Merrill Communications LLC
d/b/a Merrill Corporation
Exhibit 1005 pt. 11

Quww. o
.

o

g.m«\m

<

Creating macros 734
Editing macros 749
| Troub/eshooting problems with mdcros 758

Creating a startup macro

Using Macros fo
Create Custom Ackions

he easiest way to create a control and
a custom action for that control is to
use the Control Wizards we discussed
in Chapter 19. Adding a hyperlink to a form or report is another easy way to create a
control that performs a simple action like opening a form or report. But as you develop
more sophisticated applications, you’'ll probably want to define custom actions that
are more complex than the actions you can setup with a hyperlink or the Control Wizards.
When you can’t get a Control Wizard to create the exact action you want to per-
form, you can use either of these two alternative techniques to define a custom action:

e (Create a macro
e Write a Visual Basic procedure

Visual Basic requires that you type long strings of commands very, very accurately.
Macros, however, let you define actions using the simpler point-and-click approach.
Unless you already happen to be a Visual Basic whiz, you'll probably find that macros
are by far the quickest and easiest way to define a custom action in your application. In
this chapter we'll focus on macros.

L CHAPTER 20 e USING MACROS TO CREATE CUSTOM ACTIONS

Howw to Create a Macro

The mechanics of creating a macro are fairly straightforward:

1. Click on the Macros tab in the database window.

2. Click on the New button. You're taken to a macro sheet that's tentatively named
Macrol, as in Figure 20.1.

A new, blank
macro sheet.

3. Click on the drop-down list button in the Action column., You'll see a partial list of
possible actions, as below. (You can use the scroll bar, the | key, or type a letter to
scroll down the list.)

AddMenu

i ApplyFilter
Beep
CancelEvent

HOW TO CREATE AMACRO |

4. Choose whichever action best describes what you want the macro to do. For exam-
ple, below we chose OpenReport (an action that will cause the macro to open up a
report in this database). Notice that in addition to the word OpenReport appearing
in the action column, the lower portion of the window shows some action arguments
to be filled in. And the hint box tells us what the selected action will do.

§. Fill in the selections under Action Arguments. For example, below we clicked next
to Report Name and can now use the drop-down list to choose which report we
want the macro to open. Note too that the hint box is now giving us information
that’s specific to the Report Name argument that we're filling in.

Macrol - Macr e

Customer Listing

bles Aging Repart
Sales by Custamer
Sales by Employee

You need to fill in each required argument for your action. You can leave optional
arguments blank if you wish. To determine whether an argument is required or
optional, click on the argument and read the hint box to the right.

o

CHAPTER 20 e USING MACROS TO CREATE CUSTOM ACTIONS

6. (Optional) Click just to the right of the action you chose and type in a plain-English
description of what that action does. Note the comment next to our OpenReport
action below.

A acr1 : Maro
L b | OperReport L Print the Receivables Aging Repory

Receivables Aging Repor
Print

7. Click on the cell just under the action you defined and repeat steps 3 to 8 to define
additional actions for this macro. When the macro is executed, it will perform
every action in your macro, starting with the first and ending with the last. In Fig-
ure 20.2 we've added several actions and comments to our sample macro.

8. Close the macro when you are finished and give it a name. (Choose File » Close or
click the x button in the upper-right corner of the macro sheet window.) You can
choose Yes to save your changes and enter a new, more descriptive name for your
macro.

FIGURE 20.2

A macro with
several actions
defined.

penReport T eceivables Aging Repo
OpenFiepoart i Print the Sales by Customer report next
OpenReport < Print the Sales by Product report nsst
| MsgBox x| Display a message teling the user report printing is done.

DETERMINING WHEN A MACRO PLAYS I73

o the macro appears in the database window whenever the
d our macro PrintThreeReports when clos-
abase window as you can see below:.

The name you assigned t
Macros tab is active. For example, we name
ing it. So now that name appears in the dat

« | B Repots

letermining When a Hacro Plaus

After you've created a macro, your next step is'to determine
form its actions. For example, you might want the macro to play:

when the macro will per-

e As soon as the user clicks ona particular command button on a form

o Right after the user changes the data in some control
o As soon as the user opens a particular form or report

As we'll discuss later, you can also have the macro play when the uset first opens the
database (see “Creating a Macro to Run at Startup” later in this chapter). Or you can
assign the macro to an option in a custom toolbar (Chapter 23) or menu (Chapter 24)
that you've created. Your options for when the macro is triggered are virtually limitless.

For now, let’s just take a look at how you'd assign a macro to a report, form, or a par-

ticular control on a form:

1. In design view, open the form or report that you want to have trigger the macro.

o If you want the form or report as a whole (i.e., open/close the form, open/close the

report) to trigger the macto, choose Edit » Select Form or Edit > Select Report.

738 | CHAPTER 20 » USING MACROS TO CREATE CUSTOM ACTIONS

° If you want a particular control in a form to trigger a macro, select that control
by clicking on it once. (If you haven’t created the control yet, you can do so
right on the spot using the toolbox.)

e If you want a particular section of a form or report to trigger the macro, click
on the section bar in design view.

2. Open the property sheet and click on the Event tab. All the possible events for the
selected form, report, control, or section will appear, as in the example below.

3. Click on the property that you want to have trigger the macro. For example, if
you're assigning the macro to a command button and want the macro to run when
the user clicks on that button, click on the On Click property.

4. Choose the name of the macro you want to execute from the drop-down list that
appears. For example, below we're assigning the PrintThreeReports macro to the
On Click property of a button we created earlier.

[Event Procedure]

hreeReport

And now you're done. It's a good idea to save and close the form at this point, before
you test the macro. Choose File » Close and Yes when asked about saving your changes.

DETERMINING WHEN A MACRO PLAYS [739

Running the Macro

To run the macro, you need to play the role of the user by triggering whatever event
activates the macro. For example, if you assigned the macro to the On Click property of
a command button, you need to open the form (in form view) that holds the button,
then click on that button just as the user would. If you assigned the macro to the On
Open property of a form, all you need to do is open the appropriate form.

You can run a macro simply by chcklng on its name in the database window and then
clicking on the Run button. This technique is fine for testing a macro. But when creat-
ing a custom application, you want the user to have easier access to the macro, which
is the reason that macros are typically attached to command buttons on forms.

All That in a Nutshell

Whether you're an absolute beginner or are accustomed to creating macros in other
products, creating Access macros will probably take some getting used to. Here’s a sum-
mary of the step-by-step instructions for creating a macro and assigning it to an event:

e Click on the Macros tab in the database window and click on New.

s Choose an action from the Action column.
Fill in the required arguments for that action. You can create several actions
within a single macro.

S S B ey

not include a macro recorder to automate the process of defmmg macro actions.

Close and save the macro, giving it a name that will be easy to remember later.
Open the form or report that you want in design view to “trigger” the macro.
Select the control that will trigger the macro (or choose Edit » Select Form or Edit »
Select Report if you want a form or report event to trigger the macro).

Open the property sheet and click on the Event tab.

Click on the specific event that you want to have trigger the macro and then choose
the macro name from the drop-down list that appears.

Close and save the form.

1740 | _CHAPTER 20 « USING MACROS TO CREATE CUSTOM ACTIONS

Once you've done all that, the macro will play every time you trigger the event to
which you assigned the macro. The macro will not run (ever) in design view. You must
open the form in form view or print the report, as a user would, in order to make the
macro play its actions.

Summary of Macro Actions

"Once you understand the mechanics of creating a macro and attaching it to some
event, you still have to work through the mind-boggling stage of figuring out what you
can and can’t do with a macro. To help you sort through the overwhelming number of
possibilities, here’s a summary of every macro action that is available when you click on
the drop-down list in the Action column of the macro sheet.

AddMenu Adds a menu to a custom menu bar (see Chapter 24).

ApplyFilter Applies a filter, query, or SQL WHERE clause to a table, form, or report.
Often used to filter records in the table underlying the form that launched the macro.
You can use the ShowAllRecords action to clear the filter.

Beep Just sounds a beep.

CancelEvent Cancels the event that caused the macro to execute. For example,
if a BeforeUpdate event calls a macro, that macro can test data and then execute a
CancelEvent to prevent the form from accepting the new data.

Close Closes the specified window. Typically used to close a form.

CopyObject Copies the specified object to a different Access database, or to the
same database but with a different name.

DeleteObject Deletes the specified object, or the currently selected object in the
database window if you don’t specify an object.

Echo Hides, or shows, on the screen the results of each macro action as the
macro is running.

FindNext Repeats the previous FindRecord action to locate the next record that
matches the same criterion.

FindRecord Locates a record meeting the specified criterion in the current table
(the table underlying the form that launched the macro).

GoToControl Moves the focus (cursor) to the specified field or control on a form.
GoToPage Moves the focus to the specified page in a multipage form.
GoToRecord Moves the focus to a new record, in relation to the current record
{e.g., Next, Previous, First, Last, New).

Hourglass Changes the mouse pointer to a “wait” hourglass (so the user knows
to wait for the macro to finish its job).

Maximize Expands the active (current) window to full-screen size.

Minimize Shrinks the active (current) window to an icon.

SUMMARY OF MACRO ACTIONS |7

MoveSize Moves and/or sizes the active window to the position and measure-
ment you specify in inches (or centimeters if you've defined that as your unit of
measure in the Windows Control Panel).

MsgBox Displays a message on the screen.

OpenForm Opens the specified form and moves the focus to that form.
OpenModule Opens, in design view, the specified Visual Basic module.
OpenQuery Opens a Select, Crosstab, or Action query. If you use this to run an
Action query, the screen will display the usual warning messages, unless you pre-
cede this action with a SetWarnings action.

OpenReport Prints the specified report or opens it in print preview or design
view. You can apply a filter condition with this action.

OpenTable Opens the specified table in datasheet, design, or print preview view.
OutputTo Exports data in the specified object to HTML (.html), Microsoft
ActiveX Server (.asp), Microsoft Excel (.xls), Microsoft IIS (.htx; .idc), rich text (xtf),
or text (.txt) format.

PrintOut Prints the specified datasheet, form, report, or module.

Quit Exits Microsoft Access.

Rename Renames the specified or selected object.

RepaintObject Performs any pending screen updates or calculations.

Requery Forces the query underlying a specific control to be re-executed. If the
specified control has no underlying query, this action will recalculate the control.
Restore Restores a minimized or maximized window to its previous size.
RunApp Starts another windows or DOS program. That application then runs
in the foreground, and the macro continues processing in the background.
RunCode Runs the specified Visual Basic Function procedure. (To run a Sub pro-
cedure, create a function procedure that calls the Sub and have the macro run
that function.)

RunCommand Performs an Access menu command.

RunMacro Runs a different macro. After that macro has finished its job, execution
resumes in the original macro starting with the action under the RunMacro action.
RunSQL Runs the specified SQL statement.

Save Saves the specified object, or the active object if no other object is spécified.
SelectObject Selects the specified object. That is, this action mimics the act of
clicking on an object to select it.

SendKeys Sends Keystrokes to Access or another active program.

SendObject Includes the specified database object in an e-mail message.
SetMenultem Sets the appearance of a command (e.g., “grayed” or “checked” in
a custom menu. See Chapter 24).

SetValue Sets a value for a control, field, or property. Often used to auto-fill
fields on a form based on some existing data.

'ELCHAPTER 20 » USING MACROS TO CREATE CUSTOM ACTIONS

SetWarnings Hides, or displays, all warning boxes such as those that appear
when you run an action query.

ShowAllRecords Removes an applied filter from the table, query, or form so
that no records are hidden.

ShowToolBar Shows or hides a built-in or custom toolbar (see Chapter 23).
StopAllMacros = Stops all running macros, turns Echo back on (if it was off), and
reinstates warning messages.

StopMacro Stops execution of the currently running macro.

TransferDatabase Imports, exports, or links data in another database.
TransferSpreadsheet Imports, exports, or links data from the specified spreadsheet,
TransferText Imports, exports, or links data from a text file, and can also be used
to export data to a Microsoft Word for Windows mail merge data file.

Keep in mind that you can get much more information about each action right on
your screen. Just select the action and take a look at the hint box. If you need more
information after reading the hint box, press Help (F1).

Executing a Macro Action "If. . .~

You can make any action, or series of actions, in a macro be conditional on some
expressions. For example, suppose you want to create a macro that adds 7.75 percent
sales tax to a total sale but only if the sale is made in the state of California. That is, if
the State field on the current form contains CA, then you want the macro to fill in
another field, named SalesTaxRate, with .0775 and use that value in calculating the
sales tax and total sale. To illustrate this concept, Figure 20.3 shows a sample form with
the appropriate fields, named State, SubT otal, SalesTaxRate, SalesTax, and TotalSale.

Remember that in order to name a field on a form, you need to open the form in
design view. Then click on the field you want to name, open the property sheet,
and click on the All tab. Then fill in the Name property with whatever name you
want to give that field. While you're at it, you can use the Format property to

assign a format, such as Currency or Percent, to fields that will contain numbers.

The last two fields on the form are calculated fields. The ControlSource property for
the SalesTax field contains the expression

= [SalesTaxRate]*[SubTotal]

EXECUTING A MACRO ACTION “IF...

A sample form
containing
fields named
state, SubTotal,
salesTaxRate,
and TotalSale.

Ch Sales Tax Demo ; Foim e

The Control Soutce property for the TotalSale field contains the expression

= [SubTota1]+[Sa1esTax]
ou can create the macro in the normal

e macro, you need to open the Condi-
New) or open (using Design) any
e toolbar or choose View »
tion appears to the left of

After you've created and saved the form, y
ut if you want to use conditions in th
n in the macro sheet. just create (using
n click on the Conditions button in th
e menu bar. A new column titled Condi

mannet. B
tions colum
macro sheet. The
Conditions from th
the existing columns, as in Figure 20.4.

'FIGURE 20.4

The Conditions
column now
visible in the
macro sheet.

k I CHAPTER 20 e USING MACROS TO CREATE CUSTOM ACTIONS

The condition you type in must be an expression that evaluates to either True or
False, usually in the format something = something. For example, the expression

[State] ="CA"

evaluates to True only if the field named State contains exactly the letters CA. If the
field named State contains anything but CA (or is empty) the expression [State] ="CA"
returns False.

AEARE ,m%m@@mww@wmwmﬁéﬁﬁm%m@mm&&%@&mwm
As with other text comparisons in Access, macro conditions are not case-sensitive.
S0 "ca" or "Ca" or "cA" would all match "ca" in this case.

S]

An important point to remember is that the condition you specify affects only the
action immediately to the right of the condition. If the expression proves True, the action
is performed. If the expression proves False, the action is completely ignored. Either way,
execution then resumes at the next action in the macro.

— s
g Ll ad -

You can repeat the condition in a row by typing three periods (...) into the condi-
tion cell immediately beneath the cell that contains the condition. The ... charac-
ters mean “apply the condition above to this action.”

- . "y e
S L T

So let’s create the CASalesTax macro now. For starters, we'll have the macro set the
SalesTaxRate field to zero. Then the next action will check to see if the State field con-
tains CA. If that’s True, that action will put 0.775 into the SalesTaxRate field. The next
actions will use the Repaint-Object command to recalculate the calculated controls
SalesTax and TotalSale. Figure 20.5 shows the completed macro,

Since you can’t see the action arguments for all three macro actions, we've listed
them in Table 20.1 in the order in which they appear in the macro. {Leaving empty the
action arguments for the RepaintObject action causes the entire object, the form in this
example, to be recalculated.)

