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’| Block Matching

As mentioned in the previous chapter. displacement vector measurement and its usage in motion

compensation in intei li'ai‘i‘ic. coding ['or it TV signal can be traced back to the 19703. Netravali and

Robbins ([9791 developed a pet-recursive technique. which estimates the displacement vector for

each pixel recursively Ironi its neighboring pixels using an optimization method. Limb and Murphy
(1975). Rocca and 7.;tnoletti Il'El‘i'E). Cal‘l‘orio and Rocea (1W6). and Broilerio and Rocco (1977)

developed techniques for the estimation of diSplaccntent vectors of a block of pixels. [11 the latter

approach. an image Is lirst segmented into areas with each having an approximately uniform

translation. Then the motion vector is estimated for each area. The segmentation and motion

estimation asst-mated with these arbitrarily shaped blocks are very dilliculi. When there are multiple

moving areas in images. the situation becomes more challenging. In addition to motion vecmt‘s.

the shape iiili‘ii'iiiatioii ot‘ these areas needs to be coded. Hence. when moving areas have various

complicated shapes. hotli computational complexity and coding load will increase remarkably.

In contrast, the block matching technique. Which is the locus of this chapter. is simple,

straightforward. and yet very cllictent. It has been by far the most popularly utilized motion

estimation technique in video coding In fact. it has been adopted by all the international video

coding standards: lSO. MPEG—1 and MPEG-2. and [TU H.261. and H.263. These standards will

be introduced in detail in Chapters lo. l'i'. and IQ. respectively.
it is interesting to note that even nowadays, with the tremendous advancements in multimedia

engineering. object-based andlor content-based manipulation ofiiudiovisual information is still very

demanding. particularly in audiovisual data storage. retrieval. and distribution. The applications

include digital library. video on demand. audiovisual databases. and so on. Therefore. the coding

of arbitrarily shaped objects has attracted great research attention these days. It has been included
in the MPEG—4 activities (Brailean. 199?}. and will he discussed in Chapter 18.

In this chapter various aspects of block matching are addressed. They include the concept and
algorithm. matching criteria. searching strategies. limitations. and new improvements.

11.1 NONOVERLAPPED. EQUALLY SPACED. FIXED SIZE,

SMALL RECTANGULAR BLOCK MATCHING

To avoid the kind of difficulties encountered ll'l motion estimatEOn and motion compensation with
arbitrarily shaped blocks. the block matching technique was prop05cd by Jain and Jain (198 I) based
on the following simple motion model. _ ’

An image is partitioned into a set of nonoverlapped. equally spaced. llxed 812C. Emil” rectangular
blocks: and the translation motion within each block is assumed to be uniform. Although this Simple

model considers translation motion only. other types of motions, such as rotation and zooming of
large Obit-1018, may be closely approximated by the piecewise translation of these small blocks
provided that these blocks are small enough. This observation. originally made by Jain and Jain.

has been confirmed again and again since then. . ‘
Di5placement vectors for these blocks are estimated by finding their best matched counterparts

in the previous frame. In this manner. motion estimation is significantly easier than that for
arbitrarily shaped blocks. Since the motion of each block is described by only one displacement
“301m. the side information on motion vectors decreases. Furthermore. the rectangular shape
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FIGURE 11.1 Block matching.

information is known to both the encoder and the decoder. and hence does not need to be chOdEd.

which saves both computation load and side information.

The block size needs to be chosen properly. In general. the smaller the block size. the more

accurate is the approximatiOn. It is apparent. however. that the smaller block size leads to more

motion vectors being estimated and encoded. which means an increase in both computation and
side information. As a compromise. a size of 16 x 16 is considered to he a good choicc. (This “35

been specified in international video coding standards such as H.26I, H.2o3. and MPEG-1 and
MPEG-2.) Note that for finer estimation :1 block size of 8 X S is sometimes used.

Figure 11.] is utilized to illustrate the block stretching technique. in Figure ll.l(a) an image

Frame at moment in is segmented into nonoverlapped p x q rectangular blocks. As mentioned above.
in common practice. square blocks ofp = q = 16 are used most ol'ten. Consider one of the blocks
centered at (x. 3;). It is assumed that the block is translated as a whole. Consequently. only 0113

displacement vector needs to be estimated for this block. Figure l l.l(b) shows the previous frame:
the frame at moment t“. In order to estimate the displacement vector. a rectangular search window
is opened in the frame rm. and centered at the pixel (it. y). Consider a pixel in the search window.
a rectangular correlation window of the same size p x r; is opened with the pixel located in its
center. A certain type of similarity measure (correlation) is calculated. After this matching process

has been completed for all candidate pixels in the search window, the correlation window corre—
spending 10 the 131363! Similarity becomes the best match of the block under consideration in frame
r... The relative position between these two blocks (the biock and its best match) gives the displace—

ment vector. This is shown in Figure 1 1.1(b).

The size of the search window is determined by the size of the correlation window and the
maximum POSSibIB diSplacement along four directions: upward, downward. rightward. and leftward.
1“ Figure l 1-2 these four quantities are assumed to be the same and are denoted by d. Note that r!
is estimated from apr‘r’orr' knowledge about the translation motion. which includes the largest

PDSSible motion Speed and the temporal interval between two consecutive trainer». i.e.. 1.. ‘ r"...

1 1 .2 MATCHING CRITERIA

Block matching belongs to image matching and can be viewed from a wider perspective. In mil"),
image processing tasks. we need to examine two images or two portions of images on a PiXEI‘bY'P'xel
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FIGURE 11.2 Search window and correlation window.

basis. These two images or two image regions can be selected From a spatial image sequence. i.e.,
From two ['rames taken at the same time with two different sensors aiming at the same object. 01'

from a temporal image sequence. i.e.. from two frames taken at two different moments by the same

sensor. The purpose at the examination is to determine the similarity between the two images or
two portions of images. Examples of this type of application include image registration (Pratt,

1974) and template matching (Jain, l989). The former deals with spatial registration of images.
while the latter extracts andi’or i'cCOgnixes an object in an image by matching the object template

and a certain area of the image.

The similarity measure. or correlation measure. is 21 key element in ”“3 matching process. The
basic correlation measure between two images I" and r,,_,. C (s. t). is defined as follows (Anuta. 1969).

I): 2.” z:tf“(U‘k)ffl_l[j+s,k+t) . (11.1)
J2; :41“..kaMix: Hff—I(j+5.k+!)2

This is also referred to as a normalized two-dimensional cross-correlation function (Musmann et at.

1985)

Instead ot finding the maximum similarity or correlation an equivalent but yet mote compu-
tationally efficient way of block matching is to find the minimum dissimilarity. or matching error.
The dissimilarity (sometimes relerred to as the cum distortion. or distance) between two images
I" and t“. D (s, t) is defined as tollows.

D('§‘(!)=—EZMUnflj’klfJt-f_|(j+5,.k+f)) (11.2)
j==lkl

where M(u,v) is a metric that measures the dissimilarity between the two arguments u and v. The
D (S. t) is also referred to as the matching criterion or the D values.

In the literature there are several types of matching criteria. among which the mean square

error (MSE) (Jain and Jain. 1981) and mean absolute dill'erence (MAD) (Koga et al., I981) are
used most often. It is noted that the sum of the squared difference (SSD) (Anandan, 1987) or the
Sum of the squared error (SSE) (Chan et al.. 1990) IS essentially the same as MSE. The mean
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absolute difference is sometimes referred to as the mean absolute error (MAE) in the literature

(Nogaki and Ohta. 1972).

In the MSE matching criterion. the dissimilarity metric M (L1. v) is defined as

’1

M(tt.v)=(rr—v)‘. [l l.3)

In the MAD.

M(n.v):|tr—vl. {11.4}

Obviously, both criteria are simpler than the normalized two-dimensional cross-correlation measure

defined in Equation 11.].

Before proceeding to the next section. a comment on the selection ot' the dissimilarity measure

is due. A studyr based on experimental works reported that the matching criterion does not signif-

icantly affect the search {Srinivasam 1984). Hence. the MAD is preferred due to its simplicity in
implementation (Musmann ct al.. 1985).

11.3 SEARCHING PROCEDURES

'I‘he searching strategy is another important issue to deal with in block matching. Several searching
strategies are discuused below.

11.3.1 FULL SEARCH

Figure 1 1.2 shows a search window, a correlation window, and their sizes. In searching for the best

match. the correlation window is moved to each candidate position within the search window. That
is. there are a total (2 d+l) x (2 d+l) positions that need to be examined. The minimum dissimilaril)‘
gives the best match. Apparently, this full search procedure is brute force in nature. While the full
search delivers good accuracy in searching for the best match (thus, good accuracy in motion
estimation). a large amount of computation is involved.

In order to lower computational complexity. several fast searching procedures have been
developed. They are introduced below.

11.3.2 2-D [OCARITHMIC SEARCH

Jain and Jain (1931) developed a 2-D logarithmic searching procedure. Based on a 1—D logarithmic
search procedure (Kmflh. 1973). the 2-D procedure successively reduces the search area. thus
reducing the computational burden. The first steps computes the matching criteria for five 1301““;
i“ the search window. Thesc five Points are as follows: the central point of the search window and
the four points surrounding it. with each being a midpoint between the central point and one of
the four boundaries of the window. Among these five points. the one corresponding to the minimum
dissimilarity is picked as the winner. In the next step. surrounding this winner. another set of five
points are selected in a similar fashion to that in the first step. with the distances between the five
points remaining unchanged. The exception takes place when either a central point of a set of five
points 01' 3 boundary POW 0m“? SCEIICh Window gives a minimum D value. In these circumstanceS.

the distances between the five points need to be reduced. The procedure continues until the final
step. in which a set of candidate points are located in a 3 x 3 2-D grid. Figure l 1.3 demonstrates
No cases of the procedure. Figure 11.3(a) shows that the minimum D value takes place on a

boundary. while Figure 11.3(b) shows the minimum D value in the central position.
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FIGURE 11.3 (a) A 2-D logarithmic search procedure. Points at (i. k+2L 0+2: k‘l'2)- 0+2: “4}: ancl 0+}:
k+4J are found to give the minimum dissimilarity in steps 1. 3. 3. and 4. IE§P€CIIV€ly: (‘b} A 2? loganl-hmic

. search procedure. Points at U. k,2)‘ 0+2, 192). and 0+2. k.]) are found to give the minimum diSSlmiIarity In
sleps ]. 2. 3, and 4, respectively.

A convergence proofofthe procedure is presented by Jain and Jain (1931). under the assumption
that the dissimilarity monotonically increases as the search pom: moves away from the point
correSponding to the minimum dissimilarity.

|PR2018—01413

Sony EX1008 Page 251



IPR2018-01413 
Sony EX1008 Page 252

Image and Video Compre55ion for Mu|timedia Engineering
226

if on W

 
I:0Go,a

3% ‘b”#1gush-l
'0'ta0
 

FIGURE 11.4 Three—step search procedure. Points (j+~'l. k—4). U+4. k—o), and tj+5. k-7) give the minimum

dissimilarity in steps 1, 2. and 3. respectively.

11.3.3 COARSE—FINE THREE-STEP SEARCH

Another important work on the block matching technique was completed at almost the same time
by Koga et a1. (1981). A coarse-fine three—step procedure was developed for fast searching.

The three-step search is very similar to the 2—D logarithm search. There are, however, three

main differences between the two procedures. First, each step in the three-step search COITIpfll’BS‘fl
set of nine points that form a 3 x 3 2—D grid structure. Second, the distances between the points tn
the 3 X 3 2—D grid structure in the three-step search decrease monotonically in steps 2 and 3. Third,
a total of Only three steps are carried out, Obviously. these three items are different from the 2—D
logarithmic search described in Section 11.3.2. An illustrative example of the three-step search is
shown in Figure 11.4.

11.3.4 CONJUGATE DIRECTION SEARCH

The conjugate direction search is another fast search algorithm that was developed by Srinivasan

and R30 (1934)- In PfinCiPle. the procedure consists of two parts. In the first part, it findsthe
minimum dissimilarity along the horizontal direction with the vertical coordinate fixed at an’initial
position. In the second part, it finds the minimum D value along the vertical direction With the
horizontal coordinate fixed in the position determined in the first part. Starting with the vertical
direction followed by the horizontal direction is, of course, functionally equivalent. It was reported
that this search procedure works quite efficiently (Srinivasan and Rao, 1984).

Figure 11.5 illustrates the principle of the conjugate direction search. In this example, each
step involves a comparison between three testing points. If a point assumes ihE-mlmm-um D V3126
compared with both of its two immediate neighbors (in one direction), then it ts consrdereld to“ 6
the best match along this direction, and the search along another direction is started. Spwffi‘: I);
the procedure starts to compare the D values tor three points (i, k—-l), (i, k), and (i, k+l)- 1_ :1)
value of point (j, k—l) appears l0 be the minimum among the three, then points (1. k-Z). (l. .
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FIGURE 11.5 Conjugate direction search.

and (j. k) are examined. The procedure continues. finding point (j, k—3) as the best match along

the horizontal direction since its D value is smaller than that of points (j, k—4} and (j, k—2). The

procedure is then conducted along the vertical direction. In this example the best matching is finally
found at point lj+2t k—3).

11.3.5 SUBSAMPLING IN THE CORRELATION WINDOW

In the evaluation of the matching criterion. either MAD or MSE, all pixels within a correlation

window at the {M frame and an original block at the I” frame are involved in the computation. Note
that the correlation window and the original block are the same size (refer to Figure l 1.1). In order

to further reduce the computational effort. a subsantpling inside the window and the block is
performed (Bierling, 1988). Aliasing effects can be avoided by using low-pass filtering. For instance.

GHIY every second pixel, both horizontally and vertically inside the window and the block, is taken

into account for the evaluation of the matching criterion. Obviously, by using this subsampling
technique, the computational burden is reduced by a factor 0M. Since 3.34 of the pixels within the
window and the block are not involved in the matching computation. however, the use of such a

suhsampling procedure may affect the accuracy of the estimated motion vectors. especially in the
case of small-size blocks. Therefore. the subsampting technique is recommended only for those

cases with a large enough block size so that the matching accuracy will not be seriously affected.

Figure l 1.6 shows an example of 2 x 2 subsampling applied to both an original block of 16 x 16
at the I" frame and a correlation window of the same size at the t,” frame.

11.3.6 MULTIRESOLUTION BLOCK MATCHING

It is well known that a muttiresolution structure. also known as a pyramid structure. is a very

Powerful computational configuration for various image processing tasks. To save computation in

block matching, it is natural to resort to the pyramid structure. In fact, the multiresolution technique
has been regarded as one of the most efficient methods in block matching (Tzovaras et al., 1994).

In a named top-down multiresolution technique, a typical Gaussian pyramid is formed first.
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an original block

a correlation windmi-

  
(a) An original block of l6>¢15 in fi'ame at I . (b) A correlation mndnw of 15): I 5 Ln Emma atl

FIGURE 11.6 An example of 2 x 2 subsarnpling in the original block and correlation window for a faSI
search.

Before diving into further description. let us pause here to give those readers who have not been

exposed to the Gaussian pyramid a short introduction to the concept. For those who know the

coacept. this paragraph can be skipped. Briclly speaking, a Gaussian pyramid can he understood
as a set of images with different resolutions related to an original image in a certain way. The
original image has the highest resolution and is considered as the lowest level. sometimes called

the bottom level. in the set. From the bonorn level to the top level. the resolution decreases

monotonically. Specifically, between two consecutive levels, the upper level is half as large as the
lower level in both horizontal and vertical directions. The upper level is generated by applying a
low-pass filter {which has a group of weights) to the lower level. followed by a 2 >< 2 subsampllng‘

That is. each pixel in the upper level is a weighted average of some pixels tn the lower level In
general, this iterative procedure of generating a level in the set is equivalent to convolving a specific
weight function With the original image at the bottom level followed by an appropriate subsantpling'
Under certain conditions. these weight functions can closely approximate the Gaussian probabilit)’
density fUflCtion. which is why the pyramid is named after Gauss. (For a detailed discussion. readers
are referred to Burt and Adelson [1933. 1984].)l A Gaussian pyramid structure is depicted tn
Figure It]. Note that the Gaussian pyramid depicted in Figure l 1.? resembles a so-called quad—
trce structure in which each node has four children nodes. In the simplest quad-tree pyramid, eaCh
pixel in an upper level is assigned an average value of its correSponding four pixels in the DES“
lower level.

Now let‘s return to our discussion on the top~down multiresolution technique After a Gaussran
Piramid has been constructed. motion search ranges are allocated among the different Pyram'd
levels. Block matching is initiated at the lowest resolution level to obtain an initial estimation of
motion vectors. These computed motion vectors are then propagated to the next higher resolution
level. where they are corrected and then propagated to the next level. This procedure continues
until the highest resolution level is reached. As a result. a large amount of computation can be
saved. Tzovaras et a1. (1994) showed that a two~level Gaussian pyramid outperforms a three-level
pyramid. Compared with full search block. matching. the top-down multiresolution block searClt
saves up to 67% ofcomputations withoutseriously affecting the quality of the reconstructed images-

In conclusion. it has been demonstrated that multiresolution is indeed an efficient compuml‘onal

structure in block matching. This once again confines the high computational efficiency of ”“3
multiresolution structure.
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FIGURE 11.7 Gaussian pyramid structure.

11.3.7 THRESHOLDING MULTIRESOLUTIDN Btocx MATCHING

With the multiresolution technique disenssed above. the computed motion vectors at any interrac—
diate pyramid level are projected to the next higher resolution level. In reality. some computed
motion vectors at the lower resolution levels may be inaccurate and have to be further refined.

while others may be relatively accurate and able to provide satisfactory motion compensation for

the corresponding block. From a computation-saving point of view. for the latter class it may not
be worth propagating the motion vectors to the next higher resolution level For further processing.

Motivated by the above observation, at new inultircsolution block matching method with a

thresholding technique was developed by Shi and Xia (1997). The thresholding technique prevents
those blocks, whose estimated motion vectors provide satisfactory motion compensation. from
further processing. thus saving a lot of computation. In what follows. this technique is presented

in detail so as to proVide readers with an insight to both multiresolution block matching and
thresholding multiresolution block matching techniques.

Algerithm —— Let fact, y) be the frame of an image sequence at current moment it. First. two

Gaussian pyramids are formed, pyramids u and n — I. from image frames fits, y) and fi,_,(x.y).
respectively. Let the levels of the pyramids be denoted by l. l: 0. l. L, where 0 is the lowest
resolution level (rep level). L is the full resolution level (bortom level), and L+l is the total number

0f layers in the pyramids. If (Lj) are the coordinates of the upper-left corner of a block at level l
01" pyramid n. the block is referred to as block (i.j),§. The horizontal and vertical dimensions of a

block at level I are denoted by b; and b'y. respectively. Like the variable block size method (refer
to Method 1 in Tzovaras et al. {1994]}, the size of the block in this work varies with the pyramid
levels. That is. ifthe size ofa block at level i is bi, then the size of the block at level H» 1 becomes

2b; 3': 2b;. The variable block size method is used because it gives more efficient metion estimation
than the fixed block size method. Here. the matching criterion used for motion estimation is the

MAD because it does not require ntultiplication and performs similar to the MSE. The MAD
between block (i._i)'b,'1 of the current frame and block (i + v‘, j + v,)'b:._l of the previous frame at
level l can be calculated as
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bl-t bi-l

MADW],[V_:.1’:_)=fiE Elfif(t+k,j+ m)—fif_,(r+ k + vfi.j+ m + vi)! {115)3' k1“ mzfl

where V1 = (vi. vy'.) is one of the candidates of the motion vector of block (id-)1.- u". it: are the two
components of the motion vector along the it and y directions, respectively.

A block diagram of the algorithm is shown in Figure 11.8. The threshold in terms of MAD

needs to be determined in advance according to the accuracy requirement ol‘ the motion estimation

Determining the threshold is discussed below in Part B of this subsection. Gaussian pyramids are

formed for two consecutive frames of an image sequence from which motion estimation is desired

Block matching is then performed at the top level with the full-search scheme. The estimated

motion vectors are checked to see if they provide satisfactory motion compensation. it the accuracy

requirement is met. then the motion vectors will be directly transformed to the. bottom level of the

pyramid. Otherwise, the motion vectors will be propagated to the next higher resolution level for

further refinement. This thresholding process is discussed below in Part C of this Subsection. The

algorithm continues in this fashion until either the threshold has been satisfied or the bottom level

has been reached. The skipping of some intermediate~level calculations provides for computational

saving. Experimental work with quite different motion complexities demonstrates that the proposed
algorithm reduces the processing time from 14 to 20%. while maintaining almost the same quality

in the reconstructed image compared with the fastest existing mnltiresolution block matching
algorithm (Tzovaras et al.. t994).
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FIGURE 11.8 Block diagram for a three-level threshold multiresolution block matching-
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TABLE 11.1

Parameters Used in the Esperiments

Parameters at Level Low Resolution Level Full Resolution level

MiSS America

Search range 3 x 3 | x l
Block size 4 X 4 3 x 8

Thresholding value 2 None {not applicable}

Train

Search range 4 a 4 Ix I
Block size 4x4 8x8

Tltrcsholding value 3 None (not applicable)

Football

Search range 4 x 4 l x |
Block size 4 a: 4 Bx 8

Thresholding value 4 None (not applicable) 

Threshold Determination — The MAD accuracy criterion is used in this work for the sake of

saving computations. The threshold value has a direct impact on the performance of the proposed

algorithm. A small threshold value can improve the reconstructed image quality at the expense of

increased computational effort. On the other hand. a large threshold value can reduce the compu-

tational complexity. but the quality of the reconstructed image may be degraded. One possible way

to determine a threshold value. which was used in many experiments by Shi and Xia U997), is as
follows.

The peak signal-to-noise ratio (PSNR) is commonly used as a measure of the quality of the

reconstructed image. As introduced in Chapter 1. it is defined as

2552

MSE

 

PSNR = 10 logm (t 1.6)

From the given required PSNR, one can find the necessary MSE value. A square root of this
MSE value can be chosen as a threshold value, which is applied to the first two images from the

sequence. If the resulting PSNR and required processing time are satisfactory. it is then used for
the rest of the sequence. Otherwise. the threshold can be slightly adjusted accordingly and applied

to the second and third images to check the PSNR and processing time. it was reported in numerous
experiments that this adjusted threshold value was accurate enough. and that there was no need for
further adjustment. As shown in Table NJ, the threshold values used for the “Miss America.“

“Train." and “Football" sequences (three sequences having quite different motion complexities) are
2. 3, and 4, respectively. They are all determined in this fashion and give satisfactory performance.
as shown in the three rows marked “New Method (TH=2}," ”New Method (TI—1:3)" and “New

Method (TH=4),“ respectively, in Table l 1.2. That is, the PSNR experiences only about 0-1 dB 1055
and the processing time decreases drastically. In the experiments. the threshold value of 3. Le, the
average value of2, 3. and 4. was also tried. Refer to the three rows marked "New Method {TH=3}
in Table 11.2. It is noted that this average. threshold value 3 has already given satisfactory perfor-

mance for all three sequences. Specifically, for the "Miss America“ sequence, since the criterion
increases from 2 to 3, the PSNR loss increases from 0.12 to 0.48 dB. and the reduction in processing

time increases from 20 to 38%. For the ”Football“ sequence, since the criterion decreases from
4 10 3. the PSNR loss decreases from 0.08 lo 0.05 dB, and the reduction in PFOCBSSIUS time decreases
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from 14 to 9%. Obviously. for the "Train“ sequence. the criterion, as well as the performance,

remains the same. One can therefore conclude that the threshold determination may not require

much computation at all.

Thresholding — Motion vectors estimated at each pyramid level will be checked to see it they

provide satisfactory motion compensation. Assume V’ (Lj) = (vi. vi) is the estimated motion vector
for block (i.j)in at level i of pyramid H. For thresliolding. V’ {Lj} should be directly projected to
the bottom level L. The corresponding motion vector for the same block at the bottom level of

pyramid it will be VL (2“‘43 r'.2“-'“j), and is given as

VL(2“-'”t. THU): Z‘L'i'V’lLJ) (11.7}

The MAD between the block at the bottom pyramid level of the current frame and its counterpart

in the previous frame can be determined according to Equation 1 IS. where the motion vector is

Vb: VL (Eur-ll LEW-”J0. This computed MAD value can be compared with the predefined threshold.

If this MAD value is less than the threshold. the computed motion vector l/L (Z‘H’ i.2""“j) will

be assigned to block (2"~"" i.2"-‘”j){; at level L in the current frame and motion estimation for this

block will be stopped. If not. the estimated motion vector V“ (i._l) at level 1’ will be propagated to

level l+ l for further refinement. Figure 11.9 gives an illustration of the above thresholding process.

Experiments — To verify the effeCIiveness of the proposed algorithm. extensive experiments have.
been conducted. The performance of the new algorithm is evaluated and compared with that of

Method 1. one of the most efficient multiresolution block matching methods (Trovaras et at. 1994}

in terms of PSNR, error image entropy, motion vector entropy, the number of blocks stopped at
the top level vs. the total number of blocks, and processing time. The number of blocks stopped

at the top level is the number of blocks withheld from further processing. whilc the total number

of blocks is the number of blocks existing at the top level. It is noted that the total number of
blocks is the same for each level in the pyramid. The processing time is the sum ot’ the total number
of additions involved in the evaluation of the MAD and the thresholding operation.

In the experiments. two-level pyramids are used since they give better performance for motion
estimation purposes [Tzovaras etal.. 1994). The algorithms are tested on three video sequences

with different motion complexities. i.e.. the “Miss America." “Train." and “Football." The “Miss

America" sequence has a Speaker imposed on a Static background and contains less motion. The
“Train" sequence has more detail and contains a fast-moving object (train). The 20th frame of the

sequence is shown in Figure l 1.10. The “Football“ sequence contains the most complicated motion

Prrmfid Pyramid Pyramid
n-l :1 level

Estimation of motion vector
ofa block at level I
 

fl f I
Projection of
the block and
its esnma'ted
motion vector
at level I.

Calculation of the MAD of
the block at level I.

  

FIGURE 11.9 The thresholding proceSs.
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FIGURE 11.111 The ltttlt frame of the “Train" sequence.

.‘h >"I—""":"'""_-_a'9' _... ‘

 
FIGURE [1.1] The 20th frame in the “Football" sequence.

mmPared with the other two sequences. The 20th frame is shown in Figure 11.11. Table 11.1 is
the list of implementing parameters used in the experiments. Tables 1 1.2 and l [.3 give the perfor~
mance ofthe proposed algorithm compared with Method 1. In all three cases, the motion estimation
has a half-pixel accuracy, the meaning of which will be explained in the next section. All perfor—
mance measures listed there are averaged for the first 25 frames of the testing sequences.

Each frame of the ”Miss America" sequence is of 360 x 288 pixels. For convenience, only the
central portion, 320 x 256 pixels, is processed. Using the operational parameters listed in Table 1 1.1
(with a criterion value of 2), 38% of the total blocks at the top level satisfy the predefined criterion

and are not propagated to the bottom level. The processing time needed by the proposed algorithm
is 20% less than Method '1, while the PSNR, the error image entropy, and the vector entropy are

almost the same. Compared with Method 1, an extra amount of computation (around 0.16x 10°
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TABLE 11.2

Experimental Results (I)

Error Image Processing Times
PSNR Entropy Vector Entropy Block Stopped at (No. of
(:18) {bits per pixel] thitslvector) Top teveli‘Total Block Additions. 10*)

Miss America Sequence

Method I {Tzovoms 38.91 3.31] 6 02 llflltit} {(103
et al.. 1994)

New method tTH=2} 38.79 3.319 5.65 45?; 1250 3.02

New method (TH-=3} 38.43 3.340 5 45 67‘)! [330 6 l7

Train Sequence
Method I (Tzovams 27.37 4.692 fill-4 th-‘Efiott 22 SS

etal.. [994)

New method (TH=3) 27.27 4.783 5.65 lilir’Efi't-H 13.63

Football Sequence
Method I (Tzovarzts 24.26 5.3?9 163 OBS-it} 30.06

or at. 1994}
New method (Tl-i=4) 24.!8 5.483 7.58 I464t_ifidtl 25.90

New method (Tl-i=3) 24.2I 5.483 7.5? 11238340 ’27. ID 

additioas) is conducted on the thresholding operation, but a large computational savings (around

2.16 x 106 additions) is achieved by withholding from further processing those blocks whose MAD

values at the full resolution level are less than the predefined accuracy criterion

The frames of the “Train" sequence are 1'20 x 288 pixels. and only the central portion. 540 X

256 pixels, is processed. Using the operational parameters listed in Table l H (With a Othello“

value of 3). about 52% of the total blocks are stopped at the top level. The processing time is
reduced about l'i'% by the new algorithm. compared with Method 1. The PSNR. the error image

entropy, and the vector entropy are almost the same.

The. frames of the “Football" sequence are 720 x 480 pixels. and only the central portion.
640 x 384 pixels. is processed. Using the operational parameters listed in Table l [.1 (Wllh a criterion

value of 4), about 38% of the total blocks are stopped at the top level. The processing time is about
14% less than that required by Method 1, while the PSNR. the error image entropy. and the vector
entropy are almost the same.

As discussed, the experiments with a single accuracy criterion of 3 also produce similarly good
performance for the three different image sequences.

In summary. it is clear that with the three different testing sequences. the thresholdng multi-
resolution block matching algorithm works faster than the fastest existing top~down multircsolution
block matching algorithm while achieving almost the same quality of the reconstructed image.

11.4 MATCHING ACCURACY

Apparently. the two components of the displacement vectors obtained using the technique described
above are an integer multiple of pixels. This is referred to as one-pixel accuracy. If a higher accuracy
is desired. i.e.. the components of the displacement vectors may be a non-integer multiple of P'xelsr
then spatial interpolation is required. Not only will more computation be involved, but also more
bits will be required to represent motion vectors. The gain is a more accurate motion estimation.
hence less prediction error. In practice. half-pixel or quarter-pixel accuracy are two widely utilized
accuracies other titan one-pixel accuracy.
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11.5 LIMITATIONS WITH BLOCK MATCHING TECHNIQUES

Although very simple. xii'aighttorn-ind. and el'lieient. henee. unlined most widely in video ending.

[he block IIIIIIL'iIIIIg motion eonipensalion leelinique has its drawbacks. First. it has an unreliable

motion veelor Iieltl wnli reapeei lo [be true iniilitin in 3-D world space. In particular. it has

unmitisl'aelory Iiiolion e~tiiiialion and eonipenxation along moving boundaries. Second. il causes
liloek artil'aeix. 'l‘hii'd. It I]UL'(I\ to handle side information. Thai 1%. it needs to encode and II‘EIIIMTIII

tniitiiin VL‘L'IIII'N ax an o\ et'heatl Iii lhe i'eeeiiing end. thus making it dil‘lieuli to use Smaller block

size in aehieie higher aeeoraei in motion 041111311011.

All [hL‘HC LII'Il'ikhéiukh are due to in, simple model: eaeh hliiek is. assumed to experience a uniform

IIEIIINIEIIIUII and the motion \eeior» ol' partitioned hloeks are e~iiinaied independently of each other.

l‘ni'eliahle iiiolinii L'xIlll‘IIIllHlI. ii;ii'tie‘ti|;ii'|_\' aloner moving bi)U11LILlI'IC>~.C£llINL“~I'ITlII'L‘ prediction error.

henee reduced coiling el'iieieney.

The hloelk :Ii'liliie‘lx do not eauw sexere perceptual degradation to the human visual ayatem

illVSi \\ hen the a\ai|ah|e ending hit rate in .itleiiiiaieli high. This is because. Willi a high hil rate.

a xiit'tieieni autumn of the ll'ltllllIll-Cl1111['!L.'l'l‘~illCiI predieiion error can be ll';1|‘l\.l11lllL‘.tI to the reeening

end. hence iiiipio\ in; the KLII'IIL'kllH.‘ natal el'leel to HUL‘il an exient that she hloek artil'aelx do not

appear in be annoying. Houeiei. \\i1L‘Il tlie axailahle hil rule. I\ low. parlietilarly lower than (1-1 Iibph.

ilie arlil'aets hue-nine innnln {II'IITIL'LIHLH'IL In Figure 11.12. a I‘L‘L'UI'IHII'IIL'ICLI lrainc 0| the “Mm

\l'ncrle‘d“ \etiuenee at ;. lou hi1 rale ]\ NI'luull. ['beiotisly. liloek ai'Iil‘aelx' are very annoying.

 
FIGURE 11.12 The 21:41 l'CL‘UIlhlI'llClcd frame 01' the "Miss Aiiiei'iea" sequence name a eodee lolltiwing
H.263.
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especially where the mouth and hair are involved. The sequence was coded and decoded by using

a codec following ITU-T Recommendations H.263. an international standard in which block

matching is utilized for motion estimation.

The assumption that motion within each block is uniform requires a small block size such as

16 x 16 and 8 x 3. A Small block size leads to a large number of motion vectors. however. resulting

in a large overhead of side information. A study by Chan et at. (I990) indicated that 8 x 8 block

matching performs much better than 16 it 16 in terms of decoded image quality due to better motion

estimation and compensation. The bits used for encoding motion vectors. however. increase sig-

nificantly (about four times). which may be prohibitive for very low bit rate coding since the total

bit rate needed for both prediction error and motion vectors may exceed the available bit rate. It

is noted that when the coding bit rate is quite low. say. on the order of 20 khps. the side information

becomes compatible with the main information (prediction error] [Lin et ul.. W91}.

Tremendous research efforts have been made to overcome the limitations of block-matching

techniques. Some improvements have been achieved and are discussed next. It should be kept in

mind, however. that block matching is still by far the most popular and ellieient mmion animation

and compensation technique utilized for video coding, and it has been adopted for use by various

international coding standards. In other words. block matching is the most appropriate technique

in the framework of first-generation video coding {Dufaus and Moscheni. 1995'].

11.6 NEW IMPROVEMENTS

11.6.1 HIERARCHICAL BLOCK MATCHING

Bierling (1988) developed the hierarchical search based on the following two observations. On the
one hand. for a relatively large displacement. accurate block matching requires a relatively large

block size. This is conceivable if one considers its opposite case: a large displacement with a small
correlation window. Under this circumstance, the search range is large. Therefore the probability
of finding multiple matches is high. resulting in unreliable motion estimation. On the other hand.

a large block size may violate the assumption that all pixels in the block share the same displacement
vector. Hence a relatively small block size is required in order to meet the assumption. These
observations shed light on the problem of using a fixed block size. which may lead to unreliable
motion estimation.

T0 SflliSf)’ these two contradicting requirements simultaneously. in a hierarchical search Place"
dure a set ofditl‘erent sizes of blocks and correlation windows is utilized. To facilitate the discussion.

consider a three-level hierarchical block-matching algorithm, in which three block-matching Pm"
cedures are conducted. each with its own parameters. Block matching is first conducted with respect
to the largest size of blocks and correlation windows. Using the estimated displacement vector as
an initial vector at the second level, a new search is carried out with respect to the second largest
size of blocks and correlation windows. The third search procedure is carried out similarly, based
on the results of the second search. An example with three correlation windows is illustrated In
Figure l 1.13. It is noted that the resultant displacement vector is the sum of the three displacement
vectors determined by three searches.

The parameters in these three levels are listed in Table l 1.4. The algorithm is described below
Wi‘h an exPlanaiiOn of the various parameters in Table 1 1.4. Prior to each block matching. a separate
low-pass filter is applied to the whole image in order to achieve reliable block matching- The low—
pass filtering USEd i5 Simply a local averaging. That is. the gray value of every pixel is l'l‘llllaced.by
the mean value of the gray values of all pixels within a square area centered at the pixel to \Vhtfih
the mean value is assigned. In calculating the matching criterion D value. a subsampting is applied
to the original blUCk and the correlation window in order to save computation. which was discussed
in Section 11.3.5.
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(a) Frame t; (b) fi‘ame t;_.

FIGURE 11.13 Hierarchical block matching.

  

TABLE 11 .3

Experimental Results (II)

Total Blocks Slapped Saved Processing Time Compared
at Top Level with Method 1 in Tzovaras et al. (1994}

Frames Tested {We} (‘36)

“Miss America" sequence 38 20
(TH : 2)

"Train" sequence 52 I?
(TH = 3}

“Football" sequence .13 “5
(TH : 4)
 

In the first level, for every 8th pixel horizontally and vertically (a step size of 8x 8). block
matching is conducted with the maximum displacement being 1-? pixels, a correlation window size
or 64 X 64. and a suhsampling factor of 4 x 4. A 5 x 5 averaging low—pass filter is applied prior
to first level block matching. Second-level block matching is conducted with respect to every 4th
Pchl horizontally and vertically (a step size of 4 x 4). Note that for a pixel whose dispiflCCmcnl
VBCIor estimate has not been determined in first-level block matching. an average Of‘he four nearest

"cighboring estimates will be taken as its estimate. All the parameters for the second level are
listed in Table 11.4. One thing that needs to be emphasized is that in block matching al ”“5 If“?!
the search window should be displaced by the estimated displacement vector obtained in the first
level. Third-level block matching is dealt with accordingly for every 2nd PmBI horizontally and
vertically (a step sizo of 2 x 2). The different parameters are listed in Table “-4- I" “Ch of the
three levels, the three-step search discussed in Section 1 1.3.3 is utilized. fa

Experimental work has demonstrated a more reliable motion estimation due if: [Tieiizigtiifh a
set of different sizes for both the original block and the correlation‘wmdow. Thfthzsdis lacement
large window size and a large displacement range determines 3 mall" Perm” t? l 6min! ranges
VBCIOI' reliably. The successive levels with smaller window Sizes and smaller dtsp as

a": caPablo of adaptively estimating motion vectors more locallY- . tl ee levels, respectively.
Figure l 1.14 shows a portion of an image with pixels processed in the “legals so that a motion

It is noted that it is possible to apply one more interpolation aftertheselhree cm field is useful in
vector field of full resolution is available. Such a fulhresolulion motion ve
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TABLE 11.4

Parameters Used in a Three-Level Hierarchical Block Matching

Hierarchical Maximum Correlation

Level Displacement Window Size Step Size lPF Window Size Subsampling

l iTpel 64x64 S 53.9 4x4

2 i3pcl ZBXEB 4 5x5 4x4
3 ilpel the}? 2 3x3 2x2

Source: Data from Bierling (1988).

  
® Wad-hunt: media procesudinlevel]ofthrru lmls levels 2 and 3

FIGURE 11.14 A portion of an image with pixels processed in all three levels.

“Ch applications as mOIion-Compensated interpolation in the context of videophony. There. in
order to maintain a low bit rate some frames are skipped for transmission. At the receiving end
““353 sktpped frames need to be interpolated. As discussed in Chapter 10, rnotionwcon'lp‘ms‘“ed
interpolation is able to produce better frame qualityr than that achievable by using weighted linear
Interpolation.

11.6.2 Mumcmo BLOCK MATCHING

Mulligrid “13°17 was deVBIOPEd originally in mathematics (Hackbusch and Trottenbergi 1932). h
ts a useful computational structure in image processing besides the multiresolution one described
to Section 113.6. A diagram with three different levels used to illustrate a multigrid structure is
shown” in Figure [1.15. Although it is also a hierarchical structure. each level within the hierarchy
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FIGURE 11.15 Illustration ol'a three-level hierarchical structure.

is of the same resolution. A l'ew algorithms based on multigrid structure have been developed in
order to improve the block—nuttching technique. Two advanced methods are introduced below.

Thresholding Multigrid Block Matching —— Realizing that the simple block-based motion model

(assuming a unil'orm motion within a titted-size block) in the block matching technique causes

several drawbacks. Chan et al. ( I990] proposed a variable size block matching technique. The main

idea is using a spiit-and-merge strategy with a multigrid structure in order to segment an image
into a set of variable size blocks. each of which has an approximately uniform motion. A binary

tree (also known as bin-tree) structure is used to record the relationship between these blocks of
different sizes.

Specifically, an image frame is initially split into a set of square blocks by cutting the image

alternately horizontally and vertically. With respect to each block thus generated. a block matching

15 performed in conjunction with its previous frame. Then the matching accuracy in terms of the

sum squared error is compared with a preset threshold. II" it is smaller titan or equal to the threshold.

the block remains unchanged in the whole process and the estimated motion vector is final.

Otherwise. the block will be split into two blocks. and a new run of block matching is conducted
for each of these two children blocks. The process continues until either the estimated vector

satisfies a preset accuracy requirement or the block size has reached a predefined minimum. At

this Paint. a merge process is proposed by Chan et at. Neighboring blocks under the same inter~
mediate nodes in the bin-tree are checked to see it they can be merged. i.e.. it" the merged block

can be approximated with adequate accuracy by a block in the reconstructed previous frame. It is
noted that the merge operation may be optioaal depending on the specific application.

A block diagram of multigrid block matching is shown in Figure I HG. Note that it is similar
to that shown in Figure ”.3 for the thresholding multiresolution block matching discussed in
Section 11.3.6. This observation reflects the similarities between multigrid and multit'esolution

structures: both are hierarchical in nature and the splitting and merging can be easily performed.

An example of an image decomposition and its corresponding bin-tree are shown in Figure I Hi“.
It was reported by Chan et at. (1990) that. with respect to a picture of a computer mouse and

a coin. the preposed variable size biock matching achieves up to :1 ads improvement in SNR and
about 30% reduction in required bits compared with fixed-size (16 x I6) block matching. For several
typical videoconferencing sequences, the proposed algorithm constantly performs better than the
fixed-size block matching technique in terms of improved SNR of reconstructed frames with the
same bit rate.

A similar algorithm was reported by Xia and Shi (1996] where a quad-tree-based segmentation
is used. The thresholding technique is similar to that used by Shi and Xia (1997) and the emphasis
is placed on the reduction of computational complexity. It was found that for the head-shoulder
type of videophony sequences the thresholding multigrid block matching algorithm performs better
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Initialization with an intermediate level in

the multig'rid

Block matching

Is the preset
accuracy criterion

satisfied?

 
  

 
 

  
Does the block size

reach a preset
minimum?

Splitting the block
(binary or quaternary)

Completion ofmatching for the
block

FIGURE 11.16 Flow chart of multigrid block matching.

 
Y

 
  

than the thresholding muttiresolution block matching algorithm. For video sequences that contain
more complicated details and motion, however, the performance comparison turns out to be
reversed.

A few remarks can be made as a conclusion for the thresholding technique. Although it needs
to encode and transmit the bin-tree or quad-tree as a portion of side information, and it has to
resolve the preset threshold issue, overall, the pr0posed algorithms achieve better performance
compared with fixed—size block matching. With the flexibility provided through the variable-size
methodology, the proposed approach is capable of making the model of the uniform motion within
each block more accurate than fixed—size block matching can do.

Optimal Multigrid Block Matching—As pointed out in Chapter 10, the ultimate goal of motion
estimation and motion compensation in the context of video coding is to provide a high COde
efficiency in real time. In other words, accurate true motion estimation is not the final goal, although

accurate motion estimation is certainly desired. This point was presented by Bierling (1988? as
well. There, the different requirements with reSpect to motion—COmpensated coding and motion—
compensated interpolation were discussed. While the former requires motion vector estimation
leading to minimum prediction error and at the same time a low amount of motion vector infor-
mation, the latter requires accurate estimation of true vectors and a high resolution of the motion

vector field. _ _ ted
This point was very muchcmphaflzed by Dufaux and Moschent (1995). They clearly em I

that in the context of video coding. csfiimatlon of true motion in 3-D world space is not the ulttma e
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(a) An exunpie ofa decomposition

 
(h) The corresponding bin-tree

FIGURE 11.1":l Thresholding multigrid block matching.

goal. Instead. motion estimation should be able to provide good temporal prediction and at the

same time require low overhead information. In a word, the total amount ofinformation that needs
to be encoded should be minimized. Based (in this observation, at tnultigrid block matching technique

with an advanced entropy criterion was preposed.

Since it belongs to the category of thresholding multigrid block matching, it shares many
similarities with those of Chan et al. (1990) and Xia and Shi (1996). It also bears some resemblance

to threshoiding multiresolution block matching {Shi and Xia. 1997). What really distinguishes this

approach From other algorithms is its segmentation decision rule. Instead ofa preset threshold. the

algorithm works with an adaptive entropy criterion, which aims at controlling the segmentation in

Order to achieve an optimal solution in such a way that the total number of bits needed for

representing both the prediction error and motion overhead is minimized. The decision of splitting

a block is made oniy when the extra motion overhead involved in the splitting is lower than the

gain obtained from less prediction error due to more accurate motion estimation. Not only is it

optimal in the sense of bit saving, but it also eliminates the need for selling a threshold.

The number of bits needed 1'or encoding motion information can be estimated in a straightfor-

ward manner. As far as the prediction error is concerned. the bits required can be represented by

a total entropy of the prediction error, which can be estimated by using an analytical expression
presented by Dufaux (1994) and Moseheni et al. (1993). Note that the coding cost for quad-tree
Segmentation information is negligible compared with that used for encoding prediction error and
motion vectors and, hence. is omitted in determining the criterion.
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FIGURE 11.18 The 20m frame of the ”Hon er Garden" sequente

In addition to this entropyr criterion. a more advanced procedure is adopted ill the algorithm

for down-projecting the motion vectors between two Consecutit e grids in the coarse-to-t'ine iterative
refinement process.

Both qualitative and quantitative assessments in experiments tlcintmstrale Ils good performance.

It was reported that. when the PSNR is fixed, the bit rate saving for the sequence "Flower Garden"
is from 10 to 20%. for “Mobile Calendar" front (1 to IEG’r. and tor "'l"-.ih|e Tennis" up to 8%. This

can be translated into a gain in the PSNR ranging from 0.5 to L5 L18. Silhjc‘tlllvciy. the visual

quality is improved greatly. in particular. moving edges become much sharper. Figures I MS. I l .19.
and l 1.20 show a frame from “Flower Garden." "Mobile Calendar." and "Table Tennis“ sequences-

respectively.

11.6.3 PREDICTWE MOTION FIELD SEGMENTATION

As pointed at the beginning of Section 1 1.5. the block-based model. which assumes constant motion

within each block. leads to unreliable motion estimation and compensation. This block effect
becomes more obvious and severe for motion-discontinuous areas in image frames. This is because

there are two or more regions in a block in the areas. each having a different motion. Using one
motion vector to represent and compensate for the whole block results in a significant PTBdiCI'O“
error increase.

Orchard (1993) proposed a predictive motion field segmentation technique to improve nrolifln
estimation and C”"113":“Edition along boundaries of moving objects. Significant improvement In the
accuracy of the motion-compensated frame was achieved through relaxing the restrictive block—
based model along moving boundaries. That is. for those blocks involving moving boundaries. lhfi
motion field assumes pixel resolution instead of block resolution. _

TWO key issues have to be resolved in order to realize the idea. One is the segmentation issue.

it is known that the segmentation information is needed at the receiving end for motion compenv

sation. This gives rise to a large increase in side information, To maintain almost the same amount
of coding cost as the conventional block matching technique. the motion field segmentation was
proposed to be conducted based on previously decoded frames. This scheme is based on the
following observation: the shape of a moving object does not change from frame to frame.
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1112131415161?

 
FIGURE 11.20 The 20th frame of the “Table Tennis“ sequence.

This segmentation is similar to the pet recursive technique (which will be discussed in .deltlll
in the next chapter) in the sense that both techniques operate backwards: based on. previously
decoded frames. The segmentation is different from the pel recursive method in that it only uses
Previously decoded frames to predict the shape of discontinuity in the motion field: not the whole
motion field itself. Motion vectors are still estimated using the current frame at the encoder.
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Consequently, this scheme is capable of achieving high accuracy in motion estimation, and at the

same time it does not cause a large increase in side information due to the motion field segmentation

Another key issue is how to achieve a reconstructed motion field with pixel resolution along

tnoving boundaries. In order to avoid extra motion vectors that need to be encoded and transmitted.

the motion vectors applied to these segmented regions in the areas of motion discontinuity are

selected from a set of neighboring motion vectors. As a result. the proposed technique is capable

of reconstructing discontinuities in the motion field at pixel resolution while maintaining the same

amount of motion vectors as the conventional block matching technique.

A number of algorithms using this type of motion field segmentation technique have been

developed and their performance has been tested and evaluated on some real video sequences

(Orchard. 1993). Two of the 40—frarnc test sequences used were the “Table Tennis" and the

“Football“ sequences. The former contains fast ball motion and camera zooming- while the latter

contains small objects with relatively moderate amounts of motion and carttcrtt panning. Several

proposed algorithms were compared with conventional block matching in terms of average pixel

prediction error energy and bits per frame required for coding prediction error. For the average

pixel prediction error energy, the proposed algorithms achieve a significant reduction. ranging from

—0.7 to —2.8 dB with respect to the “Table Tennis“ sequence. and from v1.3 to 4.8 dB with the

“Football" sequence. For bits per frame required for coding prediction error. a reduction of 20 to

30% was reported.

11.6.4 OVERLAPPED BLOCK MATCHING

All the techniques discussed so far in this section aim at more reliable motion estimation. As a

result. they also alleviate annoying block artifacts to a certain extent. In this subsection we discuss
a group of techniques. termed overlapped block matching. developed to alleviate or eliminate block

artifacts (Watanabe. 1991; Nogaki and Ohta. 1992; Auyeung ct at. 1992).

The idea is to relax the restriction of a nonoverlapped block partition imposed in the block—
based model in block matching. After the nonoverlapped. fixed size. small rectangular block
partition has been made, each block is enlarged along all four directions from the center of the

block. Refer to Figure “.21. Both motion estimation {block matching] and motion-compensated.
prediction are conducted in the same manner as that in block matching except for the inclusion 0!

an original narratives-lapped block estimated motion vector

beet matched enlarged block

 
(I) fi'mentt. (b) frame-11...,

FIGURE 11.21 Overlapped block matching.
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a window function. That is. a 2-D window Function is utilized in order to maintain an appropriate
quantitative level along the overlapped portion. The window function decays towards the bound-
aries. In (Nogaki and Ohta, 1992) a sine-shaped window function was used.

Next. we use the algorithm proposed by Nogaki and Ohta as an example to specifically illustrate
this type of technique. Consider one of the enlarged. overlapped original (also known as target)
blocks. T(rt,y}. with a dimension of! X 1. Assume that a vector vl is one ofthe candidate diSplaeement

vectors under consideration. The predicted version of the target block with vi is denoted by 12,. P“.
{any}. Thus. the prediction error with vi. E“ Lay) can be calculated according to the following
equation

Etta-oil = R..(s.r)-Ttx.r) (1 1.8)

The window l'unclion th. y} is applied at this stage as follows, resulting in a window-operated

prediction error with vi, l-VE“.

l-VEH‘ (Ly) = E (.r. y) x W(.t', y) (I 1.9}

Assume that the MAD is Used as the matching criterion. it can then be determined as usual by

using the window-operated prediction error WE“ [.r. y). That is,

l 1 tr I
MADzF; ngErlldflj. (11.10)

The best match. which corresponds to the minimum MAD. produces the displacement vector v.

to motion-compensated prediction. the predicted version of the enlarged target block. PH (x, y)
is derived from the frame at I” by using estimated vector v. The same window function W (x. y)
is used to generate. the final window-operated predicted version of the target block. That is.

t-ve.tx.y)=atwix won W I)

It was reported by Nogaki (1992) that the luminance signal of an HDTV sequence-was used
in computer simulation. A block size 01' 16 x 16 was used for conventional block matching. while
a block size of 32 X 32 was employed for the proposed overlapped block matching. The maxmtum
displacement range (1 was taken as d = 15, Le, from -15 to +15 in both the horizontal and vertical
directions. The simulation indicated a reduction in the power of the prediction error by about 19%.
Subjectively, it was observed that the blocking edges originally existing in the prediction error
signal with conventional block matching was largely removed with the proposed overlapped block
matching technique.

11.7 SUMMARY

By far, block matching is used more frequently than any other motion estimatton technique 1n
motion—compensated coding. By partitioning a frame into nonovcrlapped. equally spaCed. fixed
size, small rectangular blocks and assuming that all the pixels to a block experience the. same
translational motion, block matching avoids the difficulty encountered to motion estimation‘of
arbitrarily shaped blocks. Consequently. block matching is much simpler and Involves less Slde
information compared with motion estimation with arbitrarily Shaped bIOCks‘
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Although this simple model considers translation motion only. other types of motions. such as

retation and zooming of large objects. may be closely approximatcd hy the piecewise translation

of these small blocks. provided that these blocks are small enough. This important observation.

originally made by Jain and Jain, has been confirmed again and again since then.

Various issues related to block matching such as selection of block sizes. matching criteria,

search strategies. matching accuracy. and its limitations and itnprm'emcnts are discussed in this

chapter. Specifically, a block size of lo x If) is used most often. For more accurate mt'ition estimation.
the size of 8 x 8 is used sometimes. In the latter case. more accurate motion estimation is obtained

at the cost of more side infomiation and higher computational complcstty.

There are several different types of matching criteria that can he used in hlocl; munching. Since

it was shown that the different criteria do not cause significant differences in block matching. the

mean absolute difference is hence preferred due to its simplicity in implementation.

On the one hand. a full—search procedure delivers good accuracy in searching for the hem match.

On the other hand. it requires a large amount of computation in order to Ion-er computational

complexity. several fast searching procedures were developed: 2—D logarithmic. search. coarse—fine

three-step search. and conjugate direction search. to name a few.

Besides these subOptimum search procedures. there arc some other measures developed to

lower computation. One of them is subsampling in the original blot-Ls and the correlation windows.

By subsampling. the computational burden in block matching can he reduced drastically, while the

accuracy of the estimated motion vectors may be affected, Tlicrcliiie. lhc subsainpling procedure

is only recommended for the case with a large block size.

Naturally. the multiresolution structure. a powerful computational configuration In ”Hits—‘0 pro—

cessing, lends itself well to a l'aSt search in block matching. it significantly reduces the computations

involved. Thresholding multiresolulion block matching further saves computation.

In terms of matching accuracy. several common choices are one—pixel. half-pixel. and quarter-

pixel accuracies. Spatial interpolation is usually required for half—pixel and quarter-pixel accuracies

That is, a higher accuracy is achieved with more computation.

Limitations with block matching techniques are mainly an unreliable motion vector lield and

block artifacts. Both are caused by the simple model: each block is assumed inexperience a uniform

translation. Much efforts have been made to improve these drawbacks. Several techniques that are

an improvement over the conventional block matching technique are discussed in this chapter.
In the hierarchical block matching technique. a set ol‘dil'l'erent sizes for both the original block

and the correlation window are used. The first level in the hierarchy with a large window size and

a large displacement range detennines a major portion of the displacement vector rcliabilitY- The
successive levels With smaller window sizes and smaller displacement ranges are capable of
adaptively estimating motion vectors more locally.

The multigrid block matching technique uses multigrid structure, another powerful coumfl'
tional structure in image processing, to provide a variable size block matching. With a split-and-

merge strategy. the thresholding multigrid block matching technique segments an image into a set
of variable size blocks. each of which experiences an approximately uniform motion. A tree structure

(bin-tree 01' quad-tree) is used to record the relationship between these variable size blocks. With
the flexibility provided through the variable-size methodology, the thresholding block matching
technique is capable of making the motion model of the uniform motion within each block more

accurate than fixed-size block matching can do.

A5 P05110345 DUI in Chapter 10. the ultimate goal of motion compensation in video coding i5 “3
achieve a high coding efficiency. In other words. accurate true motion estimation is not the final
goal. From this point of view. in the above-mentioned multigrid block matching. the decision of
splitting a him?“ is made only When the bits used to encode extra motion vectors involved in the

splitting are less than the bits saved from encoding reduced prediction error due to more accurate
estimation. To this end. an adaptive entropy criterion is proposed and used in the optimal mullignd
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block matching technique. Not only is it optimal in the sense of bit saving. but it also eliminates
the need for setting a threshold.

Apparently the block—based model encounters a more severe problem along moving boundaries.
To solve the problem. the predictive motion tield segmentation technique make the blocks involving
moving boundaries have the motion licld measured with pixel resolution instead ofbloek resolution.

In order to save shape overhead. segmentation is carried out backwards. i.e., based on previously
decoded frames. in order to avoid a large increase of side information associated with extra motion

vectors. the motion vectors applied to these segmented regions along moving boundaries are selected

from a set of neighboring motion vectors. As a result. the technique is capable of reconstructing
discontinuities in the motion held at piitel resolution while maintaining the same amount of motion

vectors as the conventional block matching technique.

