulting in a great demand on memory space.

5.3.2 ALGORITHM

Consider a source alphabet 5 that consists of 2" binary sequences, each of length v. In other words,
each source symbolis a v-bit codeword in the natural binary code. The occurrence probabilities
are highly skewed and there is a large numberof improbable symbols in S, The modified Huffman
coding algorithm is based on the following idea: lumping all the improbable source symbols into
a category named ELSE (Weaver, 1978). The algorithm is described below.

1. Categorize the source alphabet S into two disjoint groups, S, and S,, such that

S, = s)pls;)> >} (5.17)
and

S, ={sJo(s) sz} (5.18)
2. Establish a source symbol ELSE with its occurrence probability equal to p(S,).

Apply the Huffman coding algorithmto the source alphabet S, with S$, = 5, U ELSE.
4. Convert the codebook ofS; to that of S as follows.

* Keep the same codewords for those symbols in S).
* Use the codeword assigned to ELSEasa prefix for those symbols in S3.

5.3.3  Copesook Memory REQUIREMENT

Codebook memory M is the sum of the codeword lengths. The M required by Huffman coding
with respect to the original source alphabetSis

M=>=>+>) (5.19)
ieS ieS, ies

where /; denotesthe length of the ith codeword, as defined previously. In the case of the modified
Huffman coding algorithm, the memory required M,,,, is

Muy = Yh= Yh + bese (5.20)
ieS, te,

where [r,s is the length of the codeword assigned to ELSE. The above equation reveals the big
savings in memory requirement whenthe probability is skewed. The following example is used to
illustrate the modified Huffman coding algorithm and the resulting dramatic memory savings.

IPR2018-01413

Sony EX1008 Page 144



IPR2018-01413 
Sony EX1008 Page 145

Variable-Length Coding: Information Theory Results(II) 119

]

“() t

“()
FIGURE 5.2) The modified Huffman coding procedure in Example 5.11.

Example 5.11
In this example, we apply the modified Huffman coding algorithm to the source alphabet presented
in Example 5.10. We first lump the 14 symbols having the least occurrence probabilities together
to form a new symbol ELSE. The probability of ELSEis the sum ofthe 14 probabilities. Thatis,
P(ELSE)=4-14= 4.

Apply Huffman coding to the new source alphabet S; = {5,, 5,, ELSE}, as shownin Figure 5.2.
From Figure 5.2, it is seen that the codewords assigned to symbols s,, s,, and ELSE, respectively,
are 10, 11, and 0, Hence, for every source symbol lumped into ELSE, its codeword is 0 followed
by the original 4-bit binary sequence. Therefore, M,q = 2+2+1=5 bits, i-e., the required
codebook memory is only 5 bits. Compared with 73 bits required by Huffman coding (refer to
Example 5.10), there is a savings of 68 bits in codebook memory space. Similar to the comment
made in Example 5.10, the memory savings will be even larger if the probability distribution is
skewed more severely and the number of improbable symbols is larger. The average length of the
modified Huffman algorithm is Le antt = 4.2.2+4-5-14=3.5 bits per symbol, This demonstrates
that modified Huffman coding retains almost the same coding efficiency as that achieved by
Huffman coding.

5.3.4 Bounps on Averace CopeworD LENGTH

It has been shown that the average length of the modified Huffman codes satisfies the following
condition:

H(S)<L,,, < H(S)+1—plog, p (5.21)

where p = Z, . ,, p(s,). It is seen that, compared withthe noiseless source coding theorem, the upper
bound ofthe code average length is increased by a quantity of —p log, p. In Example S.1T it Is
seen that the average length of the modified Huffman codeis closeto that achieved by the Huffman
code, Hence the modified Huffman code is almost optimum.

5.4 ARITHMETIC CODES

Arithmetic coding, whichis quite different from Huffman coding,1s gaining increasing popularity.
In this section, we will first analyze the limitations of Huffman coding. Then the principle of
arithmetic coding will be introduced. Finally some implementation issues are discussed briefly.
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5.4.1 Limitations OF HUFFMAN CODING

As seen in Section 5.2, Huffman coding is a systematic procedure for encoding a source alphabet,
with each source symbol having an occurrence probability. Under these circumstances, Huffman
coding is optimumin the sensethatit produces a minimum coding redundancy.It has been shown
that the average codeword length achieved by Huffman coding satisfies the following inequality
(Gallagher, 1978).

H(S)< Livy < H(S)+ Pray + 0-086 (5.22)

where H(S) is the entropy of the source alphabet, and p,,,, denotes the maximum occurrence
probability in the set of the source symbols. This inequality implies that the upper bound ofthe
average codeword length of Huffman code is determined by the entropy and the maximum occur-
rence probability of the source symbols being encoded.

In the case where the probability distribution among source symbols is skewed (some proba-
bilities are small, while some are quite large), the upper bound may be large. implying that the
coding redundancy may not be small. Imagine the following extreme situauion, There are only two
source symbols. One has a very small probability, while the other has a very large probability (very
close to 1). The entropy of the source alphabet in this case is close to O since the uncertainty is
very small. Using Huffman coding, however, we need two bits: one for each, That is, the average
codeword length is 1, which means that the redundancy is very close to 1. This agrees with
Equation 5.22. This inefficiency is due to the fact that Huffman coding always encodes a source
symbol with an integer numberofbits.

The noiseless coding theorem (reviewed in Section 5,1) indicates thal the average codeword
length of a block code can approach the source alphabet entropy when the block size approaches
infinity. As the block size approaches infinily, the storage required, the codebook size, and the
coding delay will approach infinity, however, and the complexity of the coding will be out of control.

The fundamental idea behind Huffman coding and Shannon-Fano coding (devised alitleearlier
than Huffmancoding [Bell et al., 1990) is block coding. That is, some codeword having anintegral
numberofbits is assigned to a source symbol. A message may be encoded bycascading the relevant
codewords. It is the block-based approachthatis responsiblefor the limitations of Huffman codes.

Anotherlimitation is that when encoding a message that consists of a sequence of source
symbols, the nth extension Huffman coding needs Lo enumerate all possible sequences of source
symbols having the samelength, as discussed in coding the nth extended source alphabet. This is
not computationally efficient,

Quite different from Huffman coding, arithmetic coding is streani-based. It overcomes the
drawbacks of Huffman coding. A string of source symbols is encoded as a string of code symbols.
Hence,it is free of the integral-bits-per-source symbolrestriction and is more efficient. Arithmetic
coding may reachthe theoretical bound to codingefficiency specified in the noiseless source coding
theorem for any information source. Below, we introducethe principle of arithmetic coding, from
which we can see the stream-based nature of arithmetic coding.

5.4.2 Principle of ARITHMETIC CODING

To understand the different natures of Huffman coding and arithmetic coding, let us look at
Example 5.12, where we use the samesource alphabet and the associated occurrence probabilities
used in Example 5.9. In this example, however,a string of source symbols 515253545554 is encoded.
Note that we consider the terms string and streamto be slightly different. By stream, we mean a
message, or possibly several messages, which may correspond to quite a long sequence of source
symbols. Moreover, stream gives a dynamic “flavor.” Later on we will see that arithmetic coding
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TABLE 5.10

Source Alphabet and Cumulative Probabilities in Example 5.12

Source Symbol Occurrence Probability|Associated Subintervals CP

S, 03 (0, 0.3) 0
S; 0.) (0.3, 0.4) 0.3

5, 02 0.4, 0.6) 0.4

Ss 0.05 (0.6, 0.65) 0.6
5. 01 (0.65, 0.75) 0.65
Se 0.25 (0.75, 1,0) 0.75

is implemented in an incremental manner. Hence stream is a suitable term to use for arithmetic
coding. In this example, however, only six source symbols are involved. Hence we consider the
term string to be suitable, aiming at distinguishing it from the term block,

Example 5.12
The set of six source symbols and their occurrence probabilities are listed in Table 5.10. In this
example, the string to be encoded using arithmetic coding is 5,5)5,54555¢. In the following four
subsections wewill use this example toillustrate the principle of arithmetic coding and decoding.

9.4.2.1 Dividing Interval [0,1) into Subintervals

Aspointed out byElias, it is not necessary to sort out source symbols according lo their occurrence
probabilities. Therefore in Figure 5.3(a) the six symbols are arranged in their natural order, from
symbols s), 3, --+, up to s,. The real interval between 0 and|is divided into six subintervals, each
having a length of p(s,), i = 1,2,--:,6. Specifically, the interval denoted by [0,1) — where 0 is
included in (the left end is closed) and | is excluded from (the right end is open) the interval —
is divided into six subintervals. The first subinterval [0, 0.3) correspondsto s, and has a length of
P(s,), i.c., 0.3. Similarly, the subinterval [0, 0.3) is said to be closed on the left and open on the
right. The remaining five subintervals are similarly constructed. All six subintervals thus formed
are disjoint and their union is equal to the interval [0, 1), This is because the sumofall the
probabilities is equal to |.

Welist the sum of the preceding probabilities, known as cumulative probability (Langdon,
1984), in the right-most column of Table 5.10 as well. Note that the concept of cumulative prob-
ability (CP) is slightly different from that of cumulative distribution function (CDF)in probability
theory. Recall that in the case of discrete random variables the CDFis defined as follows.

CDF(s,)= y (s,) (5.23)
j=l

The CP is defined as

cP(s)= > -(s)) (5.24)
j=!

where CP(s,) = 0 is defined. Now wesee each subintervalhasits lower end point located at CP(s,).
The width of each subinterval is equal to the probability of the corresponding source symbol. A
subinterval can be completely defined by its lower end point and its width. Alternatively, it is
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[ 0.108175, 0.1058250)

FIGURE S.3 Arithmetic coding working on the same source alphabetas that in Example 5.9, The encoded
symbolstring is S, S, S, S, S, S,.

determinedby its two end points: the lower and upper end points (sometimesalso called the left
and right end points).

Now weconsider encodingthestring of source symbols $1 525354555, With the arithmetic coding
method.

5.4.2.2 Encoding

Encoding the First Source Symbol

Refer to Figure 5.3(a). Since the first symbolis s,, we pick up its subinterval [0, 0.3). Picking up
the subinterval [0, 0.3) meansthat any real numberin the subinterval, i.e., any real number equal
to or greater than O and smaller than 0.3, can be a pointerto the subinterval, thus representing the
source symbol s,. This can be justified by considering thatall the six subintervals are disjoint.
Encoding the Second Source Symbol

Refer to Figure 5.3(b). We use the same procedure as used in part (a) to divide the interval [0, 0.3)
into six subintervals. Since the second symbolto be encodedis Sj, We pick up its subinterval [0.09,
0.12).
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Notice that the subintervals are recursively generated from part (a) to part (b). It is known that
an interval may be completely specified by its lower end point and width. Hence, the subinterval
recursion in the arithmetic coding procedure is equivalent to the following two recursions: end
point recursion and width recursion,

From interval [0, 0,3) derived in part (a) to interval (0.09, 0.12) obtained in part (b), we can
conclude the following lower end point recursion:

new = L. werent + eo 4 CP... (5.25)

Where Lies Leurvm fepresent, respectively, the lower end points of the new and current recursions,
and the W,,,.,.,, and the CP,,,, denote, respectively, the width ofthe interval in the current recursion
and the cumulative probability in the new recursion. The width recursion is

Wow = Worrenr® P(S;) (5.26)Ae

where W,.,,, and p(s,) are, respectively, the width of the new subinterval and the probability ofthe
source symbols, that is being encoded. These two recursions, also called double recursion (Langdon,
1984), play a central role in arithmetic coding

Encoding the Third Source Symbol
Refer to Figure 5.3(c). When the third source symbolis encoded, the subinterval generated above
in part (b) is similarly divided into six subintervals. Since the third symbol to encode is s,, its
subinterval (0.102, 0.108) is picked up.

Encoding the Fourth, Fifth, and Sixth Source Symbols
Refer to Figure 5.3(d,¢,f). The subinterval division is carried out according to Equations 5.25 and
5.26. The symbols 5,, ss, and s, are encoded. The final subinterval generated is [0.1058175,
0.1058250).

Thatis, the resulting subinterval [0.1058175, 0.1058250) can represent the source symbol string
$155454555,. Note that in this example decimal digits instead of binary digits are used. In binary
arithmetic coding, the binary digits 0 and | are used.

5.4.2.3 Decoding

As seen in this example, for the encoder ofarithmetic coding, the input is a source symbol string
and the output is a subinterval. Let us call this the final subinterval or the resultant subinterval.
Theoretically, any real numbers in the interval can be the codestring for the input symbol string
since all subintervals are disjoint. Often, however, the lower endofthe final subinterval is used as
the code string. Now let us examine how the decoding process is carried out with the lower end
of the final subinterval.

Decoding sort ofreverses what encoding has done. The decoder knowsthe encoding procedure
and therefore has the information contained in Figure 5.3(a). It compares the lower end point of
the final subinterval 0.1058175 with all the end points in (a), It is determined that 0 < 0.1058175 <
0.3. That is, the lower endfalls into the subinterval associated with the symbols,. Therefore, the
symbols, is first decoded. : :

Oncethefirst symbol is decoded, the decoder may know the partition of subintervals shown in
Figure 5.3(b). It is then determinedthat 0.09 < 0.1058175 < 0.12. Thatis, the lower end is contained
in the subinterval corresponding to the symbol s,. As a result, s, is the second decoded symbol.

The procedure repeatsitself until all six symbols are decoded. Thatis, based on Figure 5.3(c),
it is found that 0.102 < 0.1058175 < 0.108. The symbol s, is decoded. Then, the symbols 5,, 55,5,
are subsequently decoded because the following inequalities are determined:
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0.1056 < 0,1058175 < 0.1059

0.105795 < 0.1058175 < 0,1058250

0.1058145 < 0.1058175 < 0.1058250

Note that a terminal symbol is necessary to inform the decoder to stop decoding.
The above procedure gives us an idea of how decoding works. The decoding process, however,

does not need to construct parts (b), (c), (d), (e), and (f) of Figure 5.3. Instead, the decoder only
needs the information contained in Figure 5.3(a). Decoding can be split into the following three
sleps: coniparison, readjustment (subtraction), and scaling (Langdon, 1984).

As described above, through comparison we decode the first symbol s,, From the way
Figure 5.3(b) is constructed, we know the decoding of s, can be accomplished as follows. We
subtract the lower end of the subinterval associated with s, in part (a), that is, 0 in this example,
from the lower end ofthe final subinterval 0.1058175, resulting in 0.1058175. Then we divide this
numberby the width of the subinterval associated with s,, 1.e., the probability ofs,, 0.3, resulting
in 0.352725. Looking at part (a) of Figure 5.3, it is found that 0.3 < 0.352725 < 0.4. That is, the
number is within the subinterval corresponding to s,. Therefore the second decoded symbol is 55.
Note that these three decoding steps exactly “undo” what encoding did.

To decode the third symbol, we subtract the lower end of the subinterval with s,, 0.3 from
0.352725, obtaining 0.052725, This numberis divided by the probability of sj, 0.1, resulting in
0.52725. The comparison of 0.52725 with end points in part (a) reveals that the third decoded
symbolis 53.

In decoding the fourth symbol, wefirst subtract the lower end of the s,'s subinterval in part (a),
0.4 from 0.52725,getting 0.12725. Dividing 0.12725 by the probability of s,, 0.2, results in 0.63625.
Referring to part (a), we decode the fourth symbol as s, by comparison.

Subtraction of the lower end of the subinterval of s, in part (a), 0.6, from 0.63625 leads to
0.03625. Division of 0.03625 by the probability of sy, 0.05, produces 0.725. The comparison
between 0.725 and the end points in part (a) decodes the fifth symbolas s,.

Subtracting 0.725 by the lower end of the subinterval associated with 5, in part (a), 0.65, gives
0.075. Dividing 0.075 by the probability of s,, 0.1, generates 0.75. The comparison indicates that
the sixth decoded symbolis s,.

In summary, considering the way in which parts (b), (c), (d), (e), and (f) of Figure 5.3 are
constructed, we see thatthethreestepsdiscussed in the decoding process: comparison, readjustment,
and scaling, exactly “undo” what the encoding procedure has done.

5.4.2.4 Observations

Both encoding and decoding involve only arithmetic operations (addition and multiplication in
encoding, subtraction and division in decoding). This explains the name arithmetic coding.

Weseethat an input source symbolstring s,5)5,54558,, Via encoding, correspondsto a subinterval
[0.1058175, 0.1058250). Any numberin this interval can be used to denote thestring of the source
symbols.

Wealso observe that arithmetic coding can be carried out in an incremental manner. Thatis,

source symbols are fed into the encoder one by one andthe final subintervalis refined continually,
j.c., the code string is generated continually. Furthermore,it is done in a mannercalled first in first
out (FIFO). That is, the source symbol encodedfirst is decoded first. This manner is superior to
that of last infirst out (LIFO). This 1s because FIFO is suitable for adaptation to the statistics of
the symbolstring.

It is obvious that the width ofthe final subinterval becomes smaller and smaller when the length

of the source symbolstring becomeslarger and larger. This causes what is knownas the precision
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problem,It is this problemthat prohibited arithmetic coding from practical usage for quite a long
period oftime. Only after this problem was solved in the late 1970s, did arithmetic coding become
an increasingly important coding technique.

It is necessary to have a termination symbolat the end of an input source symbol string. In
(his way, an arithmetic coding systemis able to know when to terminate decoding.

Compared with Huffmancoding, arithmetic coding is quite different. Basically, Huffman coding
converts cach source symbolinto a fixed codeword with anintegral number ofbits, while arithmetic
coding converts a source symbolstring to a code symbolstring. To encode the same source symbol
String, Huffmancoding can be implemented in twodifferent ways. One way is shown in Example5,9,
We construct a fixed codeword for each source symbol. Since Huffman codingis instantaneous,
we can cascade the corresponding codewords to form the output, a 17-bit code string
00.101.11.1001.1000.01, where, for easy reading, the five periods are used to indicate different
codewords. As we see that for the same source symbol string, the final subinterval obtained by
using arithmetic coding is [0.1058175, 0.1058250). It is noted that a decimal in binary number
system, 0.0001 10111111111, which is of 15 bits, is equal to the decimalin decimal number system,
0.1058211962, whichfalls into the final subinteryal representing the string $,575,5,598,. This indi-
cates that, for this example, arithmetic coding is more efficient than Huffamn coding.

Another way is to form a sixth extension of the source alphabet as discussed in Section 5.1.4:
treal each group ofsix source symbols as a new source symbol; calculate its occurrence probability
by multiplying the related six probabilities; then apply the Huffman coding algorithmto the sixth
extension ofthe discrete memoryless source, This is called the sixth extension of Huffman block
code (refer to Section 5.1.2.2). In other words, in order to encode the source string 5,545354555¢,
Huffman coding encodes all of the 6° = 46,656 codewords in the sixth extension of the source
alphabet. This implies a high complexity in implementation and a large codebook,It is therefore
not efficient.

Note that we use the decimal fraction in this section, In binary arithmetic coding, we use the
binary fraction. In (Langdon, 1984) both binary source and code alphabets are used in binary
arithmetic coding.

Similar to the case of Huffman coding, arithmetic coding is also applicable to rary encoding
with ¢ > 2,

5.4.3 IMPLEMENTATION ISSUES

As mentioned, the final subinterval resulting from arithmetic encoding of a source symbolstring
becomes smaller and smaller as the length of the source symbol string increases, Thatis, the lower
and upperboundsof the final subinterval becomecloser and closer. This causes a growing precision
problem,It is this problemthat prohibited arithmetic coding from practical usage for a long period
of time. This problem has been resolved andthefinite precision arithmetic ts now used in arithmetic
coding. This advance is due to the incremental implementation of arithmetic coding.

5.4.3.1 Incremental Implementation

Recall Example 5.12. As source symbols come in one by one, the lower and upper ends of the
final subinterval get closer and closer. In Figure 5.3, these lower and upper ends in Example 9,12
are listed, We observethatafter the third symbol, s3, is encoded, the resultant subinteryal is [0. 102,
0.108). That is, the two mostsignificant decimaldigits are the same and they remain the samein
the encoding process, Hence, we can transmit these two digits without affecting the final code
string. After the fourth symbol s, is encoded,the resultant subinterval is (0.1056, 0.1059). That is,
one moredigit, 5, can be transmitted. Or we say the cumulative output is now 105. After the sixth
symbolis encoded, thefinal subintervalis [0,1058175, 0,1058250). The cumulative outputis 0. 1058.
Refer to Table 5.11. This important observation reveals that we are able to incrementally transmit
output (the code symbols) and receive input (the source symbols that need to be encoded),
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TABLE 5.11

Final Subintervals and Cumulative Output in Example 5.12

Final Subinterval 

Source Symbol Lower End Upper End Cumulative Output

ay 0 03 _—
$3 0,09 0.12 —

3; 0.102 0.108 O.10

Sy 0.1056 0.1059 0.105

85 0.105795 0.105825 0.105
Sg 0.1058175 0.1058250 0.1058 

5.4.3.2 Finite Precision

With the incremental manner of transmission of encoded digits and reception of input source
symbols,it is possible to use finite precision to represent the lower and upper boundsofthe resultant
subinterval, which gets closer and closer as the length ofthe source symbol string becomes long.

Instead offloating-point math, integer mathis used. The potential problems knownas underflow
and overflow, however, need to be carefully monitored and controlled (Bell et al., 1990),

5.4.3.3 Other Issues

There are some other problems that need to be handled in implementation of binary arithmeuc
coding. Two of them are listed below (Langdon and Rissanen, 1981).

Eliminating Multiplication
The multiplication in the recursive division of subintervals is expensive in hardware as well as
software. It can be avoided in binary arithmetic coding so as to simplify the implementation of
binary arithmetic coding. The idea is to approximate the lower end of the interval by the closest
binary fraction 2-°, where Q is an integer. Consequently, the multiplication by 2-@ becomesa right
shift by Q bits. A simpler approximation to eliminate multiplication is used in the Skew Coder
(Langdon and Rissanen, 1982) and the Q-Coder (Pennebakeret al., 1988),

Carry-Over Problem
Carry-over takes place in the addition required in the recursion updating the lower end of the
resultant subintervals. A carry may propagate over q bits. If the q is larger than the numberofbits
in the fixed-length register utilized in finite precision arithmetic, the carry-over problem occurs. To
block the carry-over problem, a technique knownas “bit stuffing” is used, in which an additional
buffer register is utilized.

For a detailed discussion on the various issues involved,readers are referred to (Langdonetal.,
1981, 1982, 1984; Pennebaker etal., 1988, 1992). Some computer programsofarithmetic coding
in C language can be foundin (Bell et al., 1990; Nelson and Gailley, 1996).

5.4.4 History

The idea of encoding by using cumulative probability in some ordering, and decoding by compar-
ison of magnitude of binary fraction, was introduced in Shannon's celebrated paper (Shannon,
1948). The recursive implementation of arithmetic coding was devised by Elias. This unpublished
result was first introduced by Abramsonas a notein his book on information theory and coding
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(Abramson, 1963). The result was further developed by Jelinek in his book on information theory
(Jelinek, 1968). The growingprecision problemprevented arithmetic coding from attaining practical
usage, however. The proposal ofusing linilte precision arithmetic was made independently by Pasco
(Pasco, 1976) and Rissanen (Rissanen, 1976). Practical arithmetic coding was developed by several
independent groups (Rissanen and Langdon, 1979; Rubin, 1979; Guazzo, 1980). A well-known
tutorial paper on arithmetic coding appeared in (Langdon, 1984). The tremendous efforts made in
IBM led to a new form ofadaptive binary arithmetic coding known as the Q-coder (Pennebaker
etal., 1988). Based on the Q-coder, the activities ofthe international still image coding standards
JPEG and JBIG combined the best features of the various existing arithmetic coders and developed
the binary arithmetic coding procedure known as the QM-coder (Pennebaker and Mitchell, 1992),

5.4.5 APPLICATIONS

Arithmetic coding is becoming popular. Note that in text and bilevel image applications there are
only two source symbols (black and white), and the occurrence probability is skewed. Therefore
binary arithmetic coding achieves high coding efficiency. IU has been successfully applied to bilevel
image coding (Langdon and Rissanen, 1981) and adopted by the international standards for bilevel
image compression, JBIG, It has also been adopted by the international still image coding standard,
JPEG. More inthis regard is covered in the next chapter when we introduce JBIG.

5.5 SUMMARY

So far in this chapter, not much has been explicitly discussed regarding the term variable-length
codes. It is known that if source symbols in a source alphabet are equally probable,i.e., their
occurrence probabilities are the same, then fixed-length codes such as the natural binary code are
a reasonable choice. Whenthe occurrence probabilities, however, are unequal, variable-length codes
Should be used in order to achieve high coding efficiency. This is one of the restrictions on the
minimum redundancy codes imposed by Huffman. Thatis, the length of the codeword assigned to
a probable source symbol should not be larger than that associated with a less probable source
symbol. If the occurrence probabilities happen tobe the integral powers of1/2, then choosing the
codeword length equal to —log, p(s,) for a source symbol s, having the occurrence probability p(s,)
results in minimum redundancy coding. In fact, the average length of the code thus generatedis
equal to the source entropy,

Huffman devised a systematic procedure to encode a source alphabet consisting offinitely
many source symbols, each having an occurrence probability. It is based on some restrictions
imposed on the optimum, instantaneous codes. By assigning codewords with variable lengths
according to variable probabilities of source symbols, Huffman coding results in minimum redun-
dancy codes, or optimum codes for short. These have found wide applications in image and video
coding and have been adopted in the international still image coding standard JPEG and video
coding standards H.261, H.263, and MPEG | and 2. '

When some source symbols have small probabilities and their number is large, the size of the
codebook of Huffman codes will require a large memory space. The modified Huffman coding
technique employs a special symbol to lumpall the symbols with small probabilities together. As
a result, it can reduce the codebook memory space drastically while retaining almost the same
coding efficiency as that achieved by the conventional Huffmancoding technique.

Onthe one hand, Huffman coding is optimumas a block code for a fixed-source alphabet. On
the other hand, compared with the source entropy (the lower bound of the average codeword length)
it is not efficient when the probabilities of a source alphabet are skewed with the maximum
probability being large. This is caused by the restriction that Huffman coding can only assign an
integral numberofbits to each codeword.
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Another limitation of Huffman coding is that it has to enumerate and encode all the possible
groups of n source symbols in the nth extension Huffman code, even though there may be only
one such group that needs to be encoded.

Arithmetic coding can overcomethe limitations of Huffman coding becauseit Is stream-oriented
rather than block-oriented. It translates a stream of source symbols into a stream of code symbols.
It can work in an incremental manner. That is, the source symbols are fed into the coding system
one by one and the code symbols are output continually. In this stream-oriented way, arithmetic
coding is moreefficient. It can approach the lower coding boundsset by the noiseless source coding
theorem for various sources.

The recursive subinterval division (equivalently, the double recursion: the lower end recursion
and width recursion) is the heart of arithmetic coding. Several measures have been taken in the
implementation of arithmetic coding. They include the incremental manner, finite precision, and
the elimination of multiplication. Due to its merits, binary arithmetic coding has been adopted by
the international bilevel image coding standard, JBIG, andstill image coding standard, JPEG. It is
becoming an increasingly important coding technique.

5.6 EXERCISES

5-1. What does the noiseless source coding theoremstate (using your own words)? Under
what condition does the average code length approach the source entropy? Commenton
the method suggested by the noiseless source coding theorem.

5-2. What characterizes a block code? Consider another definition of block code in (Blahut,

1986): a block code breaksthe input data streaminto blocks of fixed length n and encodes
each block into a codeword offixed length m. Are these twodefinitions (the one above
and the one in Section 5.1, which comes from [Abramson, 1963]) essentially the same?
Explain,

§-3. Is a uniquely decodable code necessarily a prefix condition code?
5-4. For text encoding, there are only two source symbols for black and white. It is said that

Huffman codingis notefficientin this application. Butit is known as the optimumcode.
Is there a contradiction? Explain.