After creating the macro, you close and save it with whatever name you wish. In this
example we've named the macro CASalesTax.

Finally, you need to decide when to call this macro into action. In this case we need
the macro to recalculate the sales tax in two situations: after the user changes the value
in the State field and after the user changes the value in the SubTotal field.

EXECUTING A MACRO ACTION “IF.." | 745

The CAState # CAStatelax: Macio _
Tax macro.] . ; Comment 0
SelWalue Pt 3 0 in the SalesT axFate fizld

‘Gefalue 1f State is CA, put 0.775 in the SalssTauRate fietd]

| Repaintlbisct How recaloulate the montrals

Sékion Ataun

G alesT axPiate)
0775

ACTION ARGUMENTS

CONDITION ACTION
SetValue Item: [SalesTaxRate]
Expression: 0
SetValue Item:[SalesTaxRate]

[State]="CA”
Expression: 0.0775

RepaintObject

pen the form in design view, click on the State field, open the property sheet,

Soweo
b, and then assign the CASalesTax macro to the AfterUpdate prop-

click on the Event ta
erty for that field, as below:

CHAPTER 20 »

Then we click on the SubTotal field and also set its AfterUpdate property to the
CASalesTax macro.

het |4

¥

CAStateT ax

You can use Ctrl+click to select several controls, and then assign a macro to the
same event on both controfs at the same time,

FIGURE 20.6 o

The macro and 5 CA alesTax Demo - Form
calculated ;

controls auto-
matically display
the correct

Sales TaxRate,
SalesTax, and
TotalSale.

CREATING MACRO GROUPS

g @ H B
The AfterUpdate event is triggered only when you change the contents
and then move to another field.

of a field

Incidentally, the field names and Tips that you see in Figure 20.6 are for your infor-
mation only. They are just labels that have no effect on how the form functions. In
“real life” you wouldn’t have any reason to show that information to a uset.

Creating Macro Groups

A macro sheet can actually contain several macros, each with its own macro name.

Grouping several mactos into a sheet can keep the list of macro names in the database

window from becoming too lengthy and unwieldy. A good way to organize your mactros
is to put all the macros that go with a given form (or report) into a single macro sheet.
That way, you can easily find all the macros that go with a particular form.

We often name our macro sheets for the form that triggers the macros in that sheet.
For example, if we have a form named Customers, we might create a macro sheet named
CustomerFormMacros that contains all the macros used by that form.

Creating a group of macros is a simple process. Just create or Open a macro sheet in
the usual manner. Then click on the Macro Names button in the toolbar ot choose
View » Macro Names. A new column, titled Macro Name, appears to the left of the

existing columns:

L & Macrol: Macio

_ Macra blame Tl Adom . Commant

A macro sheet
containing five
macros named
AddNew,
CalcTax,
CloseAll,
CloseForm, and
PrintForm.,

748 1__CHAPTER 20 ¢ USING MACROS TO CREATE CUSTOM ACTIONS

When adding a macro to the macro sheet, you need to type the macro name into the
leftmost column. Then type in the first condition (if any), action, and comment in
the usual manner. You can add as many actions to the macro as you wish.

Figure 20.7 shows an example with a macro sheet that contains five macros named Add-
New, CalcTax, CloseAl], CloseForm, and PrintForm, Access stops running a macro when
there are no more actions in the group or when it hits the name of another macro. We've
added a blank line between each macro for readability.

: 210 group for & single fon
GaToRacond + Go to hew record

. Setvalue iPut a Oin the SalesT axF ate field
{[State}="CA" - Setvalue LI State is CA, put 0.775 in the SalesT
; RepaintObjsct i Now recalculate the contials

Close Close the form, save autornatically
Buit ‘ Save arwthing elss that's open, and g

loseForm Close . *Close the farm)

it i DoMenuitern Select the cunent fecord
i Printdet) tint the currently selected record

Close and save the macro sheet in the usual manner. For example, let’s say you decide
to name the entire macro sheet MyGroup. Then you can assign macros to events using
the standard technique—that is, open the form or report that will trigger a macro in
design view. Click on the control that will trigger the macro (or choose Edit » Select
Form or Edit » Select Report). Open the property sheet and click on the drop-down list
button for the event that you want to assign a macro to. The drop-down list now shows
the names of all macros within all macro groups in the format macrogroupname.macroname.

For example, we’re about to assign a macro to the On Click property of a control on
a form. Notice that the drop-down list includes the names of all the macros within the
macro group named MyGroup. To choose a specific macro to assign to this event, we
just need to click on the macro’s name. The property sheet will show the macro group
name and macro name in the macrogroupname . macroname format, (e.g., MyGroup.Print Form).

Command Butto 'Pli!FormButton :

EDITING MACROS | 749

Edifing Macros

To edit an existing macro, you just need to reopen the macro sheet. Here’s how:

e If you're at the database window, just click on the Macros tab, click on the name
of the macro (or macro group) you want to edit, and click on the Design button.

o If you're in a form’s (or report’s) design view, and want to edit a macro that
you've already assigned to an event, just open the property sheet, click on the
Event tab, then click on the ... button next to the name of the macro that you
want to edit.

When you use the latter method to open a macro group, you'll be taken to the macro
group in general, not the specific macro that you assigned to the event. But once you're
in the macro sheet, you can easily scroll to the macro that you want to edit.

Changing, Deleting, and Rearranging Macros

Once you're in the macro sheet, you can move, delete, and insert rows using techniques
that are virtually identical to the techniques you use in a datasheet:

1. Select a row by clicking on the row selector at the left edge of the row. Or select several
rows by dragging the mouse pointer through row selectors or by using Shift+Click.
2. Do any of the following:

e To delete the selected row(s), press Delete, or right-click on the selection and
choose Delete Rows, or choose Edit » Delete Rows from the menus.

e To insert a row, press the Insert (Ins) key, or right-click on the selection and
choose Insert Rows, or choose Insert » Rows from the menu bar.

e To move the selected row(s), click on the row selector again, hold down the
mouse button, and drag the selection to its new position.

HE > % u;M i ' m&
If you arrange macros in a macro group in alphabetical order by name, when you
open the macro group you can easily find a specific macro.

o To copy the selection, press Ctrl+C, click on the Copy button, right-click on
the selection and choose Copy, or choose Edit » Copy from the menu bar. The
selection is copied to the Windows Clipboard. You can then use Edit » Paste
(Ctrl+V) to paste the copy into the same or another macro sheet.

o To undo any of the above changes, press Ctrl+Z or click on the Undo button
or choose Edit » Undo.

|_CHAPTER 20 « USING MACROS TO CREATE CUSTOM ACTIONS

Keep in mind that any changes you make to the macro are not saved until you save
the entire macro. If you close the macro without saving it, be sure to choose Yes when
asked about saving your changes.

Hieferring fo Controls from Macros

One of the most common uses of macros is to use the SetValue action to fill in a field
on a form. We used the SetValue action in an earlier example in this chapter to fill in
a field named SalesTaxRate.

When you start to use macros in this way on multiple forms, you need to keep a couple
of very important points in mind:

e When referring to a control on some form other than the form that launched the macro,
you must use the full-identifier syntax (i.e., (Forms]![formname]![controlname]) to
refer to the control.

¢ Both forms must be open.

The way in which you refer to objects on forms can be one of the most confusing
aspects of using macros because if your macro opens a new form, you might think of
that form as the “current form.” But from Access’s perspective, the form that launched
the macro is the current form, even if that form does not have the focus at the moment.
Let’s look at a simple example to illustrate this situation.

Let’s say you have a form named FormA. The form contains a text box control
named [OriginalText], as illustrated below.

REFERRING TO CONTROLS FROM MACROS {7

FIGURE 20.8

The CopyValue
macro showing
the action argu-
ments for the
SetValue action.

You also have a second form, named FormB, that contains a control named Copied-
Text, as shown below.

T his is FormB. 1t's cantrol is named CopiedT ext. This form is opened by the
CopyValue macto, which is launched when you click the big coramand
B button in Formd. That macro also copies the text in the control hamed
Chiginal T et on Farmé into the control named CopiedT ext on this fom.

Let's say you want to create a macro that you'll launch from FormA. When you launch
that macro, you want it to open FormB and take whatever text is in the [OriginalText]
control on FormA and copy that text into the [CopiedText] control on Form B.

Figure 20.8 shows the appropriate macro (which we’ll refer to as the CopyValue
macro from here on out). Currently the cursor is in the SetValue action’s cell so you can
see the action arguments for that action. Table 20.2 shows the action arguments for
both actions (where we omit an action argument, we have left the argument blank in
the macro sheet as well).

- Open FomB .) . .
Set the value of the CopiedTest controf on FormP to whatever the user typed
into the OriginalT ext conteol on Form A, Because Farm launched the macro,
- we must use the full identifier {Forms}i[FormB {CopiedT ext] to refer to the
| CopiedT ext control on FormB.

1752 | _cHAPTER 20 USING MACROS TO CREATE CUSTOM ACTIONSS

1E LUE MIACRO SHOWN IN FIGURE 208
ACTION ACTION ARGUMENTS

OpenForm Form Name: FormB
View: Form
Data Mode: Edit
Window Mode: Normal
SetValue Item: [Forms]![FormB]![CopiedText]
Expression: [OriginalText]

Notice that we must refer to the [CopiedText] control using the full formal
[Forms]![formname]!| controlnamel, even though the OpenForm action has already opened
FormB and FormB has the focus. We need to do so because FormA, not FormB, is the
one that launched the macro, We can refer to the [OriginalText] control without all the for-
mality because [OriginalText] is the form that launched the macro,

On the other hand, you can always use the full, formal syntax. For example, we
could have used these action arguments for the SetValyue action, and the macro would
still work just fine.

Item: [Forms]![FormB]! [CopiedText]

Expression: [Forms]! [FormA]! [OriginalText]

Though a bit more cumbersome, this approach does have one advantage. Because
we've referred to forms and controls specifically, we don’t need to waste brain cells try-
ing to keep track of which form opened the macro, which form has the focus at the
moment, and so forth,

Typing Lengthy Identifiers

Typing those lengthy identifiers is a bit of 2 task, and they can be prone to typographical
errors. But you need not type them by hand. You can use the expression builder instead.
Just click on the action argument you want to enter and then click on the build (...)
button that appears next to the control. For example, in Figure 20.9 we clicked on the
Item argument for the SetValue action and then clicked on the Build button., Notice
the Expression Builder.

REFERRING TO CONTROLS FROM MACROS

Expression
puilder partially
covering the
macro sheet.

OpenFam Open FormB

Sefvalue Setthe value of the CopiedT ext control on FoimP tc
into the OriginalT ext control an Form &, Because Fo i
{we st wse the full identifier [FarmsBFormBR[Copie
| CopiedT et controd on FormB.

(2 Dueries

& Forms

(31 Reports

Functions

(™M) Constants

(3 Operators

{2} Cornmon Expressions

Now we can specify a control simply by working our way down to it. In this case we
would double-click on Forms (since the control is on a form) and then double-click on
All Forms. Then we would double-click on FormB (since that’s the one that contains the
control we want to fill) and double-click on CopiedText, the name of the control we
want to fill. The top box in the Expression Builder now shows the proper expression for
referring to the control (see Figure 20.10). When we click on the OK button, that con-
trol is copied into the Item: action argument.

Assigning CopyValue to an Event

To get back to the macro shown in Figure 20.9, let’s assume we save it with the name
CopyValue and close it. Now we want that macro to play when the user clicks on the
big command button on FormA.

I CHAPTER 20 e USING MACROS TO CREATE CUSTOM ACTIONS

FIGURE 20.10

Here we double-
clicked on
Forms »

All Forms »
FormB »
CopiedText to
build the
expression
Formsi{FormB]!
[CopiedText].

Tables
{7 Queriss
& Foms

) Loaded Farms
553 40 Farms

3 Formd,
[FarméFaulyMacro

M TestPereentanm

& FormA - Form

(1 FormBFaultyMacro . :

i8]
CloseFarm

] {Detall
(1 CA Sales TanDemo. |

Afterdpdate
{SllawdutoConect
{4utsT ab

BackColor
BackStyle
Beforetipdate

| BorderColor
ABorderLineStyle
ABordarStyle

Borderw/idth
Canlrow

ACanShrink

ColumnHidden

So we need to open FormA in design view, click on the command button, open the
property sheet, and click on the Event tab. Then we can click on the On Click property
for that control and assign the CopyValue macro to that event as shown below.

To test the macro, we then need to save FormA and close it (and close the FormB and
CopyValue macros if they're open). Then open FormA, type in some text, and click on
the big command button. The macro will open FormB and copy whatever we typed
into the text box on FormA into the text box on FormB, as shown in Figure 20.11.

REFERRING TO CONTROLS FROM MACROS J

We typed a
value into
FormA and then
clicked on the
big command
putton. That
button
Jlaunched the
CopyValue
macro, which
opened FormB
and copied the
text from
FormA into
the text box
on FormB.

This is Formg, s cantrol is named CopiedT ext. This form is opened by the
Copyalue macro, which is launched whers you click the big comenand
ttor it Formé, That macro aleo copies the text in the control named
figinatT ext on Formd into the conteal named CopiedT st on this fom.

Making More "Generic”

Here’s another method for referring to forms and controls from within a macro. Rather
than referring to a specific object, you can refer to “whatever object is current at the
moment.” The expressions you use are as follows:

[Screen).[ActiveForm]
[Screen).[ActiveReport]
[Screen].[ActiveControl]
[Screen).[ActiveDatasheet]

Let’s take a look at another fairly simple example, using the [Screen].[ActiveControl]
expression. First, let’s say we have a form with three controls named FederalRate, StateRate,

756 | _CHAPTER 20 « USING MACROS TO CREATE CUSTOM ACTIONS

and CountyRate. The Format property of each control is set to Percent. (Below you can see
the Format property for the FederalRate control.)

HUnbound

One of the problems with using the Percent format is that if the user types in a whole
number, such as 30, the Percent format assumes 300 percent rather than 30 percent. For
example, below you can see the results of typing in the values 30, 15, and 5 into this
form in form view.

83 TestPercentMacio -

 Federal Rate | 3000,

 StateRate | 150000

A County Rate rﬂﬂm

We decide to create a macro that says “If the user types in a number that’s greater
than or equal to one, divide that value by 100 to put it into percent format.” To make
things more interesting, we’ll create a generic macro that will work with all three con-
trols. That is, rather than create one macro for the [FederalRate] control, another for the
[StateRate] control, and a third macro for the [CountyRate] control, we’ll create a macro
that refers to [Screen|.[ActiveControl] that works with all three controls. Figure 20.12
shows such a macro, which I’ve named ConvertPercent, Notice that the macro has just
one condition and one action.

The condition

[Screen].[ActiveControl] > =]

makes sure that the action is executed only if the content of the control is greater than
or equal to one. The SetValue action arguments:

Item: [Screen].[ActiveControl]
Expression: [Screen].[ActiveContro]]/lOO

REFERRING TO CONTROLS FROM MACROS

The Convert-
Percent U T HhacioName Tondiion i , £

macro uses | B ConvertPercent Contiol ' Divide the content of the current

[Screen].[Active- = i o " conrol by 100 ¥ the content is
Cont O/] to refer : . . _ areater than or equal to 1,
ontr ;

to whatever

control launched

the macro.

take whatever number is currently in the value and replace it with that same value
divided by 100.

