Merrill Communications LLC d/b/a Merrill Corporation Exhibit 1002 pt. 2

null_values	CDATA	\#IMPLIED
zero_values	CDATA	\#IMPLIED
dates_values	CDATA	\#IMPLIED
percentages	CDATA	\#IMPLIED >
<!ELEMENT data_x (\#PCDATA) >		
<!ATTLIST data_x		
x_title	CDATA	\#REQUIRED
format	CDATA	\#REQUIRED
x_notes	CDATA	\#IMPLIED
x_desc	CDATA	\#IMPLIED
x_prec	CDATA	\#REQUIRED
x_unit	CDATA	\#REQUIRED
x_mag	CDATA	\#REQUIRED
x_mod	CDATA	\#REQUIRED
x_measure	CDATA	\#REQUIRED
x_scale	CDATA	\#REQUIRED
x_adjustment	CDATA	\#REQUIRED
x_links	CDATA	\#REQUIRED >
<!ELEMENT li_class_set (li_class+)>		
<!ELEMENT li_class (\#PCDATA)>		
<!ATTLIST li_class.		
class_name	CDATA	\#REQUIRED
parent_class	CDATA	\#REQUIRED
form	CDATA	\#FIXED 'simple'
href	CDATA	\#IMPLIED
description	CDATA	\#IMPLIED >
<!-- LINE_ITEM -->		
<!-- Information about the Line Item -->		
<!ELEMENT line_item (data_x?, data_y, linkset?, note_set?) ><!ATTLIST line_item		
li_ID	CDATA	\#REQUIRED
li_legend	CDATA	\#REQUIRED
li_title	CDATA	\#REQUIRED
li_cat	CDATA	\#IMPLIED
y_axis_title	CDATA	\#REQUIRED
level	CDATA	\#REQUIRED
format	CDATA	\#REQUIRED
relation	CDATA	\#REQUIRED

```
        li_notes
        CDATA
        li_desc
        li_prec
        li_unit
        li_mag
        li_mod
        li_measure
        li_scale
        li_adjustment
    li_aggregation
        CDATA
        CDATA
        CDATA
        CDATA
        CDATA
        CDATA
        CDATA
    CDATA
    CDATA
    CDATA
<!ELEMENT data_y (#PCDATA)>
<!ELEMENT analysis (linkset?)>
<!ELEMENT note_set (note+)>
<!ELEMENT note (#PCDATA)>
<!ATTLIST note
    note_type CDATA ##MPLIED >
```


APPENDIX B: Sample RDML Document

```
<rdmldoc>
<rdmldoc_header
            rdmldoc_ID = "rdml_thomson_cs1"
            doc_title = "Computer Services Companies"
            timestamp = "1999-01-19T23:00:00"
            version = "1.0.0"
            expiration = "2000-01-19T23:00:00"
            freq_of_update = "Annual"
            num_line_items = "0"
            num_datapoints = "0"
            x_indexes = "-9, -8, -7"
            first_li_withdata = "3" >
<data_source>
    <contact_info
        role = "Data Source"
        name = "Russell T. Davis"
        company = "RDML, Inc."
        address = "2 Wisconsin Circle, Suite 700"
        city = "Chevy Chase"
        state = "MD"
        zip = "20815"
        country = "USA"
        email = "rt_davis@sprynet.com"
        xlink:form = "simple"
        href = "http://www.rdml.com"
        comments = "">
<contact_info>
<data_source>
<formatting_source>
<contact_info
    role = "Formatting Source"
    name = "Russell T. Davis"
    company = "RDML, Inc."
    address = "2 Wisconsin Circle, Suite 700"
    city = "Chevy Chase"
    state = "MD"
    zip = "20815"
    country = "USA"
    email = "rt_davis@ sprynet.com"
    xlink:form = "simple"
    href = "http://www.rdml.com"
    comments = "" >
```

```
    </contact_info>
</formatting_source>
<rdmldoc_source>
    <contact_info
        role = "RDMLDoc Source"
        name = "Russell T. Davis"
        company = "RDML, Inc."
        address = "2 Wisconsin Circle, Suite 700"
        city = "Chevy Chase"
        state = "MD"
        zip = "20815"
        country = "USA"
        email = "rt_davis@sprynet.com"
        xlink:form = "simple"
        href = "http://www.rdml.com"
        comments = "">
    </contact_info>
</rdmldoc_source>
<license_terms
    copyright_cite = "Copyright 1998, RDML, Inc. All Rights Reserved"
    holder = "RDML, Inc."
    license_type = "Payment Per Download"
    warranty = "No warranty is expressed or implied. Use this data at your own risk."
    disclaimer = "This data is provided 'as-is'. The provider assumes no
responsibility for its use or misuse."
    terms = "$1 per RDMLDoc download"
    date = "1999.0123000000.00"
    email = "license@rdml.com"
    href = "http://www.rdml.com" state = "MD" country = "USA" >
    <contact_info
    role = "RDMLDoc Source"
    name = "Russell T. Davis"
    company = "RDML, Inc."
    address = "2 Wisconsin Circle, Suite 700"
    city = "Chevy Chase"
    state = "MD"
    zip = "20815"
    country = "USA"
    email = "rt_davis@sprynet.com"
    xlink:form = "simple"
    href = "http://www.rdml.com"
    comments = "">
    <contact_info>
<license_terms>
```

```
<rdmldoc_header>
<line_item_set
    line_item_set_type = "Category"
    time_period = ""
    character_set = ""
    missing_values = ""
    null_values = ""
    zero_values = ""
    dates_values = ""
    percentages = "" >
<data_x
    x_title = "Company"
    format = ""
    x_notes = ""
    x_desc = ""
    x_prec = ""
    x_unit = ""
    x_mag = ""
    x_mod = ""
    x_measure = ""
    x_scale = ""
    x_adjustment = ""
    x_links = "" >
AUD, BSYS, CEN, CSC, CVG, DST, EDS, FISV, GLC, PAYX, TSG, SDS </data_x>
    <li_class_set>
    <li_class
    class_name = ""
    parent_class = ""
    xlink:form = "simple"
    href = ""
    description = ""> <li_class>
    <li_class set>
    <linkset>
    <link
        xlink:form = "simple"
        href = "http://www.rdml.com"
        behavior = ""
        content-role = ""
        content-title = ""
        role = "Original Data Sources"
        title = "RDML Formatted Source Table"
        show = "new"
        actuate = "user" > <link>
```

<linkset>

```
<line_item
    li_ID = "1"
    li_legend = "Computer Services Companies"
    li_title = ""
    li_cat = ""
    y_axis_title = ""
    level = "1"
    format = ""
    relation = "Parent"
    li_notes = ""
    li_desc = ""
    li_prec = ""
    li_unit = ""
    li_mag = ""
    li_mod = ""
    li_measure = ""
    li_scale = ""
    li_adjustment = "">
    <data_y>
    <data_y>
    <linkset>
    <link
        xlink:form = "simple"
        href = "http://www.rdml.com"
        behavior = ""
        content-role = ""
        content-title = ""
        role = "Original Data Sources"
        title = "RDML Formatted Source Table"
        show = "new"
        actuate = "user"> <link>
        <linkset>
<line_item>
<line_item
    li_ID = "2"
    li_legend = "Stock Performance"
    li_title = "Stock Overview"
    li_cat = ""
    y_axis_title = ""
    level = "2"
```

```
        format = ""
        relation = "Parent"
        li_notes = ""
        li_desc = ""
        li_prec = ""
        li_unit = ""
        li_mag = ""
        li_mod = ""
        li_measure = ""
        li_scale = "'
        li_adjustment = "">
    <data_y>
    <data_y>
    <linkset>
    <link
        xlink:form = "simple"
        href = "http://www.rdml.com"
        behavior = ""
        content-role = ""
        content-title = "'"
        role = "Original Data Sources"
        title = "RDML Formatted Source Table"
        show = "new"
        actuate = "user"> <llink>
    <linkset>
<line_item>
<line_item
    li_ID = "3"
    li_legend = "Stock Price (12/31/98)"
    li_title = "Stock Overview"
    li_cat = ""
    y_axis_title_= "$ per share (12/31/98)"
    level = "3"
    format = "#, ##0.00; (#, ##0.00)"
    relation = "ChildStyle"
    li_notes = ""
    li_desc = ""
    li_prec = "2"
    li_unit = "$"
    li_mag = "0"
    li_mod = "per"
```

```
    li_measure = "share"
    li_scale = ""
    li_adjustment = "">
    <data_y>
40.1, 51.63, 69.81, 64.44, 22.13, 67.06, 50.19, 51.44, 43.5, 51.44, 44.5, 39.69,
    <data_y>
    <linkset>
    <link
        xlink:form = "simple"
        href = "http://www.rdml.com"
        behavior = ""
        content-role = ""
        content-title = ""
        role = "Original Data Sources"
        title = "RDML Formatted Source Table"
        show = "new"
        actuate = "user" > <llink>
    </linkset>
<line_item>
<line_item
    li_ID = "4"
    li_legend = "Shares Outstanding"
    li_title = "Stock Overview"
    li_cat = ""
    y_axis_title = "Shares outstanding"
    level = "3"
    format = "#, ##0; (#, ##0)"
    relation = "ChildStyle"
    li_notes = ""
    li_desc= ""
    li_prec = "0"
        li_unit = "shares"
        li_mag = "6"
        li_mod = ""
        li_measure = ""
        li_scale = ""
        li_adjustment = "">
    <data_y>
627, 27, 74, 162, 145,64, 494, 85, 105, 166, 131, 107,
    <data_y>
    <linkset>
    <link
        xlink:form = "simple"
```

```
    href = "http://www.rdml.com"
    behavior = ""
    content-role = ""
    content-title = ""
    role = "Original Data Sources"
    title = "RDML Formatted Source Table"
    show = "new"
    actuate = "user"> <llink>
<linkset>
    <line_item>
    <line_item
        li_ID = "5"
        li_legend = "% Institutional Holdings"
        li_title = "Stock Overview"
        li_cat = "'
        y_axis_title = "% of outstanding shares"
        level = "3"
        format = "0.00%; (0.00%)"
        relation = "ChildStyle"
        li_notes = ""
        li_desc = ""
        li_prec = "2"
        li_unit = "%"
        li_mag = "0"
        li_mod = "of"
        li_measure = "outstanding shares"
        li_scale = ""
        li_adjustment = "">
    <data_y>
0.65, 0.8, 0.75, 0.64, 0, 0.44, 0.49, 0.67, 0.25, 0.53, 0.13, 0.71,
    <data_y>
    <linkset>
    <link
        xlink:form = "simple"
        href = "http://www.rdml.com"
        behavior = ""
        content-role = ""
        content-title = ""
        role = "Original Data Sources"
        title = "RDML Formatted Source Table"
        show = "new"
        actuate = "user" > <link>
```

```
<linkset>
<line_item>
<line_item
    li_ID = "6"
    li_legend = "Market Capitalization"
    li_title = "Stock Overview"
    li_cat = ""
    y_axis_title = "$ in Millions"
    level = " 3"
    format = "#,##0; (#, ##0)"
    relation = "ChildStyle"
    li_notes = ""
    li_desc = ""
    li_prec = "0"
    li_unit = "$"
    li_mag="6"
    li_mod = "in"
    li_measure = ""
    li_scale = ""
    li_adjustment = "">
    <data_y>
25142.7, 1394.01, 5165.94, 10439.28, 3208.85, 4291.84, 24793.86, 4372.4, 4567.5,
8539.04, 5829.5, 4246.83,
    </data_y>
    <linkset>
    <link
        xlink:form = "simple"
        href = "http://www.rdml.com"
        behavior = ""
        content-role = ""
        content-title = ""
        role = "Original Data Sources"
        title = "RDML Formatted Source Table"
        show = "new"
        actuate = "user" > <link>
    <linkset>
<line_item>
<line_item
    li_ID = "7"
    li_legend = "Reported EPS"
    li_title = "Stock Overview"
    li_cat = ""
```

```
    y_axis_title = "Earnings per share"
    level = "3"
    format = "#, ##0.00; (#,##0.00)"
    relation = "ChildStyle"
    li_notes = ""
    li_desc = ""
    li_prec = "2"
    li unit = "$"
    li_mag = "0"
    li_mod = "per"
    li_measure = "share"
    li_scale = ""
    li_adjustment = "">
    <data_y>
1.13, 2.05, 1.9, 2.1, 0.71, 1.48, 1.7, 1.35, 1.86, 0.82, 1.72, 1.17,
    <data_y>
    <linkset>
    <link
        xlink:form = "simple"
        href = "http://www.rdml.com"
        behavior = ""
        content-role = ""
        content-title = ""
        role = "Original Data Sources"
        title = "RDML Formatted Source Table"
        show = "new"
        actuate = "user"> </link>
    <linkset>
<line_item>
    <line_item
        li_ID = "8"
        li_legend = "Earnings"
        li_title = "Stock Overview"
        li_cat = "
        y_axis_title = "$ in Millions"
        level = "3"
        format = "#, ##0; (#,##0)"
        relation = "ChildStyle"
        li notes = "'
        li_desc = ""
        li_prec = "0"
        li_unit = "$"
        li_mag = "6"
```

```
    li_mod = "in"
    li_ measure = ""
    li_scale = ""
    li_adjustment = "">
    <data_y>
708.51, 55.35, 140.6, 340.2, 102.95, 94.72, 839.8, 114.75, 195.3, 136.12,
225.32, 125.19,
    <data_y>
    <linkset>
        <link
            xlink:form = "simple"
            href = "http://www.rdml.com"
            behavior = ""
            content-role = ""
            content-title =
            role = "Original Data Sources"
            title = "RDML Formatted Source Table"
            show = "new"
            actuate = "user" > <link>
    <linkset>
<line_item>
<line_item
    li_ID = "9"
    li_legend = "Cash Flow per share"
    li_title = "Stock Overview"
    li_cat = "
    y_axis_title = "$ per share"
    level = "3"
    format = "#, ##0; (#,##0)"
    relation = "ChildStyle"
    li_notes = "'
    li_desc = ""
    li_prec = "2"
    li_unit = "$"
    li_mag = "0"
    li_mod = "per"
    li_measure = "share"
    li_scale = ""
    li_adjustment = "">
<data_y>
1.41, 2.13, 3.71, 4.95, 1.39, 3.18, 4, 1.98, 3.44, 0.96, 3.2, 2.5,
    <data_y>
    <linkset>
```

```
        <link
            xlink:form = "simple"
            href = "http://www.rdml.com"
            behavior = ""
            content-role = ""
            content-title = ""
            role = "Original Data Sources"
            title = "RDML Formatted Source Table"
            show = "new"
            actuate = "user" > <llink>
<linkset>
```

```
<line_item>
```

<line_item>
<line_item
li_ID = "10"
li_legend = "Cash Flow"
li_title = "Stock Overview"
li_cat = "",
y_axis_title = "\$ in Millions"
level = "3"
format = "\#, \#\#0; (\#, \#\#0)"
relation = "ChildStyle"
li_notes = ""
li_desc = ""
li_prec = "0"
li_unit = "\$"
li_mag = "6"
li_mod = "in"
li_measure = ""
li_scale = ""
li_adjustment = "">
<data_y>
884.07, 57.51, 274.54, 801.9, 201.55, 203.52, 1976, 168.3, 361.2, 159.36, 419.2,
267.5,
</data_y>
<linkset>
<link
xlink:form = "simple"
href = "http://www.rdml.com"
behavior = "
content-role = ""
content-title = ""
role = "Original Data Sources"

```
```

title = "RDML Formatted Source Table"
show = "new"
actuate = "user" > <link>
<linkset>
<line_item>
<line_item
li_ID = "11"
li_legend = "Price/Earnings Ratio (PE)"
li_title = "Stock Overview"
li_cat = ""
y_axis_title = "P/E Ratio"
level = "3"
format = "\#, \#\#0; (\#,\#\#0)"
relation = "ChildStyle"
li_notes = ""
li_desc = ""
li_prec = "2"
li_unit = "P/E Ratio"
li_mag = "0"
li_mod = ""
li_measure = ""
li_scale = ""
li_adjustment = "">
<data_y>
35.4867256637168, 25.1853658536585, 36.7421052631579, 30.6857142857143,
31.169014084507, 45.3108108108108, 29.5235294117647, 38.1037037037037,
23.3870967741935, 62.7317073170732, 25.8720930232558, 33.9230769230769,
</data_y>
<linksel>
<link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user" > <link>
<linkset>

```
```

<line_item>
<line_item
li_ID = "12"
li_legend = "Estimated 5-year growth"
li_title = "Stock Overview"
li_cat = ""
y_axis_title = "% growth"
level = "3"
format = "0.00%; (0.00%)"
relation = "ChildStyle"
li_notes = ""
li_desc = ""
li_prec = "2"
li_unit = "%"
li_mag = "0"
lit_mod = ""
li_measure = ""
li_scale = ""
li_adjustment = "">
<data_y>
0.15,0.18,0.2,0.22,0.23,0.22,0.15,0.2,0.15,0.3,0.13,0.2,
<data_y>
<linkset>
<link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> <link>
<linkset>

```
```

<line_item>
<line_item
li_D = "13"
li_legend = "Return on Equity"
li_title = "Stock Overview"
li_cat = ""
y_axis_title = "Earnings as % of Book Value"
level = "3"
format = "0.00%; (0.00%)".
relation = "ChildStyle"
li_notes = ""
li_desc = ""
li_prec = "2"
li_unit = "%"
li_mag= "0"
li_mod="
li_measure = ""
li_scale = ""
li_adjustment = "">
<data_y>
<data_y>
<linkset>
<link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user" > <llink>
<linkset>
<line_item>
<line_item_set>
<rdmldoc>

```

\section*{APPENDIX C: UnitList XML document}
```

<?xml version="1.0" encoding="utf-8" ?>
<unitlist>
<unit name="inch">
<conversion
 conv_target = "centimeter"
 conv_factor = "2.5400050"
 conv_constant = ""
 conv_log = ""
 conv_source = "FGM"
 conv_href = "">
</conversion>
<type>Length</type>
<subtype>Linear</subtype>
<plural>inches</plural>
<alias>in</alias>
<desc>Approximately the width of a man's thumb.</desc>
<icon href="inch.gif"></icon>
</unit>
<unit name="foot">
<conversion
 conv_target = "meter"
 conv_factor = "0.30480060"
 conv_constant = ""
 conv_log = ""
 conv_source = "ISO"
 conv_href = "">
</conversion>
<type>length</type>
<subtype>Linear</subtype>
<plural>feet</plural>
<alias>ft</alias>
<desc>Originally, the average length of a human foot</desc>
<icon href="foot.gif"></icon>
</unit>
<unit name="yard">
<conversion
conv_target = "meter"
conv_factor = "1.082"
conv_constant = ""
conv_log = ""
conv_source = "ISO"

```
```

 conv_href = "">
 </conversion>
 <type>length</type>
 <subtype>Linear</subtype>
 <plural>yards</plural>
 <alias></alias>
 <desc>Three feet</desc>
 <icon href="yard.gif"></icon>
 <unit>
<unit name="meter">
 <conversion
 conv_target = "meter"
 conv_factor = "1.0"
 conv_constant = ""
 conv_log = "'
 conv_source = "ISO"
 conv_href = "">
 </conversion>
 <type>length</type>
 <subtype>Linear</subtype>
 <plural>meters</plural>
 <alias>m,mtr</alias>
 <desc>One thousandth of a kilometer</desc>
 <icon href="meter.gif"></icon>
</unit>
<unit name="mile">
 <conversion
 conv_target = "kilometer"
 conv_factor = "1.6093472"
 conv_constant = ""
 conv_log = ""
 conv_source = "FGM"
 conv_href = "">
 <conversion>
 <type>length</type>
 <subtype>Linear</subtype>
 <plural>miles</plural>
 <alias></alias>
 <desc>English surveying unit, set to be equal to 8 furlongs.</desc>
 <icon href="mile.gif"></icon>
</unit>
<unit name="dollar">
```
```
 <conversion
 conv_target = "pound"
 conv_factor = "1.312"
 conv_constant = ""
 conv_log = ""
 conv_source = "ISO"
 conv_href = "">
 </conversion>
 <type>currency</type>
 <plural>pounds</plural>
 <alias>sterling</alias>
 <desc>British pound sterling. </desc>
 <icon href="pound.gif"></icon>
<unit>
<unit name="Deutschmark">
 <conversion
 conv_target = "dollar"
 conv_factor = "1.732"
 conv_constant = ""
 conv_log=""
 conv_source = "ISO"
 conv_href = "">
 <conversion>
 <type>currency</type>
 <plural>Duetschmarks</plural>
 <alias>Marks</alias>
 <desc>German Deutschmarks</desc>
 <icon href="marks.gif"></icon>
</unit>
<unit name="Francs">
 <conversion
 conv_target = "dollar"
 conv_factor = "0.812"
 conv_constant = ""
 conv_log = ""
 conv_source = "ISO"
 conv_href = "">
 <conversion>
 <type>currency</type>
 <plural>francs<</plural>
 <alias>ff</alias>
 <desc>French francs</desc>
 <icon href="francs.gif"></icon>
```
```
<unit>
<unit name="acres">
 <conversion
 conv_target = "square meter"
 conv_factor = "5125"
 conv_constant = ""
 conv_log = ""
 conv_source = "ISO"
 conv_href = "">
 </conversion>
 <type>area</type>
 <plural>acres</plural>
 <alias>acr</alias>
 <desc>In medieval times, the amount of land one man could plow in one day.</desc>
 <icon href="acre.gif"></icon>
</unit>
<unit name="square foot">
 <conversion
 conv_target = "square meter"
 conv_factor = "0.15"
 conv_constant = ""
 conv_log=""
 conv__source = "ISO"
 conv_href = "">
 </conversion>
 <type>area</type>
 <plural>square feet<'plural>
 <alias>sq ft</alias>
 <desc>An area one foot by one foot.</desc>
 <icon href="sqfoot.gif"></icon>
</unit>
</unitlis>

```
```

 APPENDIX D: RMML Document Type Definition ("DTD")
 <?xml encoding="UTF-8"?>

<!-- The root element: a whole macro is a "macrodoc".
A macrodoc consists of three elements:
 a macro_header, a macro_code, and a macro_references element.
-->
<!ELEMENT macrodoc (macro_header, macro_code, macro_references)>
<!-- MACRO_HEADER -->

<!-- Information about the macro.
-->
<!ELEMENT macro_header (macro_source, license_terms, linkset?, documentation)>

<!ATTLIST macro_header
 macrodoc_ID CDATA ` #REQUIRED
 macro_title CDATA #REQUIRED
 macro_type CDATA #REQUIRED
 result_type CDATA #REQUIRED
 rdmldoc_type CDATA #REQUIRED
 timestamp CDATA #IMPLIED
 version CDATA #IMPLIED
 expiration CDATA #IMPLIED
 freq_of_update CDATA #IMPLIED >
<!ELEMENT macro_source (contact_info+)>
<!ELEMENT license_terms (contact_info, linkset?)>

<!ATTLIST license_terms
 copyright_cite CDATA . #REQUIRED
 holder CDATA #IMPLIED
 license_type CDATA #IMPLIED
 warranty CDATA #IMPLIED
 disclaimer CDATA #IMPLIED
 terms CDATA #IMPLIED
 date CDATA #IMPLIED
 email CDATA #IMPLIED
 state CDATA #IMPLIED
 country CDATA #IMPLIED >
<!ELEMENT contact_info (#PCDATA)>

<!ATTLIST contact_info
 role CDATA #IMPLIED
 name CDATA . #IMPLIED
```
```
\begin{tabular}{lll}
company & CDATA & \#IMPLIED \\
address & CDATA & \#IMPLIED \\
city & \multicolumn{1}{c}{ CDATA } & \#IMPLIED \\
state & CDATA & \#IMPLIED \\
zip & CDATA & \#IMPLIED \\
country & CDATA & \#IMPLIED \\
email & CDATA & \#IMPLIED \\
xlink:form & CDATA & \#IMPLIED \\
href & CDATA & \#IMPLIED \\
comments & CDATA & \#IMPLIED >
\end{tabular}

<!ELEMENT linkset (link*)>

<!ATTLIST linkset
\begin{tabular}{lll}
xlink_form & CDATA & \#FIXED 'extended' \\
href & CDATA & \#MPLIED >
\end{tabular}

<!ELEMENT link (#PCDATA) >

<!ATTLIST link
xlink_form: CDATA \#FIXED 'simple'
href CDATA . #REQUIRED
behavior CDATA : #IMPLIED
content-role CDATA #IMPLIED
content-title CDATA #IMPLIED
role CDATA # #IMPLIED
title CDATA #IMPLIED
show CDATA #FIXED 'new'
actuate ". CDATA #FIXED 'user' >
<!ELEMENT documentation (macro_description, help_page*)>
<!ELEMENT macro_description (#PCDATA)>
<!ELEMENT help_page (#PCDATA)>

<!ELEMENT macro_code (code, instructions, gui, variable_set?, qualifiers, error_handling,
testing)>
<!ELEMENT code (#PCDATA)>
<!ELEMENT instructions (#PCDATA)>
<!ELEMENT gui (comp_rpanel? | comp_ipanel? | comp_list? | comp_vector?)>
<!ELEMENT comp_rpanel (comp_rbutton*)>

<!ATTLIST comp_rpanel
```
```
 variable_name CDATA #REQUIRED
 intro_label CDATA
 visible CDATA #IMPLIED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT comp_rbutton (#PCDATA)>

<!ATTLIST comp_rbutton
label CDATA \#REQUIRED
 value CDATA #REQUIRED
 isDefault CDATA #REQUIRED
 icon CDATA #IMPLIED
 desc CDATA #IMPLIED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT comp_ipanel (comp_ifield*)>
<!ELEMENT comp_ifield (#PCDATA)>

<!ATTLIST comp_ifield
 variable_name CDATA : #REQUIRED
 variable_label CDATA #REQUIRED
 intro_label CDATA
 default_value CDATA
 desc CDATA
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT comp_list (comp_listitem*)>

<!ATTLIST comp_list
 variable_name CDATA #REQUIRED
 intro_label CDATA #REQUIRED
 default_item CDATA #REQUIRED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT comp_listitem (#PCDATA)>

<!ATTLIST comp_listitem
 label CDATA #REQUIRED
 value CDATA #REQUIRED
 icon CDATA #IMPLIED
 desc CDATA #IMPLIED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
```
```

<!ELEMENT comp_vector (line_item)>

<!ATTLIST comp_vector
 variable_name CDATA
 intro_label CDATA
 default item CDATA
 desc CDATA #IMPLIED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT variable_set (variable*)>
<!ELEMENT variable (#PCDATA | line_item)*>

<!ATTLIST variable
 variable_name CDATA #REQUIRED
 variable_type CDATA #REQUIRED
 value CDATA # #REQUIRED
 href CDATA #IMPLIED
 subref CDATA #IMPLIED >
<!ELEMENT qualifiers (#PCDATA)>
<!ELEMENT error_handling (#PCDATA)>
<!ELEMENT testing (#PCDATA)>
<!ELEMENT macro_references (macrodocs?, datadocs?)>
<!ELEMENT macrodocs (#PCDATA)>
<!ELEMENT datadocs (#PCDATA)>
<!ELEMENT line_item (data_x?, data_y, linkset?, note_set?)>

<!ATTLIST line_item
 li_ID CDATA #REQUIRED
 li_legend CDATA #REQUIRED
 li_title CDATA | #REQUIRED
 li_cat CDATA #IMPLIED
 y_axis_title CDATA #REQUIRED
 level CDATA #REQUIRED
 format CDATA #REQUIRED
 relation CDATA #REQUIRED
 li_notes CDATA #REQUIRED
 li_desc CDATA #REQUIRED
 li_prec CDATA #REQUIRED
 li_unit CDATA #REQUIRED
```
```
 li_mag CDATA #REQUIRED
 li_mod CDATA #REQUIRED
 li_measure CDATA
 li_scale CDATA
 li_adjustment CDATA
 CDATA #REQUIRED
 li_aggregation CDATA #IMPLIED >
<!ELEMENT data_y (#PCDATA)>
<!ELEMENT note_set (note+)>
<!ELEMENT note (#PCDATA)>

<!ATTLIST note
 note_type CDATA
#IMPLIED >
<!ELEMENT data_x (#PCDATA) >

<!ATTLIST data_x
 x_title CDATA #REQUIRED
 format CDATA #REQUIRED
 x_notes CDATA . #IMPLIED
 x desc CDATA #IMPLIED
 x_prec CDATA #REQUIRED
 x_unit CDATA #REQUIRED
 x_mag CDATA #REQUIRED
 x_mod CDATA #REQUIRED
 x_measure CDATA #REQUIRED
 x_scale CDATA #REQUIRED
 x_adjustment CDATA #REQUIRED
 x_links CDATA #REQUIRED >
```
```

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE macrodoc PUBLIC "-I/.." "RMML1.dtd" >
<macrodoc>
<macro_header
macrodoc_ID = "rmml_sort"
macró_title = "Sort"
macro_type = "TSL"
result_type = "replace_each"
rdmldoc_type = "TS"
timestamp = "1999-01-19T23:00:00"
version = "1.0.0"
expiration = "2000-01-19T23:00:00"
freq_of_update = "Annual" >
<macro_source>
<contact_info
role = "Macro Source"
name = "Russell T. Davis"
company = "RDML, Inc."
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"
state = "MD"
zip = "20815"
country = "USA"
email =."rt_davis@sprynet.com"
href = "http://www.rdml.com"
comments = "" >
</contact_info>
</macro_source>
<license_terms
copyright_cite = "Copyright 1998, RDML, Inc. All Rights Reserved"
holder = "RDML, Inc."
license_type = "Payment Per Download"
warranty = "No warranty is expressed or implied. Use this data at your own risk."
disclaimer = "This data is provided 'as-is'. The provider assumes no responsibility for its use
or misuse."
terms = "\$1 per RMMLDoc download"
date = "1999.0123000000.00"
email = "license@rdml.com"
state = "MD"
country = "USA" >

```
```

 <contact_info
 role = "Licensee"
 name = "Russell T. Davis"
 company = "RDML, Inc."
 address = "2 Wisconsin Circle, Suite 700"
 city = "Chevy Chase"
 state = "MD"
 zip = "20815"
 country = "USA"
 email = "rt_davis@ sprynet.com"
 href = "http://www.rdml.com"
 comments = "">
 <contact_info>
 <license_terms>
<linkset
 xlink_form = "extended"
 href = "http://www.rdml.com" >
\ll l i n k
xlink_form = "simple"
href = "http://www.rdml.com"
behavior = "'
content-role = ""
content-title = "".
role = ""
title = ""
show = "new"
actuate = "user" >
<link>
<linkset>
<documentation>
<macro_description>
Adds a line showing the minimum or maximum, according to the parameters
<macro_description>
<help_page>
No Help Page is currently available
</help_page>
<documentation>
</macro_header>
<macro_code>
<code>

```
```

 IF(ichoice=0, SORT(A,0), IF(ichoice=1,SORT(A,1), A))
 </code>
 <instructions>
 <instructions>
 <gui>
 <comp_rpanel
 variable_name = "ichoice"
 intro_label = "Select a parameter:" >
 <comp_rbutton
 label = "Ascending"
 value = "0"
 isDefault = "true"
 icon = "">
 </comp_rbutton>
 <comp_rbutton
 label = "Descending"
 value = "1"
 isDefault = "false"
 icon = "" >
 </comp_rbutton>
 </comp_rpanel>
 <gui>
<qualifiers>
<qualifiers>
<error_handling>
<error_handling>
<testing>.
<testing>
<macro_code>
<macro_references>
<macrodocs>
<macrodocs>
<datadocs>
<datadocs>
</macro_references>
<macrodoc>

```

Appendix F: MS Excel Visual Basic routine for adding "attribute value columns" to a data table
```

Private Sub UserForm_Initialize()
cmdOK.SetFocus
txtChartTitle.Text = ""
txtYAxisTitle.Text = ""
cboFormat.AddItem ("\#,\#\#0;(\#,\#\#0)")
cboFormat.AddItem ("\#,\#\#0.00;(\#,\#\#0.00)")
cboFormat.AddItem ("0.00%;(0.00%)")
cboFormat.ListIndex = 0
txtFootnote.Text = "Source: "
Dim NodeX As Node
Set NodeR = treeUnit.Nodes.Add(, , "r", "Select One: (Default is blank)")
'Currency
Set NodeA = treeUnit.Nodes.Add("r", tvwChild, "c", "Currency")
Set Nodes = treeUnit.Nodes.Add("c", tvwChild, "dus", "\$ US")
Set NodeX = treeUnit.Nodes.Add("c", tvwChild, "puk", "Pounds UK")
Set NodeX = treeUnit.Nodes.Add("c", tvwChild, "yjp", "Yen Japanese")
'Length
Set NodeX = treeUnit.Nodes.Add("r", tvwChild, "l", "Length")
Set NodeX = treeUnit.Nodes.Add("1", tvwChild, "Feet", "Feet")
Set NodeX = treeUnit.Nodes.Add("l", tvwChild, "Meters", "Meters")
'Area
Set NodeX = treeUnit.Nodes.Add("r", tvwChild, "a", "Area")
Set NodeX = treeUnit.Nodes.Add("a", tvwChild, "SqFeet", "Square Feet")
Set NodeX = treeUnit.Nodes.Add("a", tvwChild, "SqMeters", "Square Meters")
'tree formatting
NodeA.EnsureVisible
'Magnitude ComboBox
cboMagnitude.AddItem ("As-Is")
cboMagnitude.AddItem ("Thousands")
cboMagnitude.AddItem ("Millions")
cboMagnitude.AddItem ("Billions")
cboMagnitude.ListIndex = 0

```

\section*{End Sub}

Private Sub cmdCancel_Click() .
```

 End
 End Sub
Private Sub cmdOK_Click()
rcount = Selection.Rows.Count
'li_ID
Selection.EntireColumn.Insert
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_ID"
ActiveCell.Offset(1,0).Range("A1").Select
ActiveCell.FormulaR1C1 = "1"
ActiveCell.Offset(1,0).Range("A1").Select
ActiveCell.FormulaR1C1 = "=R[-1]C+1"
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 3)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False
'li_legend
ActiveCell.Offset(-3, 1).Range("A1").Select
ActiveCell.FormulaR1C1 = "li_legend"
'li_title
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_title"
ActiveCell.Offset(1,0).Range("A1").Select
ActiveCell.FormulaR1C1 = txtChartTitle.Text
ActiveCell.Select
Selection.Copy
r= "A1:A" \& (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False
'li_cat
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_cat"

```
'y_axis_title
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "y_axis_title"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 \(=\) txtYAxisTitle.Text
ActiveCell.Select
Selection.Copy
r.= "A1:A" \& (rcount - 2)
Selection.ColumnWidth \(=8\)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False
'level
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "level"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = " 1 "
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
Selection.ColumnWidth \(=8\)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'format
ActiveCell.Offset( 0,1 ).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "format"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = cboFormat.value
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.PasteApplication.CutCopyMode \(=\) False
relationActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "relation"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "Parent"
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'li_notes
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_notes"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 \(=\) txtFootnote.Text
ActiveCell.Select
Selection.Copy
\(\mathrm{r}=\) "A1:A" \& (rcount ..... 2)
Selection. ColumnWidth \(=8\)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'li_desc
ActiveCell:Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_desc"
'li_prec
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_prec"
'li_unit
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select
```

ActiveCell.FormulaR1C1 = "li_unit"
ActiveCell.Offset(1,0).Range("A1").Select
u = ""
On Error Resume Next
u = treeUnit.SelectedItem.Text
ActiveCell.FormulaR1Cl = u
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
ActiveCell.Offset(1,0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False

```

\section*{'li_mag}
```

'first calculate the value to put in
If (StrComp(cboMagnitude.value, "As-Is")=0) Then
m}=
End If
If (StrComp(cboMagnitude.value, "Thousands") = 0) Then
m=3
End If
If (StrComp(cboMagnitude.value, "Millions") = 0) Then
m=6
End If
If (StrComp(cboMagnitude.value, "Billions") = 0) Then
m=9
End If
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_mag"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = m
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode = False
'li_mod
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select

```
ActiveCell.FormulaR1C1 = "li_mod"
'li_measure
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_measure"
'li_scale
ActiveCell.Offset( 0,1 ).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_scale"
'li_adjustment
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_adjustment"
'li_aggregation
ActiveCell.Offset( 0,1 ).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1Cl = "li_aggregation"
End
End Sub
Appendix G: MS Excel Visual Basic routine creating a tagged document from a spreadsheet data table
Private Sub Frame1_Click()
End Sub
Private Sub UserForm_Initialize()
cmdOK.SetFocus
RefEdit_data.value = "Sheet1!\$A\$1:\$AB\$51"
txtDefaultFile.Text = "D:/default1.rdm"
txtOutputDir.Text = "D:l"
txtOutputFile.Text = "out.rdm"
cboLineItemType.AddItem ("TimeSeries")
cboLineItemType.AddItem ("Category")
cboLineItemType.AddItem ("XYPlot")
cboLineItemType.ListIndex \(=0\)
\(\mathrm{cbNonFileDefaults.value}=\) False
End Sub
Private Sub cmdCancel_Click()
End
End Sub
Private Sub cmdOK_Click()
Dim buff As String
buff \(=\) createlntro
buff \(=\) buff \& createHeader
buff \(=\) buff \& createLISet
buff \(=\) buff \& createLineItems
buff = buff \& "<line_item_set>" \& Chr(10)
buff \(=\) buff \(\&\) createEnding
replaceAttribute buff, "rdmldoc_header", "rdmldoc_ID", txtOutputFile.value
replaceAttribute buff, "rdmldoc_header", "doc_title", txtDocTitle.value
replaceAttribute buff, "line_item_set", "line_item_set_type", cboLineItemType.SelText
replaceAttribute buff, "data_x", "x_title", txtXAxisTitle.value
fillXData buff
CreateFile (buff)
End
End Sub
Private Sub cmdBrowseDefault_Click()
CommonDialog1.ShowOpen
txtDefaultFile.Text = CommonDialog1.Filename
End Sub
Private Sub cmdBrowseOutputDir_Click()
CommonDialog1.ShowOpen
txtOutputFile.Text \(=\) CommonDialog1.Filename
End Sub
Private Sub UserForm_Click()
End Sub
Private Sub getConfiguration()
End Sub
Private Function createHeader()
'buff will be the buffer that collects the string
Dim buff As String
'If user wants the program to create a default
If cbNonFileDefaults.value \(=\) True Thenbuff \(=\) buff \& defHeader
End If
'Or get the default header values from a filebuff = createDefHeader
'return
createHeader = buff
End Function
Private Function createDefHeader()
'Declarations
Dim h As String
Dim wholefile As String
'open the default file
Dim Def_file As String
Def_file \(=\) txtDefaultFile. Text
Open Def_file For Input As \#2wholefile \(=\) Input \(\$(\operatorname{LOF}(2), 2)\)Close \#2
'put the rdmldoc_header into a string
\(h=\) getElementByTagName(wholefile, "rdmldoc_header")
createDefHeader \(=\mathrm{h}\)
End Function
Private Function createLISet()
'Declarations
Dim h As String
Dim wholefile As String
'open the default file
Dim Def_file As String
Def_file = txtDefaultFile.Text
Open Def_file For Input As \#2
wholefile \(=\operatorname{Input} \$(\operatorname{LOF}(2), 2)\)
Close \#2
'put the the line item set overall tags into a string
\(\mathrm{h}=\) getOpeningElementTag(wholefile, "line_item_set")
\(\mathrm{h}=\mathrm{h} \&\) getElementByTagName(wholefile, "data_x")
\(\mathrm{h}=\mathrm{h} \&\) getElementByTagName(wholefile, "li_class_set")
\(\mathrm{h}=\mathrm{h} \&\) getElementByTagName(wholefile, "linkset")
createLISet \(=\mathrm{h}\)
End Function
Public Function getElementByTagName(str As String, el As String)
startPos \(=\operatorname{InStr}(1\), str, "<" \& el, 1)
endPos \(=\operatorname{InStr}(1, \mathrm{str}, ~ " \ll " \&\) el, 1\()\)
element \(=\operatorname{Mid}(\) str, startPos, endPos - startPos \(+\operatorname{Len}(\mathrm{el})+4)\)
getElementByTagName \(=\) element
End Function
Public Function getOpeningElementTag(str As String, el As String)
\[
\text { startPos }=\operatorname{InStr}(1, \operatorname{str}, "<" \& e l, 1)
\]
    endPos \(=\operatorname{InStr}(\) startPos, \(\operatorname{str}, ">", 1)\)
    element \(=\) Mid(str, startPos, endPos - startPos +5 )
    getOpeningElementTag = element
End Function
Private Sub CreateFile(buff)
    Dim Outfile As String
    Outfile \(=\) txtOutputDir.Text \& txtOutputFile.Text
    Open Outfile For Output As \#1
    Print \#1, buff
    Close \#1
End Sub
Private Function createIntro()
    buff = " \("\)
    'Header Information
    buff \(=\) buff \(\& "<? x m l\) version=" \& Chr(34) \& "1.0" \& Chr(34)
    buff = buff \& " encoding=" \& Chr(34) \& "UTF-8" \& Chr(34)
    buff = buff \& " standalone=" \& Chr(34) \& "no" \& Chr(34)
    buff = buff \& "?>" \& Chr(10)
    'DTD Declaration
    buff = buff \(\&\) " \(<!\) DOCTYPE rdmldoc PUBLIC ".
    buff = buff \& Chr(34) \& "-/I.." \& Chr(34) \& " "
    buff = buff \& Chr(34) \& "RDML1.dtd" \& Chr(34)
    buff = buff \& " > " \& Chr(10)
    'begin rdmldoc tag
    buff = buff \& "<rdmldoc>" \& Chr(10)
    'return
createIntro \(=\) buff

\section*{End Function}
Private Function createEnding()
buff = ""
```

 buff = buff & "</rdmldoc>" & Chr(10)
 'return
 createEnding = buff
    ```
End Function
Private Function defHeader()
buff = ""
'return
defHeader \(=\) buff
End Function
Private Function createLineltems()
Dim data As Range
\(\mathrm{t}=\) RefEdit_data.value
createLineItems \(=\) fillLineItems \((\) Range \((t)\), cboLineItemType.value \()\)
End Function
'-
Procedure: Fill_line_item()
Purpose: Prepare the line_item element
This element contains information about the line_item
1
From DTD:
'<!ELEMENT line_item (data_x?, data_y, li_class_set?, analysis?,
```'link_set?, note_set?) >
```

'<! ATTLIST line_item

- li_ID CDATA \#REQUIRED
- li_legend CDATA \#REQUIRED
- li_title CDATA \#REQUIRED
- li_table CDATA \#IMPLIED
' y_axis_title CDATA \#REQUIRED
' level CDATA \#REQUIRED

```- format
```

' relation

```CDATA \#REQUIRED
```

- li_notes
CDATA \#REQUIRED
- li_desc CDATA \#REQUIRED
CDATA \#REQUIRED

```
' li_prec CDATA #REQUIRED
' li_unit CDATA #REQUIRED
' li_mag CDATA #REQUIRED
' li_mod CDATA #REQUIRED
' li_measure CDATA #REQUIRED
' li_scale CDATA #REQUIRED
/ li_adjustment CDATA #REQUIRED >
Public Function fillLineItems(data As Range, litype As String)
'Declarations
Dim J, K As Integer
Dim Max As Integer
'If this is an XYPlot, use the other routine
If litype = "XYPlot" Then
 'Fill_line_item_xy
Else
'Initializations
K=1
buff = ""
NumLI = data.Rows.Count
'Cycle through all the line items
For N = 2 To NumLI
'Insert opening tag
buff = buff & " <line_item" & Chr(10)
'Insert the Attributes
addAttribute buff, "li_ID", data.Cells(N, 1), 6,0
addAttribute buff, "li_legend", data.Cells(N, 2), 6,0
addAttribute buff, "li_title", data.Cells(N, 3), 6,0
addAttribute buff, "li_cat", data.Cells(N, 4), 6,0
addAttribute buff, "Y_axis_title", data.Cells(N, 5), 6,0
addAttribute buff, "level", data.Cells(N, 6), 6,0
addAttribute buff, "format", data.Cells(N, 7), 6;0
addAttribute buff, "relation", data.Cells(N, 8), 6,0
addAttribute buff, "li_notes", data.Cells(N, 9), 6,0
addAttribute buff, "li_desc", data.Cells(N, 10), 6,0
addAttribute buff, "li_prec", data.Cells(N, 11), 6,0
addAttribute buff, "li_unit", data.Cells(N, 12), 6,0
addAttribute buff, "li_mag", data.Cells(N, 13), 6,0
addAttribute buff, "li_mod", data.Cells(N, 14), 6,0
```

```
addAttribute buff, "li_measure", data.Cells(N, 15), 6,0
addAttribute buff, "li_scale", data.Cells(N, 16), 6, 0
addAttribute buff, "li_adjustment", data.Cells(N, 17), 6, 1
'Fill the body of the tag with a comma-delimited string of the y-data numbers
buff = buff & " <data_y>" & Chr(10)
MaxLI = NumLI - 2
MaxDP = data.Columns.Count - 17
For K = 1 To MaxDP
 buff = buff & data.Cells(N, 18 + K) & ", "
 If (K Mod 10) = 0 Then
 buff = buff & Chr(10)
 End If
Next K
buff = buff & Chr(10) & " </data_y>" & Chr(10)
'Insert ELEMENT: analysis
'Insert ELEMENT: li_class_set
'Insert ELEMENT: 'linkset'
'Call FillTag("linkset")
.Insert ELEMENT: note_set
'Insert closing tag for that line item
buff = buff & Chr(10) & " <line_item>" & Chr(10)
'Every }10\mathrm{ line items, flush the buffer
'If N Mod 5 = 0 Then
' Call SaveToFile(buff)
'End If
Next N
'Closes the test for XYPlot at beginning of routine
End If
filLineItems = buff
End Function
--
' Procedure: addAttribute(name, value)
' Purpose: Adds an attribute line to "buff"
,
Public Sub addAttribute(buff, name, value, indent, last)
```

```
 ' Build the indentation
 Dim strIndent As String
 strIndent = ""
 For J=1 To indent
 strIndent = strIndent & " "
 Next J
 'Build the string
 buff = buff & strIndent & name & " = " & Chr(34) & value & Chr(34)
 'Add an ending '>' tag if "last" is 1; else simple add a carriage return
 If last = 1 Then
 buff = buff & " >" & Chr(10)
Else
 buff = buff & Chr(10)
End If
End Sub
Private Sub replaceAttribute(f As String, el As String, att As String, val As String)
f= Replace(f, att & " = " & Chr(34) & Chr(34), att & " = " & Chr(34) & val & Chr(34))
```


## End Sub

```
Private Sub fillXData(f As String)
'build the string of X values
'Dim data As Range
Dim v As String
\(\mathrm{t}=\) RefEdit_data.value
\(\mathrm{v}=\mathrm{Chr}(10)\) \& Range(t).Cells(1, 19)
For \(\mathrm{J}=20\) To Range(t).Columns. Count
\(\mathrm{v}=\mathrm{v}\) \& ", " \& Range(t).Cells(1, J)
Next J
\(\mathrm{v}=\mathrm{v} \& \operatorname{Chr}(10)\)
'replace the current x data element text
\(\mathrm{f}=\) Replace(f, "></data_x>", ">" \& v \& " <ddata_x>")
End Sub
```

-148-

# UNITED STATES PATENT APPLICATION 

OF

RUSSELL T. DAVIS

FOR

REUSABLE DATA MARKUP LANGUAGE

## RELATED APPLICATIONS

This application is a divisional of Application No. 09/573,778, filed May 18, 2000, which is incorporated in its entirety herein by reference. This patent application also claims priority to Provisional U.S. Patent Application No. 60/135,525, filed on May 21, 1999, and Provisional U.S. Patent Application No. 60/183,152, filed on February 17, 2000, which are incorporated herein by reference.

The following identified U.S. patent applications are also relied upon and are incorporated by reference in this application.
U.S. Patent Application No.[[] ]] 09/573,780, entitled "Reusable Macro Markup Language," bearing attorney docket no.07643.0004, and filed on the same date herewith.
U.S. Patent Application No. [[ $\qquad$ ]] 09/573,419 (now U.S. Patent No. 7,249,328), entitled "Tree View for Reusable Data Markup Language," bearing attorney docketno.07643.0005, and filed on the same date herewith.
U.S. Patent Application No. [L ]] 09/573,413 (now U.S. Patent No. 6,920,608), entitled "Chart View for Reusable Data Markup Language," bearing attorney docketno.07643.0006, and filed on the same date herewith.

## BACKGROUND

## Field of the Invention

The present invention relates generally to data processing systems and, more particularly, to a computer markup language for use in a data browser and manipulator.

## Related Art

Currently on the Internet, transmissions and communications are commonly conducted using a communication protocol called the HyperText Transfer Protocol ("HTTP") which can be used to pass files and documents formatted in the HyperText Markup Language ("HTML"). A markup language is a way of embedding markup "tags," special sequences of characters, that describe the structure as well as the behavior of a document and instruct a web browser or other program on how to display the document. Typically, documents or web pages formatted in HTML are simply ASCII text files that mix ordinary text with these markup tags.

HTML has a relatively limited structure that defines a fixed set of tags with specific purposes. Further, HTML typically only works with text and images and typically only instructs a browser on how to display a document: the browser may read and display characters but does not "understand" the data content. To the extent that HTML browsers present numbers in their display, they still are not interpreted as numbers -- just text. Hence, HTML documents are not interpreted as "data" but rather as formatting instructions for displaying images. Users cannot "surf" through numerical data, to see graphs, apply transformations, combine numbers from different web pages, or load numbers into a spreadsheet in a manageable form. The numbers cannot be directly read by an analytical program without human intervention to cut-and-paste the text, determine the data type, etc. Consequently, conventional analytical programs allow for ad hoc review and manipulation of
abstract numbers (e.g., a spreadsheet program or database program), but do not directly read their data from online sources. Such programs may perform statistical analysis, structural analysis and simple transformations on data once it has been entered and interpreted.

Given HTML's limited capabilities, and SGML's unwieldy complexity, a markup language called Extensible Markup Language ("XML") was developed to help overcome some of these limitations. XML is a free-form markup language with unspecified tags, which allows developers to develop their own tags and, in effect, create their own markup languages geared toward specialized tasks. In XML, the tags must be organized according to certain rules, but their meaning is flexible. Unlike HTML, XML describes structure and meaning, but not formatting. As such, different professions may develop their own specialized markup languages. For example, if a developer were to create a markup language that describes books in XML, the developer could create specifically meaningful tags for "title," "author," and "publisher," something not possible in HTML. Although XML's free-form structure permits the development of markup languages, such individualized markup languages are not compatible with each other because the use of the tags is not standardized in that different users use the tags for different purposes.

In today's business world, problems that typically accompany data manipulation often increase expense and difficulty. One such problem is that often data and the documentation that describes the data are not both in electronic form. This conventional approach to database and spreadsheet information often dictates that expensive database administrators are required to make transformations anytime data is being transferred from one system to another, expensive analysis of printed documentation is required in connection with any programming tasks, and the output rarely contains any indication of the original sources, structures, and manipulations that created that output. In PC-based systems, creating documentation for data is conventionally left up to the user: typically
there is no machine-driven effort to collect the documentation from the user, format it, and save it with the data, thereby eliminating the ease of reuse of the data.

Another obstacle impeding efficiency in conventional databases and spreadsheets is that calculations occur at too low of a conceptual level. Calculations in typical numerical analysis programs operate on a single "cell" in a spreadsheet or a single "record" in a database. Analytic operations on single values at a time can be slow and prove costly when many different cells or record values are involved.

The lack of a standard markup language facilitating the browsing of numbers leaves no way to read, automatically manipulate and display differing types of numerical data read from multiple online sources on a single chart. Human intervention is required to recognize differing types of numerical data and conform the data so that it may be combined and displayed coherently on charts, graphs and reports. Conventionally, formatting of graphical charts displaying numerical data requires manual manipulation when series of different types of data are combined. Furthermore, no visual cue is given regarding the relationship between different numerical data sets.

The computer industry is further hindered by the fact that data and analytic routines are not standardized. While the computer industry has developed standards for file formats and functionlevel interfaces, it has not developed a general data format or content-analysis standards. This results in expensive translation of data between systems, industries, companies and users using different protocols.

Analysis routines in conventional spreadsheets typically take the form of "spreadsheet macros." Macros are essentially short programs which perform well-defined, generally limited, tasks. Millions of spreadsheet users have used spreadsheet macros to automate mechanical tasks involved in manipulating the numbers in their spreadsheets. But the great investment in spreadsheet
macros has generally been underutilized because such macros are "write once, use once" types of software; they are rarely reused by others.

There are at least eight reasons that current programming languages and spreadsheet macros are not reusable or portable. One such problem is that spreadsheet data references usually are based on physical locations. Suppose a macro writer puts an interest rate assumption in cell "C4," and another person has a spreadsheet with the interest rate assumption in cell "BR47," a macro that expressly references the absolute cell location C 4 will not be usable in the second spreadsheet.

Another related problem is that numbers in spreadsheets have no measurement or semantic designators describing their meaning. One spreadsheet may work with dollars in millions, while another works with dollars in thousands. The same macro cannot be used on both spreadsheets without human intervention to sort out all the inconsistencies and to modify one of the spreadsheets to match the other. As another example, a macro may be written to divide stock price by earnings to get a P/E ratio, but numbers in a spreadsheet have no meaning besides words in the cell to the left or above the numbers. Absent a standard location and vocabulary, those indicators are useless.

An additional problem with conventional spreadsheet macros is the lack of documentation. Because macros are typically only usable by their creators on the single spreadsheet they wrote them for, they tend to be totally undocumented: no common-language description, no help files, no data standards as to permissible values, source contact list, license information, etc.

Furthermore, there is no mass distribution mechanism for macros. Spreadsheet macros are not web-friendly: they are generally limited to one spreadsheet brand and one platform, do not support hyperlinks, and cannot be searched by search engines. Also, they are not supported by directory or classification system, and have no ready market.

Even further, users typically do not include unit testing, validity testing, error handling, and other end-user protections on the macros that they write. The result is that users may be wary of the output of macros that they might try to add to their spreadsheets.

Conventional spreadsheet macros have difficulty making graphical interfaces to the data. End users of a foreign macro do not want to have to understand every cell and location constraint, every limitation on valid values that can be input and so forth. The lack of related graphical components further fuels this problem.

Finally, conventional spreadsheet macros are either too small to be worth a marketing effort, or too difficult to use to find a large audience. This results in a lack of a business incentive to make them. It is therefore desirable to overcome the aforementioned problems and other related problems:

## SUMMARY

Methods and systems in accordance with the present invention provide a markup language, referred to as Reusable Data Markup Language ("RDML"), that permits the browsing and manipulation of numbers and provide a related data viewer that acts as a combination Web browser and spreadsheet/analytic application that may automatically read numbers from multiple online sources and manipulate them without human intervention. Using the markup language, users may browse online sources using numerical-based queries, and the data viewer may automatically combine and manipulate multiple documents on a single display.

In accordance with an implementation consistent with the present invention, a method in a data processing system is provided that receives a first markup document and a second markup document, both the first markup document and the second markup document containing numerical values and tags reflecting characteristics of the numerical values. The method automatically
combines the first markup document and the second markup document into a single data set and displays the single data set.

In accordance with another implementation, a method in a data processing system is provided that receives a document containing numerical values, and receives indications of characteristics of the numerical values, the characteristics including a unit and a magnitude. Further, it adds the received indications into the document as tags associated with the numerical values to create a markup document.

In accordance with yet another implementation, a method in a data processing system is provided that receives a markup document having a set of numerical values and tags indicating characteristics of the numerical values and determines a transformation for the set of numerical values to reflect new characteristics. The method then accesses a plurality of the tags of the set of numerical values, the plurality of the tags indicating magnitude, scale, modifier, units, measure, adjustment and aggregation. Furthermore, the method determines conversion factors for the magnitude, scale, modifier, units, measure, adjustment and aggregation tags to accomplish the transformation to the new characteristics and multiplies the set of numerical values by the determined conversion factors to transform the set of numerical values to reflect the new characteristics.

Methods and systems in accordance with the present invention provide a chart view that automatically manipulates and graphically displays numerical data. The manipulation and display is based on attributes associated with the numerical data describing characteristics of the numerical data. The chart view facilitates the simultaneous display of different series of numerical values of different types on a single chart and automatically displays appropriate descriptive textual components (e.g., axis labels, axis titles, chart titles, number precision, legends, footnotes, axis
scales, etc.) The chart view allows single click transformations of series of numerical values and provides automatic formatting of descriptive textual components in response.

In accordance with an implementation of the present invention, a method in a data processing system having a display showing a chart is provided that receives a series of numerical values with tags indicating characteristics of the numerical values and displays the numerical values on the chart. Further, the method automatically determines a title for the numerical values based at least one of the tags and displays the determined title on the chart.

In accordance with another implementation of the present invention, a method in a data processing system having a display showing a chart is provided that receives a first series of numerical values having tags indicating characteristics of the numerical values and displays the first series of numerical values on the chart, the first series of numerical values corresponding to a first axis on the chart. The method further receives a second series to be added to the chart, the second series of numerical values having tags indicating characteristics of the second series of numerical values and automatically generates a second axis on the chart. Finally, the method displays the second series of numerical values on the chart corresponding to the second axis while the first series is displayed on the chart.

In accordance with yet another implementation of the present invention, a method in a data processing system having a display showing a chart is provided that receives an instruction to display a series of numerical values on the chart on the display, the numerical values having tags indicating characteristics of the numerical values, and displays the series of numerical values on the chart in response to the received instruction. The method then automatically formats the chart based on at least one of the tags in response to the received instruction.

In accordance with another implementation of the present invention, a data processing system is provided comprising a memory storing a charting application configured to manipulate and display numerical data, the memory having a selected series of numerical values having a tag indicating text information associated with the numerical values. The data processing system further comprises a display showing a chart having a legend that displays the text information associated with the selected series of numerical values. The legend word-wraps and scrolls the text information associated with the series of numerical data when the text information does not fit on the legend on the chart. The system further comprises a processor for running the charting application.

Methods and systems in accordance with the present invention provide a tree view that automatically manipulates and graphically displays numerical data. The tree view facilitates the simultaneous display of different series of numerical values of different types on a single display and automatically displays descriptive textual components. The tree view allows single click transformations of series of numerical values and provides automatic formatting of descriptive textual components in response. It further visually displays the relationship between series of numerical data for a user while supplying the user with hyperlinks associated with a given series of numerical data.

In accordance with an implementation of the present invention, a method in a data processing system is provided that receives a first and a second series of numerical values, and determines the relationship between the first and second series of numerical values. The method then displays an icon depicting the relationship between the first and second series of numerical values based on the determined relationship.

In accordance with another implementation of the present invention, a method in a data processing system is provided that receives a series of numerical values and a link associated with the series of numerical values, the link having a list of associated hyperlinks. The method displays the series of numerical values and the associated link, and receives an instruction to activate the link. Further, the method displays the list of hyperlinks associated with the link in response to the received instruction.

In accordance with yet another implementation of the present invention, a method in a data processing system having a display showing a chart is provided that receives a series of numerical values having associated metadata documentation. The method further receives an instruction to select the series of numbers and displays the series of numerical values on the chart while displaying the metadata documentation associated with the series of numerical values.

In accordance with another implementation of the present invention, a data processing system is provided that comprises a memory having a program for manipulating numerical values, and storing a first series of numerical values and a second series of numerical values. The data processing system further comprises a display that displays the first and second series of numerical values and a relationship icon depicting the relationship between the first series of numerical values and the second series of numerical values. Finally, the data processing system further comprises a processor for running the program.

Methods and systems in accordance with the present invention provide a markup language, referred to as Reusable Macro Markup Language ("RMML"), for producing and utilizing macros. which are reusable numerical analysis routines which can be written quickly, cheaply, and in a form usable by a broad range of data documents in RDML, the platform upon which the macros are run.

RMML allows reusable spreadsheet type macros to be posted as web documents, to be searched by search engines, to be combined into more complex programs, and to be reused with many data documents. RMML brings to spreadsheet manipulation routines the economic and productivity benefits of (1) standardization, (2) interchangeable parts, (3) specialization and assembly-line techniques in creation, and (4) economies of scale in creation and deployment. In addition, RMML brings to spreadsheet macros and numerical programming, some of the benefits of the World Wide Web: (1) widespread accessibility on demand, (2) ability to search for documents (in this case, search for capabilities and behavior of routines instead of text or data), and (3) the ability to hyperlink documents (including the ability of macros to call each other remotely).

In accordance with an implementation of the present invention, a data processing system method is provided that receives a macro defined to perform an operation on a series of numerical values and receives a series of numerical values having tags indicating characteristics of the numerical values. The method then performs an operation defined by the macro on the series of numerical values using the indicated characteristics.

In accordance with another implementation of the present invention, a data processing system method is provided that receives a macro defining an operation on a set of numerical values and receives a vector or matrix of numerical values. The method then performs an operation defined by the macro using the vector or matrix as a variable in the operation.

In accordance with yet another implementation of the present invention, a data processing system is provided that includes a memory containing a numerical analysis program having a macro defined to perform an operation on a series of numerical values, and a series of numerical values having tags indicating characteristics of the numerical values. It further comprises a processor for running the program such that the program performs an operation defined by the macro on the series
of numerical values using the indicated characteristics, and a display for displaying results of the operation.

## BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a high level diagram of a Reusable Data Markup Language (RDML) data viewer, its inputs and outputs in accordance with methods and systems consistent with the present invention;

Figure 2 depicts a data processing system suitable for use with methods and systems consistent with the present invention;

Figure 3 depicts a diagram of the interrelation of various RDML software and hardware components shown in Figure 2;

Figure 4 depicts the use of an RDML formatter shown on Figures 2 and 3 to add markup tags to data;

Figure 5 depicts a screen shot of a database/document tab and management screen of the RDML formatter depicted in Figures 2 and 3;

Figure 6 depicts a flowchart of the steps performed when accessing the RDML document server depicted in Figures 2 and 3;

Figure 7A depicts internal architecture of the RDML data viewer depicted in Figures 2 and 3;

Figure 7B depicts a legend of the meaning of the symbols depicted in Figure 7A;
Figure 8 depicts a flowchart of the steps performed by the RDML data viewer in a method for downloading, processing and displaying an RDML document in accordance with methods and systems consistent with the present invention;

Figure 9 illustrates elements of an RDML Document Type Definition in accordance with methods and systems consistent with the present invention;

Figure 10 depicts a flowchart of steps used to automatically manipulate an RDML document for display using line item attributes in accordance with methods and systems consistent with the present invention;

Figure 11 depicts a flowchart of the steps performed by the x -value transformer depicted in Figure 7A to store a new document in the primary data store;

Figures 12A-Đ12A-C depict $\mathrm{X}-\mathrm{Y}$ plots and tree views in accordance with methods and systems consistent with the present invention;

Figure 13 depicts a primary data store of the RDML data viewer as shown in Figure 7A;
Figures 14A-F depict a chart view and tree view of the RDML data viewer as depicted in Figure 7A in accordance with methods and systems consistent with the present invention;

Figures 15A-C depict flowcharts of the steps performed by a graphical user interface, chart manager and chart data object for adding a line item to a chart view upon selection of the line item in a tree view in accordance with methods and systems consistent with the present invention;

Figure 16 depicts a spreadsheet view and a chart view of the data viewer in accordance with methods and systems consistent with the present invention; and

Figure 17 depicts a footnote view of the data viewer and a chart view in accordance with methods and systems consistent with the present invention;

Figure 18 illustrates elements of a Reusable Macro Markup Language (RMML) Document Type Definition in accordance with the present invention;

Figures 19A-C depict RMML document handling, an RMML graphical interface, and an RMML macro interpreter, respectively, in accordance with the present invention;

Figures 20A-D illustrate screen shots of RMML macro panels in accordance with the present invention.

Figure 21 shows a flowchart illustrating steps used in a method for tagging information from spreadsheets in accordance with the present invention; and

Figures 22A-D depict exemplary screen shots of the tagging of spreadsheet information tagging to create a document in accordance with the present invention.

## DETAILED DESCRIPTION

Because of the length of the detailed description, the following table of contents is provided.
Reusable Data Markup Language Overview ..... I
Reusable Macro Markup Language Overview ..... I.A
System Hardware Components ..... II
System Overview ..... III
System Details ..... IV
Internal Data Viewer Architecture ..... IV.A
Document Type Definition ..... IV.A. 1
Reader, Parser and Processor ..... IV.A. 2
X-value Transformer and Line Item Set Types ..... IV.A. 3
Primary Data Store ..... IV.A. 4
Chart View ..... IV.A. 5
Tree View ..... IV.A. 6
Spreadsheet View ..... IV.A. 7
Footnote View ..... IV.A. 8
Tagging Wizard ..... IV.A. 9
Aspects of RDML Documents ..... IV.A. 10
Graphical User Interface and HTML browser ..... IV.B
Reusable Macro Markup Language ..... IV.C
RMML Macro Package ..... IV.Cl

## I. RDML Overview

Methods and systems consistent with the present invention provide a markup language, referred to as Reusable Data Markup Language ("RDML"), and a data viewer referred to as the RDML data viewer that is used to retrieve, manipulate and view documents in the RDML format. Generally, RDML permits the browsing and manipulation of numbers; and allows the viewer to act as a combination Web browser and spreadsheet/analytic application that may automatically read numbers from multiple online sources, understand their meaning, and manipulate them without human intervention. The RDML data viewer may use the Internet to obtain requested sets of numbers like HTML does for text. Using RDML, it is possible to form a search on the Internet that is a true query of numbers. One such request is the creation of a list of quarterly revenues from 1996 to 1997 pertaining to companies with sales growth greater than 10 percent and no taxable income. After receiving any requested sets of numerical data, the data viewer may automatically transform and combine them even if they are in different formats (i.e., one in thousands of U.S. dollars and another in hundreds of French francs) on a single graphical display without requiring the user to make manual adjustments. The user may then make single-click adjustments to the display (e.g., adjust for inflation, currencies, time periods, number precision, etc.) to see different aspects of the
received information. RDML generally facilitates numerical browsing by associating numbers with attributes describing the meaning of the numbers.