5-5. A set of source symbols and their occurrence probabilities is listed in Table 5.12. Apply
the Huffman coding algorithm to encode the alphabet.

5-6. Find the Huffman code for the source alphabet shown in Example 5.10.
5-7. Consider a source alphabet S$ = {s, i = 1,2,---,32} with p(s,) = 1/4, p(s,) = 3/124, (=

2,3,-:-,32. Determine the source entropy and the average length of Huffman code if
applied to the source alphabet. Then apply the modified Huffman coding algorithm.
Calculate the average length of the modified Huffman code. Compare the codebook
memory required by Huffman code and the modified Huffman code.

5-8. A source alphabet consists of the following four source symbols: s,, 5), 53, and s,, with
their occurrence probabilities equal to 0.25, 0.375, 0.125, and 0.25, respectively. Applying
arithmetic coding as shown in Example 5.12 to the source symbolstring s,5,535,, deter-
mine the lower end ofthe final subinterval.

5-9. For the above problem, show step by step how we can decodethe original source string
from the lower end ofthe final subinterval.

5-10. In Problem 5.8, find the codeword of the symbol string s,s,5,5, by using the fourth
extension of the Huffman code. Compare the two methods.

5-11. Discuss how modern arithmetic coding overcame the growing precision problem.
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TABLE 5.12

Source Alphabet in Problem 5.5

Source Symbol Occurrence Probability|Codeword Assigned

S, 0.20

S, 0.18

s, 0.10
S 0.10

> 0.10

S, 0.06

S 0,06

S, 0.04

Sy 0.04

Sy 0.04

ie 0.04

By 0.04
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Run-Length and
Dictionary Coding:
Information Theory Results (III)

As mentionedat the beginning of Chapter 5, we are studying some codeword assignment(encoding)
techniques in Chapters 5 and 6. In this chapter, we focus on run-lengthand dictionary-based coding
techniques. We first introduce Markov models as a type of dependent source modelin contrast to
the memoryless source model discussed in Chapter 5. Based on the Markov model, run-length coding
is suitable for facsimile encoding. Its principle and application to facsimile encoding are discussed,
followed by an introduction to dictionary-based coding, which is quite different from Huffman and
arithmetic coding techniques covered in Chapter 5. Two types of adaptive dictionary coding tech-
niques, the LZ77 and LZ78 algorithms,are presented. Finally, a brief summary of and a performance
comparison betweeninternational standard algorithms for lossless still image coding are presented.

Since the Markov source model, run-length, and dictionary-based coding are the core of this
chapter, we consider this chapter as a third part of the information theory results presented in the
book. It is noted, however, that the emphasis is placed on their applications to image and video
compression,

6.1 MARKOV SOURCE MODEL

In the previous chapter we discussed the discrete memoryless source model, in which source
symbols are assumed to be independentof each other. In other words,the source has zero memory,
i.e., the previous status does notaffect the present oneatall. In reality, however, many sources are
dependent in nature. Namely, the source has memoryin the sense that the previousstatus has an
influence on the present status. For instance, as mentioned in Chapter 1, there is an interpixel
correlation in digital images, Thatis, pixels in a digital image are not independentofeach other.
Aswill be seen in this chapter, there is some dependence between charactersin text. For instance,
the letter w often followsthe letter g in English. Therefore it is necessary to introduce models that
can reflect this type of dependence. A Markov source modelis often used in this regard.

6.1.1 Discrere Markov Source

Here, as in the previous chapter, we denote a source alphabet byid! = [55,5940 2°° + Sm) and the
occurrence probability by p. An /th order Markovsourceis characterized by the following equation
of conditional probabilities.

(s,s Spar aS “+ = P(s\)si5.20 i +54) (6.1)

wherej, i1, i2, --- , il, = © {1,2,--ym}, ic., the symbols 5), 5, Sj," » Sy, *** are chosen from the
source alphabet S. This equationstates that the source symbols are not independent of each other.
The occurrence probability of a source symbolis determined by some of its previous symbols.
Specifically, the probability of s, given its history being 5,1, 52, *- , Sy *** (also called the transition
probability), is determined completely by the immediately previous / symbols sj, «> , Sy, That is,

131
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P (Si/S))

P (S/S, ) 5)(s:) P (S/S; )
P (5,/52)

(a)

P(S/S,)

P (SYS, ) P(S,/S3 )

/ P (S/S: ) P (Sy¥S;) x
P (SYS: ) es) (s:) P (Sy3))

P(SyS2)

(b)

FIGURE 6.1 State diagramsofthe first-order Markov sources with their source alphabets having (a) two
symbols and (b) three symbols.

the knowledge of the entire sequence of previous symbols is equivalent to that of the / symbols
immediately preceding the current symbols;.

AnIth order Markov source can be described by whatis called a state diagram. A state 1s a
sequence of(s;,, Sj, --*, Sy) With il, i2, ---, il € {1,2,---,m}. That is, any group of | symbols from
the m symbols in the source alphabet S forms a state. When / = 1, it is called a first-order Markov
source. The state diagrams ofthe first-order Markov sources, with their source alphabets having
two and three symbols, are shownin Figure 6.1(a) and (b), respectively. Obviously, an /th order
Markov source with m symbols in the source alphabet hasa total of m! different states. Therefore,
we conclude that a state diagram consists of all the m! states. In the diagram, all the transition
probabilities together with appropriate arrows are used to indicate the state transitions.

The source entropy atastate (5;), 5,2, --, 5) is defined as

H( 1Sar-Si) =~), Pls)finSar 54) 108, P(S,ls1»Sia0°*"»5y) 2)
=

The source entropy is defined as thestatistical average of the entropyatall the states. Thatis,

H(S)= . SY P(SasSioss-5) Sit Sy)> (6.3)
(Sisi2e-su es!
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where, as defined in the previous chapter, 5! denotes the /th extension of the source alphabet S.
Thatis, the summation is carried out with respect to all /-tuples taking over the S!. Extensions of
a Markov source are defined below,

6.1.2. Extensions or A Discrete Markov Source

An extension of a Markov source can be defined in a similar way to that of an extension of a
memoryless source in the previous chapter. The definition of extensions of a Markov source and
the relation betweenthe entropy ofthe original Markovsource and the entropy ofthe nth extension
of the Markovsourceare presented below without derivation. For the derivation, readers are referred
to (Abramson, 1963).

6.1.2.1. Definition

Consider an/th order Markov source S = {5,, 53, «+, 5,,} and a set of conditional probabilities p(s;
Ij, Sia) -77, Sy), Where j,il, i2, +, il © {1,2,-+,2m)}. Similar to the memoryless source discussed in
Chapter5, if n symbols are grouped into a block, then there is a total of m" blocks, Each block
can be viewed as a new source symbol. Hence, these m” blocks form a new information source
alphabet, called the nth extension ofthe source S and denoted by S". The nth extension ofthe /th-
order Markov source is a kth-order Markov source, where k is the smallest integer greater than or
equal to the ratio between / and n. Thatis,

k -|-} (6.4)n

where the notation |a| represents the operation of taking the smallest integer greater than or equal
to the quantity a.

6.1.2.2 Entropy

Denote,respectively,the entropy ofthe /th order Markov source S by H(S), and the entropy ofthe
nth extension ofthe /th order Markov source, 5", by H(S"). The following relation between the two
entropies can be shown:

H(S")=nH(S) (6.5)

6.1.3 Autorecressive (AR) MODEL

The Markov source discussed above represents a kind of dependence between source symbols in
termsofthe transition probability. Concretely, in determining the transition probability ofa present
source symbolgivenall the previous symbols, only the set of finitely many immediately preceding
symbols matters. The autoregressive model is another kind of dependent source model that has
been used often in image coding.It is defined below.

if

k=l

where S; represents the currently observed source symbol, while Sip with k = 1,2,+++,1 denote the /
preceding observed symbols,a,’s are coefficients, and x; is the current inputto the model. If /= 1,
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the model defined in Equation 6.6 is referred to as the first-order AR model. Clearly, in this case,
the current source symbolis a linear function of its preceding symbol.

6.2 RUN-LENGTH CODING(RLC)

The term rin is used to indicate the repetition of a symbol, while the term rum-lengfl is used to
represent the number of repeated symbols, in other words, the number of consecutive symbols of
the same value. Instead of encoding the consecutive symbols, it is obvious that encoding the run-
length and the value that these consecutive symbols commonly share may be more efficient. Accord-
ing to an excellent early review on binary image compression by Arps (1979), RLC has been in use
since the earliest days of information theory (Shannon and Weaver, 1949; Laemmel, 1951).

From the discussion of the JPEG in Chapter 4 (with more details in Chapter 7), it is seen that
mostof the DCT coefficients within a block of 8 x 8 are zero alter certain manipulations, The DCT
coefficients are zigzag scanned. The nonzero DCT coefficients and their addresses in the 8 * 8
block need to be encoded and transmitted to the receiver side. There, the nonzero DCT values are

referred to as labels. The position information about the nonzero DCT coefficients is represented
by the run-length of zeros between the nonzero DCTcoefficients in the zigzag scan. The labels
and the run-length of zeros are then Huffman coded.

Many documents such as letters, forms, and drawings can be transmitted using facsimile
machines over the general switched telephone network (GSTN). In digital facsimile techniques,
these documents are quantized into binary levels: black and white. The resolution of these binary
tone images is usually very high. In each scanline, there are many consecutive white and black
pixels, i.e., many alternate white runs and black runs. Thereforeit is not surprising to see thatRLC
has proven to be efficient in binary document transmission. RLC has been adopted in the interna-
tional standards for facsimile coding: the CCITT Recommendations T.4 and T.6.

RLCusing only the horizontal correlation between pixels on the same seanline is referred to
as I]-D RLC.It is noted that the first-order Markov source model with two symbols in the source
alphabet depicted in Figure 6.1(a) can be used to characterize 1-D RLC. To achieve higher coding
efficiency, 2~D RLC utilizes both horizontal and vertical correlation between pixels. Both the |-D
and 2-D RLCalgorithmsare introduced below.

6.2.1 1-D Run-LenctH CopINnG

In this technique, each scan line is encoded independently. Eachscan line can be considered as a
sequenceofalternating, independent white runs and black runs. As an agreement between encoder
and decoder,thefirst run in each scan line is assumed to be a white run. If the first actual pixel is
black, then the run-length ofthe first white run is set to be zero. At the end ofeach scanline, there
is a special codeword called end-of-line (EOL). The decoder knowsthe end ofa scan line whenit
encounters an EOL codeword.

Denote run-length by r, which is integer-valued, All of the possible run-lengths construct a
source alphabet R, which is a random variable. Thatis,

R={r:r€0,1,2,---} (6.7)

Measurements on typical binary documents have shownthat the maximum compressionratio,
Case» Which is defined below, is about 25% higher when the white and black runs are encoded
separately (Hunter and Robinson, 1980). The average white run-length, ry, can be expressed as

am"

Fy = >Pol) (6.8)
r=0
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where mis the maximumvalue ofthe run-length, and Py(r) denotes the occurrence probability of
a white run with length r. The entropy of the white runs, Hy, is

an

Hy =~)° B,(r)log, Py(r) (6.9)
rat)

For the black runs, the average run-length 7, and the entropy H, can be defined similarly. The
maximum theoretical compression factor C,... is

lw tly
6.10Hy +A ( )ore =

Huffman codingis then applied to two source alphabets. According to CCITT Recommendation
T.4, A4 size (210 x 297 mm) documents should be accepted by facsimile machines, In each scan
line, there are 1728 pixels. This means that the maximum run-length for both white and black runs
is 1728, 1.e., m1 = 1728. Twosource alphabets of such alarge size imply the requirement of two
large codebooks, hence the requirement of large storage space, Therefore, some modification was
made, resulting in the “modified” Huffman (MH) code.

In the modified Huffman code, if the run-length is larger than 63, then the run-length is
represented as

r=Mx64+T as r>63, (6.11)

where Mtakesinteger values from |, 2 to 27, and M x 64 Is referred to as the makeup run-length;
T takes integer values from 0, | to 63, and is called the terminating run-length. Thatis, if 7 < 63,

the run-length is represented by a terminating codeword only. Otherwise, if r > 63, the run-length
is represented by a makeup codeword and a terminating codeword. A portion of the modified
Huffman code table (Hunter and Robinson, 1980) is shown in Table 6,1. In this way, the requirement
of large storage space is alleviated, The idea is similar to that behind modified Huffman coding,
discussed in Chapter 5.

6.2.2. 2-D RuN-LenctH CopiNc

The 1-D run-length coding discussed above only utilizes correlation between pixels within a scan
line. In order to utilize correlation betweenpixels in neighboring scanlines to achieve higher coding
efficiency, 2-D run-length coding was developed. In Recommendation T.4, the modified relative
element address designate (READ) code, also known as the modified READ code orsimply the
MR code, was adopted.

The modified READ codeoperatesin a line-by-line manner. In Figure 6.2, two lines are shown.
The top line is called the reference line, which has been coded, while the bottom line is referred
to as the coding line, which is being coded. There are a group of five changing pixels, doy Gy» Ay,
b,, by, in the two lines. Their relative positions decide whichof the three coding modesis used.
The starting changing pixel aj(hence,five changing points) moves from left to right and from top
to bottom as 2-D run-length coding proceeds. The five changing pixels and the three coding modes
are defined below.

6.2.2.1 Five Changing Pixels

By a changing pixel, we mean thefirst pixel encountered in white or black runs when we scan an
imageline-by-line, fromleft to right, and from top to bottom. The five changing pixels are defined
below.
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codeline YYYY,
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 codeline

ref. line 
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(c) Horizontal mode

FIGURE 6.2 2-D min-length coding.

a: The reference-changing pixel in the coding line.Its position is defined in the previous
coding mode, whose meaning will be explained shortly. At the beginning of a coding
line, dg is an imaginary white changing pixel located before thefirst actual pixel in the
codingline.

a,;: The next changingpixel in the coding line. Because of the above-mentionedleft-to-right
and top-to-bottom scanningorder,it is at the right-hand side of dp. Since it is a changing
pixel, it has an opposite “color” to that of ap.

a,: The next changing pixel after a, in the coding line. It is to the right of a, and has the
same color as that of ap.

b,: The changing pixel in the reference line that is closest to ay from the right and has the
same. color as @).

b,: The next changing pixel in the referencelineafter b,.

6.2.2.2 Three Coding Modes

Pass Coding Mode — If the changingpixel b, is located to theleft of the changing pixel ay,
it means that the run in the referenceline starting from 5, is not adjacentto the run in the coding
line starting from a,. Note that these two runs have the samecolor. This is called the pass coding
mode. A special codeword, “0001”, is sent out from the transmitter. The receiver then knows that
the run starting from ap in the coding line doesnotend at the pixel below b,. This pixel (below 5,
in the coding line) is identified as the reference-changing pixel ay of the newset of five changing
pixels for the next coding mode.

Vertical Coding Mode — If therelative distance along the horizontal direction between the
changingpixels a, and b,is not larger than three pixels, the coding is conducted in vertical coding
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TABLE 6.1

Modified Huffman Code Table

(Hunter and Robinson, 1980)

Run-Length

oNAUkenOo
128

192

256

1536

1600

1664

1728

EOL

White Runs Black Runs

Terminating Codewords
00110101 QOOOT1OII1

000111 010
O1ll 1]

1000 10
1011 oll

1100 0011

1110 0010
111 00011

10011 000101

01001011 000000101100

00110010 000001011010

00110011 000001100110

00110100 000001100111

Makeup Codewords
1101] oooo00! 111

10010 00001 1001000

O10111 000011001001

OLlO111 000001011011

010011001 0000001011010

010011010 0000001011011
011000 0000001100100

OL001 1011 0000001 100101
000000000001 000000000001
 

 

TABLE 6.2

2-D Run-Length Coding Table
Mode

Pass coding mode

Vertical coding mode

Horizontal coding mode

Conditions Output Codeword Position of New a,

bya, < 0 0001 Underb, in coding line
a,b, = 0 l a,
a,b, =! 011
a,b, =2 00001 1
a,b) =3 0000011
ab, =-1 010
a,b, =-2 000010
a,b, =-3 0000010
la,b\l > 3 O01 + (apa,) + (2,4) a;

Note: | xy, |: distance between x, and y,, xy, > 0; x, is right to y,, x,y) < 0: x, is left to y,.
(xy): codeword ofthe run denoted by x,ytaken from the modified Huffman code.

Source; From Hunter and Robinson (1980).
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mode. That is, the position of a, is coded with reference to the position of b,. Seven different
codewords are assigned to seven different cases: the distance between a, and b, equals 0, +1, £2,
+3, where + meansq,is to the right of b,, while — means a, is to the left of b,. The a, then becomes
the reference changing pixel ay of the new set of five changing pixels for the next coding mode.

Horizontal Coding Mode — If therelative distance between the changing pixels a, and b, is
larger than three pixels, the coding is conducted in horizontal coding mode. Here, 1-D run-length
coding is applied. Specifically, the transmitter sends out a codeword consisting the following three
parts: a flag “001”; a 1-D run-length codeword for the run from ay to a,; a 1-D run-length codeword
for the run from a, to a;. The a, then becomesthe reference changing pixel ay of the newset of
five changing pixels for the next coding mode. Table 6.2 contains three coding modes and the
corresponding output codewords. There, (a,a,) and (a,a,) represent 1-D run-length codewords of
run-length aja, and a,a,, respectively.

6.2.3 EFFect OF TRANSMISSION ERROR AND Uncompressed Mope

In this subsection, effect of transmission error in the 1-D and 2-D RLC cases and uncompressed
mode are discussed.

6.2.3.1 Error Effect in the 1-D RLC Case

As introduced above,the special codeword EOLis used to indicate the end of each scan line. With
the EOL, !-D run-length coding encodes each scan line independently. If a transmission error
occurs in a scan line, there are two possibilities that the effect caused by the error 1s limited within
the scan line. Onepossibility is that resynchronizationis established after a few runs. One example
is shown in Figure 6.3. There, the transmission error takes place in the second run fromtheleft.
Resynchronization is established in the fifth run in this example. Another possibility lies in the
EOL, which forces resynchronization.

In summary, it is seen that the I-D run-length coding will not propagate transmission error
between scan lines. In other words, a transmission error will be restricted within a scan line.

Althougherror detection and retransmission of data via an automatic repeat request (ARQ) system
is supposed to be able to effectively handle the error susceptibility issue, the ARQ technique was
notincluded in Recommendation T.4 due to the computational complexity and extra transmission
time required.

Once the numberof decoded pixels between two consecutive EOL codewordsis not equal to
1728 (for an A4 size document), an error has been identified, Some error concealment techniques
can be used to reconstruct the scan line (Hunter and Robinson, 1980). For instance, we can repeat

 

 
Original KvD>arpa 5
coded line 10000, OWL ONL OOM | 1110 10°) ”

3W 4B 2W SB 6W 3B

an &mror

 

 

Enror een See erycontaminated 1000  OO10.= I110 | on 110 =100- ysline e oes ‘Loa Aes 2)

3W 6B 6W 4B 6Ww 3B

FIGURE 6.3 Establishment of resynchronization after a few runs.
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the previous line, or replace the damaged line by a white line, or yse; a correlation technirecoverthe line as muchaspossible. technique to

6.2.3.2 Error Effect in the 2-D RLC Case

Fromthe above discussion, we realize that 2-D RLC 's More efficient than 1-D RLC onthe one
hand. The 2-D RLCis more susceptible to transmission errors than the 1-D RLC on the other hand.
To prevent error propagation,there is a parameter used in 2-D RLC, knownas the K-factar, which
specifies the number of sean lines that are 2-D RLC coded.

Recommendation T.4 defined that no more than K-1 consecutive scan lines be 2-D RLC coded
after a 1-D RLC coded line. For binary documents scanned at normal resolution, K = 2. For
documents scanned at high resolution, K = 4.

According to Arps (1979), there are two different types of algorithms in binary image coding,
raster algorithms and area algorithms. Raster algorithms only operate on data within one or two
raster scan lines. They are hence mainly !-D in nature. Area algorithms are truly 2-D in nature.
They require that all, or a substantial portion, of the image is in random access memory. From our
discussion above, wesee that both |-D and 2-D RLC defined in T.4 belong to the category ofraster
algorithms. Area algorithms require large memory space and are susceptible to transmission noise.

6.2.3.3 Uncompressed Mode

For some detailed binary document images, both 1-D and 2~-D RLC mayresult in data expansion
instead of data compression. Under these circumstances the numberof coding bits is larger than
the numberofbilevel pixels. An uncompressed modeis created as an alternative way to avoid data
expansion. Special codewords are assigned for the uncompressed mode.

For the performances of I-D and 2-D RLC applied to eight CCITT test document images, and
issues such as “fill bits” and “minimum scan line time (MSLT),” to name only a few, readers are

referred to an excellent tutorial paper by Hunter and Robinson (1980),

6.3 DIGITAL FACSIMILE CODING STANDARDS

Facsimile transmission, an important means of communication in modern society, is often used as
an example to demonstrate the mutual interaction between widely used applications and standard-
ization activities, Active facsimile applications and the market brought on the necessity for inter-
national standardization in ordertofacilitate interoperability between facsimile machines world-
wide. Successful international standardization, in turn, has stimulated wider use of facsimile
transmission and, hence, a more demanding market. Facsimile has also been considered as a major
application for binary image compression,

So far, facsimile machines are classified in four different groups. Facsimile apparatuses in
groups | and 2 use analog techniques. They can transmit an A4 size (210 x 297 mm) document
scanned at 3.85 lines/mmin 6 and 3 min, respectively, over the GSTN, International standards for
these two groups offacsimile apparatus are CCITT (now ITU) Recommendations T.2 and T.3,
respectively. Group 3 facsimile machines use digital techniques and hence achieve high coding
efficiency, They can transmit the A4size binary document scannedat a resolution of3.85 lines/mm
and sampled at 1728 pixels per line in about | min at a rate of 4800 b/sec over the GSTN. The
corresponding international standard is CCITT Recommendations T.4. Group 4 facsimile appara-
tuses have the same transmission speed requirementas that for group 3 machines,but the coding
techniqueis different. Specifically, the coding technique used for group 4 machines is based on
2-D run-length coding, discussed above, but modified to achieve higher coding efficiency. Hence
it is referred to as the modified modified READ coding, abbreviated MMR. The corresponding
standard is CCITT Recommendations T.6. Table 6.3 summarizes the above descriptions.
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TABLE 6.3 FACSIMILE CODING STANDARDS

Compression TechniqueGroup of SpeedESeS
Facsimile Requirement for Analog or CCITT Algorithm
Apparatuses A-4 Size Document Digital Scheme Recommendation Model Basic Coder Acronym

G, 6 min Analog T.2 — _— —

G, 3 min Analog T.3 — — =
G, I min Digital T.4 I-DRLC Modified Huffman MH

2-D RLC MR

(optional)

G, I min Digital T.6 2-DRLC Modified Huffman MMR 

6.4 DICTIONARY CODING

Dictionary coding, the focus of this section, is different from Huffman coding and arithmetic coding,
discussed in the previous chapter. Both Huffman and arithmetic coding techniques are based on a
statistical model, and the occurrence probabilities play a particular important role. Recall that in
the Huffman coding the shorter codewords are assigned to more frequently occurring source
symbols.In dictionary-based data compression techniques a symbolor a string of symbols generated
from a source alphabet is represented by an index to a dictionary constructed from the source
alphabet. A dictionary is a list of symbols and strings of symbols. There are many examples of this
in our daily lives. For instance, the string “September” is sometimes represented by an index “9,”
while a social security number represents a person in the U.S.

Dictionary coding is widely used in text coding. Consider English text coding. The source
alphabet includes 26 English letters in both lower and upper cases, numbers, various punctuation
marks, and the space bar. Huffmanor arithmetic coding treats each symbol based on its occurrence
probability. That is, the source is modeled as a memoryless source.It is well known, however, that
this is not true in many applications, In text coding, structure or context plays a significant role.
As mentionedearlier, it is very likely that the letter u appearsafterthe letter g, Likewise,it is likely
that the word “concerned”will appearafter “As far as the weatheris.” The strategy of the dictionary
coding is to build a dictionary that contains frequently occurring symbols and string of symbols.
Whena symbolora string is encountered andit is contained in the dictionary, it is encoded with
an index to the dictionary. Otherwise, if not in the dictionary, the symbolor the string of symbols
is encodedin a less efficient manner.

6.4.1 ForRMULATION of Dictionary CopiING

To facilitate further discussion, we define dictionary coding in a precise manner(Bell et al., 1990).
We denote a source alphabet by S. A dictionary consisting of two elementsis defined as D = (P, C),
wherePis a finite set of phrases generated from the S, and C is a coding function mapping P onto
a set of codewords.

The set P is said to be complete if any input string can be represented by a series of phrases
chosen from the P. The coding functionCis said to obey the prefix property if there is no codeword
that is a prefix of any other codeword. For practical usage,i.c., for reversible compression of any
inputtext, the phrase set P must be complete andthe coding function C mustsatisfy the prefix property.

6.4.2 CATEGORIZATION OF DictionarY-BAseD CODING TECHNIQUES

The heart ofdictionary coding is the formulationof the dictionary. A successfully built dictionary
results in data compression; the opposite case may lead to data expansion. According to the ways
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in which dictionaries are constructed, dictionary coding techniques can be classified as static or
adaptive,

6.4.2.1 Static Dictionary Coding

In some particular applications, the knowledge about the source alphabet and the related strings of
symbols, also known as phrases, is sufficient for a fixed dictionary to be producedbefore the coding
process. The dictionary is used at both the transmitting and receiving ends. This is referred to as
static dictionary coding, The merit ofthe static approachis its simplicity. Its drawbackslie in its
relatively lower coding efficiency andless flexibility compared with adaptive dictionary techniques.
By less flexibility, we mean that a dictionary built for a specific application is not normally suitable
for utilization in other applications.

An example of static algorithms occurring is digram coding. In this simple and fast coding
technique, the dictionary contains all source symbols and some frequently used pairs of symbols.
In encoding, two symbols are checkedat onceto see if they are in the dictionary. If so, they are
replaced by the index of the two symbols in the dictionary, and the next pair of symbols is encoded
in the next step. If not, then the index of the first symbol is used to encode the first symbol, The
second symbol is combined with the third symbal to form a new pair, which is encoded in the next
Step,

The digram can be straightforwardly extended to n-gram. In the extension, the size of the
dictionary increases and so doesits coding efficiency.

6.4.2.2 Adaptive Dictionary Coding

As opposedto the static approach, with the adaptive approach a completely defined dictionary does
not exist prior to the encoding process and the dictionary is not fixed. At the beginning of coding,
only an initial dictionary exists. It adapts itself to the inpul during the coding process. All the
adaptive dictionary coding algorithms can be traced back to two different original works by Ziv
and Lempel (1977, 1978). The algorithms based on Ziy and Lempel (1977) are referred to as the
LZ77 algorithms, while those based on their 1978 work are the LZ78 algorithms, Prior to intro-
ducing the two landmark works, we will discuss the parsing strategy.

6.4.3 Parsinc STRATEGY

Once we haveadictionary, we need to examine the input text and find a string of symbols that
matches an item in the dictionary. Then the index of the item to the dictionary is encoded, This
process of segmenting the input text into disjoint strings (whose union equals the input text) for
codingis referred to as parsing. Obviously, the way to segment the inputtext into strings 1s not unique.

In termsofthe highest coding efficiency, optimal parsing is essentially a shortest-path problem
(Bell et al., 1990). In practice, however, a method called greedyparsing is used mostoften. In fact,
it ig used in all the LZ77 and LZ78 algorithms, With greedy parsing, the encoder searches for the
longest string of symbols in the input that matches an item in the dictionary at each coding step.
Greedy parsing may not be optimal, but it is simple in its implementation.