The last improvement over conventional block matching discussed in this chapter is overlapped
block matching. In contrast to dealing with blocks independently of each other. the overlapped
block matching technique enlarges blocks so as to make them overlap. A window function is then

constructed and used iii both motion estimation and motion compensation. Because it relaxes the

restriction ol‘ a nonoverlappetl block partition imposed by conventional block matching. it achieves

better performance than the conventional block matching.

11.8 EXERCISES

”-1. Refer to Figure 11.2. it is said that there are a total of [2d + 1)): (20’ + ”positions that

need to he examined iii block matching with full search il'one-pixe! accuracy is required.

How many positions are there that need to be exmined in block matching with full

search il‘ halllpiscl and quarter—pixel accuracies are required?

11-2. What are the two effects that subsanipling in the original block and the correlation block

may bring out?

11-3. Read Burt and Adelson (1983) or Burt (1984), and explain why the pyramid is named

al'ter Gauss. _
11-4. Read Burt and Adelson (I983) or Burt ([984). and explain why a pyramid structure is

considered as a powerful computational configuration. Specifically, in multiresolutional

block matching, how and to what extent does it save computation dramatically. compared
with the conventional block matching technique? You may want to refer to

Section 11.3.7. _ _ _ .
11-5. How is the threshold deteniiiiied in the tliresholding l'l‘lullldit‘l‘lCllSionai block matching

technique (refer to Section 1|.3.7). It is said that the square root of the IMSE value.
derived from the given PSNR according to Equation l 1.6, is used as an initial threshold

value. Justify the necessity ol“ the square root operation. _
11-6. Refer to Section l 1.6.] or the paper by Bierling (1983). State the different requirements

in the applications of motion‘eompensated interpolation and motion-compensated cod-

ing. Discuss where a full resolution of the translational motion vector field maybe used?
1L7. Read the paper Dul'aux and Moseheni {1995), and explain-the‘ma‘m leature of optimal

multigrid block matching. State how the adaptive entropy criterion is established. Imple-
ment the algorithm and compare its performance with that presented by Chan et al.

(1990). . _
11-3. Learn the predictive motion field segmentation technique (Orchard, 1993) Explain how

the algorithms avoid a large increase in overhead due to motion field segmentation.
11—9. Implement the overlapped block matching algorithm introduced by Nogak‘t (1992).

Compare its performance with that or the conventional block matching technique.
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"mm 
2 Pel Recursive Technique

As discussed in Chapter It). the pet recursive technique is one ol' the three major approaches to
two-dimensiomtl displacement estimation in image planes for the signal processing community.
Conceptually speaking. it is one type of region-matching technique. In contrast to bIOck matching
(which was discussed in the previous chapter). it recursively estimates displacement vectors for

cot-ll pixel in an image frame. The displacement vector of a pixel is estimated by recursively
minimizing :1 nonlinear function of thc dissimilarity between two certain regions located in two

consecutive frames. Note. that region ttteans a group of pixels. but it could be as small as a single

pixel Also note that the terms Iric'l and pixel have the same meaning. Both terms are used frequently
in the field ofsignal and image processing.

Tlns chapter is organized as follows. A general description ol'thc recursive technique is provided

in Section 12.]. Some fundamental techniques in optimization are covered in Section I12.

Section l2.3 descrlbcs the Netravali and Robbins algorithm. the pioneering work in this category.

Several other typical pel recursive algorithms are introduced in Section 12.4. In Section 12.5. a

performance comparison between these algorithms is made.

12.1 PROBLEM FORMULATION

In l979 Netravali and Robbins published the first pe] recursive algorithm to estimate displacement

vectors for motion-compensated interl‘rame image coding. thravnli and Robbins (1979) dehned a

quantity, called the displaced frame difference (DFD). as follows.

DFD[.I‘. voila" ) : fits. y}_ f?-—1l"' a dry — dr). (t2. 1 i

where the subscript H and H — 1 indicate two moments associated with two successive frames based
on which motion vectors are to be estimated; .r. y are coordinates in image planes. (1“. a". are the

two components of the displacement vector. 3, along the horizontal and vertical di_rections in the
image planes. respectively. l)FD(x, 3-; cl“ (1,.) can also be expressed as DFD(.1‘,)’: (1. Whenever it
does not Cause confusion, it can be written as DFD for the sake of brevity. Obviously. if there is

no error in the estimation. i.c.. the estimated displacement vector is exactly equal to the true motion

vector. then DFD will be zero. _
A nonlinear function of the DFD was then proposed as a dissimilarity measure by Netravalt

and Robbins (193’9), which is a square function of DFD. i.e., DFDE. . .
Netravali and Robbins thus converted displacement estimation into a ininimt‘zatipn problem.

That is, each pixel corresponds to a pair of integers (x, y). denoting its spatial position_in the image
1313116. Therefore. the DFD is a function of (l. The estimated displacement we“)? d z (flit dill-i
Wile-FE ( )7 denotes the tran5position of the argument vector or matrix, 93“ hi? delfimlmCd by
minimizing the DFDz- This is a typical nonlinear programming problem, on which a large body
of research has been reported in the literature. In the next section, several techniques that rely on
it method, called descent method, in optimization are introduced. The Netravah and Robbins
algorithm can be applied to a pixel once or iteratively applied several times for displacement
eStimation. Then the algorithm moves to the next pixel. The estimated dtsplacement vector of a
pixel can be used as an initial estimate for the next pixel. This recursiori can be earned out

251
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FIGURE 12.1 Three types of recursions: (a) horizontal; (b) vertical; to) temporal.

horizontally. vertically, or temporally. By teiiipomit'y. we mean that the estimated displacement

vector can be passed to the pixel of the same spatial position within image planes in a ternpol'flll)r
neighboring frame. Figure 12.] illustrates these three different types of recursion.

12.2 DESCENT METHODS

Consider a nonlinear real-valued function 3 of a vector variable i.

z=f(§c), 02.2)

with f e R". where R" represents the set of all ii-tuples of real numbers. The question we face new
is how to find such a vector denoted by 3* that the function 2 is minimized. This is classified as

an unconstrained nonlinear programming problem.

12.2.1 FIRST-ORDER NECESSARY Commons

According to the Optimization theory, ifffi’) has continuous first-order partial derivatives. then the
first-order necessary conditions that I" has to satisfy are

Vfii'l = 0, (12.3)
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where V denotes the gradient operation with respect to 3 evaluated at f“. Note that whenever there

is only one vector variable in the function a to which the gradient operator is applied. the sign V
would remain without a subscript. as in Equation 12.3. Othet'WIse. i.e.. if there is more than one

vector variable in the function. we will explicitly write out the variable. to which the gradient

operator is applied. as a subscript of the sign V. In the component form. Equation 12.3 can be
expressed as

 

 

 

arm _ 0
0)."

am) z 0
9x: (12.4)

Mi)
3): _ 0

12.2.2 SECOND-ORDER SUFFICIENT CONDITIONS

If F{.?) has second-order continuous derivatives. then the second—order Sufficient conditions for

“3“) to reach the minimum are known as

Vf[.¥')=0 (12.5)

and

H[.r')>o. (12.6)

where H denotes the Hessian matrix and is defined as follows.

  

   

  

32f“) 3311?) 32ft?)

823', axial} axlaxn
32f 3) 31m) 32ft?)

“(3): Bazaar] 82x! 8x291" - (12-7)

elite anti) ,j_ 32ft?)
axnaxl Bxflair1 32x"

We can thus see that the Hessian matrix consists of all the second-order partial derivatives offtvtth
respect to the components of E. Equation i2.6 means that the Hessmn matrix H Is posnive definite.

12.2.3 UNDERLYING STRATEGY

Our aim is to derive an iterative procedure for the minimization. That 15. we want l0 find *1 sequence

such that

flinl>flfxl>flle>m>f(3r..)>--- (12.9)

and the sequence converges to the minimum offli). 1'6”“).
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FIGURE 12.2 Descent method.

A fundamental underlying strategy for almost all the descent algorithms (Luenherger, 1934) IS

described next. We start with an initial point in the space; we determine ;1 direction to move

according to a certain rule; then we move along the direction to :1 relative minimum ol‘ the function

z. This minimum point becomes the initial point For the next iteration.

This strategy can be better visualized using a 2-D example. shown in Figure 12.2. There. E =

(.11. .t'zil- Several closed curves are referred to as cmtrmrr curt-es or level curt-cs. That Is. each 01‘

the Curves represents

f[,tl..r3]=e. (12.10}

with it being a constant.

Assume that at the kth iteration, we have a guess: E“. For the (A + lillt Iteration. we need to

- Find a search direction‘ pointed by a vector 63";

- Determine an optimal step size or“ with or" > 0,

such that the next guess i‘” is

ik+i:ft+ai&r {12.11)

and F“ satisfies f(3:*’) >f( Fr“).

In Equation 12.11. i" can be viewed as a prediction vector for 3"”, while on" ("0" an update
vector, 9‘. Hence. using the Taylor series expansion. we can have

f(3t"k+l)=f(f*)+<Vf(ik),akd-)k>+fi. (12.12)

where (s. t) denotes the inner product between vectors E and I; and 2: represents the high"'-1"'5’"jIgr
terms in the expansion. Consider that the increment of (11‘ 63“ is small enough and. 111115: E can be
ignored. From Equation 12.10, it is obvious that in order to have flih') < Ft?) ““3 ““151 have
(Vffi‘), (1%?) < 0. That is,

f(2t+l)<f(ik):3(Vf(ik),akfi-Jk><0- (12.13)
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Choosing a dil'l‘crent update vector. i e . the product of the 63" vector and the step size od. results
in a dil'l‘erent algorithm in implementing the descent method.

In the same category of the descent method. a variety of techniques have been developed. The
reader may refer to l_.ucnhcrgcr timid) or the many other existing books on optimization. Two

commonly used techniques of the descent method are discussed below, One is called the steepest

descent method. In which the search direction represented by the (It vector is chosen to be opposite
to that ol' the gradient vector. and a real parameter of the step size (1‘ is used; the other is the

Newton—Raphson method. in which the update vector in estimation. determined jointly by the

search direction and the step size. is related to the Hessian matrix, defined in Equation |2.7. These

two techntques are further discussed in Sections 12.2.5 and 12.2.6, respectively.

12.2.4 CONVERGENCE SPEED

Speed of convergence is an important issue in discussing the descent method. It is utilized to

evaluate the perl'ormonce ol' dtl'l'erent algorithms.

Order of Convergence — Assume a sequence of vectors {P}. with k = 0, l. no. converges to

a minimum denoted by E'i'. We say that the convergence is ol' order p it' the following formula

holds (Luenherger. I984):

05 fits... on 02.14)

where p is positive. Iiim denotes the litnit superior. and l 1 indicates the magnitude or norm of a

vector argument. For the two latter notions. more descriptions I'ollow. .
The concept ol' the limit superior is based on the concept of supremum. Hence. let us last

discuss the suprentum. Consider a set of real numbers. denoted by Q. that is bounded above. Then

there must exist a smallest real number n such that for all the real numbers in the set Q. Lo. (1 E.
Q. we have q S a. This real number n is referred to as the least upper bound or the supremum ol

the set Q. and ts denoted by

supiryqu} or supveghj). (12.[5)

Now turn to a real bounded above sequence r-‘. k = 0. l aw. lfs‘ = supl r1: j 2 k}. then the sequence
{5*} Converges to a real number 5*. This real number 5* is referred to as the lnntt superior ol the
sequence {r‘} and is denoted by

Etude). (12.16)

The magnitude or norm of a vector .i‘, denoted by If I is defined as

[51: rs. (12.17)

where (5. I) is the inner product between the vector 5 and F. Throughout this discussmn, when we
say WW}. we mean column vector. (Row vectors can be bandied accordingly.) The “anr product
is therefore defined as

(5.05.? (12.18}
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with the superscript T indicating the transposition operator.

With the definitions of the limit superior and the magnitude of a vector introduced, we are now

in a position to understand easily the concept ol‘the order ofconvergence defined in Equation 12. I4.

Since the sequences generated by the descent algorithms behave quite well in general (Luenbergcr.

I984), the limit superior is rarely necessary. Hence. roughly speaking. instead of the limit superior.

the limit may be used in considering the speed ot~ convergence.

Linear Convergence -— Among the various orders of convergence. the order of unity is of

importance, and is referred to as linear convergence. Its dclinilion is its ft‘illtmrs. Illa sequence l P].

k = 0,l,---,oo, converges to 3* with

—.l'
. lit-d “l

Iim1_‘_l—=y<l. [12.l9t
.. J. _. u
.l' — ,l'

 

then we say that this sequence converges linearly with a convergence ratio v. The linear convergence

is also referred to as geometric convergence because a linear convergent sequence \v Itlt convergence

ratio vc0nverges to its limit at least as last as the geometric sequences ev‘, \‘l'llll c being a constant.

12.2.5 Srnspssr DESCENT Men-too

The steepest descent method. often referred to as the gradient method. is the oldest and simPleSl

one among variOus techniques in the descent method. As Luenbergcr pointed out in his book. it

remains the fundamental method in the category for the following two reasons. First. because of

its simplicity, it is usually the first method attempted for solving a new problem. This observation

is very true. As we shall see soon, when handling the displacement estimation as :1 nonlinear

programming problem in the pel recursive technique. the first algorithm developed by NetraVflli
and Robbins is essentially the steepest descent method. Second. because of the existence of a
satisfactory analysis for the steepest descent method. it continues to serve as a rel‘erence for

comparing and evaluating various newly developed and more advanced methods.

Formula — In the steepest descent method, (if is chosen as

61=—Vf(§‘). (12.20)

resulting in

‘w ,—-. HI
. 1

”it—J
|

—f(f*)._g_*Vf(_§‘]‘ (I121)

where the step size ct" is a real parameter. and. with our rule mentioned before, the sign V here

denotes a gradient operator with respect to 3". Since the gradient vector points to the direction
along which the function fli) has greatest increases, it is naturally expected that the selection of
the negative direction of the gradient as the search direction will lead to the steepest deSC‘i"I of

f6). This is where the term steepest descent originated.

Convergence Speed —— It can be shown that if the sequence {3) is bounded abovc. then the 5138935!
descent method will converge to the minimum. Furthermore, it can be shown that the SIBCPCS‘

descent method is linear convergent.

Selection of Step Size — It is worth noting that the selection of the step size orl has signifiCflfll
influence on the performance of the algorithm. In general, if it is small. it produces an accurate
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FIGURE 12.3 An illustration of effect ol‘ selection ol‘ step size on minimization performance. Too small (1

requires more steps to reach .x-*. Too large o. may cause overshooting.

estimate of F. Bur a smaller step size means it will take longer for the algorithm to reach the

minimum. Although a larger step size will make the algorithm converge faster. it may lead to an

esrirnate with large error. This situation can be demonstrated in Figure l2.3. There. for the sake of

an easy graphical illustration. ‘E is assumed to be one dimensional. Two cases of too small (with

subscript l) and too large (with subscript 2) step sizes are shown for comparison.

12.2.6 Nsmom-Rapnsow’s METHOD

The Newton—Raphson method is the next most popular method among various descent methods.

Formula — Consider i" at the kth iteration. The l: + lth guess. i“, is the sum of f“ and W.

.E**'=.r"+r-*. (12.22)

Where 17:" is an update vector as shown in Figure 12.4. NOW expand lhe P“ into the Taylor series

Bxplieitly containing the second-order term.

flfh'l-fliihlvfifil"giiHi-Vlwiw' (12-23)

where (p denotes the higher-order terms. V the gradient. and H the Hessian matrix. IF F is small
enough, we can ignore the (p. According to the lirst~order necessary conditions tor xi“ to be the
minimum. discussed in Section 12.2. I, we have

Vfif(i"+i7)=Vf(£*]+H[E*)fi=O. (12.24)

FIGURE 12.4 Derivation of the

NewtonflRaphson method.
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where V? denotes the gradient operator with respect to v. This leads to

r =—H“(.r")Vf[.r‘). {12.25;

The NewtonmRaphson method is thus derived below.

fir“)=f[.r*)—It“(.t=*‘)Vf(.t-*). (12.26)

Another loose and intuitive way to view the Newton—Raphsun mctltntl Is that its l'ttrtttttl is similar

to the steepest descent method. except that the step size cti ts now chosen [.15 H" (I‘), the inverse
of the Hessian matrix evaluated at .E‘.

The idea behind the Newton—Raphson method is that thc l’unctton hUI-ng minimized is approx—

imated locallyI by a quadratic function and this quadratic l'uncltott 15 then minimized. It is noted

that an)r function will behave like a quadratic function when it ts close to Ilte minimum. Hence.

the closer to the minimum. the more efficient the Newton—Raphson method. This is the exact

opposite of the steepest descent method, which works more elliciently at the beginning. and less

efficiently When close to the minimum. The price paid with the Newton—Ropltson method is the

extra calculation involved in evaluating the inverse of the Hessian matrix at .i‘.

Convergence Speed — Assume that the second—order sufficient conditions discussed in

Section 12.2.2 are satisfied. Furthermore. assume that the initial point i” is sufficiently close to

the minimum 3*. Then it can be shown that the Newton—Raphsen method converges with an order

ofat least two. This indicates that the NewtonrRaphson method converges litster than the steepest
descent method.

Generalization and Improvements —— In Luenberger (198-4). a general class of algorithms is
defined as

.r‘“ 2.? —a*GVf(.t*). (I227)

where G denotes an n x n matrix. and o‘ a positive parameter. Both the steepest descent method
and the Newton—Raphson method fall into this framework. It is clear that if G is an H x n identical

matrix I, this general form reduces to the steepest descent method. if G = H and on = I then “"5
is the Newton—Raphson method.

Although i1 descends rapidly near the solution. the Newton—Raphson method may not descend
for points far away from the minimum because the quadratic approximation may not be valid there.
The introduction of the ad, which minimizesf, can guarantee the descent off at the general points.
Another improvement is to set 0 = [£31 + H( 5*)1-1 with (:2 0. Obviously, this is a combination of
the steepest descent method and the Newton—Raphson method. Two extreme ends are that the
steepest method (very large C“) and the Newton—Raphson method (if = 0). For most cases. the
selection of the parameter C aims at making the G matrix positive definite.

12.2.7 OTHER Msrnoos

There are other gradient methods such as the Fletcher-Reeves method (also known as the conjugai‘:
gradient method) and the FletcherHPowell-Davidon method (also known as the variable metric

method). Readers may refer to Luenberger ([984) or other Optimization text.

12.3 THE NETRAVALI—ROBBINS PEL RECURSIVE ALGORITHM

Having had an introduction to some basic nonlinear programming theory, we now turn to the pel
recursive technique in displacement estimation from the perspective of the descent methods. Let
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us take a look at the lirsl pol recursive algorithm. the Netravali—Rohbins pel recursive algorithm.
it actually estimates displacement vectors using the steepest descent method to minimize the squared
DFD. That is,

at” = (3* _$ 0th 13F!)2[.t'. iati‘). (12.23)

where VJDFDlU. y. ri") denotes the gradient of Dill-‘02 with respect to J evaiualed at E‘, the
displacement vector at the kth iteration. and (it is posutive. This equation can be further written as

J ’H' s 3‘ — oa’JF'Dir. y, (i " )VJ DFI)(.1‘.,\‘.& ") 02-29)

A a result oi Equation IE. I. the above equation leads to

{t N : J‘ — aeFe[.r,_tr.ri ‘ )Vtrfiplir - (for at]. (12-30)

where V“ means a gradient operator with respect to .t‘ and y. Nelrttvflii and Robbins (1979} EISSigflfid
fl CDFISlflTli (if I(rim-t tn 0!. i.C., linen.

12.3.1 INCLUSION or a NEIGHBORHOOD AREA

To make displacement estimation more robust, Netravali and Robbins considered an area For

evaluating the DFW in calculating the update tertn. More precisely. they assume the displacement

Vector is constant within a small neighborhood Q ofthe pixel for which the displacement is being
estimated. That is.

J “" : J " -— % {IVJ Z t'.-'r..DFi’)2 (x. 3‘. if} 1I). “231)
t.l._t.Efl

where i represents an index for the ith pixel (.r. y) within 9. and w, is the weight tor the ith pixel

in R. All the weights satisfy the following two constraints.

it“. 20 (12.32)

Etna. 02.33)tun

This inclusion of a neighborhood area also explains why pel rceursiveteehnique is classified into
the category of region-matching techniques as we discussed at the bcglflning 0] ”"5 chapter.

12.3.2 iNTERPOLATION

It is noted that interpolation will be necessary when the displacement “fa” components (1.5 and
d). are not integer numbers of pixels. A bilinear interpolation technique is used by Netravnlt and
Robbins (19339). For the bilinear interpolation. readers may reter to Chapter 10.

12.3.3 SIMPLIFICATION

To make the proposed algorithm more efficient in computation. Netravali and Robhins also proposed
Simplified versions of the di5plaeement estimation and interpolation algonthl‘ns In their paper.
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One simplified version of the Netravaii and Robbins algorithm is as follows:

3“” = d " ~—t15igrt{DFD(.r,.d 1']}.'rr'gtt{V_r‘-‘ j:[_l(.\' - d) ._v — (1‘)}. (1234]

where sign{s} = 0. l, —1, depending on .r z 0, s > 0‘ s < 0. respectively. while the sign of a vector

quantity is the vector ofsigns ofils components. In this version the update vectors can only assume

an angle which is an integer multiple of 45°. As shown in Netravali and Robbins t l 979). this version
is effective.

12.3.4 PERFORMANCE

The performance of the Netravaii and Robbins algorithm has been evaluated using computer

simulation (Netravali and Robbins. 1979). Two video sequences with different amounts and different

types of motion are tested. In either case. the proposed pel recursive algorithm displays superior

performance over the replenishment algorithm (Mounts. 1969: Haskell. |979). which was discussed

briefly in Chapter 10. The thravali and Robbins algorithm achieves a bit rate which is 22 to 50%

lower than that required by the replenishment technique with the simple I'ramc difference prediction.

12.4 OTHER PEL RECURSIVE ALGORITHMS

The progress and success of the Netravali and Robbins algorithm Stimulated great research interests

in pel recursive techniques. Many new algorithms have been developed. Some of them are discussed
in this section.

12.4.1 THE BERCMANN ALGORITHM (1982)

Bergmann modified the Netravali and Robbins algorithm by using the Newton—Raphson melhfld
(Bergmann. 1982). In doing so, the following difference between the fundamental Framework of

the descent methods discussed in Section 12.2 and the minimization problem in displacement
estimation discussed in Section 12.3 need to be noticed. That is. the object I'unctionft Tr) diSCUSSEd
in Section 12.2 now becomes DFD’txuv. 3). The Hessian matrix H, consisting of the second-order
partial derivatives of thefli) with respect to the components of i- now become the second-order
derivatives of DFDQ with respect to d, and d... Since the vector d is a 2-D column vector now. the
H matrix is hence a 2 x 2 matrix. That is.

BEDFDz(x,_i-,d) dzDFDz(.r.y.d)
32d; ddxady= 12.35)

H 310F131; yd} azosoflwj) ' (
aged, am).

As expected, the Bergmann algorithm (i982) converges to the minimum faster than the steepE-‘SI
descent method since the Newton—Raphson method converges with an order of at least two.

12.4.2 THE BERGMANN ALGORITHM (1984)

Based on the Burkhard and Moll algorithm (Burkhard and Moll, 1979}, Bergmann developed an
algorithm that is similar to the Newton—Raphson algorithm. The primary difference is that an
average of two second-order derivatives is used to replace those in the Hessian matrix. In this sense.
it can be considered as a variation of the Newton—Raphson algorithm.
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12.4.3 THE Carmelo AND ROCCA ALGORITHM

Based on their early work (Cafl‘orio and Rocca, 19H). CalTorio and Rocca proposed an algorithm
in 1932. which is essentially the steepest descent method. That is. the step size 0: is defined as
follow: {Cafforio and Rocco. I982):

ot=—-——-—-—L——,—. (12.36)
IV};I (I —a'_‘. y — a")! + n?

with 11’ = 100. The addition of n2 is intended to avoid the problem that would have occurred in a
uniform region where the gradients are very small.

12.4.4 THE WALKER AND RAO ALGORITHM

Walker and Rao developed an algorithm based on the steepest descent method (Walker and Rao.

1934‘, Tckalp, 1995). and also with a variable step size. That is.

or: a, (12.37)

2|ijm(x -dl.y air],
where

2 2

‘ ._ _ ._d ‘ ’_d.

iVL_I{,‘(—dfly—dr)lz = W +w . (12.33)I 3'

It is observed that this step size is variable instead of being a constant- Furthermore. this variable
Step size is reverse proportional to the norm square of the gradient ol”f;,_I (x - all. y - at.) with
respect to x. y. That means this type of step size will be small in the edge or rough area. and will

be large in the relatively smooth area. These features are desirable. _
Although it is quite similar to the Cal'forio and Rocca algorithm. the Walker and Rao algorithm

differs in the following two aspects. First. the or is selected differently. Second, implementation of
the algorithm is different. For instance. instead of putting an 11’ in the denominator of at. the Walker

and Rao algorithm uses a logic. . . ‘
As a result of using the variable step size a. the convergence rate ts improved substantially.

This implies fast implementation and accurate displacement estimation. It. was reported that usually

one to three iterations are able to achieve quite satisfactory results in most cases. ‘
Another contribution is that the Walker and Rao algorithm eliminates the need to transmit

explicit address information to bring out higher coding efficiency.

12.5 PERFORMANCE COMPARISON

A comprehensive survey of various algorithms using the pel recursive technique can be found in
a Paper by Musmann. Pirsch. and Grallert (1935). There, two performance features are compared
among the algorithms. One is the convergence rate and hence the accuracy of displacement
estimation. The other is the stability range. By stability range. we mean a range starting from which
an algorithm can converge to the minimum of DFDQ. or the true displacement vector.

Compared with the Netravali and Robbins algorithm. those improved algorithms discussed In
the previous section do net use a constant step size. thus prowdtng better adaptation to local image
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TABLE 12.1

Classification of Several Pel Recursive Algorithms

Category I Category II
Algorithms Steepest Descent Based Newton-Raphson Based

Netravati and Robbins Sreepest descent

Bergmann (1982) Newton-ltnphson
Walker and Rao Variation of steepest descent

Cafforiu and Rocca Variation of steepest descent

Bergmnnn l [9341 Variation of Newton-Raphson 

statistics. Consequently, they achieve a better coavcrgence rate and more accurate displacement

estimation. According to Bergmann (1984} and Musmann ct at. (1985). the Bcrgmann algorithm

(1984) performs best among these various algorithms in terms of convergence rate and accuracy.

According to Musmann et al. (1985). the Newton—Raphson algorithm has a relatively smaller

stability range than the other algorithms. This agrees with our discussion in Section I'll}. That

is, the performance of the Newtoanaphson method improves when it works in the area close to

the minimum. The choice of the initial guess. however. is relatively more restricted.

12.6 SUMMARY

The pel recursive technique is one of three major approaches to displacement estimation for motion

compensation. It recursively estimates displacement vectors in a pixcl-by-piscl fashion. There are

three types of recursion: horizontal, vertical. and temporal. Displacement estimation is carried out

by minimizing the square of the displaced frame difference (DFD'). Therefore, the. steepest descent

method and the Newton—Raphson method. the two most fundamental methods in optimization.

naturally find their application in pel recursive techniques. The pioneering thravali and Robbins

algorithm and several other algorithms such as the Bergmann (1982). the Cal'l'orio and Rocco. the

Walker and Rao. and the Bergtnann {1934) are discussed in this chapter. The): can be classified

into one of two categories: the steepest-dcsccnt~based algorithms or the Newton—Raphson—bascd

algorithms. Table 12.] contains a classification of these algorithms.

Note that the DFD can be evaluated within a neighborhood of the pixel for which a displacement

vector is being estimated. The displacement vector is assumed constant within this neighborhood.

This makes the displacement estimation more robust against various noises.

Compared with the replenishment technique with simple frame difference prediction {the first

real interframe coding algorithm), the Netravali and Robbins algorithm (the first pet recursive

technique) achieves much higher coding efficiency. Specifically. a 22 to 50% savings in hit rate

has been reported for some computer simulations. Several new pet recursive algorithms have made

further improvements in terms ofthe convergence rate and the estimation accuracy through replace-

ment of the fixed step size utilized in the Netravali and Robbins algorithm. which make these

algorithms more adaptive to the local statistics in image frames.

12.7 EXERCISES

12-1. What is the definition of the displaced frame difference? Justify Equation [2.].

12-2. Why does the inclusion of a neighborhood area make the pet recursive algorithm more
robust against noise?

12-3. Compare the performance of the steepest descent method with that of the NewtonrRaPll'
son method.
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12-4. Explain the function of n2 in the Cafforio and Roeca algorithm.

12-5. What is the advantage we expect to have from the Walker and Rao algorithm?

12-6. What is the dil'i'erence between the Bergmann algorithm (198?) and the Bergmann
algorithm (1984)?

12-7. Why does the Newton—Rnphson method have a smaller stability range?
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3 Optical Flow

As mentioned in Chapter to. optical flow is one of three major techniques that can be used to
estimate displacement vectors from successive image frames. As opposed to the other two displace-
ment estimation techniques discussed in Chapters 11 and 12. block matching and pel recursive

method. however, the optical flow technique Was developed primarily for 3-D motion estimation

in the computer vision community. Although It provides a relatively more accurate displacement
estimation than the other two techniques. as we shall see in this and the next chapter. optical flow
has not yet found wide applications for motion-compensated video coding. This is mainly due to

the fact that there are a large number of motion vectors (one vector per pixel) involved. hence. the

more side information that needs to be encoded and transmitted. As emphasized in Chapter I l, we

should not forget the ultimate goal in motion—compensated video coding: to encode video data with

a torn! bit rate as low as possible. while maintaining a satisfactory quality of reconstructed video

frames at the receiving end. [1‘ the extra bits required for encoding a large amount of optical flow

vectors counterbalance the bits saved in encoding the prediction error (as a result of more accurate

motion estimation). then the usage ol‘optieal flow in motion-compensated coding is not worthwhile.

Besides, more computation is required in optical flow determination. These factors have prevented

optical flow from being practically utilized in motion-compensated video coding. With the continued

advance in technologies. however. we believe this problem may be resolved in the near future. In

fact. an initial, successful attempt has been made (Shi et a].. 1998).

On the other hand. in theory, the optical flow technique is of great importance in understanding

the fundamental issues in 2—D motion determination. such as the aperture problem, the conservation

and neighborhood constraints. and the distinction and relationship between 2-D motion and 2-D

apparent motion.

In this chapter we focus on the optical flow technique. In Section 13.1. as stated above. some

fundamental issues associated with optical flow are addressed. Section 13.2 discusses the differential
method. The correlation method is covered in Section 13.3. In Section 13.4, a multiple attributes

approach is presented. Some performance comparisons between various techniques are included
in Sections 13.3 and 13.4. A summary is given in Section 13.5.

13.1 FUNDAMENTALS

Optical [low is referred to as the 2-D distribution of apparent velocities of movement of intensity

patterns in an image. plane (Horn and Seltunck, 1981). In other words. an optical flow field consists
of a dense velocity field with one velocity vector for each pixel in the image plane. If we know
the time interval between two consecutive images, which is usually the case, then velocity vectors

and displacement vectors can be converted from one to another. In this sense. Optical flow is one

of the techniques used for displacement estimation.

13.1.1 2-D MOTION AND OPTICAL flow

In the above definition, it is noted that the word apparent is used and nothing about 3-D motion

in the scene is stated. The implication behind this observation is discussed in this subsection. We
start with the definition of 2-D motion. 2-D motion is referred to as motion in a 2-D image plane
caused by 3-D motion in the scene. That is. 2-D motion is the projection (commonly perspective
Projection) of 3—D motion in the scene onto the 2-D image plane. This can be illustrated by using

265

|PR2018—01413

Sony EX1008 Page 291



IPR2018-01413 
Sony EX1008 Page 292

266 Image and Video Compression for Multimedia Engineering

 
FIGURE 13.1 2-D motion vs. 3-D motion

a very simple example. shown in Figure l3.|. There the world coordinate system O-Xl‘z and the

camera coordinate systems o-.r_t-: are aligned. The point C‘ is the optical center or the camera. A

point A. moves to A3. while its perspective projection moves correspondingly from a. to (:3. We

then see that a 2—D motion {from a. to rig} in image plane is invoked by a it) littlltDn (from A; to

A2) in 3-D Space. By a 2-D motion field. or sometimes image How. we mean a dense 2-D motion

field: One chOcity vector for each pixel in the image plane.

Optical flow. according to its definition. is caused by movement of intensity patterns in an

image plane. Therefore 2-D motion (field) and optical flow (lieldi are generally dili’crcnt. To support

this conclusion. let us consider the following two examples. One is given by Nora and Schunck

(1931). Imagine a uniform sphere rotating with a constant speed in the scene. Assume the luminance

and all other conditions do n01 change at all When pictures are taken. Then. there is no change in

brightness patterns in the images. According to the definition of optical flow. the optical Ilow is

zero. whereas the 2-D motion field is obviously not zero. At the other extreme. consider a stationary

scene; all objects in 3-D world space are still. If illuminancc changes when pictures are taken in

such a way that there is movement of intensity patterns in image planes. as a consequence. optical

flow may be nonzero. This confirms a statement made by Singh (I991 r the scene does not have

to be in motion relative to the image for the optical tiow ticld to be nonzero. ll can be shown that

the 2-D motion field and the Optical flow field are equal under certain conditions Understanding

the difference between the two quantities and the conditions under which they are equal is important.

This understanding can provide us with some sort ol‘ guide to evaluate the reliability of
estimating 3'0 motion from optical flow. This is because. in practice. tune-varying image sequences

are only what We have at hand. The task in computer vision is to interpret 3-D motion from time-

Varying sequences. Therefore, we can only work with optical flow in estimating 3-D motion. Since
the main focus of this book is on image and video coding. we do not cover these equality conditions
here. Interested readers may refer to Singh (1991'). In motion-compensated video coding‘ ll is
likewise true that the image frames and video data are only what we have at hand. We also. therefore.
have to work with optical flow. Our attention is thus turned to optical tiow determination and its
usage in video data compression.

13.1.2 APERTURE PROBLEM

The aperture problem is an important issue. originating in optics. Since it is inherent in the local
estimation of optical How. we address this issue in this subsection. In optics. apertures are Glimmgs

in flat screens (Bracewell. 1995). Therefore. apertures can have various shapes, such as circular.
semicircular. and rectangular. Examples ofaperturcs include a thin slit or array of slits in a screen.

A circular aperture. a round hole made on the shutter of a window. was used by Newton to study
the composition of sunlight. It is also well known that the circular aperture is ol' special interest tn
studying the diffraction pattern (Sears c1211.. 1986).
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Roughly speaking. the aperture problem in motion analysis refers to tiie problem that occurs
when viewmg motion via an aperture. re. a small opening in a flat screen. Marr (1932) states that
when a straight moving edge ts observed through an aperture. only the component of motion

orthogonal to the edge can be measured. Let us examine some simple examples depicted in
Figure L12. In Figure 13.2(3). a large rcctangularABCD is located in the X02 plane. A rectangular
screen EFGH with a circular aperture is perpendicular to the Ol" axis. Figure 13.2(bl and (c) show.

respectively, what is observed through the aperture when the rectangular ABCD is moving along
the positive X and Z directions with a uniform speed. Since the circular opening is small and the
line AB is very long. no motion Will be observed in Figure |3.2(b). Obviously. in Figure 13.2(c)
the upward tittivetticnl can be observed clearly. In Figure 13.2(d). the upright corner of the rectangle

AHCD. angle B. appears. At this time the translation along any direction in the X02 plane can he

observed clearly. The phenomena observed in this example demonstrate that it is sometimes

impossible to estiitiatc motion of a pixel by only observing a small neighborhood surrounding it.

The only motion that can be estimated from observing a small neighborhood is the motion

orthogonal to the underlying moving contour. In Figure |3.2(b). there is no motion orthogonal to

the moving contour .48; the motion is aligned with the moving contour AB. which cannot be

observed through the aperture. Therefore. no motion can he observed through the aperture. In

Figure l3.2tc). the observed motion ts upward. which is perpendicular to the horizontal moving

contour AB. [it Figure |3_"td). any translation in the X02 plane can be decomposed into horizontal

and vertical components. Either at these two components is orthogonal to one 01' the two moving
cenlours' AB or BC.

A more accurate statement on the aperture problem needs a definition of the so-called normal

optical Ilow. The normal optical flow refers to the component ol‘ optical llow along the direction

pointed by the local intensity gradient Now we can make a more accurate statement: the only

motion in an image plane that can be determined is the normal optical flow.

In general. the aperture problem becomes severe in image regions where strong intensity

gradients exist. such as at the edges. In image regions with strong higher-order intensity variations.
such as corners or textured areas. the true motion can be estimated. Singh (199 l) provides a more

elegant discussion on the aperture problem. in which he argues that the aperture problem should

be considered as a continuous problem (it always exists. but in varying degrees of acuteness) instead

01‘ a binary problem (either It exists or it does not).

13.1.3 lit-P0550 INVERSE PROBLEM

Motion estimation from image sequences. including optical flow estimation. belongs in the category
of inverse problems. This is because we want to infer motion from given 2-D images. which ts-the
perspective projection ot3-D motion. According to Hadaniard {BDFICI’U El al.. 1933). a mathematical

problem is well posed if it possesses the following three characteristics:

1. Existence. That is. the solution exists.

2. Uniqueness. That is. the solution is unique. ‘
3. Continuity. "that is. when the error in the data tends toward zero. then the induced error

in the solution tends toward zero as well.

Inverse problems usually are not well posed in that the solution may not exist. In the example
discussed in Section |3.t.l. Le. a uniform sphere rotated with illuminance fixed. the solution to
motion estimation does not exist since no motion can be inferred from given images. The aperture

problem discussed in Section I3. 1 .2 is the casein which the solution to the motion may not be unique.
Let us take a look at Figure l3.2(b). From the given picture. one cannot tell whether the straight line
A3 is static. or is moving horizontally. II' it is moving horizontally, one cannot tell the moving speed.
in other words. infinitely many solutions exist for the case. In optical flow detenmnation. we \vtli
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{a}

 
FIGURE 13.2 (a) Aperture problem: A large rectangle ABCD is located in the XOZ piano. A rectangular
screen EFGH with a circular aperture is perpendicular to the 01’ axis. (b) Aperture problem: No motion can

be observed through the circular aperture when the rectangular ABCD is moving along the positive X direction.
(c) Aperture problem: The motion can be observed through the circular aperture when the ABCD is moving
along the positive Z direction. (cl) Aperture problem: The translation of ABCD along any direction in the X03
plane can be observed through the circular aperture when the upright corner of the rectangle ABCD, 311815 3-
appears in the aperture.

see that computations are noise sensitive. That is, even a small error in the data can produce an

extremely large error in the solution. Hence, we see that the motion estimation from image sequences

suffers from all three aspects just mentioned: nonexistence, nonuniqueness, and discontinuity The
last term is also referred to as the instability of the solution.
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It is pointed out by Bertero et al, (I938) that all the low-level processing (also known as early
vision) in computational vision are inverse problems and are often ill posed. Examples in low-level
processing include motion recovery. computation of optical flow, edge detection. structure from

stereo. structure from motion. structure from texture. shape from shading. and so on. Fortunately.
the problem with early vision is mildly ill posed in general. By miirfly. we mean that a reduction

of errors in the data can significantly improve the solution.

Since the early 1960s. the demand for accurate approximates and stable solutions in areas such

as optics. ratltoastronomy. ttticrtiscopy. and medical imaging has stimulated great research efforts

in inverse problems. resulting In a unified theory: the regularization theory of ill-posed problems
(Tikitonov and Arsenin. I977) In the discussion of optical flow methods, we shall see that some

regularization techniques have been posed and have improved accuracy in [low determination.

More—advanced algorithms continue to come.

13.1.4 CLASSIFICAYION or OPTICAL Ftow TECHNIQUES

Optical flow in image sequences provides important information regarding both motion and struc-

ture. and it is uscl'ul in such diverse fields as robot vision. autonomous navigation. and video coding.

Although this subject has been studied for more than a decade. reducing the error in the flow

estimation remains a difficult problem. A comprehensive review and a comparison of the accuracy

of various optical flow techniques have recently been made (Barron et al.. 1994). So far. most of

the techniques in the optical iiow computations use one of the following basic approaches:

- Gradient~based (Horn and Schunck. 1981; Lucas and Kanade. 1981; Nagel and Enket»

man. 1986; Uras et al.. l988; Seeiiski et al.. 1995; Black and Anandan. 1996).

‘ Correlation—based (Anandan. 1989; Singh, 1992; Pan et al.. 1998),

- Spatiotemporal energy-based (Adelson and Bergen, 1985: Heeger. 1988: Bigun et al..
1991).

- Phase-based (Waxman et al.. 1988; Fleet and Jepson, 1990).

Besides these deterministic approaches, there is the stochastic approach to optical flow com-

putation (Konrad and Dobois. 1992). In this chapter we focus our discussion of optical flow on the

gradient-based and correlation-based techniques because of their frequent applications in practice

and fundamental importance in theory. We also discuss multiple attribute techniques in optical flow
determination. The other two approaches will be briefly touched upon when we discuss new

techniques in motiOn estimation in the next chapter.

13.2 GRADIENT-BASED APPROACH

It is noted that before the methods of optical flow determination were actually developed. optical

flow had been discussed and exploited for motion and strueture recovery frorn image sequences in
computer vision for years. That is, the optical flow field was assumed to be available tn the study
of motion recovery. The first type of methods in Optical [low determination is referred to as gradient-
based techniques. This is because the spatial and temporai partial derivatives of intensuy function
are utilized in these techniques. In this section. we present the Horn and Sehunclt algorithm. It 13
regarded as the most prominent representative of this category. After the basre concepts are pre-
Sented, some other methods in this category are briefly discussed.

13.2.1 THE HORN AND Scnoucs MFI'HOD

We shall begin with a very general framework (Shi etal.. l994) to derive a brightness time-
invariance equation. We then introduce the Horn and Sehunck method.
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13.2.1.1 Brightness Invariance Equation

As stated in Chapter 10, the imaging space can be represented by

f(x,y.t.§], (13.1)

where 5 indicates the sensor’s position in 3-D world space. i.e.. the coordinates of the sensor center

and the orientation of the optical axis ofthe sensor. The E is a 5—D vector. That is. § where (5‘. 5' E.
B. Y). where .17. )7. and 2 represent the coordinate of the optical center of the sensor tn 3-D world
space; and [3 and T represent the orientation of the optical axis of the sensor in 3-D world spam.

the Euler angles. part and tilt. respectively.

With this very general n0ti0n. each picture. which is taken by a sensor located on a particular

position at a specific moment, is merely a special cross section of this imaging space. Both temporal
and spatial image sequences become a proper subset of the imaging space.

Assume now a world point P in 3-D Space that is perspectively projected onto the image plane

as a pixel with the coordinates I? and y... Then. IP and )‘P are also dependent on t and .5“. That is.

f=f(x,(r.§)._v,,[i.s).i.§]. (13.2)

If the optical radiation of the world point P is invariant with respect to the time interval from r1 to

:1, we then have

“at“mno'fil)‘ ["5'): fi'tPi'fztsti-Nritrit l-hfil- “3.3)

This is the brightness time—invariance equation.

At a specific moment t,. if the optical radiation of P is isotropical we then get

f(xr'[ll‘§1)‘J‘Pifl'gt)lft-§|) = f(.5‘,.[t,..5"1).,\'P(rl.§3),rl.31). {13.4}

This is the brightness space-invariance equation.

Ifbolh conditions are satisfied, we get the brightness time-and-space-invarianee equation. 1.8..

ft):POIr 3|)t’}rl’it51)53h-.=] f(-Vp[f3.§2).j’P(I:,s-‘:),I1.fr), (13.5)

ConSIder two brightness functionsftx (t, 5‘) y [r s) r s} andftt (t+At 5 + A?) t {(+At S +
£33). I ‘1' Art 5' + AS)1“ Wthh the variation in time At and the variation in the spatial 9051110" or

the sensor, A5, are very small. Due to the time-ands-paee invariance of brightness. we can get

fixifu3)v3'(f.§).t.§) = f(.r(t + A1,} + MM: + Atj + 115).: + An} + A3). (13-6)

The expansion of the right-hand side of the above equation in the Taylor series at (I. 3) and 1119-
use of Equation l3.5 lead to

[-a—{tt+a—fv+——]Ai+[~g—fit+%:—:v+gf]r15 +t-. 0 (13-?)s
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where

Il' AE : O, i.e.. the sensor is static in a fixed spatial position (in other words. both the coordinate
of the optical center of the sensor and its optical axis direction remain unchanged). dividing both
sides of the equation by a: and evaluating the limit as Ar —) 0 degenerate Equation 13.? into

a 3f at.)
$it+$v+i— . (13.8)

If A: = 0. both its sides are divided by As. and (5.? —l- 0 is examined. Equation [3.7 then reduces to

a; . 3f a+§{:0_ 03.9}—it' + H~ v'

(1!: 8y 3.?

When at : t'l. i_e.. at a specilic time moment. the images generated with sensors at different spatial

positions can he viewed as a spatial sequence of images. Equation 13.9 is. then. the equation for

the spatial sequence of images.

For the sake of brevity. we will locus on the gradient-based approach to optical flow determi-

nation with respect to temporal image sequences. That is. in the rest of this section we will address

0"”)l Equation 13.8. It is noted that the derivation can be extended to spatial image sequences. The

optical flow technique for spatial image sequences is useful in stereo image data compression. It

plays an important role in motion and structure recovery. Interested readers are referred to Shi et at.

([994) and Shu and Shi (1993).

13.2.1.2 Smoothness Constraint

A carel'ul examination of Equation 13.8 reveals that we have two unknowns: u and v. i.e.. the

horizontal and vertical components of an optical flow vector at a three-tuple (.r, y. I), but only one

equation to relate them. This once again demonstrates the ill-posed nature of optical flow determi-

nation. This also indicates that there is no way to compute optical [low by considering a single

point of the brightness pattern moving independently. As stated in Section I3.l.3. some regular-
ization measure here an extra constraint — must be taken to overcome the difficulty.

A most popularly used constraint was proposed by Horn and Schunck and is referred to as the

smoothness constraint. As the name implies. it constrains flow vectors to vary from one to another
smoothly. Clearly. this is true for points in the brightness pattern most of the timetparticularlyIl'or
points belonging to the same object. It may be violated. however. along moving boundaries.
Mathematically. the smoothness constraint is imposed in optical flow determination by minimizmg
”“5 SCluare ot' the magnitude or the gradient of the optical flow vectors:

2 1 1 a 2

E + .92 +[fl] {A}. (13.10)ax Ely a): Ely

It can be easily verified that the smoother the flow vector field. the smaller these quantities. Actually.
”“3 SClttare ol‘ the magnitude of the gradient of intensity function with respect to the spatial
coordinates, summed over a whole image or an image region, has been used as a smoothness
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measure of the image or the image region in the digital image processing literature (Gonzalez and

Woods. 1992).

13.2.1.3 Minimization

Optical flow determination can then be converted into a minimization problem.

The square of the left-hand side of Equation 13.8, which can be derived from the brightness

time-invariance equation, represents one type of error. It may be caused by quantization noise or
other noises and can be written as

2

3—81 £1 2!:Eb—[axtt-bayvirarl. (13.11)

The smoothness measure expressed in Equation 13.10 denotes another type of error, which is

a_ a [of a. 1312E‘_[3x] +[3}=]+ as + By ' ( - )
The total error to be minimized is

E’=EEe:+otzei

= a; a: a” -[a] 19f 9:3ZZ[ax“+ay”ar] +c1 at + a): + 8x + 8y .

where or is a weight between these two types of errors. The optical liow quantities a and v can be
found by minimizing the total error. Using the calculus of variation. Horn and Schunck derived

the following pair of equations for two unknowri a and v at each pixel in the image.

(13.13)

{fin + fxfxv = Elev?" ‘ f3}: (13 I4)2 . .

fxfyu + fr v 2 ‘12sz _ fr};

where

" Bx. ’ By, 1-3!,

V2 denotes the Laplacian operator. The Laplacian operator of u and v are defined below.

2 2

V111: %+ %f
(13.15)

32v 82v

‘7‘ =3??-}’
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13.2.1.4 Iterative Aigorithm

Instead of using the classical algebraic method to solve the pair of equations for u and v. Horn and

Schunck adopted the Gaussian Seidel (Ralston and Rabinowitz. l9?8) method to have the following
iterative procedure:

I Llf‘fi*+frfi*+f,]
fi' 2 2 2

o+f1+fy

—.I.- —t

with.” +f.. nil
akffwf

“I
it ll

(13.16)

where the superscripts k and k + I are indexes of iteration and ti. 5 are the local averages of n and
v, respectively.

Horn and Schunck define ti. t": as follows:

fi = g {1435,}: + I) + tt[x,y — l] + tt(.t' + Ly] + “(irr- MO}

+L{”(x._ Ly—l)+rt(,t'—l._v+l)+tt(x+l.y—l)+tr(x+l,y+ 1)}
'2 (ill?)

{titttitr

fittin—thaws—tynevtx+Lyn0+le+w+lll-

The estimation of the partial derivatives of intensity function and the Laplacian of flow vectors
need to he addressed. Horn and Schunck considered a 2x 2x 2 spatiotemporal neighborhood.

shown in Figure 13.3. for estimation ot’partia] derivativesfi..fl.. andfi. Note that replacing the first-
order differentiation by the first-order difference is a common practice in managing drgltal images.
The arithmetic average can remove the noise effect, thus making the obtained first-Order differences
less sensitive to various noises.

The Laplaeian of n and v are apprortimated by

V2 :‘.. . vuwit till”) ( ) (13.13}
vv=v<x.y)—v<x.yt

Equivalently. the Laplacian ofn and v, Vim) and Vita), can be obtained by aoplying a 3 x 3 window
0Perator. shown in Figure I34, to each point in the n and v planes, respecttvcly. . ‘

Similar to the pet recursive technique dichSsed in the Previous chapter. there are two dtflerent
ways to iterate. One way is to iterate at a pixel until a solution is steady. Another way 15‘ to iterate
only once for each pixel. In the latter case. a good initial flow vector 15 required and :3 usually
derived from the previous pixel.

13.2.2 Montrteo HORN AND SCHUNCK METHOD

Observing that the first-order difference is used to approximate the first-order differentiation “1
Horn and Schunck's original algorithm. and regarding this as a relatively crude form and a source
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L =flirt—w1.x.rt—.r(.r.sr)]+[fix-mu”1'}—_a.t-._~-.r+nl

+[f(.r+l,y+l,t)—f(.r,y.r]]+[f[.t+l.‘\'+l_t+l}—I;"{ t__\-+ m I)]}

11- = é{Uri-“H1-fl—fi-U-rl]+[fl-H I..v+ LrJ— rt:- + Lilli]

+[f(x._t-+1.:+1]~f(.t-._ts.r+ l)}+[f[_t'+l._\‘+ i_t+I)—f{.t+ 1.5-2! + 0]}

j; =i—{[f(x._v,:+1)—f(.r.y.r)]+[f(i-+1,y.:+1)—;‘(,t- + LL!”

+[f(.r,y+l,t+l)~f[x.y+l,r)]+[f(.t+I._v+l.r+l)-f(.t'+1,341.1)”

FIGURE 13.3 Estimation of frf}. and 1;.

of error, Barron. Fleet, and Beauchemin developed a modified version of the Horn and Schunck

method (Ban-on et al., 1994). '
It features a spatiotemporal presmoothing and a more—advanced approximation of differentia-

tion. Specifically. it uses a Gaussian filter as a spatiotemporai prefilter. By the term Gaussian fill-fr.
we mean a low-pass filter with a mask shaped similar to that of the Gaussian probabilit)i density
function. This is similar to what was utilized in the formulation of the Gaussian pyramid. which
was discussed in Chapter 11. The term s‘part’at‘emporat' means that the Gaussian filter is used for
low-pass filtering in both Spatial and temporal domains. ,

With respect to the more~advanced approximation of differentiation, a four-point central dif-
ference Operator is used. which has a mask. shown in Figure 13.5. .

As we will see later in this chapter. this modified Horn and Schunck algorithm has achieved
better performance than the original one as a result of the two above-mentioned measures. Tins
success indicates that a reduction of noise in image (data) leads to a significant reduction of noise
in optical flow (solution). This example supports the statement we mentioned earlier that the 1!"
posed problem in low-level computational vision is mildly ill posed.
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1 l

V'rt = g[fl(.\'- l.y)+ii(.r,y— l)+n(x.y+ l)+tt(x+ L)!”
l

+ 1—2-[h‘(.1‘— Ly - l) + “(I — |,y+ I) + "(x + ],_v— ]) +fl[_'.|_' +14%”)

—ti(.t'.y)

l

Vzv = Elle — Ly) + v(.r.y — l) + v(x,y+ l) + v(_r+ [‘39]

+Tl§l1r(x—l,y-ll+v(x—l.y+ l)+u(x+l,y—1)+ v(x+l,y+]]]

— leo’)

FIGURE 13.4 A 3 x 3 window operation for estimation ofthe Laplacian of flow vector‘

_i
12

FIGURE 13.5 Four-point central difference operator mask.

13.2.3 THE Lucas AND KANADE METHOD

Lucas and Kanadc assume a flow vector is constant within a small neighborhood ofa pixel. dCHOIEd

by 9- Then they form a weighted object function as follows.

_ effigy!) ammo ’ extend]: 1119Z wz[.t,y)[Ttt+ 3v 1+ 8! . { 3
{Li-)2!)

where w(x,y) is a window function, which giVes more weight to the central portion than the
surrounding portion of the neighborhood £2.

The flow determination thus becomes a problem ofa least-sill"are
constraint. We observe that the smoothness constraint has been Imp

the flow vector is assumed lo be constant within Q.

fit ofthe brightness invariance

lied in Equation [3.19. where
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direction across the edge
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FIGURE 13.6 Orientedsmootltness constraint.

13.2.4 THE NAGEI. METHOD

Nagel first used the second-order derivatives in optical Ilow dClCI'lllinillliln in the very early days

(Nagel, i983). Since the brightness function f(.r, y. t. E} is a real—valued function of multiple

variables (or a vector of variables). the Hessian matrix. discussed in Chapter l3. is used for the
second~order derivatives.

An oriented-smoothness constraint was developed by Nagel that prohibits imposition of the

smoothness constraint across edges, as illustrated in Figure 13.6. in the tlgure, an edge {'18 separates

two different moving regions: region l and region 2. The smoothness constraint is imposed in these

regions separately. That is. no smoothness constraint is imposed across the edge. Obviously. it

would be a disaster if we smoothed the flow vectors across the edge. As a result. this reasonable

treatment effectively improves the accuracy of optical Ilow estimation (Nagcl. 1989).

13.2.5 THE URAs, GIROSI, VERRI, mo Tom METHOD

The Urns. Girosi. Vcrri. and Torre method is another method that uses second-order derivatives.

Based on a bead procedure. it performs quite well (Ut’as ct ;t|.. 1933).

13.3 CORRELATION-BASED APPROACH

The correlation-based approach to optical flow determination is similar to block matching. covered

in Chapter 1 1. As may be recalled, the conventional block-matching technique partitions an image
Into nonoverlapped, fixed-size, rectangular blocks. Then. for each block. the best matching in ”'1‘:

previous image frame is found. In doing so. a search window is opened in the previous frame
according to some a prior-i knowledge: the time interval between the two Frames and the maximum

possible moving velocity of objects in frames. Centered on each of the candidate pixels in the

search window, a rectangle correlation window of the same size as the original block is opened.
The best-matched block in the search window is chosen such that either the similarity measure is

maximized or the dissimilarity measure is minimized. The relative spatial position between these
two blocks (the original block in the current frame and the best-matched one in the previous frame)

gives a translational motion vector to the original block. In the correlation-based approach to optical
flow computation, the mechanism is very similar to that in conventional block matching The only

difference is that for each pixel in an image. we open a rectangle correlation window centered on
this pixel for which an Optical flow vector needs to be determined. It is for this correlation window

that we find the best match in the search window in its temporal neighboring image frame. This
is shown in Figure 13.7. A comparison between Figures [3.7 and 11.] can convince us about the
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the pixel to which the best matching
optical flow needs correlation window
to be determined

optical flowvectorcorrelation window

 
 

ft t'. i. it fit. _\: t— i’)

FIGURE ll? Correlation—based approach to optical I'lov.r determination.

above observation. In this section. we first briefly discuss Annndan‘s method. which is pioneer

work in this category. Then Singh's method is described. His unified view ol‘ optical flow compu‘

lotion is introduced. We then present a correlation-Feedback method by Pan. Shi, and Shit. which

uses the feedback technique iii flow calculation.

