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1. My name is Jacob Robert Munford. I am over the age of 18, have personal 

knowledge of the facts set forth herein, and am competent to testify to the 

same. 

 

2. I earned a Master of Library and Information Science (MLIS) from the 

University of Wisconsin-Milwaukee in 2009. I have over ten years of 

experience in the library/information science field. Beginning in 2004, I 

have served in various positions in the public library sector including 

Assistant Librarian, Youth Services Librarian and Library Director. I have 

attached my Curriculum Vitae as Appendix A. 

 

3. During my career in the library profession, I have been responsible for 

materials acquisition for multiple libraries. In that position, I have cataloged, 

purchased and processed incoming library works. That includes purchasing 

materials directly from vendors, recording publishing data from the material 

in question, creating detailed material records for library catalogs and 

physically preparing that material for circulation. In addition to my 

experience in acquisitions, I was also responsible for analyzing large 

collections of library materials, tailoring library records for optimal catalog 
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search performance and creating lending agreements between libraries 

during my time as a Library Director.  

 

4. I am fully familiar with the catalog record creation process in the library 

sector. In preparing a material for public availability, a library catalog record 

describing that material would be created. These records are typically 

written in Machine Readable Catalog (herein referred to as MARC) code 

and contain information such as a physical description of the material, 

metadata from the material’s publisher and date of library acquisition. In 

particular, the 008 field of the MARC record is reserved for denoting the 

creation of the library record itself. As this typically occurs during the 

process of preparing materials for public access, it is my experience that an 

item’s MARC record accurately indicates the date of an item’s public 

availability. 

 
5. I have reviewed Exhibit SEL2004, a book by John F. Wager entitled 

Transparent Electronics published by Springer in 2008.  

 

6. Attached hereto as Appendix WA01 is a true and correct copy of scans of 

the cover, publishing data, title page and table of contents for Transparent 
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Electronics from the University of Pittsburgh. I secured these scans from the 

library’s onsite holdings. 

 

7. In comparing Appendix WA01 to Exhibit SEL2004, it is my determination 

that Exhibit SEL2004 is a true and correct copy of Transparent Electronics 

by John F. Wager. 

 

8. Attached hereto as Appendix WA02 is a true and correct copy of the MARC 

record for Transparent Electronics from the University of Pittsburgh’s 

library. I secured this record from the library’s online catalog. 

 

9. The 008 field of Transparent Electronics MARC record included in 

Appendix WA02 indicates that Transparent Electronics was first recorded 

by University of Pittsburgh as of June 19, 2008. Based on this information, it 

is my determination that Transparent Electronics would have been made 

accessible and publicly available soon after it was received on June 19, 

2008. 

 
10. I have reviewed Exhibit SEL2008, a book by S.M. Sze entitled Physics of 

Semiconductor Devices published by Wiley in 1981.  
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11. Attached hereto as Appendix SZ01 is a true and correct copy of scans of the 

cover, publishing data, title page and table of contents for Physics of 

Semiconductor Devices from the University of Pittsburgh. I secured these 

scans from the library’s onsite holdings. 

 

12. In comparing Appendix SZ01 to Exhibit SEL2008, it is my determination 

that Exhibit SEL2008 is a true and correct copy of Physics of Semiconductor 

Devices by S.M. Sze. 

 

13. Attached hereto as Appendix SZ02 is a true and correct copy of the MARC 

record for Physics of Semiconductor Devices from the University of 

Pittsburgh’s library. I secured this record from the library’s online catalog. 

 

14. The 008 field of Physics of Semiconductor Devices MARC record included 

in Appendix SZ02 indicates that Physics of Semiconductor Devices was first 

recorded by University of Pittsburgh as of January 26, 1981. Based on this 

information, it is my determination that Physics of Semiconductor Devices 

would have been made accessible and publicly available soon after it was 

received on January 26, 1981. 
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15. I have reviewed Exhibit SEL2009, a book by Jean-Pierre Colinge entitled 

Physics of Semiconductor Devices published by Springer in 2006.  

 

16. Attached hereto as Appendix CO01 is a true and correct copy of scans of the 

cover, publishing data, title page and table of contents for Physics of 

Semiconductor Devices from Carnegie-Mellon University. I secured these 

scans from the library’s onsite holdings. 

 

17. In comparing Appendix CO01 to Exhibit SEL2009, it is my determination 

that Exhibit SEL2009 is a true and correct copy of Physics of Semiconductor 

Devices by Jean-Pierre Colinge. 

 

18. Attached hereto as Appendix CO02 is a true and correct copy of the MARC 

record for Physics of Semiconductor Devices from Carnegie-Mellon 

University’s library. I secured this record from the library’s online catalog. 

 

19. The 008 field of Physics of Semiconductor Devices MARC record included 

in Appendix CO02 indicates that Physics of Semiconductor Devices was first 

recorded by Carnegie-Mellon University as of January 19, 2006. Based on 

this information, it is my determination that Physics of Semiconductor 
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Devices would have been made accessible and publicly available soon after 

it was received on January 19, 2006. 