Example 6.1 ;
Consider a dictionary, D, whose phrase set P = (a, b, ab, ba, bb, aab, bbb\. The codewordsassigned
to these strings are C(a) = 10, C(b) = 11, C(ab) = 010, C(ba) = 0101, C(b) = Ol, C(abb) = 11,
and C(bbb) = 0110. Now theinput text is abbaab. hal r=

Using greedy parsing, we then encodethe text as C(ab).C(ba).C(ab), which isa 10-bit string:
010,0101.010.In the above representations, the periods are used to indicate the division of segments
in the parsing. This, however, is not an optimum solution. Obviously, the following parsing will
be moreefficient, i.e., C(a).C(bb).C(aab), which is a 6-bit string: 10.01.11.
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6.4.4 Supinc Winpow (LZ77) AtcoriTHMs

As mentioned earlier, LZ77 algorithmsare a groupofadaptive dictionary coding algorithms rooted
in the pioneering work of Ziv and Lempel (1977). Since they are adaptive, there is no complete —
and fixed dictionary before coding. Instead, the dictionary changes as the input text changes.

6.4.4.1 Introduction

In the LZ77 algorithms, the dictionary used is actually a portion of the input text, which has been
recently encoded. The text that needs to be encoded is compared with the strings of symbols in
the dictionary. The longest matchedstring in the dictionary is characterized by a poiifer (sometimes
called a token), whichis represented byatriple of data items. Note that this triple functions as an
index to the dictionary, as mentioned above. In this way, a variable-length string of symbols is
mapped to a fixed-length pointer.

Thereis a sliding window in the LZ77algorithms. The windowconsists of (woparts: a search
buffer and a look-ahead buffer. The search buffer contains the portion of the text streamthat has
recently been encoded which, as mentioned, is the dictionary; while the look-ahead buffer contains
the text to be encoded next. The window slides through the input text stream from beginning to
end during the entire encoding process. This explains the term sliding window. The size of the
search buffer is much larger than that of the look-ahead buffer. This is expected because whatis
contained in the search buffer is in fact the adaptive dictionary. The sliding window is usually on
the order of a few thousand symbols, whereas the look-ahead buffer is on the order of several tens
to one hundred symbols.

6.4.4.2 Encoding and Decoding

Below we present more details about the sliding window dictionary coding technique, I.e., the
LZ77 approach, via a simple illustrative example.

Example 6.2
Figure 6.4 shows a sliding window. The input text stream is ikaccbadacchacchaccgikmoabc. In
part (a) of the figure, a search buffer of nine symbols and a look-ahead buffer of six symbols are
shown. All the symbols in the search buffer, accbadacc, have just been encoded. All the symbols
in the look-ahead buffer, baccba, are to be encoded. (It is understood that the symbols before the

eS,OOYY
Search buffer of size 9 Look-ahead buffer

of size 6

(a) Triple: <6, 2, C(c)>

(b) Triple: <4, 5, C(g) >

(c) Triple: <0, 0, C(i)>

FIGURE 6.4 An encoding example using LZ77,
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search buffer have been encoded and the symbols after the look-ahead buffer are to be encoded.)
The strings of symbols, ik and eegikmoabec, are not covered by the sliding window at the moment.

At the moment, or in other words, in the first step of encoding, the symbol(s) to be encoded
begin(s) with the symbol 6. The pointer starts searching for the symbol b from the last symbolin
the search buffer, ¢, which is immediately to the left of the first symbol b in the look-ahead buffer.
It finds a matchat the sixth position from b. It further determines that (he longest string of the
match is ba, That is, the maximum matching length is two. The pointer is then represented by a
triple, <i,j,k>. The first item, “i”, represents the distance betweenthe first symbol in the look-ahead
buffer and the position ofthe pointer (the position ofthe first symbol of the matched string). This
distance is called offer. In this step, the offset is six. The second item in the triple, “j", indicates
the length of the matched string. Here, the length of the matched string ba is two. The third item,
“k", is the codeword assigned to the symbol immediately following the matched string in the look-
ahead buffer. In this step, the third item is C(¢), where C is used to represent a function to map
symbol(s) to a codeword, as defined in Section 6.4.1. That is, the resulting triple after the first step
is: <6, 2, Cfc)>.

The reasonto include the third item “k” into the triple is as follows. In the case where there
is no match in the search buffer, both “i” and “j” will be zero, The third item at this moment is
the codeword ofthe first symbol in the look-ahead buffer itself. This means that even in the case
Where we cannot find a matchstring,the sliding windowstill works. In the third step ofthe encoding
process described below, we will see that the resulting triple is: <0, 0, C(i)>, The decoder hence
understands that there is no matching, and the single symbol i is decoded.

The secondstep ofthe encodingis illustrated in part (b) of Figure 6.4. The sliding window has
been shifted to the right by three positions. The first symbol to be encoded now is ¢, whichis the
left-most symbol in the look-ahead buffer. The search pointer moves towards the left from the
symbolc.It first finds a matchin thefirst position with a length ofone.It then finds another match
in the fourth position from the first symbol in the look-ahead buffer, Interestingly, the maximum
matching can exceed the boundary between the search buffer and the look-ahead buffer and can
enter the look-ahead buffer. Why this is possible will be seen shortly, when we discuss the decoding
process, In this manner,it is found that the maximum length of matching is five, The last match

is foundatthe fifth position. The lengthof the matchedstring, however, is only one. Since greedy
parsing is used, the match with a length five is chosen. Thatis, the offset is four and the maximum
match length is five. Consequently, the triple resulting from the second step is <4, 5, C(g)>.

Thesliding windowis then shifted to the right by six positions. The third step ofthe encoding
is depicted in Part (c), Obviously, there is no matching ofi in the search buffer. The resulting triple
is hence <0, 0, C(i)>. ;

The encoding process can continue in this way. The possible cases we may encounterin the
encoding, however, are described in the first three steps. Hence we end our discussion of the
encoding process and discuss the decoding process. Compared with the encoding, the decodingis
simpler because there is no need for matching, which involves many comparisons between the
symbols in the look-ahead buffer and the symbols in the search buffer. The decoding process is
illustrated in Figure 6.5. :

In the abovethree steps, the resulting triples are <6, 2, C(c)>, <4, 5, C(g)>, and <0, 0, Cli)>.
Now let us see how the decoder works. That is, how the decoder recoversthe string baccbaccgi

from these threetriples. 2
In part (a) of Figure 6.5, the search bufferis the same as that in part (a) of Figure 6.4. Thatis,

the string accbadacc stored in the search window is what was just decoded.
Oncethefirst triple <6, 2, C(c)> is received, the decoder will move the decoding pointer from

the first position in the look-ahead buffer to the left by six positions. That is,the pointer will point
to the symbol b. The decoder then copies the two symbolsstarting from 8,i.e., ba, into the look-
ahead buffer. The symbol¢will be copied right to ba. This is shown in part (b) of Figure 6.5. The
window is then shifted to the right by three positions, as shown in part (c) of Figure6.5.
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(a) Search buffer at the beginning

SP LAD IE ASS 2 Uh Pefafe]||.

(b) After decoding <6, 2, C(c)>

rnaseineeleeeceil|S|}|

(c) Shifting the sliding window

pwsesofaele]efeleles]

(d) After decoding <4, 5, C(g)>

 
(e) Shifting the sliding window

geeTTT

(f) After decoding <0, 0, C(i) >

FIGURE 6.5 A decoding example using LZ77.

After the second triple <4, 5, C(g)> is received, the decoder moves the decoding pointer from
the first position of the look-ahead buffer to the left by four positions. The pointer points to the
symbol c. The decoder then copies five successive symbols starting from the symbol ¢ pointed by
the pointer. We see that at the beginning of this copying process there are only four symbols
available for copying. Oncethefirst symbolis copied, however,all five symbols are available. After
copying, the symbolg is added to the endofthefive copied symbols in the look-ahead buffer. The
results are shownin part (c) of Figure 6.5. Part (d) then shows the windowshifting to the right by
SIX positions.

After receiving the triple <0, 0, C(i)>, the decoder knowsthat there is no match and a single
symboli is encoded. Hence, the decoder adds the symboli following the symbol g. This is shown
in part (f) of Figure 6.5.

In Figure 6.5, for each part, the last previously encoded symbol ¢ prior to the receiving of the
three triples is shaded. From part (f), we see that the string added after the symbol ¢ due to the
three triples is baccbaccgi. This agrees with the sequence mentioned at the beginning of our
discussion about the decoding process. We thus conclude that the decoding process has correctly
decoded the encoded sequence from the last encoded symbol and the receivedtriples.

6.4.4.3. Summary of the LZ77 Approach

The sliding window consists of two parts: the search buffer and the look-ahead buffer. The most
recently encoded portion of the input text stream is contained in the search buffer, while the portion
of the text that needs to be encoded immediately is in the look-ahead buffer. The first symbol in
the look-ahead buffer, located to the right of the boundary between the two buffers, is the symbol
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or the beginning ofa string of symbols to be encodedat the moment. Let us call it the symbols.
The size of the search buffer is usually much larger than that of the look-ahead buffer.

In encoding, the search pointer movesto the left, away from the symbols, to find a match of
the symbols in the searchbuffer. Once a match is found, the encodingprocess will further determine
the length of the matched string. When there are multiple matches, the match that produces the
longest matched string is chosen. The match is denoted by a triple <i, j, k>. The first item in the
triple, “i”, is the offset, which is the distance between the pointer pointing to the symbol giving
the maximum match and the symbol s. The seconditem, ‘j”, is the length of the matched string.
The third item, “k”, is the codeword of the symbol following the matched string in the look-ahead
buffer, The sliding window is then shifted to the right by j+1 positions before the next coding step
takes place.

When there is no matching in the search buffer, the triple is represented by <0, 0, C(s)>, where
C(s) is the codewordassigned to the symbols. The sliding windowis then shifted to the right by
one position,

The sliding window is shifted along the input text stream during the encoding process. The
symbol 5 moves fromthe beginning symbol to the ending symbolof the input text stream.

At the very beginning, the content of the search buffer can be arbitrarily selected. For instance,
the symbols in the search buffer may all be the space symbol.

Let us denote the size of the search buffer by S8, the size of the look-ahead buffer by L, and
the size of the source alphabet by A. Assumethat the natural binary code is used. Then wesce that
the LZ77 approach encodes variable-length strings of symbols with fixed-length codewords. Spe-
cifically, the offset “i” is of coding length | log, SB |, the length of matchedstring “j” is of coding
length | log, (SB + L) |, and the codeword “k” is of coding length | log, (A) |, where the sign [a]
denotes the smallest integer larger than a.

The length ofthe matchedstring is equalto | log, (SB + L) | because the search for the maximum
matching can enter into the look-ahead buffer as shown in Example 6.2.

The decoding process is simpler than the encoding process since there are no comparisons
involved in the decoding.

The most recently encoded symbols in the search buffer serve as the dictionary used in the
LZ77 approach. The merit ofdoing so is that the dictionary is well adapted to the inputtext. The
limitation of the approachis that if the distance between the repeated patterns in the input text
Stream is larger than the size ofthe search buffer, then the approach cannotutilize the structure to
compress the text. A vivid example can be found in (Sayood, 1996).

A window with a moderate size, say, SB + L < 8192, can compress a variety of texts well.
Several reasons have been analyzed by Bell et al. (1990).

Many variations have been made to improve codingefficiency of the LZ77 approach, The L277
producesa triple in each encoding step;i-e., the offset (position of the matched string), the length
of the matched string, and the codeword ofthe symbol following the matched string. The trans-
mission of thethird item in each codingstepis notefficient. This is true especially atthe beginning
of coding. A variant of the LZ77, referred to as the LZSS algorithm, improves this inefficiency.

6.4.5 LZ78 AtcoritHms

6.4.5.1 Introduction

As mentioned above, the LZ77 algorithms use a sliding windowoffixed size, and both the search
buffer and the look-ahead buffer have a fixed size. This means that if the distance between two
repeated patterns is larger than the size of the search buffer, the L277 algorithms cannot work
efficiently. The fixed size of both the buffers implies that the matched string cannot be longer than
the sum ofthe sizes of the two buffers, placing anotherlimitation on coding efficiency. Increasing
the sizes ofthe search buffer and the look-ahead buffer seemingly will resolve the problem. A close
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look, however, reveals that it also leads to increases in the numberofbits required to encode the
offset and matched string length, as well as an increase in processing complexity.

The LZ78 algorithms (Ziv and Lempel, 1978) eliminate the use ofthe sliding window.Instead,
these algorithms use the encoded text as a dictionary which, potentially, does not have afixedsize.
Each timea pointer (token)is issued, the encodedstring is includedin the dictionary. Theoretically,
the LZ78 algorithms reach optimal performance as the encoded text stream approachesinfinity. In
practice, however, as mentioned above with respect to the LZ77, a very large dictionary will affect
coding efficiency negatively. Therefore, once a presetlimit to the dictionary size has been reached,
either the dictionary is fixed for the future (if the coding efficiency 1s good), or it 1s reset Lo zero,
i.€., it must be restarted.

Instead ofthe triples used in the LZ77, only pairs are used in the LZ78. Specifically, only the
position of the pointer to the matched string and the symbol following the matched string need to
be encoded. The length of the matched string does not need to be encoded since both the encoder
and the decoder have exactly the samedictionary, i.c., the decoder knowsthe length of the matched
string.

6.4.5.2 Encoding and Decoding

Like the discussion of the LZ77 algorithms, we will go through an example to describe the LZ78
algorithms.

Example 6.3
Consider the text stream: bacebaccachcabecbbacc. Table 6.4 shows the coding process. We sce
that for the first three symbols there is no match between the individual input symbols and the
entries in the dictionary. Therefore, the doubles are, respectively, <0, C(b)>, <0, C(a)>, and
<0, C(c)>, where 0 means no match, and C(b), C(a), and C(c) represent the codewords of b, a, and
¢, respectively. After symbols b, a, c, comes c, which finds a match in the dictionary (the third
entry). Therefore, the next symbol b is combined to be considered. Since the string eb did not
appearbefore, it is encoded as a double andit is appended as a new entry into the dictionary. The
first item in the double is the index of the matched entry c, 3, the second item is the index/codeword
of the symbolfollowing the match b, 1. Thatis, the double is <3, 1>. The following input symbol
is a, which appeared in the dictionary. Hence, the next symbolc is taken into consideration, Since
the string ac is not an entry of the dictionary, it is encoded with a double. The first item in the
double is the index of symbol a, 2; the second item is the index of symbolc, 3, i.e., <2, 3>. The
encoding proceedsin this way. Take a look at Table 6.4. In general, as the encoding proceeds, the
entries in the dictionary becomelongerand longer.First, entries with single symbols come out,
but later, more and more entries with two symbols show up. After that, more and more entries with
three symbols appear. This means that coding efficiency is increasing.

Now consider the decoding process. Since the decoder knowsthe rule applied in the encoding,
it can reconstructthe dictionary and decode the input text stream from the received doubles. When
the first double <0, C(b)> is received, the decoder knowsthat there is no match. Hence,the first
entry in the dictionary is b. So is the first decoded symbol. From the second double <0, C(a)>,
symbol a is known as the second entry in the dictionary as well as the second decoded symbol.
Similarly, the next entry in the dictionary and the next decoded symbol are known as c. When the
following double <3, 1> is received. The decoder knows from two items, 3 and 1, that the next
two symbols are the third and thefirst entries in the dictionary. This indicates that the symbols ¢
and 6 are decoded, and the string cb becomesthe fourth entry in the dictionary.

We omit the next two doubles and take a look at the double <4, 3>, which is associated with
Index 7 in Table 6.4. Since thefirst item in the double is 4, it means that the maximum matched

string is cb, which is associated with Index 4 in Table 6.4. The second item in the double, 3, implies
that the symbol following the matchis the third entry c. Therefore the decoder decodes a string
cbe. Also the string cbc becomes the seventh entry in the reconstructed dictionary. In this way, the
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TABLE 6.4

An Encoding Example Using the LZ78 Algorithm

Index Doubles Encoded Symbols

l <0, Clb) >
2 < 0, Cla) > a

3 <0, Cl(c)> c
4 8 Ll cb
5 <2,3> ac

6 23,25 ca

7 <4,3> ebe
8 a3. 1S ab

)) 24, 3> ec

10 <li> bb
| a5, F> acc
 

decoder can reconstruct the exact same dictionary as that established by the encoder and decode
the input text stream from the received doubles.

6.4.5.3. LZW Algorithm

Both the LZ77 and LZ78 approaches, when published in 1977 and 1978, respectively, were theory
oriented. The effective and practical improvement over the LZ78 by Welch (1984) brought much
attention to the LZ dictionary coding techniques. The resulting algorithm is referred to the LZW
algorithm. It removed the second itemin the double(the index ofthe symbol following the longest
matched string) and, hence, it enhanced coding efficiency. In other words, the LZW only sends the
indexes ofthe dictionary to the decoder. For the purpose, the LZWfirst formsaninitial dictionary,
which consists of all the individual source symbols contained in the source alphabet. Then, the
encoder examines the input symbol. Since the input symbol matches to an entry in the dictionary,
its succeeding symbol is cascaded to forma string. The cascaded string does notfind a match in
the initial dictionary. Hence, the index of the matched symbol is encoded andthe enlarged string
(the matched symbol followed by the cascaded symbol) is listed as a new entry in the dictionary.
The encoding process continues in this manner.

For the encoding and decoding processes, let us go through an example to see how the LZW
algorithm can encode only the indexes and the decoder can still decode the input text string.

Example 6.4
Considerthe following input text stream: acchadaccbaccbacc. Wesee that the source alphabet is
S = {a,b,c,d,}, The top portion of Table 6.5 (with indexes 1,2,3,4) gives a possible initial dictionary
used in the LZW. Whenthefirst symbol a is input, the encoderfinds that it has a match in the
dictionary. Therefore the next symbol c is taken to form a string ac. Because the string acis not
in the dictionary,it is listed as a new entry in the dictionary and is given an index, 5. The index
of the matched symbol a, 1, is encoded. When the second symbol, ¢, is input the encoder takes
the following symbol c into consideration because there is a match to the second input symbol¢
in the dictionary. Since the string cc does not match any existing entry, it becomes a new entry in
the dictionary with an index, 6. The index of the matched symbol (the second input symbol), c, is
encoded. Now considerthe third input symbol c, which appeared in the dictionary. Hence, the
following symbol b is cascaded to formastring cb, Since the string cb is not in the dictionary,it
becomesa newentry in the dictionary and is given an index, 7. The index of matched symbolc,3,
is encoded. The process proceedsin this fashion.
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TABLE 6.5

An Example of the Dictionary Coding
Using the LZW Algorithm

 

Encoded

Index Entry Input Symbols Index

| a

2 8 Initial dictionary3 c

4 d

5 ac a |

6 ce c 3

7 cb c 3

8 ba b 2

9 ad a |

10 da d 4
1] acc a,c 5

12 cba c,b 7

13 accb acc II
14 bac ba 8

1S cc... C,C,... 

Take a look at entry !1 in the dictionary shown in Table 6.5. The input symbolat this point is
a. Since it has a match in the previousentries, its next symbol c is considered. Since the string ac
appeared in entry 5, the succeeding symbol ¢ is combined. Now the new enlarged string becomes
acc and it does not have a matchin the previous entries. It is thus added to the dictionary. And a
new index, 11, is given to the string acc. The index of the matched string ac, 5, is encoded and
transmitted. The final sequence of encoded indexes is 1, 3, 3, 2, 1, 4, 5, 7, 11, 8. Like the LZ78,
the entries in the dictionary become longer and longer in the LZW algorithm. This implies high
codingefficiency since long strings can be represented by indexes.

Nowlet us take a look at the decoding process to see how the decoder can decode the input
text stream from the received index. Initially, the decoder has the same dictionary (the top four
rows in Table 6.5) as that in the encoder. Once the first index 1 comes, the decoder decodes a

symbol a. The second index is 3, which indicates that the next symbol is c. From the rule applied
in encoding, the decoder knowsfurther that a new entry ac has been added to the dictionary with
an index 5. The next index is 3. It is known that the next symbolis also c. It is also known that
the string cc has been added into the dictionary as the sixth entry. In this way, the decoder
reconstructs the dictionary and decodesthe input text stream.

6.4.5.4 Summary

TheLZW algorithm,as a representative of the LZ78 approach, is summarized below.
Theinitial dictionary containsthe indexesforall the individual source symbols. At the beginning

of encoding, when a symbolis input, since it has a matchinthe initial dictionary, the next symbol
is cascaded to form a two-symbolstring. Since the two-symbol string cannot find a match in the
initial dictionary, the index of the former symbol is encoded and transmitted, and the two-symbol
string is added to the dictionary with a new, incremented index. The next encoding step starts with
the latter symbol of the two.

In the middle, the encoding processstarts with the last symbol ofthe latest added dictionary
entry. Since it has a match in the previousentries, its succeeding symbol is cascaded after the
symbol to formastring. If this string appeared before in the dictionary (i.e., the string finds a
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match), the next symbol is cascaded as well. This process continues unti] such an enlarged string
cannot find a match in the dictionary. At this moment, the index ofthe last matched string (the
longest match) is encoded and (transmitted, and the enlarged and unmatched string is added into
the dictionary as a new entry with a new, incremented index.

Decoding is a process oftransforming the index string back to the corresponding symbol string.
In order to do so, however, the dictionary must be reconstructed in exactly the same way as that
established in the encoding process. Thatis, the initial dictionary is constructed first in the same
way as that in the encoding. When decoding the index string, the decoder reconstructs the same
dictionary as that in the encoder according to the rule used in the encoding.

Specifically, at the beginning of the decoding, after receiving an index, a correspondingsingle
symbol can be decoded. Via the next received index, another symbol can be decoded. From the
rule used in the encoding, the decoder knows that the two symbols should be cascaded to form a
new entry added intothe dictionary with an incremented index, The next step in the decoding will
start from the latter symbol among the two symbols.

Now consider the middle of the decoding process. The presently received index is used to
decode a corresponding string of input symbols according to the reconstructed dictionary at the
moment. (Note that this string is said to be with the present index.) It is known fromthe encoding
rule that the symbols in the string associated with the next index should be considered. (Note that
this string is said to be with the next index.) That is, the first symbol in the string with the next
index should be appended to the last symbol in the string with the present index. The resultant
combination, i.c., the string with the present index followed by the first symbol in the string with
the next index, cannotfind a match to an entry in the dictionary. Therefore, the combination should
be added to the dictionary with an incremented index. At this moment, the next index becomesthe
new present index, and the index following the next index becomesthe new next index, The decoding
process then proceeds in the same fashion in a new decoding step,

Compared with the LZ78 algorithm, the LZW algorithmeliminates the necessity of having the
second item in the double, an index/codeword of the symbol following a matched string. Thatis,
the encoder only needs to encode and transmit the first item in the double. This greatly enhances
the codingefficiency and reduces the complexity of the LZ algorithm,

6.4.5.5 Applications

The CCITT Recommendation V.42bis is a data compression standard used in modemis that connect
computers with remote users via the GSTN. In the compressed mode, the LZW algorithm is
recommended for data compression. ey ee

In image compression, the LZW findsits application as well. Specifically, il is utilized in the
graphic interchange format (GIF) which wascreated to encode graphical images. GIFis now also
used to encode natural images, thoughit is not very efficient in this regard. For more information,
readers are referred to Sayood (1996). The LZW algorithm is also used in the UNIX Compress
command.

6.5 INTERNATIONAL STANDARDS FOR LOSSLESS STILL

IMAGE COMPRESSION

In the previous chapter, we studied Huffman and arithmetic coding techniques. We also briefly
discussed the international standard for bilevel image compression, known as the JBIG, In this
chapter, so far we have discussed another two coding techniques: the run-length and dictionary
coding techniques. We also introduced the international standards for facsimile compression,in
whichthe techniques known as the MH, MR, and MMRwere recommended. All of these techniques
involve lossless compression.In the next chapter, the internationalstill image coding standard JPEG
will be introduced. As we will see, the JPEG has four different modes. They can be divided into
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lwo compression categories: lossy and lossless. Hence, we cantalk about the lossless JPEG, Before
leaving this chapter, however, we briefly discuss, compare, and summarize various techniques used
in the international standards for lossless still image compression, For more details, readers are
referred to an excellent survey paper by Arps and Truong (1994),

6.5.1 Losstess Bitever Stitt IMAGE COMPRESSION

6.5.1.1 Algorithms

As mentioned above, there are four different international standard algorithms falling into this
category.

MH (Modified Huffman coding) — This algorithmis defined in CCITT Recommendation
T.4 for facsimile coding. It uses the 1-D run-length coding technique followed by the “modified”
Huffman coding technique.

MR(Modified READ [Relative Element Address Designate] coding) — Delined in CCITT
Recommendation T.4 for facsimile coding. It uses the 2-D run-length coding technique followed
by the “modified” Huffman coding technique.

MMR (Modified Modified READ coding) — Defined in CCITT Recommendation T.6. It is
based on MR, but is modified to maximize compression.

JBIG (Joint Bilevel Image experts Group coding) — Defined in CCITT Recommendation
T.82, It uses an adaptive 2-D coding model, followed by an adaptive arithmetic coding technique.

6.5.1.2 Performance Comparison

The JBIG test image set was used to compare the performance of the above-mentioned algorithms.
The set contains scanned business documents with different densities, graphic images, digital
halftones, and mixed (document and halftone) images.

Note that digital halftones, also named (digital) halftone images, are generated by using only
binary devices. Some small black units are imposed on a white background, The units may assume
different shapes: a circle, a square, and so on. The more densethe black units in a spot of an image,
the darker the spot appears. The digital halftoning method has been used for printing gray-level
images in newspapers and books.Digital halftoning through character overstriking, used Lo generate
digital images in the early days for the experimental work associated with courses on digital image
processing, has been described by Gonzalez and Woods (1992).

The following two observations on the performance comparison were madeafterthe application
of the several techniques to the JBIG test imageset.

1. For bilevel images excluding digital halftones, the compression ratio achieved by these
techniques ranges from 3 to 100. The compression ratio increases monotonically in the
order ofthe following standard algorithms: MH, MR, MMR,JBIG.

2. Fordigital halftones, MH, MR, and MMR result in data expansion, while JBIG achieves
compressionralios in the range of 5 to 20. This demonstrates that amongthe techniques,
JBIG is the only one suitable for the compression ofdigital halftones.

6.5.2 Losstess MULTILEVEL STILL IMAGE COMPRESSION

6.5.2.1 Algorithms

There are two international standards for multilevel still image compression:
JBIG (Joint Bilevel Image experts Group coding) — Defined in CCITT Recommendation

T.82. It uses an adaptive arithmetic coding technique. To encode multilevel images, the JIBG
decomposes multilevel images into bit-planes, then compresses these bit-planes using its bilevel
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image compression technique. To further enhance the compression ratio, it uses Gary coding ta
represent pixel amplitudes instead of weighted binary coding.

JPEG (Joint Photographic (image) Experts Group coding) — Defined in CCITT Recom-
mendation T.81. For lossless coding, it uses the differential coding technique. The predictive error
is encoded using either Huffman coding or adaptive arithmetic coding techniques.

6.5.2.2 Performance Comparison

A set ofcolor test images from the JPEG standards committee was used for performance compar-
ison. The luminance component (Y) is of resolution 720 x 576 pixels, while the chrominance
components (U and V) are of 360 x 576 pixels. The compression ratios calculated are the combined
results for all the three components. The following observations have been reported.

1. When quantized in 8 bits per pixel, the compression ratios vary much less for multilevel
images than for bilevel images, and are roughtly equal to 2.