Next we close and save the macro. Then we need to open the TestPercentMacro form
in design view and set the BeforeUpdate event property of each control to the macro
name, ConvertPercent in this example. Below you can see we’ve set the AfterUpdate
event for the FederalRate control to the macro name. We’d just need to do the same for
the StateRate and CountyRate controls before closing this form.

| & TestPercentMacro - Form [0 x]

ConvertPercent

To actually test the macro, we need to go to form view. Nothing happens immediately
because the AfterUpdate event occurs only after we type a new value into the control
and move onto another control. In form view, let’s say we again type 30 in the Federal

SL CHAPTER 20 ¢ USING MACROS TO CREATE CUSTOM ACTIONS

Rate control, 15 into the State Rate control, and 5 into the County Rate control. The
macro kicks in after each entry, giving the much better result shown below.

aling with Macro Errors

Everyone makes mistakes, especially when creating macros. As you know, when you
run a macro, Access executes the first action in the macro, the second action (if any),
the third, and so on until it runs out of Action cells. However, if Access has a problem
executing one of the actions in your macro, it stops the macro and displays an error message
that suggests the nature of the problem. For example, while executing a macro, you might
come up with the (somewhat obscure) message below when Access hits a glitch.

After reading the message, you can click on OK. You’ll see the Action Failed dialog

box showing you the specific action that caused the error, as in the example shown on
the next page.

DEALING WITH MACRO ERRORS | 7

This box provides the following information:

e Macro Name The name of the macro that contains the faulty action.

o Condition What the expression in the Condition column for the faulty line
evaluated to (always True if the action has no condition).

o Action Name The specific action within this macro that caused the error.

o Arguments The arguments you assigned to this action.

To get rid of the error message box, you need to click on the Halt button. If you then
want to edit the offending macro, just open the macro’s macro sheet in the usual man-
ner (that is, click on the Macros tab in the database window, click on the name of the
macro you want to edit, and click on the Design button). Once you get to the appro-
priate macro and get to the offending action, you're pretty much on your own in trying
to figure out why the action didn’t work. You may want to check the hint box or press
F1 for more detailed information about the action so that you can determine the cause
and come up with a solution.

A common cause of macro errors is using faulty identifiers. For example, your
macro might refer to a field named [ZipCode] that’s not on the form that launched
the macro. And therefore you need to add the [Forms]![formname]! prefix. Or per-
haps your macro is referring to a control on a form that is no longer open when
Access tries to execute the action.

L CHAPTER 20 ¢ USING MACROS TO CREATE CUSTOM ACTIONS

Single-Stepping through a Macro

When you run a macro, Access whizzes through all the actions in no time at all. If a par-
ticular macro is giving you a hard time, you can slow it down and watch the results of
each action as Access performs them by running the macro in single-step mode. To run
a macro in single-step mode:

1. Open the macro’s macro sheet (get to the database window, click on the Macros
tab, click on the name of the macro you want to run in single-step mode, and then
click on the Design button).

2. Click the Single Step button on the toolbar or choose Run » Single-Step from the
menu bar.

3. Close and save the macro normally.

4. Run the macro normally by causing whatever event triggers the macro.

This time when you run the macro, Access will display the Macro Single Step win-
dow, shown below, just before it executes each action.

After observing the details of the action that’s about to be played, you can use the
command buttons to decide what you want to do next:

Step Executes the action whose details are currently displayed in the Macro
Single Step dialog box.

Halt Stops the macro and closes the Macro Single Step dialog box.

Continue Turns off the Single Step mode and runs the rest of the macro
normally.

LEARNING BY EXAMPLE | 7¢

e

Crealing a Macro to Run af Skarfup

As you may know, you can use the Tools » Startup commands on Access's main menu
to specify how you want your application to look when the user first opens the database.
(Those menu commands are available whenever the database window is displayed.) In
addition, you can also have a macro perform tasks automatically when the user first
opens your database. All you need to do is create a normal macro and name it AutoExec.

The AutoFxec macro runs after the options you defined in the Startup dialog box
have been put into effect. So you want to make sure to take that into consideration
when creating your AutoExec macro. For example, if you've cleared the Display Data-
base Window option in the Startup dialog, your AutoExec macro doesn’t have to hide
the database window, since it will already be hidden.

You can bypass the startup options and the AutoExec macro by holding down the
Shift key as your database is opening. If you are developing applications, you should
keep this technique in mind because sometimes you might want to open your database
from the user’s perspective.

You can also press the F11 key to make the database wmdow appear on the screen,
unless you've turned off the Access Special Keys option under Tools, Startup or
used the /runtime switch when launching Access.

At other times, you might want to go straight to the database window and standard
toolbars so you can make changes to your application. To achieve the latter, just keep
that Shift key depressed from the time you choose File » Open Database until the data-
base window appears on the screen.

Learning by Example

In this chapter, we've covered the mechanics of creating macros and assigning.them to
events. You'll find many practical real-world examples of macros in the chapters that fol-
low. Exploring macros in other peoples’ applications is also a good way to round out your
knowledge of macros. For example, the sample Northwind database that comes with
your Access programs, as well as some of the applications on the CD that comes with this
book, contain several examples of macros.

To view the macros in an application, just open the database normally and get to the
database window. In the database window, click on the Macros tab. Then click on any
macro name and click on Design to explore the macro’s contents.

I CHAPTER 20 ¢ USING MACROS TO CREATE CUSTOM ACTIONS

In some applications, you might be surprised to see very few macros, or even no
macros at all. A very sophisticated Access application might have very few macros asso-
ciated with it for three reasons:

® The Control Wizards create Visual Basic code, not macros, to automate the con-
trols you create.

° Many Access developers prefer Visual Basic code to macros because they are
already familiar with Visual Basic.

® Many application developers will use the built-in macro converter to convert their
macros to Visual Basic code and then delete the original macro.

Guch 1530 Autobrec
fferent technique to

Where o Go from Here

From here you can focus on different aspects of Creating a custom application or learn-
ing about Visual Basic:

¢ To learn about Creating custom switchboards and dialog boxes for your applica-
tion, see Chapters 21 and 22.

® Tolearn how to create custom toolbars and menus for your application, see Chap-
ters 23 and 24.

® To learn about Visual Basic, that “other way” to create custom actions, see Chap-
ter 25,

WHERE TO GO FROM HERE |

Customizing a switchboard created by a Wizard 767

| Creatmga Switcthard from scratch 773

- ShoWihg a 'sWitchboard when a databaseopens |

Creating Custom Switchboards

switchboard is a fancy term for a form
that lets the user move around in

. your application. When you use the
Access Database Wizard to create a database application, the Wizard creates a switch-
board automatically. In this chapter we're going to look at techniques for customizing
the switchboard that the Wizard creates. We'll also look at techniques for creating your
own completely custom switchboards with whatever appearance you like.

Chanqing & Wizard-Created Switchboard

As you know, when you use a Database Wizard to create a database, the Wizard automat-
ically creates a switchboard for that database. For example, when you use the Order Entry
Wizard to create a database, that Wizard creates the switchboard shown in Figure 21.1.

The switchboard appears automatically when you first open the database. If you
happen to be at the database window, rather than at the switchboard, you can just click
on the Forms tab, click on the Switchboard form name, and then click on the Open but-
ton to open the switchboard.

768 | CHAPTER 21 » CREATING CUSTOM SWITCHBOARDS

FIGURE 21.1

The switch-
board created
by the

Order Entry
Database
Wizard.

&5 Main Switchboard

Changing Wizard-Created Switchboard Options

If you look at all the options on the Order Entry switchboard, you'll see that one option
actually lets you change the switchboard itself (the fourth option down in this exam-
ple). When you choose that option, you're taken to the Switchboard Manager dialog

box, which will look something like Figure 21.2 (depending on the database you're
using at the moment).

i
The Switch-
board Manager
lets you make
chqnges to GI’?y [Forms Switchboard
switchboard in Reports Switchboard
the current '
database.
This database
contains three
switchboards.

CHANGING A WIZARD-CREATED SWITCHBOARD | 769

The command buttons on the Switchboard Manager are fairly self-explanatory.

e Close Click on Close after you've finished exploring/modifying switchboards.

o New Creates a new, blank switchboard with whatever name you specify. To add
options to that newly-created switchboard, click on its name and then click on the
Edit button. You'll be taken to the Edit Switchboard Page dialog box described in
the next section.

o Edit To change an existing switchboard, click on its name and then click on the
Edit button. You'll be taken to the Edit Switchboard Page dialog box described in
the next section.

o Delete To delete a switchboard, click on its name then click on the Delete button.

o Make Default Makes the currently selected switchboard the default switchboard
(the one that appears automatically when the user first opens the database).

Defining and Changing Switchboard ltems

When you choose the Edit button from the Switchboard Manager, you're taken to the
Edit Switchboard Page. If you are working with a new switchboard, the list under Items
on this Switchboard is blank. You can use the New button to create new items. When
you Edit an existing switchboard, the items on that switchboard are listed under Items
on this Switchboard, as in Figure 21.3.

The command buttons in the Edit Switchboard Page dialog box are also self-
explanatory.

e Close Choose this button when you've finished making changes to return to the
Switchboard Manager dialog box.
e New Add a new item to this switchboard.

| FIGURE21.3 "
The Edit Switch- ;
board Page
dialog box lets
you add,
change, and
delete individ-
ual OptIOI"IS on o | Preview Reports...
the currently | Change Switchboard tems
selected Eit this database
switchboard. .

i I’zfq‘.ee[i_c_w\)n',l

I CHAPTER 21 ¢ CREATING CUSTOM SWITCHBOARDS

o Edit Change the currently selected switchboard item.

e Delete Delete the currently selected switchboard item.

e Move Up Move the currently selected switchboard item up in the list.

e Move Down Move the currently selected switchboard item down in the list.

When you Edit a switchboard item, you're taken to the small Edit Switchboard Item
dialog box, as in the example shown below.

‘ t]rdefs by‘tustybmyeyr

This dialog box is where you define how the item looks on the switchboard and what
happens when the user selects that item. In the example shown, the Text that actually
appears on the switchboard is Enter/View Orders by Customer. To change that text just click
anywhere in the text and make your changes using standard editing techniques.

The Command box describes what will happen when the user selects the item. In
the example, when the user chooses Enter/View Orders by Customer the action that
occurs is Open Form in Edit Mode. But you can change that action, if you wish, simply by
choosing a new option from the Command drop-down list. As you can see below, you
have quite a few options for defining what happens when the user chooses the item.

Edit Switchboard ltem

AErterMiew Qrders by Customer

percEorm i EditMads
Open Report
Design Application
E it &pplication
Run Macra

Run Code

The last option in the Edit Switchboard Item dialog box lets you choose a specific
object for the Command to act upon. For example, when the Command is Open Form

CHANGING A WIZARD-CREATED SWITCHBOARD J

in Edit Mode, the last option is titled Forms and you can select a specific form for the
item to open, as below.

‘ Urder§ by Customer .

pén Fomm in'Ed'it Hode =

Orders by Custamer ‘

Dirders by Customer Subform
Payment Methads
Payments
Prirt Invoice
Products
Report Date Range
Shipping Informatior

If, on the other hand, the Command box contained the action Open Report, the last
option would be titled Report and you could choose a specific report for the command
to open.

After making changestoa Wizard-created switchboard, you need to get back to form
view to see and test the effects of those changes. Select OK and Close, as appropriate, to
work your way back to the database window. If you really want to see how things will
look to a person opening the database for the first time, you can close and then reopen
the database. To do so, you choose File » Close from the Access menu bar; click on File
again and select the name of the database you just closed.

Changing Wizard-Selected Art

When you use a Database Wizard to create a database, you're also given the option of add-

ing a picture to the database's switchboards. You can change that picture after the fact, if

you wish, using any bitmap image on your hard disk. You can use an existing clip art

image, a bitmap image you created yourself, or an image you digitized using a scannet.
To change the picture on a Wizatrd-created switchboard, follow these steps:

1. Open the database in the usual manner with Access's File » Open Database menu
commands.

2. Click on the Close (x) button in the upper-right corner if the switchboard is cui-
rently open. Get to the database window (if it's hidden or minimized, just press the
F11 key).

3. Click on the Forms tab in the database window.

. Click on the Switchboard form name and then click on the Design button.

5. Click on the picture that you want to change.

o

6. Open the property sheet if closed (click on the Properties toolbar button or choose
View » Properties).

7. Click on the All tab and scroll to the top of the property sheet. You should see the
control name Picture, as in Figure 21.4.

The second broperty in the property sheet is titled Picture and shows the location
and name of the picture that's currently displayed in the switchboard.

8. Click on Picture and then click on the Build button. The Insert Picture dialog box
appears as in Figure 21.5 (though initially, your Insert Picture dialog box might
show the contents of some folder other than the one named Dbwiz).

9. Browse to the folder and file that contain the picture that you want to display in
your switchboard and choose OK.

will be stretched to fit the picture's container. You can use the Size Mode property to
change the picture's sizing mode to Clip or Zoom to see which mode works best.

10. Save the switchboard with the new picture and size mode: choose File » Close;
click on Yes when asked if you want to save your changes.

To see the results of the change, reopen the switchboard in form view. Or if you
want to be sure to view the switchboard from the user's perspective, close the entire
database (File » Close). Then reopen the entire database by clicking on the File menu

and the name of the database you just closed.

_FIGURE 21.4

Properties for

named Picture

\PROGRAM FILES\MICH
nbedded)

ransparent

airline

CREATING A SWITCHBOARD FROM SCRATCH I

The Insert Pic-
ture dialog box
Jets you select a
new picture to
display in your
wizard-created
switchboard.

Insert Picture

EX Dbmusic
E atdrink # workout
ZX Houshold

A Members
P4 Morptiak
ZA Phonardr

Note that the picture you chose will appear on all the database's switchboards. The
reason is that the Database Wizards actually create only one switchboard per database.
When you're using that database, you might think you are going from one switchboard
to another from time to time. But in fact, your database is just changing the title of, and
items on, that one switchboard.

Creating @ Switchboard from Scrafch

As you know, using Database Wizards isn't the only way to create a database application.
You can create all your tables, queries, forms, reports, and macros from scratch. Likewise,
you can create custom switchboards for your application, completely from scratch.

To create a custom switchboard, first create a blank form that isn't bound to any
table. To make it look like a switchboard rather than a bound form, you can hide the
navigation buttons, record selectors, and other doo-dads that normally appear on
bound forms. Then you can add hyperlinks, controls (such as command buttons), and
macros to make the controls on the switchboard do whatever you want them to do.
We'll take it step-by-step, starting in the next section.

Creating the Blank Switchboard Form

The basic idea behind a switchboard is to create a form that helps the user of your appli-
cation do any of a variety of tasks, such as navigating from one form to another or

CHAPTER 21 e CREATING CUSTOM SWITCHBOARDS

base, you'd follow these steps to create a new, blank switchboard form:

1. Click on the Forms tab in the database window.
2. Click on the New button; then choose Design View from the New Form dialog box.
Leave the Choose a Tab]e or Query option blank and click on the OK button.

A new empty form opens in design view. The first thing you'll want to do is to set
somie properties for it.

5. Click on the Format tab in the property sheet and then set the first few Format
properties as indicated below and shown in Figure 21.6. (Properties below that are
marked with an asterisk are suggestions only. You might want to experiment with
those properties when creating your own switchboards.)

Default View: Single Form
Views Allowed: Form
Scroll Bars: Neither*

Suggested Form
properties for

a custom
switchboard,

CREATING A SWITCHBOARD FROM SCRATCH I

Reéord Selectors: No
Navigation Buttons: No
Auto Resize: Yes*
Auto Center: Yes

AR

Remember that you can get more information about a property right on your
screen. Just click on the property you're interested in and press Help (F1).