 
20. I have reviewed Exhibit SEL2010, a book edited by John Daintith entitled A 

Dictionary of Chemistry published by Oxford University Press in 2008.  

 

21. Attached hereto as Appendix DA01 is a true and correct copy of scans of the 

cover, publishing data, title page and table of contents for A Dictionary of 

Chemistry from the Carnegie Library of Pittsburgh. I secured these scans 

from the library’s onsite holdings. 

 

22. In comparing Appendix DA01 to Exhibit SEL2010, it is my determination 

that Exhibit SEL2010 is a true and correct copy of A Dictionary of 

Chemistry by John Daintith. 

 

23. Attached hereto as Appendix DA02 is a true and correct copy of the MARC 

record for A Dictionary of Chemistry from the Carnegie Library of 

Pittsburgh’s library. I secured this record from the library’s online catalog. 

 

24. The 008 field of A Dictionary of Chemistry MARC record included in 

Appendix DA02 indicates that A Dictionary of Chemistry was first recorded 
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by the Carnegie Library of Pittsburgh as of June 26, 2008. Based on this 

information, it is my determination that A Dictionary of Chemistry would 

have been made accessible and publicly available soon after it was received 

on June 26, 2008. 

 

25. I have reviewed Exhibit SEL2011, a book entitled McGraw-Hill Dictionary 

of Scientific and Technical Terms published by McGraw-Hill in 2002.  

 

26. Attached hereto as Appendix MC01 is a true and correct copy of the MARC 

record for McGraw-Hill Dictionary of Scientific and Technical Terms from 

George Mason University’s library. I secured this record from the library’s 

online catalog. 

 

27. In comparing the description included within the MARC record of Appendix 

MC01 to Exhibit SEL2011, it is my determination that Exhibit SEL2011 is a 

true and correct copy of McGraw-Hill Dictionary of Scientific and Technical 

Terms. 

 

28. The 008 field of McGraw-Hill Dictionary of Scientific and Technical Terms  

MARC record included in Appendix MC01 indicates that McGraw-Hill 
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Dictionary of Scientific and Technical Terms was first recorded by George 

Mason University as of June 19, 2002. Based on this information, it is my 

determination that McGraw-Hill Dictionary of Scientific and Technical 

Terms would have been made accessible and publicly available soon after it 

was received on June 19, 2002. 

 
29.  I have been retained on behalf of the Patent Owner to provide assistance in 

the above-illustrated matter in establishing the authenticity and public 

availability of the documents discussed in this declaration. I am being 

compensated for my services in this matter at the rate of $100.00 per hour 

plus reasonable expenses. My statements are objective, and my 

compensation does not depend on the outcome of this matter. 

 

30. I declare under penalty of perjury that the foregoing is true and correct. I 

hereby declare that all statements made herein of my own knowledge are 

true and that all statements made on information and belief are believed to 

be true; and further that these statements were made the knowledge that 

willful false statements and the like so made are punishable by fine or 

imprisonment, or both, under Section 1001 of Title 18 of the United States 

Code. 
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Dated: 12/5/18  
 

    
 
Jacob Robert Munford 
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Appendix A - Curriculum Vitae

Education

University of Wisconsin-Milwaukee - MS, Library & Information Science, 2009
Milwaukee, WI

● Coursework included cataloging, metadata, data analysis, library systems, 
management strategies and collection development.

● Specialized in library advocacy and management.

Grand Valley State University - BA, English Language & Literature, 2008
Allendale, MI

● Coursework included linguistics, documentation and literary analysis.
● Minor in political science with a focus in local-level economics and 

government.

Professional Experience

Library Director, February 2013 - March 2015
Dowagiac District Library
Dowagiac, Michigan

● Executive administrator of the Dowagiac District Library. Located in 
Southwest Michigan, this library has a service area of 13,000, an annual 
operating budget of over $400,000 and total assets of approximately 
$1,300,000.

● Developed careful budgeting guidelines to produce a 15% surplus during the 
2013-2014 & 2014-2015 fiscal years.

● Using this budget surplus, oversaw significant library investments including 
the purchase of property for a future building site, demolition of existing 
buildings and building renovation projects on the current facility.

● Led the organization and digitization of the library's archival records.
● Served as the public representative for the library, developing business 

relationships with local school, museum and tribal government entities.
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● Developed an objective-based analysis system for measuring library services 
- including a full collection analysis of the library's 50,000+ circulating 
items and their records.

 
November 2010 - January 2013
Librarian & Branch Manager, Anchorage Public Library
Anchorage, Alaska

● Headed the 2013 Anchorage Reads community reading campaign including 
event planning, staging public performances and creating marketing 
materials for mass distribution.

● Co-led the social media department of the library's marketing team, drafting 
social media guidelines, creating original content and instituting long-term 
planning via content calendars.

● Developed business relationships with The Boys & Girls Club, Anchorage 
School District and the US Army to establish summer reading programs for 
children.