2, When quantized with 5 bits per pixel downto2 bits per pixel, compared withthelossless
JPEG the JBIG achieves an increasingly higher compression ratio, up to a maximumof
29%,

3. When quantized with 6bits per pixel, JBIG and lossless JPEG achieve similar compres-
sion ratios,

4, When quantized with 7 bits per pixel to 8 bits per pixel, the lossless JPEG achieves a
2.4 to 2.6% higher compression ratio than JBIG,

6.6 SUMMARY

Both Huffman coding and arithmetic coding, discussed in the previous chapter, are referred to as
variable-length coding techniques, since the lengths of codewords assigned to different entries in
a source alphabet are different. In general, a codeword of a shorter length is assigned to an entry
with higher occurrence probabilities, They are also classified as fixed-length to variable-length
coding techniques (Arps, 1979), since the entries in a source alphabet have the same fixed length,
Run-length coding (RLC) and dictionary coding, the focus of this chapter, are opposite, and are
referred to as variable-length to fixed-length coding techniques, This is because the runs in the
RLC and the string in the dictionary coding are variable and are encoded with codewordsof the
same fixed length.

Based on RLC, the international standard algorithmsfor facsimile coding, MH, MR, and MMR
have worked successfully except for dealing with digital halftones. Thatis, these algorithms result
in data expansion whenapplied to digital halftones. The JBIG, based on an adaptive arithmetic
coding technique, not only achieves a higher coding efficiency than MH, MR,and MMRfor
facsimile coding, but also compresses the digital halftones effectively. :

Note that 1-D RLC utilizes the correlation between pixels within a scan line, whereas 2-D RLC
utilizes the correlation between pixels within a few scan lines. As a result, 2-D RLC can obtain
higher coding efficiency than |-D RLC. On the other hand, 2-D RLC is more susceptible to
transmission errors than |-D RLC. -.

In text compression,the dictionary-based techniques have provento be efficient. All the adaptive
dictionary-based algorithms can beclassified into two groups. One is based on a work by Ziv and
Lempel in 1977, and anotheris based on their pioneering work in 1978. They are called the LZ77
and LZ78 algorithms, respectively. With the LZ77 algorithms, a fixed-size window slides through
the input text stream. The sliding window consists of two parts: the search buffer and the look-
ahead buffer. The search buffer contains the most recently encoded portion of the input text, while
the look-ahead buffer contains the portion of the input text to be encoded immediately. For the
symbols to be encoded, the LZ77 algorithms search for the longest matchin the search buffer. The
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information about the match: the distance between the matchedstring in the search buffer and that
in the look-ahead buffer, the length of the matchedstring, and the codeword of the symbol following
the matchedstring in the look-ahead buffer are encoded. Many improvements have been madein
the LZ77 algorithms.

The performance of the LZ77 algorithmsis limited by the sizes of the search bulfer and the
look-ahead buffer. With a finite size for the search bulfer, the LZ77 algorithms will not work well
in the case where repeated patterns are apart from each other by a distance longer thanthe size of
the search buffer. With a finite size for the sliding window, the LZ77 algorithms will not work well
in the case where matching strings are longer than the window. In order to be efficient, however,
these sizes cannot be very large.

In order to overcome the problem, the LZ78 algorithms work in a different way. They do not
use the sliding windowatall. Instead of using the most recently encoded portion ofthe input text
as a dictionary, the LZ78 algorithms use the index of the longest matchedstring as an entry of the
dictionary. That is, each matched string cascaded with its immediate next symbol is compared with
the existing entries of the dictionary. If this combination (a newstring) does not find a match in
the dictionary constructed alt the moment, the combination will be included as an entry in the
dictionary, Otherwise, the next symbol in the input text will be appended to the combination and
the enlarged new combination will be checked with the dictionary. The process continues until the
new combination cannotfind a match in the dictionary. Among the several variants of the LZ78
algorithms, the LZW algorithm is perhaps the most important one. It only needs to encode the
indexes of the longest matched strings to the dictionary. It can be shown that the decoder can
decode the input text stream from the given index stream. In doing so, the same dictionary as thal
established in the encoder needs to be reconstructedat the decoder, and this can be implemented
since the same rule used in the encoding is knownin the decoder.

The size of the dictionary cannot be infinitely large because, as mentioned above, the coding
efficiency will not be high. The commonpractice of the LZ78 algorithmsis to keep the dictionary
fixed once a certain size has been reached and the performance of the encoding is satisfactory.
Otherwise, the dictionary will be set to empty and will be reconstructed fromscratch,

Consideringthe fact that there are several international standards concerning still image coding
(for both bilevel and multilevel images), a brief summary of them and a performance comparison
have been presented in this chapter. At the beginning of this chapter, a description of the discrete
Markov source and its mth extensions was provided. The Markov source and the autoregressive
model serve as important models for the dependent information sources.

6.7 EXERCISES

6-1. Draw the state diagram of a second-order Markoy source with two symbols in the source
alphabet. That is, S = {5,, 52}. It is assumed that the conditional probabilities are

 As, |s,5,) = p(s, 5,8) = 0.7,

Ps, | s,3,) = As, |s,5;] = 0.3, and

Als, [s,s] = As, | 5,5) = P(s| $53) i P(s2|535)) =0.5.

6-2. Whatare the definitions ofraster algorithm and area algorithm in binary image coding?
To which category does |-D RLC belong? To which category does 2-D RLC belong?

6-3. What effect does a transmission error have on 1-D RLC and 2-D RLC,respectively?
Whatis the function of the codeword EOL?
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6-4. Make a convincing argument that the “modified” Huffman (MH)algorithm reducesthe
requirement of large storage space.

6-5, Which three different modes does 2-D RLC have? How do you view the vertical mode?
6-6. Using your own words, describe the encoding and decoding processes of the LZ77

algorithms, Go through Example 6.2.
6-7. Using your own words, describe the encoding and decoding processes of the LZW

algorithm. Go through Example 6.3.
6-8. Read the reference paper (Arps and Truong, 1994), which is an excellent survey on the

international standards for lossless still image compression. Pay particular attention to
all the figures and to Table I.

REFERENCES

Abramson, N. /nformation Theory and Ceding, New York: McGraw-Hill, 1963.
Arps, R. B. Binary Image Compression, in Image Transmission Techniques, W. K. Pratt (Ed.), New York:

Academic Press, 1979.

Arps, R, B. and T. K, Truong, Comparison ofinternational standards for lossless still image compression,
Proc. LEEE, 82(6), 889-899, 1994.

Bell, T. C., J. G. Cleary, and |. H, Witten, Text Compression, Englewood Cliffs, NJ: Prentice-Hall, 1990,
Gonzalez, R. C. and R. E. Woods, Digital Image Processing, Reading, MA: Addison-Wesley, 1992.
Hunter, R. and A, H, Robinson, International digital facsimile coding standards, Proc. JEEE, 68(7), 854-867,

1980.

Laemmel, A. E. Coding Processes for Bandwidth Reduction in Picture Transmission, Rep, R-246-51, PIB-
187, Microwave Res. Inst., Polytechnic Institute of Brooklyn, New York.

Nelson, M. and J.-L, Gailly, The Data Compression Book, 2nd ed., New York: M&T Books, 1995.
Sayood, K. Introduction 10 Data Compression, San Francisco, CA: Morgan Kaufmann Publishers, 1996.
Shannon,C. E. and W. Weaver, The Mathematical Theory ofCommunication, Urbana, IL: University ofIllinois

Press, 1949.

Welch, T. A technique for high-performance data compression, IEEE Trans. Comput., 17(6), 8-19, 1984.
Ziv, J. and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inf. Theory, 23(3),

337-343, 1977, 7
Ziv,J. and A. Lempel, Compressionof individual sequences via variable-rate coding, /EEE Trans. Inf. Theory,

24(5), 530-536, 1978.

IPR2018-01413

Sony EX1008 Page 179



IPR2018-01413 
Sony EX1008 Page 180

 
 

 

 

ss.
j 7 atoa a ' i

iieL rete a wt Lhe! ic to A ; i

eeeit, thaAe weoe 4
- 3 ;

  
pa ar a Le 4,Te eeTs

IPR2018-01413

Sony EX1008 Page 180



IPR2018-01413 
Sony EX1008 Page 181

Section I]
 

Still Image Compression

IPR2018-01413

Sony EX1008 Page 181



IPR2018-01413 
Sony EX1008 Page 182

 
IPR2018-01413

Sony EX1008 Page 182



IPR2018-01413 
Sony EX1008 Page 183

SSSa

Still Image Coding
Standard: JPEG

In this chapter, the JPEG standard is introduced. This standard allows for lossy and lossless encoding
of still images and fourdistinct modes of operation are supported: sequential DCT-based mode,
progressive DCT-based mode, lossless mode and hierarchical mode.

7.1. INTRODUCTION

Sull image coding is an important application of data compression. When an analog image or
picture is digitized, cach pixel is represented by a fixed numberof bits, which correspond to a
certain number ofgray levels, In this uncompressed format, the digitized image requires a large
numberofbits to be stored or transmitted. As a result, compression become necessary due to the
limited communication bandwidth or storage size. Since the mid-1980s, the ITU and ISO have
been working togetherto develop a joint international standard for the compressionofstill images,
Officially, JPEG |jpeg] is the ISO/IEC international standard 10918-1; digital compression and
coding of continuous-tone still images, or the ITU-T Recommendation T.81. JPEG became an
international standard in 1992. The JPEG standard allows for both lossy and lossless encoding of
sull images. The algorithm for lossy coding is a DCT-based coding scheme. Thisis the baseline
of JPEG andis sufficient for many applications. However, to meet the needs of applications that
cannottolerate loss, e.g., compression of medical images, a lossless coding schemeis also provided
and is based on a predictive coding scheme. From the algorithmic point of view, JPEG includes
four distinct modes of operation, namely, sequential DCT-based mode, progressive DCT-based
mode, lossless mode, and hierarchical mode.In the following sections, an overview ofthese modes
is provided. Further technical details can be found in the books by Pennelbaker and Mitchell (1992)
and Symes (1998).

In the sequential DCT-based mode, an image is first partitioned into blocks of 8 x 8 pixels,
The blocks are processed from left to right and top to bottom, The 8 x 8 two-dimensional Forward
DCTis applied to each block and the 8 x 8 DCT coefficients are quantized. Finally, the quanuzed
DCTcoefficients are entropy encoded and outputas part of the compressed image data.

In the progressive DCT-based mode, the process of block partitioning and Forward DCT
transform is the same as in the sequential DCT-based mode. However, in theprogressive mode,
the quantized DCT coefficients are first stored in a buffer before the encoding is performed. The
DCTcoefficients in the buffer are then encoded by a multiple scanning process. In each scan, the
quantized DCT coefficients are partially encoded by either spectral selection or successive approx-
imation. In the methodof spectral selection, the quantized DCTcoefficients are divided into multiple
spectral bands accordingto a zigzag order, In each scan, a specified band is encoded.In the method
of successive approximation,a specified numberof mostsignificantbits of the quantized coefficients
are first encoded and the least significant bits are then encoded in subsequent scans.

The difference between sequential coding and progressive coding is shown in Figure 7.1, In
the sequential coding an image is encodedpart by part according to the scanning order, while in
the progressive coding the image is encoded by a multiscanning process and in each scan the full
image is encoded to a certain quality level.

As mentionedearlier, lossless coding is achieved by a predictive coding scheme.In this scheme,
three neighboring pixels are used to predict the current pixel to be coded. The prediction difference
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(b) Progressive coding

FIGURE 7.1 (a) Sequential coding, (b) progressive coding.

is entropy coded using either Huffmanor arithmetic coding. Since the prediction is not quanuzed,
the codingis lossless.

Finally, in the hierarchical mode, an imageis first spatially down-sampled to a multilayered
pyramid, resulting in a sequence of frames as shown in Figure 7.2. This sequence of frames is
encoded by a predictive coding scheme. Except for the first frame, the predictive coding process
is applied to the differential frames. i.e., the differences between the frame to be coded and the

predictive reference frame. It is important to note that the reference frame is equivalent to the
previous frame that would be reconstructed in the decoder. The coding method for the difference
frame may use the DCT-based coding method, the lossless coding method, or the DCT-based
processes with a final lossless process. Down-sampling and up-samplingfilters are used in the
hierarchical mode. The hierarchical coding modeprovides a progressive presentation similar to the
progressive DCT-based mode, but is also useful in the applications that have multiresolution
requirements. The hierarchical coding mode also provides the capability of progressive coding to
a final lossless stage.

FIGURE 7.2 Hierarchical multiresolution encoding.
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FIGURE7.3 Block diagram of a sequential DCT-based encoding process.
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FIGURE 7.4 Partitioning to 8 x 8 blocks.

7.2 SEQUENTIAL DCT-BASED ENCODING ALGORITHM

The sequential DCT-based coding algorithmis the baseline algorithmofthe JPEG coding standard.
A block diagram of the encoding process is shown in Figure 7.3. As shown in Figure 7.4, the
digitized image dataarefirst partitioned into blocks of 8 x 8 pixels. The two-dimensional forward
DCTis applied to each 8 x 8 block. The two-dimensional forward and inverse DCT of 8 x 8 block
are defined as follows:

iT 7 ‘i .

l (it lun (2f+1)vnFDET: aS EGG, ) >4ccosuh 16
i= j=0

_ (i+Wutumos Zit Dye‘ eit — 71IDCT:5,=ELDGCSii See 7 (7.1)v0 v=

l
—= or u,v=0= 4D) fe

I otherwise

wheres,, is the value of the pixel at position (i,j) in the block, and S,,, is the transformed (u,v) DCT
coefficient.
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TABLE7.1
Two Examples of Quantization Tables Used by JPEG

  
Luminance quantizationtable Chrominance quantization table

After the forward DCT, quantization of the transformed DCTcoefficients is performed. Each
of the 64 DCT coefficients is quantized by a uniform quantizer:

a = roundSe (7.2)uy

where the S,,,, is the quantized value of the DCT coefficient, S,,, and Q,, is the quanuzation step
obtained from the quantization table. There are four quantization tables that may be used by the
encoder, but there is no default quantization table specified by the standard. Two particular quan-
tization tables are shown in Table 7.1.

At the decoder, the dequantization is performed as follows:

Roy =Soy * Q,, C73)guy que

where R,,,, is the value of the dequantized DCT coefficient. After quantization, the DC coefficient,
Soo» 1S treated separately from the other 63 AC coefficients. The DC coefficients are encoded by
a predictive coding scheme. The encoded valueis the difference (DIFF) between the quantized DC
coefficientof the current block (S,o9) and thatof the previous block of the same component(PRED):

DIFF = So — PRED (7.4)

The value of D/FF is entropy coded with Huffmantables. Morespecifically, the two's com-
plementofthe possible DIFF magnitudes are grouped into 12 categories, “SSSS”. The Huffman
codes for these 12 difference categories and additional bits are shownin the Table 7.2.

For each nonzerocategory, additionalbits are added to the codeword to uniquely identify which
difference within the category actually occurred, The numberof additionalbits is defined by “SSSS”
and the additional bits are appendedto the leastsignificant bit of the Huffman code (mostsignificant
bit first) according to the following rule.If the difference valueis positive, the “SSSS” low-order
bits of D/FF are appended;if the difference value is negative, then the “SSSS” low-orderbits of
DIFF-I are appended. As an example, the Huffman tables used for coding the luminance and
chrominance DCcoefficients are shownin Tables 7.3 and 7.4, respectively. These two tables have
been developed from the average statistics of a large set of images with 8-bit precision.
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TABLE 7.2

Huffman Coding of DC Coefficients

SSSS DIFF Values AdditionalBits

0 0 -

Ll <=} 0,1

2 —3,-2,2.3 00,01,10,11

Bo PacAiGa? 000,...,011,100,,,1 11
4 A15,...,-8,8,..,15 0000,.,0111,1000,...,1111

SBM...16, 16,....31 00000....,01111,10000,...,11111

6  -63,...-32,32,...63 52.

7 =127,...,64,64,....127
8 —255,...,-128,128,,,.,255

9 —S11,...,-256,256,,...5 11

0 -1023,....-512,512,...,1023
| —2047,...-1024,1024,...,2047

TABLE 7.3

Huffman Table for Luminance

DC Coefficient Differences

Category Code Length Codeword

0 2 00
I 3 010

z 3 oll

3 3 100
4 3 101

5 3 110

6 4 i110

7 5 11110

8 6 L110

9 7 LHT1110

10 8 HLLTLIO

i 9 LHLLAL0 

In contrast to the coding of DC coefficients, the quantized AC coefficients are arranged to a
zigzag order before being entropy coded. This scan order is shown in Figure 7.5.

Accordingto the zigzag scanning order, the quantized coefficients can be represented as;

ZZ(0) = Syoor ZZ(1) = Syoy, ZZ(2) = Sqios -+++1 ZZ(63) = Syn: (7.5)

Since manyof the quantized AC coefficients becomezero, they can be very efficiently encoded
by exploiting the run of zeros. The run-length of zeros are identified by the nonzero coefficients.
An 8-bit code ‘RRRRSSSS’ is used to represent the nonzero coefficient. The four least significant
bits, ‘SSSS’, define a category for the value of the next nonzero coefficient in the zigzag sequence,
which endsthe zero run. The four mostsignificant bits, -RRRR’, define the run-length of zeros in
the zigzag sequenceorthe position of the nonzero coefficientin the zigzag sequence. The composite
value, RRRRSSSS, is shown in Figure 7.6. The value ‘RRRRSSSS’ = ‘11110000’ is defined as
ZRL, “RRRR” = “1111”represents a run-length of 16 zeros and “SSSS” = “0000” represents a
zero amplitude. Therefore, ZRL is used to represent a run-length of 16 zero coefficients followed
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TABLE 7.4

Huffman table for chrominance

DC coefficient differences

Category CodeLength Codeword

0 2 00

l 2 ol

2 2 10

3 3 110

4 4 1110

5 5 11110

6 6 111110
7 T ILI t10

8 8 HIELO

9 9 HTPIT110

10 10 LITTIII1IO

1] I! LHLLIIL1I10
 

Composite values

 
FIGURE 7.6 Two-dimensionalvalue array for Huffman coding.

by a zero-amplitude coefficient, it is not an abbreviation. In the case of a run-length of zero
coefficients that exceeds 15, multiple symbols will be used. A special value ‘RRRRSSSS’ =
*00000000’is used to code the end-of-block (EOB). An EOB occurs when the remaining coefficients
in the block are zeros. The entries marked “N/A”are undefined.

IPR2018-01413

Sony EX1008 Page 188



IPR2018-01413 
Sony EX1008 Page 189

Still Image Coding Standard: JPEG 163

 

TABLE7.5

Huffman Coding for AC Coefficients

Category (SSSS) AC Coefficient Range

| —I,1

2 —3\-2,2,3

3 TyeeFidos
4 —15,....-8,8,...15

4 -31,....-16,16,....31

6 -63,...732,32,.,.,63
7 -127,....-64,,64,,..,127

8 ~255,-...- 128,128, ..255

9 —SI1,...-256,256,,..,511

0 —1023,..-512,512,...,1023
| —2047,....-1024,1024,,.. 2047

’ The composite value, RRRRSSSS, is then Huffman coded. SSSS is actually the number to
indicate “category” in the Huffman code table. The coefficient values for each category are shown
in Table 7.5.

Each Huffman codeis followed by additional bits that specify the sign and exact amplitude of
the coefficients. As with the DC code tables, the AC code tables have also been developed from
the average statistics of a large set of images with 8-bit precision. Each composite value is
represented by a Huffman code in the AC code table. The formatfor the additional bits is the same
as in the coding of DC coefficients. The value of SSSS gives the numberofadditional bits required
to specify the sign and precise amplitude of the coefficient. The additionalbits are either the low-
order SSSS bits of ZZ(k) when ZZ(k) is positive, or the low-order SSSS bits of ZZ(k)-1 when
ZZ(k) is negative. Here, ZZ(k) is the Ath coefficient in the zigzag scanning order of coefficients
being coded. The Huffmantables for AC coefficients can be found in Annex K of the JPEG standard
Qpeg) andare not listed here due to space limitations.

As described above, Huffman coding is used as the means of entropy coding. However, an
adaptive arithmetic coding procedure can also be used. As with the Huffman coding technique,the
binary arithmetic coding techniqueis also lossless. It is possible to transcode between two systems
without either of the FDCT or IDCT processes. Sincethis transcodingis a lossless process,it does
not affect the picture quality of the reconstructed image. The arithmetic encoder encodes a series
of binary symbols, zeros or ones, where each symbolrepresents the possible result of a binary
decision. The binary decisions include the choice betweenpositive and negative signs, a magnitude
being zero or nonzero, or a particular bit in a sequence of binary digits being zero or one. There
are four steps in the arithmetic coding:initializing the statistical area, initializing the encoder,
terminating the code string, and adding restart markers.

7.3 PROGRESSIVE DCT-BASED ENCODING ALGORITHM

In progressive DCT-based coding, the input imageisfirst partitioned to blocks of 8 x 8 pixels, The
two-dimensional 8 x 8 DCTis then applied to each block. The transformed DCT-coefficient data
are then encoded with multiple scans. At each scan, a portion ofthe transformed DCTcoefficient
data is encoded. This partially encoded data can be reconstructed to obtain a full image size with
lower picture quality. The coded data of each additional scan will enhance the reconstructed image
quality until the full quality has been achieved at the completion of all scans. Two methods have
been used in the JPEG standard to perform the DCT-based progressive coding. These include
Spectral selection and successive approximation.
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In the method of spectralselection, the transformed DCT coefficients are first reordered as a
zigzag sequence and then dividedinto several bands. A frequency bandis defined in the scan header
by specifying the starting and ending indexes in the zigzag sequence. The bandcontaining the DC
coefficient is encoded at the first scan. In the following scan, it is nol necessary for the coding
procedure to follow the zigzag ordering.

In the method ofthe successive approximation, the DCT coefficients are first reduced in
precision by the point transform. The point transform of the DCT coefficients ts an arithmetic shift
right by a specified numberofbits, or division by a powerof2 (near zero,there 1s slight difference
in truncation of precision between an arithmetic shift and division by 2, see annex K10 of[jpeg]).
This specified numberis the successive approximation of bit position. To encode using successive
approximations,the significant bits of the DCT coefficient are encoded in the first scan, and each
successive scan that follows progressively improves the precisionofthe coefficient by one bit. This
continues until full precision is reached.

The principles of spectral selection and successive approximation are shown in Figure 7.7. For
both methods, the quantized coefficients are coded with either Huffman or arithmetic codes at each
scan. In spectral selection andthe first scan of successive approximation for an image, the AC
coefficient coding modelis similarto that used in the sequential DCT-based coding mode. However,
the Huffman code tables are extended to include coding of runs of end-of-bands (EOBs), For
distinguishing the end-of-band and end-of-block, a number, n, which is used to indicate the range
of run length, is added to the end-of-band (EOBn). The EOBn code sequenceis defined as follows.
Each EOBnis followed by an extension field, which has the minimum numberof bits required to
specify the run length. The end-of-bandrunstructure allows efficient coding of blocks which have
only zero coefficients. For example, an EOB run oflength S means that the current block and the
next 4 blocks have an end-of-band with no intervening nonzero coefficients. The Huffman coding
structure of the subsequent scans of successive approximation for a given image is similar to the
coding structure ofthe first scan of that image. Each nonzero quantized coefficient is described by
a composite 8-bit run length-magnitude value of the form: RRRRSSSS. The four most significant
bits, RRRR, indicate the number of zero coefficients between the current coefficient and the

previously coded coefficient. The fourleast significant bits, SSSS, give the magnitude category of
the nonzero coefficient. The run length-magnitude composite value is Huffman coded. Each Huff-
man codeis followed by additional bits: one bit is used to code the sign of the nonzero coefficient
and anotherbit is used to code the correction, where “0” means no correction and “1” means add

one to the decoded magnitudeofthe coefficient. Although the above technique has been described
using Huffman coding,it should be notedthat arithmetic encoding can also be used in its place,

7.4 LOSSLESS CODING MODE

In the lossless coding mode, the coding method is spatially based coding instead of DCT-based
coding. However, the coding method is extended from the method for coding the DC coefficients
in the sequential DCT-based coding mode. Eachpixel is coded with a predictive coding method,
where the predicted value is obtained from one of three one-dimensional or one of four two-
dimensional predictors, which are shownin Figure 7.8.

In Figure 7.8, the pixel to be codedis denoted by x, and the three causal neighbors are denoted
by a, b, and c. The predictive value of x, Px, is obtained from three neighbors, a, b, and c in the
one of seven waysas listed in Table 7.6.

In Table 7.6, the selection value 0 is only used for differential coding in the hierarchical coding
mode, Selections 1, 2, and 3 are one-dimensional predictions and 4, 5, 6, and 7 are two-dimensional
predictions. Each prediction is performed with full integerprecision, and without clampingofeither
the underflow or overflow beyond the input bounds. In order to achieve lossless coding, the
prediction differences are coded with either Huffman coding or arithmetic coding. The prediction
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FIGURE 7.7 Progressive coding with spectral selection and successive approximation.

difference values can be from 0 to 2!° for 8-bit pixels. The Huffman tables developed for coding
DC coefficients in the sequential DCT-based coding modeare used with one additional entry to
code the prediction differences. For arithmetic coding, the statistical model defined for the DC
coefficients in the sequential DCT-based coding modeis generalized to a two-dimensional form in
which differences are conditioned on the pixel to the left and the line above.
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FIGURE 7.8 Spatial relationship between the pixel to be coded and three decoded neighbors.

TABLE7.6

Predictors for Lossless Coding

Selection-Value Prediction

No prediction (hierarchical mode)
Px=a

Px=b

Px =e
Px = atb-c

Px =a + ((b-c)/2)*

Px = b + ((a-c)/2P
Px = (a+b)/2

Yawfwn-—-o
2 Shift right arithmetic operation.

7.5 HIERARCHICAL CODING MODE

The hierarchical coding modeprovides a progressive coding similar to the progressive DCT-based
coding mode,butit offers more functionality. This functionality addresses applications with mull-
resolution requirements. In the hierarchical coding mode,an input image frameis first decomposed
to a sequence of frames, suchas the pyramid shownin Figure 7.2. Each frame is obtained through
a down-sampling process,1.c., low-pass filtering followed by subsampling. The first frame (the
lowest resolution) is encoded as a nondifferential frame. The following frames are encoded as
differential frames, where the differential is with respect to the previously coded frame. Note that
an up-sampled version that would be reconstructed in the decoder is used. The first frame can be
encoded by the methodsof sequential DCT-based coding,spectral selection, method of progressive
coding,or lossless coding with either Huffman code or arithmetic code. However, within an image,
the differential frames are either coded by the DCT-based coding method, the lossless coding
method, or the DCT-based process witha final lossless coding. All frames within the image must
use the same entropy coding,either Huffman or arithmetic, with the exception that nondifferential
frames coded with the baseline coding may occur in the same image with frames coded with
arithmetic coding methods. The differential frames are coded with the same method used for the
nondifferential frames exceptthe final frame. Thefinal differential frame for each image may use
a differential lossless coding method.

In the hierarchical coding mode, resolution changes in frames may occur, These resolution
changes occur if down-samplingfilters are used to reduce the spatial resolution of some orall
frames of an image. Whentheresolution ofa reference frame does not matchthe resolution of the
frame to be coded, a up-samplingfilter is used to increase the resolution of the reference frame.
The block diagram of coding ofa differential frame is shown in Figure 7.9.
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Input frame 4

FIGURE 7.9 Hierarchical coding of a differential frame.
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The up-sampling. filter increases the spatial resolution by a factor of two in both horizontal and
vertical directions by using bilinear interpolation of two neighboring pixels. The up-sampling with
bilinear interpolation is consistent with the down-sampling filter that is used for the generation of
down-sampled frames,It should be noted that the hierarchical coding mode allows one to improve
the quality ofthe reconstructed frames at a given spatial resolution.

7.6 SUMMARY

In this chapter, the still image coding standard, JPEG, has been introduced, The JPEG coding
standard includes four coding modes: sequential DCT-based coding mode, progressive DCT-based
coding made, lossless coding mode, and hierarchical coding mode. The DCT-based coding method
is probably the one that most of us are familiar with; however, the lossless coding modes in JPEG
which use a spatial domain predictive coding process have many interesting applications as well.
For each coding mode, entropy coding can be implemented witheither Huffman codingor arithmetic
coding. JPEG has been widely adopted for many applications.