2

6. (Optional) Fill in the Caption property with whatever text you want to appear in
the title bar of the custom form.

7. Click on the Detail band within the form if you want to color the form. Then
choose a color from Back Color button on the Formatting toolbar. If that toolbar
isn't visible, choose View » Toolbars and click on Formatting (Form/Report). At
this point you may want to size and shape the form to approximately the size you
want the switchboard to be.

8. Drag the lower-right corner of the shaded area within the form design window to
about the size you want to make the switchboard.

T IS
To size the gray area, move the mouse pointer to its lower-right corner until the
mouse pointer turnsinto a four-headed arrow. Then hold down the mouse button
and drag that corner.

9. You can save and name the form now. Choose File » Close, choose Yes when asked
about saving the form, enter the name you want to give the form (e.g., Main
Switchboard), and choose OK.

The Switchboard form is listed in the database window, in the Forms tab, just like all
your other forms. And you can treat it as you would any other form:

e To see and use the form from the user's perspective, click on the form name and
then click on the Open button. (At this point, our sample form is completely blank.)

e To make changes to the form, open it in design view. (Click on the form name
in the database window and then click on the Design button.)

5 | CHAPTER 21 « CREATING CUSTOM SWITCHBOARDS

T =
Once the form i

S S P

s open you can easily switch between form view and design view by

clicking on the ... View button in the toolbar or by choosing either Form View or
Design View from the View menu in the menu bar.

Adding Controls to Your Custom Switchboard

Currently our switchboard is empty. We need to add some hyperlinks or controls to
allow the user to choose actions. As with all types of forms, you create controls using
the toolbox in form design view. You can create any control you wish, but chances are
you'll want to create mostly hyperlinks and command buttons.

As you may recall from earlier chapters, you can use the Insert Hyperlink button on

the toolbar to add a hyperlink to a form. If you need a control like a command button
instead, use a Control Wizard to create a control and action in one fell swoop. When
creating controls on a switchboard, the decision on whether or not to use the Control
Wizards centers around three factors:

If the control will perform a single action, such as opening a form, and that form
already exists, then you can use the Control Wizard. (You may prefer to use a
hyperlink for opening a form or report for the performance reasons outlined in
Chapter 16.)

If the control will open a form (or report) that you have not yet created, you can
create the control without using the Control Wizard. Later, after you've created the
form or report that the control will act upon, you can go back to the switchboard
and assign an action to the control.

If the control will perform two or more actions, then you'll need to define the
control's action using a macro (or Visual Basic code). You can create the control
without the Control Wizard. Then later create the macro and assign that macro to
the control on the switchboard.

The last alternative is perhaps the most common when creating switchboard controls
because typically you want the control to perform two actions: open some other form or
report and then close the switchboard itself. So let's work through an example using that
last approach.

4

Py R og y;sg e
Here's a quick way to creat
create the macro and then just drag and drop the macro name on to the form
(in design view). You'll get a command button whose On Click property launches
the dropped macrol

ssign a macro to it. First

CREATING A SWITCHBOARD FROM SCRATCH | 777

Let's say we want to create a command button on our switchboard to open a form
named AddressBook and then close the switchboard. For this example we'll also assiume
that we previously created the form named AddressBook and that it exists in the current
database.

1. Open the switchboard in design view.

3. Click on the Toolbox toolbar button (if closed) or choose View » Toolbox.

3. Make sure the Control Wizard button in the toolbox is 1ot pushed in because we
don't want to use the Control Wizard in this example.

T Conteol Wizards

4. Click on the Command Button button in the toolbox and then click at the position
where the button should appear in the switchboard. In Figure 21.7 you can see
we've created a button, which is (tentatively) captioned CommandoO.

Though it's not absolutely necessary to do so, we could close the Main Switchboard
form now, just to get it out of the way, by choosing File » Close and then Yes when
asked to save changes.

| FIGURE 21.7 I

Here we've
created a com-
mand button
without using

- the Control
Wizard. The
button has the
generic name
CommandO0.

L CHAPTER 21 o CREATING CUSTOM SWITCHBOARDS

Creating a Macro for the New Control

The first action
for the Open-
AddressBook
macro defined
in the macro
sheet.

Next we need to create a macro that will open the Address Book form and close the
Main Switchboard form.

1. Click on the Macros tab in the database window.

2. Click on the New button. A new blank macro sheet opens. We'll probably want to
put all the macros for the Main Switchboard into this macro sheet.

3. Open the Macro Name column (click on the Macro Names toolbar button). Or
choose View » Macro Names from the menu bar.

4. Type a name for this macro such as OpenAddressBook in the Macro Name column,

5. Choose the OpenForm action in the Action column to the right.

6. Specify the name of the form youwant to open in the Action Arguments (AddressBook
in this example). Figure 21.8 shows how the macro sheet would look at this point.

7. Create a second action to close the Main Switchboard by choosing the Close action
in the next Action column down.

8. Complete the action arguments as shown in Figure 21.9.

9. Close the macro sheet and give it a name. In this example we would choose File »
Close, choose Yes when asked about saving the macro, give it a name such as
MainSwitchboardMacros, and then choose OK.

Macie2: Macro
. Maeio Nam
pendddressEoak

CREATING A SWITCHBOARD FROM SCRATCH

The second ;
action in the T ol , -
OpenAddress- 4| OpendddressBook OperForm : Dpen the AddressBook Form
Book macro Closs Close the Main Switchboard
closes the Main i o
Switchboard
form.

M
ain Switchboard

Finally we need to assign that new macro to the On Click property of the button we
created on the switchboard. While we're at it, we can change the caption on the button.
Here are the steps:

1. Click on the Forms tab in the database window.

2. Click on Main Switchboard and click on the Design button.

3. Click on the button to which we want to assign the macro (the button titled
CommandO in this example).

4. Open the property sheet and click on the Event tab.

5. Choose the On Click property and choose the name of the macro you want this
button to launch. In this example we want to choose the MainSwitchboard-
Macros.OpenAddressBook macro (see Figure 21.10).

6. Change the caption on the command button: Click on the Format tab in the prop-
erty sheet and then type in a caption such as &Address Book (which will appear as
Address Book on the button).

tiddiess Bookl
nonej
mbedded

o

7. Close and save the Main Switchboard form.

780 | CHAPTER 21 » CREATING CUSTOM SWITCHBOARDS

Assigning the
MainSwitch-
board-
Macros.Open
AddressBook
macro to the
On Click prop-
erty of a button

on the Main
switchboard.
To test your new control and action, open the Main Switchboard in form view. Then
click on the Address Book button. The macro will open the AddressBook form and close
the Switchboard, as in Figure 21.11.
_FIGURE 21.11)

Clicking the & Fullfl 95 Addiess Book

Address Book maee
button in the Abode Artware Inc.

Main Switch-

board opens this Mr/Mts ust Nams [Middfe ast Nams : . hone Numbers
form and closes | L E77
the switchboard. Depanmenme ‘Wok Prone: | 565-0029
U (rgdCompany: [Abode Srtware, Inc, o Ewensionr] 311
Mailing Address; [P.0. Box 5443 oo Fae] EEE3022
Phisical Address: 43384 Ubiquitous Dy, " Harae Phone:
City, State; Zip: | South Lyrnfield dIMA 3!01 940 :
Country:] | Dial Code: | Email |
Credit Card: - S NI TawExempt lype |
Card Mumber: | Cade: [—~——-~—-——ﬁ Supplier
Bank Drawn From: l{EvpDate ilate Entered]
Hame On Card: ' g sample afdd'fss book entry, 522/
Dithet Cracli 1D L jrom e tortp Person 07 | 20

CREATING A SWITCHBOARD FROM scraTcH |78 1

We realize we haven't mentioned anything about the AddressBook form prior to this
chapter. But our goal here is to show you how to make a switchboard button open one
form and close its own form. In Chapter 28 and in Appendix C, we'll talk more about
the AddressBook form and the Fulfill application.

Making AddressBook Return to the Main Switchboard

In this particular application, clicking on the Address Book button in the Main Switch-
board sends users to a form named AddressBook. It stands to reason that, when users
close the AddressBook form, they would expect to be returned to the Main Switchboard.

We could make a button on the AddressBook form that closes the AddressBook and
then opens the Main Switchboard again. But there's just one problem. Suppose the user
closes the AddressBook form by clicking on the x button in the form's window or by
choosing File » Close from the menu bar. Neither task would trigger the action to open
the Main Switchboard. So here's what we need to do:

e Create a Close button that, when clicked, closes the AddressBook form.

e Go to the property sheet for the AddressBook form as a whole and create an
action that opens the Main Switchboard form. If we attach that action to the On
Close property of the AddressBook form, it doesn't matter how the user exits the
form—he or she will still be returned to the main switchboard.

We'll create the Close button on the AddressBook form first. Since we want this but-
ton to do one simple act, we can use the Control Wizard to define the control and
action in one fell swoop.

1. Open the AddressBook form in design view.

2. Open the toolbox if it isn't already open. (Click on the Toolbox toolbar button or
choose View » Toolbox.)

3. Make sure the Control Wizard button in the toolbox is pushed in because we can
use its help in this case. :

4. Click on the Command Button tool in the toolbox; then click on the spot where the
close button should appear on the form (the lower-right corner in this example).

5. Choose Form Operations and Close Form when the Command Button Wizard
appears, as shown in Figure 21.12.

6. Choose Next> from the Command Button Wizard and the next screen asks about
the appearance of the button. In this example we chose to have the button show the
text &Close (see Figure 21.13; once again, the & symbol is used to specify the under-
lined hotkey).

I CHAPTER 21 CREATING CUSTOM SWITCHBOARDS

_FIGURE 21.12

The new button
we're adding to
the Address
Book form will

close the form.

FIGURE21.
The Close but-
ton on the
AddressBook
form will be
captioned Close,

Racord Navigation
Record Operations

Report Operations
Application
Miscellansous

Apply Form Filter

Edit Foren Filter
Open Form

Print a Form

Print Current Form
Refresh Form Data

3

Command Button Wizard

Clicking Next > takes us to the Wizard window to name the button. This is the name
used within Access, not the text caption that appears on the button. We could name the
button anything we want. In this example we named the button CloseAddressBookForm

and then clicked on the Finish button.

When the Command Button Wizard is done we're returned to our form, where we
can see the new button. We can use the standard techniques for moving and sizing

CREATING A SWITCHBOARD FROM SCRATCH

' controls to position the button precisely. In the figure below we've opted to put that
button near the lower-right corner of the form.

{ & AddressBook o

HomePhone
OtheiPhone

Egde:;ﬁ'axE vemptionCode

Notes

Now we still need to make the closing of the AddressBook form automatically reopen
the Main Switchboard form. Keep in mind that the user will probably have several means
of closing that form—not just our new Close button. So we need to find a way of saying,
“No matter how the user closes this form, open the Main Switchboard form again.”

We could create a macro that opens the Main Switchboard form, but let's try a slightly
different approach, using a bit of Visual Basic. How do we write a Visual Basic procedure
to open a form? Let's ask the Answer Wizard:

1. Choose Help » Contents and Index from Access's menu bar.
2. Click the Index tab and type open form.
3. Double-click on OpenForm Method in the topic list.

M%WA%W&MWWW%MW%& ’&‘%ﬁ@f@?&‘i
An action generally refers to macros, whereas a method generally refers to Visual
Basic code. We chose Open-Form Method in step 3 because we want to check out

the Visual Basic approach to doing this.

784' CHAPTER 21 e CREATING CUSTOM SWITCHBOARDS

A great deal of information about the OpenForm Method appears, but we mainly
need to know the syntax. In this case the syntax is

DoCmd.OpenForm formname

followed by some optional arguments enclosed in square brackets. When we click on
the Example option, we see that the name of the form to open needs to be enclosed in
quotation marks. To make life easy, we can just copy the example shown from the Help
screen right into out property sheet. To do that we just drag the cursor through the part
we want to copy, as in Figure 21.14, and then press Ctrl+C to copy that selection to the
Windows Clipboard.

Now we can close the Help screens until we get back to the AddressBook form, which
is still in design view. Now here's how we make the act of closing this form automati-
cally open the Main Switchboard form. With the AddressBook form on the screen in
design view:

1. Choose Edit » Select Form because we want to work with the form properties as a
whole (not properties of individual controls).
2. Open the property sheet and click on the Event tab.

FIGURE 21.14

An Example of
using Visual
Basic to open a
form. We've
selected the
part we want
to copy to

our form.

OpenForm Method Example

The following example opens the Employees forrd in Form view and displays only records with King
in the LastName field. The displayed records can be edited, and new records can be added.

DoCmd. ANt | | "Lastlawe = 'King'"™

CREATING A SWITCHBOARD FROM SCRATCH | 785

3. Click on the On Close property, and a Build button appears with these options:

Expression Builder
Macra Builder
odeBuilder

B a%@%%ﬁﬁﬁ@%%%ﬁ%§§£w s
Remember, you can use either Visual Basic or macros to define many actions. Here
we've used Visual Basic just because it's quick and easy to do so in this example.
Chapter 25 introduces Visual Basic.

s

4. We're going to try our hand at some Visual Basic code, so click on Code Builder and
then click on OK. A new window pops up that already contains a couple of lines of
Visual Basic Code, Private Sub Form_Close and End Sub. Any code we want
to add must go between those two lines.

5. Put the cursor between the two existing lines of code and then press Ctrl+V to add
the copied lines of code. Initially, the pasted text looks like this:

..¢.~~Fou‘n__Addresook - Class H,oul e

FPrivate Sub Form_Closei)
DoCmd. OpenForm "Employses”
End Suk

Priva
f
i

te Sub Form Current{}
et sokup list's [Alphablecsl
thidden first ool zepaal Lo the Pe
‘ip the ocurrent record.
Alphatamslist = PersoniDb
End Sub

}oeruws values il
zon Ib field

Private S Form_De.].ete(Cancel As Integsr)

U Display custom dilslog ox.

Dim Msg As String, BoxResponse As Ztring
Dim Title As String, Style Lz Integer

CHAPTER 21 ¢ CREATING CUSTOM SWITCHBOARDS

6. Change the form name in the code, as below, so that the code opens the form
named Main Switchboard, not the form named Employees. (You can also press
Home to move the cursor to the start of the line and then press Tab to indent the
line. Indenting the lines between the Private Sub and End Sub commands is a stan-
dard practice.)

Private Sub Form Close()
DoCmd ., OpenForm "Hain Switchboarﬂ"
End Sul

Private Hub Fm:nLCurrentt]
tEer the hig lookup list's (Llphallamelist) true salue
' ihidden first colwen) =oual to the Person ID field
'in the current record.
AlphailareList = PersonlD

End Zub

Private Suk Form_Delet,e(Csncel As Integer)
toInisplay custon diamlog box.
Dirm Msg A= String, BoxResponse As String
Dim Title 4= Jtring, 3tyle ks Integer

7. Click on the Compile Loaded Modules button in the toolbar to compile the code
quickly and check for gross errors in our Visual Basic command. If you did every-
thing correctly, you won't see any error messages.

8. Close the module window (the one that contains the Visual Basic code) by clicking
on the Close (x) button in the upper-right corner of the module window or by
choosing File » Close from the menu bar.

The property sheet now shows [Event Procedure] next to the On Close property,
indicating that we've assigned a Visual Basic procedure to this event.