Although the preferred embodiment of RDML is a markup language that is a fully compliant implementation of XML version 1.0, other implementations are possible. XML is described in detail in "XML Bible," Elliotte Rusty Harold, IDG Books Worldwide, 1999, which is incorporated herein by reference. The RDML data viewer is a data browser, data manipulator, data viewer (in the form of charts, spreadsheets, etc.) and general user interface for data documents. It greatly extends the capabilities provided by current spreadsheet and database management programs. In addition to extended capabilities, it lowers costs to businesses by permitting efficient reuse of data, functions, and report formats.

The RDML data viewer works with RDML-formatted data documents, which are files that may be stored locally, over a network, including the Internet, or in any combination of sources. The structure of the RDML data files allows the RDML data viewer to act as a combination browser and analytic program, such as a spreadsheet, which can automatically read, interpret and manipulate numbers in its integrated analytic program. The RDML data viewer also provides a "macro"development and management scheme which allows users to create custom routines for the manipulation, transformation and display of RDML-formatted data. Macros and related aspects are described in greater detail below.

Figure 1 depicts a high-level diagram of an RDML data viewer 100, its inputs and its outputs in accordance with methods and systems consistent with the present invention. Generally, data viewer 100 may be software that resides in the memory of a computer and accepts several types of input 102, 104 and 106, one of which is the RDML data document 102. The RDML data document 102 may be an ASCII text document formatted with RDML tags which are compliant with XML
version 1.0. In one implementation consistent with the present invention, the tags of an RDML data document 102 are advantageously structured to include documentation of the data and arrange data in "line items," a collection of data values that is similar to a "record" or "row" in a relational database (discussed below). In RDML, the line item is generally the basic unit of calculation, as opposed to a single data value or cell as is typical with most conventional databases or spreadsheets. RDML documents 102 contain sets of line items, such sets being analogous to "tables" in relational databases, and documentation ("metadata") regarding the "line item sets." The RDML data document 102 is read by the RDML data viewer 100 which stores the data internally; making it available to a number of "views" 108, which present the data in different ways (charts, tables, etc.) to a user (not shown). The views 108 are also referred to as programs or applications, as they can be standalone software programs that receive their data from the RDML data viewer 100.

Analysis routines can be developed for data and placed in their own documents referred to as Reusable Macro Markup Language ("RMML") Macro Documents 104 which are another input to the data viewer 100 and are optional. These routines are reusable; they can be applied to virtually any data document meeting the requirements set forth in the RMML document 104. For example, an RMML document 104 may contain routines for converting RDML data to different currencies, and any data denominated in currency can use the RMML currency conversion macro. The preferred embodiment of RMML is also a fully compliant implementation of XML version 1.0, although other embodiments are possible.

Similarly, Reusable Data Style Language ("RDSL") style sheets 106, another optional input to the data viewer 100, can be applied to data documents to create specially-formatted output reports. A RDSL is a fully compliant implementation of Extensible Style Language ("XSL") which is described in detail in "XML Bible," Elliotte Rusty Harold, IDG Books Worldwide, 1999. These

RDSL documents 106 are XSL-compliant style sheets which essentially act as report writers for RDML data documents 102. A typical use would be for data documents containing corporate financial statements. A single RDML data document 102 may contain a set of financial statements, but several different style sheets could be applied: one to show the data in annual columns, one to show it in a quarterly breakdown, one to show it in European format, and so forth. The RDML data viewer 100 automatically combines data documents 102 and style documents 106 to create reports.

RDML dramatically reduces the expense, time, and complexity of data manipulation by addressing the aforementioned problems of documentation of data, non-standardization of analytic routines, and low conceptual-level calculations of data. RDML addresses the problem of the separation of data and its documentation by encapsulating data and its documentation together in machine-readable form that can be used interactively. This differs from the approach of conventional relational databases in which data is kept in the computer and the documentation typically kept in a three-ring binder or other printed document. The separation of data and its documentation often ensures the need for high-priced database programmers every time the data must be accessed, used or transferred. Documentation in RDML also differs from that of spreadsheets, which tend to be personal in that the documentation is in the head and personal notes of the creator. In one implementation consistent with the present invention, RDML encapsulates machine-readable documentation with the data. The data and its documentation (metadata) are used together by the data viewer 100 to interpret what the numbers mean, how they are to be used, and how they are to be displayed. The small up-front investment in refining the raw data pays off in the lessened need for human labor to access and reuse the data in the future. RDML incorporates several important types of metadata: sources, contacts, license requirements, expirations and update information, data types, data classes, handling instructions (e.g., what to do with nulls, missing
values, etc.), units and measurements, and other information needed to produce the various presentations.

Use of RDML addresses the problem of non-standardization by defining standards for both data characteristics and analytic routine interfaces. Standardization leads to component reuse, automation of production, and more rapid development of product enhancements. While the computer industry has developed standards for file formats and function-level interfaces, it has not developed general data format or content-analysis standards. For example, once data is input to an application (whether spreadsheet, database or other), the user may want to manipulate the data and see basic statistics for the different line items (sums, averages, \% changes, variances, and so forth), adjustments for standard changes (adjustments for inflation, conformance to industry indexes, \% of stock market averages, etc.), or standard ratios (debt/equity, price/earnings, etc.) Because there is neither a standard general data format, nor a standard analytic routine interface, users currently create each of these manipulation routines from primitive coding. In spreadsheets, they must input formulas and conversion factors number by number, and in databases, they must write SQL queries or other programming routines to manipulate the data.

RDML provides both the data standard and the function interface for manipulation routines. This means that a routine can be written to apply to any line item that meets the conditions it imposes, and these routines are reusable. Currently, conventional spreadsheet macros (one analogue to RDML macros 104) are typically only used in the spreadsheet for which they were designed. The macros cannot typically be used in another spreadsheet where the numbers may be in different cells or in different units. RDML macros 104 are not dependent on cell position, or human intervention to conform data: they can be directly used by others for other data sets. If a user writes a routine
which, for instance, calculates and graphs a moving average of a time series, it can be used by any time series in any RDML document 102.

While solving documentation and standardization problems, use of RDML also addresses the problem of calculations occurring at too low a conceptual level by creating data "objects" at the line item and document levels, whereas conventional spreadsheets operate only at the cell (single number) level. For instance, calculations that may be common to a set of data, i.e., a line item, may operate more efficiently because they can be applied once, as opposed to being applied individually to many different single numbers or cells. Furthermore, analytic routines (macros) can be combined, applied successively, or used by inheritance to create new routines. The line item orientation dramatically reduces the number of formulas that need to be written (one per line instead of one per number). It also increases the readability of program code, because the user can review the logic at a higher level of abstraction.

In addition-to solving these problems, RDML reduces costs, time, and complexity for operations on the side of the data consumer, the data publisher and the program developer. To utilize and manipulate data, typically, a user retrieving data over the Internet views a text version of the data, prints the data (in HTML, ASCII or PDF format), and then types the numbers into a spreadsheet or database program. The RDML data viewer 100 automates this process by making the data immediately available to other programs as interpretable data: the user does not need to retype it. Upon locating numerical sets of data from multiple online sources, the data viewer 100 automatically normalizes, collates, transforms, and formats the data.

Some conventional systems make data available for download as data in either a common spreadsheet format (such as Lotus or Excel), or in a comma-delimited or other common text format. This at least saves the user the necessity of retyping certain numbers, but creates a new problem of manipulating the data to get it into a more usable form (e.g., normalized, standardized).

As such, RDML (and its related data viewer) "normalizes" data for added efficiency. Normalizing data is primarily a matter of conforming key fields, including matching dissimilar fields, resolving conflicts in categories, resolving the handling of duplicates, etc. In order to be useful, data should be conformed to a format that can be read by. an application (such as a graphing routine, or calculation routine). For example, the application may expect data aggregated by year, whereas the incoming data may be aggregated by month. The user must manipulate the input to make it conform to the form expected by the application. RDML performs these tasks automatically, using embedded documentation regarding the input data to make any necessary conforming changes to the input. In the time series example above, RDML would aggregate the monthly data into yearly data, using embedded documentation to determine whether the aggregation should be a sum, an average, etc.

Additionally, comparing data is a primary use of spreadsheets. Examples include comparing the financial statements of different companies, comparing the statistics from different states, and comparing different economic time series. When these data categories come from different sources, they are usually not directly compatible: the user must lay out the data items on a spreadsheet or similar program in a manner similar to assembling a jigsaw puzzle. As with normalization, RDML uses documentation embedded in the various input files to determine how different line items and values should be collated.

Once data is normalized and collated, the RDML data viewer 100 transforms the data automatically. Conventionally, users typically make a series of adjustments to the numbers in the data set. The input data may be, for example, denominated in "millions of dollars," while output is desired in "billions of yen." RDML provides a set of indicators for the most common transformations, permitting automatic machine translation of the numbers from their input state to the state desired by the user.

A conventional method of formatting data for output on a PC is to cut-and-paste the data to a formatting application (word processor, graph generator, spreadsheet or other), and then mark up the data to change the format to the desired output. This is time consuming and not repeatable - if the data is input again with a slight change, the whole formatting process must be repeated. The RDML data viewer 100 avoids the cut-and-paste approach by saving the original data in a central storage object (described below) in the data viewer 100 and applying separate formatting instructions to create different views 108. The user can switch among views 108 with a single mouse click and the program handles all format and numerical conversions for the user.

In some of the more advanced database management systems, a "report-writer" approach is used. Like the RDML data viewer 100, this approach applies a template to a centrally stored dataset. The problem is that the data sets are not standardized; a report writer template written for one dataset cannot typically be used for another. RDML, however, provides for reuse of style sheets in the same manner it provides reuse of data and macros.

In addition to the above-mentioned problems, RDML solves problems relating to "live" connections of numerical data involving multiple sources that typically require programming expertise. Whether the aim is to draw numbers from multiple sources over a wide area network (e.g., the Internet) or over a corporate LAN, incorporating remote data is complicated by many issues:
connection protocols, programming language dependencies, data type inconsistencies, error handling, data transformations, etc. Programmers can surmount these problems at a certain expense, but not in a flexible way that permits reuse, and users again rely on custom programming. In response to the cost, time requirements, and inflexibility of the custom programming approaches, casual users resort to labor-based solutions. In a typical case, a financial spreadsheet is created with, for example, ten assumptions related to interest rates. Every time the spreadsheet is used, the creator looks the numbers up in the newspaper and types the results into the appropriate cells, and any necessary transformations are made by hand. RDML removes the need for custom programming and manual input by providing a way to include numbers from remote RDML documents 102 in normal formulas. The RDML data viewer 100 automatically looks to the specified address on the web to retrieve the numbers, makes any necessary transformations (for example, from yen to current dollars) and places the result in the correct formula. In this way, an RDML document 102 or macro 104 can draw on multiple documents at once. Because its documentation is machine-readable, it can be read by multiple systems, none of which need be aware of the physical layout or data types of the others.

Lastly, the use of RDML enables client-side processing using Internet-supplied data thereby realizing a number of advantages. After data is retrieved, analytic routines (macros) are performed on the client side, as opposed to the conventional approach in web-based data analysis, in which the analytic routines are performed on the server side. Whereas sensitive data and calculations can remain local in the RDML data viewer 100, the user need not fear that sensitive data is being misused by a company running a server, or that data is being misappropriated over the web. Additionally, it increases speed because updates to graphs, reports and spreadsheets can be near instantaneous because there is no need for the round-trip Internet transmission, or the loading and
execution of a routine on a busy server. Users may also prefer local copies of data that they control and to which they have immediate access.

## I.A. RMML Overview

Methods and systems in accordance with the present invention provide macros and RMML, which allow numerical analysis routines to be written quickly, cheaply, and in a form that is usable by a broad range of data documents in RDML. RMML macros provide reusable user-defined calculations for use in conjunction with RDML that automatically manipulate and display numerical data contained in RDML markup documents. RMML also allows spreadsheet type macros to be posted as web documents, to be searched by search engines, to be combined into more complex programs, and to be reused with many data documents.

For example, a user viewing a chart having a series of data in an RDML data viewer may apply, with one mouse click, a macro to that chart and see an instantaneous (or nearly instantaneous) transformation of the charted series of data. Not only is the data changed, but the titles, legends, footnotes, axis scales and other properties are also changed. As a further example, a user may be looking at a time series trend of automobile sales in millions of dollars. By clicking on a macro entitled "\% change", the chart recalculates itself according the percentage change from period to period. The $y$-axis title changes from " $\$$ millions" to "\% annual change", etc. Table manipulation macros may perform such functions as combining two tables into one, sorting a table, searching for certain line items and other database-like tasks. Other transformation macros may perform other functions such as word translation, data format translation, and report-writing.

RMML macros are highly reusable because they are made available in a cross-platform, textbased, searchable, XML-compliant format. Because the macros are portable; they have much greater
marketability. RMML also builds into its language tags for many types of documentation so that a macro may be reused and understood by the original macro writer as well as other users.

Conventional spreadsheet programs typically base references on physical locations, a problem RMML avoids by referring to numbers by their position in a chart or formula, or by tag names, thus allowing the numbers themselves to be anywhere in a document. RMML macros also use the measurement and the meaning of numbers because RDML tags contain standard vocabularies to identify the measure, magnitude, scale, unit, precision, class, etc. of the numbers, and the RMML interpreter handles differences for the user.

Additionally, RMML builds error handling into its interpreter and makes available automated testing tools to help increase the quality of the code. Users may also graphically change parameters for the macros using check boxes, slider bars, input boxes, and selection lists, and RMML makes it easy for the author of a macro to add those visual components.

Below is a detailed description of RDML, the platform upon which RMML macros run, followed by a detailed description of RMML.

## II. System Hardware Components

Figure 2 depicts a data processing system 200 that is suitable for use with methods and systems consistent with the present invention. Data processing system 200 comprises a computer 201 and a server computer 203 interconnected via a network 214, such as the Internet, where the server computer 203 may provide RDML documents 102 to computer 201. Computer 201 includes a central processing unit (CPU) 202, a main memory 204, a secondary storage device 206; a display 210 and an input device 212.

The main memory 204 may include the RDML data viewer 100 which may be a personal computer-based program, although one skilled in the art will appreciated that the data viewer may reside elsewhere. In addition to the data viewer 100 which includes views 108 for display, the main memory 204 includes related software components that may be used to input RDML documents 102, macro documents 104 , and style sheets 106 to the data viewer. It may include the RDML document formatter 216 which a user uses to apply tags to numerical data, and/or an RDML document server 218 which provides RDML documents 102 to the data viewer 100 . The main memory 204 may also comprise an RDML document editor 220 used to edit the files of RDML documents 102 and RDSL style sheet editor 222 for creating style sheets 106 . The RDML/XML search engine 224, which searches RDML documents in response to queries, may also reside in memory 204 along with any additional plug-in applications 225. Each of these components and their interactions are described below in greater detail.

The memory 204 may include various software components of the data viewer 100 and related components which may be programmed in object-oriented languages such as the Java ${ }^{\mathrm{TM}}$ programming language. The Java ${ }^{\mathrm{TM}}$ programming language is described in further detail in "The Java Programming Language," $2^{\text {nd }}$ Ed., Ken Arnold, James Gosling, Addison-Wesley, 1998, which is incorporated herein by reference. For further description of the Java Language, reference-should be made to "The Java Language Specification," James Gosling, Bill Joy, Guy Steele, Addison-Wesley, 1996 which is also incorporated herein by reference. However, one skilled in the art will appreciate that other programming languages may be used. The RDML data viewer 100 may download RDML data documents 102 from many different sources such as a local storage disk or from a server over network 214.

The secondary storage 206 may include the RDML image database 226 which stores documentation tag data regarding RDML document 102 , and the RMML macro software development kit 228 for developing macros. The secondary storage may also store existing databases 230 for holding original data from which RDML documents 102 are created. These components may also be stored in main memory or on another remote computer and are also described in greater detail below.

Figure 2 also depicts a web server 232 on computer 203 that interacts with the computer 201 via network 214. In one system consistent with the present invention, the web server 232 sends RDML documents 102 over the network 214 and may be connected to a disk array 234 which holds RDML data documents 102. This disk array 234 may receive data documents 102 from the database server 236 which may receive data from database storage 238. Protocols used in the transmission of information between the server 232 and the computer 201 include, but are not limited to, HTTP and FTP.

One skilled in the art will appreciate that aspects of methods and systems consistent with the present invention may be stored on or read from other computer readable media besides memory like secondary devices, such as hard disks, floppy disks, and CD ROM, or a carrier wave from a network (such as the Internet). Additionally, one skilled in the art will also appreciate that the data processing system may contain additional or different components.

## III. System Overview

Figure 3 illustrates an RDML system consistent with the present invention and the relationships between the various components. These various components may reside in a memory 204 on a computer such as computer 201. Existing databases 230 store data that can be used to create RDML documents 102, and generally the data is extracted into either a "flat file" format (e.g.,
comma-delimited, or fixed-width fields) or a form readable by Java Database Connectivity ("JDBC"). RDML documents 102 may be structured to model flat files so that a single RDML document 102 encapsulates a set of rows and columns. Examples of databases include SQL server by Microsoft and Oracle 8 server.

The RDML document formatter 216 is a graphical tool used by the user to reduce the amount of manual labor required to combine data and its documentation. The contents of an existing database 230 may not be enough to create an RDML document 102, because in one system consistent with the present invention, RDML uses documentation of the contents. Such documentation often may be found in a printed volume and hence must be manually input and manually combined with the data. The RDML formatter 216 allows a user (or data publisher) to map data fields from a relational database, flat file, spreadsheet file or text document to RDML data documents 102. It also allows a data publisher to add documentation to the data file (RDML data document 102) itself.

The RDML image database 226 is a relatively small database maintained by the RDML formatter 216 to hold information necessary to recreate an RDML document 102 should the underlying data change. It eliminates the need for the user to manually input the documentation again because the RDML image database 226 stores it.

An RDML document server 218 functions when RDML documents 102 are being created dynamically. The server 218 queries the existing database 230 for the desired line items, queries the image database 226 for documentation items and instructions for constructing the RDML document 102 , and finally creates a valid, well-formed RDML document.

The RDML document editor 220 allows users to edit RDML documents 102 which typically are ASCII text files (which may contain UNICODE data). As such, they may be edited by any textoriented editor or word processor. This is, however, a time-consuming and error-prone approach to marking up an RDML (or any XML) file. A specialized RDML document editor 220 allows a user to quickly make changes, check for errors, and view information on the data and metadata. The document editor 220 may operate over the Internet: users possessing the correct permissions to modify a file can make updates or changes to the underlying RDML data document 102 by issuing commands from the RDML data viewer 100 .

An RDML document 102 may be an ASCII / UNICODE text file used to transmit data and metadata to the RDMLData Viewer 100. It can be stored locally, or can be transmitted over network 214 such as a corporate LAN or the Internet (using HTTP, FTP, email, etc.). To be a valid RDML document 102, the file conforms to the RDML Document Type Definition ("DTD") which is described in detail below. The DTD describes required and optional data elements, their ordering, syntax, and the controlled vocabulary for use in certain data elements. DTDs in general are also described in "XML: Extensible Markup Language," Elliotte Rusty Harold, IDG Books Worldwide, 1998.

The RDML data viewer 100 functions as a combination RDML and HTML browser, objectoriented spreadsheet, report-writer, and application platform. The browser functions read HTML or RDML documents 102; HTML documents are rendered immediately in a browser window, while RDML documents are first cached in an internal data object (conforming to the DOM - "Document Object Model" - standard discussed below) and then rendered in views 108 selected by the user. The default view is typically a chart and a tree listing, although several other default views are available. The RDML data viewer 100 uses the cached RDML data objects to create views 108, employing a
variety of transformation and manipulation objects to get the data to match either the form expected by the view, or to match the form of other data objects with which it is being combined.

The RDML Macro Software Development Kit ("SDK") 228 allows a function designer to create functions that can be applied generally to any data document that contains the types of data necessary for the function. The SDK is a collection of macro-writing tools, including an IDE ("Integrated Development Environment"), an editor, an object browser, and a validation tester.

RDML generally separates the form of data from general calculation routines that operate on that data. By separating format from functions, both the data and the functions can be made reusable. In conventional spreadsheets, for example, numbers can be placed in arbitrary cells selected by the creator. If a second developer decides to create an analytic function, that developer must know what row and column each number is in. That routine will then not work with another spreadsheet unless the exact same row and column structure is followed.

Applying functions generally creates one form of software reuse: users need not tell the function where their data is (the approach of "wizards" in traditional spreadsheets). A second form of reuse is that gained by inheritance: function developers can choose the existing function that most closely matches what they are trying to do, and simply make the necessary edits to create the desired new function. The SDK 228 permits a third type of reuse in the ability to attach to remote data documents and remote macros on the web to take advantage of these extra resources and to provide real-time updating of data and functions.

RMML macro documents 104 are text documents that contain routines just as RDML data is contained in a text document. This document contains the heart of the calculation: the specification of operations on numbers, such as a formula, an ordered list of other macros to perform, or list of instructions.

RDSL style sheets 106 act as templates for output reports. The RDML data object (discussed below) in the RDML data viewer 100 can be placed into a report using one or more different style sheets. RDSL, a fully compliant implementation of XSL, allows a data publisher to provide multiple report formats for its data. They are reusable in that a style sheet written for one RDML data document 102 can be used for another if the specified restrictions are met. For example, a style sheet for a time-series data set can be used for another time series data set. The style sheet editor 222 is basically a report-writer because the user can graphically compose a report from a sample document, specify the types of RDML data documents 102 that this report can apply to, automatically create a style sheet 106 when the result is acceptable, and then use the resulting style sheet to create a report from any qualifying RDML data document 102.

The RDML search engine 224 searches RDML documents 102 similarly to the way HTML search engines search HTML documents. HTML search engines pick up key words, but can only tell a user that a particular document contains the requested word(s). They cannot, however, provide query services. For example, a user may wish to search the Internet for "all financial statements of computer services companies which have revenue growth > 10\%," and the RDML search engine 224 provides this capacity. The RDML Search Engine 224, however, does not index only keywords like the HTML approach, but also the element names and key attributes. This permits searching for numerical values, or posing complex queries regarding the content and/or context of the data. The RDML search engine 224 thus acts as a generalized query processor for RDML data document 102, RMML macros 104 , and RDSL stylesheets 106. Some aspects of the search engine 224 are described in greater detail in co-pending U.S. Provisional Patent Application Serial No. 60/183,152, filed on February 17, 2000.

As mentioned earlier, each view 108 in the RDML data viewer 100 is essentially a separate application denoted on Figure 3 as various RDML Plug-in applications 225. The chart view, for example, is a separate charting application that has been "plugged in" to the RDML data viewer's basic infrastructure of Internet browser, XML parser/processor, RDML transformation and manipulation objects, internal object management architecture, interfaces to other applications, and graphical user interface (described below). For example, a mapping component can be plugged into the panel in which the chart is seen. Subsequently, when a user clicks on a line item, the colors of the different countries or states will change to show a thematic map, or different dots will appear, etc. The RDML data viewer 100 may be designed in modular fashion to permit changing or adding component applications to leverage off the common components.

## IV. System Details

With further reference to Figure 3, several of the components (excluding RMML and RDSL components) are described in greater detail below. The existing databases 230 may be relational databases, object-oriented databases, or any other type of database. RDML tags in RDML documents 102 add documentation to the types of pure data found in relational databases. Since the data that already exists in relational databases can be used to create RDML documents 102 , the data may be made available to either the RDML formatter 216 or the RDML server 218 and be in a flat file format (rows and columns).

For connections, both the RDML formatter 216 and the RDML server 218 read Open Database Connectivity ("ODBC") and JDBC database sources. The flat file aspect is based on the idea that RDML documents 102 effectively model a basic row and column matrix. To produce an RDML document 102, therefore, the original data source may provide a single table, or create one with a query. Relational linking is possible with RDML documents 102 , through a server to a
relational database, or indirectly through hyperlinks to other RDML documents or hyperlinks to RDML document servers 218. This is similar to many database applications: data is collected from various underlying tables to create a single table or screen to show the user. The data table to be used as a source for an RDML document 102 may be oriented to have the fields be one of three basic exemplary RDML data table types: time series, category, or X-Y plot described below.

With reference to the RDML formatter 216, once there is a flat file data table of data points in the existing database 230, an RDML document 102 can be created by adding tags that contain documentation regarding the data table. The information contained in these tags are maintained in a separate data table from the original data points. The RDML formatter 216 is an application that assists a user in selecting the proper documentation tags, saves the tags in a separate database (the RDML image database 226), and creates the actual RDML document 102.

Figure 4 is a screen shot that shows how the RDML formatter 216 assists the user in "tagging" data, i.e., adding metadata that applies to the line items. In one implementation consistent with the present invention, for each line item of data, there are at least 18 different potential attributes (described in detail below) applied using the radio buttons 402 . When a user selects a radio button 402 , the formatter 216 supplies a description 404 of the selected attribute. Upon selection of a radio button 402 from the left-most box, the user is presented with a list of the possible values in the middle option box 406. The user may either double click one of the options to add it as an attribute of the selected line item, or type in a new value in the text box at the top of the middle option box 406. The formatter 216 automatically updates the line item table 408 which, in this instance, displays the line items' ID, title, format and Y-axis title (attributes which are discussed below).

Figure 5 shows a screen shot of the database tab and document management screen accessed by a tab 502 on the RDML formatter 216. This screen manages RDML documents 102 that can be created from a relational database 230 . The user can specify a list 504 of data tables in a relational database and have the RDML formatter 216 create RDML documents 102 for each using default properties. From that point, the RDML formatter 216 is used to modify the defaults. The user may use the RDML formatter 216 to select tags from scratch (as shown in Figure 4) for a document 102, but this puts an unnecessary burden on the user to remember which properties are appropriate.

The formatter 216 references a database 230 (shown on Figure 3) specified by the documentation URL 506. The database 230 holds a list of data tables, and the formatter 216 inserts a table 504 that holds stores information regarding the data tables into the database 230 for later reference. This table 504 is referenced by the documentation table name 508 . Similarly, the formatter 216 stores a list of line item attributes 408 for the database 230 in the database which are referenced by the li_data URL 510 .

The RDML image database 226 contains documentation that relates to a separate set of data records in the existing database 230. The RDML formatter 216 creates and maintains the RDML image database 226. The RDML image database 226 standardizes the process of documenting data documents, and provides a controlled vocabulary for the metadata. The RDML image database 226 also performs document management and tracking, update and version control, error checking, input validation, and the creation of status reports.

The image database 226 contains a list of RDML documents 102 that it can produce. The original data may be in flat files, relational tables, or a table that results from a query on a relational database. The image database 226 contains document metadata that references the original document table or flat file in the original database 230. Documentation information contained in the
image database 226 is added to this data. It further includes line item set metadata for the set of line items, documentation that is typically of a more technical nature and applies to the line item set as a whole. Examples of such information is table types, field definitions ("x values") and hyperlinks that apply to the line item set as a whole. (A line item set may be generally analogous to a table; it is a collection of line items, which are analogous to records in the database world.)

The image database 226 also includes line item metadata that references the individual records of the original document table or flat file in the original database 230. There may be a pointer from each line item's metadata record to the corresponding record in the original data table. Each line item includes the fields of the original record, plus, in one implementation consistent with the present invention, at least 18 additional fields that contain "attribute" documentation: object types, unit designators, hyperlinks, footnotes, and so forth. A listing of exemplary attributes of a line item is described below.

Figure 6 illustrates steps used by the data viewer 100 when accessing the RDML document server 218. The RDML server 218 occupies a middle position between a database server 230 and a user's data viewer 100 or web browser. Although one architecture for RDML is to have RDML documents 102 served from disk-based text files, users may sometimes wish to create RDML documents dynamically in response to queries. The tasks of executing the query and delivering a result in RDML document form are performed by the RDML server 218. To do so, a user submits the data request to the server 218 via the data viewer 100 (step 602). The RDML Server 218 is a server application called by a web server (not shown) which fields the user's request. The RDML server 218 queries the database 230 using known techniques (step 604), and the database returns the results to the RDML server (step 606). The server 218 then creates an RDML document 102 (step

608 ) and returns the RDML document to the web server which transmits the results to the viewer 100 (step 610).

The RDML document editor 220 permits users to edit the actual elements and attributes of an RDML, RMML, or RDSL document (102, 104 and 106). The documents may be presented in a tree view for selection and direct editing. A text-based window may display the contents of the selected document for editing. Besides basic editing, it performs a number of utility functions: (1) search and replace, (2) validation, (3) well-formedness testing, (4) hyperlink validation, (5) cut-andpaste of elements, and (6) replacement of elements with defaults.

## IV.A. Internal Data Viewer Architecture

Figure 7A depicts a schematic diagram of the internal architecture and program flow of the RDML data viewer 100, and Figure 7B depicts the meaning of each symbol type in Figure 7A. For each numbered component, a description is given which provides further details on that component's input and output, internal decision process, storage format, object architecture, and program flow.

Before fully describing Figure 7A, however, it is important to understand an overview of the steps involved, which is depicted in Figure 8 and discussed in conjunction with Figure 7A. Figure 8 is a flowchart describing steps in a method for downloading, processing and displaying a RDML document 102 in accordance with the present invention. Figure 8 describes an overview of the steps involved, and each related component is subsequently described in further detail with relation to Figure 7A. First, the RDML reader 704 finds and receives an RDML document 102 in text form formatted according to the structure of the RDMLDTD 702 (step 802). The RDML Reader 704 may be a class that runs in a separate thread and has methods for checking the RDML document 102 type (Time Series, Category, XY) and handling errors. The RDML Reader 704 then calls the XML parser 706 which parses the text (step 804). The RDML processor 708 receives the parsed text from the

XML parser 706, error checks it and creates an object based on the data and structure in the received text. (step 806).

The RDML processor 708 transfers the resulting object to the X -value transformer 710 which performs type-checking and manipulates the fields ( $x$-values) of the data so that it may be displayed and stored coherently and simultaneously with other active objects of the same type (step 808). The X -value transformer 710 makes sure that the data values to be graphed against the x -axis are in common units. For example, if document A is an annual time series and document B is a quarterly time series, the X -value transformer 710 in this case would use the "li_aggregation" attributes of the line items in document B to aggregate four quarters at a time into annual data. As a second example, if document $A$ is a category document with $x$-values equal to stock ticker symbols ( $F, B \mathrm{BM}, \mathrm{XON}$, etc.), and document B contains x -values denominated in company names (Ford, International Business Machines, Exxon, etc.), then the $x$-value transformer 710 will use the "li_class" attributes in the line items of each document to match them up. The X -value transformer 710 sends the object to the primary data store 712 ("PDS") for storage with other active objects of the same type (step 810). The views (716, 720, 724 and 725 ) then display and present information using data from the active objects in the PDS 712 (step 812).

Details of the steps and components involved are now discussed in conjunction with Figure 7A. Described first is an RDML document 102 defined by the RDML Document Type Definition. Description of the various software components of the data viewer 102 follows.

The data and metadata of an RDML document 102 may be formatted inside tags which denote the beginning and ending points of each data element. The element tags may also include attributes to be applied to the data elements, a description of what sub-elements may be found within an element, and vocabulary choices for different attribute values.

A full sample RDML data document 102 is shown at Appendix B. Shown below is a fragment of an RDML document 102 that supplies the data for one line item in the document. Note that element tags are designated within angle brackets ("<" and ">"), and that attributes are listed that can be applied to the data.
<line_item
li_ID = " 1 "
li_legend = "Department of Energy"
li_title = "Outlays - Dept. of Energy"
li_cat = ""
y_axis_title = "\$ in Thousands"
level = "1"
format = "\#,\#\#0;(\#,\#\#0)"
relation = "Parent"
li_notes = " "
li_desc $=$ " "
li_prec $=$ "-3"
li_unit = "\$"
li_mag = "3"
li_mod = "in"
li_measure $=$ " "
li_scale = " "
li_adjustment = ""
li_aggregation $=$ " " $>$
<data_y>
2754567,2699717,2726457, 2578954, 2343297, 2252927, 2474440, 2392904, 2392536, 2200326, 2298612, 2303643,2233062,3229510,3840973,5049308,6412986,7441295,7261157, 11756883, 11657178, 10590471, 10991261, 10587245, 11026443, 10692802, 11166039, 11386923, 12083898, $12478820,15522633,16941547,17839298,17617000,16203000,14467000,14366000,15240000$, $15190000,14938000,14412000,14556000$
<data_y>
<line_item>
In this example, the 18 lines with an " $=$ " are "attributes" of the <line_item> element, and essentially, the attributes provide machine-readable documentation for the data values specified in the subelement <y-values>. This particular line item describes "Department of Energy outlays in thousands of dollars," but the specifics of the set of attributes are described below in conjunction with the

RDML Document Type Definition 702 which describes the structure and elements of a RDML document 102.

RDML documents 102 may be produced by an ordinary text editor, by the RDML data formatter 216, or by the RDML data server 226. (XML browsers other than the RDML data viewer 100 are able to do little more than echo the text input to the user's screen since they cannot interpret the RDML tags.)

## IV.A.1. : Document Type Definition

Figure 9 graphically shows elements of the RDML Document Type Definition 702. In one implementation consistent with the present invention, RDML documents 102 conform to the rules provided by the DTD 702 (also shown on Figure 7). In accordance with one implementation of the present invention, an RDML DTD 702 is shown at Appendix A. Attributes and elements of the DTD 702 may also be seen in the full sample RDML document 102 in Appendix B. Those two Appendices A and B are useful for examining specific attributes and elements of the DTD 702.

The DTD 702 data structure is optimized to provide information that is needed in order in which it is required, to reduce the learning required on the part of new users to RDML formatting, and to avoid unnecessary duplication. The first line of the DTD 702 in Appendix A starts with "<?xml encoding = "UTF-8"?>" because all XML documents start with a line that tells the client application, in this case the data viewer 100, what type of document it is and the version of XML.

With further reference to Figure 9, the DTD 702 used to define RDML data documents 102 is structured in a hierarchical tree structure of elements. Each element may include a list of attributes (displayed in Appendix A, but not shown on figure 9) and/or an association with one or more subelements. The DTD 702 specifies which attributes are required and which are optional for any embodiment of the DTD. Depending on design constraints, the required and optional elements may
vary. At the highest level, the DTD 702 has two elements descending from a root element, <rdmldoc> 902. The first element, <rdmldoc_header> 904, contains the metadata for the document as a whole and the second, <line_item_set> 906, contains the set of the line items.

In one implementation consistent with the present invention, the <rdmldoc_header> element 904 contains several attributes itself, and the optional sub-elements <data_source> 908, <formatting_source> 910, <rdml_source> 912, <license_terms> 914, and <link_set> 916, each describing some aspect of the source of the data. In this implementation, the <ddmldoc_header> 904 element may include ten attributes describing document information as a whole. These attributes are "rdml_doc_ID," "doc_title," "timestamp," "version," "expiration," "freq_of_update," "num_line items," "num_datapoints," "x_indexes," and "first_li_with data."

The rdml_doc_ID attribute is the unique identification of the RDML document 102 and is typically a file name or URL. The doc_title is a plain language description of the document that will appear at the top of reports and views for the document for use by a user. The timestamp is typically generated by the application that created the document and may denote the time that the document was created or the time the data was accessed for creation of the document. The version describes which variant of the RDML document 102 it is and may be named by the creator. The expiration describes the date and time that the data in the document 102 may no longer be relied upon, typically when the next update is expected to be released. Freq_of_update describes how frequently the document is updated and may be used by applications that want to schedule updates to the data. The next two attributes, num_line items and num_datapoints, are integers describing the total number of line items and number of data values respectively. These attributes are optional and may be used as a "checksum" by a receiving application to ensure that the data has not been accidently changed or corrupted.

The next field, x _indexes, denotes three data fields to use as representative data fields in the tree view 720 (described in detail below). X _indexes is a comma-delimited string of three integers, each of which is an index to a selected field. For efficiency, the indexes may denote the end of the list of fields so that, for example, " $-3,-2,-1$ " shows the last three fields in the tree view 720 . Indexes based on the end are useful because most people reading a time series want to see the most recent data. Along, similar lines, the first_li_withdata attribute is an integer index that points out which line item is to be displayed on the chart when the document 102 is loaded into the data viewer 100 .

The <data_source> 908 , <formatting_source>910, <rdml_source>912, <license_terms>914 elements, sub-elements of <rdmldoc_header> element 904, may optionally contain one or more of sub-elements of <contact_info> $9: 18$ which contains contact information. This element can be used by the target application to create an email letter, update a contact list, or populate a database of information sources. The same element structure is used for all contact information sub-elements 918 so that the application that created the document 102 only has to create one structure.

In one implementation, this contact information is represented by eleven attributes: "role," "name," "company," "address," "city," "state," "zip," "country," "email," "form," and "comments." Role is the role played by the party in the creation of the document, i.e., "data source" for the <data_ source> 908 , "formatting source" for the <formatting_source> element 910, etc. "Form" determines whether the hyperlink is a "simple" link or "extended" link. Under the Xlink specification, a language designed to implement links between XML documents and resources, hyperlinks may be simple or extended. Xlink is described in "XML IE5 Programmer's Reference," Alex Homer, Wrox Press, 1999, which is incorporated herein by reference. Simple links are traditional "jump" hyperlinks in which clicking on that link will close the current page and open the target page.

Extended links are application-specific and can identify different types of resources, such as multimedia files and other non-document resources.

The contact information in the <data_source> 908 describes who or what collected the data to create the original database, while the same attributes in <formatting_source> 910 describe who or what added the RDML tags to the original data to create the RDML document 102. The same information in <rdml_source> 912 describes the person or company that created this particular document and made it available to the outside world.

In addition to the <contact_info> 918 sub-element in <license_terms> 914 which describes the contact information regarding the licensing of the information; the <license_terms> element has its own set of licensing-related attributes. These attributes include: "copyright_cite," "holder," "license_type," "warranty," "disclaimer," "terms," "date," "email," "state," and "country." The copyright_cite is a string that may appear on reports regarding ownership of the particular data set in the RDML document 102. A typical example might be "Copyright 2000, e-Numerate Solutions, Inc. All Rights Reserved." The holder attribute lists the full legal name of the owner of the copyright. License_type lists the type of license, such as "none - proprietary and confidential," "public domain," "pay per use," etc., and terms lists the payment terms, if any, such as "\$1 per download." The information in these attributes may be used by routines associated with the RDML processor 708 to automatically track and implement licenses and payments.

Another sub-element of the <license_terms> element 914 is the < linkset> element 916 which, in one implementation, has two attributes and its own sub-element <link> 922. A <linkset> 916 is a collection of hyperlinks. These hyperlinks may be eitheri HTML files or RDML files. The individual <link> elements 922 hold the actual links and attributes. The <linkset> element's two attributes are form, described above, and href, a standard string for URL or web address, and they
designate the HTML or RDML page where a page of hyperlinks may be found. This is useful when the creator does not want to list all of the hyperlinks in the document 102 itself.

The <link> element 922 describes hyperlinks to other documents and contains, in one implementation, nine attributes: "form," "href," "behavior," "content-role," "content-title," "role," "title," "show," and "actuate." These link related attributes are described in the XML IE5 Programmer's Reference, pp 95-97. The title is a string that appears in the application as a hyperlink title. For example, in an HTML browser, it will appear as highlighted, underlined text. Actuate specifies when the link should be traversed - when the resource that the link points to is retrieved or accessed, and show specifies how the target resource will be displayed. Behavior specifies instructions that control the behavior of the link in the way that the content is displayed or the link is traversed, and role describes what role the target resource plays in the link. Content-role and content-title are alternative places for the title and role, but are not specified in Xlink standards.

Finally, <rdmldoc_header> 904 may have its own <linkset>916 having <link> elements 922 . RDML allows users to attach hyperlinks to different elements such as an entire document, a particular line item, or other element in the RDML document 102. The reason for the multiple places that hyperlinks may be placed is so that the user can view in one place all the links that apply only to the element under consideration. For example, an RDML document 102 may contain the data for a company's financial statement. The creator of the document may decide that certain links apply to the whole company (links to product lines, competitors, etc.) and that others only apply to single line items (such as a link attached to the "Equipment Leasing" line item that points to the footnote for that line item or an accounting regulation applicable to that account). Even though they are attached to different elements, the links may have the same form. Another reason for multiple linkset elements is to facilitate keeping links together with their logical owners.

Continuing to refer to Figure 9, on the line item side of the <rdmldoc> 902, the <line_item_set> 906 which contains information on the collection of line items in the RDML document 102 also contains several attributes and several elements. These attributes include: "line_item_set_type," "time_period," "character_set," "missing_values," "null_values," "zero_values," "dates_values," and "percentages."

The first attribute, the line_item_set_type, is, in one implementation, an important attribute which classifies the line item set into one of three types: time series, category (or cross tab), and $\mathrm{x}-\mathrm{y}$ plot. Generally, the "type" in this context is the characterization of the x -axis values and whether they represent a time series, a categorization, a x-y plot or other. These line item set types are described in detail below in connection with the x -value transformer 710 which manipulates line items of the same set type. Generally, line item sets of different line item set types may not be actively manipulated together. If the line item is a time series, valid lengths in the time_period attribute may be years, quarter, months, days, etc.

Character_set designates which standard character set is represented, thereby allowing for support for foreign languages. Missing values holds a designator for the numerical value that represents a missing value, because many views of the data, in particular chart views, need to know which numbers represent blanks. Otherwise, a blank might be interpreted as "0." Null_values designates the character to be treated as null so that it is not confused with "not applicable," or "missing" or " 0 ." Finally, zero_values designates characters that should be interpreted as " 0 ;" and not "null," "missing," "not applicable," etc.

The <line_item_set> 906 has, in one implementation, several sub-elements including <data_x> 924, <li_class_set> 926, <linkset> 916, and one or more <line_item> elements 928. At the line item set level, metadata regarding line items as a set is shared among all the line items so
that the data need not be repeated. In particular, the <data_x> element 924 contains field information common to all line items in the line item set. The <data_x> element 924 includes the x -values and information regarding the x -values of the line items in the set of line items in the RDML document 102. For example, if the line item set is a time series, the x -values may represent the years, months or other timelines (e.g., 1990, 1991, etc.) listed across the bottom of a chart with which all of the data is associated. Because this information is the same for each line item in the line item set, it is only included once in the RDML document 102. In one implementation, in addition to the actual x -values, <data_x> 924 also contains the following attributes: "x_title," "format," "x_notes," "x_desc," "x_prec," "x_unit," "x_mag," "x_mod," "x_measure," "x_scale," "x_adjustment," and "x_links."

In <data_x>924, $x_{-}$title is the title displayed on the x -axis as the data is displayed on a chart. Format is a string providing a template for the default representation of the x -axis values. The strings are those familiar from spreadsheet programs (examples may also be seen on Figure 4):
\# - digit(s), zeros suppressed
0 - digit(s), zeros displayed
. - decimal point
, - separator
A - $z$, other characters - displayed literally.
Other formatting codes can also be used (e.g., codes used in scripting languages). X_notes may contain miscellaneous footnotes regarding x -values of the line item set, while x_desc may describe additional description regarding the x -axis values.

The x_prec attribute describes the precision or number of significant digits for purposes of axis label display. In this attribute, negative numbers cause rounding of amounts greater than zero. For example, a precision of " 2 " will display a number as " $8,254.43$ ". That same number with a precision of " -2 " will be displayed as " 8,300 ." The underlying representation of the number will be the full value; only the formatting and representation on the screen will change. The data viewer 100 uses this primarily for formatting the axis labels, but the attribute is available for default formatting as well in other uses such as reports, footnotes, etc.

The subsequent attributes, x_unit, x_mag, x_mod, x_measure, x_scale, and x_adjustment, represent the meaning of the $x$-values and are used by the data viewer 100 for manipulation, reconciliation and display with other RDML documents 102. In RDML, numbers are collectively described by these attributes which describe the numbers' units. They are as follows:

Unit: the physical unit of the numerator
Magnitude: the size of the numerator
Modifier: relation of the numerator to the denominator

Scale: the size of the denominator
Measure: the physical unit of the denominator
Adjustment: special qualifier (i.e., inflation adjusted)
For example, a line item reported to represent " $\$$ in thousands per million people" can be represented as:
[1 \$US] * $(1,000)$
[1 person] * $(1,000,000)$
Therefore, the attributes of the line item are:

```
Unit: $US
Magnitude: 1,000
Modifier: /
Measure: 1 person
Scale: 1,000,000
```

Access to these attributes for line items provides enormous power to the data viewer 100. It facilitates the interpretation and transformation of the numbers. It allows multiple lines to be placed on a single chart without conflict and allows macros to be applied without the requirement of human intervention to answer questions about the units. It further allows reporting templates to make automatic adjustments to provide the most readable reports. In particular, the data viewer 100 uses these attributes to construct $y$-axis labels and descriptors when the user has made a transformation and the " $y$ _axis_label" attribute is no longer appropriate.

A standard vocabulary for units and measures may be used for efficiency, and magnitude and scale may be more simply represented as a power of 10 , e.g., 3 for thousands, 6 for millions, etc. This permits more rapid transformations and eliminates potential confusion of variant usages and spellings (e.g., million, mille, MM, etc.)

For an example of the use of these attributes, suppose the RDML data viewer 100 has plotted the following value/measurement:

426 US Dollars (in thousands) per Hour, adjusted for inflation (1996 = 100).
The user now wants to convert this to:
" X " Italian Lira (in billions) per Day, in nominal lira
where " X " is the value to be calculated and the rest of the line is the measurement. The data viewer 100 makes this transformation automatically for the user because it has conversion factors for the following:

RDML Attribute:	Begin:	End:	Conversion factor:
Unit	US Dollar	Italian Lira	A $^{*} 0.0000234$
Mag	Thousands	Billions	A $^{*} 1,000,000$
Mod	per	per	A $^{*} 1$
Scale	Hour	Day	A $^{*} 24$
Measure	1	1	A $^{*} 1$
Adjustment	Adjusted for infl.	Not adjusted	A* annual factor
Value	426	1.189	

The data viewer 100 multiplies the conversion factors (or performs any other appropriate mathematical operations) to manipulate the display. The user does not have to look up each of the conversion factors, marshall them into the correct sequence, do the arithmetic, and make corrections such as rounding adjustments. The user may simply select a new unit, magnitude, etc. from a dropdown box and make a selection.

Figure 10 illustrates steps used by the data viewer 100 to manipulate the numerical information in an RDML document 102 to produce a desired transformed display. First, the data viewer 100 locates the RDML document 102 (step 1002). The document may be located either locally or online using a URL, the search engine 224 or any other technique. Next, the data viewer 100 selects and accesses the desired document 102 (step 1004). The data viewer 100 then accesses
the line item that needs to be transformed (step 1006) and determines the desired transformations (step 1008). The desired transformations may be received from a user or may be determined by the data viewer 100 automatically to, for example, accommodate the addition of a new document 102 to a display of a current one. The data viewer 100 accesses the unit, magnitude, modifier, scale, measure and adjustment attributes of the document or line item to be transformed (step 1010). Using these attributes, the data viewer 100 determines the conversion factors, if any, for each (step 1012). These conversion factors may be stored locally or retrieved online over a network 214. The data viewer 100 then multiplies the conversion factors to transform the numerical data into the desired display (step 1014) and displays the transformed line item or document (step 1016). If more than one line item is to be displayed, the data viewer 100 may repeat these steps so that all appropriate line items may be transformed to the desired display format (step 1018). Similarly, if more than one document 102 needs to be transformed, the steps may be repeated for each document. In this way, documents 102 having different numerical sets may be automatically manipulated for simultaneous display or quick transformation of display format without human intervention. The system automatically resolves conflicts between different documents in different formats by transforming them into one desired form.

In one implementation, when the system converts one unit to another unit, it converts the original source unit to a base unit known by the system, and then converts the base unit to the target unit. The system stores conversion factors from base units to other units in a unit list XML file, a portion of which is shown at Appendix C. For instance, suppose the base unit used by the system for length is "meters," and numerical values are to be converted from "yards" to "miles." The viewer 100 converts the yards to meters using the stored conversion factor, and then from the meters to miles using the appropriate stored conversion factor. In this way, the unit list file need only contain
conversion factors from the base unit to various other units, and need not list a conversion factor for every possible combination between various units.

The structure of the unit list file is as follows: a <unitlist> element is the root, and it has one level of child nodes, each of which is a <unit> element. The unit elements each have a number of attributes and elements that describe the characteristics of that unit necessary to convert it into another unit or set of units.

The conversion element contains the attributes necessary for making a conversion where the source unit and the destination unit are both of the same type. For example, converting "miles" to "inches" is simply a matter of finding the correct multiplier to apply to the number of miles, because both units are measures of type "length."

The conversion element contains six elements: (1) "conv_target" describes the target unit of measurement that the following conversion factors will bring you to, (2) "conv_factor" is the number to multiply by the source value to arrive at the destination value, (3) "conv_constant" is the constant to be added to the product of the source value and the conversion factor. For example, in the conversion formula for Fahrenheit to Centigrade ( $\mathrm{F}=32+9 / 5 \mathrm{C}$ ), 32 is the "conv_constant", (4) similarly, if the conversion involves a logarithmic conversion, the necessary factors are included in "conv_log", (5) "conv_source" is a description of the standards body that set forth this particular conversion factor, and (6) "conv_href" contains the URL for the approving standards body.

The type element contains one of the following text strings: (1) Length (base unit = meter), (2) Area (base unit = square meter), (3) Volume (base unit = cubic meter), (4) Mass (base unit = gram), (5) Time (base unit = second), (6) Temperature (base unit = centigrade), (7) Energy (base unit = joule), (8) Currency (base unit = \$US), (9) Compound (no base unit), (10) Diverse (no base unit), (11) Collection (no base unit), and (12) Occurrences (no base unit).

The Compound and Diverse types are constructed from one or more of the basic units. Compound types are simple combinations of others. Example: "miles per hour" is a combination of a length unit and time unit. In order to convert a Compound type into another type, it is necessary to be able to make the necessary conversions of the decomposed units.

Diverse types are those that are constructed of descriptions. For example, an "ohm" is an electrical unit described as "the resistance offered to an unvarying electrical current by a column of mercury at the temperature of melting ice, 14.4521 grams in mass, of a constant cross-sectional area, and 106.3 centimeters in length."

A Collection type is a collection of persons, places, things, etc. For example, a data series denominated in "people in millions" means that one unit of this type is a collection of one million people. Collection types can use any of the conversion elements. For a simple conversion example, suppose there are 2.4 people per family in a sample. Then "people" could be converted to "families" by a simple division by the 2.4 conversion factor.

An Occurrence type is a collection of events. "Cycle" would be an Occurrence type that could be divided by "seconds" to produce a compound "cycles per second" unit of measurement.

The "subtype" element is for finer distinctions among types. The "plural" element is for constructing new titles, legends and labels at the completion of a conversion operation. An "alias" element is provided for enabling conversions where data has been entered in a common, but nonstandard form. For example, tables often use "in" instead of "inches." The "desc" element is provided so that a plain language description can be given the user. The "icon" element provides a place for giving the unit an icon to be used in lists, drop-down boxes, etc.

Referring back to the elements and attributes of Figure 9, in <x_data> 924, there is an $x$ _links attribute which may be a comma-delimited string of URL's for linking to other sources.

In addition to this element, the <li_class_set> 926 element represents the set of line item class elements and, in one implementation, has no attributes but has one or more sub-elements representing line item class, <li_class>930. These line item class tags specify categories in various classification systems to which the numbers belong, such as " $<$ US Dollars $>$ " or " $<$ Total Revenues>". The data viewer 100 uses these class tags to select which macros can apply, to adjust report formats, and to make the correct selections of assumptions in analytic processing. The class designations permit validation and conforming of different data sets, thereby allowing the data viewer 100 to combine documents from unrelated sources into a single unified source. Class tags may be used by macros that look at the class tag list to see if it qualifies to act on the particular line item. For example, if a line item in a financial statement is tagged as of the class "debt," the macro knows that it can use this line in calculating "debt-to-equity" ratios. But if the line item is tagged "piano," for instance, the macro will not be applied. Note that, in this implementation, the element names for the classes are entered as comma-delimited strings.

The <li_class> element 930 , in one implementation, has five attributes. These are "class_name," "parent_class," "form," "href," and "description." Class_name is the name of the class to which the line item set belongs, and parent_class denotes the name of the parent class. These attributes may be used by more advanced features of the data viewer 100 such as the macros.

The <line_item_set> element 906 further contains a <linkset> 916 similar to the previously described <linkset>. As before, this <linkset> 916 further has a <link> element 922 previously described.

The <line_item> 928 element may have, in one implementation in accordance with the present invention, four sub-elements and 18 attributes. The elements are <data_x>938, which contains the x -values for this line item if they are different from the default x -value in the
line_item_set element <data_y> 932 which contains the $y$-data values, the data numbers or values of the line item, a <linkset> 916 having a <link> 922 as previously described, and a <note_set> element 934. The <noteset> 934 contains one or more < note> elements 936 which have user readable, plain language notes regarding the line item.

The attributes of the line item include: "li_ID," "li_legend," "li_title," "li_cat," "y_axis_title," "level," "format," "relation," "li_notes," "li_desc," "li_prec," "li_unit," "li_mag," "li_mod," "li_measure," "li_scale," "li_adjustment," and "li_aggregation." Several of those attributes have the same meaning as attributes previously described except that they specifically describe only the line item and $y$-values to which they are attached.

The li_ID is a unique identification number for the <line_item> element 928 and may be numbered from 0 to $n$ (where $n$ is the number of line_item elements). In one implementation consistent with the present invention, the numbers are unique and in order.

The li_legend attribute is a plain language string describing the line item that does not need to be unique. Generally, it appears in the leftmost column of the views. The li_title is a string defining the general subject of the line item. In the data viewer 100, this may be used as the title of the chart and as titles in reports. Typically, titles are the same for line items grouped together, but they are not required to be.

The li_cat attribute represents a line item category. As opposed to the li_legend and the li_title, which are displayed on the chart in the data viewer 100, the li_cat is not normally displayed. It is generally a non-printing designator for a category that the line item might belong to. Often, this may be a table name, or a primary key in a database, or some other organizing identifier. It may be used to group line items for reports.

The y_axis_title attribute is a string which will appear on the $y$-axis as the title of that axis. However, if the user applies a transformation to any variable in the descriptor, this hard-coded y-axis title will be replaced by one generated by the data viewer 100 using other attributes.

The level attribute and relationship attribute specify hierarchical relationships between line items. Conventional links in relational databases are maintained by matching records on the basis of "key fields." One drawback of this approach is that nothing is known about the character of the relationship except that it exists, and there is no way to tell, absent specific documentation elsewhere, that one record is a child or parent of the other, and whether that nature is a containment, a derivation, and inheritance, etc. In RDML, the creator of the data may specify the hierarchical level of each line item and the nature of that hierarchical relationship. The data viewer 100 uses the level attribute and the relationship attribute to create a hierarchical tree, to place icons representing the relationship in front of each line item to summarize the derivation of numbers and describe their context, and to assist macros and updating data tables. The level attribute specifies how many levels down from the parent node a line item is, while the relationship attribute specifies the nature of the relationship, such as whether the line item is a child of another line item or contained by another. It may also determine whether the line item is an additive or subtractive subcomponent of a parent, or a subtotal that is dependent on other child line items. These previously mentioned attributes and elements make up a DTD 702 in accordance with methods and systems consistent with the present invention.

Li_aggregation is an attribute useful if a user wants to "aggregate" or "deaggregate" data based on differing x -axis transformations. This attribute explains to the data viewer 100 how to handle this particular line item when such transformations are attempted. For example, if a line item set presents bank account information, each line item may be a time series and presents quarterly
data, but the user may wish to see the data on an annual basis. For some line items in the set, it is simply a matter of summing up four quarters worth of data (e.g., deposits) in which case the attribute value would be "sum," but for other line items (e.g., closing balance), only the last quarter's value need be shown, in which case the attribute value would be "last." Similarly, if a minimum annual balance is desired for four quarters of minimum balances, only the lowest balance for all four quarters would be needed. Such a line item's li_aggregation attribute value would be "minimum." Possible accepted values include: "sum," "average," "minimum," "maximum," "first," "last," and "none."

## IV.A.2. Reader, Parser and Processor

With reference back to Figure 7A, the RDML reader 704 may be an object within the RDML data viewer 100 which manages the process of finding an RDML document 102 (locally, on a LAN, or on a Wide Area Network such as the Internet), passes it to the XML parser 706, relays error notices to the user, and coordinates the updating of other components states to reflect a rejected or damaged RDML document 102. The user of the RDML data viewer 100 may initiate the download of an RDML document 102 in many different ways including: clicking on an RDML hyperlink (these are like any other hyperlink, except that the target document may end in ".rdm"), typing a ".rdm" URL into the "Address" box of RDML data viewer, or requesting the loading of the document in a macro. Also, while conventional HTML browsers have a cache of only HTML documents represented as the "history" of the browser, the browsers may only display one of these documents at a time. Given an URL address, the RDML reader 704 reads in Document Object Model ("DOM") compliant documents (e.g., RDML documents 102), discussed below. The XML reader 704 may be implemented by a third-party set of Java classes, such as the XML4J parser developed and licensed by IBM, but others may also be used. The RDML reader 704 may cache multiple
documents in RAM if they are compatible with the active data set. Not only are these documents immediately available, but sub-elements of the documents are available immediately because the data viewer 100 may maintain indexes of important data and metadata in the documents. Additionally, macros may be used to find specific elements in the document that is read in by the RDML reader 704.

The XML parser 706 takes a serial stream of text characters from the RDML data document 102, performs basic functions such as eliminating white space, dividing input into words and groups of words and searching for opening and closing characters (primarily "<" and ">"). The XML parser 706 used in the RDML data viewer 100 may also be a third-party set of Java classes, such as the XML4J parser developed and licensed by IBM, but other parsers may also be used.

The processor 708 receives the parsed text and creates a tree-shaped data structure of the data elements, matching the structure of the RDML DTD 702 hierarchy. The hierarchical structure conforms to the DOM Model, meaning that data is available in a standard form, and that a standard library of methods and functions are available for accessing data, editing elements, searching through nodes to find certain elements, and so forth. The XML DOM standard is controlled by the World Wide Web Consortium, and can be found at "http://www.w3.org/TR/REC-DOM-Level-1/".

The RDML Processor 708 generally performs three primary functions on the incoming parsed text to create an internal software object: error checking, structuring, and adding functionality. The error checking functions of the processor 708 simply compare the output of the parser 706 against the text expected as defined by the DTD 702. If the incoming document does not conform, the processor 708 determines whether the defect is: (1) not critical, in which case a warning is sent to a $\log$ and work continues, or (2) critical, in which case work stops and an error message is sent to the routine that called the parser 706.

The structuring function is a matter of assembling the text into a hierarchical data structure matching the hierarchy described in the DTD 702. The target data structure may be a vector of vectors, or other collection of collections. When the data structure is created, it is "wrapped" in a software object (an "RDMLDoc" object) that adds an interface to the data so that other software objects can communicate with it. Most of the added functions ("methods") provide access to specific subsets of the data or particular elements or attributes.

The functions of the RDML processor 708 can be performed by the same class as the RDML Reader 704, where the RDML reader 704 has been set up on a "callback" relationship with the XML Parser 706. In that way, when the parser 706 gets a new element from the RDML document 102, it informs the RDML reader 704 that it found the element and returns it to the reader. In such a way, the RDML reader 704 acts as a processor as well as reader (even though it may hand off the actual element handling to another class).

## IV.A.3. $\quad \mathrm{X}$-value Transformer and Line Item Set Types

Regarding the X -value transformer 710, the term "X-value" refers to the fact that the fields of the input data records are plotted along the x -axis of the chart view 716 by default. (The values of each record for each field are plotted on the Y axis.) For example, a time series will, by default, be plotted in the chart year with the time periods plotted on the x -axis. When more than one data document is input, their data fields must be correlated before they can be presented together in a common view. The X -value transformer 710 determines what adjustments have to be made, and then accomplishes them.

Generally, the RDML data viewer 100 recognizes three different types of line item sets (i.e., (1) "time series," (2) "category," and (3) "X-Y Plot") which account for the majority of end user tables. The X-value transformer 710, by recognizing these types, can automatically provide the
correct display and transformation routines, saving the user the time and expense of changing a broad range of details. To give an example of this, when a times series table is encountered, the data viewer 100 can recognize that the x -values must fit the permissible types of dates, check them, conform them, and format them, thus sparing the user the work. In one implementation consistent with the present invention, a line item set type is a required attribute of the line item set element 906.

Figure 11 shows the steps used by the X -value transformer 710 to store a new document in the primary data store ("PDS") 712 described below. Generally, the X-value transformer 710 determines whether a newly input data document is of the same type as the one(s) currently stored in the "active documents" list of the PDS 712. Active documents are available for display in the tree view 720 , to be charted, to be added to the spreadsheet view 724 , and so forth.

First, the X -value transformer 710 receives a new document 102 (step 1102). It then determines the type of the active documents in the PDS 712 (step 1104). If the newly arrived document is the same line item set type as the active documents (step 1106), it is added to them in the PDS 712 (step 1108). If it is of a different type than the currently active documents in the PDS 712, the user is notified that it does not match the currently active documents (step 1110). The user may choose to reject the new document 102 (step 1112), in which case the object is not added to the PDS 712 (step 1114). If the user chooses to erase the currently active documents (step 1116), the currently active documents are erased (step 1118) and the new one is loaded (step 1120). Otherwise, the new document 102 is placed in the PDS 712 as a "standby" document (step 1122). Standby documents are available for providing data to scripts and macros, but do not interfere with the active document views. Optionally, if the x -value transformer 710 need not perform any transformations, the RDML reader 704 may store the document in the PDS 712.

If the newly arriving document is of the same line item set type as the active documents, the X -value transformer 710 matches the data_x fields of the new document to the existing documents. They may be in a different order, may be spelled differently, be in a different form, or otherwise not immediately compatible. The X-value transformer 710 makes the necessary adjustment according to the type of line item set. For example, time series line item sets have elements which are ordered in time. One obvious incompatibility is that periods may be different. Often, one set of data is in years and the other in, for example, months. The X-value transformer 710 uses attributes of the line items to handle each correctly. However, monthly data cannot just be added up to produce a yearly value, for example, because the number might represent a non-additive value. For example, a line item might be "Ending Bank Balance," but adding up 12 monthly ending balances does not produce a year-ending balance. The line item provides a period-length attribute that specifies that it is a "period-end" value, and the X-value transformer 710 uses the last month only to create a yearly value. In another example, monthly "deposits" would be added together, and monthly "average interest rate" might be a "period-average." Each line item provides instructions on how it is to be handled in conversion to other periods; this is provided by the li_aggregation attribute.

Another change that might be made is in the date format. Some data sets might simply display the year ("YYYY"), others might use a standard date format ("YYYYMMDD:HHMMSS.MSS"), or some other variant. The X-value transformer 710 puts these all into a common form.

The data viewer 100 additionally provides tags describing how it is to be handled in the event of a period widening/shortening, or a period shift. Numbers may be tagged as "sum," "median," "average," "last value," "first value" or a specified formula. The X-value transformer 710 and the data viewer 100 may also handle "period shifts," a related type of conformance. For example, a first
data source may be based on a calendar year ending on December 31 while a second data source is based on a fiscal year ending on September 30. The RDML data viewer 100 may use the period_length attribute of the x_data element 924 to designate the period length of the data, in conjunction with the li_aggregation attribute of the $y_{-}$data element. The latter attribute is used to estimate a conforming transformation.

Y-values, the data values in a line item, may change when the x -values have been conformed. For instance, if twelve months of "average interest rate" is aggregated to produce "annual average interest rate," the updated designation of the number that will appear in legends or axis titles changes. The data viewer 100 recognizes that the resulting values may possibly undergo a transformation based on unit, magnitude, modifier, scale, measure, and adjustment attributes. These attributes allow efficient and automatic interpretation, translation, manipulation and presenting of data in a line items. They further facilitate the automatic changing of text descriptions in charts and reports to be automatically changed by macros.

Additionally, to conform differing time periods in separate documents, the X -value transformer 710 and the data viewer 100 may prompt user assistance if needed. For example, a first data source may be denominated by fields such as "Week 1, " "Week 2, , etc., while a second data source is denominated by "April 4, 1999," "April 11, 1999," and so forth. The X-value transformer 710 recognizes this problem (and a broad set of similar circumstances), and presents a dialog box asking the user for the actual date that "Week 1" begins on.

The Category line item set type is a common type of line item set that is often referred to as a "crosstab." In this line item set type, the x -values are categories. On a chart, for instance, the x axis may be divided into eight categories for eight companies, with the $y$-axis showing the values of revenues or profits. Sometimes matching the fields of different source documents by name is too
dependent on wording, spelling, or language to permit efficient matching. The challenge for categories line item sets is to handle these differences in usage. For example, company income statements may start with a concept of "sales," but the actual words used may be "revenues," "total revenues," "gross income," or any other designation used in different languages, dialects, or industryspecific terms. To handle these line item sets, the X -value transformer 710 lines up categories from multiple data sets by first matching up any actual matches in spelling (ignoring cases in the default). Second, it looks at the class elements 930 to see if there are standard vocabulary tags; these standards may be different for different industries or uses. When dealing with companies, for example, the ticker symbol may be used as the matching tag. For instance, one data set may have a category for "Ford" another for "Ford Motor Company," and another for "F." All would be matched by the common presence of a tag <"F"> (Ford's ticker symbol) in the class element 930. If this fails to provide matches, the data viewer 100 presents the user with a dialog box with two lists of fields. Using "drag and drop" techniques, the user can quickly match the two sets of fields, and fields with no match are simply appended as new fields. In addition to creating a mapping dictionary based on text, class sets, and user input, the data viewer 100 can use a mapping file specified by a user or an input document to combine files automatically.

