

Merrill Communications LLC
d/b/a Merrill Corporation

Exhibit 1005 pt. 11

Creating macros 734

Editing macros 749

Troubleshooting problems with macros 758

Creating a startup macro 761

Using Macros to
Create Custom Rctions

he easiest way to create a control and
a custom action for that control is to
use the Control Wizards we discussed

in Chapter 19. Adding a hyperlink to a form or report is another easy way to create a
control that performs a simple action like opening a form or report. But as you develop
more sophisticated applications, you'll probably want to define custom actions that
are more complex than the actions you can set up with a hyperlink or the Control Wizards.

When you can't get a Control Wizard to create the exact action you want to per­
form, you can use either of these two alternative techniques to define a custom action:

• Create a macro
• Write a Visual Basic procedure

Visual Basic requires that you type long strings of commands very, very accurately.
Macros, however, let you define actions using the simpler point-and-click approach.
Unless you already happen to be a Visual Basic whiz, you'll probably find that macros
are by far the quickest and easiest way to define a custom action in your application. In

this chapter we'll focus on macros.

l34 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

How to Create a Macro

*ilrlQ;t#J·••
A new, blank
macro sheet.

The mechanics of creating a macro are fairly straightforward:

1. Click on the Macros tab in the database window.

2. Click on the New button. You're taken to a macro sheet that's tentatively named
Macrol, as in Figure 20.1.

"

3. Click on the drop-down list button in the Action column. You'll see a partial list of
possible actions, as below. (You can use the scroll bar, the-!- key, or type a letter to
scroll down the list.)

HOW TO CREATE A MACRO I 736''

4. Choose whichever action best describes what you want the macro to do. For exam­
ple, below we chose OpenReport (an action that will cause the macro to open up a
report in this database). Notice that in addition to the word OpenReport appearing
in the action column, the lower portion of the window shows some action arguments
to be filled in. And the hint box tells us what the selected action will do.

5. Fill in the selections under Action Arguments. For example, below we clicked next
to Report Name and can now use the drop-down list to choose which report we
want the macro to open. Note too that the hint box is now giving us information
that's specific to the Report Name argument that we're filling in.

You need to fill in each required argument for your action. You can leave optional
arguments blank if you wish. To determine whether an argument is required or
optional, click on the argument and read the hint box to the right.

736. CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

IUrlMil•fM
A macro with

several actions
defined.

6. (Optional) Click just to the right of the action you chose and type in a plain-English
description of what that action does. Note the comment next to our OpenReport
action below.

Where Corjdition

Receivables Aging Report
Print

7. Click on the cell just under the action you defined and repeat steps 3 to 8 to define
additional actions for this macro. When the macro is executed, it will perform
every action in your macro, starting with the first and ending with the last. In Fig­
ure 20.2 we've added several actions and comments to our sample macro.

8. Close the macro when you are finished and give it a name. (Choose File)roo- Close or
click the x button in the upper-right corner of the macro sheet window.) You can
choose Yes to save your changes and enter a new, more descriptive name for your
macro.

ommeht
Print the Receivables Aging Report

' Print the Sales by Customer report next
Print the Sales by Product report next

.:::J Display a message telling the user report printing is done.

..

DETERMINING WHEN A MACRO PLAYS 1737

The name you assigned to the macro appears in the database window whenever the
Macros tab is active. For example, we named our macro PrintThreeReports when clos­

ing it. So now that name appears in the database window as you can see below:.

lilll Table~ \ @ Queries 1 §I Forms 1 ili!l Reports ~. Macros j ~ Modules\

fiun

Design

New

After you've created a macro, your next step is· to determine when the macro will per­

form its actions. For example, you might want the macro to play:

• As soon as the user clicks on a particular command button on a form

• Right after the user changes the data in some control
• As soon as the user opens a particular form or report

As we'll discuss later, you can also have the macro play when the user first opens the
database (see "Creating a Macro to Run at Startup" later in this chapter). Or you can
assign the macro to an option in a custom toolbar (Chapter 23) or menu (Chapter 24)
that you've created. Your options for when the macro is triggered are virtually limitless.
For now, let's just take a look at how you'd assign a macro to a report, form, or a par-

ticular control on a form:

1. In design view, open the form or report that you want to have trigger the macro.

" If you want the form or report as a whole (i.e., open/close the form, open/close the
report) to trigger the macro, choose Edit > Select Form or Edit > Select Report.

738 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

" If you want a particular control in a form to trigger a macro, select that control
by clicking on it once. (If you haven't created the control yet, you can do so
right on the spot using the toolbox.)

" If you want a particular section of a form or report to trigger the macro, click
on the section bar in design view.

2. Open the property sheet and click on the Event tab. All the possible events for the
selected form, report, control, or section will appear, as in the example below.

Format I Dafa Event J Other j
On Enter.. I
On Exit. ...
On Got Focus ..
On Lost Focus
On Click
On Db! Click •.....
On Mou~e DOt.ViY, . .

3. Click on the property that you want to have trigger the macro. For example, if
you're assigning the macro to a command button and want the macro to run when
the user clicks on that button, click on the On Click property.

4. Choose the name of the macro you want to execute from the drop-down list that
appears. For example, below we're assigning the PrintThreeReports macro to the
On Click property of a button we created earlier.

' • I ' • ' 2

Format I Data . E vei1tl Otherl All r
On Enter·
OnExit. .. :.
On Got Focus .. .
On Lost Focus
On Click
On Db! Click ...•.
On Mouse. Down .•

And now you're done. It's a good idea to save and close the form at this point, before
you test the macro. Choose File >- Close and Yes when asked about saving your changes.

DETERMINING WHEN A MACRO PLAYS 1739

nning the Macro
To run the macro, you need to play the role of the user by triggering whatever event
activates the macro. For example, if you assigned the macro to the On Click property of
a command button, you need to open the form (in form view) that holds the button,
then click on that button just as the user would. If you assigned the macro to the On
Open property of a form, all you need to do is open the appropriate form.

You can run a macro simply by clicking on its name in the database window and then
clicking on the Run button. This technique is fine for testing a macro. But when creat­
ing a custom application, you want the user to have easier access to the macro, which
is the reason that macros are typically attached to command buttons on forms.

I That in a Nutshell
Whether you're an absolute beginner or are accustomed to creating macros in other
products, creating Access macros will probably take some getting used to. Here's a sum­
mary of the step-by-step instructions for creating a macro and assigning it to an event:

• Click on the Macros tab in the database window and click on New.
• Choose an action from the Action column.
• Fill in the required arguments for that action. You can create several actions

within a single macro.

<»,...IE.

Remember that unlike some other products such as Word or Excel, Access does
not include a macro recorder to automate the process of defining macro actions.

• Close and save the macro, giving it a name that will be easy to remember later.
• Open the form or report that you want in design view to "trigger" the macro.
• Select the control that will trigger the macro (or choose Edit>- Select Form or Edit>

Select Report if you want a form or report event to trigger the macro).
• Open the property sheet and click on the Event tab.
• Click on the specific event that you want to have trigger the macro and then choose

the macro name from the drop-down list that appears.
• Close and save the form.

E .s
"' :::l
u

740 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

Once you've done all that, the macro will play every time you trigger the event to
which you assigned the macro. The macro will not run (ever) in design view. You must
open the form in form view or print the report, as a user would, in order to make the
macro play its actions.

Summaru of Macro Actions
Once you understand the mechanics of creating a macro and attaching it to some
event, you still have to work through the mind-boggling stage of figuring out what you
can and can't do with a macro. To help you sort through the overwhelming number of
possibilities, here's a summary of every macro action that is available when you click on
the drop-down list in the Action column of the macro sheet.

AddMenu Adds a menu to a custom menu bar (see Chapter 24).
ApplyFilter Applies a filter, query, or SQL WHERE clause to a table, form, or report.
Often used to filter records in the table underlying the form that launched the macro.
You can use the ShowAllRecords action to clear the filter.
Beep Just sounds a beep.

CancelEvent Cancels the event that caused the macro to execute. For example,
if a Before Update event calls a macro, that macro can test data and then execute a
CancelEvent to prevent the form from accepting the new data.
Close Closes the specified window. Typically used to close a form.

CopyObject Copies the specified object to a different Access database, or to the
same database but with a different name.

DeleteObject Deletes the specified object, or the currently selected object in the
database window if you don't specify an object.

Echo Hides, or shows, on the screen the results of each macro action as the
macro is running.

FindNext Repeats the previous FindRecord action to locate the next record that
matches the same criterion.

FindRecord Locates a record meeting the specified criterion in the current table
(the table underlying the form that launched the macro).

GoToControl Moves the focus (cursor) to the specified field or control on a form.
GoToPage Moves the focus to the specified page in a multipage form.
GoToRecord Moves the focus to a new record, in relation to the current record
(e.g., Next, Previous, First, Last, New).

Hourglass Changes the mouse pointer to a "wait" hourglass (so the user knows
to wait for the macro to finish its job).

Maximize Expands the active (current) window to full-screen size.
Minimize Shrinks the active (current) window to an icon.

SUMMARY OF MACRO ACTIONS 1141

MoveSize Moves and/or sizes the active window to the position and measure­
ment you specify in inches (or centimeters if you've defined that as your unit of

measure in the Windows Control Panel).
MsgBox Displays a message on the screen.
OpenForm Opens the specified form and moves the focus to that form.
OpenModule Opens, in design view, the specified Visual Basic module.
OpenQuery Opens a Select, Crosstab, or Action query. If you use this to run an
Action query, the screen will display the usual warning messages, unless you pre­

cede this action with a SetWarnings action.
OpenReport Prints the specified report or opens it in print preview or design

view. You can apply a filter condition with this action.
OpenTable Opens the specified table in datasheet, design, or print preview view.
OutputTo Exports data in the specified object to HTML (.html), Microsoft
ActiveX Server (.asp), Microsoft Excel (.xls), Microsoft liS (.htx; .ide), rich text (.rtf),

or text (.txt) format.
PrintOut Prints the specified datasheet, form, report, or module.

Quit Exits Microsoft Access.
Rename Renames the specified or selected object.
RepaintObject Performs any pending screen updates or calculations.
Requery Forces the query underlying a specific control to be re-executed. If the
specified control has no underlying query, this action will recalculate the control.
Restore Restores a minimized or maximized window to its previous size.
RunApp Starts another Windows or DOS program. That application then runs
in the foreground, and the macro continues processing in the background.
RunCode Runs the specified Visual Basic Function procedure. (To run a Sub pro­
cedure, create a function procedure that calls the Sub and have the macro run

that function.)
RunCommand Performs an Access menu command.
RunMacro Runs a different macro. After that macro has finished its job, execution
resumes in the original macro starting with the action under the RunMacro action.

RunSQL Runs the specified SQL statement.
Save Saves the specified object, or the active object if no other object is specified.
SelectObject Selects the specified object. That is, this action mimics the act of

clicking on an object to select it.
SendKeys Sends Reystrokes to Access or another active program.
SendObject Includes the specified database object in an e-mail message.
SetMenultem Sets the appearance of a command (e.g., "grayed" or "checked" in

a custom menu. See Chapter 24).
SetValue Sets a value for a control, field, or property. Often used to auto-fill

fields on a form based on some existing data.

:142 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

SetWarnings Hides, or displays, all warning boxes such as those that appear
when you run an action query.

ShowAIIRecords Removes an applied filter from the table, query, or form so
that no records are hidden.

ShowToolBar Shows or hides a built-in or custom toolbar (see Chapter 23).
StopAIIMacros Stops all running macros, turns Echo back on (if it was off), and
reinstates warning messages.

StopMacro Stops execution of the currently running macro.
TransferDatabase Imports, exports, or links data in another database.
TransferSpreadsheet Imports, exports, or links data from the specified spreadsheet.
TransferText Imports, exports, or links data from a text file, and can also be used
to export data to a Microsoft Word for Windows mail merge data file.

Keep in mind that you can get much more information about each action right on
your screen. Just select the action and take a look at the hint box. If you need more
information after reading the hint box, press Help (Fl).

Executing a Macro Action "If ... ·~
You can make any action, or series of actions, in a macro be conditional on some
expressions. For example, suppose you want to create a macro that adds 7.75 percent
sales tax to a total sale but only if the sale is made in the state of California. That is, if
the State field on the current form contains CA, then you want the macro to fill in
another field, named SalesTaxRate, with .0775 and use that value in calculating the
sales tax and total sale. To illustrate this concept, Figure 20.3 shows a sample form with
the appropriate fields, named State, SubTotal, SalesTaxRate, SalesTax, and TotalSale.

<l[]ll'"lif'"E

Remember that in order to name a field on a form, you need to open the form in
design view. Then click on the field you want to name, open the property sheet,
and click on the All tab. Then fill in the Name property with whatever name you
want to give that field. While you're at it, you can use the Format property to
assign a format, such as Currency or Percent, to fields that will contain numbers.

The last two fields on the form are calculated fields. The ControlSource property for
the SalesTax field contains the expression

= [SalesTaxRate]*[SubTotal]

IIA'HIJ;IIJ·II
A sample form

containing
fields named

State, SubTotal,
SalesTaxRate,
and Toto/Sale.

l#t31J;lfl•ll
The Conditions

column now
visible in the
macro sheet.

EXECUTING A MACRO ACTION "IF ... " 1743

Enter il 2·1etter state abbriwial.ion r---
(e.g C<\ '"'NY)then press Tab or Enter: I
Enter some number. then press Tab or Enter: ,.-.---~

Sales T axRate:

Sales tax is:

Total Sale is:

<[State!

<[SubTotal]

<[Sales Tax!

< [Jota!Salel

r;j.>;< The Control Source property for [Sales Tax! is =[Sul:)\Otai]'[Sales T aliRatej

Th<; CQntrol Source propeit}' for [Tota!Salel is •[SubtotaiJ•[SalesT ax! .rJ
;i

The Control Source property for the TotalSale field contains the expression

"

= [SubTotal]+[SalesTax]

After you've created and saved the form, you can create the macro in the normal
manner. But if you want to use conditions in the macro, you need to open the Condi­
tions column in the macro sheet. Just create (using New) or open (using Design) any
macro sheet. Then click on the Conditions button in the toolbar or choose View >
Conditions from the menu bar. A new column titled Condition appears to the left of

the existing columns, as in Figure 20.4.

744 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

The condition you type in must be an expression that evaluates to either True or
False, usually in the format something= something. For example, the expression

[State] ~"CA"

evaluates to True only if the field named State contains exactly the letters CA. If the
field named State contains anything but CA (or is empty) the expression [State] ~"CA"
returns False.

<»-.rilE

As with other text comparisons in Access, macro conditions are not case-sensitive.
So "ca" or "Ca" or "cA" would all match "CA" in this case.

An important point to remember is that the condition you specify affects only the
action immediately to the right of the condition. If the expression proves True, the action
is performed. If the expression proves False, the action is completely ignored. Either way,
execution then resumes at the next action in the macro.

You can repeat the condition in a row by typing three periods(...) into the condi­
tion cell immediately beneath the cell that contains the condition. The ... charac­
ters mean "apply the condition above to this action."

So let's create the CASalesTax macro now. For starters, we'll have the macro set the
SalesTaxRate field to zero. Then the next action will check to see if the State field con­
tains CA. If that's True, that action will put 0.775 into the SalesTaxRate field. The next
actions will use the Repaint-Object command to recalculate the calculated controls
SalesTax and TotalSale. Figure 20.5 shows the completed macro.

Since you can't see the action arguments for all three macro actions, we've listed
them in Table 20.1 in the order in which they appear in the macro. (Leaving empty the
action arguments for the RepaintObject action causes the entire object, the form in this
example, to be recalculated.)

After creating the macro, you close and save it with whatever n_ilme you wish. In this
example we've named the macro CASalesTax.

Finally, you need to decide when to call this macro into action. In this case we need
the macro to recalculate the sales tax in two situations: after the user changes the value
in the State field and after the user changes the value in the SubTotal field.

___ E_X_EC_U_T_IN_G~A_M_A_C_R_O_A_C_T~IO_N_'_'IF_._ .. '_'_JI745

.---

1iLHW'1•D
The CAState

Tax macro.

I

Item
E~preision

CONDITION

[State]="CA"

SetValue
SetValue

Actkm

R epaintO biect

[Sales T axRate]
0.0775

Comment
Put a 0 in the Sa led axR ate field
II S t.,te is CA put 0. 775 in the Sales T axR ate lielcl
Now recalculate the controls

Action Argurnents

SetValue

SetValue

Enter a comment in this column.

Item: [SalesTaxRate]

Expression: 0

ltem:[SalesTaxRate]

Expression: 0.0775

RepaintObject

..

So we open the form in design view, click on the State field, open the property sheet,

click on the Event tab, and then assign the CASalesTax macro to the AfterUpdate prop-

erty for that field, as below:

Format
Bef•Jre Update .
Mer Update
On Change.
On Enter.
On Exit. ..
On Got Focus.
O'n Lost Focus.

746 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

lilrlUilll•U
The macro and

calculated
controls auto­

matically display
the correct

Sales Tax Rate,
SalesTax, and

TotalS ale.

Then we click on the SubTotal field and also set its AfterUpdate property to the CASalesTax macro.

' 2 • ' ' I ' ' ' 3 • '
' 4 ••

!i~;h~:~···.:··· E v;:~l~t:::r !~~~~~ On Change.
On Enter.
OnE~it.
On G<Jt Focus.,
On Lost Focus.