9. Close and save the AddressBook form.

To test the effects of all this, we can now open the Main Switchboard form in form
view. When we click on the Address Book button in that switchboard, the Address Book
form should open and the Main Switchboard form should disappear. When we close
the AddressBook form, that form should disappear and the Main Switchboard form
should reopen.

FILLING OUT THE SWITCHBOARD

Flling Ouf the Switchboard

We can continue work with the Main Switchboard form, adding whatever controls we
think will be useful later down the road. We can also use the Label and Rectangle tools
in the Toolbox to add some labels and boxes. The Back Color, Border Color, Border
Width, and Special Effects buttons on the Formatting (Form/Report) toolbar can help
make these embellishments even fancier.

If you create a rectangle around a group of buttons and the rectangle ends up covering
the buttons, don't panic. Just select (click on) the rectangle and choose Format » Send
to Back from the form design screen's menu bar.

The Main Switchboard example we're showing you in this chapter was actually the
starting point for a real application, named Fulfill 95, that's on the CD-ROM that came
with this book. And as you'll see when you try that application, we've embellished the
Main Switchboard.

For example, we added a dark gray rectangle behind the command buttons and a label
(Focus On) to the upper-right corner of that rectangle. We also added a large white rect-
angle as a placeholder for Fulfill's logo, which we'll create and add later. Figure 21.15
shows the Main Switchboard, in form view at this stage of Fulfill's development.

& «<» T B= %’%%fﬁ&%@WMKW%&MW&W%W@WM&WM,
When you explore the Fulfill application, you'll no doubt find that its main switch-
board and other forms have evolved from what's shown here.

FIGURE 21.15 |
The sample & Main Switchboard: Fulfill 95
Fulfill applica- =
tion’s Main
Switchboard, in
form view, under
construction.

788 | CHAPTER 21 » CREATING CUSTOM SWITCHBOARDS

You can start exploring Fulfill at any time by copying it from the CD and opening it
up in Access for Windows 95. (If you get a message that the database cannot be opened
because it is read-only, open the Explorer window. Select Fulfi11.mdb, choose Properties
from the File menu, and uncheck the Read-only attribute. Appendices B and C will help
you.) Chapter 28 discusses ways of exploring Fulfill (and other custom Access applica-
tions) so you can start learning “by example” how all the pieces are put together in an
Access custom database application.

Making a Switchboard Appear at Startup

If you create a custom switchboard for your application, and want it to appear automat-
ically when the user first opens the database, set the Display Form option in Startup to
the name of your switchboard. Here are the exact steps to follow:

1. Close any open forms to get to the database window.

2. Choose Tools » Startup from the menu bar.

3. Choose the name of your main switchboard from the drop-down list box next to
Display Form, as I've done in Figure 21.16.

4, Choose OK.

You can leave all the other settings as they appear in the Startup dialog box until
you're further along in the development process. (More on those options in Chapter 28.)
The next time you open the database, your custom switchboard will appear on the screen
automatically.

e form
named Main
Switchboard is
the first to
appear when
the database
opens.

Wizard-Creafed versus Custom Switchboards

If you've read this entire chapter, you may be confused by the vast differences between
Wizard-created switchboards and totally custom switchboards. Let's take a moment

WIZARD-CREATED VERSUS CUSTOM SWITCHBOARDS I;;

here to review the primary differences so you don't leave this chapter feeling confused
on this topic.

Summary: Wizard-Created Switchboards

When you use a Database Wizard to create a database application, keep in mind the fol-
lowing points about the switchboard(s):

To change items on a Wizard-created switchboard, open the switchboard in form
view and use the Change Switchboard Items option to make your changes.

You can make design changes to the Wizard-created switchboard by opening that
switchboard in design view. However, any changes you make will affect all the
switchboards in that database application.

The reason for the above is that the Database Wizard really only creates one switch-
board per database application. It just changes the items on that one switchboard,
automatically, when you choose an item that takes you to a (seemingly) different
switchboard.

You can make a Wizard-created database open with a different, custom switch-
board of your own design. Just create your custom switchboard. Then choose
Tools » Startup » Display Form and set the name of the form to your new cus-
tom switchboard.

Summary: Custom Switchboards

When you don't use a Database Wizard to create a database, keep in mind the following
points:

Initially, your database application will have no switchboards at all.

You create a switchboard by creating a new form that's not bound to any table or
query.

To ensure that the switchboard form doesn't look like a data-entry form, turn off
the form's record selectors, navigation buttons, scroll bars, datasheet view, and so
forth by selecting the entire form in form view, and making appropriate changes
to the property sheet.

You need to add your own controls (i.e., command buttons) to a custom switch-
board, using the toolbox in form design view. You can also use hyperlinks for
simple actions like opening forms and reports.

To make a switchboard appear automatically at startup, choose Tools » Startup
and set the Display Form option to the name of your switchboard.

790 | CHAPTER 21 « CREATING CUSTOM SWITCHBOARDS

Where fo Go from Here

Next we'll look at ways of creating custom dialog boxes from scratch. As you'll see, the
basic starting point is the same as itis for creating a custom switchboard. You create a
form that's not bound to any table or query. Then you add appropriate controls and
actions using the toolbox in the form design view.

If you prefer, you can explore other topics related to building custom applications:

* To view the Fulfill 95 application's final custom switchboards, see Appendix C.

* To take a look at some custom switchboards in other sample applications, see
Chapter 28 for some tips.

* To learn how to create custom toolbars and menus for your application, see Chap-
ters 23 and 24.

® To learn about Visual Basic, see Chapter 25.

 With Ac é5§9 you COU!dCreatesthch
boards. Now with Access 97, you have the
added flexi SBlote e

-

o
o

Creating a dialog box with checkboxes

and command buttons 797

Adding macro actions to a dialog box 803

Putting finishing touches on a dialog box - 811

Qur

s a Windows user, you’ve probably
seen hundreds of dialog boxes. A
_ . dialog box is a window that pops up

on the screen to give you information or to ask questions about what you want to do
next. You make your selections from the box and then choose OK to proceed. Or in
some cases, you can choose a Cancel button to back out of the dialog box gracefully
without making any selections.

You can create your own custom dialog boxes in your Access applications. The pro-
cedure is similar to creating a switchboard: Start off with a blank, unbound form, add
some controls, and develop some macros or Visual Basic code to specify what happens
when the user selects a control. You can also add some finishing touches, such as OK
and Cancel buttons and a special border. In this chapter we’ll look at all the factors
involved by creating a sample dialog box for a sample database.

boil

We start with a database with a simple name and address table in it. We've also created
a Mailing List form for entering and editing data in that table, as shown in Figure 22.1.

1796 | CHAPTER 22 « CREATING CUSTOM DIALOG BOXES

_FIGUR |
A sample form

in a simple = Elﬁ
databa'(s)e [|Adams, Andy . MalingListID

Prefis Fist Name Hiddle Last Nams
M Jandy &, [Adarns
Title [Vice President
Organization [ABC Corporation
Address 1234 5L
San Diegn A Ta234s
City State ZIP Code

Home Phona |(619) 555-1234 Fax Number [(619) 555-3203
‘Work Phone [[519) 555-4321 Other Phone
Mobite Phone Email {andy@wherever.com

Notes [andy b, Adams here is being used ta demonstiale how ane
goss about building a dialog bew, fram chapter 22, The Print
button below displays the custorn dialog bos,

In addition, we’ve created four reports for this database. You can see their names in
the database window in Figure 22.2.

Now let’s say our goal is to be able to hide the database window from users of this
application. In order to print a report, we want the users to click on the Print button at
the bottom of the form. When they do so, a pop-up dialog box (see Figure 22.3) allows
them to choose one or more reports to print or preview.

Reports defined
for the simple
database.

Address Directory
Avery 2163 mini-sheet labels
Ervelopes

Bl

A custom dialog
box appears
when the user
clicks on the

STEP 1: CREATE THE DIALOG BOX | 797

o
Adams, Andy Maiing List 0 IR

Prafix First Name Middle Last Nams L .
[Adams } 5 Choose a Report

Print button M JAndy [
near the Title [Wice President
£ * Drganization ABC Corporation
bottom o Address [T23A Gt [~ Maing Labels
the form. San Diego ICA |92345
Ty Siaie 2P Cads I Envelopes
PR % Phone List
Home F’hone 9) 555-1234 Fan Number |(619) 555-32(
\Waik Phone 9} 555-4321 Cither Phone
Mobile Phone Email andy@where

Motes [Andy &, Adams here is being used to demonstrate how arne
goes about building a dialog box, from chapter 22. The Print
button below displas the custom dialog box,

For the rest of this chapter, we’ll look at the exact steps required to create such a
dialog box. Remember, in this example we're assuming the table, form, and four reports
have already been created. Our job here is simply to create the dialog box.

Step 1: Creafe the Dialog Box

Creating a blank dialog box is pretty much the same as creating a new, blank switch-
board. Here are the steps to get started:

1. Click on the Forms tab in the database window and then click on New.

2. Choose Design View and leave the Choose the Table or Query option blank.

3. Choose OK.

4. Open the property sheet (click on the Properties button in the toolbar or choose
View » Properties) and click on the Format tab in the property sheet.

5. Set the first few properties in the property sheet to the values shown in Flgure 22.4.

e € E B Wﬁ@’ﬁ%ﬁ‘ﬁ%&ﬁ“ %ﬁ%ﬁ@%&mﬁéﬁ&% R
. Remember that the Caption property is the tltle that will appear in the tltle bar of
your custom dialog box. So be sure to enter a caption that's suitable for the dia-

log box you're creating.

it

CHAPTER 22

° CREATING CUSTOM DIALOG BOXES

An unbound
form with For-
mat properties

set to make the

form look like a

dialog box.

Add the Checkbox Controls

to give the checkbox a more descriptive name (e.g., DirectoryChosen) and, option-
ally, set its default value to No.

control in the Property sheet is DirectoryChosen. The labe] (caption) for the control
(on the form itself) is Address Directory.

STEP 1: CREATE THE DIALOG BOX

The caption of
the first checkbox
control in the
dialog box is
Address Direc-
tory; its name is
DirectoryChosen.

rectoryChosen

Next we follow those same steps to create three more checkboxes, one for each possible
report. Figure 22.6 shows all four checkboxes in place. Table 22.1 lists the caption for each
checkbox and the name we assigned to each checkbox. (You can’t see the name of each
checkbox because the property sheet shows properties for only one control at a time.)

Checkboxes can be difficult to align and space evenly. Try using Edit » Select All
to select all the controls; then use Format » Size » To Grid, Format » Align »
To Grid, and Format » Vertical Spacing to get things in the ballpark. Then you can
use other options under Format » Align, as appropriate, to tidy up.

"FIGURE 22.6

Four checkbox
controls added

to our
dialog box.

T

/800 | CHAPTER 22 « CREATING CUSTOM DIALOG BOXES

CAPTION NAME
Address Directory DirectoryChosen
Mailing Labels LabelsChosen
Envelopes EnvelopesChosen
Phone List PhonelistChosen

Add the Command Buttons

After the checkboxes are in place, we need to add the command buttons. You probably
know the routine by now, but let’s go through the steps to create one of the command
buttons. (The Control Wizards won't really help here because we haven't yet created
the macros that will respond to the user’s dialog box selections.)

1. Turn off the Control Wizards by clicking the button “out” as below.

2. Click on the Command Button tool and then click in the form where you want the
command button to appear. A button with a generic name, such as Commando,
appears.

3. Make sure the command button is selected and then use the All tab in the property
sheet to give the button a name and caption.

In Figure 22.7 we've created a command button, named it CancelButton, and assigned
the caption Cancel.

We repeat steps 1 to 3 to create two additional command buttons, captioned P&review
(which shows up as Preview on the button face) and &Print (which shows up as Print). You
can then use dragging techniques and the options on the Format menu to size, position,
and align the buttons to your liking. Figure 22.8 shows the finished dialog box. Table 22.2
lists the names and captions assigned to those buttons.

STEP 1: CREATE THE DIALOG BOX [801

The custom dia- T NN I
log box with a ; i e
Cancel com-
mand button.

Evenh Other
. Commands
Mo

The custom
dialog box with
three command

buttons.

CAPTION

NAME
CancelButton Cancel
PreviewButton P&review
&Print

PrintButton

CHAPTER 22 e CREATING CUSTOM DIALOG BOXES

Print, Save, and Close the Form

With the controls in place we can now name and close the form and optionally print
some “technical documentation” that will help us develop the macros in the next step.
Here are the steps to follow:

1. Choose File » Close » Yes and enter a name such as PrintDialogBox. The new dia-
log box name appears in the database window along with any other forms, as in |
the example shown in Figure 22.9.

 FIGURE229
Once closed
and saved, the
new dialog box
is listed right
along with any
other forms in
the database
window.,

PrintDialogBox

2. Choose Tools » Analyze » Documenter if you want to print the technical
documentation.

3. Choose Forms under Object Type and click on the name of the form that you want
to document (PrintDialogBox in this example, as shown below):

v 8 T

STEP 2: CREATE THE MACRO ACTIONS J

4. Click on the Options button and limit the display to the options shown below.

5. Choose OK (twice) and wait for the Object Definition window to appear.

You can then use the Print button in the toolbar to print the documentation. Then
click on the Close toolbar button to close the Object Definition window and return to
the database window.

We'll use the printed documentation to help us remember the exact names we gave
to the controls in the dialog box. The names of the controls appear near the end of the
printout and will look something like this:

Command Button: CancelButton
Check Box: DirectoryChosen
Check Box: EnvelopesChosen
Label: Labell

Label: Labelb

Label: Label7

Label: Label9

Check Box: LabelsChosen
Check Box: PhonelListChosen
Command Button: PreviewButton
Command Button: PrintButton

Step 2: Create the Macro Actions

Next we need some macros to define what will happen when the user makes selections
from the dialog box. We need to start with a blank macro sheet:

1. Click on the Macros tab in the database window.
2. Click on the New button to get to a new, blank macro sheet.

804 | CHAPTER 22 » CREATING CUSTOM DIALOG BOXES

3. Open the Macro Names and Condition columns using the appropriate options on
the toolbar or the View menu. You should see all four column headings listed
across the top of the columns.

Now we're ready to start creating the individual macros. You can start off by typing
just a comment into the first row(s) of the macro sheet.

' Maciol Macio
et
These macros are launched by

- cammand buttons on the
PrintDiatogB ox forra.

Cancel Printing Macro

One of the buttons on the PrintDialogBox form lets the user Cancel—that is, bail out
without doing anything. The macro we assign to that button need only close the form.
So follow these steps to create that macro:

1. Enter a name such as CancelPrint in the Macro Name column in a blank row
beneath the comments you typed.

. Leave the Conditions column empty.

. Choose Close in the Action column.

4. Fill out the action arguments as follows:

w N

Obiject Type: Form
Object Name: PrintDialogBox
Save: Yes
5. (Optional) Fill in the Comments column to describe what this macro does.

Figure 22.10 shows the completed first macro.