June 2004 - September 2005, September 2006 - October 2013
Library Assistant, Hart Area Public Library
Hart, MI

● Responsible for verifying imported MARC records and original MARC 
cataloging for the local-level collection as well as the Michigan Electronic 
Library.

● Handled OCLC Worldcat interlibrary loan requests & fulfillment via 
ongoing communication with lending libraries. 

Professional Involvement

Alaska Library Association - Anchorage Chapter
● Treasurer, 2012

Library Of Michigan
● Level VII Certification, 2008
● Level II Certification, 2013
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Michigan Library Association Annual Conference 2014 
● New Directors Conference Panel Member

Southwest Michigan Library Cooperative
● Represented the Dowagiac District Library, 2013-2015

Professional Development

Library Of Michigan Beginning Workshop, May 2008
Petoskey, MI

● Received training in cataloging, local history, collection management, 
children’s literacy and reference service.

Public Library Association Intensive Library Management Training, October 2011
Nashville, TN

● Attended a five-day workshop focused on strategic planning, staff 
management, statistical analysis, collections and cataloging theory.

Alaska Library Association Annual Conference 2012 - Fairbanks, February 2012
Fairbanks, AK

● Attended seminars on EBSCO advanced search methods, budgeting, 
cataloging, database usage and marketing.
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2 1 Introduction 

ent electronics ‘killer apps’ are admittedly either not yet well-defined or
are presently unrealizable due to current limitations in transparent electron-
ics or in a requisite auxiliary technology. However, this topical ordering
inversion is meant to be intentionally provocative. Since transparentelec-
tronics is a nascent technology, we believe that its development will be
most rapidly and efficiently accomplished if it is strongly application-
driven, and if it is undertaken in a parallel fashion in which materials, de-
vices, circuits, and system development are pursued concurrently. Hope-
fully, such a product-driven concurrent developmentstrategy will lead to
rapid technology assessment, the identification of new and most-likely un-
expected applications, and an expeditious commercial deploymentof this
technology.

1.2 Pre-history

Two primary technologies which preceded and underlie transparent elec-
tronics are briefly overviewed. These topics are transparent conductive
oxides (TCOs)and thin-film transistors (TFTs).

1.2.1 Transparent conducting oxides (TCOs)

TCOsconstitute an unusual class of materials possessing two physical
properties - high optical transparency and high electrical conductivity -
that are generally considered to be mutually exclusive (Hartnagel etal.
1995). This peculiar combination of physical properties is only achievable
if a material has a sufficiently large energy band gap so that it is non-
absorbing ortransparent to visible light, i.e., > ~3.1 eV, and also possesses
a high enough concentration of electrical carriers, i.e., an electron or hole
concentration > ~10'? cm”, with a sufficiently large mobility, > ~1 cm? V"
's' that the material can be considered to be a ‘good’ conductorof elec-
tricity.

The three most common TCOsare indium oxide In2O3;, tin oxide SnO;,
and zinc oxide ZnO, the basic electrical properties of which are summa-
rized in Table 1.1. All three of these materials have band gaps abovethat
required for transparencyacrossthe full visible spectrum.

Note that although the TCOs listed in Table 1.1 are considered to be
‘good’ conductors from the perspective of a semiconductor, they are actu-
ally very poor conductors compared to metals. For example, the conduc-
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1.2 Pre-history 3

tivities of tungsten W, aluminum Al, and copper Cu, are approximately
100,000, 350,000, and 600,000 S cm", indicating that the best In.O; con-
ductivity (for indium tin oxide or ITO) is about a factor of 10 to 60 lower
than that of a typical integrated circuit contact metal. The low conduc-
tance of TCOs compared to metals has important consequences for both
TCO andtransparent electronics applications, some of which are explored
in this book. The theoretical absolute limit of the conductivity for a TCO
has been estimated to be 25,000 S cm" (Bellingham 1992).

Table 1.1. Electrical properties of common transparent conducting oxides
(TCOs) Conductivities reported are for best-case polycrystalline films.

 

Material Bandgap Conductivity Electron Mobility
(eV) (S cm’) concentration (cm? V"!
eeIn,0; 3.75 10,000 se 35

ZnO 3.35 8,000 >107! 20
SnO, 3.6 5,000 >107° 15

Returning to Table 1.1, notice thatall three of the TCOs includedin this
table are n-type, i.e., conductivity is a consequence of electron transport,
and that the electron carrier concentration is strongly degenerate,1.e., the
electron density exceeds that of the conduction effective band density of
states by an appreciable amount (Pierret 1996; Sze and Ng 2007). All of
the well-known and commercially relevant TCOsare n-type. p-type TCOs
are a relatively new phenomenon andtheir conductivity performance is
quite poor comparedto that of n-type TCOs. To a large extent, the poor
conductivity of p-type TCOsis due to the very low mobility of these mate-
rials, typically less than ~1 cm? V"'s', compared to mobilities in the range
of ~10-40 cm? V's"! for n-type TCOs.