7.7 EXERCISES

7-1. What is the difference between sequential coding and progressive coding in JPEG?
Conduct a project to encode an image with sequence coding and progressive coding,
respectively.

7-2. Use the JPEG lossless mode to code several images and explain why different bit rates
are obtained.

7-3, Generate a Huffmancode table using a set of images with 8-bit precision (aproximately
2-3) using the method presented in Annex C of the JPEG specification. This set of
imagesis called the training set. Use this table to code an image within the training set
and an image whichis not in the training set, and explain the results.

7-4, Design a three-layer progressive JPEG coder using (a) spectral selection, and (b) pro-
gressive approximation (0.3 bits per pixelat the first layer, 0.2 bits per pixel at the second
layer, and 0.1 bits per pixel at the third layer).
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8 Wavelet Transform
for Image Coding

During the last decade, a numberof signal processing applications have emerged using wavelet
theory. Among those applications, the most widespread developments have occurred in the area of
data compression. Wavelet techniques have demonstrated the ability to provide not only high coding
efficiency, but also spatial and quality scalability features. In this chapter, we focus on the utility
of the wavelet transform for image data compressionapplications.

8.1 REVIEW OF THE WAVELET TRANSFORM

8.1.1. Derinition AND COMPARISON WITH SHORT-TIME Fourier TRANSFORM

The wavelet transfor, as a specialized research field, started over a decade ago (Grossman and
Morlet, 1984). To better understand the theory of wavelets, we first give a very short review of the
Short-Time Fourier Transform (STFT)since there are some similarities between the STFT and the
wavelet transform. As we know, the STFT uses sinusoidal waves as its orthogonal basis and is
defined as:

ad

F(w,t) =|f(t)w(t—t)ear (8.1)—s

where w/(z) is a time-domain windowing function, the simplest of which is a rectangular window
that has a unit value overa time interval and has zero elsewhere. The valueTis the starting position

of the window. Thus, the STFT mapsa function f(t) into a two-dimensionalplane (@,t). The STFT
is also referred to as Gabor transform (Cohen, 1989). Similar to the STFT, the wavelet transform
also maps a timeor spatial function into a two-dimensional function in a and t (@ and t for STFT).
The wavelet transform is defined as follows. Let f() be any square integrable function,ie., it
satisfies:

{|f(0)|'dt <2 (8.2)
The continuous-time wavelet transform off(t) with respect to a wavelet y(f) is defined as:

W(a,t) = (ieAqaY(Jar (8.3)
where a and t are real variables and * denotes complex conjugation, The waveletis defined as:

vact)=o} (8.4)a
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The above equation represents a sel of functions that are generated from a single function, (1),
by dilations andtranslations. The variable Tt represents the time shift and the variable @ corresponds
to the amountof time-scaling or dilation. If a >1, there is an expansion of y(n), while iFO<a<1,
there is a contraction of w(r). For negative values of a, the wavelet experiences a time reversal in
combination with a dilation. The function, (1), is referred to as the mother wavelet and it must
satisfy two conditions:

1. The function integrates to zero:

[vina=o (8.5)
2. The function is square integrable, or has finite energy:

i (|dt <2 (8. 6)
The continuous-time wavelet transform can now be rewritten as:

W(a,t) =|f(r)w,, (t)dt (8.7)

In the following, we give two well-known examples of w(t) and their Fourier transforms. The
first example is the Morlet (modulated Gaussian) wavelet (Daubechies, 1990),

(o-a5)°
Y(@)=V2ne 2 (8.8)

and the second example is the Haar wavelet:

1 O<srs1/2

w=;-l 1I/2srsl

0=otherwise (8.9)

(oo) =je' sm*(@/4)
«o/4

From the above definition and examples, we can find that the wavelets have zero DC value.
This is clear from Equation 8.5. In order to have good time localization, the wavelets are usually
bandpass signals and they decay rapidly towards zero with time. We can also find several other
importantproperties of the wavelet transform andseveral differences between STFT and the wavelet
transform.

The STFT uses a sinusoidal wave asits basis function. These basis functions keep the same
frequencyoverthe entire timeinterval. In contrast, the wavelet transform usesa particular wavelet
as its basis function. Hence, wavelets vary in both position and frequency overthe time interval.
Examples of two basis functions for the sinusoidal wave and wavelet are shown in Figure 8.1(a)
and (b), respectively,

The STFT uses a single analysis window.In contrast, the wavelet transform uses a short time
window at high frequencies and a long time window at low frequencies. This is referred to as
constant Q-factor filtering or relative constant bandwidth frequency analysis. A comparison ofthe
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FIGURE 8.1 (a) Two sinusoidal waves, and (b) two wavelets.
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FIGURE8.2 (a) Constant bandwidth analysis (for Fourier transform), and (b) relative constant bandwidth
analysis (for wavelet transform). :

Frequency Frequency

STFT Wavelet Transform

FIGURE 8.3 Comparison of the STFT and the wavelet transform in the time-frequency plane,

constant bandwidth analysis of the STFT and the relative constant bandwidth wavelet transform is
shownin Figure 8.2(a) and (b), respectively.

This feature can be further explained with the concept of a time-frequency plane, which is
shown in Figure 8.3. ;

As shownin Figure 8.3, the window size of the STFTin the time domainis always chosen to
be constant. The corresponding frequency bandwidth is also constant. In the wavelet transform,
the window size in the time domain varies with the frequency. A longer time windowis used for
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a lower frequency and a shorter time windowis used for a higher frequency. This property is very
important for image data compression. For image data, the concept of a time-frequency plane
becomesa spatial-frequency plane. Thespatial resolution ofa digital image is measured withpixels,
as described in Chapter 15. To overcomethe limitations of DCT-based coding, the wavelet transform
allows the spatial resolution and frequency bandwidth to vary in the spatial-frequency plane. With
this variation, better bit allocation for active and smooth areas can be achieved.

The continuous-time wavelet transform can be considered as a correlation. For fixed a, it ts

clear from Equation 8.3 that W(a,t) is the cross-correlation of functions f(r) with related wavelet
conjugate dilated to scale factor a at time lag t. This is an important property of the wavelet
transform for multiresolution analysis of image data. Since the convolution can be seen as afiltering
operation, the integral wavelet transform can be seen as a bank oflinear fillers acting upon /(¢).
This implies that the image data can be decomposed bya bankoffilters defined by the wavelet
transform.

The continuous-time wavelet transform can be seen as an operator. First, it has the property of
linearity. If we rewrite W(a,t) as W,,[f(t)], then we have

W,,[cxf(t) + Ba(t)] = oW,,[£(t)] +B W,,[g(t)] (8.10)

where and B are constant scalars. Second, it has the property of translation:

W,.[ f(1-A)] = W(a,t-) (8.11)

whereA is a timelag.
Finally, it has the property of scaling

W,,,|f(t/0)| = W(a/e.,2/cr) (8.12)

8.1.2 Discrete WAveELET TRANSFORM

In the continuous-time wavelet transform, the function f(t) is transformed to a function W(a,T)
using the wavelet w(t) as a basis function. Recall that the two variables @ and 1 are thedilation
and translation, respectively. Now let us to find a means of obtaining the inverse transform, i.¢.,
given W(a,b), find f(t). If we know how to get the inverse transform, we can then represent any
arbitrary function f() as a summation of wavelets, such as in the Fourier transform and DCTthat
provide a set of coefficients for reconstructing the original function using sine and cosine as the
basis functions. In fact, this is possible if the mother wavelet satisfies the admissibility condition:

_ {Yo}C= li, aq (8.13)
whereCis a finite constant and ‘¥(o) is the Fourier transform of the mother wavelet function y(/).
Then, the inverse wavelet transform is

fo=s|_ (i gr Mat)a(thdaat (8.14)
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The above results can be extended for two-dimensional signals. Iff(x,y) is a two-dimensional
function, ils continuous-time wavelet transform is defined as:

+o

w(a,t,,,)= eh f(xy)Wig, (ty)dedy (8.15)—o

where T, and 7, specify the transform in two dimensions. The inverse two-dimensional continuous-
lime wavelet transform is then defined as:

f(x.y)= = | a W(a,t,.T,)Wy, (4, y)dadtdt, (8.16)C sis Misesvltes lal 4 J sty y

where the C is defined as in Equation 8.13 and (x,y) is a two-dimensional wavelet

  = fo (8.17)ied
Var.)= Paar

For image coding, the wavelet is used to decompose the image data into wavelets. As indicated
in the third property of the wavelet transform, the wavelet transform can be viewed as the cross-
correlation of the functionf(r) and the wavelets ,,(t). Therefore, the wavelet transform is equivalent
to finding the output of a bank of bandpassfilters specified by the wavelets of ,,(t) as shown in
Figure 8.4. This process decomposes the input signal into several subbands, Since each subband
can be further partitioned, the filter bank implementation of the wavelet transform can be used for
multiresolution analysis (MRA). Intuitively, when the analysis is viewed as a filter bank, the time
resolution must increase with the central frequency ofthe analysis filters. This can be exactly
obtained by the scaling property of the wavelet transform, where the center frequencies of the
bandpassfilters increase as the bandwidth becomes wider, Again, the bandwidth becomes wider
by reducing the dilation parameter a. It should be noted that such a multiresolution analysis is
consistent with the constant Q-factor property of the wavelet transform. Furthermore, the resolution
limitation of the STFT does not exist in the wavelet transform since the time-frequency resolutions
in the wavelet transform vary, as shown in Figure 8.2(b).

¥(1,7)

Yay, Tt)

wy 
FIGURE 8.4 The wavelet transform implemented with a bank offilters.
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For digital image compression,it is preferred to represent f(r) as a discrete superposition sum
rather than anintegral. With this moveto the discrete space,the dilation parameter a in Equation 8.10
takes the values a = 2* and the translation parameter t takes the values t = 24/, where both & and
/ are integers. From Equation 8.4, the discrete version of ,,,(t) becomes:

&

Wy(t)=22y(2*r-1) (8.18)

Its corresponding wavelet transform can be rewritten as:

W(k,l) = [FOwnloat (8.19)
and the inverse transform becomes:

f(t)= yFalke2y(2"s -1) (8.20)
k=]=e

The values of the wavelet transform at those a and t are represented by d(k,/):

d(k,l) = W(k,1)/C (8.21)

The d(k,) coefficients are referred to as the discrete wavelet transform ofthe function f(t) (Dau-
bechies, 1992; Vetterli and Kovacevic, 1995). It is noted that the discretization so far is only applied
to the parameters a and 7; d(k,/) is still a continuous-time function. If the discretization is further
applied to the time domain byletting t= mT, where mis an integer andTis the sampling interval
(without loss of generality, we assume T = 1), then the discrete-time wavelet transform is defined as:

W,(k,L) = SS" flm)yi,(m) (8.22)m=—se

Of course, the sampling interval has to be chosen according to the Nyquist sampling theorem
so that no informationis lost in the process of sampling. The inverse discrete-time wavelet transform
is then

f(m)= oF Sale)?y(2*m—1} (8.23)
N=[=<

8.2 DIGITAL WAVELET TRANSFORM FOR IMAGE COMPRESSION

8.2.1 Basic CONcePtT OF IMAGE WAVELET TRANSFORM CODING

From the previous section, we have learnedthat the wavelet transform has several features that are
different from traditional transforms.It is noted from Figure 8.2 that each transform coefficient in
the STFT represents a constant interval of time regardless of which band the coefficient belongs
to, whereas for the wavelettransform, the coefficients at the course level represent a larger time
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FIGURE 8.5 Block diagramofthe image coding with the wavelet transform coding.

interval but a narrower band of frequencies. This feature of the wavelet transform is very important
for image coding. In traditional imagetransform coding, which makesuseof the Fourier transform
or discrete cosine transform (DCT), one difficult problem is to choose the block size or window
Width so that statistics computed within that block provide good models of the image signal
behavior. The choice of the block size has to be compromised so thatit can handle both active and
smooth areas, In the active areas, the image data are more localized in the spatial domain, while
in the smooth areas the image data are more localized in the frequency domain. Withtraditional
transform coding, it is very hard to reach a good compromise. The main contribution of wavelet
transform theory is that it provides an elegant framework in which bothstatistical behaviors of
image data can be analyzed with equal importance. This is because that wavelets can provide a
signal representation in which someofthe coefficients represent long data lags corresponding to
a narrow band or low frequency range, and some of the coefficients represent short data lags
corresponding to a wide band orhigh frequency range. Therefore, it is possible to obtain a good
trade-off between spatial and frequency domain with the wavelet representation of image data.

To use the wavelet transform for image coding applications, an encoding process is needed
which includes three major steps: image data decomposition, quantization of the transformed
coefficients, and coding of the quantized transformed coefficients. A simplified block diagram of
this process is shown in Figure 8.5. The image decomposition is usually a lossless process which
converts the image data from the spatial domain to frequency domain, where the transformed
coefficients are decorrelated. The information loss happens in the quantization step and the com-
pression is achieved in the coding step. To begin the decomposition, the image data are first
Partitioned into four subbands labeled as LL,, HL,, LH,, and HH,, as shownin Figure 8.6(a). Each
coefficient represents a spatial area corresponding to one-quarter of the original image size. The
low frequencies represent a bandwidth corresponding to 0 <|@|< 1/2, while the high frequencies
represent the band m/2 <|qw|< 1m. To obtain the next level of decomposition, the LL, subband is
further decomposed into the next level of four subbands, as shown in Figure 8.6(b). The low
frequencies of the second level decomposition correspond to 0 < |@|< 2/4, while the high
frequencies at the second level correspond to 1/4 <| @ |< 1/2. This decomposition can be continued

EL; AL}

LH] HH]  
(a)

FIGURE 8.6 Two-dimensional wavelet transform. (a) First-level decomposition, and (b) second-level
decomposition. (L denotes a low band, H denotes a high band, and the subscript denotes the numberofthe
level. For example, LL, denotes the low-low bandatlevel 1.)
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to as manylevels as needed. Thefillers used to compute the discrete wavelet transformare generally
the symmetric quadrature mirror filters (QMF), as described by Woods (1991). A QMF-pyramid
subband decompositionisillustrated in Figure 8.6(b).

During quantization, each subbandis quantized differently depending on its importance, which
is usually based on its energy or variance (Jayant and Noll, 1984). To reach the predetermined bit
rate or compression ratio, coarse quantizers or large quantization steps would be used to quantize
the low-energy subbands while the finer quantizers or small quantization steps would be used to
quantize the large-energy subbands. This results in fewer bits allocated to those low-energy sub-
bands and morebits for large-energy subbands.

8.2.2 Emseppep IMAaGe WAVELET TRANSFORM CODING ALGORITHMS

As with other transform coding schemes, most wavelet coefficients in the high-frequency bands
have very low energy. After quantization, many of these high-frequency wavelet coefficients are
quantized to zero. Basedon thestatistical property of the quantized wavelet coefficients, Huffman
coding tables can be designed. Generally, most of the energy in an image is contained in the low-
frequency bands. The data structure of the wavelet-transformed coefficients is suilable to exploit
this statistical property.

Consider a multilevel decomposition of an image with the discrete wavelet transform, where
the lowest levels of decomposition would correspond to the highest-frequency subbands and the
finest spatial resolution, and the highest level of decomposition would correspond to the lowest-
frequency subband and the coarsest spatial resolution, Arranging the subbands from lowest to
highest frequency, we expect a decrease in energy. Also, we expectthat if the wavelet-transformed
coefficients at a particular level have lower energy, then coefficients at the lower levels or high-
frequency subbands, which correspond to the samespatial location, would have smaller energy.

Another feature of the wavelet coefficient data structure is spatial self-similarity across sub-
bands. Several algorithms that have been developed to exploit this and the above-mentioned
properties for image coding. Amongthem, oneofthefirst was proposed by Shapiro (1993) and
used an embedded zerotree technique referred to as EZW. Another algorithm is the so-called set
partitioning in hierarchical trees (SPIHT) developed by Said and Pearlman (1996). This algorithm
also produces an embeddedbitstream. The advantage of the embedded coding schemes allows an
encoding process to terminate al any point so that a target bit rate or distortion metric can be met
exactly. Intuitively, for a given bit rate or distortion requirement a nonembedded code should be
more efficient than an embedded code since it has no constraints imposed by embedding require-
ments. However, embedded wavelet transform coding algorithms are currently the best. The addi-
tional constraints do not seem to have deleterious effect. In the following, we introduce the two
embedded coding algorithms:the zerotree coding andthesetpartitioning in hierarchicaltree coding.

As with DCT-basedcoding,an important aspect of wavelet-based codingis to code the positions
of those coefficients that will be transmitted as nonzero values. After quantization the probability
of the zero symbol must be extremely high for the very low bit rate case. A large portion of the
bit budget will then be spent on encoding the significance map, or the binary decision map that
indicates whether a transformed coefficient has a zero or nonzero quantized value. Therefore, the
ability to efficiently encode the significance map becomes a key issue for coding imagesat very
low bit rates. A new data structure, the zerotree, has been proposedfor this purpose (Shapiro, 1993).
To describe zerotree, wefirst mustdefine insignificance. A wavelet coefficient is insignificant with
respect to a given threshold value if the absolute value of this coefficient is smaller than this
threshold. From the nature of the wavelet transform we can assume that every wavelet transformed
al a given scale can be strongly related to a set of coefficients at the next finer scale of similar
orientation. More specially, we can further assumethat if a wavelet coefficient at a coarse scale is
insignificant with respectto the preset threshold, then all wavelet coefficients at finer scales are
likely to be insignificant with respect to this threshold. Therefore, we can build a tree with these
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FIGURE 8.7 (Left) Parent-children dependencies of subbands; the arrow points from the subband ofthe
parents to the subband of the children. At topleft is the lowest-frequency band. (Right) The scanning order
of the subbands for encoding a significance map.

parent-child relationships, such that coefficients at a coarse scale are called parents, and all coef-
ficients corresponding to the same spatial location at the next finer scale of similar orientation are
called children. Furthermore, for a parent, the set ofall coefficients at all finer scales ofsimilar
orientation correspondingto the same spatial location are called descendants. For a QMF-pyramid
decomposition the parent-children dependenciesare shownin Figure 8,7(a), For a multiscale wave-
let transform, the scan ofthe coefficients begins at the lowest frequency subband and then takes
the order of LL, HL, LH, and HH from the lower scale to the next higher scale, as shown in
Figure 8,7(b).

The zerotreeis defined such that if a coefficient itself and all of its descendants are insignificant
with respect to a threshold, then this coefficient is considered an element ofa zerotree. An clement
of a zerotree is considered as a zerotree root if this element is not the descendant ofa previous
zerotree root withrespectto the same threshold value. The significance map can then be efficiently
represented by a string with three symbols: zerotree rool, isolated zero, and significant. The isolated
zero means that the coefficientis insignificant, but it has somesignificant descendant.At the finest
scale, only two symbols are needed since all coefficients have no children, thus the symbol for
zerotree root is not used. The symbol string is then entropy encoded. Zerotree coding efficiently
reduces the cost for encoding the significance map by using self-similarity of the coefficients at
different scales. Additionally, it is different from the traditional run-length coding that is used in
DCT-based coding schemes. Each symbol in a zerotree is a single terminating symbol, which can
be applied to all depths of the zerotree, similar to the end-of-block (EOB) symbol in the JPEG and
MPEGvideo coding standards. The difference between the zerotree and EOBis that the zerotree
represents the insignificance information al a given orientation across different scale layers. There-
fore, the zerotree can efficiently exploit the self-similarity of the coefficients at the different scales
correspondingto the samespatial location. The EOBonly represents the insignificance information
over the spatial area at the samescale.

In summary, the zerotree-coding scheme tries to reduce the number of bits to encode the
significance map, which is used to encode the insignificant coefficients. Therefore, more bits can
be allocated to encode the important significant coefficients. It should be emphasized that this
zerotree coding scheme of wavelet coefficients is an embedded coder, which meansthat an encoder
can terminate the encoding at any point according to a given target bit rate or target distortion
metric. Similarly, a decoder which receives this embedded stream can terminate at any point to
reconstruct an image that has been scaled in quality.

Another embedded wavelet coding method is the SPIHT-based algorithm (Said and Pearlman,
1996). This algorithm includes two major core techniques: the set partitioning sorting algorithm
and the spatial orientation tree. The set partitioning sorting algorithm is the algorithm that hierar-
chically divides coefficients into significant and insignificant, from the most significant bit to the
least significant bit, by decreasing the threshold value at each hierarchical step for constructing a
significance map. At each threshold value, the coding process consists of two passes: the sorting
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FIGURE 8.8 Relationship between pixels in
the spatial orientation tree.

pass and the refinement pass — exceptfor thefirst threshold that has only the sorting pass. Let
c(i,j) represent the wavelet-transformed coefficients and mis an integer. The sorting pass involves
selecting the coefficients such that 2” < Ic(i,j) <= 2”*' with m being decreased at each pass. This
process divides the coefficients into subsets and then tests each of these subsets for significant
coefficients. The significance map constructed in the procedure is tree-encoded. The significant
information 1s store in three orderedlists: list of insignificant pixels (LIP), list ofsignificant pixels
(LSP), and list of insignificant sets (LIS). At the end of each sorting pass, the LSP contains the
coordinatesofall significant coefficients with respect to the threshold at that step. The entries in
the LIS can be one of two lypes: type A representsall its descendants, type B represents all its
descendants from its grandchildren onward. The refinement pass involves transmitting the mth-
mostsignificantbit ofall the coefficients with respect to the threshold, 2”*!.

The idea of a spatial orientation tree is based on the following observation. Normally, among
the transformed coefficients most of the energy is concentrated in the low frequencies. For the
wavelet transform, when we move from the highest to the lowest levels of the subband pyramid
the energy usually decreases. It is also observed that there exists strong spatial self-similarity
between subbands in the same spatial location such as in the zerotree case. Therefore, a spatial
orientation tree structure has been proposed for the SPIHT algorithm, The spatial orientation tree
naturally defines the spatial relationship on the hierarchical pyramid as shown in Figure 8,8.

During the coding,the wavelet-transformedcoefficients are first organized into spatial orientauon
trees as in Figure 8.8. In the spatial orientation tree, each pixel (ij) from the former set of subbands
is seen as a rootfor the pixels (27, 2j), (2i+1, 2), (2i,2j+1), and (2i+1, 2/+1) in the subbands of the
current level. For a given n-level decomposition, this structure is used to link pixels of the adjacent
subbandsfrom level 7 until to level /. In the highest-level 12, the pixels in the low-pass subbandare
linked to the pixels in the three high-pass subbands at the same level. In the subsequent levels, all
the pixels of a subband are involved in the tree-forming process. Each pixelis linked to the pixels
of the adjacent subband at the next lowerlevel. The tree stops at the lowest level.

The implementation of the SPIHT algorithm consists of four steps: initialization, sorting pass,
refinementpass, and quantization scale update. In the initialization step, we find an integer m=
Llog,(max,,){|eG,j)|}). Here L | represent an operation of obtaining the largest integer less than
leci,j)]. The value of mis used for testing the significance of coefficients and constructing the
significance map. The LIPis set as an emptylist. The LISis initialized to contain all the coefficients
in the. low-pass subbandsthat have descendants. These coefficients can be used as roots ofspatial
trees, All these coefficients are assigned to be of type A. The LIPis initialized to contain all the
coefficients in the low-pass subbands.

In the sorting pass, each entry ofthe LIP is tested for significance withrespect to the threshold
value 2”. The significance map is transmitted in the following way.If it is significant, a “|” is
transmitted, a sign bit ofthe coefficient is transmitted, and the coefficient coordinates are moved
to the LSP. Otherwise, a “O” is transmitted. Then, each entry of the LIS is tested for finding the
significant descendants.If there are none, a “0”is transmitted. If the entry hasatleast one significant
descendant, then a “1”is transmitted and each of the immediate descendants are tested for signif
icance. The significance map for the immediate descendantsis transmitted in such a way thatifit
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is significant, a “1” plus a sign bit are transmitted and the coefficient coordinates are appended to
the LSP. Ifit is not significant, a “0” is transmitted and the coefficient coordinates are appended
to the LIP. If the coefficient has more descendants, then it is moved to the end of the LIS as an
entry of type B. If an entry in the LIS is of type B, then its descendants are tested for significance.
If at least one of themis significant, then this entry is removed fromthelist, and its immediate
descendants are appendedto the end of thelist of type A. For the refinement pass, the mth-most
significant bit of the magnitude ofeach entry of the LSP is transmitted except those in the current
sorting pass. For the quantization scale update step, m is decreased by 1 and the procedure is
repeated from the sorting pass.

8.3. WAVELET TRANSFORM FOR JPEG-2000

8.3.1 INTRODUCTION To JPEG-2000

Most image coding standards so far have exploited the DCT as their core technique for image
decomposition. However, recently there has been a noticeable change. The wavelet transform has
been adopted by MPEG-4 forstill image coding (mpeg4). Also, JPEG-2000is considering using
the wavelet transformasits core technique for the next generation of thestill image coding standard
QGpeg2000 vm), This is because the wavelet transform can provide not only excellent coding
efficiency, but also good spatial and quality scalable functionality. JPEG-2000 is a new type of
image compression system under development by Joint Photographic Experts Groupforstill image
coding, This standard is intended to meet a need for image compression with great flexibility and
efficient interchangeability. JPEG-2000 is also intended to offer unprecedented access into the
image while still in compressed domain. Thus, images can be accessed, manipulated, edited,
transmitted, and stored in a compressed form. As a new coding standard, the detailed requirements
of JPEG-2000include:

Low bit-rate compression perfarmance: IPEG-2000 is required to offer excellent coding
performanceat bit rates lower than 0.25 bits per pixel for highly detailed gray-bits per
level images since the current JPEG (10918-1) cannot provide satisfactory results at this
range ofbit rates. This is the primary feature of JPEG-2000. é

Lossless and lassy compression: it is desired to provide lossless compression naturally in the
course of progressive decoding. This feature is especially important for medical image
coding where theloss is not always allowed. Also, other applications such as high-quality
imagearchival systems and network applications desire to have the functionality of lossless
reconstruction. r 2

Large images: currently, the JPEG image compression algorithm doesnotallow for images
greater than 64K by 64K without tiling.

Single decomposition architecture: the current JPEG slandard has 44 modes; many of these
modesare for specific applications and not used by the majority of JPEG decoders. It is
desired to have a single decomposition architecture that can encompass the interchange
between applications. ‘ : ;

Transmissionin noisy environments: it is desirable to consider error robustness while design-
ing the coding algorithm. This is important for the application of wireless communication,
The current JPEG hasprovisionforrestartintervals, but image quality suffers dramatically
whenbilerrors are encountered. :

Computer-generated imagery: the current JPEG is optimized for natural imagery and does
not perform well on computer-generated imagery or computer graphics, .

Compound documents: the new codingstandard is desired to be capable of compressing both
continuous-tone andbilevel images. The coding scheme can compress and decompress
images from | bit to 16 bits for each color component. The current JPEG standard does
not work well for bilevel images.
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Progressive transmission by pixel accuracy and resolution: progressive transmission that
allows images to be transmitted with increasing pixel accuracy or spatial resolution ts
important for many applications. The image can be reconstructed with different resolutions
and pixel accuracy as needed for different target devices such as in World Wide Web
applications and image archiving.

Real-time encoding and decoding: forreal-time applications, the coding scheme should be
capable of compressing and decompressing with a single sequential pass. Of course,
optimal performance cannot be guaranteed in this case.

Fixedrate, fixed size, and limited workspace memory: the requirementoffixedbit rate allows
the decoder to run in real time through channels with limited bandwidth, The limited
memory space is required by the hardware implementation of decoding.

There are also some other requirements such as backwards compatibility with JPEG, open
architecture for optimizing the system for different image types and applications, interface with
MPEG-4,and so on, All these requirements are seriously being considered during the development
of JPEG-2000. However,it is still too early to comment whetherall targets can be reached at this
moment. There is no doubt, though, that the basic requirement on the coding performanceat very
low bit rate for still image coding will be achieved by using wavelet-bused coding as the core
technique instead of DCT-based coding.