You can use Ctrl+click to select several controls, and then assign a macro to the
same event on both controls at the same time.

Once those steps are complete, we can save the form and open it in form view. Then
whenever we enter (or change) values in either the State or Subtotal fields (and press
Tab or Enter to complete the entry), the SalesTaxRate, SalesTax, and TotalSale fields
recalculate automatically. In the example shown in Figure 20.6, we entered CAin the
State field and 100 in the Subtotal field. As you can see, the three fields beneath show
the correct sales tax rate, sales tax amount, and total sale.

Enter a 2·1etter state abbreviation
[e.g CA or NY) thenp1ess Ta& or Enter:

Erotef$omenumber. then press Tab.or Enter: fioo

SafesT axRafe: r 7. 75%

Salestaxis: r $7.75
Total Sale is: r---$-1 0=7.=75""'

field Names

<[State)
<[SubTotql)

< [Sales T axRatej

< [S<llesTax]

< [T otafSafe]

)p.< The Control Source pmperty for [SafesT ax] is =[SubtotafY[Sales T axRate]

The Control Source property for [TotalS ale) is =[S\Ibtot"I]+[SalesTax)

CREATING MACRO GROUPS I74"J

The AfterUpdate event is triggered only when you change the contents of a field

and then move to another field.

Incidentally, the field names and Tips that you see in Figure 20.6 are for your infor­
mation only. They are just labels that have no effect on how the form functions. In
"real life" you wouldn't have any reason to show that information to a user.

Creating
A macro sheet can actually contain several macros, each with its own macro name.
Grouping several macros into a sheet can keep the list of macro names in the database
window from becoming too lengthy and unwieldy. A good way to organize your macros
is to put all the macros that go with a given form (or report) into a single macro sheet.

That way, you can easily find all the macros that go with a particular form.
We often name our macro sheets for the form that triggers the macros in that sheet.

For example, if we have a form named Customers, we might create a macro sheet named

CustomerFormMacros that contains all the macros used by that form.
Creating a group of macros is a simple process. Just create or open a macro sheet in

the usual manner. Then click on the Macro Names button in the toolbar or choose
View > Macro Names. A new column, titled Macro Name, appears to the left of the

existing columns:

Enter a macro name: in thls column.

748 L__C_H_A_P_TE_R_2_0 __ •_U_SJ_N_G_M __ A_C_RO __ S_T_O_C_R_E_A_TE __ C_U_ST_O_M __ A_C_T_IO_N_S ________________________________ ~

When adding a macro to the macro sheet, you need to type the macro name into the
leftmost column. Then type in the first condition (if any), action, and comment in
the usual manner. You can add as many actions to the macro as you wish.

Figure 20.7 shows an example with a macro sheet that contains five macros named Add­
New, CalcTax, CloseAll, CloseForm, and PrintForm. Access stops running a macro when
there are no more actions in the group or when it hits the name of another macro. We've
added a blank line between each macro for readability.

lilflQNIJ'M
A macro sheet
containing five
macros named

Add New,
Calc Tax,
C/oseA/1,

CloseForm, and
PrintForm.

[State]="CA"

GoToRecord

SetValue
SetValue
R epaintO bject

Close
Quit

Close

; Put a 0 in the Sales T axR ate field
If State is CO.. put 0.775 in the SalesT<
Now recalculate the controls

Close the form. save automatically
Save anything else that's open, and g<

Close the form

Select the current record

Close and save the macro sheet in the usual manner. For example, let's say you decide
to name the entire macro sheet MyGroup. Then you can assign macros to events using
the standard technique-that is, open the form or report that will trigger a macro in
design view. Click on the control that will trigger the macro (or choose Edit> Select
Form or Edit> Select Report). Open the property sheet and click on the drop-down list
button for the event that you want to assign a macro to. The drop-down list now shows

the names of all macros within all macro groups in the format macrogroupname.macroname.

For example, we're about to assign a macro to the On Click property of a control on
a form. Notice that the drop-down list includes the names of all the macros within the
macro group named MyGroup. To choose a specific macro to assign to this event, we
just need to click on the macro's name. The property sheet will show the macro group

name and macro name in the macrogroupname .macroname format, (e.g., MyGroup. Pri ntForm).

r ~')/1!/'
..:.kJ I"'"

"

EDITING MACROS 1749

Editing Macros
To edit an existing macro, you just need to reopen the macro sheet. Here's how:

• If you're at the database window, just click on the Macros tab, click on the name
of the macro (or macro group) you want to edit, and click on the Design button.

• If you're in a form's (or report's) design view, and want to edit a macro that
you've already assigned to an event, just open the property sheet, click on the
Event tab, then click on the ... button next to the name of the macro that you

want to edit.

When you use the latter method to open a macro group, you'll be taken to the macro
group in general, not the specific macro that you assigned to the event. But once you're
in the macro sheet, you can easily scroll to the macro that you want to edit.

Changing, Deleting, and M

Once you're in the macro sheet, you can move, delete, and insert rows using techniques

that are virtually identical to the techniques you use in a datasheet:

1. Select a row by clicking on the row selector at the left edge of the row. Or select several
rows by dragging the mouse pointer through row selectors or by using Shift +Click.

2. Do any of the following:

• To delete the selected row(s), press Delete, or right-click on the selection and
choose Delete Rows, or choose Edit> Delete Rows from the menus.

• To insert a row, press the Insert (Ins) key, or right-click on the selection and

choose Insert Rows, or choose Insert > Rows from the menu bar.
• To move the selected row(s), click on the row selector again, hold down the

mouse button, and drag the selection to its new position.

If you arrange macros in a macro group in alphabetical order by name, when you

the macro can easily find a specific macro.

• To copy the selection, press Ctrl+C, click on the Copy button, right-click on
the selection and choose Copy, or choose Edit > Copy from the menu bar. The
selection is copied to the Windows Clipboard. You can then use Edit > Paste
(Ctrl+V) to paste the copy into the same or another macro sheet.

" To undo any of the above changes, press Ctrl+Z or click on the Undo button

or choose Edit> Undo.

750 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

Keep in mind that any changes you make to the macro are not saved until you save
the entire macro. If you close the macro without saving it, be sure to choose Yes when
asked about saving your changes.

Referring to Controls from Macros
One of the most common uses of macros is to use the SetValue action to fill in a field
on a form. We used the SetValue action in an earlier example in this chapter to fill in
a field named SalesTaxRate.

When you start to use macros in this way on multiple forms, you need to keep a couple
of very important points in mind:

• When referring to a control on some form other than the form that launched the macro,
you must use the full-identifier syntax (i.e., [Forms]![formname]![controlname]) to
refer to the control.

• Both forms must be open.

The way in which you refer to objects on forms can be one of the most confusing
aspects of using macros because if your macro opens a new form, you might think of
that form as the "current form." But from Access's perspective, the form that launched
the macro is the current form, even if that form does not have the focus at the moment.
Let's look at a simple example to illustrate this situation.

Let's say you have a form named FormA. The form contains a text box control
named [OriginalText], as illustrated below.

l#ldQ;Ifi'Jt:l
The CopyValue
macro showing

the action argu-
ments for the

SetValue action.

REFERRING TO CONTROLS FROM MACROS 1751

You also have a second form, named FormE, that contains a control named Copied­

Text, as shown below.

N<lffie ~ .•. : .:;,,, .:CopiedT ex
C.o~t~ol Sour PI' : .• • / ·

· FoimaL .. " ... X.
Decir~al Plaqes•. : :.• ;Auto
Input Mask.::.:;. ·
DefaultYart<e .. ,/,.1
V.~lirfnfli1n'R11IA-

Let's say you want to create a macro that you'lllaunch from FormA. When you launch
that macro, you want it to open FormE and take whatever text is in the [OriginalText]
control on FormA and copy that text into the [CopiedText] control on Form B.

Figure 20.8 shows the appropriate macro (which we'll refer to as the CopyValue
macro from here on out). Currently the cursor is in the SetValue action's cell so you can
see the action arguments for that action. Table 20.2 shows the action arguments for
both actions (where we omit an action argument, we have left the argument blank in

the macro sheet as well).

'"

752 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

ACTION

Open Form

SetValue

ACTION ARGUMENTS

Form Name: FormB

View: Form

Data Mode: Edit

Window Mode: Normal

Item: [Forms]! [Form B)! [CopiedText]

Expression: [OriginaiText]

Notice that we must refer to the [CopiedText] control using the full formal
[Forms]! [formname]! [controlname], even though the OpenForm action has already opened
FormE and FormE has the focus. We need to do so because FormA, not FormE, is the
one that launched the macro. We can refer to the [OriginalText] control without all the for­
mality because [Origina!Text] is the form that launched the macro.

On the other hand, you can always use the full, formal syntax. For example, we
could have used these action arguments for the SetValue action, and the macro would
still work just fine.

Item:

Expression:
[Forms]! [FormE]! [CopiedText]

[Forms]! [FormA]! [Origina!Text]

Though a bit more cumbersome, this approach does have one advantage. Because
we've referred to forms and controls specifically, we don't need to waste brain cells try­
ing to keep track of which form opened the macro, which form has the focus at the
moment, and so forth.

Identifiers

Typing those lengthy identifiers is a bit of a task, and they can be prone to typographical
errors. But you need not type them by hand. You can use the expression builder instead.
Just click on the action argument you want to enter and then click on the build(...)
button that appears next to the control. For example, in Figure 20.9 we clicked on the
Item argument for the SetValue action and then clicked on the Build button. Notice
the Expression Builder.

builder partially
covering the
macro sheet.

REFERRING TO CONTROLS FROM MACROS 1753

ExpieMion .,,i.!(¥¥J'·'·"*m

Tables
D Queries
(±)Forms
(±) Reports
(±] Functions
D Constants
D Operators
LJ Common Expressions

i Enter the
ln~m.:o.r.fH--.d

Now we can specify a control simply by working our way down to it. In this case we
would double-click on Forms (since the control is on a form) and then double-click on
All Forms. Then we would double-click on FormB (since that's the one that contains the
control we want to fill) and double-click on CopiedText, the name of the control we
want to fill. The top box in the Expression Builder now shows the proper expression for
referring to the control (see Figure 20.10). When we click on the OK button, that con­

trol is copied into the Item: action argument.

Assigning CopyValue to an Event
To get back to the macro shown in figure 20.9, let's assume we save it with the name
CopyValue and close it. Now we want that macro to play when the user clicks on the

big command button on FormA.

:754 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

L_~----------------~--------------~----------------------------------,
ljtijQil#J•Il•J
Here we double­

clicked on
Forms>­

All Forms>
FormB>

CopiedText to
build the

expression
Forms![FormB]!

[CopiedText].

· ·': Exgression Builder · 13 r··--
~2J = > < <>I And Or Not Likel..uJ
!l.J Tables
D Queries
GJ Forms

~ <Form>
LabeiO AfterU pdate

~ D Loaded F orm8
LGJ All Forms

~
DCA Sales Tax Demo
D Forrnil. -
D Forrnil.FaultyMacro
diM:
D Form8FaultyMacro

(j II T "'' ercentf<l.;cr~

lr.L~abii!Je~l2m![IIIIQIII!IIII!I Allo"il.utoCorrect
~ .1\utoT ab
CloseForm8 L). BackColor
Detail ·-o BackStyle

BeforeUpdate
8 orderColor
BorderlineStyle
8 orderS tyle
B orderWidth
CanGrow
CanShrink
ColumnHidden

So we need to open FormA in design view, click on the command button, open the
property sheet, and click on the Event tab. Then we can click on the On Click property
for that control and assign the CopyValue macro to that event as shown below.

• • • I''' 1

~Detail

.l~~li:~lfJ~~,~~~if!
:'Hr~~;~~2:r*~E! lu;,b~-,~;,d .. · ...
::!li'" ~

: ~; Click here tcdest th!' CopyValue ma·~ro \

Format I Da.ta
On Enter .. .
On Exit
On Got Focus ..
On Lost Focus
On Click; ••.. , . Cop_vValue
On Dbl Click.
On Mouse Down ..
OnMouse.Move ..

To test the macro, we then need to save FormA and close it (and close the FormE and
CopyValue macros if they're open). Then open FormA, type in some text, and click on
the big command button. The macro will open FormE and copy whatever we typed
into the text box on FormA into the text box on FormE, as shown in Figure 20.1 1.

•

IWM1 1•111
We typed a

value into
FormA and then

clicked on the
big command
button. That

button
launched the

CopyValue
macro, which

opened FormB
and copied the

text from
FormA into

the text box
on FormB.

REFERRING TO CONTROLS FROM MACROS 1755

a

~ MkfliiOft Access l!!lr;il E3
Eile !;,dtt \f_tew

Here's another method for referring to forms and controls from within a macro. Rather
than referring to a specific object, you can refer to "whatever object is current at the

moment." The expressions you use are as follows:

[Screen]. [Active Form J
[Screen]. [ActiveReport]
[Screen]. [ActiveControl]
[Screen!. [ActiveDatasheet]

Let's take a look at another fairly simple example, using the (Screen].[ActiveControl]
expression. First, let's say we have a form with three controls named FederalRate, StateRate,

756 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

and County Rate. The Format property of each control is set to Percent. (Below you can see
the Format property for the FederalRate control.)

Format I Data I Event I Other
Name. Feder aiR ale
Control Source
Format. . · Percent
Decimal Places. . 2
lnp~IMask ..•...
Default Value
Validalion Rule, ..
Validation Text .•..

One of the problems with using the Percent format is that if the user types in a whole
number, such as 30, the Percent format assumes 300 percent rather than 30 percent. For
example, below you can see the results of typing in the values 30, 15, and 5 into this
form in form view.

Federal R ale j 3000.00%

Stale R ale I 1500.00%

County Rate I mtWd

We decide to create a macro that says "If the user types in a number that's greater
than or equal to one, divide that value by 100 to put it into percent format." To make
things more interesting, we'll create a generic macro that will work with all three con­
trols. That is, rather than create one macro for the [FederalRate] control, another for the
[StateRatej control, and a third macro for the [County Rate] control, we'll create a macro
that refers to [Screenj.[ActiveControll that works with all three controls. Figure 20.12

shows such a macro, which I've named ConvertPercent. Notice that the macro has just
one condition and one action.

The condition

[Screen] .[ActiveControl] > = 1

makes sure that the action is executed only if the content of the control is greater than
or equal to one. The SetValue action arguments:

Item: [Screen] . [Act i veCont ro 1]

Expression: [Screen]. [ActiveControl]/100

llMM*J•IfJ
The Convert­

Percent
macro uses

[Screen]. [Active­
Control] to refer

to whatever
control launched

the macro.

REFERRING TO CONTROLS FROM MACROS 1757

Item
Expression

Condition , Action
[S creen].[ActiveControl]> = 1 S etValue

[Screen],[ActiveControl]
[Screen], [ActiveControl]/1 00

Comment
Divide the content of the current
control by 1 00 if the content is
greater than or equal to 1,

Enter a comment in thi~ column,

take whatever number is currently in the value and replace it with that same value
divided by 100.

..

Next we close and save the macro. Then we need to open the TestPercentMacro form
in design view and set the BeforeUpdate event property of each control to the macro
name, ConvertPercent in this example. Below you can see we've set the AfterUpdate
event for the FederalRate control to the macro name. We'd just need to do the same for
the StateRate and CountyRate controls before closing this form.

Ort Lost Focus,,,,
On,Ciick,

CotwertPercent

To actually test the macro, we need to go to form view. Nothing happens immediately
because the AfterUpdate event occurs only after we type a new value into the control
and move onto another control. In form view, let's say we again type 30 in the Federal

758 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

Rate control, IS into the State Rate control, and 5 into the County Rate control. The
macro kicks in after each entry, giving the much better result shown below.

Federal Rate I 30.00%

State Rate J 15.00%

County Rate I a

Everyone makes mistakes, especially when creating macros. As you know, when you
run a macro, Access executes the first action in the macro, the second action (if any),
the third, and so on until it runs out of Action cells. However, if Access has a problem
executing one of the actions in your macro, it stops the macro and displays an error message
that suggests the nature of the problem. For example, while executing a macro, you might
come up with the (somewhat obscure) message below when Access hits a glitch.

The oblect doesn't contain the. Ol.E
A!I!Ofl\a!ion object 'CopiedText'.

You tried to run .a Vlsua[Ba~ic proce.i;lrueto .liet a
prqperty or me!h0d for OLE Automatir:in object.. .. ·
However, the oo{eet app)icotiop doe~t)'t make the
property or metf:>o<;! avanable to OLE Automation
• operation~,

Solutinl'!
Check the object appltcation's documentation for
information on,propert1es and metho<fs it makes
available tf) OLE Automa.tion operations.

After reading the message, you can click on OK. You'll see the Action Failed dialog
box showing you the specific action that caused the error, a? in the example shown on
the next page.

DEALING WITH MACRO ERRORS I7S9

This box provides the following information:

1!\ction Failed 01!3
Mac.ro Name:.

jFaul\\iCopyl,lalueMa•oro It J!~ic;:::JI
r~:,;,ilti,n~J;~,' t

" Macro Name The name of the macro that contains the faulty action.
• Condition What the expression in the Condition column for the faulty line

evaluated to (always True if the action has no condition).
• Action Name The specific action within this macro that caused the error.