The n-type mobilities indicated in Table 1.1 are quite small compared to
those representative single crystal silicon materials and devices, which
range from ~250-1,500 cm? V's! However,this mobility comparison be-
tween TCOsandsingle crystal silicon is a bit misleading since single crys-

tal silicon mobility is not usually specified at doping concentrations as
large as those typical of TCOs. In fact, it is reported that single mnsilicon mobility is independent of doping concentration above ~10'? cm*
ii an electron mobility of ~90 cm? V's"! and a hole mobility of ~50 cm?“'s' (Baliga 1995). A low mobility at high carrier concentrationsis, to afaeee extent, a consequence of intense ionized impurity scattering associ-
ated with high doping concentrations (Hartnagel et al.1995).

26



27

SY ECHO 

DATE DUE

 



APPENDIX WA02 

IPR2018-01405 

28

APPENDIX WA02

IPR2018-01405



29

11/28/2018 Staff Info

a‘ ,T | CCat E-7 Borrow Help
Niel) 4 Find Articles Other Libraries
nae 

Online Catalog of the University of Pittsburgh Libraries Ask Us Library Home Page

Search —e Edit Search Getit! My Account

Search Request: Title = transparent electronics

Search Results: Displaying 1 of 3 entries

Next

Briefinfo Detailedinfo Staff Info|

Transparent electronics John F. Wager, Douglas A. Keszler, Rick E. Presley.

000 04337cam a22003617a 450

001 6586590

005 20170413163643.0

006 md

007 crn

008 080619s2008 nyua sb 001 0 engd

015 __ Ja GBA774913 |2 bnb

015 __ Ja 07,N30,1209 |2 dnb

016 7_ Ja 013950172 |2 Uk

016 7_ |a 984808140 |2 DE-101

020 __ Ja 9780387723419 (hbk. : acid-free paper)

020 __ |a 0387723412 (hbk. : acid-free paper)

035 __ Ja (WaSeSS)ssj0000261722

040 __ Ja UKM Jc UKM |d YDXCP|d BTCTA |d BAKER|d ORE |d OHX |d CUS |d VLB |d DEBSZ |d HDC Jd OCLCO |d
DLC Jd WaSeSS

042 __ |a Iccopycat

050 00 |a TK7835 |b .W284 2008

082 04 Ja 621.38152 |2 22

100 1_ |a Wager, John F. |q (John Fisher)

245 10 |a Transparent electronics |h [electronic resource] / |c John F. Wager, Douglas A. Keszler, Rick E. Presley.

260 __ |a NewYork : |b Springer, |¢ c2008.

300 __ Ja viii, 212 p. ; [bill. ; Jc 24 cm.

504 ___ |a Includes bibliographical references (p. [189]-208) and index.

505 00 |g 1.1 [t A technology in a hurry |g 1 -- |g 1.2 |t Pre-history |g 2 -- |g 1.2.1 |t Transparent conducting oxides
(TCOs) |g 2 -- |g 1.2.2 |t Thin-film transistors (TFTs) |g 5 -- |g 1.3 |t The stage is now set |g 8 -- |g2 [tA
Review of Prior Work |g 9 -- |g 2.1 |t Origins |g 9 -- |g 2.1.1 |t Transparent electronics -- 2003 |g 13 -- |g 2.1.2
|t Transparent electronics -- 2004 |g 17 -- |g 2.1.3 |t Transparent electronics -- 2005 |g 25 -- |g 2.1.4 |t
Transparentelectronics -- 2006 |g 30 -- |g 2.2 |t Perspective & Outlook |g 37 -- |g 3 |t Applications |g 39 -- |g
3.1 |t Looking into a crystal ball |g 39 -- |g 3.2 |t A technology appraisal |g 39 -- |g 3.3 |t An application
smorgasbord |g 44 -- |g 3.4 |t Applications in retrospective |g 56 -- |g 4 |t Materials |g 57 -- |g 4.1 |t Device
components |g 57 -- |g 4.2 |t n-type semiconductor channel materials |g 58 -- |g 4.3 |t Amorphous oxide
semiconductors |g 67 -- |g 4.4 |t p-type semiconductors |g 71 -- |g 4.4.1 |t Copper oxides and chalcogenides |g

https://pittcat. pitt.edu/cgi-bin/Pwebrecon.cgi?v3=1 &ti=1,1&SEQ=20181128171734&Search%5FArg=transparent%20electronics&Search%5FCode=TA... 1/2