Figures 12A, 12B and 12C depict screenshots of an X-Y plot 1202 in accordance with the present invention. Most commonly found in scientific statistical series, an X-Y plot 1202 by its nature treats every x -value as distinct. This display plots individual data points on the graph. The X-value transformer 710 is only required for collating only exact matches. The screenshot also displays a tree view 720 that corresponds to the data in the X-Y plot 1202 and a legend 1204. As shown on Figure 12A, the X-Y plot 1202 displays the selected line item 1206, and the legend 1204
changes as the line item selection changes. The Figures 12 B and 12 C show the X-Y plots 1202 resulting from the selection of different line items 1206 in the tree view 720.

## IV.A.4. Primary Data Store

Figure 13 depicts a primary data store 712 and some objects which it stores. The primary data store 712 is a cache of loaded RDML documents 102 that may be implemented in a number of ways (e.g., as a vector, as a dictionary or hash table, or as some other collection of objects).

Once the X-value transformer 710 has determined an active or standby status for a newly arrived data document 102 , and made any necessary modifications to the $x$-values, it passes a new RDMLDoc object 1302 to the PDS 712, which manages its communications with the various views or plug-in applications. This PDS 712 central storage allows the different views (716,720, 724, and 728) to have access to an object 1302 representing the original source data. .The individual views (described below) make their own copies of the portions of the data that they need, and in whatever transformed form they require. The PDS object 712 generally does not perform transformations on data; it simply holds them, adds and removes them, and makes them available in a public interface to other objects. Table 1 below shows an exemplary class diagram of the PDS object 712 . Note that vectors are used to hold the RDML documents 102 in this implementation; it would also be possible to use a hash table or collection data structure.

Table 1


In the class diagram, the upper section lists the object's variable names followed by their types. The lower section lists the method names with the argument name and type in parentheses followed by the method output type. As shown, the PDS 712 provides variables and methods for storing active and standby RDMLDocs 1302 and RDMLLineItems 1304. The PDS 712 object includes methods to add, retrieve and clear documents and line items, in addition to methods for determining the number of documents and line items.

An RDMLDoc object 1302 is a full internal representation of the RDML document 102. It contains as its central attribute the tree-structured data elements contained in the document's original tags and implements the DOM interface. Applications that work with DOM objects may also work with RDMLDoc objects 1302. The RDMLDoc object 1302 provides a higher level interface for the different views of the RDML data viewer 100. The Table 2 below shows a class diagram of an exemplary RDMLDoc object 1302 in accordance with the present invention.

Table 2

(RDMLDoc
-txDoc1 : txDocument
+RDMLDoc() : RDMLDoc   +createDoc(filename : String) : TXDocument   +getAttributeValue(elementname : String, attributeName : String) : String   +getAttValue(lev1_tag : String, lev2_tag : String, lev3_tag : String, att_name : String) :   String   +getData_xDefaults() : JCVector   +getLinkAttValue(element : String, index : int, attname : String) : Atring   +getLinkText(element : String, index : int) : String   +getNumLineltems() : int   +getNumLinksForElement(elementname : String) : int   +getRDMLLineltem(att_name : String, att_value : String) : RDMLLineltem   +getTXDoc() : TXDocument   +makeRDMLLineltem(li : Node) : RDMLLineltem   +parseCommaDelimString(in : String) : JCVector   +setTXDoc(txDoc_in : TXDocument) : void   +traverseDOMBranch(node : Node) : void

Described below are class methods shown in Table 2 of an RDMLDoc object 1302 in accordance with one implementation consistent with the present invention. First, RDMLDoc() is a constructor for creating an internal RDMLDoc object 1302. The method "createDoc" reads in the file indicated by an input URL, parses it, and creates a new TXDocument which the user then usually assigns to this RDMLDoc object 1302. A TXDocument is an object which implements the Document Object Model (DOM) interface. The TXDocument creates the DOM structure for the file and "wraps" it with various access and administrative methods. It is the DOM-compliant original representation of the document. The "setTXDoc" method sets the underlying TXDocument, and initializes object properties such as the number of line items, and "getTXDoc" returns the underlying TXDocument.

Whereas an RDML document 102 forms a tree of elements having attributes with values, the "getAttributeValue" method returns the attribute values for the named element, and "getAttVal" returns as a string the attribute value found at an inputted element name and attribute name. The
"getLinkAttValue" method gets the attribute value of a hyperlink element, according to the element name and attribute specified and "getLinkText"gets the corresponding hyperlink text.

When called, "getNumLineItems" returns the number of line items in the RDMLDoc 1302 and similarly "getNumLinksForElement" returns the number of links for an element.

The "getRDMLLineItem" method supplies the first RDMLLineItem 1304 (described below) based on the value of a particular attribute. For example, specifying "li-ID" and " 3 " will return the RDML Line item in which the "li-ID" attribute equals " 3. ." The method called "makeRDMLLineItem" takes the indicated node, assigns it to a new RDMLLineItem object 1304 and initializes the object.

The method "getData_Defaults" returns a vector of the default x-values. Furthermore, "parseCommaDelimString" takes a comma-delimited string as input and returns the values between commas as elements of a vector and returns a vector of the strings. Finally, "traverseDOMBranch" takes an input node as a parameter and then traverses from that node downwards, and at each node, an operation, such as finding an element with a particular name, may occur.

Similar to the RDMLDoc object 1302, the "RDMLLineItem" 1304 is an object that provides high-level methods for retrieving data on a line item, any associated links or notes, and the attributes. The views of the RDML data viewer 100 work with RDMLDocs 1302 and RDMLLineItems 1304 to create their presentations. Table 3 shows a class diagram for an exemplary RDMLLineltem object 1304.

Table 3

## RDMLLLineltem

```
-data_x : TXElement
-data_y : TXElement
-jcvdata_x: JCVector
-jcvdata_y : JCVector
-li : TXElement
-line_item_set_att : NamedNodeMap
+RDMLLineltem() : void
+get_jcvData_X(): JCVector
+get_jcvData_Y(): JCVector
+get_strX_Value(index : int) : String
+get_strY_Value(index : int): String
+getAttributeValue(attributeName:String): String
+getLinkAttribute(index : int, attName:String): String
+getLinkText(index : int): String
+getNumDataPoints() : int
+getNumLinks() : int
+initLineltem(doc: RDMLDoc, lineitem: Node) : void
+set li(input : TXElement) : void
```

Described below are class methods shown on Table 3 of an RDMLLineltem 1304 in accordance with one implementation consistent with the present invention. Methods with the same name as described above in connection with the RDMLDoc object 1302 have the same general function although, since a line item is already specific to an element, the methods take different arguments because they typically do not need an element specified in the given arguments.

RDMLLineItem() is a constructor that creates an RDML LineItem object, and "initLineItem" initializes the line item to the values found in the RDMLDocument. The method "get_jcvData_X" and "get_jcvData_Y" return the $x$ - and $y$-value vector for the indicated number of the line item. The "get_strX_Value" method and "get_strY_Value" return the $x$ - and $y$-value at the number of the line item in the $x_{-}$values vector as a string.

The "getNumDataPoints" method is called to receive the number of data points, i.e., the number of x -values, in a line item. The method "set_li" allows the calling routine to set the line item in the RDML document 102 that this particular RDMLLineItem is to represent.

Referring back to Figure 7A, in one implementation consistent with the present invention, the chart manager object 714 takes up to six RDMLLineltems 1304 from the PDS 712 and displays them on a chart displayed on the graphical user interface 734 and is typically used in conjunction with the tree view 720 and the macro panel 732. When a user clicks a mouse on a line item in the tree view 720, that line item is added to the chart. When the user clicks the mouse on a macro line in the macro panel 732, the selected line items that are charted are transformed according to the programming of the macro. The chart manager 714 may be separated from the graphical chart view 716 to allow the ability to change chart software components easily should different or better graphic chart components become desirable.

## Views

The data viewer 100 presents the user with a number of different views ( $716,720,724$, and 728 as shown on Figure 7A) which the user may use to view the information in RDML documents 102 stored in the PDS 712. These views include a chart view 716, which shows graphical charts and graphs of the data, and a tree view 720 showing hierarchical representations of line items. Additionally, the data viewer 100 presents a spreadsheet view 724 which shows a data sheet similar to a spreadsheet, and a footnote view 728 which shows the text of footnotes associated with RDML documents 100. The views are discussed in detail below.

## IV.A.5. Chart View

Upon receiving RDML markup documents, the chart view transforms, formats, manipulates and displays data stored in the markup documents using the attributes describing the meaning of the data. The chart view uses the attributes of the numbers to, for example, facilitate the simultaneous display of different series of numbers of different types on a single chart and automatically display appropriate descriptive textual components.

As an example, the chart view automatically determines when a first series is in the "U.S. dollars" and the second series is in "French francs"; it may automatically place them on separate axes or automatically translate the units. It can also determine the titles for these axes and set the labels on the axes. The chart constructs itself automatically using the attributes of the individual elements of the markup document, and these actions may be initiated with a single mouse click.

Figures 14A-F depict the chart view 716 in the top half of the screen, and the tree view 720 in the lower half. The chart view 716 has two primary components: the chart itself and the chart legend 1402. The line item 1206 that has been selected in the tree view 720 is automatically graphed in the chart 716. The chart manager 714 generally has three primary responsibilities: (1) collecting messages from the tree view 720, macro panel 732 and main menu (not shown) regarding changes to make to the chart 716, (2) obtaining the correct line items or macros from the PDS 712 or the macro manager 732, and coordinating transformations to the data, and (3) managing the chart's data object (the "chart data" object 715), which contains the data in the form in which it will be used in the chart, and the attributes of those line items.

Generally, the chart manager 714 handles updates and manipulations to the chart itself (e.g., axes, labels, etc.) while the chart data object 715 handles the plotting of the data on the chart 716. The chart manager object 714 provides the information the chart data object 715 needs to update its
internal data structures. Chart data 715 is a data model that is used by the central graphical chart 716 to paint itself, but other components also use the data: the footnotes, the chart legends and titles, and any macros that are operating on the data.

One way to visualize the role of the chart manager 714 (and its data partner, the chart data object 715) is to view the steps of a method of a complete sample scenario: the user has selected a line item 1206 in the tree view 720 and the chart manager 714 is notified that this line item is to be added to the chart 716. There are various ways to set up the chart data/chart manager architecture. One way described in detail below is to create the chart up front and then feed it changes in data (initialization, clearing, updating data series, etc.) A second general approach is to use the data to create a new chart upon every request for a change.

Figures 14A-F will now be described in greater detail, and in particular, Figures 14A and 14B will be described in connection with Figures 15A, 15B, and 15C, which illustrate steps of a method for updating a chart view 716 upon the selection of a line item 1206 in the tree view 720 in an exemplary scenario in accordance with the present invention. Figure 15A illustrates steps mainly involving the tree view 720 and graphical interface 734, while Figures 15B and 15C illustrate steps mainly involving the chart data object 715 and chart manager 714 respectively.

As illustrated in Figure 15A, a user selects a line item 1206 in the tree view 720 on the graphical interface 734 (step 1502). The tree view 720 obtains the ID of the selected line item 1206 (step 1504) and removes any old macros that are applied (step 1506). The chart manager 714 then deletes the last series (displayed data of a line item) from the chart view 716 to make way for the newly selected line item (step 1508).

Referring now to Figure 15B, the chart data object 715 removes existing data from the chart 716 (step 1512). It then obtains the RDMLDoc object 1302 from the PDS 712 (step 1514) and the RDMLLineItem object 1304 from the RDMLDoc object (step 1516). After doing this, the chart data object 715 normalizes the $x$-value data (step 1518). For example, if one charted series displays data from 1961 to 1998, and the new one displays data from 1973 to 2005, the chart data object 715 ensures that the chart displays data from 1961 to 2005. The chart data object 715 then fills the x -axis 1404 with data (step 1520) and fills the $y$-axis 1406 with data (step 1522).

As shown in Figure 14B, a chart may have more than one $y$-axis 1406 charted at a time, (i.e., a different $y$-axis on either side of the chart) to display multiple line items simultaneously. Thus, the chart data object 715 further marks which $y$-axis the series is on (step 1524), and if it is on a Y2 axis 1408 (a second y axis) (step 1526), it adds that axis (step 1528). The chart data object 715 sets the number formats for the axis labels 1406 and 1408 (step 1530) and sets the number precision (step 1532). Finally, it updates the footnotes (step 1534) and runs any macros that are applied (step 1536).

Referring now to Figure 15C, the chart manager 714 then sets the Y1 title (step 1538) and the Y2 title (step 1540) using line item attributes. After that, it updates the series styles (step 1542), the chart title 1410 (step 1544), the legend 1402 (step 1546), and the x -axis 1404 (step 1548). After these updates, and the chart manager 714 updates the number precision (step 1550), the y-axis 1406 (step 1552) and the chart types (i.e., area, bar, stacked bar, line, pies, points, etc.) (step 1554). Subsequently, it updates the footer 1412 (step 1556) and sets the maximum x -value to the extent of the last used value, disposing of blanks on the right side of the chart 716 (step 1558). Finally, the graphical interface 734 repaints the graphical chart 716 with the newly created updates (step 1560).

The chart manager 714 and chart view 716 can chart different series types on a single chart and handle transformations automatically. Because two (or more) data series may be placed on the chart 716 from different source documents 102 , they are synchronized for purposes of placing them on the common graph. The chart manager 714 uses data_x elements or the metadata tags to automatically transform data to permit different series types to appear together on a chart. It recognizes, for example, when a first series is in "US Dollars" and a second series is in "French Francs"; it makes arrangements automatically to place them on separate axes. There is no need for the user to go through a charting "wizard" or to find, understand, and translate the various units, titles, and adjustments. One click on each of the series' lines in the tree view 720 (potentially with a modifier key (e.g., the CTRL key) depressed) instructs the chart view 716 to construct itself given the metadata of the individual elements. The chart manager 714 and chart data object 715 consider and take into account the following in updating the chart: the unit type, magnitude, scale, modifier, measure, y -axis title, chart title, chart footnote, precision, number format, chart type (line, bar, etc.), legend and colors of the various components.

The data viewer 100 also permits the adding of a series to a chart using a single click or command. Adding a series to a chart increases the number of series displayed on the chart. In conventional spreadsheets, charting programs, and data graphical interfaces, this task requires the user to either rebuild the whole chart through the wizard, fill in a dialog box with information on the new series, or add the numbers by custom programming. When the data viewer 100 adds the new series to the chart with a single mouse click. The existing data is maintained as it was, and any necessary changes to the chart's type, format, scale, etc. is made automatically by the chart manager 714 and chart view 716 to accommodate the new series.

Just as a series can be added with one mouse click (or one command from the menu), so can it be removed. There is no need for the user to worry about accidentally deleting something, as no actual information is lost from the data viewer 100. It can always be added back to the chart 716 with a simple mouse click.

The chart view 716 also supplies an expandable legend 1402 as shown on Figure 14A. A significant problem for most users of spreadsheet programs has been the inability of the user to control the size, format, and handling of the legend 1402. The result is that charts usually end up with legends such as "MSFT" and "SUNW," rather than longer descriptions with multiple colors and fonts, word-wrapping and other readability enhancements. The chart view 716 chart provides legends that (1) can grow to unlimited sizes, (2) support word-wrapping, (3) can contain multiple fonts, (4) can contain multiple font types (bold, italics, normal), and (5) can contain varying colors for emphasis. If the legend information (typically stored in the li_legend attribute) for a line item is too long for the legend box on the chart, the information may word-wrap and scroll to accommodate the additional information.

The chart view 716 permits further convenience by automatically specifying the $y$-axis title 1414. Current spreadsheet and charting programs require the user to provide a y-axis title, usually through a chart wizard or by specifying a location to look up a title. The RDML shifts this burden to the data originator, who is in a better position to accurately specify the description of the $y$-axis values. The y-axis title 1414 specified by the data originator is placed in an attribute field (y_axis_title) of the line item element tag and is used by the chart view 716 as the default $y$-axis title 1414 when the line item is added to the chart view 716.

Often, however, the user wants to make a change to the numbers and display the transformed series on the chart 716. In this case, the default $y$-axis title 1414 may no longer be correct. Rather than require the user to manually figure out what the new value description is (a process that could take several minutes or longer with current analytic programs), the chart manager 714 and chart view 716 data automatically generates a new y-axis title 1414 upon transformation of values using the information provided in the modified unit, magnitude, modifier, scale, measurement, and adjustment attributes of the line item 1206.

For example, suppose a first series is charted as "\$ in Millions," and the user applies a macro that divides every number in the series by 1,000 . The chart manager 714 automatically creates a new y-axis title 1414 of "\$ in Billions." Number transformations can lead to quite complicated transformations of the $y$-axis title 1414. A user may multiply a first series ("Gallons in Millions") by a second series ("US \$ per Gallon"); the result will be a series of numbers, a third series ("US \$ in Millions"). If there are ambiguities, the data viewer 100 presents the user with a dialog box displaying all the known information regarding the quantities involved and requests that the user supply a title.

Similarly, the chart manager 714 and chart view 716 can automatically generate the $x$-axis title and chart titles 1410 using the metadata attributes. In addition to generating $y$-axis and $x$-axis titles, the data viewer 100 automatically performs the task of creating a new chart title 1410 when the charted series are changed or when multiple series are added to the same chart. For example, a first series has a default chart title of "Total Sales," a second series has a default chart title of "Total Expenses," and a third series has a default chart title of "Total Sales." The data viewer 100 will create a combined chart title of "Total Sales; Total Expenditures" by combining the dissimilar elements, and eliminating the duplicate elements.

Three examples illustrate other types of automatic title manipulation. In the first example, suppose a chart has two series placed on it: Series A has a title of "GDP" and a legend of "China", and Series B has a title of "GDP" and a legend of "Malaysia". If both are put on the chart, the titles will duplicate each other. In one implementation consistent with the present invention, duplicate titles are removed such that the title for this chart will be simply "GDP". Because the series legends are different, the legend on the side of the chart will have two entries: "China" and "Malaysia".

As a second example, suppose the legends are duplicative: Series A has a title of "China" and a legend of "GDP", and Series B has a title of "Malaysia" and a legend of "GDP". Because both legend entries would be "GDP", there may be confusion about which legend applies to which line on the chart. In this case, the data viewer 100 transposes the legend and chart title entries such that the result is the same as in the first example above; the title of the chart is "GDP" (the duplicate is removed) and the legend entries are "China" and "Malaysia".

Finally, in a third example, suppose the series have different titles and different legends. Series A has a title of "GDP", and a legend of "China", and Series B has a title of "National Savings" and a legend of "Malaysia". The legends are left as is, and a new chart title is created by appending one to the other separated by a ";". The chart title on the display thus becomes "GDP; National Savings", and the first legend becomes "GDP - China" and the second legend becomes "National Savings - Malaysia". All three of these changes are string manipulations (selecting and/or appending).

The chart manager 714 and chart view 716 can also automatically trim beginning and ending x -values 1404 , thus relieving the user of the need to trim null leading and trailing values from charts. In conventional spreadsheet and charting programs, chart pointers must be recreated or manually adjusted when the underlying data is enlarged or shortened. For example, if a series is charted that
runs from 1990 to 1998 and it is replaced by data from 1990 to 1996 , there would be two blank spaces at the right side of the chart. The data viewer 100 and chart manger 714 avoid this and similar problems by handling missing or null values at the front or back of line items as indications that the chart should be automatically restructured.

The chart manager 714 also automatically formats the x - and y -axis labels 1404 and 1406. RDML shifts the burden of formatting the numbers on the x -axis 1404 and y -axis 1406 from the user (of which there may be thousands or millions, each reformatting the numbers manually one or more times) to the data originator (of which there is one, who only has to do it once.) The format templates are regular expression strings found in current spreadsheets and programming languages. The data viewer 100 uses the formatting strings for the axis labels on the chart view 716, for the numbers in the tree view 720, and as defaults for the numbers in reports. The formatting templates are automatically changed if a macro moves the numbers outside of the precision range that is legible on the chart 716 , or out of a format that makes sense in the tree view 720 or in a report.

As stated previously, one of the RDML line item element attributes is the precision of the number, the number of significant digits to be displayed in a chart. Unlike conventional products, which leave this entirely up to the user to figure out, the data viewer 100 uses the specified precision to set the scale of the $y$-axis 1406, and the format and precision of its labels and tick marks.

Additionally, the chart manager 714 automatically creates and removes a second $y$-axis 1408 as shown on Figure 14B. A chart with two dissimilar series plotted on it will require two axes. The $y$-values may not be of the same units, measures or scales. A user might, for example, have plotted a series denominated "\$ in Millions" and then want to add to the same chart 716 a series denominated "\% of GDP," and these two series cannot share a common y-axis. Chart manager 714 recognizes this incompatibility, creates a new y-axis 1408 , and directs all subsequent formatting,
macros, etc., to the proper axis. Current spreadsheets and charting programs require that the user restructure the chart with a charting wizard (entailing many directives to be entered, and much trial and error to get the various scales, colors, etc., correct), or by custom programming. The data viewer 100 automates this process, creating and formatting a new axis if required by the specifics of the unit and scale attributes of the line items. If the series is removed from the chart, the associated axis is removed and the various scales, colors, etc., of the remaining series are updated to make the chart readable immediately.

Table 4 shows a class diagram of the chart manager 714.

Table 4

## ChartManager

-chart1 : JCChartComponent
-chart_data : ChartData
-chart_legend : ChartLegend
-chart_title : JCTitle
-CDV1 : ChartDataView
-CDV2 : ChartDataView
-DS : DataStore
-LineColors : JCVector
-mainFrame : MainFrame
-series $1:$ ChartDataViewSeries
-series2 : ChartDataViewSeries
-x_value_labels : JCVector
-xaxis : JCAxis
-xtitle : JCTitle
-y1axis : JCAxis
-y1title : JCTitte
-y2axis : JCAxis
-y2title : JCTitle
-yLabelGenerator1 : YLabelGenerator
-yLabelGenerator2 : YLabelGenerator
+addSeries(key : String) : void
+addY2Axis() : void
+ChartManager(mainFrame : MainFrame, chart_comp : JCChartComponent, legend : ChartLegend) : void
+checkYAxisTitle(series : int, y1title : JCAxisTite, y2title : JCAxisTitle) : int
+deleteLastSeries() : void
+deleteSeriesAfterFirst() : void
+getAddSeriesFlag() : boolean
+getChartData() : ChartData
+getYAxisTitle(series : int) : String
+initChart) : void
+markWhichYAxis(num_series : int) : void
+replotChart() : void
+replotSeries() : void
+resetChart() : void
+setAddSeriesFlag(flag : boolean) : void
+setChartType(type : int) : void
+setDataStore(ds : DataStore) : void
+setStartPeriod(sp : String) : void
+updateChartitle() : void
+updateChartTypes() : void
+updateFooter(num_series : int) : void
+updateFootnotes() : void
+updateLegend() : void
+updatePrecision() : void
+updateSeriesStyles(num_series_local : int) : void
+updateXAxis() : void
+updateYAxis(num_series_local : int) : void
+upd

Class methods of a chart manager object in accordance with one implementation consistent with the present invention are described below. ChartManager() is a constructor for the chart manager object 714, and "initChart" initializes the chart to be empty, and "getChartData" gets the chart data object 715 .

The method "addSeries" adds a series to the chart while "deleteLastSeries" removes the last added series. Similarly, "deleteSeriesAfterFirst" deletes all series beyond the first series.

A series flag is set to "true" if the next series is to be added in addition to the already charted series. A "false" flag tells the chart to erase the last current series and replace it with the new series. The methods "getAddSeriesFlag" and "setAddSeriesFlag" retrieve and set this flag.

The method "getYAxisTitle" returns the y-axis title, and "checkYaxisTitle" checks the current $y$-axis title to see if the newly plotted series is to be on the current axis, or if a new axis is to be created. "AddY2Axis" adds a second y-axis to the chart if needed. The method "markWhichYAxis" tells the ChartData object which axis the new line item has been plotted on.

The method "resetChart" resets the chart to the state it was in when the data viewer 100 started while "replotChart" updates the physical aspects of the chart. Similarly, "replotSeries" replots a series due to changes.

The "setChartType" method tells the chart manager what chart type to display upon calling replotChart, and "setDataStore" tells the chart manager what data store object 712 it will be dealing with. If the data is a time series, "setStartPeriod" sets the internal variable for the starting period of the chart. Finally, the update methods each update the corresponding aspect of the chart in response to potential manipulations or changes, e.g., "updatePrecision" updates the precision of the chart.

Table 5 shows a class diagram of the chart data object 715.

## Table 5

ChartData	
-chtData: JCVector -chtHeader: JCVector -cm : ChartManager -originalPlottedYear : String -start_period : String -zeroData: Stringlin	
+addSeriesToChart(ds : DStore, key: String) : void   +decrementNumSeries() : void   +deleteLastSeries() : void   +deleteSeriesAfterFirst() : void   +fillXAxis_CT(rdmL_li : RDMLLineltem) : void   +fillXAxis_TS(rdml_li : RDMLLineltem, yearsDiff : int, sizeDiff : int) : void   +fillYAxis_CT() : void   +fillYAxis_TS_(rdml_li : RDMLLineltem, start : int, yearsDiff : int, sizeDiff : int) : void   +getAddSeriesFlag() : boolean   +getChtData() : JCVector   +getChtHeader() : JCVector   +getChtHeaderElement(series : int, element : String) : String   +getDatainterpretation() : int   +getDataltem(row : int, column : int) : Object   +getDifferencesInX(rdml_II: RDMLLineltem, yearsDiff : int[], sizeDiff : int[]): void   +getName(series : int) : String   +getNumRows() : int   +getNumSeries() : int   +getPointLabels() : String[]   +getRow(row : int): Vector   +getSeriesLabel(series : int) : String   +getSeriesName(series : int) : String   +getStartPeriod() : String   +incrementNumSeries(): void   +normalizeValues(rdml_li : RDMLLineltem, xory : int, yearsDiff : int, sizeDiff : int)   +setAddSeriesFlag(input : boolean) : void   +setChtData(jcvin : JCVector) : void   +setChtHeader(jcvin : JCVector) : void   +setChtHeaderElement(series : int, element: String, value : String) : void   +setDataltem(row ; int, column : int, c : Object) : boolean   +setNumSeries(new_num : int) : void   +setOriginalPlottedPeriod(in : String) : void   +setStartPeriod(in : String) : void   +zeroChtData() : void	JCVector

Below are class methods shown in Table 5 of a chart data object in accordance with one implementation consistent with the present invention. Methods having names that are the same as methods in the chart manager are not described because they perform the same function on the data alone.

The chart data object uses the methods "fillXAxis_CT," "fillXAxis_TS," "fillYAxis_CT," and "fillYAxis_TS" to fill the x - and y -axes of time series and chart data sets. The methods "decrementNumSeries" and "incrementNumSeries" change a counter storing the number of series on the chart.

The method "getChtData" returns a vector of chtData, which is a vector of vectors: each element of the outer vector is a vector of data for one line item. The "getChtHeader" method returns a vector of chtHeader, which contains a vector of header information for each line item. This vector is a list of the values of the attributes of a line item, e.g., magnitude, title, etc., and "getChtHeaderElement" gets the value of a particular element from chtHeader for the indicated series.

Operating on data sets, "getName" returns the data set name, and "getNumRows" returns the number of rows in the data set. The method "getRow" returns one row of a series while "getSeriesLabel" returns the label. The "getDifferencesInX" method aligns the time periods for time series charts, and "getNumSeries" returns the number of series in the num_series variable. Many of the get methods have corresponding set methods that set the value instead of receiving it.

The chtData variable is a vector of vectors (each sub-vector is the data for one series), and "getDataItem" returns the data value in a particular row and column of chtData. Used by the constructor, "zeroChtData" posts an empty chart. The "getPointLabels" method returns an array of strings, each of which is a point label of chtData

For a time series, "getStartPeriod" retrieves the start period of the time series, and "normalizeValues" normalizes values upon the addition of a series to the chart. The method "getDataInterpretation" returns either "array" or "general" to describe what form the data source structure is in. (A returned value of "array" is for Times Series and Category data -- which share x
values --, and a returned value of "general" is for XY data, in which X values are generally independent.)
IV.A.6. Tree View

Referring back to Figure 14A, this screen shot further contains the tree view 720 on the lower half of the screen. The tree view 720 presents a hierarchical view of the data. The tree view 720 serves a different purpose than "datasheet view" of conventional spreadsheets and database management systems. It shows the numbers in their context visually. The user can see the dependency relationships, identify from icons and visual clues how the different line items are related to their parents, peers, and children. The "Units" column 1416 prominently displays the units, scales, magnitudes, etc., of each line item, an important display in mixed data sets, where the unit context changes from line item to line item.

Each line item in the various active RDML documents 102 is displayed in the original order. In the tree view 720, each RDML document 102 begins a new top level node. The information displayed in the tree view 720 is a summary of important data from and about the line item, not a display of all the data points as would be found in a typical spreadsheet view. Instead of presenting. a potentially confusing matrix of raw data digits that make the discerning of patterns difficult, the tree view 720 shows, in one implementation, the following information for each line item: legend 1402, units 1416, three user-selectable representative data points 1418 , and one or more summary columns 1420. In the example on Figure 14A, there is some important documentation 1416 (description, units), some representative data 1418 (in this case, three year's worth), and a summary data column 1420 (in this case, the sum of all the data points). The first column 1416 displays the legend of the line item. This is the plain language description; it is repeated in each view where identification of the line item must be made by a human.

The representative data columns 1418 in the tree view 720 give the user visual clues as the relative importance, the types, and the format of the line items. The RDML data viewer 100 permits the user to select different fields to be displayed. For example, one user might want to see "1940, 1970,2000 " to get a sense of the long term trends, while another might only wish to see "1998, 1999, 2000 " to see the recent trends.

The summary column 1420 allows the user to choose a statistic that is either desired to understand the lines and their context better, or that is desired for purposes of sorting the columns from greatest to least or vice versa. Any of the columns can be sorted simply by clicking on them. The summary column provides much easier statistics for the user than database or spreadsheet formulas because the RDML data viewer 100 provides one-click selection of statistical methods, thus removing the need to write formulas, adjust for missing values, handle nulls in the denominators, etc. Some examples of summary statistics include: (1) sum, (2) average (3), median, (4) minimum, (5) maximum, (6) moving average, (7) variance/standard deviation, (8) \% difference (selected periods or categories), (9) \% of parent, (10) \% of specified line item, (11) correlation with parent, and (12) custom formulas. For each of these statistical measures, the RDML data viewer 100 provides a dialog box in which the user can adjust the assumptions. For example, the "moving average" can be for one period, five periods, ten periods, and so forth.

The tree view 720 emphasizes that line items are the primary data unit in the RDML data viewer 100, as opposed to single numbers as are found in spreadsheets as cells. Since each line item 1206 is an object, the RDML data viewer 100 may be thought of as an object-oriented spreadsheet. The icons 1422 for each line item identifies that line item's context. For example, a " + " icon 1422 indicates that adding that line item to its peers will produce the parent line item. This feature
addresses a shortcoming of spreadsheets and database datasheet views: the inability to view formulas and data at the same time. It shows the user how the numbers are related to one another.

Conventional database management systems, spreadsheet and numerical analysis tools have no built-in indication of how one record is related to another. In relational databases, the position or row may have no relevance to its data. RDML and the tree view 720 changes this by making the position of a line item in a set a usable piece of information by a user, and icons 1422 may visually designate the relationship of a line item to its parent node.

In one implementation consistent with the present invention, the following values are used for relationship icons: (1) plus, (2) minus, (3) times, (4) divide, (5) equals, (6) computed at, (7) member, (8) collection, (9) child, (10) parent, (11) memo, (12) general, (13) note, (14) none, and (15) root.

Sub-line items may add up to the parent line item (or may be modified by other relationships of their sibling line items.) "Plus" may add to siblings while "minus" subtracts from them. For example, a line item called "Net Sales" may have two children: "Total Revenues" and "Cost of Goods Sold." If "Total Revenues" has an li_relationship attribute of "PLUS", and "Cost of Goods Sold" has one of "MINUS", then the treeview 720 can show that Net Sales is equal to Total Revenues minus Cost of Goods Sold. "TIMES" and "DIVIDE" show multiplication and division of line items respectively.
"EQUALS" is the same as "plus," but shows the result of calculations of line items above it in order. "COMPUTED AT" is used for assumptions, such as percentages, interest rates, etc., while "MEMBER" denotes that the line item is simply a member of a collection of line items denoted by the parent line item. In this case, no assumption is made regarding arithmetic relationship, if any.
"COLLECTION" denotes that the line item has child members one level directly below it and denotes the concepts of sets or collections. "CHILD" illustrates that the line item is simply a "child" of the "parent" line item. It implies a sort of descent, derivation, or inheritance. No assumption is made regarding arithmetic relationship, if any.
"MEMO" is a line item that might be of interest to those looking at the sibling line items, but which is not necessarily related to the siblings, while "GENERAL" is a generic designator. "NOTE" is usually used for line items with text values, and "NONE" denotes that no relationship is implied. "ROOT" states that the line item is the root line item.

The tree view 720 also provides other capabilities. It allows the user to chart multiple line items 1206 by holding down the "shift" key. Although number browsing can be done in the data viewer 100 with a mouse, it is also possible for users to graph line items using arrow keys. When the focus is on the tree view 720, navigating up and down with the arrow keys automatically chart the selected line item 1206. If the "shift" key is held down, the succeeding data series will be added to the chart, rather than just replacing the previously selected series.

Figure 14C shows that, in one implementation consistent with the present invention, when a user right-clicks on a selected series, a pop-up menu 1424 is displayed showing the different types of documentation available. As shown in Figure 14D, selecting "description" shows a window 1426 containing information about the particular series, with the information being transferred from the tag form to a plain language, user-friendly format.

Figure 14E shows that, in one implementation consistent with the present invention, the user may graph multiple line items simply by selecting different "checkboxes" 1450 in line items in the tree view 720. In this implementation, the collection of selected line items is passed to the chart data object, which is then charted by the chart manager 714.

In one embodiment of the present invention, the selection of a contiguous set of lines that is less than all the lines in the tree view 720 is facilitated through a series of mouse events. First, a mouse down event is performed over a line (e.g., Bristol Center). The mouse is then dragged down (highlighting lines in the process) to the last line to be included in the group (e.g., Hamlet West Center). By delaying the mouse up event while retaining the cursor over the last line to be included, the user is able to signal the system (and the system is able to detect) that all elements in the selected/highlighted group are to be added. Accordingly, the system checks their corresponding check boxes.

The tree view 720 further provides an easy way of creating an RDML document 102 through drag-and-drop techniques. In conventional spreadsheet and DBMS applications, it is possible to create new tables from existing ones by selecting the data rows and cutting and pasting them, or by writing a SQL query. In the tree view 720 , creating a new RDML document 102 complete with necessary documentation can be performed by dragging and dropping the desired line items to an icon that represents the new document. Macros may also be created and manipulated in the same manner.

The data viewer 100 may also set macros to be executed automatically as the selected line items are changed. Known as "locking" of macros, this permits browsing through data in a transformed state.

Figure 14F shows that a line item may have a visual link associated with it that can be activated by a user. Upon activation of the link 1430, a list of associated hyperlinks 1432 is displayed for selection by the user. The link 1430 itself may indicate the number of associated hyperlinks 1432. The user may then select any of the hyperlinks to access the corresponding web site.

## IV.A.7. Spreadsheet View

Figure 16 depicts a screen shot that shows the spreadsheet view 724 in the lower half and the chart view 716 in the top half. The ultimate goal of many users is to get a set of numbers arranged into a format that will fit into an existing spreadsheet of theirs. While many programs offer cut and paste transfer of numbers from a source application to a target spreadsheet, such an approach still leaves the user with the task of manipulating, normalizing, aligning and transforming the data. A cut-and-paste operation is therefore usually followed by the manual recalculation and retyping of every number. The RDML data viewer 100 , by contrast, allows the user to make the necessary data transforms with mouse-driven operations before loading the numbers into a spreadsheet.

Referring to Figure 16, as line items 1206 are added to and subtracted from the chart view 716 or tree view 724, they are added to and subtracted from the spreadsheet 724. In addition, any changes to the lines plotted on the chart view 716 (as the result of applying a macro or combination of macros) are immediately reflected in the numbers in the spreadsheet 724 . This provides one-click addition of information to the spreadsheet view 724. Therefore, the way to copy data into the spreadsheet is simply to add them to the chart 716. It is also possible to copy an entire data document 102 or collection of data documents from the tree view 720 to the spreadsheet view 724, making any desired macro changes in the process.

Furthermore, RDML documents 102 may be created directly from the spreadsheet view 724. Whereas a data table is shown in the spreadsheet 724 (either created from another RDML document 102 or typed in from scratch), an RDML document may be created from that data in from the default specified by the user. This performs a task similar to an XML editor, but does so in a table format for the data, which is a more natural way to enter tabular data, not in the tree structure of current XML editors.

The spreadsheet view 724 may also directly read Internet data using a URL 1602. It will except formulas that use Xpointers (used by Xlink to specify destination of a link) to read in data from remote RDML documents 102 . In this manner, data may be incorporated into a single spreadsheet from a number of sources with no need to prepare query or provide custom programming code.

As shown in the class diagram below in Table 6, the spreadsheet manager 722 may be a simple object; the chart manager/chart data 714 and 716 combination may be the actual repositories of the data. The chart manager 714 feeds data to the spreadsheet manager 722 , which places the data in the correct cells. The spreadsheet manager 722 communicates directly with a graphical spreadsheet object 724 , which in the case of the RDML data viewer 100 may be a third-party component.

Table 6

SpreadSheetManager
-gridControl : GridDataSheet
-chartmanager: ChartManager
+fillFromChart() : void

## IV.A.8. Footnote View

Figure 17 is a screenshot which shows the footnote view 728 in the lower half. Generally, footnotes are a type of extended documentation that often get lost in transmitting and displaying numbers. Each line item has, as an attribute, a text string providing short footnotes which may be accessed by a mouse click (that is, by clicking the "Footnotes" tab 1702 at the bottom of the data viewer 100 ). As with the spreadsheet view 724 , the default value is for only the plotted series to
have their footnotes displayed. However, it is possible to display all of the footnotes of an RDML document 102 in the spreadsheet or style sheet report views.

The footnotes in the footnotes view 728 are intended to be simple, important reminders about the data. Typically these include usual periods (a fiscal year), adjustments, special problems and so forth. By default, the footnotes view 728 also shows the source of the RDML document 102 and the original underlying data. In one implementation consistent with the present invention, anything requiring more than 255 bytes is represented in an HTML page for which there is a hyperlink in the line item. These longer footnotes may be displayed in the HTML window as HTML documents.

Furthermore, as the user adds and subtracts series from a chart, the footnotes are automatically updated from the source data, even if there are multiple source documents. The footnotes in the RDML "Footnotes" tab also automatically update their numbers and labels to match the chart. This is in contrast to current spreadsheet and charting programs, which require that the user, not an automated lookup routine, supply the footnotes.

The macro manager 730 manipulates and implements macros in the data viewer 100. Macros allow a user to apply transformations or calculations to line items on a one-click basis, instead of having to write formulas or queries.

## IV.A. $9 \quad$ Tagging Wizard

The data viewer 100 may also create XML and RDML documents 102 from spreadsheet files. To this end, it may use a spreadsheet "wizard" to create tagged documents from a table of data in a spreadsheet. In one implementation consistent with the present invention, a wizard (using at least one dialog box) is created in a scripting language (e.g., Excel Visual Basic for Applications) allowing tabular data in a spreadsheet (e.g., Excel) to be used as the source for creating a tagged text document in the RDML format.

Figure 21 shows a flowchart illustrating steps used in a method for tagging information from spreadsheets in accordance with the present invention. Figures 22A-D depict exemplary screen shots for different stages in the document creation process.

Figure 22A shows that the user makes the data ready in tabular form (step 2102). Each row will become one line item; the first row 2202 will become the data for the "data_x" element 924 . The first column 2204 will populate the "li-legend" attributes of the respective line items. Note that most tabular data is already essentially in this form: the category (or time period) descriptions run across the top, the plain-language line item descriptions run down the left, and the values themselves fill the table.

The user then highlights the legends in the left most column 2204 and opens the first dialog box 2206 (step 2104), shown on Figure 22B, which will insert new columns for information in front of the data table, each column containing one type of attribute (step 2106).

Figure 22C shows that pressing "OK" on the dialog box 2206 creates the column and fills in the default data (step 2108). The wizard inputs the desired default values, saving most of the tedious typing, and the user checks the columns 2208 to see if changes need to be made. Appendix F shows exemplary code for routines that perform those functions. For each attribute, a column is added to the spreadsheet, the correct value of the attribute is selected (e.g., blank, hand-worded, or taken from the appropriate field in the dialog box), and the correct number of cells are filled with that value in the appropriate column 2208.

Figure 22D shows that the user then brings up the document creation dialog 2210 (step 2110). The user first uses the first entry field 2212 to specify the range of the data table (including the attribute columns). The "default" data file will be used to provide defaults for the rdmldocheader element 904 values, as well as other elements and attribute values in the line_item_set
element 906 (step 2112). Finally, the user fills out the remaining fields and presses "OK", which causes the tagged RDML document 102 to be created and saved (step 2114). As would be appreciated by one of ordinary skill in the art from this disclosure, the information gathered in the exemplary dialog boxes could instead be gathered in a single dialog box before creating RDMLcompliant data.

Appendix G provides code used in one implementation to create an RDML document 102. Generally, the process comprises steps of: (1) opening file and buffers for writing, (2) calling an element-creation method for each element in the DTD 702 which can be nested within others, and (3) saving and closing the files when finished.
IV.A.10. Aspects of RMDL Markup Documents

RDML is designed to be used to describe numbers across industries and domains. To do so, it provides a basic set of tags and a matching vocabulary to describe six aspects of a table of numbers: (1) value, (2) structure, (3) format, (4) semantics, (5) provenance, and (6) measurement.

Value denotes that numbers are transmitted as strings, with additional tags to define their data type, degrees of precision, handling of missing values, handling of nulls, and other directives to the end application.

Structure refers to a structuring of the data in within a table. RDML permits records to be arranged hierarchically within a table. Although not a standard approach for relational tables, this permits multiple levels of information to be placed in a single two-dimensional table. Users desire this, for example, when viewing financial statements, where a single line item (e.g., "Equipment leasing") may have several sub-components ("Autos,"'"Trucks," "Office Equipment.")

Format allows the application to present users with numbers in human readable form. The tags specify default formats for numbers, internationalization issues such as comma/decimal point handling, and default legends and chart titles. These formats may be changed by the users at run time.

Semantics refers to the fact that RDML provides generic tags in which indicators of the "meaning" of the numbers, including the vocabularies of other SGML and XML markup languages, can be placed. This allows RDML to act as a "wrapper" for data from other markup language documents. Semantic meaning is also conveyed in text-based attributes: legends, titles, labels, footnotes, etc.

Provenance is the documentation of various elements. RDML elements include information on the source of the data, who marked it up, timestamps and link addresses, and licensing information, etc.

Finally, in the context of generic numbers, "Measurement" refers to the characteristics necessary to describe the measurement aspects of the domain the number is taken from: units ("meters", "feet"), magnitude ("millions", "billions"), modifiers ("Adjusted for inflation, 1997 index"), and so forth. This permits macros to ensure the results of any calculation are adequately derived and described to the end user.

## IV.B. Graphical User Interface and HTML Browser

The screen shots of Figures 14A-D, 16 and 17 have been of the graphical user interface ("GUI") 734 which has several responsibilities. Generally, it creates itself and other visual components upon start-up of the application, and provides a central storage place for a minimal number of global variables of the application (such as file directories, etc.). Further, it responds to
user actions, such as mouse clicks and keyboard shortcuts, and repaints the screen, or portions of the screen, at appropriate moments.

The HTML browser 736 may be a third party component which displays HTML files. Although this browser has been designated as an HTML browser, one of ordinary skill in the art would appreciate from this disclosure that other browsers (e.g., an XML browser) can likewise be used. This component provides basic web-browsing capabilities and a way to view hyperlinks for RDML documents 102. Additionally, it acts as a display window for certain pages generated by the RDML data viewer 100 (such as RDML document source code, chart documentation, etc.)

## IV.C. Reusable Macro Markup Language

Figure 18 graphically shows elements of the RMML Document Type Definition 1800. In one implementation consistent with the present invention, RMML documents 104 conform to the rules provided by the DTD 1800. In accordance with one implementation of the present invention, an RMML DTD 1800 is shown at Appendix D. Attributes and elements of the DTD 1800 may also be seen in the full sample RMML document 104 in Appendix E. These two Appendices D and E are useful for examining specific attributes and elements of the RMML DTD 1800.

The RMMLDTD 1800 data structure is optimized to provide information needed in the order in which it is required, to reduce the learning on the part of new users to RMML Macro development, and to avoid unnecessary duplication. The first line of the DTD 1800 in Appendix D starts with '<?xml encoding = "UTF-8"?>' because XML documents start with a line that tells the client application, in this case, the RMML Interpreter 1980 (described below) and the data viewer 100 , what type of document it is and the version of XML.

With further reference to Figure 18, the DTD 1800 used to define RMML macro documents 104 is structured in a hierarchical tree structure of elements. Each element may include a list of attributes (displayed in Appendix D, but not shown on Figure 18) and/or an association with one or more sub-elements. As with the RDML DTD described above, some attributes may be required while others may be optional, depending on design parameters. At the highest level, the DTD 1800 has three elements descending from a root element, <macrodoc> 1802. The first element, <macro_header> 1804, contains the metadata for the document as a whole. The second, <macro_code> 1806 contains the source code expression to be evaluated, related variables, and instructions to the application regarding the graphical user interfaces for any parameters. The third, <macro_references> 1808 contains elements related to remote data (RDML documents 102) or other macros (RMML documents 104).

The macro_header element 1804 is designed to match, as closely as possible, the rdmldoc_header element of RDML documents 102. This saves learning time for developers and end users, and allows reusable code modules to be built for both purposes.

Nevertheless, in one implementation consistent with the present invention, the <macro_header> element 1804 contains several attributes that are unique. In this implementation, there are 8 unique attributes in the <macro_header> element 1804. The first of these is "macro_type." This attribute tells the application which general capability this particular macro requires within the context of that application. The application uses this attribute in a factory class 1912 to create the correct type of macro object for internal use. Two example types consistent with this implementation are: (1) "TSL" (time series line, a macro that works with time series to create a new line or lines on the chart), and (2) "TSO" (time series overlay, a macro that works with time
series to create a new overlay on the chart 716 , such as gray backgrounds behind certain time periods.)

The result_type attribute tells the RDML data viewer 100 how to display the results of any transformation created by the macro. There are, in one implementation, five permissible values for this string: "Replace Each," "Replace All," "Replace AB," "Add New," "Add Annotation," and "Add Overlay." Replace Each removes every line on the chart 716 in the RDML data viewer 100, and replaces it with the transformed version. For example, if there are four series on the chart, all denominated in "miles", and user selects a macro "to kilometers", then every line will be converted to kilometers, the miles lines erased, and the kilometers lines placed on the chart in their place.

Replace All is used where all current lines are being replaced by one line. For example, if $A$ and $B$ are charted, a macro called " $B$ as $\%$ of $A$ " would replace them with a single line. Replace AB is a special case of Replace All where there are only two lines charted. Add New adds a line to whatever is plotted. For example, a macro called "Average" might draw a line through the existing line at the average level. Add Annotation adds a label with a pointer to a certain value on a chart (e.g., "2-3 Stock Split"). Add Overlay adds a shaded area behind certain regions of the chart.

The attribute "rdmldoc_type" designates the type of RDML Document 102 with which the macro is designed to work. Valid strings for this attribute are TS, CT and XY, corresponding to the types of RDML Documents 102 .

The elements <macro_source> 1810 and <license_terms> 1812 are identical to, and play the same role as, <data_source> 908 and <license_terms> 914 in the RDML Document Type Definition 702. The <documentation> 1814 element is a container for two sub-elements: <macro_description> 1816 and <help_page> 1818. The <macro_description> element contains a short string (e.g., under 50 characters) which describes the basic functionality of the macro. It appears in the description
label of the parameters panel 1960 (shown in Figures 20A-D and described below) For users desiring a more detailed description of the macro, the <help_page> 1818 element contains a text block that provides this information. This text block can be read by the data viewer 100 in an HTML pane as part of the regular help system. This text block is intended to provide information on all aspects of the macro that might be of interest to the user: its use, its code, its parameters, and its inputs.

The second top-level element is <macro_code> 1806. This section contains the actual source code and related variables. The <code> 1820 element contains one or more expressions which evaluate to a transformation of certain numbers in the RDML data viewer 100. In one implementation consistent with this invention, the transformations apply to the chart view 716 in the RDML data viewer 102. But transformations may also be applied to the treeview 720 or other views.

The expression(s) in this element are formulas similar to those seen in spreadsheet formulas: the expression is a series of (1) operators, (2) literals, (3) variables, (4) functions, and (5) miscellaneous expression delimiters. The main difference from traditional spreadsheet formulas is that the variables may stand for either scalars or vectors, depending on the source or the context. A sample expression follows:

A * $(\mathrm{B}+2000)-\operatorname{IF}(\mathrm{A}>3,12,45)$
Operators are: addition ( + ), subtraction( () , multiplication(*), division(), less than (<), greater than ( $>$ ), or (|), and (\&). The operators have different meanings based on the types of the subexpressions they work on. Operating on two vectors is interpreted as element-by-element operation on the two vectors. Thus, $A * B$, where $A$ and $B$ are vectors, is $C=\{a l * b 1, \ldots$ an $*$ bn $\}$.

Literals are defined either directly in the expression (e.g., " 46 "), or assigned to a variable (e.g., "pi = 3.14156").

Variables can come from one of six different places in RMML. First, they can be defined as variables directly in the RMML document 104. This is done by creating a <variable> element and assigning it a default value. Second, variables can be associated with graphical components in the parameters panel 1960 in the RDML data viewer 102. In one implementation consistent with this invention, there are four different types of "gui components." These are listed and described below under <gui> element 1824. Third, a variable can be defined from a line item element identical to those found in an RDML document 102. Because they are identical, a line item can be simply cut and pasted from an RDML document 102 to an RMML document 104. Fourth, a variable can be drawn from a remote source. In one implementation consistent with the present invention, that remote source can be a hyperlink to a line item in an RDML document 102. This is accomplished by using an Xpointer hyperlink in the "href" attribute of a variable element. Fifth, a variable can be defined as one of the series of data that is currently plotted on the chart. In one implementation in accordance with the present invention, there can be a maximum of six series on the chart; each can be accessed by using the reserved words A, B, C, D, E, and F. As would be appreciated by one of ordinary skill in the art, any number of uniquely definable series may be used. If the result type attribute of a macro is "Replace All", then the expression is evaluated once for each series, with A being the series currently being transformed. Sixth, variables can be taken from an RDML document 102 that is already loaded in the RDML data viewer 100 . In this case, the expression indicates the URL and a class string that can be found in one of the li_class elements of a line item element. The expression then uses that line item as the variable value.

Functions that are built in are provided by the interpreter 1980 in one implementation consistent with the present invention and are a principal means of extending the language. These
are in the form "FUNCTION_NAME(expression)". Functions include: $\operatorname{IF}(x, y, z) ; \operatorname{SUM}(x)$; AVERAGE(x); COUNT(x); MIN(x); MAX(x) and so forth.

Miscellaneous delimiters are implemented by separating expressions by a semi-colon (;). This indicates that the expressions are to be evaluated in order. Expressions can also be grouped in parentheses to tell the interpreter 1980 how to evaluate sub-expressions.

Any string appearing in the <instructions> element 1822 will be displayed in the parameters panel 1960 to give the user any last minute instructions or suggestions. The <gui> element 1824 contains any number of elements that describe graphical components. These graphical components will appear in the parameters panel 1960 to give the user the ability to make changes to the macro's parameters. Four gui components (not shown) may be: <comp_vector>, <comp_list>, <comp_rbutton>, and <comp_ipanel>. The <comp_vector> is a vector variable, where the individual values of the vector can be viewed in a scrolling list box. A <comp_list> element is a scrolling list; each time the user clicks on a different item, the value of the variable attached to that component is changed to the value associated with that item. A <comp_rbutton> is a collection of radio buttons; each is associated with a different value. As the user clicks on different buttons, the value associated with the component itself is changed, and the macro is re-run. A <comp_ipanel> is an input field that allows the user directly to input changes to the macro.

Generally, macros are not meant to run blindly on all data. First, the interpreter 1980 checks if the macro has any "qualifiers" that must be checked against the data. If there are any strings in the <qualifiers> element 1826 of the RMML document 104, these are checked against strings in the <li_class> element 930 or other elements or attributes of the data. If the data is qualified, the interpreter 1980 will proceed with running the macro. For example, if the <qualifiers> element 1826
of the macro specifies "li_unit=currency", then the macro will only be run if the li_unit attribute of the data being operated on is a currency value.

The <error_handling> element 1828 holds error messages that can be displayed by the RDML data viewer 100 if there are problems of an indicated type. The <testing> element 1830 holds instructions to testing applications regarding automated testing routines. These applications undertake basic unit testing such as checking for out-of-bounds problems, missing value problems, divide-by-zero issues, etc.

The third major section of the RMML document 104, the <macro_references> element 1808 holds references to outside macros and data sets that might be incorporated into the macro by reference. The two sub-elements are, accordingly, the <rmmldocs> element 1832 and the <data_docs> element 1834.

## IV.C.1. RMML Macro Package

Generally, there are three major areas of the RMML Macro Package: the RMML document handling classes (Figure 19A), the graphical interface (Figure 19B), and the macro interpreter (Figure 19C). In one implementation consistent with the present invention, this package of software classes connects to the RDML data viewer 100 in only a few places: it gets data from the ChartManager 714/ChartData 715 objects, posts its graphical components through the GUI 734 object, and can access the loaded RDML documents 102 in the Primary Data Store 712.

## RMML Document Handling

Figure 19A shows objects responsible for managing the process of RMML document handling: loading documents, creating internal macro objects from them, cataloging them and caching them, and making them ready for use as objects. The RMMLDoc Reader 1910 locates an RMML Document 104 (either locally or over the internet) passes it to an XML Parser 706 (which
may be a third-party component), relays error messages if any to the RDML data viewer 100, creates an internal representation of the RMML Document 104 as an RMMLDoc 1906 object, and places a reference to the RMMLDoc 1906 in the RMML_Lib 1908.

The RMMLDoc 1906 can be structured in two ways: either wrapping a TXDocument object to arrive at an RMMLDoc 1906, or creating a new RMMLDoc 1906 object with the data from the TXDocument.

The RMMLDoc 1906 object contains methods for accessing individual elements and attributes of the document in a way that is easy to comprehend in the context of the macro package. The RMML_Lib 1908 object is a cache for loaded and active RMMLDoc objects 1906.

The RMMLDoc 1906 is a raw collection of data about a macro -- its formula, its help text, etc. -- and generally does not act on data sets to transform them. The macro's capabilities first have to be used to create an internal object (macro interface 758) that is capable of doing the calculations. This internal macro object 758 is created by a collaboration between the MacroLibrary 1926 object (which is a cache of the graphic objects for the active macros) and the MacroFactory 1912 (which determines which type of internal macro to create.)

There are four types of internal macros: time series (TS), category (CT), xy plot (XY) and overlay (OVERLAY). The macro_type attribute is used by the MacroFactory 1912 to create the correct type of internal macro: Macro_TSL 1918, Macro_CT 1920, Macro_XY 1922, and Macro_OVER 1924 respectively. The MacroAdapter 1916 class performs the work of the macros.

Table 7

MacroAdapter
-mm : MacroManager
-mem : Memento
-rmmldoc: RMMLDoc
-eval : Evaluator
-mag : MacroAssumptionGroup
-desc : MacroDescription
-isChangedFlag : boolean
-result_type : int
-curr_li : int
-series_label_modifier : String
-series_label_type : String
+createMemento() : void   +evaluateFormula(strExpr : String, index : int) : Vector   +initMacro() : void   +performTransiormation(result_type : int) : void   +replaceVariable(strExpr : String, index : int) : String   +resetMemento(mem : MacroMemento) : void   +undoTransformation() : void   +updateChartTitle() : void   +updateLabels() : void   +updateLegend() : void   +updateYAxisTitle() : void

Described below are class methods shown in Table 7 of a MacroAdapter object 760 in accordance with one implementation consistent with the present invention. First, MacroAdapter() is the constructor that creates a MacroAdapter 760 object. Before a macro is run, it has a chance to make a copy of the data that it is about to transform so that undo operations can be performed. The createMemento() method takes a snapshot of the data plotted on the chart by copying the ChartData object 715 to a Memento object.

Also, before a macro is run, the method initMacro() is run and gives the macro a chance to load any remote data or macro code. The replaceVariable() method runs the macro on multiple series on a chart. For example, if the result_type is "Replace Each" and there are four series charted on the chart, the macro will be run four times. The first time, A in the formula represents the first series, the second time it represents the second series and so forth. The method
performTransformation() evaluates the transformation string, and updates the various titles and legends. An important part of performTransformation()'s code is to determine the result_type of the macro and call the evaluateFormula() method in the correct manner. For "Replace Each," it is called once for each series, while for "Replace All," it is run only once.

The performTransformation() method also calls the four update methods: updateChartTitle(), updateLabels(), updateLegend() and updateYAxisTitle(). Each of these modifies the relevant strings in the ChartData object 715 so it can be passed on to the chart.

## RMML Graphical Interface

Figure 19B illustrates objects responsible for managing the process of creating, managing, and handling events from the graphical user interface 734. Figure 20A shows a screen shot of the RDML data viewer 100; the NewMacroPanel 732 is displayed in the lower half of the screen. The available macros are displayed in individual windows in the MacroLibrary panel 1926 on the left side of the lower panel. The right side of the macro panel 732 is the macro information panel 2002 which holds the macro description panel 1958 and the parameter panel 1960.

The NewMacroPanel 732 may be a subclass of a JPanel 1942 in Java's Swing set of classes. Those skilled in the art will be able to chose the appropriate class to use for other major platforms. The left side of the NewMacroPanel 732 is a frame for a multiple document interface (in this case, a Desktop for JinternalFrame objects from Java's Swing Set). Each MacroLibrary 1926 that is opened created a new internal frame, which allows users to select macros from multiple libraries at the same time.

When a MacroLibrary 1926 is opened, all macros within it are loaded and registered. "Registration" is a series of methods wherein the macro's variables are found in various elements
of the RMMLDoc 104, and graphical representations of these variables are built for inclusion in the parameter panel 1960.

The graphical components for all of the variables associated with a set of macros are created in the MacroAssumptionGroup 1944 class. This class has a factory method that examines the attributes of the variables reported by the RMMLDoc 104 (variable name, variable value, gui type, default value, etc.) and creates the appropriate MacroGUI class: MacroGUI_List 1952 (see Figure 20A), MacroGUI_RadioButton 1954 (see Figure 20B), MacroGUI_Vector 1956 (see Figure 20C), or MacroGUI_Default 1950 (see Figure 20D). Each of these graphical compents appears differently in the parameter panel 1960 as shown in the screen shots noted.

The registration of macros by the MacroLibrary 1926 also involves creating an MVariable 1946 object to go with each variable, and adding these to a cache of available Mvariables 1946. These Mvariable 1946 objects are used in the actual evaluation of expressions. The registration process also involves registering the MacroGUI 1948 objects as sources for events that the MacroManager 1980 object can use to trigger the running of a macro. Mvariables 1946 encapsulate the various characteristics of a variable: its value, default, and source.

The description panel 1958 and the parameter panel 1960 are populated with graphical components and text when a particular macro is selected in the treeview 720 listing of a MacroLibrary1926 internal frame. The macro that is selected provides the description text, the various labels and the MacroGUI 1948 components.

## RMML Interpreter

The MacroManager object 730 is responsible for detecting that a macro has been selected or a parameter changed, getting the various data sets and variables called up and made available to an

Evaluator object 1984, and that the data set charted (or showing on the treeview 720) is obtained and transformed and sent back to be recharted on the chart 716 or relisted on the treeview.

ChartData 715 contains the data from the current chart 716 (or active treeview 720 , depending on the type of the macro). It makes this data available as just another variable to the Evaluator object 1984, and takes the final result of the Evaluator object 1984.

The Evaluator 1984 evaluates the string expression(s) in the <code> element 1920 of the RMML document 104, or the various expressions from the macros that have been selected. The expression is broken up into tokens by the Tokenizer classes 1994. These tokens are the various operators, variables, literals, functions and other control symbols used in the RMML expression language detailed above. From these tokens, the Formula object 1990 builds a parse tree, by recursive descent, made up of FormulaNode 1992 objects created from the tokens. The FormulaNode 1992 objects evaluate themselves using the resolver objects VariableResolver 1986 and FunctionResolver 1988. These resolvers in turn call the Evaluator objects 1984 to give them the current value of a variable or a function. For example, the FormulaNode 1982 evaluation process may have an "A" token; the Evaluator object 1984 knows that this means series A on the chart, and uses the vector of data (it could be an array or other data structure) currently found in the chart 716. The formula exception 1996 relays errors associated with the processing of a function.