• Arguments The arguments you assigned to this action.

To get rid of the error message box, you need to click on the Halt button. If you then
want to edit the offending macro, just open the macro's macro sheet in the usual man­
ner (that is, click on the Macros tab in the database window, click on the name of the
macro you want to edit, and click on the Design button). Once you get to the appro­
priate macro and get to the offending action, you're pretty much on your own in trying
to figure out why the action didn't work. You may want to check the hint box or press
Fl for more detailed information about the action so that you can determine the cause

and come up with a solution.

IIIIIIF"'- ~V11 3? PM 7 7@ l J 111

A common cause of macro errors is using faulty identifiers. For example, your
macro might refer to a field named [ZipCode] that's not on the form that launched
the macro. And therefore you need to add the [Forms]![formname]! prefix. Or per­
haps your macro is referring to a control on a form that is no longer open when

Access tries to execute the action.

760 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

Single-Stepping through a Macro
When you run a macro, Access whizzes through all the actions in no time at all. If a par­
ticular macro is giving you a hard time, you can slow it down and watch the results of
each action as Access performs them by running the macro in single-step mode. To run
a macro in single-step mode:

1. Open the macro's macro sheet (get to the database window, click on the Macros
tab, click on the name of the macro you want to run in single-step mode, and then
click on the Design button).

2. Click the Single Step button on the toolbar or choose Run >- Single-Step from the
menu bar.

3. Close and save the macro normally.

4. Run the macro normally by causing whatever event triggers the macro.

This time when you run the macro, Access will display the Macro Single Step win­
dow, shown below, just before it executes each action.

""M_<~, c1:""fO""N""am~,~,.-t: """t-:,.,_,~,.,_,,.,_,,.,_,~~~,.,_,.,..,..;;..., H;::::~~~k;~~JI,
JFaultyC~il;"/~u-*4acr& , , >; ,]EaJli ; 'f
.,~~;.:;~:;.:;};.:;ion:,.,·;;.:;• ~~~:.....,...~~:.....,...~~,.,_.,~~,· J:f~6tint%, l
Action Name:•, ' cy :
jopenF01fll . , ' ,,

After observing the details of the action that's about to be played, you can use the
command buttons to decide what you want to do next:

Step Executes the action whose details are currently displayed in the Macro
Single Step dialog box.

Halt Stops the macro and closes the Macro Single Step dialog box.
Continue Turns off the Single Step mode and runs the rest of the macro
normally.

LEARNING BY EXAMPLE 1761

Creating a Macro to Run at Startup
As you may know, you can use the Tools~ Startup commands on Access's main menu
to specify how you want your application to look when the user first opens the database.
(Those menu commands are available whenever the database window is displayed.) In
addition, you can also have a macro perform tasks automatically when the user first
opens your database. All you need to do is create a normal macro and name it AutoExec.

The Auto Exec macro runs after the options you defined in the Startup dialog box
have been put into effect. So you want to make sure to take that into consideration
when creating your Auto Exec macro. For example, if you've cleared the Display Data­
base Window option in the Startup dialog, your AutoExec macro doesn't have to hide

the database window, since it will already be hidden.
You can bypass the startup options and the AutoExec macro by holding down the

Shift key as your database is opening. If you are developing applications, you should
keep this technique in mind because sometimes you might want to open your database

from the user's perspective.

You can also press the F11 key to make the database window appear on the screen,
unless you've turned off the Access Special Keys option under Tools, Startup or
used the /runtime switch when launching Access.

At other times, you might want to go straight to the database window and standard
toolbars so you can make changes to your application. To achieve the latter, just keep
that Shift key depressed from the time you choose File ~ Open Database until the data­

base window appears on the screen.

~earning b~ Example
In this'chapter, we've covered the mechanics of creating macros and assigning them to
events. You'll find many practical real-world examples of macros in the chapters that fol­
low. Exploring macros in other peoples' applications is also a good way to round out your
knowledge of macros. For example, the sample North wind database that comes with
your Access programs, as well as some of the applications on the CD that comes with this

book, contain several examples of macros.
To view the macros in an application, just open the database normally and get to the

database window. In the database window, click on the Macros tab. Then click on any
macro name and click on Design to explore the macro's contents.

762 CHAPTER 20 • USING MACROS TO CREATE CUSTOM ACTIONS

In some applications, you might be surprised to see very few macros, or even no
macros at all. A very sophisticated Access application might have very few macros asso­
ciated with it for three reasons:

• The Control Wizards create Visual Basic code, not macros, to automate the con­
trols you create.

• Many Access developers prefer Visual Basic code to macros because they are
already familiar with Visual Basic.

• Many application developers will use the built-in macro converter to convert their
macros to Visual Basic code and then delete the original macro.

Converting Macros to
Visual Basic
Once you've created some macros and
have them working properly, it's easy to
convert them to Visual Basic code. To con•
vert all the macros in a given form or report
to code, first open the form or report in
design view. Then choose Tools> Macro>
Convert Form's Macros to Visual Basic
(or Convert Report's Macros to Visual Basic
if you're working with a report.)

Where to Go from Here

If a particular set of macros isn't associated
with a specific form (such as an AutoExec
macro), you use a different technique to
convert the macro. In design view, open
the macro you want to convert. Then
choose File > Save As/Export > Save As
Visual Basic Module > OK. When conver­
sion is complete; you can find the Visual
Basicversion ofthe macro in the Modules
tab of the database window.

From here you can focus on different aspects of creating a custom application or learn­
ing about Visual Basic:

" To learn about creating custom switchboards and dialog boxes for your applica­
tion, see Chapters 21 and 22.

" To learn how to create custom tool bars and menus for your application, see Chap­
ters 23 and 24.

• To learn about Visual Basic, that "other way" to create custom actions, see Chap­
ter 25.

W~at'.s New in the
Access Zoo?
F(:>('those otyou familiar with earlier ver­
siohsof,l\ccess,here'swhat's new in the
macros department;

Ruo~omrJ1andaction is anew
action that replaces the old

WHERE TO GO FROM HERE 101{)3

DoMenultem action. Use it to exe­
cute an Access menu command.

• New commands on the Tools/Macro
menu letyou create menus, toolbars,
and shortcut menus from macros. See
Chapters 23 and 24 for more informa-'
tion on these new .features.

Customizing a switchboard created by a Wizard 767

Creating a switchboard from scratch 173

Showing a switchboard when a database opens 788

Creating Custom Switchboards

switchboard is a fancy term for a form
that lets the user move around in
your application. When you use the

Access Database Wizard to create a database application, the Wizard creates a switch­
board automatically. In this chapter we're going to look at techniques for customizing
the switchboard that the Wizard creates. We'll also look at techniques for creating your

own completely custom switchboards with whatever appearance you like.

Changing a Wizard-Created Switchboard
As you know, when you use a Database Wizard to create a database, the Wizard automat­
ically creates a switchboard for that database. For example, when you use the Order Entry
Wizard to create a database, that Wizard creates the switchboard shown in Figure 21.1.

The switchboard appears automatically when you first open the database. If you
happen to be at the database window, rather than at the switchboard, you can just click
on the Forms tab, click on the Switchboard form name, and then click on the Open but-

ton to open the switchboard.

768 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

1#@@#111
The switch­

board created
by the

Order Entry
Database

Wizard.

_j EnterNie•» Other lnfOJmation ...

_j PreviewReports ...

_j ChangeSwitchboilrd Items

_j Exitthis database

Changing Wiza s

1#3M#JIM
The Switch­

board Manager
lets you make

changes to any
switchboard in

the current
database.

This database
contains three
switchboards.

If you look at all the options on the Order Entry switchboard, you'll see that one option
actually lets you change the switchboard itself (the fourth option down in this exam­
ple). When you choose that option, you're taken to the Switchboard Manager dialog
box, which will look something like Figure 21.2 (depending on the database you're
using at the moment).

Switchboard Manager

Switchboilrd !:ages:
1ain Swrtchboard Default ' ·· · ·

Forms Switchboard
Reports Switchboard

"

tlew ...

!;dit ...

Delete

Make Default I

lildll;IIJII
The Edit Switch­

board Page
dialog box lets

you add,
change, and

delete individ­
ual options on

the currently
selected

switchboard.

CHANGING A WIZARD-CREATED SWITCHBOARD 1769

The command buttons on the Switchboard Manager are fairly self-explanatory.

• Close Clic~ on Close after you've finished exploring/modifying switchboards.
" New Creates a new, blank switchboard with whatever name you specify. To add

options to that newly-created switchboard, click on its name and then click on the
Edit button. You'll be taken to the Edit Switchboard Page dialog box described in

the next section.
• Edit To change an existing switchboard, click on its name and then click on the

Edit button. You'll be taken to the Edit Switchboard Page dialog box described in

the next section.
• Delete To delete a switchboard, click on its name then click on the Delete button.
,. Make Default Makes the currently selected switchboard the default switchboard

(the one that appears automatically when the user first opens the database).

ni h ing
When you choose the Edit button from the Switchboard Manager, you're taken to the
Edit Switchboard Page. If you are working with a new switchboard, the list under Items
on this Switchboard is blank. You can use the New button to create new items. When
you Edit an existing switchboard, the items on that switchboard are listed under Items

on this Switchboard, as in Figure 21.3.
The command buttons in the Edit Switchboard Page dialog box are also self-

explanatory.

• Close Choose this button when you've finished making changes to return to the

Switchboard Manager dialog box.
• New Add a new item to this switchboard.

Switchboard Name:

j Main S witc:f-~board

!terns on this Switchboard:

Enler/'./iew Olher lnlormalion ...
Preview Repmts ...
Change Switchboard Items
E:·:illhis database

"

Dose

Edit...

.Q.elele

t ... iove !Jp

77fi CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

• Edit Change the currently selected switchboard item.
• Delete Delete the currently selected switchboard item.
• Move Up Move the currently selected switchboard item up in the list.
• Move Down Move the currently selected switchboard item down in the list.

When you Edit a switchboard item, you're taken to the small Edit Switchboard Item
dialog box, as in the example shown below.

.Qom.mand: jopen Form in Edit Mode

j 0 rders by Customer
. ~L'i
3

This dialog box is where you define how the item looks on the switchboard and what
happens when the user selects that item. In the example shown, the Text that actually
appears on the switchboard is Enter/View Orders by Customer. To change that text just click
anywhere in the text and make your changes using standard editing techniques.

The Command box describes what will happen when the user selects the item. In
the example, when the user chooses Enter/View Orders by Customer the action that
occurs is Open Form in Edit Mode. But you can change that action, if you wish, simply by
choosing a new option from the Command drop-down list. As you can see below, you
have quite a few options for defining what happens when the user chooses the item.

I ext:

.Qommand:

.Eorm:

j Enter Niew 0 rders by Customer

JiJMlijiM!NilRI¢1@
Go to Switchboard
0 pen Form in Add Mode

Open Report
Design Application
Exit Application
Run Macro
Run Code

The last option in the Edit Switchboard Item dialog box lets you choose a specific
object for the Command to act upon. For ex.ample, when the Command is Open Form

CHANGING A WIZARD-CREATED SWITCHBOARD 771

in Edit Mode, the last option is titled Forms and you can select a specific form for the

item to open, as below.

Ie:<\:

f;omrmmd:

form:

J Enter Niew 0 rders by Customer

!Open Form in Edit Mode

JOrders by Customer

0 rders by Customer S ubforrn
Payment Methods
Payments
P1int Invoice
P1oducts
Report Date Range
Shipping Information

OK

Cancel

If, on the other hand, the Command box contained the action Open Report, the last

option would be titled Report and you could choose a specific report for the command

to open.
After making changes to a Wizard-created switchboard, you need to get back to form

view to see and test the effects of those changes. Select OK and Close, as appropriate, to
work your way back to the database window. If you really want to see how things will
look to a person opening the database for the first time, you can close and then reopen
the database. To do so, you choose File> Close from the Access menu bar; click on File

again and select the name of the database you just closed.

Wizard-Selected
When you use a Database Wizard to create a database, you're also given the option of add­
ing a picture to the database's switchboards. You can change that picture after the fact, if
you wish, using any bitmap image on your hard disk. You can use an existing clip art
image, a bitmap image you created yourself, or an image you digitized using a scanner.

To change the picture on a Wizard-created switchboard, follow these steps:

1. Open the database in the usual manner with Access's File > Open Database menu

commands.
2. Click on the Close (x) button in the upper-right corner if the switchboard is cur-

rently open. Get to the database window (if it's hidden or minimized, just press the

Fll key).
3. Click on the Forms tab in the database window.
4. Click on the Switchboard form name and then click on the Design button.

5. Click on the picture that you want to change.

772 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

I#@M#lll
Properties for

the control
named Picture

in a Wizard­
created

switchboard.

6. Open the property sheet if closed (click on the Properties toolbar button or choose
View> Properties).

7. Click on the All tab and scroll to the top of the property sheet. You should see the
control name Picture, as in Figure 21.4.

The second property in the property sheet is titled Picture and shows the location
and name of the picture that's currently displayed in the switchboard.

8. Click on Picture and then click on the Build button. The Insert Picture dialog box
appears as in Figure 21.5 (though initially, your Insert Picture dialog box might
show the contents of some folder other than the one named Dbwiz).

9. Browse to the folder and file that contain the picture that you want to display in
your switchboard and choose OK.

The picture you chose will replace the one that's currently in your switchboard and
will be stretched to fit the picture's container. You can use the Size Mode property to
change the picture's sizing mode to Clip or Zoom to see which mode works best.

10. Save the switchboard with the new picture and size mode: choose File > Close;
click on Yes when asked if you want to save your changes.

To see the results of the change, reopen the switchboard in form view. Or if you
want to be sure to view the switchboard from the user's perspective, close the entire
database (File> Close). Then reopen the entire database by clicking on the File menu
and the name of the database you just closed.

l!iln6Hi#"!t-
Format j Data I Eitent I Other · All I
Name; •.••.. :.,.~
Picture< . , , , , , , , , C:\PROGRA~l FllE5\~1IC"
Picture Type ; ., • • • . Embedded
Size Mode ; .• , Stretch
Picture Alignment , , . Center

.Picture Tiling,,.,., No
Hypeilink Address •.•
Hyperfink SubAddress
Visible ~ , .. , •.• , . • lfes
Display When • • Always
Left o"
Top,,,., .. 0"

Width ...••. , . , . , 1.8646"
Height ..•.. , . , •.. 3.3125"
Back Stl'le . , . , , . , , Normal
Back Color, .•.• , .• 8421376
SpedalEffect .. , . , , Flat
Border Style , , • , .. , Transparent
Border Color , •••• , o
Border Width . , , . , , Hairline
Contro!Tip Text .. , .

l<)/

lildll;l#JIW
The Insert Pic­

ture dialog box
Jets you select a

new picture to
display in your
Wizard-created

switchboard.

CREATING A SWITCHBOARD FROM SCRATCH I '173

"

Insert Picture I'J f3

Note that the picture you chose will appear on all the database's switchboards. The
reason is that the Database Wizards actually create only one switchboard per database.
When you're using that database, you might think you are going from one switchboard
to another from time to time. But in fact, your database is just changing the title of, and

items on, that one switchboard.

Creating a Switchboard from Scratch
As you know, using Database Wizards isn't the only way to create a database application.
You can create all your tables, queries, forms, reports, and macros from scratch. Likewise,
you can create custom switchboards for your application, completely from scratch.

To create a custom switchboard, first create a blank form that isn't bound to any
table. To make it look like a switchboard rather than a bound form, you can hide the
navigation buttons, record selectors, and other doo-dads that normally appear on
bound forms. Then you can add hyperlinks, controls (such as command buttons), and
macros to make the controls on the switchboard do whatever you want them to do.

We'll take it step-by-step, starting in the next section.

Creating the Blank Switchboard Form
The basic idea behind a switchboard is to create a form that helps the user of your appli­
cation do any of a variety of tasks, such as navigating from one form to another or

774 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

litdYilfJII
Suggested Form

properties for
a custom

switchboard.

printing reports. So typically you'd create tables, queries, forms, and reports for your
application before you work on the custom switchboards. Then, within that same data­
base, you'd follow these steps to create a new, blank switchboard form:

1. Click on the Forms tab in the database window.

2. Click on the New button; then choose Design View from the New Form dialog box.
Leave the Choose a Table or Query option blank and click on the OK button.

A new empty form opens in design view. The first thing you'll want to do is to set
some properties for it.

3. Click on the Properties toolbar button (if the property sheet isn't open) or choose

View>- Properties from the menu bar. You want to be sure the entire form is selected
as the current object (because you're about to set form properties).

4. Choose Edit >- Select Form from the menu bar or click in the box where the rulers
meet.

5. Click on the Format tab in the property sheet and then set the first few Format
properties as indicated below and shown in Figure 21.6. (Properties below that are
marked with an asterisk are suggestions only. You might want to experiment with
those properties when creating your own switchboards.)

Default View:

Views Allowed:

Scroll Bars:

Single Form

Form

Neither*

Forma~ D~a I Event 0thef l
9Pti9n, ..•.... c>.