13.3.1 THE ANANDAN METHOD

As mentioned in Chapter 1 i. the sum of squared dil'l'erenee {SSDJ is used as a dissimilarity measure

in (Anandan, l937). It is essentially a simplified version 01’ the well—known mean square error

(M515). Due to its simplicity. it is used ill the methods developed by Singli (I992). and Pan, Slii,
and Sliu tl99li).

In the Anandait method tAnandan. I989). a pyramid structure is termed. and it can be used

for an efficient coarse-line search. This is very similar to the multircsolution block-matching

techniques discussed in Chapter I 1. In the higher levels (With lower resolution) of the pyramid, a

full search can be performed without a substantial increase in computation. The estimated velocity
(or displacement) vector can be propagated to the lower levels (with higher resolution) for further

refinement As a result. a relatively large mouon vector can be estimated with a certain degree ol
accuracy.

Instead ol. the Gaussian pyramid discussed in Chapter I I. however. a Laplacian pyramid is used

here. To understand the Laplacian pyramid. let us take a look at Figure l3.8{a). There two consec-
utivc levels are shown in a Gaussian pyramid structure: level it, denoted byf‘tx, y). and level is + l,

f""t'_.r, y). Figure 13.8(b) shows how level it + I can be derived from level it: in the Gaussian pyramid.

That is. as stated in Chapter l 11 level it + l in the Gaussian pyramid can be obtained through low«
pass filtering applied to level k, l‘ollowed by subsampling. Figure 13.8(e). level it- + l is first
interpolated. thus producing an estimate of level it. flu, y). The difference between the original
level k and the interpolated estimate of level it generates an error at level it denoted by e"(.r.y).1f
there are no quantization errors involved then level k, f"(.t y) can be recovered completely from
the interpolated estimate of level it fl‘(.,r }) and the error at level k. e"{t. y.) Thatis

f "l—t'ty) = f ‘(x.i*)+ e‘lwl (13.20)

With quantization errors, however. the recovery of level k.f"(x. y) is not error free. It can be shown
that coding flu, y) and 3*(x. y) is more efficient than directly coding FR. )0.
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Level ic-n': f” o. y; 
error at Level k

e ‘ (r. y)

r‘ mil-1mm“ (z. .in = e‘ (x. n

(b ) (C)

I“ (x. y)

\ For.»i

e (x. y) (d)

e ’ (x. y)

inf-EH

FIGURE 13.8 Laplacian pyramid (level :2 in a Gaussian pyramid). (a) Two consecutive levels in a pyran‘tid
structure. (b) Derivation of level it + I from level K. (c) Derivation of error at level it in a Laplacian pyramids
(:1) Structure of Laplaeian pyramid.

A 3'31 or images Nixon. k = 0. l, K — | and f”{.'r,_v) Forms :1 Laplacion pyramid.
Figure 13.8(d) displays a Laplacian pyramid with K = 5. It can be shown that Laplaeian pyramids

provide an efficient way for image coding (Burt and Adelson, 1983). A more-detailed description

of Gaussian and Laplacian pyramids can be found in Burt (1984) and Lirn ([990).

13.3.2 THE SINGH MnHoo

Singh (1991. 1992) presented a unified point of view on optical flow computation. He classified
lhc infonnation available in image sequences for Optical flow determination into two calcgorieS?
conservation information and neighborhood information. Conservation information is the informa-

tion assumed to be conserved from one image frame to the next in flow estimation. Intensity is an

example of conservation information. which is used most frequently in flow computation. Clearly.
the brightness invariance constraint in the Horn and Schunck method is another way to state this

type of conservation. Some functions of intensity may be used as conservation information as well-
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In fact. Singh uses the Laplacian of intensity as conservation information for computational sim-
plicity. More examples can be found later in Section 13.4. Other information. different from

intensity, such as color. can be. used as conservation information. Neighborhood information is the

information available in the neighborhood of the pixel from which optical flow is estimated.

These two different types ol'inl‘ormation correspond to two steps in flow estimation. In the first

step. conservation information is extracted, resulting to an initial estimate of [low vac-tor. In the

second step. this initial estimate is propagated into a neighborhood area and is iteratively updated.

Obviously, in the Horn and Sehunck method. the smoothness constraint is essentially one type of

neighborhood inl'ormatit'in. lteratively. estimates of flow vectors are refined with neighborhood

information so that [low estimators from areas having sufficient intensity variation. such as the

intensity corners as shown in Figure 13.201) and areas with strong texture. can be propagated into

areas with relatively small intensity variation or uniform intensity distribution.

With this unilied point of view on optical flow estimation. Singh treated flow computation as

parameter estimation. By applying estimation theory to flow computation, he developed an esti-

iTI{lilUtt-ll'lctit'clitilll method to determine optical flow. 11 is a correlation-based method and consists

of the above-mentioned two steps.

13.3.2.1 Conservation Information

In the lirsl step. for catch pixel [.t‘, y) in the current frame LU. y). a Correlation window OH?! + 1)):

(21 + l) is opened. centered on the- pixel. A search window of [2N+l) X (2N+l) is opened iii the

previous l‘ratiiefi,,1 t'.t'. _v) centered on (.t'. v). An error distribution ot'those (2N + l) x (2N + IJSflmples

are calculated by using SSD as follows:

(av): Z:[f((.t+s._v+!)— f”_ (.‘r—ii+_t_v—t’+t')]2 —N.<_n,vSN. (13.21)
124 :z- i'

A response—distribution for these (2N + |)>< (2N + 1} samples is then calculated.

R‘_(n. v) = its—BEAM". (13.22)

where [3ts a parameter. whose function and selection will be describedIn Section 13. 33.1
According to the weighted- least--square estimation. the optical flow can be estimated in this

step as follows:

:2Z R_((it. via
“.- 2Kitty)

(13.23)

Assuming errors are additive and zero-mean random noise. Wt can also find the covariance matrix
associated with the above estimate:
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22R ("of $21? .)v-r.t)
S_ 22le 22k '—
’” 22irritate—1.111w.) 221»wt

13.3.2.2 Neighborhood Information

 

(13.24}

After step I. all initial estimates are available. in step 2. they need to he rclincd according to

neighborhood information. For each pixel. the method considers 11(211 + it a; [211- -i- l ) neighborhood
centered on it. The optical flow oithe center pixel is updated from the estimates in the neighborhood.

A set of Gaussian coefficients is used in the method such that the closer the neighbor pixel to the

center pixel. the more influence the neighbor pixel has on the flow vector of the center pixel. The

\veighled-lcast-square based estimate in this step is

22 RAM. v)”

H : ZERAILV)

22Hm
22W

(13.25)

'l_-'=

and the associated covariance matrix is

ZRni‘fivVJXtti—ii): 2&(11. v))(rtififixttvfi)

ERAHNUE) lERA(“1" 1L)
5 _ .- (13.26)

K _ Z‘Rwi" DUNN ~H)(ve17) ERA(“11”Atari)! ‘
ERA(11., v.) RAMP-.1)

where I S i 5 (2w + 1):.

In implementation, Singh uses a 3 x 3 neighborhood (i.e.. w = l) centered on the pixel under
consideration. The weights are depicted in Figure 13.9.

13.3.2.3 Minimization and Iterative Algorithm

According to estimation theory (Beck and Arnold 1977), two covariance matrices. expressed in
Equations 13.24 and 13.26 reSpectiveiy, are related to the confidence measure. That is the recip-
rocals of the eigenvalues of the covariance matrix reveal confidence of the estimate along {ha
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direction represented by the corresponding cigcnvectors. Moreover, conservation error and neigh-
borhood error can be represented as the Following two quadratic terms, respectively.

[Uwutj‘rSj'lUwU‘] 03.27)

(U—Ufsr‘w—U]. (13.28)

Where U = (ft. 9), U". : (Ht. ‘1"). U : (it, v).

The minimization of the sum of these two errors over the image area leads to an optimal

estimate of optical llow. That is. find (a, v) such that the following error is minimized.

ZEN—“Jr SfllU‘U.)+lU—‘7)T Silly-(7)]- (13.29)

An iterative procedure according to the Gauss—Siedcl algorithm (Ralston and Rabinowitz. 1978)

is used by Singh:

lt+l __ -l '1 II 'I ”‘1

U —[3[ +3.. l [5r ”#5:- U l (13.30)

Note that Ur, 8‘. are calculated Once and remain unchanged in all the iterations. On the contrary, U

and S" vary with each iteration. This agrees with the description of the method in Section 13.3.2.2.

13.3.3 THE PAN, 5H1, AND SHo METHOD

Applying feedback (a powerful technique widely used in automatic control and many other fields)
to a correlation-based algorithm, Pan. Shi. and 3th developed a correlation-feedback ntethod to
compute optical flow. The method is iterative in nature. In each iteration. the estimated optical flow
and its several variations are fed back. For each of the varied optical flow vectors. the corresponding

sum of squared displaced frame difference (DFD), which was discussed in Chapter l2 and which
often involves bilinear interpolation. is calculated. This useful information is then utilized to a
revised version of a correlation-based algorithm {Singh, l992). They choose to work with this
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FIGURE 13.10 Block diagram ol‘ correlation feedback technique.

ti

algorithm because it has several merits, and its estimation-theoretical computation framework lends

itself to the application of the feedback technique.

As expected. the repeated usage of two given images via the feedback iterative procedure

improves the accuracy of optical flow considerably. Several experiments on real image sequences

in the laboratory and some synthetic image sequences demonstrate that the correlation-feedback

algorithm performs better titan some standard gradient- and correlation-based algorithms in terms

of accuracy.

13.3.3.1 Proposed Framework

The block diagram of the proposed framework is shown in Figure l3.|0 and described next.

Initialization — Although any flew algorithms can be used to generate an initial optical flow

field Ft" = (if. v“) (even a nonzero initial flow field without applying any llow algorithm may work.
butslowly). the Horn and Schunck algorithm {Horn and Schunclt. 1981). discussed in Section 13.2.1

(usually 5 to It} iterations) is used to provide an appropriate starting point after preprocessing

(involving low-pass filtering). since the algorithm is last and the problem caused by the smoothness
constraint is not serious in the first It) to 20 iterations. The modified Horn and Scltunck method.

discussed in Section 13.2.2, may also be used for the initialization.

Observer — The DFD at the kth iteration is observed as f" (3) —fi,_. (.E — at}, where f. and fail
denote [W0 COHSBCUliVB digital images, 1? = (.t‘. y) denotes the spatial coordinates of the pixel under
consideration. and Ft" = (tt‘. vi) denotes the optical flow of this pixel estimated at the kth iteration.
(Note that the vector representation of the spatial coordinates in image planes is used quite often
in the literature, because of its brevity in notation.) Demanding fractional pixel accuracy usually
requires interpolation. In the Pan et al. work. the bilinear interpolation is adopted. The bilinearl)’
interpolated image is denoted by f“.

Correlation — Once the bilinearly interpolated image is available. a correlation measure needs to
be selected to search for the best match of a given pixel infi, (3:) in a search area in the interpolated
image. In their work. the sum-of—square~differences [SSD] is used. For each pixel inf... a correlalion
window W. of size (2! + 1) x (2! + 1) is formed. centered on the pixel.

The search window in the proposed approach is quite different from that used in the correlation-
based approach. say. that of Singh (1992). Let u be a quantity chosen from the following five
quantities:

"E{H* “ink,“k —ifln‘fl*‘uk +—[-uk‘flk +_l..“k}. ('3.3 I)2 4 4 2
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Let 1-' be a quantity chosen from the following five quantities:

ve{v‘ —%i:l.tdr —4li'”.v".v" +£vfit" +-;-tr‘}. (I332)
Hence. there are 25 lie. 5 x 5) possible combinations for (n. v). (It is noted that the restriction of
the nonzero initial [low field mentioned above in part A comes from here). Note that other choices

of variations around tn‘. v") are possible. Each of them corresponds to a pixel. (.r—ti, y— v), in
the bilinearly interpolated image plane. A correlation window is formed and centered in this pixel.
The 25 samples of error distribution around (ul, vi“) can be computed by using the $80. That is.

‘l

Elihu) : : :[fil(_r+s.y+t) -—j”__|(.r—n+.r.r- ti+r])_. “3.33)\z-i' .‘=—l'

The 25 samples of response distribution can be computed as follows:

all". it) = {MW-"l, 03.34)

where B is chosen so as to make the maximum Rl among the 25 samples of response distribution
be a number close to unity. The choice ofan exponential function for converting the error distribution
into the response distribution is based primarily on the following consideration: the exponential
function is well behaved when the error approaches zero and all the response distributioa values
are positive. The choice of [3 mentioned above is motivated by the following observation: in this

Way. the R‘ values, which are the weights used in Equation I335. will be more effective. That is.

the computation in Equation I335 will be more sensitive to the variation of the error distribution

defined in Equation 13.33.

The optical flow vector derived at this correlation stage is then calculated as follows. according

to the weighted—least-squares estimation (Singh. 1992).

y. Zr.2..Rr(u‘v)fl k . - thzrflltwh
” [I‘V‘IFW‘ ethyl—FE"EVER”)- (13.35)

Propagation *- Except in the vicinity of motion boundaries. the motion vectors associated with
neighboring pixels are expected to be similar. Therefore, this constraint can be used to regulartee
the motion field. That is,

tt**l(.t',y) = :2 iiirl(t',j)ti:(.t'+t.y+j).v“'(x,y) : Z Ztl’.(l'.})tl:(-\’+DWI). (13-36). . :_..- ':-it'
t=-it' I'm—tr ’ J

_ . ' ' . is chosen as the

where with}? is a weighting function. The Gaussian mask shown In Flgkurfhfviloeity of various
weighting function wl(i',j) used in our experiments. By using this was distance from the pixel-
pixels in the neighborhood of a pixel will be weighted according "3 lhe" ‘

' ~ 'cal flow field as well.
”‘3 laFiler the distance. the smaller the weight. The mask smooths the arm .

nse distribution with a Single. - ' s 0 .

Convergence ~— Under the assumption DI the symmetric re p nvergence ol‘ the correlation-
maximum value assumed by the ground-truth optical flow, the ‘30
feedback technique is justified by Pan et at. (I995).
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13.3.3.2 Implementation and Experiments

Implementation —-— To make the algorithm more robust against noise. three consccutive images

in an image sequence, denoted by fhfz. and [3, respectively. are used to implement their algorithm

instead of the two images in the above principle discussion. This implementation was propOSed by

Singh (1992). Assume the time interval between f1 and fl is the same as that between f2 and 15

Also assume the apparent 2-D motion is uniform during these two intervals along the motion

trajectories. From imagesf. andfl, {lt", v“) can be computed. From (n‘. i" ). the optical [low estimated

during the kth iteration, and f1 and f1 the response distribution. thn‘. Iv"). can be calculated as

R:[tt‘,v*)=exp 45$ :[£(.r+s.y+t)—fi(s—tt* +.t'._r~v‘ +rl]:[l. ([337)s:-.‘ rz-i'

Similarly, from images-f; andfg. (—n‘. —v"‘} can be calculated. Then th -tt‘. - l" i can be calculated as

n' i' ..

R;[—u*,—v*)=exp 452 2[;g(x+i.y+r]—j§(x—u*+.i._\-+v*+r)]" . (13.33)
sew! t=-l'

The response distribution RAM. 1*} can then be determined as the sum of thn‘. 1." ft and {rift—tort“)-
The size of the correlation window and the weighting function is chosen to be 3 x 3. i.c.. i = l.

w = 1. In each search window, [3 is chosen so as to make the larger one among R: and R" a number

cloSe to unity. In the observer stage. the bilincar interpolation is used. which Is shown to be luster

and better than the B-spline in the many experiments of Pan ct a].

Experiment I— Figure 13.! I shows the three successive image l't‘amcsfl.f3. and f} tibOUl 3 square

post. They were taken by a CCD video camera and a DATACUBE real—time image processing

system supported by a Sun workstation. The square post is moving horizontally. perpendicular to

the optical axis of the camera, in a uniform speed of 2.747 pixels per frame. To remove various

noises to a certain extent and to speed up processing. these three 256 x 256 images are low—pass

filtered and then subsampled prior to optical flow estimation. That is. the intensities of ever?

16 pixels in a block of 4 x 4 are averaged and the average value is assigned to represent this block.

Note that the choice of other low-pass fitters is also poSSible. In this way. these three images are

compressed into three 64 x 64 images. The “ground-truth” 2'1) motion velocity vector is hence
known as it" = 41.6863; v" = 0.

To compare the performance of the correlation-feedback approach with that ol' the gradient—
based and correlatiou-based approaches. the Horn and Schunck algorithm is chosen to represent

the gradient-based approach and Singh‘s framework to represent the correlationibased appI'OflCh-
Table 13.1 shows the results ofthe comparison. There, I, w, and N indicate the sizes ofthe correlation

window. weighting function, and search window. respectively. The program that implements Singh'S

algorithm is provided by Barron et a1. {1994). In the correlation~fcedback algorithm, ten iterations
of the Horn and Sehunek algorithm with 0t 2 S are used in the initialization. (Recall that the 0! 15

a regularization parameter used by Horn and Schunck, 1981). Only the central 40 x 40 flow vector

array is used to compute um" which is the root mean square {RMS} error in the vector magnitudes
between the ground-truth and estimated optical flow vectors. It is noted that the relative error '”
Experiment I is greater than 10%. This is because the denominator in the formats calculating ”‘3

RMS error is too small due to the static background and. hence. there are many zero ground-truth
2-D motion velocity vectors in this experiment. Relatively speaking. the correlation-feedlititi'rk
algorithm performs best in determining optical flow for a texture post in translation. The corI‘ECt
Optical flow field and those calculated by using three different algorithms are shown in Fig“?‘3 13-12“
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TABLE 13.1

Comparison in Experiment I

Gradient-Based Correlatiomflased Correlation—Feedback

lechniques Approach Approach Approach

|3.3.3.3 Ctmdlllotis Iteration im. -= IRS Iteration no. : 35 iteration no. = 10
L! = 5 i = 2, w = 2 Iteration my. {Horn} = 10

N=4 i=l.u'=l.N=5

it 56.37% 80.97% 44.50%arm
 

Experiment 11 — The images in Figure 13.13 were obtained by rotating :1 CCD camera with
respect to the center of a ball. The rotating velocity is 2.5” per frame. Similarly. three 256 x 256

images are compressed into three 64 x 64 images by using the averaging and subsampling discussed
above. Only the central 40 x 40 optical vector arrays are used to compute um". Table 13.2 reports
the results for this experiment. There. um" i. w. and N have the same meaning as that discussed
in Experiment I. It is obvious that our correlation-feedback algorithm performs best in determining
optical flow for this rotating ball case.
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-a.va 
{5}

FIGURE 13.12 (a) Correct optical flow field. (b) Optical flow field calculated by the gradicnt-bascd
approach. (c) Optical flow field calculated by the correlation-based approach. {(1) Optical flow field calculated
by the correlationvfeedback approach.

Experiment III — To compare the correlation-feedback algorithm with other existing techniques
in a more objective, quantitative manner. Pan etal. cite some results reported by Barron et al.
(1994), WhiCh were: Obtained by applying 50m: typical optical flow techniques 10 some image

sequences chosen with deliberation. In the meantime they report the results obtained by applying
their feedback technique to the identical image sequences with the same accuracy measurement as

used by Barron et al. (1994). .
Three image sequences used by Barron etal. (1994) were utilized here. They are named

‘Transiating Tree,” “Diverging Tree." and “Yosemite." The first two simulate translational camera

motion with respect to a textured planar surface (Figure 13.14), and are sometimes referred to :15
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FIGURE 13.12 (continued)

“Tree 2-D“ sequence. Therefore, there are no occlusions and no motion discontinuities in these

two sequences. In the “Translating Tree” sequence. the camera moves normally to its line ol'sight,

with velocities between 1.?3 and 2.26 pixelsi‘lrame parallel to the .r-axis in the image plane. In the

“Diverging Tree" sequence, the camera moves along its line of sight. The focus of expansion is at

the center of" the image. The speeds vary from 1.29 pixelsll'rame on left side to [.86 pixelslt‘rame

on the right. The "Yosemite“ sequence is a more complex test case {see Figure l3.l5). The motion

in the upper right is mainly divergent. The clouds translate to the right with a speed of I pixeltframe,

while velocities in the lower left are about 4 pixelslframe. This sequence is challenging because

of the range of velocities and the occluding edges between the mountains and at the horizon. There

is severe aliasing in the lowrzr portion of the images, causing most methods to produce poorer

velocity measurements. Note that this synthetic sequence is for quantitative study purposes since
its ground-truth flow field is known and is, otherwise, far less complex than many real-world outdoor

sequences processed in the literature.

The angular measure of the error used by Barron et al. (1994) is utilized here. as well. Let

image velocity Ft = (a. v) be represented as 3~D direction vectorS.
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FIGURE 13.13 A rotating ball in three different frames — a. h c. The rotating \Cl()t."ll.)r In 3.5" per frame.

TABLE 13.2

Comparison in Experiment ll

Gradient-Based Correlation-Based Correlation-Feedback

 

Techniques Approach Approach Approach

Conditions Iteration no. = 128 iteration no. = 25 nmnmn no. = 10

O. = 5 1': 2. w = 2 {fermion no. (Horn! = In
N:4 I=I.W=LN:5

um, 65.67% 55.29% 49.80%

— 1
VE—E=r—=——(fl v1). ([339)

f 2 2 I 1\u +v +1

The angular error between the correct image velocity V and an estimate l7e is W = across ( i7: - Va)-
It is obvious that the Smaller the angular error We. the more accurate the estimation of the optical
flow field will be. Despite the fact that the confidence measurement can be used in the correlation-

feedback algorithm, as well, Pan et 211. did not consider the usage of the confidence measurement
in their work- Therefore, only the results with 100% density in Tables 4.6, 4.7, and 4.10 in the
Barron et a1. (1994) paper were used in Tables 13.3, 13.4. and 13.5, respectively.
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FIGURE 13.14 A frame of the "Tree 2-D" sequence.

 
FIGURE 13.15 A frame of the "Yosemite" sequence.

Prior to computation of the optical flow field. the “Yosemite“ and "Tree 2-D“ test sequences
were compressed by a factor of lo and 4. respectively. using the averaging and sabsampling method
discussed earlier.

As mentioned by Barron et a1. (1994) the optical flow field for the “Yosemite" sequence is
complex. and Table 13.5 indicates that the correlation-feedback algorithm evidently performs best.

A robust method was developed and applied to a cloudless Yosemite sequence (Black and Anandan.
1996). It is noted that the performance of flow determination algorithms will be improved if the
sky is removed from consideration {Barron et al.. 1994; Black and Anandan, 1996]‘ Still. it is clear
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TABLE 13.3

Summary of the “Translating Tree” 2-D Velocity Results

 

 

 

Techniques Average Error, ° Standard Deviation, ° Density, "it.

Horn and Schunck (original) 38.72 27.67 I00
Horn and Schunck (modified) 2.02 2.27 IOU
Urns ct a1. (unthnesholded) 0.62 0.52 100

Nagel 2.44 3.06 I00
Anandan 4.54 3.10 100

Singh (Step 1. l = 2, w = 2) 1.64 2.44 100

Singh {step 11': 2. w = 2) 1.25 3.29 100
Correlation feedback (1' = l. u- = [) |.0'lr 0.48 100

TABLE 1 3.4

Summary of the "Diverging Tree” 2-D Velocity Results

Techniques Average Error, ° Standard Deviatiou, '“ Density, ‘i‘i:

Horn and Schunck (original) [2.02 l L'l'2 100
Horn and Sehuncl: (modified) 2.55 3.67 100

Urns et a]. (unthresholded) 4.64 3.43 [00

Nagel 2.94 3.23 100
Annndan (frames 19 and 21) 164 4.96 IOU

Singh (step i. l = 2, w = 2) ”.66 14.25 liJG

Singh (step 2. l = 2. w = 2) 8.60 5.60 IUD

Pan. Shi. and Shu (l = l. w = I) 5.12 2.16 100

TABLE 1 3.5

Summary of the “Yosemite” 2-D Velocity ReSuIts

Techniques Average Error, " Standard Deviation, ° Density, ”In

Horn and Schunck (original) 32.43 30.28 100

Horn and Schunclt (modified) 1 1.26 16.41 100
Urns et al. (unthresholded) H144 15.00 100

Nag-:21 I [.71 10.59 [00

Anandan (frames 19 and 21} 15.84 [3.46 100

Singh (step 1. l = 2. n- = 2) 18.24 [7.02 100

Singh (step 2, l: 2. w = 2) Illfi 12.07 100
Fan. Shi. and Shu (t‘ = 1. iv = l) 1.93 6.72 100 

that the algorithm in the Black and Anandan (1996) paper achieved very good performance in terms
of accuracy. In order to make a comparison with their algorithm, the correlation-feedback algorithm
was applied to the same cloudless Yosemite sequence. The results were reported in Table 13.6.
from which it can be observed that the results obtained by Pan et al. are slightly better. Tables 13.3
and 13.4 indicate that the feedback technique also performs very well in translating and diverging
texture p051. C3565.

Experiment IV — Here, the correlation-feedback algorithm is applied to a real sequence named
Hamburg Text, which is used as a testing sequence by Barron et al. (1994). There are four movmg
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TABLE 13.6

Summary of the cloudless “Yosemite” 2-D Velocity Results

Techniques Average Error, ’ Standard Deviation, "‘ Density, "in

Robust lllT‘ll1llltllIllll 43-": «LEI IOU

Pan. 5hr. tutti .‘ihu ti —-— I. ll : | i 33‘) 3.44 HID

 
FIGURE 13.16 Hamburg Taxi.

objects in the scene: a moving pedestrian in the upper left portion, a turning car in the middle. :1

car moving toward right at the left side and a car moving toward left at the right side. A frame of

the sequence and the needle diagram of llow vectors estimated by using ten iterations of the

correlation-feedback algorithm (with ten iterations of the Hom and Schunck algorithm for initial-

iZflllOIll are shown in Figures lllo and l3.l?. respectively. The needle diagram is printed in the

same fashion as those shown by Barron et al. [1994). It is noted that the moving pedestrian in the

upper left portion cannot be shown because of the scale used in the needle diagram. The other

three moving vehicles in the sequence are shown very clearly. The noise level is low. Compared

with those diagrams reported by Barron et :1]. {I994}. the correlation—feedback algorithm achieves
VBry good results.

For a comparison on a local basis. the portion of the needle diagram associated with the area

surrounding the turning car (a sample of the velocity fields). obtained by 50 iterations of the

correlation-feedback algorithm with five iterations of the Horn and Sehunek algorithm as initial-

ization. is provided in Figure [3.18(c). Its counterparts obtained by applying the Horn and Schunck

(50 iterations) and the Singh (50 iterations) algorithms are displayed in Figure 13.18ta) and (b).

respectively. It is observed that the correlation-feedback algorithm achieves the best results among

the three algorithms.

13.3.3.4 Discussion and Conclusion

Although it uses a revised version of a correlation-based algorithm (Singh. 1992), the correlation—

feedback technique is quite different from the correlation-based algorithm (Singh. 1992) in the

following four aspects. First, different optimization criteria: the algorithm does not use the iterative
minimization procedure used in (Singh, l992). lnsnead, some variations of the estimated optical
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FIGURE 13.17 Needle diagram of flow field of Hamburg Taxi sequence obtained by using the correlation-
feedback algorithm.

flow vectors are generated and fed back. The associated bilinearly interpolated displaced frame
difference for each variation is calculated and utilized. In essence, the feedback approach utilizes

two given images repeatedly. while the Singh method uses two given images only once (it( and V:
derived from the two given images are only calculated once). The best local matching between the

displaced image, generated via feedback of the estimated optical flow, and the given image is
actually used as the ultimate criterion for improving optical flow accuracy in the iterative process-

Second, the search window in the algorithm is an adaptive “rubber“ window. having a variable size
depending on (uh it"). In the correlation-based approaches (Singh. 1992). the search window has
a fixed size. Third, the algorithm uses a bilinear interpolation technique in the observation stage
and provides the correlation stage with a virtually continuous image field for more accurate motion
vector computation, while that of Singh (1992) does not. Fourth. different pcrfonnances are achieved
when image intensity is a linear function of image coordinates. In fact. in the vicinity of 3 pixel.

the intensity can usually be considered as such a linear function. Except ifthe optical flow vectors

happen to have only an integer multiple of pixels as their components. an analysis by Pan (1994)
shows that the correlation-based approach (Singh, 1992) will not converge to the apparent 2-D
motion vectors and will easily have error much greater than 10%. Pan (1994) also shows that the

linear intensity function guarantees the assumption of the symmetric response distribution with a
single maximum value assumed by the ground-truth optical flow. As discussed in Section l3.3.3.l.
under this assumption the convergence of the correlation»feedback technique is justified-

Numerous experiments have demonstrated the convergence and accuracy of the correlation-

feedback algorithm. and usually it is more accurate than some standard gradient- and correlation-
based approaches. In the complicated optical flow cases, specifically in the case 01' the “Yosemite"
image sequence (regarded as the most challenging quantitative test image sequence by Barron cl 3!.
(1994), it performs better than all other techniques.
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FIGURE 13.18 A portion of the needie diagram obtained by using (a) the Horn and Schunk algorithm.
(b) the Singh algorithm. and {c} the correlation—feedback algorithm.

13.4 MULTIPLE ATTRIBUTES FOR

CONSERVATION INFORMATION

As stated at the beginning of this chapter, there are many algorithms in optical flow computation
reported in the literature. Many more new algorithms continue to be developed. In Sections 13.2
and 13.3. we introduced some typical algorithms using gradient- and correlation-based approaches.
We will not explore various algorithms any further here. It is hoped that the fundamental concepts
and algorithms introduced above have provided a solid base for readers to study more-advanced
techniques. .

We would like to discuss optical flow from another point of view, however: multiple image
attributes vs. a single image attribute. All of the methods we have discussed so far use only one
kind of image attributes as conservation information in flow determinatiOn. Most methods use
intensity. Singh's method uses the Laplacian of intensity. which is calculated by usmg the difference
of the Gaussian operation (Burt, 1984). It was reported by Wong, Ahuja._and Hpang (19-92) that
using a single attribute as conservation information may result in ambiguity to matching two
perspective views, while multiple attributes. which are motion insensitive. may reduce ambiguity
remarkably, resulting in better matching. An example is shown in Figure {-3.19 to illustrate this
argument. In this section. the Weng et al. method is discussed first. Then we introduce the X13. and
Shi method, which uses multiple attributes in a framework based on we1ghted~least-square estima-
tion and feedback techniques.
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FIGURE 13.18 (continued)

13.4.1 THE WENG, AHUJA, AND HUANG Manon

Weng, Ahuja. and Huang proposed a quite different approach to image point matching (Wong et al..

1992). Note that the image matching amounts to flow field computation since it calculates a
displacement field for each point in image planes. which is essentially a [low field if the time
interval between two image frames is known.

Based 0“ an analysis indicating that using image intensity as a single attribute is not enough
in accurate image matching. Wong. Ahuja, and Huang utilize multiple attributes associated with
images in estimation of the dense displacement field. These image attributes are motion insensitive:
i.e.. they generally sustain only small change under motion assumed to be locally rigid. The image

attributes used are image intensity. edgeness. and cornerness. For each image attribute, the alc'32'i‘r'l"i1l"“n
forms a residual function, reflecting the inaccuracy of the estimated matching. The matching 15
then determined via an iterative procedure to minimize the weighted sum of these residual function?»-
In handling neighborhood information, amore-advanced smoothness constraint is used to take care

of moving discontinuities. The method considers uniform regions and the occlusion issue as am”-
In addition to using multiple image attributes. the method is pointwise processing. There ts'no

need for calculation of correlation within two correlation windows, which saves computation

dramatically. However. the method also has some drawbacks. First, the edgcness and cornerness
involve calculation of the spatial gradient. which is noise sensitive. Second, in solving for minimi—

zation. the method resorts to numerical differentiation again: the estimated displacement vectors

are updated based on the partial derivatives of the noisy attribute images. In a word. the computa-
tional framework heavily relies on numerical differentiation, which is considered to be impractical
for accurate computation (Barron et al.. 1994).
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FIGURE 13.18 (continued)

A B c s a WI I I I

I I I I

o E F o E F

(a) (h)

FIGURE 13.19 Multiple attributes vs. single attribute. (a) With intensity information only, points D. E, and

F tend to match to points A, B, and C. respectively. (b) With intensity. edge and corner information points D
and E tend to match points B and C. respectively.

On the other hand. the Pan, Shi, and Shu method. discussed in Section [3.3.3 in the category

of correlation based approaches. seems to have some complementary features. It is correlation-
based. It uses intensity as a single attribute. In these two aspects the Fan et at. method is inferior
to the method by Weng. Ahuja, and Huang. The feedback technique and the weighted least-square
computation framework used in the Pan et at. method are superior. however. compared with the

method by chg eta]. Motivated by the above obsarvations, an efficient. multiattribute Feedback
method was developed by Xia and Shi (Xia and Shi, 1995; Xia, [996), and is discussed in the next
subsection. It is expected that more insight into the Wong, Ahuja. and Huang method will bccome
clear in the discussion as well.
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13.4.2 THE XtA AND SHt METHOD

This method uses multiple attributes that are motion insensitive. The following five attributes are

used: image intensity, horizontal edgeness, vertical edgcness. contrast, and entropy. The first three

are used by Wong et a]. (1992) as well. and can be considered as structural attributes, while the

last two, which are not used by Wong et a]. (1992). can be considered as textural attributes according
to Haralick (1979).

Instead of the computational framework presented by chg ct al. (1992). which. as discussed

above. may not be practical for accurate computation. the method uses the computational framework

of Pan (1994; 1993). That is. the weighted-least-squared estimation technique used by Singh (1992)

and the feedback technique used by Pan (1994; 1998) are utilized here. Unlike in the Wong et al.

(1992) method. subpixel accuracy is considered and a confidence measure is generated in the
method.

The Xia and Shi method is also different from those algorithms presented by Singh ([992) ““1
Pan et al. (1995; 1998). First. there is no correlation in the method, while both Singh (1992) and

Pan et al. (1995; 1998) are con-elation based. Specifically. the method is a point-wise processing.

Second, the method uses multiple attributes, while both Singh (1992) and Pan et al. (1995; 1998}

use image intensity as a single attribute.

In summary. the Xia and Shi method to compute optical flow is motivated by several existing

algorithms mentioned above. It does. however. differ from each of them significantly.

13.4.2.1 Multiple Image Attributes

As mentioned before, there are five image attributes in the Xia and Shi method. They are defined
below.

Image Intensity —The intensity at a pixel (.r, y) in an imageffix. y}. denoted by AAA} y). iii-a

A.- (x. 3') =12. (x. y). .
Horizontal Edgeness — The horizontal edgeness at a pixel (x, y). denoted by Ahtx. y). 15

defined as

 

Attica) : afgjifi' ( I140)
i.e., the partial derivative offtx.y) with respect to y, the second component of the gradient of
intensity function at the pixel.

Vertical Edgeness — The vertical edgeness at a pixel (x, y), denoted by A‘. (x. y). 13 “final as

 

Av(x‘y)= afg:'y]’ (13.41)

i.e.. the first component of the gradient of intensity function at the pixel. Note that the partial
derivatives in Equations 13.40 and 13.41 are computed by applying a Sobel operator (Gonzalez
and Woods, 1992) in a 3 x 3 neighborhood of the pixel.

Contrast — The local contrast at a pixel (x, y), denoted by A‘. (x. y). is defined as

A: (x.y) = 20—1): C”, (13.42)

where S is a set of all the distinct gray levels within a 3 x 3 window centered at pixel (by)- Co
specifies a relative frequency with which two neighboring pixels separated horizontally by a distance
of 1 occur in the 3 x 3 window, one with gray level i and the other with gray level j.
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Entropy — The local entropy at a point (x. y). denoted by A! (x. y). is given by

aim) : '2”: log a. (13.43)NJ

where S was defined above, and p, is the probability of occurrence of the gray level i in the 3 x 3
window.

Since the intensity is assumed to be invariant to motion. so are the horizontal edgeness, vertical

edgeness. contrast. and entropy.

As mentioned above. the intensrty and edgeness are used as attributes in the Wong etal.

algorithm as well. Compared with the negative and positive cornerness used in the Wong et al.

algorithm, the local contrast and entropy need no differentiation and therefore are less sensitive to

various noises in original images. In addition. these two attributes are inexpensive in terms of

computation. They reflect the textural information about the local neighborhood of the pixel for
which the flow vector is to be estimated.

13.4.2.2 Conservation Stage

In the Xia and Shi algorithm. this Stage is similar to that in the Pan et al. algorithm. That is. for a

llovv vector estimated at the kth iteration, denoted by tn". 1v"), we find its 25 variations. (it, 1;),

according to

H H l‘ . “k ilk
HE{fl&-—,kH ——H“ I! +——, it +—2 4 4 2

(13.44)
’ .l.’ .l.‘ vi

ve{v*-l?.v"—14‘.*n v‘.+%— v"7}
For each of these 25 variations. the matching error is computed as

E(n. v) = if (x. y! u, v) + r; (x. y, a, v} + r: [1.35“- v)+ rt: [.xor. n, v] + J: (.31 y. n, v), (13.45)

where ’h.‘ rd“, C1 , r,‘ , :3 denote the residual function with respect to the five attributes, respectively.I' f f

The residual function of intensity is defined as

rdi(x,y,n, v) = Affl(x,y] — Ai"_l(x wtithilr v) = filx, y) -— fn_1(x "uly — v), (13.46)

Wheref (x y} A I (.1- y) is defined as before, Let. the intensity function at in and 1,“. reSpectively;
A“ A- denote the intensity attributes on f,, andf,1 n respectively

ItIsI observed that the residual error of intensity is essentially the DFD discussedIn Chapter [2
The rest of the residual functions are defined similarly. When subpixel accuracy is required spatial
interpolation in the attribute images generally is “305551“?- Thus. ll“: flow vector estimation ‘5 now

converted to a minimization problem. That is. find a and v at pixel (x. y) such that the matching
error defined in Equation 13.45 is minimized. The weighted least-square method (Singh. 1992'. Fan
et at. 1993) is then used. That is.

R(n. v) = (”Elm (1347)
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EZRMW” EERittfi-Wli
“5H at“: . (13.43)

“:q—u—ERLIHI) r ZTRHH)!
Since the weighted least-square method has been discussed in detail in Sections 13.3.2 and 13.3.3.
we will not go into more detail here.

13.4.2.3 Propagation Stage

Similar to what was proposed in the Pan et a]. algorithm. in this stage Xitt and Shi form a window
W of size (2w + l) x (2w + ]) centered at the pixel is. y) in the image 1'. (I. y). The llow estimate

at the pixel (x. y) in this stage. denoted by (am. it“). is calculated as a weighted sum of the flow

vectors of the pixel within the window 1V.

"t“:izwifd't-)3.) ffl(.‘..t+r)+t)-]tt"'J (,‘\+.\'._\'+i)J":-n' r:-n'

”=2 Zw[f(t. )).t f;(.‘.'-i-.t+5)+i)]* (.t'+.~;.)-+t).l='-|I' f='—||'

(13.49)

where w.[.,.] is a weight function. For each point in the window W, a weight is assigned according

to the weight function. Let (1+ 5. y + t) denote a pixel within the window W; then the weight of

the pixel (x + s. y + r) is given by

I . —E_~._ 13.50
nifiwit) f.,(\'+s:J+!)]= e+if..(I.J']-f..(i1‘+5v.t‘+‘3i‘ ( }

where E is a small positive number to prevent the denominator from vanishing. c is a nomializalion

constant that makes the summation of all the weights in the W equal 1.

From the above equation. we see that the weight is determined based on the intensity difference

between the pixel under consideration and its neighbonng pixel. The larger the difference in the
intensity, the more likely the two points belong to different regions. Therefore. the weight will be

small in this case. On the other hand. the flow vcewr in the same region will be similar since the
corresponding weight is large. Thus. the weighting function implicitly takes flow discontinuity into
account and is more advanced than that of Singh (1992) and Pan et a]. (1994; l998).

13.4.2.4 Outline of Algorithm

The following summarizes the procedures of the algorithm.

1. Perform a low-pass prefiltering on two input images to remove various noises.

2. Generate attribute images: intensity. horizontal edgeness, vertical edgencss. local con-

trast. and local entropy. Those attributes are computed at each grid point of both images.
3. Set the initial flow vectors to zero. Set the maximum iteration number andlor estimation

accuracy.

4. For each pixel under consideration. generate [low variations according to Equation 13.44.

Compute matching error for each flow variation according to Equation 13.45 and trans-
form them to the corresponding response distributic-n R using Equation 13.47. Compute
the flow estimation at“. v‘ using Equation 13.48.
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5. Form 21 (21v 1» l) x (21v 4- I) neighborhood Window W centered at the pixel. Compute the

weight for each pixel within the window W using Equation 13.50. Update the flow vector
using Equation 13.49.

6. Decrease the preset iteration number. 11' the iteration number is zero. the algorithm returns

With the resultant optical flow field. OllterWise. go to the next step.

7. II' the change in [low vector over two successive iterations 15 less than the predefined

threshold. the algorithm returns with the estimated optical flow field. Otherwise. go to

step 4.

13.4.2.5 Experimental Results

To compare the method with other methods existing in the literature. similar to what has been done

by Pan etal (1998] (discussed above in Section 13.3.3). the method was applied to three test

sequences used by Barron el al. (1994): the "Translating Tree" sequence. the "Diverging Tree"

sequence. and the “Yosemite" sequence, The same accuracy criterion is used as that by Barron

et al. (1994). Only tl'iose results reported by Barron 1:! al. (1994) with 100% density are listed in

Tables 13.7. 13.8. and 13.9 for a fair and easy comparison. The Weng et a]. algorithm was imple-

mented by Xia and Shi and the results were reported by Xia and Shi (1995).

 

TABLE 1 3.7

Summary of the ”Translating Tree” 2D Velocity Results

Techniques Average Error, " Standard Deviation, ° Density, %

Hum and Schunek (original) 33.12 27.6? 100
Horn and Sehunek (modified) 2.02 2.2? 100

Uras e1 :11. [unthresholdedi 0.62 0.52 100

Nngel 2.44 3.05 100
Anandan 4.54 3.10 100

Singh [step 1.11: 2. 11-:2] 1.64 2.44 100
Singh tslep 2. 11 :- 2. 11- = 2) 1.35 3.29 1110
Pan. Sin. and She (11 = l. w = I) 1.07 0.48 100

Wong. Abuja. and Huang 1.81 2.03 100
Xta and Shi 0.53 0.52 100
—_______—____—_.__—————

 

TABLE 13.8

Summary of the "Diverging Tree” 20 Velocity ReSults

Techniques Average Error, ° Standard Deviation, ° Density, “/1;

Hero and Sehunek (original) 32.43 30.28 '00
Horn and Sehunck t1nodified) [1.26 16.4] '00
Uras ct n1. tunlhreshnlded] 10.44 [5.00 “)0
Hegel 11.71 10.59 l00
Anandan 15.84 [3.46 '90
Singh {step 1. it = 2. w = 2.1v = 41 13.24 17.02 l0”
Singh {Step 2. n = 2. w = 2.111 = 43 13.16 12.07 1%
Pan. Shi. and She (u = 1. w = 1) "1.93 6.12 :00
Wang. Abuja. and Huang 8.41 3.22 ")0
Xia and Shi 7.54 6.61
—__________‘_______’_’_'___.__
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TABLE 13.9

Summary of the “Yosemite” 2|) Velocity Results

Techniques Average Error, ° Standard Deviation, “ Density, ‘i’a

Horn and Schunek (original) [2.02 l l 7'2 lttt)

Horn and Schunck (modified) 2.55 3.67 Ititi
Urns et :1]. (unthresholded) 4.64 3.48 ItiO

Nagel 2.94 3.23 IOU
Anandan (frame 19 and 2]) 164 4.96 I00

Singh {step 1. it = 2. w = 2. N z 4} [7.66 I425 lot)

Singh (step 2. n = 2. tv 2 2. N = 4) 3.60 5.60 lllti
Part. Shi. and Shu (H = 1. iv = l) 5. l2 '3. lo It'ttJ

Wong. Ahuja. and Huang 8.0l 9.7I tt'ttt
Kit: and Shi 4.04 3.82 ttltl 

13.4.2.6 Discussion and Conclusion

The above experimental results demonstrate that the Xia and Slti Ittcthod outperforms both the Pan.

Shi, and Shu method and the Wong, Abuja. and Huang method in terms of accuracy of optical flow

determined. Computationally speaking. the Xia and Shi method is less expensive than the Pan ct ai..

since there is no correlation involved and the correlation is known to be computationally expensive.

13.5 SUMMARY

The optical flow field is a dense 2—D distribution of apparent velocities of movement of intensity

patterns in image planes, while the 2-D motion field can be understood as the perspective projection

of 3-D motion in the scene onto image planes. They are different. Only under certain circumstances

are they equal to catch other. In practice, however. they are closely related in that image sequences

are usually the only data we have in motion analysis. Hence, we can only deal with the optical

flow in motion analysis. instead of the 2-D motion field. The aperture problem in motion analysis

refers to the problem that occurs when viewing motion via an aperture. Specifically. the only motion

we can observe from local measurement is the motion component orthogonal to the underlying

moving contour. That is another way to manifest the ill—posed nature of optical flow computation.

In general, motion analysis from image sequences is an inverse problem. which is ill posed.

Fortunately. low-level computational vision problems are only mildly ill posed. Hence. lowering

the noise in image data leads to a possible significant reduction of errors in flow determination.

Numerous flow detemiination algorithms have appeared over the course ot'more than a decade.

Most of the techniques take one of the following approaches: the gradient-based approach. the

correlation-based approach. the energy-based approach. or the phase-based approach. In addition

to these deterministic approaches, there is also a stochastic approach. A unification point of view

of optical flow computation is presented in Section 13.3. That is, for any algorithm in optical flow

computation. there are two types of information that need to be extracted — conservation infor-
mation and neighborhood information.

Several techniques are introduced for the gradient-based approach. particularly the Horn and

Schunek algorithm, which is a pioneer work in flow determination. There. the brightness invariant
equation is used to extract conservation information and the smoothness constraint is used to extraCl

neighborhood information. The modified Horn and Schunck algorithm shows significant error
reduction in flow determination. because of a reduction of noise in image data, which confirms the

mildly ill-posed nature of Optical flow computation.

|PR2018—01413

Sony EX1008 Page 326



IPR2018-01413 
Sony EX1008 Page 327

Optical Flow 301

Several techniques are discussed for the correlation-based approach. The Singh algorithm is
given emphasis due to its estimation—theoretical Framework. The Pan, Shi, and Shu algorithm. which
applies the feedback technique to the correlation method, demonstrates an accuracy enhancement
in flow estimation.

Section [3.4 addresses the usage of multiple image attributes vs. that ofa single image attribute
ill the flow determination technique. It is found that the use ofmultiplc motion-insensitive attributes
can help reduce the :tnthigurty in motion analysis. The application of multiple image attributes to
conservation information turns out to be promising for tlow computation.

Some experimental works are presented in Sections 13.3 and l3.4. With Barron et al.‘s recent

comprehensive survey of various existing optical flow algorithms, we can have a quantitative
assessment on various optical flow techniques.

Optical tlow tinds application in areas such as computer vision, image interpolation. temporal
filtering. and video coding. In computational vision. raising the accuracy ol'optical flow estimation

is important. In video coding. however, lowering the bit rate for both prediction error and motion

overhead. while keeping certain quality of reconstructed frames, is the ultimate goal. Properly

handling the large amount of velocity vectors is a key issue in this regard. It is netcd that the optical
[low-based motion estimation for video compression has been applied for many years. However,

the high bit overhead and computational complexity prevent it from practical usage in video coding.

With the continued advance in technologies. however. we believe this problem may be resolved in

the near future. In fact, an initial, successful attempt has been made and reported by Shi et al.

(1993}. There. based on a study that demonstrates that flow vectors are highly correlated and can

be modeled by a first-order autoregressive (AR) model, the discrete cosine transform (DCT) is

applied to flow vectors. An adaptive threshold technique is developed to match optical flow motion

prediction and to minimize the residual errors. Consequently, this optical flow-based motion-

compensated video coding algorithm achieves good performance for very low bit rate video coding.

It obtains a bit rate compatible with that obtained by an H.263 standard algorithm. which uses

block matching for motion estimation. (Note that the video coding standard H.263 is covered in

Chapter l9.) Furthermore. the reconstructed video frames by using this flow-based algorithm are

free of annoying blocking artifacts. This effect is demonstrated in Figure 13.20. Note that

Figure 13.20 (bl has appeared in Figure l [.12. where the same picture is displayed in a larger size

and the blocking artifacts are hence clearer.

13.6 EXERCISES

13-1. What is an optical flow field? What is a 2-D motion field? What is the difference between
the tw0‘? How are they related to each other?

13-2. What is an aperture problem?l Give two of your own examples. . _
13-3. What is the ill-posed problem”? Why do we consider motion analyses from image

sequences an ill~posed problem? ‘ ‘ .
13-4. Is the relationship between the optical flow in an image plane and the velocntes 01

objects in 3D world space necessarily obvious? Justify your answer.
13-5. What does the smoothness constraint imply? Why is it required?

13-6. How are the derivatives of intensity function and the Laplacian of new components
estimated in the Horn and Schunck method?

13-7. What are the differences between the Horn and Schunck original method and the

modified Horn and Schunck method? What do you observe from these differences?
13-8. What is the difference between the smoothness constraint proposed by Horn and

Sehunek and the oriented smoothness constraint proposed by Nagel? Provide comments.

13-9. In your own words, describe the Singh method. What is the weighted—leastssquare
estimation technique?
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FIGURE 13.20 (a) The 2151 original frame ofthe Miss America] «equence: th} the. I'L'tftllwltllclcd Elsi Irulnc

with H.263; (c) the reconstructed Elst frame with the proposed algorithm.

13-10. In your own words‘ describe CE.)nHCH*'rlIlUI] information and neighborhood information.

Using this perspective. take a new Iook at the Horn and Sehunek algorithm.

13-11. How is the feedback technique applied in the Pan et al. algorithm?

13-12. In your own words, tell the difference between the Singh method and the Pan e1 Ell.
method.

13-13. Give two of your own examples to show that multiple image attributes are able to reduce.

ambiguity in image matching.

13-14. How does the Xia and Shi method differ From the Weng et al. method?
13-15. How does the Xia and Shi method differ from the Pan et a1. method?
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4 Further Discussion
and Summary on
2—D Motion Estimation

Since Chapter [t]. we have been devoting our discussion to motion analysis and metion-compen-
sated coding. Follmving a general description in Chapter If}. three major techniques — block

matching, pel recursion. and optical flow — are covered in Chapters 1]. 12. and 13. respectively.
In this chapter. before concluding this subject. we provide further discussion and a summary.

A general characterisation For 2~D motion estimation. thus for all three techniques. is given in

Section 14. I. In Section 14.2. different classifications of various methods for ED motion analysis

are given in a wider scape. Section [4.3 is concerned with a performance comparison among the

three I'ITJJOI' techniques. More-advanced techniques and new trends in motion analysis and motion
compensation are introduced in Section 14.4.

14.1 GENERAL CHARACTERIZATION

A few common features characterizing all three major techniques are discussed in this section.

14.1.1 APERTURE PROBLEM

The aperture problem. discassed in Chapter 13. describes phenomena that occur when observing

motion through a small opening in a flat screen. That is. one can only observe normal velocity. It

is essentially a form of ill—posed problem since it is concerned with existence and uniqueness issues.

as illustrated in Figure 13.2(a) and (b). This problem is inherent with the optical flow technique.

We note. however, that the aperture problem also exists in block matching and pet recursive

techniques. Consider an area in an image plane having strong intensity gradients. Aeoording to our

discussion in Chapter 13, the aperture problem does exist in this area no matter what type of

technique is applied to determine local motion. That is. motion perpendicular to the gradient cannot

be determined as long as only a local measure is utilized. It is noted that. in fact. the steepest

descent method of the pel recursive technique only updates the estimate along the gradient direction
(Tekalp, 1995).

14.1.2 iLL-POSED INVERSE PROBLEM

In Chapter 13. when we discuss the optical flow technique, a few fundamental issues are raised. It
is stated that optical flow computation from image sequences is an inverse problem, which is usually
ill-posed. Specifically. there are three problems: nonexistence. nonumqueness. and instability. That
is. the solution may not exist; if it exists. it may not be unique. The solution may not be stable in
the sense that a small perturbation in the image data may cause a huge error in the solution.

Now we can extend our discussion to both block matching and pel rccursroa. This ts because

both block matching and pet recursive techniques are intended for determining 2—D motion from
image Sequences. and are therefore inverse problems.
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14.1.3 CONSERVATION INFORMATION mo NEIGHBORHOOD INFORMATION

Because of the ill—posed nature of 2—D motion estimation, a unified point of view regarding various

optical flow algorithms is also applicable for block matching and pel recursive techniques. That is.

all three major techniques involve extracting conservation information and extracting neighborhood
information.

Take a look at the block—matching technique. There. conservation information is a distribution

of some sort of features {usually intensity or functions of intensity) within blocks. Neighborhood

information manifests itself in that all pixels within a block share the some displacement. If the

latter constraint is not imposed, block matching cannot work. One example is the following extreme

case. Consider a block size of l x 1. Lo, a block containing only a single pixel. It is well known

that there is no way to estimate the motion of a pixel whose movement is independent of all its

neighbors (Horn and Schunck, l981).

With the pel recursive technique, say, the steepest descent method. conservation information

is the intensity of the pixel for which the displacement vector is to be estimated. Neighborhood

information manifests itselfas recursively propagating (liSplacement estimates to neighboring pixels
(spatially or temporally) as initial estimates.

In Section 12.3, it is pointed out that Netravali and Robbins suggested an alternative, called

“inciusion ofa neighborhood area." That is. in order to make displacement estimation more robust.

they consider a small neighborhood Q of the pixel for evaluating the square of displaced frame

difference (DFD) in calculating the update term. They assume a constant displacement vector within

the area. The algorithm thus becomes

anemfiavfi Etiomaiayna‘). (14.1)
i..t._teQ

where t' represents an index for the ith pixel (x, y} within fl, and W:- is the weight for the ith pixel

in 0.. All the weights satisfy certain conditions; i.e.. they are nonnegative. and their sum equals | .

Obviously, in this more-advanced algorithm, the conservation information is the intensity distribu-

tion within the neighborhood of the pixel. the neighborhood information is imposed more explicitly.

and it is stronger than that in the steepest descent method.

14.1.4 OCCLUStON AND DISOCCLUSION

The problems of occlusion and disocclusion make motion estimation more difficult and hence more

challenging. Here we give a brief description about these and other related concepts.

Let us consider Figure 14.1.There, the rectangle ABCD represents an object in an image taken

at the moment of t,,,..f(x, y. i,,_,). The rectangle EFGH denotes the same object, which has been

translated, in the image taken at t,I moment,f(.r, y, t"). In the imagef(x, y. I"). the area BFDH is

occluded by the object that newly moves in. On the other hand, inftx, y, In). the area ofAECG

reSUrfaCes and is referred to as a newly visible area, or a newly exposed area.

Clearly, when occlusiou and disocclusion Occur, all three major techniques discussed in this
part will encounter a fatal problem, since conservation information may be los1, making motion

estimation fail in the newly exposed areas. If image frames are taken densely enough along the

lcmporal dimension, however. occlusion and disocclusion may not cause serious problems, since
the failure in motion estimation may be restricted to some limited areas. An extra bit rate paid for

the corresponding increase in encoding prediction error is another way to resolve the problem. If
high quality and low bit rate are both desired, then some special measures have to be taken.

One of the techniques suitable for handling the situation is Kalman filtering, which is known
as the best. by almost any reasonable criterion, technique working in the Gaussian white noise ease
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An object at I ... The object at t .

FIGURE [4.1 Occlusion and disocclusion.