The foregoing description of an implementation of the present invention has been presented for purposes of illustration and description. It is not exhaustive and does not limit the present invention to the precise form disclosed. Modifications and variations are possible in light of the above teaching or may be acquired from practicing of the present invention. The scope of the present invention is defined by the claims and their equivalents.

```
 APPENDIX A: RDML Document Type Definition ("DTD")
<?xml encoding="UTF-8"?>
<!-- The root element: a whole portfolio of data is an "rdmldoc" -->
<!ELEMENT rdmldoc (rdmldoc_header, line_item_set)>
<!-- RDMLDOC_HEADER -->
<!-- Information about the rdmldoc. An rdmldoc consists of an rdmldoc_header
 and a line_item_set. Line items in the line_item_set share a
 common data structure.
->
<!ELEMENT rdmldoc_header (data_source?, formatting_source?, rdmldoc_source?,
 license_terms?, linkset?)>
<!ATTLIST rdmldoc_header
 rdmldoc_ID
 doc_title
 timestamp
 version
 expiration
 freq_of_update
 num_line_items
 num_datapoints
 x_indexes
 first_li_withdata
<!ELEMENT data_source (contact_info+)>
<!ELEMENT formatting_source (contact_info+)>
<!ELEMENT rdmldoc_source (contact_info+)>
<!ELEMENT license_terms (contact_info?, linkset?)>
<!ATTLIST license_terms
copyright_cite CDATA \#REQUIRED
holder CDATA #REQUIRED
license_type CDATA #IMPLIED
warranty CDATA #IMPLIED
disclaimer CDATA #IMPLIED
terms CDATA #IMPLIED
date CDATA #IMPLIED
email CDATA #IMPLIED
state CDATA #IMPLIED
```

country	CDATA	\#IMPLIED >
<!ELEMENT contact_info (\#PCDATA)>		
<!ATTLIST contact_info		
role	CDATA	\#REQUIRED
name	CDATA	\#IMPLIED
company	CDATA	\#IMPLIED
address	CDATA	\#IMPLIED
city	CDATA	\#IMPLIED
state	CDATA	\#IMPLIED
zip	CDATA	\#IMPLIED
country	CDATA	\#IMPLIED
email	CDATA	\#IMPLIED
form	CDATA	\#IMPLIED
href	CDATA	\#IMPLIED
comments	CDATA	\#IMPLIED >
<!ELEMENT linkset (link*)>		
<!ATTLIST linkset		
form	CDATA	\#FIXED 'extended'
href	CDATA	\#IMPLIED >
<!ELEMENT link (\#PCDATA) >		
<!ATTLIST link		
form	CDATA	\#FIXED 'simple'
href	CDATA	\#REQUIRED
behavior	CDATA	\#IMPLIED
content-role	CDATA	\#IMPLIED
content-title	CDATA	\#IMPLIED
role	CDATA	\#IMPLIED
title	CDATA	\#IMPLIED
show	CDATA	\#FIXED 'new'
actuate	CDATA	\#FIXED 'user' >
<!-- LINE_ITEM_SET -->		
<!-- Information about the collection of line items -->		
<!ELEMENT line_item_set (data_x, li_class_set?, linkset?, line_item+) >		
<!ATTLIST line_item_set		
line_item_set_type	CDATA	\#REQUIRED
time_period	CDATA	\#REQUIRED
character_set	CDATA	\#IMPLIED
missing_values	CDATA	\#IMPLIED

```
 null_values CDATA #IMPLIED
 zero_values CDATA #IMPLIED
 dates_values CDATA #IMPLIED
 percentages CDATA #IMPLIED >
<!ELEMENT data_x (#PCDATA) >
<!ATTLLIST data_x
 x_title CDATA #REQUIRED
 format CDATA . #REQUIRED
 x_notes CDATA #IMPLIED
 x_desc CDATA #IMPLIED
 x_prec
 x_unit
 x_mag
 x_mod
 x_measure
 x_scale CDATA #REQUIRED
 x_adjustment CDATA #REQUIRED
 x_links CDATA
 CDATA
 CDATA
 CDATA
 CDATA
 CDATA
 x_scale CDATA #REQUIRED
 x_adjustment CDATA #REQUIRED
 x_links CDATA
#REQUIRED
#REQUIRED
#REQUIRED
 #REQUIRED
 #REQUIRED
#REQUIRED
 #REQUIRED >
<!ELEMENT li_class_set (li_class+)>
<!ELEMENT li_class (#PCDATA)>
<!ATTLIST li_class
 class_name CDATA #REQUIRED
 parent_class CDATA #REQUIRED
 form CDATA #FIXED 'simple'
 href CDATA #IMPLIED
 description CDATA #IMPLIED >
<!-- LINE_ITEM -->
<!-- Information about the Line Item -->
<!ELEMENT line_item (data_x?, data_y, linkset?, note_set?)>
<!ATTLIST line_item
```

li_ID CDATA \#REQUIRED
li_legend CDATA \#REQUIRED
li_title CDATA \#REQUIRED
li_cat CDATA \#IMPLIED
y_axis_title CDATA \#REQUIRED
level CDATA \#REQUIRED
format CDATA \#REQUIRED
relation CDATA \#REQUIRED

```
 li_notes CDATA
 li_desc
 li_prec
 li_unit
 li_mag
 li_mod
 li_measure
 li_scale
 li_adjustment
 li_aggregation
 CDATA
 CDATA
<!ELEMENT data_y (#PCDATA)>
<!ELEMENT analysis (linkset?)>
<!ELEMENT note_set (note+)>
<!ELEMENT note (#PCDATA)>
<!ATTLIST note
 note_type CDATA #IMPLIED >
```


## APPENDIX B: Sample RDML Document

```
<xdmldoc>
 <rdmldoc_header
 rdmldoc_ID = "rdml_thomson_cs1"
 doc_title = "Computer Services Companies"
 timestamp = "1999-01-19T23:00:00"
 version = "1.0.0"
 expiration = "2000-01-19T23:00:00"
 freq_of_update = "Annual"
 num_line_items = " 0"
 num_datapoints = "0"
 x_indexes = "-9, -8, -7"
 first_li_withdata = "3" >
<data_source>
 <contact_info
 role = "Data Source"
 name = "Russell T. Davis"
 company = "RDML, Inc."
 address = "2 Wisconsin Circle, Suite 700"
 city = "Chevy Chase"
 state = "MD"
 zip = "20815"
 country = "USA"
 email = "rt_davis@sprynet.com"
 xlink:form = "simple"
 href = "http://www.rdml.com"
 comments = "">
<contact_info>
<data_source>
<formatting_source>
<contact_info
 role = "Formatting Source"
 name = "Russell T. Davis"
 company = "RDML, Inc."
 address = "2 Wisconsin Circle, Suite 700"
 city = "Chevy Chase"
 state = "MD"
 zip = "20815"
 country = "USA"
 email = "rt_davis@sprynet.com"
 xlink:form = "simple"
 href = "http://www.rdml.com"
 comments = "">
```

```
 </contact_info>
</formatting_source>
<rdmldoc_source>
 <contact_info
 role = "RDMLDoc Source"
 name = "Russell T. Davis".
 company = "RDML, Inc."
 address = "2 Wisconsin Circle, Suite 700"
 city = "Chevy Chase"
 state = "MD"
 zip = "20815"
 country = "USA"
 email = "rt_davis@sprynet.com"
 xlink:form = "simple"
 href = "http://www.rdml.com"
 comments = "">
 </contact_info>
</rdmldoc_source>
<license_terms
 copyright_cite = "Copyright 1998, RDML, Inc. All Rights Reserved"
 holder = "RDML, Inc."
 license_type = "Payment Per Download"
 warranty = "No warranty is expressed or implied. Use this data at your own risk."
 disclaimer = "This data is provided 'as-is'. The provider assumes no
responsibility for its use or misuse."
 terms = "$1 per RDMLDoc download"
 date = "1999.0123000000.00"
 email = "license@rdml.com"
 href = "http://www.rdml.com" state = "MD" country = "USA" >
<contact_info
 role = "RDMLDoc Source"
 name = "Russell T. Davis"
 company = "RDML, Inc."
 address = "2 Wisconsin Circle, Suite 700"
 city = "Chevy Chase"
 state = "MD"
 zip = "20815"
 country = "USA"
 email = "rt_davis@sprynet.com"
 xlink:form = "simple"
 href = "http://www.rdml.com"
 comments = "" >
</contact_info>
<license_terms>
```

```
</rdmldoc_header>
<line_item_set
 line_item_set_type = "Category"
 time_period = ""
 character_set = ""
 missing_values = ""
 null_values = ""
 zero_values = ""
 dates_values = ""
 percentages = "" >
<data_x
 x_title = "Company"
 format = ""
 x_notes = ""
 x_desc = ""
 x_prec = ""
 x_unit = ""
 x_mag = ""
 x_mod = ""
 x_measure = ""
 x_scale = ""
 x_adjustment = ""
 x_links = "" >
AUD, BSYS, CEN, CSC, CVG, DST, EDS, FISV, GLC, PAYX, TSG, SDS </data_x>
 <li_class_set>
 <li_class
 class_name = ""
 parent_class = ""
 xlink:form = "simple"
 href = ""
 description = ""> <li_class>
 <li_class set>
 <linksel>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user" > <link>
```

```
<linkset>
<line_item
 li_DD = "1"
 li_legend = "Computer Services Companies"
 li_title = ""
 li_cat = ""
 y_axis_title = ""
 level = "1"
 format = ""
 relation = "Parent"
 li_notes = ""
 li_desc = ""
 li_prec = ""
 li_unit = "
 li_mag = ""
 li_mod = ""
 li_measure = ""
 li_scale = ""
 li_adjustment = "">
 <data_y>
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = "'
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> <llink>
 <linkset>
<line_item>
<line_item
 li_ID = "2"
 li_legend = "Stock Performance"
 li_title = "Stock Overview"
 li_cat = "
 y_axis_title = ""
 level = "2"
```

```
 format = ""
 relation = "Parent"
 li_notes = ""
 li_desc = ""
 li_prec = ""
 li_unit = ""
 li_mag= ""
 li_mod = ""
 li_measure = ""
 li_scale = ""
 li_adjustment = "">
 <data_y>
 </data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> </link>
 </linkset>
<line_item>
<line_item
 li_ID = "3"
 li_legend = "Stock Price (12/31/98)"
 li_title = "Stock Overview"
 li_cat = ""
 y_axis_title = "$ per share (12/31/98)"
 level = "3"
 format = "#, ##0.00; (#, ##0.00)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "2"
 li_unit = "$"
 li_mag = "0"
 li_mod = "per"
```

```
 li_measure = "share"
 li_scale = ""
 li_adjustment = "">
 <data_y>
40.1, 51.63, 69.81, 64.44, 22.13, 67.06, 50.19, 51.44, 43.5, 51.44, 44.5, 39.69,
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> <link>
 <linkset>
 <line_item>
 <line_item
 li_ID = "4"
 li_legend = "Shares Outstanding"
 li_title = "Stock Overview"
 li_cat = ""
 y_axis_title = "Shares outstanding"
 level = "3"
 format = "#, ##0; (#, ##0)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "0"
 li_unit = "shares"
 li_mag = "6"
 li_mod = ""
 li_measure = ""
 li_scale = ""
 li_adjustment = "">
 <data_y>
627, 27, 74, 162, 145, 64, 494, 85, 105, 166, 131, 107,
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
```

```
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user" > <link>
<linkse\
 <line_item>
 <line_item
 li_D = "5"
 li_legend = "% Institutional Holdings"
 li_title = "Stock Overview"
 li_cat = ""
 y_axis_title = "% of outstanding shares"
 level = "3"
 format = "0.00%; (0.00%)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "2"
 li_unit = "%"
 li_mag = "0"
 li_mod = "of"
 li_measure = "outstanding shares"
 li_scale = ""
 li_adjustment = "">
 <data_y>
0.65,0.8, 0.75, 0.64, 0, 0.44, 0.49, 0.67, 0.25, 0.53, 0.13,0.71,
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> <link>
```

```
<linkset>
```

```
<line_item>
<line_item
 li_ID = "6"
 li_legend = "Market Capitalization"
 li_title = "Stock Overview"
 li_cat = ""
 y_axis_title = "$ in Millions"
 level = " 3"
 format = "#, ##0; (#, ##0)"
 relation = "ChildStyle"
 li_notes=""
 li_desc = ""
 li_prec = "0"
 li_unit = "$"
 li_mag = "6"
 li_mod = "in"
 li_measure = ""
 li_scale = ""
 li_adjustment = "">
 <data_y>
25142.7, 1394.01, 5165.94, 10439.28, 3208.85, 4291.84, 24793.86, 4372.4, 4567.5,
8539.04, 5829.5, 4246.83,
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user" > <llink>
 <linkse\
<line_item>
<line_item
 li_ID = "7"
 li_legend = "Reported EPS"
 li_title = "Stock Overview"
 li_cat = ""
```

```
 y_axis_title = "Earnings per share"
 level = "3"
 format = "#, ##0.00; (#,##0.00)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "2"
 li unit = "$"
 li_mag = "0"
 li_mod = "per"
 li_measure = "share"
 li_scale = ""
 li_adjustment = "">
 <data_y>
1.13, 2.05, 1.9, 2.1, 0.71, 1.48, 1.7, 1.35, 1.86, 0.82, 1.72, 1.17,
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> <link>
 <linkset>
<line_item>
 <line_item
 li_ID = "8"
 li_legend = "Eamings"
 li_title = "Stock Overview"
 li_cat = ""
 y_axis_title = "$ in Millions"
 level = " 3"
 format = "#, ##0; (#,##0)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "0"
 li_unit = "$"
 li_mag = "6"
```

```
 li_mod = "in"
 li_ measure = ""
 li_scale ='
 li_adjustment = "">
 <data_y>
708.51, 55.35, 140.6, 340.2, 102.95, 94.72, 839.8, 114.75, 195.3, 136.12,
225.32, 125.19,
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title =
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> <link>
 <linkset>
<line_item>
<line_item
 li_ID = "9"
 li_legend = "Cash Flow per share"
 li_title = "Stock Overview"
 li_cat = "'
 y_axis_title = "$ per share"
 level = "3"
 format = "#, ##0; (#,##0)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "2"
 li_unit = "$"
 li_mag = "0"
 li_mod = "per"
 li_measure = "share"
 li_scale = ""
 li_adjustment = "">
<data_y>
1.41, 2.13, 3.71, 4.95, 1.39, 3.18, 4, 1.98, 3.44, 0.96, 3.2, 2.5,
 <data_y>
 <linkset>
```

```
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> <link>
 <linkset>
```

<line_item>
<line_item
li_ID = "10"
li_legend = "Cash Flow"
li_title = "Stock Overview"
li_cat $="$
y_axis_title = "\$ in Millions"
level = " 3 "
format = "\#, \#\#0; (\#, \#\#0)"
relation = "ChildStyle"
li_notes = "'
li_desc $=$ " $"$
li_prec = "0"
li_unit = "\$"
li_mag = "6"
li_mod = "in"
li_measure = ""
li_scale = " "
li_adjustment = "">
<data_y>
884.07, 57.51, 274.54, 801.9, 201.55, 203.52, 1976, 168.3, 361.2, 159.36, 419.2,
267.5,
</data_y>
<linkset>
$<$ link
xlink:form = "simple"
href = "http://www.rdml.com"
behavior = ""
content-role = " "
content-title = ""
role $=$ "Original Data Sources"

```
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user"> <link>
<linkset>
<line_item>
<line_item
 li_ID= "11"
 li_legend = "Price/Earnings Ratio (PE)"
 li_title = "Stock Overview"
 li_cat = ""
 y_axis_title = "P/E Ratio"
 level = "3"
 format = "#, ##0; (#,##0)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "2"
 li_unit = "P/E Ratio"
 li_mag = "0"
 li_mod = ""
 li_measure = ""
 li_scale = ""
 li_adjustment = "">
 <data_y>
35.4867256637168, 25.1853658536585, 36.7421052631579, 30.6857142857143,
31.169014084507, 45.3108108108108, 29.5235294117647, 38.1037037037037,
23.3870967741935, 62.7317073170732, 25.8720930232558, 33.9230769230769,
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user" > </link>
 <linkset>
```

```
<line_item>
<line_item
 li_D = "12"
 li_legend = "Estimated 5-year growth"
 li_title = "Stock Overview"
 li_cat = ""
 y_axis_title = "% growth"
 level = "3"
 format = "0.00%;(0.00%)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "2"
 li_unit = "%"
 li_mag = "0"
 lit_mod = ""
 li_measure = ""
 li_scale = ""
 li_adjustment = "">
 <data_y>
0.15,0.18, 0.2, 0.22, 0.23, 0.22, 0.15, 0.2, 0.15, 0.3, 0.13,0.2,
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = "'
 content-title = "'
 role = "Oríginal Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user" > <link>
<linkset>
```

```
<line_item>
<line_item
 li_D = "13"
 li_legend = "Return on Equity"
 li_title = "Stock Overview"
 li_cat = ""
 y_axis_title = "Earnings as % of Book Value"
 level = "3"
 format = "0.00%; (0.00%)"
 relation = "ChildStyle"
 li_notes = ""
 li_desc = ""
 li_prec = "2"
 li_unit = "%"
 li_mag = "0"
 li_mod=""
 li_measure = ""
 li_scale = ""
 li_adjustment = "">
 <data_y>
 <data_y>
 <linkset>
 <link
 xlink:form = "simple"
 href = "http://www.rdml.com"
 behavior = ""
 content-role = ""
 content-title = ""
 role = "Original Data Sources"
 title = "RDML Formatted Source Table"
 show = "new"
 actuate = "user" > <link>
 <linkseb
 <line_item>
 <line_item_set>
</rdmldoc>
```


## APPENDIX C: UnitList XML document

```
<?xml version="1.0" encoding="utf-8" ?>
<unitlist>
<unit name="inch">
 <conversion
 conv_target = "centimeter"
 conv_factor = "2.5400050"
 conv_constant = ""
 conv_log = ""
 conv_source = "FGM"
 conv_href = "">
 </conversion>
 <type>Length</type>
 <subtype>Linear</subtype>
 <plural>inches</plural>
 <alias>in</alias>
 <desc>Approximately the width of a man's thumb.<desc>
 <icon href="inch.gif"></icon>
</unit>
<unit name="foot">
 <conversion
 conv_target = "meter"
 conv_factor = "0.30480060"
 conv_constant = ""
 conv_log = ""
 conv_source = "ISO"
 conv_href = "">
 </conversion>
 <type>length</type>
 <subtype>Linear</subtype>
 <plural>feet</plural>
 <alias>ft</alias>
 <desc>Originally, the average length of a human foot</desc>
 <icon href="foot.gif"></icon>
</unit>
<unit name="yard">
 <conversion
 conv_target = "meter"
 conv_factor = "1.082"
 conv_constant = ""
 conv_log = ""
 conv_source = "ISO"
```

```
 conv_href = "">
 </conversion>
 <type>length</type>
 <subtype>Linear</subtype>
 <plural>yards</plural>
 <alias></alias>
 <desc>Three feet</desc>
 <icon href="yard.gif"></icon>
</unit>
<unit name="meter">
 <conversion
 conv_target = "meter"
 conv_factor = "1.0"
 conv_constant = ""
 conv_log = "'
 conv_source = "ISO"
 conv_href = "">
 </conversion>
 <type>length</type>
 <subtype>Linear</subtype>
 <plural>meters</plural>
 <alias>m,mtr</alias>
 <desc>One thousandth of a kilometer</desc>
 <icon href="meter.gif"></icon>
<unit>
<unit name="mile">
 <conversion
 conv_target = "kilometer"
 conv_factor = "1.6093472"
 conv_constant = ""
 conv_log=""
 conv_source = "FGM"
 conv_href = "">
 <conversion>
 <type>length</type>
 <subtype>Linear</subtype>
 <plural>miles</plural>
 <alias></alias>
 <desc>English surveying unit, set to be equal to }8\mathrm{ furlongs.</desc>
 <icon href="mile.gif"></icon>
</unit>
<unit name="dollar">
```

<conversion
conv_target = "pound"conv_factor = "1.312"conv_constant $=$ " $"$
conv_log = " "
conv_source = "ISO"
conv_href = "">
</conversion>
<type>currency</type>
<plural>pounds</plural>
<alias>sterling</alias>
<desc>British pound sterling. </desc>
<icon href="pound.gif"></icon>
</unit>
<unit name="Deutschmark">
<conversion
        conv_target = "dollar"
        conv_factor = "1.732"
        conv_constant = ""
        conv_log = ""
        conv_source = "ISO"
        conv_href = "">
</conversion>
<type>currency</type>
<plural>Duetschmarks</plural>
<alias>Marks</alias>
<desc>German Deutschmarks</desc>
<icon href="marks.gif"></icon>
</unit>
<unit name="Francs">
<conversion
        conv_target = "dollar"
        conv_factor = "0.812"
        conv_constant = ""
        conv_log = " "
        conv_source = "ISO"
        conv_href = "">
</conversion>
<type>currency</type>
<plural>francs</plural>
<alias>ff<dalias>
<desc>French francs</desc>
<icon href="francs.gif"></icon>
</unit>
<unit name="acres">
<conversion
conv_target = "square meter"
conv_factor = "5125"
conv_constant $=$ " $"$
conv_log = ""
conv_source = "ISO"
conv_href = "">
</conversion>
<type>area</type>
<plural>acres</plural>
<alias>acr</alias>
<desc>In medieval times, the amount of land one man could plow in one day.</desc> <icon href="acre.gif"></icon>
</unit>
<unit name="square foot">
<conversion
conv_target $=$ "square meter"
conv_factor = " 0.15 "
conv_constant $=$ " "
conv_log = ""
conv_source = "ISO"
conv_href = "">
</conversion>
<type>area</type>
<plural>square feet</plural>
<alias>sq ft</alias>
<desc>An area one foot by one foot.<desc>
<icon href="sqfoot.gif"></icon>
</uni>
</unitlist>

```
 APPENDIX D: RMML Document Type Definition ("DTD")
<?xml encoding="UTF-8"?>
<!-- The root element: a whole macro is a "macrodoc".
A macrodoc consists of three elements:
 a macro_header, a macro_code, and a macro_references element.
-->
<!ELEMENT macrodoc (macro_header, macro_code, macro_references)>
<!-- MACRO_HEADER -->
<!-- Information about the macro.
-->
<!ELEMENT macro_header (macro_source, license_terms, linkset?, documentation)>
<!ATTLIST macro_header
 macrodoc_ID CDATA #REQUIRED
 macro_titl CDATA #REQUIRED
 macro_type CDATA #REQUIRED
 result_type CDATA
 rdmldoc_type CDATA #REQUIRED
 timestamp CDATA #IMPLIED
 version CDATA #IMPLIED
 expiration CDATA #IMPLIED
 freq_of_update CDATA #IMPLIED >
<!ELEMENT macro_source (contact_info+)>
<!ELEMENT license_terms (contact_info, linkset?)>
<!ATTLIST license_terms
copyright_cite CDATA \#REQUIRED
 holder CDATA #IMPLIED
 license_type CDATA #IMPLIED
 warranty CDATA #IMPLIED
 disclaimer CDATA #IMPLIED
 terms CDATA #IMPLIED
 date CDATA #IMPLIED
 email CDATA #IMPLIED
 state CDATA #IMPLIED
 country CDATA #IMPLIED >
<!ELEMENT contact_info (#PCDATA)>
<!ATTLIST contact_info
role \(\quad\) CDATA \(\quad\) \#IMPLIED
```

```
 company CDATA #IMPLIED
 address CDATA #IMPLIED
 city CDATA
 state
 zip CDATA
 country CDATA
 email CDATA
 xlink:form CDATA
 href CDATA
 CDATA #IMPLIED >
<!ELEMENT linkset (link*)>
<!ATTLIST linkset
 xlink_form CDATA #FIXED 'extended'
 href CDATA #IMPLIED >
<!ELEMENT link (#PCDATA) >
<!ATTLIST link
 xlink_form CDATA
 href CDATA #REQUIRED
 behavior CDATA #IMPLIED
 content-role CDATA #IMPLIED
 content-title CDATA #IMPLIED
 role CDATA #IMPLIED
 title CDATA #IMPLIED
 show CDATA #FIXED 'new'
 actuate CDATA #FIXED 'user' >
<!ELEMENT documentation (macro_description, help_page*)>
<!ELEMENT macro_description (#PCDATA)>
<!ELEMENT help_page (#PCDATA)>
<!ELEMENT macro_code (code, instructions, gui, variable_set?, qualifiers, error_handling,
testing)>
<!ELEMENT code (#PCDATA)>
<!ELEMENT instructions (#PCDATA)>
<!ELEMENT gui (comp_rpanel? | comp_ipanel? | comp_list?| comp_vector?)>
<!ELEMENT comp_rpanel (comp_rbutton*)>
<!ATTLIST comp_rpanel
```

```
 variable_name CDATA #REQUIRED
 intro_label
 visible
 legend
 legend_type
 CDATA
 CDATA
 CDATA
 #IMPLIED
 #IMPLIED
 #IMPLIED
 #IMPLIED >
<!ELEMENT comp_rbutton (#PCDATA)>
<!ATTLIST comp_rbutton
 label CDATA
 value CDATA #REQUIRED
 isDefault CDATA #REQUIRED
 icon CDATA #IMPLIED
 desc CDATA #IMPLIED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT comp_ipanel (comp_ifield*)>
<!ELEMENT comp_ifield (#PCDATA)>
<!ATTLLST comp_ifield
 variable_name CDATA #REQUIRED
 variable_label CDATA #REQUIRED
 intro_label CDATA #REQUIRED
 default_value CDATA #REQUIRED
 desc CDATA #IMPLIED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT comp_list (comp_listitem*)>
<!ATTLIST comp_list
 variable_name CDATA
 intro_label CDATA
 default_item CDATA #REQUIRED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT comp_listitem (#PCDATA)>
<!ATTLIST comp_listitem
 label CDATA
 value CDATA #REQUIRED
 icon CDATA #MMPLIED
 desc CDATA #IMPLIED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
```

    -129-
    ```
<!ELEMENT comp_vector (line_item)>
<!ATTLIST comp_vector
 variable_name CDATA #REQUIRED
 intro_label CDATA #REQUIRED
 default_item CDATA #REQUIRED
 desc CDATA #IMPLIED
 legend CDATA #IMPLIED
 legend_type CDATA #IMPLIED >
<!ELEMENT variable_set (variable*)>
<!ELEMENT variable (#PCDATA | line_item)*>
<!ATTLIST variable
 variable_name CDATA #REQUIRED
 variable_type CDATA #REQUIRED
 value CDATA #REQUIRED
 href CDATA .#IMPLIED
 subref CDATA #IMPLIED >
<!ELEMENT qualifiers (#PCDATA)>
<!ELEMENT error_handling (#PCDATA)>
<!ELEMENT testing (#PCDATA)>
<!ELEMENT macro_references (macrodocs?, datadocs?)>
<!ELEMENT macrodocs (#PCDATA)>
<!ELEMENT datadocs (#PCDATA)>
<!ELEMENT line_item (data_x?, data_y, linkset?, note_set?) >
<!ATTLIST line_item
li_ID CDATA \#REQUIRED
 li_legend CDATA #REQUIRED
 li_title CDATA #REQUIRED
 li_cat CDATA #IMPLIED
 y_axis_title CDATA #REQUIRED
 level CDATA #REQUIRED
 format CDATA #REQUIRED
 relation CDATA #REQUIRED
 li_notes CDATA #REQUIRED
 li_desc CDATA #REQUIRED
 li_prec CDATA #REQUIRED
 li_unit CDATA #REQUIRED
```

    li_mag CDATA #REQUIRED
    li_mod CDATA
    li_measure CDATA
    li_scale CDATA
    li_adjustment CDATA
    li_aggregation CDATA
    <!ELEMENT data_y (#PCDATA)>
<!ELEMENT note_set (note+)>
<!ELEMENT note (#PCDATA)>

<!ATTLIST note
    note_type CDATA
<!ELEMENT data_x (#PCDATA) >
<!ATTLLST data_x
```
x_title
format
x_notes
x_desc
x_prec
x_unit
x_mag
x_mod
x_measure
x_scale
x_adjustment x_links CDATA
\#REQUIRED
\#REQUIRED \#REQUIRED \#REQUIRED \#REQUIRED \#IMPLIED >
\#MMPLIED >

\section*{\#REQUIRED} \#REQUIRED \#IMPLIED \#IMPLIED \#REQUIRED \#REQUIRED \#REQUIRED \#REQUIRED \#REQUIRED \#REQUIRED \#REQUIRED \#REQUIRED >
```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE macrodoc PUBLIC "-I/.." "RMML1.dtd" >
<macrodoc>
<macro_header
macrodoc_ID = "rmml_sort"
macro_title = "Sort"
macro_type = "TSL"
result_type = "replace_each"
rdmldoc_type = "TS"
timestamp = "1999-01-19T23:00:00"
version = "1.0.0"
expiration = "2000-01-19T23:00:00"
freq_of_update = "Annual" >
<macro_source>
<contact_info
role = "Macro Source"
name = "Russell T. Davis"
company = "RDML, Inc."
address = "2 Wisconsin Circle, Suite 700"
city = "Chevy Chase"
state = "MD"
zip = "20815"
country = "USA"
email = "rt_davis@sprynet.com"
href = "http://www.rdml.com"
comments = "">
<contact_info>
</macro_source>
<license_terms
copyright_cite = "Copyright 1998, RDML, Inc. All Rights Reserved"
holder = "RDML, Inc."
license_type = "Payment Per Download"
warranty = "No warranty is expressed or implied. Use this data at your own risk."
disclaimer = "This data is provided 'as-is'. The provider assumes no responsibility for its use
or misuse."
terms = "\$1 per RMMLDoc download"
date = "1999.0123000000.00"
email = "license@rdml.com"
state = "MD"
country = "USA" >

```
```

    <contact_info
    role = "Licensee"
    name = "Russell T. Davis"
    company = "RDML, Inc."
    address = "2 Wisconsin Circle, Suite 700"
    city = "Chevy Chase"
    state = "MD"
    zip = "20815"
    country = "USA"
    email = "rt_davis@sprynet.com"
    href = "http://www.rdml.com"
    comments = "">
    </contact_info>
    <license_terms>
<linkset
    xlink_form = "extended"
    href = "http://www.rdml.com" >
<link
    xlink_form = "simple"
    href = "http://www.rdml.com"
    behavior = ""
    content-role = ""
    content-title = ""
    role = ""
    title = ""
    show = "new"
    actuate = "user" >
</link>
<linkset>
<documentation>
<macro_description>
Adds a line showing the minimum or maximum, according to the parameters
<macro_description>
<help_page>
No Help Page is currently available
</help_page>
</documentation>
</macro_header>
<macro_code>
<code>

```
```

    IF(ichoice=0, SORT(A,0), IF(ichoice=1, SORT(A,1), A))
    </code>
    <instructions>
    </instructions>
    <gui>
        <comp_rpanel
            variable_name = "ichoice"
            intro_label = "Select a parameter:" >
        <comp_rbutton
            label = "Ascending"
            value = "0"
            isDefault = "true"
            icon = "">
        </comp_rbutton>
            <comp_rbutton
            label = "Descending"
            value = "1"
            isDefault = "false"
            icon = "" >
            </comp_rbutton>
    </comp_rpanel>
    <gui>
<qualifiers>
<qualifiers>
<error_handling>
<error_handling>
<testing>
</testing>
<macro_code>
<macro_references>
<macrodocs>
</macrodocs>
<datadocs>
<datadocs>
</macro_references>
<macrodoc>

```

\section*{Private Sub UserForm_Initialize()}
```

cmdOK.SetFocus
txtChartTitle.Text = ""
txtYAxisTitle.Text = ""
cboFormat.AddItem ("\#,\#\#0;(\#,\#\#0)")
cboFormat.AddItem ("\#,\#\#0.00;(\#,\#\#0.00)")
cboFormat.AddItem ("0.00%;(0.00%)")
cboFormat.ListIndex =0
txtFootnote.Text = "Source: "
Dim NodeX As Node
Set NodeR = treeUnit.Nodes.Add(, , "r", "Select One: (Default is blank)")
'Currency
Set NodeA = treeUnit.Nodes.Add("r", tvwChild, "c", "Currency")
Set Nodes = treeUnit.Nodes.Add("c", tvwChild, "dus", "\$ US")
Set NodeX = treeUnit.Nodes.Add("c", tvwChild, "puk", "Pounds UK")
Set NodeX = treeUnit.Nodes.Add("c", tvwChild, "yjp", "Yen Japanese")
'Length
Set NodeX = treeUnit.Nodes.Add("r", tvwChild, "l", "Length")
Set NodeX = treeUnit.Nodes.Add("l", tvwChild, "Feet", "Feet")
Set NodeX = treeUnit.Nodes.Add("1", tvwChild, "Meters", "Meters")
'Area
Set NodeX = treeUnit.Nodes.Add("r", tvwChild, "a", "Area")
Set NodeX = treeUnit.Nodes.Add("a", tvwChild, "SqFeet", "Square Feet")
Set NodeX = treeUnit.Nodes.Add("a", tvwChild, "SqMeters", "Square Meters")
'tree formatting
NodeA.EnsureVisible
'Magnitude ComboBox
cboMagnitude.AddItem ("As-Is")
cboMagnitude.AddItem ("Thousands")
cboMagnitude.AddItem ("Millions")
cboMagnitude.AddItem ("Billions")
cboMagnitude.ListIndex =0

```

End Sub
Private Sub cmdCancel_Click()
End
End Sub
Private Sub cmdOK_Click()
rcount \(=\) Selection.Rows.Count
'li_ID
Selection.EntireColumn.Insert
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_ID"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "1"
ActiveCell.Offset(1,0).Range("A1").Select
ActiveCell.FormulaR1C1 \(="=\mathrm{R}[-1] \mathrm{C}+1 "\)
ActiveCell.Select
Selection.Copy
r = "Al:A" \& (rcount - 3)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'li_legend
ActiveCell.Offset(-3, 1).Range("A1").Select
ActiveCell.FormulaR1C1 = "li_legend"
'li_title
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_title"
ActiveCell.Offset(1,0).Range("A1").Select
ActiveCell.FormulaR1C1 = txtChartTitle.Text
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'li_cat
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_cat"
'y_axis_title
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "y_axis_title"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = txtYAxisTitle.Text
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
Selection. ColumnWidth \(=8\)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'level
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "level"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = " 1 "
ActiveCell.Select
Selection.Copy
\(\mathrm{r}=\) "A1:A" \& (rcount - 2)
Selection. ColumnWidth \(=8\)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'format
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "format"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = cboFormat.value
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'relationActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "relation"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "Parent"
ActiveCell.Select
Selection.Copy
\(\mathrm{r}=\) "A1:A" \& (rcount - 2)
ActiveCell.Offset(1,0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'li_notes
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_notes"
ActiveCell.Offset(1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = txtFootnote.Text
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
Selection. ColumnWidth \(=8\)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'li_desc
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_desc"
'li_prec
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_prec"
'li_unit
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_unit"
ActiveCell.Offset(1, 0).Range("A1").Select
u = " "
On Error Resume Next
\(\mathrm{u}=\) treeUnit.SelectedItem.Text
ActiveCell.FormulaR1C1 =u
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'li_mag
'first calculate the value to put in
If \((\) StrComp \((c b o M a g n i t u d e . v a l u e, ~ " A s-I s ")=0)\) Then
\(\mathrm{m}=0\)
End If
If \((\) StrComp \((\) cboMagnitude.value, "Thousands" \()=0\)) Then
\(\mathrm{m}=3\)
End If
If \((\) StrComp \((\) cboMagnitude.value, "Millions") \(=0\)) Then\(\mathrm{m}=6\)
End If
If \((\) StrComp \((\) cboMagnitude.value, "Billions" \()=0\)) Then
\(\mathrm{m}=9\)
End If
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select Selection.Insert Shift:=xIToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_mag"
ActiveCell.Offset(1,0).Range("A1").Select
ActiveCell.FormulaR1C1 \(=\mathrm{m}\)
ActiveCell.Select
Selection.Copy
r = "A1:A" \& (rcount - 2)
ActiveCell.Offset(1, 0).Range(r).Select
ActiveSheet.Paste
Application.CutCopyMode \(=\) False
'li_mod
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_mod"
'li_measure
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_measure"
'li_scale
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_scale"
'li_adjustment
ActiveCell.Offset(0, 1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xlToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_adjustment"
'li_aggregation
ActiveCell.Offset(0,1).Columns("A:A").EntireColumn.Select
Selection.Insert Shift:=xIToRight
ActiveCell.Select
ActiveCell.FormulaR1C1 = "li_aggregation"
End
End Sub
```

Private Sub Frame1_Click()
End Sub
Private Sub UserForm_Initialize()
cmdOK.SetFocus
RefEdit_data.value = "Sheet1!\$A$1:$AB\$51"
txtDefaultFile.Text = "D:\default1.rdm"
txtOutputDir.Text = "D:\"
txtOutputFile.Text = "out.rdm"
cboLineItemType.AddItem ("TimeSeries")
cboLineItemType.AddItem ("Category")
cboLineItemType.AddItem ("XYPlot")
cboLineItemType.ListIndex =0
cbNonFileDefaults.value = False
End Sub
Private Sub cmdCancel_Click()
End
End Sub
Private Sub cmdOK_Click()
Dim buff As String
buff = createIntro
buff = buff \& createHeader
buff = buff \& createLISet
buff = buff \& createLineItems
buff = buff \& "<lline_item_set>" \& Chr(10)
buff = buff \& createEnding
replaceAttribute buff, "rdmldoc_header", "rdmldoc_ID", txtOutputFile.value
replaceAttribute buff, "rdmldoc_header", "doc_title", txtDocTitle.value
replaceAttribute buff, "line_item_set", "line_item_set_type", cboLineItemType.SelText
replaceAttribute buff, "data_x", "x_title", txtXAxisTitle.value
fillXData buff
CreateFile (buff)
End
End Sub
Private Sub cmdBrowseDefault_Click()

```
CommonDialog1.ShowOpen
txtDefaultFile.Text = CommonDialog1.Filename
End Sub
Private Sub cmdBrowseOutputDir_Click() CommonDialog1.ShowOpen
txtOutputFile.Text \(=\) CommonDialog1.Filename
End Sub
Private Sub UserForm_Click()
End Sub
Private Sub getConfiguration()
End Sub
Private Function createHeader()
'buff will be the buffer that collects the string
Dim buff As String
'If user wants the program to create a default
If cbNonFileDefaults.value \(=\) True Then
buff = buff \& defHeader
End If
'Or get the default header values from a file
buff \(=\) createDefHeader
'return
createHeader \(=\) buff
End Function
Private Function createDefHeader()
'Declarations
Dim h As String
Dim wholefile As String
'open the default file
Dim Def_file As String
```

    Def_file = txtDefaultFile.Text
    Open Def_file For Input As #2
    wholefile = Input$(LOF(2), 2)
    Close #2
    'put the rdmldoc_header into a string
    h = getElementByTagName(wholefile, "rdmldoc_header")
    createDefHeader = h
    End Function
Private Function createLISet()
'Declarations
Dim h As String
Dim wholefile As String
'open the default file
Dim Def_file As String
Def_file = txtDefaultFile.Text
Open Def_file For Input As \#2
wholefile = Input\$(LOF(2), 2)
Close \#2
'put the the line item set overall tags into a string
h = getOpeningElementTag(wholefile, "line_item_set")
h = h \& getElementByTagName(wholefile, "data_x")
h = h \& getElementByTagName(wholefile, "li_class_set")
h = h \& getElementByTagName(wholefile, "linkset")
createLISet = h
End Function
Public Function getElementByTagName(str As String, el As String)

```
```

startPos $=\operatorname{InStr}(1$, str, "<" \& el, 1)

```
startPos \(=\operatorname{InStr}(1\), str, "<" \& el, 1)
endPos \(=\operatorname{InStr}(1, \operatorname{str}, "</ " \& e l, 1)\)
endPos \(=\operatorname{InStr}(1, \operatorname{str}, "</ " \& e l, 1)\)
element \(=\operatorname{Mid}(\mathrm{str}\), startPos, endPos - startPos \(+\operatorname{Len}(e l)+4)\)
element \(=\operatorname{Mid}(\mathrm{str}\), startPos, endPos - startPos \(+\operatorname{Len}(e l)+4)\)
getElementByTagName \(=\) element
```

getElementByTagName $=$ element

```

\section*{End Function}
```

Public Function getOpeningElementTag(str As String, el As String)

```
```

startPos = InStr(1, str, "<" \& el, 1)

```
```

startPos = InStr(1, str, "<" \& el, 1)

```
```

    endPos = InStr(startPos, str, ">", 1)
    element = Mid(str, startPos, endPos - startPos + 5)
    getOpeningElementTag = element
    End Function
Private Sub CreateFile(buff)
Dim Outfile As String
Outfile = txtOutputDir.Text \& txtOutputFile.Text
Open Outfile For Output As \#1
Print \#1, buff
Close \#1
End Sub
Private Function createIntro()
buff = ""
'Header Information
buff = buff \& "<?xml version=" \& Chr(34) \& "1.0" \& Chr(34)
buff = buff \& " encoding=" \& Chr(34) \& "UTF-8" \& Chr(34)
buff = buff \& " standalone=" \& Chr(34) \& "no" \& Chr(34)
buff = buff \& "?>" \& Chr(10)
'DTD Declaration
buff = buff \& "<!DOCTYPE rdmldoc PUBLIC "
    buff = buff & Chr(34) & "-/I.." & Chr(34) & " "
    buff = buff & Chr(34) & "RDML1.dtd" & Chr(34)
    buff = buff & " > " \& Chr(10)
'begin rdmldoc tag
buff = buff \& "<rdmldoc>" \& Chr(10)
'return
createIntro = buff
End Function
Private Function createEnding()
buff = ""

```
```

    buff = buff & "</rdmldoc>" & Chr(10)
    'return
    createEnding = buff
    End Function
Private Function defHeader()
buff = ""
'return
defHeader = buff
End Function
Private Function createLineItems()
Dim data As Range
t= RefEdit_data.value
createLineItems = fillLineItems(Range(t), cboLineItemType.value)

```

\section*{End Function}
```

'.
Procedure: Fill_line_item()
Purpose: Prepare the line_item element
This element contains information about the line_item
' From DTD:
'<!ELEMENT line_item (data_x?, data_y, li_class_set?, analysis?,
'link_set?, note_set?)>
'<!ATTLIST line_item

- li_ID CDATA \#REQUIRED
- li_legend CDATA \#REQUIRED
- li_title CDATA \#REQUIRED
- li_table CDATA \#IMPLIED
1 y_axis_title CDATA \#REQUIRED
- level CDATA \#REQUIRED
' format CDATA \#REQUIRED
, relation CDATA \#REQUIRED
- li_notes CDATA \#REQUIRED
- li_desc CDATA \#REQUIRED

```
```

' li_prec CDATA \#REQUIRED
' li_unit CDATA \#REQUIRED
' li_mag CDATA \#REQUIRED
' li_mod CDATA \#REQUIRED
' li_measure CDATA \#REQUIRED
' li_scale CDATA \#REQUIRED
, li_adjustment CDATA \#REQUIRED >
Public Function fillLineItems(data As Range, litype As String)
'Declarations
Dim J, K As Integer
Dim Max As Integer
'If this is an XYPlot, use the other routine
If litype = "XYPlot" Then
'Fill_line_item_xy
Else
'Initializations
K=1
buff = ""
NumLI = data.Rows.Count
'Cycle through all the line items
For N = 2 To NumLI
'Insert opening tag
buff = buff \& " <line_item" \& Chr(10)

```

\section*{'Insert the Attributes}
```

addAttribute buff, "li_ID", data.Cells(N, 1), 6,0
addAttribute buff, "li_legend", data.Cells(N, 2), 6,0
addAttribute buff, "li_title", data.Cells(N, 3), 6,0
addAttribute buff, "li_cat", data.Cells(N, 4), 6,0
addAttribute buff, "y_axis_title", data.Cells(N, 5), 6,0
addAttribute buff, "level", data.Cells(N, 6), 6,0
addAttribute buff, "format", data.Cells(N, 7), 6,0
addAttribute buff, "relation", data.Cells(N, 8), 6,0
addAttribute buff, "li_notes", data.Cells(N, 9), 6,0
addAttribute buff, "li_desc", data.Cells(N, 10), 6,0
addAttribute buff, "li_prec", data.Cells(N, 11), 6,0
addAttribute buff, "li_unit", data.Cells(N, 12), 6,0
addAttribute buff, "li_mag", data.Cells(N, 13), 6,0
addAttribute buff, "li_mod", data.Cells(N, 14), 6,0

```
```

addAttribute buff, "li_measure", data.Cells(N, 15), 6,0
addAttribute buff, "li_scale", data.Cells(N, 16), 6, 0
addAttribute buff, "li_adjustment", data.Cells(N,17), 6, 1
'Fill the body of the tag with a comma-delimited string of the y-data numbers
buff = buff \& " <data_y>" \& Chr(10)
MaxLI = NumLI - 2
MaxDP = data.Columns.Count - 17
For K = 1 To MaxDP
buff = buff \& data.Cells(N, 18 + K) \& ", "
If (K Mod 10) = 0 Then
buff = buff \& Chr(10)
End If
Next K
buff = buff \& Chr(10) \& " </data_y>" \& Chr(10)
'Insert ELEMENT: analysis
'Insert ELEMENT: li_class_set
'Insert ELEMENT: 'linkset'
'Call FillTag("linkset")
'Insert ELEMENT: note_set
'Insert closing tag for that line item
buff = buff \& Chr(10) \& " </line_item>" \& Chr(10)
'Every }10\mathrm{ line items, flush the buffer
'If N Mod 5=0 Then
Call SaveToFile(buff)
'End If
Next N
'Closes the test for XYPlot at beginning of routine
End If
filLineItems = buff
End Function
'----------------------------------------------------------------
' Procedure: addAttribute(name, value)
' Purpose: Adds an attribute line to "buff"
,
---------------------------------------------------------------
Public Sub addAttribute(buff, name, value, indent, last)

```
' Build the indentation
Dim strIndent As String
strIndent \(=\) " \("\)
For \(\mathrm{J}=1\) To indent
strIndent \(=\) strIndent \& " "
Next J
' Build the string
buff = buff \& strIndent \& name \& " = " \& Chr(34) \& value \& Chr(34)
'Add an ending ' \(>\) ' tag if "last" is 1 ; else simple add a carriage return
If last = 1 Then
buff = buff \& " >" \& Chr(10)
Else
buff = buff \& Chr(10)
End If
End Sub
Private Sub replaceAttribute(f As String, el As String, att As String, val As String)
\(\mathrm{f}=\) Replace(f, att \& " = " \& Chr(34) \& Chr(34), att \& " = " \& Chr(34) \& val \& Chr(34))
End Sub
Private Sub fillXData(f As String)
'build the string of \(X\) values
'Dim data As Range
Dim v As String
\(\mathrm{t}=\) RefEdit_data.value
\(\mathrm{v}=\mathrm{Chr}(10)\) \& Range(t).Cells(1, 19)
For J = 20 To Range(t).Columns.Count
v = v \& ", " \& Range(t).Cells(1, J)
Next J
\(\mathrm{v}=\mathrm{v} \& \operatorname{Chr}(10)\)
'replace the current \(x\) data element text
\(\mathrm{f}=\) Replace(f, "><data_x>", ">" \& v \& " </data_x>")
End Sub
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
APPLICATION \\
NUMBER
\end{tabular} & \begin{tabular}{c}
FLLING or \\
371 (c) DATE
\end{tabular} & \begin{tabular}{c}
GRP ART \\
UNIT
\end{tabular} & FI FEE REC'D & ATTY.DOCKET.NO & TOT CLAIMS & IND CLAIMS \\
\hline \(12 / 222,752\) & \(08 / 15 / 2008\) & 2176 & 2580 & \(07643.0002-02\) & 27 & 5 \\
\hline
\end{tabular}

22852
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER
LLP
901 NEW YORK AVENUE, NW
WASHINGTON, DC 20001-4413

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)
Russell T. Davis, Bethesda, MD;
Assignment For Published Patent Application
E-Numerate Solutions, Inc.
Power of Attorney:
Arthur Garrett--20338
James Hammond--31964
Charles O'Rourke--26014
Jeffrey Berkowitz--36743
Robert Converse Jr--27432
Charles Van Horn--40266
Edward Yoches--30120
Richard Burgujian--31744
Domestic Priority data as claimed by applicant
This application is a DIV of 09/573,778 05/18/2000 PAT 7,421,648
which claims benefit of \(60 / 135,52505 / 21 / 1999\)
and claims benefit of \(60 / 183,15202 / 17 / 2000\)

\section*{Foreign Applications}

If Required, Foreign Filing License Granted: 09/04/2008
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US 12/222,752
Projected Publication Date: 04/02/2009
Non-Publication Request: No
Early Publication Request: No

\section*{Title}

Reusable data markup language
Preliminary Class
715

\section*{PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES}

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

\section*{LICENSE FOR FOREIGN FILING UNDER}

\section*{Title 35, United States Code, Section 184}

Title 37, Code of Federal Regulations, 5.11 \& 5.15

\section*{GRANTED}

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15 (a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

\section*{NOT GRANTED}

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12 , if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

United States Patent and Trademark Office
\begin{tabular}{|c|c|c|c|}
\multicolumn{10}{l}{ www.lsptogov } \\
\hline APPLICATION NUMBER & FILING OR 371(C) DATE & FIRST NAMED APPLICANT & ATTY. DOCKET NO./TITLE \\
\hline \(12 / 222,752\) & \(08 / 15 / 2008\) & Russell T. Davis & \(07643.0002-(02\) \\
\hline
\end{tabular}

CONFIRMATION NO. 5842
22852
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER
LLP
901 NEW YORK AVENUE, NW
WASHINGTON, DC 20001-4413

Title:Reusable data markup language
Publication No.US-2009-0089657-A1
Publication Date:04/02/2009

\section*{NOTICE OF PUBLICATION OF APPLICATION}

The above-identified application will be electronically published as a patent application publication pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382, by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of Public Records, Alexandria, VA 22313-1450 or via the Internet.
In addition, information on the status of the application, including the mailing date of Office actions and the dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to publication, such status information is confidential and may only be obtained by applicant using the private side of PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent Electronic Business Center at 1-866-217-9197.
 P.O. Box 1450

Www.uspto.gov

\section*{Please find below and/or attached an Office communication concerning this application or proceeding.}

The time period for reply, if any, is set in the attached communication.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Office Action Summary} & Application No.
12/222,752 & Applicant(s)
DAVIS, RUSSELL \\
\hline & & \begin{tabular}{l}
Art Un \\
2176
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -Period for Reply \\
A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE \(\underline{3}\) MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. \\
Extensions of time may be available under the provisions of 37 CFR 1.136 (a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. \\
If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Status \\
1) \(\boxtimes\) Responsive to communication(s) filed on 15 August 2008. \\
2a) \(\square\) This action is FINAL. \\
2b) \(\boxtimes\) This action is non-final. \\
3) \(\square\)
Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Disposition of Claims \\
4) \(\boxtimes\) Claim(s) \(1-66\) is/are pending in the application. \\
4a) Of the above claim(s) \(\qquad\) is/are withdrawn from consideration. \\
5) \(\square\) Claim(s) \(\qquad\) is/are allowed. \\
6) \(\boxtimes\) Claim(s) 13-21,24-31,40-48 and 51 is/are rejected. \\
7) \(\square\) Claim(s) \(\qquad\) is/are objected to. \\
8) \(\square\) Claim(s) \(\qquad\) are subject to restriction and/or election requirement. \\
Application Papers \\
9) \(\square\) The specification is objected to by the Examiner. \\
10) \(\boxtimes\) The drawing(s) filed on 05 November 2008 is/are: a) \(\boxtimes\) accepted or b) \(\square\) \(\square\) objected to by the Examiner. \\
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). \\
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121 (d). \\
11) \(\square\) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. \\
Priority under 35 U.S.C. § 119 \\
12) \(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). \\
a) \(\square\) All \(\square\) Some * c) \(\square\) None of: \\
1. \(\square\) Certified copies of the priority documents have been received. \\
2. \(\square\) Certified copies of the priority documents have been received in Application No. \(\qquad\) . \\
\(3 . \square\) Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). \\
* See the attached detailed Office action for a list of the certified copies not received.
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

\section*{Detailed Action}

Claims 1-66 are pending.
Claims 1-12, 22-23, 32-39, 49-50 and 52-66 are canceled.
Claims 13-21, 24-31, 40-48, and 51 are rejected.

\section*{Information Disclosure Statement}

The information disclosure Statement (IDS) submitted on 08/15/2008 is in compliance with the provisions of 37 CFR 1.97. Accordingly, the IDS statements are being considered by the examiner.

\section*{Drawings}

The drawings submitted on 11/05/2008 are accepted.

\section*{Claim Rejections - 35 USC § 101}

35 U.S.C. 101 reads as follows:
Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

Claims 40-48 are is rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter.

Claim 40:

In summary, claim 40 recites "a computer readable medium". In the specification of the present application, the "computer readable medium" is expressly defined as including (spec page 27) "carrier wave". In such embodiments the recited "computer readable medium" is signal per se.

Accordingly, the recited "computer readable medium" is not a "process", a "machine", a "manufacture", or "composition of matter", as defined in 35 U.S.C. 101.

\section*{Claim Rejections - 35 USC § 103}

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claim 13-21, 24-25, 27, 30, 40-48 and 51 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chen et al. (US 6507856 B1, referred hereinafter as CHEN).

As per claim 13, CHEN discloses,
- A method in a data processing system, comprising steps the steps of,(CHEN, title) , "Dynamic business process automation system using XML documents"
receiving a first markup document and a second markup document, (CHEN, figure 5, 6, 7-10 and accompanying text, col. 1 lines 34-64)), "business process automation system may receive an XML message or document and its corresponding Data Type Definition (DTD), and generate a return XML message based on a return document DTD, with certain fields pre-filled from the first XML message", clearly includes receiving a first markup document (e.g. po) and a second markup document (e.g. return template as illustrated by 10A).
- both the first mark document and the second markup document including numerical values and tags reflecting characteristics of the numerical values(CHEN, figure 1-2, figure 8-10, col. 4 lines 4-67), "XML document is depicted for encoding a purchase order (PO), where there are two items ordered, i.e. , item Nos. 0001 ... ", clearly includes the first mark document including numerical values (e.g. po) and tags reflecting characteristics of the numerical values and furthermore discloses the second markup document (e.g. template document as shown in figure 10A) and tags reflecting characteristics of numerical values. Although CHEN fails to specifically disclose that the second
mark document includes numerical values, this limitation would have been to one of ordinary skill in the art at the time of the invention in view CHEN's teaching of the first document including numerical values and furthermore it is commonly known in that xml template documents may include any type of data (i.e. including numerical values). Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to include second markup document including numerical values, for the purpose of providing various different prices quotes (e.g. numerical values) in a returned invoice based on a received purchase order.
automatically combining the first markup document and the second markup document into a single data set using the tags, (CHEN, figure 1-2, figure 8-10 and accompanying text, col. 4 lines 467), "merging algorithm is implemented to merge to merge the message with the return template... XML document is depicted for encoding a purchase order (PO), where there are two items ordered, i.e. , item Nos. 0001... ", clearly includes automatically combining the first markup document and the second markup document into a single data set using the tags (e.g. as shown in figure 7).
and displaying the single data set (CHEN, col. 5 lines 10-13, figure
4), "render the XML document to a browser", displaying xml documents on browser is well known in the art and clearly disclosed by

CHEN as shown in figure 4 (i.e. displaying "purchase order" or "invoices").

As per claim 14, the rejection of claim 13 further incorporated, CHEN

\section*{discloses}
- wherein the automatically combining step further comprises the steps of resolving conflicts between the characteristics of the first markup document and the second markup document, (CHEN, figure 1-2, figure 8-10 and accompanying text, col. 4 lines 4-67, col. 3 lines 55-66), "XML name tag map table matches relevant name tag of document fields of a first document to the corresponding name tag of the second document's (or return document's) fields... higher level qualifier or names tags maybe need to uniquely identify the specific name tag for potential ambiguity... merging algorithm is implemented to merge the message with the return template... XML document is depicted for encoding a purchase order (PO), where there are two items ordered, i.e. , item Nos. 0001... ", clearly includes automatically combining the first markup document and the second markup document into a single data set (e.g. shown in figure 7) by resolving conflicts (e.g. higher level qualifier or name tags or name tag tables are used for mapping tag names in order to resolve conflicts) between the
characteristics of the first markup document and the second markup document.

As per claim 15, the rejection of claim 13 further incorporated, CHEN discloses
- wherein the displaying step further comprises the steps of manipulating the display of the single data set using the tags reflecting the characteristics of the numerical value, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes and manipulating (e.g. editing) the display of the single data set using the tags reflecting the characteristics of the numerical values (e.g. for instance the user can change prices or change address etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

As per claim 16, the rejection of claim 13 further incorporated, CHEN discloses
- Wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure,(CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure.
and wherein the steps of manipulating includes the steps of manipulating the display of the single data set using the tags reflecting at least one of magnitude, scale, modifier, units, and measure characteristics of the numerical values, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes and wherein the steps of manipulating includes the steps of manipulating the display of the single data (e.g. editing invoice) set using the tags reflecting at least one of magnitude, scale, modifier, units, and measure characteristics of the numerical values (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art).

Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and
manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

As per claim 17, the rejection of claim 13 further incorporated, CHEN

\section*{discloses}
- wherein the characteristics include magnitude, and wherein the step of manipulating comprises the steps of manipulating the display of the single data set using a tag reflecting the magnitude of the numerical value, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes manipulating (e.g. editing invoice of po) the display of the single data set using a tag reflecting the magnitude of the numerical value (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and
manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

As per claim 18, the rejection of claim 13 further incorporated, CHEN

\section*{discloses}
- wherein the characteristics include scale, and wherein the step of manipulating comprises the step of manipulating the display of the single data set using a tag reflecting the scale of the numerical values, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes manipulating (e.g. editing invoice or purchase order as shown in figure 4) the display of the single data set using a tag reflecting the scale of the numerical value (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS
in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

As per claim 19, the rejection of claim 13 further incorporated, CHEN discloses
- wherein the characteristics include a modifier, wherein the step of manipulating comprises the steps of manipulating the display of the single data set using a tag reflecting the modifier of the numerical values, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ltemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes manipulating (e.g. editing invoice or purchase order as shown in figure 4) the display of the single data set using a tag reflecting the modifier of the numerical value (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS
in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

As per claim 20, the rejection of claim 20 further incorporated, CHEN discloses
- wherein the characteristics include units, and wherein the steps of manipulating comprises the step of manipulating the display of the single data set using a tag reflecting the units of the numerical values, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes manipulating (e.g. editing invoice or purchase order as shown in figure 4) the display of the single data set using a tag reflecting the units of the numerical value (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS
in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

As per claim 21, the rejection of claim 13 further incorporated, CHEN discloses
- Wherein the characteristics include units, and wherein the steps of manipulating comprises the step of manipulating the display of the single data set using a tag reflecting the measure of the numerical values, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes manipulating (e.g. editing invoice or purchase order as shown in figure 4) the display of the single data set using a tag reflecting the measure of the numerical value (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS
in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

\section*{As per claim 24, CHEN discloses}
- A method in a data processing system, comprising the steps of, (CHEN, title) , "Dynamic business process automation system using XML documents", clearly includes a method in a data processing system, comprising the steps of
- receiving a request for numerical value, the request indicating at least one characteristic of the numerical value, (CHEN, figures 1,4 , 6-7 and accompanying text, col. 5 lines 56-67), "submitting a "prepare invoice" request 202 to the web server", clearly includes receiving a request for numerical value (e.g. requesting invoice, where the invoice is a XML document with numerical data), the request indicating at least one characteristic of the numerical value (e.g. as shown in figure 10A <price> tag indicates characteristic of the numerical value to be included in the generation of an invoice).
receiving a first markup document and a second markup document, (CHEN, figure 5, 6, 7-10 and accompanying text, col. 1 lines 34-64)), "business process automation system may receive an XML message or document and its corresponding Data Type Definition (DTD), and generate a return XML message based on a return
document DTD, with certain fields pre-filled from the first XML message", clearly includes receiving a first markup document (e.g. po) and a second markup document (e.g. return template as illustrated by 10A).

\section*{- both the first markup document and the second markup} document containing numerical values and tags reflecting characteristics of the numerical values, (CHEN, figure 1-2, figure 810, col. 4 lines 4-67), "XML document is depicted for encoding a purchase order (PO), where there are two items ordered, i.e. , item Nos. 0001... ", clearly includes the first mark document including numerical values (e.g. po) and tags reflecting characteristics of the numerical values and furthermore discloses the second markup document (e.g. template document as shown in figure 10A) and tags reflecting characteristics of numerical values. Although CHEN fails to specifically disclose that the second mark document includes numerical values, this limitation would have been to one of ordinary skill in the art at the time of the invention in view CHEN's teaching of the first document including numerical values and furthermore it is commonly known in that xml template documents may include any type of data (i.e. including numerical values). Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to include second markup document including
numerical values, for the purpose of providing various different prices quotes (e.g. numerical values) in a returned invoice based on a received purchase order.
- at least one of the tags having the indicated characteristic of the requested numerical value, (CHEN, figures 1, 4, 6-7 and accompanying text, col. 5 lines 56-67), "submitting a "prepare invoice" request 202 to the web server", clearly includes at least one tag having the indicated characteristic of the requested numerical value (e.g. as shown in figure 1 <price> tag indicates characteristic of the numerical value).
automatically combining the first markup document and the second markup document into a single data set by resolving conflicts between the characteristics of the first markup document and the second markup document, (CHEN, figure 1-2, figure 8-10 and accompanying text, col. 4 lines 4-67, col. 3 lines 5566), "XML name tag map table matches relevant name tag of document fields of a first document to the corresponding name tag of the second document's (or return document's) fields... higher level qualifier or names tags maybe need to uniquely identify the specific name tag for potential ambiguity... merging algorithm is implemented to merge the message with the return template... XML document is depicted for encoding a purchase order (PO), where there are two
items ordered, i.e. , item Nos. 0001... ", clearly includes automatically combining the first markup document and the second markup document into a single data set (e.g. shown in figure 7) by resolving conflicts (e.g. higher level qualifier or name tags or name tag tables are used for mapping tag names in order to resolve conflicts) between the characteristics of the first markup document and the second markup document
- displaying the single data set, (CHEN, col. 5 lines 10-13, figure 4), "render the XML document to a browser", displaying xml documents on browser is well known in the art and clearly disclosed by CHEN as shown in figure 4 (i.e. displaying "purchase order" or "invoices"). and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values(CHEN, col. 1 lines 56-67, figure 4 and accompanying text), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes and manipulating (e.g. editing) the display of the single data set using the tags reflecting the characteristics of the numerical values (e.g. for instance the user can change prices or address etc. as known in the art. Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and
manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

As per claim 25, CHEN discloses,
- A data processing system comprising ,(CHEN, title) , "Dynamic business process automation system using XML documents"
- A non-volatile storage device with a first markup document and a second markup document, (CHEN, figure 5, 6, 7-10 and accompanying text, col. 1 lines 34-64, col. 2 lines 29-31; col. 5 lines \(35-50\)), "business process automation system may receive an XML message or document and its corresponding Data Type Definition (DTD), and generate a return XML message based on a return document DTD, with certain fields pre-filled from the first XML message... storage device", clearly includes receiving a first markup document (e.g. po) and a second markup document (e.g. return template as illustrated by 10A).
- both the first mark document and the second markup document including numerical values and tags reflecting characteristics of the numerical values(CHEN, figure 1-2, figure 8-10, col. 4 lines 4-67), "XML document is depicted for encoding a purchase order (PO), where there are two items ordered, i.e. , item Nos. 0001... ", clearly clearly
includes the first mark document including numerical values (e.g. po) and tags reflecting characteristics of the numerical values and furthermore discloses the second markup document (e.g. template document as shown in figure 10A) and tags reflecting characteristics of numerical values. Although CHEN fails to specifically disclose that the second mark document includes numerical values, this limitation would have been to one of ordinary skill in the art at the time of the invention in view CHEN's teaching of the first document including numerical values and furthermore it is commonly known in that xml template documents may include any type data (i.e. including numerical values). Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to include second markup document including numerical values, for the purpose of providing various different prices quotes (e.g. numerical values) in a returned invoice based on a received purchase order.
- a memory with a program that receives the first markup document and the second markup document, that automatically combines the first markup document and the second markup document into a single data set using the tags, (CHEN, figure 1-2, figure 8-10 and accompanying text, col. 4 lines 4-67), "merging algorithm is implemented to merge to merge the message with the return template... XML document is depicted for encoding a purchase order
(PO), where there are two items ordered, i.e. , item Nos. 0001... ", clearly includes a memory with a program that receives the first markup document and the second markup document and automatically combining the first markup document and the second markup document into a single data set using the tags (e.g. as shown in figure 7).
- and process that runs the program (CHEN, col. 5 lines 35-55).

As per claim 27, the rejection of claim 25 further incorporated, CHEN discloses
- wherein the markup language is compliant with Extensible Markup language version 1.0, (CHEN, figure 1), clearly CHEN teaches xml documents and/or language as shown in figure 1 and since markup language compliant with xml version 1.0 was well in established in the art at the time of the invention, it would have been obvious to one of ordinary skill in the art to include xml version 1.0 for purpose of conforming to a standard which renders the markup language document portable among different organizations or systems.

As per claim 30, the rejection of claim 25 further incorporated, CHEN discloses
- further comprising a display, wherein the program instructs the display to display the single data set on a spreadsheet view, (CHEN, figure 4), display of markup document as a spreadsheet view is clearly shown by figure 4 , accordingly includes wherein the program instructs the display to display the single data set (e.g. invoice or purchase order) on a spreadsheet view

As per claim 40, CHEN discloses
- A computer-readable medium containing instructions for controlling a data processing system to perform a method comprising (CHEN, title, col. 2 lines 29-60) , "Dynamic business process automation system using XML documents".
- receiving a first markup document and a second markup document, (CHEN, figure 5, 6, 7-10 and accompanying text, col. 1 lines 34-64)), "business process automation system may receive an XML message or document and its corresponding Data Type Definition (DTD), and generate a return XML message based on a return document DTD, with certain fields pre-filled from the first XML message", clearly includes receiving a first markup document (e.g. po) and a second markup document (e.g. return template as illustrated by 10A).
- both the first mark document and the second markup document including numerical values and tags reflecting characteristics of the numerical values(CHEN, figure 1-2, figure 8-10, col. 4 lines 4-67), "XML document is depicted for encoding a purchase order (PO), where there are two items ordered, i.e. , item Nos. 0001... ", clearly includes the first mark document including numerical values (e.g. po) and tags reflecting characteristics of the numerical values and furthermore discloses the second markup document (e.g. template document as shown in figure 10A) and tags reflecting characteristics of numerical values. Although CHEN fails to specifically disclose that the second mark document includes numerical values, this limitation would have been to one of ordinary skill in the art at the time of the invention in view CHEN's teaching of the first document including numerical values and furthermore it is commonly known in that xml template documents may include any type of data (i.e. including numerical values). Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to include second markup document including numerical values, for the purpose of providing various different prices quotes (e.g. numerical values) in a returned invoice based on a received purchase order.
- automatically combining the first markup document and the second markup document into a single data set using the tags,
(CHEN, figure 1-2, figure 8-10 and accompanying text, col. 4 lines 467), "merging algorithm is implemented to merge to merge the message with the return template... XML document is depicted for encoding a purchase order (PO), where there are two items ordered, i.e. , item Nos. 0001... ", clearly includes automatically combining the first markup document and the second markup document into a single data set using the tags (e.g. as shown in figure 7).
- and displaying the single data set (CHEN, col. 5 lines 10-13, figure 4), "render the XML document to a browser", displaying xml documents on browser is well known in the art and clearly disclosed by CHEN as shown in figure 4 (i.e. displaying "purchase order" or "invoices").

As per claim 41, the rejection of claim 40 further incorporated, CHEN discloses
- wherein the automatically combining step further comprises the steps of resolving conflicts between the characteristics of the first markup document and the second markup document, (CHEN, figure 1-2, figure 8-10 and accompanying text, col. 4 lines 4-67, col. 3 lines 55-66), "XML name tag map table matches relevant name tag of document fields of a first document to the corresponding name tag of the second document's (or return document's) fields... higher level
qualifier or names tags maybe need to uniquely identify the specific name tag for potential ambiguity... merging algorithm is implemented to merge the message with the return template... XML document is depicted for encoding a purchase order (PO), where there are two items ordered, i.e. , item Nos. 0001... ", clearly includes automatically combining the first markup document and the second markup document into a single data set (e.g. shown in figure 7) by resolving conflicts (e.g. higher level qualifier or name tags or name tag tables are used for mapping tag names in order to resolve conflicts) between the characteristics of the first markup document and the second markup document.

\section*{As per claim 42, the rejection of claim 40 further incorporated, CHEN}

\section*{discloses}
- wherein the displaying step further comprises the steps of manipulating the display of the single data set using the tags reflecting the characteristics of the numerical value, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes and manipulating (e.g. editing) the display of the single data set using the tags reflecting the characteristics of the numerical values (e.g. for instance the user can
change prices or change address etc. as well known in the art).
Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

As per claim 43, the rejection of claim 40 further incorporated, CHEN discloses
- Wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure,(CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure.
- and wherein the steps of manipulating includes the steps of manipulating the display of the single data set using the tags reflecting at least one of magnitude, scale, modifier, units, and measure characteristics of the numerical values, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes and wherein the steps of
manipulating includes the steps of manipulating the display of the single data (e.g. editing invoice) set using the tags reflecting at least one of magnitude, scale, modifier, units, and measure characteristics of the numerical values (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art).

Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

\section*{As per claim 44, the rejection of claim 40 further incorporated, CHEN}

\section*{discloses}
- wherein the characteristics include magnitude, and wherein the step of manipulating comprises the steps of manipulating the display of the single data set using a tag reflecting the magnitude of the numerical value, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ltemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can
edit the partial invoice 204", clearly includes manipulating (e.g. editing invoice of po) the display of the single data set using a tag reflecting the magnitude of the numerical value (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

\section*{As per claim 45, the rejection of claim 40 further incorporated, CHEN}

\section*{discloses}
- wherein the characteristics include scale, and wherein the step of manipulating comprises the step of manipulating the display of the single data set using a tag reflecting the scale of the numerical values, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ltemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204 ", clearly includes manipulating (e.g. editing
invoice or purchase order as shown in figure 4) the display of the single data set using a tag reflecting the scale of the numerical value (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

\section*{As per claim 46, the rejection of claim 40 further incorporated, CHEN}

\section*{discloses}
- wherein the characteristics include a modifier, wherein the step of manipulating comprises the steps of manipulating the display of the single data set using a tag reflecting the modifier of the numerical values, (CHEN, figure 1), clearly as shown in figure 1 tags"
<PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice \(204^{\prime \prime}\), clearly includes manipulating (e.g. editing invoice or purchase order as shown in figure 4) the display of the
single data set using a tag reflecting the modifier of the numerical value (e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

\section*{As per claim 47, the rejection of claim 40 further incorporated, CHEN}

\section*{discloses}
- wherein the characteristics include units, and wherein the steps of manipulating comprises the step of manipulating the display of the single data set using a tag reflecting the units of the numerical values, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204 ", clearly includes manipulating (e.g. editing invoice or purchase order as shown in figure 4) the display of the single data set using a tag reflecting the units of the numerical value
(e.g. for instance the user can change prices or change address or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

\section*{As per claim 48, the rejection of claim 40 further incorporated, CHEN}

\section*{discloses}
- Wherein the characteristics include units, and wherein the steps of manipulating comprises the step of manipulating the display of the single data set using a tag reflecting the measure of the numerical values, (CHEN, figure 1), clearly as shown in figure 1 tags" <PONnumer>", "<ItemNO>", "<Unit>", "<Quantity>", "<Price>" can all be equated to wherein the characteristics include at least one of magnitude, scale, modifier, units, and measure. Furthermore, (CHEN, col. 1 lines 56-67), "partial invoice in XML format is transmitted over the internet and displayed on suppliers browser 203. The supplier can edit the partial invoice 204", clearly includes manipulating (e.g. editing invoice or purchase order as shown in figure 4) the display of the single data set using a tag reflecting the measure of the numerical value (e.g. for instance the user can change prices or change address
or quantities etc. as well known in the art). Furthermore as shown in figure 4, the XML document of figure 1 is shown or rendered in a browser where "rendering" of the XML document via using XSL or CSS in a browser includes and manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

\section*{As per claim 51, CHEN discloses,}
- a data processing system, comprising,(CHEN, title), , "Dynamic business process automation system using XML documents"
- means for receiving a first markup document and a second markup document, (CHEN, figure 5, 6, 7-10 and accompanying text, col. 1 lines 34-64)), "business process automation system may receive an XML message or document and its corresponding Data Type Definition (DTD), and generate a return XML message based on a return document DTD, with certain fields pre-filled from the first XML message", clearly includes means for receiving a first markup document (e.g. po) and a second markup document (e.g. return template as illustrated by 10A).
- both the first mark document and the second markup document including numerical values and tags reflecting characteristics of the numerical values (CHEN , figure \(1-2\), figure \(8-10\), col. 4 lines 4-67), "XML document is depicted for encoding a purchase order (PO), where
there are two items ordered, i.e. , item Nos. 0001... ", clearly includes the first mark document including numerical values (e.g. po) and tags reflecting characteristics of the numerical values and furthermore discloses the second markup document (e.g. template document as shown in figure 10A) and tags reflecting characteristics of numerical values. Although CHEN fails to specifically disclose that the second mark document includes numerical values, this limitation would have been to one of ordinary skill in the art at the time of the invention in view CHEN's teaching of the first document including numerical values and furthermore it is commonly known in that xml template documents may include any type of data (i.e. including numerical values). Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to include second markup document including numerical values, for the purpose of providing various different prices quotes (e.g. numerical values) in a returned invoice based on a received purchase order.
means for automatically combining the first markup document and the second markup document into a single data set using the tags, (CHEN, figure 1-2, figure 8-10 and accompanying text, col. 4 lines 4-67), "merging algorithm is implemented to merge to merge the message with the return template... XML document is depicted for encoding a purchase order (PO), where there are two items ordered,
i.e. , item Nos. 0001... ", clearly includes means for automatically combining the first markup document and the second markup document into a single data set using the tags (e.g. as shown in figure 7).
- and means for displaying the single data set (CHEN, col. 5 lines 10-13, figure 4), "render the XML document to a browser", displaying xml documents on browser is well known in the art and clearly disclosed by CHEN as shown in figure 4 (i.e. displaying "purchase order" or "invoices").

Claim 26 is rejected under 35 U.S.C. 103(a) as being unpatentable over Chen et al. (US 6507856 B1, referred hereinafter as CHEN) further in view of Puri et al. (US 6148330, referred herein after as PURI).

As per claim 26, the rejection of claim 25 further incorporated, CHEN discloses
- wherein the non-volatile storage device, (CHEN, col. 2 lines 29-31).
"storage device"
CHEN fails to expressly disclose - further includes database, and wherein at least one of the markup documents is created from information stored in the database.

PURI teaches the above limitation (PURI, col. 9 lines 58-67-col. 10 lines 1-9), "automated control system may be configured to generate messages such as text messages that contain temperature readings and the like and which are to be placed into the a database.... a database program could then be configured to access the database management system to generate markup language (e.g. HTML) file".

Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the invention, disclosed in CHEN, to include further includes database, and wherein at least one of the markup documents is created from information stored in the database., for the purpose of providing automatic updates via HTML publication of contents from channels without user intervention as disclosed by PURI.

Claim 28 is rejected under 35 U.S.C. 103(a) as being unpatentable over Chen et al. (US 6507856 B1, referred hereinafter as CHEN) further in view of Hu et al. (US 5748188, referred herein after as HU).

\section*{As per claim 28:}

The rejection of claim 25 further incorporated.
CHEN fails to expressly disclose - wherein the program instructs the display to display the single data set on a chart view.

HU teaches the above limitation (HU, abstract, figures 12-24) clearly teaches creating chart view as shown by figure 12-24.

Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the invention, disclosed in CHEN, to include wherein the program instructs the display to display the single data set on a chart view, for the purpose of providing visualization or graphs without sending complete bit map of the graphical information in order to reduce network bandwidth as disclosed by HU.

Claim 29 is rejected under 35 U.S.C. 103(a) as being unpatentable over Chen et al. (US 6507856 B1, referred hereinafter as CHEN) further in view of Kaczmarski et al. (US 6314424 B1, referred herein after as KACZMARSKI).

\section*{As per claim 29:}

The rejection of claim 25 further incorporated.
CHEN fails to expressly disclose - wherein the program instructs the

\section*{display to display the single data set on a tree view.}

KACZMARSKI teaches the above limitation (KACZMARSKI, abstract, figures 4a4b) clearly teaches creating tree view as shown by figure 4a-4b.

Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the invention, disclosed in CHEN, to include wherein the program instructs the display to display the single data set on a tree view, for the purpose of providing a tree view of web page where a user can move efficiently between different sets of data using the tree view as disclosed by KACZMARSKI.

Claim 31 is rejected under 35 U.S.C. 103(a) as being unpatentable over Chen et al. (US 6507856 B1, referred hereinafter as CHEN) further in view of Britton et al. (US 6535896 B2, referred herein after as BRITTON).

\section*{As per claim 31:}

The rejection of claim 25 further incorporated.
CHEN fails to expressly disclose - wherein the program instructs the display to display the single data set on a footnote view.

BRITTON teaches the above limitation (BRITTON, col. 5 lines 1-13) "XSL can be used to transform an XML document into a bulleted list in one HTML view, and into a footnote in a second html view".

Accordingly, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the invention, disclosed in CHEN, to include wherein the program instructs the display to display the single data set on a footnote view, for the purpose of providing different views of the same data as desired by a user or developer as disclosed by BRITTON.

\section*{Conclusion}

The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

See form 892.
Any inquiry concerning this communication or earlier communications from the examiner should be directed to MUSTAFA AMIN whose telephone number is (571)2703181. The examiner can normally be reached on Monday to Thursday, 7:30AM-5:00PM EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Doug Hutton can be reached at 571-272-4137. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.
/Mustafa Amin/
Examiner, Art Unit 2176
Dated: 08/01/2011

Technology Center 2100
2 August 2011
\begin{tabular}{|l|l|l|l|}
\hline \multirow{4}{*}{ Notice of References Cited } & \multicolumn{2}{|l|}{\begin{tabular}{l}
Application/Control No. \\
\(12 / 222,752\)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s)/Patent Under \\
Reexamination \\
DAVIS, RUSSELL T.
\end{tabular}} \\
\cline { 2 - 4 } & \begin{tabular}{l}
Examiner \\
MUSTAFA AMIN
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2176
\end{tabular} & Page 1 of 2 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline * & & Document Number Country Code-Number-Kind Code & Date
MM-YYYY & Name & Classification \\
\hline * & A & US-5,737,739 A & 04-1998 & Shirley et al. & 715/207 \\
\hline * & B & US-5,748,188 A & 05-1998 & Hu et al. & 715/853 \\
\hline * & C & US-5,895,476 A & 04-1999 & Orr et al. & 715/202 \\
\hline * & D & US-6,112,242 A & 08-2000 & Jois et al. & 709/225 \\
\hline * & E & US-6,148,330 A & 11-2000 & Puri et al. & 709/217 \\
\hline * & F & US-6,173,316 B1 & 01-2001 & De Boor et al. & 709/218 \\
\hline * & G & US-6,212,494 B1 & 04-2001 & Boguraev, Branimir K. & 704/9 \\
\hline * & H & US-6,314,424 B1 & 11-2001 & Kaczmarski et al. & 1/1 \\
\hline * & 1 & US-6,502,101 B1 & 12-2002 & Verprauskus et al. & 1/1 \\
\hline * & J & US-6,502,112 B1 & 12-2002 & Baisley, Donald Edward & 715/210 \\
\hline * & K & US-6,507,856 B1 & 01-2003 & Chen et al. & 715/205 \\
\hline * & L & US-6,535,896 B2 & 03-2003 & Britton et al. & 715/239 \\
\hline * & M & US-6,643,633 B2 & 11-2003 & Chau et al. & 1/1 \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(*\) & & \begin{tabular}{c}
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c}
Date \\
MM-YYY
\end{tabular} & Country & Name & Classification \\
\hline & N & & & & & \\
\hline & O & & & & & \\
\hline & P & & & & & \\
\hline & Q & & & & & \\
\hline & R & & & & & \\
\hline & S & & & & & \\
\hline & T & & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS
\begin{tabular}{|l|l|l|l|}
\hline\(*\) & & & Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) \\
\hline & & & \\
& & & \\
\hline & & \\
& & \\
\hline & & \\
\hline
\end{tabular}
\({ }^{*}\) A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
\begin{tabular}{|l|l|l|l|}
\hline \multirow{4}{*}{ Notice of References Cited } & \multicolumn{2}{|l|}{\begin{tabular}{l}
Application/Control No. \\
\(12 / 222,752\)
\end{tabular}} & \multicolumn{2}{l|}{\begin{tabular}{l}
Applicant(s)/Patent Under \\
Reexamination \\
DAVIS, RUSSELL T.
\end{tabular}} \\
\cline { 2 - 4 } & \begin{tabular}{ll}
Examiner \\
MUSTAFA AMIN
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2176
\end{tabular} & Page 2 of 2 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline\({ }^{*}\) & & \begin{tabular}{c}
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c}
Date \\
MM-YYY
\end{tabular} & Name & Classification \\
\hline\({ }^{*}\) & A & US-6,718,516 B1 & \(04-2004\) & Claussen et al. & \(715 / 234\) \\
\hline & B & US- & & & \\
\hline & C & US- & & & \\
\hline & D & US- & & & \\
\hline & E & US- & & & \\
\hline & F & US- & & & \\
\hline & G & US- & & & \\
\hline & H & US- & & & \\
\hline & I & US- & & & \\
\hline & J & US- & & & \\
\hline & K & US- & & & \\
\hline & L & US- & & & \\
\hline & M & US- & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(*\) & & \begin{tabular}{c}
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c}
Date \\
MM-YYY
\end{tabular} & Country & Name & Classification \\
\hline & N & & & & & \\
\hline & O & & & & & \\
\hline & P & & & & & \\
\hline & Q & & & & & \\
\hline & R & & & & & \\
\hline & S & & & & & \\
\hline & T & & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS
\begin{tabular}{|l|l|l|}
\hline\(*\) & & \\
\hline & \(\cup\) & \\
& & \\
& \(\vee\) & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign
\begin{tabular}{|c|c|c|}
\hline Search Notes & Application/Control No.
\[
12222752
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
DAVIS, RUSSELL T.
\end{tabular} \\
\hline & \begin{tabular}{l}
Examiner \\
MUSTAFA AMIN
\end{tabular} & Art Unit
\[
2176
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ SEARCHED } \\
\hline Class & Subclass & Date & Examiner \\
\hline 715 & 209 & & \(07 / 26 / 2011\) & /М.A./ \\
\hline
\end{tabular}

\section*{SEARCH NOTES}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Search Notes } & Date & Examiner \\
\hline East/West USPAT, USPGPUB, EPO, JPO, DERWENT, IBM_TDB & \(07 / 26 / 2011\) & /M.A./ \\
\hline double patenting search & \(07 / 26 / 2011\) & /M.A./ \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|c|}
\hline \multicolumn{5}{|c|}{ INTERFERENCE SEARCH } \\
\hline Class & Subclass & Date & Examiner \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
MUSTAFA AMIN/ \\
Examiner.Art Unit 2176
\end{tabular} & \\
& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Index of Claims & Application/Control No.
\[
12222752
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
DAVIS, RUSSELL T.
\end{tabular} \\
\hline & \begin{tabular}{l}
Examiner \\
MUSTAFA AMIN
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2176
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(\checkmark\) & Rejected \\
\hline\(=\) & Allowed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline- & Cancelled \\
\hline\(\div\) & Restricted \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline N & Non-Elected \\
\hline I & Interference \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A & Appeal \\
\hline \(\mathbf{O}\) & Objected \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Index of Claims & Application/Control No.
\[
12222752
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
DAVIS, RUSSELL T.
\end{tabular} \\
\hline & \begin{tabular}{l}
Examiner \\
MUSTAFA AMIN
\end{tabular} & Art Unit
\[
2176
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(\checkmark\) & Rejected \\
\hline\(=\) & Allowed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline- & Cancelled \\
\hline\(\div\) & Restricted \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\mathbf{N}\) & Non-Elected \\
\hline \(\mathbf{I}\) & Interference \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(A\) & Appeal \\
\hline \(\mathbf{O}\) & Objected \\
\hline
\end{tabular}

4
Receipt date: 08/15/2008
12222752 - GAU: 2176
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{IDS Form PTO/SB/08: Substitute for form 1449A/PTO}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Div. of Application Number & 09/573,778 \\
\hline \multicolumn{4}{|c|}{\multirow[t]{4}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
(Use as many sheets as necessary)
\end{tabular}}} & Filing Date & Concurrently Herewith \\
\hline & & & & First Named Inventor & Russell T. DAVIS \\
\hline & & & & Prior Art Unit & 2176 \\
\hline & & & & Prior Examiner Name & Mustafa Amin \\
\hline Sheet & 1 & of & 4 & Attorney Docket Number & 07643.0002-02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENTS AND PUBLISHED U.S. PATENT APPLICATIONS} \\
\hline \multirow[t]{2}{*}{Examiner Initials} & \multirow[t]{2}{*}{Cite No. \({ }^{1}\)} & Document Number & \multirow[t]{2}{*}{Issue or Publication Date} & \multirow[t]{2}{*}{Name of Patentee or Applicant of Cited Document} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} \\
\hline & & Number-Kind Code \({ }^{2}\) (if known) & & & \\
\hline /M.A. & & US-4,674,043 & 06/1987 & Hernandez et al. & \\
\hline & & US-5,276,776 & 01/1994 & Grady et al. & \\
\hline & & US-5,339,392 & 08/1994 & Risberg et al. & \\
\hline & & US-5,423,032 & 06/1995 & Byrd et al. & \\
\hline & & US-5,603,021 & 02/1997 & Spencer et al. & \\
\hline & & US-5,737,592 & 04/1998 & Nguyen et al. & \\
\hline & & US-5,754,939 & 05/1998 & Herz et al. & \\
\hline & & US-5,822,587 & 10/1998 & McDonald et al. & \\
\hline & & US-5,838,906 & 11/1998 & Doyle et al. & \\
\hline & & US-5,838,965 & 11/1998 & Kavanagh et al. & \\
\hline & & US-5,894,311 & 04/1999 & Jackson & \\
\hline & & US-5,913,214 & 06/1999 & Madnick et al. & \\
\hline & & US-5,917,485 & 06/1999 & Spellman et al. & \\
\hline & & US-5,920,828 & 07/1999 & Norris et al. & \\
\hline & & US-5,948,113 & 09/1999 & Johnson et al. & \\
\hline & & US-5,950,196 & 09/1999 & Pyreddy et al. & \\
\hline & & US-5,956,737 & 09/1999 & King et al. & \\
\hline & & US-5,974,413 & 10/1999 & Beauregard et al. & \\
\hline & & US-5,999,944 & 12/1999 & Lipkin & \\
\hline & & US-6,014,661 & 01/2000 & Ahlberg et al. & \\
\hline & & US-6,026,388 & 02/2000 & Liddy et al. & \\
\hline & & US-6,026,397 & 02/2000 & Sheppard & \\
\hline & & US-6,034,676 & 03/2000 & Egan et al. & \\
\hline & & US-6,058,385 & 05/2000 & Koza et al. & \\
\hline & & US-6,065,026 & 05/2000 & Cornelia et al. & \\
\hline & & US-6,092,036 & 07/2000 & Hamann & \\
\hline & & US-6,097,888 & 08/2000 & Simonyi & \\
\hline & & US-6,108,662 & 08/2000 & Hoskins et al. & \\
\hline & \(\cdot\) & US-6,121,924 & 09/2000 & Meek et al. & \\
\hline & & US-6,134,563 & 10/2000 & Clancey et al. & \\
\hline & & US-6,160,549 & 12/2000 & Touma et al. & \\
\hline & & US-6,167,409 & 12/2000 & DeRose et al. & \\
\hline , 1 & & US-6,173,284 & 01/2001 & Brown & \\
\hline & & US-6,195,676 & 02/2001 & Spix et al. & \\
\hline
\end{tabular}

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. M.A/
a
Receipt date: 08/15/2008
12222752-GAU: 2176
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{IDS Form PTO/SB/08: Substitute for form 1449A/PTO} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Div. of Application Number & 09/573,778 \\
\hline \multicolumn{4}{|c|}{\multirow[t]{4}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
(Use as many sheets as necessary)
\end{tabular}}} & Filing Date & Concurrently Herewith \\
\hline & & & & First Named Inventor & Russell T. DAVIS \\
\hline & & & & Prior Art Unit & 2176 \\
\hline & & & & Prior Examiner Name & Mustafa Amin \\
\hline Sheet & 2 & of & 4 & Attorney Docket Number & 07643.0002-02 \\
\hline
\end{tabular}

\section*{U.S. PATENTS AND PUBLISHED U.S. PATENT APPLICATIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Examiner
Initials} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Cite } \\
& \text { No. }
\end{aligned}
\]} & Document Number & \multirow[t]{2}{*}{Issue or Publication Date} & \multirow[t]{2}{*}{Name of Patentee or Applicant of Cited Document} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} \\
\hline & & Number-Kind Code \({ }^{2}\) (if known) & & & \\
\hline /M.A. & & US-6,199,046 & 03/2001 & Heinzie et al. & \\
\hline \% & & US-6,199,080 & 03/2001 & Nielson & \\
\hline & & US-6,206,388 & 02/2000 & Liddy et al. & \\
\hline & & US-6,223,189 & 04/2001 & Steffens et al. & \\
\hline & & US-6,240,407 & 05/2001 & Chang et al. & \\
\hline & & US-6,243,698 & 06/2001 & Powers et al. & \\
\hline & & US-6,256,030 & 07/2001 & Berry et al. & \\
\hline & & US-6,317,750 & 11/2001 & Tortolani et al. & \\
\hline & & US-6,314,562 & 11/2001 & Biggerstaff & \\
\hline & & US-6,349,307 & 02/2002 & Chen & \\
\hline & & US-6,351,755 & 02/2002 & Najork et al. & \\
\hline & & US-6,356,920 & 03/2002 & Vandersluis & \\
\hline & & US-6,366,915 & 04/2002 & Rubert et al. & \\
\hline & & US-6,370,549 & 04/2002 & Saxton & \\
\hline & & US-6,370,537 & 04/2002 & Gilbert et al. & \\
\hline & & US-6,373,504 & 04/2002 & Nielsen & \\
\hline & & US-6,374,274 & 04/2002 & Myers et al. & \\
\hline & & US-6,418,433 & 07/2002 & Chakrabarti et al. & \\
\hline & & US-6,421,656 & 07/2002 & Cheng et al. & \\
\hline & & US-6,421,822 & 07/2002 & Pavela & \\
\hline & & US-6,460,059 & 10/2002 & Wisniewski & \\
\hline & & US-6,470,349 & 10/2002 & Heninger et al. & \\
\hline & & US-6,493,717 & 12/2002 & Junkin & \\
\hline & & US-6,505,246 & 01/2003 & Land et al. & \\
\hline & & US-6,507,856 & 01/2003 & Chen et al. & \\
\hline & & US-6,581,068 & 06/2003 & Bensousan et al. & \\
\hline & & US-6,591,272 & 07/2003 & Williams & \\
\hline & & US-6,594,653 & 07/2003 & Colby et al. & \\
\hline & & US-6,615,258 & 09/2003 & Barry et al. & \\
\hline & & US-6,629,094 & 09/2003 & Colby et al. & \\
\hline & & US-6,635,089 & 10/2003 & Burkett et al. & \\
\hline & & US-6,667,747 & 12/2003 & Spellman et al. & \\
\hline \% & & US-6,721,736 & 04/2004 & Krug et al. & \\
\hline 炲 & & US-6,745,384 & 06/2004 & Biggerstaff & \\
\hline
\end{tabular}

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /M.A/
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{IDS Form PTO/SB/08: Substitute for form 1449APTO}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Div. of Application Number & 09/573,778 \\
\hline \multicolumn{4}{|c|}{\multirow[t]{4}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
(Use as many sheets as necessary)
\end{tabular}}} & Filing Date & Concurrently Herewith \\
\hline & & & & First Named Inventor & Russell T. DAVIS \\
\hline & & & & Prior Art Unit & 2176 \\
\hline & & & & Prior Examiner Name & Mustafa Amin \\
\hline Sheet & 3 & of & 4 & Aftorney Docket Number & 07643.0002-02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENTS AND PUBLISHED U.S. PATENT APPLICATIONS} \\
\hline \multirow[t]{2}{*}{Examiner
Initials} & \multirow[t]{2}{*}{Cite No. \({ }^{1}\)} & Document Number & \multirow[t]{2}{*}{Issue or Publication Date} & \multirow[t]{2}{*}{Name of Patentee or Applicant of Cited Document} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} \\
\hline & & Number-Kind Code \({ }^{2}\) (if known) & & & \\
\hline /M.A./ & & US-6,886,005 & 04/2005 & Davis & \\
\hline 8 & & US-6,912,293 & 06/2005 & Korobkin & \\
\hline & & US-6,920,608 & 07/2005 & Davis & \\
\hline & & US-7,249,328 & 07/2007 & Davis & \\
\hline & & US-2001/0018687 & 08/2001 & Gonzalez et al. & \\
\hline & & US-2001/0020237 & 09/2001 & Yarnall et al. & \\
\hline & & US-2001/0049687 & 12/2001 & Russell & \\
\hline & & US-2002/0023141 & 02/2002 & Yen et al. & \\
\hline & & US-2002/0052954 & 05/2002 & Polizzi et al. & \\
\hline & & US-2002/0091696 & 07/2002 & Craft et al. & \\
\hline & & US-2002/0198985 & 12/2002 & Fraenkel et al. & \\
\hline & & US-2003/0041077 & 02/2003 & Davis & \\
\hline & & US-2003/0167213 & 09/2003 & Jammes et al. & \\
\hline & & US-2005/0086126 & 04/2005 & Davis & \\
\hline * & & US-2005/0182709 & 08/2005 & Belcsak et al. & \\
\hline & & US-2005/0198042 & 09/2005 & Davis & \\
\hline
\end{tabular}

Note: Submission of copies of U.S. Patents and published U.S. Patent Applications is not required.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{FOREIGN PATENT DOCUMENTS} \\
\hline Examiner Initials & \[
\begin{aligned}
& \text { Cite } \\
& \text { No. }{ }^{1}
\end{aligned}
\] & Foreign Patent Document & Publication Date MM-DD-YYY & Name of Patentee or Applicant of Cited Document & Pages, Columns, Lines, Where Relevant Passages & Translation \({ }^{6}\) \\
\hline & & Country Code \({ }^{3}\) Number \({ }^{4}\) Kind Code \(^{5}\) (fiknown) & & & Appear & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|}
\hline \multicolumn{6}{|c|}{ NONPATENT LITERATURE DOCUMENTS } \\
\hline \begin{tabular}{c}
Examiner \\
Initials
\end{tabular} & \begin{tabular}{l}
Cite \\
No."
\end{tabular} & \begin{tabular}{l}
Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item \\
(book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s)., \\
publisher, city and/or country where published.
\end{tabular} & \begin{tabular}{l}
Translation
\end{tabular} \\
\hline M.A// & & \begin{tabular}{l}
Copending U.S. Patent Application No. 09/573,780 entitled "Reusable Macro Markup Language", filed \\
May 18, 2000.
\end{tabular} & \\
\hline M.A./ & & \begin{tabular}{l}
Copending U.S. Patent Application No. 11/819,125 entitled "Tree View for Reusable Data Markup \\
Language", fled June 25, 2007.
\end{tabular} & \\
\hline M.A./ & & \begin{tabular}{l}
Copending U.S. Patent Application No. 11/819,126 entitled "Tree View for Reusable Date Markup \\
Language", fled June 25, 2007.
\end{tabular} & \\
\hline M.A./ & & \begin{tabular}{l}
Extensible Business Reporting Language (XBRL) 2.0 Specification, (2001-12-14), Editors: Luther Hampton, \\
e-Numerate; David vun Kannon, KPMG LLP; pps. 1-42.
\end{tabular} & \\
\hline
\end{tabular}

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. M.A/
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{IDS Form PTO/SB/08: Substitute for form 1449A/PTO}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Div. of Application Number & 09/573,778 \\
\hline \multicolumn{4}{|c|}{\multirow[t]{4}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
(Use as many sheets as necessary)
\end{tabular}}} & Filing Date & Concurrently Herewith \\
\hline & & & & First Named Inventor & Russell T. DAVIS \\
\hline & & & & Prior Art Unit & 2176 \\
\hline & & & & Prior Examiner Name & Mustata Amin \\
\hline Sheet & 4 & of & 4 & Attorney Docket Number & 07643.0002-02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{NONPATENT LITERATURE DOCUMENTS} \\
\hline M.A./ & Information on Exchange Rates of Africa, Asia, and Australia, web site: http://eh.nethmite exchangerates/infoafr.htm, pp. 1-3, 2002 by EH.NET, downloaded 10/19/2006. & \\
\hline M.A. & Microsoft Press Computer Dictionary, Third Edition, Microsoft Press, p. 511 (1997) (3 pages). & \\
\hline M.A./ & Online Ohio CPA Newsletter, A Monthly Electronic Publication of the Ohio Society of Certified Public Accountants; August 2000, Volume 1, No. 14 (7 pages). & \\
\hline M.A./ & Order of Magnitude (online Wikipedia article), http://en.wikipedia.org/wiki/Orders of magnitude>, 2006 Wikimedia Foundation, Inc. pp. 1-4, downloaded 10/19/2006. & \\
\hline /MA. & Tools [online], extensible Business Reporting Language, [retrieved on 8/13/2002]. Retrieved from the Internet <URL: http://wnw.xbrl.org/Tools.htm> (5 pages). & \\
\hline M.A. & XBRL Essentials, (A nontechnical introduction to the extensible Business Reporting Language, the digital language of business), January 2001, Charles Hoffman, CPA; Carolyn Strand, PhD, CPA, (AICPA), pp. 1-17. & \\
\hline MA. & XBRL Home Page [online], extensible Business Reporting Language, [retrieved on 8/13/2002]. Retrieved from the Internet <URL: hitto://mmw.xbri.org> (3 pages). & \\
\hline M.A. & XBRL Technical Specification [online], extensible Business Reporting Language, [retrieved on 8/13/2002]. Retrieved from the Internet <URL: http://mww.xbrl.org/TR/2001/default.htm> (1 page). & \\
\hline M. A./ & The XML Cover Pages, Extensible Business Reporting Language (XBRL), (1994-2002), Robin Cover, pps. 1-18. & \\
\hline /mA. & BERKLEY ET AL., The Road to Better Business Information Making a Case for XBRL, Winter 2000, Microsoft, pp. 1-13. & \\
\hline /M.A./ & BLATTNER, Special Edition Using Microsoft Excel (R), May 3, 1999 (C) Que Corporation "Adding a Secondary Axis to the Chart" (3 pages). & \\
\hline M.A. & ELLIOTTE RUSTY HAROLD, "XMLTM Bible," IDG Books Worldwide, Inc., An International Data Group Company (1999) (2 pages). & \\
\hline M.A. \({ }^{\text {a }}\) & BRUCE HALLBERG ET AL., "Special Edition, Using Microsoft® Excell 97, Besiseller Edition, " Que® Corporation (1997) (2 pages). & \\
\hline M.A./ & HAMSCHER ET AL., Extensible Business Reporting language (XBRL) Specification, July 31, 2000, XBRL Organization, pp. 1-27. & \\
\hline M.A./ & CHARLES HOFFMAN AND CAROLYN STRAND, "XBRL Essentials, A Nontechnical Introduction to eXtensible Business Reporting Language (XBRL), the Digital Language of Business Reporting," pp. 1-148 (2001). & \\
\hline /M.A./ & GILSTER, PAUL, Finding It On The Internet: The Internet Navigator's Guide to Search Tools \& Techniques, \(2^{\text {nd }}\) edition (1996) (3 pages). & \\
\hline MA./ & DAVID MEGGINSON, "Structuring XML. Documents," Prentice Hall PTR, Upper Saddle River, NJ (1998) (2 pages). & \\
\hline M.A. & \begin{tabular}{l}
JON RIENSTRA, "Using Excel(8) in Chemistry," \\
hitp://www.asa3.org/chemistry/computers in chemistry/excel tips.html (1995) (4 pages).
\end{tabular} & \\
\hline M.A. & SIMON ST. LAURENT, "Why XML?," hitp://www.simonstl.com/articles/whyxml.htm (1998) (5 pages). & \\
\hline M.A. & SUZUKI ET AL., "Managing the Software Design Documents With XML," ACM Proceedings of the 16th Annual International Conference on Computer Documentation, September 1998, pp. 127-136. & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Examiner \\
Signature
\end{tabular} & Mustafa Amin/ & \begin{tabular}{l}
Date \\
Considered
\end{tabular} & \(07 / 27 / 2011\) \\
\hline
\end{tabular}

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

\section*{EAST Search History}

\section*{EAST Search History (Prior Art)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline L1 & 3043 & ((generat\$4 or produce\$4) near2 (xm|\$1 or mark\$1up\$2)) same (data\$1base\$4 or reposit\$4 or stora\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 15: 49
\end{aligned}
\] \\
\hline L2 & 4310 & ((generat\$4 or produce\$4) near2 (xml\$1 or mark\$1up\$2)) same (data\$1base\$4 or reposit\$4 or stor\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 15: 49
\end{aligned}
\] \\
\hline L3 & 383 & ((generat\$4 or produce\$4) near2 (xml\$1 or mark\$1up\$2)) same (data\$1base\$4 or reposit\$4 or stor\$4)) same (dynami\$4 or automa\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 15: 50
\end{aligned}
\] \\
\hline L4 & 21 & 13 and @ay<="2000" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\sqrt{2011 / 08 / 01}
\] \\
\hline L5 & 809 & ((mark\$1up\$1 or html\$1 or xml\$1) near2 ((tree\$2)) same (view\$4 or display\$4 or rrender\$4) & \[
\begin{aligned}
& \hline \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 15
\end{aligned}
\] \\
\hline L6 & 63 & 15 and @ay<="2000" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 15
\end{aligned}
\] \\
\hline L7 & 3322 & ((mark\$1up\$1 or html\$1 or xml\$1) near2 ((ree \(\$ 2\) or structur\$4)) same (view\$4 or display\$4 or render\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 28
\end{aligned}
\] \\
\hline L8 & 163 & 17 and @ay<"2000" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 28
\end{aligned}
\] \\
\hline L9 & 121 & 18 not 16 & US-PGPUB; USPAT; & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 28
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & IlFPRS; EPO; JPO; DERWENT IBM TDB & & & \\
\hline L10 & 1269 & ((mark\$1up\$1 or htm|\$1 or xm|\$1) near2 (tree\$2 or dom\$4)) same (view\$4 or display\$4 or render\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
12011 / 08 / 01
\] \\
\hline L11 & 1322 & ((mark\$1up\$1 or htmi\$1 or xm|\$1) near2 (tree\$2 or (dom or (document adj object adj model\$1)))) same (view\$4 or display\$4 or render\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
16: 31
\] \\
\hline L12 & 45 & 111 and @ay<"2000" & US-PGPUB;
USAT;
FPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 32
\end{aligned}
\] \\
\hline L13 & 16 & foot\$1note\$2 near2 (xml\$1 or mark\$1up\$1 or html\$1) & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { UPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DRWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
12011 / 08 / 01
\] \\
\hline L14 & 10356 & (black\$1jack\$1) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { UPAT; } \\
& \text { PRSS; } \\
& \text { EPOPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
17: 39
\] \\
\hline L15 & 19 & (black\$1jack\$1) near2 (simulatio\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { UPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DRWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
17: 39
\] \\
\hline L17 & 4 & \[
\begin{aligned}
& \left(" 5748188^{\prime \prime}\right) \text { or ("6148330") or } \\
& (\text { " } 6314424 \text { ") or ("6535896")). PN. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
12011 / 08 / 01
\] \\
\hline L18 & 5 & \[
\begin{aligned}
& \left(\left(" 5748188^{\prime \prime}\right) \text { or }(" 6148330 \text { ") or }\right. \\
& \left(\text { " } 63144244^{\prime \prime}\right) \text { or ("6535896") or } \\
& \left(" 6507856^{\prime \prime}\right) \text { PN. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \mid \\
& 18: 46
\end{aligned}
\] \\
\hline S1 & 800 & (715/209).CCLS. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\sqrt{2011 / 07 / 26}
\] \\
\hline S2 & 3 & ("5956737") or ("5838906") or & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
2
\] \\
\hline 53 & 422 & ((merg\$4 or combin\$4) near2 (xmml\$1 or mark\$1up\$1)) & USPAT & OR & OFF & \[
\begin{array}{|}
2011 / 07 / 26 \\
20: 08
\end{array}
\] \\
\hline S4 & 3587 & (xml\$1 or mark\$1up) near2 (tag\$1) & USPAT & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 26 \\
20: 09
\end{array}\right.
\] \\
\hline S5 & 150 & 54 and 53 & USPAT & OR & OFF & \[
\left\lvert\, \begin{aligned}
& 2011 / 07 / 26 \\
& 20: 09
\end{aligned}\right.
\] \\
\hline 56 & 1278 & ((merg\$4 or combin\$4) near2 (xml\$1 or mark\$1up\$1)) & \[
\begin{aligned}
& \text { USPGPPB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { DRWENT; }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 26 \\
20: 09
\end{array}\right.
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & IBM TDB & & & \\
\hline 57 & 10837 & (xml\$1 or mark\$1up\$1) near2 (tag\$1) & US-PGPUB; USPAT; EPO; JPO; DERWENT IBM TDB & OR & OFF & 2011/07/26 \\
\hline S8 & 392 & S7 and S6 & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & 2011/07/26 \\
\hline 59 & 83 & ((master\$4) near2 (xml\$1 or mark\$1up\$)) same (document\$4) & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
32011 / 07 / 26
\] \\
\hline S10 & 1 & 59 and 58 & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & 2011/07/26 \\
\hline 511 & 227 & \(|" 5835712 "| " 6108673\) " | "6112242" |
"6125391" | "6208986" | "6216121").PN.
OR ("6507856").URPN. & \[
\begin{aligned}
& \text { US-FGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\frac{2011 / 07 / 27}{11: 35}
\] \\
\hline S12 & 1241 & (((merg\$4 or combin\$4 or assemb\$4 or (join\$4) near3 (xml\$1 or mark\$1up\$1))) same (document\$2 or pag\$4) & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 11: 45
\end{aligned}
\] \\
\hline S13 & 205 & S12 and @ay<="2001" & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 11: 47
\end{aligned}
\] \\
\hline S14 & 1915 & (merg\$3 or combin\$4 or assemb\$2 or join\$4) near2 (tags\$2) & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 11: 50
\end{aligned}
\] \\
\hline S15 & 3 & S14 and S13 & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 11: 50
\end{aligned}
\] \\
\hline S16 & 14809 & (resol\$4) near2 (conflic\$4) & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TIDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 27
\end{aligned}
\] \\
\hline S17 & 1241 & (((merg\$4 or combin\$4 or assemb\$4 or (join\$4) near3 (xml\$1 or mark\$1up\$1))) same (document\$2 or pag\$4) & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 27
\end{aligned}
\] \\
\hline S18 & 205 & S17 and @ay<="2001" & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TIDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 27
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S19 & 6 & S16 and S18 & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
3
\] \\
\hline S20 & 90 & & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 27 \\
14: 30
\end{array}\right.
\] \\
\hline S21 & 44 & S20 and (xml\$1 or mark\$1up\$1) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; }
\end{aligned}
\] & OR & OFF & \[
14
\] \\
\hline S22 & 64 & & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
12011 / 07 / 27
\] \\
\hline S23 & 67 & & US-PGPUB; USPAT; USOCR & OR & OFF & \[
14: 38
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S24 & 88 & & \[
\begin{aligned}
& \text { US-PGPUB } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & 3FF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 38
\end{aligned}
\] \\
\hline S25 & 172 & S20 or S22 or S23 or S24 & \[
\begin{aligned}
& \text { US-PGPUB } \\
& \text { USPAT; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\sqrt{2011 / 07 / 27}
\] \\
\hline S26 & 6 & S25 and S17 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\sqrt{2011 / 07 / 27}
\] \\
\hline S27 & 86 & US-4674043-\$.DID. OR US-5276776\$.DID. OR US-5339392-\$.DID. OR US-5423032-\$.DID. OR US-5603021-\$.DID. OR US-5737592-\$.DID. OR US-5754939\$.DID. OR US-5822587-\$.DID. OR US-5838906-\$.DID. OR US-111998D-\$.DID. OR US-5838965-\$.DID. OR US-5894311\$.DID. OR US-5913214-\$.DID. OR US-5917485-\$.DID. OR US-5920828-\$.DID. OR US-5948113-\$.DID. OR US-5950196\$.DID. OR US-5956737-\$.DID. OR US-5974413-\$.DID. OR US-5999944-\$.DID. OR US-6014661-\$.DID. OR US-6026388\$.DID. OR US-6026397-\$.DID. OR US-6034676-\$.DID. OR US-6058385-\$.DID. OR US-6065026-\$.DID. OR US-6092036\$.DID. OR US-6097888-\$.DID. OR US-6108662-\$.DID. OR US-6121924-\$.DID. OR US-6134563-\$.DID. OR US-6160549\$.DID. OR US-6167409-\$.DID. OR US-122000D-\$.DID. OR US-6173284-\$.DID. OR US-6195676-\$.DID. OR US-6199046- & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & \%FF & \[
315: 03
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S36 & 72 & S35 and S33 & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 42
\end{aligned}
\] \\
\hline S37 & 2080 & (((dynami\$4 or automa\$4) near3 (genera\$4 or produc\$4)) same (xml\$1 or mark\$1up)) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 27 \\
15: 50
\end{array}\right.
\] \\
\hline S38 & 3282 & (((dynami\$4 or automa\$4) near3 (genera\$4 or produc\$4)) same (xml\$1 or mark\$1up or html\$1 or sgml\$3)) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 51
\end{aligned}
\] \\
\hline S39 & 576 & S38 and S32 & US-PGPUB; USPAT; USOCR & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 51
\end{aligned}
\] \\
\hline S40 & 504 & S39 not S36 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 52
\end{aligned}
\] \\
\hline S41 & 172 & S40 and @ay<="2002" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 52
\end{aligned}
\] \\
\hline S42 & 3373 & ((\((\) merg \(\$ 4\) or combin\$4 or assemb\$4 or join\$4 or aggregat) near3 (xml\$1 or mark\$1up\$1))) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline S43 & 3871 & (((merg\$4 or combin\$4 or assemb\$4 or join\$4 or aggregat\$3) near3 (xml\$1 or mark\$1up\$1))) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline S44 & 3878 & (((merg\$4 or combin\$4 or assemb\$4 or join\$4 or aggregat\$4) near3 (xml\$1 or mark\$1up\$1))) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline S45 & 7 & S44 not S43 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline S46 & 505 & S44 not S35 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline S47 & 0 & S46 and (reslove\$4 near2 confli\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 16: 00
\end{aligned}
\] \\
\hline S48 & 14 & S46 and (resol\$4 near2 confli\$4) & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 27 \\
16: 01
\end{array}\right.
\] \\
\hline S49 & 1 & ("6507856").PN. & USPAT; & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 27 \\
20: 10
\end{array}\right.
\] \\
\hline S50 & 20 & (display\$3 near2 (XML or mark\$1up)) same (chart\$2) & USPAT & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 28 \\
11: 05
\end{array}\right.
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S51 & 51 & ((display\$3 or show\$4 or render\$4) near2 (XML or mark\$1up)) same (chart\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 07
\end{aligned}
\] \\
\hline 552 & 376 & ((display\$3 or show\$4 or render\$4) near2 (XML or mark\$1up)) same (chart\$2 or graph\$4 or spread\$1sheet\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 08
\end{aligned}
\] \\
\hline S53 & 53 & ((display\$3 or show\$4 or render\$4) near2 (XML or mark\$1up)) near3 (chart\$2 or graph\$4 or spread\$1sheet\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 09
\end{aligned}
\] \\
\hline S54 & 431 & ((xml\$1 or mark\$1up\$1) near2 (data\$4)) same (chart\$2 or graph\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 10
\end{aligned}
\] \\
\hline S55 & 74 & ((xml\$1 or mark\$1up\$1) near2 (data\$4)) lnear2 (chart\$2 or graph\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 10
\end{aligned}
\] \\
\hline S56 & 168 & ((xml\$1 or mark\$1up\$1) near2 (data\$4)) near2 (chart\$2 or graph\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 11
\end{aligned}
\] \\
\hline S57 & 213 & ((xml\$1 or mark\$1up\$1 or html\$1) near2 (data\$4)) near2 (chart\$2 or graph\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 14
\end{aligned}
\] \\
\hline S58 & 1529 & ((xml\$1 or mark\$1up\$1 or html\$1)) near2 (chart\$2 or graph\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 14
\end{aligned}
\] \\
\hline 559 & 1 & ((xml\$1 or mark\$1up\$1 or html\$1)) near2 ((chart\$2 or graph\$2) and tree and spread\$1sheet\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 14
\end{aligned}
\] \\
\hline 560 & 183 & ((xml\$1 or mark\$1up\$1 or html\$1)) same ((chart\$2 or graph\$2) and tree and spread\$1 sheet\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
=\left\{\begin{array}{l}
2011 / 07 / 28 \\
11: 15
\end{array}\right.
\] \\
\hline 561 & 19296 & ((xml\$1 or mark\$1up\$1 or html\$1)) same ((chart\$2 or graph\$2) or spread\$1sheet\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\int_{11: 23}^{2011 / 07 / 28}
\] \\
\hline S62 & 10106 & ((\((x \mathrm{ml}\) \$1 or mark\$1up\$1 or html\$1)) same ((chart\$2 or graph\$2) or spread\$1sheet\$2)) same (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 23
\end{aligned}
\] \\
\hline 563 & 1031 & ((\((\mathrm{xml}\) \$1 or mark\$1up\$1 or html\$1)) near2 ((chart\$2 or graph\$2) or spread\$1 sheet\$2)) same (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; & OR & OFF & \[
311: 24
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & IIBM TDB & & & \\
\hline S64 & 217 & ((\(x \mathrm{xml} \$ 1\) or mark\$1up\$1 or html\$1)) near2 ((chart\$2 or graph\$2) or spread\$1sheet\$2)) near2 (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 24
\end{aligned}
\] \\
\hline S65 & 42 & ((\((x \mathrm{ml}\) \$1 or mark\$1up\$1 or html\$1)) near2 (spread\$1sheet\$2)) near2 (view\$4 or render \(\$ 4\) or display \(\$ 4\) or show \(\$ 4\)) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 49
\end{aligned}
\] \\
\hline S66 & 754 & (((xml\$1 or mark\$1up\$1 or html\$1)) near2 (spread\$1sheet\$2 or table\$1 or colum\$2)) near2 (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 50
\end{aligned}
\] \\
\hline S67 & 403 & (((xml\$1 or mark\$1up\$1 or html\$1)) near1 (spread\$1sheet\$2 or table\$1 or colum\$2)) near2 (view\$4 or render\$4 or display\$4 or show\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 50
\end{aligned}
\] \\
\hline S68 & 224 & (((xml\$1 or mark\$1up\$1 or html\$1)) near1 (spread\$1sheet\$2 or table\$1 or colum\$2)) near1 (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 28 \\
11: 50
\end{array}\right.
\] \\
\hline S69 & 106 & ((\((x \mathrm{ml}\) \$1 or mark\$1up\$1 or html\$1)) near1 (tree)) near1 (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 59
\end{aligned}
\] \\
\hline S70 & 43 & ((xml\$1 or mark\$1up\$1 or html\$1)) near1 (tree\$1)) near1 (view\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM_TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 01
\end{aligned}
\] \\
\hline S71 & 46 & (((xml\$1 or mark\$1up\$1 or htm|\$1)) near1 (tree\$1 or dom)) near1 (view\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 02
\end{aligned}
\] \\
\hline S72 & 46 & ((\((x \mathrm{ml} \$ 1\) or mark\$1up\$1 or html\$1)) near1 (tree\$1 or dom or (document adj object adj model))) near1 (view\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 02
\end{aligned}
\] \\
\hline S73 & 130 & (((xm|\$1 or mark\$1up\$1 or html\$1)) near1 (tree\$1 or dom or (document adj object adj model))) near1 (view\$4 or show\$4 or display\$4 or render) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 02
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & IBM TDB & & & \\
\hline S74 & 87 & S73 not S70 & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 28 \\
12: 02
\end{array}\right.
\] \\
\hline S75 & 1381 & (xml\$1) near1 (tree\$1) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 28 \\
12: 03
\end{array}\right.
\] \\
\hline S76 & 53 & S75 and @ay<="2000" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPRS; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 28 \\
12: 03
\end{array}\right.
\] \\
\hline S77 & 197 & ((xml\$1) near1 (tree\$1)) same (displa\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 28 \\
12: 05
\end{array}\right.
\] \\
\hline S78 & 6 & S77 and @ay<="2000" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 28 \\
12: 05
\end{array}\right.
\] \\
\hline S79 & 1953 & (combin\$2 near2 (xml\$1 or mark\$1)) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\}
\] \\
\hline S80 & 80 & S79 and @ay="2000" & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 08 / 01 \\
14: 33
\end{array}\right.
\] \\
\hline S81 & 799 & (combin\$2 near2 (xml\$1 or mark\$1up)) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 08 / 01 \\
14: 35
\end{array}\right.
\] \\
\hline S82 & 35 & S81 and @ay="2000" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\}
\] \\
\hline
\end{tabular}

8/ 1/2011 6:59:41 PM
C:\Users\mamin\ Documents\EAST\Workspaces \(\backslash 12222752\). wsp

BIB DATA SHEET
CONFIRMATION NO. 5842
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SERIAL NUMEER
\[
12 / 222,752
\]} & \begin{tabular}{l}
FILING
DAA
\[
0815
\] \\
RU
\end{tabular} & \begin{tabular}{l}
\[
371(c)
\] \\
08
\end{tabular} & \begin{tabular}{l}
CLASS \\
715
\end{tabular} & & & & \begin{tabular}{l}
ORNEY DOCKET NO. \\
643.0002.02
\end{tabular} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
APPLBCANTS \\
Russell T. Davis, Bethesda, MD; \\
** COWTEMUING DATA \\
This application is a DIV of 09/573,778 05/18/2000 PAT 7,421,648 \\
which clams beneft of \(60 / 135,52505 / 21 / 1999\) \\
and claims benefit of \(60 / 183,15202 / 17 / 2000\) \\
** FOREIGN APMLICATONS \(\qquad\) None /M.A./ 08/01/2011 \\
** \(\{\) REQUIRED, FOREIGN FILING BICENSE GRANTED ** 09104/2008
\end{tabular}} \\
\hline Foregn Priority claim 35 (jec 199a-d) co Verfited and Acknowledged & & \[
\begin{aligned}
& \text { Jyes } \beta \mathrm{No} \\
& \text { Jyes } \beta \mathrm{No} \\
& \text { gnimin } \\
& \text { ginatue }
\end{aligned}
\] & \(\frac{11}{\text { Met }}\) Milow & STATE OR COUNTRY MD & & & & INDEPENDENT CLAMMS 5 \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER LLP \\
901 NEW YORK AVENUE, NW \\
WASHINGTON, DC 20001-4413 \\
UNITEO STATES
\end{tabular}} \\
\hline \multicolumn{9}{|l|}{TITLE} \\
\hline \multirow{7}{*}{FGING FEE RECEIVED 2580} & \multicolumn{5}{|l|}{\multirow{7}{*}{FEES: Authority has been given in Paper No. \(\qquad\) to charge/credit DEPOST ACCOUNT No. \(\qquad\) for following:}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{]AlFees}} \\
\hline & & & & & & & & \\
\hline & & & & & & \multicolumn{3}{|l|}{] 1.16 Fees (Filing)} \\
\hline & & & & & & \multicolumn{3}{|l|}{[1.17 Fees (Processing Ext. of time)} \\
\hline & & & & & & \multicolumn{3}{|l|}{-1.18 Fees (Issue)} \\
\hline & & & & & & \multicolumn{3}{|c|}{\(\square\) Other} \\
\hline & & & & & & \multicolumn{3}{|c|}{\(\underline{-}\) Credit} \\
\hline
\end{tabular}

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re Application of:
Russell T. Davis
Application No.: 12/222,752
Filed: August 15, 2008
For: REUSABLE DATA MARKUP LANGUAGE
)
) Group Art Unit: 2176
) Examiner: Mustafa A. Amin
) Confirmation No.: 5842
)
) VIA EFS WEB

Mail Stop: Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

\section*{AMENDMENT}

In reply to the Office Action mailed August 5, 2011, the period for response to which extends through November 7, 2011 (November 5, 2011 being a Saturday), please amend the above-identified application as follows:

Amendments to the Claims are reflected in the listing of claims in this paper.
Remarks follow the Amendments section of this paper.

\section*{AMENDMENTS TO THE CLAIMS:}

This listing of claims will replace all prior versions and listings of claims in the application:

1-12. (Canceled)
13. (Currently Amended) A method in a data processing system, comprising the steps of:
receiving a first markup document and a second markup document, both the first markup document and the second markup document including numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document;
automatically transforming the numerical values of at least one of the first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format;
automatically-combining the first markup document and the second markup document into a single data setusing the tags; and
displaying the single data set.
14. (Currently Amended) The method of claim 13, wherein the automaticallycombining step-further comprising-comprises the step of:
resolving conflicts between the characteristics of the first markup document and the second markup document.
15. (Currently Amended) The method of claim 13, wherein the displaying step further comprises a the-step of:
manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.
16. (Currently Amended) The method of claim 13, wherein the characteristics include at least one of a magnitude, scale, modifier, unit units, and measure of the numerical values, and wherein the method further includes-step-of manipulating includes the step of:
manipulating the display of the single data set using the tags, wherein the tags reflect reflecting-at least one of the magnitude, scale, modifier, unitunits, and measure characteristics of the numerical values.
17. (Currently Amended) The method of claim 13, wherein the characteristics include a magnitude of the numerical values, and wherein the method further includes step of manipulating comprises the step of:
manipulating the display of the single data set using a tag reflecting the magnitude of the numerical values.
18. (Currently Amended) The method of claim 13, wherein the characteristics include a scale of the numerical values, and wherein the method further includes step of manipulating comprises the step of:
manipulating the display of the single data set using a tag reflecting the scale of the numerical values.
19. (Currently Amended) The method of claim 13, wherein the characteristics include a modifier of the numerical values, and wherein the method further includes-step of manipulating comprises the step of:
manipulating the display of the single data set using a tag reflecting the modifier of the numerical values.
20. (Currently Amended) The method of claim 13, wherein the characteristics include a unit of the numerical values-units, and wherein the method further includes step of manipulating comprises the step of:
manipulating the display of the single data set using a tag reflecting the unit-unitsof the numerical values.
21. (Currently Amended) The method of claim 13, wherein the characteristics include a measure of the numerical values, and wherein the method further includes step of manipulating includes the step of:
manipulating the display of the single data set using a tag reflecting the measure of the numerical values.

22-23. (Canceled)
24. (Currently Amended) A method in a data processing system, comprising the steps of:
receiving a request for a numerical value, the request indicating at least one characteristic of the numerical value;
receiving a first markup document and a second markup document, both the first markup document and the second markup document containing numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document, and wherein at least one of the tags having has the indicated characteristic of the requested numerical value;
automatically transforming the numerical values of at least one of the first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format:
automatically-combining the first markup document and the second markup document into a single data set-by resolving conflicts between the characteristics of thefirst markup document and the second markup document;
displaying the single data set; and
manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.

\section*{25. (Currently Amended) A data processing system comprising:}
a non-volatile storage device with a first markup document and a second markup document, both the first markup document and the second markup document containing numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document;
a memory with a program that receives the first markup document and the second markup document, that automatically transforms the numerical values of at least one of the first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format, and that automatically-combines the first markup document and the second markup document into a single data setusing the tags; and a processor that runs the program.
26. (Original) The data processing system of claim 25 , wherein the nonvolatile storage device further includes a database, and wherein at least one of the markup documents is created from information stored in the database.
27. (Original) The data processing system of claim 25 , wherein the markup language is compliant with Extensible Markup Language version 1.0.
28. (Original) The data processing system of claim 25, further comprising a display, wherein the program instructs the display to display the single data set on a chart view.
29. (Original) The data processing system of claim 25, further comprising a display, wherein the program instructs the display to display the single data set on a tree view.
30. (Original) The data processing system of claim 25, further comprising a display, wherein the program instructs the display to display the single data set on a spreadsheet view.
31. (Original) The data processing system of claim 25, further comprising a display, wherein the program instructs the display to display the single data set on a footnote view.

32-39. (Canceled)
40. (Currently Amended) A non-transitory computer-readable medium containing instructions for controlling a data processing system to perform a method comprising:
receiving a first markup document and a second markup document, both the first markup document and the second markup document containing numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document;
automatically transforming the numerical values of at least one of the first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format:
automatically-combining the first markup document and the second markup document into a single data setusing the tags; and
displaying the single data set.
41. (Currently Amended) The computer-readable medium of claim 40, wherein the automatically combining step-further comprising-comprises the step of:
resolving conflicts between the characteristics of the first markup document and the second markup document.
42. (Currently Amended) The computer-readable medium of claim 40, wherein the displaying step further comprises a the-step of:
manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.
43. (Currently Amended) The computer-readable medium of claim 40, wherein the characteristics include at least one of magnitude, scale, modifier, unit units, and measure of the numerical values, and wherein the method further includes-step ofmanipulating comprises the step of:
manipulating the display of the single data set using the tags reflecting the magnitude, scale, modifier, unitunits, and measure characteristics of the numerical values.
44. (Currently Amended) The computer-readable medium of claim 40, wherein the characteristics include magnitude of the numerical values, and wherein the method further includes-step of manipulating comprises the step of:
manipulating the display of the single data set using a tag reflecting the magnitude characteristic of the numerical values.
45. (Currently Amended) The computer-readable medium of claim 40, wherein the characteristics include a scale of the numerical values, and wherein the method further includes step of manipulating comprises the step of:
manipulating the display of the single data set using a tag reflecting the scale characteristic of the numerical values.
46. (Currently Amended) The computer-readable medium of claim 40, wherein the characteristics include a modifier of the numerical values, and wherein the method further includes step of manipulating comprises the-step-of:
manipulating the display of the single data set using a tag reflecting the modifier characteristic of the numerical values.
47. (Currently Amended) The computer-readable medium of claim 40, wherein the characteristics include a unit-units, and wherein the method further includes step of manipulating comprises the-step of:
manipulating the display of the single data set using a tag reflecting the unit-mnits characteristic of the numerical values.
48. (Currently Amended) The computer-readable medium of claim 40, wherein the characteristics include a measure of the numerical values, and wherein the method further includes-step of manipulating comprises the step of:
manipulating the display of the single data set using a tag reflecting the measure characteristic of the numerical values.

49-50. (Canceled)
51. (Currently Amended) A data processing system comprising:
means for receiving a first markup document and a second markup document, both the first markup document and the second markup document containing numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document;
means for automatically transforming the numerical values of at least one of the
first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format: means for automatically-combining the first markup document and the second markup document into a single data setusing the tags; and means for displaying the single data set.

52-66. (Canceled)

\section*{REMARKS}

\section*{I. Status of the Claims}

In the Office Action of August 5, 2011 ("the Office Action"), \({ }^{1}\) the Examiner took the following actions:
i) rejected claims 40-48 under 35 U.S.C. § 101 as being directed to non-statutory subject matter;
ii) rejected claims \(13-21,24,25,27,30,40-48\), and 51 under 35 U.S.C. § 103(a) as being unpatentable over U.S. Patent No. 6,507,856 to Chen et al. ("Chen");
iii) rejected claim 26 under 35 U.S.C. § 103(a) as being unpatentable over Chen in view of U.S. Patent No. 6,148,330 to Puri et al. ("Pur");
iv) rejected claim 28 under 35 U.S.C. § 103(a) as being unpatentable over Chen in view of U.S. Patent No. 5,748,188 to Hu et al. ("Hu");
v) rejected claim 29 under 35 U.S.C. § 103(a) as being unpatentable over Chen in view of U.S. Patent No. 6,314,424 to Kaczmarski et al. ("Kaczmarski"); and
vi) rejected claim 31 under 35 U.S.C. § 103(a) as being unpatentable over Chen in view of U.S. Patent No. 6,535,896 to Britton et al. ("Britton").

By this Amendment, Applicant has amended claims 13-21, 24, 25, 40-48, and 51.
No prohibited new matter has been added. Claims 1-12, 22, 23, 32-39, 49, 50, and 52-
66 were previously cancelled. Upon entry of the above amendments, claims 13-21, 24-
\(31,40-48\), and 51 will remain pending and under examination. Of these, claims 13,24 ,
25,40 , and 51 are the independent claims.

\footnotetext{
\({ }^{1}\) The Office Action may contain statements reflecting characterizations of the related art and the claims. Regardless of whether any such statement is identified herein, Applicant declines to automatically subscribe to any statement or characterization in the Office Action.
}

Applicant respectfully traverses the rejections, and submits that the pending claims are in condition for allowance, for at least the reasons set forth below.

\section*{II. Rejections under 35 U.S.C. \(\S 101\)}

Applicant respectfully traverses the rejection of claims 40-48 under 35 U.S.C. § 101. In the Office Action, the Examiner states that "claim 40 recites 'a computer readable medium." See Office Action, p. 3. The Examiner also states that "[i]n the specification of the present application, the 'computer readable medium' is expressly defined as including (spec page 27) 'carrier wave.'" Id. The Examiner notes that "[i]n such embodiments the recited 'computer readable medium' is a signal per se" and that, accordingly, "the recited 'computer readable medium' is not a 'process', a 'machine', a 'manufacture', or 'composition of matter.'" Id. While not conceding the propriety of the Examiner's allegations, Applicant has further amended independent claim 40 in order to more clearly claim statutory subject matter, namely, a "non-transitory computerreadable medium." As such, Applicant respectfully requests reconsideration and withdrawal of the § 101 rejection of claims 40-48.

\section*{III. Rejections under 35 U.S.C. § 103(a)}

Applicant respectfully traverses the rejections under 35 U.S.C. § 103(a). A prima face case of obviousness has not been established with respect to Applicant's claims, for at least the reasons set forth below.
"The key to supporting any rejection under 35 U.S.C. § 103 is the clear articulation of the reason(s) why the claimed invention would have been obvious. . . . \([R] e j e c t i o n s\) on obviousness cannot be sustained with mere conclusory statements. M.P.E.P. § 2142, 8th Ed., Rev. 8 (July 2010) (internal citation and inner quotation
omitted). "[T]he framework for the objective analysis for determining obviousness under 35 U.S.C. 103 is stated in Graham v. John Deere Co., 383 U.S. 1, 148 USPQ 459 (1966). . . . The factual inquiries . . . [include determining the scope and content of the prior art and] . . . [a]scertaining the differences between the claimed invention and the prior art." M.P.E.P. § 2141 (II). In rejecting a claim, "Office personnel must explain why the difference(s) between the prior art and the claimed invention would have been obvious to one of ordinary skill in the art." M.P.E.P. § 2141(III).

Here, no prima facie case of obviousness has been established for at least the reasons that the Examiner has not properly determined the scope and content of the prior art and has not properly ascertained the differences between Applicant's claims and the prior art.

\section*{A. Claims 13-21, 24, 25, 27, 30, 40-48, and 51}

Applicant respectfully traverses the rejection of claims 13-21, 24, 25, 27, 30, 4048, and 51 under 35 U.S.C. § 103(a) as being unpatentable over Chen. A prima facie case of obviousness has not been established.

Amended independent claim 13 recites a combination of elements, including, inter alia:
receiving a first markup document and a second markup document, both the first markup document and the second markup document including numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document; [and]
automatically transforming the numerical values of at least one of the first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format.

Chen does not teach or suggest at least the above subject matter of claim 13. Chen relates to "[a] system for exchanging and merging messages over a network [that] includes a server accessible by a plurality of remote browsers for transmitting a template including fields for information entry and a business system accessible by the server for generating a return document pursuant to information entered in the template on the browsers." See Chen, Abstract. Chen discloses that "[a] merging algorithm is implemented to merge the document with the return template for providing a return document to the browser having portions of the return template with data entered therein." Id.

In the Office Action, the Examiner cites column 1, lines 34-64, column 4, lines 4-67, column 5, lines 10-13, and Figures 1,2, and 4-10 of Chen as allegedly teaching the features of claim 13. Column 1, lines 34-64 of Chen discloses that "the information entered into [a] template is . . associated with tag names and [that] the means for merging may include a name tag map for correlating tags names of the template with tag names of the return template," and that "[t]he first message may be written in an extensible markup language (XML) and the data type information may be in a corresponding data type definition format (DTD)." Column 4, lines 4-67 of Chen discloses that "[a] document merging algorithm . . . generates a return XML document," that "a sample XML document is . . . for encoding a Purchase Order (PO), where there are two items ordered, i.e., item Nos. 0001 and 0002," and that "[l]ine item 20 includes detailed product descriptions, service types, and ship to address, and the line item 25 includes only key information, such as price, quantity and unit." Column 5, lines 10-13
of Chen discloses that " \([t]\) he style sheet . . . provides a way to render the XML document . . . to a browser."

The Examiner admits that Chen "fails to specifically disclose that the second mark document includes numerical values." See Office Action, pp. 4, 5. However, the Examiner alleges that "this limitation would have been to one of ordinary skill in the art at the time of the invention in view CHEN's teaching of the first document including numerical values and furthermore it is commonly known in that xml template documents may include any type of data (i.e. including numerical values)." See Office Action, p. 5. The Examiner asserts that "it would have been obvious to one having ordinary skill in the art at the time that the invention was made to include second markup document including numerical values, for the purpose of providing various different price quotes (e.g. numerical values) in a returned invoice based on a received purchase order." Id.

Without conceding the propriety of the Examiner's aforementioned allegations, Applicant has amended claim 13 to even further distinguish over Chen. Chen does not teach or suggest "receiving a first markup document and a second markup document, both the first markup document and the second markup document including numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document" and "automatically transforming the numerical values of at least one of the first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format," as required by claim 13 (emphasis added).

Accordingly, the scope and content of the prior art have not been properly determined and the differences between the prior art and the combinations of amended claim 13 have not been properly ascertained. Thus, no prima facie case of obviousness has been established for independent claim 13 in view of Chen, and the rejection of claim 13 under 35 U.S.C. § 103(a) should be withdrawn. Claim 13, therefore, is allowable.

Amended independent claims \(24,25,40\), and 51 , while different in scope, recite features similar to those of claim 13 discussed above and should be allowable for similar reasons.

Dependent claims 14-21, 27, 30, and 41-48 should also be allowable by virtue of their dependence from allowable base claims.

\section*{B. Claims 26, 28, 29, and 31}

Applicant respectfully traverses the rejections of claims \(26,28,29\), and 31 under 35 U.S.C. § 103(a). A prima facie case of obviousness has not been established.

Claims 26, 28, 29, and 31 depend from independent claim 25 and therefore include all recitations therein. As discussed previously, Chen fails to teach or suggest all of the subject matter of independent claim 25, including at least "receiving a first markup document and a second markup document, both the first markup document and the second markup document including numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document" and "automatically transforming the numerical values of at least one of the first markup document and the second markup document, so that
the numerical values of the first markup document and the second markup document have a common format," as required by independent claim 13, and as similarly recited in independent claim 25. None of Puri, Hu, Kaczmarski, or Britton, alone or in combination, remedy the deficiencies of Chen, nor does the Office Action assert that they do.

Accordingly, the scope and content of the prior art have not been properly determined and the differences between the prior art and the combinations of claims 13 , \(24,25,40\), and 51 have not been properly ascertained. Thus, no prima facie case of obviousness has been established with respect to the independent claims or dependent claims \(26,28,29\), and 31 . As a result, the rejection of claims \(26,28,29\), and 31 under 35 U.S.C. § 103(a) should be withdrawn.

\section*{CONCLUSION}

In view of the foregoing, Applicant respectfully requests reconsideration and reexamination of this application and the timely allowance of the pending claims.

Should it be necessary to resolve any additional concerns and expedite the issuance of a Notice of Allowance, the Examiner is invited to contact Applicant's undersigned representative at (202) 408-4000.

Application No.: 12/222,752

Please grant any extensions of time required to enter this response and charge any additional required fees to Deposit Account 06-0916.

Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P.