. D.;fa~ltV~\fl· •• : • : Single Form
\lie;ys Allq.weq • , , • , . Form
SS~Pll!'l.ilf~ q •,: •>.• • Neither
Rt:cord~t:t~rs c, , · No
NayfgiltfQ!l 6\JttOf)S •. , No
DlyiilingLines;:;.,. :Yes
AtJto Resize. : , .. :, ; Yes
Ayto l:;ent~~ : • , • , • • -m
Border St¥f~.? ,, • : , ·.Sizable
.~')trol~ox.<'• u. des
Min MI!X,~~~\:09?: ~ ; . Both Enabled
Close B\itton., • , •• , Yes
Wh~.tsThi~ Button ; ; No
Width •• ;.. . 5"
f:'id~e. , • , (none)
PlctureT)ipe ; , , ; • • Embedded
Pich.m'l. Size Mode ; •. • Clip
Picture Aligntnent •. , Center
Picture tiling ; ·• • , . • No
GrfdX:; : • ... ; , .. : 24

..

CREATING A SWITCHBOARD FROM SCRATCH 1775

Record Selectors: No

Navigation Buttons: No

Auto Resize: Yes*

Auto Center: Yes

Remember that you can get more information about a property right on your
screen. just click on the interested in and press Help (Fl).

6. (Optional) Fill in the Caption property with whatever text you want to appear in

the title bar of the custom form.
7. Click on the Detail band within the form if you want to color the form. Then

choose a color from Back Color button on the Formatting toolbar. If that toolbar
isn't visible, choose View >- Toolbars and click on Formatting (Form/Report). At
this point you may want to size and shape the form to approximately the size you

want the switchboard to be.
8. Drag the lower-right corner of the shaded area within the form design window to

about the size you want to make the switchboard.

To size the gray area, move the mouse pointer to its lower-right corner until the
mouse pointer turns into a four-headed arrow. Then hold down the mouse button

9. You can save and name the form now. Choose File>- Close, choose Yes when asked
about saving the form, enter the name you want to give the form (e.g., Main

Switchboard), and choose OK.

The Switchboard form is listed in the database window, in the Forms tab, just like all

your other forms. And you can treat it as you would any other form:

.. To see and use the form from the user's perspective, click on the form name and
then click on the Open button. (At this point, our sample form is completely blank.)

• To make changes to the form, open it in design view. (Click on the form name

in the database window and then click on the Design button.)

776. CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

Ill

Once the form is open you can easily switch between form view and design view by
clicking on the ... View button in the tool bar or by choosing either Form View or
Design View from the View menu in the menu bar.

Addi Controls to r Custom
Currently our switchboard is empty. We need to add some hyperlinks or controls to
allow the user to choose actions. As with all types of forms, you create controls using
the toolbox in form design view. You can create any control you wish, but chances are
you'll want to create mostly hyperlinks and command buttons.

As you may recall from earlier chapters, you can use the Insert Hyperlink button on
the tool bar to add a hyperlink to a form. If you need a control like a command button
instead, use a Control Wizard to create a control and action in one fell swoop. When
creating controls on a switchboard, the decision on whether or not to use the Control
Wizards centers around three factors:

• If the control will perform a single action, such as opening a form, and that form
already exists, then you can use the Control Wizard. (You may prefer to use a
hyperlink for opening a form or report for the performance reasons outlined in
Chapter 16.)

" If the control will open a form (or report) that you have not yet created, you can
create the control without using the Control Wizard. Later, after you've created the
form or report that the control will act upon, you can go back to the switchboard
and assign an action to the control.

• If the control will perform two or more actions, then you'll need to define the
control's action using a macro (or Visual Basic code). You can create the control
without the Control Wizard. Then later create the macro and assign that macro to
the control on the switchboard.

The last alternative is perhaps the most common when creating switchboard controls
because typically you want the control to perform two actions: open some other form or
report and then close the switchboard itself. So let's work through an example using that
last approach.

Here's a quick way to create a command button and assign a macro to it. First
create the macro and then just drag and drop the macro name on to the form
(in design view). You'll get a command button whose On Click property launches
the dropped macro!

l#(ijlj;lf)Q
Here we've

created a com­
mand button
without using

the Control
Wizard. The

button has the
generic name
CommandO.

CREATING A SWITCHBOARD FROM SCRATCH 1777

Let's say we want to create a command button on our switchboard to open a form
named AddressBook and then close the switchboard. For this example we'll also ass11me
that we previously created the form named AddressBook and that it exists in the current

database.

1. Open the switchboard in design view.
2. Click on the Toolbox toolbar button (if closed) or choose View > Toolbox.
3. Make sure the Control Wizard button in the toolbox is not pushed in because we

don't want to use the Control Wizard in this example.

4. Click on the Command Button button in the toolbox and then click at the position
where the button should appear in the switchboard. In Figure 21.7 you can see

we've created a button, which is (tentatively) captioned CommandO.

Though it's not absolutely necessary to do so, we could close the Main Switchboard
form now, just to get it out of the way, by choosing File> Close and then Yes when

asked to save changes.

..

77?;) CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

Creating a Macro for the

I#@Q;l#JI:I
The first action

for the Open­
AddressBook

macro defined
in the macro

sheet.

Next we need to create a macro that will open the Address Book form and close the
Main Switchboard form.

1. Click on the Macros tab in the database window.

2. Click on the New button. A new blank macro sheet opens. We'll probably want to
put all the macros for the Main Switchboard into this macro sheet.

3. Open the Macro Name column (click on the Macro Names toolbar button). Or
choose View» Macro Names from the menu bar.

4. Type a name for this macro such as OpenAddressBook in the Macro Name column.
5. Choose the OpenForm action in the Action column to the right.

6. Specify the name of the form you want to open in the Action Arguments (AddressBook
in this example). Figure 21.8 shows how the macro sheet would look at this point.

7. Create a second action to close the Main Switchboard by choosing the Close action
in the next Action column down.

8. Complete the action arguments as shown in Figure 21.9.

9. Close the macro sheet and give it a name. In this example we would choose File >
Close, choose Yes when asked about saving the macro, give it a name such as
MainSwitchboardMacros, and then choose OK.

'-Alii ere Condition
Data Mo.de · . · Edit
WindowMode Normal

Select the name >:>f the form to open.
The lht shows all forms in the current
database. Required argument. Press

F1 for help on this argllment.

m

lildQ;/fJQ
The second

action in the
OpenAddress­

Book macro
closes the Main

Switchboard
form.

CREATING A SWITCHBOARD FROM SCRATCH 1779

PbiectType
Obi~dName
save

/>.eli on
OpenForm
Close

Form
Main Switchboard
Prompt

Comment
Open theAddressBook Form
Close the Main Switchboard

Enter a comment in this column.

m

Finally we need to assign that new macro to the On Click property of the button we
created on the switchboard. While we're at it, we can change the caption on the button.

Here are the steps:

1. Click on the Forms tab in the database window.
2. Click on Main Switchboard and click on the Design button.
3. Click on the button to which we want to assign the macro (the button titled

CommandO in this example).
4. Open the property sheet and click on the Event tab.
5. Choose the On Click property and choose the name of the macro you want this

button to launch. In this example we want to choose the MainSwitchboard­
Macros.OpenAddressBook macro (see Figure 21.10).

6. Change the caption on the command button: Click on the Format tab in the prop­
erty sheet and then type in a caption such as &Address Book (which will appear as
Address Book on the button).

tl!f Command Button: CommandO

Ciata J Event I Other I 1>.1
Caption. . . . &<\ddress Book!
Pidure.. (none)
Picture Type... . Embedded
TransParent: flo

7. Close and save the Main Switchboard form.

780 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

l#riM#Jit•l
Assigning the
MainSwitch­

board­
Macros.Open
Address Book
macro to the

On Click prop­
erty of a button

on the Main
switchboard.

lilriM#JIII
Clicking the

Address Book
button in the
Main Switch-

board opens this
form and closes

the switchboard.

~Command Button: CommandO £1
Format] Data Event I Other l AU J
oil Enter,,., ... ,.
On Exit •. ,,,., .. .
On Got Focus ••. , • ,
On Lost Focus , • , •.
On Click . . , .. , &Mi@JllkiiMDI@€@kli.MdL:Jd
OnDbiCiick.,.,,,,
On f<lou;;e Down ••.•
On MouSe r'flove ••. ,
OnNouseUp,.,,,.
OnKe~~Down.,., ..
OnKeyUp ... ,, •..
On KeyPress .. ,.,,

•

To test your new control and action, open the Main Switchboard in form view. Then

click on the Address Book button. The macro will open the AddressBook form and close
the Switchboard, as in Figure 21.11.

"

CREATING A SWITCHBOARD FROM SCRATCH 1781

We realize we haven't mentioned anything about the AddressBook form prior to this
chapter. But our goal here is to show you how to make a switchboard button open one
form and close its own form. In Chapter 28 and in Appendix C, we'll talk more about

the AddressBook form and the Fulfill application.

Making AddressBook Return to the M n Switch
In this particular application, clicking on the Address Book button in the Main Switch­
board sends users to a form named AddressBook. It stands to reason that, when users
close the AddressBook form, they would expect to be returned to the Main Switchboard.

We could make a button on the AddressBook form that closes the AddressBook and
then opens the Main Switchboard again. But there's just one problem. Suppose the user
closes the AddressBook form by clicking on the x button in the form's window or by
choosing File> Close from the menu bar. Neither task would trigger the action to open

the Main Switchboard. So here's what we need to do:

• Create a Close button that, when clicked, closes the AddressBook form.
• Go to the property sheet for the AddressBook form as a whole and create an

action that opens the Main Switchboard form. If we attach that action to the On
Close property of the AddressBook form, it doesn't matter how the user exits the

form-he or she will still be returned to the main switchboard.

We'll create the Close button on the AddressBook form first. Since we want this but­
ton to do one simple act, we can use the Control Wizard to define the control and

action in one fell swoop.

1. Open the AddressBook form in design view.
2. Open the toolbox if it isn't already open. (Click on the Toolbox toolbar button or

choose View> Toolbox.)
3. Make sure the Control Wizard button in the toolbox is pushed in because we can

use its help in this case.
4. Click on the Command Button tool in the toolbox; then click on the spot where the

close button should appear on the form (the lower-right corner in this example).
5. Choose Form Operations and Close Form when the Command Button Wizard

appears, as shown in Figure 21.12.
6. Choose Next> from the Command Button Wizard and the next screen asks about

the appearance of the button. In this example we chose to have the button show the
text &Close (see Figure 21.13; once again, the & symbol is used to specify the under-

lined hotkey).

7.82 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

lilriQ;l#llfJ
The new button
we're adding to

the Address
Book form will

close the form.

li@Q;lf}llfl
The Close but­

ton on the
AddressBook
form will be

captioned Close.

Clicking Next> takes us to the Wizard window to name the button. This is the name
used within Access, not the text caption that appears on the button. We could name the
button anything we want. In this example we named the button CloseAddressBookForm
and then clicked on the Finish button.

When the Command Button Wizard is done we're returned to our form, where we
can see the new button. We can use the standard techniques for moving and sizing

•

"

CREATING A SWITCHBOARD FROM SCRATCH 1783

controls to position the button precisely. In the figure below we've opted to put that
button near the lower-right corner of the form.

Now we still need to make the closing of the AddressBook form automatically reopen
the Main Switchboard form. Keep in mind that the user will probably have several means
of closing that form-not just our new Close button. So we need to find a way of saying,
"No matter how the user closes this form, open the Main Switchboard form again."

We could create a macro that opens the Main Switchboard form, but let's try a slightly
different approach, using a bit of Visual Basic. How do we write a Visual Basic procedure
to open a form? Let's ask the Answer Wizard:

1. Choose Help > Contents and Index from Access's menu bar.
2. Click the Index tab and type open form.
3. Double-click on OpenForm Method in the topic list.

An action generally refers to macros, whereas a method generally refers to Visual
Basic code. We chose Open-Form Method in step 3 because we want to check out
the Visual Basic approach to doing this.

784 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

l#ldQ;lf)lll
An Example of

using Visual
Basic to open a

form. We've
selected the

part we want
to copy to
our form.

A great deal of information about the OpenForm Method appears, but we mainly
need to know the syntax. In this case the syntax is

DoCmd.OpenForm jormname

followed by some optional arguments enclosed in square brackets. When we click on
the Example option, we see that the name of the form to open needs to be enclosed in
quotation marks. To make life easy, we can just copy the example shown from the Help
screen right into out property sheet. To do that we just drag the cursor through the part
we want to copy, as in Figure 21.14, and then press Ctrl+C to copy that selection to the
Windows Clipboard.

Now we can close the Help screens until we get back to the AddressBook form, which
is still in design view. Now here's how we make the act of closing this form automati­
cally open the Main Switchboard form. With the AddressBook form on the screen in
design view:

1. Choose Edit > Select Form because we want to work with the form properties as a
whole (not properties of individual controls).

2. Open the property sheet and click on the Event tab.

Example l!!lliJ 13

OpenForm Method Example

The following example opens the Employees form· in Form view and displays only records with King
in the LastName field. The displayed records can be edited, and new records can be added.

DoCrnd. f '"'"'~: ~ ~~ "Erop loyees" , , , "LastNarCie = 1 King 1 n

•

___ C_R~E~AT~I~N~G_A_S~W~I_T~C~H_BO_A~R~D __ FR~O~M~SC~R~A_T~C~H~I785
..--

3. Click on the On Close property, and a Build button appears with these options:

1111

ChQose Builder I'Jf3
Expression Builder
Macro Builder .. OK

Cancel

Remember, you can use either Visual Basic or macros to define many actions. Here
we've used Visual Basic just because it's quick and easy to do so in this example.

Chapter 25 introduces Visual Basic.

4. We're going to try our hand at some Visual Basic code, so click on Code Builder and
then click on OK. A new window pops up that already contains a couple of lines of
Visual Basic Code, Private Sub Form_Close and End Sub. Any code we want

to add must go between those two lines.
5. Put the cursor between the two existing lines of code and then press Ctrl+V to add

the copied lines of code. Initially, the pasted text looks like this:

ag.J;,,p.$Hff'1:!¥1WHMttffiM!-

Private Sub Form_ Close()
DoCmd. OpenForm rrEmp loyees"

~~End Sub

Private Sub Form_ Current ()
'Set:. t.he bi9 lookup li3t 1 a (AlphaNameLiet) ~:.rue value
' (hidden fir·st. c.:oltu·(ln) >.::qual t::.o t.he Per·::::on ID field

'in the current record.
AlphaNameList = PersoniD

Enc! 5ulo

Private S1..1b Form_ Delete (Cancel As Inte~fer)
1 Di.3play cust.Oitl dialrJq]:)o;{.

Dixn Hsg As Strin9, BoxResponse As String
Dim Title As String, Style As Integer

~ !o! xl

786 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

6. Change the form name in the code, as below, so that the code opens the form
named Main Switchboard, not the form named Employees. (You can also press
Home to move the cursor to the start of the line and then press Tab to indent the
line. Indenting the lines between the Private Sub and End Sub commands is a stan­

dard practice.)

Private Sub Form Close()
DoCmd.OpenFo;m ~rlolain SwitchboardJ"

End 5ub

Private Sub Form_Current()
1 :::et. the big lookup list. 1 s (AlphaNE.t.rneList.) true ·value
1 (h1dden first. column) equal t.o t.he Person ID field
1 in the current record.
AlphaNameList = PersoniD

End Sub

Private Su.b Form_Delete (Cancel As Integer)
1 Displ.:t:,i c~usto:m dialo~r box.
Dim Us1;;r As ~::it.ring, BoxResponse As String

Dim Title As String, Style As Integer

7. Click on the Compile Loaded Modules button in the toolbar to compile the code
quickly and check for gross errors in our Visual Basic command. If you did every­

thing correctly, you won't see any error messages.
8. Close the module window (the one that contains the Visual Basic code) by clicking

on the Close (x) button in the upper-right corner of the module window or by

choosing File > Close from the menu bar.

The property sheet now shows [Event Procedure] next to the On Close property,

indicating that we've assigned a Visual Basic procedure to this event.

9. Close and save the AddressBook form.

To test the effects of all this, we can now open the Main Switchboard form in form
view. When we click on the Address Book button in that switchboard, the Address Book
form should open and the Main Switchboard form should disappear. When we close
the AddressBook form, that form should disappear and the Main Switchboard form

should reopen.

II@@#JIQ
The sample

Fulfill applica­
tion5 Main

Switchboard, in
form view, under

construction.

FILLING OUT THE SWITCHBOARD I i37 "

0 Switchboard
We can continue work with the Main Switchboard form, adding whatever controls we
think will be useful later down the road. We can also use the Label and Rectangle tools
in the Toolbox to add some labels and boxes. The Back Color, Border Color, Border
Width, and Special Effects buttons on the Formatting (Form/Report) toolbar can help
make these embellishments even fancier.

If you create a rectangle around a group of buttons and the rectangle ends up covering
the buttons, don't panic. just select (click on) the rectangle and choose Format> Send
to Back from the form design screen's menu bar.

The Main Switchboard example we're showing you in this chapter was actually the
starting point for a real application, named Fulfill 95, that's on the CD-ROM that came
with this book. And as you'll see when you try that application, we've embellished the
Main Switchboard.

For example, we added a dark gray rectangle behind the command buttons and a label
(Focus On) to the upper-right corner of that rectangle. We also added a large white rect­
angle as a placeholder for Fulfill's logo, which we'll create and add later. Figure 21.15
shows the Main Switchboard, in form view at this stage of Fulfill's development.