29



30

11/28/2018 Staff Info

71 -- |g 4.4.2 |[t Rhodium oxides |g 76 -- |g 4.4.3 |t Nanomaterials |g 77 -- |g 4.4.4 |t Prospects for p-type
semiconductors in transparent electronics |g 77 -- |g 4.5 |t Dielectrics |g 78 -- |g 4.5.1 |t Gate dielectrics |g 78 --
|g 4.5.2 |t Interlevel dielectrics |g 82 -- |g 5 |t Devices |g 83 -- |g 5.1 |t Transparent electronics devices |g 83 --
|g 5.2 |t Passive, linear devices |g 84 -- |g 5.2.1 |t Resistors |g 84 -- |g 5.2.2 |t Capacitors |g 87 -- |g 5.2.3 |t
Inductors |g 89 -- |g 5.3 |[t Two-terminal devices |g 91 -- |g 5.3.1 |t pn junctions |g 91 -- |g 5.3.2 |t Schottky
barriers |g 94 -- |g 5.3.3 |[t Heterojunctions |g 102 -- |g 5.3.4 |t Metal-insulator-semiconductor (MIS) capacitors
Ig 105 -- |g 5.4 |t Transparent thin-film transistors (TTFTs) |g 110 -- |g 5.4.1 |t Ideal behavior |g 111 -- Jg 5.4.2
|t Non-ideal behavior |g 115 -- |g 5.4.3 |t Device stability |g 138 -- |g 5.4.4 |t Alternative TTFT device types |g
144 -- |g 5.5 |t Alternative transistors |g 148 -- |g 6 |t Transparent Circuits |g 153 -- |g 6.2 |t Exemplary
transparentcircuit process flow |g 153 -- |g 6.2.1 |t Transparentring oscillator process flow |g 153 -- |g 6.3 |t
Exemplary transparentcircuits |g 160 -- |g 6.3.1 |t Transparent inverters and ring oscillators |g 160 -- |g 6.3.2 |t
Full-waverectifier |g 163 -- |g 6.3.3 |t Level-shifting circuits |g 164 -- |g 6.3.4 |t AMLCD transparent switch |g
165 -- |g 6.3.5 |t AMOLED backplane |g 168 -- |g 6.3.6 |t Transparent charge-coupled devices (CCDs) |g 178 --
|g 6.4 |t Barely scratching the surface |g 182 -- |g 7 |t The Path Forward |g 183.

520 __ Ja "Transparent electronics is an emerging technology that employs wide band-gap semiconductors for the
realization of invisible circuits. This monograph providesthe first roadmap for transparent electronics, identifying
wherethefield is, where it is going, and what needs to happen to moveit forward. Although the central focus of
this monographinvolves transparent electronics, many of the materials, devices, circuits, and process-integration
strategies discussed herein will be of great interest to researchers working in other emerging fields of
optoelectronics and electronics involving printing, large areas, low cost, flexibility, wearability, and fashion and
design." - Back cover.

650 _0 |a Transparentelectronics.

700 1_ |a Keszler, Douglas A., |d 1957-

700 1_ Ja Presley, Rick E.

856 40 |z Pitt users please click through to access via SpringerLink ebooks - Chemistry and Materials Science (2008) |u
http://pitt.idm.oclc.org/login?url=https://link.springer.com/openurl?genre=book&isbn=978-0-387-72341-9

920 __ |a Serials Solutions Ebook

Next >

Print/Save/Email

Select Download Format) ¥||Print or Save || Save Search to My Account

Enter your email address:

Save results for later: | Save to Bookbag |
 

Back To

Search Titles Edit Search Getit! My Account

https://pittcat. pitt.edu/cgi-bin/Pwebrecon.cgi?v3=1 &ti=1,1&SEQ=20181128171734&Search%5FArg=transparent%20electronics&Search%5FCode=TA... 2/2

30



APPENDIX SZ01 

IPR2018-01405 

31

APPENDIX SZ01

IPR2018-01405



32

 

 

 

R13-M15-S$10-T@s
31735020957886

CAAA
HillmanLibrary- Ask at Hilla

Request IDi 4a6777P

Title: Physics of semiconductor devie

MUNFORD, JACOB R
ULSertsyB
216062¢00359535
Req. Date:

 

Do Not RemoveThis Wrapper

© University of Pittsburgh
University Library System

Storage
Facility

CIRCULATING
CIRCULATING
CIRCULATING —
LIRCULATINGafayer  fay filby

32



33

rots(Stna
aUTHONUCCa

Naee

Myer

SLEWP Fes Bow

TK/871.85

Seize

ered

 
33



34

1735 020 957 886

 



35

BEVIER ENCUEERING LIBRARY

 
35



36

_Physics of
Semiconductor Devices

SECOND EDITION

S. M. Sze
Bell Laboratories, Incorporated
Murray Hill, New Jersey

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS

New York « Chichester « Brisbane » Toronto « Singapore

 
36



37

Copyright © 1981 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.
Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owneris unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:
Sze, S. M., 1936-

Physics of semiconductor devices.

“A Wiley-Interscience publication.”
Includes index.