Dated: November 7, 2011
By: /Christopher K. Agrawal/ Christopher K. Agrawal
Reg. No. 63,482
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 11354167 \\
\hline Application Number: & 12222752 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 5842 \\
\hline Title of Invention: & Reusable data markup language \\
\hline First Named Inventor/Applicant Name: & Russell T. Davis \\
\hline Customer Number: & 22852 \\
\hline Filer: & Christopher K. Agrawal/Margie Harris \\
\hline Filer Authorized By: & Christopher K. Agrawal \\
\hline Attorney Docket Number: & 07643.0002-02 \\
\hline Receipt Date: & 07-NOV-2011 \\
\hline Filing Date: & 15-AUG-2008 \\
\hline Time Stamp: & 18:31:47 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Submitted with Payment} & \multicolumn{4}{|l|}{no} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & \[
\begin{gathered}
\text { Multi } \\
\text { Part /.zip }
\end{gathered}
\] & Pages (if appl.) \\
\hline \multirow{2}{*}{1} & & \multirow{2}{*}{Amendment.pdf} & 637875 & \multirow{2}{*}{yes} & \multirow{2}{*}{18} \\
\hline & & & & & \\
\hline
\end{tabular}

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[b]{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
(Use as many sheets as necessary)
\end{tabular}}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 12/222,752 \\
\hline & & & & Filing Date & August 15, 2008 \\
\hline & & & & First Named Inventor & Russell T. Davis \\
\hline & & & & Art Unit & 2176 \\
\hline & & & & Examiner Name & Mustafa A. Amin \\
\hline Sheet & 1 & of & 2 & Attorney Docket Number & 07643.0002-02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENTS AND PUBLISHED U.S. PATENT APPLICATIONS} \\
\hline \multirow[t]{2}{*}{Examiner Initials} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Cite } \\
& \text { No. }
\end{aligned}
\]} & Document Number & & Name of Patentee or & Pages, Columns, Lines, Where \\
\hline & & Number-Kind Code \({ }^{2}\) (if known) & Publication Date
MM-YYYy & & Relevant Passages or Relevant Figures Appear \\
\hline & & US-5,983,247 & 11-1999 & Yamanaka et al. & \\
\hline & & US-2003/0140045 & 07-2003 & Heninger et al. & \\
\hline & & US-6,424,980 & 07-2002 & lizuka et al. & \\
\hline & & US-5,721,847 & 02-1998 & Johnson, Jeffrey J. & \\
\hline & & US-5,371,675 & 12-1994 & Greif et al. & \\
\hline & & US-5,008,853 & 04-1991 & Bly et al. & \\
\hline & & US-6,910,017 & 06-2005 & Woo et al. & \\
\hline & & US-2003/0078883 & 04-2003 & Stewart et al. & \\
\hline & & US-6,446,048 & 09-2002 & Wells et al. & \\
\hline & & US-5,461,708 & 10-1995 & Kahn, Philippe R. & \\
\hline & & US-5,907,820 & 05-1999 & Pan, Shaoher X & \\
\hline & & US-6,014,643 & 01-2000 & Minton, Vernon F. & \\
\hline & & US-6,339,767 & 01-2002 & Rivette et al. & \\
\hline & & US-6,075,530 & 06-2000 & Lucas et al. & \\
\hline & & US-6,714,201 & 03-2004 & Grinstein et al. & \\
\hline & & US-6,408,430 & 06-2002 & Gunter et al. & \\
\hline & & US-5,530,942 & 06-1996 & Tzou et al. & \\
\hline & & US-6,223,189 & 04-2001 & Steffens et al. & \\
\hline & & US-5,701,400 & 12-1997 & Amado, Carlos Armando & \\
\hline & & US-5,987,469 & 11-1999 & Lewis et al. & \\
\hline & & US-5,581,686 & 12-1996 & Koppolu et al. & \\
\hline & & US-2001/0018694 & 08-2001 & Iwamoto et al. & \\
\hline & & US-6,621,505 & 09-2003 & Beauchamp et al. & \\
\hline & & US-6,631,402 & 10-2003 & Devine et al. & \\
\hline & & US-5,953,724 & 09-1999 & Lowry, David D. & \\
\hline & & US-5,737,739 & 04-1998 & Shirley et al. & \\
\hline & & US-5,895,476 & 04-1999 & Orr et al. & \\
\hline & & US-6,052,710 & 04-2000 & Saliba et al. & \\
\hline & & US-6,112,242 & 08-2000 & Jois et al. & \\
\hline & & US-6,173,272 & 01-2001 & Thomas et al. & \\
\hline & & US-6,173,316 & 01-2001 & De Boor et al. & \\
\hline & & US-6,192,362 & 02-2001 & Schneck et al. & \\
\hline & & US-6,185,573 & 02-2001 & Angelucciet al. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[b]{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
(Use as many sheets as necessary)
\end{tabular}}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 12/222,752 \\
\hline & & & & Filing Date & August 15, 2008 \\
\hline & & & & First Named Inventor & Russell T. Davis \\
\hline & & & & Art Unit & 2176 \\
\hline & & & & Examiner Name & Mustafa A. Amin \\
\hline Sheet & 2 & of & 2 & Attorney Docket Number & 07643.0002-02 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ U.S. PATENTS AND PUBLISHED U.S. PATENT APPLICATIONS } \\
\hline & & US-6,212,494 & \(04-2001\) & Boguraev, Branimir K. & \\
\hline & & US-6,249,291 & \(06-2001\) & Popp et al. & \\
\hline & & US-6,317,783 & \(11-2001\) & Freishtat et al. & \\
\hline & & US-6,502,112 & \(12-2002\) & Baisley, Donald Edward & \\
\hline & & US-6,502,101 & \(12-2002\) & Verprauskus et al. & \\
\hline & & US-6,643,633 & \(11-2003\) & Chau et al. & \\
\hline & & US-6,718,216 & \(04-2004\) & Claussen et al. & \\
\hline & & US-7,650,355 & \(01-2010\) & Davis, Russell T. & \\
\hline & & US-7,421,648 & \(09-2008\) & Davis, Russell T. & \\
\hline & & US-7,512,875 & \(03-2009\) & Davis, Russell T. & \\
\hline & & US-7,401,076 & \(07-2008\) & Davis, Russell T. & \\
\hline & US-2009/0083619 & \(03-2009\) & Davis, Russell T. & \\
\hline & US-2009/0083613 & \(03-2009\) & Davis, Russell T. & \\
\hline & US-2008/0028340 & \(01-2008\) & Davis, Russell T. & \\
\hline
\end{tabular}

Note: Submission of copies of U.S. Patents and published U.S. Patent Applications is not required.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{FOREIGN PATENT DOCUMENTS} \\
\hline Examiner Initials' & Cite No. \({ }^{1}\) & \begin{tabular}{l}
Foreign Patent Document \\
Country Code \({ }^{3}\) Number \({ }^{4}\) Kind Code \(^{5}\) (if known)
\end{tabular} & Publication Date MM-DD-YYYY & Name of Patentee or Applicant of Cited Document & Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear & Translation \({ }^{6}\) \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ NONPATENT LITERATURE DOCUMENTS } \\
\hline \begin{tabular}{c}
Examiner \\
Initials
\end{tabular} & \begin{tabular}{c}
Cite \\
No. \({ }^{1}\)
\end{tabular} & \begin{tabular}{l}
Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item \\
(book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), \\
publisher, city and/or country where published.
\end{tabular} & \begin{tabular}{c}
Translation \(^{6}\) \\
\hline
\end{tabular} & \begin{tabular}{l}
"ProQuest Information and Learning - 0789717298 - Special Edition Using Microsoft(8) Excel 2000." \\
\(1 / 23 / 2008\) \\
http://proquest.safaribooksonline.com/0789717298
\end{tabular} \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Examiner \\
Signature
\end{tabular} & & \begin{tabular}{l}
Date \\
Considered
\end{tabular} & \\
\hline
\end{tabular}

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

PTO Notes regarding this form:
\({ }^{1}\) Applicant's unique citation designation number (optional).
\({ }^{2}\) See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04.
\({ }_{4}^{3}\) Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3).
\({ }^{4}\) For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
\({ }^{5}\) Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible.
\({ }^{6}\) Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Electronic Patent Application Fee Transmittal} \\
\hline Application Number: & \multicolumn{4}{|l|}{12222752} \\
\hline Filing Date: & \multicolumn{4}{|l|}{15-Aug-2008} \\
\hline Title of Invention: & \multicolumn{4}{|l|}{Reusable data markup language} \\
\hline First Named Inventor/Applicant Name: & \multicolumn{4}{|l|}{Russell T. Davis} \\
\hline Filer: & \multicolumn{4}{|l|}{Michael Patrick Van Handel/Donna Beckford-Harris} \\
\hline Attorney Docket Number: & 07643.0002-02 & & & \\
\hline \multicolumn{5}{|l|}{Filed as Large Entity} \\
\hline \multicolumn{5}{|l|}{Utility under 35 USC 111 (a) Filing Fees} \\
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline \multicolumn{5}{|l|}{Basic Filing:} \\
\hline \multicolumn{5}{|l|}{Pages:} \\
\hline \multicolumn{5}{|l|}{Claims:} \\
\hline \multicolumn{5}{|l|}{Miscellaneous-Filing:} \\
\hline \multicolumn{5}{|l|}{Petition:} \\
\hline \multicolumn{5}{|l|}{Patent-Appeals-and-Interference:} \\
\hline \multicolumn{5}{|l|}{Post-Allowance-and-Post-Issuance:} \\
\hline Extension-of-Time: & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Fee Code & Quantity & Amount & Sub-Total in USD(\$) \\
\hline Miscellaneous: & & & & \\
\hline Submission- Information Disclosure Stmt & 1806 & 1 & 180 & 180 \\
\hline & \multicolumn{3}{|c|}{Total in USD (\$)} & 180 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Electronic Acknowledgement Receipt} \\
\hline EFS ID: & 11633313 \\
\hline Application Number: & 12222752 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 5842 \\
\hline Title of Invention: & Reusable data markup language \\
\hline First Named Inventor/Applicant Name: & Russell T. Davis \\
\hline Customer Number: & 22852 \\
\hline Filer: & Michael Patrick Van Handel/Donna Beckford-Harris \\
\hline Filer Authorized By: & Michael Patrick Van Handel \\
\hline Attorney Docket Number: & 07643.0002-02 \\
\hline Receipt Date: & 15-DEC-2011 \\
\hline Filing Date: & 15-AUG-2008 \\
\hline Time Stamp: & 18:37:26 \\
\hline Application Type: & Utility under 35 USC 111(a) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Submitted w & ment & \multicolumn{4}{|l|}{yes} \\
\hline \multicolumn{2}{|l|}{Payment Type} & \multicolumn{4}{|l|}{Credit Card} \\
\hline \multicolumn{2}{|l|}{Payment was successfully received in RAM} & \multicolumn{4}{|l|}{\$180} \\
\hline \multicolumn{2}{|l|}{RAM confirmation Number} & \multicolumn{4}{|l|}{6396} \\
\hline \multicolumn{6}{|l|}{Deposit Account} \\
\hline \multicolumn{6}{|l|}{Authorized User} \\
\hline \multicolumn{6}{|l|}{File Listing:} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Digest & Multi Part /.zip & Pages (if appl.) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{1} & & \multirow{2}{*}{\(\underset{\text { pdf }}{\text { IDS_PTOSBO8_PROQUEST_REF. }}\)} & 300022 & \multirow{2}{*}{yes} & \multirow{2}{*}{8} \\
\hline & & & 4caba7e347a0245080b43190567009716fd 9b251 & & \\
\hline \multirow[t]{5}{*}{} & \multicolumn{5}{|c|}{Multipart Description/PDF files in .zip description} \\
\hline & \multicolumn{2}{|c|}{Document Description} & Start & \multicolumn{2}{|c|}{End} \\
\hline & \multicolumn{2}{|c|}{Transmittal Letter} & 1 & \multicolumn{2}{|c|}{2} \\
\hline & \multicolumn{2}{|l|}{Information Disclosure Statement (IDS) Form (SB08)} & 3 & \multicolumn{2}{|c|}{5} \\
\hline & \multicolumn{2}{|c|}{Non Patent Literature} & 6 & \multicolumn{2}{|c|}{8} \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline & \multirow{2}{*}{Fee Worksheet (SB06)} & \multirow{2}{*}{fee-info.pdf} & 30150 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{330172} \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{6}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{6}{|l|}{If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.} \\
\hline \multicolumn{6}{|l|}{National Stage of an International Application under 35 U.S.C. 371} \\
\hline \multicolumn{6}{|l|}{If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{6}{|l|}{New International Application Filed with the USPTO as a Receiving Office} \\
\hline \multicolumn{6}{|l|}{If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.} \\
\hline
\end{tabular}

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re Application of:
Russell T. Davis
Application No.: 12/222,752
Filed: August 15, 2008
For: REUSABLE DATA MARKUP LANGUAGE

Group Art Unit: 2176
Examiner: Mustafa A. Amin
Confirmation No. 5842

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:

\section*{INFORMATION DISCLOSURE STATEMENT UNDER 37 C.F.R. § 1.97(c)}

Pursuant to 37 C.F.R. §§ 1.56 and 1.97(c), Applicant brings to the attention of the Examiner the documents on the attached listing. This Information Disclosure Statement is being filed after the events recited in Section 1.97(b) but, to the undersigned's knowledge, before the mailing date of either a Final action, Quayle action, or a Notice of Allowance. Under the provisions of 37 C.F.R. § 1.97(c), this Information Disclosure Statement is accompanied by a fee of \(\$ 180.00\) as specified by Section \(1.17(\mathrm{p})\).

A copy of the listed non-patent literature document is attached. Copies of the U.S. patent publications are not enclosed.

Applicant respectfully requests that the Examiner consider the listed documents and indicate that they were considered by making appropriate notations on the attached form.

This submission does not represent that a search has been made or that no better art exists and does not constitute an admission that the listed documents are material or constitute "prior art." If the Examiner applies any of the documents as prior art against any claims in the application and Applicant determines that the cited documents do not constitute "prior art" under United States law, Applicant reserves the right to present to the office the relevant facts and law regarding the appropriate status of such documents.

Applicant further reserves the right to take appropriate action to establish the patentability of the disclosed invention over the listed documents, should any of the documents be applied against the claims of the present application.

If there is any fee due in connection with the filing of this Statement, please charge the fee to Deposit Account 06-0916.

Respectfully submitted,
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER, L.L.P.

Dated: December 15, 2011
By: Michael P. Van Handel/ Michael P. Van Handel Reg. No. 68,292
\begin{tabular}{|l|l|l|l|}
\hline \multirow{3}{*}{ Examiner-Initiated Interview Summary } & \multicolumn{2}{|l|}{ Application No. } & \multicolumn{2}{|l|}{ Applicant(s) } \\
\cline { 2 - 4 } & \(12 / 222,752\) & \multicolumn{1}{l|}{ DAVIS, RUSSELL T. } \\
\cline { 2 - 4 } & Examiner & Art Unit & \\
& MUSTAFA AMIN & 2176 & \\
\hline
\end{tabular}

All participants (applicant, applicant's representative, PTO personnel):
(1) MUSTAFA AMIN (USPTO Rep.).
(2) Michael Van Handel (Applicant Rep.).

Date of Interview: 27 January 2012
Type: \(\boxtimes\) Telephonic \(\square\) Video Conference
\(\square\) Personal [copy given to: \(\square\) applicantapplicant's representative]

Exhibit shown or demonstration conducted: \(\square\) Yes \(\quad \square\) No.
If Yes, brief description: \(\qquad\) -.

Issues Discussed 101 112 \(\square 10\) 02 103 இOthers
(For each of the checked box(es) above, please describe below the issue and detailed description of the discussion)
Claim(s) discussed: 17-24 and 40-48.
Identification of prior art discussed: none.

\section*{Substance of Interview}
(For each issue discussed, provide a detailed description and indicate if agreement was reached. Some topics may include: identification or clarification of a reference or a portion thereof, claim interpretation, proposed amendments, arguments of any applied references etc...)

\section*{Applicant agreed to proposed examiner amendment.}

Applicant recordation instructions: It is not necessary for applicant to provide a separate record of the substance of interview.

Examiner recordation instructions: Examiners must summarize the substance of any interview of record. A complete and proper recordation of the substance of an interview should include the items listed in MPEP 713.04 for complete and proper recordation including the identification of the general thrust of each argument or issue discussed, a general indication of any other pertinent matters discussed regarding patentability and the general results or outcome of the interview, to include an indication as to whether or not agreement was reached on the issues raised.
\(\square\) Attachment

\section*{Mustafa Amin. \\ Art Unit 2176}

01/27/2012

\title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}

\author{
\(22852 \quad 7590\) 02/02/2012 \\ FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER \\ LLP \\ 901 NEW YORK AVENUE, NW \\ WASHINGTON, DC 20001-4413
}

DATE MAILED: 02/02/2012
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline 12/222,752 & 08/15/2008 & Russell T. Davis & 07643.0002-02 & 5842 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PAID ISSUE FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & NO & \(\$ 1740\) & \(\$ 300\) & \(\$ 0\) & \(\$ 2040\) \\
\hline
\end{tabular}

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

\section*{HOW TO REPLY TO THIS NOTICE:}
I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and \(1 / 2\) the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part \(B\).
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.
IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 3
PTOL-85 (Rev. 02/11)

\section*{PART B - FEE(S) TRANSMITTAL}

\section*{Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450 \\ or Eax (571)-273-2885}

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)
Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

\section*{ \\ LLP}

901 NEW YORK AVENUE, NW
WASHINGTON, DC 20001-4413
I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope States Postal Service with sufficient postage for iirst class mail in an envelope
addressed to the Mail Stop ISSUE FEE address above, or being facsimile addressed to the Mail Stop ISSUE FEE address above, or being fact
transmitted to the USPTO (571) 273-2885, on the date indicated below.
\(\square\) (Depositor's name) (Signature)
(Date)
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline 12/222,752 & 08/15/2008 & Russell T. Davis & 07643.0002-02 & 5842 \\
\hline
\end{tabular}

TITLE OF INVENTION: REUSABLE DATA MARKUP LANGUAGE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline APPLN. TYPE & SMALL ENTITY & ISSUE FEE DUE & PUBLICATION FEE DUE & PREV. PAID ISSUE FEE & TOTAL FEE(S) DUE & DATE DUE \\
\hline nonprovisional & NO & \$1740 & \$300 & \$0 & \$2040 & 05/02/2012 \\
\hline & & ART UNIT & CLASS-SUBCLASS & & & \\
\hline AMIN, & AFA A & 2176 & 715-209000 & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \\
\(\square\) Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached. \\
"Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
2. For printing on the patent front page, list \\
(1) the names of up to 3 registered patent attorneys or agents OR, alternatively,
\end{tabular}} & \(\begin{array}{ll}\text { ys } & 1 \\ \text { a } & 2 \\ \text { to } & \\ \text { is } & 3\end{array}\) & \\
\hline
\end{tabular}

\section*{3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)}

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : \(\quad\) Individual \(\square\) Corporation or other private group entity \(\square\) Government
\begin{tabular}{|c|c|}
\hline 4a. The following fee(s) are submitted:
Issue Fee
Publication Fee (No small entity discount permitted)
Advance Order - \# of Copies \(\qquad\) & 4b. Payment of Fee(s): (Please first reapply any previously paid issue fee shown above)
A check is enclosed.
Payment by credit card. Form PTO-2038 is attached.
The Director is hereby authorized to charge the required fee(s), any deficiency, or credit any overpayment, to Deposit Account Number \(\qquad\) (enclose an extra copy of this form). \\
\hline 5. Change in Entity Status (from status indicated above)
\(\square\) a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27. & \(\square\) b. Applicant is no longer claiming SMALL ENTITY status. See 37 CFR 1.27(g)(2). \\
\hline NOTE: The Issue Fee and Publication Fee (if required) will not be acc interest as shown by the records of the United States Patent and Traden & from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in Office. \\
\hline
\end{tabular}
Authorized Signature \(\quad\) _

Date
Typed or printed name \(\qquad\) Registration No. \(\qquad\)
This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

\section*{Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)}
(application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 619 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 619 day(s)

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

\section*{Privacy Act Statement}

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

\section*{Applicant's Response}

In Applicant's response dated 11/07/2011, applicant amended claims 13-21, 24-
25, 40-48 and 51. Applicant argued against all rejection previously set forth in the office action mailed on 08/05/2011.

In light of applicant's amendments/remarks, all rejections under 35 U.S.C. 101 previously set forth are withdrawn.

In light of applicant's amendments/remarks, all prior art rejections previously set forth are withdrawn

\section*{Information Disclosure Statement}

The information disclosure statement filed on 12/15/2011 does not fully comply with the requirements of 37 CFR 1.98(b) because the at least one of the listed publications identified as "non-patent literature documents" fails to identify and/or incorrectly identifies at least one of the following, as required in 37 CFR 1.98(b)(5):
1. publisher;
2. author (if any);
3. title;
4. relevant pages of the publication;
5. publication date; and
6. place of publication.

For instance, the listing "ProQuest Information and Learning" fails to identify the number of pages

Art Unit: 2176
Since the submission appears to be bona fide, applicant is given ONE (1) MONTH from the date of this notice to supply the above mentioned omissions or corrections in the information disclosure statement. NO EXTENSION OF THIS TIME LIMIT MAY BE GRANTED UNDER EITHER 37 CFR 1.136(a) OR (b). Failure to timely comply with this notice will result in the above mentioned information disclosure statement being placed in the application file with the noncomplying information not being considered. See 37 CFR 1.97(i).

\section*{EXAMINER'S AMENDMENT}

An examiner's amendment to the record appears below. Should the changes and/or additions be unacceptable to applicant, an amendment may be filed as provided by 37 CFR 1.312. To ensure consideration of such an amendment, it MUST be submitted no later than the payment of the issue fee.

Authorization for this examiner's amendment was given in a telephone interview Michael Van Handel on 01/27/2012.

Please amend the application as follows:

In the title of the Invention:
> Replace the title of the Invention with following:

Combining Reusable Data Markup Language Documents

In the Abstract:
> Replace the abstract with the following:

Methods and systems provide a computer markup language, referred to as Reusable Data Markup Language ("RDML"), and a data viewer for retrieving, manipulating and viewing documents and files in the RDML format that may be stored locally or over a network (e.g., the Internet). Generally, RDML permits the browsing and manipulation of numbers, as opposed to text and images like in HTML, and does so by including attributes describing the meaning of the numbers to be attached to the numbers. Documents compliant with the markup language encapsulate machine-readable documentation with numbers and data, and permit the data viewer to act as a combination web browser and spreadsheet to automatically read, interpret and manipulate the numbers and data. Furthermore, the methods and systems merge or combine RDML documents that have different data formats to produce a single data set for display.

In the specification:
> Amend on page 2 lines 11-13 "U.S. Patent Application No. 09/573,780 entitled "Reusable Macro Markup Language", filed on the same herewith." with the following:
U.S. Patent Application No. 09/573,780 (now U.S. Patent No. 7,650,355) entitled "Reusable Macro Markup Language", filed on the same herewith.
> Amend page 14 lines 8-9 with the following:
Figures 12A-12C depicts \(X-Y\) plots and tree views in accordance with methods and systems consistent with the present invention;
> Amend page 14 lines 11-12 with the following:
Figures 14A-14F depict a chart view and tree view of the RDML data viewer as depicted in Figure 7A in accordance with methods and systems consistent with the present invention;
> Amend page 14 lines 13-15 with the following:
Figures 15A-15C depict flowcharts of the steps performed by a graphical user interface, chart manager and chart data object for adding a line item to a chart view upon selection of the line item in a tree view in accordance with methods and systems consistent with the present invention;
- Amend page 14 lines 22-23 with the following:

Figures 19A-19C depict RMML document handling, an RMML graphical interface, and an RMML macro interpreter, respectively, in accordance with the present invention;
> Amend page 15 lines 1-2 with the following:
Figures 20A-20D illustrates screen shots of RMML macro panels in accordance with the present invention.
> Amend page 15 lines 5-6 with the following:
Figures 22A-22D depicts exemplary screen shots of the tagging of spreadsheet information tagging to create a document in accordance with the present invention.

In the Claims:
\(>\) amend Claims 17-21, 25, and 41-48 in the following manner:
17. (Currently Amended) The method of claim 13, wherein the characteristics include a magnitude of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using a one of the tags, the tag reflecting the magnitude of the numerical values.
18. (Currently Amended) The method of claim 13, wherein the characteristics include a scale of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using z one of the tags, the tag reflecting the scale of the numerical values.
19. (Currently Amended) The method of claim 13, wherein the characteristics include a modifier of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using z one of the tags, the tag reflecting the modifier of the numerical values.
20. (Currently Amended) The method of claim 13, wherein the characteristics include a unit of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using a one of the tags, the tag reflecting the unit of the numerical values.
21. (Currently Amended) The method of claim 13, wherein the characteristics include a measure of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using a one of the tags, the tag reflecting the measure of the numerical values.
25. (Currently Amended) A data processing system comprising:
a non-volatile storage device storing a first markup document and a second markup document, both the first markup document and the second markup document containing numerical values and tags reflecting characteristics of the numerical values,
wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document;
a memory with storing a program that receives the first markup document and the second markup document, that automatically transforms the numerical values of at least one of the first markup document and the second markup document \([[]]]\) so that the numerical values of the first markup document and the second markup document have a common format, and that automatically combines the first markup document and the second markup document into a single data set; and
a processor that runs the program.
41. (Currently Amended) The non-transitory computer-readable medium of claim 40, further comprising:
resolving conflicts between the characteristics of the first markup document and the second markup document.
42. (Currently Amended) The non-transitory computer-readable medium of claim 40, wherein the displaying step further comprises a step of:
manipulating the display of the single data set using the tags reflecting the characteristics of the numerical values.
43. (Currently Amended) The non-transitory computer-readable medium of claim 40, wherein the characteristics include at least one of magnitude, scale, modifier, unit, and measure of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using the tags reflecting the magnitude, scale, modifier, unit, and measure characteristics of the numerical values.
44. (Currently Amended) The non-transitory computer-readable medium of claim 40, wherein the characteristics include magnitude of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using z one of the tags, the tag reflecting the magnitude characteristic of the numerical values.
45. (Currently Amended) The non-transitory computer-readable medium of claim 40, wherein the characteristics include a scale of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using a one of the tags, the tag reflecting the scale characteristic of the numerical values.
46. (Currently Amended) The non-transitory computer-readable medium of claim 40, wherein the characteristics include a modifier of the numerical values, and wherein the method further includes:
manipulating the display of the single data set using z one of the tags, the tag reflecting the modifier characteristic of the numerical values.
47. (Currently Amended) The non-transitory computer-readable medium of claim 40, wherein the characteristics include a unit, and wherein the method further includes:
manipulating the display of the single data set using a one of the tags, the tag reflecting the unit characteristic of the numerical values.
48. (Currently Amended) The non-transitory computer-readable medium of claim 40, wherein the characteristics include a measure of the numerical values, and wherein the method includes:
manipulating the display of the single data set using a one of the tags, the tag reflecting the measure characteristic of the numerical values.

\section*{Allowable Subject Matter}

The present application has been thoroughly reviewed. Upon searching a variety of databases, the examiner respectfully submits that claims 13-21, 24-31, 40-48 and 51 are allowable in light of the prior art made of record.

Accordingly, claims are 13-21, 24-31, 40-48 and 51 allowed.

\section*{Reasons for Allowance}

The following is an examiner's statement of reason for allowance:
The present invention is directed to a method/system/non-transitory computer readable medium for "receiving a first markup document and a second markup document, both the first markup document and the second markup document including numerical values and tags reflecting characteristics of the numerical values, wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document; automatically transforming the numerical values of at least one of the first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format; combining the first markup document and the second markup document into a single data set; and displaying the single data set" as recited in claim 13 and similarly recited in independent claims 24, 25, 48 and 51.

Closest prior Chen et al. (US 6507856 B1, referred herein after as CHEN) in view Puri et al. (US 6148330, referred herein after as PURI) in view of Hu et al. (US 5748188 , referred herein after as HU) in view of Kaczmarski et al. (US 6314424 B 1 , referred herein after Kazczmarski) in view of Britton et al. (US 6535896, referred herein after as Britton) and further in view of Heinzle et al. (US 6199046, referred herein after as Heinzle) fail to disclose or render obvious singularly or in combination the following limitations in combination with above cited limitations as recited in the independent claims:
- wherein the characteristics indicate that the numerical values of the first markup document differ in format from the numerical values of the second markup document; automatically transforming the numerical values of at least one of the first markup document and the second markup document, so that the numerical values of the first markup document and the second markup document have a common format.

Additional reasons for allowance can be found the applicant response dated 11/07/2011 pages 13-15 and.

Accordingly, claims are 13-21, 24-31, 40-48 allowed.

\section*{Conclusion}

The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. See form 892.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to MUSTAFA AMIN whose telephone number is (571)2703181. The examiner can normally be reached on Monday to Thursday, 7:30AM-5:00PM EST.

Art Unit: 2176
If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Doug Hutton can be reached at 571-272-4137. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.
/Mustafa Amin/
Art Unite 2176
01/27/2012
/Laurie Ries/
Primary Examiner
Technology Center 2100
29 January 2012
\begin{tabular}{|l|l|l|l|}
\hline \multirow{4}{*}{ Notice of References Cited } & \multicolumn{2}{|l|}{\begin{tabular}{l}
Application/Control No. \\
\(12 / 222,752\)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s)/Patent Under \\
Reexamination \\
DAVIS, RUSSELL T.
\end{tabular}} \\
\cline { 2 - 4 } & \begin{tabular}{ll}
Examiner \\
MUSTAFA AMIN
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2176
\end{tabular} & Page 1 of 1 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline * & & Document Number Country Code-Number-Kind Code & Date
MM-YYYY & Name & Classification \\
\hline * & A & US-6,626,957 & 09-2003 & Lippert et al. & 715/234 \\
\hline * & B & US-6,006,242 & 12-1999 & Poole et al. & 715/209 \\
\hline * & C & US-5,881,381 & 03-1999 & Yamashita et al. & 715/209 \\
\hline * & D & US-5,530,794 & 06-1996 & Luebbert, David L. & 715/210 \\
\hline * & E & US-5,706,502 & 01-1998 & Foley et al. & 717/120 \\
\hline * & F & US-6,009,436 & 12-1999 & Motoyama et al. & 1/1 \\
\hline * & G & US-6,484,149 & 11-2002 & Jammes et al. & 705/26.62 \\
\hline * & H & US-6,345,292 & 02-2002 & Daugherty et al. & 709/214 \\
\hline * & 1 & US-6,295,530 & 09-2001 & Ritchie et al. & 1/1 \\
\hline * & J & US-5,893,109 & 04-1999 & DeRose et al. & 1/1 \\
\hline * & K & US-7,340,534 & 03-2008 & Cameron et al. & 709/246 \\
\hline * & L & US-6,356,961 & 03-2002 & Oprescu-Surcobe, Valentin & 710/20 \\
\hline * & M & US-6,513,043 & 01-2003 & Chan et al. & 707/802 \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(*\) & & \begin{tabular}{c}
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c}
Date \\
MM-YYY
\end{tabular} & Country & Name & Classification \\
\hline & N & & & & & \\
\hline & O & & & & & \\
\hline & P & & & & & \\
\hline & Q & & & & & \\
\hline & R & & & & & \\
\hline & S & & & & & \\
\hline & T & & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS
\begin{tabular}{|l|l|l|l|}
\hline\(\star\) & & & Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) \\
\hline & & & \\
& & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\({ }^{*}\) A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

\section*{Patent Search Results}

13/3,K/1 (Item 1 from file: 350)
DIALOG(R)File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Extensible mark-up language document comparison method involves comparing hashed extensible mark-up language document to determine difference report
Patent Assignee: SUN MICROSYSTEMS INC (SUNM)
Inventor: LOUEG
Patent Family (2 patents, 1 countries)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 20030177442 & A1 & 20030918 & US 2002100721 & A & 20020318 & <200370 & B \\
\hline US 7096421 & 62 & 20060822 & US 2002100721 & A & 20020318 & 200656 & E \\
\hline
\end{tabular}

\section*{Claims:}
1. A computer implemented method of comparing a first XML document and a second XML document comprising: hashing a first XML document, wherein the first XML document includes a plurality of first tags, and hashing the first XML document includes hashing each one of the pluralify of first tags including: selecting one of the plurality of first tags from the first XML document, wherein the selected first tag includes a corresponding description value and a corresponding results value; andhashing the corresponding description value of the selected first tag to identify a corresponding unique location in a hash... ... the description value in the identified corresponding unique location in the hash table for each one of the plurality of first tags; hashing a second XML document, wherein the second XML document includes a plurality of second tags, wherein the plurality of first tags has a corresponding first order and the plurality of second tags has a corresponding second order, the first order is not equal to the second order, including hashing the corresponding second description value from a corresponding description tag included in the selected second tag wherein the hashed second description value identifies a corresponding unique second location...... the corresponding unique second identified location in the hash table; andwherein if the corresponding unique second identified location in the hash table does not include a stored value, then outputting the selected second tag as a new tag; comparing the first hashed XML document and the second hashed XML document; and outputting a difference report.

13/3,K/2 (Item 2 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Relational data conversion for distributed object application, involves merging tuple stream with construction portion of executable query to generate structured document capable of defining nesting depth
Patent Assignee: AT \& T CORP (AMTT)
Inventor: FERNANDEZ M F; SUCIU D; TAN W
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6604100 & B1 & 20030805 & US 2000181400 & P & 20000209 & 200368 & B \\
\hline & & & US 2001778749 & A & 20010208 & & \\
\hline
\end{tabular}

\section*{Abstract:}
method for convering relatonal data to XM\& (Extensible farkup kanguage) is provided. The method, sometmes refered to as Silk Route, provides a general, dymamic and effichen tool tor viewing and querying relational data in Xhk. Silkpoute can express mappings of relational data in
 suppler's name and a list of avalable products. Each product element inoludes an irem name, a
category name, a brief desoription, a retall price, an optional sale price, and zero or more trouble reports. The content of a retail or sale ebment yploaly is a cuyrency value... ... table contans tuples with a product id (the tables key), an ilem name, category name, item descipton, prise. and cost. The Galeptice table contains sale prices and has key fleld pid and the Problem table ontans trouble codes of products and ther repots, The above oode shows a thind-nomal form reatonal schema, designed ior the suppler's partiotar bushess neecs. The schema can be proptietary, For example, the supplier may not want to reveal the attribute cost in Clothing. The
 make the Xek vew avallable to resellera... Basic Derwent Week: 200368

13/3,K/3 (Item 3 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Data processing method for use in data browser, manipulator, involves receiving and adding indications of numerical value characteristic into document as tags Patent Assignee: E-NUMERATE SOLUTIONS INC (ENUM-N)
Inventor: DAVIS RT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (15 patents, 92 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline WO 2000072197 & A2 & 20001130 & WO 2000US13745 & A & 20000519 & 200141 & B \\
\hline AU 200051439 & A & 20001212 & AU 200051439 & A & 20000519 & 200141 & E \\
\hline JP 2004506955 & W & 20040304 & [JP 2000620518 & - & 20000519 & 200417 & E \\
\hline & & & WO 2000US13745 & A & 20000519. & & \\
\hline EP 1397755 & A2 & 20040317 & EP 2000936072 & A & 20000519 & 200420 & E \\
\hline & & & WO 2000US13745 & A & 20000519. & & \\
\hline MX 2001011925 & A1 & 20030901 & WO 2000US13745 & A & 20000519 & 200465 & E \\
\hline & & & MX 200111925 & A & 20011121 & & \\
\hline CN 1535429 & A & 20041006 & CN 2000810054 & A & 20000519 & 200506 & E \\
\hline US 6920608 & B1 & 20050719 & US 1999135525 & P & 19990521 & 200547 & E \\
\hline & & & US 2000183152 & P & 20000217 & & \\
\hline & & & US 2000573413 & A & 20000518 & & \\
\hline US 7249328 & P1 & 20070724 & US 1999135525 & P & 19990521 & 200749 & E \\
\hline & & & US 2000183152 & P & 20000217 & & \\
\hline & & & US 2000573419 & A & 20000518 & & \\
\hline US 20080028340 & A1 & 20080131 & US 1999135525 & P & 19990521 & 200810 & E \\
\hline & & & US 2000183152 & P & 20000217 & & \\
\hline & & & US 2000573419 & A & 20000518 & & \\
\hline & & & US 2007819126 & A & 20070625 & & \\
\hline US 7421648 & B1 & 20080902 & US 1999135525 & P & 19990521 & 200859 & E \\
\hline & & & US 2000183152 & P & 20000217 & & \\
\hline & & & US 2000573778 & A & 20000518 & & \\
\hline US 20080282139 & A1 & 20081113 & US 1999135525 & P & 19990521 & 200903 & E \\
\hline & & & US 2000183152 & P & 20000217 & & \\
\hline & & & US 2000573419 & A & 20000518 & & \\
\hline & & & US 2007819125 & A & 20070625 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline US 20090083613 & A1 & 20090326 & US 1999135525 & P & 19990521 & 200926 & E \\
\hline \% & & & US 2000183152 & P & 20000217 & & \\
\hline S & & & US 2000573778 & A & 20000518 & & \\
\hline - & & \% & US 2008222750 & A & 20080815 & & \\
\hline US 20090083619 & SA1 & 20090326 & US 1999135525 & \(\stackrel{P}{P}\) & 19990521 & 200926 & E \\
\hline + & & + & US 2000183152 & P & 20000217 & & \\
\hline \% & & & US 2000573778 & A & 20000518 & & \\
\hline & & & US 2008222751 & A & 20080815 & & \\
\hline US 20090089657 & A1 & 20090402 & US 1999135525 & P & 19990521 & 200929 & E \\
\hline + & & & US 2000183152 & P & 20000217 & & \\
\hline \% & & & US 2000573778 & A & 20000518 & & \\
\hline i & & & US 2008222752 & A & 20080815 & & \\
\hline US 7650355 & B1 & 20100119 & US 1999135525 & P & 19990521 & 201007 & E \\
\hline \% & & & US 2000183152 & \(P\) & 20000217 & & \\
\hline + & & +............................. & US 2000573780 & A & 20000518 & & \\
\hline
\end{tabular}

\section*{Abstract:}
the meaning of the data. The tree view uses the attributes of the numbers to, for example, faclitate the simultaneous display of different series of numbers of different types on a single display. It automatically displays the relationship between series of numbers while displaying appropriate labels, titles, number precision, etc. A tree view may...... method in a data processing system is provided that receives a markup document having a set of numerical values and tags indicating characteristics of the numerical values and determines a transformation for the set of numerical values to reflect new characteristics. The method then accesses a plurality of the tags of the set of numerical values, the plurality of the tags indicating magnitude, scale, modifier, units, measure, adjustment and aggregation. Furthermore, the method determines conversion factors for the magnitude, scale, modifier, units, measure, adjustment and aggregation tags to accomplish the transformation to the new characteristics and multiplies the set of numerical values by the determined conversion factors to transform the set of numerical values to reflect the new characteristics... .

\section*{Claims:}
for the numerical values based on at least one of the tags; anddisplaying an axis label on the chart; receiving an indication of a transtormation of the first series of numerical values; automatically determining a new axis label in response to the indicated transformation; anddisplaying the new axis label...... markup document by prompting the selection of tags that contain information regarding a data table of data points stored in a first database; receiving the markup document having a set of numerical values and tags indicating characteristics of the numerical values, the characteristics including magnitude, scale, modifier, units, or measure; determining a transformation for the set of numerical values to reflect new characteristics; accessing a plurality of the tags of the set of numerical values; determining conversion factors based on the new characteristics to accomplish the transformation to the new characteristics; converting the set of numerical values to a base unit of values; and multiplying the base unit of values by the determined conversion factors to transform the set of numerical values to reflect the new characteristics, wherein the information contained in the tags is maintained in a separate data table in a second database... ... receiving a macro defined to perform an operation on the series of numerical values; performing an operation defined by the macro on the series of numerical values to transform the series of numerical values into a new representation of the series of numerical values based on the tags; generating at least one second title corresponding to results of the...
```

17/3,K/1 (Item 1 from file: 350)
DIALOG(R)File 350: Derwent WPIX

```
(c) 2012 Thomson Reuters. All rights reserved.

Automatic on-line form filling in method for Internet transactional environment Patent Assignee: AMAZON.COM INC (AMAZ-N); JUNGLEE CORP (JUNG-N); MATHUR R (MATH-I); PHILIPPE Y (PHIL-I); RAJARAMAN A (RAJA-I)
Inventor: GUPTA A; MATHUR R; PHILIPFE Y; RAJARAMAN A
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (7 patents, 82 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline WO 1999046701 & A1 & 19990916 & WO 1999 US4489 & A & 19990301 & 199946 & B \\
\hline AU 199927994 & A & 19990927 & AU 199927994 & A & 19990301 & 200006 & E \\
\hline US 6199079 & B1 & 20010306 & US 199877322 & P & 19980309 & 200115 & E \\
\hline & & & US 199877655 & P & 19980311 & & \\
\hline & & & US 199868523 & A & 19980320 & & \\
\hline US 20010016828 & A1 & 20010823 & US 199866739 & A & 19980320 & 200151 & E \\
\hline US 6643624 & B2 & 20031104 & US 199877322 & P & 19980309 & 200374 & E \\
\hline & & & US 199877655 & P & 19980311 & & \\
\hline & & & US 199866739 & A & 19980320 & & \\
\hline US 20040098316 & A1 & 20040520 & US 199877322 & P & 19980309 & 200434 & E \\
\hline & & & US 199877655 & P & 19980311 & & \\
\hline & & & US 199866739 & A & 19980320 & & \\
\hline & & & US 2003602479 & A & 20030623 & & \\
\hline US 6882981 & B2 & -20050419 & US 199877322 & P & 19980309 & 200527 & E \\
\hline & & & US 199877655 & P & 19980311 & & \\
\hline & & & US 199866739 & A & 19980320 & & \\
\hline & & & US 2003602479 & A & 20030623 & & \\
\hline
\end{tabular}

\section*{Abstract:}
by web pages in an internet transactional environment by determining (350) based upon selectable criteria a form identifier corresponding to a particular on-line form, and thereupon, for each form so identified, indentifying (352) one or many corresponding match patterns (354) with which a page containing a target on-line form is parsed (358) to obtain a plurality of attributes... ...

\section*{Claims:}
of vendors; determining matching patterns using the order entry form identifiers, wherein the matching patterns are stored in a database; matching the matching patterns to web pages of the set of vendors, wherein the web pages are associated with order entry forms; for one of the web pages that matches one of the matching patterns, parsing the order entry form for that web page to obtain attributes, wherein the attributes are fields in the order entry form to be filled in; identifying properties required to fill in the order entry form, the properties corresponding to user related information stored in a database;transforming data formats of the properties to yield values that match data formats of the attributes using a transformation function, wherein the values are user related information in the data formats of the attributes; automatically filling the order entry form by entering the values into the attributes; andsubmitting the order entry form to one of the set of vendors.1. A method for effecting transactions across a plurality of vendors in an internet environment, wherein a user purchases a plurality of items the user finds independent of the vendors, comprising:displaying theBasic Derwent Week: 199946

\footnotetext{
22/3,K/1 (Item 1 from file: 350)
DIALOG(R)File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.
}

Webpage data indexing, searching and displaying method, involves locating universal resource locators having indirect relationship to identified webpage
Patent Assignee: CANNON S (CANN-I); EGGER D (EGGE-1); SAUERS R D (SAUE-1); SOFTWARE RIGHTS ARCHIVE LLC (SOFT-N)
Inventor: CANNON S; EGGER D; SAUERS RD
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (2 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 20060242564 & A1 & 20061026 & US 199376658 & A & 19930614 & 200705 & B \\
\hline & & & US 1996649304 & A & 19960517 & & \\
\hline & & & US 199871120 & A & 19980504 & & \\
\hline & & & US 2001854577 & A & 20010515 & & \\
\hline & & & US 2006404824 & A & 20060417 & & \\
\hline US 7840524 & B2 & 20101123 & US 199376658 & A & 19930614 & 201077 & E \\
\hline & & & US 1996649304 & A & 19960517 & & \\
\hline & & & US 199871120 & - \({ }^{\text {a }}\) & 19980504 & & \\
\hline & & & US 2001854577 & A & 20010515 & & \\
\hline & & & US 2006404824 & A & 20060417 & & \\
\hline
\end{tabular}

\section*{Claims:}
analyzing further comprises cluster analyzing the Universal Resource Locators for indirect relationships; and, wherein the located Universal Resource Locators are used to identify at least one web page....... to be indexed and to collect information about the direct non-semantic relationships, wherein Universal Resource Locators that either point to or point away from one or more of the web pages are crawled; defining the set of objects to be indexed, wherein each object in the set of objects has an identification and wherein a plurality...... semantic relationships with other objects in the set of objects, wherein a.) some of the indirect non-semantic relationships contribute greater value to the scalar value than others, b.) a plurality of different types of indirect relationships, when present, contribute to the scalar value, and c.) quantifying said object's indirect non-semantic relationships includes accounting for at least... Basic Derwent Week: 200705...

22/3,K/2 (Item 2 from file: 350)
DIALOG(R)File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

System for managing network protocol headers known as cookies for providing information about a user to web site operated by an Internet content provider
Patent Assignee: PITNEY BOWES INC (PITB)
Inventor: DOEBERL T M; MACDONALD M F; MARTIN JA; PORTER P W; PRAKASH S; REICHMAN R; SANSONERP

Patent Family (7 patents, 26 countries)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline EP 1020804 & A2 & 20000719 & EP 2000100190 & A & 20000113 & 200056 & B \\
\hline CA 2295274 & A1 & 20000713 & CA 2295274 & A & 20000112 & 200056 & E \\
\hline US 6237033 & B1 & 20010522 & US 1999231358 & A & 19990113 & 200130 & E \\
\hline CA 2295274 & C & 20020326 & CA 2295274 & A & 20000112 & 200230 & E \\
\hline EP 1020804 & B1 & 20041117 & EP 2000100190 & A & 20000113 & 200476 & E \\
\hline DE 60015821 & E & 20041223 & DE 60015821 & A & 20000113 & 200501 & E \\
\hline & & & EP 2000100190 & A & 20000113 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DE 60015821 & T2 & 20051110 & DE 60015821 & A & 20000113 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{200574}} \\
\hline & & & EP2000100190 & A & 20000113 & & \\
\hline
\end{tabular}

\begin{abstract}
:
universal cookie dictionary; and a site-specific cookie dictionary maintained by a third party so as to contain updated entries for interpreting cookies used by websites on the Internet. In one aspect of the invention, a user can periodically update the local cookie, using a local cookie dictionary, to include changes to the site-specific and universal cookie dictionaries...... on the userprimes computer; the interpretation is made by an interpreter referring to a local cookie dictionary, on the userprimes computer, having entries corresponding to different types of cookies. In various alternative embodiments, the managing also includes changing the values set by the websites, and fabricating cookies of types not necessarily used by a website in order to express to the website preferences a user... ...
\end{abstract}
```

22/3,K/3 (Item 3 from file: 350)
DIALOG(R)File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

```

Query processing method for Internet searching text documents, involves retrieving information in an initial markup language and presenting it in any other markup language Patent Assignee: VIGNETTE CORP (VIGN-N)
Inventor: NASR R I: WEBBER N
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6263332 & B1 & 20010717 & US 1998134263 & A & 19980814 & 200153 & B \\
\hline
\end{tabular}

\section*{Abstract:}
method of retrieving information in a first markup language through a asery engine and preanting the informaton in any required maskup language. A user inputs a guery and may invole a numbers of transtormative sequenoes. These sequences contain a markup longuage patten and an ation. which may include transhoming the tags in the first markup knguage to tags in a diferent markup \{anguage. The appropilate tramstormative sequence is setected and the pattem from the transtormatse aeguence is compled. The complied pattern is used to perform apid and efficient searches of documents in the database. A predicate check using the binary coding of the node as well as ancestor infomaton contrms the node. The leat informaton assochated with a contrmed node is then stored. If necessary, the action from the zanstormative sequence ls applied to change the markup language of the leaf information to that of the user... Basic Derwent Week: 200153

\section*{22/3,K/4 (Item 4 from file: 350)}

DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Network attached computer system for displaying price information, has logic for establishing amount and currency interpreting parameters stored in document Patent Assignee: ADSURA PTY LTD (ADSU-N) Inventor: HEINZLEES; VON BEHRENS R
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6199046 & B1 & 20010306 & US 1997902293 & A & 19970729 & 200147 & B \\
\hline
\end{tabular}

\section*{Abstract:}

NOVELTY - Single software object (2) displaying one or more prices, has logic for establishing amount and current interpreting parameters stored in document that specify default currency. Networking
logic retrieves exchange rate to perform conversion of desired currency selection logic allows use of display to select desired currency during display by reading operation system information indicating desired currency. .. Method of performing currency conversion; Currency conversion program USE - For displaying prize information in currencies in network environment e.g. Internet.... ... ADVANTAGE - Eliminates need for consumer to undertake calculations to convert price to local currency. Uncertainty about timeliness and accuracy of exchange rate information and need for customer to retrieve exchange rate information is eliminated. Reduces necessary bandwidth necessary to access exchange rate information and currency converters, saving time and money... ... method whon accepts the parameters of the defult currency, the price or prices to be displayed in the detatt currency, and in a preternd impenemtation, acoepts cosmetic parameters whon allow the price to be displayed seamiessly within the doedment of environment, such as, but not tmited to, the color of the price, the font size of the price, and the price text's background ootor. The form of the parameters can be, but is no timbed to paramezers embedded withm a Hypertext markup kanguage (Ḩmb) document, or parameters in a fle separate from the document, environment. or operating systen in which the prices are displayed.

\section*{Claims:}

A computer system attached to a network, the computer system including an attached display for displaying price information and a computer program comprising:(a) a single software object for displaying one or more prices, including logic for establishing an amount and a currency and which interprets parameters stored in a document or environment that specify a default currency to be displayed; (b) display logic for displaying the price in the appropriate currency by reading operating system information indicative of a desired currency; (c) networking logic that retrieves from a source an exchange rate required to perform a conversion to the desired currency; and(d) selection logic for allowing use of the display to select the desired currency during the display of one or more of the prices on the display. Basic Derwent Week: 200147
```

22/3,K/5 (Item 5 from file: 350)
DIALOG(R)Flle 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

```

Web page content tailoring method for use in the displaying of web pages, converts the web page from HTML into XML, before tailoring it to suit a specific client display and then converting it back to HTML
Patent Assignee: BRITTON KH (BRIT-I); IBM CORP (IBMC); IMS S D (IMSS-I); INT BUSINESS
MACHINES CORP (IBMC); TOPOL B B (TOPO-I)
Inventor: BRITTONKH; IMS S D; TOPOL BB
Patent Family (10 patents, 5 countries)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline GB 2346238 & A & -20000802 & GB 199929939 & A & 19991220 & 200050 & B \\
\hline CA 2292336 & A1 & 20000729 & CA 2292336 & A & 19991216 & 200051 & E \\
\hline JP 2000222275 & A & 20000811 & JP 200017102 & A & 20000126 & 200053 & E \\
\hline KR 2000053638 & A & 20000825 & KR 20003971 & A & 20000127 & 200121 & E \\
\hline US 20020059344 & A1 & -20020516 & US 1999239935 & A & 19990129 & 200237 & E \\
\hline KR 346616 & B & 20020726: & KR 20003971 & A & 20000127 & 200309 & E \\
\hline US 6535896 & B2 & 20030318 & US 1999239935 & A & 19990129 & 200322 & E \\
\hline GB 2346238 & B & -20030604 & & & & 200345 & \(E\) \\
\hline JP 3503555 & B2 & 20040308 & JP 200017102 & A & 20000126 & 200418 & E \\
\hline CA 2292336 & C & 20070109 & CA 2292336 & A & 19991216 & 200707 & \(E\) \\
\hline
\end{tabular}

\section*{Abstract:}
methods and computer program products are provided for utiling XMA-based toobs to talor Hrmbbased Web page content for display within various elfent devices. Content portons of a equested

Web page are conyerted to an Xhe tormat and then modiked using an XMh ontent-taloring tool Othe: content portions of the Web page are masked so as to be "hidden" and are, thus, not converted to Xth tormat. The masked portons of the Web page are then unmasked, combined with the modifed content portions, and transmitted to a dient device for display therewithin.....
 an XME fle can be processed purely as data by a program or it can be stored with simila data on another computer of, like an HTMk fie, that it can be displayed. For example, depending on how the applichton program in the recelveg computer wanted to handie the phone number, it coud be atored, displayed, or dialed. XMh is "extensble" because, unlkektha, Xhimarkup tags can be untmited and can be self-detining ... Basic Derwent Week: 200050
\(22 / 3, \mathrm{~K} / 6\) (Item 6 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Computerized connectivity representation for locating link information between Web pages, involves indexing stored array elements for Web pages in memory, by preset identification to locate connected pages
Patent Assignee: ALTA VISTA CO (ALTA-N)
Inventor: BRODER A \(Z\); BURROWS M; GHEMAWAT S; HENZINGER M H; KUMAR P;
VENKATASUBRAMANIANS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6073135 & A & 20000606 & US 199837350 & A & 19980310 & 200039 & B \\
\hline
\end{tabular}

\section*{Abstract:}
as check points in memory. Each delta encoded names and check points has unique identification which are sorted twice. Then, an array of elements with one array element for each Web page is stored. The array is indexed by a specific identification to locate connected Web pages. ... pages. Each identification pair includes a first identification for producing an in-list and a second identification for producing an outlist. Each array element of Web page includes a first pointer to one of the check points, a second pointer for related in-list of Web page and third pointer for outlist of Web page. INDEPENDENT CLAIMS are...... ADVANTAGE - Provides accurate linkage information for Web, for large number of clients demanding different types of connectivity information. Enables dynamic updating of connectivity information so as to update linkage information... and second according to the second identification of each pair to produce an outlist. An array of elements is stored in the memory, there is one array element for each Web page. Each element includes a first pointer to one of the checkpoints, a second pointer to an associated inlist of the Web page, and a third pointer to an associated outlist of the Web.

\section*{Claims:}
inlist, and second according to the second identification of each pair to produce an outlist; storing an array of elements in the memory, there being one array element for each Web page, each element including a first pointer to one of the checkpoints, a second pointer to an associated inlist of the Web page, and a third pointer to an associated outlist of the Web page; andindexing the array by a particular identification to locate connected Web pages. Basic Derwent Week: 200039
```

22/3,K/7 (Item 7 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

```

HTMLencoded web page e.g. for network based classification information systems automatically creates databases containing industry, service, product and subject classification data, contact data, geographic location data and links to web pages from HTML, XML or SGML encode web pages posted on computer networks

Patent Assignee: MILLS D J (MILL-I)
Inventor: MILLSD J
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (5 patents, 2 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline AU 199853031 & A & 19980827 & AU 199853031 & A & 19980210 & 199846 & B \\
\hline US 20010021935 & A1 & 20010913 & US 199821832 & A & 19980211 & 200155 & E \\
\hline & & & US 2001768158 & A & 20010124 & & \\
\hline AU 740007 & B & 20011025 & AU 199853031 & A & 19980210 & 200173 & E \\
\hline US 6397219 & B2 & 20020528 & US 199821832 & A & 19980211 & 200243 & NCE \\
\hline & & & US 2001768158 & A & 20010124 & & \\
\hline US 6466940 & B1 & 20021015 & US 199821832 & A & 19980211 & 200271 & E \\
\hline
\end{tabular}

\section*{Abstract:}

The CCG databases are searched for references to web pages by use of enquiries which reference one or more of the items of the CCG data. Enquiries referencing the CCG data in the databases may supply contact without web page references. Data... modified by using simple text editors, HTML, XML or SGML editors or purpose built editors. The CCG databases may be searched for references (URLs) to web pages by use of enquiries which reference one or more of the items of the CCG-data. Alternatively, enquiries referencing the CCG-data in the databases may supply contact data without web page references. Data duplication and... ...

\section*{Claims:}

What I claim is: 1. An HTML encoded web page embodied on a computer-readable medium, said web page comprising at least one HTML encoded CCG phrase, each CCG phrase comprising: a) HTML code indicative of the start of a CCG phrase,b) at least one CCG-data attribute, andc) HTML code indicative of the end of a CCG phrase...... An HTML encoded web page embodied on a computerreadable medium, said web page comprising at least one HTML encoded CCG phrase, each CCG phrase comprising: a) HTML code indicative of the start of a CCG phrase,b) at least one CCG-data attribute, andc) HTML code indicative of the end of a CCG phrase....... is: 1. A computer implemented method of building a database which comprises sets of associated property values wherein each set includes at least two property values of different types, the property values being any of classification values, contact values, geographic location values, hereinafter collectively referred to as CCG-data, the method comprising the steps of:a) retrieving successive web pages from a computer network, each web page being identified by a URL, b) searching each web page for a CCG phrase that includes a plurality of different types of CCG-data attributes, \(c\)) extracting a plurality of said attributes from said phrase, d) from each extracted attribute, deriving an attribute name and a related attribute value,e) determining the type of said extracted attribute and said attribute value by reference to said attribute name,f) relating said type of attribute value so determined to a corresponding type of database property value,g) relating the URLBasic Derwent Week: 199846
```

22/3,K/8 (Item 8 from file: 350)
DIALOG(R)File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

```

Database definition language program generator - includes processor processing objects record statements in structured document file to generate DDLs for specific DBMS Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)
Inventor: GILLESPIE H L; POWERS M M
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 5732262 & A & 19980324 & US 1994189450 & A & 19940131 & 199819 & B \\
\hline & & & US 1996611553 & A & 19960306 & & \\
\hline
\end{tabular}

\section*{Abstract:}

The DDL program generator includes a source of user defined datasets. A structured document file storing a database design, is composed of a number of object records, including statements of different data types. The structured document file includes default database management system parameters including tablespace name, table name, table and index information... ...A unit reads the structured document file one object record at a time...

\section*{Claims:}
types, wherein said structured document file includes default database management system parameters including tablespace name, table name, table and index information; means for reading said structured document file one object record at a time; processing means responsive to said means for reading, for processing each object record statement according to its data type, said processing means identifying said data type to generate... Basic Derwent Week: 199819
```

27/3,K/1 (Item 1 from file: 350)
DIALOG(R)File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

```

Web object conversion method e.g. for table, check box of web document, involves creating array of string variables corresponding to each row and inserting parameters corresponding to each web object into values of variables
Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)
Inventor: DUNSMOIR JW; JACOBS S H; REECH CD
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6671854 & B1 & 20031230 & US 1999435006 & A & 19991105 & 200408 & B \\
\hline
\end{tabular}

\begin{abstract}
:
The tags are extracted and array of string variables corresponding to each row is created. The parameters corresponding to tags are inserted in string variable values which are converted into variable count, such that the tags may append to web document for distribution and display by a web browser. The disclosed method, system and computer program product converts static, fixed-count multi-row web objects in web pages, such as HTML tables and lists, to dynamic, variable-count multi-row web objects by first copying one of the row formats from the original static web object into a plurality of string variables which are... ... based upon the final contents of the string variables. This process of creating a variable row-count web object using an array of string variables supports dynamic web page content generation needs of many web server systems.
\end{abstract}

\section*{Claims:}

What is claimed is:1. A method for converting fixed-count multi-row web objects in a web document to variable-count multi-row web objects in a web document for distribution to and display on a web browser computer, each row of said web object having a row format definition and row content definition; said method comprising the steps of:scanning one or more lines of a web object for a row format definition which matches a definition in a system dictionary; extracting a matching row format definition from a fixed-count multi-row web object;storing said extracted row format definition into the values of a plurality of string variables embodied in a computer readable media; inserting content definition into each row format definition in each string variable value; andconverting the values of the string variables into a variable-count multi-row webobject in a computer readable medium such that said variable-count multi-row web object may be included or appended to a web document for distribution to and display by a... Basic Derwent Week: 200408

\section*{27/3,K/2 (Item 2 from file: 350)}

DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Mail application program interface format content conversion method in network, involves wrapping mapped contents in accordance with extensible markup language format and prescribed transport protocol
Patent Assignee: MICROSOFT CORP (MICT)
Inventor: LIPPERTLM; SINCLAIRA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number: & Kind & Date & Update & Type \\
\hline US 6626957 & B1 & 20030930 & US 1999410652 & A & 19991001 & 200378 & B \\
\hline
\end{tabular}

\section*{Abstract:}

DESCRIPTION OF DRAWINGS - The figure shows the flowchart explaining the MAPI format content conversion process. Markup language content and content mapping is disclosed. On one embodiment, content is received according to a first predetermined format, such as MAPI. The content is mapped from this format to a second predetermined format which is consistent with a predetermined markup language, such as XML. The second format may also be consistent with a predetermined extension of the markup language, such as the WebDAV extensions to XML. Once mapped, the content is output in the second formal. Basic Derwent Week: 200378

27/3,K/3 (Item 3 from file: 350)
DIALOG(R)File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Messages exchanging and merging system in Internet, includes XML and DDT parsers to receive message including characteristic information and return template which are merged using name tag map
Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)
Inventor: CHEN S: CHUNG J; COHEN MA; FU S S; GOTTEMUKKALA V
Patent Family (1 patents, 1 countries)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6507856 & B1 & 20030114 & US 1999225814 & A & 19990105 & 200336 & B \\
\hline
\end{tabular}

\section*{Abstract:}
exchanging and merging messages over a network incudes a server nocessbie by a purally of remote browsers for transmiting a femphate includng feids for information entry and a business system accessible by the server for generating a reum documen pursuant to information entered in the template on the browsers. The business system includes a first parser for receiving a document from a krowser, the document including intomaton about data characherishics of intormation entered into the lemplate, and a seond parser for receiving informaton about data characheyistics to provide a feturn templake. Amerging algorithm is implemented to merge the document with the return bemplate for providig a retum document to the browser having portions of the return template with data entered therein.... ... document merge algorithm to prepare the return X 8 k. cocument. The OTD parser ranstoms the DTO with repeavable and optonal letes mio a kemplate in tree stucture or sertalzed array with spocial markers around toop header nodes or name tags. Optional fleks may inolude a second business address or phone mamber, fo: examp:e.....ADVANTAGE - Enables to exchange and merge XML documents dynamically and efficiently by using name tag map... ...DESCRIPTION OF DRAWINGS - The figure shows a flow chart explaining the procedure in dynamic XML document exchange system... ...

Claims:
parser for receiving a first message from a browser, the first message including information about data characteristics of information entered into the template and name tags; a second parser for receiving information about data characteristics to provide a return template, the return template including name tags; andmeans for merging the first message with the return template for providing the return message to the browser, the return message having portions of the return template with data entered therein corresponding to at least some of the information entered into the first message,
wherein the means for merging includes a name tag map for correlating the tag names of the first message with the tag names of the return template. Basic Derwent Week: 200336

27/3,K/4 (Item 4 from file: 350)
DIALOG(R)Fle 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

SGML formatted source document conversion method in Internet, involves converting source document into multiple consistent documents having HTML, binary code formats Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)
Inventor: CROMARTY V C; GORDON JL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6393442 & B1 & 20020521 & US 199874784 & A & 19980508 & 200254 & B \\
\hline
\end{tabular}

\section*{Abstract:}

NOVELTY - A document type definition (DTD) is provided to a source document. The document is converted into several consistent documents having specific formats such as HTML format, postscript format and binary code format based on OmniMark, Xyvision transforms. The binary code formatted version is stored in an operating...... ADVANTAGE - Enables maintaining consistency between documents having unique formats and versions by using binary code format document... ... DESCAIPTION OF DRAWINGS - The figure shows the flow diagram explaining the procedure for converting the source document into several documents...

Claims:
the plurality of documents being created by filtering out all the versions except the corresponding version, wherein at least one of the plurality of documents is a Hypertext markup Language (HTML) formatted version for on-line help, at least one of the plurality of documents is a printable book in a postscript format, and at least one of the plurality of documents is a binary... Basic Derwent Week: 200254

27/3,K/5 (Item 5 from file: 350)
DIALOG(R) File 350: Derwent WPiX
(c) 2012 Thomson Reuters. All rights reserved.

Internal search system for tracking and ranking selected records from previous searches, has browser for bookmaking selected web sites and database for storing uniform resource locators of selected sites
Patent Assignee: MINDCROSSING INC (MIND-N); POWERCAST MEDIA INC (POWE-N) Inventor: BOSARGE JW; CRANDALL A C; HERNANDEZ L
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (2 patents, 89 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline WO 2001016807 & A1 & 20010308 & WO 2000US24286 & A & 20000831 & :200149 & B \\
\hline AU 200071117 & A & 20010326 & AU 200071117 & A & [20000831] & 200149 & E \\
\hline
\end{tabular}

\section*{Abstract:}

DESCRIPTION OF DRAWINGS - The figure illustrates how the search engine converts a single search query into three different queries ... to a search query. When an Internet user submits a search query (400), the system creates three distinct but related queries for searching all accessible web sites, a collection database (512) and a rank database (514). The collection database includes a list of collections, i.e., records that other users deem relevant to a search topic and that are selected from result sets derived with earlier search queries; the collection is organized in a folder/file based hierarchical format. The rank database includes Uniform Resource Locators (URLs) for identifying
web sites that are bookmarked by other users. Each record in the collection and rank databases has an associated score...

27/3,K/6 (Item 6 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Compression method for computer readable files, involves creating look-up table to facilitate recognition and replacement of control codes, during subsequent expansion of compression string
Patent Assignee: EURONET UK LTD (EURO-N); MIDDLETON G (MIDD-1)
Inventor: MIDDLETON G
Patent Family (5 patents, 86 countries)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline WO 2000070770 & A1 & 20001123 & WO 2000GB1794 & A & 20000510 & 200141 & B \\
\hline AU 200045954 & A & 20001205 & AU 200045954 & A & 20000510 & 200141 & E \\
\hline GB 2363496 & A & 20011219 & WO 2000GB1794 & A & 20000510 & 200203 & E \\
\hline & & & GB 200123110 & A & 20010926 & & \\
\hline US 20020073116 & A1 & 20020613 & US 2001683042 & A & 20011112 & 200243 & E \\
\hline GB 2363496 & B & 20030806 & WO 2000 GB 1794 & A & 20000510 & 200353 & E \\
\hline & & & GB 200123110 & -A & 20010926 & & \\
\hline
\end{tabular}

\section*{Abstract:}
with the original source HTML code on which the compression according to the invention was conducted, and several examples of code used for the compression of conventional Web Pages... pages. The invention disclosed relates to a method of compressing web pages by replacing the most commonly used elements within the web page text files, known as tags, with a simple control code and simultaneously creating a look-up table string containing the control codes and the corresponding tags. The result is a... ...