When you explore the Fulfill application, you'll no doubt find that its main switch­
board and other forms have evolved from what's shown here.

lill Main Switcllboard: fulfill 95 EJ
.-----------~~~~--~--~--__, ·~

I

I tD.:~a~iit~n!i§itl
·. Mv!l.iz.lnfo

J:ror,!tti;:ts

•

788 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

lilfl@#JI(iJ
The form

named Main
Switchboard is

the first to
appear when
the database

opens.

You can start exploring Fulfill at any time by copying it from the CD and opening it
up in Access for Windows 95. (If you get a message that the database cannot be opened
because it is read-only, open the Explorer window. Select Fu1 fi 11 .mdb, choose Properties
from the File menu, and uncheck the Read-only attribute. Appendices B and C will help
you.) Chapter 28 discusses ways of exploring Fulfill (and other custom Access applica­
tions) so you can start learning "by example" how all the pieces are put together in an
Access custom database application.

ratS
If you create a custom switchboard for your application, and want it to appear automat­
ically when the user first opens the database, set the Display Form option in Startup to
the name of your switchboard. Here are the exact steps to follow:

1. Close any open forms to get to the database window.
2. Choose Tools > Startup from the menu bar.

3. Choose the name of your main switchboard from the drop-down list box next to
Display Form, as I've done in Figure 21.16.

4. Choose OK.

You can leave all the other settings as they appear in the Startup dialog box until
you're further along in the development process. (More on those options in Chapter 28.)
The next time you open the database, your custom switchboard will appear on the screen
automatically.

AllPiication Title: Display Eorm: OK
t;mtii.iiimfiJ it

Carr~el r Display Qatabase Window

advanced > > 1 -=1 117 Display Status §.ar

Application ~con:

M_en1.JBar: 2[leortcut Menu Bar:

J(default) it
117 Allow Fgll Menus 117 AUow Built-in Toolbars

P Allo\'!. Def 'lUlt Shortcutf'~enus 117 Allow Toolbat/~lenu Chonges

b
If you've read this entire chapter, you may be confused by the vast differences between
Wizard-created switchboards and totally custom switchboards. Let's take a moment

"'

WIZARD-CREATED VERSUS CUSTOM SWITCHBOARDS 1789

here to review the primary differences so you don't leave this chapter feeling confused
on this topic.

Summ Switch boa
When you use a Database Wizard to create a database application, keep in mind the fol­
lowing points about the switchboard(s):

• To change items on a Wizard-created switchboard, open the switchboard in for'!l
view and use the Change Switchboard Items option to make your changes.

• You can make design changes to the Wizard-created switchboard by opening that
switchboard in design view. However, any changes you make will affect all the
switchboards in that database application.

• The reason for the above is that the Database Wizard really only creates one switch­
board per database application. It just changes the items on that one switchboard,
automatically, when you choose an item that takes you to a (seemingly) different
switchboard.

" You can make a Wizard-created database open with a different, custom switch­
board of your own design. Just create your custom switchboard. Then choose
Tools > Startup > Display Form and set the name of the form to your new cus­
tom switchboard.

Summary: Switch
When you don't use a Database Wizard to create a database, keep in mind the following
points:

• Initially, your database application will have no switchboards at all.
• You create a switchboard by creating a new form that's not bound to any table or

query.

• To ensure that the switchboard form doesn't look like a data-entry form, turn off
the form's record selectors, navigation buttons, scroll bars, datasheet view, and so
forth by selecting the entire form in form view, and making appropriate changes
to the property sheet.

• You need to add your own controls (i.e., command buttons) to a custom switch­
board, using the toolbox in form design view. You can also use hyperlinks for
simple actions like opening forms and reports.

• To make a switchboard appear automatically at startup, choose Tools > Startup
and set the Display Form option to the name of your switchboard.

790 CHAPTER 21 • CREATING CUSTOM SWITCHBOARDS

I

to
Next we'll look at ways of creating custom dialog boxes from scratch. As you'll see, the
basic starting point is the same as it is for creating a custom switchboard. You create a
form that's not bound to any table or query. Then you add appropriate controls and
actions using the toolbox in the form design view.

If you prefer, you can explore other topics related to building custom applications:

" To view the Fulfill 95 application's final custom switchboards, see Appendix C.
" To take a look at some custom switchboards in other sample applications, see

Chapter 28 for some tips.

" To learn how to create custom toolbars and menus for your application, see Chap­
ters 23 and 24.

• To learn about Visual Basic, see Chapter 25.

What's New in the
Access Zoo?

With Access95, you could create switch­
boards. Now with Access 97, you have the
added flexibility of being able to use

hyperlinkson a switchboard tojumpto
forms and reports. Using hyperlinks in this
way is quickerthan setting up command
buttons with macros and also results in
better performance.

Creating a dialog box with checkboxes
and command buttons

Adding macro actions to a dialog box

Putting finishing touches on a dialog box

797

803

811

Creating Custom Dialog Boxes

s a Windows user, you've probably
seen hundreds of dialog boxes. A
dialog box is a window that pops up

on the screen to give you information or to ask questions about what you want to do
next. You make your selections from the box and then choose OK to proceed. Or in
some cases, you can choose a Cancel button to back out of the dialog box gracefully

without making any selections.
You can create your own custom dialog boxes in your Access applications. The pro-

cedure is similar to creating a switchboard: Start off with a blank, unbound form, add
some controls, and develop some macros or Visual Basic code to specify what happens
when the user selects a control. You can also add some finishing touches, such as OK
and Cancel buttons and a special border. In this chapter we'll look at all the factors

involved by creating a sample dialog box for a sample database.

Our Goal
We start with a database with a simple name and address table in it. We've also created
a Mailing List form for entering and editing data in that table, as shown in Figure 22.1.

796 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

li@Q;lfJ'JM
A sample form

in a simple
database.

lilHQ:lfll81
Reports defined

for the simple
database.

In addition, we've created four reports for this database. You can see their names in
the database window in Figure 22.2.

Now let's say our goal is to be able to hide the database window from users of this
application. In order to print a report, we want the users to click on the Print button at
the bottom of the form. When they do so, a pop-up dialog box (see Figure 22.3) allows
them to choose one or more reports to print or preview.

@rififfliMfjJ+ifl,n.lffll•trtM+H
Iilli Tables I W Queries I §I Forms

B Address Directory

1ll!l Avery 2163 mini-sheet labels

fiJ Envelopes

B ~~~~

B Reports I EZ Macros I 4 Modules I
·!:review

"

•

li'rl'i;l#l¥1
A custom dialog

box appears
when the user

clicks on the
Print button

near the
bottom of
the form.

STEP 1: CREATE THE DIALOG BOX 1797

0 rganization ABC Corporation
Address 123 A St.

San Diego
City

CA 92345
State ZIP Code

(619)555-32(

l!ll Choose a Report · 13

r [~~~<e.s<~i·e.~to•il
r Mailing Labels

r Envelopes

r Phonelist

,.,_;~~. I . Preview I\ - Erint J
andy@where ~

"'

For the rest of this chapter, we'll look at the exact steps required to create such a
dialog box. Remember, in this example we're assuming the table, form, and four reports
have already been created. Our job here is simply to create the dialog box.

1: Dialog
Creating a blank dialog box is pretty much the same as creating a new, blank switch­

board. Here are the steps to get started:

1. Click on the Forms tab in the database window and then click on New.
2. Choose Design View and leave the Choose the Table or Query option blank.

3. Choose OK.
4. Open the property sheet (click on the Properties button in the toolbar or choose

View>- Properties) and click on the Format tab in the property sheet.
5. Set the first few properties in the property sheet to the values shown in Figure 22.4.

401>....-E.

Remember that the Caption property is the title that will appear in the title bar of
your custom dialog box. So be sure to enter a caption that's suitable for the dia-

box

J98f CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

li@wt#f¥1
An unbound

form with For­
mat properties

set to make the
form look like a

dialog box.

'F<if~nr/1t.J D~ta I F:vent I
, Caption : ., • , •• , , • , Choose a Report

Qef®Jt Vi~w • , • ; Single Form
VieW!p\Howetj ; • , • • Form
!>([?U Bars ; , • , • • • • ~Jeither
R!J<;onj Selectors. , , ,~Jo
NilViiJation !Suttons. •• No

C DMdin(jlioes, :.: , ; , Yes

!\t¢o R~sl;:e, •••• , • :· Yes
Auto Center. , • , ; • , Yes

~,Yes

'None
Yes!

,,~JO

Add the Checkbox Controls

Now that we have a blank form to work on, we need to add the controls that the user
will "lect !<om. You con "" ony of the cor>tml, that the toolbox offe". In thh example
we'll use checkboxes and command buttons. Here are the steps for adding one checkbox:

1. Open the toolbox if closed (click on the Toolbox toolbar button or choose View> Toolbox).

2. Click on the Checkbox tool and then click in the form at about where you want the
checkbox to appear. Access creates a checkbox with a generic name and caption (most likely CheckO).

3. (Optional) Change the caption to something more descriptive, such as Address
Directory (just click within the caption and type your change).

4. Open the property sheet and click on the checkbox (so it's selected). Use the All tab
to give the checkbox a more descriptive name (e.g., DirectoryChosen) and, option­
ally, set its default value to No.

:..Ill.- <Gi

Be careful when assigning names to controls that you don't inadvertently assign
the name to the control's label. Always click directly on the control you want to
name before typing a control name into the property sheet. The top of the property
sheet always shows the type and current name of the currently selected control.

Figure 22.5 shows our progress. The checkbox is on the form, and the name of that
control in the property sheet is DirectoryChosen. The label (caption) for the control
(on the form itself) is Address Directory.

l]l3M*1¥W
The caption of

the first checkbox
control in the
dialog box is

Address Direc­
tory; its name is

DirectoryChosen.

*UdW*ll·•
Four checkbox
controls added

to our
dialog box.

STEP 1: CREATE THE DIALOG BOX I '799

•

Next we follow those same steps to create three more checkboxes, one for each possible
report. Figure 22.6 shows all four checkboxes in place. Table 22.1 lists the caption for each
checkbox and the name we assigned to each checkbox. (You can't see the name of each
checkbox because the property sheet shows properties for only one control at a time.)

·-~
l!li! r uwr

Checkboxes can be difficult to align and space evenly. Try using Edit> Select All
to select all the controls; then use Format>: Size> To Grid, Format> Align>
To Grid, and Format> Vertical Spacing to get things in the ballpark. Then you can
use other options under Format > Align, as appropriate, to tidy up.

Name , ..• "• , .: • PhonelistChosen
Cont!I>!Sour~~~ •.•. :.,
.Defaufi~lalue ... , .. • No
V;.lidat\onRI.li!>;.
Validation Te~t. ,
Status ~ar T\'Kt{.
Visible,•.:·, .. ·:••: 'Yes
Display y.ll..en .. : . Always
'Enal:>!ed::... Yes
locked: ... : No
T'rl.-.foC:t::.to. p,J,-,

"

800 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

I
CAPTION

Address Directory

Mailing Labels

Envelopes

Phone List

NAME

DirectoryChosen

LabelsChosen

EnvelopesChosen

PhonelistChosen

Add the mand
After the checkboxes are in place, we need to add the command buttons. You probably
know the routine by now, but let's go through the steps to create one of the command
buttons. (The Control Wizards won't really help here because we haven't yet created

the macros that will respond to the user's dialog box selections.)

1. Turn off the Control Wizards by clicking the button "out" as below.

2. Click on the Command Button tool and then click in the form where you want the
command button to appear. A button with a generic name, such as CommandO,

appears.
3. Make sure the command button is selected and then use the All tab in the property

sheet to give the button a name and caption.

In Figure 22.7 we've created a command button, named it CancelButton, and assigned

the caption Cancel.
We repeat steps 1 to 3 to create two additional command buttons, captioned P&review

(which shows up as Preview on the button face) and &Print (which shows up as Print). You
can then use dragging techniques and the options on the Format menu to size, position,
and align the buttons to your liking. Figure 22.8 shows the finished dialog box. Table 22.2

lists the names and captions assigned to those buttons.

___ S_T_EP __ l:_C_R_E_AT_E_T_H_E_D_IA_L_O_G __ BO __ X__JI801

~

ll@'l;ltlH
The custom dia­

log box with a
Cancel com­

mand button.

I#LdQ:lllJ:I
The custom

dialog box with
three command

buttons.

I

Cancel Button

PreviewButton

PrintButton

Form.>t] ·Data 1 Event Other

r\lame,,.,,,,, .. , CommandS
Default , . , . , . , . , , No
Cancel .. " .. , .. , No
Auto Repeat •.. , , , No
5t.otus Bar Text .. , ,
Tab Stop , , , , , , , . , 'les
Tab Index , 4
Shortcut ~lenu Bar . ,
ControlTip Text • , , •
Help Context Id , , , , 0
Tag ••... ,.,.,,.

Cancel

P&review

&Print

"

All 1

802 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

ljlflQ;lljD
Once closed

and saved, the
new dialog box

is listed right
along with any
other forms in
the database

window.

a Form
With the controls in place we can now name and close the form and optionally print
some "technical documentation" that will help us develop the macros in the next step.
Here are the steps to follow:

1. Choose File>- Close>- Yes and enter a name such as PrintDialogBox. The new dia­
log box name appears in the database window along with any other forms, as in
the example shown in Figure 22.9.

•
... '

lili) Tables [§TI Queries §! forms I • Rep<lrts]

§ Pt'intDialogBox

2. Choose Tools >- Analyze >- Documenter if you want to print the technical
documentation.

3. Choose Forms under Object Type and click on the name of the form that you want
to document (PrintDialogBox in this example, as shown below):

Ill! Documenter £!
~ Modules I . lfii:TI 0Jrrent oatab~se

. J¥1LI~bles .J . [§TI qyeri~s §! Fo~ms .

r lj] Mailing List Form
P'§ rintDralog8ox •

STEP 2: CREATE THE MACRO ACTIONS 1803

4. Click on the Options button and limit the display to the options shown below.

Ill! Print Form Definition 13
OK

· · Cancel

§. Choose OK (twice) and wait for the Object Definition window to appear.

You can then use the Print button in the toolbar to print the documentation. Then

click on the Close toolbar button to close the Object Definition window and return to

the database window.
We'll use the printed documentation to help us remember the exact names we gave

to the controls in the dialog box. The names of the controls appear near the end of the

printout and will look something like this:

Command Button: CancelButton
Check Box: DirectoryChosen
Check Box: EnvelopesChosen
Label: Labell
Label: Label5
Label: Label?
Label: Label9
Check Box: LabelsChosen
Check Box: PhoneListChosen
Command Button: PreviewButton
Command Button: PrintButton

Actions
Next we need some macros to define what will happen when the user makes selections

from the dialog box. We need to start with a blank macro sheet:

1. Click on the Macros tab in the database window.
2. Click on the New button to get to a new, blank macro sheet.

E. g
Ill
::;,
v

804 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

3. Open the Macro Names and Condition columns using the appropriate options on
the toolbar or the View menu. You should see all four column headings listed

across the top of the columns.

f-­
f-­
f-­
f--

Macro Name I Condition · I Action I Comment

Now we're ready to start creating the individual macros. You can start off by typing

just a comment into the first row(s) of the macro sheet.

One of the buttons on the PrintDialogBox form lets the user Cancel-that is, bail out
without doing anything. The macro we assign to that button need only close the form.

So follow these steps to create that macro:

1. Enter a name such as CancelPrint in the Macro Name column in a blank row

beneath the comments you typed.
2. Leave the Conditions column empty.
3. Choose Close in the Action column.
4. Fill out the action arguments as follows:

Object Type:

Object Name:

Save:

Form

PrintDialogBox

Yes

5. (Optional) Fill in the Comments column to describe what this macro does.

Figure 22.10 shows the completed first macro.

IW'@*lii•J
The first macro

typed into
the new

macro sheet.
Close

STEP 2: CREATE THE MACRO ACTIONS 1805

: Just close PrintDialogBox

S:ale.;t Yes to save the obif.ld when
dosed. Sele\Ot No to dose the object
without saving it .. Select Prompt to
prompt for S?!Ving the object befor\'i
dosi~g it• Press Fl for help on this

argument.

..

Preview Reports Macro
The next macro is a little trickier than the first because it needs to say, "If the Directory­
Chosen checkbox is checked, preview the Address Directory report," and then "If the
LabelsChosen checkbox is checked, preview the Avery 2163 minisheet labels report,"
and so on. So we need to explain one thing about the checkboxes before we do that.

A checkbox is a control that can contain any one of two values, either True (checked)
or False (unchecked). We don't actually use the checkboxes to launch an action. Instead,
we decide whether to perform some action based on whether a checkbox is checked or
not. The "decision" part takes place in the Condition column of the macro. As you may
recall from Chapter 20, the Condition column must contain an expression that evaluates
to True or False. Since the value of a checkbox is inherently True or False, we only need to
use the name of the checkbox in the Condition column of the macro. For example, if I
put DirectoryChosen as the condition in a line, then DirectoryChosen proves True if the

checkbox is checked and proves False if the checkbox is unchecked.
With that little tidbit in the back of your mind, let's go ahead and create the next

macro in this sheet. We'll name this new macro Preview Reports. Here's how to proceed:

1. Leave one blank row beneath the CancelPrint macro. Type the name Preview­

Reports into the Macro Name column of the new row.
2. Type [DirectoryChosen) in the Condition column.