8.3.2 VERIFICATION Mopet or JPEG-2000

Since JPEG-2000 is still awaiting finalization, we introduce the techniques that are very likely to
be adopted by the new standard. As in other standards such as MPEG-2 and MPEG-4, the verifi-
cation model (VM) plays an important role during the developmentofstandards, This is because
the VM or TM (test model for MPEG-2) is a platform for verifying and testing the new techniques
before they are adopted as standards. The VM is updated by completing a set of core experiments
from one meeting to another. Experience has shown that the decoding part of the final version of
VMis very close to the final standard. Therefore, in order to give an overviewof the related wavelet
transform parts of the JPEG-2000, we start to introduce the newest version of JPEG-2000 VM
QGpeg2000 vm). The VM of JPEG-2000 describes the encoding process, decoding process, and the
bitstream syntax, which eventually completely defines the functionality of the existing JPEG-2000
compression system.

The newest version of the JPEG-2000 verification model, currently VM 4.0, was revised on
April 22, 1999. In this VM,the final convergencehas not been reached, but several candidates have
been introduced. These techniques include a DCT-based coding mode, whichis currently the
baseline JPEG, and a wavelet-based coding mode. In the wavelet-based coding mode, several
algorithms have been proposed: overlapped spatial segmented wavelet transform (SSWT), non-
overlapped SSWT, and the embedded block-based coding with optimized truncation (EBCOT).
Amongthese techniques, and according to current consensus, EBCOTis a very likely candidate
for adoption into the final JPEG-2000 standard.

The basic idea of EBCOTis the combination of block coding with wavelet transform. First,
the image is decomposedinto subbandsusing the wavelet transform. The wavelet transform is not
restricted to any particular decomposition. However, the Mallat wavelet provides the best compres-
sion performance,on average,for natural images; therefore, the current bitstream syntax is restricted
to the standard Mallat wavelet transform in VM 4.0. After decomposition, each subband is divided
into 64 x 64 blocks, except at image boundaries where some blocks may have smallersizes. Every
block is then coded independently. For each block,a separatebitstream is generated without utilizing
any information from otherblocks. The key techniques used for coding include an embedded quad-
tree algorithm and fractionalbit-plane coding,
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FIGURE 8.9 Example of sub-block partitioning
for a block of 64 * 64.

 
The idea of an embedded quad-tree algorithm is that it uses a single bit to represent whether

or not each leading bit-plane contains any significant samples. The quad-tree is formed in the
following way. The subbandis partitioned into a basic block. The basic block size is 64 x 64. Each
basic block is further partitioned into 16 x 16 sub-blocks, as shownin Figure 8.9. Let o/(B*) denote
the significance of sub-block, B*(k is the kth sub-block as shown in Figure 8.9), in jth bit plane of
ith block. If one or more samples in the sub-block have the magnitude greater than 2/, then
o/(B*) = 1; otherwise, o/(B!) = 0. For each bit-plane, the information concerning the significant
sub-blocksis first encoded. All other sub-blocks can then be bypassed in the remaining coding
procedure for that bit-plane. To specify the exact coding sequence, we define a two-level quad-tree
for the block size of 64 x 64 and sub-block size of 16 x 16. The level-1 quads, O'[k], consist of
four sub-blocks, B', B?, B*, B* from Figure 8.9. In the same way, we define level-2 quads, 02[K],
to be 2 2 groupings oflevel-1 quads. Let o/(Q![k]) denote the significance of the level-1 quad,
Q!{k], in jth bit-plane. If at least one member sub-block is significant in the jth bit-plane, then
o/(Q/[k]) = 1; otherwise, 6/(Q![k]) = 0. At each bit-plane, the quad-tree coder visits the level-2
quadfirst, followed by level-1 quads. Whenvisiting a particular quad, Q*[k](L = 1 or 2, it is the
numberofthe level), the coder sends the significance of each of the four child quads, o/(Q/[k)),
or sub-blocks, o/(B/), as appropriate, except if the significance value can be deduced from the
decoder. Under the following three cases, the significance may be deduced by the decoder:(1) the
relevant quad or sub-block was significant in the previous bit-plane; (2) the entire sub-block is
insignificant; or (3) this is the last child or sub-block visited in Q*{k) and all previous quads or
sub-blocks are insignificant,

The ideaof bit-plane coding is to entropy code the mostsignificantbit first for all samples in
the sub-blocks and to send theresulting bits. Then, the next mostsignificant bit will be coded and
sent, this process will be continued until all bit-planes have been coded and sent. This kind of
bitstream structure can be used for robust transmission, If the bitstream is truncated due to a
transmission error or some other reason, then some orall the samples in the block may lose one

or more least significant bits. This will be equivalent to having used a coarser quantizer for the
relevant samples and we can still obtain a reduced-quality reconstructed image, The idea of
fractional bit-plane coding is to code each bil-plane with four passes: a forward significance
propagation pass, a backward significance propagation pass, a magnitude refinement pass, and a
normalization pass, For the technical details of fractional bit-plane coding, the interested readers
can refer to the VM of JPEG-2000 (jpeg2000 vm). uate

Finally, we briefly describe the optimization issue of EBCOT. The encoding optimization
algorithm is not a part ofthe standard, since the decoder does not need to know howthe encoder
generates the bitstream. From the viewpoint ofthe standard, the only requirement from the decoder
to the encoderis that the bitstream must be compliant with the syntax of the standard. However,
from the otherside, the bitstream syntax could always be defined to favor certain coding algorithms
for generating optimized bitstreams. The optimization algorithm described hereis Justified only if
the distortion measure adopted for the code blocks is additive. Thatis, the final distortion, D, of
the whole reconstructed image shouldsatisfy
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p=) D7 (8.24)

where D;is the distortion for block B;, and 7; is the truncation point for B,. Let R be the total number
ofbits for coding all blocks of the image fora set oftruncation point7,, then

R= Re (8.25)

where R”are the bits for coding block B;. The optimization process wishes to find the suitable set
of T; values, which minimizes D subject to the constraint R < R,,,,. R,,,. is the maximum number
of bits assigned for coding the image. The solution is obtained by the method of Lagrange
multipliers:

L= >(R7-20") (8.26)

where the value A must be-adjusted until the rate obtained by the truncation points, which minimize
the value of L,satisfies R = R,,,,. From Equation 8.26, we have a separate trivial optimization
problem for each individual block. Specially, for each block, B;, we find the truncation point, /;,
which minimizes the value (R* — 4D"). This can be achieved by finding the slope turning points
of rate distortion curves. In the VM, the set of truncation points and the slopes ofrate distortion
curves are computed immediately after each block is coded, and we only store enough information
to later determinethe truncation points which correspondto the slope turningpoints ofrate distortion
curves. This information is generally much smaller than the bitstream whichis stored for the block
itself. Also, the search for the optimal A is extremely fast and occupies a negligible portion of the
overall computation time.

8.4 SUMMARY

In this chapter, image coding using the wavelet transformhasbeen introduced.First, an overview
of wavelet theory was given, and second,the principles of image coding using wavelet transform
have been presented. Additionally, two particular embedded image coding algorithms have been
explained, namely, the embedded zerotree and set partitioning in hierarchical trees. Finally, the
new standard forstill image coding, JPEG-2000, which may adopt the waveletasits core technique,
has been described.

8.5 EXERCISES

8-1. For a given function, the Mexican hat wavelet,

1, for |t|<1,
0, otherwisewo-|

Use Equations 8.3 and 8.4 to derive a closed-form expression for the continuous wavelet
transform, Y,,(‘).

8-2. Consider the dilation equation

o(t)=V2¥°h(ko(2t-k)

IPR2018-01413

Sony EX1008 Page 208



IPR2018-01413 
Sony EX1008 Page 209

WaveletTransform for Image Coding 183

How does (p(t) change if h(k) is shifted? Specifically, let g(k) = A(n-I)

u(t) = 12S" a(k)u(2e-k):

How doesu(t) relate to @(s)?
8-3. Let @,(/) and @,(1) be two scaling functions generated by the twoscalingfilters h,{k) and

h,(k). Show that the convolution j,(t)* j,(t) satisfies a dilation equation with h,(k)*
hy(kIN2.

8-4. In the applications ofdenoising and image enhancement, how can the wavelet transform
improve the results?

8-5. For a given function

0 <0

f(y)=sr Osr<!
| r2]

showthat the wavelet transform off(/) will be

2f{o+5)- f(b)- s(b+2)
W(a,b)=sen

lal

where sgn(x) is the signum function defined as

-| <0

sgen(x)=4 1 ¢>0
0 r=0
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9 Nonstandard Image Coding
In this chapter, we introduce three nonstandard image coding techniques: vector quantization (VQ)
(Nasrabadi and King, 1988), fractal coding (Barnsley and Hurd, 1993; Fisher, 1994: Jacquin, 1993),
and model-based coding (Li et al., 1994),

9.1 INTRODUCTION

The VQ, fractal coding, and model-based coding techniques have not yet been adopted as an image
coding standard. However, due to their unique features these techniques may find some special
applications. Vector quantization is an effective technique for performing data compression. The-
oretically, vector quantization is always better than scalar quantization becauseit fully exploits the
correlation between componentswithin the vector. The optimal coding performancewill be obtained
When the dimension of the vector approachesinfinity, and then the correlation betweenall com-
ponentsis exploited for compression. Another very attractive feature of image vector quantization
is that its decoding procedure is very simple since it only consists of table look-ups. However, there
are two major problems with image VQ techniques. The first is that the complexity of vector
quanuzation exponentially increases with the increasing dimensionality of vectors. Therefore, for
vector quantization it is Important to solve the problem of how to design a practical coding system
which can provide a reasonable performance under a given complexity constraint. The second
major problem ofimage VQis the need for a codebook, which causes several problemsin practical
application such as generating a universal codebook for a large number of images, scaling the
codebookto fit the bit rate requirement, and so on. Recently, the lattice VQ schemes have been
proposed to address these problems (Li, 1997).

Fractal theory has a long history. Practal-based techniques have been usedin several areas of
digital image processing such as image segmentation, image synthesis, and computergraphics, but
only in recent years have they been extended tothe applications of image compression (Jacquin,
1993), A fractal is a geometric form which has the unique feature of having extremely high visual
self-similar irregular details while containing very low information content. Several methods for
image compression have been developed based on different characteristics of fractals. One method
is based on Iterated Function Systems (/FS) proposed by Barnsley (1988). This method uses the
self-similar and self-affine property of fractals. Such a system consists of sets oftransformations
including translation, rotation, and scaling. On the encoder side of a fractal image coding system,
a sel offractals is generated from the input image. These fractals can be used to reconstruct the
image at the decoderside. Sincethese fractals are represented by very compact fractal transforma-
lions, they require very small amounts of data to be expressed and stored as formulas. Therefore,
the information needed to be transmitted is very small. The second fractal image coding method
is based on the fractal dimension (Lu, 1993; Jang and Rajala, 1990). Fractal dimension is a good
representation of the roughness of image surfaces. In this method, the image is first segmented
using the fractal dimension andthen the resultant uniform segments canbeefficiently coded using
the properties of the human visual system, Anotherfractal image coding schemeis based onfractal
geometry, which is used to measure the length of a curve with a yardstick (Walach, 1989). The
details of these coding methods will be discussed in Section9.3.

The basic idea of model-based codingis to reconstruct an image with a set of model parameters.
The model parameters are then encoded and transmitted to the decoder. At the decoder the decoded
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Training Set of
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Index of
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FIGURE9.1 Principle of image vector quantization. The dashedlines correspondto training set generation,
codebook generation, and transmission (if il is necessary).

model parameters are used to reconstruct the image with the same model used at the encoder.
Therefore, the key techniques in the model-based coding are image modeling, image analysis, and
image synthesis.

9.2 VECTOR QUANTIZATION

9.2.1 Basic Principle OF VECTOR QUANTIZATION

An N-level vector quantizer, Q, is mapping from a K-dimensional vector set {V}, into a finite
codebook, W = {w,, Wo, ..., Wy}:

0:V3W (9.1)

In other words,it assigns an input vector, v, to a representative vector (codeword), w from a
codebook, W. The vector quantizer, Q, is completely described by the codebook, W= {, Wa, ---»
wy}, together with the disjoint partition, R = {r,, r,, ..., ry}, where

r, = {v: O(v) = w,} (9.2)

and w and v are K-dimensionalvectors. The partition should identically minimize the quantization
error (Gersho, 1982). A block diagram of the various steps involved in image vector quantization
is depicted in Figure 9.1.

The first step in image vector quantization is the image formation. The image data are first
partitioned into a set of vectors, A large numberof vectors from various images are then used lo
form a training set. The training set is used to generate a codebook, normally using an iterative
clustering algorithm. The quantization or coding step involves searching each input vectorfor the
closest codeword in the codebook. Then the corresponding index ofthe selected codeword is coded
and transmitted to the decoder. At the decoder, the index is decoded and converted to the corre-
sponding vector with the same codebook as at the encoder by look-up table. Thus, the design
decisions in implementing image vector quantization include (1) vector formation; (2) training set
generation; (3) codebook generation; and (4) quantization.

9.2.1.1 Vector Formation

The first step of vector quantization is vector formation: that is, the decomposition of the images
into a set of vectors. Many different decompositions have been proposed; examples include the
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intensity values of a spatially contiguous block of pixels (Gersho and Ramamuthi, 1982; Baker
and Gray, 1983); these same intensity values, but now normalized by the mean andvarianceofthe
block (Murakami et al., 1982); the transformed coefficients of the block pixels (Li and Zhang,
1995); and the adaptive linear predictive coding coefficients for a block of pixels (Sun, 1984).
Basically, the approaches of vector formation can beclassified into two calegories: direct spatial
or temporal, and feature extraction. Direct spatial or temporal is a simple approach to forming
vectors from the intensity values of a spatial or temporal contiguous block of pixels in an image
or an image sequence. A number of image vector quantizaton schemes have been investigated with
this method, The other method is feature extraction. An image featureis a distinguishing primitive
characteristic. Some features are natural in the sense that they are defined by the visual appearance
of an image, while the other so-called artificial features result from specific manipulations or
measurements of images or image sequences. In vector formation, it is well known that the image
data in a spatial domain can be converted to a different domain so that subsequent quantization
and joint entropy encoding can be moreefficient. For this purpose, some features of image data,
such as transformed coefficients and block means can be extracted and vector quantized. The
practical significance of feature extraction is that it can result in the reduction of vector size,
consequently reducing the complexity of coding procedure.

9.2.1.2 Training Set Generation

Anoptimal vector quantizer should ideally match the statistics of the input vector source. However,
if the statistics of an input vector source are unknown,a training set representative of the expected
input vector source can be used to design the vector quantizer. If the expected vector source has a
large variance, then a large training set is needed. To alleviate the implementation complexity
caused byalarge training set, the input vector source can be divided into subsets. For example, in
(Gersho, 1982) the single input source is divided into “edge” and “shade” vectors, and then the
separate training sets are used to generate the separate codebooks. Those separate codebooksare
then concatenated into a final codebook. In other methods, small local input sources corresponding
lo portions ofthe image are used as the training sets, thus the codebook can better match the local
Statistics. However, the codebook needs to be updated to track the changesinlocal statistics of the
Input sources, This may increase the complexity and reduce the coding efficiency. Practically, in
most coding systems a set of typical imagesis selected as the training set and usedto generate the
codebook. The coding performance can then be insured for the images with the training set, or for
those not in the training set but with statistics similar to those in the training set.

9.2.1.3. Codebook Generation

The key step in conventional image vector quantization is the development ofa good codebook,
The optimal codebook, using the mean squared error (MSE)criterion, must satisfy two necessary
conditions (Gersho, 1982). First, the input vector source is partitioned into a predecided number
of regions with the minimumdistance rule. The number ofregions is decided by the requirement
of the bit rate, or compression ratio and coding performance. Second, the codeword or the repre-
sentative vector of this region is the mean value, or the statistical center, of the vectors within the
region. Underthese two conditions, a generalized Lloyd clustering algorithm proposed by Linde,
Buzo, and Gray (1980) — the so-called LBG algorithm — has been extensively used to generate
the codebook. The clustering algorithm is an ileralive process, minimizing a performance index
calculated from the distances between the sample vectors and their cluster centers. The LBG
clustering algorithm can only generate a codebookwitha local optimum, which depends on the
initial cluster seeds. Two basic procedures have been used to obtain the initial codebook or cluster
seeds. In the first approach, the starting point involves finding a small codebook with only ots
codewords, and then recursively splitting the codebook until the required number of codewordsis
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obtained. This approachis referred to as binary splitting. The second procedure starts with initial
seeds for the required number of codewords, these seeds being generated by preprocessing the
training sets. To address the problem ofa local optimum, Equitz (1989) proposed a newclustering
algorithm, the pairwise nearest neighbor (PNN) algorithm. The PNN algorithm begins with a
separate cluster for each vector in the training set and merges together two clusters at a lime until
the desired codebook size is obtained. At the beginning ofthe clustering process, each cluster
contains only one vector. In the following process the two closest vectors in the training set are
mergedto theirstatistical mean value, in such a way the error incurred by replacing these two
vectors with a single codeword is minimized. The PNN algorithm significantly reduces computa-
tional complexity without sacrificing performance. This algorithm can also be used as an initial
codebookgenerator for the LBG algorithm.

9.2.1.4 Quantization

Quantizationin the context of a vector quantization involves selecting a codeword in the codebook
for each input vector. The optimal quantization, in turn, implies that for each input vector, v, the
closest codeword, w,, is found as shown in Figure 9.2. The measurement criterion could be mean
squared error, absoluteerror, or other distortion measures.

A full-search quantization is an exhaustive search process overthe entire codebookfor finding
the closest codeword, as shown in Figure 9.3(a). It is optimal for the given codebook, but the
computation is more expensive, An alternative approachis a tree-search quantization, where the
search is carried out basedona hierarchicalpartition, A binary tree search is shownin Figure 9.3(b)
A tree search is much fasterthan a full search, butit is clear that the tree search is suboptimalfor
the given codebook and requires more memoryfor the codebook.

  Inputvector
y Index k

 
Quantization

FIGURE 9.2 Principle of vector quantization.

(a) (b)

FIGURE 9.3 (a) Full search quantization; (b) binary tree search quantization.
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9.2.2 Severat IMAGE CODING SCHEMES WITH VECTOR QuANTIZATION

In this section, we are going to present several image coding schemes using vector quantization
whichinclude residual vector quantization, classified vector quantization, transform domain vector
quantization, predictive vector quantization, and block truncation coding (BTC) which can be seen
as a binary vector quantization.

9.2.2.1 Residual VQ

In the conventional image vector quantization, the vectors are formed byspatially partitioning the
imagedata into blocks of 8 x 8 or 4 x 4 pixels. In the original spatial domain thestatistics of
vectors may be widely spread in the multidimensional vector space. This causes difficulty in
generating the codebook with afinite size and limits the coding performance. Residual VQ is
proposed to alleviate this problem. In residual VQ, the mean ofthe block is extracted and coded
separately, The vectors are formed by subtracting the block mean from the original pixel values.
This scheme can be further modified by considering the variance of the blocks. The original blocks
are converted to the vectors with zero mean and unit standard deviation with the following con-
version formula (Murakami et al., 1982):

|
=— > 9.3m, x 5, (9.3)

P _{-™) (9.4)

>
i }—

5 = =Is -m,) (9.5)

where m, is the meanvalue ofith block, o,is the variance of ith block, s; is the pixel value of pixel
J G=0,..., K-1) in the ith block, K is the total numberofpixels in the block, and x; is the normalized
value of pixel j, The new vector X, is now formed by x; (j = 0,1, ..., k-1):

X= Wor Xp oo Xe] (9.6)

With the above normalization the probability function P(X) of input vector X is approximately
similar for image data from different scenes. Therefore,it is easy to generate a codebook forthe
new vectorset, The problem with this method is that the mean and variance values of blocks have
to be codedseparately.This increases the overheadandlimitsthe codingefficiency. Several methods
have been proposed to improve the codingefficiency. One of these methodsis to use pedisaye
coding to code the block mean values. The mean value of the current block can be predicted by
one ofthe previously coded neighbors. In such a way, the coding efficiency increases as the use
of interblock correlation.

9.2.2.2 Classified VQ

In imagevector quantization, the codebookis usually generated using training set under constraint
of minimizing the mean squared error. This implies that the codewordis the statistical mean of the
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region. During quantization, each input vector is replaced by its closest codeword. Therefore, the
coded images usually suffer from edgedistortion at very low bit rates, since edges are smoothed
by the operation of averaging with the small-sized codebook. To overcome this problem, we can
classify the training vector set into edge vectors and shade vectors (Gersho, 1982). Two separate
codebooks can then be generated with the two types of training sets, Each input vector can be
coded by the appropriate codeword in the codebook. However, the edge vectors can be further
classified into many types according to their location and angular orientation, The classified VQ
can be extended into a system which contains many sub-codebooks, each representing a type of
edge. However, this would increase the complexity of the system and would be hard to implement
in practical applications.

9.2,2.3 Transform Domain VQ

Vector quantization can be performed in the transform domain. A spatial block of 4 x 4 or 8 x 8
pixels is first transformedto the 4 x 4 or 8 X 8 transformedcoefficients. There are several ways lo
form vectors with transformedcoefficients. In the first method, a number af high-order coefficients
can be discarded since most of the energy is usually contained in the low-order coefficients for
most blocks. This reduces the VQ computational complexity at the expense of a small increase in
distortion. However, for some active blocks, the edge information is containedin the high frequen-
cies, or high-order coefficients. Serious subjective distoruon will be caused by discarding high
frequencies. In the second method, the transformed coefficients are divided into several bands and
each bandis used to form its corresponding vectorset. This method is equivalent to the classified
VQin spatial domain. An adaptive schemeis then developed by using two kindsof vector formation
methods. Thefirst method is used for the blocks containing the moderate intensity variation and
the second method is used for the blocks with high spatial activities. However, the complexity
increases as more codebooksare neededin this kind of adaptive coding system.

9.2.2.4 Predictive VQ

The vectors are usually formed by the spatially consecutive blocks. The consecutive vectors are
then highly statistically dependent. Therefore, better coding performance can be achieved if the
correlation between vectors is exploited. Several predictive VQ schemes have been proposed to
addressthis problem. Onekindofpredictive VQ is finite state VQ (Fosteret al., 1985). The finite-
state VQ is similar toatrellis coder. In the finite state VQ, the codebook consists of a set of sub-
codebooks. A state variable is then used to specify which sub-codebook should be selected for
coding the input vector. The information about the state variable must be inferred fromthe received
sequenceofstate symbols andinitial state such as in a trellis coder. Therefore, no side information
or no overhead need be transmitted to the decoder. The new encoder state is a function of the
previous encoderstate andthe selected sub-codebook. This permits the decoderto track the encoder
state if the initial condition is known. Thefinite-state VQ needs additional memory to store the
previousstate, but it takes advantage of correlation between successive input vectors by choosing
the appropriate codebookforthe givenpast history. It should be noted that the minimum distortion
selection rule of conventional VQis not necessary optimum forfinite-state VQ for a given decoder
Since a low-distortion codeword maylead to a bad state and hence to poor long-term behavior.
Therefore, the key design issue offinite-state VQ is to find a good next-state function.

Another predictive VQ was proposed by Hang and Woods (1985). In this system, the input
vector is formed in such a waythat the currentpixel is as the first element of the vector and the
previous inputs as the remaining elements in the vector, The systemis like a mapping ora recursive
filter which is used to predict the next pixel. The mapping is implemented by a vector quantizer
look-up table and provides the predictive errors.
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9.2.2.5 Block Truncation Coding

In the block truncation code (BTC) (Delp and Mitchell, 1979), an imageis first divided into 4 x 4
blocks, Eachblock is then coded individually. The pixels in each block arefirst converted into two-
level signals by usingthe first \wa moments of the block:

qa=m+o_|——

N~-q
(9.7)

b=m-o0 [N=!
| g

where mw1s the mean value of the block, o is the standard deviation ofthe block, N is the number
of total pixels in the block, and g is the number of pixels which are greater in value than ».
Therefore, each block can be described by the values of block mean, variance, and a binary-bit
plane which indicates whetherthe pixels have values above or below the block mean. The binary-
bit plane can be seen as a binary vector quantizer. If the mean and variance of the block are
quantized to 8 bits, then 2 bils per pixel is achieved for blocks of 4 x 4 pixels. The conventional
BTC schemecan be modified to increase the coding efficiency. For example, the block mean can
be coded by a DPCM coder which exploits the interblock correlation, The bit plane can be coded
with an entropy coder on the patterns (Udpikar and Raina, 1987).

9.2.3 Lattice VQ ror IMace CODING

In conventional image vector quantization schemes, there are several issues, which cause some
difficulties for the practical application of image vector quantization. The first problem is the
limitation of vector dimension. It has been indicated that the coding performance of vector quan-
lization increases as the vector dimension while the coding complexity exponentially increases at
the same time as the increasing vector dimension. Therefore, in practice only a small vector
dimensionis possible under the complexity constraint. Another important issue in VQis the need
for a codebook. Muchresearcheffort has goneinto finding how to generale a codebook. However,
in practical applications there is another problem of how to scale the codebook for various rate-
distortion requirements. The codebook generated by LBG-like algorithms with a training selis
usually only suitable for a specified bit rate and does not havethe flexibility of codebook scalability.
For example, a codebook generated for an image with small resolution may not be suitable for
images with highresolution. Even forthe same spatial resolution, different bit rates would require
different codebooks. Additionally, the VQ needsa table to specify the codebook and, consequently,
the complexity of storing and searching is too high to have a very large table, This further limits
the coding performance of image VQ.

These problems become major obstacles for implementing image VQ. Recently, an algorithm
of lattice VQ has beenproposedto address these problems (Li et al., 1997). Lattice VQ does not
have the above problems. The codebook forlattice VQ is simply a collection of lattice points
uniformly distributed over the vector space. Scalability can be achieved by scaling the cell size
associated with every lattice point just like in the scalar quantizer by scaling the quantization step.
The basic conceptofthe lattice can be found in (Conway and Slone, 1991). A typical lattice VQ
schemeis shownin Figure 9.4. There are two steps involved in the image lattice VQ, The first step
is to find the closestlattice point for the input vector. The secondstep is to label the lattice point,
i.e., mappinga lattice point to an index. Since lattice VQ does need a codebook, the index assignment
is based onalattice labeling algorithm instead of a look-up table such as in conventional VQ,
Therefore, the key issueof lattice VQ is to develop an efficient lattice-labeling algorithm. With this
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FIGURE 9.4 Block diagram oflattice VQ.

 
FIGURE 9.5 Labeling a two-dimensionallattice,

algorithm the closest lattice point and its corresponding index within a finite boundary can be
obtained by a calculation at the encoder for each inputvector.

Atthe decoder, the index is converted to the lattice point by the same labeling algorithm. The
vectoris then reconstructed with the lattice point. The efficiency of a labeling algorithm for lattice
VQ is measured by how manybits are neededto representthe indices of the lattice points within
a finite boundary. We use a two-dimensionallattice to explain the lattice labeling efficiency. A two-
dimensionallattice is shown in Figure 9.5. ,

In Figure 9.5, there are seven lattice points. One methodused to label these seven 2-D Jattice
points is to use their coordinates (x,y) to label each point. If we label x and y separately, we need
twobits to label three values of x and three bits to label a possible five values of y, and need a total
offive bits. It is clear that three bits are sufficient to label sevenlattice points. Therefore, different
labeling algorithms may have different labeling efficiency. Several algorithms have been developed
for multidimensional lattice labeling. In (Conway, 1983), the labeling method assigns an index to
every lattice point within a Voronoi boundary where the shape of the boundary is the same as the
shape of Voronoicells. Apparently, for different dimension, the boundaries have different shapes.
In the algorithm proposed in (Laroia, 1993), the same methodis used to assign an index to each
lattice point. Since the boundaries are defined by the labeling algorithm,this algorithm might not
achieve a 100% labeling efficiency for a prespecified boundary such as a pyramid boundary. The
algorithm proposed byFischer (1986) can assign an indexto every lattice point within a prespecified
pyramid boundary and achieves a 100% labelingefficiency, butthis algorithm can only be used
for the Z* lattice. In a recently proposed algorithm (Wanget al., 1998), the technical breakthrough
was obtained. In this algorithm a labeling method was developed for Construction-A ; and
Construction-B lattices (Conway, 1983), whichis very useful for VQ with proper vector dimensions,
such as 16, and achieves 100% efficiency. Additionally, these algorithms are used for labeling lattice
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points with 16 dimensions and provide minimum distortion. These algorithms were developed
based onthe relationship betweenlattices and linear block codes. Construction-A and Construction-
B are the two simplest waysto construct a lattice from a binary linear block code C = (n,k, d),
Where n, k, and d are the length, the dimension, and the minimum distanceof the code, respectively.