1. Semiconductors,I. Title.

TK7871.85.S988 1981 537.6°22 81-213
ISBN 0-471-05661-8 AACR2
Printed in the United States of America
10

37

Setdomme~
GPEX

-

S42-3



38

 To My Wife



39

 

BehetoGeA34fhFpa-



40

 

_ Contents

INTRODUCTION

PART | SEMICONDUCTOR PHYSICS

i @ Chapter 1 Physics and Properties of Semiconductors—
A Résumé

| 1.1. Introduction, 7
1.2 Crystal Structure, 8
1.3 Energy Bands, 12
1.4 Carrier Concentration at Thermal Equilibrium, 16

; 1.5 Carrier Transport Phenomena,27
1.6 Phonon Spectra and Optical, Thermal, and

: High-Field Properties of Semiconductors, 381.7 Basic Equations for Semiconductor Device
E Operation, 50

|

. PART li BIPOLAR DEVICES
)

Chapter 2 p-n Junction Diode

2.1. Introduction, 63

2.2 Basic Device Technology, 64
2.3 Depletion Region and Depletion Capacitance, 74
2.4 Current-Voltage Characteristics, 84
2.5 Junction Breakdown, 96
2.6 Transient Behavior and Noise, 108
2.7. Terminal Functions, 112

2.8 Heterojunction, 122

40

61

63

4

 



41

 Contents

Chapter 3 Bipolar Transistor 133

Introduction, 133

Static Characteristics, 134
Microwave Transistor, 156
PowerTransistor, 169
Switching Transistor, 175
Related Device Structures, 181

Chapter 4 Thyristors 190

4.1

4.2

4.3
4.4

4.5

4.6
4.7

PARE Il

Introduction, 190

Basic Characteristics, 191

Shockley Diode and Three-Terminal Thyristor, 209
Related Power Thyristors, 222
Diac and Triac, 229

Unijunction Transistor and Trigger Thyristors, 234
Field-Controlled Thyristor, 238

UNIPOLAR DEVICES 243

hapter 5 Metal-Semiconductor Contacts 245

Introduction, 245

Energy-Band Relation, 246
Schottky Effect, 250
Current Transport Processes, 254
Characterization of Barrier Height, 270
Device Structures, 297
Ohmic Contact, 304

Chapter6 JFET and MESFET 312

Introduction, 312

Basic Device Characteristics, 314
General Characteristics, 324
Microwave Performance, 341
Related Field-Effect Devices, 351

Chapter 7 MIS Diode and CCD 362

Introduction, 362
Ideal MIS Diode, 363
Si-SiOz MOS Diode, 379
Charge-Coupled Device, 407

41



42

eo. =

Contents xi

Chapter8 MOSFET 431

8.1 Introduction, 431 s
8.2 Basic Device Characteristics, 433
8.3. Nonuniform Doping and Buried-Channel Devices, 456
8.4 Short-ChannelEffects, 469
8.5 MOSFETStructures, 486
8.6 Nonvolatile Memory Devices, 496

PART IV SPECIAL MICROWAVE DEVICES 511

Chapter 9 Tunnel Devices 513

9.1 Introduction, 513
9.2 Tunnel Diode, 516
9.3. Backward Diode, 537
9.4 MIS Tunnel Diode, 540
9.5 MIS Switch Diode, 549
9.6 MIM Tunnel Diode, 553

Tunnel Transistor, 558ba~

Chapter 10 IMPATT and Related Transit-Time Diodes 566

10.1 Introduction, 566
10.2 Static Characteristics, 568
10.3 Dynamic Characteristics, 577
10.4 Power and Efficiency, 585
10.5 Noise Behavior, 599
10.6 Device Design and Performance, 604
10.7 BARITT and DOVETTDiodes, 613
10.8 TRAPATT Diode, 627

Chapter11 Transferred-Electron Devices 637

11.1. Introduction, 637
11.2 Transferred-Electron Effect, 638
11.3. Modes of Operation, 651
11.4 Device Performances, 667

PART V PHOTONIC DEVICES 679

Chapter 12 LED and Semiconductor Lasers 681

12.1. Introduction, 681
12.2 Radiative Transitions, 682

42



43

 

xii Contents

12.3. Light-Emitting Diodes, 689
12.4 Semiconductor Laser Physics, 704
12.5 Laser Operating Characteristics, 724

Chapter 13 Photodetectors 743

13.1. Introduction, 743

13.2 Photoconductor, 744

13.3. Photodiode, 749
13.4 Avalanche Photodiode, 766

13.5 Phototransistor, 782

Chapter 14 Solar Cells 790

14.1. Introduction, 790
14.2 Solar Radiation and Ideal Conversion Efficiency, 791
14.3. p-n Junction Solar Cells, 799
14.4 Heterojunction, Interface, and Thin-Film Solar Cells, 816
14.5 Optical Concentration, 830

APPENDIXES 839

List of Symbols, 841
International System of Units, 844
Unit Prefixes, 845

Greek Alphabet, 846
Physical Constants, 847
Lattice Constants, 848

Properties of Important Semiconductors, 849
Properties of Ge, Si, and GaAs at 300K, 850
Properties of SiO2 and Si3N, at 300K, 851

-roOnmoomp
INDEX 853

43



44

 
Heterojunction, Interface, and Thin-Film Solar Celis 819

be efficiently converted in the low-gap semiconductor. Figure 23 shows the
normalized spectral responses of several Ga;_,Al,As—GaAssolarcells,all
having the same junction depths and doping levels. As the composition x
increases, the bandgap E,, increases; therefore, the spectral response extends
to higher photon energies.