806 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

li@Q;l#jjll
Starting the

second macro,
which we've

named Preview­
Reports.

documentation for the form lets you easily look up the exact spelling
of the checkbox controls on the form. That's how I "remembered" the Directory­
Chosen name. In lieu of using printed documentation, you can use the Expression
Builder to locate names of controls on forms.

3. Choose OpenReport in the Action column and fill in the Action Arguments as
follows:

Report Name:

View:

Address Directory

Print Preview

4. (Optional) Type a description into the Comment column.
At this point our macro sheet looks like Figure 22.11.

Next we need to repeat steps 2 to 4 to add three more rows to the macro. But we need
to refer to different controls and report names. Figure 22.12 shows the complete macro.

Table 22.3 shows the Condition, Action, and Action Argument for each row in the
PreviewReports macro.

"'

plijlhl#llfJ
The Preview­

Reports macro
defined in our
macro sheet.

Report Name
View
Filt~rNome
INhere Condition

CONDITION

[LabelsChosen]

[EnvelopesChosen]

[PhoneListChosen]

[DirectoryChosen]
[LabelsChosen]
[EnvelopesChosen]
[PhonelistChosen]

Phone List
Print Preview!

Close

OpenReport
OpenReport
OpenReport
OpenReport

ACTION

Open Report

Open Report

Open Report

STEP 2: CREATE THE MACRO ACTIONS 1807

PrintDia\ogBox forrn,

Just close PrintDialogBox

Preview the Address Directory report
Preview the Avery labels report
Preview the envelopes
Preview the phone list

Select the view in which to open the reporti
Print (to print the report immedrat?ly), Desi~n
view, m Print Preview, Press Fl. for help pn

this arqument,

ACTION ARGUMENTS

Report Name: Avery
2163 mini-sheet labels

View: Print Preview

Report Name: Envelopes

View: Print Preview

Report Name: Phone List

View: Print Preview

"'

Print
Next we need a macro to print reports, This macro is virtually identical to the Preview­
Reports macro except that the View Action Argument for each OpenReport action

808 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

l#dQ;l#JJII
The Print­

Reports macro
added to the
macro sheet.

needs to b.e changed from Print Preview to Print. To create this macro quickly and eas­
ily, follow these steps:

1. Hold down the Ctrl key and click on each of the four rows in the PreviewReports
macro so that all four rows are selected.

2. Choose Edit > Copy or press Ctrl+C to copy those rows to the Clipboard (nothing
happens on the screen).

3. Leave a blank row under the Preview Reports macro, click in the Macro Name col­
umn, and choose Edit> Paste (or press Ctrl+V). An exact copy of the PreviewReports
macro appears.

4. Change the macro name from PreviewReports to PrintReports.
5. Change the View action argument in the first row of this new macro from Print

Preview to Print.
6. Change the comment to reflect this change.
7. Repeat steps 5 and 6 for the remaining three rows in the Print Reports macro.

Figure 22.13 shows how the macro sheet looks at this point (though you can only
see the Action Arguments for the last row in the macro).

Macro Name

PreviewReports [DirectoryChosen]
[LabelsChosen]
[EnvelopesChosen]
[PhonelistChosen]

[DirectoryChosen]
[LabelsChosen]
[EnvelopesChosen]
[PhonelistChosen]

Action
Close

OpenReport
OpenReport
OpenReport
OpenReport

OpenReport
OpenReport
OpenReport
OpenReport

Comment
Just close PrintDlalogBox

Preview the Address Directory report
Preview the Avery labels report
Previev·J the envelopes
Preview the phone list

Print the Addre» Directory report
Print the Avery labels report
Print the envelopes
Print the phone list

Enter a macro name in this column,.

X

..

STEP 3: ASSIGN MACROS TO DIALOG BOX BUTIONS 809

You may now save and close the macro in the usual manner. That is, choose File>­
Close>- Yes, type in a name such as PrintDialogBoxMacros, and choose OK. The macro
name appears in the database window whenever the Macros tab is selected.

!illl.T ables.j. d§J Queries j EID Forms l !il Reports 3 Ma•oros l<"~ Mode>lesl

\

-mi!ilil\•il·illliiBI!r_______ fi<>n I
.Qesign I

tlew I

Step 3: Rssign Macros
Next we need to assign each of those macros to the three command buttons in the

PrintDialogBox form. Here's how:

1. Click on the Forms tab in the database window, click on the PrintDialogBox name,

and then click on the Design button to open that form in design view.

2. Open the property sheet and click on the Events tab.

3. Click on the Cancel button.
4. Click on the On Click property in the property sheet and then use the drop-down

list button to choose PrintDialogBoxMacros.CancelPrint as the macro to run when

lilfll!tlllltl
The Print­

ReportsMacros.
Cancel Print

macro assigned
to the On Click
property of the
Cancel button.

the user clicks that button (Figure 22.14).

Format] Data Event \ Other l AU \

OoEnter .•••.•..•
On Exit
On Got fows
On Lost Focus .• , . . ,
On Click ••••••• , •• ~·D•!JI.mlJi• =i!:JiBmJ!!il!lllml _ _.::v.\.:.:J··,J
On Dol Click •• , , • • • [Event Procedure]
On Mouse !)own , , . . PrintDialog8ox~1acros

On Mouse Move •••. on Mouse ~PC, , , . , • PrintDialogBoxMacros.PreviewReports
on Ket DtJWn, . , . , , PrintDi.:JiogBoxr~·lacros.PrintReports

Onl;eyUp, ..•...•
On Key Press .. , ...

..

.8J0 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

5. Click on the button captioned Preview and assign the macro named PrintDialog­
BoxMacros.PreviewReports to that button.

PrintD ialog8 oxM acros. PreviewR eports

6. Click on the button captioned Print and assign the PrintDialogBoxMacros.Print­
Reports to the On Click property of that button.

Form~t j Data Event I Other I All l i
On Exit... ~I
On Got Focus. .

11
,;

On Lost Foctw .. , __J

On CJ!ck, iltliil!l&1lmt®®b®t.i4iftlii§d .::l:d '
On Dbl Click ..

7. Close and save the form (choose File> Close> Yes).

You're returned to the database window. The dialog box and its macros are complete.
Assuming you had created the four reports mentioned at the start of this chapter, you could
test the dialog box right now simply by opening it in form view and making selections.

As you may recall from earlier in this chapter (refer to Figure 22.3), we actually
assigned this dialog box to the Print button on a form we had created earlier. The sim­
ple way to do this would be to open that form in design view, open the toolbox, and
turn on the Control Wizards. Create the Print command button and, when the Control
Wizard asks for actions, choose Form Operations > Open Form > PrintDialogBox. The
caption for the button would be &Print.

You could also use a hyperlink to open the PrintDialogBox form. Click the Insert
Hyperlink dialog box, enter PrintDialogBox under Named location in file, and click on
OK. Then move the hyperlink from the upper-left corner of the form to wherever you
want it to appear. Click on the caption and change it to Print (instead of showing the
entire form name, PrintDialogBox). Figure 22.15 shows the Mailing List form with a
hyper link to the left of the Notes field that opens the PrintDialogBox form. Note that
the Print command button, shown on the form in Figure 22.1, has been removed.

Dtf1lj;1111EJ
The Mailing List

form with a
Print hyper/ink

instead of a
Print command

button. 0 rganization ABC Corporation
Address 123 A Sl.

San Diego
City

FINISHING TOUCHES 1811

"

[6. 92345
State ZIP Code

Finishing
You can put a few finishing touches on your dialog box to refine its appearance and
behavior, as we'll discuss in the remaining sections in this chapter. As always, these
"features" are actually properties or specific controls that you assign to the form using

the property sheet in the form design screen.

Modal p
You may have noticed, in your day-to-day use of Windows, that most dialog boxes are
"sticky"; that is, once the dialog box is on the screen, you can't just shoo it away by clicking
on some other window. You need to specifically complete the dialog box, close the dialog

box, or choose the dialog box's Cancel key to get rid of the dialog box.
The technical term for "stickiness" is modal. That is to say, most dialog boxes are

actually modal windows. By contrast, most "regular" (i.e., application and document)
windows are modeless, meaning that you can do work outside the window even while

the window is on the screen.
A second characteristic of dialog boxes is that they are pop-up forms. That is to say,

once the window is on the screen, no other window can cover it. You might already be
familiar with the Always on Top feature of Windows Help screens. When you activate
that feature, you are, in essence, making the Windows Help window a pop-up window.

812 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

If you want to give your custom dialog boxes the modal and pop-up characteristics,
follow these steps:

1. Open the custom dialog box in form design view.
2. Choose Edit> Select Form to select the entire form.
3. Open the property sheet and click on the Other tab.
4. Set the Modal and Pop-up properties to Yes.

~Form 13
Format I Data I Event Otherj .6.11 I

'----------u PopUp. . Yes
ModaL .. 00 • : 00 .. Yes
Cycle .. ,., .. , . . All Records
MimuBai.
Shortcut Menu 'res
Shpr!cut_Me11uBar.
F."l~t I A:':Rr Print inn Y R:'::

the cursor is on either property within the property sheet.

§. Close and save the form (File> Close> Yes).

To test your efforts, open the dialog box in the normal form view. When you click
outside the dialog box, nothing will happen (except, maybe, you'll hear a beep). The
only way to get rid of the dialog box is to specifically close it using one of its command
buttons or the Close (x) button in its upper-right corner.

er
Another characteristic of many dialog boxes that make them different from other win­
dows is their border. Many dialog boxes have a thick, black border that cannot be sized.
If you want to give your custom dialog box that kind of border, follow these simple steps:

1. Open the custom dialog box in form design view.
2. Choose Edit > Select Form to select the entire form.
3. Open the property sheet and click on the Format tab.

4. Set the Border property to Dialog.

!Jli'Fmm f3
Format l Data j Ever\t J Other J All J
Record Selectors .. No ~
Navigation Buttons No
Dividing Lines ... ~res

Auto Resize .. \)es _j
Auto Center •... Yes

Border St~te ... - .:J
Control Box .. '{es

Min Max Buttons .. None

Close Button .. Yes

Wha\s.This Button. flo -=:.!

FINISHING TOUCHES 1813

To learn more about border styles, press the Help key when the cursor is in the

Border box.

5. Close and save the form normally (File> Close> Yes).

To see the effects, open the dialog box in form view. Then try sizing the dialog box
by dragging one of its edges or corners. Can't be done! If you try to "trick it" by using
commands in the control menu (in the upper-left corner of the dialog box), no go. The
menu will now offer only the Move and Close options, as illustrated below.

Ill! Choose a Repmt f3

Two last features that many dialog boxes share are cancel and default buttons:

.. Cancel button The button that gets pushed automatically when the user presses

the Escape key.
.. Default button The button that is automatically selected when the user presses

Enter. This button will also have a darker border than other buttons on the same form.

814 CHAPTER 22 • CREATING CUSTOM DIALOG BOXES

You can make one (and only one) button in your dialog box the default button and
any other single button the cancel button. Here's how:

1. Open your custom dialog box in design view.
2. Open the property sheet.
3. Click on the Other tab.
4. If you want to make a button into the Cancel button, first click on that button to

select it. Then set its Cancel property to Yes, as below.

iii Command Button: CanceiButton 1'3 -r······: :J?:l!i
:H HP.J§i Format I Di.lta j Event Other J . All