STEP 2: CREATE THE MACRO ACTIONS 805

The first macro

typed into S
the new L ,

4 o) : L coramand buttons on the

macro Sheet' ‘PrintDialogBox form.

| CancelPrint {Just close PrintDialogBox

Preview Reports Macro

The next macro isa little trickier than the first because it needs to say, “1f the Directory-
Chosen checkbox is checked, preview the Address Directory report,” and then “1f the
LabelsChosen checkbox is checked, preview the Avery 2163 minisheet labels report,”
and so on. Sowe need to explain one thing about the checkboxes before we do that.
A checkbox isa control that can contain any one of two values, either True (checked)
or False (unchecked). We don’t actually use the checkboxes to launch an action. Instead,
we decide whether 10 perform some action based on whether a checkbox is checked or
not. The “decision” part takes place in the Condition column of the macro. As you may
recall from Chapter 20, the Condition column must contain an expression that evaluates
to True or False. Since the value of a checkbox is inherently True or False, we only need to
use the name of the checkbox in the Condition column of the macro. For example, if 1
put DirectoryChosen as the condition in a line, then DirectoryChosen proves True if the
checkbox is checked and proves False if the checkbox is unchecked.
With that little tidbit in the back of your mind, let’s go ahead and create the next
macro in this sheet. We'll name this new macro PreviewReports. Here's how to proceed:

ank row beneath the CancelPrint macro. Type the name Preview-

lumn of the new row.
ndition column.

1. Leave one bl
Reports into the Macro Name O

2. Type [DirectoryChosen] in the Co

The printed documentation for the form lets you easily look up the exact spelling
of the checkbox controls on the form. That’s how | “remembered” the Directory-
Chosen name. In lieu of using printed documentation, you can use the Expression
Builder to locate names of controls on forms.

3. Choose OpenReport in the Action column and fill in the Action Arguments as

follows:
Report Name: Address Directory
View: Print Preview

4. (Optional) Type a description into the Comment column.
At this point our macro sheet looks like Figure 22.11.

Next we need to repeat steps 2 to 4 to add three more rows to the macro. But we need

to refer to different controls and report names. Figure 22.12 shows the complete macro.

Table 22.3 shows the Condition, Action, and Action Argument for each row in the

PreviewReports macro.

FIGURE 22.11

Starting the
second macro,
which we've
named Preview-
Reports.

1| Cancelprin

: PréviewReportys %[Director\/chosen]

are launched by

5
feommand buttens on the

i Close

Obehﬁeport

| PrintDialogBox forrm,
Just close PrintDislogBox

Preview the Address Directory report]

STEP 2: CREATE THE MACRO ACTIONS J &t k'

The Preview-
Reports macro
defined in our

macro sheet.

CanzelPrint

PreviewReparts [DirectoryChosen] : GpenRepart
| [LabelsChosen] Openfepart
[Envelapesthosen] : Openfeport

[PhoneListChasen] : OpenRepart

Phane List
Print Preview)

| PrintDialogBox Form,

Just close PrintDialogBox

Preview the envelopes

: 0 Comient
These macras are launched by
command biuttons on the

Preview the Address Directory report
Preview the Avery labsls report

Praview the phore fist

ACTION ARGUMENTS

CONDITION ACTION
[LabelsChosen] OpenReport Report Name: Avery
2163 mini-sheet labels
View: Print Preview
[EnvelopesChosen] OpenReport Report Name: Envelopes
View: Print Preview
[PhoneListChosen] OpenReport Report Name: Phone List

View: Print Preview

Print Reports Macro

Next we need a macro to print reports. This macro is virtually identical to the Preview-
Reports macro except that the View Action Argument for each OpenReport action

/808 | CHAPTER 22 ¢ CREATING CUSTOM DIALOG BOXES

needs to be changed from Print Preview to Print. To create this macro quickly and eas-

ily, follow these steps:

1. Hold down the Ctrl key and click on each of the four rows in the PreviewReports

macro so that all four rows are selected.

2, Choose Edit » Copy or press Ctrl+C to copy those rows to the Clipboard (nothing

happens on the screen).

3. Leave a blank row under the Preview Reports macro, click in the Macro Name col-
umn, and choose Edit » Paste (or press Ctrl+V). An exact copy of the PreviewReports

macto appears.

4. Change the macro name from PreviewReports to PrintReports.

5. Change the View action argument in the first
Preview to Print.
6. Change the comment to reflect this change.

7. Repeat steps § and 6 for the remaining three rows in the Print Reports macro.

Figure 22.13 shows how the macro sheet looks at this point (though you can only

row of this new macro from Print

see the Action Arguments for the last row in the macro).

The Print-
Reports macro
added to the
macro sheet.

| PiintDislogBoxMacios - Macio
LT Mecoteme | Conditon

Close

47 | previewReports [DiertoryChosen] OpenRepott
{LabelsChosen] OperReport
[EnvelopesChosen] | OpenReport
{[PhoneListChosen] : OpenReport

PrintReports [DirectoryChosen] | | OperReport
{LabslsChosen] OperReport
[EnvelopesChosen] | OpenRepark
[PhonelistChosen] OpsnRepoart

cEf

' Just

|| Cornmsnt
e PrintDialogBnx

Preview the Address Directory repart -
Preview the Avery labels report - __J
Preview the envelopes :

IPreview the phone list

frint the Address Directory report
Print the Avery labels report

Print the envelopes

Print the phone list

STEP 3: ASSIGN MACROS TO DIALOG BOX BUTTONS 809 'V

You may now save and close the macro in the usual manner. That is, choose File »
Close » Yes, type in a name such as PrintDialogBoxMacros, and choose OK. The macro
name appears in the database window whenever the Macros tab is selected.

Step 3: Assign Macros o Nialog Box Butfons

Next we need to assign each of those macros to the three command buttons in the
PrintDialogBox form. Here's how:

1. Click on the Forms tab in the database window, click on the PrintDialogBox name,
and then click on the Design button to open that form in design view.

2. Open the property sheet and click on the Events tab.

3. Click on the Cancel button.

4. Click on the On Click property in the property sheet and then use the drop-down
list button to choose PrintDialogBoxMacros.CancelPrint as the macro to run when
the user clicks that button (Figure 22.14).

The Print-
ReportsMacros.
CancelPrint
macro assigned
to the On Click
property of the
Cancel button.

ntDiangBDxMacro-,.Pre»|ewRepnrt
PrintDiangEﬁoxMacros.F'rintRepDrts

L CHAPTER 22 ¢ CREATING CUSTOM DIALOG BOXES

5. Click on the button captioned Preview and assign the macro named PrintDialog-
BoxMacros.PreviewReports to that button.

6. Click on the button captioned Print and assign the PrintDialogBoxMacros.Print-
Reports to the On Click property of that button.

7. Close and save the form (choose File » Close » Yes).

You're returned to the database window. T he dialog box and its macros are complete.
Assuming you had created the four reports mentioned at the start of this chapter, you could
test the dialog box right now simply by opening it in form view and making selections.

As you may recall from earlier in this chapter (refer to Figure 22.3), we actually
assigned this dialog box to the Print button on a form we had created earlier. The sim-
ple way to do this would be to open that form in design view, open the toolbox, and
turn on the Control Wizards. Create the Print command button and, when the Control
Wizard asks for actions, choose Form Operations » Open Form » PrintDialogBox. The
caption for the button would be &Print.

You could also use a hyperlink to open the PrintDialogBox form. Click the Insert
Hyperlink dialog box, enter PrintDialogBox under Named location in file, and click on
OK. Then move the hyperlink from the upper-left corner of the form to wherever you
want it to appear. Click on the caption and change it to Print (instead of showing the
entire form name, PrintDialogBox). Figure 22.15 shows the Mailing List form with a
hyperlink to the left of the Notes field that opens the PrintDialogBox form. Note that
the Print command button, shown on the form in Figure 22.1, has been removed.

FINISHING TOUCHES | 8

The /f\/’ﬂzzi":‘%té’% jgmaingt. . MBI
pri n(l)‘rhyperlink Adams, Andy Matng List (0 K]

instead of a Prefie Fiest Mame Middhe Last Name

int command M TAndy B [dams
print : Title [Vice President

button. Qrganization {ABC Corporation
Address |[123A 5L
San Diega RS
City State . ZIP Code
Home Phone |(619) 5551234 Fax Humber [{E13) B05-3203
Work Phong ({B15) 555-4321 Othst Phone
tobile Phone Email [andy@Ewhersver.com

Print

Motes [Andy & Adams here iz being usad o demanstrate how one & |
goes about building & dialog box, from chapter 22 The Print 704
hypel il B

tlink to the left displays the custom dialeg bow,

Finishing Touches
You can put a few finishing touches on your dialog box to refine its appearance and
behavior, as we’ll discuss in the remaining sections in this chapter. As always, these
“features” are actually properties or specific controls that you assign to the form using
the property sheet in the form design screen.

Modal and Pop-up Properties

You may have noticed, in your day-to-day use of Windows, that most dialog boxes are
“sticky”; that is, once the dialog box is on the screen, you can't just shoo it away by clicking
on some other window. You need to specifically complete the dialog box, close the dialog
box, or choose the dialog box’s Cancel key to get rid of the dialog box.

The technical term for “stickiness” is modal. That is to say, most dialog boxes are
actually modal windows. By contrast, most “regular” (i.e., application and document)
windows are modeless, meaning that you can do work outside the window even while
the window is on the screen.

A second characteristic of dialog boxes is that they are pop-up forms. That is to say,
once the window is on the screen, no other window can cover it. You might already be
familiar with the Always on Top feature of Windows Help screens. When you activate
that feature, you are, in essence, making the Windows Help window a pop-up window.

812:E CHAPTER 22 o CREATING CUSTOM DIALOG BOXES

If you want to give your custom dialog boxes the modal and pop-up characteristics,
follow these steps:

1. Open the custom dialog box in form design view.
2. Choose Edit » Select Form to select the entire form.
3. Open the property sheet and click on the Other tab.
4. Set the Modal and Pop-up properties to Yes.

To learn more about modal and pop-up propertles and ways to combme them
press F1 while the cursor is on either property within the property sheet.

5. Close and save the form (File » Close » Yes).

To test your efforts, open the dialog box in the normal form view. When you click
outside the dialog box, nothing will happen (except, maybe, you'll hear a beep). The
only way to get rid of the dialog box is to specifically close it using one of its command
buttons or the Close (x) button in its upper-right corner.

Dialog Box Border Style

Another characteristic of many dialog boxes that make them different from other win-
dows is their border. Many dialog boxes have a thick, black border that cannot be sized.
If you want to give your custom dialog box that kind of border, follow these simple steps:

1. Open the custom dialog box in form design view.
2. Choose Edit » Select Form to select the entire form.
3. Open the property sheet and click on the Format tab.

FINISHING TOUCHES | 813

4. Set the Border property to Dialog.

To learn more about border styles, press the Help key when the cursor is in the
Border Style property box.

5. Close and save the form normally (File » Close » Yes).

To see the effects, open the dialog box in form view. Then try sizing the dialog box
by dragging one of its edges or corners. Can’t be done! If you try to “trick it” by using
commands in the control menu (in the upper-left corner of the dialog box), no go. The
menu will now offer only the Move and Close options, as illustrated below.

Default and Cancel Buttons

Two last features that many dialog boxes share are cancel and default buttons:

o Cancel button The button that gets pushed automatically when the user presses
the Escape key.

o Default button The button that is automatically selected when the user presses
Enter. This button will also have a darker border than other buttons on the same form.

| CHAPTER 22 « CREATING CUSTOM DIALOG BOXES

You can make one (and only one) button in your dialog box the default button and
any other single button the cancel button. Here’s how:

1. Open your custom dialog box in design view.

2. Open the property sheet.

3. Click on the Other tab.

4. If you want to make a button into the Cancel button, first click on that button to
select it. Then set its Cancel property to Yes, as below.

5. If you want to make some other button the default button, first click on that but-
ton to select it. Then set its Default property to Yes, as below.

6. Close and save the form normally (File » Close » Yes).

When you reopen the dialog box in form view, the only visual difference you’ll see
is the darker border around the default button (the Print button in the example below).

| & Choose a Bepoit

I Erwelopes
I~ Phone List

WHERE TO GO FROM HERE J

You can test the new properties by pressing the Escape or Enter key while the form is on
the screen.

What we've learned here is the big secret to custom dialog boxes: They're really just
forms that aren’t bound to any particular table or query. You use the toolbox in form
design to add controls, and maybe some hyperlinks, to that form. Then you create macros
(or Visual Basic code) to define the actions that the dialog box will perform. You can
even make your dialog box behave like the dialog boxes in bigger Windows applications
by setting Modal, Pop-Up, and Border Style properties to the form as a whole. You can
also assign the Cancel and Default properties to any two command buttons on the form.

Where to 6o from Here

In the next two chapters we'll look at techniques for creating custom toolbars and
menus. Those two features will add even more professional polish to your custom
Access applications. Here are some other chapters you might want to explore:

o To get a refresher on the mechanics of creating macros, see Chapter 20 “Using
Macros to Create Custom Actions.”

o To see a custom application with lots of custom dialog boxes, try the Fulfill sam-
ple database on the CD (see Appendix C).

o To learn about exploring custom applications behind the scenes, see Chapter 28.

Creating custom toolbars

821
Designing your own toolbar buttons 825
Using macros to show or hide toolbars 829 .

Attaching toolbars to forms

Customizing built-in toolbars

833

Combining toolbars and menus

Creating Custom Toolbars

anna Barbera got it right in “The Jet-
sons”; most of us have ended up with
push-button jobs. Microsoft's tool-
bars are a perfect example because they let you do virtually anything with the click of a
button. With Access 97, you can also add menu commands to toolbars to create “com-
mand bars” of all the tools and menus you use most.

fccess's Tonlbars

Microsoft Access comes with many built-in toolbars. Most of them are tied to specific
views and are named accordingly:

Database Relationship
Table Design Table Datasheet
Query Design Query Datasheet
Form Design Form View
Filter/Sort Report Design

Print Preview

Formatting (Form/Report) Formatting (Datasheet)

Macro Design Visual Basic

s —

820 | CHAPTER 23 o CREATING CUSTOM TOOLBARS

Other built-in toolbars that aren't attached to a specific view include

o Utility 1 and Utility 2 toolbars For creating your own custom toolbars.

e Web For browsing Web documents and searching the Web.

e Toolbox Offers buttons for creating controls in form design and report design. It's
generally free-floating, but can be docked like any other toolbar (see the next section).

Hiding/Displaying the Built-in Toolbars
You can hide or display any number of toolbars at any time. Just follow these procedures:

s To enable or display all the built-in toolbars, choose View » Toolbars » Cus-
tomize. Then check each toolbar that you want displayed in the Toolbars dialog
box. Choose Close when you are finished.

s To hide or display a specific toolbar, right-click on a toolbar and uncheck the
name of the toolbar, or choose View » Toolbars. Then check or uncheck the tool-
bar you want to hide or display.

¢ To move a toolbar, move the mouse pointer to any blank space in the toolbar
and drag the toolbar to wherever you want to put it.

e To dock a toolbar, drag it to the edge of the screen until its outline expands to
the width or height of the screen and then release the mouse button.

e To undock a toolbar so that it becomes free floating, just move it away from the
edge of the screen.

R R R s

" You can quickly dock or undock a toolbar by double-clicking on any blank space in
the toolbar. To hide a floating toolbar, click on the small close button in the tool-
bar's upper-right corner.

Confrolling the Size and Appearance of Toolbars

You can control the size of the buttons and the appearance of any toolbar by following
these steps:

1. Right-click on any toolbar and choose Customize, or choose View » Toolbars »
Customize and click the Options tab.
2. Choose any combination of appearance features from the lower part of the dialog box:

e Large icons Choose this option to make the buttons larger (handy on small
laptop-size screens or on screens with resolutions higher than VGA).

s Show ScreenTips on toolbars Clear this option if you don't want your tool-
bar to display ScreenTips.