Oneinteresting heterojunction solar cell is the conducting glass—semi-
conductor heterojunction. The conducting glasses include oxide semicon-
ductors, such as indium oxide (In,Os, with E, = 3.5eV and electron affinity
x = 4.45 eV), tin oxide (SnO2, with E, =3.5eV and electron affinity x =
4.8 eV), and the indium tin oxide (ITO, a mixture of In,O; and SnO2, with
E, = 3.7 eV and electron affinity x = 4.2 to 4.5eV). These oxide semicon-
ductors in thin-film form have the unique properties of good electrical
conductivity and high optical transparency. They serve not only as part of
the heterojunction butalso as an antireflection coating.

The energy-band diagrams for an ITO/Si solar cell are shown” in
the insert of Fig. 24. The top layer is an n-type 4000 A ITO with
5 x 10-* Q-cm andthe substrate is a 2 Q-cm p-typesilicon. The curves in Fig.
24 near 1 mA/cm’are all parallel to each other. The slope d(n Jy/dV is about
24V~' independent of temperature. This slope suggests a multistep tunnel
processin this heterojunction. Conversionefficiencies in the 12 to 15% range

Ip(A/em?)
FORWARD BIAS
 

0 02 04 a6 08
Ve (VOLTS)

Fig. 24 Current-voltage characteristics of a !TO-Si heterojunction. The insert showsthe
band diagram under forward bias. (After Sites, Ref. 29.)
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1. Energy Band Theory 15

___N__ Nfatbh) Le
T Dnatb 5 Babee on (1432)

In the case of a three-dimensional crystal, energy band calculations are, of
course, much more complicated, but the essential results obtained from
the one-dimensional calculation still hold. In particular, there exist
permitted energy bands separated by forbidden energy gaps. The 3-D
volumeofthe first Brillouin zone is 8723N/V, where V is the volumeof the
crystal, the number of wave vectors is equal to the number of elementary
crystal lattice cells, N. The density of wave vectors is given by:

u

ali! = density OF = number of k-vectors __NV V
volume of the zone 8n3N  8n3

 

1.1.4. Valence band and conduction band

Chemical reactions originate from the exchange of electrons from the
outer electronic shell of atoms. Electrons from the most inner shells do
not participate in chemical reactions because of the high electrostatic
attraction to the nucleus. Likewise, the bonds between atomsin a crystal,
as well as electric transport phenomena, are due to electrons from the
outermost shell. In terms of energy bands, the electrons responsible for
forming bonds between atoms are found in the last occupied band, where
electrons have the highest energy levels for the ground-state atoms.
However, there is an infinite number of energy bands. The first (lowest)
bands contain core electrons such as the Is electrons which are tightly
bound to the atoms. The highest bands contain no electrons. The last
ground-state band which contains electrons is called the valence band,
because it contains the electrons that form the -often covalent- bonds
between atoms.

The permitted energy band directly above the valence band is called the
conduction band. In a semiconductor this band is empty ofelectrons at
low temperature (T=0K). At higher temperatures, some electrons have
enough thermal energy to quit their function of forming a bond between
atoms and circulate in the crystal. These electrons "jump" from the
valence band into the conduction band, where they are free to move. The
energy difference between the bottom of the conduction band and the top
of the valence band is called "forbidden gap" or "bandgap" and is noted
Eg.

In a more general sense, the following situations can occur depending on
the location of the atom in the periodic table (Figure 1.11):

A: The last (valence) energy bandis only partially filled with electrons,
even at T=0K.
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B: The last (valence) energy band is completely filled with electrons at
T=O0K, but the next (empty) energy band overlaps with it (i.e.: an
empty energy band shares a range of common energy values; Ey < 0).

C: The last (valence) energy band is completely filled with electrons and
no empty band overlaps with it (Eg > 0).

In cases A and B,electrons with the highest energies can easily acquire an
infinitesimal amount of energy and jump toaslightly higher permitted
energy level, and move through the crystal. In other words, electrons can
leave the atom and movein the crystal without receiving any energy. A
material with such a property is a metal. In case C,a significant amount
of energy (equal to Eg or higher) has to be transferred to an electron in
order for it to "jump" from the valence band into a permitted energy
level of the conduction band. This means that an electron must receive a

significant amount of energy before leaving an atom and moving "freely"
in the crystal. A material with such properties is either an insulator or a
semiconductor.