E~~::.v.~ Name ... :·.. , " CanceiButton ·
if!{[... ., 1~... Def4u1L No
or.Cancei.'J' F CanceL ... , :• Yes
~~~~~~,-~~ -A_ut?.~ep~~t~,··,· 'No 

StatusBarText,.,. 
Ti.lb~top ........ Yes 
T wt. f.~ J~,. 

5. If you want to make some other button the default button, first click on that but­
ton to select it. Then set its Default property to Yes, as below. 

!!!i Coliillland Button: PrintButton 

Forrililtl t;)ata l Event Othllr .1 At 
Name ... , ••.•..•.. PrintButlon 
!)efaul\ ... : . : : ... ' ' a _::J 
Cancel....... No 
Auto Repeat. No 
Status BarT ext ... 

6. Close and save the form normally (File> Close> Yes). 

When you reopen the dialog box in form view, the only visual difference you'll see 
is the darker border around the default button (the Print button in the example below). 

~Choose a Report f3 
r AddressDirectory' 

r Mailing Labels 

r Envelopes 

r PhoneList 

Cancel j P!e\,iew j Erint 



WHERE TO GO FROM HERE j 815 

You can test the new properties by pressing the Escape or Enter key while the form is on 

the screen. 
What we've learned here is the big secret to custom dialog boxes: They're really just 

forms that aren't bound to any particular table or query. You use the toolbox in form 
design to add controls, and maybe some hyperlinks, to that form. Then you create macros 
(or Visual Basic code) to define the actions that the dialog box will perform. You can 
even make your dialog box behave like the dialog boxes in bigger Windows applications 
by setting Modal, Pop-Up, and Border Style properties to the form as a whole. You can 
also assign the Cancel and Default properties to any two command buttons on the form. 

Where to Go from Here 
In the next two chapters we'll look at techniques for creating custom toolbars and 
menus. Those two features will add even more professional polish to your custom 
Access applications. Here are some other chapters you might want to explore: 

• To get a refresher on the mechanics of creating macros, see Chapter 20 "Using 

Macros to Create Custom Actions." 
• To see a custom application with lots of custom dialog boxes, try the Fulfill sam-

ple database on the CD (see Appendix C). 
• To learn about exploring custom applications behind the scenes, see Chapter 28. 

, .... What's New in the 
A<:cess Zoo? 
Creating custom dialog boxes with 

·. •• >Access 97 is the same as it was previously 

with one exception: you cao novv use 
hyperlinks, as well as controls like· check~ 
boxes and command buttons, to interact 
vvith users. 



  



 

 



Creating custom too/bars 821 

Designing your own too/bar buttons 825 

Using macros to show or hide too/bars 829 

Attaching too/bars to forms 830 

Customizing built-in too/bars 833 

Combining too/bars and menus 833 



Creating Custom Toolbars 

anna Barbera got it right in "The jet­
sons"; most of us have ended up with 
push-button jobs. Microsoft's tool­

bars are a perfect example because they let you do virtually anything with the click of a 
button. With Access 97, you can also add menu commands to toolbars to create "com­
mand bars" of all the tools and menus you use most. 

0 
Microsoft Access comes with many built-in toolbars. Most of them are tied to specific 
views and are named accordingly: 

Database 

Table Design 

Query Design 

Form Design 

Filter/Sort 

Print Preview 

Formatting (Form/Report) 

Macro Design 

Relationship 

Table Datasheet 

Query Datasheet 

Form View 

Report Design 

Formatting (Datasheet) 

Visual Basic 



820 CHAPTER 23 • CREATING CUSTOM TOOLBARS 

Other built-in toolbars that aren't attached to a specific view include 

" Utility 1 and Utility 2 toolbars For creating your own custom toolbars. 
" Web For browsing Web documents and searching the Web. 
• Toolbox Offers buttons for creating controls in form design and report design. It's 

generally free-floating, but can be docked like any other toolbar (see the next section). 

e n rs 
You can hide or display any number of tool bars at any time. Just follow these procedures: 

" To enable or display all the built-in toolbars, choose View > Toolbars > Cus­
tomize. Then check each toolbar that you want displayed in the Toolbars dialog 

box. Choose Close when you are finished. 
• To hide or display a specific toolbar, right-click on a toolbar and uncheck the 

name of the tool bar, or choose View > Toolbars. Then check or uncheck the tool­

bar you want to hide or display. 
.. To move a toolbar, move the mouse pointer to any blank space in the toolbar 

and drag the toolbar to wherever you want to put it. 
.. To dock a toolbar, drag it to the edge of the screen until its outline expands to 

the width or height of the screen and then release the mouse button. 
" To undock a toolbar so that it becomes free floating, just move it away from the 

edge of the screen. 

You can quickly dock or undock a toolbar by double-clicking on any blank space in 
the toolbar. To hide a floating toolbar, click on the small close button in the tool­
bar's upper-right corner. 

loolbars 
You can control the size of the buttons and the appearance of any toolbar by following 

these steps: 

1. Right-click on any toolbar and choose Customize, or choose View > Toolbars > 
Customize and click the Options tab. 

2. Choose any combination of appearance features from the lower part of the dialog box: 

e Large icons Choose this option to make the buttons larger (handy on small 

laptop-size screens or on screens with resolutions higher than VGA) . 
., Show ScreenTips on toolbars Clear this option if you don't want your tool­

bar to display ScreenTips. 



CREATING A CUSTOM TOOLBAR 182.1 

• Show shortcut keys in ScreenTips Check this option if you want to show a 
button's shortcut key with its ScreenTip when you point to it. 

3. Choose Close after making your selection(s). 

Modified versus Toolbars 
As an application developer, you need to be aware of the difference between a modified 
built-in toolbar and a custom toolbar: 

• Modified existing tool bar If you modify an existing toolbar, that version of the 
toolbar will appear in all your databases. 

• Custom toolbar When you create a new custom toolbar, it appears only in the 
database in which it was created. 

The built-in Utility 1 and Utility 2 toolbars are initially blank. When you add buttons 
to those toolbars, that counts as modifying an existing toolbar-not as creating a 
new, custom toolbar. In other words, the Utility 1 and Utility 2 toolbars are accessi­
ble from all your databases. 

Empowering/ miti r 
You can use custom toolbars to determine what the users of your application can and 
can't do. For example, if you want users to be able to create and change objects, you can 
include design buttons on your toolbars. On the other hand, if you don't want the users 
to modify objects, you can keep them away from the design screens by excluding design 
buttons from your application's custom toolbars. 

You'll need to create custom menus, discussed in the next chapter, to determine 
exactly how much freedom your user has. 

Creating a Custom 
Here's how to create a new custom toolbar: 

1. Make sure that the database you want to put the toolbar into is the currently open 
database. 



822 CHAPTER 23 • CREATING CUSTOM TOOLBARS 

l#[rlQ;I#JII 
A new, blank 

too/bar and the 
Customize 

Too/bars 
dialog box. 

2. Right-dick an existing toolbar and choose Customize, or choose View)> Toolbars )> 
Customize. Then click New on the Toolbars page. 

3. Enter a name (up to 64 characters) for your new toolbar and then choose OK. 

A tiny (and sometimes hard to see) empty toolbar appears on the screen, as shown 
in Figure 23.1. 

TooiQ.ars I £ommands l Qptions I 
Toolbilfs; 

Filter/oort 
r Report Design 
r Print Preview 
r Toolbox 
r Formatting (Form/Report) 
r Formatting (Datasheet) 

r ~~lacro Design [i!jx. lj 
r. Visual Basic 
rutility 1 
rutilityZ 
IV' Web 
r Source Code Control 
IV' 1··1enu Bar 
r Shortcut ~lenus 
IV' 

" 

Addi 

To add buttons to your new toolbar, you can either use the Commands tab of the 
Customize dialog box or copy buttons from one toolbar to another. 

Using the Commands Tab to Add Buttons 
If you have the Customize dialog box open, follow these steps to add buttons to a tool bar: 

1. Click the Commands tab of the Customize dialog box. Choose a category of button 
type from the Categories list (just click on any category name). 

2. Click on whichever Commands button you think you might want to add to your 
toolbar. Click the Description button under Selected Command to check the 
ScreenTip and description to make sure you know what the button will do. 

3. Drag the button to your custom toolbar. 

In Figure 23.2 we've already dragged a few of buttons to the custom tool bar and are now 
examining buttons in the File category. We've also dragged the new toolbar, Custom 1, 
from where it appeared on top of the Customize dialog box to a spot where it's easier to 
work with. 



lildQ;li)IM 
Here we've just 

dragged two but­
tons to our cus­

tom too/bar and 
are browsing the 
commands list in 

the Customize 
dialog box for 
more buttons 

to add. 

CREATING A CUSTOM TOOLBAR 1823 

C!ustomize 613 

Tool!l.ars ~ommands .I Qptioris r 
iiiiiiiiiiGJ.C~o~mm~a~~~s~: ~~~~----~! 

Datasheet 
Records 
Window and Help 
Table Design 
Query Design 
Form/Report Design. __ t 
Toolbox ..::J 

Selected command: 
:oescrigJ:ion 

Copying or Moving Buttons between Toolbars 

" 

It is also possible to copy or move buttons from one tool bar to another. First make sure 
that both toolbars are visible. What you do next depends on whether the Customize 
dialog box is already open. If it is, just drag a button from one tool bar to another to 
move it. To copy a button with the Customize dialog box open, press Ctrl while you 
drag it from one toolbar to another. If the Customize dialog box is not open, press Alt 

while moving or copying. 

Deleting Buttons 
Deleting a button from a toolbar is also a simple task. First open the Customize dialog 
box. Next show the toolbar you want to change, if it's not already visible. (You may 
need to drag the Customize dialog box out of the way so you can see the button you 
want to delete.) Then just drag the button off the toolbar. You can also right-click the 

button you want to delete and choose Delete. 

Refining a Toolbar 
You can use any of these techniques to refine your custom tool bar while you're viewing 

the Customize dialog box: 

.. To remove a button, drag it off of your custom tool bar. 

., To move a button to a new location on the toolbar, drag the button to its new 

location. 



824 CHAPTER 23 • CREATING CUSTOM TOOLBARS 

• To add space between buttons, drag the button slightly to the right (a distance a lit­
tle less than half the width of the button). (Closing the dialog box and docking the 
toolbar allows you to have the space on the toolbar to undertake this operation.) 

• To delete space between two buttons, drag one button slightly to the left. 

/Modifying the Custom Toolbar 
When you've finished adding buttons to your custom toolbar, choose Close from the 
Customize dialog box. You can then use any of these techniques, at any time, to view, 
hide, or change your custom toolbar (but don't forget, your custom toolbar will be 
available only in the current database): 

• To hide or display a custom toolbar, right-click on any toolbar and then click 
on the name of the custom toolbar that you want to hide or display. Currently 
displayed toolbars are indicated with a check mark. 

If no toolbars are visible, choose View> Toolbars and click on a toolbar name. 

" To change a custom toolbar, first display that toolbar, right-click on it, and 
choose Customize to return to the Customize dialog box. There you can make 
changes using the same techniques that you used to create the custom toolbar. 

" To delete a custom toolbar, choose View > Toolbars > Customize and click the 
Toolbars tab if it's not already active. Then scroll down to the name of the custom 
toolbar you want to delete, click on it to highlight it, click on the Delete button, 
and choose Yes. 

• To rename a custom toolbar, choose View > Toolbars > Customize, scroll down 
to the name of the custom toolbar you want to rename, and click on the Rename 
button. Type a new, unique name for your toolbar and choose OK. 

<II:> "'lr IIIE 

The Delete and Rename buttons aren't visible in the Toolbars dialog box when the 
highlight is on a built-in toolbar because you can't delete or rename those toolbars. 

" To move/dock/undock a custom toolbar, use the same techniques you'd use 
with a built-in toolbar, as described earlier in this chapter. 



CREATING YOUR OWN BUTIONS 1825 

Your Ornn 
You're not limited to creating buttons that perform built-in Access tasks. You can create 
your own buttons to run macros, open tables, preview reports, and more. The general 
procedure is the same as for "regular" buttons. You just need to choose your buttons 

from the categories that start with the word All. Here are the steps: 

1. Display the toolbar to which you want to assign a custom button. 
2. Right-click on that toolbar and choose Customize. Then click the Commands tab 

in the Customize dialog box. 
3. Scroll down to and select one of the last few categories under Categories (beginning 

with the word All). The Objects list shows the names of all the objects in the cur­

rent database that fall into that category (see below). 

TooiQ.ars ~ommands J Qptions J 

tca~te~~~or~~s~'------~~~~m~m_anz~~'------------~ 
Toolbox 
Format 
Macro Design 
~lodule Design 
Web 
Source Code Control 
Built-in Tv'lenus 
All Tables 
All Queries 
All Forms 

Cl Ne•i1 Database .• , 

J 
~ OperiOatabase ... 

~New Object 

\im Table 

Close 

4. Drag the name of any object to your toolbar. 
5. Repeat steps 3 and 4 to add as many buttons as you like and then choose Close. 

A default button for that type of object appears on your tool bar. (You can change the 

button, as you'll see in the next section.) 



826 'I CHAPTER 23 • CREATING CUSTOM TOOLBARS 

When you move the mouse pointer to the custom button, the status bar and (in a 
couple of seconds) the ScreenTip describe what the button will do, as illustrated below. 

You can also drag the name of any object from the database window into the tool­
bar to instantly create a button that displays that object. 

ngi a Button's Face/Description 
You can change the face of any button in any toolbar, and you can change the name 
or ScreenTip of any custom button you create. Here's how to make these types of 
changes to a button: 

1. Right-click on the toolbar that contains the button you want to change and then 
choose Customize. 

2. Right-click on the button in the toolbar that you want to change to show it's short­
cut menu. Do any of the following: 

• To choose a different picture for a button, select Change Button Image. 
You'll see a menu of images. Click the one you want to use. 

• To change the name of a button, type a new value in the box after Name. 
• To change the ScreenTip, choose Properties and enter the tip you want to see 

in the box after ScreenTip. 
" To show text instead of a picture, choose Text Only (Always). The text is 

taken from the Name property. 
• To show text when the button is on a menu, choose Text Only (in Menus). 

As you'll see later in this chapter, Access 97 lets you add buttons to menus or 
add menu commands to toolbars. (You can also copy, paste, and reset button 
images using other items on a button's right-click menu.) 

<CO '"Ill" liE 

Remember, you can change the Description only on custom buttons-not on the 
built-in buttons. 



CREATING YOUR OWN BUTTONS 1827 

3. Repeat step 2 to choose a face and/or name and ScreenTip for as many buttons as 

you wish. Then choose Close when you're done. 

Resetting a Button 
If you change a button face on a built-in button and then decide to go back to the orig­

inal button face: 

1. Right-click on the button face you want to reset and choose Customize from the 

shortcut menu (if the Customize dialog box is not already open). 
2. Right-click on the button again and choose Reset Button Image. 

3. Click on Close in the Customize dialog box. 

Creating Your Own 

1#3@#Jill 
The Access 

Button Editor. 

So what do you do when you want to create your own button image? Once you have 
added a button to the toolbar, with the Customize dialog box open, right-click on the 
button. Select Edit Button Image from the context menu and the Button Editor appears 

(see Figure 23.3). To create your own button image, follow these steps: 

1. To change the color of a pixel, first click on the color in the Colors frame and then 
click on the box on the Picture grid that represents the pixel. (Select the Erase color 

box to erase a pixel.) 
2. To scroll the Picture grid (not all of it appears in the box), click on the arrows below 

the grid. 

\ 
l=c:-:?k~;:""'ll 
~ca_nc_el_,j \ 

<;;lear 
I\ 

I 

'" 



828 CHAPTER 23 • CREATING CUSTOM TOOLBARS 

l#lflQ:l#JII 
The custom 
too/bar My 

Applications 
displayed in the 

Northwind 
Traders 

database. 

3. To see what your new button image looks like, check the Preview frame. 
4. To clear the button face, click on the Clear button. 
§. To save the button image, click on OK. 

Application 
As an application developer, you'll want to control exactly which tool bar appears when. First 
create a database with the Database Wizard or open a database that you have already cre­
ated so that you can work through a couple of examples. (We will use the Northwind 
Traders database included with Access for the examples in this chapter.) Create a custom 
toolbar and add the buttons to it that you use most often when you work with a database. 

The custom tool bar we created includes tools that switch to our other applications. 
It reflects the fact that much of the time we are working in Access and switching to 
other applications to perform less frequent tasks. Figure 23.4 shows this custom tool­
bar, which we creatively named My Applications. 

Ill 

Since we obviously use Microsoft applications, we could have just used the 
Microsoft toolbar. However, most users have other applications. If Access doesn't 
provide a button for your application, you can use Visual Basic for Applications to 
launch it and attach that code to a button on the toolbar. 

!!!ill 
0 Cuslorners 

0 Employees 

0 Order Details 

0 Orde1s 

0 Prodr.lcls 

0 Shipper~ 

[ill] Suppliers 

"' 



IUM;IIJifW 
The custom My 

Printing Preview 
too/bar. 

ADDING TOOLBARS TO YOUR CUSTOM APPLICATION 829 

We then created a second custom toolbar, named My Printing Preview, which con­
tains icons for printing, print preview, and page setup (see Figure 23.5). 

!ilil Customers 

!ilil Employees 

!ilil 0 rder Details 

!ilil Orders 

!ilil Products 

!ilil Shippers 

!ilil Suppliers 

§! Forms I ll\lll Reports I z:z Macros ul . ~ Mo&rl~s I 

.Qpen I 
!2.esign I 
!'.!ew I 

" 

Creati M s Tool bars 

l#lflij;l#JQ 
The macro 

group named 
Global Macros 

contains the 
macros that 

show or hide 
the custom 

too/bars. 

After you've created your custom toolbars, you need to create macros to show and hide 
them. In the Northwind Traders application, we put all those macros into a single 

macro group named Global Macros, as shown in Figure 23.6. 

Toolqar ~lame 
Show 

My Applications 

m 
r~·~·-~-.,-~,·--~·~-~.,.-----·«-,:·--~---···~~·-~~~ 

..u I 
j 

!.seled Ves t'? show the toolbai at ali time>. 
I s~lect Where Appropriate to >how a ~uilt· 
I in ti)olbar on I\' in its nor(oa!vi6w. Select No 

. ! to hl(]e ttietoolbar at ;>lltinW?· Press F~ 
1 foi· help onthi> argument. 

l 

" 



$:30 CHAPTER 23 • CREATING CUSTOM TOOLBARS 

I 

Table 23.1 shows the Macro Name, Action, and Action Argument of each macro. (Notice 
that this macro group does not have a Condition column.) Basically, each macro uses a 
single ShowToolBar action. The Action Arguments for each Action name the toolbar to 
show or hide and then use Yes to show the toolbar or No to hide that tool bar. 

MACRO NAME ACTION 

Show My Applications Toolbar ShowTooiBar 

Hide My Applications Toolbar ShowTooiBar 

Show My Printing Toolbar ShowTooiBar 

Hide My Printing Toolbar ShowTooiBar 

ACTION ARGUMENTS 

Toolbar Name: My Applications 
Show: Yes 

Toolbar Name: My Applications 
Show: No 

Toolbar Name: My Printing 
Show: Yes 

Toolbar Name: My Printing 
Show: No 

Attaching Toolbars to Forms 
In order to attach a toolbar to a particular form, you need to execute, from an event on 
the form, the macro that displays (or hides) the toolbar. 

1. Open the form (in design view) that you want to display a custom toolbar. 
2. Open the property sheet, select the Event tab, and choose Edit >- Select Form. 
3. Assign the macro that shows the toolbar to the On Activate property. 
4. Assign the macro that hides the tool bar to the On Deactivate properties of that form. 

Figure 23.7 shows an example using the Northwind Traders application, in which 
we display the My Printing tool bar when the form appears and hide that toolbar when 
the user is done with the form. By using the On Activate and On Deactivate properties, 
we can make sure the tool bar is visible whenever the user is working with this form and 
hidden whenever she or he moves the focus to another form. 

Attaching a Custom Toolbar to Print Preview 
If you want your application to display a custom tool bar during print preview, you need 
to open the report in design view, open its property sheet, and choose Edit >- Select 
Report. Assign the macro that shows the toolbar to the On Activate event properties. 



1Jtrl@IJI4 
Form event 

properties for 
the Northwind 

Traders cus­
tomer phone 

list form. 

l#lrlQ;l#JI:I 
Macros to hide 

and display a 
custom too/bar 
when the user 

looks at the 
report named 
Alphabetical 

List of Products 
in print preview. 

ADDING TOOLBARS TO YOUR CUSTOM APPLICATION g31. 

.. 

If§ Form 13 
: • F.:m'(iaf.! [.)<l);a'; J;v!ln~ I otter, I ·All> I .. • '" 
•.. OI)R~sjae:;,,, •;.: ''; '.d. 
H Qr\Un!Q;jdc. .• ; •·· ,,., 

; ~!r~r~$~~-::::{::~>,,5~-:Y~\:;;,~-: 
1 ·90 ~tiV;;tJ •. ,\ :. <• Globai Macros .Show My Printing Tool ... ·.· 

: .0f1~"atiY~'1,······· . ..,J•:·1• 
• Oh'i\l\~f9,<:~$'r.·.. ·· · 
; O!;>Lps~s~~s· ·\··. 

Oh(;litt<.•··•···j·.·· 

~~~(~~Dr 

loba\ Macros.H1de M• Pnnt1n Tool

)~-,,

Assign the macro that hides the toolbar to the On Deactivate event properties. The exam­

ple in Figure 23.8 uses a report from the Northwind Traders application.
By the way, we know that all these form and report event properties can be confus­

ing. For help while assigning macros to these properties press Fl or search help for Order

of Events.

..

ItT Report 13

\obal f'lacros.H1de M PnntlnQ

Macro to Hide the Built-in Toolbars
When creating an application, you might decide to hide all the built-in toolbars from the
user. As you know, you can turn off the built-in toolbars manually through the Startup
dialog box. If you want your application to turn off those tool bars, have your AutoExec

832 CHAPTER 23 • CREATING CUSTOM TOOLBARS

macro send the necessary keystrokes at startup. You can use a SendKeys action to have
the macro press the appropriate keys, as in the following example.

Notice the Keystrokes entries in the action argument for the SendKeys action:

%t

u

%1

Presses Alt+ T to open the Tools menu

Types u to choose Startup

Unchecks the Allow Built-in Toolbars checkbox

Presses Enter to choose OK

When defining the arguments for a SendKeys action in a macro, press Fl for help.
Then click on the green underlined SendKeys jump word and scroll through that
Help screen to find the codes you need to

isplaying Built-in
If you want your application to redisplay the built-in menus when the user quits the
application, have your "quit" macro execute a SendKeys action to restore the built-in
toolbars. You might also want to have that macro redisplay the database window.

MODIFYING A BUILT-IN TOOLBAR 1833

The same macro that turns the built-in toolbars off will turn them back on.

If you ever need to turn on the built-in toolbars manually, go to the database win­
dow and choose Tools)!> Startup from the menu bar. Then check the Allow Built-in
Toolbars checkbox and choose OK. If no toolbar appears, choose View>- Toolbars and

check Database.