(Brown and Hwang. 1992}. If we consider the system that estimates the 2-D motion to be contam-

inated by Gaussian white noise. we can use Kalman filtering to increase the accuracy of motion

estimalion. particularly along motion discontinuities. It is powerful in doing incremental. dynamic.
and real-time estimation.

in estimating 3-D motion. Kalman filtering was applied by Matthies et al. (1989} and Pan et a1.

(1994). Kalman filters were also utilized in optical flow computation (Singh- 1992; Pan and Shi.

l994). In using the Kalman filter technique. the question of how to handle the newly exposed areas

was raised by Matthies et at. (1939]. Pan et al. ([994) proposed one way to handle this issue. and

some experimental work demonstrated its effectiveness.

14.1.5 RIGID AND NONRIGlD MOTION

There are two types of motion: rigid motion and nonrigid motion. Rigid motion refers to motion
of rigid objects. it is known that our human vision system is capable of perceiving 2—D projections

ol‘3—D moving rigid bodies as 2-D moving rigid bodies. Most cases in computer vision are concerned
with rigid motion. Perhaps this is due to the fact that most applications in computer vision fall into
this category. On the other hand. rigid motion is easier to handle than nonrigid motion. This can

be seen in the following discussion. ‘
Consider a point P in 3—D world space with the coordinates (X3: 2). Wthh can he represented

by a column vector 17:

r=taxzf. mam

Rigid metion involves rotation and translation. and has six free motion parameters. Let R denote
the rotation matrix and Tthe translational vector. The Coordinates of point P to the 3~D world after

the rigid motion are denoted by fi’. Then we have

{3’ = Rfi + T. (14.3)

Nonrigid motion is more complicated. It involves deformation in addition to rotation and translation.
and thus cannot be characterized by the above equation. According to the Helmholtz theory
(Sommerfeld. [950). the counterpart of the above equation becomes

W=R5+T+Dn Usfi

where D is a deformation matrix. Note that R. T. and D are pixel dependent. Handling nonrigid

motion. hence. is very complicated.
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In vichphony and videoconferencing applications. a typical scene might be a head-and-

shoulder view of a person imposed on a background. The facial expression is nonrigid in nature.

Model-based facial coding has been studied extensively (Aizawa and Harashlma. 1994: Li et al..

1993'. Arizawa and Huang. 1995). There. a 3-D \vireframe model is Used for handling rigid head

motion. Li (1993) analyzes the facial nonrigid motion as a weighted linear combination of a set of

action iiiii'rs. instead of determining Di? directly. Since the number ol‘ action units is limited. the

compuatation becomes less expensive. In the Aizawa and Harashinia (1989) paper. the portions in

the human face with rich expression. such as lips. are cm and then transmitted out. At the receiving

end. the portions are pasted back in the face.

Among the three types of techniques. block matching may be used to manage rigid motion.

while pel recursive and optical flow may be used to handle either rigid or nonrigid motion.

14.2 DIFFERENT CLASSIFICATIONS

There are various methods in motion estimation. which can be classified in many different ways.
We discuss some of the classifications in this section.

14.2.1 DETERMINISTIC METHODS vs. STOCHASTIC METHODS

Most algorithms are deterministic in nature. To see this. let us take a look at the most prominent

algorithm for each of the three major 2-D motion estimation techniques. Thai is. the Jain and Jain

algorithm for the block matching technique (Jain and Jain. 198”; the Netravali and Robbins

algorithm for the pe] recursive technique (Netravali and Robhins. 1979); and the Horn and Schunt‘k

algorithm for the eptical flow technique (Horn and Schunck. 193]). All are deterministic methods.
There are also stochastic methods in 2-D motion estimation. such as the Konrad and Dubois

algorithm (Konrad and Dubois. 1992). which estimates 2-D motion using the maximum ri posrerim'i

probability (MAP).

14.2.2 SPATIAL DOMAIN Msmoos vs. Fasqusncv DOMAIN METHODS

While most techniques in 2-D motion analysis are Spatial domain methods. there are also Frequency

domain methods (Kughlin and Hines. 1975‘. Heegcr. 1988; Porat and Friedlander. 1990; Girod.

1993: Kojima et a1.. 1993: Koe and Liu. 1998). Heeger (1988) developed a method to determine

optical flow in the frequency domain, which is based on spatioiemporai litters. The basic idea and
pt’inCiple of the method is introduced in this subsection. A very new and effective frequency method

for 2-D motion analysis (Koc and Liu. 1998) is presented in Section 14.4. where we discuss new
trends in 2-D motion estimatiori.

14.2.2.1 Optical Flow Determination Using Gabor Energy Filters

The frequency domain method of Optical flow computation developed by Heeger is suitable for

highly textured image Sequences- First, let us take a look at how motion can be detected in the

frequency domain.

Motion in the spatiotemperal frequency domain -—- We initiate our discussion with a 1-D case.

The spatial frequency of a (translationally) moving sinusoidal signal. to... is defined as cycles per
distance (usually cycles per pixel), while temporal frequency.to,. is defined as cycles per time unit
(usually cycles per frame). Hence. the velocity of (translational) motioa. defined as distance per
time unit (usually pixels per frame), can be related to the spatial and temporal frequencies as follows.

v=turftnr U45)
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(J a).

FIGURE 14.2 Velocity in HQ spatiolemporal frequency domain.

A 1—D moving signal with a velocity v may have multiple spatial frequency components. Each
spatial frequency component cu... r' 2 1.2.... has a corresponding temporal frequency component
toH such that

t1)" = vtufl. (14.6)

This relation is shown in Figure 14.2. Thus. we see that in the spatiotemporal frequency domain.

velocity is the slope of a straight line relating temporal and spatial frequencies.

For 2—D moving signals. we denote spatial frequencies by DJ. and to... and velocity vector by
I3: (I‘_.. "J- The above l-D result can be extended in a straightforward manner as follows:

0.)' = "1m; + v_ruJ‘.. (14.7")

The interpretation of Equation 14.? is that a 2—D translating texture pattern occupies a plane in the

spatiotemporal frequency domain.

Gabor Energy Filters —— As Adelson and Bergen (1985] pointed out, the translatioaal motion of

image patterns is characterized by orientation in the spatiotemporal domain. This can be seen from
Figure 14.3. Therefore. motion can be detected by using spatiotemporally oriented filters. One filter

of this type. suggested by I-leegcr. is the Gabor filter.

A 1-D sine-phase Gabor filter is defined as follows:

I

80]: «[276

  

sin(2nmt)exp{— 9;: }. (14.3)

Obviously, this is a product of a Sine function and a Gaussian probability density function. In the
frequency domain, this is the convolution between a pair of impulses located in to and —o). and the
Fourier transform of the Gaussian. which is itself again a Gaussian function. Hence. the Gabor

function is localized in a pair of Gaussian windows in the frequency domain. This means that the
Gabor filter is able to pick up some frequency components selectively.

A 3—D sine Gabor function is

 
l I x1 y: r1

‘ r = - '- ., + —., + “7,-gthi :Efi—MEUF—xd‘flr EXP 2 [0; a; a;
(14.9}

.sin[2TE((DJ.uI + min-1H" tarot”.
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(a)

  
(b) (‘3)

FIGURE 14.3 Orientation in spatiotempora] domain. {a) A horizontal bar translating downward. (51A

spatiotemporal cube. to) A slice of the cube perpendicular to At‘ axis. The orientation ol'thc slant edges represents
the motion.

where ol, 6),. and o, are. respectively. the spreads of the Gaussian window along the spatiotemporal
dimensions; and 0),", my“. and to,u are, respectively. the central spatiotemporal frequencies. The
actual Gabor energy filter used by I-leeger is the sum of a sine-phase filter (which is defined above}-

and a cosine-phase filter (which Shares the same spreads and central frequencies as that in the sine-

phase filter, and replaces sine by cosine in Equation 14.9). Its frequency response. therefore. is as
follows.

G(mx,my,mf) = iexp{—4fil[ci(mx _ Lox”): + oflmy — $0,“)? + (flu; em!“ l]
t 14. 10)

+oflm, +to,n)3]}.

This indicates that the Gabor filter is motion sensitive in that it responds largely to motion that has

more power distributed near the central frequencies in the spatiotemporal frequency domain. While

it respouds poorly to motion that has little power near the central frequencies.

{lllll

Flow extraction with motion energy — Using a vivid example, Heeger explains in his paper Why
one such filter is not sufficient in detection of motion. Multiple Gabor filters must be used. In fact,
a set of 12 Gabor filters are utilized in Heeger’s algorithm. The l2 Gabor filters in the set have

one thing in common:
 

mffijflwifll (14.11)
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In other words. the 12 filters are tuned to the same spatial frequency band but to different spatial
orientation and temporal frequencies.

Briefly speaking. optical flow is determined as follows. Denote tlte measured motion energy
by "Hi : l .2...,12. Here i‘ indicates one of the I2 Gabor filters. The summation of all 111,. is denoted by

l2

H:Zirl.. (14.12)11:]

Denote the predicted motion energy by PI-(ttr, PF}, and the sum of predicted motion energy by

15:21::(vlmy). (14.131

Similar to what many algorithms do. Optical flow determination is then converted to a minimization

problem. That is. optical Ilnw should be able to minimize error between the measured and predicted

motion energies:

J{v'.1t.)= N -t.# . (14.14)

Similarly. many readily available numerical methods can be used for solving this minimization
problem.

14.2.3 REGION-BASED APPROACHES vs. GRADIENT—BASED APPROACHES

As stated in Chapter It), melhodologically speaking. there are generally two approaches to 2-D
motion analysis for video coding: region based and gradient based. Now that we have gone through

three major techniques, we can see this classification more clearly.
The region~based approach can be characterized as follows. For a region in an image frame.

We find its best match in another image frame. The relative spatial position between these two

regions produces a displacement vector. The best matching is found by minimizing a dissimilarity

measure between the two regions. which is defined as

2 zme, 3.3!). f(.r «a, y H dy.t — an], (14.15)
[ r._i-]£R

where R denotes a Spatial region, on which the displacement vector (0;. {if estimate isfibased;
MIDLB] denotes a dissimilarity measure between two arguments t1 and [5; Ar is the time interval
between two consecutive frames.

Block matching certainly belongs to the region-based approach. By region we mean a rectangle
block. For an original block in a (current) frame, block matching searches for its best match in
another (prettiousl frame among candidates. Several dissimilarity measures are utilized, among
which the mean absolute difference (MAD) is "sad "1°51 otten. . ‘

Although it uses the spatial gradient of intensity function, the pet recursive method w1th
inclusion of a neighborhood area assumes the same displacement vector within a neighborhood
reSion. A weighted sum of the squared DFD within the region is used as a dissnnilarity measure.
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By using numerical methods such as various descent methods. the pol recursive method iteratively

minimizes the dissimilarity measure. thus delivering displacement vectors. The pet recursive tech-

nique is therefore in the category of regiowbascd approaches.

In optical flow computation. the two most frequently used techniques discussed in Chapter l3

are the gradient method and the correlation method. Clearly. the correlation method is region based.

In fact. as we pointed out in Chapter 13. it is very similar to block matching.

As far as the gradient-based approach is concerned. we start its characterization with the

brightness invariant equation. covered in Chapter 13. That is. we assume that brightness is conserved

during the time interval between two consecutive iiitage frames.

f(.t‘.)'_.r) : flx — (Ivy — it. i a At). (14. l 6)

By expanding the right-hand side of the above equation into the 'I'Liyior series. applying the above

equation. and some mathematical manipulation. we can derive the following equation.

frit+fitt+fi=a {14.17)

wheref..f...f; are partial derivatives of intensity function with respect to .i'. _t. and i. respectively;
and it and v are two components of pixel velocity. This equation contains gradients of inlCHSil)’
function with respect to spatial and temporal variables and links two components ol‘ the displacement
vector. The square of the left-hand side in the above equation is an error that needs to be minimized.

Through the minimization, we can estimate displacement vectors.

Clearly, the gradient method in optical flow determination. discussed in Chapter 13. falls into

the above framework. There. an extra constraint is imposed and included into the error represented
in Equation 14.17.

Table 14.1 summarizes what we discussed in this subsection.

 

 

TABLE 14.1

Region-Based vs. Gradient-Based Approaches

Optical Flow

Gradient-Based Correlation-Based

Block Matching Pel Recursion Method MthOd

Regional-based approaches v vl \J'
Gradient-based approaches ' v'
___i—____—________________F____fl

14.2.4 Foswaao vs. BACKWARD Morton ESTIMATION

Motion-compensated predictive video coding may be done in two different ways: forward and
backward (Boroczky. 1991). These ways are depicted in Figures l4.4 and 14.5. respectively. With
the forward manner. motion estimation is canted out by using the original input video frame and
the reconstructed previous input video frame. With the backward manner. motion estimation is

implemented with two successive reconstructed input video frames.
The former provides relatively higher accuracy in motion estimation and hence more efficient

motion compensation than the latter. owing to the fact that the original input video frames are
utilized. However. the latter does not need to transmit motion vectors to the receiving end as an
overhead. while the former does.
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Video in 1

FIGURE 14.4 Forward motion estimation and compensation.T: transformer. Q: quantizer. FB: frame buffer.

MCP: motion-compensated predictor. ME: motion estimator. e: prediction error. f: input video frame.

L: predicted video frame)“; reconstructed video frame. of: quantized transform coefficients. v: motion vecror.

Block matching is used in almost all the international video coding standards. such as H.261.

H.263. MPEG 1. and MPEG 2 (which are covered in the next part of this book). as forward-motion

estimation. The pel recursive technique is used as backward-motion estimation. In this way, the

pol recursive technique avoids encoding a large amount of motion vectors. On the other hand.

however. it provides relatively less accurate motion estimation than block matching. Optical flow

is usually used as forward-motion estimation in motion-compensated video coding. Therefore. as

expected. it achieves higher motion estimation accuracy on the one hand and it needs to handle a

large amount of motion vectors as overhead on the other hand. These will be discussed in the next
section.

It is noted that one of the new improvements in the block-matching technique is described in
Section 1 1.6.3. It is called the predictive motion field segmentation technique (Orchard. l993}. and

it is motivated by backward—motion estimation. There, segmentation is conducted backward. i.e..

based on previously decoded frames. The purpose of this is to save overhead For shape ini’omtation
of motion discontinuities.

14.3 PERFORMANCE COMPARISON AMONG THREE

MAJOR APPROACHES

14.3.1 THREE REPRESENTATIVES

A performance comparison among the three major approaches; block matching. pel recursion. and
optical flow, was provided in a review paper by Dufaux and Moseheni ([995). Experimental work
was carried out as follows. The conventional full~search block matching is chosen as a representative
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FIGURE 14.5 Backward-motion estimation and compensation. T: transformers Q: quantizer, FB: frame

buffer, MCP: motion-compensated predictor. ME: motion estimator. e: prediction error, f: input video frame.

f": predicted video frame,f,,: reconstructed video frame.f,2: reconstructed previous video frame, q: quantized
transform coefficients.

for the block-matching approach, while the Netravali and Robbins algorithm and the modified Horn
and Schunck algorithm are chosen to represent the pel recursion and optical flow approaches.
respectively.

14.3.2 ALGORITHM PARAMETERS

In full-search block matching, the block size is chosen as l6 x 16 pixels, the maximum displacement
is $15 pixels, and the accuracy is half—pixel. In the Netravali and Robbins pel recursion, e = 1/1024.
the update term is averaged in an area of 5 x 5 pixels and clipped to a maximum of [/16 pixels
per frame, and the algorithm iterates one iteration per pixel. In the modified Horn and Schunck
algorithm, the weight a2 is set to 100, and too iterations of the Gauss and Seidel procedure are
carried out.

14.3.3 EXPERIMENTAL RESULTS AND OBSERVATIONS

The three test video sequences are the "Mobile and Calendar,” “Flower Garden,” and “Table Tennis."
Both subjective criteria (in terms of needle diagrams showing displacement vectors) and objective
criteria (in terms of DFD error energy) are applied to access the quality of motion estimation.

It turns out that the pel recursive algorithm gives the worst accuracy in motion estimation. In
particular, it cannot follow fast and large motions. Both block-matching and optical flow algorithms
give better motion estimation.
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It is noted that we must be cautious in drawing conclusions from these tests. This is because

different algorithms in the same category and the same algOrithm under different implementation
conditions will provide quite different performances. In the above experiments, the full-search
block matching with half—pixel accuracy is one of the better block—matching techniques. On the
contrary. there are many improved pet recursive and optical flow algorithms. which outperform the

chosen representatives in the reported experiments.

The experiments do. however. provide an insight about the three major approaches. Pel recursive

algorithms are seldom used in video coding now. mainly because of their inaccurate motion

estimation. although they do not require transmitting motion vectors to the receiving cnd. Although
they can provide relatively accurate motion estimation. optical flow algorithms require a large

amount of overhead for handling dense motion vectors. This prevents the optical flow techniques

from wide and practical usage in video coding. Block matching is simple. yet very efficient for

motion estimation. It provides quite accurate and reliable motion estimation for most practical

video sequences in spite of its simple piecewise translational model. At the same time it does not

require much overhead. Therefore, for first—generation video coding. block matching is considered

to be the most suitable among the three approaches.

14.4 NEW TREN 05

In Chapters 1 t. 12. and l3. many new. effective improvements within the three major approaches

were discussed. These techniques include multiresolution biock matching. (locally adaptive) mul-

tigrid block matching. overlapped block matching. thresholding techniques. (predictive) motion

field segmentation, feedback and multiple attributes in optical flow computation, subpixel accuracy.

and so on. Some improvements will be discussed in Section N. where various international video

coding standards such as H.263 and MPEG 2. and 4 are introduced.

As pointed out by Orchard (1998). today our understanding of motion analysis and video

compression is still based on an ad hoc framework, in general. What today's standards have achieved

is not near the ideally possible performance. Therefore. more efforts are continuously made in this

fiflld. seeking much simpler and more practical. and efficient algorithms. _
As an example of such developments. we conclude this chapter by presenting a novel method

for 2-D motion estimation: the DCT-based motion estimation (Koc and Liu. I998).

14.4.1 DCT-Basso Morton ESTIMATION

As pointed out in Section 14.2.2. as opposed to the conventional 2—D motion estimation techniqueS,

this method is carried out in the frequency domain. It is also different from the Gator energy filter
method by Heeger. discussed in Section 14.2.2.1. Without introducing Gabor filters, this mehtod
is directly DCT based. The fundamental concepts and techniques ofthis method are discussed below.

14.4.1.1 DCT and DST Pseudophases

The underlying idea behind this method is to estimate 2-D translational motion by determining the
DCT and DST (discrete sine transform) pserrdophnses. Let us use the Simpler l~D ease to illustrate

this concept. Once it is established, it can be easily extended to the 2-D ease. .
Consider a 1-D signal sequence {f(n),a e (D, l. ---, N- H 0f length N- 1‘5 translated “3’3“?"

is denoted by {g(n).n e (0, I, N — I}. The translation is defined as follows.

ford), if (it—d)E(0.l.-~-.N—l)
8(H):i0.( otherwise ' (14‘ I8)
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In the above equation, d is the amount of the translation and it needs to be estimated. Let us define

the following several functions before introducing the pseudophases. The DCT and the DST of the

second kind ofg(n), 65%). and 650:) are defined as follows.

GER):%C(k)§g(n)eos|:%(n +0.3] 11' E{U,1.---N — l} (14.19)

G‘tk) =%C(k)§g[n)sin[%(n+0.5)] ); e{1.---N}. (14.20)"=0

The DCT and DST of the first kind off(u), F502), and F5“) are defined as

N I

FC(k]:%C[k);f(n)cos[%n] k E {0.1.--»N — l} (14.21)

2 ”-1 kn:

155(k) = E C(k];f(n)sinl:7v- it] 11: E {1,1 . . N}. (14.22)

In the above equations, C(k) is defined as

l —

C(k): fi forn‘OOrN' (14.23)
1 otherwise

Now we are in a position to introduce the following equation, which relates the translational amount at
to the DCT and DST of the original sequence and its translated version. defined above. That is.

060‘) : FCUC) ‘FSW DCU‘) ’ (14.24)
135(k) F“(k) mi) 050:)

where Dctfk) and .0602) are referred to as the pseudophascs and defined as follows:

Dc(k) é cosl:%[d+%]:|
(14.25)

pitta) e sin|:%[d + 31'

Equation 14.24 can be solved for the amount of translation d, thus motion estimation. This Iztecol‘flt?S
clearer when we rewrite the equation in a matrix—vector format. Denote the 2 x 2 matrix In
EquatiOn 14.24 by F(k). the 2 x 1 column vector at the left—hand side of the equation by G(k). and
the 2 x 1 column vector at the right—hand side by D(k). It is easy to verify that the matrix FU‘) 15
orthogonal by observing the following.
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1F7(k)F(k)=l. (14.26)

where I is a 2 x 2 identity matrix and the constant it is

A = —————. (14.27)
[eta]; +[F‘(k)]

We then derive the matrix-vector format of Equation 14.24 as follows:

D(k)=lF’(k)G{k) t- e {l.~-.N—l}. {14.28)

14.4.1.2 Sinusoidal Orthogonal Principle

It was shown above that the pseudophascs. which contain the translation information. can be

determined in the DCT and DST Frequency domain. But how the amount ofthc translation can be

found has not been mentioned. Here. the algorithm uses the sinusoidal principle to pick up this
information. That is. the inverse DST of the second kind of scaled pseudophase. C(k)D’(k). is found

to equal an algebraic sum of the following two discrete impulses according to the sinusoidal

orthogonal principle:

i.soi‘{C(t)D‘(ici} % iczlkloslklsmlgi’HQl: 5(d—it)—5(d+n+l). (14.29)

Since the inverse DST is limited to n c it]. t. N — l}. the only peak value among this set of
N values indicates the amount of the translation 0‘. Furthermore. the direction of the translation

(positive or negative) can be determined from the polarity (positive or negative) of the peak value.

The block diagram of the algorithm is shown in Figure 14.6. This technique can be extended

to the 2~D case in a straightforward manner. Interested readers should refer to Roe and Liu {1998).

14.4.1.3 Performance Comparison

The algorithm was applied to several typical testing video sequences, such as the "Miss America“
and “Flower Garden" sequences. and an "Infrared Car“ sequence. The results were compared With
the conventional full—search block—matching technique and several fast-search block-matching tech-

niques such as the 2-D legarithm search, three step search. search with subsampling in the original
block. and the correlation windows.

Prior to applying the algorithm. one of the following preprocessing procedures is implemented:

frame differentiation or edge extraction. It was reported that for the “Flower Garden“ and ”Infrared
Car“ sequences. the DCT—based algorithm achieves a higher coding efficiency than all three last-
search block-matching methods. while for the Miss America sequence it obtains a lower ethIe-ncy.

It was also reported that it performs well even in a noisy situation. . ’
A lower computational complexity, 0(M3) for an M x M search range, is one of the major

advantages possessed by the DCT—based motion estimation algorithm compared with conventional
full-search block matching, 0(M1 - N3) for an M x M search range and an N x N block Size.

With DCT—based motion estimation. a fully DCT—based motion-compensated coder strueture

becomes possible. which is expected to achieve a higher throughput and a lower system complexity.
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fin) and sin)

 

  
  

 

DCT and DST

Pseudephese Computation
 

fDSTef{D't‘L-},l

Delenm'nmion of
Peak Position and Pofan'i}:

0'

FIGURE 14.6 Block diagram of [JCT—based motion estimation {l-D case).

14.5 SUMMARY

In this chapter. which concludes the motion analysis and compensation portion of the book. we
first generalize the discussion of the aperture problem. the ill-posed nature. and the conservation-
and-neighborhood-information unified point of View, previously made with respect to the optical
flow WChniql-IE in Chapter 13. to cover block-matching and pel recursive techniques. Then. occlusion
and disocclusion. and rigidity and nonrigidity are discussed with respect to the three techniques.
The difficulty of nonrigid motion estimation is analyzed. Its relevance in visual communications
is addressed.

Difi’erenl classifications of various methods in the three major 2-D motion estimation tech-
niques; block matching, pel recursion, and optical flow. are presented. Besides the frequently utilized
deterministic methods, spatial domain methods, region-based methods. and forward—motion estt-
mation. their counterparts -— stochastic methods. frequency domain methods. gradient methods.
and backward motion estimation ~— are introduced. In particular. two frequency domain methods
are presented with some detail. They are the method using the Gabor energy filter and the DCT-
based method.

A performance comparison among the three techniques is also introduced in this chapter. based
on WhiCh Observations are drawn. A main point is that block matching is at present the most suitable
technique for 2-D motion estimation among the three techniques.
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14.6 EX ERCISES

14-1. What is the difference between rigid motion and nonrigid motion? to facial encoding,
What is the nonrigid motion? How is the nonrigid motion handled?

14-2. How is 2-D motion estimation carried out in the frequency domain? What are the

underlying ideas behind the Heeger method and the Koc and Liu method”?

14-3. Why is one Gabor energy tiller not sufficient in motion estimation? Draw the power

spectrum of a 2-D sine-phase. Gabor function.

14-4. Show the correspondence of a positive (negative) peak value in the inverse DST of the

second kind of DST pseudophase to a positive (negative) translation in the 1—D spatial
domain.

14-5. How does neighborhood information manifest itself in the pol recursive technique?

14-6. Using your own words and some diagrams. state that the translational motion of an

image pattern 15 characterlzed by orientation in the spaliolempornl domain.
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’l 5 Fundamentals of Digital
Video Coding

in this chapter. we introduce the fundamentals of digital video coding which include digital video

representation. rate distortion theory. and digital video formats. Also. we give a brief overview of

image and video coding standards which will he discussed in the subsequent chapters.

15.1 DIGITAL VIDEO REPRESENTATION

As We discussed in previous chapters. a digital image is obtained by quantizing a continuous image

both spatially and in amplitude. Digitization of the spatial coordinates is called image sampling.

while digitization of the amplitude is called gray-level quantization. Suppose that a continuous

image is denoted by g(.t'.y}. where the amplitude or value ofg at the point (any) is the intensity

or brightness of an image at that point. The transformation of a conntinuous image to a digital

Image can then be expressed as

fliri.u) = nglxn + mm); + tidy”. {15.1)

where Q is a quantization operator. in ands-f, are the origin of image plane. in and it are the discrete

values 0. I. 2. and Ar and m are the sampling intervals in the horizontal and vertical directions.

respectively. It the sampling process is extended to a third temporal direction (or the original signal

in the temporal direction is a discrete format). a sequence.f(m.n.t). is obtained as introduced in

Chapter [0.

fliit.ii.t] = nglxfl + many” + H ALI” + t Ad]. {15.2)

where r is the values 0. I. 2. and A r is the time interval.

Each point of the image or each basic element of the image is called as a pixel or pet. Each

individual image is called :1 Frame. According to the sampling theorem. the original continuous signal
can be recovered exactly From its samples it‘ the sampling frequency is higher than twuee the

bandwidth of the original signal (Oppenheim and Schaler. [989). The frames are normally presented
at a regular time interval so that the eye can perceive fluid motion. For example. the NTSC (National
TeleviSion Systems Committee) specified a temporal sampling rate of 30 frameslsecond and inter-

lace 2 to [. Therefore, as a result of this spade-temporal sampling. the digital signals exhibit high
spatial and temporal correlation. just as the analog signals did before video data compresSIon. In
the following, we discuss the theoretical basis of video digitization. An important notion is the
strong dependence between values of neighboring pixels within the same frame and between the
frames themselves; this can be regarded as statistical redundancy of the image sequence. In the
following section, we explain how this statistical redundancy is exploited to achieve eomPTESSlO"
of the digitized image sequence.

323
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15.2 INFORMATION THEORY RESULTS (W): RATE DISTORTION

FUNCTION OF VIDEO SIGNAL

The principal goal in the design of a video-coding system is to reduce the transmission rate

requirements of the video source subject to some picture quality constraint. There are only two

ways to accomplish this goal: reduction ofthe statistical redundancy and psychophysical redundancy

of the video source. The video source is normally very highly correlated. both spatially and

temporally: that is. strong dependence can be regarded as statistical redundancy of the data source.

If the video source to be coded in a transmission system is viewed by a human observer. the

perceptual limitations of human vision can be used to reduce transmission requn‘ements. Human

observers are subject to perceptual limitations in amplitude. spatial resolution. and temporal acuity.

By proper design of the coding system. it is possible to discard information without affecting

perceptiou, or at least, with only minimal degradation. In summary. we can use two factors: the

Statistical Structure of the data source and the fidelity requirements of the end user. which make

compression possible. The performance ofthc video compression algorithm depends on the several

factors. First. and also fundamental, is the amount ofredundancy contained in the video data source.

In other words. if the original source contains a large amount of information. or high complexity.

then more bits are needed to represent the compressed data. Second. it a lossy coding technique

is used. by which some amount of loss is permitted in the reconstructed video data. then the

performance of the coding technique depends on the compression algorithm and distortion mea—

surements. In lossy coding, different distortion measurements will perceive the loss in different

ways, giving different subjective results. The development of a distortion measure that can provrde

consistent numerical and subjective results is a very difficult task. Moreover, the majority of the

video compression applications do not require lossless coding: l.t‘.. it is not required that the

reconstructed and original images be identical or reversible.

This intuitive explanation of how redundancy and lossy coding methods can be used to reduce

source data is made more precise by the Shannon rate distortion theory (Berger. [970. Whit?“

addresses the problem of how to characterize both the source and the distortion measure. Let us

consider the model of a typical visual communication system depicted in Figure 15. l. The source

data is fed to the encoder system. which consists of two parts: source coding and channel coding.

The function of the source coding is to remove the redundancy in both the spatial and temporal

domains. whereas the function of channel coding is to insert the controlled redundancy. which is
used to protect the transmitted data from the interference of channel noise. It should be noted that

according to Shannon (1948) certain conditions allow the source and channel coding operations to

be separated without any loss ofoptimality. such as when the sources are ergodic. However. Shannon

did not indicate the complexity constraint on the coder involved. In practical systems that are limited

Input data To channel
Source Channel

 
Reconstructed From channeldun

FIGURE 15.1 A typical visual communication system.
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by the complexity. this separation may not be possible (Viterbi and Omura. 1979). There is still
some work on the joint optimization of the source and channel coding (Modestino et al.. 1931;
Sayood and Borkenhagen. 1991). Returning to rate—distortion theory, the problem addressed here
is the minimizing the channel capacity requirement, while maintaining the average distortion at or
belowr an acceptable level.

The rate distortion function RID) is the minimum average rate (bitsfelement). and hence

minimum channel capacity. required for a given average distortion level D. To make this more

quantitative. we suppose that the source is a sequence of pixels, and these values are encoded by

successive blocks of length N. Each block of pixels is then described by one of a denumerable set

of messages. {XI}. with probability function. P(X.-). For a given input source. {X.}. and output.

{ )3}. the decoder system can be described mathematically by the conditional probability, QOlei).
Therefore. the probability of the output message is ‘

Whine-laws)- 05-3)

The information transmitted is called the average mutual information between Y and X and is

defined for a block of length N as follows:

t...(x.r)=z 2P(x,)Q(tg/x.)teg.QlY’—ix‘l 05.4)
r(.'

In the case of error—free encoding, Y = X and then

Q(lj/XJ)={3 j: and T03): T01). (15.5)
In this case. Equation 15.4 becomes

rwtx. r): z 23%)ng2 P(x.)= H..(x). 05.6)
I' J‘

which is the Nth-order entropy oftlte data source. This can also be seen as the information contained
in the data source under the assumption that no correlation exrsts between blocks and all the
correlation between elements of each N length block is considered. Therefore. it requires at least
Ha (X) bits to code the data source without any information loss. In other wordS. the OP‘ITflal FIFO?“
free encoder requires H~(X) bits for the given data sourCe. In the most general case. "0'53 m the
communication channel will result in error at least some of the time. causing Yvé X. As a result.

IN[X,Y)=HN[X)—HN(X/Y). (15.7)

where H~(X/Y) is the entropy of the source data at the condition of decoder output it Since'the
entropy is a positive quantity. the source entropy is the upper bound to the mutual information; t.e..

t~(x.r)sa..(x). (15.8)
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Let (1 (XJ’) be the average distortion between X and l’. Then. the average distortion per pixel is
defined as

0(a): N Waxy) fizzdlx. r)P)P(.t)Q(.r/i;) (15.9)

The set of all conditional probability assignments, Qtl’fX). that yield average distortion less than

or equal to D*. can be written as:

{9: noises}. (15.10)

The N~block rate distortion function is then delined as the minimum of the average mutual

information. (”(X. Y). per pixel:

D'= ' — . . .IIt. i native .

The limiting value ofthe N—block rate distortion function is simply called the rate distortion function.

R(o'=] Lile [0']. (15.12}NH...

It should be clear from the above discussion that the Shannon rate distortion function is a lower

bound 0n the transmission rate required to achieve an average distortion D when the block size is

infinite. In other words. when the block size is approaching inlinity. the correlation between all
elements within the block is considered as the information contained in the data source. Therefore.

the rate obtained is the lowest rate or lower bound. Under these conditions. the rate at which a data

source produces information. subject to a requirement ot'perfect reconstruction. is called the entropy
ofthe data source. i.e.. the information contained in the data source It follows that the rate distortion

function is a generalization of the concept ofentropy. Indeed. if the distortion measure is a perfect

reproduction. it is assigned zero distortion. Then. Rt'O) is equal to the source entropy HM}-

Shannon‘s coding theorem states that one can design a coding sysrem with rate only negligibi)’
greater than Rib) Which achieves the average distortion D. As D increases. RtD) decreases mono-

tonically and usually becomes zero at some finite value of distortion. The rate distortion function

R00) specifies the minimum achievable transmission rate required to transmit a data with average

distortion level D. The main value of this function in a practical application is that it potentially
gives a measure forjudging the performance of a coding system. However. this potential value has
not been completely realized for video transmission. There are two reasons for this. First of all.

there currently does not exist tractable and faithful mathematical models for an image source. The

rate distortion function for Gaussian sources under the squared error distortion criterion can be found.
but it is not a good model for images. The second reason is that a suitable distortion measure. 9.

which matches the subjective evaluation ofimagc quality. has not been totally solved. Some results
have been investigated for this task such as JND (just noticeable distortiOn) (see www.5ar-

noff.comr'techHrealworldt'brcadeastijndlindexhtml). The issue of subjective and objective assess-

ment of image quality has been discussed in Chapter I. In spite of them drawbacks. the rate
distortion theorem is still a mathematical basis for comparing the performance of different coding
systems.
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15.3 DIGITAL VIDEO FORMATS

In practical applications. most video signals are color signals. Various color systems have been
discussed in Chapter I. A color signal can be seen as a summation of light intensities of three
primary wavelength bands. There are several color representations such as YCbC‘“ RGB. and others.
It is common practice to convert one color representation to another color representation.The I’CbC,
color representation is used for most video coding standards in compliance with the CCIRGDI
(International Radio Consultative Committee]. common intermediate format tCIF), and SIF formats
that are described in the following. The l’ component specifies the luminance information and the

C}, and C, components specify the color information. Conversion between the I’C,,C, and R03
formats can be accomplished with the following transformations, respectively.

Y 025'? 0.504 0.098 R 16

Ch : —0.|48 —0.29l 0.439 G + [23 ; “5.13)

C, 0.439 —0.368 #007] B IZB

ft’ 1.164 0.000 LS‘JE l" - l6

G = 1.104 41392 -0.813 g—IZS . (15.14)

8 HM 2.0I? 0.000 C’ —123

Progressive and Interlaced # Currently, most video signals that are generated by a TV camera

are interlaced. These video signals are represented at 30 framcsi’second for an NTSC system. Each

frame consists of two fields. the top tield and bottom Iield. which are 'frn of a second apart. In the

display of an interlaced frame. the top field is scanned first and the bottom field is scanned next.

The top and bottom fields are composed of alternating lines of the interlaced frame. Progressive

video does not consist of fields. only frames. In an NTSC system. these frames are spaced The seconds

apart. In contrast to interlaced video. every line within the frame is successively scanned.

CCIR -—— According to CCIRGOI (sec CCIR Recommendation GUI-l) (CCIR is now known

as ITU-R. International Telecommunications Union—R), a color video source has three components:

a luminance component (Y) and two-color difference or chrominance components (CL, and C, or U

and V in some documents). The CCIR format has two options; one for the NTSC TV system and

another for the PAL TV sySIem: both are interlaced. The NTSC format uses 525 linesfframe at 30
framesi’second. The luminance frames of this format have 720 x 480 active pixels. The chrominance

frames have two kinds of formats, one has 360 x 480 active pixels and is referred as the 4:2:2

format. while the other has 360 x 240 active pixels and is referred as the 4:210 format. The PAL
format uses 625 lines/frame at 25 I'ramcsfsecond. Its luminance frame has 720 x 5‘16 active

pixelslframe and the chrominance frame has 360 x 5% active pixelst'frame for the 4:22 format

and 360 x 288 pixelsi’frame for the 4:2:0 format. both at 25 l'ramesi'seeond. ‘ .
SIF {source input format} —— SlF has luminance resolution of 360 x 240 ptxclsfframe at 30

framesfseeond or 360 x 283 pixelsfframe at 25 framesi‘sccond. For both cases. the resolution of the
ehrominance components is half of the luminance resolution in both horizontal and vertical dimen-
sions. SIF can easily be obtained from a CCIR format using an appropriate anttaltastng hlter

followed by subsampling. _ . .
CIF (common intermediate format) — CIF is a noninterlnced lormat. Its luminance resolution

has 352 x 288 pixelslframe at 30 framcsi'second and the chrominanee has half the luminance

resolution in both vertical and horizontal dimensions. Since its line value. 288. represents half the
active lines in the PAL. television signal, and its picture rate, 30 framesfseconcl. is the same as the
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NTSC television signal. it is a common intemtediate format for both PAL or PAL—like systems and

NTSC systems. in the NTSC systems. only a line number conversion is needed. while in the PAL

or PAL~iike systems only a picture rate conversion is needed. For low-bil—ratc applications. the

quarter-SIP (QSIF) or quarter-CIF (QCIF) formats may be used since these formats have only a

quarter the number of pixels of SIP and CIF formats. respectively.

ATSC (Advanced Television Standard Committee} DTV (digital television] format —-The

concept of DTV consists of SDTV (standard~definition television) and HDTV (high-definition

television). Recently. in the U.S.. the FCC (Federal Communication Commission) approved the

ATSC-recornmended DTV standard (ATSC. l995).The DTV format is not included in the standard

due to the divergent Opinions of TV and computer manufacturers. Rather. it has been agreed that

the picture format will be decided by the future market. The ATSC-rccommendcd DTV formats

including two kinds of formats: SDTV and HDTV. The ATSC DTV standard includes the Following
18 formats:

For HDTV: 1920 x 1030 pixels at 23.976f24 Hz. 29.97.80 ['12. and 59.94160 Hr. progressive
scan.

For 50W: 704 x 480 pixels with 4:3 aspect ratio at 23.97694 Hz, 29.9?!30 Hz. 59.94MB Hz

progressive scan; 704 x 480 pixels with [6:9 aspect ratio at 23.97et24 Hz. 29.97130 Hz.

59.9450 Hz progressive scan; and 640 x 430 with 4:3 aspect ratio at 23.9?6I24 Hz.

29.9780 Hz, 5994.960 Hz progressive Scan.

It is noted that all HDTV formats use square pixels and only part ofSDTV formats uses square

pixels. The number of pixels per line vs. the number of linesi'frame is known as the aspect ratio.

15.4 CURRENT STATUS OF DIGITAL VIDEO/IMAGE

CODING STANDARDS

The fast growth of digital transmission services has generated a great deal of interest in the digital

transmission of video signals. Since some digitized video source signals require very high bit rates.

ranging from more than 100 Mbps for broadcast—quality video to more than 1 Gbps for HDTV
signals. video compression algorithms which reduce the bit rates to an affordable level on practical

communication channels are required. Digital video-coding techniques have been investigated over

several decades. There are two factors that make video compression possible: the statistical structure

of the data in the video source and the psychophysical redundancy of human vision. Video com-

pression algorithms can remove the spatial and temporal correlation that is normally present in the
video source. In addition, human observers are subject to perceptual limitations in amplitude, Spatial
resolution. and temporal acuity. By proper design of the coding system it is possible to discard
information without affecting perceived image quality or. at least. with only minimal degradation-

Several traditional techniques have been developed for image and video data compression.
Recently. with advances in data compression and VLSI (very large scale integrated) techniques.

the data compression techniques have been extensively applied to video signal compression. Video
compression techniques have been under development for over 20 years and have rcccntly emerged
as the core enabling technology for a new generation of DTV (both SDTV and HDTV) and
multimedia applications. Digital video systems currently being implemented (or under aCliVC
consideration) include terrestrial broadcasting of digital HDTV in the U5. (ATSC, 1993). satellite
DBS (Direct Broadcasting System) (Isnardi. l993), computer multimedia (Ada, 1993). and video
via packet networks (Verbiest. 1989). In response to the needs of these emerging markets for digital
video. several national and worldwide standards activities have been started over the last few years-

These organizations include ISO (International Standards Organization), ITU. formally known as

CCI'IT. International Telegraph and Telephone Consultative Committee). IPEG (Joint Photograph";
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Experts Group). and MPEG (Motion Picture Experts Group) as shown in Table 15.]. The related
standards include JPEG standards. MPEG-l.2.4 standards, and H.261 and H.263 video teleconfen

eneing coding standards as shown in Table 15.2. It should be noted that the JPEG standards are

usually used for still image coding. but they can also be used to code video. Although the coding
efficiency would be lowered. they have been shown to be useful in some applications. e.g.. studio
editing systems. Although they are not video-coding standards and were discussed in Chapters 7
and 8. respectively. we include them here for completeness of all international image and video
coding standards.

- JPEG Standard: Since the mid-19805. the ITU and ISO have been working together
to develop a joint international standard for the compression of still images. Officially.
JPEG [ISOIIEC l992a) is the ISOKIEC international standard lOQIS-l. “Digital Com-

pression and Coding of Continu0us-Tone Still Images." or the ITU-T recommendation

TB]. JPEG became an international standard in 1992. JPEG is a DCT—based coding
algorithm and continues to work on future enhancements, which may adopt wavelet-
bascd algorithms.

‘ JPEG-ZUUU: JPEG-2000 (see Joint Photographic Experts Group) is a new type of image

coding system under development by JPEG for still image coding. PEG-2000 is consid-

ering usmg thc wavelet transform as its core technique. This is because the wavelet

transform can provide not only excellent coding efficiency. but also wonderful spatial and

quality scalable functionality. This standard is intended to meet the need for image

compression with great flexibility and efficient interchangeability. It is also intended to

offer unprecedented access into the image while still in a compressed domain. Thus. an

image can be accessed. manipulated. edited. transmitted. and stored in a compressed form.

' MPEG-1: In l988 ISO established the MPEG to develop standards for the coded

representation of moving pictures and associated audio information for digital storage

applications. MPEG completed the first phase ofits work in [99 I. It is known as MPEG-1

(ISOIIEC. I992b) or ISO standard 1 1 13’2. “Coding of Moving Picture and Associated

Audio." The target application for this Specification is digital storage media at bit—rates

up to about 1.5 Mbps.

' MPEG—2: MPEG started its second phase of work. MPEG—2 (ISOIIEC, 1994). in 1990.

MPEG-2 is an extension of MPEG—[ that allows for greater input~fortnat flexibility.

higher data rale for SDTV or HDTV applications. and better error resilience. This work

resulted in the. ISO standard I3818 or ITU-T Recommendation H.262. “Generic Coding

of Moving Pictures and Associated Audio.“

- MPEG-4: MPEG is now working on its fourth phase. MPEG-4 (ISOHEC. 1993).

MPEG4 visual committee draft version I was approved in November 1997- The end of

1999 will define the final international standard. The MPEG4 standard supports object~

based coding technology and is aimed at providing enabling technology for a variety of

functionalities and multimedia applications: .
1. Universal accessibility and robustness in error—prone environments

2. High interactive functionality

3. Coding of natural and synthetic data or both

4. Compression efficiency. .
- H.261: H.261 was adopted in [990 and the hard revision was approved to 1993 by the

[TU-T. It is designed for video teleconferencing and utilizes a [JCT—based motion-

compensation scheme. The target bit rates are from 64 to 1920 Kbps. . ‘
- H.263. H.263 Version 2 01,263+), H.263++ and 11261.: The H.263 video coding

standard is specifically designed for very low bit rate applications such as video confer-
encing. Its technical content was completed in late 1995 and the standard was approved
in early l99l5. It is based on the H.26l standard with several added features: unrestricted
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motion vectors. syntax-based arithmetic coding. advanced prediction. and PIS-frames.

The H.263 version 2 video-coding standard. also known as “H.263+." was approved in

January l998 by the ITU-T. H.263+ includes a number of new optional features based

on the H.263. These new optional features are added to provide improved coding elli—

ciency. a flexible video format. scalability. and backward-compatiblc supplemental

enhancement information. H.263++ is the extension of H.263+ and is currently scheduled

to be completed in the year 2000. H.26L is a long—term project which Is looking for

more efficient video-coding algorithms.

The above organizations and standards are summarized in Tables |5.1 and 15.2. respectively.
 

 

 

TABLE 15.1

List of Some Organizations for Standardization

Organization Full Name of Organization

CCI'IT International Telegraph and Telephone Consultant-c Cortntnttcc
lTU lnlcmaltonal Telecommunication Uttlun

JPEG Joint Photographic Experts Group

MPEG Moving Flicture Experts Group

150 International Standards Organization
IEC International Electrotechnical Commission

TABLE 15.2

Video/Image Coding Standards

Name Completion Time Major Features

JPEG |992 For still image coding. OCT based

JFEG—ZDOU 2000 For still image coding. DWT based

H.261 |990 For videoconferencing, 64Kbps lo I93 Mbps

MPEG-1 l99| For CD-ROM. 1.5 Mbps

MPEG-2 (H.262) [994 For DTV. 2 lo 15 Mbps. most extensively used

H.263 |995 For very low bit rate coding. below 64 Kbps

H.263+ {version 2) [993 Add new optional Features to H.263

MPEG-4 [999 For multimedia. content-based coding
MPEG-4 (version 2) 2000 Adds more tools to MPEG—4

H.263H» 2000 Adds more optional features to H2634»

H.26L 2000 Functionally different. much more efficient

MPEG-7 2001 Content description and indexing 

It should be noted that MPEGJ? in Table [5.2 is not a coding standard; it is ongoing work of
MPEG. It is also interesting to note that in terms of video compression methods. there is a growing
convergence toward motion~compensated. interframe DCT algorithms represented by the video
coding standards. However. wavelet—based coding techniques have found recent success in the
compression of still image coding in both the IPEG-ZOOO and MPEG-4 standards. This is because

it posseses unique features in terms of high coding efficiency and excellent spatial and qualit)’

scalability. The wavelet transform has not successfully been applied to video coding due to several
difiiculties. For one. it is not clear how the temporal redundancy can be removed in this domain.

Motion compensation is an effective technique for OCT-based video coding; however, it is not so
effective for wavelet-based video coding. This is because the wavelet transform uses large block
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size or full frame. but motion compensation is usually performed on a limited block size. This

mismatch would reduce the interfrante coding efficiency. Many engineers and researchers are

working on these problems.

Among lhese standards. MPEG-2 has had a great impact on the consumer electronics industry

since the DVD (Digital Video Disk) and DTV have adopted it as core technology.

15.5 SUMMARY

In this chapter. several fundamental issues ofdigital video coding are presented. These include the

representation and rate distortion function of digital video signals and the various video formats.

which are widely used by the video industry. Finally, existing and emerging video coding standards

are brielly introduced.

15.6 EXERCISES

15-]. Suppose that we have M) digital array (it can be extended to 2-D array that may be an

image). fti) = X” (i : (l. l. 2. ...). II' we use the first-order linear predictor to predict

the current component value with the previous component. such as: X: : 0t X“ + B,

where (L and B are two parameters for this linear predictor. and il‘ we want to minimize

the mean-squared error of the prediction E{(XI - X33}, what 0t and [3 do we have to

choose? Assuming that ElX.i : m. Ele} 2 Ct2 and ElX. X,-_.} = p. (for t' = 0. 1.2. ...),

where. m. G. and p are constant.

15-2. To get a 128 x [28 or 256 x 256 digital image, write a program to use two 3 x 3

operators (Sobel operator) such as:

—l 0 l

~2 O 2

—l O I 
to filter the image. separately. Discuss the resulting image. What will be the result if
both operators are used?

15-3. The convolution of two 2-D arrays is defined as:

.—

y(m,n) = z ixlk,l)h{m —k.rt—l)
i=4.» .I:_..

a; : :l a: ll
Calculate the convolution New). Within") is Changed {0

and

recalculate y(m,n).
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15-4. The entropy of an image source is defined as

M‘

H = H2 ,9. log3 p...
£=|

under the assumption that each pixel is an independent random variable. If the image

is a binary image. i.e.. M = 2. and the probability p. + p; = 1. If we define p. = p. then

p2 = l _ p. (0 S p 51). The entropy can be rewritten as

H:—p log.l pv[1—p)|ogl[i — p).

Find several digital binary images and compute their cntropics [1' one image has almost

equal number of zeros and ones and another has a different number 01‘ zeros and ones.

which image has larger entropy? Prove that the entropy of :1 binary source is maximum

if the numbers of zeros and ones are equal.

15-5. A transformation defined as )1 =f(.r}. is applied to :1 256 x 256 digital image, where .t'

is the original pixel value and y is the transformed pixel value. Obtain new images for

(a)fis a linear function, (b)fis a logarithm. and {eifis a square Function. Compare

the results and indicate subjective diii'ercnces of the resulting images. Repeat the exper—

iments for different images and draw conclusions about possible use of” this procedure

in image processing applications.
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’I 6 Digital Video Coding
Standards —— MPEG-l/Z Video

In this chapter. Wt: Introduce the ISOHEC digital video coding standards. MPEG-1 (ISOHEC.

1992i and MPEG-2 (ISOIIEC. 1995). which are extensively used in the video industry For television
broadcast. visual communications. and multimedia applications.

16.1 INTRODUCTION

As we know. MPEG has successfully developed two standards. MPEG-l and MPEG—2. The

MPEG-1 video standard was completed in l991 with the development of the ISOi’l'EC specification

1 1 I72. which is the standard for coding of ineving picture and associated audio for digital storage

media at up to about I 5 Mhps To support a wide range ofapplieation profiles the user can Specify

a set of input parameters including llexible picture size and frame rate. MPEG-1 was developed

[or multimedia CID-ROM appllcalions. important l'eatures provided by MPEG-1 include frame-

bascd random access ol‘ video. last-Forwardi'l'ast-reverse searches through compressed bitstreams.

reverse play back ol' video. and edilahility ol' the compressed bitsrream. MPEG—2 is l‘orlnally referred

to as lSOilEC specification 13818. which is the second phase of MPEG video coding solution for

applications not originally covered by the MPEG-1 standard. Specifically. MPEG-2 was developed

to provide video quality not lower than NTSCII’AL and up to HDTV quality. The MPEG-2 standard

was completed in 1994. Its target bit rates For NTSCIPAL are about 2 lo 15 Mbps. and it is optimized

at about 4 Mbps The bit rates used l'or HDTV signals are about l9 Mbps. In general. MPEG-2

can be seen as a superset of the MPEG-1 coding standard and is backward compatible to the

MPEG-1 standard. In other words. every MPEG-lcompatible decoder is able to decode a compliant
MPEG-1 bit stream.

[it this chapter. we will briefly Introduce- lhe standard itself. Since many books and publications

exist for the explanation of the standards (Haskell et al., 1997; Mitchell et 21].. [9933). we will pay
more attention to the utility ol' the standard, how the standard is used. and touch on some interesting

research topics that have emerged. In other words. the standards provide the knowledge for how

to design the decoders that are able to decode the compliant MPEG bitstreams successfully. But

the standards do net specify the. means of generating these bilstreams. For instance, given some
hit rate. how can one generate a bitstream that provides the best picture quality? To answer this,
one. needs to understand the encoding process. which is an informative part ol‘ the standard (referred
to as the test model}. but it is very important for the content and service providers. In this chapter.

the issues related to the encoding process are described. The main contents include the following
topics: preprocessing. motion compensation. rate control. statistically multiplexmg multiple pro-
grams. and optimal mode decision. Some of the sectioas contain the authors' own research results.
These research results are useful in providing examples for readers to understand how the standard
is used.

16.2 FEATURES OF MPEG-1)? VIDEO CODING

It should be noted that MPEG-2 video coding has the feature ol" being backward compatible with
MPEG-1. It turns out that most of the decoders in the market are MPEG-2 compliant decoders.

333
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For simplicity, we will start to introduce the technical detail of MPEG-I and then describe the
enhanced features of MPEG—2, which MPEG—1 docs ttot have.

16.2.1 MPEG—1 FEATURES

16.2.1.1 Introduction

The algorithms employed by MPEG-1 do not provide a lossiess coding scheme. However. the

standard can support a variety of input formats and be applied to a wide range of applications. As

we know. tlte main purpose of MPEG-l video is to code moving image sequences or video signals.

To achieve a high compression ratio. both intraframe redundancy and intert'ramc redundancy should

be exploited. This implies that it would not be efficient to code the video Signal u ill'l an intraframe-

coding scheme. such as .IPEG. On the other hand. to satisfy the requirement of random access. we

have to use intraframe coding from time to time. Therefore. the MPEG-1 video algorithm is mainly

based on discrete cosine transform (DCTZI coding and interframe motion cotttpensalion. The DCT

coding is used to remove the intrafrante redundancy and motion Ct'impensttltnn is used to remove

the interframe redundancy. With regard to input picture format, MPlth-I allow-s progressive pictures

only. but offers great flexibility in the size. up to 4095 >< 4095 pixets. However. the coder itself is

optimized to the extensively used video SIF picture format. The Sll~ ts a simple derivative of the

CCIRGOI video format for digital television applications. According to CCIRolll. a color video

source has three components. a luminance component (Y) and two chrominance components [Cb

and C,) which are in the 4:2:0 subsampling format. Note that the 4:210 and 4:3:2 color formats

were described in Chapter 15.

16.2.1.2 Layered Structure Based on Group of Pictures

The MPEG coding algorithm is a fa]I—motion~c0tnp6nsated DCT and DPCM hybrid coding algo-

rithm. In MPEG coding. the video sequence is first divided into groups of pictures or frames {GDP}

as shown in Figure 16.1. Each GOP may include three types of pictures or frames: intracoded (It

picture or frame, predictive-coded (P) picture or frame. and bidirectionally predictor-coded {Bl
picture or frame. I-picturcs are coded by intraframe techniques only. with no need for previous
information. In other words, I—pictures are self-sufficient. They are used as anchors for forward

andfor backward prediction. P-pictures are coded using one—directional motion-compensated pre-

diction from a previous anchor frame. which could be either an I- or a P-picture. The distance

between two nearest l-framcs is denated by N. which is the size of GOP. The distance between

two nearest anchor frames is denoted by M. Parameters N and M both are user-selectable parametetS.

which are selected by user during the encoding. A larger number of N and M will increase the

Forward Motion Forward Motion Forward Motion
Compenmnon Compensa tier: Compensation

 
idiroctional Motion compensation

GOP

FIGURE 16-1 A group of pictures of video sequence in display order.
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coding performance but cause error propagation or drift. Usually. N is chosen from 12 to [5 and

M from I to 3. 11‘ M is selected to be I. this means no B-picture will be used. Last, B—pietures can
be coded using predictions from either past or future anchor frames (I or P). or both. Regardless
of the type of frame. each frame may be divided into slices; each slice consists of several macrob-

Iocks {MBs}. There is no rule to decide the slice size. A slice. could contain all macroblocks in a

row of a I‘ramc or all tnacrtihloeks of a frame. Smaller shoe size is favorable for the purpose of
error resilience, but will decrease coding performance due to higher overhead. A macrohlock

contains a 16X 16 Y component and spatially corresponding 8x8 C, and C, components. A

macrobtock has four luminance blocks and [We ehrominanee blocks (for 4:210 sampling format)

and the mt'tcroblocl; is also the basic unit ol‘ adaptive quantization and motion compensation. Each

block contains 8 X 8 pixels over which the DCT operation is performed.