A Construction-A lattice is defined as:

A, =C+22" (9.8)

where Z”is the n-dimensionalcubic lattice andCis a binary linear block code. There are twosteps
involved for labeling a Construction-A lattice, The first is to order the lattice points according to
the binary linear block code C, and then to order the lattice points associated with a particular
nonzero binary codeword. For the lattice points associated with a nonzero binary codeword, two
sub-lattices are considered separately. One sub-lattice consists of all the dimensions that have a
“0” component in the binary codeword and the otherconsists of all the dimensions that have a “]”
component in the binary codeword. The first sub-lattice is considered as a 2Z lattice while the
secondis consideredas a translated 2Z lattice, Therefore, the labeling problem is reduced to labeling
the Z lattice at the final stage.

A Construction-B lattice is defined as:

A, =C+2D, (9.9)

where D,is an n-dimensional Construction-A lattice with the definition as:

D, =(n,n—-1,2)+22Z” (9.10)

and C is a binary doubly even linear block code. When n is equal to 16, the binary even linear
block code associated with Aj, is C = (16, 5, 8). The methodfor labeling a Construction-Blattice
is Similar to the methodfor labeling a Construction-Alattice with two minordifferences. Thefirst
difference is that for any vector y=c¢ + 2x, x € Z", if y is a Construction-A lattice point; and x €
D,,, if y is a Construction-B lattice point. The second difference is that C is a binary doubly even
linear block code for Construction-B lattices while it is not necessarily doubly even for Construc-
tion-A lattices, In the implementation of theselattice point labeling algorithms, the encoding and
decoding functions for lattice VQ have been developed in (Li et al., 1997). For a given input vector,
an index representing the closest lattice point will be found by the encoding function, and for an
input index the reconstructed vector will be generated by the decoding function. In summary, the
idea of lattice VQ for image coding is an important achievementin eliminating the need for a
codebook for image VQ. The developmentofefficient algorithms for lattice point labeling makes
lattice VQ feasible for image coding.

9.3. FRACTAL IMAGE CODING

9.3.1 MATHEMATICAL FOUNDATION

A fractal is a geometric form whoseirregular details can be represented by some objects with
different scale and angle, which can be described by a set of transformations such as affine
transformations. Additionally, the objects used to represent the image's irregular details have some
form ofself-similarity and these objects can be used to represent an image in a simple recursive
way. An example offractals is the Von Koch curve as shown in Figure 9.6, The fractals can be
used to generate an image. The fractal image coding that is based on iterated function systems
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Eo

as E}
E;

yee =
FIGURE 9.6 Construction of the Von Koch curve.

(IFS) is the inverse process of image generation with fractals. Therefore, the key technology of
fractal image coding is the generation of fractals with an /FS.

To explain /FS, we start fromthe contractive affine transformation. A two-dimensional affine
transformation A is defined as follows:

A* tale b x} le (9.11)
y} te djly] Lf

This is a transformation whichconsists ofa linear transformation followed by a shift or translation,
and mapspoints in the Euclidean plane into new points in the another Euclidean plane. We define
that a transformationis contractiveif the distance between two points P, and P,in the newplane
is smaller than their distancein the original plane,i.e.,

d(a(R)4(R))<s a(R,F) aie)

where s is a constant and 0 <s < 1. The contractive transformations have the property that when
the contractive transformations are repeatedly applied to the points in a plane, these points will
convergeto a fixed point. Aniteratedfunction system(IFS) is defined as a collection of contractive
affine transformations. A well-known example of /FS contains four following transformations:

OH Ei] om
This is the /FS ofa fern leaf, whose parameters are shown in Table 9.1.

The transformation A, is used to generate the stalk, the transformation A, is used to generale
the right leaf, the transformation A; is used to generate the left leaf, and the transformation A, \s
used to generate main fern. A fundamental theorem offractal geometry is that each //'S defines 4
unique fractal image. This imageis referred to as the attractor of the /FS. In other words, an image
correspondsto the attractor of an /FS. Nowlet us explain how to generate the image using the |FS.
Let us suppose that an /FS contains N affine transformations, A,, A>, ... Ay, and each transformation
has an associated probability, p,, p3, ..., Py, respectively. Suppose that this is a complete set and
the sum ofthe probability equals to 1, i-e.,
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TABLE 9.1

The Parameters of the /FS of a Fern Leaf

a b c d e f

A, 0 0 0 0.16 he) 0:2

A; 02 -0.26 023) 022 00 02
A; =0015 0.28 026 024 O O02

Ay 0.85 0.04 0.04 0.85 0 02

P, + py +...+ py = | and p,> 0 fori=0, 1, ...,N. (9.14)

The procedure for generatingan attractoris as follows. For any given point (xq, yo) ina Euclidean
plane, one transformation in the /FS according to its probability is selected and applied to this
point to generate a new point (x,, y,). Then another transformation is selected according to its
probability and applied to the point (x,,y,) to obtain a new point (%,,y,). This process is repeated
over and over again to obtain a long sequence of points: (Xy.¥o)s (Xp)s+»),)---- According
to the theory of iterated function systems, these points will converge to an image thatis the attractor
of the given /FS. The above-described procedure is shown in the flowchart of Figure 9.7. With the
above algorithm and the parameters in Table 9.1, initially the point can be anywhere within the
large square, but after several iterationsit will converge onto the fern. The 2-D affine transformations
are extended to 3-D transformations, which can be used to create fractal surfaces with theiterated
function systems. This fractal surface can be considered as the gray level or brightness of a 2-D
image.

9.3.2 JFS-Basep Fractat IMAGE CODING

As describedin the last section, an /FS can be used to generate a unique image, whichis referred
to as an attractor of the /FS. In other words, this image can be simply represented by the parameters
of the /FS. Therefore, if we can use an inverse procedure to generate a set of transformations,Le.,

 
 

 

 Given
(Xo, Yo)

 
 

 

 

Choose k
(0<k<N) with pe

 (xi, yi)
=Ax((Xo, Yo)

Plot(x), yi)

FIGURE9.7. Flowchart of image generation
with an /FS. Stop
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an JFS from an image, then these transformations or the /FS can be used to represent the approx-
imation of the image. The image coding system can use the parameters ofthe transformations in
the /FS instead ofthe original image data for storage or transmission. Since the /FS contains only
very limited data such as transformation parameters, this image coding method may resull in a
very high compression ratio. For example, the fern image is represented by 24 integers or 192 bits
(if each integer is represented by 8 bits), This number is much smaller than the number needed to
represent the fern image pixel by pixel. Now the key issue of the /FS-based fractal image coding
is to generate the /FS for the given input image. Three methods have been proposed to obtain the
IFS (Lu, 1993). Oneis the direct method, that directly finds a set of contractive affine transforma-
tions from the image based onthe self-similarity of the image. The second methodis to partition
an image into the smaller objects whose /FSs are known. These //Ss are used to form a library.
The encoding procedure is to look for an /FS from the library for each small object. The third
method is called partitioned JFS (PIFS). In this method, the imageis first divided into smaller
blocks and then the /FS for each block is found by mapping a larger block into a small block.

In the direct approach, the imageisfirst partitioned into nonoverlapped blocks in such a way
that each block is similar to the whole image and a transformation can map the whole image to
the block. The transformation for each individual block may be different. The combination ofthese
transformations can be takenas the /FS ofthe given image. Then much fewer data are required to
represent the /FS or the transformations than to transmit or store the given image in the pixel by
pixel way. For the second approach, the key issue is how to partition the given image into objects
whose /FSs are known. The image processing techniques such as color separation, edge detection,
spectrum analysis, and texture variation analysis can be used for image partitioning. However, for
natural images or arbitrary images, it may be impossible or very difficult to find an /FS whose
attractor perfectly covers the original image. Therefore, for most natural images the partitioned /FS
method has been proposed (Lu, 1993). In this method, the transformations do not map the whole
image into small block. For encoding an image, the whole imageis first partitioned into a number
of larger blocksthatare referred to as domain blocks. The domain blocks can be overlapped. Then
the imageis partitioned into a number ofsmaller blocks that are called as range blocks. The range
blocks do not overlap and the sum total of the range blocks covers the whole image. In the third
step, a set of contractive transformations is chosen. Each range block is mapped into a domain
block with a searching method and a matchingcriterion. The combination of the transformations
is used 10 form a partitioned /FS (PIFS). The parameters of P/FS are transmitted to the decoder.
It is noted that no domain blocks are transmitted. The decoding starts with a flat background, The
iterated process is then applied with the set of transformations. The reconstructed image is then
obtained after the process converges. From the above discussion, it is found that there are three
main design issues involved in the block fractal image coding system. First are partitioning
techniques which include range block partitioning and domain block partitioning. As mentioned
earlier, the domain blockis larger than the range block. Dividing the image into square blocks is
the simplestpartitioning approach. The secondissue is the choice of distortion measurement and
a searching method. The commondistortion measurementin the block fractal image codingis the
root mean square (RMS) error. The closest match between the range block and transformed domain
block is found by the RMSdistortion measurement. The third method is the selection of a set of
contractive transformations defined consistently with a partition.

It is noted that the partitioned /FS (P/FS)-based fractal image coding has severalsimilar features
with image vector quantization. Both coding schemes are block-based coding schemes and need a
codebook for encoding. For P/FS-based fractal image coding the domain blocks can be seen as
forming a virtual codebook.Onedifferenceis that the fractal image coding does not need to transmil
the codebook data (domain blocks) to the decoder while VQ does. The second difference is the
block size. For VQ, block size for the code vector and input vector is the same while in PIFS
fractal coding the size of the domain blockis different from the size of the range blocks. Another
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difference is that in fractal image coding the imageitself serves as the codebook, while this is not
true for VQ image coding.

9.3.3. OtHer Fractat IMAGE Copinc METHODS

Besides the /FS-basedfractal image coding, there are several other fractal image coding methods,
Oneis the segmentation-based coding scheme using fractal dimensions. In this method, the image
is segmented into regions based on the properties of the human visual system (HVS), The image
is segmentedinto the regions, each of these regions is homogeneousin the sense of havingsimilar
features by visual perception. This is different from the traditional image segmentation techniques
that try to segment an image into regions of constant intensity, For a complicated image, good
representation of an image needs a large number of small segmentations. However, in order to
obtain a high compression ratio, the number of segmentations is limited. The trade-off between
image quality and bit rate has to be considered. A parameter,fractal dimension, is used as a measure
to control the trade-off, Fractal dimension is a characteristic of a fractal. It is related to a metric

property such as the Jength of a curve and the area of a surface. The fractal dimension can provide
a good measurement of the perceptual roughness ofthe curve and surface. For example, if we use
many segments ofstraight lines to approximate a curve, by increasing the length of the straight
lines perceptually rougher curves are represented.

9.4 MODEL-BASED CODING

9.4.1. Basic CoNcePT

In the model-based coding, an image model that can be a 2-D model for still images or a 3-D
model for video sequenceis first constructed. At the encoder, the model is used to analyze the
input image. The model parameters are then transmitted to the decoder, At the decoder the recon-
structed image is synthesized by the model parameters, with the same image model used at the
encoder. This basic idea of model-based coding is shown in the Figure 9.8. Therefore, the basic
techniques in the model-based coding are the image modeling, image analysis, and image synthesis
techniques. Both image analysis and synthesis are based on the image model. The image modeling
techniques used for image coding can normally be divided into two classes: structure modeling
and motion modeling. Motion modeling is usually used for video sequences and moving pictures,
while structure modeling is usually used forstill image coding. The structure modelis used for
reconstruction of a 2-D or 3-D scene model,

 
FIGURE 9.8 Basic principle of model-based coding.
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9.4.2 IMAGE MODELING

The geometric modelis usually used for image structure description. The geometric model can be
classified into a surface-based description and volume-based description. The major advantage of
surface description is that such description is easily converted into a surface representation that can
be encoded and transmitted. In these models the surface 1s approximated by planar polygonal

patches suchastriangle patches. The surface shape is represented by a set of points that represent
the vertices of these triangle meshes. Thesize of these triangle patches can be adjusted according
to the surface complexity. In other words, for more complicated areas, more triangle meshesare
needed to approximate the surface while for smoothing areas, the meshsizes can be larger or less
vertices of the triangle meshesare neededto representthe surface. The volume-based description
is anatural approachfor modeling mostsolid world objects. Most existing research work on volume-
based description focuses on the parametric volume description. The volume-based description is
used for 3-D objects or video sequences.

However, model-based coding is successfully applicable only to certain kinds of images since
it is very hard to find general image models suitable for most natural scenes. The few successful
examples of image models include the human face, head, and body. These models are developed
for the analysis and synthesis of moving images. The face animation has been adopted for the
MPEG-4visual coding. The body animation is under consideration for version 2 of MPEG-4 visual
coding.

9.5 SUMMARY

In this chapter three kinds of image coding techniques, vector quantization, fractal image coding,
and model-based coding, which are not used in the current standards, have been presented. All
three techniques have several important features such as very high compression ratios for certain
kinds of images and very simple decoding procedures (especially for VQ). However, due to some
limitations these techniques have not been adopted by industry standards. It should be noted that
recently the facial model face animation technique has been adoptedfor the MPEG-4 visual standard
(mpeg4 visual).

9.6 EXERCISES

9-1
*

In the modified residual VQ described in Equation 9.5, with a 4 x 4 block and8 bits for
each pixel of original image, weuse 8 bits for coding block mean and block variance.
Wewantto obtain thefinalbitrate of 2 bits per pixel. What codebook size do we have
to use for the coding residual, assuming that we use fixed-length coding to code vector
indices?

9-2. In the block truncation coding described in Equation 9.7, what is the bit rate for a block
size of 4 x 4 if the mean and variance are both encoded with 8 bits? Do you have any
suggestions for reducing the bit rate withoutseriously affecting the reconstruction quality?

9-3. Is the codebook generated with the LBG algorithm local optimum? List the several
important factors that will affect the quality of codebook generation.

9-4. In image coding using VQ, what kind of problems will be caused by using the codebook
in practical applications (hint: changing bit rate).

9-5. Whatis the most important improvementofthelatticeVQ overtraditional VQ in practical
application. Whatis the keyissue for lattice VQ for image coding application?

9-6. Write a subroutine to generate a fern leaf (using C).
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QO Motion Analysis and
Motion Compensation

Uptothis point, what we have discussed in the previous chapters were basic techniques in image
coding, specifically, techniquesutilized in still image coding, From here on, weare going to address
the issue of video sequence compression. To fulfill the task, we will first define the concepts of
image and video sequences. Then we address the issue of interframe correlation between successive
frames. Two techniques in exploitation ofinterframe correlation, frame replenishment and motion-
compensated coding, will then be discussed, The rest of the chapter covers the concepts of motion
analysis and motion compensation in general.

10.1 IMAGE SEQUENCES

In this section the concept ofvarious image sequences is defined in a theoretical and systematic
manner, The relationship between image sequences and video sequences is also discussed.

It is well knownthat in the 1960s the advent of the semiconductor computer and the space
program swiftly brought the field of digital image processing into public focus. Since then the field
has experienced rapid growth and has entered every aspect of modern technology. Since the early
1980s, digital image sequence processing has been an attractive research area (Huang, 1981a, 1983).
This is not surprising, because an image sequence, as a collection of images, may provide more
information than a single image frame. The increased computational complexity and memory space
associated with image sequence processing are becoming more affordable due to more advanced,
achievable computational capability. With the tremendous advancements continuously made in
VLSI computerandinformation processing, image and video sequencesare evermore indispensable
elements of modernlife. While the pace and the future of this development cannotbe predicted,
one thing is certain: this process is going to drastically change all aspects of our world in the next
several decades,

Asfar as image sequenceprocessing is concerned, it is noted that in addition to temporal image
sequences, stereo image pair and stereo image sequencesalso received attention in the middle of
the 1980s (Waxman and Duncan, 1986). The concepts of temporal and spatial image sequences,
and the imaging space (which may be considered as a next-higher-level unification of temporal
and spatial image sequences) maybeillustrated as follows.

Consider a sensorlocated in a specific position in the three-dimensional (3-D) world space.It
generates images about the scene, one after another. As time goes by, the images form a sequence.
The set of these images can be represented with a brightness function g(x,y,0, where x and y are
coordinates on the image planes. Thisis referred to as a remporal image sequence. This is the basic
outline about the brightness function g(x,y,t) dealt with by researchers in both computer vision,
e.g., Horn and Schunck (1980) and signal processing fields, e.g., Pratt (1979).

Now consider a generalization of the above basic outline. A sensor, as a solid article, can be
translated (in three free dimensions) and rotated (in two free dimensions). It is noted that here the
rotation of a sensor about its optical axis is not counted, since the images generated will remain
unchanged whenthis type of rotation takes place. So, we can obtain a variety of images when a
sensoris translated 16 different coordinates and rotated to different angles in the 3-D world space.
Equivalently, we can imagine that there is an infinite number of sensors in the 3-D world space
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that occupies all possible spatial coordinates and assumesall possible orientations at each coordi-
nate; i.e., they are located on all possible positions. At one specific moment, all of these images
form a set, which can bereferred to as a spatial image sequence. When time varies, these sets of
images form a muchlargerset of images, called an imaging spuce.

Clearly, it is impossible to describe such a set of images by using the above-mentioned g(x,y,t).
Instead, it should be described by a more general brightness function,

a(x.y.t,5), (10.1)

where § indicates the sensor’s position in the 3-D world space; i.c., the coordinates of the sensor
center and the orientation of the optical axis of the sensor. Hence § is a 5-D vector. Thatis,

oq] =(x,3,2,B,y), (10,2)

where x, y, and Z represent the coordinates of the optical center of the sensor in the 3-D world
space; and B and y represent the orientation ofthe optical axis ofthe sensor in the 3-D world space.
More specifically, each sensor in the 3-D world space may be considered associated with a 3-D
Cartesian coordinate system such thatits optical center is located on the origin andits optical axis
is aligned with the OZ axis. In the 3-D world space we choose a 3-D Cartesian coordinate system
as the reference coordinate system. Hence,a sensorwith its Cartesian coordinatesystem coincident
with the reference coordinate system has its position in the 3-D world space denoted by § =
(0,0,0,0,0). An arbitrary sensor position denoted by $ = (x, y, Z, 4, 4) can be described as follows.
The sensor’s associated Cartesian coordinate systemis first shifted from the reference coordinate
system in the 3-D world space with its origin settled at (x, y, z) in the reference coordinate system.
Thenit is rotated with the rotation angles 8 and y being the same as Euler angles (Shu and Shi,
1991; Shi et al., 1994). Figure 10.1 showsthe reference coordinate system and anarbitrary Cartesian
coordinate system (indicating an arbitrary sensorposition). There, oxy and o’x’y’ represent, respec-
tively, the related image planes.

Assume now a world point P in the 3-D space that is projected onto the image plane as a pixel
with the coordinates xp and y, Then, xp and yp are also dependent on tand 5s. That is, the coordinates
of the pixel can be denoted by x, = xp (1,8) and y, = yp (t, 8). So generally speaking, we have

g=a(x,(13),y,(t.5).1,3). (10.3)

Asfar as temporal image sequencesare concerned,let us take a look at the framework of Pratt
(1979), and Horn and Schunck (1980). There, g = g (xp (t), yp (t), t) is actually a special case of
Equation 10.3, i.e., g = g(xp(t, 5 = constant vector), y,(t, 5 = constant vector), (f, 5 = constant
vector). In other words, the variation of $ is restricted to be zero, i.c., AS = 0. This means the
sensoris fixed in a certain position in the 3-D world space.

Obviously,an alternativeis to define the imaging space as a setof all temporal image sequences,
i.¢., those taken by sensors located atall possible positions in the 3-D world space. Stereo image
sequences can thus be viewed as a proper subset of the imaging space, just like a stereo pair of
images can be considered as a proper subset of a spatial image sequence.

In summary, the imaging spaceis a collection ofall possible forms assumed by the general
brightness function g (x, y, t, $). Each picture taken by a sensor located on a particular positionat
a specific momentis merely a specialcross sectionofthis imaging space. Both temporalandspatial
image sequencesare special proper subsets of the imaging space. They are in the middle level,
between the imaging space andthe individual images. This hierarchical structure is depicted in
Figure 10.2.
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FIGURE 10.1 Twosensorpositions § = (0,0,0,0,0) and $ = (x, y, z, 4, 4).

Before we conclude this section, we should discuss the relationship between image sequences
and video sequences. It is noted that the term video is used very often nowadays in addition to the
terms image frames and image sequence. It is necessary to pause for a while to discuss the
relationship between these terms. Image frames and image sequence have been defined clearly
above with the introduction of the concept of the imaging space. Video can meananindividual
video frameor video sequences.It refers, however, to those frames and sequences that are associated
with the visible frequency band in the electromagnetic spectrum. For image frames and image
sequences, there is no suchrestriction. For instance, infrared image frames and sequences corre-
spond to a band outside the visible band in the spectrum. From this point of view, the scope of
image frames and sequencesis wider than that of video frames and sequences. Whenthe visible
band is concerned, the terms image frame and sequenceare interchangeable with that video frame
and sequence.

Anotherpoint we would like to bring to the reader’s attention is as follows. Though video is
referred to as visual information, which includes both a single frame and frame sequences, in
practice it is often used to mean sequences exclusively, Such an example can be found in Digital
Video Processing (Tekalp, 1995).

In this book, we use image compressionto indicate still image compression, and video compression
to indicate video sequence compression. Readers should keep in mind, however,that (1) video can
meanasingle frame or sequencesofframes; and (2) the scope of image is wider than thatof video,
and video is more pertinent to multimedia engineering.

10.2 INTERFRAME CORRELATION

As far as video compression is concerned,all the techniques discussed in the previous chapters are
applicable. By this we mean twoclasses of techniques. The first class, which is also the most
straightforward way to handle video compression, is to code each frame separately. Thatis,
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FIGURE 10,2 A hierarchical structure.

individual frames are coded independently on eachother. For instance. using a JPEG compression
algorithm to code each frame in a video sequence results in motion JPEG (Westwater and Furht.
1997). In the second class, methods utilized for still image coding can be generalized for video
compression. For instance, (DCT) transform coding can be generalized and applied to video coding
by extending 2-D DCTto 3-D DCT.Thatis, instead of 2-D DCT,say. 8 x 8, applied to a single
image frame, we can apply 3-D DCT,say, 8 x 8 x 8, to a video sequence. Refer to Figure 10.3.
Thatis, 8 blocks of 8 x 8 each located, respectively, at the same position in one of the 8 successive
frames from a video sequence are coded together with the 3-D DCT.It was reported that this 3-D
DCTtechniqueis quite efficient (Lim, 1990; Westwater and Furht, 1997). In addition, the DPCM
techniqueandthe hybrid technique can be generalized and applied to video compressionin a similar
fashion (Jain, 1989; Lim, 1990). It is noted that in the second class of techniques several successive
frames are grouped and codedtogether, whilein the first class each frame is coded independently.

Video compression has its own characteristics, however, that makeit quite different from sul
image compression. The majordifference lies in the exploitation of interframe correlation that
exists between successive frames in video sequences, in addition to the intraframe correlation that
exists within each frame. As mentioned in Chapter1, the interframe correlation is also referred to
as temporal redundancy, while the intraframe correlation is referred to as spatial redundancy. In
order to achieve coding efficiency, we need to remove these redundancies for video compression.
To do so we mustfirst understand these redundancies.

Consider a video sequence taken in a videophoneservice. There, the camerais static most of
the time. A typical scene is a head-and-shoulder view of a person imposed on a background. In
this type of video sequence the backgroundis usually static. Only the speaker is experience
motion, which is not severe. Therefore, there is a strong similarity between successive frames, that
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FIGURE10.3 3-D DCT of 8 x 8 x 8.

is, a strong adjacent-framecorrelation. In other words, there is a strong interframe correlation. It
was reported by Mounts (1969) that when using videophone-like signals with moderate motionin
the scene, on average. less than one-tenth of the elements change between frames by an amount
which exceeds |% ofthe peak signal. Here, a 1% changeis regarded as significant. Our experiment
on the first 40 frames of the Miss America sequence supports this observation. Two successive
frames of the sequence, frames 24 and 25, are shownin Figure 10.4.

Now, consider a video sequence generated in a television broadcast. It is well known that
television signals are generated with a scene scanned in aparticular manner in order to maintain
a steadypicture for a human being to view, regardless of whether there is a scenery change or not.
Thatis, even if there is no change from one frametothe next, the sceneis still scanned constantly.
Hencethereis a great deal of frame-to-frame correlation (Haskellet al., 1972b; Netravali and Robbins,
1979). In TV broadcasts, the camera is most likely not static, and it may be panned, tilted, and
zoomed. Furthermore, more movement is involved in the scene. As long as the TV framesare taken
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FIGURE 10.4 Twoframes ofthe Miss America sequence: (a) frame 24, (b) frame 25.

IPR2018-01413

Sony EX1008 Page 233



IPR2018-01413 
Sony EX1008 Page 234

208 Image and Video Compression for Multimedia Engineering

densely enough, then most of the time we think the changes between successive frarnes are due
mainly to the apparent motion of the objects in the scenethat takes place during the frameintervals.
This implies thatthere is also a high correlation between sequential frames. In other words, there
is an interframe redundancy(interpixel redundancy between pixels in successive frames). There is
morecorrelation betweentelevision picture elements along the frame-to-frame temporal dimension
than there is between adjacent elements in a single frame along the spatial dimension. Thatis, there
is generally more interframe correlation than intraframe correlation. Taking advantage of the
interframe correlation, i.¢., eliminating or decreasing the uncertainty of successive frames, leads
to video data compression. This is analogous to the case ofstill image coding with the DPCM
technique, where we can predict part of an image by knowing the other part. Now the knowledge
of the previous frames can removethe uncertainty of the next frame, In both cases, knowledge of
the past removes the uncertainty of the future, leaving less actual information to be transmitted
(Kretzmer, 1952). In Chapter 16, we will see that the words “past” and “future” used here are not
necessary. They can be changed,respectively, to “some frames” and “some other frames” in
advanced video coding techniques such as MPEG. There, a frame might he predicted from both
ils previous frames andits future frames.

At this point, it becomesclear that the second class of techniques (mentioned at the beginning
ofthis section), which generalizes techniquesoriginally developedforstill image coding and applies
them to video coding, exploits interframe correlation. For instance, in the case of the 3-D DCT
technique, a strong temporal correlation causes an energy compaction within the low temporal
frequency region. The 3-D DCT technique drops transform coefficients associated with high
temporal frequency, thus achieving data compression.

The twotechniquesspecifically developed to exploit interframe redundancy,i.e., frame replen-
ishment and motion-compensated coding, are introduced below. The former is the early work, while
the latter is the more popular recent work.