\section*{Claims:}
and/or executable by a browser program for display therein, said technique comprising the steps of analyzing the file for the number of instances of particular segments of text, replacing the most commonly occurring segments with control codes specific to that matter being replaced to create a compression string of uncompressed textual matter and control...
```

27/3,K/8 (Item 8 from file: 350)
DIALOG(R)File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

```

Modular system for processing network based transaction, has tracking module for customer affinities as a function affinity attributes assigned to units of content presented to customer
Patent Assignee: ONESOFT CORP (ONES-N)
Inventor: COCKERILL A; DAVIDSON B; FORDHAM B
Patent Family (2 patents, 87 countries)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline WO 2000046720 & A2 & 20000810 & WO 2000US2922 & A & 20000203 & 200057 & B \\
\hline AU 200033562 & A & 20000825 & AU 200033562 & A & 20000203 & 200067 & E \\
\hline
\end{tabular}

\section*{Abstract:}
includes a tracking module for customer affinities as a function of affinity attributes assigned to units
of content presented to customer. The tracking module is adapted for assigning an identification value to one unit of content within web page... and how the data objects, functional objects and presentation objects should be applied to the data as part of the transaction. The system utilizes a standardized, extensible data structure for transferring the data between components or objects which allows the objects to be used as interchangeable building blocks of a comprehensive and flexible system architecture.....

27/3,K/9 (Item 9 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Multi-currency production ledger converting method for unifying currencies (e.g. to Euro) by populating target currency corps record within target master file with the corresponding rounded target currency equivalent amounts
Patent Assignee: JOHNSON INC ANDREW (JOHN-N)
Inventor: JOHNSON A P
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (4 patents, 79 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline WO 2000055788 & A2 & 20000921 & WO 2000US6722 & A & 20000314 & 200059 & B \\
\hline AU 200037455 & A & 20001004 & AU 200037455 & A & 20000314 & 200101 & E \\
\hline US 6477510 & B1 & 20021105 & US 1999268592 & A & 19990315 & 200276 & E \\
\hline WO 2000055788 & AB & 20080619 & & & & 200843 & E \\
\hline
\end{tabular}

\section*{Abstract:}

NOVELTY - A target currency, a time period and a currency master file identical to old currency master file is created. The converted and rounded Euro corps (1351) are migrated back to the production region via the millennium tool DNR (1460) creating... ...is also included for a program for automatically correcting intra-record accumulation of rounding errors during the conversion of a booking ledger from a participating currency to a target currency. USE - For unifying currencies (e.g. to Euro... ... This invention relates generally to multi-currency production ledgers, and more particularly to methods of converting multi-currency production ledgers to accommodate the unification of several national currencies by respective participating states into a single currency. In particular the invention relates to a method for use with a computer for converting an ongoing old corp production ledger processing with a participating currency, to an ongoing production ledger processing with a target currency, the old corp production ledger comprising an old master file including a plurality of old master file records, each old master file record comprising a key identifying the record, data fields and amount fields, wherein the conversion is accomplished by selecting a target currency, selecting a particular time period, creating a target currency master file that is substantially identical to the old currency master file, by creating a target currency corp record corresponding to each old currency master file corp record within the old currency master file except that the target currency corp records within the target master file hold zero balances and all participating transaction currency records and their book one equivalents within one old master file key are replaced by a single target transaction record and its book one equivalent, converting the amounts of all transaction currency records and their book one equivalents for the selected time period into their corresponding target currency equivalent amounts, rounding the target currency equivalent amounts, and populating the target currency corp records within the target master file with the corresponding rounded target currency equivalent amounts.

\section*{Claims:}

I claim: 1. A method for use with a computer for converting an ongoing old corp production ledger processing with a participating currency, to an ongoing production ledger processing with a target currency, said old corp production ledger comprising an old master file including a plurality of old master file records, each old master file record comprising a key identifying the record, data fields and amount fields, said method comprising the steps of: a. selecting a target currency, b. selecting a particular time period, c. providing a target currency master file that is substantially identical to the
old currency master file, by creating a target currency corp record corresponding to each old currency master file corp record within the old currency master file except that the target currency corp records within the target master file hold zero balances and all participating transaction currency records and their book one equivalents within one old master file key are replaced by a single target transaction record and its book one equivalent, d. converting the amounts of all transaction currency records and their book one equivalents for the selected time period into their corresponding target currency equivalent amounts, e. rounding said target currency equivalent amounts, wherein the step of rounding the target currency equivalent amounts comprises the steps of: : creating second dimensional rounding entries for year-to-date balances through each accounting period within each target currency transaction currency records and book one equivalents within said target master file, and il. creating a master file maintenance audit trail report, and f. populating the target currency corp records within the target master file with the corresponding rounded target currency equivalent amounts.

DIALOG(R)FIIE 348: EUROPEAN PATENTS
(c) 2012 European Patent Office. All rights reserved.

18/3K/1 (Item 1 from file: 348)
Client-server application development and deployment system and methods

\section*{Patent Assignee:}
- DuFresne, Fred E. (100112847)

16 Bullard Street; Sharon, MA 02067 (US)
(Applicant designated States: all)

\section*{Inventor:}
- DuFresne, Fred B.

16 Bullard Street; Sharon, MA 02067; (US)

\section*{Legal Representative:}
- Williams, David John(100042261)

Page White \& Farrer Bedford House John Street; LondonWCIN 2BF; (GB)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & \(E P\) & 2293207 & A1 & 20110309 \\
Application & EP & (Basic) \\
Priorities & US & 10184785 & & 19970502 \\
\hline
\end{tabular}

\section*{Specification:}
present invention is HTML tag extensions which allow dynamic Web page processing and "stateful" Web sessions. In a preferred embodiment, the tag extensions are a set of HTML-like tags that extend the functionality of HTML. The tag extensions operate as variables, which, upon processing by the server of the present invention, become replaced by the associated values. The preferred extension syntax is similar to an HTML tag in that both are enclosed in angle brackets "<>". The preferred extensions of the present invention are distinguished by preceding each extension with a pound sign "\#" inside the brackets. Similar to the HTML tags, the extensions may also have one or more modifiers. A preferred tag extension has the following syntax: <\#tag modifier1 modifier2> Since a tag extension results in a substitution of some kind...

DIALOG(R) File 349: PCT FULLTEXT
(c) 2012 WIPO Thomson. All rights reserved.

\section*{METHOD FOR AFFORDING A MARKET SPACEINTERFACE BETWEEN A PLURALITY OF MANUFACTURERS AND SERVICE PROVIDERS AND INSTALLATION MANAGEMENT VIA A MARKET SPACE INTERFACE}

\section*{Patent Applicant/ Patent Assignee:}
- accenture llp

1661 Page Mill Road, Palo Alto, CA 94304; US; US(Residence); US(Nationality)

\section*{Inventor(s):}
- MIKURAK Michael G

108 Englewood Blvd., Hamilton, NJ 08610; US

\section*{Legal Representative:}
- HICKMAN Paull(et al)(agent)

Oppenheimer Wolff \& Donnelly LLP, 1400 Page Mill Road, Palo Alto, CA 94304; US
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & WO & 200139028 & A2 & 20010531 \\
\hline Application & WO & \(2000 \cup 532308\) & 20001122 \\
\hline Priorities & US & 99444773 & 19991122 \\
\hline & US & 99444798 & 19991122 \\
\hline
\end{tabular}

\section*{Detailed Description:}
related to ceramic pistons. Different kinds of piston engines have different characteristics, but may have the same underlying functions associated with it (e.g., how many pistons in the engine, ignition sequences, lubrication, etc.). To access each of these functions in any piston engine object, a programmer with the concepts of...

\section*{18/3K/7 (Item 7 from file: 349)}

DIALOG(R) File 349: PCT FULLTEXT
(c) \(2012 \mathrm{WIPO} /\) Thomson. All rights reserved.

SYSTEM AND METHOD FOR DISPLAYING INFORMATION AND MONITORING COMMUNICATIONS OVER THEINTERNET

\section*{Patent Applicant/ Patent Assignee:}
- VAYU WEBINC

\section*{Inventor(s):}
- LENZ Frederick \(P\)
Country Number Kind Date
\begin{tabular}{|c|cc|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & WO & 9820434 & A2 & 19980514 \\
\hline Application & WO & 97 US19719 & 19971030 \\
\hline Priorities & US & 96745899 & & 19961107 \\
\hline & US & 96762289 & 19961209 \\
\hline
\end{tabular}

\section*{Detailed Description:}
or stopping web page execution by selecting control panel button 1414. An alternate (preferred) embodiment of the present invention is described below with reference to Figures 15 This alternate embodiment includes a standard structure and iavigation for the menus (pages containing buttons) and menu items (buttons), allowing the user 5 a set of options at each web page. One benefit of using the standard structure is to make the web site easier to use by the end user and to offer the web site...

DIALOG(R) File 348: EUROPEAN PATENTS
(c) 2012 European Patent Office. All rights reserved. 23/3K/4 (Item 4 from file: 348)

\section*{Electronic book with embedded links to internal and external resources}

\section*{Patent Assignee:}
- DISCOVERY COMMUNICATIONS, INC. (1818010)

7700 Wisconsin Avenue,; Bethesda, MD 20814-3522 (US)
(Applicant designated States: all)

\section*{Inventor:}
- Hendricks, John S.

8723 Persimmon Tree Road; Potomac, MD 20854; (US)
- Asmussen, MichaelL.

2627 Meadow Hall Drive; Herndon, VA 20171; (US)

\section*{Legal Representative:}
- Strehl Schubel-Hopf \& Partner (100941)

Maximilianstrasse 54; 80538 Munchen; (DE)
\begin{tabular}{|l|l|l|l|l|}
\hline & Country & Number & Kind & Date \\
\hline Patent & EP & 1172739 & A2 & 20020116 (Basic) \\
\hline Patent & EP & 1172739 & A3 & 20030528 \\
Application & EP & 2001121918 & 20000127 \\
Priorities & US & 237828 & 19990127 \\
\hline
\end{tabular}

\section*{Specification:}
textual material from outside sources 282 such as publishers, newspapers, and on-line services. Alternately, the outside sources may maintain electronic books at the Internet web site 279. The outside sources 282 may convert textual and graphical material to digital format, or may contract with another vendor to provide this service. The operations center 250 may receive the textual and graphical material in various digital formats and may convert the textual material to a standard
compressed format for storage. In so doing, the operations center 250 may create a pool of textual material that is available to be delivered to the home...

DIALOG(R) FII 348: EUROPEAN PATENTS
(c) 2012 European Patent Office. All rights reserved. 23/3K/5 (Item 5 from file: 348)

\section*{METHOD FOR VIRTUAL ON-DEMAND ELECTRONIC BOOK}

\section*{Patent Assignee:}
- DISCOVERY COMMUNICATIONS,INC. (1818010)

7700 Wisconsin Avenue,; Bethesda, MD 20814-3522 (US)
(Proprietor designated states: all)

\section*{Inventor:}
- HENDRICKS, John, S.

8723 Persimmon Tree Road; Potomac, MD 20854; (US)
- MCCOSKEY, John, S.

4692 N. Nariat Drive; Castle Rock, CO 80104: (US)

\section*{Legal Representative:}
- Strehl Schubel-Hopf \& Partner (100941) Maximilianstrasse 54; 80538 Munchen; (DE)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Country & Number & Kind & Date & \\
\hline Patent & EP & 1330728 & A2 & 20030730 & \multirow[t]{6}{*}{(Basic)} \\
\hline Patent & EP & 1330728 & B1 & 20060104 & \\
\hline & WO & 2001031491 & & 20010503 & \\
\hline Application & EP & 2000974006 & & 20001027 & \\
\hline & WO & 2000US29813 & & 20001027 & \\
\hline Priorities & US & 427939 & & 19991027 & \\
\hline
\end{tabular}

\section*{Specification:}
sources, or content providers 282, such as publishers, newspapers, and on-line services. Alternately, the outside sources 282 may maintain electronic books at the Internet web site 279. The outside sources 282 may convert textual and graphical material to digital formats, or may contract with another vendor to provide this service. The operations center 250 may receive the textual and graphical material in various digital formats and may convert the textual material to a standard compressed format for storage. In so doing, the operations center 250 may create a pool of textual material that is available to be delivered to the home...transaction. The connection 270 may also be used as a means for receiving the electronic books from the operations center 250 or from an internet web site, by-passing the distribution system 208. The phone connection 270 may be a separate unit as shown in Figure 6b. iv. Library Processing
Figure 9 shows an example of some basic processing performed by the microprocessor 628 of the library 262 on the data...
(c) 2012 European Patent Office. All rights reserved.
\(23 / 3 \mathrm{~K} / 9\) (Item 9 from file: 348)

Method and apparatus for implementing a tag-based display language utilizing a procedural instruction language

Patent Assignee:
- Phone.Com Inc. (2766840)

800 Chesapeake Drive; Redwood City, CA 94063 (US)
(Applicant designated States: all)

\section*{Inventor:}
- Martin, Bruce K., dr.

604 Wellsbury Court; Palo Alto, CA 94306; (US)

\section*{Legal Representalive:}
- Ablett, Graham Keith et al(53082)

Ablett \& Stebbing, Caparo House, 101-103 Baker Street; London W1M 1FD; (GB)
\begin{tabular}{|ccc|c|c|}
& Country & Number & Kind & Date \\
\hline Patent & EP & 965914 & A2 & 19991222 \\
Patent & EP & 965914 & A3 & 20010725 \\
\hline Application & EP & 99303350 & 19990429 \\
\hline Priorities & US & 71326 & 19980430
\end{tabular}

\section*{Specification:}
a file, and display the document elements based on the markup language tags. The browser software application is typically dedicated to the task of displaying markup language tag-based documents, and more than one browser program may be required if a user wishes to view documents in different markup language tag-based languages. Figure 1 illustrates a block diagram of a computer system adapted to operate with documents in a tag-based markup language according to known procedures. A...
```

DIALOG(R)FIIE 348: EUROPEAN PATENTS
(c) 2012 European Patent Office. All rights reserved.
23/3K/10 (Item 10 from file: 348)

```

\section*{Embedded HTML documents}

\section*{Patent Assignee:}
- International Business Machines Corporation (200120)

Old Orchard Road; Armonk, N.Y. 10504 (US)
(Proprietor designated states: all)

Inventor:
- Renshaw, David Seager

14 Andover Road North; Winchester, Hampshire, SO22 6NN; (GB)

\section*{Legal Representative:}
- Davies, Simon Robert (75451)

I BM UK Intellectual Property Department Hursley Park; Winchester, Hampshire SO21 2JN; (GB)
\begin{tabular}{|l|l|l|l|l|}
\hline & Country & Number & Kind & Date \\
\hline Patent & EP & 818742 & A1 & 19980114 (Basic) \\
\hline Patent & EP & 818742 & B1 & 20021016 \\
\hline Application & EP & 97304742 & 19970701 \\
\hline Priorities & GB & 9614570 & & 19960711 \\
\hline
\end{tabular}

\section*{Specification:}
be constructed by having different data types processed and rendered by respective HTML documents (although of course the different HTML components do not necessarily contain different data types). Referring to figure 3 there is shown schematically the result of rendering the multi-levelled HTML document illustrated in Examples 1-3. The work space reserved for use... ... applet has been depicted by a dotted line for the purpose of illustration only. Normally, the dotted lines would not be present, to allow seamless integration of one himl document within another. Referring to figures 4 A to 4 C , there is shown a schematic flow diagram

DIALOG(R)File 348: EUROPEAN PATENTS
(c) 2012 European Patent Office. All rights reserved.
\(23 / 3 \mathrm{~K} / 11\) (Item 11 from file: 348)

\section*{Structured documents on the WWW}

\section*{Patent Assignee:}
- SUN MI CROSYSTEMS, INC. (1392730)

2550 Garcia Avenue; Mountain View, CA 94043 (US)
(Proprietor designated states: all)

\section*{Inventor:}
- Nielsen, Jakob

38 Walnut Avenue; Atherton, California 94027; (US)

\section*{Legal Representative:}
- Hogg, Jeffery Keith et al (31905) Withers \& Rogers, Goldings House, 2 Hays Lane; London SE1 2HW; (GB)
\begin{tabular}{|c|c|c|c|c|c|}
& Country & Number & Kind & Date \\
\hline Patent & EP & 802491 & A2 & 19971022 & (Basic) \\
\hline Patent & EP & 802491 & \(A 3\) & 19990616 \\
\hline Patent & EP & 802491 & B1 & 20050316 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number Kind & Date \\
\hline Application & EP & 97302483 & 19970411 \\
\hline Priorities & US & 633915 & 19960415 \\
\hline
\end{tabular}

\section*{Specification:}
it has no parents. The children of a page may be indicated as \&It;)-- META NAME= "child"
VALUE= "filenamel.html" -\>, \<)-- META NAME= "child" VALUE="filename2.html" --\>, with each tag listed on a separate line.
Fig. 4 is a flowchart describing steps of identifying a parent of a selected page of a struckured document in accordance with one embodiment of the present invention. At step 402, the document structure database is checked to see if the parent is identified there. If the parent...
```

23/3K/12 (Item 12 from file: 349)
DIALOG(R)FIle 349: PCT FULLTEXT
(c) $2012 \mathrm{WIPO} /$ Thomson. All rights reserved.

```

\section*{SYSTEM AND METHOD FOR ENHANCING OPERATION OF A WEB SERVER CLUSTER}

\section*{Patent Applicant/ Patent Assignee:}
- WARP SOLUTIONSINC

12th Floor, 627 Greenwich St., New York, NY 10014; US; US(Residence); US(Nationality)

\section*{Inventor(s):}
- PRIMAK Leonard

284 Mott Street \#20, New York, NY 10020; US
- GNIP John

62-42 Woodhaven Blvd., Rego Park, NY 11374; US
- VOLOVICH Gene R 176 1/2 Hamilton Avenue, Greenwich, CT 06830; US

\section*{Legal Representative:}
- IMCAndrew (agent)

Fulbright \& Jaworski L.L.P., 666 Fifth Avenue, New York, NY 10103; US
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & wo & 200140903 & A2-A3 & 20010607 \\
\hline Application & WO & 2000US42480 & & 20001201 \\
\hline Priorities & US & 99169196 & & 19991206 \\
\hline & US & 2000201810 & & 20000504 \\
\hline & US & 2000565259 & & 20000505 \\
\hline - & US & 2000202329 & & 20000505 \\
\hline
\end{tabular}

\section*{Detailed Description:}
identical content. That is, each group of servers in a cluster stores different content. Heterogeneous server clusters are particularly useful for storing content in a number of diferent content formats, such as HTML, CGI, streaming audio or video, etc. Since each content fortnat has different storage and transmission characteristics and requirements, it is inefficient for web site owners and/or
operators to employ a single server to provide data in various different formats to clients. When io diverse content in a variety of data formats is required, it is desirable...
```

23/3K/17 (Item 17 from file: 349)
DIALOG(R)FIle 349: PCT FULLTEXT
(c) 2012 WIPO/Thomson. All rights reserved.

```

METHOD, APPARATUS, AND SYSTEM FOR ENABLING CREATION AND MAINTENANCE OF REMOTE CGI SCRIPTS ON THE INTERNET

\section*{Patent Applicant/ Patent Assignee:}
- INSTANTISINC 913 Hermosa Court, Sunnyvale, CA 94085; US; US(Residence); US(Nationality)

\section*{Inventor(s):}
- RAJE Prasad 34336 Dunhill Drive, Fremont, CA 94555; US

\section*{Legal Representative:}
- MALLIE Michael J(et al)(agent) Blakely, Sokoloff, Taylor \& Zafman LLP, 12400 Wilshire Boulevard, 7th Floor, Los Angeles, CA 90025; US
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & WO & 200124093 & A1 & 20010405 \\
\hline Application & WO & \(2000 \cup 526883\) & & 20000929 \\
\hline Priorities & US & 99157350 & & 19990930 \\
\hline & US & 2000669594 & & 20000926 \\
\hline
\end{tabular}

\section*{Detailed Description:}
in the configuration structure. If the current instance and the previous instance of the form elements are different, indicate that the form and the configuration structure are no longer consistent.
Figure 3 illustrates a system configuration according to the teachings of the present invention. As shown in Figure 3 , in this configuration, it is assumed that a form \(F\) is authored by an author \(A\) using any HTML authoring environment on some computer \(C\). In one embodiment, there should be no constraints imposed on the number, nature, names of the fields or surrounding HTML text and tags in F. It is...
```

23/3K/21 (Item 21 from file: 349)
DIALOG(R)File 349: PCT FULLTEXT
(c) 2012 WIPO/Thomson. All rights reserved.

```

A SYSTEM, METHOD, AND ARTI CLE OF MANUFACTURE FOR PROVIDING COMMERCERELATED WEB APPLICATION SERVICES

\section*{Patent Applicant/ Patent Assignee:}
- ACCENTURE LLP

100 South Wacker Drive, Chicago, IL 60606; US; US(Residence); US(Nationality)

\section*{Inventor(s):}
- GUHEEN Michael F

2218 Mar East Street, Tiburon, CA 94920; US
- Mitchell james D

3004 Alma, Manhattan Beach, CA 90266; US
- BARRESE James d

757 Pine Avenue, San Jose, CA 95125; US

\section*{Legal Representalive:}
- BRUESS Steven C (agent)

Merchant \& Gould P.C., P.O. Box 2903, Minneapolis, MN 55402-0903; US
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & WO & 200073957 & A2-A3 & 20001207 \\
\hline Application & Wo & 2000US14420 & & 20000525 \\
\hline Priorities & US & 99321492 & & 19990527 \\
\hline
\end{tabular}

\section*{Detalled Description:}
applications and provides access control and security features. Java Web Server provides session tracking that provides a mechanism to track how people use and navigate websites. It also provides remote administration and logging features. Director Servias A multi-protocol, scalable global directory for storing @6 information such as user definitions, user... ...Commerce Framework (JECF) is Business I's new initiative to create a standard, secure framework within which to conduct business transactions using any combination of currencies tr4jamm and payment instruments such as credit and debit cards, electronic cash and checks, and smart cards. The initial component of the JECIF... ...the Java environment. JavaWallet will allow users of any Java-enabled web browser or operating system to purchase goods and services from JECF-compliant merchant websites. JavaWallet provides a single user interface for electronic transactions, secure from tampering. When a consumer uses a Java enabled browser to navigate an online mall, selects goods and services...to enforce consistency across multiple screens and can accelerate development. This feature is not available in low-end presentation design tools, such as MS PowerPoint. One means of ensuring reuse is for the tool to support a central library of predefined widgets or screen elements. This library should be extendible and... ...to create new widget/element definitions or to enhance existing ones.
n) Is multi- language support a consideration?

Special characters, differences in field lengths, and differences in number formats are some of the things that contribute to the complexity of a multi-language application. Window and report design are among the areas affected by...

\section*{23/3K/23 (Item 23 from file: 349)}

DIALOG(R) File 349: PCT FULLTEXT
(c) 2012 WIPO Thomson. All rights reserved.

\section*{reusable data markup language}

\section*{Patent Applicant/ Patent Assignee:}
- E-NUMERATE SOLUTIONSING 8201 Greensboro Drive, McLean, VA 22102; US; US(Residence); US(Nationality)

\section*{Inventor(s):}
- DAVIS Russell T

6006 Woodacres Drive, Bethesda, MD 20816; US

\section*{Legal Representative:}
- GARRETT Arthur S(et al)(agent)

Finnegan, Henderson, Farrabow, Garrett \& Dunner, L. L...P., 1300 I Street, N.W., Washington, DC 20005-3315; US
\begin{tabular}{|l|l|l|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & WO & 200072197 & A2 & 20001130 \\
\hline Application & WO & 2000 US13745 & 20000519 \\
\hline Priorities & US & 99135525 & 19990521 \\
\hline & US & 2000183152 & 20000217 \\
\hline
\end{tabular}

\section*{Detailed Description:}
thread and has methods for checking the RDML document 102 type (Time Series, Category, XY) and handing errors. The RDML Reader 704 then calls the XML parser 706 which parses the text (step 804). The RDML processor 708 receives the parsed text from the text. (step 806). The RDML processor \(708 \ldots\)...manipulates the fields (x-values) of the data so that it may be displayed and stored coherently and simultaneously with other active objects of the same type (step 808). The X-value transformer 710 makes sure that the data values to be graphed against the \(x\)-axis are in common units. For example, if document \(A\) is an...
```

23/3K/31 (Item 31 from file: 349)

```

DIALOG(R)FII 349: PCT FULLTEXT
(c) \(2012 \mathrm{WIPO} /\) Thomson. All rights reserved.

AN AUTOMATED COMMUNICATIONS SYSTEM AND METHOD FOR TRANSFERRING I NFORMATIONS BETWEEN DATABASES IN ORDER TO CONTROL AND PROCESS COMMUNICATIONS

\section*{Patent Applicant/ Patent Assignee:}
- INTERMIND CORPORATION

Inventor(s):
- REED Drummond Shattuck
- HEYMANN Peter Earnshaw
- MUSHERO Steven Mark
- JONES Kevin Benard
- oberlander Jeffrey Todd
- banay Dan
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & WO & 9732251 & A1 & 19970904 \\
\hline Application & WO & 97 US3205 & 19970228 \\
\hline Priorities & US & 96609115 & 19960229 \\
\hline & US & 96722314 & 19960927 \\
\hline
\end{tabular}

\section*{Detalled Description:}
text string embedded by the author of the page informing the consumer of the nature of the change. However, Smart Bookmarks' capability is limited to single text strings on single web pages.
Therefore the consumer must locate and bookmark every Web page of interest. Smart Bookmarks does not provide a way for the consumer to filter the update messages, nor does it provide the consumer with any mechanism for exchanging structured infon-nation or managing a conununications relationship with the provider. A different type of Web monitoring solution is provided by Revnet Systems Inc. With its GroupMaster software, Web providers can create and insert special hyperlinks representing interest topics...

DIALOG(R) File 348: EUROPEAN PATENTS
(c) 2012 European Patent Office. All rights reserved.

28/3K/3 (Item 3 from file: 348)
TAILORING DATA AND TRANSMISSION PROTOCOL FOR EFFICIENT INTERACTIVE DATA TRANSACTIONS OVER WIDE-AREA NETW ORKS

\section*{Patent Assignee:}
- Inpro Licensing Sarl (4359850)

9 rue Schiller; 2519 Luxembourg (LU)
(Proprietor designated states: all)

\section*{Inventor:}
- KIKINIS, Dan

20264 Ljepava Drive; Saratoga, CA 95070; (US)

\section*{Legal Representative:}
- White, Duncan Rohan (86304)

Marks \& Clerk 90 Long Acre; London WC2E 9RA; (GB)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Country & Number & Kind & Date & \\
\hline Patent & EP & 1076867 & A1 & 20010221 & (Basic) \\
\hline Patent & EP & 1076867 & B1 & 20080723 & \\
\hline & Wo & 1999057657 & & 19991111 & \\
\hline Application & EP & 99921591 & & 19990430 & \\
\hline & WO & \(99 \cup 59568\) & & 19990430 & \\
\hline Priorities & US & 73019 & & 19980504 & \\
\hline
\end{tabular}

\section*{Specification:}
this invention are standardized mini-applications adapted to translate standard WEB pages into content-reduced WEB pages adapted for a specific client and/or appication (WEBsite/set of WEBsites). A finite number of default data templates are provided for translating the most common types of WEB pages for the most common types of clients. These default templates are stored at enabled proxy servers and WEB servers adapted to transmit SFHTP. In the implementation of such templates, in some cases, a single WEB page may be translated for a particular client as a single simplified WEB page. In other cases one WEB page may be translated to a number of pages to be separately displayed on a client device. In an embodiment of the invention clients are adapted via software to make new templates ...

DIALOG(R) File 348: EUROPEAN PATENTS
(c) 2012 European Patent Office. All rights reserved. 28/3K/6 (Item 6 from file: 348)

Retrieval of image information from an image server via an interfacing device to a communication terminal, wherein user guidance is based on control information stored in the image server

\section*{Patent Assignee:}
- NIPPON TELEGRAPH AND TELEPHONE CORPORATION (686333)

19-2. Nishi-Shinjuku 3-chome, Shinjuku-ku; Tokyo 160 (JP)
(Proprietor designated states: all)

\section*{Inventor:}
- Hamano, Teruo

NTT Shataku 9-405, 9-2, Sugita, Isogo-ku; Yokohama-shi, Kanagawa-ken; (JP)
- Sasaki, Tsutomu

1-79-1, Maruyama-cho, Chikusa-ku; Nagoya-shi, Aichi-ken; (JP)
- Kajii, Ken

18509, 9-2-12, Sugita, Isogo-ku; Yokohama-shi, Kanagawa-ken; (JP)
- Sonehara, Noboru

NTT Shataku 304, 5-2-1, Shinjuku; Zushi-shi, Kanagawa-ken; (JP)

\section*{Legal Representative:}
- Dealtry, Brian et al (42911)

Eric Potter Clarkson, Park View House, 58 The Ropewalk; Nottingham NG1 5DD; (GB)
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & EP & 837597 & A2 & 19980422 \\
\hline Patent & EP & 837597 & A3 & 19991229 \\
\hline Patent & EP & 837597 & B1 & 20040630 \\
\hline Application & EP & 97308199 & & 19971016 \\
\hline \multirow[t]{6}{*}{Priorities} & JP & 96277732 & & 19961021 \\
\hline & JP & 96289676 & & 19961031 \\
\hline & JP & 96330961 & & 19961211 \\
\hline & JP & 96330962 & & 19961211 \\
\hline & JP & 96330963 & & 19961211 \\
\hline & JP & 9746173 & & 19970228 \\
\hline
\end{tabular}

\section*{Specification:}
separately at an optional time. A specific example of this embodiment will now be described in detail with reference to FIG. 23. FIG. 23 shows a structure of a facsimile terminal utilizing type WWW retrieving device 602 having a script interpreting and executing function according to this embodiment. The system shown in FIG. 23 comprises; a facsimile terminal 1, a......to) 604-L with servers 604-1 (equivalent to) 604-L in which HTTP demon section 604-1-1 (equivalent to) 604-L-1 are initialized, and HTML file storing sections 604-1-2 (equivalent to) 604-L-2 storing a plurality of

HTML files built therein. The facsimile terminal utilizing type WWW retrieving device 602 having a script interpreting and executing function has therein; a telephone line control...
```

28/3K/10 (Item 10 from flle: 349)
DIALOG(R)FIIE 349: PCT FULLTEXT
(c) 2012 WIPO/Thomson. All rights reserved.

```

SYSTEM AND METHOD FOR INTERACTIVE ELECTRONIC MEDIA EXTRACTI ON FOR WEB PAGE GENERATION SYSTEM AND METHOD FOR INTERACTIVE ELEGTRONIC MEDIA EXTRACTION FOR WEB PAGE GENERATION

\section*{Patent Applicant/ Patent Assignee:}
- LOCKHEED MARTIN CORPORATION

6801 Rockledge Drive, Bethesda, MD 20817; US; US(Residence); US(Nationality)
Inventor(s):
- PEEL James W Jr

1400 Peartree Lane, Bowie, MD 20716; US
- LANGSTON Melanie

10036 Field Court, Manassas, VA 20110; US

\section*{Legal Representative:}
- WHITHAM Michael E (agent) McGuireWoods, LLP, 1750 Tysons Boulevard, Suite 1800, MicLean, VA 22102; US
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & WO & 200077663 & A2-A3 & 20001221 \\
\hline Application & WO & 200000515895 & 20000612 \\
\hline Priorities & US & 99139129 & & 199906614 \\
\hline & US & 99158129 & & 19991008 \\
\hline & US & 2000494743 & 20000131 \\
\hline
\end{tabular}

\section*{Detailed Description:}
recursively extracted in block 1048. Otherwise, if there was no decision then the processing for this node is complete Utilizing the database generated auto-increment numerical fields, the Extract process converts the hierarchical data properties from the relational database into relative addressing for presentation in a Web browser. Links and relationships and between the IETM nodes are retained utilizing a common and consistent data storage structure. The numerical directories utilized for data storage and naming do not hinder data maintenance. All data is intended to be maintained in the relational database. Each IETM data type is represented by one HTML page except in the case of the procedure data type. The IETM data is structured hierarchically in a tree, starting with menu items that are...
```

28/3K/13 (Item 13 from file: 349)
DIALOG(R)File 349: PCT FULLTEXT
(c) 2012 WIPO/Thomson. All rights reserved.

```

\section*{STRUCTURED FOCUSED HYPERTEXT DATA STRUCTURE}

\section*{Patent Applicant/ Patent Assignee:}
- hYPERMED LTD
- OREN Avraham
- olcha lev
- KOWALSKI Nahum
- margulyan rita

\section*{Inventor(s):}
- OREN Avraham
- olchalev
- KOWALSKI Nahum
- margulyan Rita
\begin{tabular}{|c|c|c|c|c|}
\hline & Country & Number & Kind & Date \\
\hline Patent & WO & 9717666 & A2 & 19970515 \\
\hline Application & WO & 961 L131 & & 19961023 \\
\hline Priorities & US & 95551929 & & 19951023 \\
\hline
\end{tabular}

\section*{Detailed Description:}
based software products and help files available from Microsoft Corporation of Redmond, Washington, and in the World Wide Web through the Internet which utilizes Hypertext Markup Language, or accessi HTNEL. The manner i which hy used in these and many other currently in pertext 1 software products generally i the diagram 10 shown i Fig. aval is represented. in \(\mid\) in 1 . Each circle 12 in this diagram represents a document or page of information, commonly referred to as a "node," which contains one or more hypertext links to other pages, as shown by the lines 14 connecting the nodes. The...

\section*{／M．A．／}

01／27／2012

\section*{CPBMD}

Scientific and Technical Information Center
\begin{tabular}{|c|c|c|c|c|}
\hline dome & A00： & Scomenk & & \\
\hline & & & & \\
\hline
\end{tabular}

Nosscis
\(\qquad\)

马efine Search／New Search
\begin{tabular}{|c|c|c|c|}
\hline Tresres & 8 Sis & Sesucyses & Astrses \\
\hline \multicolumn{4}{|l|}{Cbetered Fesuts} \\
\hline \multicolumn{4}{|l|}{Ajp Togics} \\
\hline \multicolumn{4}{|l|}{Data（99）} \\
\hline \multicolumn{4}{|l|}{Document Larbuxay（2\％）} \\
\hline \multicolumn{4}{|l|}{Gemeration（5）} \\
\hline \multicolumn{4}{|l|}{Offer（17）} \\
\hline \multicolumn{4}{|l|}{Vamae（19）} \\
\hline \multicolumn{4}{|l|}{Lavy（18）} \\
\hline \multicolumn{4}{|l|}{Penteraf（ 2 \％} \\
\hline \multicolumn{4}{|l|}{Omiology Semantic（ty）} \\
\hline \multicolumn{4}{|l|}{Arrabtical，Currergs（10）} \\
\hline \multicolumn{4}{|l|}{Stardards（10）} \\
\hline \multicolumn{4}{|l|}{Distrherteg（3）} \\
\hline \multicolumn{4}{|l|}{Generation，Method（8）} \\
\hline \multicolumn{4}{|l|}{㫮坴s} \\
\hline \multicolumn{4}{|c|}{Meswsus z y Sekres} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{11}{*}{\begin{tabular}{l}
About．com \({ }^{*}\) \\
Academic Search Premier （EBSCO）（0） \\
AccessScience＊） \\
ACM Digital Library（0） \\
ACM Digital Library Core \\
Package（0） \\
AGRICOLA：Journal Article \\
Citation Index（0） \\
AGRICOLA：Online Public \\
Access Catalog（0） \\
Allwords ：
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}

Besus f－2e of rebmed for＂tull tex comama mant Gowmen and ful tex conams morge and tu：hext o

1

Results in＂Document Language＂Cluster（Clear fifters）
Select all records ：： 0 selected records：Fmat or Exp
\＃．Whaphexina Cobmme－Generatma XPath Expre Streaminina XMLTable Evaluatior 2011－09－06．
Source：§P．com

 2011－06－01．
Source：\｛ल，com
Show Abstaci Show in Custers
 structure to tacintate data mark model generatic 2010－08－26．
Source：\｛ल．com
Show A
4．Aystem nnd hethod to Accelerate mausfy Exchance
```

    AltaVista Images :3
    American Chemical Sociehy All
    Content (20)
American Chemical Society
Legacy Archives (20)
ASM Alloy Center (0)
ASM Handbooks :
AZoNano.com
Bartleby.com (Fiction) as
Bartleby.com (NonFiction) *)
Bartleby.com (Reference) ()
Bartleby.com (Verse) ?
BioMedCentral ${ }^{\text {* }}$
Bloone 1 (3)
Blackwell-Synergy a
BRENDA *
Britannica Online Academic
Edition (0)
Business Source Complete (0)
Ciesear he 1550
Computer Source: Consumer
Edition (0)
Computers \& Applied Sciences
Complete (0)
CRCNetBASE (357)
Credo Reference (Xreferplus) il
Credo Reference:
Dictionaries :
Credo Reference:
Encyclopedias
Dialog Datastar Ei
Compendex क
Dialog Datastar INSPEC :
DOE Mformation Sridge (68)
DTIC STINET ?
eFunda :
Encarta Thesaurus
Encyclopedia Americana *)
ERIC
Foresight Nanotech Institute a
GRIN (Germplasm Resources
Information Network) *
Grolier Multimedia
Encyclopedia ?
Hemonline (124)
HighWire Press ${ }^{1}$
Historical Chicago Tribune (0)
Historical Los Angeles Times (0)
Historical New York Tmes (2)
Mistorical Wall Street Joumal (2)

```

2010-06-07.
Source: \$p.com
Show Abstract Show In Clusters
5. Wimd Generation om Mmmebago Tribal Lzmos Multiple.
2009 Sep 30.
Source: DOE nformation Bridge
Show in Clusters

2007-12-01.
Source: 乡户. corm
Show A bstred Show in Chsters
7.DZ2 9: gurexuk Overview and Fast Sut 2006-07-13.
Source: \(\left\{\begin{array}{c}\operatorname{com} \\ \hline\end{array}\right.\)
Show Abstract Show He Cbusters
8.EM Workplace Chent Technology Produchivit Kotze Workmace Domsmentis 2,9,
2004-12-22.
Source: \{m.com
Show Ahstract | Show m Custers
 2004-10-25.
Source: \}ecom
Show Abstract Show H Gusters
10. An Extensibie Abzroach for fsolatma Trinsta Besources of atrexistima XML Qocumemas in spectic 3ub documents (Hies)
2003-05-05.
Source: \(\ddagger{ }^{2}\) corre
Show Abstrack | Show in Clusters
11. Meguest for Commente Summary Finc Mumh (स) G3199)
2003-02-01.
Source: \$1.com
Sinow Abstract Show fr crusterg
12. homicai structure amaysis and gemeration fo Gocuments: a syntactic agoroach
Kyong-Ho Lee; Yoon-Chul Choy; Sung-Bae Cho.
Knowledge and Data Engineering, IEEE Transaı -4347)
2003. Vol.15,Iss.5;p.1277-1294

Source: lees Electronic nibrey Onime

```

    Historical Washington Post (0)
    Hoover's Company
    Records {293}
IEEE Electronic Lbrary
Onlne (%a2)
Infoplease *
Information Science \&
Technology Abstracts (0)
IngentaConnect (0)
Institute of Physics \&
Internet and Personal Computing
Abstracts (0)
[9.com (136)
Journals@Ovid Ovid Full
Text d
SSTOR(11)
Kirk-Othmer Encyclopedia of
Chemical Technology (0)
Knovel Library ?
MEDLINE Plus Health
Information \$
Merck Manuals {
Merriam-Webster Dictionary
Search \&
Merriam-Webster Thesaurus
Search %
MeSH :
Nature Journals Online *
NCBI Bookshelf is
NetLibrary eBooks a
NTIS a
OpticsInfoBase a
Oxford English Dictionary (0)
Oxford Soumsals Omline (25)
pharmaceutical News Index (203)
ProQuest Career and Technical
Education (285)
FroQuest Cenfral Leqacy
p(atorm) (293)
FroQuest Compummg (205)
Proquest Dissertations and
Theses (1108)
ProQuest Higtorical
Newspapers (2)
ProQuest
Telecommumications (295)
PubMed (0)
Regional Business News (0)
GcienceDirect Joumals (243)
Society of Petroleum
Engineers ?
SPIE Digital Library (0)

```

Historical Washington Post (0)
Hoover's Company
Records (293)
IEEE Electronic Library
Online (yaz)
infoplease *
Information Science \&
Technology Abstracts (0)
IngentaConnect (0)
Institute of Physics is
Internet and Personal Computing
Abstracts (0)
[P.com (136)
Journals@Ovid Ovid Full
Text \({ }^{2}\)
SSTOR (11)
Kirk-Othmer Encyclopedia of
Chemical Technology (0)
MEDLINE Plus Health
Information (s)
Merck Manuals
Merriam-Webster Dictionary
Search \(a\)
Merriam-Webster Thesaurus
Search \(a\)
MeSH
Nature Journals Online ©
NCBI Bookshelf **
NetLibrary eBooks
NTIS
OpticsInfoBase
Oxford English Dictionary (0)
oxford Journals Online (25)
pharmaceutical News index (293)
FroQuest Career and Techmical
Education (285)
FroQuest Cemiral Leqacy
phathorm (293)
ProQuest Compumm (20s)
Proquest Dissertations and
Theses (1108)
Proquest Historical
Newspapers (2)
Proquest
Telecommumicavions (295)
PubMed (0)
SelenceDirect Joumals (243)
Society of Petroleum
Engineers :
SPIE Digital Library (0)

\section*{Sric Full Texi Retrieval Options}
13.Canonical XML Version 1.0 (FFCBOTG

2001-03-01.
Source: \{P.com
Show Abstract | Show in Clusters
14. Fequest for Comments Summary FFC Numb (RFc2ggy)
2000-05-01.
Source: \{e.com
Show Abstrack Show in Clusters
15. Digest Values for DOM (DOMHASH) (PFC280

2000-04-01.
Source: 1P, com
Show Abstract Show in Clusters
16. A Process for the Optmized Application of \(x\)
for Use With Partialy Static XML Data Streams 2000-04-01.
Source: fe.com
Show Abstract Show in Clusters

\section*{17. MME Encapsuhation of Acgregate Bocumen} HTML (MHTML IRFCR557)
1999-03-01.
Source: IP.com
Hide Abstract 1 Show in Chusters
HTML [RFC 1866] defines a powerful means of multimedia documents. These multimedia docume text/html root resource (object) and other subsidia (image, video clip, applet, etc. objects) referencea Resource Identifiers (URIs) within the text/html rou When an HTML multimedia document is retrieved each of these component resources is individually real time from a location, and using a protocol, spi URI. Document Language: en_US
18. Fequirements for a Distributed Aushorima an

Protocoh for the Worfi Wiode Weg (REG229y)
1998-02-01.
Source: 雷.comm
fire Abstrack Show in custers
Current World Wide Web (WWW or Web) standi simple support for applications which allow remote typed data. In practice, the existing capabilities of proven inadequate to support efficient, scalable re free of overwriting conflicts. This document preseı features in the form of requirements for a Web Dis Authoring and Versioning protocol which, if impler improve the efficiency of common remote editing (

Sorimerlink Contemporary

\section*{(1997-Present (005)}

TechWeb *
Thesaurus.com *
ThomasNet (Industrial Web) *
ThomasNel (Combany
Namel (15)
Webster's Third New International Dictionary क

Wiley Encyclopedia of Electrical
and Electronics Engineering \({ }^{\text {a }}\)
Wiley InterScience a
Wiley InterScience Online Books
(0)
provide a locking mechanism to prevent overwrite improve link management support between non-ł. types, provide a simple attribute-value metadata \(f\). for the creation and reading of container data typ \(\epsilon\) versioning into the WWW. Document Language: \(\epsilon\)
19. Exiended Hyer Tex Marke Lanuage Sym Complex Date Simelures
1998-01-01.
Source:IP.com
Mide Abstract Show in Chusters
Hyper Text Markup Language (HTML), as a deri Standard Generalized Markup Language, is effecl describing document layouts up to a certain comp HTML syntax does support the notion of embeds , images. It does not, however, currently support th. generation of complex data structures, such as ta size. Many Web-based applications need the flexi generate responses to the Hyper Text Transfer PI clients by merging static canvases with dynamic \(b\) variable size. Document Language: en_US
20.HTML Tables (RFC1942)

1996-05-01.
Source: 1p.com
Show Absliact Show In Clugters
:- 21. Relakue Uniom Resource Locators IfFcid 1995-06-01.
Source: IP.com
Show Abstract Show in Chusters
22. Developing with Adobe \({ }^{\text {TM }}\) Acrobal \({ }^{\text {TM }}\)

1994-09-01.
Source: 10, com
Show Abstract | Show in Clusters
```

/M.A./
01/27/2012

```

\section*{Possible References}

22/3,K/5 (Item 5 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Web page content tailoring method for use in the displaying of web pages, converts the web page from HTML into XML, before tailoring it to suit a specific client display and then converting it back to HTML
Patent Assignee: BRITTON KH (BRIT-I); IBM CORP (IBMC); IMS S D (IMSS-I); INT BUSINESS
MACHINES CORP (IBMC); TOPOL B B (TOPO-1)
inventor: BRITTON K H; IMS S D; TOPOL B B
Patent Family (10 patents, 5 countries)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline GB 2346238 & A & 20000802 & GB 199929939 & A & 19991220 & 200050 & B \\
\hline CA 2292336 & A1 & 20000729 & CA 2292336 & A & 19991216 & 200051 & E \\
\hline JP2000222275 & A & 20000811 & JP200017102 & A & 20000126 & 200053 & E \\
\hline KR 2000053638 & A & 20000825 & KR 20003971 & A & 20000127 & 200121 & E \\
\hline Us 20020059344 & A1 & 20020516 & US 1999239935 & A & 19990129 & 200237 & E \\
\hline \(K \mathrm{KR} 346616\) & B & 20020726 & KR 20003971 & A & 20000127 & 200309 & E \\
\hline US 6535896 & B2 & 20030318 & US 1999239935 & A & 19990129 & 200322 & E \\
\hline GB 2346238 & B & 20030604 & & & & 200345 & E \\
\hline JP 3503555 & B2 & 20040308 & JP 200017102 & A & 20000126 & 200418 & E \\
\hline CA 2292336 & C & 20070109 & CA 2292336 & A & 19991216 & 200707 & E \\
\hline
\end{tabular}

\section*{Abstract:}
 based web page comtent in display witin vatous cilent devices, usntent sortions of a equented

 with "\$ moilised smiens sortions, and transmited to a dient device for display therewithin......
 an XM\& fie can be processed purely as data by a program or it can be stored with similar data on another computer of, like an HT Th fite, that it can be displayed, For example, depending on how the applicaton program the recelving computer wanted to hande the phone rumber, it could be stored, displayed, or diated. XAL : "extensible" because, untke kThk, Xha markup tags can be untmited and can be self-defining ... Basic Derwent Week: 200050

22/3,K/4 (Item 4 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6199046 & S1 & 20010306 & US 1997902293 & A & 19970729 & 200147 & B \\
\hline
\end{tabular}

\section*{Abstract:}

NOVELTY - Single software object (2) displaying one or more prices, has logic for establishing amount and current interpreting parameters stored in document that specify default currency. Networking logic retrieves exchange rate to perform conversion of desired currency selection logic allows use of display to select desired currency during display by reading operation system information indicating desired currency. ... Method of performing currency conversion; Currency conversion program USE - For displaying prize information in currencies in network environment e.g. Internet.... .. ADVANTAGE - Eliminates need for consumer to undertake calculations to convert price to local currency. Uncertainty about timeliness and accuracy of exchange rate information and need for customer to retrieve exchange rate information is elminated. Reduces necessary bandwidth necessary to access exchange rate information and currency converters, saving time and money...... method

 or operatng systen in whoh the priaes are oisplayed.

\section*{Claims}

A computer system attached to a network, the computer system including an attached display for displaying price information and a computer program comprising: (a) a single software object for displaying one or more prices, including logic for establishing an amount and a currency and which interprets parameters stored in a document or environment that specify a default currency to be displayed; (b) display logic for displaying the price in the appropriate currency by reading operating system information indicative of a desired currency; (c) networking logic that retrieves from a source an exchange rate required to perform a conversion to the desired currency; and(d) selection logic for allowing use of the display to select the desired currency during the display of one or more of the prices on the display. Basic Derwent Week: 200147

22/3,K/3 (Item 3 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Query processing method for internet searching text documents, involves retrieving information in an initial markup language and presenting it in any other markup language Patent Assignee: VIGNETTE CORP (VIGN-N)
Invento: NASR R I: WEBBER N
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline US 6263332 & B1 & 20010717 & US 1998134263 & A & 19980814 & 200153 & \(B\) \\
\hline
\end{tabular}

\section*{Abstract:}

 searches of cocuments in the databsae. A predicate check using the binary coding of the node as well as ancestor informaton confmes the mode. The leat information ascociated with a confrmed node is then stored. If noosssary, the action fom the transtormatye seguence is appligd lo change the markup language of the leaf information to that of the user... Basic Derwent Week: 200153

27/3,K/3 (Item 3 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2012 Thomson Reuters. All rights reserved.

Messages exchanging and merging system in Internet, includes XML and DDT parsers to receive message including characteristic information and return template which are merged using name tag map
Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)
Inventor: CHEN S; CHUNG J; COHEN M A; FU S S; GOTTEMUKKALA V
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Patent Family (1 patents, 1 countries)} \\
\hline Patent Number & Kind & Date & Application Number & Kind & Date & Update & Type \\
\hline Us 6507856 & B1 & 20030114 & US 1999225814 & A & 19990105 & 200336 & \\
\hline
\end{tabular}

\section*{Abstract:}

 fumber, for example......ADVANTAGE - Enables to exchange and merge XML documents dynamically and efficiently by using name tag map... ...DESCRIPTION OF DRAWINGS - The figure shows a flow chart explaining the procedure in dynamic XML document exchange system......

Claims:
parser for receiving a first message from a browser, the first message including information about data characteristics of information entered into the template and name tags; a second parser for receiving information about data characteristics to provide a return template, the return template including name tags; andmeans for merging the first message with the return template for providing the return message to the browser, the return message having portions of the return template with data entered therein corresponding to at least some of the information entered into the first message, wherein the means for merging includes a name tag map for correlating the tag names of the first message with the tag names of the return template. Basic Derwent Week: 200336
/M. A./
01/27/2012

EAST Search History
EAST Search History (Interference)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref \# & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline S233 & 1369 & (first near2 (mark\$1up or xml\$1 html\$1)).clm. & US-PGPUB; USPAT; UPAD & OR & OFF & \[
1 \begin{aligned}
& 2012 / 01 / 25 \\
& 17: 39
\end{aligned}
\] \\
\hline S234 & 222 & ((merg\$4 or combin\$4) near3 (xml\$1 or mark\$1up\$2 or html\$1)).clm. & US-PGPUB; USPAT; UPAD & OR & OFF & \[
12012 / 01 / 25
\] \\
\hline S235 & 1033 & (numerica\$4 or number\$4 or digit\$4 or value\$4) near3 (xml\$1 or mark\$1up\$2 or htm(\$1)).clm. & US-PGPUB; USPAT; UPAD & OR & OFF & \[
17: 41
\] \\
\hline S236 & 5 & S235 and S234 and S233 & US-PGPUB; USPAT; UPAD & OR & OFF & \[
1 \begin{aligned}
& 2012 / 01 / 25 \\
& 17: 41
\end{aligned}
\] \\
\hline
\end{tabular}

1/27/2012 6:21:53 PM
C:\Users\mamin\Documents\EAST\Workspaces\12222752.wsp

Aovenced Searoh

*apowimate resub couni withou dophoates
Back to top

OPIM: Scientific \& Technical Information Center (STIC EAST Search Syntax Conversion Guide
```

/M.A./
01/27/2012

```

\section*{nEEE Aplore}

Semantiam odeling and knowhedge eepresentionon in mutimedib catabases

Knowleüge and Gata :Engineering liEE Tronsactions on
Ychome: 11, !ssue: :

Fubication Year: toge Fage (s): 64. 80
Gired by: ed
BERE SOBRERES


```

H:E: 5lo 11?5
Dugta! Obiec isentifier: 10.1409:1EEEST0.1992.31696
Fubloation year isge
GEE STMNEABug
Distributed mutimenia systems
L. vo.k, vamiurn bao
Proceedings of the lemes
Volume: 85, treue:?

```

```

Fubication Year: 4097 Fage(s): 4003 - 1108
Cited by:10
GERE SOSRONES

```
Compater-suppornad cosperafive work mimitack
Nantei, Wh, Famo, PR.
Systom Sciencos, icou. Procsedings of the Twonty-Third
Amual Hawail International Gerfersmoe on
Volutia: a

stienticks and engineess?
Whison, G. Y.; Landau, FiH.; MoConell, S.
Oomputamal Somen E Enginenting, IEE
Volume: 3, issije z
Digtai Object ldentier: 10.1.10si33.5033:3

Gitrd by: 4

Bamba-Abito and video strsaming ever the faternet

Willebeek-Lemair, M. H; KU:rai, K. G., Snits, E O.
BM bumpl of Fesearon and Devoiopment
Tolume: 42, 1ssue. 2
Digita: Geject inentifer: 10.1:47ird aee 0289
Futhation Year: isise, Pagets): 365 - 280


```

datsbazes
Adong Zhang; Chang, W.; Sheikholestom;, G.; Syeds
Nahm:000 T.F.
Mumbmedia, lege
Volume: g, issue 3

```

```

\#btication Year: {398, Fage(s):47-55
Oted by:2

```


Earia, D. Gi, U;
Omputer Systems and Software Engineeing, iges..
Fioveedirgs of the Seventh larael Corference on

Fubtication rear: 1386 , Fage(s): \(83-94\)
Citod by: 2

Soforare somancon reuse with XMs
Guerrem, E:
Software Kouse, 1998 :rooedings :-ifh bitemational

Fribtiontion Year: is 38 , Fage(s): \(245-254\)
Cited by: 1
- Ece OOsNEREDNOES

The downmens spactram foy page fayous amatysis
Ocmman, L :
Fattern Analysis and Machine hanigence, !ege Trangactions on
volume 15, !ssue: !

Fubication Year 40es, Fage (c) : f02 - 1173
Cired by: 57

Gumy optimization for structured acommemfshased
on know lewge on the stscumsns qype fefmition
Echm, G; Aberer, K. Ozzu, MT. Gayer, K:
Fresearch and Techinotogy Advances in Dighat tibraries, 1993
fOL SS Frocestings. IEEE ruternationa Forum on

Fibtication Year: 1958 , Fage(s): \(196-205\)
Citod by: 2
- Ese mosmesunvoss

\section*{}

Fogers, R.; Liang, d. Haraick, F.M. Pimpe, I.T.
Donamant Image analysis, 1997. (D:A 97) Proceedings.
Worksiop on

Fubtication Year: is97, Fage(s): : 3 - 25
Cited by: 1
- EEE BOSNEREvOEs

pages uning sotit decision hitegration
Etemad, K; Boemenn, D ; Oheliarpa, R.;
Fettern Analysis ane Riachine Intotigence, IEEE Tiansactions 0 i
Volume: 10, issije:
By:ta: Chject Sentfer: 10 : : ©s 34.566317
Fubtication Year: iss?, Fage(s): \(92-05\)
Citod by: 13
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& \text { asymat } \\
& \text { arataz - An }
\end{aligned}
\] & \[
\$ \% \text {, }
\] \\
\hline \begin{tabular}{l}
A beuristios-based approanh po gery optimization \\

\end{tabular} & & \\
\hline Cha, D; Aberer, K.; & & \\
\hline & & \\
\hline Hatnational Symposium Procosdims & & \\
\hline & & \\
\hline Fubication Year: 4 ss , Fage & & \\
\hline (sce xosmbeswoss & & \\
\hline
\end{tabular}
```

Sasmane page segmentation by integrating
kistrbuted soti decisions
Eremad, K; Gitulleppa, R; Degrimamm, O;
Neural Metworks, 1994. :EEE vicric Congress on

```

```

Conterence on
volume.E

```

```

Fubication Yoa, !004, Fage(s). 4022 . 4027 vol.a
Grad Ey: I
GEE EONFERE\&NES

```


Werging fiang: Ortega, A.

loternational Gorferenoe on
Volume. 2

Fubication Yat t 393 . Facersi. 743 . 7as volf
Cited by: :

An interactive clasemfantion ot web socumenss \(0 y\)
setr-argamizing maps and search engines
Ha:a:o K. Samo, F.; Duan, Y.: Tamaka, K,
Darabase Systems tor Advantec Applications. 1999
Fiocegdings, wh interndonal oontegrace un

Futucation Year: isge, Page(s): 35-42
Cited by: ?
\&8E EOREERKNOES
Everything you wamed to know abost kplecrz. I
Nack, F.; Lindray, A.T.:
Mistimedia, lete
Volume: 6, iscon 3
Buta: Cbject dentier 10 : insi33.7306t?
Futucation Year: isso, Page(s): 65-77
Cited by: 15
f ERE sownsmes
RPES 3igita audio owdimg
Noil, ㄹ:
Signa: Frocessing Magazine, I EEE:
tolume: 14, issize 5

Cited by: 20

syy?
Gutag, K, Gove R. i; Van Aken, dF:
Compute: Grapitics ana Applicetions, :EeE
Golume: 12, 15s!e: 6

```

Fubtwatich Yeare isge, Fage(s):03-6t
Oited by:17
EEENOQSNAES
Servirws, Frameworks, and foradigmstor
Distributed mulimeata Applimatams
Muhblamat, M, Gmose: J;
Muhtmedia, lem:
\chme:3, !swe:3

```

```

Fubication Yoar: t00e, Fage(s): 48 - 81

```

```

Rapid scene qualywis on compressed videa
Eocn-inck Yeo; Eede !m;
Gicuits anc Systerns for vicec Technolowy, EEEE Transacticra
on
volume:5, tsue: 6
Ogia! Otject luent:ier: 10.1ug%76.475esm
Fubication Year: 409e , Fage(s): E32 F.44
Gited by: los
!mar,MOSR\&REs

```

```

forwargatmekimg
Atumbasak Y.; Teka!p, A,M:
Imags Procossing, !EEE Tramsactions cr,
Vol:me: 6, !ssje \#
Dightai Objed dentuen, 10,10\$183.e23!20

```

```

Citwd by:94

```

```

Beducing actisants in wfeg decompressions by
segmentation and smoothing
Zhmang :an; F:a li=
Image Processing, {09e, Proceednge., Internationai
Conference di
volume: 1

```

```

Fubligation Year: {396, Paum(s): 47 - 20 voiz
Cited by: 1
EEEE SORFERENOES
Omsidrowmsen} qeahonologies
Eckser, M.;
F%ocegdings of the lEEE
Volume: 80 issje \overline{i}
Dietai Objeat denther: 10.110s/5.150470
Fritigation Year: ISG2, Fage(s):1066-107采
Cited by:12
\&EEE ぷ\SENAKS

```
```

/M.A./

```

01/27/2012

File 347: JAPI O Dec 1976-2011/ ©CT(Updat ed 120125)
(c) \(2012 \mathrm{JPO} \& \mathrm{JAPI} \mathrm{O}\)

File 350: Der went WPIX 1963-2011/ UD=201205
(c) 2012 Thomson Reut ers

Exhibit 1002_0745

Exhibit 1002_0746

File 8: Ei Compendex (R) 1884-2012/Jan W4
File 35: Di ssertat i on Abs Onl ine 1861-2011/ Dec
(c) 2012 Pr oquest I nf o\&Lear ni ng

File 65:Insi de Conf er ences 1993-2012/Jan 26
(c) 2012 BLDSC all rts. reserv.

File 2: I NSPEC 1898-2012/ Jan WB
(C) 2012 The I ET

File 6: NTIS 1964-2012/Jan WB
(c) 2012 NTI S, I nt I Gpyrght Al I Rights Res

File 144: Pascal 1973-2012/ Jan W4
(c) 2012 I NI ST/ CNRS

File 434: Sci Search(R) Cited Ref Sci 1974-1989/Dec
(c) 2006 The Thomson Corp

File 34: Sci Search(R) Cited Ref Sci 1990-2012/Jan WA
(c) 2012 The Thomson Corp

File 99: Wis son Appl. Sci \& Tech Abs 1983-2011/Nov
(C) 2011 The HWWI son Co.

File 266: FEDRIP 2012/ Dec
Comp \& dist by NTI S, Int I Copyright Al I Rights Res
File 95: TEME- Technol ogy \& Nanagement 1989-2010/ Oct WB
(c) 2010 Fl Z TECHNI K

File 56: Computer and Information Systems Abstracts 1966-2011/Dec
(c) 2011 CSA.

File 60: ANTE: Abstracts in New Tech \& Engi neer 1966-2012/Jan
(c) 2012 CSA.

File 438: Li br ary Lit. \& Info. Science 1984-2011/ Nov
(c) 2011 The HW WI son Co
\begin{tabular}{|c|c|c|}
\hline Set S1 & \[
\begin{array}{r}
1 \mathrm{tems} \\
251174
\end{array}
\] & \begin{tabular}{l}
Description \\
HTM OR XM OR SGM
\end{tabular} \\
\hline & & TURED) () DOCUMENT? ? OR (MARKUP OR MARK() UP) () LANGUAGE? OR WEB- \\
\hline & & PAGE? ? OR WEBSI TE? ? OR WEB() (PAGE? ? OR SI TE? ?) \\
\hline S2 & 18974 & S1(3N) (PLURAL??? OR MULTI OR MULTI PLE OR MULTI PLI CI TY OR M \\
\hline & & ULTI TUD? OR MDRE (1 N) ONE OR MANY OR SEVERAL? \({ }^{\text {OR }}\) NUMEROUS? OR V- \\
\hline & & ARI OUS? OR SET OR SETS OR SERI ES? OR COLLECTI ON? OR GRO \\
\hline & & ARRAY? \\
\hline S3 & 15876557 & NUMBER? ? OR NUMERAL? ? OR NUMERI CAL? OR DI G T? ? OR DENCM \\
\hline & & I NATI ON? OR FI GURE? ? OR VALUE? ? OR MDNEY OR MONI ES OR CURRE- \\
\hline & & NC??? OR AMOUNT? ? \\
\hline S4 & 23732037 & FORMAT? OR BASI S? OR TYPE? ? OR CURRENC??? OR TA \\
\hline & & OR METADATA? OR META() DATA OR LABEL? ? OR UNI T? ? OR STRUCTUR- \\
\hline & & \\
\hline S5 & 53820 & S4(3N) (DI FFER? OR SEPARAT? OR DI STI NCT? OR DI SCRETE? OR I N- \\
\hline & & DI VI DUAL? OR DI SSI M LAR? OR DI VERS? OR UNLI KE? OR UNEQUAL? OR \\
\hline & & I NCONSI STEN? OR (NON OR " NOT" OR T OR NO OR W THOUT) (1 N) (SANE \\
\hline & & OR EQUAL? OR EQUI VALEN? OR LI KE OR SI M LAR? OR UNI FORM? OR ST- \\
\hline & & ANDARD? OR CONSI STEN?)) \\
\hline S6 & 52282 & S3(7N) S5 \\
\hline S7 & 18 & S2 AND S6 \\
\hline S8 & 745247 & S3(5 N) (CONVERT? OR CONVERSI ON? OR TRANSFORM? OR TRANSLAT? - \\
\hline & & OR CHANG? OR ALTER? OR ANEND? OR ADJUST? OR ADAPT? OR SW TCH?- \\
\hline & & ?? OR MDDI F? OR REPLAC? OR SUBSTI TUT?) \\
\hline S9 & 308 & S4(3N) (COMMDN? OR SHAR??? OR SANE OR EQUAL? OR EQU VALEN? \\
\hline & & OR ALI KE OR SI M LAR? OR UNI FORM? OR UNI TE? \\
\hline & & NI FY??? OR UNI FIE? ? OR Jant? OR MTUAL? \\
\hline & & MMUNAL? OR I DENTI CAL? OR MATCH??? OR CONSI STEN? \\
\hline & & OR STANDARD? OR (NON OR " NOT" OR T OR NO OR W T \\
\hline & & ER? OR SEPARAT? OR DI STI NCT? OR DI SCRETE?)) \\
\hline S10 & 502 & S8(7N) S9 \\
\hline S11 & 22639 & S1(7 N) (MERG? OR CONBI N? OR CONSOI DAT? OR AMALGAM? OR UNI \\
\hline & & ? OR UNI TI NG? OR UNI FY??? OR UNI FI E? ? OR Ja N ? \\
\hline & & OR FUSI NG? OR FUSI ON? OR I NTEGRAT? OR ONE OR SI NGLE? OR SIN \\
\hline & & GULAR? OR LONE) \\
\hline
\end{tabular}
\begin{tabular}{lrl}
S12 & 1 & S10 AND S11 \\
S13 & 1 & S2 AND S10 \\
S14 & 18 & S6 AND S11 \\
S15 & 1 & S10 AND S1 \\
S16 & 11 & S8 AND S9 AND S11 \\
S17 & 13 & S8 AND S9 AND S2 \\
S18 & 50 & S7 OR S12: S17 \\
S19 & 6 & S18 NOT PY>1999 \\
S20 & 5 & RD S19 (uni que it ems)
\end{tabular}

File 275: Gal e Group Comput er DB(TM 1983-2012/Jan 26
(c) 2012 Gal e/ Cengage

File 621: Gal e Goup New Prod. Annou. (R) 1985-2012/Jan 25
(c) 2012 Gal e/ Cengage

File 636: Gal e Goup Newsl et ter DB(TM 1987-2012/Jan 24
(c) 2012 Gal e/ Cengage

File 16: Gal e Goup PROMT(R) 1990-2012/Jan 20
(c) 2012 Gal e/ Cengage

File 160: Gale Goup \(\operatorname{PROM}(\mathrm{R})\) 1972-1989
(c) 1999 The Gal e Group

File 148: Gal e Goup Tr ade \& I ndustry DB 1976-2012/ Jan 23
(c) 2012 Gal e/ Cengage

File 624: MCG aw-Hill Publ ications 1985-2012/Jan 26
(c) 2012 McGaw Hill Co. I nc

File 15: ABI / Inf or m(R) 1971-2012/ Jan 26
(C) 2012 ProQest I nf o\&Lear ni ng

File 647: UBM Comput er Ful It ext 1988-2012/Jan WA (c) 2012 UBM LLC

File 674: Comput er News Fulltext 1989-2006/Sep W (c) 2006 I DG Communi cat \(i\) ons

File 696: Dl ALOG Tel ecom Newsl et ters 1995-2012/Jan 26
(c) 2012 Di alog

Fil e 369: NEW SCI ENTI ST 1994-2010/JAN Wb
(c) 2010 REED BUSI NESS I NFORMATI ON LTD.