To exploit tlte temporal redundancy in the video sequence. the motion vector for each macrob-

lock is estimated from two original luminance pictures using a block-matching algorithm. The
criterion for the best match between the current tnaeroblock and a maeroblock in the anchor frame

is the minimum mean absolute error. Once the motion vector for each ntacroblock is estimated.

pixel values for the target macroblock can he predicted from the previously decoded frame. All

macrohloclts In lltc l—l'rame are coded In Intrantodc with no motion compensation. Macroblocks in

P— and B-I’ramcs can be coded in several modes. Among the modes are itttracoded and intercoded

wrth motion compensation. "l'hts decision ts made by mode selection. Most encoders depend on

the values of predicted dil'l'crcnccs to make this decision. Within each slice, the values of motion

vectors and DC values of each macroblock are coded using DPCM. The detailed specifications ol‘

this coding can he found in the document proposed by the MPEG video committee (ISOIIEC.

[995). The structure of MPEG implies that it‘ an error occurs within l-framc data. it will be

propagated through all Frames in the GOP. Similarly, an error in a P-frame will affect the related
P and B-l'ramcs. while B—i‘rame errors will be isolated.

16.2.1.3 Encoder Structure

The typical MPEG-1 video encoder structure is shown in Figure l6.2. Since the encoding order is

different from the display order. the input sequence has to he reordered for encoding. For example,
if we choose the GOP size (N) to he IE. and the distance between two nearest anchor frames (M)

to be 3. the display order and encoding order are as shown in Table [6. 1.
It should he noted that in the encoding order or in the bitstream the first frame in a GOP is

always an l—picture. in the display order the first frame can be either an I-picture or the lirst B-picture
of the consecutive series of B-pictures which immediately precedes the first I—pictutc. and the last

Resoqu :nced
input To VLC encoder 

 

 
 

Motion vectors

 
  

Motion I
compensated

prediction
 
 
 

Motion
estimation
processor   

FIGURE 16.2 Typical MPEG-l encoder structure. {From isorIEC. MPEG-2. Test Model 5. ISOJECISTCI!
SCZEJIWGII. April, 1993. With permission.)
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TABLE 16.1

Display Order and Encoding Order

DisplayOrder u 1 2 3 4 s s 7 3 9 IO 11 12

Encodingorder 0 3 1 2 6 4 S 9 T 3 l2 If] 1]

Codingtypc I P B B P B B P B B l B B 

picture in a GOP is an anchor picture, either an 1- or Pvpicture. The first GOP always starts with

an I-picture and. as a consequence. this GOP will have fewer B-pictures than the other COPS.

The MPEG~I video compression technique uses motion compensation to remove the interframe

redundancy. The concept of motion compensation is based on the estimation of motion between

video frames. The fundamental model that is used assumes that a translational motion can approx-

imate the motion of a block. If all elements in a video scene are approximately spatially displaced.

the motion between frames can be described by a limited number of motion parameters. In other

words, the motion can be described by motion vectors for translate-[v motion of pixels. Since the

spatial correlation between adjacent pixels is usually very high. it is not necessary to transmit

metion information for each coded image pixel. This would be too expensive and the coder would

never be able to reach a high compression ratio. The MPEG video uses the macroblock structure

for motion compensation; i.e., for each 16x 16 macroblock only one or sometimes two motion

vectors are transmitted. The motion vectors for any block are found within a search window that

can be up to 512 pixels in each direction. Also. the matching can be done at half-pixel accuracy.

where the half—pixel values are computed by averaging the full-pixel values (Figure 16.3).

For interframe coding. the prediction differences or error images are coded and transmitted

with motion information. A 2-D DCT‘ is used for coding both the intraframc pixels and the predictive

error pixels. The image to be coded is first partitioned into 8 x 8 blocks. Each 8 x 3 pixel block is

then subject to an 8 x 3 DCT, resulting in a frequency domain representation of the hiock as shown
in Figure 16.4.

The goal of the transformation is to decorrelate the block data so that the resulting tranSfOI'm

coefficients can be coded more efficiently. The transform coefficients are then quantized. During

+ + +

U U D + Full pixel locations
+ r_'| + |:| +

Ha]! ixel locations
:1 1:; o '3 PL + +

low high

low 216 59 89 39 1 .13 -12 -1
Jar-91.35 d 1? la 7 I

511542-2044 I 5

 0 35135213255 42 w s 46 4 4
0001191 1143-40

0111100 Ids-1'0
a o o no

0600!) high .514
pixels fiequencies

FIGURE 16.4 Example of 8 x 8 DCT.
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the process of quantization a weighted quantization matrix is used. The function of quantization
matrix is to quantize high frequencies with coarser quantization steps that will suppress high
frequencies with no subjective degradation. thus taking advantage of human visual perception
characteristics. The hits saved for coding high frequencies are used for lower frequencies to obtain

better subjective coded images. There are two quantizer weighting matrices in Test Model 5 (TMS)

([SOIIEC. 1993). an intraquantizer weighting matrix and a nonintraquantizer weighting matrix; the
latter is flatter since the energy of coefficients in interframe coding is more uniformly distributed
than in tntrnl't'ame coding.

In intra ntacroblocks. the DC value. dc. is an 11-bit value before quantization and it will be

quantized to 8. 9. or 10 bits according to the setting of parameter. Thus. the quantized DC value.
QDC. is calculated as

8-bit: QDC=dr'i’t'3. 9—bit: QDC=ch4, or 10—bit: QDC=ch2. (16.1)

where symbol It means integer division with rounding to the nearest integer and the half—integer

values are rounded away for zero unless otherwise specified. The AC coeffiCicnlS. (will 1'). are first

quantized by individual quantizatioa factors to the value ol’ec - (Li):

ac — (Lj)=[16*ac(i.j))fllifi(i.j). (16.2)

where W, (hf) is the element at the (U) position in the intraquantizer weighting matrix shown in

Figure [6.5.

The quantized level QACtt',_,t‘) is given by

QACli. j) = [no - (i. j) + sign[ac — [i.j) 4‘ [[p 1‘ thttatt!) Hz; )l/(2 4‘ manner). (16.3}

where mqttriit! is the quantizer scale or step which is derived for each inacroblock by rate control

algorithm. and p = 3 and q = 4 in TMS tISOiIEC, 1993). For nonintra macroblocks.

ac ~ (g): (16"rric(i‘.j)) it W~(i‘.j). (16.4)

Where WNUJ) is the nonintraquantizer weighting matrix in Figure [6.5 and

QAC[i.j] = ac — (i.j)/(2 * mqnant). (16.5)

An example of encoding an intrablock is shown in Figure 16.6.

16l2l8l920211223
12189202122324

[33202122233 25
19202l2323242§27

81619 22 26 21‘ 29 34

16 I6 22 21 2129 N 3?
t9 12 26 22 29 )4 ll 38

21 22 26 23' 29 34 32 40
20212232526223
2|. 22 21 III 26 2? 28 30

22132126222839}!
232(252221303133

22 26 27293135 4043

26 21' 29 32 ”was $8
2622293‘38‘65669

22193533465669”

Intra quantizer weighting matrix Nonintni quentizer weighting matrix

  
FIGURE 16.5 Quantizer matrices for intra- and nonintracoding.
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Item quantizer Weighting matrix

 3 I6 *9 22 262'! 29 34
1616 22 24 27 29 34 31
1922 26 2? 2934 34 38
12 22 26 27 29 34 31 40
22 26 27 29 32 35 40 as
26 2? 29 32 35 40 48 SB
26 27 29 34 33 46 56 69
2'! 29 35 3B 46 56 69 83
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FIGURE 16.6 An example of coding an Intrahlot‘k.
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Zig-zag 5933 QuanLized frequency Runs and value
coefficients

FIGURE 16.”! Zigzag scans to get pairs of zero—runs and value.

The coefficients are processed in zigzag order since the most energy is usually concentrated in

the iowworder coefficients. The zigzag ordering oi'eiernenls in an 8 x 8 matrix allows for a more

efficient run-length coder. This is illustrated in Figure 163?.

With the zigzag order. the run-length coder converts the quantized frequency coefficients to
pairs of zero runs and nonzero coefficients:

34010—11000000—10000....

After parsing we obtain the pairs of zero runs and values:

34|0110—l|IIOOOOOO—l|0000....

T1155: pairs 0f runs and “311135 are then coded by a Huffman—type entropy coder. For examplc.
for the above runlvalue, pairs are

______—____________

RuniValue 34 VLC (Variable Length Code)

I. I 0H0

|.-I 0]”

0.1 no

6--I 0001011
End 0fb10ci-r 10
_.——'—"‘——'-—'-———-\________.—-—
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FIGURE [6.8 Description of layered structure of compressed bitslream.

The VLC tables are obtained by statistically optimixiog a large number 01‘ training video
sequences and are included in the MPEG-2 specification. The same idea is applied to code the DC
values. motion vectors. and other information. Therefore. the MPEG video Standard contains a

number ol‘ VLC tables.

16.2.1.4 Structure of the Compressed Bitstream

After coding. all the information is converted to binary bits. The MPEG video bitstream consists

of several well-defined layers with headers and data fields. These layers include sequence, GOP,

picture. slice. macroblock. and block. The important syntax elements contained in each layer can

be summarized in Table l6.2. The typical structure of the MPEG-1 video-compressed bitstrearn is

shown in Figure 16.3. The syntax elements contained in the headers and the amount of bits defined
for each element can be found in the standard.

For picture layer, a frame of picture is lirst partitioned into macroblocks {16 x [6 for luminance
and 8 x S for chrontinanee in the 4:210 color representation). The compressed bitslream structure

at this layer is shown in Figure I63. It is important to note that most elements in the syntax are
coded by VLC. The tables of these variable run~lcngtl1 codes are obtained through the simulation
of a large number of training video sequences.

—_____—_.__——..——————

TABLE 16.2

Summary of Important Syntax of Each Layer

Name of Layer important Syntax Elements

Sequence Picture size and frame rate
Bit rate and buffering requirement

Programmable coding parameters
00? Random access unit

Time code

Picture Tinting information {buffer fullness. temporal reference)
Coding type (I. l’. or B)

Slice lntraframc addressing information

Coding reinitialization (error resilience)
MB Basic coding structure

Coding mode
Motion vectors

Quantization
Block [JCT coefficients

__—_____———————'—-'\_.——-—'__—-____-
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Slice Header Macroblock

. Macroblock Slice Header Maemblock   
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FIGURE 115.10 Simplified MPEG video decoder. (From ISO/IEC. MPEG-2 Test Model 5. April. 1993. Withperrmssmn.

16.2.1.5 Decoding Process

The decoding process is an inve l ‘ a ‘
is shown in Figure 16.10 rse procedure of encoding. The block dlaaram of a typical decoder

, g Situetur . . -

and ‘merffame DCT Witt: thgpag_2 Vldeo IS the same as that of MPEG-1 video that is. eraframE
v1deo coding include: ' _’ and B-pictures is used. The most important features of lVlPl'F-fi-2
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On: motion vector

 Top field

Bottom field One or two motion vecters

FIGURE 16.11 Frame-based prediction of MPEG-1 video coding.

" Fieldt'i'rame prediction modes for supporting the interlaced video input;
- l-ficldx’l'ramc fJC'l‘ coding syntax;

' Download-able quantization matrix and alternative scan order;

- Scalability extension.

The above enhancement items are all coding performance improvements that are related to the
support of interlaced material. There are also several noncompression enhancements. which include:

° Syntax to facilitate 3:2 pull-down in the decoder;

‘ Pan and scan codes with ”in. pixel resolution:

' Display tings indicating chromaticity. subcarricr amplitude, and phase (for NTSCIPAL!
SECAM source material).

In the following. each of these enhancements is introduced.

16.2.2.1 Field/Frame Prediction Mode

In MPEG-1 video. We always code each picture as a frame structure. whether the original material

is progressive or interlaced. lfthe original sequence is interlaced, each frame consists of two fields:
top field and bottom field as shown in Figure [6.11. We still can use frame-based prediction if we

consider the two fields as a frame. such as that shown in Figure 16.1].

In Figure 16.] 1. three frames are coded as 1-. B-. and P-frames and each frame consists oftwo

fields. The P-ft‘arnc is predicted with the I-frante with one motion vector. The B-frame can be

predicted only with I—frame (forward prediction} or only with P-I’rame (backward prediction) or

from both I— and P-picturc {bidirectional prediction). the forward and backward prediction needs

only one motion vector and the bidirectional prediction needs two motion vectors.

MPEG-2 video provides an enhanced prediction mode to support interlaced material. which

uses the adaptive fieldl‘t'rame selection. based on the best match criteria. Each frame consists of

two fields: top field and bottom field. Each field can be predicted from either field of the previous

anchor frame. The possible prediction modes are shown in Figure 16.12. ‘
In a field—based prediction, the top field of the current frame can be either predicted from the

top field or the bottom field of an anchor frame as shown in Figure 16.12. The solid arrow represents

the prediction from the top field, and the dashed arrow represents the prediction from the bottom
field. The same is also true for bottom field of the current frame. If the current frame is a P-frame,

there could be up to two motion vectors used to make the prediction (one for top field and one for
bottom field); if the current frame is a B-frame. there could be up to four motion vectors (each

field could be bidirectional prediction which needs two motion vectors). At the macroblock level
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FIGURE 16.12 Field-based predicnon ol‘ enhanced option of MPEG-2 video coding.
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FIGURE 16.13 Dual prime prediction in MPEG—3 \‘idCU coding

ol'MPEG-Q. several coding modes are added to support these new Held—based predictions, Addi-

tionally. there is another new prediction mode supported by the MPEG-2 syntax. This is the special

prediction mode referred to as dual prime prediction. The basic idea of dual prime prediction is to

code a set of field motion vectors with a scaling to a near or l‘ttr iicitl, plus a transmitted delta value.

Due to the correlation ol'adjacenl pixels. the dual prime coding ol‘ lieid vectors can save. the number

of bits used for field motion vectors. The dual prime prediction is shown in Figure I6.l3. In
Figure 16.13, the value of one field motion vector and the value of the delta motion vector are

transmitted; the motion vectors for other field are derived from the above two values.

It should be noted that only the P-picture is allowed to use dual prime prediction. in other

words. if the dual prime prediction is used in the encoder, there will he no B-pictures. The reason

for this restriction is to limit the required memory bandwidth for a real system implementation.

16.2.2.2 Field/Frame DCT Coding Syntax

Another important feature to support interlaced material is to allow adaptive selection of the
fieldiframe DCT coding as shown in Figure 16.14.

In Figure [6.14, the middle is a luminance macrobloek of 16 x to pixels. the black t‘eetangl—‘lm
represents the 8 pixels in the top field and the white rectangular represents the 8 pixels in the
bottom field. The left is the field DCT in which each 8 X 8 block contains only the pixels from tilt:
same field. The eight in the frame DCT. each 8 x 8 block contains the pixels from both tOP field
and bottom field.

At the maeroblock level for interlaced video. the field—type DCT may be selected when lite
video scene contains less detail and experiences large motion. Since the difference between adjacent
fields may be large when there is large motion between fields. it may be more efficient to group

the fields together, rather than the frames. In this way, the possibility that there exists more

correlation among the fields can be exploited. Ultimately, this can provide much more efficient
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Normal scan order Alternative scan order

FIGURE 16.15 Two zigzag scan methods for MPEG-2 video coding.

coding since the block data are represented with fewer coefficients. especially if there is not much
detail contained in the scene.

16.2.2.3 Downloadable Quantization Matrix and Alternative Scan Order

A new feature in MPEG-3 regarding the quantization matrix is that it can be downloaded for every

frame. This may be helpful if the input video characteristics are very dynamic. In general. the
quantizer matrices are different for intraeoding and nonintracoding. With 422:0 format, only two
matrices are used. one {or the intrablocks and another for the ntmintrablocks. With 4:222 or 4:4:4

formats four matrices are used. both an intra- and a nonintramatrix are used for the luminance and

chrominance blocks. If the matrix load flags are not set, the decoder will use default matrices. The

formats 4:2:0, 4:2:2 are defined in Chapter [5. In the 4:4:4 format, the luminance and two chromi«

nance pictures have the same picture size.

In the picture layer. there is a flag that cart be set for an alternative scan of DCT blocks. instead
of using the zigzag scan discuased earlier. Depending on the Spechfll distribution. the alternative
scan can yield run lengths that better exploit the multitude of zero coefficients. The zigzag scan
and alternative scan are shown in Figure l6.l5. .

The normal zigzag scan is used for MPEG1 and as an option for MPEG-2. The alternative
scan is not supported by MPEG-1 and is an option for MPEG-2. For frame-type DCT of interlaced
video, more energy may exist at the bottom part of the block; hence the run-length coding may be
better off with the alternative scan.

16.2.2.4 Pan and Sean

In MPEG-2 there are several parameters defined in the sequence display extension and picture
display extension. These parameters are used to display a specified rectangle wrthm a reconstructed
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9

frame. They include display horizontal size and display vertical size in the sequence display

extension. and frame center horizontal offset and frame center vertical ol'l'set in the picture display

extension. A typical example using pan-scan parameters is the conversion of a 16:9 frame to a 4:3

frame. The 4:3 region is defined by display horizontal size and display vertical size. and the 16:9

frame is defined by horizontal size and vertical size. If we choose the display horizontal size to be

4 pixels less than the horizontal size. and keep the display vertical size as the samc as the vertical

size. then we can obtain a 4:3 pictures on the display. Figure l6. [6 shows the conversion ol‘ [6:9

to the 4:3 frame using the pan-scan parameter. but there is no center oflbct involved In this example.

16—;

FIGURE 16.16 An example of pan-scan.

  

16.2.2.5 Concealment Motion Vector

The concealment motion vector is a new tool supported by MPEG—2. This tool is useful in concealing

errors in the noisy channel environment where the transmitted data may he lost or corrupted. The
basic idea of a concealment motion vector is that the motion vectors are sent for thc intracoded

macroblock. These motion vectors are referred to as concealment motion vectors {CMW which

5110qu be used in macroblocks immediately below the one tn which the CMV occurs. The details
are described in the section about error concealment.

16.2.2.6 Scalability

MPEG-2 video has several scalable modes. which include spatial scalability. temporal scalability.

SNR (signal-townoise ratio) scalability, and data partitioning. These scalability tools allow a subset

of any bitstream to be decoded into meaningful imagery. Moreover. scalability is a useful tool for
error resilience on prioritized transmission tnedia. The drawback of scalability is that some coding
efficiency is lost as a result of extra overhead. Here. we briefly introduce the basic notions of the
above scalability features.

Spatial scalability allows multiresolution coding. which is suitable for video service iniflrnfll'

working applications. In spatial scalability. a single video source is split into a base layer (lower
spatial resolutioa) and enhancement layers (higher spatial resolution). For example. a CCIRéOl
video can be down-sampled to SIF format with Spatial filtering. which can serve as the base layer
video. The base layer 0r low-resolution video can be coded with MPEG-1 or MPEG-2. and the

higher-resolution layer must be coded by MPEG~2-supported syntax. For the up-sampled lower
layer. an additional prediction mode is available in the MPEG-2 encoder. This is a flexible technique

in terms of bit rate ratios. and the enhancement layer can be used in high-quality service. The
problem with spatial scalability is that there exists some bit rate penalty due to overhead and there
is also a moderate increase in complexity. A block diagram that illustrates encoding with spatial
scalability is shown in Figurfi 16-17- In Figure 16.17. the output ofdecoding and spatial tip-sampling
block provides an additional choice of prediction for the MPEG-2 compatible coder. but not the
only choice of prediction. The prediction can be obtained from HDTV input itsell’. also depending
on the prediction select criterion such as the minimum prediction difference.
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FIGURE 16.17 Block diagram of spatial Scalability encoder.
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FIGURE 16.18 Block diagram of temporal scalabiiity.

It should be noted that the spatial scalability coding allows the base layer to be coded inde-

pendently from the enhancement layer. In other words, the base layer or lower layer bitstream is

generated without regard for the enhancement layer and can be decoded independently. The

enhancement layer bitstream is additional information, which can be seen as the prediction error

based on the base layer data. This implies that the enhancement layer is useless without the base.

However, this type ot'structurc can find a lot of applications such as error concealment, which will

be discussed in the following section.

Temporal scalability is a scalable coding technique in the temporal domain. An example of a

two-layer temporal scalable coder is shown in Figure I618. The example uses temporal scalability

to decompose the progressive image sequence to two interlaced image sequenccS; then one is coded
as the base layer and one as the enhancement layer. Of course, the decomposition could be different.

For the enhancement layer, there are two choices in making predictions. One choice for prediction

is available between frames of base layer and enhancement layer, and the other is between frames
from the enhancement layer itself. It should be noted that the spatial resolution of two layers is

the same and the combined temporal rate of two layers is the full temporal rate of the source.
Again, it should be noted that the decoding output of the base layer bitstream b)‘ the MPEG decoder

provides an additional choice of prediction but not the only choice of predictions.
The SNR scalability provides a mechanism for transmitting two-layer service with the same

Spatial resolution but different quality levels. The lower layer is coded at a coarse quantization step
at 3 to 5 Mbps to provide NTSCfPALfSECAM-quality video for low-capacity channels. In the
enhancement layer, the difference between original and the coarse-quantized signals is then coded
with a finer quantizer to generate an enhancement bitstream for high-quality video applications.

The above three scalability schemes all generate at least two bitstreams, one for lhfl base layer
and the other for the enhancement layer. and the lower-layer bitstream can be independently decoded
to provide low spatial resolution, low quality, or low frame rate video, PCSPECUWU- There ‘5 anolhfil‘
scalability scheme, data partitioning, in which the base layer bitstream cannot be independently
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decoded. In data partitioning. a single video source is split into a ltigh-prim'ity portion. which can

be better protected. and iow~priorily portion. which is less important with regard to the reconstructed

video quality. The priority breakpoint in the syntax specifies which syntax elements are coded as

low priority (for example. the highcoorder DCT coefficients in the intercodctl blocks)

16.3 MPEG-2 VIDEO ENCODING

1 6.3.1 INTRODUCTION

MPEG video compression is a generic standard that is essential for the growth LII the digital video

industry. as mentioned previously. Although the MPEG video coding standard recommended a

general coding methodology and syntax for the creation of .‘1 legitimate MPEG hitslream. there. are

many areas of research left open regarding how to generate high-quality MPEG hitstreams. This

allows the designers of an MPEG encoder great tlexibility in developing and implementing their

own MPEG-Spccific algorithms. leading to product differentiation on the InarLctplacc. To design

a performance-optimized MPEG-2 encoder system. several major areas of research have to be

considered. These include image preprocessing. motion estimation. coding IIIHLIL‘ decisions. and

rate control. Algorithms for all of these areas in an encoder should aim to minimize subjective

distortion for a prescribed bit rate and operating delay constraint. The prcprt'iccssing includes the
noise reduction and the removal of redundant fields. which are contained in the dctclecinc material.

The telecine material is used for the movie industry. which contains 14 progressive I'rtttnest’second.

The TV Signal is 30 framesfsecond. The delelectne process converts the Z-l-liutttesi’scet'ind lilm

signal to the 30-l'ramesi’second TV signal. This is also referred to .‘is 3:3 pull-dim n process. Since

the 30—frameslsecond detelecine material only contains 24 l'rittnesrsccond of tongue pieturcs. the

encoder has to detect and remove the redundant tields for obtaining better codingI performance

The procession of noise reduction can reduce the bits wasted for coding random noise. Motion

compensation is used to remove the temporal redundancy iii the video Signals. The tnotton vectors

between the anchor picture and the current picture are obtained with motion estimation algorithms.

Except for I-picturcs each macroblock can be inter- or intracoded. winch is determined by ”19 mode

decision. The investigation of motion estimation algorithms is an important research topic since

different motion estimation schemes may result in different coding efficiency. Rate control is always

applied for non-variable-bit rate (non-VBRJ coding. The purpose of rate control is to assign the

bits for each macroblock properly under the constraints of total hit rate budget and buffer size.

This is also an important topic stnce the optimized bit assignment scheme will result in better

coding performance and better subjective reconstruct quality at a given bit rate. In this section.

areas of preprocessing and motion estimation are covered. The topics of rate control and optimum
mode decision are discussed in later sections.

1 6.3.2 Pnerrtocessmo

For IOW—bit-rate video coding. preprocessing is sometimes applied to the video signals before coding
to increase the coding efficiency. Usually, preprocessing implies a filtering of the video signals that
are corrupted by random and burst noise for various reasons, such as imperfections ol' the scanner.

transmission. or recording medium. Noise reduction not only improves the visual quality bUl “150
increases the performance of video coding. Noise reduction can be achieved by filtering each frame
independently. There are a variety of spatial filters which have been developed for image noise
filtering and restoration that can be used for noise reduction task (Cano and Benard, 193.3} Kat-
saggelos et al., l991). On the other hand, it is also possible to filter the video sequence temporally
along the motion trajectories using motion compensation (Sezan etal.. 1991'}. However. it was

shown that among the recursive stationary methods the motion—compensated spatiotemporal filtering
performed better than spatial or motion-compensated temporal filtering alone (Ozkan et al.. [993}-
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Another important type of preprocessing is detelecine processing. Since movie material is
originally shot at 24 progressive l'raniesfsecond, standard conversion to television at 30 frameslseo

orid is made by a 3:2 putt-down process. which periodically inserts a repeated field. giving
30-tramest’sccond telccine source material. The 3:2 pull-down has been described in Chapter 10.
and will not be repeated here. Since the 30-framesfsecond deielecine material only contains
24 i‘ramesisccond of unique pictures. it is necessary to detect and remove the redundant fields before

or during encoding. Rather [hair directly encoding the 30—iramesr'second delelecine material. one

can remove the redundant fields first and then encode 24 Franicslsccond of unique material, thereby
realizing higher coding quality at the same bit rate. The decoder can simply reconstruct the

redundant lields het'ore presenting them

Television broadcast programmers frequently switch between tclecinc material and natural

30-l‘rnincsfsecond material. such as when splicing to and From various sources ot‘niovies. ordinary
television programs. and commercials. Art MPEG—2 encoder should be able to cope with these

transitions and consrslcnlly produce decent pictures. During movie segments. the encoder should

realize the gains from coding at the lower frame rate after detelccinc. Ideally. the process ol‘sourcc

transition from the lower 24—h'ameslsecond rate to the higher 30—l'ran‘iesl'second rate should not

cause any quality drop of every encoded frame. The quality of encoded frames should maintain

the same as the case where the detclecinc process is ignored and all material. regardless of source
type. is coded at 30 l'rainesi’sccond.

16.3.3 Morrow ESTIMATION AND Morrow COMPENSATION

In prinCiplc. for coding video signals if the motion trajectory of each pixel could be measured,

then only the. initial or anchor reference frame and the motion vector information need to be coded.

In such a way the interlrame redundancy will be removed. To reproduce the pictures, one cart

simply propagate each pixel along its motion trajectory. Since there is also a cost for transmitting

motion vector information. in practice one can only measure the motion vectors of a group of

pixels. which will share the cost for transmission of the motion information. Ofcourse. at the same

time the pixels in the some group are assumed to have the same motion information. :I‘his is not
always true since the pixels in the block may move in different directions. or some at them may

belong to the background. Therefore. both metion vectors and the prediction difference have lobe
transmitted. Usually. the block matching can be considered as the roost practical method tor motion
estimation because of less hardware coriipiexity. In the block-matching method, the image trame
is divided into lised~sizc small rectangular blocks such as 16 x 16 or 16 x 3 in MPEG video coding.

Each block is assumed to undergo a linear translation and the displacement vector of each block

and the predictive errors are coded and transmitted. The related issues for motion estimation and
compensation include it motion vector searching algorithm. searching range. matching criteria and
coding method. Although the matching criteria. and searching algorithms have been discussed in
Chapter 1 I, we will briefly introduce them here for the sake of completeness.

16.3.3.1 Matching Criterion

The matching of the blocks can be determined according to the various criteria including the
maximum cross-correlation. the minimum mean square error (MSE). the minimum mean absolute

difference (MAD) and maximum matching pixel count (MPG). For MSE and MAI), the best
matching block is reached if the MSE or MAD is minimized at that location. In practice: we use
MAD instead or MSE as the matching criterion because of its computational Simplicity. The
minimum MSE criterion is not commonly used in hardware implementations because'it is difficult
to realize the square operation. However. the performance of the MAD criterion deteriorates as the
search area becomes larger as a result of the presence of several local I'l'lll'l‘lmfl. In the'maximum
MPC criterion. each pixel in the block is classified as either a matching [31er or a mismatching
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pixel according to the prediction difference whether which is smaller than a preset threshold. The
beta matching is then determined by the maximum number of matching pixels. However. the MPC

criterion requires a threshold comparator and a counter.

16.3.3.2 Searching Algorithm

Finding the best-matching block requires optimizing the matching criterion over all possible

candidate displacement vectors at each pixel. The so-called full-search logarithmic search, and

hierarchical searching algorithms can accomplish this.

Full search: The full-search algorithm evaluates the matching criterion for all possible values

within the predefined searching window. If the search window is restricted to “.1 [—p. to] square. for

each motion vector there are (2p + IF search locations. For a block size of M x N pixels. at each

search locatioa we compare N x M pixels. If we know the matching criterion and how many

operations are needed for each comparison, then we can calculate the computation complexity of

the full-search algorithm. Full search is computationally expensive. but guarantees lindlng the global

optimal matching within a defined searching range.

Logarithmic search; Actually. the expcclcd accurac)r of motion estimation algoritlnns varies

according to the applications. In motion-compensated video coding. all one seeks is a matching

block in terms of some metric. even if the match does not correlate well with the actual projected

motion. Therefore, in most cases. search strategies faster titan l‘ull searches are used. although they

lead to subOptimal solutions. These faster search algorithms evaluate the criterion function only at

a predetermined subset of the candidate motion vector locations instead ot' all possible locations.

One of these Faster search algorithms is the logarithmic search. Its more popular form is referred

to as the three-step search. We explain the three-step search algorithm With the help ol‘ Figure [6. l 9.

where only the search frame is depicted. Search locations corresponding to each of the steps in the

three—step search procedure are labeled 1. 2. and 3. in the first step. starting from pixel 0 we compute

MAD for the nine search locations labeled l. The spacing between these search locations here is

4. Assume that MAD is minimum for the search location (-1.4) which is circled l. in the second

step. the criterion function is evaluated at eight locations around the circled I which are labeled 2.

The spacing between locatiOns is now 2 pixels. Assume now the minimum MAD is at the location

(6,2). which is also circled. Thus. the new search origin is the circled 2. which is located at (6.2).

For the third step. the Spacing is now set to l and the eight locations labeled 3 are searched. The

search procedure is terminated at this point and the output of the motion vector is (7.1). Additional

steps may be incorporated into the procedure it' we wish to obtain subpixel accuracy in the motion

estimations. Then. the search frame needs to be interpolated to evaluate the criterion function at

subpixel locations.
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FIGURE 16.19 Three-step search.
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Harm-tam: motion estinmtton: Hierarchical representations of images in the form ofa Lapla-
cian pyramid or wavelet transform are also quite often used with the block-matching method for
improved motion estimation. The basic idea of hierarchical block matching is to perform motion
estimation at each level successively. starting with the lowest resolution level. The lower resolution

levels serve to determine a rough estimate of the motion information using relatively larger blocks.
The estimate of the motion vector at a lower resolution level is then passed onto the next higher
resolution level as an initial estimate. The higher resolution levels are used to fine-tune the motion

vector estimate. At higher resolution levels. relatively smaller window sizes can be used since we

start with a good initial estimate. The hierarchical motion estimate can significantly reduce the
itttplemenlalion complexity since its search method is very efficient. However, such a method

requires increased storage because of the need to keep pictures at different resolutions. Furthermore.

this scheme may yield inaccurate motion vectors for regions containing small objects. Since the

search starts at the lowest resolution of the hierarchy, regions containing small objects may be

eliminated and thus fail to be tracked. On the other hand, the creation of low-resolution pictures

provides seine immunity to noise. Results of experiments performed by one of the authors have

shown that. compared with lull-search, the two-layer hierarchical motion estimation reduces the

search complexity of factor II} at the price of degrading reconstruction quality from about 0.2 to

0.6 dB lor frame—mode coding. from 0.26 to 0.33 dB for field-mode coding, and only 0.!6 to 0.37

dB for frameltieid adaptive coding. for different video sequences in the ease‘of a fixed bit rate of

4 Mbps. In the case ofVBR coding. similar results can be observed from the rate distortion curves.

In the above discussion. we have. restricted the motion vector estimation to integer pixel gridS.

or pixel accuracy. Actually. the motion vectors can be estimated with fractional or suhpixel accuracy.

In MPEG—2 video coding the half-pixel accuracy motion estimation can be used. Half-pixel accuracy

can easily be achieved by interpolating the current and reference pictures by a factor of two and

then using any of the motion estimation methods described previously.

16.3.3.3 Advanced Motion Estimation

Progress has recently been made in several aspects of motion estimation. which are described as
follows.

Motion estimation using (I reducede oft'tnrtge dam: The methods to reduce search complexity
with subsampling and pyramid processing are well known and can be found in the ltteratures (Sun.

[994). However, the reduction by lowering the precision of each sample does not appear to have
been extensively studied. Some experimental results have shown that performance degradation of

the hierarchical motion estimation algorithm is not serious when each layer up to a four-layer
pyramid is limited to a bitslsample. At 4 to 5 bilsfsample the performance IS degraded 0.2 dB over

full precision. ‘ . . . . .
Overfapped motion estimation {Kallo et 21].. 1994): A [Imitation of block matchtng IS ll‘tat It

generates a significant proportion of motion vectors that do not represent the true lTlGlIth present
in the scene. One possible reason is that the motion vectors are estimated wrthout reference to any
picture data outside of the nonoverlapping blocks. This problem has been addressed by overlapped
motion estimation. In the case of the overlapped motion compensation. motion-compensated regions
translated by the motion vectors are overlapped with each other. Then. a window function is used
to determine the weighting factors for each vector. This technique has been adopted tnto the 3.263
video coding standard. Some improvements have been clearly identified for low-btt—rate'eodtng.

Frequency domain motion estimation: An alternative to spattal-domarp block—matching moth»
ads is to estimate motion vectors in the frequeney domain through calculating the cross~correlatton

(Young and Kingsbury, 1993). Most international standards. such as MPEG, H.263. as well as the
proposed HDTV standard. use the DCT and block-based molton estimation as essential elements
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to achieve spatial and temporal compression. respectively. The new motion estimation approach is

proposed in the DCT domain (Koo and Liu. 1998). This method of motion estimation has certain

merits over conventional methods. It has very low computational complexity and is robust even in

a noisy environment. Moreover. the motion-compensation loop in the encoder is much simplified

due to replacing the IDCT out of the loop {Koo and Liu. I998).

Generalized Mock matching: In generalized block matching. the encoded l'ramc is divided into

triangular. rectangular. or arbitrary quadrilateral patches. We then search for the best-matching

triangular or quadrilateral patch in the search frame under a given spatial Irunsl‘ormation. The choice

of patch shape and the spatial transform are mutual related. For example. triangular patches offer

sufficient degrees ofl‘reedom with affine transformation. which has only six independent parameters.

The bilinear transform has eight free parameters. Hence. it is suitable [or use with rectangular or

quadrilateral patches. Generalized block matching is usually only adaptively used for those blocks

tvl'tcrc standard block matching is not satisfactory for avoiding imposed computational load.

‘I 6.4 RATE CONTROL

16.4.1 INTRODUCTION or RATE CONTROL

The purpose of rate control is to optimize the perceived picture quality and to achieve a given

constant average bit rate by controlling the allocation ol' the bits. Front the \‘tL‘WthII‘ll of rate control.

the encoding can be classified into VBR coding and constant bit rate tCBR) coding. The VBR

coding can provide a constant picture quality with variable Coding bit rate. while the CBR will

provide a conStant bit rate with a nonuniform picture quality. Rate control and butter regulation is

an important issue for both VBR and CBR applications. In the case of VBR encoding. the rate

controller attempts to achieve optimum quality for a given target rate. In the case ot' CBR encoding

and real-time application. the rate control scheme has to satisfy the low-latency and VBV (video

buffering verifier) buffer constraints. The VBV is a hypothetical decoder. which is conceptually

connected to the output of an encoder (see Appendix C of lSOtIEC. 1995]. The bitstrcam generated

by the encoder is placed into the VBV buffer at the CBR rate that is being used. The rate control
has to assure that the VBV will not be overflow or underliow. In addition. the rate control scheme

has to be applicable to a wide variety of sequences and bit rates. At the GOP level. the total number

of available bits is allocated among the various picture types. taking into account the constraints

of the decoder buffer. so that the perceived quality is balanced. Within each picture. the available
bits are allocated among the macroblocks to maximize the visual quality and to achieve the desired
target of encoded bits for the whole picture.

16.4.2 RATE CONTROL or Tssr MODEL 5 FOR MPEG-2

As we described before. the standard only defines the syntax for decoding. The test model is an
example of the encoder. which may not be optimal; however. it can provide a compliant compressed
bitstrearn. Also, the test model served as a reference during the development of the standard. The
TMS rate control algorithm consists of three steps to adapting the macroblock quantization param-

eter for controlling the bit rate.

16.4.2.1 Step 1: Target Bit Allocation

The target bit allocation is the first step of rate control. Before coding a picture. we need to estimate
the number of bits available for coding this picture. The estimation is based on several factors.
These include the picture type. buffer fullness. and picture complexity. The estimation of picture
complexity is based on the number of bits and quantizatioa parameter used for coding the 5‘1““?
type of previous picture in the GOP. The initial complexity values are given aCcording to the type
of picture:
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XI. = 160 bit-retell is

x” =60$bit-rate/l [5 (16.6)

Xh = 42 ’1‘ bit~rale/l IS.

where the subscripts i. p, and b stand for picture types I, P. and B (this will be applied to the
formulas in this section). Alter a picture of a certain type (I. P. or B) is encoded. the reSpcctivc
”global complexity measure" (X,. X”. and Xb) is updated as

X! =SiQr'Xp =59Qp‘ and Xb=SI:Qb‘ “6.7)

where 3,. SF, 5,, are the number of bits generated by encoding this picture and Q, Q!" Q. are the
average quantization parameters computed the actual quantization values used during the encoding

ot‘ all the macrnblocks including the skipped macrobloeks. This estimation is very intuitive since,

it the picture is more complicated, more bits are needed to encode it. The quantization parameter

{step or interval) is used to normalize this measure because the number of bits generated by the

encoder is inversely proportional to the quantization step. The quantization step can also be

considered as a measure of coded picture quality. The target number of bits for the next picture in

the GDP (7:. fl. and 7],) is computed as follows:

R
= t —-—-, bit-rare 8’3 )icirrre-mre

Tl max H-NX +N;,Xi, / ,-P P

xix}, xix”

R

T; = max W}:+ —_—
‘” X KI: p

. bir-mte/S * picture—rote (16.3)

R

71= ma" WT-
N + ,Ii p pi; I

)tpt't'!7

bir-rme/S * picture-true .

where KP and Kb are “universal" constants dependent on the quantization matrices. For the matrices
of TMS. K” : 1.0 and K,, = 1.4. The R is the remaining number ot‘ bits assigned tothe GOP and
after coding the picture this number is updated by subtracting the bit used for the picture. NI, and
Nb arc the number of P-pietures and Iii—pictures remaining in the current GOP in the encoding order.
The problem of the above target bit assignment algorithm is that it does not handle scene changes
efficiently.

16.4.2.2 Step 2: Rate Control

Within a picture, the bits used for cacti maereblock is determined by the rate control 318”“le-
Then a quantizer step is derived from the number of bits available for the macrobloelc to be coded.
The following is an example of rate control for P-pieture.

In Figure 16.20. dfil is initial virtual buffer fullness. the TP is the target bits for P-picture. B}- is
the number of bits generated by encoding all macrobloeks in the picture up to and including jth
macroblock. Mia-n is the number of macroblocks in the picture. Before encoding the jth mac-
roblock the virtual buffer fullness is adjusted during the encoding according to the following

equation for the P-picture:
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FIGURE16.20 Rate control for P-picture. (From [SOHEQ MPEG-2. 'l‘est Model 5. April 1993. With

permission.)

 
T (f- I)

i’.’=d”+B — ” I69)
{J 0 "' MB_Citt (

Then the quantization step is computed with the equation:

d‘.’

Q;’=_*, {16.10)1.

where the “reaction parameter“ r is given by r = 2 * bit-t‘ate/pictitreams and {if is the fullness of
the appropriate virtual buffer. This procedure is shown in Figure 16.20. The fullness of the virtual

buffer for the last maerobloeic is used for encoding the next picture of the same type as the initial
fullness.

The above example can be extended to the general case for all 1-. P—, and B—pictures. Before

encoding the jth maeroblock, we compute the fullness of the appropriate virtual buffer:

 

 

i__ t :[J—I)
(1J_d°+BJ‘I_MB_cm or

T ‘—-l
dp=dtio+3.-.— "(1 ) or (16-11)

’ ’ Mien!

d’.’=d"+B. —7;’U_1.
’ D "' MB_cnt

Depending on the picture type. where d3, d”, d: are initial fullness of the virtual buffers and d}
(if, dfare the fullness of virtual buffer at jth macroblock — one for each picture typei From ”“3
number of bits of the virtual buffer fullness, we compute the quantization step Q}- for maeroblockj
according to the buffer fullness:

Q =di*3l_ (16.12)
’ r
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The initial values of the virtual buffer fullness are

dg=to-r/3i

dg; =Kfl-dl; (16.13)

(throat;

It".. and K], are constants which are defined in Equation 16.8.

16.4.2.3 Step 3: Adaptive quantization

Adaptive quantizatitm is the last step of' the TMS rate control. It is noted that for active areas or

busy areas. the human eyes are not so sensitive to the quantization noise, while the smooth areas

are more sensitive to the quantization noise as discussed in Chapter 1. Based on this observation

we modulate the quantization step obtained from the previous step in such a way to increase the

quantization step for active areas and reduce the quantization step for the smooth areas. In other

words, we use more bits in the smooth areas and fewer bits for the active areas. The experiment

results have shown that the subjective quality is higher with the adaptive quantization step than

without this step. The procedure of adaptive quantization in TMS is as follows. First. the spatial

activity measure for the jth macroblock is calculated from the four luminance frame—organized

subbloeks and the four luminance field-organized blocks using the intrapixel values:

act} = i + Min (var_sblk), (16.14)sit“. = Lil-

where tt(tt‘_s‘l3lk is the variance of each spatial 8 x 8 block. which value is calculated as

.,[1-1
1 _

vat'_5lilk = 33 EU; — am] (16.15)

and Pk is the pixel value in the original B X 8 block and PM," is the mean value of the block which
is calculated as

6-1
l

p -_~_# P , ( [6.16)mean 64 E *

The normalized activity factor N_act,- is

N_octj = 2-aer. +ctvg_nct (16.1?)
act}. + 2 invgpaet

where avg_ctt.'t is the average value of oerJ the last picture to be encoded. Therefore, this value will
UOL give good results when a scene change occurs. On the first picture. this parameter takes the
value 01'400. Finally. we can obtain the modulated quantization step fOI'th maeroblock:

”Ml-tat!!! = Q; - N_actj (16.13)
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where Q} is the reference ounntizalioin'swp IVSIlI-lfldflli’liéingd indll‘lc‘lflljlfiglcp. Illa/$3 value of-niqtinm’.
is clipped to the range of [1,31] an is usc an on c as LSLl‘l L Hi In G-standaid: .

As we indicated before, the TM? rate control provides only it reference model. It is not optimized
in many aspects. Therefore, there is still a lot oi room tor improving the rate control aigorithm.
such as to provide more precise estimation of average acttvtty by preprocessmg. In the following
section. we will investigate the optimization problem for mode decision combined with rate control.
which can provide a significant qualily improvement as shown by experimental results.

16.5 OPTIMUM MODE DECISION

16.5.1 PROBLEM FORMATION

This section addresses the problem of determining the optitttal MPEG LISOIIEC‘ 1995) coding

strategy in terms (if the selection of inacroblock coding modes and LIUilnlIKCI' scales. In the TMS.

the rate control operates independently from the coding mode selection for each tttacroblock. The

coding modc is decided based only upon lhc energy of prcdtcttvc residues .I\ctually. lltc two

processes, coding mode decision and rate control. are intimately related to each other and should

be determined jointly in order to achieve optimal coding performance. A cttttstt'atttcd oplitttiztttion

problem can be formulated based on the rate—distortion characteristics. or RU?) curves. for all the

macroblocks that compose the picture being coded. Distortion for the entire picture is assumed to

be decomposable and expressible as a function of individual t'ttacroblock distortions. with this being

the objective function to minimize. The determination of the optttttal solution ts complicated by

the MPEG differential encoding of motion vectors and dc coefficients. which introduce dependen-

cies that carry over from niacroblock to macroblock for a duration equal to the slice length. As an
approximation. a near-optimum greedy algorithm can be developed. Oncc the upper bound in

performance is calculated. it can be used to assess how well practical suboptimum methods perform.
Prior related work dealing with dependent quantization for MPEG include the work done by

Ramchandrart et al. (1994) and Lee and Dickerson (1994}. Those works treated the problem of hit
allocation where there is temporal dependency in coding complexity across 1-. P-. and B-l’rntncs.
While these techniques represent the most proper bit allocation strategies across frames front a
theoretical viewpoint, no practical real-time MPEG encoding system will use even those proposed
simplified techniques because they require an unwieldy number of prcannlysis encoding passes
over the window ofdependent frames [one MPEG GOP]. To overcome these computational burdenS.
more pragmatic solutions that can realistically be implemented have been considered by Sun ct al.

(1997). In this work. the major emphasis is not on the problem of bit allocation among 1-. P-. and

B-frames; rather, the authors choose to utilize the frame-level allocation method provided by the

TMS. In this way, frame-level coding complexities are estimated from paSt frames without any

forward preanalysis knowledge of future frames. This type of analysts forms the most reasonable
set of assumptions for a practical real-time encoding. system. Another method that extends the basic

TMS idea to alter frame budgets heuristically in the case of scene changes. use of dynamic GOP

size. and temporal masking effects can be found in Wang {1995]. These techniques also offer very

effective and practical solutions for implementation. Given the chosen method for frame—level bit

budget allocation. the focus of this section is to Optimize macroblock coding modes and quantizers

jointly within each frame.

There exists many choices for the macroblock coding mode under the MPEG-2 standard for

P- and B-pictures. including intramode, no-molion~c0mpensalion mode, frarno’fieldiduai-prime
motion compensation intermode, forwardfbackwardiavcrage intennode. and fieldfframe DCT mode.
In the standard TMS reference (ISOIIEC. 1993), the coding mode for each macroblock is selected

by comparing the energy of predictive residuals. For example. the intralintcr decision is determined
by a comparisen of the variance of the macroblock pixels against the variance of the predictive
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FIGURE 16.21 RID) curves for different macroblock coding modes.

residuals: the interprediction mode is selected to be the interrnode that has the least predictive

residual MSE. The coding mode selected by the TMS criteria does not result in the optimal coding
performance.

in attempting to achieve optimal coding performance. it is important to realize that coding

modes should be determined Jointly with rate control because the best coding mode depends upon

the operating point for rate. In deciding which of the various coding modes is best, one should

consider what the operating point is for distortion. and also consider the trade-off between spending

bits for coding the prediction residuals and bits for coding motion vectors.

The number of bits used for coding the macroblock is the sum of bits used for coding motion

vectors and bits used for coding residuals:

R R (l6.|9)MB: nn-+ residual

For example. in Figure 16.2]. consrder the decision between (1) frame~mode forward prediction

and (2) field-mode bidirectional prediction. Mode (2) will almost always produce a predictitm that

has lower MSE than mode (1). However, mode (1) requires coding of fewer motion vectors than

mode (2). Which mode is best? The answer depends on the operating point for distortion. When

coding at a very coarse quant scale. mode (I) can perform better than mode (2) because the

difference in bits required for coding motion vectors between the two modes may be much greater
than the difference in bits required for coding residuals between the two modes. However. when
coding at a fine quant scale, mode (2) can perform better than mode (I) because mode (2) provides
a better prediction and the bits required for motion vectors would become negligibic compared

with bits for coding residuals.

Coding mode decisions and rate control can be determined jointly and optimally starting from
the basics of constrained optimization using R09) curves. This optimal solution would be an
a posteriori solution that assumes complete knowledge of MD). We investigate an Optimal solution

for objective functions of the form:

DPJ'CT : 2Date; . “620)
f=l

which states that the distortion for the picture, DMD», can be measured as an accumulation of
individual macroblock distortions. 0m. for all NMB number of macroblocks m the picture. We
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minimize this objective function subject to having individual macroblock distortions being uniform

over the picture:

DI:DE="':DNM3 (16.21)

and having the bits generated from coding each macroblock. Rm, sum to a target bit allocation for

the entire picture. Rm”:

2 RMb‘i : River “622)r'=|

The choice for the macrohlock distortion measure. D“... can be the MSE computed over the pixels

in the macroblock, or it can he a measure that reflects subjective distortion more accurately, such

as luminance— and frequency—weighted MSE. Other choices for 0.”. may he the quantizer scale

used for coding the macroblock. or. better yet. the quantizer scale weighted by an activity-masking

factor. In this chapter. we select distortion for each macroblock i to be a spatial-masking—activity—

weighted quantizer scale:

Dml. = qscniEI/N_aett. (16.23)

where N_acr,. E [0.5. 2.0] is the normalized spatial masking activity quantizer weighting factor. as
defined in the TMS:

2 'r act: + nvg_acr
N_acrl = (16.24}

oer: + 2 ’3 avg_ncr

where act,- is the minimum luma block Spatial variance for macrobiock i and rivg_nc1 is the average

value of act,- over the last picture to be coded. Nfiactf- reflects the relative amount of quantization

error that can be tolerated for macroblock i as compared with the rest of the macroblocks that

compose the picture. N_acr,. depends strongly on whether the macroblock belongs to a smooth.

edge. or tenured region of the picture. Hence, the macrobloclc distortion metric is space variant

and depends on the context of the local picture characteristics surrounding each macroblock. We

assume that maintaining the same D“. for all ntacroblocks. or selecting the quantizer scales directly
proportional to N_actf in such a manner. correSponds to maintaining uniform subjective quality

throughout the picture. The masking-activity-weighted quantizer scale is a somewhat coarse mea-

sure for image quality. but it reflects subjective image quality better than MSE or PSNR (peak

signal-to-noise ratio). and it is a practical metric to compute that lends itseli‘ to an additive form
for distortion.

It is important to note that the resulting distortion measure for the picture Dwa- is really only
meaningful as a relative comparison figure for the same identical picture (thus having the same

masking activities) quantized different ways. It is nor useful comparing two different images. PSNR
is only useful in this sense too. although with poorer subjective accuracy.

In the following. a procedure for obtaining the optimal coding performance With the low
optimization of coding mode selection and rate control is discussed. Since this method would '35

too complex to implement. a practical suboptimal heuristic algorithm is presented. Some simulation
results and comparisons between the different algorithms u TMS algorithm. near-optimum algo'
rilhm, and the practical Suboptimum algorithm are also prOVided to assist the reader in understanding
the differences in performance.
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16.5.2 PROCEDURE FOR OBTAINING THE OPTIMAL Moos

16.5.2.1 Optimal Solution

The solution to the optimization problem is unique because the objective function is monotonic

and the individual macrohloek Rm} functions are also monotonic. In order to solve for the optimal
set of ntacroblock modes and quant-scales for the picture {m and Etta—é). the differential
encoding of motion vectors and intra-dc coefficients as done in MPEG should be accounted for.

According to MPEG, each slice has its own differential encoding chain. At the start of each slice.
prediction motion vectors are reset to zero. As each maeroblock is encoded in raster scan order.

the tttacroblock motion vectors are encoded differentially with respect to prediction motion vectors

that depend on the coding mode of the previous macroblock. These prediction motion vectors may

be reset to zero in the case that the previous macroblock was coded as intra or skipped. Similarly,

dc coefficients in continuous runs of intramneroblocks are encoded differentially with respect to

the previous intrantttct’oblock. The intra dc predictors are reset at the start of every slice. and at

inter or skipped tttaeroblocks. Slice boundaries delimit independent self-contained decodable units.

Finding the optimal set of coding modes for the ntacroblocks in each slice entails a search through

a trellis of dimensions 5 stages by M states per Stage, with 5‘ being the slice size and M being the

number of coding modes being considered (Figure 16.22). This trellis structure arises because there

are flrF distinct rate distortion, RWMW”Hindu“!(D). characteristic curves corresponding to each of M
coding modes. with each in turn having a different dependency for each ochoding modes of the

previous mncroblock. We now consider populating the trellis links with values by sampling the set

of these M35 talc—distortion curves at a specific distortion level. For a given fixed macroblock

distortion lcvcl, BM, each link on the trellis is assigned a cost equal to the number of bits to code

a macroblock in a certain mode given the mode from which the preceding macroblock was coded.

For any group of links entering a node. the cost of these links differs only because of the difference

in bits caused by the motion vector and dc coefficient coding dependency upon the prior maerobloek.

The computational requirements per slice involve:

' To determine link costs in the trellis, the number of “code the macroblock" operations

(Le. DCT + Quantization + RLCNLC) is equal to M33. .
' After determining all trellis link costs. the number of path searches is equal to M5.

Mscrohleelc
Number

Ceding
Mode 

. The best mode at each stage

——p The global optimum path

FIGURE 16.22 Pull-search trellis. M1 (M is number of modes at. each stage and S is the length of slice)
searches needed to obtain the best path.

lPR2018—01413

Sony EX1008 Page 383



IPR2018-01413 
Sony EX1008 Page 384

353 Image and Video Compression for Multimedia Engineering

A general iterative procedure for obtaining the optimal solution is as follows:

I. Initialize a guess for Don I Dnrau- Since Um, is the some for every macrohlock in the

picture. this sets an initial guess for the operating distortion level ol‘ the picture.

2. Perform for each slice in the picture:

- For each macroblock in the slice and the mode considered. determine the quantizer

scale which yields the distortion level Dug, i.e., (l. =ftDW). where)“ is the function

that describes the relationship bctwccn quantizcr scale q. and distortion Dars‘ ll‘ wt:

use the Spatial-ntasking—actisilly-weighted quantizer scale as a measure ol' distortion

(as front Equation 16.4), then q, equals N_ncr * Um.

" Compute all the link costs in the trellis representing the slice. The link costs. Rm“

(model: I modcj). represents the number of resulting hits (total bits I'or coding residual.

motion vectors, and macroblock header) for coding macrohlock l in mode It given

that the preceding macrohlock was coded in mode j.

' Search through the trellis to find the path that has the lowest E KW. over the slice.

3. Compute Z RMI for all macroblocks in the picture and compare to target Rpm.

0 If I 2 RM,- — RP,” l < S, then the optimal m and W has liccn lttut’ltl for picture.

Repeat the process for the next picture.

0 If E Rm,- 4: Rive-n then decrement iDmi : Dug ~ ADM and go to step 2.

' If 2 Run, > RH”. then increment Um : Dm + ADW and go to step 2

16.5.2.2 Near-Optimal Greedy Solution

The solution from the full exponential—order search requires an Lll'lWIClLl)’ amount of computations.

To avoid the heavy computational burden, we can use a greedy approach thc and Dickerson, I994)

to simplify and sidestep the dependency problems ol‘ the lull-search method. In the greedy algorithm.

the best coding mode selection for the current macrohIOck depends only upon the best mode of

the previous coded macroblock. Therefore. the upper bound we obtain is a near—optimum solution

instead ot‘a global optimum. Figure 16.23 illustrates the greedy algorithm. After ending a macrob-

lock in each of the M modes. the mode resulting in the least number of hits is chosen to be "best."
The very next macroblock is coded with dependencies to that chosen “host“ model The computations

per slice are reduced to M X 5 “code the macroblock“ operations and M x S comparisons. A general
iterative procedure for obtaining the greedy solution is as follows:

Macroblock number

0

O

or o

O

O

O The best mode at each mg:

+ The greedy locally "best" path

FIGURE 15-23 Greedy approach, M x S comparisons needed to obtain the locally “best" path.
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t. Initialize a guess for D...fl = BMW
2. Perform for each macrobloek:

- For each mode considered. determine the quantizer scale that yields the distortion
Icvci D“... i.e.. q, :ftDMJ. wherefis the function we mentioned previously.

- For each mode. code the macroblock in that mode with that q, value and record the

resulting number ol‘ generated bits. Rifladmndc ,. mg)... The macroblock is coded based
on the already determined mode of the preceding macroblock.

° The “best“ mode for macrobtoek i‘ is the mode for which Rwflmdc .1 "mm, “M. is smallesr.
This yields Rm bits for maeroblock i.