10.3 FRAME REPLENISHMENT

As mentioned in Chapter 3, frame-to-frame redundancy has long been recognized in TV signal
compression. Thefirst few experimentsofa frame sequence coder exploiting interframe redundancy
may be traced back to the 1960s (Seyler, 1962, 1965; Mounts, 1969). In (Mounts, 1969) the first
real demonstration was presented and was termed conditional replenishment. This frame replen-
ishment technique can be briefly described as follows. Each pixel in a frameis classified into
changing or unchanging areas depending on whetheror not the intensity difference between its
presentvalue and its previous one(the intensity value at the same position on the previous frame)
exceeds a threshold.If the difference does exceed the threshold,i.e., a significant change has been
identified, the addressandintensity ofthis pixel are coded and storedin a buffer and then transmitted
to the receiverto replenish intensity. For those unchanging pixels, nothing is coded and transmitted.
Their previous intensities are repeatedin the receiver. It is noted that the buffer is utilized to make
the information presented to the transmission channel occur at a smooth bit rate. The threshold is
to make the average replenishment rate match the channel capacity.

Since the replenishmenttechnique only encodesthose pixels whose intensity value has changed
significantly between successive frames, its coding efficiency is much higher than the coding
techniques which encode every pixel of every frame, say, the DPCM technique applied to ean
single frame.In other words,utilizing interframecorrelation, the replenishment technique achieves
a lowerbit rate, while keeping the equivalent reconstructed image quality.

Mucheffort had been made to further improve this type of simple replenishment algorithm.
As mentioned in the discussion of 3-D DPCMin Chapter3, for instance, it was soon realized that
intensity values of pixels in a changing area need not be transmitted independently of one another.
Instead, using both spatial and temporal neighbors’ intensity values to predict the intensity value
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FIGURE 10.5 Dirty windoweffect.

of a changing pixel leads to a frame-differencepredictive coding technique. There, the differential
signal is coded instead of the original intensity values, thus achieving a lower bit rate. For more
detail, readers are referred to Section 3.5.2. Another example of the improvements is that measures
have beentakentodistinguishthe intensity difference caused by noise fromthose associated with
changing to avoidthe dirty window effect. whose meaning is given in the next paragraph. For more
detailed information on these improvements overthe simple frame replenishment technique, readers
are referred to two excellent reviews by Haskell et al. (1972b, 1979).

The main drawback associated with the frame replenishment techniqueis that it is difficult to
handle frame sequences containing more rapid changes. When there are more rapid changes, the
number of pixels whose intensity values need to be updated increases. In order to maintain the
transmission bit-rate at a steady and proper level the threshold hasto be raised, thus causing many
Slow changes that cannot show up in the receiver, This poorer reconstruction in the receiver is
somewhat analogous to viewing a scene through a dirty window. This is referred to as the dirty
windoweffect. The result of one experimentonthe dirty windoweffect is displayed in Figure10.5.
Fromframe 22 to frame 25 of the Miss America sequence, there are 2166 pixels (less than 10%
ofthe total pixels) that change their gray level values by more than |%of the peak signal. When
we only update the gray level values for 25%(randomly chosen) of these changing pixels, we can
clearly see the dirty windoweffect. When rapid scene changes exceed a certain level, buffer
Saturation will result, causing picture breakup (Mounts, 1969). Motion-compensated coding, which
is discussed below, has been provedtobe able to provide better performancethan the replenishment
techniquein situations with rapid changes.

10.4 MOTION-COMPENSATED CODING

In addition to the frame-difference predictive coding technique(a variantofthe frame replenishment
technique discussed above), another technique: displacement-based predictive coding, was devel-
oped at almostthe same time (Rocca, 1969; Haskell and Limb, 1972a). In this technique, a motion
model is assumed. That is, the changes between successive frames are considered due to the
translation of moving objects in the image planes. Displacement vectors of objects are first esti-
mated. Differential signals between the intensity value of the picture elements in the moving areas
and those of their counterparts in the previous frame, which are translated by the estimated
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FIGURE 10.6 Two consecutive frames of a video sequence.

displacement, are encoded. This approach, -which takes motion into account to compress video
sequences, is referred to as motion-compensated predictive coding. It has been found to be much
more efficient than the frame-difference prediction technique.

To understand the above statement, let us look at the diagram shownin Figure 10.6, Assume
a car translating from the right side to the left side in the image planesat a uniform speed during
the timeinterval between the two consecutive image frames. Other thanthis, there are no movements
or changes in the frames. Under this circumstance, if we know the displacement vector of the car
on the imageplanes during the time interval between two consecutive frames, we can then predict
the position ofthe car in the latter frame from its position in the former frame. One may think that
if the translation vector is estimated well, then so is the prediction ofthe car position. This is true.
In reality, however, estimation errors occurring in determination of the motion vector, which may
be caused by various noises existing in the frames, may cause the predicted position of the car in
the latter frame to differ from the actual position of the car in the latter frame.

The abovetranslational modelis a very simple one; it cannot accommodate motions other than
translation, say, rotation, and camera zooming. Occlusion and disocclusion of objects make the
Situation even more complicated since in the occlusion case some portions of the images may
disappear, while in the disocclusion case some newly exposed areas may appear. Therefore, the
prediction error is almost inevitable. In order to have good-quality frames in the receiver, we can
find the prediction error by subtracting the predicted version ofthe latter frame from the actual
version of latter frame. If we encode both the displacement vectors and the prediction error, and
transmit these data to the receiver, we may be able to obtain high-quality reconstructed images
the receiver. This is becausein the receiving end, using the displacement vectors transmitted from
the transmitter and the reconstructed former frame, we can predict the latter frame. Adding the
transmitted prediction error to the predicted frame, we may reconstruct the latter frame with
satisfactory quality. Furthermore, if manipulating the procedure properly, we are able to achieve
data compression. ;

The displacement vectors are referred to as side or overhead information to indicate thew
auxiliary nature. It is noted that motion estimation drastically increases the computational cone
plexity of the coding algorithm. In other words, the higher coding efficiency is obtained in motlon-
compensated coding, but with a higher computational burden. As we pointed out in Section 10.1,
this is both technically feasible and economically desired since the cost of digital signal processing
decreases muchfaster than that of transmission (Dubois et al., 1981).

Motion-compensated video compression has become a major development in coding. For more
information, readers should refer to several excellent survey papers (Musmannet al., 1985; Zhang
et al., 1995; Kunt, 1995).

The commonpractice of motion-compensated coding in video compression can be split into
the following three stages.First, the motion analysis stage; that is, displacement vectors for either
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FIGURE10.7 Block diagram of motion-compensated coding.

every pixel or a set of pixels in image planes from sequential images are estimated, Second, the
present frameis predicted by using estimated motion vectors and the previous frame. Theprediction
error is then calculated. This stage is called prediction and differentiation. The third stage is
encoding. The prediction error (difference between the present and the predicted present frames)
and the motion vectors are encoded. Through an appropriate manipulation, the total amountofdata
for both the motion vectors and prediction error is expected to be muchless than the raw data
existing in the image frames, thus resulting in data compression. A block diagram of motion-
compensated coding is shawn in Figure 10.7.

Before leaving this section, we compare the frame replenishment technique with the motion-
compensated coding technique, Qualitatively speaking, we see from the above discussion that the
replenishment technique is also a kind ofpredictive coding in nature. This is particularly true if
we consider the frame-difference predictive technique used in frame replenishment. There, it uses
a pixel’s intensity value in the previous frame as an estimatorof its intensity value in the present
frame.

Nowlet’s look at motion-compensated coding. Consider a pixel on the present frame. Through
motion analysis, the motion-compensated technique finds its counterpart in the previous frame.
Thatis, a pixel in the previous frameis identified such thatit is supposedto translate to the position
on the present frame of the pixel under consideration during the time interval between successive
frames. This counterpart’s intensity value is used as an estimator of that of the pixel under
consideration, We can sce thal the model used for motion-compensated coding is much more
advanced than that used for frame replenishment, therefore, it achieves a much higher coding
efficiency. A motion-compensated coding technique that utilized the first pel-recursive algorithm
for motion estimation (Netravali and Robbins, 1979) was reported to achieve a bit rate 22 to 50%
lower than that obtained by simple frame-difference prediction, a version of frame replenishment.

The more advanced model utilized in motion-compensated coding, on the other hand, leads to
higher computational complexity. Consequently, both the coding efficiency and the computational
complexity in motion-compensated coding are higher than that in frame replenishment.

10.5 MOTION ANALYSIS

As discussed above, we usually conduct motion analysis in video sequence compression. There,
2-D displacement vectors of a pixel or a group of pixels on image planesare estimated from given
image frames. Motion analysis can be viewed from a muchbroaderpointofview.It is well known
that the vision systems of both humans and animals observe the outside world to ascertain motion
and to navigate themselvesin the 3-D world space. Two groupsofscientists study vision. Scientists
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in the first group, including psychophysicists, physicians, and neurophysiologists study human and
animal vision. Their goal is to understand biological vision systems — their operation, features,
and limitations. Computerscientists and electrical engineers form the second group. As pointed
out by Aggarwal and Nandhakumar (1988),their ultimate goalis to develop computer vision systems
with the ability lo navigate, recognize, and track objects, and estimate their speed and direction.
Each group benefits from the research results of the other group. The knowledge and results of
research in psychophysics, physiology, and neurophysiology have influencedthe design of computer
vision systems. Simultaneously, the research results achieved in computer vision have provided a
framework in modeling biological vision systems and have helped in remedying faults in biological
vision systems. This process will continue to advance research in both groups, hence benefiting
society.

10.5.1 BioLocicat Vision PERSPECTIVE

In the field of biological vision, most scientists consider motion perception as a two-step process.
even though there is no ample biological evidence to support this view (Singh, 1991). The two
steps are measurementand interpretation. Thefirst step measures the 2-1) motion projected on the
imaging surfaces. The secondstep interprets the 2-D motion to induce the 3-D motion and structure
on the scene.

10.5.2 Computer VISION PERSPECTIVE

In the field of computer vision, motion analysis from image sequences is traditionally split into
twosteps.In the first step. intermediate variables are derived. By intermediate variables, we mean
2-D motion parameters in image planes. In the second step, 3-D motion variables. say, speed.
displacement, position, and direction, are determined.

Depending on the different intermediate results, all approaches to motion analysis can be
basically classified into two categories: feature correspondence and optical flow. In the former
category, a few distinct features arefirst extracted from image frames. For instance, consider an
image sequencecontaininganaircraft. Two consecutive frames are shown in Figure 10.8. The head
and tail of the aircraft, and thetips of its wings may be chosen as features. The correspondence of
these features on successive image frames needsto be established. In the second step, 3-D motion
can then be analyzed from the extracted features and their correspondence in successive frames.
In the latter category of approaches, the intermediate variables are optical flow. An optical flaw
vector is defined as a velocity vectorof a pixel on an image frame, An opticalflow field Is referred
to as the collection of the velocity vectors of all the pixels on the frame. In thefirst step, opucal
flow vectors are determined from image sequences as the intermediate variables. In the second
step, 3-D motionis estimated from optical flow. It is noted that optical flow vectors are closely

y

 
FIGURE 10.8 Feature extraction and correspondence from two consecutive frames in a temporal image
sequence.
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related to displacement vectors in that a velocity vector multiplying by the time interval between
two conseculive frames results in the corresponding displacement vector. Optical flow andits
determination will be discussed in detail in Chapter 13.

It is noted that there is a so-called direct method in motion analysis. Contrary to the above
Optical flow approach, instead of determining 2-D motion variables,(i.c., the intermediate variables),
prior to 3-D motion estimation, the direct method attempts to estimate 3-D motion without explicitly
solving for the intermediate variables. In (Huang and Tsai, 1981b) the equation characterizing
displacement vectors in the 2-D image plane and the equation characterizing motion parametersin
3-D world space are combined sothat the motion parameters in 3-D world space can bedirectly
derived, This method has been utilized to recover structure (object surfaces) in 3-D world space
as well (Negahdaripour and Horn, 1987; Horn and Weldon, 1988; Shu and Shi, 1993). The direct
method has certain limitations, That is, if the geometry of object surfaces is not known in advance,
then the methodfails.

The feature correspondence approach is sometimes referred to as the discrete approach, while
the optical flow approach is sometimesreferred to as the continuous approach, This is because the
correspondence approach concerns only a set of relatively sparse but highly discriminatory 2-D
features on image planes. The optical flow approach is concerned with a dense field of motion
vectors,

It has been found that both feature extraction and correspondence establishmentare not trivial
tasks. Occlusion and disocclusion which, respectively, cause some features to disappear and some
features to reappear, make feature correspondence even more difficult. The development ofrobust
techniques to solve the correspondence problemis an active research area andis still in its infancy.
So far, only partial solutions suitable for simplistic situations have been developed (Aggarwal and
Nandhakumar, 1988). Hence the feature correspondence approachis rarely used in video compres-
sion, Because ofthis, we will not discuss this approach any further.

Motion analysis (sometimes referred to as motion estimation or motion interpretation) from
image sequences is necessary in automated navigation. It has played a central role in the field of
computer vision since the late 1970s and early 1980s. A great deal of the papers presented at the
International Conference on Computer Vision cover this and related topics. Many workshops,
symposiums, and special sessions are organized aroundthis subject (Thompson, 1989).

10.5.3 SIGNAL PROCESSING PERSPECTIVE

In the field ofsignal processing, motion analysis is mainly considered in the context of bandwidth
reduction and/or data compression in the transmission of visual signals. Therefore, instead of the
motion in 3-D world space, only the 2-D motionin the image plane is concerned.

Because of the real-time nature in visual transmission, the motion model cannot be very

complicated. So far, the 2-D translational model is most frequently assumed in the field. In the 2-D
translational model it is assumed that the change between a frame andits previous one is due to
the motion of objects in the frame plane during the timeinterval between two consecutive frames.
In many cases, as long as frames are taken densely enough, this assumptionis valid. By motion
analysis we mean the estimation of translational motion — either the displacement vectorsor
velocity vectors. Withthis kind of motion analysis, one can apply the motion-compensated coding
discussed above, making coding more efficient. ,

Basically there are three techniques in 2-D motion analysis: Correlation, and recursive and
differential techniques. Philosophically speaking, thefirst two techniques belong to the same group:
region matching. het ;

Refer to Figure 10.6, where the moving caris the object under investigation.By motion analysis
we mean finding the displacement vector, i.e., a vector representing the relative positions of the
car in the two consecutive frames. With region matching, one may consider the car (or a portion
of the car) as a region of interest, and seek the best match between the two regions in the two
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frames: specifically, the region in the present frame and the region in the previous frame, For
identifying the best match, two techniques, the correlation and the recursive methods, differ in
methodology. The correlation technique finds the best matchby searching the maximum correlation
between the two regions in a predefined search range, while the recursive technique estimatesthe
best match by recursively minimizing a nonlinear measurement ofthe dissimilarities between the
two regions.

A couple of comments are in order. First, it is noted that the most frequently used technique
in motion analysis is called block matching, whichis a type ofthe correlation technique, There, a
video frame is divided into nonoverlapped rectangular blocks with each block having the same
size, usually 16 x 16. Each block thus generated is assumed to move as one, Le., all pixels ina
block share the same displacement vector, For each block, we find its best match in the previous
frame with correlation. That is, the block in the previous frame, which gives the maximum
correlation, is identified. The relative position of these two best matched blocks produces a dis-
placementvector, This block matching technique is simple and veryefficient, and will be discussed
in detail in Chapter 11. Second, as multimedia finds more and more applications, the regions
occupied by arbitrarily-shaped objects (no longer always rectangular blocks) become increasingly
important in content-based video retrieval and manipulation. Motion analysis in this case is dis-
cussed in Chapter 18. Third, althoughthe recursive technique 1s categorized as a region matching
technique,it may be usedfor finding displacement vectors for individual pixels. In fact the recursive
technique wasoriginally developed for determining displacement vectors of pixels and, hence, 1
is called pel-recursive. This technique is discussed in Chapter 12. Fourth, both correlation and
recursive techniques can beutilized for determining optical flow vectors. Optical flow is discussed
in Chapter 13,

Thethird technique in 2-D motion analysis is the differential technique. This is one ofthe main
techniquesutilized in determining optical flow vectors. It is named after the termof differentials
because it uses partial differentiation of an intensity function with respect to the spatial coordinates
x and y, as well as the temporal coordinate ¢, This technique is also discussed in Chapter 13.

10.6 MOTION COMPENSATION FOR IMAGE

SEQUENCE PROCESSING

Motion analysis has long been considered a key issue in image sequence processing (Huang, 198}a;
Shi, 1997). Obviously, in an area like automated navigation, motion analysis plays a central role.
From the discussion in this chapter, we see that motion analysis also plays a key role in video data
compression.Specifically, we have discussed the concept of motion-compensated video coding in
Section 10.4. In this section we would like to consider motion compensation for image sequence
processing,in general. Letusfirst consider motion-compensatedinterpolation. Then, we will discuss
motion-compensated enhancement, restoration, and down-conversion.

10.6.1 Mortion-CompPeENsATED INTERPOLATION

Interpolation is a simple yetefficient and important method in image and video compression.In
image compression, we may only transmit, say, every other row. We then try to interpolate these
missing rows from theother half of the transmitted rowsin the receiver. In this way, we Compress
the data to half. Since the interpolation is carried out within a frame, it is referred to as spatial
interpolation. In video compression, for instance, in videophone service, instead of transmitting
30 frames per second, we may choosea lowerframerate, say, 10 frames per second. In the receiver,
We maytry to interpolate the dropped frames from the transmitted frames. This strategy immediately
dropsthe transmitted data to onethird. Another exampleis the conversion of a motion picture Into
an NTSC (National Television System Commission) TV signal. There, every first frame in the
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FIGURE 10.9 Weightedlinear interpolation.

motion picture is repeated three times and the next frame twice, thus converting a 24-frame-per-
second motion picture to a 60-field-per-second NTSCsignal. This is commonly referred to as 3:2
pulldown. In these two examples concerning video, interpolation is along the temporal dimension,
whichis referred to as feporal interpolation.

For basic concepts of zero-order interpolation, bilinearinterpolation, and polynomial interpo-
lation, readers are referred to signal processing texts, for instance (Lim, 1990). In temporal inter-
polation, the zero-order interpolation meanscreation of a frame by copying its nearest frame along
the time dimension. The conversion of a 24-frame-per-second motion picture to a 60-field-per-
second NTSCsignal can beclassified into this type of interpolation. Weighted linear interpolation
can be illustrated with Figure 10.9.

There, the weights are determined according to the lengths oftime intervals, which is similar
to the bilinear interpolation widely used in spatial interpolation, except that here only one index
(along the time axes) is used, while two indexes (along twospatial axes) are used in spatial bilinear
interpolation. Thatis,

 |

flew) =7 - Alsat) +s(n) (10.4)1 | 2

If there are one or multiple moving objects existing in successive frames, however, the weighted
linearinterpolation will blur the interpolated frames. Taking motioninto accountin the interpolation
results in motion-compensated interpolation. In Figure 10.10, we still use the three frames shown
in Figure 10,9 toillustrate the concept of motion-compensated interpolation. First, motion between
two given frames is estimated. Thatis, the displacement vectors for each pixel are determined,
Second, we choose a framethatis nearer to the frame we wantto interpolate. Third, the displacement
vectors determined inthe first step are proportionally converted to the frame to be created, Each
pixel in this frame is projected via the determined motiontrajectory to the frame chosen in step 2.
In the process of motion-compensated interpolation, spatial interpolation in the frame chosen in
step 2 usually is needed.

10.6.2 Motion-CompeNsaTteD ENHANCEMENT

It is well known that when an imageis corrupted by additive white Gaussian noise (AWGN) or
burst noise, linear low-passfiltering, such as simple averaging or nonlinear low-passfiltering, such
as a median filter, performs well in removing the noise, When an image sequenceis concerned,
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FIGURE10.10 Motion-compensated interpolation.

we may apply suchtypesoffiltering along the temporal dimension to removenoise. This is called
temporalfiltering. These types of low-passfiltering may blur images, an effect that may become
quite serious when motionexists in image planes. The enhancement, which’ takes motion into
account, is referred to as motion-compensated enhancement, and has been found veryefficient in
temporalfiltering (Huang and Hsu, 1981c).

To facilitate the discussion, we consider simple averaging as a means for noisefiltering in what
follows. It is understood that otherfiltering techniques are possible, and that everything discussed
here is applicable there. Instead of simply averaging n successive image framesin a video sequence,
motion-compensated temporalfiltering will first analyze the motionexisting in these frames. That
is, we estimate the motion ofpixels in successive framesfirst. Then averaging will be conducted
only on those pixels along the same motion trajectory. In Figure 10.11, three successive frames are
shown and denotedbyf (x, y, t,), f (x, y, t,), and f(x,y, t;), respectively. Assumethat three pixels,
denoted by (x;, y,), (x2, y2), and (xs, y;), respectively, are identified to be perspective projections
of the same objectpoint in the 3-D world space on the three frames. The averaging is then applied
to these three pixels. It is noted that the numberofsuccessive frames, #1, may nol necessarily have
to be three. Motion analysis can use any one of the several techniques discussed in Section 10.5.

 
FIGURE10.11 Motion-compensated temporalfiltering.
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Motion-compensated temporal filtering is not necessarily implemented pixelwise; it can also be
used objectwise, or regionwise,

10.6.3 Motion-CompensateD RESTORATION

Extensive attention has been paid to the restoration of full-length feature films. There, lypical
artifacts are due to dirt and sparkle. Early work in the detectionof these artifacts ignored motion
information completely. Late motion estimation has been utilized to detect these artifacts based on
the assumptionthatthe artifacts occur occasionally along the temporal dimension. Once theartifacts
have been found, motion-compensated temporal filtering and/or interpolation will be used to remove
the artifacts. One successful algorithm for the detection and removal of anomalies in digitized
animation film can be found in (Tomet al., 1998).

10.6.4 Motion-Comprensatep Down-COoNveRSION

Here we present one more example in which motion compensation finds application in digital video
processing.

It is believed that there will be a need to down-convert a high definition television (HDTV)
image sequence for display onto an NTSC monitor during the upcomingtransition to digital
television broadcast. The most straightforward approachis to fully decode the image sequencefirst,
then apply a prefiltering and subsamplingprocess to eachfield of the interlaced sequence. This is
referred to as a full-resolution decoder (FRD). The merit of this approach is the high quality
achieved, while the drawback is a high cost in terms of the large amount of memory required to
Store the reference frames. To reduce the required memory space, another approachis considered.
In this approach, the down-conversion is conducted within the decoding loop and is referred to as
a low-resolution decoder (LRD). It can significantly reduce the required memory andstill achieve
4 reasonably good picture quality.

The prediction drift is a major type of artifact existing in the down-conversion.It is defined as
the successive blurring of forward-predicted frames with a group ofpictures. It is caused mainly
by non-ideal interpolation of sub-pixel intensities and the loss of high-frequency data within the
block. An optimal set of filters to perform low-resolution motion compensation has been derived
to effectively minimize the drift, For details on an algorithm in the down-conversionutilizing an
optimal motion compensation scheme, readers are referred to Vetro and Sun (1998).

10.7 SUMMARY

After Section II, still image compression, we shift our atention to video compression. Prior to
Section IV, where we discuss various video compression algorithms and standards, however, we
first address the issue of motion analysis and motion compensation in this chapter that slarls
Section IH, motion estimation and compensation. This is because video compression hasits own
characteristics, which are different fromthoseof still image compression. The main difference lies

in interframecorrelation. :
In this chapter, the concept ofvarious image sequencesis discussed in a broad scope: In doing

SO, a single image, temporal image sequences, and spatial image sequencesare all unified under
the conceptof imaging space. The redundancy between pixels in successive framesis analyzed for
both videoconferencing and TV broadcast cases. In these applications, there is more interframe
correlation than intraframe correlation, in general. Therefore, the utilization of interframe correla-
tion becomes a key issue in video compression. " ;

There are two major techniquesin exploitation of interframecorrelation: frame replenishment
and motion compensation. In the conditional replenishment technique, only those pixel gray level
values, whose variation from their counterparts in the previous frame exceeds a threshold, are
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encoded and transmitted to the receiver. These pixels are called changing pixels. For pixels other
than the changing pixels, their gray values are just repeated in the receiver. This simplest frame
replenishment technique achieves higher coding efficiency than coding each pixel in each frame
due to the utilization of interframe redundancy. In the more advanced frame replenishment tech-
niques,say, the frame-difference predictive coding technique, both temporal and spatial neighboring
gray values ofthe pixels are used to predict that of a changing pixel. Instead ofthe intensity values
of the changing pixels, the prediction error is encoded and transmitted. Because the variance of
the prediction error is smaller than that of the intensity values, this more advanced framereplen-
ishment technique is more efficient than the condilional replenishment technique.

The main drawback of frame replenishment techniques is associated with rapid mouon and/or
intensity variation occurring on the imageplanes. Under these circumstances, frame replenishment
will suffer from the dirty windoweffect, and even bulfer saturation

In motion-compensated coding, the motion ofpixels is first analyzed. Based on the previous
frame and the estimated motion, the current frame is predicted. The prediction error together with
motion vectors are encoded and transmittedto the receiver. Due to more accurate prediction based
on a motion model, motion-compensated coding achieves higher coding efficiency compared with
frame replenishment. This is conceivable because frame replenishment basically uses the intensity
value of a pixel in the previous frameto predict thatofthe pixel in the same location in the present
frame, while the prediction in motion-compensated coding uses motion trajectory. This implies that
higher coding efficiency is obtained in motion compensation at the cost of higher computational
complexity. This is technically feasible and economically desired since the cost ofdigital signal
processing decreases muchfaster than that of transmission.

Because ofthe real-time requirement in video coding, only a simple 2-D translational model
is used, There are mainly three types of motion analysis techniques used in motion-compensated
coding, They are block matching, pel-recursion, and optical flow. By far, block matching is used
most frequently. These three techniquesare discussed in detail in the following three chapters.

Motion compensation is also widely utilized in other tasks ofdigital video sequence processing.
Examples include motion-compensated interpolation, motion-compensated enhancement, moton-
compensated restoration, and motion-compensated down-conversion.

10.8 EXERCISES

10-1. Explain the analogy between a stereo image sequence vs. the imaging space, and a
stereo imagepair vs. the spatial image sequence to which the stereo image pair belongs.

10-2, Explain why the imaging space can be considered as a unification of image frames,
spatial image sequences, and temporal image sequences.

10-3. Give the definitions of the following several concepts: image, image sequence, and
video. Discuss the relationship between them.

10-4. Whatfeature causes video compression to be quite different from still image compres-
sion?

10-5. Describe the conditional replenishment technique. Why can it achieve higher coding
efficiency in video coding than those techniques encoding each pixel in each frame?

10-6. Describe the frame-difference predictive coding technique. You may wantto refer to
Section 3.5.2.

10-7. Whatis the main drawbackof frame replenishment?
10-8. Both the frame-difference predictive coding and motion-compensated coding are pre-

dictive codings in nature.
(a) Whatis the main difference between the two?

(b) Explain why motion-compensated coding is usually moreefficient. J
(c) Whatis the price paid for higher codingefficiency with motion-compensated coding?
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10-9, Motion analysis is an important task encountered in both computer vision and video
coding. Whatis the majordifferent requirement for motion analysis in these twofields?

10-10. Work onthe first 40 frames ofa video sequence other than the Miss America sequence,
Determine, on an average basis, what percentage of the total pixels change their gray-
level values by more than 1%of the peak signal between two consecutive frames.

10-11. Similar to the experiment associated with Figure 10.5, do your own experiment to
observe the dirty window effect. That is, work on two successive frames of a video

sequence chosen by yourself, and only update a part of those changing pixels.
10-12. Take two frames from the Miss America sequence or from another sequence of your

own choice in which arelatively large amount of motion is involved,
(a) Using the weighted linear interpolation defined in Equation 10.4, create an inter-

polated frame, which is located in the 1/3 of the time interval from the second frame
(ie., 45 = 4 (/, + /;) according to Figure 10.9),

(b) Using motion-compensated interpolation, create an interpolated frame at the same
position along the temporal dimension.

(c) Compare the twointerpolated frames and make your comments.
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