 
Figure 1.11: Valence band (bottom) and conduction band in a metal
(A and B) and in a semiconductororan insulator (C).[°]

The distinction between an insulator and a semiconductor is purely
quantitative and is based on the value of the energy gap. In a
semiconductor Eg is typically smaller than 2 eV and room-temperature
thermal energy or excitation from visible-light photons can give
electrons enough energy for "jumping" from the valence into the
conduction band. The energy gap of the most common semiconductors
are: 1.12 eV (silicon), 0.67 eV (germanium), and 1.42 eV (gallium
arsenide). Insulators have significantly wider energy bandgaps: 9.0 eV
(SiO), 5.47 eV (diamond), and 5.0 eV (Si3Nq4). In these materials room-
temperature thermal energy is not large enough to place electrons in the
conduction band.
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computational chemistry 138
 

effect. See also INVERSE COMPTON EF-
FECT.

computational chemistry The
use of computers in chemicalre-
search. With the increase in process-
ing powerofcomputers, calculations
on individual molecules and on
chemical systems have becomeim-
portant tools for research and indus-

trial development. With simple
molecules, predictions can be made
aboutelectronic structure and prop-
erties using *ab-initio calculations.
For more complex molecules *semi-
empirical calculations are used.
Thefield has been particularly ex-
panded by the *density-functional
methodof treating large molecules
and by the availability of software for
analysing molecular behaviour and
structure. See also MOLECULAR MODEL-
LING.

concentrated Describingasolu-
tion thathasa relatively high con-
centration ofsolute.

concentration The quantity of dis-
solved substance per unit quantity of
a solution. Concentration is meas-
ured in various ways. The amount of
substance dissolved per unit volume
of the solution (symbol c) has units of
mol dmor molI’.It is now called

amount concentration (formerly mo-
larity). The mass concentration (sym-
bolp) is the mass of solute per unit
volume of solution.It has units of
kg dm, g cm’, etc. The molality is
the amountof substance per unit
massof solvent, commonly given in
units of mol kg~!. See also MOLE FRAC-
TION.

concentration cell See cE.

concentration gradient (diffusion
gradient) The difference in concen-
tration betweena region ofa solu-
tion or gas that has a high density of
particles and a region that has a rela-

76

tively lower density ofparticles. By
random motion, particles will move
fromthe area of high concentration
towardsthe area of low concentra-
tion, by the process of *diffusion,
until the particles are evenly distrib-
uted in the solution orgas.

concerted reaction A typeof reac-
tion in which thereis only one stage
rather thanaseries of steps. The Sy2
mechanism in *nucleophilic substitu-
tions is an example. See also PERI-
CYCLIC REACTIONS.

condensation The change of a
vapouror gas into a liquid. The
change of phase is accompanied by
the evolution of heat (see LATENT
HEAT).

condensation polymerization
See POLYMER.

condensation pump Sce DIFFU-
SION PUMP,

condensation reaction A chemi-
ca] reaction in which two molecules
combine to form a larger molecule
with elimination of a small mol-
ecule (e.g. HO). See ALDEHYDES; KE-
TONES.

condenser A device used to cool a
vapourto cause it to condense toa
hquid. See LIEBIG CONDENSER.

conducting polymer An organic
polymerthat conducts electricity.
Conducting polymers havea crys-
talline structure in which chains of
conjugated unsaturated carbon-
carbon bondsare aligned. Examples
are polyacetylene and polypyrrole.
There has been considerable interest
in the developmentof such materials
because they would be cheaper and
lighter than metallic conductors.
They do, however, tend to be chemi-
cally unstable and, so far, no com-
mercial conducting polymers have
been developed.
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conductiometric titration A type
of titration in which theelectrical

conductivity of the reaction mixture
is continuously monitored as one
reactant is added. The equivalence
pointis the point at which this
undergoes a sudden change. The
methodis used for titrating coloured
solutions, which cannot be used with
normal indicators.

conduction band Sec ENERGY
BANDS.

conductivity water See DISTILLED
WATER.

Condy’s fluid A mixtureofcal-
cium and potassium permanganates
(manganate(VII)) used as an antisep-
tic.

configuration 1. The arrangement
of atomsor groups in a molecule.
2. The arrangementof electrons
about the nucleus of an *atom.

configuration space The n-dimen-
sional space with coordinates
(41-a.---»Gn) associated with a system

kn ek
eclipsed conformation anti conformation

@ = methyl! group

Conformations of butane (sawhorse projection)

RH R Oo

R *R R R

0 H

eclipsed conformationbisecting conformation

Conformations of R,CHO (Newmanprojection)

conformation 

that has n degrees of freedom, where
the values q describe the degrees of
freedom. For example, in a gas ofN
atoms each atom has three positional
coordinates, so the configuration
space is 3N-dimensional. If the parti-
cles also have internal degrees of
freedom, such as those caused by vi-
bration and rotation in a molecule,
then these mustbe includedin the

configuration space, which is conse-
quently of a higher dimension.See
also STATISTICAL MECHANICS.

conformation Oneofthe very
large numberofpossible spatial
arrangements ofatoms that can be
interconverted by rotation about a
single bond in a molecule. In the case
of ethane, HyC-CHs, one methyl
group can rotate relative to the
other. There are two extremecases.

In one, the C-H bondson one group
align with the C-H bonds on the
other(as viewed along the C-C
bond). This is an eclipsed conforma-
tion (or eclipsing conformation) and
corresponds to a maximum in a

gauche conformation
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