3. Compute 2 Km" for all tnacroblocks in the picture and compare to target RN”.
- Ill 2 RI”... - Rpm-1 < a. then the optimal m and qscale has been found for the

picture. Repeat the process for the next picture.

- It' 2 Rum < Rm... then decrement Dm. : DI.” — ADM... and go to step 2.

' ll' 2 RM“, > RmT. then increment Dml : Dm, + ADM and go to step 2.

16.5.3 PRACTICAL SOLUTION WITH New Canons FOR THE SELECTION

or CODING MODE

[1 is obvious that the near-optimal solution discussed in the previous section is not a practical

method because. of its complexity. To determine the best mode. we have to know how many bits

it takes to code each macrobloek in every mode with the same distortion level. The total number

of bits for each macrohloek. Rm. consists of three parts. bits for coding motion vectors. Rm... bits

for coding the predictive residue. Rm. and bits for coding macroblock header information. Rhmfl.

such as macroblock type. quantizcr scale. and coded—block pattern.

R3“? = Rim‘ + Ra's + R! (16-25)Iatuift'r '

The number of bits for motion vectors. R"... can be easily obtained by VLC table lookup. But to

obtain the number of bits for coding the predictive residue. one has to go through the three step

coding procedure: (It DCT. (2) quantization. and (3) VLC as shown in Figure [6.24. At step 3.
R... is obtained with a tookup table according to the run length of zeros and the level ol’quantized
coefficients. i.e.. Rm depends on the pair of values of run and level:

Rm = f(rim.level). (15-26)

As stated above. to obtain the upper—bound coding performance. all three steps are needed for each
coding mode. and then the coding mode resulting in the least number of bits Is selected as the best

mode. . .
To obtain a much less computationally intensive method. it is preferred to use a statistical

model of DCT cocllicient bit usage vs. variance of the prediction residual and quantizer step size.

This will provide an approximation of the number of residual bits. Rm. For this purpose we assume
that the run and level pair in Equation [6.26 is strongly dependent on values of the quantizer scale.
4... and the variance of the residue, Vm. for each maerobloek. Intuitively. we would espect the
number of bits to encode a macroblock is proportional to the variance of the residual and inversely

Compressed
Predictive bitstream

FIGURE 16.24 Coding stages to find hit count.
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proportional to the value of quantizer step size. Therefore. a statistical model can be constructed

by plotting Rm vs. the independent variables I’m and q, over a large set of representative macroblock

pixels from images typical of natural video material. This results in a scatter plot showing tight

correlation. and hence a surface can be fit through the data points. It was found that Equation |6.26

can be approximately expressed as:

R... =f[q..V...l=W[Cri.will V...‘ (16.2?)

where K and C are constants found through surface-fitting regression. If we assume Rm,” is a

relatively fixed component that does not vary much with maet'ohlock coding mode and can be

ignored. then Equation 16.25 can be approximately replaced by:

R“, : Rm + [tr/(ca, + qf )) L1. (I628)

The value of Rm. reflects the variable portion of bit usage that is dependent on coding mode. and

can be used as the measure for selecting the coding mode in our encoder. For a given quantizer

step size. the mode resulting in the smallest value oI'RW is chosen as the ”best" mode. It is obvious

that. in the use of this new measurement to select the coding mode. the computational complexity

increase over the TMS is very slight (the same identical calculation for V is made in the TMfi).
rr‘

16.6 STATISTICAL MULTIPLEXING OPERATIONS ON MULTIPLE

PROGRAM ENCODING

In this section. the strategies for statistical multiplexing operation on the multiple program encoding

will be introduced. This topic is an extension of rate control into the case ot multiple program

encoding. First. a background survey of general encoding and multiplexing modes is reviewed.

Second, the specific algorithm used in some current systems is introduced. its shortcomings are

addressed. and possible amendments to the basic algorithm are described. Some potential research

topics such as modeling strategies and methods for solving the problem are proposed for investi-

gation."I'hese topics may be good research topics for the interested graduate student.

16.6.1 BACKGROUND or S‘lATISTICAL MULTIPLEXING OPERATION

In many applications, several video sources may often be combined. or multiplexed. onto a single
link for transmission. At the receiving end. the individual sources of data from the multiplexed

data are demultiplexed and supplied to the intended receivers. For example. in an ATM network
scenario many video sources originating from a lacal area are multiplexed Onto a wide-area
backbone trunk. In a satellite-broadcasting scenario. several video sources are multiplexed for
transmission through a transponder. In a cable TV scenario. hundreds of video programs art:

broadcast onto a cable bus. Since the transmission channel. such as a trunk. a transponder. or a

cable. is always an expensive resource, the limited channel capacity should be exploited as much
as possible. The goal of statistical multiplexing encoding is to make the best use of the limited
channel capacity possible. There are several approaches to encoding and multiplexing a plurality
of video sources. In the following. we will compare the methods and describe the situation where
each method is applicable. The qualitative comparisons are made in terms of trade-offs among

factors of computation. implementation complexity. encoded picture quality. buffering dt‘JEIY- and
channel utilization. To understand the statistical multiplexing method, we first introduce a simple
case of deterministic multiplexing function of a CBR encoder. The standard method for peri‘onntng

the encoding and multiplexing function is to encode the source independently with a CBR. The
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FIGURE 16.25 independent encodinglmuxing of CBR sources.

CBR encoder produces an encoded bit steam, representing the video supplied to it, at a predeter-
mined CBR. To produce a CBR, the CBR encoder utilizes a rate buffer and feedback control

mechanism that continually modifies the amount of quantization applied to the video signal, as
shown in Figure 1625.

The CBR encoder provides a CBR with varying encoded picture quality. This means that the

degree of quantization applied depends upon the coding complexity of the current frame offered

to the MPEG compression algorithm. Fine quantization is then applied to these frames that have

low spatial andfor temporal coding complexity. and convertiely coarse quantization is applied to

frames that possess high spatial and temporal coding complexity in order to meet the bit rate.

However, varying the quantization level correSponds to varying the video quality. Thus. in a CBR

encoder, spatial and temporal complexity tends to be encoded in such a manner that the subjective

quality of the reproduced image is lower than that of less complex images. This makes any form

of rate control inherently bad in the sense that control is always imposed in a direction contrary

to the goal of achieving uniform image quality- Usually, bit rates for CBR encoders are chosen so

that the moderately difficult scenes can be coded to an acceptable quality level. Given that mod-

erately difficult scenes give good results. then all simpler scenes will yield even better results with

the given rate. while very difficult scenes will result in noticeable degradation. Since CBR encoders

produce CBR. the multiplexing of a plurality of sources is very simple. The required channel

capacity would simply be the sum of all the individual CBRs. Deterministic time or frequency

division multiplexing of the individual CBR bitstreams onto the channel is a well-known and simple

process. So with CBR encoding, uniformly consistent image quality is impossible for the video

sequence with varying scene complexity. but the reward is the ease of multiplexing. The penalty
of CBR coding with easy multiplexing may not only be nonuniform picture quality, also result in
lower efficiency of channel bandwidth employment. Better efficiency can be gained by statistical
multiplexing. whereby each source is encoded at a VBR coding approach. The VBR coding will

result in uniform or consistent coded image quality by fixing the quantization scale or by modulating
”“3 Quantization scale to a limited extent according to activity-masking attributes of the human

visual system. Then, the bit rates generated by VBR coding vary with the coding complexily 0'-

the incoming video source material. Statistical multiplexing is referred to as StatMux. The coding

gain of StatMux is possible through sharing of the channel resource jointly among the encoders.
For example, two MPEG encoders may assign the appearance of their I-pietures at different time;

this may reduce the limitation of the maximum channel bandwidth requirement since coding an
I-picture may generate a large number of bits. This may not be a good example for practical
applications. However, this explains that the process of StatMux is not a zero-sum game whereby

one encoder‘s gain must be exactly another encoder’s loss. In the process of StatMux. one cncodet"s
gain is obtained by using the channel bandwidth that another encoder does not need at that time
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or that would bring a very marginal gain for another encoder at that time. More exactly. this concept
of gains through sharing arises when the limited amount of bits is dynamically appropriated toward

encoders that can best utilize those bits in substantially improving their image quality during

complex segments and eschcwed lrorn encoders that can improve their image quality only margin-

ally during easy segments. it is obvious that the GER-encoded sources do not need statistical

multiplexing since the bandwidth for each encoded source is well defined. The gain of statistical

multiplexing is only possible with VB R-encodcd sources. in the following section, we discuss two

kinds of multiplexing with multiple VBR—cncodcd sources.

16.6.2 VBR ENcooERS IN STATMUX

There are two multiplexing methods for encoding multiple sources \vith VBR encoders. open loop

and closed loop. Each VBR encoder in open—loop—inultiplexing mode produces. the most consistently

uniform predefined image quality level regardless of the coding complexity of the incoming video

sources. The image quality is decided by fixing the quantization scale. When the quantixation scale

is fixed. the SNR is fixed under assumption of white Gaussian quantization noise. Sometimes. the

quantization scale is slightly modulated according to the image activity to match the human visual

system, for example. in the method in MPEG-2 TMS. The resulting VBR hit rate process is generated

by allowing the encoder to use freely however many hits needed to meet the predetermined quality

level. Usually, each video source encoded by a VBR encoder in the open-loop mode is not

geographically colocated and cannot be encoded jointly. However. the resulting VBR processes do

share the channel "jointly." in the sense that the total channel bandwidth is not rigidly allocated

among the sources in a fixed manner such as is done in CBR operation mode. where each source

has the fixed portion of channel bandwidth. The instantaneous combined rates of all the VBR

encoders may exceed the channel capacity. especially in the case when all the encoders generate

bursts ofbits at the same time. Then, the joint but‘l‘er will overflow, thereby leading to loss of data.

However, there always still exists a possibility to UllllLC the channel capacity more el'ficicntly by

carefully allocating the loading conditions without loss ot'data. But totally open—loop VBR coding

is not stationary and it is hard to achieve both good channel utilization and very limited data loss.

A practical method ofVBR transmissioa for use in the ATM environment involves placing limita-

tions on the degree of variability allowed in VBR processes. Figure 16.26 illustrates the idea of

self-regulating VBR encoders.

The difference between the proposed VBR encoder and a totally open-loop VBR encoder is
that a looser form of rate control is imposed to the VBR encoder in order to avoid violating

transmission constraints that are agreed to by the user and the network as part of the contract

Rate
control

‘ ’ VBR Policing
MPEG Palms FunctionEncoder

 

VBR

Function Network Switch

a” —-+| I l6.011110] C

VBR

MPEG Policing Policing VBR
Encoder Function Function

FIGURE 16.26 Independent encodingtmuxing of geographically dispersed VBR sources.
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FIGURE 16.27 Method ol‘joint rate control and multiplexing.

negotiated during the call setup stage. The rate control will match the policing function, which is

enforced by the network. Looser rate control means that the rate control is not so strict as the one

in the CBR case because it allows for the encoder to vary its output bit rate according to the coding

complexity up to a certain degree as decided by the policing function.

In some applications such as the TV broadcasting or cable TV. the video sources may be

geographically coittcated at the same site. In such scenarios, additional gains can be realiZed by

the StatMux in which the sources are jointly encoded and jointly multiplexed. By using a common

rate controller. all encoders operate in VBR mode but without contending and stepping over one

another as in independent VBR encoding and multiplexing. The joint rate controller assigns the

total available channel capacity to each encoder so that a certain common quality level is maintained

The bit rates assigned to each individual encoder by joint rate control dynamically change based

on the coding complexities of each video source to achieve the roost unifomt quality among the

encoders and along the time for each encoder. In such a joint rate control method, although each

encoder produces its own variable rate hits. tlte sum of bits produced by all encoders combined
together is a CBR to [it the channel capacity. Such an idea is shown in Figure 16.27.

16.6.3 RESEARCH TOPICS or STATMux

The major problem of StatMux is how to allocate the bit rate resource among the video sources
that share the common channel hit rate and are jointly encoded by a joint rate controller. This

allocation should be based on the coding complexity of each source. The bit rate. Rim. For encoder

t' at time t according to the normalized coding complexity ofall encoders for the GOP period ending
at time t. such as

X0N___

2X
,.

R (i) = C, ([629)J I I

ill)

where X4!) is the coding complexity of source for encoder i at the time I over a GOP period and
C is the total channel capacity. Also the bit rate assignment has [0 be updated from “me ‘0 “me
to trace the variation of source complexity. In the following. W3 W1“ dlSCUSS several [01-1195 Wthh

may be research topics for graduate students.

Forward Analysis — Without forward analysis, scene transitions are unanticipated and lead to
incorrect bit allocation for a brief. transient period following the scene changes. If the bit allocation

eta current video segment is based on the complexity of previous video segments and is adjusted
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by the available bit rate resource, those video segments which change from easy coding complexity

to difficult coding complexity suffer the greatest degradation without preanalysis of upcoming

increased complexity. Prcanalysis could be performed with a dual set of encoders operating with

a certain preprocessing delay ahead of the actual encoding process. As a simple example. we start

to assign the equal portion ofbit rate for each encoder: then we can obtain the average quantization

scale for this GOP that can be considered as the forward analysis results of coding complexity

The real coding process can operate on the coding complexity obtained by the prcanalysis. If we

choose one or two GOPs according to the synchronous status of the input video sources to perform

the preanalysis. it will result in small buffering delay.

Potential Modeling Strategies and Methods — Several modeling strategies and methods have

been investigated to find a suitable procedure for classifying sources and determining what groups

of sources can appropriately be jointly encoded together for transmission over a common channel

to meet a specified image quality level. These modeling strategies and methods include modeling

of video encoding, modeling of source coding complexity. and source classification. The modeling

of a video-encoding algorithm involves measuring the operating performance of the individual

encoders or characterizing its rate distortion function for a variety of scenes Embodied into this

model are the MPEG algorithms implemented for motion estimation. mode decision. rate control.

and theirjoint optimization issues. It has been speculated that a hyperbolic functional form of

Rate = X/Distor‘tt'on (16.30]

would be appropriate over the normal operating bit rate range of 3 to 7 Mbps for M PEG-2 encoded

CCIRGOl-sized videos. The hyperbolic shape of rate distortion curves would be also suitable for all

video scenes. Aetually, we can use a set of collected rate distortion data pairs with an encoder to fit

a hyperbola through the points as shown in Figure 16.28 and estimate the shape parameter X. The

value ofX will be used to present the coding complexity offered to an encoder. For modeling at [he
GOP level, the rate would be the number of bits used to code that GOP and the distortion can be

chosen as the averaging quantization scale over the GOP. In some of the literature. the distortion is

taken as the average PSNR over the GOP or overall sequence. If it is assented that the quantization
noise is modeled by white Gaussian noise. then both distortion measures are equwalent.

After obtaining the correct coding complexity parameters. we can Improve the StatMux algo-
rithm by assigning an encoding bit budget to each encoder based on the GOP level normalized
complexity measure X that each encoder is encoding. The GOP level normalized complexity
measure X01) is defined as

Xi»): Ensign), (16.31)

Bits perGOP

Averaging quantization scale
over GOP

FIGURE 16.28 Rate distortion modeling of encoding algorithm and video source.
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where n is the GOP number. Tit) is the total number of bits used for encoding picture i. and QU)
is the average quantization scale used for encoding picture i. Some research results have shown

that the X01} is insensitive to the operating bit rate. therefore. X(n) is a reliable measure of the
loading characteristics of a video source. Therefore. the study of accurate model of the random

process of xtn) is very important for improving the operations of the StatMux algorithm. The
accurate model of th) reflects the loading characteristics of the video source which dictates the

share of total bit budget that an encoder expects to get. Several statistical models have been proposed
to describe the complexity measure. th). For example, an autoregressive process model is proposed
for the intrascene Xtit) process. This proposed model is based on the Following observations; the
complexity measure within a single scene has a skewed distribution by the Gamma function. and

furthermore. the complexity measure within a scene displays a strong temporal correlation and the

form of the correlation is essentially exponential. The definition for the Mth order autoregressive
model is

M

X[tt)=za[rit}IX(n—nt)+e[n). ([632)um]

where (’(it) is the white noise process and aha) terms are the innovation filter coal'ficients. The

Statistics of the model such as the mean value. the variance. the correlation. and the marginal

distribution are used to match those of actual signals by adjusting the aha) terms. 60!) and M.

Other cases. such as scene transition model. intereoded scene models, we leave as project topics

for graduate students.

16.7 SUMMARY

In this chapter. the technical details ofMPEG video are introduced. The technical detail ofMPEG

standards includes the decoding process of MPEG-1 and MPEG-2 video. Although the encoding

process is not a standard part. it is very important for content and service providers. We'd-iscuss'
the most important parts of encoding techniques. Some examples such as the joint optinnztng ot
mode decision and rate control are good examples to understand how the standard is used.

16.8 EXERCISES

16-1. According to your understanding. give several reasons to explain why the MPEG
standards specify only decoding as a normative part and define encoding as an infor-

mative part (TMS). _
16-2. Can an MPEG-2 video decoder decode a bitstream generated by an MPEG-1 video

encoder? Summarize the main difference between the MPEG-1 and MPEG-2 video

standards. _ '
16-3. Prefiltering may reduce the noise of original video source and increase the coding

efficiency. But at the same time prefiltering will result in a certain information loss.
Conduct a project to investigate at what bit rate range prefiltenng may benefit the coding
efficiency for some video sources.

16-4. Use TMS rate control to encode several video sequences (such as Flower Garden

sequence) in two ways: (a) with adaptive quantizatioa step, (it) without adaptive-quan-
tization step (Equation 6. to). Compare and discuss the numerical results and subjective
results (observe the smooth areas carefully).
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16-5. Why does MPEG-2 use different quantizer matrices for intra- and intereoding‘? Conduct

a project to use different quantization matrices to encode several video sequences and

report the results.

16-6. Conduct a project to encode several video sequences (a) with B-picture: th) without

B-pieture. Compare the numerical and subjective results. Observe what difference exists

between the sequences with fast motion and the sequence with slow motion. (Typical

bit rates for CCIR601 sequences are 4 to 6 Mbps).
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7 Application Issues of
MPEG—I/Z Video Coding

This chapter is an extension ot' the previous chapter. We introduce several important application
issues ol' MPEG-IIE video which include the ATSC (Advanced Television Standard Committee)
DTV standard which has been adopted by the FCC (Federal Cornmunications Commission) as the
TV standard in the United States. transcoding. down—conversion decoder, and error concealment.

17.1 INTRODUCTION

Digital video signal processing is an area of science and engineering that has developed rapidly
over the past decade. The maturity of the moving picture expert group (MPEG) video—coding

standard is a very important achievement for the video industry and provides strong support for

digital transmission and storage of video signals. The MPEG coding standard is now being deployed

for a variety ol' applications. which include high-definition television (HDTV). teleconferencing.

direct broadcasting by satellite (DBS). interactive multimedia terminals. and digital video disk

(DVD). The common feature of these applications is that the different source information such as

video. audio, and data are all converted to the digital format and then mixed together to a new

Format which is referred to as the bitstrcam. This new format of information is a revolutionary

change in the multimedia industry. since the digitized information format. i.e.. the bitstreant. can

be decoded not only by traditional consumer electronic products such as television but also by the

digital computer. In this chapter, we will present several application examples ot'MPEG-Ifl video

standards. which include the ATSC DTV standard. transcoding. down-conversion decoder. and error

concealment. The DTV standard is the application extension of the MPEG video standard. The

transcnding and down-conversion decoders are the practical application issues which increase the

features of compressiomrelated products. The error concealment algorithms provide the tool For

transmitting the compressed bitstream over noisy channels.

17.2 ATSC DTV STANDARDS

17.2.1 A BRIEF HISTORY

The birth ot‘digital television (DTVJ in the U.S. has undergone several stages: the initial stage, the
C0ml'mulion stage. the collaboration stage. and the approval stage (Reitmeter, I996). The concept

of high-definition television (HDTV) was proposed in Japan in the late 19705 and early 19305.
During that period. Japan and Europe continued to make efforts in the development 0! analog
television transmission systems, such as MUSE and HD-MAC systems. In early 198?. US. broad-
casters fell behind in this field and felt they should take action to catch up with the new HDTV

lechnOIOgy and petitioned the FCC to reserve a spectrum for terrestrial broadcasting of H_DTV. As
a result, the Advisory Committee on Advanced Television Service (ACATS) was-lounded In August
198?. This committee takes the role oi" recommending a standard to the FCC for approval. Thus.
the process of selecting an appropriate HDTV system for the US. started. At the initial stage
between [987 and 1990. there were over 23 different analog systems proposed; among these systems
two typical approaches were extended definition television (EDTV) which fits into a Single 6-MHZ

3&7
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channel and the high definition television (HDTV) approach which requires two 6-MH2 channels.

By 1990, ACATS had established the Advanced Television Test Center (A'I'I‘C), an official testing
laboratory sponsored by broadcasters to conduct extensive laboratory tests in Virginia and field tests

in Charlotte. NC. Also. the industry had formed the Advanced Television Standards Committee

(ATSC) to perform the task ofdrafting the official standard documents ofthc sclcmed winning system.

As we know. the currentATSC-proposed television standard is a digital system. In early 1990.

. the FCC issued a very difficult request to industry about the DTV standard. The FCC required the

industry to provide full-quality HDTV service in a single b-Ml-lr. channel. Having recognized the,

technical difficulty of this requirement at that time. the FCC also stated that this service could be

provided by a simulcast service in which programs would be simultaneously broadcaster] In both

NTSC and the new television system. However. the FCC decided not to assign new spectruttt hands

for television. This means that simulcasting would occur in the already crrnvdcd VHF and UHF

Spectrum. The new television system had to use low-power transmissmn to avoid excessive inter-

ference into the existing NTSC services. Also. the new television system had to tlst‘: a very aggressive

compression approach to squeeze a full HDTV signal into thc 6-MHz spectrum. One good thing

was that backward compatibility with NTSC was not requtred. Actually. under these constraints

the backward compatibility had already become impossible. Also. llll‘s goal could not be achieved

by any of the previously proposed systems and it caused most of the competing proponents to

reconsider their approaches. Engineers realized that it was almost impossible to use the traditional

analog approaches to reach this goal and that the solution may be to digital approaches. After a

few months of consideration. General Instrument announced its first digital system proposal for

HDTV, DigiCigher. in June 1990. in the following half year, three other digital systems were

proposed: the Advanced Digital HDTV by the Advanced Television Research Consortium. which

included Thomson, Philips, Sarnoff. and NBC in November I990; Digital Spectrum Compatible

HDTV by Zenith and AT&T in December 1990; and Channel Compatible Digiciplicr by General

Instrument and the Massachusetts Institute ochchnology in January 199 |. Titus. the competition

stage started. The prototypes of four competing digital systems and the analog system. Narrow

MUSE, proposed by NHK (Nippon Houson Kyokai. the Japan Broadcasting Corporation). were

officially tested and extensively analyzed during 1992. After a first round of tests. it was concluded

that the digital systems would be continued for further improvement and would be adopted. In

February 1992. the ACATS recommended digital HDTV for the U.S. standard. It also recommended

that the competing syStems be either further improved and retested. or be combined into a new

system. In the middle of 1993. the former competitors joined in a Grand Alliance. Then the DTV

development entered the collaboration stage. The Grand Alliance began a collaborative cfforl 10

create the best system which combines the best features and capabilities ofthe formerly competing
systems into a single "best of the best“ system. After 1 year ot‘joint effort by the seven Grand
Alliance members. the Grand Alliance provided a new system that was prototypcd and extensively
tested in the laboratory and field. The test results showed that the system is indeed the best of the

best compared with the formerly competing systems (Grand Alliance, 1994'). The ATSC than
recommended this system to the FCC as the candidate HDTV standard in the United States. During

the following period, the computer industry realized that DTV provides the signals that can now

be used for computer applications and the TV industry was invading its terrain. It presented different
Opinions about the signal Format and was eSpecially opposed to the interlaced format. This reaction

delayed the approval of the ATSC standard. After a long debate. the FCC finally approved “16
ATSC standard in early 1997. But. the FCC did not Specify the picture formats and leaves this
issue to be decided by the market.

17.2.2 TECHNICAL OVERVIEW or ATSC SYSTEMS

The ATSC D'I‘V system has been designed to satisfy the FCC requirements. The basic requirement
is that no additional frequency spectrum will be assigned for DTV broadcasdng. In other words.
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during a transition period. both NTSC and DTV service will he simultaneousiy broadcast on
different channels and DTV can only use the taboo channels. This approach allows a smooth
transition to DTV. such that the services of the existing NTSC receivers will remain and gradually
be phased out of existence in the year 2006. The sitnulcasting requirement causes some technical
difficulties in DTV design. First. the high-quality HDTV program must be delivered in a fi-MHZ

channel to make efficient use of spectrum and to fit allocation plans for the spectrum assigned to
television broadcasting. Second, a low-power and low-interference signal must be used so that
simulcasting in the same frequency allocations as current NTSC service does nOt cause excessive

interference with the existing NTSC receiving. Since the taboo channels are generally unsuitable

for broadcasting an NTSC signal due to high interference. In addition to satisfying the frequency
spectrum requirement. the DTV standard has several important features, which allow DTV to

achieve interoperability with computers and data communications. The first feature is the. adoption

of a layered digital system architecture. Each individual layer of the system is designed to be

interoperable with other systems at the corresponding layers. For example, the square pixel and
progressive scan picture format should be provided to allow computers access to the compression

layer or picture layer depending on the capacity of the computers and the ATM-like packet format

for the ATM network to access the transport layer. Second. the DTV standard uses a headcrldescrip-

tor approach to provide maximum flexible operating characteristics. Therefore. the layered archi-

tecture is the most important feature of DTV standards. The additional advantage of layering is

that the elements of the system can be combined with other technologies to create new applications.

The system of [JTV standard includes four layers: the picture layer, the compression layer. the

transport layer. and the transmission layer.

1 7.2.2.1 Picture Layer

At the picture layer, the input video formats have been defined. The Executive Committee of the
ATSC has approved release of statement regarding the identification of the HDTV and Standard
Definition Television (SDTV) transmission formats within the ATSC DTV standards. There are six

video formats in the ATSC DTV standard. which are "High Definition Television." These formats

are listed in Table I'M. .
The remaining 1'2 video formats are not HDTV format. These formats represent some improve-

ments over analog NTSC and are referred to as "SDTV.“ These are listed in 'I‘ahle'l'll.
These. definitions are fully supported by the technical specifications for the vartOus formats as

measured against the internationally accepted definition of HDTV establiShed in 1939 by the ITU
and the definitions cited by the FCC during the DTV standard development precess. These formats
cover a wide variety of applications. which include motion picture film. currently available HDTV
production equipment. the NTSC television standard. and computers such as personal computers
and workstations. However. there is no simple technique which can convert Images from one pixel

—______.—__—___—_..

TABLE 17.1

H DTV Formats

Spatial Format Temporal. Rate
(it x Y active pixels) Aspect Ratio {Hz progressive scan)

1920 x [080 (square pixel) [6:9 23.976424
29.97.30

' 59.91%}

1280 x 720 (square pixel) 16:9 23.9702429.9780

59.94MB
—___——_____________
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TABLE 17.2

SDTV Formats

Spatial Format Ternporal Rate
{X x Y active pixels) Aspect Ratio (Hz progressive scan]

3’04 x 480 (CCIRGOIJ I619 or 4:3 23.976124
29.9?!30

59.942610

640 x 430 (VGA. square pixel) 4:3 stereos
299780

SEW-Vol}

format and frame rate to another that achieve interoperability among lilm and the various worldwide

television standards. For example. all low—cost computers use square pixels and progressive scan-

ning. while current television uses rectangular pixels and interlaced scanning. The video industry

has paid a lot of attention to developing format-converting techniques. Some techniques such as

deinlerlaeing, downfupwconversion for format conversion have already been developed. it should

be noted that the broadcasters. content providers. and service providers can use any one of these

DTV format. This results in a difficult problem for DTV receiver tt'ianul'aeturers who have to provide
all kinds of DTV receivers to decode all these formats and then to convert the decoded signal to

its particular display format. On the other hand. this requirement also gives receiver manufacturers

the flexibility to produce a wide variety of products that have different functionality and cost. and

the consumers freedom to cheese among them.

17.2.2.2 Compression Layer

The raw data rate of HDTV of 1920 x 1080 x 30 x “306 bits per pixel corresponds to 4:212 color

format) is about 1 Gbps. The function of the compression layer is to compress the raw data from

about 1 Gbps to the data rate of approximately 19 Mbps to satisfy the tit-MHZ spectrum requirement.

This goal is achieved by using the main profile and high level of the MPEG-2 video standard.

Actually. during the development of the Grand Alliance HDTV system. many research results were

adopted by the MPEG—2 standard at the same time; for example. the support for interlaced video
format and the syntax for data partitioning and scalability. The ATSC DTV standard is the first and
most important application example of the MPEG-2 standard. The use of MPEG-2 video compres-

sion fundamentally enables ATSC DTV devices to interoperate with MPEG—1}? computer multi-
media applications directly at the compressed bitstream level.

17.2.2.3 Transport Layer

The transport layer is another important issue for interoperability. The ATSC DTV transport layer
uses the MPEG-2 system transport stream syntax. It is a fully compatible subset of the MPEG-2
transport protocol. The basic function of the transport layer is to define the basic format of data
packets. The purposes of packetization include:

. Packaging the data into the fixed-size cells or packets for forward error correction (FEC)
encoding to protect the bit error due to the communication channel noise:

- Multiplexing the video. audio. and data of a program into a bitstreant'.

- Providing time synchronization for different media elements;

- Providing flexibility and extensibility with backward compatibility.
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+——-——-———-— 183 byte packet

|(— 184 byte payload;
4 byte packet header-
_-—W

FIGURE 17.] Packet structure of ATSC DTV transport layer.

 
 

The transport layer ol'ATSC DTV uses a fixed-length packet. The packet size is l88 bytes consisting
of [84 bytes of payload and :1 bytes of header. Within the packet header, thei3—bit packet identifier

(l’lD) is used to provide the important capacity to combine the video. audio. and ancillary data

stream into a single httstrcant as shown in Figure 1?.[. Each packet contains only a single type of

data (video. audio. data. program guide. etc.) identified by the PID.

This type of packet structure packetizes the video. audio. and auxiliary data separately. It also

provides the basic multiplexing I‘unetton that produces a hitstream including video. five-channel

surround-sound audio. and an auxiliary data capacity. This kind of transport layer approach also

provides complete flexibility to allocate channel capacity to achieve any mix among video. audio.
and other data services. It should be noted that the selection of [SS-packet length is a tradewoff

between reducing the overhead due to the transport header and increasing the efficiency of error

correction. Also. one ATSC DTV packet can be completely encapsulated with its header within

Four ATM packets by using I AAL byte per ATM header leaving 4'? usable payload bytes times 4.

for ISS bytes. The details of the transport layer is discussed in the chapter on MPEG systems.

Transmission Layer — The l'unction of the transmission layer is to modulate the transport bitstream

into a signal that can be transmitted over the 6-MHz analog channel. The ATSC D'I‘V system uses

a trellis-coded eight—level vestigial sideband (S—VSB) modulation technique to deliver approxi-

mately 19.3 Mbps in the o-MHZ terrestrial simulcast channel. VSB modulation inherently requires

only processing the iii—phase signal sampled at the symbol rate. thus reducing the complexity of

the receiver, and ultimately the cost of implementation. The VSB signal is organized in a data
frame that provides a training signal to facilitate channel equalization for removing multipath
distortion. However. from several fie|d«test results. the multipath distortion is still a serious problem

of terrestrial simulcast receiving. The frame is organized into segments each with 832 symbols.
Each transmitted segment consists of one synchronization byte (four symbols). 18? data bytes, and
20 12-3 parity bytes. This corresponds to a lSS-bytc packet. which is protected by Ell-byte R~§
code. Interoperability at the transmission layer is required by different transmission media applt«

cations. The different media use different modulation techniques now. such as QAM for cable and
QPSK for satellite. Even for terrestrial transmission, European DVB systems use OFDM transmis-

sion. The ATV receivers will not only be designed to receive terrestrial broadcasts. but also the
Programs from cable. satellite. and other media.

17.3 TRANSCODING WITH BITSTREAM SCALING

1 7.3.1 BACKGROUND

As indicated in the previous chapters. digital video signals exist everywhere in the format of
compressed bitslreams. The compressed bitstrcams of video signals are used for transmtssron and
storage through different media such as terrestrial TV. satellite. cable, the ATM network. and the
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Internet. The decoding of a bitstream can be implemented in either hardware or software. However.

for high-bit-t'ate compressed video bitstreams. specially designed hardware is still the major decod—

ing approach due to the speed limitation of current computer processors. The compressed bilstream

as a new fon'nat of video signal is a revolutionary change to video industry since it enables many

applications. On the other hand. there is a problem of bitstrcam conversion. Bitstreant conversion

or lranscoding can be classified as bit rate conversion. resolution conversion. and syntax conversion

Bit rate conversion includes bit rate scaling and the conversion between constant bit rate (CBR)

and variable bit rate (VBR). Resolution conversion includes spatial resolution conversion and

temporal resolution conversion. Syntax conversion is needed between different compression stan—
dards such as JPEG. MPEG-l. MPEG-2. H.261. and H.263. in this section. we will locus on the

topic orbit rate conversion. especially on bit rate scaling since it finds wide application and readers

can extend the idea to other kinds of transcoding. Also. we limit ourselves to locus on the. problem

of scaling an MPEG CBR-encoded bitstream down to a lower CBR. The other kind oi‘ trans-coding.

down-cenversion decoder. will be presented in a separate section.

The basic function of bitstream scaling may be thought of as a black hos. which passively

accepts a precodcd MPEG bitstream at the input and produces a scaled bitstrcant. \i htch meets new

constraints that are not known npriorr' during the creation ot' the original preceded brtstream. The

bitstrearn sealer is a transcoder. or filter. that provides a match between an MPEG source bitstrcam

and the receiving load. The. receiving load consists of the transmission channel. the destination

decoder, and perhaps adestination storage dt:\'1t:c.Tltc constraint on the new hit-stream may be bound

by a variety ofconditions. Among them are the peak or average bit rate nnposed by the communi—

cations channel. tltc loral number of bits imposed by the storage device. anchor the tarianon of bit

usage across pictures due to the amount of buffering available at the receiving decoder.

While the idea of bitstream scaling has many concepts similar to those provided by the. various

MPEG-2 scalability profiles. the intended applications and goals dit'l'cr. 'l‘he Ml-‘lzG-E scalability

methods (data partitioning. SNR scalability. spatial scalability. and temporal scalability) are aimed

at providing encoding of source video into multiple service grades (that are predefined at the time

of encoding) and tnuititiered transmission for increased signal robustness. The multiple bitstreams

created by MPEG-2 scalability are hierarchically dependent in such a way that by decoding an

increasing number of bitstrearns. higher service grades are reconstructed. Bitstrearn scaling meth-

ods, in contrast. are primarily decodcrftranscoder techniques for converting an existing preceded

bitstream to another one that meets new rate constraints. Several applications that motivate bitstream

scaling include the following:

1. Video-On-Demand —— Consider a video-on-demand (VOD) scenario wherein a video file

server includes a storage device containing a library of preceded MPEG bitstrearns.

These bitstrearns in the library are originally coded at high quality (cg. studio quality).

A number of clients may request retrieval of these video programs at one particular time.
The number of users and the quality of video delivered to the users are constrained by

the outgoing channel capacity. This outgoing channel. which may be a cable bus or an

ATM trunk. for example. must be shared among the users who are admitted to the service.
Different users may reunite different levels of video quality. and the quality oi'a respective
program will be based on the fraction of the total channel capacity allocated to each
user. To accommodate a plurality oftisers simultaneously, the video file server must scale
the stored preceded bitstreams to a reduced rate before it js delivered over the channel
to respemive users. The quality of the resulting scaled bitslream should not be signifi-
cantly degraded compared with the quality of a hypothetical bitstrearn so obtained by
coding the original source material at the reduced rate. Complexity cost is not such a
critical factor because only the file server has to be equipped with the bitstrearn scaling
hardware. not every usar. Presumably. video service providers would be willing ‘0 pay
a high cost for delivering the possible highest-quality video at a prescribed bit rate.
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As an option. a sophisticated video file server may also perform scaling of multiple
original preceded hitstreamsjorntly anti statistically multiplex the resulting sealed VBR

hitstreams into the channel. By sealing the group of bitstreams jointly. statistical gains
can be achieved. These statistical gains can be realized in the form of higher and more

uniform picture quality for the same channel capacity. Statistical multiplexing over a

Direc’l‘v transponder {lsnardn I993) is one example of an application of video statistical
multiplexing.

Trick-play Track on Digital VTRs — In this application, the video bitstrcam is scaled

to create a sidelrack on video tape recorders (VTRs). This sidetrack contains very coarse

qualit).r video sufficient to I‘acrhtatc trick-modes on the VTR (e.g.. FF and REW at

different speeds). Coinplesity cost for the bitstrcam scaling hardware is of significant

concern in this application since the VTR is a mass consumer item subject to mass

production.

'3. Extended-l"1a_\»r Recording on Digital VTRs — In this application. video is broadcast to

users‘ homes at a certain broadcast quality (~6 Mbps for standard~definitiort video and

-24 Mhps for high—definition video}. With a bitstrcam scaling feature in their VTRs.

users may record the video at a reduced rate. akin to extended-play (EP) mode on today's

VHS recorders. thereby recording a greater duration of video programs onto a tape at

lower quality. Again, hardware complexity costs would be a major factor here.

5‘.)

17.3.2 BASIC PRINCIPLES or- BITSTREAM SCALING

As described previously. the idea of scaling an MPEG-Z—compressed bitstrearrt down to a lower

bit rate is initiated by several applications. One problem is the criteria that should be used to judge

the performance. of an architecture that can reduce the size or rate of an MPEG~compressed

bitstreant. Two basic principles of bitstreant settling are (l) the information in the original bitstream

should be exploited as much as possible. and {2) the resulting image quality of the new bitstream
with a lower bit rate should be as close as possible to a bitstream created by coding the original

source video at the reduced rate. Here, we assume that for a given rate the original source is encoded

in an optimal way. Of course. the implementation ofhardware complexity also has to he considered.
Figure 1?.2 shows a simplified encoding structure of MPEG encoding in which the rate control
mechanism is not shown.

In this structures. block of image data is first transformed to a set ofcoeflicients: the coefficients
are then quantized with a quantizer step which is decided by the given bit rale‘budget, or numher
of bits assigned to this block. Finally, the quantized coefficients are coded in variable-length coding
to the binary format, which is called the bitslrcam or bits.

 
Input source

Tn mform. (fin quantizer. P--moticn-compensated predictionVLC-u- variable ength

FIGURE ”'2 Simplified encoder structure- T = transform. Q = quantiaer. P = motion-compensated predie.
tion. VLC = variable length.
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From this structure it is obvious that the performance of changing the quantiaer step will be

better than cutting higher frequencies when the same amount of rate needs to be reduced. In the

original bitstrearn the coefficients are quantized with finer quantization steps which are optimized

at the original high rate. After cutting the coefficients of higher frequencies. the rest of the

coefficients are not quantized with an optimal quantizcr. In the method of requantiaation all

coefficients are requantized with an optimal quantizer which is determined by the reduced rate; the

performance ofthe requantization method must be better than the method ofcuuing high frequencies
to reach the reduced rate. The theoretical analysis is given in Section 113.4.

In the following, several different architectures that accomplish the bitstrcam sealing are

discussed. The different methods have varying hardware implementation complexities; each has its

own degree of trade-off between required hardware and resulting image quality.

17.3.3 ARCHITECTURES or BITSTREAM SCALING

Four architectures for bilstrcarn scaling are discussed. Each of the scaling architectures described

has its own particular benefits that are suitable fora particular application.

Architecture 1: The bitstrcant is scaled by cutting high frequencies.

Architecture 2: The bitstrcarn is scaled by requantization.

Architecture 3: The bitstreant is scaled by reeneoding the reconstructed pictures with

motion vectors and coding dccismn modes extracted from the original high-

quality bitstreant.

Architecture 4: The bitstream is scaled by t'cencoding the reconstructed pictures with

motion vectors extracted from the original high-quality hitslrcattt. but new

coding decisions are computed based on reconstructed pictures.

Architectures l and 2 are considered for VTR applications such as trick—play modes and EP

recording. Architectures 3 and 4 are considered for and other applicable SlatMus scenarios.

17.3.3.1 Architecture 1: Cutting AC Coefficients

A block diagram illustrating architecture ] is shown in Figure [7.3a The method of reducing the

bit rate in architecture 1 is based on cutting the higher-frequency coefficients The incoming

precoded CBR stream enters a decoder rate buffer. Following the top branch leading from the rate

buffer. a VLD is used to parse the bits for the next frame in the buffer to identify all the variable-

length codewords that correspond to ac coefficients used in that frame. No bits are removed from

the rate buffer. The codewords are not decoded. but just simply parsed by the VLD parser [0

determine codeword lengths. The bit allocation analyzer accumulates these ac bit counts for every

macroblock in the frame and creates an ac bit usage profile as shown in Figure 17.303)- That 15-
the analyzer generates a running sum of ac DCT coefficient bits on a macroblock basis:

PVN=2AC_BITS. (IT-1)

where PVN is the profile value of a running sum ofAC codeword bits until the macroblock N. In
addition. the analyzer counts the sum of all coded bits for the frame, TB (total bits). After all

Inacroblocks for the frame have been analyzed. a target value TV”, of ac DCT coefficient bits per
frame is calculated as

rnc=PvLE —Ct*TB—B (I72)Ex"
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FIGURE 17.3 in) Architecture l: cutting high frequencies. (b) Profile map.

where TV“ is the target value of AC codeword hits per frame, PVB is the profile value at the last

macroblock. 0t is the percentage by which the precncoded bitslream is to he reduced, TB is the

total bits. and Bu is the amount ol‘ bits by which the previous Frame missed its desired target. The

profile value oirlC coefficient bits is scaled by the factor TKCIPVU. Multiplying each PVN performs

scaling by that factor to generate the linearly scaled profile shown in Figure 17.3(b). Following the

bottom branch from the rate buffer, a delay is inserted equal to the amount of time required for

the t0p branch analysis processing to be completed for the current frame. A second VLD parser
accesses and removes all codeword bits from the buffer and delivers them to a rate controller. The

rate controller receives the scaled target bit usage profile for the amount of ac bits to be used within

the Frame. The rate controller has memory to store all coefficients associated with the Current

macroblock it is Operating on. All original codeword hits at a higher level than no coefficients {i.e..

all fixed-length header codes, motioa vector codes. macroblock type codesI etc.) are held in memory

and will be remultiplexed with all AC codewords in that macroblock that have not been excised to

{Orin the outgoing scaled bitstream. The rate controller determines and flags in the niacroblock

codeword memory which AC codewords to keep and which to excise. AC codewords are accessed

from the macrobloek codeword memory in the order ACH, ACJ2, ACB. ACM. ACIS. ACftS.
ACZK, AC22. A C23, AC24, AC25. AC26. AC3}. AC3; AC3}. etc., where ACij denotes the ith AC

codewords from jth block in the macroblock if it is present. As the AC codewords are accessed

from memory. the respective codeword bits are summed and continuously compared with the scaled
profile value to the current macroblock. less the number of bits for insertion ot E03 (end—of-block)

codewords. Respective AC codewords are flagged as kept until the running sum ofAC codewords
bits exceeds the scaled profile value less EOE bits. When this condition is met, all remaining AC
codewords are marked For being excised. This process continues until all macroblocks have their
kept codewords reassembled to form the scaled bitstream.
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FIGURE 17.4 Architecture 2'. increasing. quantization step

17.3.3.2 Architecture 2: Increasing Quantization Step

Architecture 2 is Shown in Figure ”.4. The method ol‘ bitstrcam scaling ”'1 architecture 2 is based

on increasing the quantization Step. This method requires additional tlettuttttltxer/quuntizer and

variable-length coding (VLC) hardware over the first method. Like the Iirsi tltctlitsd. it also makes

a first VLD pass on the bitstrcam and obtains a similar scaled prol'tlc of target cumulative codeword
bits vs. macrohlock count to be used for rate control.

The rate control mechanism dil'fcrs from this point on. After the second-pass \‘LD is made on

the bitstreattt. quantized DCT coefficients are dequantized. A block ol' “Hilly quantized DCT

coefficients is obtained as a result ol‘ this. This block ol' DCT cocl'licicnts rs rcquanttzed with a

coarser quantize-r scale. The value used for the coarser quanttacr scale is deit't'tttincd adaptively by

making adjustments after every ntacroblock so that the scaled target prolilc ts tracked as we progress
through the macroblocks in the frame:

QM =Qmu+G=i 2(BU—r’i{v_i] , {113}Nut

Where Q. is the quantization factor for macroblock N. QM,“ is an estimate of the new nominal
quantization factor for the frame. EMBU is the cumulative amount ol'coded bits up to macroblocl:

N — l. and G is a gain factor which controls how tightly the profile curve is tracked through the

picture. QNOM is initialized to an average guess value before the very first frame. and updated for

the next frame by setting it to Q” (the quantization factor for the last macroblock) from the frame

just completed. The coarsely requantized block of DCT coefficients is variable-length-codcd to

generate the scaled bitstream. The rate controller also has provisions for changing some macroblock-

layer codewords, such as the macroblock-type and coded-block pattern to ensure a legitimate scaled
bitstream that conforms to MPEG-2 syntax.

17.3.3.3 Architecture 3: Reencoding with Old Motion Vectors
and Old Decisions

The third architecture for bitstrcam scaling is shown in Figure 17.5. In this architecture, the motion

vectors and macroblock coding decision modes are first extracted from the original bitstream. and
at the same time the reconstructed pictures are obtained from the normal decoding procedure. Then

the scaled bitstream is obtained by reencoding the reconstructed pictures using the old motion
vectors and macroblock decisions from the original hitstream. The benefits obtained from this

architecture compared with full decoding and recncoding is that no motion estimation and decision
computatiou is needed.
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FIGURE 17.5 Architecture 3.

17.3.3.4 Architecture 4: Reencoding with Old Motion Vectors
and New Decisions

Architecture 4 is a modified version of architecture 3 in which new maerobloek decision modes

are computed during reencoding based on reconstructed pictures. The scaled bilstream created this

way is expected to yield an improvement in picture quality because the decision modes obtained

from the high—quality original bitstreant are not optimal for recacoding at the reduced rate. For

example. at higher rates the optimal mode decision for a macroblock is more likely to favor

bidirectional held motion compensation over forward frame motion compensation. But at lower

rates, only the opposite decision may be true. Inorder for the reencoder to have the possibility of

deciding on new mact'olilock coding modes. the entire pool of motion vectors of every type must

be available. This can be supplied by augmenting the original high-quality bitstream with ancillary

data containing the entire pool of motion vectors during the time it was originally encoded. It could

be inserted into the user data every home. For the same original bit rate. the quality of an original

bitstream oblamed this way is degraded compared with an originaI bitstream obtained from archi-

tecture 3 because the additioaal overhead required For the extra motion vectors steals away bits for

actual encoding. However. the resulting scaled bitstream is expected to show quality improvement

over the scaled bitstrearn l‘rom architecture 3 it" the gains from computing new and more accurate

decision modes can overcome the loss in original picture quality. Table 17.3 outlines the hardware

complexity savings oleach ot‘ the three proposed architectures as compared with full decoding and
reencoding.

17.3.3.5 Comparison of Bitstream Scaling Methods

We have described l‘our architectures for bitstream scaling which are useful for various applications

as described in the introdueiion. Among the [our architectures. architectures l and 2 do not requrre
 

TABLE 17.3

Hardware Complexity Savings over Full Decoding/REENCOdmg

Coding Method Hardware Complexity Savings

Architecture 1 No decoding loop. no DCTIIDCT. no frame store memory. no encoding loop. no qtiantizerldequalttiw.

no motion compensation. no VLC. silltalifiCd fit“: ”him _
Architecture 2 No decoding loop. no DCTIIDCT. no frame store melttory. no encoding loop. no motion compensation.

simplified rate control
Architecture 3 No motion estimation. no tnncrobloek coding decisions
Architecture 4 No motion csdinatioa
____.—__—_—______—__—____—
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entire decoding and encoding loops or frame store memory for reconstructed pictures, thereby
savina significant hardware completilly- HOWevcr. video quality tends to degrade througlt the group
of picnures (00p) until the next l—ptcture due to drift tn the absence of decoder/encoder loops. For
large scaling. say. for rate reduction‘greater than 25% architecture l produces poor-qualtty blocky
pictures. primarily because many btlS were Spent tn the original high—quality bttstrcam on finely
quantizing the dc and other very low-order ac coeffiCtents. Architecture 2 ts a particularly good
choice for VTR applications since it is a good compromise between hardware complexity and
reconstructed image quality. Architectures 3 and 4 are suitable for VOD server applications and

other StaLMux applications.

1 7.3.4 ANALYSIS

In this analysis, we assume that the optimal quantize-r is obtained by assigning the number of bits

according to the variance or energy of the coefficients. It is slightly different from MPEG standard

which will be explained later. but the principal concept is the same and the results will hold for

the MPEG standard. We first analyze the errors caused by cutting high coefficients and increasing
the quantizer step. The optimal bit assignment is given by Jayant and Noll (1984):

l U.

RkflzRei'fl+-tz_log2 fl. k=0.l.....N-—l. (17.4)

where N is the number of coefficients in the block. Rm is the number of bits assigned to the kth

coefficient, RM is the average number of bits assigned to each coefficient in the block, i.e.. Rm :
N - Rm. is the total bits for this block under a certain bit rate. and of is the variance of kth

coefficient. Under the optimal bit assignment (17.4). the minimized average quantizer error. 0:0. is

.[ N—l ] N-l
05“ Win =EZZ'ERW ’05. (17.5)

i=1 t=t

where 01;}t is the quantizer error of kth coefficient. According to Equation 17.4, we have two major
methods to reduce the bit rate. cutting high coefficients or decreasing the Ray, i.e.. increasing the
quantizer step. We are now analyzing the effects on the reconstructed errors caused by the method
of cutting high-order coefficients. Assume that the number of the bits assigned to the block is

reduced from Rm to R,»,. Then the bits to be reduced, ARI. are equal to Rm — Rn.
In the case of cutting high frequencies. say. the number of coefficients is reduced from N to

M, then

N—

Rm=0forK<M.andARlsz—RT1=ZRW. (17.6)
LEM

the quantizer error increased due to the cutting is

1 M" ”—1 N—l
do; =0;I —030 2 it? 22—23... 13: +20: _22-2nm of (17.?)k=o i=0k=M
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l N—i N-l_ 1 2R 2

‘3 2"»: '22 ‘" Us1:.” 1:.”

N—l

= i2“ 44””) 55'
Nkzltt‘

where of. is the quantizer error after cutting the high frequencies.
In the method of increasing quantizer step. or decreasing the average bits. from RM to RM.

assigned to each coefficient, the number of bits reduced for the block is

AR: = Rm ‘— RT? : N'(R rij_ Rut-1) {118)
It

and the bits assigned to each coefficient become new

—IW, k=0, 1.....N—I. (179}

] N-I N-I1 1 'I -- 1 2 '23 2

Mafia-Urn 22°""'°w22 ”'0: E=U

“ ” (l?.10)
] N—l

=_ 2'”:2_2‘3Rw 132.a t.

where of: is the quantizer error at the reduced bit rate. 1 '
If the same number of bits is reduced. i.e.. AR. : M3. it is obvious that dto’q'3 is smaller than.

155:. since 0:3 is the minimized value at the reduced rate. This implies that the performance at
changing the quantizer step will be better than cutting higher frequenCtes when the same‘amount
of rate needs to be reduced. It should be noted that in the MPEG video coding. more sophisticated
bit assignment algorithms are used. First, different quantiaer matrices are used to imprOve the visual

perceptual performance. Second, different VLC tables are used to code the DC values and the AC
transform coefficients and the run-length coding is used to code the pairs- of the zero-run length
and the values of amplitudes. However. in general. the bits are still assigned according to the
statistical model that indicates the energy distribution of the transform coefhcwttts. Therefore. the

above theoretical analysis will hold for the MPEG video coding.

17.4 DOWN-CONVERSION DECODER

17.4.1 BACKGROUND

Digital video broadcasting has had a major impact in both academic and industrial commumttcs.
A great deal ol‘effort has been made to improve the coding efficiency at the transmtsswn side and
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FIGURE 17.6 Decoder structures. (a) Block diagram of full—resolution decoder with down-conversion in

the spatial domain. The quality of this output will serve as a drift—tree reierenec. th) Block diagram of low-

resolution decoder. Down-conversion is performed within the decoding loop and is a frequency domain process.

Motion compensation is performed from a low-resolution reference using motion vectors that are derived from

the full-resolution encoder. Motion compensation is a spatial domain process.

offer cost-effective implementations in the overall end-to-cnd system. Along these lines. the notion

of format conversion is becoming increasingly popular. On the transmission side. there are a number

of different formats that are likely candidates for digital vidco broadcast. These formats vary in

horizontal, vertical, and temporal resolution. Similarly. on the receiving side. there are a variety of

display devices that the receiver should account for. in this section. we. are interested in the specific

problem of how to receive an HDTV bitstream and display it at a lower spatial resolution. In the

conventional method of obtaining a low-resolution Image sequence. the HD hitstrenrn is fully

decoded; then it is simply prefiltered and subsarnplcd (ISOIIEC. |993). The block diagram of this

system is shown in Figure 17.6(a); it will be referred to as a full-resolution decoder {FRDJ Wilh

spatial down-conversion. Although the quality is very good. the cost is quite high due to the large

memory requirements. As a result. low—resolution decoders (LRDs) have been proposed to reduce

some of the cosrs (Na. 1993; Sun. 1993; Boyce et al.. 1995; Bao et al., 1996). Although the quality

of the picture will be compromised. significant reductions in the amount of memory can be realized;

the block diagram for this system is shown in Figure 17.6{b). Here. incoming blocks are subject

to down-conversion filters within the decoding loop. In this way. the down-converted blocks are

stored into memory rather than the full-resolution blocks. To achieve a high—quality output with

the low-resolution decoder. it is important to take special care in the algorithms for down-conversion
and motion compensation (MC). These two processes are of major importance to the decoder as

they have significant impact on the final quality. Although a moderate amount 01‘ complexity within
the decoding 10013 is added. the reductions in external memory are expected to provide significflnl
cost savings. provided that these algorithms can be incorporated into the typical decoder structure
in a seamless way.

As stated above, the filters used to perform the down-conversion are an integral part of the
low-resolution decoder. In Figure 17.6(b). the down—conversioa is shown to take place before the

IDCI'. Although the filtering is not required to take place in the DCT domain. we initially assume
that it takes place before the adder. In any case. it is usually more intuitive to derive a down-
conversion filter in the frequency domain rather than in the spatial domain; this has been described
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by Pang et a]. ([996). Merhav and Bhaskaran (199?). and Mokry and Anastassiou (1994). The
major drawback of these approaches is that high frequency data is lost or not preserved very well.
To overcome this. a method ot’down—conversion. which better preserves high-frequency data within
the macroblock has been reported by Bao et a1. (1996). Vetro and Sun (1998a); this method is
referred to as frequency synthesis.

Although the above statement of the problem has only mentioned filtering-based approaches
to memory reduction within the decoding loop. readers should be aware that other techniques havo
also been proposed For the most part. these approaches rely on methods of embedded compression.
For instance. do With et al. (1998) quantized the data being written to memory adaptively using a
block predictive coding scheme; then a segment of macroblocks is fit into a fixed length packet.
Similarly, Yu et al, {1999) proposed an adaptive min-max quantizer and edge detector. With this

method, each llli‘lLlI‘tJhlUck is compressed to a fixed size to Simplify memory access. Another. simpler
approach may be to truncate the 8-bit data to 'i' or 6 bits. However. in this case. it is expected the
drill would accumulate very fast and result in poor reconstruction quality. Bruni et a]. “998) used
a vectors quantization method. and Lei (1999) described a wavelet-based approach. Overall. these

approaches offer exceptional techniques to reduce the memory requirements. but in most cases the

reconstructed video would still be a high-resolution signal. The reason is that compressed high-

resolution data are stored in memory rather than the raw. low-resolution data. For this reason. the

remainder ol‘ this section emphasizes the filtering-based approach. in which the data stored in

memory represent the actual low-resolution picture data.