CREATING A CUSTOM TOOLBAR | 8

¢ Show shortcut keys in ScreenTips Check this option if you want to show a
button’s shortcut key with its ScreenTip when you point to it.

3. Choose Close after making your selection(s).

Modified versus Custom Toolbars

As an application developer, you need to be aware of the difference between a modified
built-in toolbar and a custom toolbar:

e Modified existing toolbar If you modify an existing toolbar, that version of the
toolbar will appear in all your databases.

e Custom toolbar When you create a new custom toolbar, it appears only in the
database in which it was created.

DV S i
D B s %\%ﬁ”@;@ R, Wﬁﬁw@www?

The built-in Utility 1 and Utility 2 toolbars are initially blank. When you add buttons
to those toolbars, that counts as modifying an existing toolbar—not as creating a
new, custom toolbar. In other words, the Utility 1 and Utility 2 toolbars are accessi-
ble from all your databases.

Empowering/Limiting Your Users

You can use custom toolbars to determine what the users of your application can and
can't do. For example, if you want users to be able to create and change objects, you can
include design buttons on your toolbars. On the other hand, if you don't want the users
to modify objects, you can keep them away from the design screens by excluding design
buttons from your application's custom toolbars.

You'll need to create custom menus, discussed in the next chapter to determme
- exactly how much freedom your user has.

Creafing a Custom Toolbar

Here’s how to create a new custom toolbar:

1. Make sure that the database you want to put the toolbar into is the currently open
database.

22 | CHAPTER 23 o CREATING CUSTOM TOOLBARS

2. Right-click an existing toolbar and choose Customize, or choose View » Toolbars »
Customize. Then click New on the Toolbars page.

3. Enter a name (up to 64 characters) for your new toolbar and then choose OK.

A tiny (and sometimes hard to see) empty toolbar appears on the screen, as shown
in Figure 23.1.

_FIGURE 23.1 N

A new, blank
toolbar and the
Customize
Toolbars - 1odh
dialog box. Filter/3ort
Report Desigr
Print Preview
Toolbox
Formatting (Form/Report)
Farmatting (Datasheek)
[~ Macro Dasign
Wisual Basic

™ Utility 1
I Utility 2
E WV weh

Adding and Deleting Buttons

To add buttons to your new toolbar, you can either use the Commands tab of the
Customize dialog box or copy buttons from one toolbar to another.,

Using the Commands Tab to Add Buttons

If you have the Customize dialog box open, follow these steps to add buttons to a toolbar:

1. Click the Commands tab of the Customize dialog box. Choose a category of button
type from the Categories list (just click on any category name).

2. Click on whichever Commands button you think you might want to add to your
toolbar. Click the Description button under Selected Command to check the
Screenip and description to make sure you know what the button will do,

3. Drag the button to your custom toolbar.

In Figure 23.2 we've already dragged a few of buttons to the custom toolbar and are now
examining buttons in the File category. We’ve also dragged the new toolbar, Custom 1,

from where it appeared on top of the Customize dialog box to a spot where it’s easier to
work with.

CREATING A CUSTOM TOOLBAR | §

Here we've just
dragged two but-
tons to our cus-
tom toolbar and
are browsing the
Commands list in
the Customize
dialog box for
more buttons

to add.

[Customize |

Farm{Report Design
Toolbex

Copying or Moving Buttons between Toolbars

It is also possible to copy or move buttons from one toolbar to another. First make sure
that both toolbars are visible. What you do next depends on whether the Customize
dialog box is already open. If it is, just drag a button from one toolbar to another to
move it. To copy a button with the Customize dialog box open, press Ctrl while you
drag it from one toolbar to another. If the Customize dialog box is not open, press Alt
while moving or copying.

Deleting Buttons

Deleting a button from a toolbar is also a simple task. First open the Customize dialog
box. Next show the toolbar you want to change, if it's not already visible. (You may
need to drag the Customize dialog box out of the way so you can see the button you
want to delete.) Then just drag the button off the toolbar. You can also right-click the
button you want to delete and choose Delete.

Refining a Toolbar

You can use any of these techniques to refine your custom toolbar while you're viewing
the Customize dialog box:

s To remove a button, drag it off of your custom toolbar.
e To move a button to a new location on the toolbar, drag the button to its new
location.

824 | CHAPTER 23 » CREATING CUSTOM TOOLBARS

» To add space between buttons, drag the button slightly to the right (a distance a lit-
tle less than half the width of the button). (Closing the dialog box and docking the
toolbar allows you to have the space on the toolbar to undertake this operation.)

e To delete space between two buttons, drag one button slightly to the left.

Saving/Modifying the Custom Toolbar

When you've finished adding buttons to your custom toolbar, choose Close from the
Customize dialog box. You can then use any of these techniques, at any time, to view,
hide, or change your custom toolbar (but don't forget, your custom toolbar will be
available only in the current database):
* To hide or display a custom toolbar, right-click on any toolbar and then click
on the name of the custom toolbar that you want to hide or display. Currently
displayed toolbars are indicated with a check mark.

] P&%’é‘éﬁf‘%ﬁnﬁ%ﬁ» e W&W&Wﬂ%ﬂ
If no toolbars are V|S|ble choose View » Toolbars and cllck on a toolbar name.

e To change a custom toolbar, first display that toolbar, right-click on it, and
choose Customize to return to the Customize dialog box. There you can make
changes using the same techniques that you used to create the custom toolbar.

e To delete a custom toolbar, choose View » Toolbars » Customize and click the
Toolbars tab if it’s not already active. Then scroll down to the name of the custom
toolbar you want to delete, click on it to highlight it, click on the Delete button,
and choose Yes.

¢ To rename a custom toolbar, choose View » Toolbars » Customize, scroll down
to the name of the custom toolbar you want to rename, and click on the Rename
button. Type a new, unique name for your toolbar and choose OK.

. The Delete and Rename buttons aren t visible in the Toolbars dlalog box when the
highlight is on a built-in toolbar because you can't delete or rename those toolbars.

¢ To move/dock/undock a custom toolbar, use the same techniques you'd use
with a built-in toolbar, as described earlier in this chapter.

CREATING YOUR OWN BUTTONS 895

Creating Your Ouwn Butons

You're not limited to creating buttons that perform built-in Access tasks. You can create
your own buttons to run macros, open tables, preview reports, and more. The general

Application

procedure is the same as for “regulat” buttons. You just need to choose yout buttons . E =
from the categories that start with the word All. Here are the steps: | ;g ’
1. Display the toolbar to which you want to assign a custom button. j é .
2. Right-click on that toolbar and choose Customize. Then click the Commands tab °
in the Customize dialog box. T

3. Scroll down to and select one of the last few categories under Categories (beginning ' 3’

with the word All). The Objects list shows the names of all the objects in the cur-
rent database that fall into that category (see below).

“Module Design
“iweb

* |50urce Code Contral
“ {puilt-in Menus

Aall Tables
1Al Queriss
all Forms

4. Drag the name of any object to your toolbar.
5. Repeat steps 3 and 4 to add as many buttons as you like and then choose Close.

A default button for that type of object appears on your toolbar. (You can change the
button, as you'll see in the next section.)

CHAPTER 23 ¢ CREATING CUSTOM TOOLBARS

When you move the mouse pointer to the custom button, the status bar and (in a
couple of seconds) the ScreenTip describe what the button will do, as illustrated below.

[T =3

You can also drag the name of any object from the database window into the tool-
bar to instantly create a button that displays that object.

e

T
W% S

Changing a Button's Face/Description

You can change the face of any button in any toolbar, and you can change the name
or ScreenTip of any custom button you create. Here's how to make these types of
changes to a button:

1. Right-click on the toolbar that contains the button you want to change and then
choose Customize.

2. Right-click on the button in the toolbar that you want to change to show it’s short-
cut menu. Do any of the following:

e To choose a different picture for a button, select Change Button Image.
You'll see a menu of images. Click the one you want to use.

e To change the name of a button, type a new value in the box after Name.

¢ To change the ScreenTip, choose Properties and enter the tip you want to see
in the box after ScreenTip.

¢ To show text instead of a picture, choose Text Only (Always). The text is
taken from the Name property.

¢ 'To show text when the button is on a menu, choose Text Only (in Menus).
As you'll see later in this chapter, Access 97 lets you add buttons to menus or
add menu commands to toolbars. (You can also copy, paste, and reset button
images using other items on a button’s right-click menu.)

4 A*:m@mws&%mmm%
~ Remember, you can change the Description only on custom buttons—not on the
built-in buttons.

B O B B e B e B B e

CREATING YOUR OWN BUTTONS _ |

3. Repeat step 2 to choose a face and/or name and ScreenTip for as many buttons as
you wish. Then choose Close when you're done.

Resetting a Button Face

If you change a button face on a built-in button and then decide to go back to the orig-
inal button face:

1. Right-click on the button face you want to reset and choose Customize from the
shortcut menu (if the Customize dialog box is not already open).

2. Right-click on the button again and choose Reset Button Image.

3. Click on Close in the Customize dialog box.

Creating Your Own Button Face

So what do you do when you want to create your own button image? Once you have
added a button to the toolbar, with the Customize dialog box open, right-click on the
button. Select Edit Button Image from the context menu and the Button Editor appears
(see Figure 23.3). To create your own button image, follow these steps:

1. To change the color of a pixel, first click on the color in the Colors frame and then
click on the box on the Picture grid that represents the pixel. (Select the Erase color
box to erase a pixel.)

2. To scroll the Picture grid (not all of it appears in the box), click on the arrows below
the grid.

The Access 4 %l
Button Editor.

828 | CHAPTER 23 ¢ CREATING CUSTOM TOOLBARS

3. To see what your new button image looks like, check the Preview frame.
4. To clear the button face, click on the Clear button.
5. To save the button image, click on OK.

fidding Toolbars to Your Custom Application

As an application developer, you'll want to control exactly which toolbar appears when. First
create a database with the Database Wizard or open a database that you have already cre-
ated so that you can work through a couple of examples. (We will use the Northwind
Traders database included with Access for the examples in this chapter.) Create a custom
toolbar and add the buttons to it that you use most often when you work with a database.

The custom toolbar we created includes tools that switch to our other applications.
It reflects the fact that much of the time we are working in Access and switching to
other applications to perform less frequent tasks. Figure 23.4 shows this custom tool-
bar, which we creatively named My Applications.

R Gt s o

Since we obviously use Microsoft applications, we could have just used the
Microsoft toolbar. However, most users have other applications. If Access doesn't
provide a button for your application, you can use Visual Basic for Applications to
launch it and attach that code to a button on the toolbar.

RE23.4
The custom
toolbar My

Applications
displayed in the
Northwind
Traders
database.

o =garies

: Custorners
| Employess
| B Ocder Details
,' Orders
Praducts

[Shippers
Suppliers

ADDING TOOLBARS TO YOUR CUSTOM APPLICATION | 82

We then created-a second custom toolbar, named My Printing Preview, which con-
tains icons for printing, print preview, and page setup (see Figure 23.5).

The custom My
Printing Preview
toolbar.

, ,
Customers
Employees
Order Details
Orders
Froducts
Shippers
Suppliers

Creating Macros to Show or Hide Custom Toolbars

After you've created your custom toolbars, you need to create macros to show and hide
them. In the Northwind Traders application, we put all those macros into a single
macro group named Global Macros, as shown in Figure 23.6.

FIGURE 23.6 N

The macro M'ac‘l < Wacio
group named LT WawaNawe
Global Macros ¥ [Show My applieations Toobar _ ShawToolbar
H ; Hide My Applications Toobar - ShowToolbar
contains the |7 Show ty Printing Taolar ShowToolbar
macros that 17 |Hide My Printing Toolbar ShowToolbar
show or hide
the custom

toolbars.

CHAPTER 23 ¢ CREATING CUSTOM TOOLBARS

MACRO NAME ACTION

Table 23.1 shows the Macro Name, Action, and Action Argument of each macro. (Notice
that this macro group does not have a Condition column.) Basically, each macro uses a
single ShowToolBar action. The Action Arguments for each Action name the toolbar to
show or hide and then use Yes to show the toolbar or No to hide that toolbar.

STom TOOLBARS
ACTION ARGUMENTS

Show My Applications Toolbar ShowToolBar

Hide My Applications Toolbar ShowToolBar
Show My Printing Toolbar ShowToolBar
Hide My Printing Toolbar ShowToolBar

Toolbar Name: My Applications
Show: Yes

Toolbar Name: My Applications
Show: No

Toolbar Name: My Printing
Show: Yes

Toolbar Name: My Printing
Show: No

Attaching Toolbars to Forms

In order to attach a toolbar to a particular form, you need to execute, from an event on
the form, the macro that displays (or hides) the toolbar.

1. Open the form (in design view) that you want to display a custom toolbar.
| 2. Open the property sheet, select the Event tab, and choose Edit » Select Form.

3. Assign the macro that shows the toolbar to the On Activate property.

4. Assign the macro that hides the toolbar to the On Deactivate properties of that form.

Figure 23.7 shows an example using the Northwind Traders application, in which
we display the My Printing toolbar when the form appears and hide that toolbar when
the user is done with the form. By using the On Activate and On Deactivate properties,
we can make sure the toolbar is visible whenever the user is working with this form and
hidden whenever she or he moves the focus to another form.

Attaching a Custom Toolbar to Print Preview

If you want your application to display a custom toolbar during print preview, you need
to open the report in design view, open its property sheet, and choose Edit » Select
Report. Assign the macro that shows the toolbar to the On Activate event properties.

ADDING TOOLBARS TO YOUR CUSTOM APPLICATION J

Form event
roperties for
the Northwind
Traders cus-
tomer phone
list form.

Assign the macro that hides the toolbar to the On Deactivate event properties. The exam-
ple in Figure 23.8 uses a report from the Northwind Traders application.
By the way, we know that all these form and report event properties can be confus-

ing. For help while assigning macros to these properties press F1 or search help for Order
of Events.

Macros to hide
and display a
custom toolbar
when the user
looks at the
report named
Alphabetical
List of Products
in print preview.

Macro to Hide the Built-in Toolbars

When creating an application, you might decide to hide all the built-in toolbars from the
user. As you know, you can turn off the built-in toolbars manually through the Startup
dialog box. If you want your application to turn off those toolbars, have your AutoExec

L CHAPTER 23 CREATING CUSTOM TOOLBARS

macro send the necessary keystrokes at startup. You can use a SendKeys action to have
the macro press the appropriate keys, as in the following example.

Notice the Keystrokes entries in the action argument for the SendKeys action;

%t Presses Alt+T to open the Tools menu
u Types u to choose Startup
%l Unchecks the Allow Built-in Toolbars checkbox

~ Presses Enter to choose OK

\ When defining the arguments for a SendKeys action in a macro, press F1 for help.
7 Then click on the green underlined SendKeys jump word and scroll through that
Help screen to find the codes you need to represent various keystrokes,

Redisplaying the Built-in Toolbars

If you want your application to redisplay the built-in menus when the user quits the
application, have your “quit” macro execute a SendKeys action to restore the built-in
toolbars. You might also want to have that macro redisplay the database window.

MODIFYING A BUILT-IN TOOLBAR | 833

The same macro that turns the bu:lt in toolbars off will turn them back on.

If you ever need to turn on the built-in toolbars manually, go to the database win-
dow and choose Tools » Startup from the menu bar. Then check the Allow Built-in
Toolbars checkbox and choose OK. If no toolbar appears, choose View » Toolbars and
check Database.