Modifuing a Bum -in
So far in this chapter we've focused on creating custom tool bars for your custom appli­
cations. But you may also want to modify Access's built-in toolbars to better suit your
own needs. As mentioned earlier, when you modify a built-in toolbar, that toolbar

becomes accessible in all your databases .

..OO"llriiE

A custom tool bar is stored in the database it was created in and is available only in
that database. Built-in toolbars (modified or not) are stored in the Access work­
group information file and are available to any database.

To modify a built-in toolbar:

1. Display the built-in toolbar that you want to modify.
2. Right-click on that toolbar and choose Customize.
3. Make changes using the techniques described under "Adding and Deleting Buttons"

earlier in this chapter.
4. Choose Close when you've finished.

That modified version of the built-in toolbar will appear in all your databases.

Com bini
A new feature in Access 97 lets you create command bars by adding menu commands to
toolbars and buttons to menus. These hybrid bars can have virtually any combination

of menus commands and toolbar buttons you can imagine.
You may have already noticed this feature while experimenting with the Customize

dialog box. For example, if you select the File category on the Commands tab, you'll
find commands, such as Save As/Export, that are not represented by a button. You can

834 CHAPTER 23 • CREATING CUSTOM TOOLBARS

drag these commands to a toolbar, and they show up as text. The custom tool bar below
includes two buttons and the Save As/Export command. When you click Save As/
Export, Access opens the Save As dialog box, as if you had chosen File > Save As/Export
from the menus.

~ Mic!osoft Access ll!!!lfa £i

Once you add a menu command to a toolbar, you are free to show it as a picture
instead of text:

1. Right-click the toolbar you want to change and choose Customize. (If the toolbar
isn't visible, choose View> Customize and check the desired toolbar first.)

2. Right-click the command button you want to show as a picture on the toolbar.
Choose Change Button Image and select an image.

3. Right-click the button again and check Default Style if you want to show the but­
ton as a picture without text. Or leave Image and Text checked to show the button
as a combination of an image and text. The Save As/Export command on the tool­
bar below has this property checked.

bar
If you want to reset a built-in toolbar to its original state, right-click on a toolbar and
choose Customize. Make sure the Toolbars tab is selected in the Customize dialog box
and click on the name of the built-in toolbar that you want to reset. Then click on the
Reset button, choose OK, and click on Close in the Customize dialog box.

to Go He
Adding custom toolbars can make your applications much more functional for users.
They are truly a convenience feature in any application. However, toolbars usually need

WHERE TO GO FROM HERE 183$

to be backed by menus. The next chapter explains how to create the custom menus that

are necessary to back up custom toolbars.

What's New in the
Access Zoo?
Toolbars have been seriously enhanced in
this release of Atcess. Several new features
make working with toolbars easier. These
features include

• A revamped Customize dialog box that
makes toolbars easier to customize.

• The ability to e~dd menu commands to
toolbars. You can also add buttons to
menus, as you'll see in Chapter 24. This
new feature lets you create command
bars of almost limitless functionality.

• A new shortcut menu for toolbar but­
tons that lets you specify whether
they should be shown as ah image,
text, or a combination of both.

Creating custom menus 840

Customizing the default menus 844

Displaying custom global menus 845

Attaching a custom menu to a form or report 845

Creating shortcut menus 846

Creating Custo en us

hen developing an application, you'll
probably want to give it some custom
menus. As with custom toolbars, you

can use custom menus to determine exactly what the user of your application can and

can't do.

mspla~ing M
You can display custom menus either with a particular form or globally within your

application:

" You can attach a custom menu to a form so that the menu bar is displayed only

while that form is on the screen.
• A global menu is one that appears throughout your application, though it will be

replaced by any custom menus that you attach to forms.

You can use the Customize dialog box, the same one we used in Chapter 23 to work
with tool bars, to create either type of menu. We explain how to attach each type of menu
to your application a little later in this chapter. For now, just keep in mind that you can
use the Customize dialog box to create any number of custom menus for an application.

840 CHAPTER 24 • CREATING CUSTOM MENUS

Access 97 has a new tool for creating and customizing menus. Instead of using the
Menu Builder that was included with Access 95, you use the Customize dialog box you
learned about in Chapter 23. As you work through the examples in this chapter, you'll
see that the steps are almost the same as those for creating a custom toolbar.

Follow these steps to create a new menu bar:

1. Open the database to which you want to add the custom menu bar.
2. Choose View > Toolbars > Customize.

3. Click on the Toolbars tab (if it's not already active) and choose New.

4. Enter a name in the New Toolbar dialog box shown below and click OK or press
Enter. (Don't worry that it asks for a toolbar name instead of a menu bar name.
With Access 97, toolbars and menu bars can be combined and, in a sense, are inter­
changeable.) You'll see a new toolbar, usually floating within the Customize dialog
box, like the one shown in Figure 24.1.

T ooiQ.ars } ~qmmands J Qptions }

Toolbilfs:

New Toolllar 1113

S. Click on Properties, select Menu Bar from the Type list, and click on Close. If the
new menu bar (which still looks like a toolbar) is no longer in sight, drag the Cus­
tomize dialog box out of the way. Then drag the new menu bar and the Customize
dialog box to new locations where you can see them at the same time.

At this point you can add a built-in menu or a custom menu to the new menu bar.
Leave the Customize dialog box open to continue your work.

A
called My Menu

is shown with­
out any buttons

or commands
added to it yet.

Employ'

My (OIT

Order [

Orders

Orders

Orders

Payrner

Payrner

Print In

Product

T ooiQ.ars l (;.omm.,nd< j Qptions]

Toolbars:
Filter/Sort

r Report Desi<Jn
r Print Previev·J
r Toolbox
r Formatting (Form/Report)
r Formattin<J (Datasheet)

r f~acro Design ~
r Visual Basic ~
rutilityl
rutility2
rweb
r Source Code Control
W' r'~lenu Bar
r Shortcut ~'lenus
P"

CREATING CUSTOM MENU~ 841

!'Lew ...

Rg,pame,,,

Addi a n u a enu r

To add a built-in menu like File or Edit, click the Commands tab in the Customize dialog
box and select Built-in Menus under Categories. Then drag your choice from the Com­
mand list to the new menu bar. Figure 24.2 shows the My Menu menu bar after File and

Edit menus have been added to it.

Addi a u a u r

To add a custom menu to a menu bar, click the Commands tab in the Customize dialog

box and select New Menu under Categories. Then drag New Menu from the Command
list to the menu bar you are customizing. To change the name of the command called
New Menu, right-click on the menu bar it was just added to and enter something in the
Name box. The menu bar below called My Menu has a custom menu that has been

renamed Report Menu:

xl
E,ile !;,dit 1 Rer:uxt r·.·lenu

842 CHAPTER 24 • CREATING CUSTOM MENUS

litrlQil#AIM
The menu bar

My Menu after
the File and Edit

menu com­
mands have
been added

to it.

All Tables
All Queries
All Forms
All Reports
All r•lacros
ActiveX Controls
f\Je11-1 f\'1enu

View

Relationships

Insert

Query

Modify Selection •

New

The next step is to add commands to the custom menu. You can either use the Cus­
tomize dialog box or drag commands from other menus. To work with the Customize
dialog box, click the Commands tab and select the Category for the menu command.
For example, click All Reports if you want to add the name of a report in the database
to the new menu command. (Remember-we're adding commands to a menu com­
mand here, not to a menu bar.) Then drag a selection from the Commands list to the
menu command you are defining on the menu bar. An empty box appears below the
name of your custom menu if no other commands have been added. Check figure 24.3
to see how the screen will look. If other commands have already been added to the
menu, you'll see them (instead of an empty box) with a line at the insertion point.
When you see the empty box or the insertion line, release the mouse button to add the
selected command to the menu. Repeat this process until you have added all the desired
commands to the menu. Figure 24.4 shows the menu bar My Menu with three reports
added to the Report Menu command.

__ C_R_E_AT_I_N_G_C_U_ST_O_M __ M_E_N_U_s__JI843

li'3MfJII
Adding com­
mands to the

custom menu.

lilijQ:/f)ll
The My Menu

menu bar with
three reports
added to the
custom menu
Report Menu.

Categ_ories:
Web
Source Code Control
Built-in rvlenus
All Tables
All Queries
All Forms

ill Orders and Order Det-ails

!it Receivables Aginq ..
All ~1acros ill Sales by Customer
ActiveX Controls
New tvlenu

1¥! Sales by Employee

Selected command:
Descrig!:ion

View
Datasheet
Records
\<\Iindow and Help
Table Desh;~n
Query Design
Form/Report Desi9n
Toolbox

D Nevv Database.,.

~ Open Database, .•

:tim r·lew Object

'.im Table

~ @Query

Modify Selection •

..

•

844 CHAPTER 24 • CREATING CUSTOM MENUS

ng rna from a Menu
To copy a command to a menu bar or a menu command, first open the Customize dialog
box. Make sure that both menu bars you want to work with are visible. Then select the
command you want to copy. (To select a submenu command, click-don't drag- to get
to the submenu. If you try to drag from the top level to the next command, Access will
think you want to move the entire menu command.) Then press Ctrl while you drag
the command to the new menu bar. If you are adding a submenu to a command like
Report Menu in Figure 24.4, drag until you see an empty box or an insertion line on the
submenu list and then release your mouse button.

Customizing a Built-in Menu

You can use any of the techniques described in this chapter or in Chapter 23 to cus­
tomize the built-in menus that are part of Access. Feel free to add tool bar buttons, built­
in menu commands, or your own custom menus. You can also change the properties of
any built-in menu:

1. Choose View > Toolbars > Customize to open the Customize dialog box.
2. Click on the Toolbars tab if it's not already active.
3. Click on the Properties button.
4. Select a toolbar from the Selected Toolbar drop-down list.
5. Change the properties as desired and click on Close to return to the Customize dia­

log box. Click on Close again if you are finished changing menus and/or toolbars.

When the Customize dialog box is open, you can also right-click on any toolbar but­
ton or menu command to get a shortcut menu. Many of the shortcut commands apply
only to toolbar buttons and were described in Chapter 23. Here are a few shortcuts for
menu commands:

Reset

Delete

Name

Begin a Group

Properties

Lets you return a built-in menu to its original state or restore
a custom menu as it was the last time it was saved.

Removes a command from a menu bar.

A place where you can enter your own names for menu
commands, even the built-in ones.

Makes the command the first one in a new group on the
menu bar.

Opens a properties box where you can change the caption,
ToolTip, and help information for menu items.

ATIACHING A CUSTOM MENU TO A FORM OR REPORT 845

Saving a Custom Menu Bar
When you finish defining all the commands and actions on your custom menu, just click
on Close in the Customize dialog box. If you change your mind about any changes you
made to a toolbar or menu bar, you can always use the Reset button to restore a built-in
command bar to its original state. If you reset a custom command bar, it will return to its

last saved state.

Displauing a Global Menu Bar
If you want your custom menu to replace the built-in menus as soon as the user opens
your database, you can change the Menu Bar setting in the Startup dialog box:

1. Open your database and choose Tools)o- Startup from the menus.
2. Change the setting for Menu Bar to the name of your custom menu. (If you haven't

created any custom menus, the only choice will be (default).
3. Click on OK to close the Startup dialog box.

To test the new menu bar, close the entire database and reopen it. Your custom menu

bar will appear instead of the built-in menu.

II

If you have trouble returning to the normal built-in menus, close the database.
Then hold down the Shift key, and reopen the database. Holding down the Shift
key tells Access to ignore the Startup Properties; hence your custom menu won't
appear. Use the Startup dialog box to return the Menu Bar setting to (default) if

need to.

Attaching a Custom Menu to a form or Report
If you want a custom menu bar to appear whenever the user opens a particular form or

previews a particular report, follow these steps:

1. Open, in design view, the form or report you want to attach the custom menu bar to.
2. Open the property sheet (View)o- Properties) and select the form (choose Edit)o­

Select Form) or report (choose Edit)o- Select Report). Select the Other tabin the prop-

erty sheet.
3. Choose the Menu Bar property and then select the name of your custom menu bar

from the drop-down list.
4. Choose File)o- Close)o- Yes to close and save the form or report.

846 CHAPTER 24 • CREATING CUSTOM MENUS

If you've assigned a menu bar to a form, the menu bar you specified will appear only
when the form is open in form view. If you've assigned a menu bar to a report, the menu
bar you specified will appear only when the report is open in print preview. If you've
defined a global menu bar for your application, the menu bar you attached to the form
or report will replace the global menu bar whenever the form or report is open. When the
user closes the form or report, the application's global menu will reappear.

a Custo M
If you need to change a custom menu bar that you've created:

1. Choose View >- Toolbars >- Customize.
2. Click the Toolbars tab if it's not already active. Then make sure the name of your

custom menu bar is checked (so the menu bar will be displayed).
3. Make your changes using the same techniques you used to create the menu bar.
4. Click Close when you're done.

0 Menus
A shortcut menu is a menu that appears when you right-click on an object. The object
can be a control on a form or a report. It can also be the form or report itself. In fact, any
object that contains a Shortcut Menu Bar or Shortcut Menu property on its property
sheet can take a shortcut menu.

You can create either a global or a context-specific shortcut menu. The next two sec­
tions explain how. A prerequisite, however, is to have built a menu that can serve as the
shortcut menu.

aS Menu
To create a custom shortcut menu, follow these steps:

1. Choose Views >- Toolbars >- Customize from the menus.
2. Click the Toolbars tab and select New.
3. Enter a name in the New Toolbar box and click on OK.
4. Click on Properties on the Toolbars tab, change the Type setting to Popup, and

click on Close.

5. Check Shortcut Menus on the Toolbars list to display the Shortcut Menu like this:

CREATING SHORTCUT MENUS 1847

6. Click on Custom on the Shortcut Menus and click on the name of the new shortcut
menu. An empty box appears, just to the left or right of the new shortcut menu
name. Then drag a command from the Customize dialog box or another tool bar to
the empty box as described earlier in this chapter. To add additional commands,

drag them to the shortcut command list that you are creating.
7. Click Close in the Customize dialog box when you are finished.

Setting a Global Shortcut

liLdijdfJIW
Creating a

global shortcut
menu by setting

the Shortcut
Menu Bar

property in
the Startup
dialog box.

To set a global shortcut menu that displays when a form or object does not display its
own shortcut menu, set the Shortcut Menu Bar property in the Startup dialog box

(shown in Figure 24.5). To set this property, take these steps:

1. Select Tools> Startup.
2. Use the Shortcut Menu Bar drop-down list box to select the shortcut menu you

want to be global.
3. Choose the OK button.

Orders by Customer Subform

Payment Methods

Payments

Print Invoice

Products

~Nil
; Shortcut Menu

P' Allow TooltiarJMenu Changes

848 CHAPTER 24 • CREATING CUSTOM MENUS

Setting a Contextual Shortcut Menu
To add a shortcut menu to a particular control on a form or to a form itself, follow
these steps:

1. Open, in design view, the form you want to attach the custom menu bar to.
2. Select the object you want to display the menu or select the entire form.
3. Open the property sheet (View> Properties). Select the Other tab in the property

sheet.
4. Choose the Shortcut Menu Bar property and then select the name of your custom

menu bar macro from the drop-down list.
5. Choose File> Close> Yes to close and save the form.

Controlling Whether Shortcut Menus Appear
You determine whether a shortcut menu can appear for items on a form by setting the
Shortcut Menu property for the form. To set this property, follow these steps:

1. Open, in design view, the form you want to display or not display shortcut menus.
2. Open the property sheet (View > Properties) and select the form (choose Edit>

Select Form). Select the Other tab in the property sheet.
3. Choose the Shortcut Menu property and then Yes or No from the drop-down list,

depending on whether you want the menu to display or not.
4. Choose File> Close> Yes to close and save the form.

Converting Macro Menus to Access 97 Menus
If you have menus created from macros or with the Menu Builder in older versions of
Access, you can convert them to Access 97 menus:

1. Open the Database window for your database.
2. Click the Macros tab.
3. Select the macro that defines a top-level menu.
4. Choose Tools > Macro > Create Menu from Macro. (Use Create Shortcut Menu

from Macro if you want to convert a shortcut menu.)

Access will create a menu with the same name as the macro. You can then customize
the menu, if you need to, using the Customize dialog box.

WHERE TO GO FROM HERE 1849

Combining Menus and Toolbars
With Access 97 you can freely combine menu commands and toolbar buttons to create
hybrid command bars. With the Customize dialog box open, you can drag menu com­
mands to toolbars and toolbar buttons to menus. For an example, see "Combining

Menus and Toolbars" in Chapter 23.

Where to Go from Here

I

Custom menus and toolbars (see Chapter 23) can make your database function like a
stand-alone application. To begin building more complex applications, you need to use
the more powerful programming features of Access for Windows 95. The next three chap­
ters show you how to take advantage of Visual Basic for Applications (VBA), Access's new

programming language.

What's New in the
Access Zoo?
Custom menus can add a great deal of
speCialized functionality to your database
applications. Access 97 has simplified the
menu-building ·process:

• Instead of using the add-ln Menu
Builder included with older versions
of Access, you can now customize or

create menus right from the Custom­
ize dialog box. This dialog box is also
used to manage too!bars. Menus and
toolbar buttons can be combined
freely in the same command bars.

• Old-style custom menus created from
macros or with the Menu Builder can
be converted to Access 97 style menus.