The main novelty of the system that we describe is the filtering which is used to perform motion

compensation from low-resolutirm anchor frames. It is well known that prediction drift has been

difficult to avoid. It is partly due to the loss of high-frequency data from the down~convcrsion and

partly due to the inability to recover the lost information. Although prediction drift cannot be totally

avoided in a low—resolution decoder. it is possible to reduce the effects of drift significantly in

contrast to simple interpolation methods. The solution that we described is optimal in the least-

Squarcs sense and is dependent on the method of down-conversion that is used (Vetro and Sun,

1998b). In its direct form. the solution cannot be readily applied to a practical decoding scheme.

However. it is shown that a cascaded realization is easily implemented into the FRD«lype SlFUClUFB

(Vetro ct al.. 1998).

17.4.2 FREQUENCY SYNTHESIS DOWN-CONVERSION

The concept of frequency synthesis was first reported by Bao et al. (1996) and later cxpandedppon
by Vetro and Sun (1998b). The basic premise is to better preserve the frequency characteristics of
a macroblock in comparison to simpler methods which extract or cut specrficd frequency compo-
nents of an 8 >< 8 block. To accomplish this. the four blocks ofa macroblock are subject to a global
transformation — this transformation is referred to as frequency synthesis. Essentially. a Single-
frCQUency domain block can be realized using the information in the entire macroblock. From this.

lower-resolution blocks can be achieved by cutting out the low-order frequency components of the
Sylllhcsizcd block —— this action represents the down-conversion process and IS generally represented
in the foliowing way:

A=XA. 01H}

where 5 denotes the original DCT macrobiock, A denotes the down-conyerted DCT block. and X
is a matrix which contains the frequency synthesis coefficients. The original idea for trequency
s)i’lllhcsis down-conversion was to extract an Ex 8 block directly from the 16x l6 synthesized
block in the DCT domain as shown in Figure l7.7(a). The advantage ofdoing this “IS that the down-

converted DCT block is directly applicable to an 8 x 8 1DCT(for which fast algorithms exist}. Th:
major draWback with regard to computation is that each frequency component in the synthesrze
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Frequency
Synthesis 

(a) {c 1

FIGURE 17.7 Concept of frequency synthesis down—converston: tat ESo-tap hltcr ttppltcd to every frequency

component to achieve vertical and horizontal down—conversion by a factor of tun lrante—basctl Iiltcrtng: tbt l6-lilp
filter applied to frequency components in the same row to achieve horimnnil downwont-union by two. picture

structure is irrelevant: (c) illustration that the amount ofsynthcsizcd frequency components which are retained

is arbitrary.

block is dependent on all of the frequency components in each of the ti x‘ H hlocks- i.e.. each

synthesized frequency component is the result of a Brio—tap filter. The minor drawback with regard

to quality is that interlaced video with field-based predictions should not he snhject to frame-based

filtering {Vctro and Sun, 1998b). If frame-based filtering is used. it becomes impossible to recover

the appropriate field-based data that is required to make field~hased predictions. In areas of large

motion, severe blocking artifacts will result.

Obviously. the original approach would incur too much computation and quality degradationt

so. instead. the operations are performed separately and vertical down—conversion is performed on

a field basis. In Figure 17.703). it is shown that a horizontal-only down-conversion can be performed.

To perform this operation. a lift-tap filter is ultimately required. In this way. only the relevant row

information is applied as the input to the horizontal filtering operation and the structure of the
incoming video has no bearing on the down-conversion process. The reason is that the data in each

row of a macroblock belong to the same field: hence the format of the output block will be

unchanged. It is noteworthy that the set of filter coefficients is dependent on the particular output
frequency index. For l-D filtering, this means that the filters used to compute the second oulP“l

index, for example. are different from those used to compute the fifth output index- Similar to flu:
horizontal down-conversion. venical down-conversion can aisu be applied as a separate process.
As reasoned earlier, field~based filtering is necessary for interlaced video with field—based predictions.

However, since a macrobloclt consists of eight lines for the even field and eight lines for the
odd field. and the vertical block unit is 8. frequency synthesis cannot be applied. Frequency synthesis
is a global transformation and is only applicable when one wishes to observe the hem-"5"“)r

characteristics over a larger range of data than the basic unit. Therefore. to perform the vertical
down-conversion. we can simply cut the low—order frequency components in the vertical direction.
This loss that we accept in the vertical direction isjustified by the ability to perform accurate lOW‘
resolution MC that is free from severe blocking artifacts.

1n the above, we have explained how the original idea to extract an 8 x 8 DCT block is broken
down into separable Operations. However. since frequency synthesis provides an expreSSion for
every frequency component in the new 16x 16 block. it makes sense to generalize the down-

conversion process so that decimation, which are multiples of 'r‘ls- can be performed. In
Figure 17.7(8). an M x N block is extracted. Although this type of down~cooversion filteringmay
not be appropriate before the IDCT operation and may not be appropriate for a bitstream containing
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FIGURE 17.8 Comparison ol' decoding methods to achieve low-resolution image sequence. in) FRD with

spattal down—cunvetsion. th} LRD. The objective is to minimize the MSE between the two outputs by choosing

NI. N1. N2. and N; for a ltscd LIOWn-cunvcthtfln. (From Vctro, A. cl 31.. {SEE Tt'rnts. Consumer Elec. 44(3).
1998 With permission.)

field-based predictions. It may he applicable elsewhere. e.g., as a spatial domain filter somewhere

else in the system andior for progressive material. To obtain a set of spatial domain lilters, an

appropriate transformation can he applied. In this way, Equation l7.8 is expressed as

f=.rr_t_ ([112)
._

where the lowercase counterparts denote spatial equivalents. The expression which transforms X
to .r is derived in Appendix A. Section 17.4.6.

17.4.3 Low-Rssownon MOTION COMPENSATION

The focus of this section is to provide an expression for the Optimal set oflow-resolution MC filters
given a set of down-conversion filters. The resulting filters are optimal in the least-squares sense

as they minimize the mean squared error (MSE) between a reference block and a block obtained
through low-resolution MC. The results that have been derived by Vetro and Sun [199820 assume

that a spatial domain filter. .r. is applied to incoming inacroblocks to achieve the down-conversion.
The scheme shown in Figure l?.3(a) illustrates the process by which reference blocks are obtamed.
First. full-resolution motion compensation is performed on tnacroblocks Q. L). c, and r_! to yield fl.
To execute this process. the litters Si”. Si”. SLtrJ‘ and 5;” are used. Basically. these filters represent
the maskingiaveraging operations of the motion compensation in a matrix l'onn. More Orl’l'l'tt:
Composition of these filters can be found in Appendix 13. Section I141 Once it, ts obtamed. tt ts
dOWn-convcrted to Li via the spatial tiller. .t':

Line. (17.13)

The above block is considered to be the drift-free reference. 0n the other hand. in the scheme of
Figure 17.8(b), the blocks a. £3, E, and d are first subject to the down~conver510n filter. x. to yield
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the down-converted blocks. {1. 12.; and (j. respectively. By using these down-converted blocks as

input to the low-resolution motion compensation process. the following expression can be assumed:

i=[ivI N3 N1 Na] (11.141ll:lr‘tll‘i‘rlIt):
where N... k 2 1.2.3.4 are the unknown filters which are assumed to perform the low-resolution
motion compensation, and l_i is the low-resolution prediction. These filters are st'ilvcd by dil'fcrcn.

tinting the following objective function {Vetra and Sun. 19983):

2

  J{Nk}=i|fl—l:i . (17.15)

with respect to each unknown filter and setting each result equal to zero. It can be verified that the

optimal least-squares solution for these filters is given by

Nlm =x5ir}.\'+; N? = 15:11"
(HUG)

[’l _ if} .+. ('1 _ . ’l .+
N3 —.rSr .1 . N4 —.15:. .t.

where

.9.“ =.t'r(.t;rr)_l (FM?)

is the Moore—Penrosc inverse (Lancaster and Tismenetsky. 1985} for an in x n matrix with m S n.

In the solution of Equation 1?.16. the superscript r is added to the filters. NR. due to their dependency

on the full-resolution motion compensation filters. In using. these filters to perform the low-
resolution motion compensation. the MSE between fiend fl is minimized. It should be emphasized

that Equation 17.16 represents a generalised set of MC filters which are applicable to any .r. which
operates on a single macrobtock. For the Special case of the 4 x 4 cut. these filters are equivalent

to the ones that were determined by Morky and Anastassiou “994) to minimize the drift.

In Figure 1?.9. two equivalent MC schemes are shown. However. for implementation purpOSES.
the optimal MC scheme is realized in a cascade form rather than a direct form. The reason is that

the direct-form filters are dependent on the matrices, which perform full-resolution MC. Although.
these matrices were very useful in analytically expressing the full-resolution MC process. they
require a huge amount of storage due to their dependency on the prediction mode. motion vector.

and halllpixel-accuracy. Instead. the three linear processes in Equation 17.13 are separated. so that

an up-conversion. fllllrl'fiSOIUIiOn MC. and down-conversion can be performed. Although one may

be able to guess such a scheme. we have proved here that it is an optimal scheme provided the Up-
conversiOn filter is a Moore-Penrose inverse of the down-conversion filter. Vetro and Sun (1993b).

the optimal MC scheme, which employs frequency synthesis. to a nonoptimal MC scheme. Which
employs bilinear interpolation. and an optimal MC scheme, which employs the 4 x 4 cut down-
conversion. Significant reductions in the amount of drift were realized by both optima] MC schemes

over the method, which used bilinear interpolation as the method of up-conversion. But more

importantly. a 35% reduction in the amount of drift was realized by the optimal MC scheme using
frequency synthesis over the optimal MC scheme using the 4 x 4 cut.
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FIGURE 17.9 Optimal ltnv-resolution MC scheme: direct form (top) vs. cascade form (bottom). Both forms
Weld equivalent quality. but vary significantly in the amount of internal memory. (From Vetra. A.. et 3]., {EEE

firms. Consumer Elem, 44(3). I‘J‘JS. Wlli‘l permission.)

17.4.4 THREE-LAYER SCALABLE Decoorn

in [his SCClion. we show how the key algorithms for down-conversion and motion compensation are
integrated into a three—layer scalable decoder. The central concept of this decoder is that three layers
of resolution can be decoded using a decreased amount of memory for the lower resolution layers.

Also. regardless of which layer is being decoded. much of the logic can be shared. Three possible
decoder configurations are considered: full-memory decoder (FMD). half-memory decoder (I-IMD).

and quarter-memory decoder (QMD). The low-resolution decoder configurations are based on the
key algorithms. which were described l'or down-conversion and motion compensation. In the fol~

lowing, three possible architectures are discussed that provide equal quality. but vary in system-level

Complexity. The first (ARCHIJ is based on the low-resolution decoder modeled in Figure 17.6(b).

the second (ARCH2) is very similar. but attempts to reduce the IDCT computation. while the third
(ARCH3) is concerned with the amount of interface with an existing high-level decoder.

With regard to functionality, all of the architectures share similar characteristics. For one. an

efficient implementation is achieved by arranging the logic in a hierarchical manner, i.e.. employing
superable processing. In this way. the FMD configuration is the simplest and serves as the logic

core on which other decoder configurations are built. In the HMD configuration. an additional
horizontal down-conversion and up-conversion are perl'onned. In the QMD configuration. all of
the logic components from the HMD are utilized. such that an additional vertical down-conversion
is performed after a horizontal down-conversion. and an additional vertical urn-conversion is per—

formed after a horizontal up-conversion. In summary. the logic for the HMD is built on the logic
for the FMD. and the logic for the QMD is built on the logic of the HMD. The total system contains
a moderate increase in logic. but HD bitstreams may be decoded to a lower resolution with a smaller
amount of external memory. By simply removing external memory. lower layers can be achieved
at a reduced cost.
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FIGURE 17.10 Block diagram of various three-layer scalable decoder architectures; all architectures pfOVidc
equal quality with varying system complexity: [a}ARCHl. derived directly from block diagram of assumed
low-resolution decoder; (b) ARCHZ. reduce campulalion of [DCT by combining down-conversion and [Di-3T
filters; (:2) ARCHB. minimize inicrfacc with existing HL decoder by moving linear fillcring l‘or down-converston
outside of the adder. (From Vctro, A. at £11.. iEEE Tmns. Conrmner Elsa, 44(3), [993. With permission.)
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FIGURE 17.10 (continued)

The complete block diagram oFARCi-ll is shown in Figure [7. [0(a). The diagram shown here

assumes two things: (I) the initial system model of a low-resolution decoder from Figure 17.6%)

is assumed. and (2) the down—conversions in the incoming branch are performed after the IDCT to

avoid any confusion regarding ntacroblock format conversions in the DCT domain (Vetro and Sun,

1998b]. In looking at the resulting system. it is evident that full computation ofthe IDCT is required,

and that two independent down-conversion Operations must be performed. The latter is necessary

so that low-resolution predictions are added to low-resolution residuals. Overall. the increase in

logic for the added I‘cature of memory savings is quite small. However. it is evident that ARCH]

is not the most cost-effective implementation. but it represents the foundation of previous assump-
tions. and allows us to analyze better the impact of the two modified architectures to follow.

In Figure l7.lD(h}. the block diagram of ARCHZ is shown. In this system. realizing that the

IDCT operation is simply a linear filter reduces the combined computation for the IDCT‘ and down-
conversion. In the FMD. we know that a last IDC'I‘ is applied separately to the rows and columns

of an 8 x it block. For the HMD. our goal is to combine the horizontal down-conversion with the

horizontal lDC’I‘. In the 1-D case. an 8 x to matrix can represent the horizontal down-conversion.

and an 8 x 8 matrix can represent the horizontal IDCT. Combining these processes, such that the
down~conversion operates on the incoming DC'I‘ rows first. results in a combined 8 x 16 matrix.
To complete the transformation, the remaining columns can then be applied to the fast IDCT. In

the above description. computational savings are achieved in two places: first. the horizontal IDCT
is fully absorbed into the down-conversion computation which must take place anyway. and. second.
the fast IDCT is utilized for a smaller amount of columns. In the case of the QMD. these same

Principles can be used to combine the vertical down-conversion with the vertical IDCT. in this
case. one must be aware of the ntacroblock type (field-DCT or t'rame-DCT) so that an appropriate

litter can be applied. In contrast to the previous two architectures. ARCH3 assumes that the entire
front-end processing of the decoder is used; it is shown in Figure i7.5. In this way. the adder is
aIWHYS a full-resolution adder. whereas in ARCH] and ARCHZ. the adder needed to handle all

three layers of resolution. The major benefit ol‘ARCI-I3 is that it does not require many interfaces
with the existing decoder structure. The memory is really the only place where a new interface
needs to be defined. Essentially. a down-conversion filtering may be aPPIiEd before storing the data,
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and an up—eonversion filtering tnay be applied. as tlte data is needed for full-resolution MC. 'l’his

final architecture is similar in principle to the embedded compression schemes that were mentioned

in the beginning of this section. The main difference is that the resolution ot‘ the data ts decreased

rather than compressed. This allows a simpler means of low—resolution display.

17.4.5 SUMMARY or DOWN-CONVERSION Drcoors

A number of integrated solutions for a scalable decoder have been presented. Each decoder is

capable ofdecoding directly to a lower resolution using a reduced amount of memory in comparison

with the memory required by the high-level decoder. The method of frequency synthesis is sue-

eessful in better preserving the high-frequency data within a macroblock. and the tiltering that is

used to perform optimal low-resolution MC is capable of minimizing the drit't. It has been shown

that a realizable implementation can be achieved. such that the tillers for optimal low-resolution

MC are equivalent to an up-conversion. full-resolution MC. and for down-convcrsion. where the

tip-cenversion filters are determined by a Moore—Penrose inverse of the dtt\\'ll‘tjtill\'6|‘510|‘t. The

amount of logic required by these processes is kept minimal since they are realized in a hierarchical

structure. Since the down-conversion and up-conversion processes are linear. the architecture design

is flexible in that equal quality can be achieved with varying levels of system complexity. The lirsr

architecture that we examined came from the initial assumptions that were made on the low“

resolution decoder. i.e., a down—conversion is performed before the adder. it was noted that a full

IDCT computation was required and that a down—conversion must be performed in two places As

a result. a second architecture was presented to reduce the “DCT computalion. and a third was

presented to minimize the amount of interface with the existing high-level decoder. The major point

here is that the advantages of ARCH? and ARCHB cannot be realized by a single architecture. The

reason is that performing a down-conversion in the incoming branch reduces the tDC'l' computation;

therefore. a down-conversion must be performed after the l'ull~resolution MC as well. in any case.

equal quality is offered by each architecture and the quality is of connnerctal grade.

17.4.6 DCT-TO-SPATIAL TRANSFORMATION

Our objective in this section is to express the following DCT domain relationship:

“-1 N-I

AW)22mWe(Mil “7-13)
p=flo=0

as

M-I N—l

we22M Mla==flrtl

where it and ti are the DCT and spatial output. A and a are the DCT and spatial input. and X and
x are the DCT and spatial filters. respectively. By definition, the M x N DCT transform is defined by

M-I N-I

AW) 2204“(UlthwiiJ) (17.20)
in!) 1-D

and its inverse. the M x N IDCI‘ by

M—l N—l

‘ =2 zAlkail‘l’i‘Ulwm). (17.21)
51:0 i=tl
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where the basis function is given by

 2 2i+i

of = J; ot(k)cos[ 2N kn] (17.22)
and

l for k —0‘
0t(k] = 72’ ‘ ' (17.23)

t for k :0.

By substituting Equation 1?.22 into the expression for the "DOT yields

a(it) = E ivl’Ulwt” (I) [E N: XleP‘Q)A(P-‘ll):|LEI"! l=fl ptfl q=tl

(1?.24)M—l N-I III-l N-l

=2 MM} 2 Extilpnlvi’tilvfli) -
.0: 9:0 k=fl i=0

Substituting the DCT definition into the above gives the following,

M—l N—J M—l N—l M—I N-l

(102;): Z Z Z Eats-.rlwfl‘tslvftrl 2 2[xutp.thmw:o)]. (ms)
pzfl uztt s=u t=0 i=0 l'=tJ

Finally. Equation 17.17 can be formed with

Inter) = M: Euro) Willi ilktarztvfi‘tovfitrll (17.26)i=0 i=0 lt=D i=0

and the transfonnation is fully defined.

17.4.7 FULL-RESOLUTION Morton COMPENSATION 1N MATRIX FORM

In 2-D, a motion compensated macroblock may have contributions from at most four macroblocks
per motion vector. As noted in Figure 1?. l l, maeroblocks a, b. c. and d include four 3 x 8 blocks
each. These subblocks are raster-scanned so that each macmbtock can be represented as a vector.

According to the motion vector. (nix. dy), a local reference. (33.35), is computed to indicate where
the origin of the motion compensated block is located; the local reference is determined by

3" = dy —16-[Integer(dy/lfi)-— 'y(dy)]
(17.2?)

y1 = dx» 16-[htteger(dx/16)-Y(d1)lt
where

I. it' d<0 and dmod16=0
= ( l 128)Yldl {0, otherwise.
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FIGURE 17.1] Relationship between the input and output blocks 01' the motion compensation process in
the FRD. (From Vetro. A. et 21]., IEEE Trans. Consumer Hit-ct. 44(3). 1998. With permission.)

The reference point for this value is the origin of the upper-lel‘t-inost input macroblock. With

this, the motion-compensated prediction may he cxprcsscd as

_l E

It,

i: —' = 5‘" 3‘" 5‘” s"’]- Q - i‘=l 2 3.4. (17.29)
— I'll-1 I b [Ii E ' ‘ ‘ '

{:1 c

As an example, Figure 17.1] considers 0’1. ya} 6 [03]. which implies that r : 1. In this case the
motion compensation filters are given by

Ml M1 M] Ma 0 O 0 0

S‘" = 0 MI 0 M3 5“): M2 0 M1 0
" 0 0 MI M2 ' b 0 0 0 0 '

O 0 0 MI 0 0 M2 0
(17.30}

0 0 0 0 0 0 0 0

Si”: 0 0 0 0 S") = 0 0 0 0 _
' M3 M"I 0 0 ' ‘ 0 0 O 0

0 M1 0 0 Mi 0 0 0
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In the above equations. the MI. M2, M1. and MI matrices Operate on the relevant 3 x 8 blocks of

a, b. c. and d. Their elements will vary according to the amount of overlap as indicated by (y.. yz)
and the type of prediction. The type of prediction may be frame based or field based and is predicted
with half-pixel accuracy. As a result. the matrices 3;". 3i”. 3:”. and SJ”. are extremely sparse and
may only contain nonzero values of l. 1/2, and 1A. For different values 01'0"}er the configuration
of the above matrices will change: it; 6 [0,7] and y2 E [8,l5] implies r: 2; y, e [3,!5] and y: E
[03] implies r= 3: _i’.. y; E [8.I5] implies r = 4. The resulting matrices can easily be formed using
the concepts illustrated in Figure [7-1 |_

17.5 ERROR CONCEALMENT

17.5.1 BACKGROUND

Practical communications channels available ['or delivery of compressed digital video are charac-

terized by occasional bit error andfor packet loss. although the actual impairment mechanism varies

widely with the specific medium under consideration. The class of decoder error concealment

schemes described here is based on identification and predictive replacement of picture regions

affected by bit error or data loss. It is noted that this approach is based on conversion (via appropriate

errorfloss detection mechanisms) of the transmission medium into an erasure channel in which all

error or loss events can be identified in the received bit-stream. In a block-structured compression

algorithm such as MPEG. all channel impairments are manifested as erasures of video units (such

as MPEG macroblocks or slices). Concealment at the decoder is then based on exploiting temporal

and spatial picture redundancy to obtain an estimate of erased picture areas. The efficiency oferror

concealment depends on redundancies in pictures and on redundancies in the compressed bitstream

that are not removed by source coding. Block compression algorithms do not remove a considerable
amount of inter-block redundancies. such as structure. texture. and motion information about objects

in the scene.

To be more specific. error resilience for compressed video can be achieved through the addition
ofsuitablc transport and error concealment methods. as outlined in the system block diagram shown
in Figure ”.12.

The key elements of such a robust video delivery system are outlined below:

0 The video signal is encoded using an appropriate video compression syntax such as
MPEG. Note that we have restricted consideration primarily to the practical case tn which

the video compression process itself is not modified, and robustness is achieved through
additive tranSport and decoder concealment mechanisms (except for I-frame motion
described in Section 114.3). This approach simplifies encoder chIgn. srnce ll separates

 
priority layer Noise. . .

intcference Wm‘y

FIGURE 17.12 System block diagram of visual communication system.
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media-independent video compression functions from media-dependent transport oper-

ations. On the receiver side. although a similar separation is substantially maintained.

the video decoder must be modified to support an “error token" interface and error

concealment functionality.

. Compressed video data is organized into a systematic data structure witlt appropriate

headers for identification of the temporal and spatial pixel-domain location of encoded

data (JUSeph et al.. 1992b}. When an ctroneousflon packet is detected. these video units

serve as resynchronization points for resumption ol‘ normal decoding. while the headers

provide a means for precisely locating regions of the picture that were not correctly

received. Note that two-tier systems may require additional transport-level support [Dr

high- and tow-priority tHPfLP) resynchronization (Siracusa et al. 19931.

- The video bitstream may optionally be segregated into two layers for prioritized transport

(Ghanbari. 1989; Kisltno etal.. 1989; Karlsson and Vetterli. I989; Zdepski ct al.. 1989;

Joseph et al.. 19923,b; Sit'acusa. 1993) when a high degree ol'et‘ror resilience. is required.

Note that separation into high and low priorities may be achieved either by using a

hierarchical (layered) compression algorithm (Ghanbari. 1989; Siracusa. 1993) or by

direct codeword parsing (Zdepski etal.. 1989; 1990}. Note that both these layering

mechanisms have been accepted for standardization by MPEG-2 (ISOXIEC. 1995).

- Once the temporal and spatial location(s) correSponding to lost or inctirrectly received

packets is determined by the decoder. it will execute an error-concealment procedure for

replacement of lost picture areas with subjectively acceptable material estimated from

available picture regions (Harthanck et a1.. 1986; Jeng and Lee. 1991'. Wang and Zhu.

l99l). Generally, this error concealment procedure will be applied to all erased blocks

in one—tier (single-priority) transmission systems. while for two~tier {HPKLP'J channels

the concealment process may optiOnally ignore loss of LP data.

0 In the following subsections. the technical detail of some commonly used error conceal-

ment algorithms is provided. Specifically. we focus on the recovery of codeword errors

and errors that affect the pixels within a macroblock.

17.5.2 ERROR CONCEALMENT ALGORITHMS

In general, design of specific error—concealment strategies depends on the system design. For
example, if two-layered transmission is used, the receiver should be designed to conceal high-

priority error and low-priority error with different strategies. Moreover. if some redundancy (“steer—
ing information") could be added to the encoder the concealment could be more efficient. However.

we first assume that the encoder is defined for maximum compression efficiency. and that conceal-
ment is only performed in the receiver. It should be noted that some exemptions exist for this
assumption. These exemptions include the use of t-frame motion vectors. scalability concealment.

and limitation of slice length (to perform acceptable concealment in the pixel dotnain the limitation
of slice length exists. i.e.. the length otsliees cannot be longer than one row of picture)- Figure 17-13
shows a block diagram of a generic onet'two-tier video decoder with error concealment.

Note that the figure shows two stages of decoder concealment in the codeword domain and
pixel domain, respectively. Codeword domain concealment. in which locally generated dccodablc
codewords (e.g., B—picture motion vectors. end—of-block code. etc.) are inserted into the bitstream,

is convenient for implementation of simple temporal replacement functions (which in principle can
also be performed in the pixel domain). The second stage of pixel domain processing is for temporal
and spatial Operations not conveniently done in the codeword domain. Advanced spatial proceSSinS
will generally have to be performed in the pixel domain. although limited codeword domain options
can also be identified.
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FIGURE 17.13 MPEG video decoder with error concealment.

17.5.2.1 Code-word Domain Error Concealment

The codeword domain concealment receives video data and error tokens from the transport pro-

L‘essorNLD. Under normal conditions, no action is taken and the data are passed along to the video

decoder. When an error token is received, damaged data are repaired to the extent possible by

insertion of locally generated codewords and resynchronization codes. An error region ID is also

created to indicate the image region to be concealed by subsequent pixel domain processing. Two

mechanisms have been used in codeword domain error concealment: neglect the effect of lost data

by declaring an end ol' block (EOE), or replace the lost data with a pseudo-code to handle the

macrobtock—typcs or other VLC codes. If high—level data such as do or macroblock header is lost,

the codeword domain concealment with pseudo-codes can only provide signal resynchronization

(decodability) and replaces the image scene with a fixed gray level in the error region. Obviously.

further improvement is needed in the video decoder. This task is implemented with the error

concealment in the video decoder. It is desirable to replace erased I- or P-picture regions with a

reasonably accurate estimate to minimize the impact of frame-to-frame propagation.

17.5.2.2 Spatiotemporal Error Concealment

1“ general. two basic approaches are used for spatial domain error concealment: temporal replace-
ment and spatial interpolation. In temporal replacement, as shown in Figure 17.14. the spatially
corresponding ones in the previously decoded data with motion compensation replace the damaged
blocks in the current frame if motion information is available. This method exploits temporal

redundancy in the reconstructed video signals and provides satisfactory results in areas with Small

previousdecoded current
frame frame

 Concealed data

FIGURE 17.14 Error concealment uses temporal replenishment with motion compensation.
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motion and for which motion vectors are provided. If motion mtormation is lost. this method Will

fail in the moving areas. In the method of spatial interpolation as shown in Figure 17.|5. the lost

blocks are interpolated by the data from the adjacent I‘lLll'leran blocks it uh maximally smooth

reconstruction criteria or Other techniques.

In this method‘ the correlation between adjacent blocks in [he received and reconstructed video

signals is EXPIOilCd- However. severe blurring Will result from this method N data in adjacent blocks

are also lost. In an MPEG decoder. temporal replacement outlined ahote is buscd on previously

decoded anchor (I. P) piCtures that are available in the frame mentor), ll' motion vectors corre-

sponding to pixels in the erasure region can also be estimated. this temporal replacement operation

can be improved via motion compensation. Also. in the MPEG decoder. groups of video pixels

(blocks‘ macroblocks‘ or slices) are separately decoded. so that pixel values and motion information

corresponding to adjacent picture regions are generally available for spatial concealment. Hotk'tfl'et‘.

estimation from horizontally adjacent blocks may not always be usel‘ul since cell loss tends to

affect a number of adjacent blocks [due to the MPEG and ATM data structures): also differential

encoding between horizontally adjacent blocks tends to limit the utility of data obtained from such
neighbors. Therefore. most of the usable spatial information will be located in blocks above or

below the damaged region. That is‘ vertical processing/concealment is found to be most useful due
to the transmission order of the data.

For I~pictures, the damaged data can be reconstructed by either temporal replacement from the
previously decoded anchor frame or by spatial interpolation from good neighbors. These two
methods will be discussed later. For P- and B-piCIures. the main strategy to conceal the lost data

is to replace the region with pixels from the correSponding (and possibly motion-compensated)
location in the previously decoded anchor. In [his replacement the motion vectors play 3 W30"

important role. In other words. if “good“ estimates of motion information can be obtained. its use

may be the least noticeable correction. Since DPCM coding for motion vectors only exploited the
correlations between the horizontally neighboring macroblocks. the redundancy between the vertical
neighborhood still exists after encoding. Therefore. the lost motion information can be estimated

from the vertical neighbors. In the following. three algorithms that have been developed for error
concealment in the video decoder are described.

Algorithm 1: Spatial interpolation of missing I—picture data and temporal replacement for P-
and B-pictures with motion compensation (Sun et al.. 19923):

For l-pictores. dc values of damaged block are replaced by the interpolation from the closest
tap and bonom good neighbors: the ac coefficients of those blocks are synthesized from
the dc values of the surrounding neighboring blocks.

For P-pictures. the previously decoded anchor frames with motion compensation replace the
1051 blocks. The lost motion vectors are estimated by interpolation of the ones from the
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top and bottom macroblocks. lt' motion vectors in both top and bottom maeroblocks are
not available. zero motion vectors are used. The same strategy is used for B-pietures; the
only difference is that the closest anchor frame is used. In other words. the damaged part
of the B-picture could be replaced by either the forward or backward anchor frame,
depending on its temporal position.

Algorithm 2: Temporal replacement of missing l-pieture data and temporal replacement for
P— and B+picturcs with top motion compensation:

For I-pictures. the damaged blocks are replaced with the colocated ones in the previously
decoded anchor l‘rame.

For P+ and B-pictures. the closest previously decoded anchor frame replaces the damaged
part with motion compensation as in the Algorithm l. The only difference is that the

motion vectors are estimated only from the closest top maeroblock instead of interpolation
of top and bottom motion vectors. This makes the implementation of this scheme much
easier. If these motion vectors are not available. then zero motion vectors are used.

In the above two algorithms. the damaged blocks in an I-picture (anchor frame) are concealed

by two methods: temporal replacement and spatial interpolation. Temporal replacement is able to

provide high-resolution image data to substitute for lost data; however. in motion areas, a big
difference might exist between the current intracoded frame and the previously decoded frame. In
this case. temporal replacement will produce large shearing distortion unless some motion-based

processing can he applied at the decoder. However, this type ofproccssing is not generally available

since it is a computationally demanding task to compute motion trajectories locally at the decoder.

In centrast. the spatial interpolation approach synthesizes lost data front the adjacent blocks in the
same frame. Therefore. the intrnl'rame redundancy between blocks is exploited. while the potential

problem ot’severe blurring due to insufficient high~order ac coefficients for active areas. To alleviate

this problem. an adaptive concealment strategy cart be used as a compromise; this is described in
Algorithm 3.

Algorithm 3: Adaptive spatiotemporal replacement of missing I-pieturc data and temporal
replacement with motion compensation for P- and B-pictures:

For [-pictures. the damaged blocks are concealed with temporal replacement or spatial
interpolation according to the decision made by the top and bottom macroblocks. which
is shown in Figure 17. l o. The decision of which concealment method to usa will be based
on the more cheaply obtained measures of image activity from the neighboring tap and
bottom macroblocks. One candidate for the decisiou processor is to make the deemon
based on prediction error statistics measured in the neighborhood. The decismn regmn is

shown in Figure I716. where

{17.30

. . . - 5 ending mac«

and I Is the neighboring good macroblock data. I IS the data 0f the cart: i: the average
robloek in the Previously decoded frame at the eolocated position, and can appreciate
value of the neighboring good macroblock data in the current frame“ 9n: tail IfVAR)
that VAR is indicative ofthe local motion and VAROR ofthc local Spaulfl e to 5 in the
VAROR and VAR > T. where T is a preset threw” “I”? WhiCh 3:1:ng or team
experiments. the concealment method is spatial interpolation; IFVAR ‘
T. the concealment method is temporal replacement.
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FIGURE 17.16 Adaptive error concealment strategy. (From Sun. H. and Kwok. W . ifiElE limo. lrimgc
Prue. 401). 4704131 1995. With permission.)

It should be noted that the concealment for luminance is performed on a block basis instead

of macroblock basis. while the chrominance is still on the macroblock basis. The detailed
decisions for the luminance blocks are described as follows:

- If both tor) and bottom are temporally replaced. then four blocks (0. I. 2. and 3) are

replaced by the colocated ones (colocated means no motion con‘ipcnstitioni in the PR3-

viously decoded l'rame.

- Iftop is temporally replaced and bottom is spatially interpolated. then blocks 0 and l

are replaCed by the coloeated ones in the previously decoded anchor [tame and blocks

2 and 3 are interpolated from the block boundaries.

0 It'top is spatially interpolated and bottom is temporally replaced. then blocks 0 and i

are interpolated from the boundaries. and blocks 2 and 3 are replaced by the colocated

ones in the previously decoded anchor frame.

- Ifboth top and bottom are not temporally replaced. all four blocks are spatially inter-

polated.

In spatial interpolation. a maximal smoothing technique with boundary conditions under

certain smoothness measures is used. The spatial interpolation process is carried out with

two steps: the mean value of the damaged block is first bilinearly interpolated with ones

from the neighboring blocks; then spatial interpolation for each pixel is performed with
a Laplacian Operator. Minimizing the Laplacian on the boundary pixels using the iterative

process (Wang and Zhu. [991) enforces the process of maximum smoothness.

For P» and B-pietures a similar coacealment method is used as in Algorithm 2 except motion

vectors from top and bottom neighboring maerohlocks are used For top two blocks and
bottom two blocks, respectively.

A schematic block diagram for implementation of adaptive error concealment l"or intracoded
frames is given in Figure 17.1"}. Corrupted macroblocks are first indicated by error tokens obtained
via the transport interface- Then. a decision regarding which coacealmcnt method (temporal replace-
ment or spatial interpolation) should be used is based on easily obtained measures of image activity
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Video ' To Post Decoder , . .
Interpolation Filtering

FIGURE 17.}? ‘l‘wovstage error concealment strategy. [From Sun. H. and Kwok. W.. ill-SEE Ti'orts. bridge
Prue. 4(4). fill-4W. 19951. With permission.)

from the neighboring top and bottom macrohlocks. The corrupted macroblocks are first classified
into two classes according to the local activities. 11’ local motion is smaller than spatial detail. the

Corrupted macrohlocks .tre dclined as the lirst class and will he conCealed by temporal replacement:
when local motion is greater titan local spatial detail. the corrupted macroblocks are defined as the

second class and will be concealed by spatial interpolation. The overall concealment procedure
consrsts of two stages. First. temporal replacement is applied to all corrupted macroblocks of the

first class throughout the whole frame. After the temporal replacement stage. the remaining uncon-
cealed damaged maernblocks of the second class are more likely to be surrounded by valid image

macroblocks. A stage of spatial interpolation is then performed on them. This will new result in

less blurTing. or the blurring Will he limited to smaller areas. Therefore. a good compromise between

shearing (discontinuity or shift of edge or line) and blurring can be obtained.

17.5.3 ALGORITHM ENHANCEMENTS

As discussed above, [-picture errors. which are imperfectly concealed. will tend to propagate

through all frames in the group of pictures (GOP).Thercforc. it is desirable to develop enhancements
for the basic spatiotemporal error concealment technique to improve further the accuracy with

which missing l—picturc pixels are replaced. Three new algorithms have been developed for this

Purpose. The first is an extension of the spatial restoration technique outlined earlier. and is based

on processing of edge information in a large local neighborhood to obtain better restoration of the
missing data. The second and third are variations which involve encoder modifications aimed at

Improved error concealment performance. Specifically. information such as I-picture pseudo-motion
vectors. or {OW-resolution data in a hierarchical compression system are added in the encoder. These

redundancies can significantly benefit error concealment in the decoders that must operate under
higher cell lossr‘error conditions, while having a relatively modest impact on nominal image quality.

17.5.3.1 Directional Interpolation

I"‘vaements in spatial interpolation algorithms (for use with MPEG I~pictures) have been pro-
POSBd (Kwok and Sun, 1993; Sun and Kwok, 1995). In these studies. additional smoothness criteria

andlor directional filtering are used for estimating the picture area to be replaced. The new algo~
rithms utilize spatially correlated edge information from a large local neighborhood of surrounding
Pixels and perform directional or multidircctional interpolation to restore the missing block. The
b|0ck diagram illustrating the general principle of the restoration process is shown‘in Figure 17.18.

Three parts are included in the restoration processing: edge claSSification. spatial Interpolation.

and pattern mixing. The function of the classifier is to select the top one, two, or three directions
that strongly characterize edge orientations in the surrounding neighborhood. Spatial interpolation
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i a MissingMBwith':
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FIGURE 17.18 The multidirectional edge restoration pincess. tFrom Sun, H and him-k. \\-'.. {EEK Tram.
Image Prue" 4(4). 470—177. 1995. Mil] permissioni

is performed for each of the directions determined by the class-trier. For a given direction- a series

of 1-D interpolations are carried out along that direction. All of the missing pixels are interpolated

from a weighted average ofgood neighborhood pixels. The weights depend inversely on the distance

from the missing pixel to the good neighborhood pixels. The purpose of pattern mixing is to extract

strong characteristic features of two or more images and merge them into one image. which is then

used to replace the corrupted one. Results show that these algorithms are capable of providing

subjectively better edge restoration in missing areas. and may thus be useful for I-picture prOCESSlflg

in high—error-rate scenarios. However. the computational practicality of these edge-filtering tech-

niques needs further investigation for given application scenarios.

17.5.3.2 l-Picture Motion Vectors

Motion information is very useful in concealing losses in P- and B-frames, but is no: available for

I—pictures. This limits the concealment algorithm to spatial or direct temporal replacement options
described above, which may not always be successful in moving areas of the picture. If motion

vectors are made available for all MPEG frames (including intracoded ones} as an aid for error

concealment (Sun et al.. 1992a), good error concealment performance can be obtained without the
complexity of adaptive spatial processing. Therefore. a syntax extension has been adopted by the

MPEG-2 where motion vectors can be transmitted in an I-picturc as the redundancy for error—

coneealment purposes (Sun et al., 1992b). The macroblock syntax is unchanged. however. motion
vectors are interpreted in the following way: the decoded forward motion vectors belong to the
macroblock spatially below the current macroblock. and describe how that macroblock can bfl
replaced from the previous anchor frame in the event that the macroblock cannot be recovered.

Simulation results have shown that subjective picture quality with [-picture motion vectors is
noticeably superior to conventional temporal replacement. and that the overhead for transmitting
the additional motion vectors is less than 0.73% of the total bit rate at a bit rate of about 6 to 7 MbpS-
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FIGURE 17.19 Block diagram of spatial scalability with error concealment.

17.5.3.3 Spatial Scalable Error Concealment

This approach for error concealment of MPEG video is based on the scalability (or hierarchy)
feature of MPEG-2 tlSOtlEC, l995). Hierarchical transmission provides more possibilities for error
concealment. when a corresponding two-tier transmission media is available. A block diagram
illustrating the general principle of coding system with spatial scalability and error concealment is
shown in Figure 1?.l9.

It should be noted that the concept of scalable error concealment is different from the two-tier

concept with data partitioning. Scalable concealment uses the spatial scalability feature in MPEG-2,

while the two~licr case uses the data partitioning feature ofMPEG-Z, in which the data corresponds

to the same Spatial resolution layer but is partitioned to two parts with a breakpoint. In spatial

scalability, the encoder produces two separate bitstreams: one for the low-resolution base layer and

another for the high-resolution enhancement. The high‘resolution layer is encoded with an adaptive

choice of temporal prediction from previous anchor frames and compatible spatial prediction
(obtained from the up-sampled low-resolution layer) corresponding to the current [temporal refer-
ence. in the decoder. redundancies that exist in the scaling data greatly benefit the error concealment

processing. In a simple esperiment with spatially scalable MPEG-2. we consider a scenario in
which losses in the high-resolution MPEG—2 video are concealed with information from the low-

rcsolution layer. Actually. there are two kinds of information in the lower layer that can be used

to conceal the data loss in the high—resolution layer: up-sampled picture data and scaled motion

information. Therefore, three error concealment approaches are possible:

1. Up-sautpled substitution: Lost data are replaced by colocated up—sampled data in the

low—resolution decoded frame. The up-sampled picture is obtained from the low-resolu-

tion picture with proper up~satnpling filter.
2. Mixed substitution: Lost macroblocks in I-pieture are replaced by colocated up~sampled

maeroblocks in the low—resolution decoded frame. while lost macroblocks In P« and

B—picturc are temporally rgpluced by the previously decoded anchor frame with the

motion vectors for the low-resolution layer. _
3. Motion vector substitution: The previously decoded anchor trame with the motion vec-

tors replaces lost macroblocks for the low-resolution layer appropriately sealed.

Since motion vectors are not available for I~pictures, ObViOUSIYt method 3 does “0‘ work for

I'llictut'es {unless I—piclure motion vectors. concealment motion vectors. of l'l/ll“'l-:«G-2 are generated
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TABLE 17.4

Subjective Quality Comparison

Picture Material llems Alg 1 Alg 2 Alg 3 Comments

Still Blurring High None Low Temporal replacctncnl works very well in no‘
Shearing None None None motion nrctls

Artifact blocking Medium None Low

Slow motion Blurring High None Low Temporal replacement works well In slow-
Shearing None Low Low motion areas

Anifact blocking Medium None Low

Fast motion Blurring High None Medium Tetitporul replacement causes more shearing.

Shearing None High Low spatial interpolation results in blurringmdopltrc
Artifact blocking High Low Medium sttxtlcgy limits blurring in smaller areas

Overall The adaplivt: slrntcgy orstcering the temporal rcplztcctncrll and spatial] llthI polnlion according to the

measures of local activity and local motion gives a good CIJIliPI'tfHHlHC hcmccn sl‘tL‘Jlfll‘tg and blurringI 

in encoder). Simulation results have shown that. on average. the lip-mlliiplcti substitution outper-

forms the other two, and mixed substitution also provides acceptable results in the case of video
with smooth motion.

17.5.4 SUMMARY or ERROR CONCEALMENT

In this section. a general class ol'crror—concealmcnt aigorithms for MPEG video has been discussed.

The error-concealment approaches that have been described are practical for current MPEG decoder

implementations. and have been demonstrated to provide significant robustness. Specifically. it has

been shmvn that the adaptive spatiotcmporal algorithm can provide reasonable picture quality at

cell loss ratios (CIR) as high as Mr" when used in conjunction. These results confirm that

compressed video is far less fragile than originaliy believed when appropriate transport and con-

cealment techniques are employed. The results can be summarized as in 'litbie [7.4.

Several concealment algorithm extensions based on directional filtering. l-picture pseudo-

motion vectors, and MPEG-2 scalability were aiso considered and shown to provide performance

gains that may be useful in certain application scenarios. In view of the practical benefits of robust

video delivery, it is recommended that such error resilience functions (along with associated

transport structures} be important for implementation in emerging TV, HDTV. teleconferencing.
and multimedia systems if the cell loss rates on these transmission systems are significant. Partic-

ularly for terrestrial broadcasting and ATM network scenarios, we believe that robust video deliver)“

baSed on decoder error concealment is an essential element of a viable system design.

17.6 SUMMARY

In this chapter. several application issues ofMPEG-Z are discussed. The most successful application
of MPEG-2 is the US. HDTV standard. The other application issues include transcoding with
bitstream scaling. down-conversion decoding, and error concealment. Transcoding is a very inter-
esting topic that converts the bitstreams between different standards. The error concealment is very
useful in the noisy communication channels such as terrestrial television broadcasting. The down—

conversion decoder responds to the market requirement during the DTV transition-period and long'
term need for displaying DTV signals on computer monitors.
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17.7 EXERCISES

17-1. In DTV applications, describe the advantages and disadvantages of interlaced Format
and progressive format. Explain why the computer industry favors progressive Format
and TV manufacturers like interlaced format.

17-2. Do all DTV formats have square pixel format? Why is square pixel format important
for digital television?

17—3. The bitstrernn scaling is one kind oltranscoding; according to your knowledge. describe
several other kinds of transeoding (such as MPEG-1 to JPEG} and propose a feasible

solution to achieve the lranscoding requirements.

17-4. What type of MPEG-2 I’rames will cause a higher degree of error prOpagation if errors

occur? What technique oi’ error concealment is allowed by the MPEG-2 syntax? Using

this technique. perform simulations with several images to determine the penalty in the
case ot‘ no errors.

17-5. To reduce the drift in a downuconversion decoder. what coding parameters can be chosen

at the encoder? Will these actions affect the coding performance?

17-6. What are the advantages and disadvantages of a down-conversion decoder in the fre-

quency domain and spatial domain?
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’l 8 MPEG—4 Video Standard:
Content—Based Video Coding

This chapter provides an overview of the ISO MPEG—4 standard. The MPEG-4 work includes

natural video. synthetic video. audio and systems. Both natural and synthetic video have been
combined into a single part ot‘ the standard, which is referred to as MPEG-4 visual (ISOKIEC.

l998a). it should be emphasized that neither MPEG-1 nor MPEG—2 considers synthetic video (or
computer graphics] and the MPEG-4 is also tlte first standard to consider the problem ot'content-
based coding. Here. we Focus on the video parts oi" the MPEG-4 standard.

18.1 INTRODUCTION

As we discussed in the previous chapters. MPEG has completed two standards: MPEG-l that was

mainly targeted for CD-ROM applications up to l.5 Mbps and MPEG—2 For digital TV and HDTV

applications all bit rates between 2 and 30 Mbps. In July l993. MPEG started its new project,

MPEG-4, which was targeted at providing, technology for multimedia applications. The first working

draft (WD) was completed in November [996, and the committee dral’t (CD) of version 1 was

completed in November 1997'. The draft international standard (DIS) of MPEG-4 was completed

in November ol‘ l998, and the international standard (IS) of MPEG-4 version 1 was completed in

February of l999. The goal of the MPEG-4 standard is to provide the core technology that allows

efficient content-based storage. transmission. and manipulation ol'video, graphics, audio. and other
data within a multimedia environment. As we mentioned before, there exist several video-coding

standards such as MPEG— U2. H.261, and H.263. Why do we need a new standard for multimedia

applications? In other words, are there any new attractive features of MPEG-4 that the current

standards do not have or cannot provide? The answer is yes. The MPEG4 ltas many interesting

features that Will be described later in this chapter. Some ofthese features are foeusedon improving
coding el‘lieiency; some are used to provide robustness of transmission and interactivity with-the
end user. However, among these I'eatures the most important one is the content-based coding.
MPEG-4 is the first standard that supports content-based coding ol'audio visual obiccts. For content
providers or authors, the MPEG-4 standard can provide greater reusability, flexibility, and man-

ageability of the content that is produced. For network providers, MPEG-d will offer transparent
information, which can be interpreted and translated into the appropriate native signaling messages
of each network. This can be accomplished with the help of relevant standards bodies that have
the jurisdiction For end users, MPEG-4 can provide much functionality to make the user terminal

have more capabilities of interaction with the content. To reach these goals, MPEG-4 has the

following important features: , . . . . . l
The contents such as audio, video, or data are represented in the form of primlllve fludlo VlSUfl

objects (AVOs). These AVOs can be natural scenes or sounds. which are recorded by video camera
0" Sli’ntlietically generated by computers.

The AVOs can be composed together to create compound AVOS or scenes.
The data associated with AVOs can be multiplexed and synchronized so that they can be

transported through network channels with certain quality requTememS-

403
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18.2 MPEG-4 REQUIREMENTS AND FUNCTIONALITIES

Since the MPEG-4 standard is mainly targeted at multimedia applications. there are many require-

ments to ensure that several important features and functionalities are offered. These features include

the allowance of interactivity. high compression, universal accessibility. and portability of audio

and video content. From the MPEG-4 video requirement document. the main l‘unctionaiities can

be summarized by the following three aspects: content-based interactivity, content-based efficient

compression. and universal access.

18.2.1 CONTENT-BASED INTERACTIVITY

In addition to provisions for efficient coding of conventional video sequences. MPEG-4 video has

the following features of content-based interactivity.

18.2.1.1 Content-Based Manipulation and Bits’tream Editing

The MPEG-4 supports the content-based manipulation and hitstream coding without the need for

transeoding. In MPEG-1 and MPEG—2. there is no syntax and no semantics for supporting true

manipulation and editing in the compressed domain. MPEG-4 provides the syntax and techniques

to support contenl~based manipulation and bitstrearn editing. The level of access. editing. and

manipulation can be done at the object level in connection with the features of content~based

scalability.

18.2.1.2 Synthetic and Natural Hybrid Coding (SNHC)

The MPEG-4 supports combining synthetic scenes or objects with natural scenes or objects. This

is for “compositing” synthetic data with ordinary video. allowing for interactivity. The related

techniques in MPEG-4 for supporting this feature include sprite coding. efficient coding of 3'13
and 3—D surfaces, and wavelet coding for still textures.

18.2.1.3 Improved Temporal Random Access

The MPEG-4 provides and efficient method to access randomly. within a limited time. and with
the fine resolution parts. e.g-. video frames or arbitrarily shaped image Objcfls from an audiovisual
sequence. This includes conventional random access at very low bit rate. This feature is also

important for content-based bitstrearn manipulation and editing.

18.2.2 CONTENT—BASED EFFlCtENT COMPRESSION

One initial goal of MPEG-4 is to provide a highly efficient coding tool with high compression at

very low bit rates. But this goal has new extended to a large range of bit rates from 10 Kbps to
5 Mbps, which covers QSIF lo CCIR601 video formats. Two important items are included in this
requirement.

18.2.2.1 Improved Coding Efficiency

The MPEG-4 video standard provides subjectively better visual quality at comparable bit rates
compared with the existing or emerging standards. including MPEG-1)? and H.263. MPEG-4 video
contains many new tools. which optimize the code in different bit rate ranges. Some experimental
results have shown that it outperforms MPEG-2 and H.263 at the low bit rates. Also. the content-

based coding reaches the similar performance of the frame-based coding.
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18.2.2.2 Coding of Multiple Concurrent Data Streams

The MPEG-4 provides the capability of coding multiple views of a scene efficiently. For stereo-
scopic video applications. MPEG-4 allows the ability to exploit redundancy in multiple viewing
points of the same scene. permitting joint coding solutions that allow compatibility with normal
video as well as the ones without compatibility constraints.

18.2-3 UNIVERSAL Access

The another important feature of the MPEG-4 video is the feature of universal access.

18.2.3.1 Robustness in Error-Prone Environments

The MPEG-4 video provides strong error robustness capabilities to allow access to applications
over a variety of wireless and wired networks and storage mcdizt. Sufficient error robustness is

provided for low—hit-rate applications under severe error conditions (e.g.. long error bursts).

18.2.3.2 Content-Based Scalability

The MPEG4 video provides the ability to achieve scalability with fine granularity in content.

quality (c.g.. spatial and temporal resolution). and complexity. These scalabilities are especially

intended to result to content-based sealing of visual information.

18.2.4 SUMMARY or MPEG-4 FEATURES

From above description of MPEG-4 features. it is obvious that the most important application of
MPEG-4 will be In a multimedia environment. The media that can use the coding tools ofMPEG-4

include computer networks. wireless communication networks. and the internet. Although it can

also be used for satellite. terrestrial broadcasting, and cable TV. these are still the territories of

MPEG-2 video since MPEG—2 already has made such a large impact in the market. A large number

of silicon solutions exist and its technology is more mature compared with the current MPEG-4
standard. From the viewpoint of coding theory. we can say there is no significant breakthrough in
MPEG-4 video compared with MPEG-2 video. Therefore. we cannot expect to have a Significant

improvement of coding efficiency when using MPEG—4 video over MPEG-2. Even tliougli‘MPEG-d
Optimizes its performance in a certain range of bit rates. its major strength Is that it provides more
functionality than MPEG-2. Recently. MPEG-4 added the necessary tools to support interlaced
material. With this addition. MPEG-4 video does support all functionalitics already provided by
MPEG-l and MPEG-2. including the provision to compress efficiently standard rectangular-sized

Video at different levels of input formats. frame rates. and bit rates. ‘ _
Overall. the incorporation of an object« or content—based coding structure is the feature that

alltJWs MPEG-4 to provide more functionality. It enables MPEG-4 to provide the most elementary
mechanism for interactivity and manipulation with objects of images or video lathe compressed
domain without the need for further segmentation or transcoding at the receiver. Since the receiver
can receive separate bitstreams for different objects contained in the video. ‘To achieve content~
based coding, the MPEG—4 uses the concept ofa video object plane (VOP). It is assumed that each
frame of an input video is first segmented into a set of arbitrarily shaped regions or YOPS. Each
Such region could cover a particular image or video object in the scene. Therelore. the input to the
MPEG-a encoder can be a VCR and the shape and the leeation of the VOP pan vary from frame

to frame. A sequence of VOPs is referred to as a video object_(VO). The dichrcnt ‘VOs mayrb:
encoded into separate bitstreams. MPEG-4 specifies demultipleiting and composition syntax whic
Provide the tools for the receiver to decode the separate V0 bitstreams and composite them into a
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FIGURE 18.] Video object definition and format: tat video object. th: \"OPs.

frame. In this way. the decoders have more flexibility to edit or rearrange the decoded video objects.

The detailed technical issues will be addressed in the following secttt'ms.

18.3 TECHNICAL DESCRIPTION OF MPEG-4 VIDEO

18.3.1 OVERVIEW OF MPEG-4 VIDEO

The major feature of MPEG-4 is to previde the technology for object-based compression. which

is capable of separately encoding and decoding video objects. To explain the idea of object-based
coding clearly. we should review the set of video object-related definitions. An image scene may

contain several objects. In the example of Figure 18.1‘ the scene contains the background and two

objects. The time instant of each video object is referred to as the VOP. The concept of a V0

provides a number of functionalities of MPEG-4, which are either impossible or very difficult in
MPEG-1 or MPEG-2 video coding. Each video object is described by the Information of texture.

shape, and motion vectors. The video sequence can be encoded in a way that will allow the Separate

decoding and reconstruction of the objects and allow the editing and manipulation of the original
Scene by simple operation on the compressed bitstream domain. The feature of object-based coding

is also able to support functionality such as warping of synthetic or natural text. textures, image.

and video overlays on reconstructed video objects.

Since MPEG-4 aims at providing coding tools for multimedia environments, these tools not

only allow one to compress natural video objects efficiently. but also to compress synthetic objects
which are a subset of the larger class of computer graphics. The tools of MPEG-4 video iticlUdCS
the following:

' Motion estimation and compensation

- Texture coding

0 Shape coding

" Sprite coding
0 Interlaced video coding

- Wavelet-based texture coding

* Generalized temporal and spatial as well as hybrid scalability
- Error resilience.

The technical details of these tools will be explained in the following sections.
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18.3.2 MOTION ESTIMATION mo COMPENSATION

For object—based coding. the coding task includes two parts: texture coding and shape coding. The
current MPEG4 video testure coding is still based on the combination of motion~compensated pre-
diction and transform coding. Motion-compensated predictive coding is a well-known approach for
video coding. Motion compensation is used to remove interframe redundancy. and transform coding
is used to remove intrali'ame redundancy. as in the MPEG-2 video—coding scheme. However, there are
lots of modilications and technical details in MPEG4 for coding a very wide range of bit rates.
Moreover. MPEG—4 coding has been optimized for low-bit-rate applications with a number of new

tools. In other words, MPEG-4 video coding uses the most common coding technologies, such as
motion compensation and lranstomi coding. but at the same time, it modifies some traditional methods

such as advanced motion compensation and also creates some new features, such as sprite coding.