Modifuing a Built-in Toolbar

So far in this chapter we've focused on creating custom toolbars for your custom appli-
cations. But you may also want to modify Access's built-in toolbars to better suit your
own needs. As mentioned earlier, when you modify a built-in toolbar, that toolbar
becomes accessible in all your databases.

A custom toolbar is stored in the database it was created in and is available only in
that database. Built-in toolbars (modified or not) are stored in the Access work-

group information file and are available to any database.

To modify a built-in toolbar:

1. Display the built-in toolbar that you want to modify.

2. Right-click on that toolbar and choose Customize.

3. Make changes using the techniques described under “Adding and Deleting Buttons”
earlier in this chapter.

4, Choose Close when you've finished.

That modified version of the built-in toolbar will appear in all your databases.

Combining Menus and Toolbars

A new feature in Access 97 lets you create command bars by adding menu commands to
toolbars and buttons to menus. These hybrid bars can have virtually any combination
of menus commands and toolbar buttons you can imagine.

You may have already noticed this feature while experimenting with the Customize
dialog box. For example, if you select the File category on the Commands tab, you'll
find commands, such as Save As/Export, that are not represented by a button. You can

834 | CHAPTER 23 » CREATING CUSTOM TOOLBARS

drag these commands to a toolbar, and they show up as text. The custom toolbar below
includes two buttons and the Save As/Export command. When you click Save As/
Export, Access opens the Save As dialog box, as if you had chosen File » Save As/Export
from the menus.

Once you add a menu command to a toolbar, you are free to show it as a picture
instead of text:

1. Right-click the toolbar you want to change and choose Customize. (If the toolbar
isn’t visible, choose View » Customize and check the desired toolbar first.)

2. Right-click the command button you want to show as a picture on the toolbar.
Choose Change Button Image and select an image.

3. Right-click the button again and check Default Style if you want to show the but-
ton as a picture without text. Or leave Image and Text checked to show the button
as a combination of an image and text. The Save As/Export command on the tool-
bar below has this property checked.

% MiciosoftAccess ©

Resetting a Built-in Toolbar

If you want to reset a built-in toolbar to its original state, right-click on a toolbar and
choose Customize. Make sure the Toolbars tab is selected in the Customize dialog box
and click on the name of the built-in toolbar that you want to reset. Then click on the
Reset button, choose OK, and click on Close in the Customize dialog box.

Where fo bo from Here

Adding custom toolbars can make your applications much more functional for users.
They are truly a convenience feature in any application. However, toolbars usually need

WHERE TO GO FROM HERE | ¢

to be backed by menus. The next chapter explains how to create the custom menus that

are necessary to back up custom toolbars.

L ,@7,

Creating custom menus

840

Customizing the default menus

844

Displaying custom global menus

Attaching a custom menu to a form or report

85

__ Creating shortcut menus

hen developing an application, you'll
probably want to give it some custom
menus. As with custom toolbars, you
can use custom menus to determine exactly what the user of your application can and
can'’t do.

lisplaying Custo

You can display custom menus either with a particular form or globally within your
application:

o You can attach a custom menu to a form so that the menu bar is displayed only
while that form is on the screen.

o A global menu is one that appears throughout your application, though it will be
replaced by any custom menus that you attach to forms.

You can use the Customize dialog box, the same one we used in Chapter 23 to work
with toolbars, to create either type of menu. We explain how to attach each type of menu
to your application a little later in this chapter. For now, just keep in mind that you can
use the Customize dialog box to create any number of custom menus for an application.

840 | CHAPTER 24 o CREATING CUSTOM MENUS

Access 97 has a new tool for creating and customizing menus. Instead of using the
Menu Builder that was included with Access 95, you use the Customize dialog box you
learned about in Chapter 23. As you work through the examples in this chapter, you'll
see that the steps are almost the same as those for creating a custom toolbar.

Follow these steps to create a new menu bar:

. Open the database to which you want to add the custom menu bar.

. Choose View » Toolbars » Customize.

- Click on the Toolbars tab (if it’s not already active) and choose New.,

. Enter a name in the New Toolbar dialog box shown below and click OK or press
Enter. (Don't worry that it asks for a toolbar name instead of a menu bar name.
With Access 97, toolbars and menu bars can be combined and, in a sense, are inter-
changeable.) You'll see a new toolbar, usually floating within the Customize dialog
box, like the one shown in Figure 24.1.

=W N o=

5. Click on Properties, select Menu Bar from the Type list, and click on Close. If the
new menu bar (which still looks like a toolbar) is no longer in sight, drag the Cus-
tomize dialog box out of the way. Then drag the new menu bar and the Customize
dialog box to new locations where you can see them at the same time.

At this point you can add a built-in menu or a custom menu to the new menu bar.
Leave the Customize dialog box open to continue your work.

CREATING CUSTOM MENUS | 841

A new menu bar
called My Menu

is shown with-
out any buttons

Paymer: I

) [Source Cods Control
rint In ¥ Menu Bar

praduct: I Shorteut Menus

or commands £
added to it yet. S
= Modides 1 B -
, e s o
f 28
My Com 1 prink Previen :6;;73_
Crder L |17 Tootbox = o
orders [Formatting (FormfRepart) [l
} '?Formatting (Datashaet) L
Orders: facro Design -
BSl Orders I™ visual Basic
Paymer . ‘

Adding a Built-in Menu to a Menu Bar

To add a built-in menu like File or Edit, click the Commands tab in the Customize dialog
box and select Built-in Menus under Categories. Then drag your choice from the Com-
mand list to the new menu bar. Figure 24.2 shows the My Menu menu bar after File and
Edit menus have been added to it.

Adding a Custom Menu to a Menu Bar |

To add a custom menu to a menu bar, click the Commands tab in the Customize dialog
box and select New Menu under Categories. Then drag New Menu from the Command
list to the menu bar you are customizing. To change the name of the command called
New Menu, right-click on the menu bar it was just added to and enter something in the
Name box. The menu bar below called My Menu has a custom ment that has been
renamed Report Menu:

(
i
!
1
i

842 | CHAPTER 24 « CREATING CUSTOM MENUS

_FIGURE 24.2
The menu bar
My Menu after

the File and Edit
menu com-

mands have
been added
to it.

Al Queries
o {All Farms

HEEEEEEEE M

The next step is to add commands to the custom menu. You can either use the Cus-
tomize dialog box or drag commands from other menus. To work with the Customize
dialog box, click the Commands tab and select the Category for the menu command.
For example, click All Reports if you want to add the name of a report in the database
to the new menu command. (Remember—we're adding commands to a menu com-
mand here, not to a menu bar.) Then drag a selection from the Commands list to the
menu command you are defining on the menu bar. An empty box appears below the
name of your custom menu if no other commands have been added. Check Figure 24.3
to see how the screen will look. If other commands have already been added to the
menu, you'll see them (instead of an empty box) with a line at the insertion point.
When you see the empty box or the insertion line, release the mouse button to add the
selected command to the menu. Repeat this process until you have added all the desired
commands to the menu. Figure 24.4 shows the menu bar My Menu with three reports
added to the Report Menu command.

CREATING CUSTOM MENUS | 843

Adding com-
mands to the
custom menu.

bles Ading.

The My Menu
menu bar with
three reports
added to the
custom menu
Report Menu.

1 oo
0 New Détaybayér:; i

| Table Design
“1Query Design
“orormfReport Design
~ | Toolbox

Selected conmand;

844 | CHAPTER 24 » CREATING CUSTOM MENUS

Copying Commands from a Menu

To copy a command to a menu bar or a menu command, first open the Customize dialog
box. Make sure that both menu bars you want to work with are visible. Then select the

command you want to copy. (To select a submenu command, click—don’t drag— to get
to the submenu. If you try to drag from the top level to the next command, Access will
think you want to move the entire menu command.) Then press Ctrl while you drag
the command to the new menu bar. If you are adding a submenu to a command like

Report Menu in Figure 24.4, drag until you see an empty box or an insertion line on the
submenu list and then release your mouse button.

Customizing a Built-in Menu

You can use any of the techniques described in this chapter or in Chapter 23 to cus-
tomize the built-in menus that are part of Access. Feel free to add toolbar buttons, built-
in menu commands, or your own custom menus. You can also change the properties of
any built-in menu:

1. Choose View » Toolbars » Customize to open the Customize dialog box.

2. Click on the Toolbars tab if it’s not already active.

3. Click on the Properties button.

4. Select a toolbar from the Selected Toolbar drop-down list.

5. Change the properties as desired and click on Close to return to the Customize dia-
log box. Click on Close again if you are finished changing menus and/or toolbars.

When the Customize dialog box is open, you can also right-click on any toolbar but-
ton or menu command to get a shortcut menu. Many of the shortcut commands apply
only to toolbar buttons and were described in Chapter 23. Here are a few shortcuts for
menu commands:

Reset Lets you return a built-in menu to its original state or restore
a custom menu as it was the last time it was saved.

Delete Removes a command from a menu bar.

Name A place where you can enter your own names for menu
commands, even the built-in ones.

Begin a Group Makes the command the first one in a new group on the
menu bar,

Properties Opens a properties box where you can change the caption,

ToolTip, and help information for menu items.

ATTACHING A CUSTOM MENU TO A FORM OR REPORT | 8

o

Gaving a Custom Menu Bar

When you finish defining all the commands and actions on your custom menu, just click
on Close in the Customize dialog box. If you change your mind about any changes you
made to a toolbar or menu bar, you can always use the Reset button to restore a built-in
command bar to its original state. If you reset a custom command bar, it will return to its
last saved state.

Displaying a Global Menu Bar

If you want your custom menu to replace the built-in menus as soon as the user opens
your database, you can change the Menu Bar setting in the Startup dialog box:

1. Open your database and choose Tools » Startup from the menus.

2. Change the setting for Menu Bar to the name of your custom menu. (If you haven’t
created any custom menus, the only choice will be (default).

3. Click on OK to close the Startup dialog box.

To test the new menu bar, close the entire database and reopen it. Your custom menu
bar will appear instead of the built-in menu.

If you have trouble returning to the normal built-in menus, close the database.
Then hold down the Shift key, and reopen the database. Holding down the Shift
key tells Access to ignore the Startup Properties; hence your custom menu won't
appear. Use the Startup dialog box to return the Menu Bar setting to (default) if
you need to.

Attaching @ Custom Menu to a Form or Report

If you want a custom menu bar to appear whenever the user opens a patticular form or
previews a particular report, follow these steps:

1. Open, in design view, the form or report you want to attach the custom menu bar to.

2. Open the property sheet (View » Properties) and select the form (choose Edit »
Select Form) or report (choose Edit » Select Report). Select the Other tab in the prop-
erty sheet.

3. Choose the Menu Bar property and then select the name of your custom menu bar
from the drop-down list.

4. Choose File » Close » Yes to close and save the form or report.

846 | CHAPTER 24 « CREATING CUSTOM MENUS

If you've assigned a menu bar to a form, the menu bar you specified will appear only
when the form is open in form view. If you've assigned a menu bar to a report, the menu
bar you specified will appear only when the report is open in print preview. If you've
defined a global menu bar for your application, the menu bar you attached to the form
or report will replace the global menu bar whenever the form or report is open. When the
user closes the form or report, the application’s global menu will reappear.

tdifing a Custom Meny Bar

If you need to change a custom menu bar that you've created:

1. Choose View » Toolbars » Customize.

2. Click the Toolbars tab if it’s not already active. Then make sure the name of your
custom menu bar is checked (so the menu bar will be displayed).

3. Make your changes using the same techniques you used to create the menu bar.

4. Click Close when you're done.

Creafing Shortcut Menus

A shortcut menu is a menu that appears when you right-click on an object. The object
can be a control on a form or a report. It can also be the form or report itself, In fact, any
object that contains a Shortcut Menu Bar or Shortcut Menu property on its property
sheet can take a shortcut menu.

You can create either a global or a context-specific shortcut menu. The next two sec-
tions explain how. A prerequisite, however, is to have built a menu that can setve as the
shortcut menu.

Building a Shortcut Menu

To create a custom shortcut menu, follow these steps:

1. Choose Views » Toolbars » Customize from the menus.

2. Click the Toolbars tab and select New.

3. Enter a name in the New Toolbar box and click on OK.

4. Click on Properties on the Toolbars tab, change the Type setting to Popup, and
click on Close.

5. Check Shortcut Menus on the Toolbars list to display the Shortcut Menu like this:

CREATING SHORTCUT MENUS | 847

6. Click on Custom on the Shortcut Menus and click on the name of the new shortcut
menu. An empty box appears, just to the left or right of the new shortcut menu
name. Then drag a command from the Customize dialog box or another toolbar to
the empty box as described earlier in this chapter. To add additional commands,
drag them to the shortcut command list that you are creating.

7. Click Close in the Customize dialog box when you are finished.

Setting a Global Shortcut Menu

To set a global shortcut menu that displays when a form or object does not display its
own shortcut menu, set the Shortcut Menu Bar property in the Startup dialog box
(shown in Figure 24.5). To set this property, take these steps:

1. Select Tools » Startup.

2. Use the Shortcut Menu Bar drop-down list box to select the shortcut menu you
want to be global.

3. Choose the OK button.

Creating a
global shortcut
menu by setting
the Shortcut
Menu Bar
property in ,

the Startup . [Switchboard
dialog box.

{default)

My Shorteut Menu

Orders by Customer Subform
Payment Methods

Payments

Print Invoice

Froducts

848 | CHAPTER 24 » CREATING CUSTOM MENUS

Setting a Contextual Shortcut Menu

To add a shortcut menu to a particular control on a form or to a form itself, follow
these steps:

1. Open, in design view, the form you want to attach the custom menu bar to.

2. Select the object you want to display the menu or select the entire form.

3. Open the property sheet (View » Properties). Select the Other tab in the property
sheet.

4. Choose the Shortcut Menu Bar property and then select the name of your custom
menu bar macro from the drop-down list.

5. Choose File » Close » Yes to close and save the form.

Controlling Whether Shortcut Menus Appear

You determine whether a shortcut menu can appear for items on a form by setting the
Shortcut Menu property for the form. To set this property, follow these steps:

1. Open, in design view, the form you want to display or not display shortcut menus.

2. Open the property sheet (View » Properties) and select the form (choose Edit »
Select Form). Select the Other tab in the property sheet. '

3. Choose the Shortcut Menu property and then Yes or No from the drop-down list,
depending on whether you want the menu to display or not.

4. Choose File » Close » Yes to close and save the form.

Converting Macro Menus to Access 97 Menus

If you have menus created from macros or with the Menu Builder in older versions of
Access, you can convert them to Access 97 menus:

1. Open the Database window for your database.

2. Click the Macros tab.

3. Select the macro that defines a top-level menu.

4, Choose Tools » Macro » Create Menu from Macro. (Use Create Shortcut Menu
from Macro if you want to convert a shortcut menu.)

Access will create a menu with the same name as the macro. You can then customize
the menuy, if you need to, using the Customize dialog box.

WHERE TO GO FROM HERE | 84

Combining Menus and Toolbars

With Access 97 you can freely combine menu commands and toolbar buttons to create
hybrid command bars. With the Customize dialog box open, you can drag menu com-
mands to toolbars and toolbar buttons to menus. For an example, see “Combining
Menus and Toolbars” in Chapter 23. '

Where fo Go from Here

Custom menus and toolbars (see Chapter 23) can make your database function like a
stand-alone application. To begin building more complex applications, you need to use
the more powerful programming features of Access for Windows 95. The next three chap-
ters show you how to take advantage of Visual Basic for Applications (VBA), Access’s new
programming language.