The basic lcchniqttt: to perform motion-compensated predictive coding for coding a video

sequence is motion estimation {ME}. The basic ME method used in the MPEG-4 video coding is

still the block-matching technique. The basic principle of block matching for motion estimation is

to find the bestonatched block in the previous frame for every block in the current frame. The
displacetttcnt of the best-matched block relative to the current block is referred to as the motion

vector (MV). Positive values for both motion vector components indicate that the best-matched

block is on the bottom right of the current block. The motion-compensated prediction difference

block is formed by subtracting the pixel values of the best-matched block from the current block.

pixel by pixel. The difference block is then coded by a texture-coding method. In MPEG—4 video

ending. the basic technique of texture coding is a discrete cosine transformation (DCT). The coded
motion vector information and difference block information is contained in the compressed bit-

stream, which is transmitted to the decoder. The major issues in the motion estimation and corn—

pcnsation are the same as in the MPEG—1 and MPEG2 which include the matching criterion. the

size of search window (searching range]. the size of matching block, the accuracy of motion vectors

(one pixel or half-pixel). and interlintramode decision. We are not going to repeat these topics and
will focus on the new features in the MPEG-4 video coding. The feature of the advanced motion
prediction is a new tool of MPEG-4 video. This feature includes two aspects: adaptive selection

of 16 x l6 block or four 8 x 8 blocks to match the current 16 x 16 block and overlapped motion

compensation for luminance block.

18.3.2.1 Adaptive Selection of 16 x16 Block or Four 8 x 8 Blocks

The purpose of the adaptive. selection of the matching block size is to enhance coding efficiency
further. The coding performance may be improved at low bit rate since the bits ior coding prediction
difference could be greatly reduced at the limited extra cost for increasing motion vectors. _Ot
course, if the cost of coding motion vectors is too high. this method Will not work. The decmon
tn the encoder should he very careful. For explaining the procedure of how to male: decisions. we
define [C(t'J). t2}: 0. l.. Nw I} to be the pixels ol’ the current block and {Pod}. tut =_D_ l,
N“ 1 l to be the pixels in the search window in the previous frame. The sum of absolute dtlTerence
(SAD) is calculated as

N-i N-I

zztctoi—PtmI—T irt.r.y)=to.ot
Mater»): 1:“. if): use

2 2|C[t'.j)— P(i+.r,j + y)] otherwise.
t=n j=tl

where (x. y) is the pixel within the range of searching window, and T is a posmve constant. The
following steps then make the decision:
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Step 1: To find SADIJMVI. MK);

Step 2: To find SADstfiMl’llr. 1141/13.). SADAMVZJ, 1141/23}, .S‘ADH(M1’3_.. Adi/3)). and
SADE(MV4I, MV4’.);

Step 3: If

iSADAMla’wMKy] < SADH,(MV‘,M1{)— 128.
1:1

then choose 8 x 8 prediction; otherwise. choose 16 x 16 prediction.

If the 8 x 8 prediction is chosen, there are four motion vectors for the tour 8 x 8 luminance
blocks that will be transmitted. The motion vector for the two chrominencc blocks is then obtained

by taking an average of these four motion vectors and dividing the average value by a factor of

two. Since each motion vector for the 8 x 8 luminance block has halt-pixel accuracy. the motion

vector for the chrominance block may have a sixteenth pixel accuracy.

18.3.2.2 Overlapped Motion Compensation

This kind of motion compensation is always used for the case of four 8 x :5 blocks. The case of

one motion motor for a 16X 16 block can be considered 115 having four identical 8 >1: 8 motion

vectors, each for an 3 x 8 block. Erich pixel in an 8 x 8 of the best-matched luminance block is a

weighted sum of three prediction values specified in the following equation:

Flt-f):(Holt-fl'qliifi”iii-11‘"(i-J]+HzliJl'Slf'Jll/3‘ “3-2)

where division is with round-off. The weighting matrices are specified :15:

45555554 22222222

5555555511222211

5566665511111111

”0:55666655.H=l|tlllllland
55666655‘111111Il

555666661111|ltl

5555555511222211

45555554 22222222

21111112

22111122

22111122

22111122

H]: 22111122

22111122

22111122

21111112

It is acted that H1101!) + H,(1',j) + H2011) = 8 for all possible (13;). The value or (10.1”). re: 3. and
3(1'._D are the values of the pixels in the previous frame at the locations,
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q(i.j] = p(5 + MVfJ + M139).

r(Ill)

3(a)) = p(r+ MV}.;+ M113),

p(t+Mv;'.j+Mtg'), (18.3)

where (MVP, MK”) is the motion vector of the current 8 x 8 luminance block p(i.j). (MVJ', MW)
is the motion vector of the block either above (forj = 0.1.2.3) or below (forj = 45,63) the current
block and (Ml/.2. MVE) is the motion vector of the block either to the left (for 1': 0.l.2.3) or right
(for i‘ = 4.5.6.?) of the current block. The overlapped motion compensation can reduce the prediction
noise at a certain level.

18.3.3 TEXTURE CODING

Texture coding is used to code the intra-VOPs and the prediction residual data after motion

compensation. The algorithm for video texture coding is based on the conventional 8 x B DCT with

motion compensation. DCT is performed for each luminance and chrominance block, where the

motion compensation is performed only on the luminance blocks. This algorithm is similar to those

in H.263 and MPEG-1 as well as MPEG-2. However. MPEG-4 video texture coding has to deal

with the requirement of object-based coding. which is not included in the other video—coding

standards. In the following we will focus on the new features of the MPEG-4 video coding. These

new features include the intra—DC and AC prediction for I-VOP and P-VOP, the algorithm ofmotion

estimation and compensation for arbitrary shape VOP. and the strategy of arbitrary shape texture
coding. The delinitions of [NOR P-VOP. and B-VOP are similar to the 1»picture. P-picture, and

B-picture in Chapter 16 For MPEG-1 and MPEG—2.

18.3.3.1 Infra-DC and AC Prediction

In the intramode coding, the predictive coding is not only applied on the DC coefficients but also
the AC coefficients to increase the coding efficiency. The adaptive DC prediction involves the

selection of the quantized DC (QDC) value ofthe immediately left block or the immediately above
block. The selection criterion is based on comparison of the horizontal and vertical DC gradients

around the block to be coded. Figure [3.2 shows the three surrounding blocks “."A “,"B and “C“
to the current block “X" whose QDC is to be coded where block “"A. "B.“ and “C“ are the
immediately left. immediately left and above. and immediately above block to the “X." respectively.
The QDC value of block ".“X QDCX. is predicted by either the QDC value of block “A,“ QDCA,

Macrobloek 
FIGURE 18.2 Previous neighboring blocks used in DC prediction. (From ISOHEC 14496'2 Video Verifi-
cation Model V.12. N2552. Dec. 1993. With permission.)
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or the QDC value ofblock “C." QDCC, based on the comparison of horizontal and vertical gradients
as follows:

If lQDCA ~ QDCD| < lope“ — roll. (incl, = one};
. t | x 4)

Otherwtse oneP : QDCA.

The differential DC is then obtained by subtracting the DC prediction. QDC,.. from QDC.‘ If an_v

of block “A". “B." or “C“ are outside of the VOP boundary. or they do not belong to an tntracoded

block. their QDC value are assumed to take a value of 123 (if the pixel is quantized to it hits} for

computing the prediction. The DC prediction is performed similarly for the luminance and each
or the two chrominance blocks.

For AC coefficient prediction, either coefficients from the first row or the first column of a

previous coded block are used to predict the cosited {same position In the block) coefficients in

the current block. On a block basis. the same rule for selecting the best predictive direction [vertical

or horizontal direction) for DC coefficients is also used for the AC coefficient prediction. A

difference between DC prediction and AC prediction is the Issue in qtlittlllif..ltltttt scale. All DC

values are quantize-d to the 8 bits for all blocks. However, the AC coefficients may be quantized

by the different quantization scales for the different blocks. To compensate for differences in the

quantization of the blocks used for prediction. sealing of prediction L'UCIllCict‘llh' becomes necessary.

The prediction is scaled by the ratio of the current quantization step size and the quantization step

size of the block used for prediction. in the cases when AC coefficient prediction results in .1 larger

range of prediction errors as compared with the original Signal. it is desirable to disable the AC

prediction. The decision ofAC prediction switched on or off is performed on :t macrohlock basis

instead of a block basis to avoid excessive overhead. The decision for swilcllltlg on or off AC

prediction is based on a comparison of the sum of the absolute values of all AC coefficients to be

predicted in a macrohloflt and that of their predicted differences. It should he noted that the same

DC and AC prediction algorithm is used for the intrtthlocks It! the intercoded VOP. If any blocks

used for prediction are not intrablocks. the QDC‘ and QAC values used for prediction are set to

128 and 0 for DC and AC prediction, respectively.

18.3.3.2 Motion Estimation/Compensation of Arbitrarily Shaped VOP

In previous sections we discussed the general issues of motion estimatiou (ME) and ntOllOfl

compensation (MC). Here we are going to discuss the ME and MC for coding the texture in the

arbitrarin shaped VOP. In an arbitrarily shaped VOP. the shape information is given by either binary

shape information or alpha components of a gray-level shape information. If the shape information
is available to both encoder and decoder. three important n'todifications have to he considered for
the arbitrarily shaped VOP. The first is for the blocks. which are located in the border of VOP. For

these boundary blocks. the block-matching criterion should be modified. Second, a special padding
technique is required for the reference VOP. Finally. since the VOPs have arbitrary shapes rather
than rectangular shapes, and the shapes change from time to time. an agreement on a coordinate
system is necessary to ensure the consistency of motion compensation. At the MPEG-4 video, the
absolute frame coordinate system is used for referencing all of the VOPs. At each particular time
instance. a bounding rectangle that includes the shape of that VOP is defined. The position of ”1992‘”

left corner in the absolute coordinate in the VOP Spatial reference is transmitted to the chOdfl-
Thus, the motion vector for a particular block inside a VOP is referred to as the displacement 0f
the block in absolute coordinates.

Actually. the first and second modifications are related Since the padding of boundary blOCks
will affect the matching of motion estimation. The purpose of padding aims at more accurate block
matching. In the current algorithm, the repetitive padding is applied to the reference VOP lOI'
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performing motion estimation and compensation. The repetitive padding process is performed as
the following steps:

Define any pixel outside the object boundary as a zero pixel.
Sean each horizontal line of a black (one to x 16 for luminance and two 3 x 8 for chromi-

nanec). Each scan line is possibly composed of two kinds of line segments: zero segments
and nonzero segment. It is obvious that our task is to pad zero segments. There are two
kinds of zero scgtncnlst (11 between an end point or the scan line and the end point of a
nonzero segment. and (2) between the end points of two different nonzero segments. in

the lirst case. all zero pixels are replaced by the pixel value of the end pixel of nonzero
segment: ['or the second kind of zero segment. all zero pixels take the averaged value of
the two end pixels of the nonzero segments.

Scan each vertical line of the block and perform the identical procedure as described for the
horizontal line.

If a zero pixel is located at the intersection of horizontal and vertical scan lines, this zero

pixel takes the average of two possible values.

For the rest of zero pixels. tind the closest nonzero pixel on the same horizontal scan line
and the same vertical scan line {if there is a tie. the nonzero pixel on the left or the top

of the current pixel is selected). Replace the zero pixel by the average of these two nonzero
pixels.

For a fast-moving VOP, padding is further extended to the blocks outside the VOP but irnme-_
diately next to the hoandary blocks. These blocks are padded by replacing the pixel values at

adjacent boundary blocks. This extended padding is performed in both horizontal and vertical

directions. Since block matching is replaced by polygon matching for the boundary blocks of the

current VOP. the SAI) values are calculated by the modified formula:

 2 2 croi— phljli - alf.j)- c r (an = (0.0):
SrlDNLt'hy): if}; if): (13.5)

2 Zlcfi,j)— p(i‘+_r.j+y)l . 0t(i.j)~— C otherwise,
r=ri i=1!

where C = NHL? + l and N3 is the number of pixels inside the V0? and in this block and otti.j) is
lit: alpha component specifying the shape informatioa. and it is not equal to zero here.

18.3.3.3 Texture Coding of Arbitrarily Shaped VOP

During encoding the V0? is represented by a bounding rectangle that is formed _to containgtlge
video object completely but with minimum number ofimaeroblocks in it. as shown in FiquSi-éflEb,
The detailed procedure of V0? rectangle formation ts given in MPEG-4 video VM ( .

[99%). ' ’ ' ‘ ' it ~ blocks that
There are three types of macroblocks In the VOP with arbitrary shape. I e macro d f

are COmDICIely located inside of the VOP. the macroblecks that are located along the bean ary o
the VOP. and the macroblocks outside of the boundary. For the first kind of macrobloek, there IS

no need for any particular modified technique to code them and-Just ‘use of :ormalrfifig'l"1 thttIlct
entropy coding ofquantized DCT coefficients such as coding algorithm in 3.26. l5 su dc: r; .8 3
second kind of maeroblocks. which are located along the boundary. contains two km s o x

' ‘ belono to the arbitraryblocks: the blocks lie along the boundary of VOP and the blocks do not a, ‘
Shape but lie inside the rectangular bounding box ofthe VOP. The second kind of blocks are referred
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Bounding box

Shape Video object plane
Macroblock

inside vor 30‘1““?macroblock

Macroblock
outside V0?  

FIGURE [8.3 A VOP is represented by a bounding rectangular [ms

to as transparent blocks. For those 8 X 3 blocks that do lie along the boundary of VOP. there are

two different methods that have been proposed: low-pass extrapolation ILPE') padding and shape-

adaptive DCT (SA-DCT). All blacks in the macrohlocli outside ol' boundary are also referred to

as transparent blocks. The transparent blocks are shipped and not coded at all.

1. Low-pass extrapolation padding technique: This block—padding technique is applied to

intracoded blocks. which are not located completely within the object boundary. To

perform this padding technique we first assign the mean value til those pixels that are

located in the object boundary [both inside and outside} to each pixel outside ”1'3 object

boundary. Then an average operation is applied to each [)1er pic” tiulxidc the object

boundary starting from the upper—left corner of the block and proceeding row by row to

the lower-right corner pixel:

p(i.j) = [p(i.j— l)+p(i— i.;)+ [){iUt + n+ pli + I. n] 4. use:

If one or more of the four pixels used for filtering are outside of the block. the corre-

sponding pixels are not considered for the average operation and the factor 1x1: is modified
accordingly.

2. SA-DCT: The shape—adaptive DCT is only applied to those 8 >< 8 blocks that are located
on the object boundary of an arbitrarily shaped VOP. The idea of the SA-DCT is to apply

l-D DCT transformation vertically and horizontally according to the number of active

pixels in the row and column of the block. respectively. The size of each vertical DCT
is the same as the number of active pixels in each column. After vertical DCT is performed

for all columns with at least one active pixel. the coefficients of the vertical DCTs with
the same frequency index are lined up in a row. The DC coefficients of all vertical DCTS
are lined Up in the first row. the first-order vertical DCT coefficients are lined up in ”15

second row. and so on. After that, horizontal DCT is applied to each row. As the same
as for the vertical DCT, the size of each horizontal DCT is the same as the number of

vertical DCT coefficients lined up in the particular row. The final coefficients of SA-
DCT are concentrated into the upper-left corner of the block. This procedure is shown
in the Figure 18.4.

The final number of the SA-DCT coefficients is identical to the number of active pixels of ”“3
image. Since the shape information is transmitted to the decoder, the decoder can perform the
inverse shape-adapted DCT l0 IBCDHSU'LICI the pixels. The regular zigzag scan is modified so that
the nonactive coefficient locations are neglected when counting the runs for the run-length coding
of the SA-DCT coefficients. It is obvious that for a block with all 8 x 8 active pixels, the SA'DCT
becomes a regular 8 x 3 DCT and the scanning of the coefficients is identical to the zigzag Siam
All SA-DCT coefficients are quantized and coded in the same way as the regular DCT coeffiCIP-ms

|PR2018—01413

Sony EX1008 Page 438



IPR2018-01413 
Sony EX1008 Page 439

MPEG4 Video Standard: Content-Based Video Coding 413

88888888 88:':::° """OO0 0 0.0.0000

8822:338_.C°IW 8888::88_.R°w::"888°00

85823388 88888:88 mm 88088888
00000.00 00000000 00800000
00000000 00000000 00000000

Active image pixels Coefficients of Colman DCTs SA~DCT result

FIGURE 18.4 Illustration of SA—DCT. {From lSOr’lEC 14496-2 Video Verification Model V.|2. N2552.
Dec. 1998. With permission.)

employing the same quantizcrs and VLC code tables. The SAoDCT is not included in MPEG—4

video version l. but it Is being considered for inclusion into version 2.

18.3.4 Snare CooiNo

Shape information of the arbitrarily shaped objects is very useful not only in the field of image
analysis. computer vision. and graphics. but also in object-based video coding. MPEG—4 video

coding is the tirst to make an effort to provide a standardized approach to compress the shape
information of objects and contain the compressed results within a video bitstream. In the current

MPEG—4 video coding standard, the video data can be coded on an object basis. The information

in the video signal is decomposed to shape. texture. and motion. This information is then coded

and transmitted within the bitslream. The shape information is provided in binary format or gray

scale format. The binary format of shape information consists of a pixel map. which is generally

the same size as the bounding box of the corresponding VOP. Each pixel takes on one of two

possible values indicating whether it is located within the video objector not The gray scale format

is similar to the binary format with the additional feature that each pixel can take on a range of

values. i.e.. times an alpha value. Alpha typically has a annualized value oft] to l. The alpha value

can be used to blend two images on a pixel-by-pixel basis in this way: new piitel = (alpha)(piitcl A

color] + (I — alphaltpixel B color). _ _
Now let us discuss how to code the shape information. As we mentioned. the shape information

is classified as binary shape or gray scale shape. Both binary and gray scale shapes are reterred to
as an alpha plane. The alpha plane defines the transparency of an object. Multilevel alpha maps
are frequently used to blend different images. A binary alpha map defines whether or not a P1831
belongs to an object. The binary alpha planes are encoded by modified content-based arithmetic
encoding (CAB). while the gray scale alpha planes are encoded by motion-compensated DtC'I‘
coding, which is similar to texture coding. For binary shape ending, a rectangular b0): enclosing
the arbitrarily shaped VOP is formed as shown in Figure [8.3. The bounded rectangle box is then-
cxtendcd in both vertical and horizontal directions on the right-bottom Side to the multiple at

16 X 16 blocks. Each to x 16 block within the rectangular box is referred to as binary alpha block
(RAB) Each BAB is associated with colocated maeroblock. The BAB can be elassrfied as three

L)‘pes: transparent block, opaque block. and alpha or shape block. The traimparent block does not
contain any information about an object. The opaque block is entirely located mode the object.
The alpha or shape block is located in the area of the object boundary; tie. a part of block is insrde
or object and the rest of block is in background. The value 01: PlXClS‘I“ ”“3 transparent region 15

zero. For Shape coding. the type information will be included in the bitstreani and signaledI to (it;
decoder as a macroblock type. But only the alpha blocks need to b6 processed by the cm” or an

decoder. The methods used for each shape format centain several encoding modes. For onll‘ltplc.
[he binary shape information can be encoded using either an mm or intern-rode. Each of tiese
modes can be further divided into lossy and lossless optionS- Gray ““16 Shall" "‘fmm‘m “'50
contains intra- and intermodes; however, only a l055)’ option ‘5 ”33¢
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FIGURE 18.5 Template for defining the context of the pixel. X. to be coded in Intruttiode. {From ISOHEC

14496-2 Video Verification Model V.l2. N2552. Dec. 1998. With permission.)

18.3.4.1 Binary Shape Coding with CAE Algorithm

As mentioned previously. the CAB is used to code each binary pixel ol‘ the RAB. For a P-VOP,

the BAR may be encoded in intra» or intermodc. Piscls are coded in scan—line order. i.e.. row by

row for both modes. The process for coding a given pixel includes three steps {1; compute a

context number, (2) index a probability table using the context number. and {3} use the indexed

probability to drive an arithmetic encoder. In intramode. a template til it) pixels is used to define

the causal context for predicting the shape value ol‘ the current pixel as shown in Figure 15.5. For

the pixels in the top and left boundary of the current macroblock, the template of causal contest

will contain the pixels of the already transmitted macrohtocks on the top and on the hell side 01'

the current macroblock. For the two rightmost columns of the VOP. each undelined pixel such as

C1. C3, and C3, of the context is set to the value of its closest neighbor inside the niacrohlock. i.e..
C7 will take the value of CK and C3 and CI will take the value 01‘ C..

A 10-bit context is calculated for each pixel. X as

C=2C.-2*. (tan

This causal context is used to predict the shape value of the current pixel. For encoding the state

transition, at context-based arithmetic encoder is used. The probability table of the arithmetic encoder

for the 1024 contents was derived from sequences that are outside of the test set. Two bytes :er

allocated to describe the symbol probability For each context: the table size is 2048 bytes. To

increase coding efficiency and rate control, the algorithm allows lossy shape coding. In lossy shape

coding a macroblock can be down-sampled by a factor of two or four resulting in a subblock of
size 8 x 3 pixels or 4 x 4 pixels, respectively. The subbtock is then encoded using the same method
as for full~size block. The (Iowa-sampling Factor is included in the encoded bitstream and then

transmitted to the decoder. The decoder decodes the shape data and then tip-samples the decoded
subblock to full macroblock size according to the dovvn-sampling factor. Obviously. it is more

efficient to code shape using a high down-sampling factor. but the coding errors may occur in the
decoded Shape after Lip-sampling. However. in the case of tow-bit-rate coding. tossy shape coding
may be necessary since the bit budget may not be enough for lossless shape coding. Depending
on the apt-sampling filter. the decoded shape can look somewhat blocky. Several up-sampliflg filters
Were investigated. The best-performing filter in terms of subjective picture quality is an adaptive
nonlinear up-sampling filter. It should be noted that the coding efficiency of shape coding also
depends on the orientation of the shape data. Therefore. the encoder can choose to code the block

as described above or transpose the macrobtock prior to arithmetic coding. or course. the transpose
information has to be signaled to the decoder.

Fer shape coding in a P—VOP or B-VOP. the inter-mode may be used to exploit the temporal
redundancy in the shape information with motion compensation. For motion compensation. a 3'13
integer pixel motion vector is estimated using full search for each macroblock in order to minimize
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FIGURE 18.6 Template for defining the context or the pixel, X. to be coded in intermode. (From lSOIIEC
I4496-2 Video Verification Model, NESSQ, Dec. I993. With permission.)

the prediction error between the. previously coded VOP shape and the current VOP shape. The
shape motion vectors are predictivcly encoded with respect to the shape motion vectors of neigh-
boring macrohlocks. If no shape motion vector is available, texture motion vectors are used as

predictors. The template for intermode differs from the one used for intramode. The intermodc

template contains 9 pixels among which 5 pixels are located in the previous frame and 4 are the
current neighbors as shown in Figure 18.6.

The inter-mode template defines a context of 9 pixels. Accordingly. a 9-bit context or 512
contexts, can be computed in a similar way to Equation 18.7:

H

{Egg-2". (18.8}
llt=|1J

The probability for one symbol is also described by 2 bytes giving a probability table size of

1024 bytes. The idea of lossy coding can also be applied to the intermodc shape coding by down-
sampling the original BABs. For intermode shape coding, the total bits for coding the shape consrst
of two parts. one part for coding motion vectors and another for prediction residue. The encoder
may decide that the shape representation achieved by just using motion vectors is sufficient; thus

bits for coding the prediction error can be saved. Actually, there are seven modes to code the shape
information ofeach macrohlock: {I} transparent. (2) opaque. (3) intra. inter (4) with and (5) Without

shape motion vectors. and inter (6) with and (7) without shape motion vectors and prediction error

coding. These different options with optional down-sampling and transpositiori allow for encoder
implementations of different coding efficiency and implementation complexity. Again, this is a

Problem of encoder Optimization, which does not belong to the standard.

18.3.4.2 Gray Scale Shape Coding

The gray scale shape information is encoded by separately encoding the shape and transparency
information as shown in Figure 18.7. For a transparent object. the shape inlorrnatton is relerred to
as the support function and is encoded using the binary shape-coding method. :The transparency
or alpha values are treated as the texture of luminance and encoded usmg padding, motion con-t-
Pensation. and the same 8 x 8 block DCT approach for the texture coding. For an object with
varying alpha maps. shape information is encoded in two steps. The boundary oi the Object is first
losslessly encoded as a binary shape. and then the actual alpha map is encoded as texture coding.

The binary shape coding allows one to describe ObjECISlWllh constant transparency. while gray
scale shape coding can be used to descl-ibe objects with arbitrary transparency. provtding for mpre
flexibility for image composition. One application example IS a gray scale alpha Shapc that3011:1515
Of a binary alpha shape with the value around the edges tapered from 255.10 0 to prov; 3 orha
Smooth composition with the background. The description oi each vtdeo object layer me u es;l e
information to give instruction for selecting one of six modes for feathering. These Six mo es
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FIGURE 18.7 Gray scale shape coding.

include (1) no effects. (2) linear feathering. (3) constant alpha. (4) linear feathering and constant

alpha. (3) feathering filter. and (6) feathering filter and constant alpha. The detailed description of

the function of these modes are given in the reference of version 12 tlSO/IEC. 1998b).

18.3.5 SPRITE CODING

As mentioned previously. MPEG-4 video has investigated a number of new tools. which attempt

to improve the coding efficiency at low bit rates compared with MPECI- HE video coding. Among

these tools, sprite coding is an efficient technology to reach this goal. A sprite is a specially

composed video object that is visible throughput an entire piece of video sequence. For example.

the Sprite generated from a panning sequence contains all the visible pltt‘ls of the. background

throughout the video sequence. Portions of the background may not be seen in certain frames due
to the occlusion of the foreground objects or the camera motion. This particular example is one of

the static sprites. In other words. a static Sprite is a possible still image. Since the sprite contains

all visible background scenes ofa segment video sequence where the changes within the background
content are mainly caused by camera parameters. the sprite can be used for direct reconstruction
of the background VQPs or as the prediction of the background VOPs within the video segment.
The sprite-coding technology first efficiently transmits this background to the receiver and then
stores it in a frame at both encoder and decoder. The camera parameters are then transmitted to
the decoder for each frame so that the appropriate part of the background scene can be either used
as the direct reconstruction or as the prediction of the background VOP. Both cases can significantly
save the coding bits and increase the coding efficiency. There are two types of Sprites. static sprite
and dynamic sprite, which are being considered as coding tools for MPEG-4 video. A static sprite
is used for a video sequence in which the objects in a scene can be separated into foreground
objects and a static background. A static sprite is a special VOP. which is generated by copying
the background from a video sequence. This copying includes the appropriate warping and cropping.
Therefore, a static sprite is always built off-line. In contrast, a dynamic sprite is dynamicalb‘ built
during the predictive coding. It can be built either online or off-line. The static sprite has shown

significant coding gain over existing compression technology for certain video sequences. The
dynamic Sprite is more complicated in the real-time application due to the difficulty of updating
the sprite during the coding. Therefore, the dynamic sprite has not been adopted by version 1 0f
the standard. Additionally, both sprites are not easily applied to the generic scene content. Also,
there is another kind of classification of sprite coding according to the method of sprite generation,
namely, off-line and online sprites. Off-line is always used for static sprite generation. Off-line
sprites are well suited for synthetic objects and objects that mostly undergo rigid motion. Onltne
sprites are 0'11? used [0? dynamic 5PT11'35- Online sprites provide a no—latency solution in thc‘casc
of natural sprite objects. Off-line dynamic sprites provide an enhanced predictive coding environ»
ment. The sprite is built with a similar way in both offdine and online methods. In particular. the
same global motion estimation algorithm is exploited. The difference is that the off-line sprite is
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FIGURE 18.3 Block diagram ol encoder ot‘ wavelet-based texture coding. DWT stands for diserete wavelet
transform.

built before starting the encoding process while. in the online sprite case. both the encoder and the

decoder build the same sprite I'rom reconstructed VOPs. This is why the online dynamic Sprites
are more complicated in the implementation. The online sprite is not included in version I. and

will most likely not be considered for version 2 either. In sprite coding. the chrominance components

are processed in the same way as the luminance components. with the properly sealed parameters
according to [he video litrtnul.

18.3.6 INTERLACED Vtoeo Coome

Since June ol‘ 199?. MPEG4 has extended its application to support interlaced video. Interlaced

video consists of two liclds per frame. which are referred to as the even field and the odd field.

MPEG-2 has a number ol‘ tools, which are used to deal with field structure of video signals. These

tools include t‘ramc/ticld-adaptive DCT coding and l'rameflield—adaptive motion compensation.
However. the field issue in MPEG-4 has to be considered on a VOP basis instead ofthc conventional

l‘rame hams. When field—based motion compensation is specified, two field motion vectors and the

corresponding reference fields are used to generate the prediction front each reference VOP. Shape
Information has to be considered in the interlaced video for MPEG-4.

18.3.7 WAVElH-BASED TEXTURE CODING

1n MPEG-4 there is a texture-coding mode which is used to code the texture or still image such

as in JPEG. The basic technique used in this mode is wavelet-based transform coding. The reason
for adopting wavelet transform instead ot’ DC’I‘ for still texture coding is not only its high coding
efficiency, bot also because the wavelet can provide excellent scalability. both spatial scalability
and SNR scalability. Since the principle of wavelet-based transform coding for nnagecompressuon
has been explained in Chapter 3. wejust briefly describe the coding procedure of this mode. The
block diagram of the encoder is shown in Figure [8.3.

18.3.7.1 Decomposition of the Texture Information

The texture or still image is first decomposed into bands using a bank of analysts Iii-hers. Thisf
decomposition can be applied recursively on the obtained bands to yield a decomposrtion tree 0
subbands. An example of decomposition to depth 2 is shown in Figure 13-9-

0II
2n 456

FIGURE 18.9 An example of wavelet decomposition of depth 2.
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FIGURE 18.10 Adaptive DPCM coding of the coefficients in tlte lowest band.

18.3.7.2 Quantization of Wavelet Caefficients

After decomposition, the coefficients of the lowest hand are coded independently of the other bands.

These coefficients are quantized using a uniform midrtser quantizer. 'l‘he eoel'licients o I‘ high hands

are quantized with a multilevel quantization The multilevel quantization provides it very flexible.

approach to support the correct trade—off between levels and type of hCflittl‘ttlll}-‘, complexity. and

coding efficiency for any application. All quantizcrs for the higher hands. are uniform tnidrisc

quantizers with a dead zone that is twice the quantizer step size. The levels and quantization steps

are determined by the encoder and specified in the bitstrcam To achieve scalability. a bi-level

quantizatiOn scheme is used for all multiple quantizers. This quantizcr is also uniform and midrisc

with a dead zone that is twice the quantization step. The coefficients outside ot. the dead zone are

quantized to I bit. The number of quantizcrs is equal to the maximum number ot‘ bit planes in the

wavelet Lransfon'n representation. In this bi-level quantizer. the maximum number of bit planes

instead of a quantization step size is specified in the bitstream.

18.3.7.3 Coding of Wavelet Coefficients of Low—Low Band and Other Bands

The quantized coefficients at the lowest band are DPCM coded. Each of the current coefficients is

predicted from three other quantized coefficients in its neighborhood in a way shown in Figure l8.10.

The coefficients in high bands are coded with the zerotree algorithm (Shapiro. 1993). WhiCh

has been discussed in Chapter 8.

18.3.14 Adaptive Arithmetic Coder

The quantized coefficients and the symbols generated by the zerotree are coded using an adaptive
arithmetic coder. In the arithmetic coder three different tables which correspond to the different

statistical models have been utilized. The method used here is very similar to one in Chapter 3-

Further detail can be found in MPEG—4 (ISOi‘IEC. 1998a).

18.3.8 GENERALIZED SPATIAL AND TEMPORAL SCALABILITY

The scalability framework is referred to as generalized scalability that includes the spatial and the
temporal scalability similar to MPEG—2, The major difference is that MPEG—4 extends the concept

of scalability to be content based. This unique functionality allows MPEG-4 to be able to resolve
objects into different VOPs. By using the multiple VOP structure. different resolution enhancement
can be applied to different portions of a video scene. Therefore, the enhancement layer may only
be applied to a particular object or region of the base layer instead of to the entire base layer. This
is a feature that MPEG-2 does not have.

In spatial scalability, the base layer and the enhancement layer can have different spatial
resolutions. The base-layer VOPs are encoded in the same way as the nonscalable encodinfsr
technique described previously. The VOPs in the enhancement layer are encoded as P-VOPS 01'
B—VOPs. as shown in Figure 18.1]. The current VOP in the enhancement layer can be predicted
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FIGURE 18.11 Illustration of Spatial scalability.
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FIGURE 18.12 An example ol‘ temporal scalability. (Front [SOIIEC I4496—2 Video Verification Model V. l2.
N2552. Dec. 1998. With permission]

 

 
from either the tip-sampled base layer VOP or the previously decoded VOP at the same layer as
well as both of them. The down-sampling and up-sampling proceSSing in spatial scalability is not
a part of the standard and can be defined by the user.

In temporal scalability, a subscquence of subsampled VOP in the time domain is coded as a base

layer. The remaining VOPs can be coded as enhancement layers. in this way, the frame rate of a-
Selected object can be enhanced so that it has a smoother motion than other objects. An example of

1Ctttporal scalability is illustrated in Figure 18.12. In Figure 18.12, the VOLU is the entire frame with

both an object and a background, while VOL, is a particular object in VOLQ. VOLu is encoded with
a low frame rate and VOLl is the enhancement layer. The high frame rate can be reached for the
particular object by combining the decoded data from both the base layer and the enhancement layer.
Of course, the B—VOP is also used in temporal scalability for coding the enhancement layer. WhiCh
is another type of temporal scalability. As in spatial scalability, the enhancement layer can be used
1° imProve either the entire base layer frame resolution or only a portion of the base layer resolution.

18.3.9 ERROR RESILIENCE

The MPEG-4 visual coding standard provides error robustness and resilience to allow access of
Image and video data over a wide range of storflgc and transmission medm' The error resilience
tool development effort is divided into three major areas, which include resynchronization. data
recovery, and error concealment. As with other coding standards. MPEG4 makes heavy ”55 0f

variable-length coding to reach high coding performance. However, ifeven 1 bit is lost or damaged.
the entire bitstream becomes undecodablc due to loss of synchronisation. The resynchronization

tools attempt to enable resynchronization between the decoder and the bitstream after a transmission
error or errors have been detected. Generally, the data between the synchronization point prior to

the error and the first point. where synchronization is reestablished, are discarded. The purpose of
res.‘z’nchronization is to localize effectively the amount of data discarded by the decoder; then the
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other methods such as error concealment can be used to conceal the damaged areas of a decoded

picture. Currently, the resynchronization approach adopted by MPEG—4 is referred to as a packet

approach. This approach is similar to the group of block (GOB) structure used in H.26I and Hm].
In the (303 structure, the (308 contains a start code. which provides the location information of

the 003. MPEG-4 adopted a similar approach in which a resynchronization marker is periodically

inserted into the bitstream at the particular macrobloek locations. The rcsynclironization marker is

used to indicate the start of new video packet. This marker is distingurshcd from all possible VLC

codewords as well as the VOP start code. The packet header information is then provided at the

start of a video packet. The header contains the information necessary to restart the decoding

process. This includes the macroblock number of the first macrtihlocl; contained in this packet and

the quantization parameter necessary to decode the lirst macroblock. 'l'hc itittcrohlock number

provides the necessary spatial resynchronization while the quantization parameter allows the dif-

ferential decoding process to be rcsynchronized. It should be noted that when error resilience is

used within MPEG—4, some of the compression efficiency tools need to be modified For example.

all predictively encoded information tnust be contained Wllllll'l a \"lLiL‘LI packet to avoid error

propagation. In conjunction Willi the video packet approach to rcsyncht'onizt‘uum, MPEG—4 has also

adopted a fixed-interval synchronization method which requires that VDP start-codes and resyn—

chronization markers appear only at legal fixed-interval locations in the bitsticam. This will help

to avoid the problems associated with start-code emulation. In this case. “ilct‘l fixed—interval

synchronization is utilized. the decoder is only required to search for :1 \-'OP start-code at the

beginning olcach fixed interval. The fixed-interval synchronization method cstcnds this approach

to any predetermined interval.

After resynchronization is reestablished, the major problem is recovering lost data. A new tool

called reversible variable-length codes tRVLC) is developed for the purpose of data recovery. In

this approach, the variable-length codes are designed such that the codes can he read both in the

forward and the reverse direction. An example of such a code includes codewords Illsc l l l‘ 10L

010. All these codewords can be read reversibly. However. it is obvious that this approach Will

reduce the coding efficiency that is achieved by the entropy coder. Therefore. this approach is used

only in the cases where error resilience is important.

. Error concealment is an important component of any error~robust video coding. The error-

conccalment strategy is highly dependent on the performance of the resynchronization technique.

Basically. if the resynchronization method can efficiently localize the damaged data area. the error

concealment strategy becomes much more tractable. Error concealment is actually a decoder issue

if there is no additional information provided by the encoder. There are many approaches to error

concealment, which are referred to in Chapter |‘?.

18.4 MPEG-4 VISUAL BITSTREAM SYNTAX AND SEMANTICS

The common feature of MPEG-4 and MPEG—lfMPBG-Z is the layered structure of the bitstrean‘l.

MPEG-4 defines a syntactic description language to describe the exact binary syntax of an audio-

visual object bitstrearn. as Well as that of the scene description information. This provides a
consistent and uniform way to describe the syntax in a very precise form. while at the same time
simplifying bitstream compliance testing. The visual syntax hierarchy includes the following layers:

- Video session (VS)

' Video object (V0)

- Video object layer (VOL) or texture object layer (TOL)
- Group of video object plane (GOV)

- Video object plane (VOP)

A typical video Syntax hierarchy is shown in Figure 18.13.
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Video Session Vs...

Visual Object V0

Video Object Layerw___'—'——'

Group of Video Object Plane Govt 50:? .

Video Object Plane V0130 V0911 VOPmI VOPm

FIGURE 13.13 MPEG-4 video syntax hierarchy.

The video session {VS} is the highest syntactic structure of the coded video bitstream. A VS
as a collection of one or more V05. A V0 can consist of one or more layers. Since MPEG-4 is

extended from video coding to visual coding. the type of visual objects not only includes video
objects. but also still texture objects. mesh objects. and face objects. These layers can be either
video or texture. Still texture coding is designed for higlt-visual-quality applications in transmission

and rendering of texture. The still coding algorithm supperts a scalable representation of image or

synthetic scene data such as luminance. color. and shape. This is very useful for progressive

transmission of images or 2—Di3-D synthetic scenes. The images can be gradually built up in the

terminal monitor as they are received. The bitstreams for coded mesh objects are nonscalable; they
define the structure and motion of a 2-D mesh. The texture of the mesh has to be coded as a separate

video object. The bitstreams for face objects are also nonscalablc; these bitstreams contain the lace

animation parameters. ‘10:; are coded with different types of scalability. The base layer can be
decoded independently and the enhancement layers can only be decoded with the base 13W”- I"
the Special case ot‘ a single rectangular V0. all of the MPEG-4 layers can be related to MPEG-2

layers. That is. V5 is the same as V0 since in this case a single V0 is a video sequence. VOl. or
TOL is the same as the sequence scalable extension, GOV is like the GOP. and V0? ts a Video
frame. V0 sequence may contain one or more VOs coded concurrently. The V0 header Informant!“
contains the start code followed by profile and level identification and a V0 Identification to‘tndtcate
the type of object. which may be a V0. :1 still texture object. a mesh object. or a face object. The
V0 may contain one or more VOLs. In the VOL. the V0 can be coded wrth spatial or temporal
scalability. Also. the V0 may be encoded in several layers from coarse to fine resolution. Depending
on the application need. the decoder can choose the number oflayers to decode. AVO at a specified
time is called a video object plane (VOP). Thus. a V0 contains man)l VOPS: A scene may contatn
many V05. Each V0 can be encoded to an independent bitstream. A collection of VOPs tn a VO_L
is called a group of VOPs (GOV). This concept corresponds to the group of pictures (GOP?) in
MPEG»! and MPEG-2. A V0? is then ended by shape coding and texture coding. winch IS Specified

at lower layers of syntax. such as the macroblock and block layer. The VOP or highesthan-VOIP
layer always commences with a start code and is followed by the data of lower layers. which 15
similar to the MPEG-1 and MPEG-2 syntax.

18.5 MPEG-4 VIDEO VERIFICATION MODEL

Since all video-coding standards define only the bitstream syntax and decoding process. the use of

test models to verify and optimize the algorithms is needed during the development process. For
this purpose a common platform with a precise definition of encoding and decoding algorithms

has to be provided. The test mode] (TM) of MPEG-2 took the abovemtentioned role. The TM of
MPEG-2 was updated continually from version 1.0 to VBrston 5.0. until the MPEG-2 Video IS
(International Standard) was completed. MPEG-4 video uses a similar tool during the development
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process; this tool in MPEG-4 is called the. Verification Model (VM). So far. the MPEG-4 video

VM has gradually evolved from version 1.0 to version 12.0 and in the process has addressed on

increaSing number of desired functionalities such as content-hosed scalability, error resilience,

coding efficiency, and so on. The material presented in this section is dil't'ercnt from Section 18.3

Section 13.3 presented the technologies adopted or that will he adopted by MPEG—4. while this

section provides an example of how to use the standard. for esat‘nple. how to encode or generate

the MPEG-4-compliant bitstreatn. Of course. the decoder is also included in the VM.

18.5.1 VOP-BASED ENCODING AND DECODING Psocess

Since the most important feature of MPEG—4 is an object—based coding method. the input video

sequence is first decomposed into separate V05, these VOs are then encoded into separate bttstrearns

so that the user can access and manipulate (cut. paste. etc.) the video sequence in the hitstreani

domain. Instances of VOs in a given time are called a video Ul‘lJCL‘I plane tVOPl. The hitstreatn

also contains the composition information to indicate where and when each VOP it; to be displayed.

Al the decoder. the user may he allowed to change the composition ot' the scene displayed by

interactively changing the composition information.

“18.5.2 VIDEO ENcooEtt

For object-based coding, the encoder consists mainly ol'two parts: the shape coding and the texture

coding of the input VOP. The texture coding is based on the DC’l‘ coding with traditional motion-

compensated predictive coding. The VOP is represented by means ot' a bounding rectangular as

described previously. The phase between luminance and chrorninance pixels at the bounding

rectangular has to be correctiy set to the 4:220 format as in MPEG-IQ. The block diagram of

encoding structure is shown in Figure |8_l4_

The core technologies used in VOP coding of MPEG—4 have been described previously. Here

we are going to discuss several encoding issues. Although these issues are essential to the perfor—

mance and application. they are not dependent on the syntax. As a result. they are not included as
normative parts of the standard, but are included as informative annexes.

——.—.VOP of arbitrary shop

 
 

Motion information

 
VOP

FIGURE 18.14 Block diagram of MPEG-4 video encoder structure.
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18.5.2.1 Video Segmentation

Object-based coding is tlte most important feature of MPEG-4. Therefore. the tool for object
boundary detection or segmentation is a key issue in efficiently performing the object-based coding
scheme. But the method ol'decotnposing a natural scene to several separate objects is not specified
by the standard since it is a preprt'iccssmg issue. There are currently two kinds of algorithms for

segmentation of video objects. One kind ol‘ algorithm is an automatic segmentation algorithm. In

the ease ot‘renl-time applications. the segmentation must he done automatically. Real-time automatic

segmentation algorithms are currently not mature. An automatic segmentation algorithm has been

proposed in MPEG‘JGIMQGU (Ct'tlonnese and Russo. I996). This algorithm separates regions cor-

responding to moving objects l'rom regions belonging to a static background for each frame of a

video sequence. The algorithm is based on a motion analysis for each frame. The motion analysis

is performed along several frames to track each pittel ol‘ the current frame and to detect whether

the pixel belongs to the moving objects.

Another kind ot' segmentation algorithms is one that is user assisted or “semiautomatic." in

non-rcalvtime applications, the semiautomatic segmentation may be used effectively and give better

results than the automatic segmentation. In the core experiments of MPEG4. a semiautomatic

segmentation algorithm was proposed in MPEG‘J7IM3 I47 (Choi et al.. [997). The block diagram

ol‘ the seittiautotttattc segmentation ts shown in Figure ”3.15.

This technique consists of two steps. First. the nttral'rame segmentation is applied to the first

frame, which is considered as a l'rantc that either contains newly appeared objec15 or a reset l’rarnc.

Then the intert'ramc segmentation is applied to the consecutive l'rames. For intrai‘rame. the segmen-

tation is processed by a user manually or setntautomatieally. The user uses a graphical user interface
~iGUl) to draw the boundaries ot‘ objects of interest. The user can mask the entire objects all the
way around objects using a mouse with a predefined thickness of the line (number of pixels}. A
marked swath is then achieved by the mouse. and this marked area is assumed to contain the object
boundaries. A boundary-detection algorithm is applied to the marked area to create the real object
boundaries. For tnterl‘rame segmentation. an object boundary-tracking algorithm is proposed to
obtain the object boundaries of the consecutive frames. At first, the boandary or the previous object
is extracted and the motion estimation is performed on the object boundary. The object boundary

Inputv‘ideo

 

  Inna-Emma segmentation in initially
merited region around object boundary

by user via GUI

Inter-frame segmentation by
object boundary tracking

Unsatisfactory results or
hot boundary been!”

 

   No Yes

FIGURE 18.15 Block diagram of a user-assisted V0 segmentation method.
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ofthe current frame is initially obtained by motion compensation and then relined by using temporal
information and spatial information all the way around the object boundary. Finally. the retined

object boundary can he obtained. As mentioned previously. the segmentation technique is an

important tool for object-based processing in MPEG-4. but it is not defined by the standard. The

method described here isjust an example provided by the core experiments of MPEG-4. There. are

many other algorithms under investigation. such as the circular Vitcrhi algorithm described by Lin
et al- (l998).

18.5.2.2 lntra/lntermode Decision

For inter-V0? coding. a maeroblock can be coded in one of four modes. These four modes include

direct coding mode, forward coding. backward coding. and bidirectional coding. [n the encoder

we have to decide which mode is the best. The mode decision is an important part of encoding

Optimization. An example of the selection of an optimized mode decision has been given in

Chapter 't'? for an MPEG-2 encoder. The same technique can be extended to M] MPEG-4 encoder.

The basic idea of mode decision is to choose the coding mode that results in the best operation

point on the rate—distortion curve. For obtaining the best operation point on the rate—distortion

curve. the encoder has to compare all possible coding modes and choose the best one. This is a

very complicated procedure. In the MPEG—2 case. We used a quadratic model to unify the measures

of bits used to code prediction residues and the motion vectors A sttttplttied mode but near-

Optimized mode decision method has resulted. Here. the VM.]?. proposes the following steps to

make coding mode decisions. First. the motionacompensated prediction error is calculated by each

of the four modes. Next, the SAD of each of the motion~eotnpensated prediction maerobloeks is

calculated and compared with the variance of the tnacrohlock to be coded. Then. a mode of

generating the smallest SAD (for direct mode. a bias is applied) is selected. For the interlaced
video. more coding modes are involved. This method of mode decision is simple. but it is out

optimal since the cost for coding motion vectors is not considered Consequently, the mode may

not lie on the best operation point on the distortion curve. But again. this is an encoding issue; the
encoding designers have the freedom to use their own algorithm. The VMjust provides an errand“6

of an encoder that can generate the compliant bitstream.

18.5.2.3 Off-Line Sprite Generation

The sprite is a useful tool in MPEG-4 for ending a certain kind of video sequences at very low bit
rates. The method of generating a Sprite for a video sequence is an encoder issue. The VM gives

an example of off-line sprite generation. For a natural V0, a sprite is referred to as a reprcscnlaliVC
view collected from a video sequence. Before decoding. the sprite is transmitted to the decoder.
Then the motion compensation can be performed by using the sprite from which the video can be

reconstructed. The effectiveness of video reconstruction depends on whether the motion of the
object can be effectively represented by a global motion model such as translation, zooming. affine.

and perspective. The key technology of the sprite generation is the motion esrimation to find
perspective motion parameters- This can be implemented by many algorithms described in this
book such as the three-step matching technique. The block diagram of sprite generation using the
perspective motion estimatinn is shown as in Figure lS.l6.

The sprite is generated from the input video sequence by the following steps. First. the first
frame is used as the initial value of sprite. From the second frame. the motion estimation is applied
to find the perspective motion parameters between two frames. The current frame is wrapped toward
the initial sprite using the perspective motion vectors to get wrapped image. Then the wrapped
image is blended with initial Sprite to obtain it updated Sprite. This procedure is continued to lhe
entire video sequence. The final Sprite is then generated.
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V0?

Sprite

 
FIGURE 18.16 Block diagram of sprite generation.

18.5.2.4 Multiple V0 Rate Control

As we know. the purpose of rate control is to obtain the best coding performance for a given bit

rate in constant-hit-rate video coding. In MPEG-4 video coding, there is an additional objective

for rate control: how to assign tltc bits among multiple VOs. In the multiple V0 video coding rate

control algorithm. the total target is first adjusted based on tltc bu ffcr fullness, and then distributed

proportional to the size 01' the object. the motion which the object is experiencing, and its maximum

absolute differences. Based on the new individual targets and second—order model parameters (Lee

“1 al.. I997). appropriate quantization parameters can be calculated for each V0. To compromise

the trade-offs in spatial and temporal coding, two modes ot'operation have been introduced. With
these modes. suitable decisions can be made to differentiate between low- and high-bit-rate coding.

In addition, a shape rate control algorithm has been included. The algorithm for performing the

joint rate control can be dccon‘tposed into a precncoding stage and a pomencoding stage. The
Dreencoding stage consists of (I) the target hit estimation. (2) joint buffer control. (3) PFC-frame-

skip control. and (4) the quantization level and alpha threshold calculation. The postencoding stage
COHSlSIS Ulll) updating the rate—distortion model. (2) post«framc-skip control. and (3) determining
the mode of operation. The initialization process is very similar to the single VOP initialization
process. Since a single buffer is used, the buffer drain rate and initializations remain the same. but
many of the parameters are extended to vector quantities. As a means of regulating the trade-offs
between spatial and temporal coding. two modes of operation are introduced: low mode and high
mode. When encoding at high bit rates. the availability of bits allows the algorithm 10 be flexible
in its target assignment to each V0. Under these circumstances. it is reasonable to impose homo-
gencous quality among each V0. Therefore. the inclusion of MADEUI is essential to the target
distribution and should carry the highest weighting. On the other hand. when the availability of
bits is limited. it is very difficult (if not impossible) to achieve homogeneous quality among the
V03. Under these conditions. it is desirable to spend fewer bits on the background and more has
an the foreground. Consequently. the significance ofthe variance has decreased and the Significance
or the motion has increased. Besides regulating the quality within each frame. it is also tntportant
to regulate the temporal quality as well. i.e.. to keep the frame skipping to a minimum. In high
mode, this is very easy to do since the availability ol'bits is plentiful. However, in low mode. traine-
Skipping occurs much more often. In fact, the number of frames being skipped ts a good indication
in Which mode the algorithm should be operating. Overall, this particular algorithm ‘5 able 1°
achieve the target bit rate successfully. effectively code arbitrarily shaped objects. and maintain a
stable but‘t‘er (Vetro et al., [999).

|PR2018—01413

Sony EX1008 Page 451



IPR2018-01413 
Sony EX1008 Page 452

Image and Video Compression for Multimedia Engineering
426

  

 
Bit-stream

Demultiplexer

FIGURE 18.17 VDP decoder structure.

18.5.3 VIDEO DECODER

The decoder mainly consists of three parts: shape. motion. and texture decoding. The dccodcr block

diagram is shown in Figure 13.”. At the decoder the bitstrcum is first demuiliplcxcd into shape
information and motion information as well as texture information. The reconstructed VOP is

obtained by the right combination ofthc shape. texture, and motion in formatimt. Thc shape decoding

is a unique feature of the MPEG-4 decoder. The basic technology of shape decoding is context—

based arithmetic decoding and block-based motioa compensation.

The primary data structure is denoted is the binary alpha block (BAH). The BAB is a square

block of binary pixels representing the opacity or transparency for the pixels in a specified block-

shaped spatial region of size to x 16 pixels which is colocatcd with each texture macroblock The

block diagram of a texture decoder is shown in Figure lS.lS.

Texture decoding is similar to the video decoder in MPEG—1}?! except for inverse DCIAC

prediction and more quantization methods. The DC prediction is different from the one used in

MPEG-1}; In MPEG-4 the DC coefficient is adaptively predicted from the above block or left
block. The AC prediction is similar to the one used in H.263 but is not used in the MPEGUE. For

motion compensation. the motion vectors must be decoded. The horizontal and vertical motion

vector components are decoded differentially by using a prediction from the spatial neighborhood

consisting of three motion vectors already decoded. The final motion vector is obtained by adding
the prediction motion vector values to the decoded differential motion values. Also. in MPEG-4

video coding the several advanced motion compensation modes. such as four 8 x 8 motion vector

compensation and overlapped motion compensation, have to be handled. Another issue of motion

compensation in MPEG-4 is raised by VOP—based coding. To perform motion-compensated pre-

diction on a VOP basis. a special padding technique is used for each of macroblock that lies on

the shape boundary of the VCR The padding process defines the values of pixels, which are located
outside the VOP for prediction of arbitrarily shaped objects. Padding for luminance pixels and
chrominance pixels is defined in the standard (ISOHEC, 1998a). The additional decoding issues

Reconstructed VOP

Invarse
DC MC

Prediction 
  Motion

Compensation

FIGURE 18.18 BIOCk diagram of texture decoding.
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which are special l'oi‘ MPEG-4 include sprite decoding. generalized scalable decoding. and still
texture decoding. We do not go into further detail for these topics. Interested readers can get detail
t'roin the standard documents. The outputs of decoded results are the reconstructed VOPs that are
linally sent to tltc compositor. In the compositor. the VOPs are recursively blended in the order
specified by the VOP composition order. it should be noted that the decoders could take advantage
ofobject-hascd decoding. They are able to be flexible in the composition of the reconstructed VOPs
such as i'eallocating. rotation. or other editing actions.

18.6 SUMMARY

in this chapter. the new video-coding standard. MPEG-4 is introduced. The unique l'et-tture of
MPEG-4 video is content-trasctt coding. This feature allows the MPEG-4 to provide much l‘une-
tionality. which other video-coding standards do not have. The key technologies used in MPEG-4

video are described. These technoli'igics provide basic tools for MPEG-4 video to Provide object-
hased coding functionality. Finally. tltc video vcnlicalion model, a platform ol‘ MPEG«4 develop-
ment and an encoding and decoding example. is described.

18.7 EXERCISES

13-1. Why is oluect- or content-hosed coding the most important feature 0|. MPEG-4 visual

coding standard.J Describe several applications for this feature.

18-2. What are the new coding iiiiols in MPEG-4 visual coding that are different from MPEG-2

Video Coding? ls MPEG-4 backward compatible with MPEG-2?

18-3. MPEG-4 video codinu has the feature of using either a 16 X I6 block motion vector or

an 8 x 8 block motion vector. For what kind of video sequences will the 8x 8 block
motion increase coding el'liciency'? For what kind of video sequences will the 8 x 3

block. motion compensation decrease the coding efficiency? '
“5-4. What approaches tor error resilience are supported by the MPEG-4 syntax? Make a

comparison with the error resilience method adOpted in MPEG-2 (SUPPOFIEd by MPEG-2

syntax ). and indicate their relative advantages and disadvantages. _ .
18-5. Design an arithmetic coder For zerotree coding and write a program to test it Wlll't several

images. ‘ ‘

13-6. The Sprite is a new feature ot'MPEG-4 video coding. MPEG—4 speciheslthe syntax ‘for
sprite coding. but does not give any detail about how to generate a sprite. Conduct a
project to generate an off-line sprite tor a video sequence and USP- ” for COdlng the "dc“
Sequence. Do you observe any increased coding ethCiency? When do you expect to see
such an increase?

18-7. Shape coding (binary-shape coding) is an important part of MPEG-4 due to ?bj53l'b3§ed
coding. Besides the shape coding method used in MPEG-4. name another s tape co mg
method. Conduct a project to compare the method you know with the method proposed
in MPEG-4, (Do not expect to get better performance. but expect to reduce the complexity.)
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