File 810: Busi ness Wre 1986-1999/ Feb 28
(c) 1999 Busi ness Wre

File 813: PR Newswi re 1987-1999/ Apr 30
(c) 1999 PR Newswire Associ at ion Inc

File 610: Busi ness Wre 1999-2012/Jan 26
(C) 2012 Busi ness Wre.

File 613: PR Newswi re 1999-2012/Jan 25
(c) 2012 PR Newswire Associ at ion Inc
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Set S1} & 1 tems & Description (\({ }^{\text {d }}\) (MARKUP OR MARK () UP OR WEB OR STRUC \\
\hline & 13783000 & HTM OR XM OR SGM OR (MARKUP OR MARK() UP OR WEB OR STRUC- \\
\hline & & TURED) () DOCUMENT? ? OR (MARKUP OR MARK () UP) () LANGUAGE? OR WEB- \\
\hline & & PAGE? ? OR WEBSI TE? ? OR WEB() (PAGE? ? OR SI TE? ?) \\
\hline \multirow[t]{4}{*}{S2} & 357080 & S1(3N) (PLURAL??? OR MULTI OR MULTI PLE OR MLLTI PLI CI TY OR M- \\
\hline & & ULTI TUD? OR MORE (1 N) ONE OR MANY OR SEVERAL? OR NUMEROUS? OR V- \\
\hline & & ARI OUS? OR SET OR SETS OR SERI ES? OR COLLECTI ON? OR GROUP???? \\
\hline & & OR ARRAY? ? \\
\hline \multirow[t]{2}{*}{S3} & 28148769 & NUMBER? ? OR NUMERAL? ? OR NUMERI CAL? OR DI GI T? ? OR DENCM \\
\hline & & I NATI ON? OR FI GURE? ? OR VALUE? ? OR MONEY OR MONI ES OR CURRE- \\
\hline \multirow[t]{3}{*}{S4} & 28 & 8 FORMAT? OR BASI S? OR TYPE? ? OR CURRENC??? OR TA \\
\hline & & OR METADATA? OR META() DATA OR LABEL? ? OR UNI T? ? OR STRUCTUR- \\
\hline & & \(E\) ? ? \\
\hline \multirow[t]{5}{*}{S5} & 881824 & 4 S4(3N) (DI FFER? OR SEPARAT? OR DI STI NCT? OR DI SCRETE? OR I N- \\
\hline & & DI VI DUAL? OR DI SSI M LAR? OR DI VERS? OR UNLI KE? OR UNEQUAL? OR \\
\hline & & I NCONSI STEN? OR (NON OR " NOT" OR T OR NO OR W THOUT) (1N) (SAME \\
\hline & & OR EQUAL? OR EQUI VALEN? OR LI KE OR SIM LAR? OR UNI FORM? OR ST- \\
\hline & & ANDARD? OR CONSI STEN?)) \\
\hline S6 & 68354 & 4 S3 (7N) S5 \\
\hline & & S2(50 \\
\hline \multirow[t]{3}{*}{S8} & 1576149 & S3 (5N) (CONVERT? OR CONVERSI ON? OR TRANSFORN? OR TRANSLAT? \\
\hline & & OR CHANG? OR ALTER? OR ANEND? OR ADJUST? OR ADAPT? OR SW TCH?- \\
\hline & & ?? OR MDDI F? OR REPLAC? OR SUBSTI TUT?) \\
\hline \multirow[t]{6}{*}{S9} & 206 & 6 S \(4(3 N)\) (COMMDN? OR SHAR??? OR SANE OR EQUAL? OR EQUI VAL \\
\hline & & OR ALI KE OR SIM LAR? OR UNI FORM? OR UNI TE? ? OR UNI TI NG? OR U- \\
\hline & & NI FY??? OR UNI FIE? ? OR JONT? OR MTTUAL? OR COLLECTI V? OR CO- \\
\hline & & MMUNL? OR I DENTI CAL? OR MATCH??? OR CONSI STEN? OR CONSTANT? - \\
\hline & & OR STANDARD? OR (NON OR " NOT" OR T OR NO OR W THOUT) (1 N) (DI FF- \\
\hline & & ER? OR SEPARAT? OR DI STI NCT? OR DI SCRETE?)) \\
\hline S10 & 19849 & S8(7N) S9 \\
\hline
\end{tabular}
```

653478 S1(7N) (MERG? OR CONBI N? OR CONSOLI DAT? OR AMALGAM? OR UNI T-
E? ? OR UNI TI NG? OR UNI FY??? OR UNI FI E? ? OR JO N??? OR FUSE?
? OR FUSI NG? OR FUSI ON? OR I NTEGRAT? OR ONE OR SI NGLE? OR SI N-
GULAR? OR LONE)
2 S10(50N) S11
20 S2(100N) S10
87 S7 OR S12 OR S13
10 S14 NOT PY>1999
7 RD S15 (uni que i t ems)

```
\begin{tabular}{|c|c|c|}
\hline Issue Classification & Application/Control No.
\[
12222752
\] & Applicant(s)/Patent Under Reexamination DAVIS, RUSSELL T. \\
\hline & \begin{tabular}{l}
Examiner \\
MUSTAFA AMIN
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2176
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\square\) & \multicolumn{7}{|l|}{Claims renumbered in the same order as presented by applicant} & \(\square\) & \multicolumn{2}{|l|}{CPA} & \(\square\) т.д. & \multicolumn{3}{|c|}{\(\square \quad\) R.1.47} & \\
\hline Final & Original & Final & Original \\
\hline & 1 & 5 & 17 & & \({ }^{33}\) & & 49 & & 65 & & & & & & \\
\hline & 2 & 6 & 18 & & \({ }^{34}\) & & 50 & & \({ }^{66}\) & & & & & & \\
\hline & 3 & 7 & 19 & & \({ }^{35}\) & \({ }^{26}\) & 51 & & & & & & & & \\
\hline & 4 & 8 & \({ }^{20}\) & & \({ }^{36}\) & & 52 & & & & & & & & \\
\hline & 5 & \(\stackrel{9}{9}\) & \({ }^{21}\) & & \({ }^{37}\) & & 53 & & & & & & & & \\
\hline & 6 & & 22 & & \({ }^{38}\) & & 54 & & & & & & & & \\
\hline & 7 & & \({ }^{23}\) & & \({ }^{39}\) & & \({ }^{55}\) & & & & & & & & \\
\hline & 8 & \({ }^{27}\) & \({ }^{24}\) & 17 & 40 & & \({ }^{56}\) & & & & & & & & \\
\hline & 9 & 10 & 25 & 18 & 41 & & 57 & & & & & & & & \\
\hline & 10 & 11 & \({ }^{26}\) & 19 & 42 & & 58 & & & & & & & & \\
\hline & 11 & 12 & \({ }^{27}\) & \({ }^{20}\) & \({ }^{43}\) & & 59 & & & & & & & & \\
\hline & 12 & 13 & \({ }^{28}\) & 21 & 44 & & 60 & & & & & & & & \\
\hline 1 & 13 & 14 & 29 & 22 & 45 & & \({ }^{61}\) & & & & & & & & \\
\hline 2 & 14 & 15 & 30 & \({ }^{23}\) & 46 & & \({ }^{62}\) & & & & & & & & \\
\hline 3 & 15 & 16 & 31 & 24 & 47 & & 63 & & & & & & & & \\
\hline 4 & 16 & & 32 & 25 & 48 & & 64 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lc|c|c|}
\hline \begin{tabular}{l}
IMUSTAFA AMIN/ \\
Examiner.Art Unit 2176
\end{tabular} & \(01 / 27 / 2012\) & \multicolumn{2}{|c|}{ Total Claims Allowed: } \\
(Assistant Examiner) & (Date) & \multicolumn{2}{|c|}{27} \\
\hline \begin{tabular}{l}
Laurie Ries/ \\
Primary Examiner
\end{tabular} & \(1 / 29 / 2012\) & O.G. Print Claim(s) & O.G. Print Figure \\
(Primary Examiner) & (Date) & 1 & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Search Notes & Application/Control No.
\[
12222752
\] & \begin{tabular}{l}
Applicant(s)/Patent Under Reexamination \\
DAVIS, RUSSELL T.
\end{tabular} \\
\hline & \begin{tabular}{l}
Examiner \\
MUSTAFA AMIN
\end{tabular} & Art Unit
\[
2176
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ SEARCHED } \\
\hline Class & Subclass & Date & Examiner \\
\hline 715 & 209 & \(07 / 26 / 2011\) & /M.A. \\
\hline 715 & 234 (with keyword] & \(01 / 27 / 2012\) & M.A./ \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|c|}{ SEARCH NOTES } \\
\hline \multicolumn{1}{|l|}{ Search Notes } & Date & \multicolumn{1}{l|}{ Examiner } \\
\hline EastWest USPAT, USPGPUB, EPO, JPO, DERWENT, IBM_TDB & \(07 / 26 / 2011\) & /M.A./ \\
\hline double patenting search & \(07 / 26 / 2011\) & /M.A./ \\
\hline EastWest USPAT, USPGPUB, EPO, JPO, DERWENT, IBM_TDB & \(01 / 27 / 2012\) & /M.A./ \\
\hline ACM NPL search & \(01 / 25 / 2012\) & /M.A./ \\
\hline Bing NPL search & \(01 / 25 / 2012\) & /M.A./ \\
\hline Google NPL search & \(01 / 27 / 2012\) & /M.A./ \\
\hline Google Scholar search & \(01 / 25 / 2012\) & /M.A./ \\
\hline IEEE NPL search & \(01 / 25 / 2012\) & /M.A./ \\
\hline Multi NPL databases STIC search & \(01 / 26 / 2012\) & /M.A./ \\
\hline ProQuest NPL search & \(01 / 25 / 2012\) & /M.A./ \\
\hline Dialog NPL search & \(01 / 25 / 2012\) & /M.A./ \\
\hline EIC search considered & \(01 / 27 / 2012\) & /M.A./ \\
\hline Primary Examiner consultatoin [Laurie Ries] & \(01 / 25 / 2012\) & /M.A./ \\
\hline SPE consultation [Doug Hutton] & \(01 / 26 / 2012\) & /M.A./ \\
\hline
\end{tabular}

\section*{INTERFERENCE SEARCH}
\begin{tabular}{|c|l|c|c|}
\hline Class & Subclass & Date & Examiner \\
\hline & keyword search with ".clm." limitation & \(01 / 25 / 2012\) & /M.A./ \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline MUSTAFA AMIN/ & \\
Examiner.Art Unit 2176 & \\
\hline
\end{tabular}

Searching for: merge markup documents (sottanew searo)
Found 48 within The ACM Guide to Computing Literature (Bibliographic citations from major publishers in computing)
Refinements (ramove ali) click each refinement below to remove
Publication Year: 19050.200

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{REFINE YOUR SEARCH}} \\
\hline & \\
\hline & - Rentise sy Fenso vazizers instifutione Asmors Beviewers \\
\hline & \\
\hline & \begin{tabular}{l}
- Susine by caniserences \\
Songors \\
vents \\
Puoceding Senes
\end{tabular} \\
\hline
\end{tabular}

Soact Besults Related Journals Related Magazines Related SIGs
Results 21-40 of 48 Sort by relevance in expanded forr Result page: \(\leq\) previcus 123 nest

21 Begurements for distribred zuthoring and versionino on the word Whe Wieb
s i A Siein, Vitail, E. Whiteheac. Ir, D O. Uurind
March 1997 StandardView, Volume 5 Issue 1

Bibliometrics: Downloads (6 Weeks): 2, Downloads (12 Months): 8, Downloads (Overall): 285, Citation Count: 5

22 The Fube Ef Embrise Systm Erobled OQanzatoms
Thomsef Daverport
August 2000 Information Systems Frontiers, Volume 2 Issue 2
Publisher: Kluwer Academic Publishers

Bibliometrics: Downloads (6 Weeks): n/a, Downloads (12 Months): n/a, Downloads (Overall): n/a, Citation Count

\section*{ADVANCED SEARCH \\ A Atvanoed Seact \\ FEEDBACK \\ \% yeasecrovide wo with ferback \\ Found \(\mathbf{4 8}\) of \(\mathbf{1 , 7 8 3 , 9 0 3}\)}

Companies are beginning to expect to gain strategic value from the implementation and operation of enterpris systems (ES). Currently dominating trends in business are sense-and-respond business models, globalization, corporate realignment, virtual organizations..

Keywords: business trends, enterprise resource planning, information systems evolution, management management information systems, management support systems, transaction processing systems

23 Qesignig huperex suond for comphations anolicatons Whael Eieber, Charbskocoer.
August 1995 Communications of the ACM, Volume 38 I ssue 8
Publisher: ACM * Fisquest Eermisions

Bibliometrics: Downloads (6 Weeks): 4, Downloads (12 Months): 29, Downloads (Overall): 435, Citation Count: 1

24 Languae Pasoures in Gross-hanguge Text Petrieval i 0 EF Perspedive
julg Gonealo
September 2000 CLEF ' 00 : Revised Papers from the Workshop of Cross-Language Evaluation Forum on CrossLanguage Information Retrieval and Evaluation
Publisher: Springer-Verlag
Bibliometrics: Downloads (6 Weeks): \(n / a\), Downloads (12 Months): \(n / a\), Downloads (Overall): \(n / a, \quad\) Citation Count

Language resources such as machine dictionaries and lexical databases, aligned parallel corpora or even comp machine translation systems are essential in Cross-Language Text Retrieval (CLTR), although not standard toc for the Information Retrieval.

25 Pronesdins of the 900 AchuEEF Genfereno on Supercomputing (CDPON) jed Dennetex
November 2000 Supercomputing ' \(\mathbf{0 0}\) : Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDRC Publisher: IEEE Computer Society

Young , waren Bimmons, Bob Grace, Howar Bramberg, Mory Greenville, Stan Epwoca, Anaheim Bushed, Ias

August 1999 Computer Oral History Collection
Publisher：Smithsonian Institution Press
Full text available：家 Lublisiter site
Bibliometrics：Downloads（ 6 Weeks）：\(n / a\) ，Downloads（ 12 Months）：\(n / a\) ，Downloads（Overall）：\(n / a, \quad\) Citation Count

27 Reguest tor Comments Summary Bra Numbes \(2600-269\)

\section*{S．Ginoza}

May 2000 Request for Comments Summary RFC Numbers 2600－2699
Publisher：RFC Editor
Full text available：\(\square\) IXE（ 42.46 KB ）
Bibliometrics：Downloads（ 6 Weeks）：，Downloads（12 Months）： 0 ，Downloads（Overall）：3，Citation Count： 0

March \(2000 \quad\) World Wide Web，Valume 3 Issue 2
Publisher：Kluwer Academic Publishers
Full text available：圈Publisher Site
Bibliometrics：Downloads（6 Weeks）：n／a，Downloads（12 Months）：n／a，Downloads（Overall）：n／a，Citation Count

> In our emerging digital paper-less society, massive amount of information is being maintained in on-line repositories and diverse web site representations of this information must be served over the Internet to diffel user groups．E－commerce．．

29 Wes－based deyoloment of conbex intomaton products
 August 1998 Communications of the ACM，Volume 41 Issue 8

Full text available：零Eaif（ 200.01 KB ）
Bibliometrics：Downloads（ 6 Weeks）：2，Downloads（12 Months）：47，Downloads（Overall）：1007，Citation Count：

30 Renuirements for a Dismbued Authorne and Versionimg Frotopolfer we Word wide Web
E Siein，E．Viali，E whemeac，a burand
February 1998 Requirements for a Distributed Authoring and Versioning Protocol for the World Wide W． Publisher：RFC Editor
Full text available： 4 mt （ 44.04 KB ）
Bibliometrics：Downloads（6 Weeks）：2，Downloads（12 Months）：2，Downloads（Overall）：9，Citation Count： 1

Current World Wide Web（WWW or Web）standards provide simple support for applications which allow remote editing of typed data．In practice，the existing capabilities of the WWW have proven inadequate to support efficient，scalable remote editing free．．．

31 HTP Exinsione for Cetbued Aumome－WEBOAV
Y Golng，E Whitenead，A Faiz，S Garter D jencen
February 1999 HTTP Extensions for Distributed Authoring－－WEBDAV
Publisher：RFC Editor
Full text available： 7 Thi（ 202.83 KB ）
Bibliometrics：Downloads（6 Weeks）：，Downloads（12 Months）：2，Downloads（Overall）：22，Citation Count： 25

This document specifies a set of methods，headers，and content－types ancillary to HTTP／1．1 for the managems of resource properties，creation and management of resource collections，namespace manipulation，and resou locking（collision avoidance）．

32 Word Wige Web dishiouted zuhotha and versioning Webnavian antroductor
E dames Witahead，ir
March 1997 StandardView，Volume 5 Issue 1
Publisher：ACM＊Eicquest permetions
Full text available：四宽（ 81.76 KB ）
Bibliometrics：Downloads（6 Weeks）：4，Downloads（12 Months）：26，Downloads（Overall）：541，Citation Count： 1

33 Matural innouade diaboge for oersonabized nteraction

August \(2000 \quad\) Communications of the ACM ，Volume 43 Issue 8
Publisher：ACM＊Fopupsermerions
Full text available：金（tan！（ 24.39 KB ），䍖罧（ 87.13 KB ）
Bibliometrics：Downloads（ 6 Weeks）：1，Downloads（12 Months）：31，Downloads（Overall）：821，Citation Count： 4

34 Kawa comping dyamic larguges to he dova va
Eer Eomer
June 1998 ATEC＇98：Proceedings of the annual conference on USENIX Annual Technical Conference
Publisher：USENIX Association
Bibliometrics：Downloads（ 6 Weeks）：\(n / a\) ，Downloads（ 12 Months）：\(n / a\) ，Downloads（Overall）：\(n / a, \quad\) Citation Count

Many are interested in Java for its portable bytecodes and extensive libraries，but prefer a different language， especially for scripting．People have implemented other languages using an interpreter（which is slow），or by translating into Java source．

35 Ineracting inchaos
＊Dan E Olsen ir
September 1999 interactions，Volume 6 Issue 5
Publisher：ACM \＃Eisaust：Dermiszions

Bibliometrics：Downloads（ 6 Weeks）：7，Downloads（12 Months）：42，Downloads（Overall）：679，Citation Count：\(\epsilon\)

36 Ssues of current SCW sustoms and possible sointions
jonatian D．Fouss，tair Chang
April 1999 ACM－SE 37：Proceedings of the 37th annual Southeast regional conference（CD－ROM）

Full text available：雷Pif（ 19.55 KB ）
Bibliometrics：Downloads（ 6 Weeks）： 1 ，Downloads（ 12 Months）： 6 ，Downloads（Overall）：232，Citation Count： 0

Amesheth Viputashyen，Tarsiolima
July 1999 CI A＇99：Proceedings of the 3rd international conference on Cooperative information agents III
Publisher：Springer－Verlag
Bibliometrics：Downloads（ 6 Weeks）：\(n / a\) ，Downloads（ 12 Months）：\(n / a\) ，Downloads（Overall）：\(n / a, \quad\) Citation Count

The challenge of information overload in dealing with ever increasing variety and size of digital data on the We is now receiving serious attention of the researchers．The information brokering architecture provides one approach to addressing issues．．

38 An anahsis anc approach to using existing ontologioal systems for apolications in manufacturing

September \(2000 \quad\) Artificial Intelligence for Engineering Design，Analysis and Manufacturing，Vo
Publisher：Cambridge University Press
Bibliometrics：Downloads（ 6 Weeks）：\(n / a\) Downloads（ 12 Months）：\(n / a\) ，Downloads（Overall）：\(n / a, \quad\) Citation Count

This paper reports on the results of an analysis of existing ontological systems to determine which is most appropriate for the manufacturing domain．In particular，this involved the exploration of efforts that are study both the uses of ontologies．

Keywords：Analysis，Inferencing，Manufacturing Ontology，Ontological Systems，Taxonomy

39 Desinn and Arthitecture of Owibuted Soud Processing and Watabase Sustems for Web Saseb Computer Music Apolications
Bof Wobmarm，Qullame Eolle
September 1999
Computer Music Journal，Volume 23 Issue 3
Publisher：MIT Press
Bibliometrics：Downloads（ 6 Weeks）：\(n / a\), Downloads（ 12 Months）：\(n / a, \quad\) Downloads（Overall）：\(n / a, \quad\) Citation Count
```

    Ampulby.
    January 1998 Machine Translation,Volume 12 Issue 1/2
    Publisher: Kluwer Academic Publishers
    Full text available: 䒝 Sublis:er:Sile
    Bibliometrics: Downloads (6 Weeks): n/a, Downloads (12 Months): n/a, Downloads (Overall): n/a, Citation Count
        Result page: <x mevious ! 2 3 nexa
    The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2012 ACM, Inc.

```


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
Search History \\
, wixnz
\end{tabular}} \\
\hline Set & Term Searched & Items & \\
\hline S1 & (XML?? OR HTML??? OR MARK?UP?? OR SGML?) (4N)
(MERG??? OR COMBI???? OR ASSEMB???) & 2094 & , mix \\
\hline S2 & (XML?? OR HTML??? OR MARK?UP?? OR SGML?) (5N) (MERG??? OR COMBI???? OR ASSEMB??? OR JOIN??? OR FUS??? OR AGGREGA????) & 4099 & M1212 \\
\hline S3 & (TRANSFORM??? OR TRANSLAT???? OR CONVERT???) (4N)(NUMBER??? OR VALUE??? OR NUMERICA???? OR DIGIT? OR NUMERAL???) & 235700 & \\, \(\times 2\) \\
\hline S4 & (NUMBER??? OR NUMERAL??? OR VALUE??? OR DIGIT??) (4N)(FORMAT??? OR STYL??? OR DESIGN??? OR TAG? OR META?DATA) & 310218 & 2m \\
\hline S5 & S1 AND S2 AND S3 AND S4 & 3 & RxM \\
\hline S6 & (XML?? OR HTML??? OR MARK?UP?? OR SGML?) (4N) (MERG??? OR COMBI???? OR ASSEMB??? OR WEB? DOCUMENT OR WEB?PAGE?) & 2237 & \(\checkmark\) \\
\hline S7 & (XML?? OR HTML??? OR MARK?UP?? OR SGML?) (5N) (MERG??? OR COMBI???? OR ASSEMB??? OR JOIN??? OR FUS??? OR AGGREGA????) & 4099 & M \\
\hline S8 & (XML?? OR HTML??? OR MARK?UP?? OR SGML? OR WEB?DOCUMENT OR WEB?PAGE) (5N) (MERG??? OR COMBI???? OR ASSEMB??? OR JOIN??? OR FUS??? OR AGGREGA????) & 4114 & , <xim \\
\hline S9 & S8 AND S4 AND S3 & 6 & N \\
\hline
\end{tabular}

Show Database Details for:
2: Inspec (1898-present) amia ulum

\section*{2 \(\times\).}

N

\section*{Computers, Electronics, and Telecommunications}
```

To search the database index, select two or more databases and enter your search terms
M,
M N
\#: 2:mopec(1898-pmesenv
\#. 6:NTS - Natonal TechmiealmormationService
*: 8:E|Compendex9

* 34:SoSemmo-a Ched RefermeeScience Datame - 1900.
* 35:Disertation Absumcts Online
\#. 56:Computer and mommaton Svsmms
* 60:ANTE.Absuacts New Techologes and Engmeenig
\#. 65:moide Confernces
*: 92:HS Intematonal Sumdands Bad Specticmmone
** 95:TEME - Techology and Management
*: 99:Whison Apohed Scence \& Technology Absuracts
* 103:Enemy Scemee and Technology
* 144:PASCAL
* 275:Gale Grow Computer Batbese(TM
* 434:ScSearco - a Sted ReferenceScience Database - 19%4.1989
*) 647:UBM Computer Fultex:
\#) 674:Combume News Fullex:
* 696:D|AMSG Telecommunicatons Newbleters
Back to Researes and Development
Back to All categories
(C) 2012 Dialog, a Thomson business

```
/M.A./
01/27/2012

\section*{EAST Search History}

EAST Search History (Prior Art)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref
\# & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline L1 & 280 & (xbrl) or (extensi\$4 adj busin\$5 adj repor\$4 adj langua\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 27 \\
& 17: 02
\end{aligned}
\] \\
\hline L2 & 0 & 11 and @ay<"2000" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 27 \\
17: 02
\end{array}\right.
\] \\
\hline L3 & 6 & 11 and @ay<"2002" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 27 \\
& 17: 02
\end{aligned}
\] \\
\hline L4 & 1159 & (715/209).CCLS. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
3
\] \\
\hline L5 & 6236 & (715/234).CCLS. & \[
\begin{aligned}
& \text { US-PGPUB;: } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\}
\] \\
\hline L6 & & (14 and I5) and @ay<"2000" & \[
\begin{aligned}
& \text { LUS-PGPUB } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 27 \\
17: 41
\end{array}\right.
\] \\
\hline L7 & 1790 & (14 or 15) and @ay<"2000" & \[
\begin{aligned}
& \text { US-PGPUB;: } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWEN; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 27 \\
17: 41
\end{array}\right.
\] \\
\hline L8 & 888 & (merg\$4 or combin\$4) and I7 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 27 \\
17: 41
\end{array}\right.
\] \\
\hline L9 & 650 & (transfor\$4 or translat\$4 or conver\$4) and 18 & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 27
\end{array}\right\}
\] \\
\hline L10 & 355 & ((transfor \$4 or translat\$4 or conver\$4) same (numbe\$4 or curren\$4 or value\$4 & US-PGPUB; & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 27 \\
17: 42
\end{array}\right.
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & (for numera\$4)) and 18 & \begin{tabular}{|l|}
\(\left|\begin{array}{l}\mid F P R S ; \\
\text { EPO; JPO; } \\
\text { DERWENT; } \\
\text { IBM TDB } \\
\mid\end{array}\right|\) \\
\hline
\end{tabular} & & & \\
\hline L11 & 73 & (transfor\$4 or translat\$4 or conver\$4) near2 (numbe \(\$ 4\) or curren \(\$ 4\) or value\$4 or numera\$4)) and 18 & \(\left|\begin{array}{l}\text { US-PGPUB; } \\ \hline \text { USPAT; } \\ \text { FPRS; } \\ \text { EPO; JPO; } \\ \text { DRRWENT; } \\ \text { IBM TIDB }\end{array}\right|\) & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 27 \\
& 17: 42
\end{aligned}
\] \\
\hline L12 & 31 & (xml|\$1 or mark\$1up\$2 or html\$1 or sgm|\$1) and 111 & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { UPPAT; } \\
& \text { FPRS; JPO; } \\
& \text { EPOR JENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
12012 / 01 / 27
\] \\
\hline L13 & 1 & ("6263332").PN. & \[
\begin{aligned}
& \mid \text { USPGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
2012 / 01 / 27
\] \\
\hline L14 & 1 & ("6626957").PN. & \[
\begin{array}{|l|}
\hline \text { USPGPUB; } \\
\text { USPAT; } \\
\text { USOCR }
\end{array}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 27 \\
& 17: 56
\end{aligned}
\] \\
\hline S1 & 800 & (715/209).CCLS. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 26 \\
& 20: 06
\end{aligned}
\] \\
\hline 52 & 3 & \[
\begin{aligned}
& ((\text { "5956737") or ("5838906") or } \\
& (\text { ("6199046")).PN. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\left[\begin{array}{l}
2011 / 07 / 26 \\
20: 07
\end{array}\right.
\] \\
\hline 53 & 422 & ((merg\$4 or combin\$4) near2 (xml\$1 (or mark\$1up\$1)) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 26 \\
& 20: 08
\end{aligned}
\] \\
\hline S4 & /3587 & \(\sqrt{(x m l \$ 1 ~ o r ~ m a r k \$ 1 u p) ~ n e a r 2 ~(t a g \$ 1) ~}\) & USPAT & OR & OFF & \[
\left[\begin{array}{l}
2011 / 07 / 26 \\
20: 09
\end{array}\right.
\] \\
\hline 55 & 150 & S4 and 53 & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 26 \\
& 20: 09
\end{aligned}
\] \\
\hline 56 & 1278 & ((merg\$4 or combin\$4) near2 (xmI\$1 or mark\$1up\$1)) & \[
\begin{aligned}
& \text { USPGUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { ERRWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 26 \\
& 20: 09
\end{aligned}
\] \\
\hline S7 & 10837 & ((ml\$1 or mark\$1up\$1) near2 (tag\$1) & \begin{tabular}{|l|}
\hline US-PGPUB; \\
USPAT; \\
EPO; JPO; \\
DRRWENT; \\
IBM TIDB
\end{tabular} & OR & OFF & \[
2
\] \\
\hline 58 & 392 & S7 and S6 & & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 26 \\
& 20: 10
\end{aligned}
\] \\
\hline 59 & 83 & ((master\$4) near2 (xml\$1 or mark\$1up\$)) same (document\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { SUPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TMB }
\end{aligned}
\] & OR & OFF & \[
\frac{2011 / 07 / 26}{20: 11}
\] \\
\hline S10 & 1 & 59 and 58 & \begin{tabular}{|l|}
\hline US-PGPUB; \\
USPAT; \\
EPO; JPO; \\
DERWENT; \\
IBM_TDB
\end{tabular} & & OFF & \[
2
\] \\
\hline S11 & 227 & \(\sqrt{(5835712 "|" 6108673 "| ~|~ 6112242 " ~| ~}\) & US-PGPUB; & OR & OFF & \(]^{2011 / 07 / 27}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \[
\begin{aligned}
& \text { :"6125391"| |"6208986" | } \\
& \text { "6216121").PN. OR ("6507856").URPN. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & & & 11:35 \\
\hline S12 & 1241 & ((merg \(\$ 4\) or combin \(\$ 4\) or assemb\$4 or join\$4) near3 (xml\$1 or mark\$1up\$1))) same (document\$2 or pag\$4) & US-PGPUB; USPAT; EPO; JPO; DERWENT IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 11: 45
\end{aligned}
\] \\
\hline S13 & 205 & S12 and @ay<="2001" & US-PGPPB;
USPAT;
EPO; JPO;
DRWENT;
IBM TIBB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 11: 47
\end{aligned}
\] \\
\hline S14 & 1915 & (merg\$3 or combin\$4 or assemb\$2 or join\$4) near2 (tags\$2) & US-PGPUB; USPAT; EPO; JPO; DERWENT IBM TDB & OR & OFF & \[
12011 / 07 / 27
\] \\
\hline S15 & 3 & S14 and S13 & US-PGPUB USPAT; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
1
\] \\
\hline S16 & 14809 & (resol\$4) near2 (conflic\$4) & US-PGPUB; USPAT; EPO; JPO; DERWENT IBM TDB & OR & OFF & \[
12011 / 07 / 27
\] \\
\hline S17 & 1241 & (((merg\$4 or combin\$4 or assemb\$4 or join\$4) near3 (xm|\$1 or mark\$1up\$1))) same (document\$2 or pag\$4) & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\left\lvert\, \begin{aligned}
& 2011 / 07 / 27 \\
& 14: 27
\end{aligned}\right.
\] \\
\hline S18 & 205 & S17 and @ay<="2001" & US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 27
\end{aligned}
\] \\
\hline S19 & 6 & S16 and S18 & US-PGPUB;
USAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 27
\end{aligned}
\] \\
\hline S20 & 90 & & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 30
\end{aligned}
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline S25 & 172 & S20 or S22 or S23 or S24 & US-PGPUB;
SPAT;
EPO; JPO;
DRRWENT;
IBM TIDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 39
\end{aligned}
\] \\
\hline S26 & 6 & S25 and S17 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { UPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 14: 39
\end{aligned}
\] \\
\hline S27 & 86 & \begin{tabular}{l}
US-4674043-S.DID. OR US-5276776\$.DID. OR US-5339392-\$.DID. OR US-5423032-\$.DID. OR US-5603021- \\
\$.DID. OR US-5737592-\$.DID. OR US-5754939-\$.DID. OR US-5822587- \\
\$.DID. OR US-5838906-\$.DID. OR US-111998D-\$.DID. OR US-5838965\$.DID. OR US-5894311-\$.DID. OR US-5913214-\$.DID. OR US-5917485\(\$\).DID. OR US-5920828-\$.DID. OR US-5948113-\$.DID. OR US-5950196\$.DID. OR US-5956737-\$.DID. OR US-5974413-\$.DID. OR US-5999944\$.DID. OR US-6014661-\$.DID. OR US--6026388-\$.DID. OR US-6026397- \\
\$.DID. OR US-6034676-\$.DID. OR US 6058385-\$.DID. OR US-6065026- \\
\$.DID. OR US-6092036-\$.DID. OR US-6097888-\$.DID. OR US-6108662- \\
\$.DID. OR US-6121924-\$.DID. OR US-6134563-\$.DID. OR US-6160549- \\
\$.DID. OR US-6167409-\$.DID. OR US-122000D-\$.DID. OR US-6173284- \\
\$.DID. OR US-6195676-\$.DID. OR US-6199046-\$.DID. OR US-6199080- \\
\$.DID. OR US-6206388-\$.DID. OR US-6223189-\$.DID. OR US-6240407- \\
\$.DID. OR US-6243698-\$.DID. OR US 6256030-\$.DID. OR US-6317750- \\
\$.DID. OR US-6314562-\$.DID. OR US 6349307-\$.DID. OR US-6351755- \\
\$.DID. OR US-6356920-\$.DID. OR US-6366915-\$.DID. OR US-6370549- \\
\$.DID. OR US-6370537-\$.DID. OR US 6373504-S.DID. OR US-6374274- \\
\$.DID. OR US-6418433-\$.DID. OR US-6421656-\$.DID. OR US-6421822- \\
\$.DID. OR US-6460059-\$.DID. OR US 1012002-\$.DID. OR US-6470349\$.DID. OR US-6493717-\$.DID. OR US-6505246-\$.DID. OR US-6507856- \\
\$.DID. OR US-6581068-\$.DID. OR US: 6591272-\$.DID. OR US-6594653- \\
\$.DID. OR US-6615258-\$.DID. OR US-6629094-\$.DID. OR US-6635089- \\
\$.DID. OR US-6667747-\$.DID. OR US-
\end{tabular} & \[
\begin{aligned}
& \text { USPGPPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 27 \\
15: 03
\end{array}\right.
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & 6721736-\$.DID. OR US-6745384\$.DID. OR US-6886005-\$.DID. OR US-6912293-\$.DID. OR US-6920608\$.DID. OR US-7249328-\$.DID. OR US-20010018687-\$.DID. OR US-20010020237-\$.DID. OR US-20010049687-\$.DID. OR US-20020023141-\$.DID. OR US-20020052954-\$.DID. OR US-20020091696-\$.DID. OR US-20020198985-\$.DID. OR US-20030041077-\$.DID. OR US-20030167213-\$.DID. OR US-20050086126-\$.DID. OR US-20050182709-\$. DID. OR US-20050198042-\$.DID. & & & & \\
\hline S28 & 175 & S27 or 525 & \[
\begin{aligned}
& \text { US-PGUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 17
\end{aligned}
\] \\
\hline S29 & 8 & S28 and S16 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 17
\end{aligned}
\] \\
\hline 530 & 7 & S28 and S17 & \[
\begin{aligned}
& \text { |S-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 17
\end{aligned}
\] \\
\hline 531 & 1756 & (((dynami\$4 or automa\$4) near2
(genera\$\$ or produc\$4)) same (xml\$1
or mark\$1up)) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 39
\end{aligned}
\] \\
\hline 532 & 9130 & (xm1\$1 or mark\$1up\$1) near2
(source\$3 or databas\$4 or reposito\$4) & \[
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { USPGPPB; } \\
\text { USPAT; } \\
\text { USOCR }
\end{array}\right.,
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 40
\end{aligned}
\] \\
\hline 533 & 397 & 532 and S31 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 40
\end{aligned}
\] \\
\hline 534 & 50 & S17 and S33 & \[
\begin{aligned}
& \text { US-PGPBB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 40
\end{aligned}
\] \\
\hline S35 & 3373 & \[
\begin{aligned}
& (((\text { (merg } \$ 4 \text { or combin } \$ 4 \text { or assemb } \$ 4 \text { or } \\
& \text { ooin\$4 near3 }(\times m \text { m } \$ 1 \text { or } \\
& \text { mark\$1up } \$ 1)))
\end{aligned}
\] & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 41
\end{aligned}
\] \\
\hline 536 & 72 & S35 and S33 & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TIB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 42
\end{aligned}
\] \\
\hline S37 & 2080 & \(\sqrt{((\text { dynami\$4. or automas4). near3 }}\)
(erera \(\$ 4\) or produc\$4)) same (xm1 \(\$ 1\) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 201 / 07 / 27 \\
& 15: 50
\end{aligned}
\] \\
\hline 538 & 3282 & \[
\begin{aligned}
& \text { ((dynami\$4 or automa\$4) near3 } \\
& \text { (genera\$4 or produc\$4)) same exm1 } \$ 1 \\
& \text { or mark\$1up or htmI } \$ 1 \text { or sgm| } \$ 3 \text {) } \$ \text {. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { US-PGUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 51
\end{aligned}
\] \\
\hline S39 & 576 & S38 and S32 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 51
\end{aligned}
\] \\
\hline S40 & 504 & 539 not 536 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 52
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S41 & 172 & S40 and @ay<="2002" & US-PGPUB; USPAT; USOCR & & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 52
\end{aligned}
\] \\
\hline S42 & 3373 & ((merg \(\$ 4\) or combin\$4 or assemb\$4 or join\$4 or aggregat) near3 (xml\$1 or :mark\$1up\$1))) & US-PGPUB, USPAT; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline 543 & 3871 & ((merg \(\$ 4\) or combin\$ 4 or assemb\$4 or join\$4 or aggregat\$3) near3 (xm|\$1 or :mark\$1up\$1))) & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline S44 & 3878 & ((merg\$4 or combin\$4 or assemb\$4 or :join\$4 or aggregat\$4) near3 (xml\$1 or :mark\$1up\$1))) & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline S45 & 7 & S44 not S43 & USSPGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 15: 59
\end{aligned}
\] \\
\hline S46 & 505 & S44 not S35 & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TIDB & OR & OFF & \[
1
\] \\
\hline 547 & 0 & S46 and (reslove\$4 near2 contli\$4) & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & & OFF & \[
1
\] \\
\hline 548 & 14 & S46 and (resol\$4 near2 confli\$4) & US-PGPUB;
USPAT;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 27 \\
& 16: 01
\end{aligned}
\] \\
\hline S49 & 1 & ("6507856").PN. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
2011 / 07 / 27
\] \\
\hline 550 & 20 & \[
\begin{aligned}
& \text { (display\$3 near2 (XML or mark\$1up)) } \\
& \text { same (Chart } \$ 2 \text {) }
\end{aligned}
\] & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 05
\end{aligned}
\] \\
\hline 551 & 51 & (display\$3 or show\$4 or render\$4) near2 (XML or mark\$1up)) same (chart\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 07
\end{aligned}
\] \\
\hline S52 & 376 & ((display\$3 or show\$4 or render\$4) near2 (XML or mark\$1up)) same (chart\$2 or graph\$4 or spread\$1sheet\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 08
\end{aligned}
\] \\
\hline 553 & 53 & ((display\$3 or show\$4 or render\$4) near2 (XML or mark\$1up)) near3 (chart\$2 or graph\$4 or sppread\$1sheet\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 09
\end{aligned}
\] \\
\hline 554 & 431 & ((xm1\$1 or mark\$1up\$1) near2
(data\$4)) same (chart\$2 or graph\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 10
\end{aligned}
\] \\
\hline S55 & 74 & ((xml\$1 or mark\$1up\$1) near2 (data\$4)) near2 (chart\$2 or graph\$2) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 10
\end{aligned}
\] \\
\hline S56 & 168 & /(\((\mathrm{xml} \$ 1\) or mark\$1up\$1) near2 & US-PGPUB; & & OFF & R211/07/28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & (data\$4)) near2 (chart\$2 or graph\$2) & USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & & & ¢ \(11: 11\) \\
\hline S57 & 213 & ((xml\$1 or mark\$1up\$1 or html\$1) near2 (data\$4)) near2 (chart\$2 or graph\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\sqrt{2011 / 07 / 28}
\] \\
\hline 558 & 1529 & ((xml\$1 or mark\$1up\$1 or htm|\$1)) near2 (chart\$2 or graph\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\left\{\begin{array}{l}
2011 / 07 / 28 \\
11: 14
\end{array}\right.
\] \\
\hline S59 & 1 & ((xml\$1 or mark\$1up\$1 or html\$1)) near2 ((chart\$2 or graph\$2) and tree and spread\$1sheet\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
3
\] \\
\hline 560 & 183 & ((xml\$1 or mark\$1up\$1 or html\$1)) same ((chart\$2 or graph\$2) and tree and spread\$1 sheet\$2) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
2011 / 07 / 28
\] \\
\hline S61 & \(\sqrt{19296}\) & ((xml\$1 or mark\$1up\$1 or htm|\$1)) same ((chart\$2 or graph\$2) or spread\$1sheet\$2) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\sqrt{2011 / 07 / 28}
\] \\
\hline S62 & 10106 & ((\((\mathrm{xml} \$ 1\) or mark\$1up\$1 or html\$1)) same ((chart\$2 or graph\$2) or spread\$1sheet\$2)) same (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\frac{2011 / 07 / 28}{11: 23}
\] \\
\hline S63 & 1031 & ((\((\mathrm{xml} \$ 1\) or mark\$1up\$1 or htmI\$1)) near2 ((chart\$2 or graph\$2) or spread\$1sheet\$2)) same (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
2011 / 07 / 28
\] \\
\hline S64 & 217 & (((xml\$1 or mark\$1up\$1 or html\$1)) near2 ((chart\$2 or graph\$2) or spread\$1sheet\$2)) near2 (view\$4 or render\$4 or display\$4 or show\$4) & \[
\begin{aligned}
& \text { US-PGPUB: } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { BM TDB }
\end{aligned}
\] & OR & OFF & \[
=\left\{\begin{array}{l}
2011 / 07 / 28 \\
11: 24
\end{array}\right.
\] \\
\hline 565 & 42 & (((xml\$1 or mark\$1up\$1 or html\$1)) near2 (spread\$1sheet\$2)) near2 (view\$4 or render\$4 or display\$4 or show\$4) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
=12011 / 07 / 28
\] \\
\hline S66 & 754 & V((xml\$1 or mark\$1up\$1 or html\$1)) & |US-PGPUB; & OR & OFF & /2011/07/28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Inear2 (spread\$1sheet\$2 or table\$1 or colum\$2)) near2 (view\$4 or render\$4 or display \(\$ 4\) or show\$4) & HUSPAT; FPRS; EPO; JPO; DERWENT IBM TDB & & & 11:50 \\
\hline 567 & 403 & (((xm|\$1 or mark\$1up\$1 or html\$1)) near1 (spread\$1sheet\$2 or table\$1 or colum\$2)) near2 (view\$4 or render\$4 or display\$4 or show\$4) & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { UPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 50
\end{aligned}
\] \\
\hline S68 & 224 & (((xml\$1 or mark\$1up\$1 or html\$1)) near1 (spread\$1sheet\$2 or table\$1 or colum\$2)) near1 (view\$4 or render\$4 or display\$4 or show\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { UPAT; } \\
& \text { IPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 11: 50
\end{aligned}
\] \\
\hline 569 & 106 & ((xml\$1 or mark\$1up\$1 or html\$1)) near1 (tree)) near1 (view\$4 or render\$4 or display\$4 or show\$4) & USPGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
1 \begin{aligned}
& 2011 / 07 / 28 \\
& 11: 59
\end{aligned}
\] \\
\hline S70 & 43 & ((\(\mathrm{xm} / \$ 1\) or mark\$ \(\$ 1 \mathrm{up} \$ 1\) or html \(\mid \$ 1)\)) near1 (tree\$1)) near1 (view\$4) & \[
\begin{array}{l|}
\hline \text { US-PGPUB; } \\
\text { USPAT; } \\
\text { IPRS; } \\
\text { EPO; JPO; } \\
\text { DERWENT; } \\
\text { IBM TDB }
\end{array}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 01
\end{aligned}
\] \\
\hline 571 & 46 & ((xml\$1 or mark\$1up\$1 or html\$1)) near1 (tree\$1 or dom)) near1 (view\$4) & US-PGPUB;
USAT;
IPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 02
\end{aligned}
\] \\
\hline 572 & 46 & (((xml\$1 or mark\$1up\$1 or html\$w. near1 (tree\$1 or dom or (document adj object adj model))) near1 (view\$4) & US-PGPUB;
USAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 02
\end{aligned}
\] \\
\hline 573 & 130 & ((xml\$1 or mark\$1up\$1 or html\$1)) near1 (tree\$1 or dom or (document adj object adj model))) near1 (view\$4 or show \(\$ 4\) or display \(\$ 4\) or render) & US-PGPUB;
UPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 02
\end{aligned}
\] \\
\hline 574 & 87 & S73 not 570 & \[
\begin{array}{l|}
\hline \text { US-PGPUB; } \\
\text { UPAT; } \\
\text { FPRS; } \\
\text { EPO; JPO; } \\
\text { DERWENT; } \\
\text { IBM TDB }
\end{array}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 02
\end{aligned}
\] \\
\hline S75 & 1381 & (xml\$1) near1 (tree\$1) & US-PGPUB;
USAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 03
\end{aligned}
\] \\
\hline 576 & 53 & S75 and @ay<="2000" & US-PGPUB; & OR & OFF & 2011/07/28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & UUSPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & & & \[
\}^{12: 03}
\] \\
\hline 577 & 197 & \(\sqrt{(\text { (xmlispla\$4) near1 (tree\$1)) same }}\) & USPGPUB;
USPAT;
FPRS;
EPO; JPO; ;
DERWENT;
IBM TDB & OR & OFF & \[
12
\] \\
\hline 578 & 6 & S77 and @ay<="2000" & US-PGPUB;
USAT;
IPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 07 / 28 \\
& 12: 05
\end{aligned}
\] \\
\hline S79 & 1953 & (combin\$2 near2 (xml\$1 or mark\$1)) & US-PGPUB;
UPAT;
IPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 14: 32
\end{aligned}
\] \\
\hline 580 & 80 & S79 and @ay="2000" & US-PGPUB;
USAT;
PPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
1
\] \\
\hline 581 & 799 & (combin\$2 near2 (xm|\$1 or mark\$1up)) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { ISPAT; } \\
& \text { IPRS; } \\
& \text { EPO; JPO; } \\
& \text { LERWENT; } \\
& \text { IBM TTB }
\end{aligned}
\] & OR & OFF & \[
12
\] \\
\hline 582 & 35 & S81 and @ay="2000" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
12011 / 08 / 01
\] \\
\hline 883 & 3043 & ((generat\$4 or produce\$4) near2 (xml\$1 or mark\$1up\$2)) same (data\$1base\$4 or reposit\$4 or stora\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { PRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 00 \\
& 15: 49
\end{aligned}
\] \\
\hline 584 & 4310 & ((generat\$4 or produce\$4) near2 (xml\$1 or mark\$1up\$2)) same (data\$1base\$4 or reposit\$4 or stor\$4) & US-PGPUB;
UPAT;
PPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 15: 49
\end{aligned}
\] \\
\hline 585 & 383 & ((generat \(\$ 4\) or produce\$4) near2
(xml\$1 or mark\$1up\$2) same
(datat \(\$ 1\) base \(\$ 4\) or reposit \(\$ 4\) or stor \(\$ 4)\))
same (dynami\$4 or automa\$4) & \[
\begin{aligned}
& \hline \text { LS-PGPUB; } \\
& \text { ISPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { IERWENT; } \\
& \text { IBM ITDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 15: 50
\end{aligned}
\] \\
\hline 586 & \({ }^{21}\) & S85 and @ay<="2000" & IS-PGPUB; & OR & OFF & 2011/08/01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & UUSPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & & & \[
15: 50
\] \\
\hline 587 & 809 & ((mark\$1up\$1 or htmil\$1 or xml\$1) near2 (tree\$2)) same (view\$4 or display\$4 or render\$4) & USPGPUB;
USPAT;
FPRS;
EPO; JPO; ;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 15
\end{aligned}
\] \\
\hline 588 & 63 & S87 and @ay<="2000" & US-PGPUB;
USAT;
IPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
12
\] \\
\hline 589 & 3322 & ((mark\$1up\$1 or html\$1 or xm|\$1) near2 (tree\$2 or structur\$4)) same (view\$4 or display\$4 or render\$4) & US-PGPUB;
UPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 28
\end{aligned}
\] \\
\hline 590 & 163 & S89 and @ay<"2000" & US-PGPUB;
USPAT;
PPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
16
\] \\
\hline 591 & 121 & 590 not S88 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { ISPAT; } \\
& \text { IPRS; } \\
& \text { EPO; JPO; } \\
& \text { LERWENT; } \\
& \text { IBM TTB }
\end{aligned}
\] & OR & OFF & \[
3
\] \\
\hline 592 & 1269 & (mark\$1up\$1 or htmil\$1 or xml\$1)
near2 (tree\$2 or dom\$4)) same (view\$4 or display\$4 or render\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { UPAT; } \\
& \text { PPRS; } \\
& \text { EPO; JPO; ; } \\
& \text { DERWNTNT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 31
\end{aligned}
\] \\
\hline 593 & 1322 & ((mark\$1up\$1 or html\$1 or xml\$1) near2 (tree\$2 or (dom or (document adj object adj model\$1)))) same (view\$4 or display\$4 or render\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { PRS; } \\
& \text { PPO; JPO; } \\
& \text { DERWENT; } \\
& \hline \text { BM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 31
\end{aligned}
\] \\
\hline 594 & 45 & S93 and @ay<"2000" & US-PGPUB;
UPAT;
FPRS;
EPO; JPO;
DREWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 32
\end{aligned}
\] \\
\hline 595 & 16 & foot\$1note\$2 near2 (xml\$1 or mark\$1up\$1 or htm|\$1) & & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 16: 43
\end{aligned}
\] \\
\hline 596 & 10356 & (black\$1jack\$1) & IS-PGPUB; & OR & OFF & 2011/08/01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & HUSPAT; FPRS; EPO; JPO; DERWENT IBM TDB & & & 17:39 \\
\hline 597 & 19 & (black\$1jack\$1) near2 (simulatio\$4) & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { UPAPT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
12011 / 08 / 01
\] \\
\hline 598 & 4 & \(\sqrt{(\text { ("5748188") or ("6148330") or }}\) & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 18: 46
\end{aligned}
\] \\
\hline 599 & 5 & \[
\begin{aligned}
& \sqrt{\left(\left(" 57481888^{\prime}\right)\right. \text { or ("6148330") or }} \\
& (\text { "6314424") or ("6535896") or } \\
& \text { ("6507856")).PN. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 01 \\
& 18: 46
\end{aligned}
\] \\
\hline S100 & 2791 & (recei\$\$ or send\$4) near2
\((\) meta\$1 data\$1 or (numerical\$4 near2
(datata \(\$ 1\) or value \(\$ 4\) or information \(\$ 4)\))) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 23
\end{aligned}
\] \\
\hline S101 & 2675 & (convert\$4) near2 (mark\$1up\$1 or htm|\$1 or \(\mathrm{xm} \mid \$ 1\)) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 23
\end{aligned}
\] \\
\hline S102 & 37 & S101 and S100 & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 23
\end{aligned}
\] \\
\hline S103 & 3335 & ((dynamic\$4 or automat\$4) near2 (genera\$4 or produc\$4 or creat\$4 or make\$4)) same (xml\$1 or mark\$1up\$1 or html\$1) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 27
\end{aligned}
\] \\
\hline S104 & 1042 & (combin \(\$ 4\) or merg \(\$ 4\) or assembl\$4) near2 (\(x \mathrm{ml}\) \$1 or mark\$up\$1 or htm \(1 \$ 1\)) & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 28
\end{aligned}
\] \\
\hline S105 & 223 & S104 and S103 & USPAT & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 28
\end{aligned}
\] \\
\hline S106 & 9219 & ((dynamic\$4 or automat\$4) near2 (genera\$4 or produc \(\$ 4\) or creat \(\$ 4\) or make\$4)) same (xml\$1 or mark\$1up\$1 or htm|\$1) & \[
\begin{array}{l|}
\hline \text { USPGPUB; } \\
\text { USPAT; } \\
\text { EPO; JPO; } \\
\text { DERWENT; } \\
\text { IBM TDB }
\end{array}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 30
\end{aligned}
\] \\
\hline S107 & 3056 & (combin \(\$ 4\) or merg \(\$ 4\) or assembl\$4) near2 (\(\mathrm{xml} \$ 1\) or mark\$up\$1 or htm|\$1) & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \begin{array}{l}
\text { USPAT; } \\
\text { EPO; JPO; } \\
\text { DERWENT; } \\
\text { IBM TDB }
\end{array}
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 30
\end{aligned}
\] \\
\hline S108 & 543 & S107 and S106 & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { UPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 30
\end{aligned}
\] \\
\hline S109 & 57 & S108 and @ay<"2000" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { EPO; JPO; } \\
& \text { SERWENT; } \\
& \text { BM ITA }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 13: 30
\end{aligned}
\] \\
\hline S110 & 89 & (convert\$4 or transform\$4) near2 (flat\$4 and (\(\mathrm{xml} \$ 1\) or mark\$1up\$1 !htm|\$1)) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { LSPAT; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { BM TTB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 14: 07
\end{aligned}
\] \\
\hline S111 & 6132 & (convert\$4 or transform\$4) near2 ((flat\$4 or data\$2 or information\$4) & US-PGPUB; USPAT; & & OFF & \[
\begin{aligned}
& 2011 / 08 / 02 \\
& 14: 09
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & /and (xml\$1 or mark\$1up\$1 htm|\$1)) & IEPO; JPO; DERWENT; IBM TDB & & & \\
\hline S112 & 1 & ("6249291").PN. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 03 \\
& 14: 22 \\
& \hline
\end{aligned}
\] \\
\hline S113 & 1 & (08/515057).APP. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\int_{16: 14}^{2011 / 08 / 03}
\] \\
\hline S114 & 198 & (generat\$4 or creat\$4 or make\$2 or produc\$4) near2 (xml\$1 or mark\$1up\$1 or html\$1)) same ((raw\$1 or flat\$4 or un\$1structu\$4) same (data\$2 or information\$4 or content\$4)) & LISPAT;
IPRS;
EPD; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 03 \\
& 18: 02
\end{aligned}
\] \\
\hline S115 & 56 & S114 and @ay<"2000" & USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 03 \\
& 18: 02
\end{aligned}
\] \\
\hline S116 & 8 & ((merg\$4 or combin\$4 or assembl\$4) near2 (xm |\$1 or mark\$1up\$1 or html\$1)) same ((raw\$1 or flat\$4 or un\$1structu\$4) same (data\$2 or information\$4 or content\$4)) & USPAT;
IPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
1 \begin{aligned}
& 2011 / 08 / 03 \\
& 18: 07
\end{aligned}
\] \\
\hline S117 & 23 & ((merg\$4 or combin\$4 or assembl\$4) near2 (xml\$1 or mark\$1up\$1 or html\$1 or tag \(\$ 1\))) same ((raw \(\$ 1\) or flat \(\$ 4\) or un\$1structu\$4) same (data\$2 or information\$4 or content\$4)) & USPAT;
\begin{tabular}{l}
IPRS; \\
EPO; JPO; \\
DERWENT; \\
IBM TDB
\end{tabular} & OR & OFF & \[
\begin{aligned}
& 12011 / 08 / 03 \\
& 18: 08
\end{aligned}
\] \\
\hline S118 & 169 & (\((\) merg \(\$ 4\) or combin\$4 or assembl\$4) near2 (xml\$1 or mark\$1up\$1 or html\$1 or tag\$1 or structure\$4)) same ((raw\$1 or flat\$4 or un\$1structu\$4) same (data\$2 or information\$4 or content\$4)) & USPAT;
IPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 03 \\
& 18: 08
\end{aligned}
\] \\
\hline S119 & 146 & S118 not S117 & USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\sqrt{2011 / 08 / 03}
\] \\
\hline S120 & 161 & S118 not S116 & USPAT;
PRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 03 \\
& 18: 09
\end{aligned}
\] \\
\hline S121 & 115 & ((map\$4) near2 (xml\$2 or mark\$1up\$1 or html\$1)) same (data\$3 near2 (sourc\$4 or database\$4)) & LSPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\sqrt{2011 / 08 / 03}
\] \\
\hline S122 & 1958 & (variabl\$4) near2 (document\$4) & USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\frac{2011 / 08 / 03}{18: 18}
\] \\
\hline S123 & 389 & S122 and (XML or html\$2 or mark\$1up) & USPAT;
PRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
12011 / 08 / 03
\] \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S124 & 67 & S123 and @ay<"2000" & USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 03 \\
& 18: 19
\end{aligned}
\] \\
\hline S125 & 493 & ((variabl\$4) near2 (document\$4)) same (gener\$4 or produ \(\$ 3\) or mark \(\$ 3\)) & USPAT;
FPRSS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
1 \begin{aligned}
& 2011 / 08 / 03 \\
& 18: 20
\end{aligned}
\] \\
\hline S126 & 23 & S125 and S124 & USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
12011 / 08 / 03
\] \\
\hline S127 & 0 & (12/222751).APP. & USPAT; & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 04 \\
& 16: 34
\end{aligned}
\] \\
\hline S128 & 0 & (12/222752).APP. & USPAT; & OR & OFF & \[
\sqrt{2011 / 08 / 04}
\] \\
\hline S129 & 1 & (09/573778).APP. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 04 \\
& 16: 36
\end{aligned}
\] \\
\hline S130 & 1 & ("6507856").PN. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 05 \\
& 12: 59
\end{aligned}
\] \\
\hline S131 & 1 & ("6199046").PN. & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2011 / 08 / 05 \\
& 13: 01
\end{aligned}
\] \\
\hline S132 & 1 & (12/222751).APP. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 06: 53
\end{aligned}
\] \\
\hline S133 & 43 & ((associat\$4 or merge\$4) near2 (numerical\$4)) same (data\$4)) same (xml\$3 or tag\$1 or mark\$1up\$3) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWNET; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & 2012/01/23 \\
\hline S134 & 182551 & (combin\$4 or merg\$4) near3 (data\$4 or numbers\$4 or numerical\$1)) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 08: 41
\end{aligned}
\] \\
\hline S135 & 21387 & (produc\$4 or generat\$4) near2 (xml\$1 or mark\$1up or html\$1) & US-PGPUB USPAT; FPRS; EPO; JPO DERWENT; IBM TDB & OR & OFF & \[
2012 / 01 / 23
\] \\
\hline S136 & 2851 & S135 and S134 & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 08: 42
\end{aligned}
\] \\
\hline S137 & 142816 & ((combin\$4 or merg\$4) near2 (data\$4 or numbers\$4 or numerical\$1)) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 08: 42
\end{aligned}
\] \\
\hline S138 & 2322 & S137 and S136 & US-PGPUB! & OR & OFF & [2012/01/23] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & UUSPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & & & 08:43 \\
\hline S139 & 12275 & (produc\$4 or generat\$4) near2 (xm|\$1 or mark\$1up or htm(\$1)) same (document\$3 or file\$3) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT IBM_TDB & OR & OFF & 2012/01/23 \\
\hline S140 & 1377 & S139 and S138 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { PRSS; } \\
& \text { EPO; JPO; } \\
& \text { DERWNT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 08: 43
\end{aligned}
\] \\
\hline S141 & 30172 & ((produc \(\$ 4\) or generat\$4 or make\$4 or spawn\$4 or creat\$4) near3 (htm|\$1 or mark\$1up\$1 or xml\$1)) same (document\$4 or fil\$4 or pag\$4)) & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 09: 36
\end{aligned}
\] \\
\hline S142 & 30646 & ((produc \(\$ 4\) or generat \(\$ 4\) or make\$4 or spawn\$4 or creat\$4) near3 (html\$1 or mark\$1up\$1 or xml\$1)) same (document\$4 or fil\$4 or pag\$4 or templat\$4)) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { PRRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWNTNT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 39: 36
\end{aligned}
\] \\
\hline S143 & 3296 & (combin \(\$ 4\) or merg\$4) near4 (xml\$1 or mark\$1up\$1 or html\$1) & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 09: 37
\end{aligned}
\] \\
\hline S144 & 403 & \[
\begin{aligned}
& \text { (xm|\$1 or htm|\$1 or mark\$1up\$1) } \\
& \text { near3 (ontolog } \$ 4)
\end{aligned}
\] & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT; } \\
& \text { FRS'; } \\
& \text { EPO; JPO; } \\
& \text { DERWEN; } \\
& \text { BM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 09: 37
\end{aligned}
\] \\
\hline S145 & 11 & S144 and S143 and S142 & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DEERNENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 09: 38
\end{aligned}
\] \\
\hline S146 & 6 & ((transla\$4 or tranform\$4) near3 (flat\$1file\$2)) same (xml\$1 or mark\$1up\$2) & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT; } \\
& \text { FPSS; } \\
& \text { EPO; JPO; } \\
& \text { DERWEN; } \\
& \text { BM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 10: 36
\end{aligned}
\] \\
\hline S147 & 13 & (transla\$4 or tranform \(\$ 4\) or convert\$4) near3 (flat\$1file\$2)) same (xml\$1 or mark\$1up\$2) & US-PGPUB;
USPAT;
FRS;
EPO; JPO;
DERWENT;
BM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 10: 37
\end{aligned}
\] \\
\hline S148 & 27 & |"20020129059" | " 20020161749 " & US-PGPUB; & OR & OFF & 2012/01/23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & & & 10:38 \\
\hline S149 & [1991 & \[
\sqrt{(\text { select } \$ 4) \text { near2 }(\text { tag\$2) }) \text { same }}
\] (value\$2) & \[
\begin{aligned}
& \text { MS-PPGUB; } \\
& \text { USPAT; } \\
& \text { LSOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 11: 18
\end{aligned}
\] \\
\hline S150 & 6 & ((select\$4) near2 (mark\$1up near3 tag\$2)) same (value\$2) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 11: 18
\end{aligned}
\] \\
\hline S151 & 4821 & \[
\sqrt{(\text { (assign } \$ 4) \text { near3 (tag\$1)) same }}
\] & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 11: 19
\end{aligned}
\] \\
\hline S152 & 8 & (assign\$4) near3 (mark\$1up\$1 same tag\$1)) same (value\$3 or number\$4) & \[
\begin{aligned}
& \text { USPGPPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 11: 19
\end{aligned}
\] \\
\hline S153 & 62 & (assign\$4) near3 ((mark\$1up\$1 or xml\$1 or htm|\$1) same tag\$1)) same (value\$3 or number\$4) & \[
\begin{aligned}
& \text { USPGPPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 11: 20
\end{aligned}
\] \\
\hline S154 & 14 & \[
\begin{aligned}
& \left(\begin{array}{l}
(\text { assign } \$ 4 \text { or select\$\$4) near2 } \\
(\text { (numerical } \$ 4 \text { or valu } \$ 4 \text { or number } \$ 4) \\
\text { same serie } \$ 4) \text {) same meta\$1data }
\end{array}\right.
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { US-PGPUB; } \\
\text { USPAT; } \\
\text { USOCR }
\end{array}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 13: 09
\end{aligned}
\] \\
\hline S155 & 14 & \[
\begin{aligned}
& \text { (assign\$4 or select\$4) near2 } \\
& \text { (numerical\$4 or valu } \$ 4 \text { or number } \$ 4 \text {) } \\
& \text { same serie } \$ 4) \text {) same meta\$1data } \$ 1 .
\end{aligned}
\] & \[
\begin{aligned}
& \text { US PGPPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 13: 09
\end{aligned}
\] \\
\hline S156 & 0 & \(\sqrt{(\text { (cell\$\$1) near2 (format\$ } \$ 3) \text {) near3 }}\) (number same serie\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 13: 58
\end{aligned}
\] \\
\hline S157 & 226 & ((cell\$1) near2 (format\$3)) same (spread\$1sheet\$1) & \[
\begin{aligned}
& \text { USSPGUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
12012 / 01 / 23
\] \\
\hline S158 & 99 & (numerical\$2) near2 (meta\$1data) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
14: 54
\] \\
\hline S159 & 0 & \(\sqrt{(\text { (xml\$1) near2 (numerical\$3)) same }}\) & \[
\begin{aligned}
& \begin{array}{l}
\text { USSGPPB; } \\
\text { USPAT; } \\
\text { USOCR }
\end{array}
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 14: 55
\end{aligned}
\] \\
\hline S160 & 41 & \[
\begin{aligned}
& (\text { (xml\$1) near2 (number\$3)) same } \\
& (\text { metata) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
1 \begin{aligned}
& 2012 / 01 / 23 \\
& 14: 55
\end{aligned}
\] \\
\hline S161 & 3951 & (numerical) near3 (series or list\$1) & \[
\begin{aligned}
& \text { US-PGPBB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 14: 57
\end{aligned}
\] \\
\hline S162 & 216 & \[
\begin{aligned}
& \text { (nnumerical) near3 (seriis or list } \$ 1) \text {) } \\
& \text { same (meta } \$ 1 \text { datat } \$ 1 \text { or } \\
& \text { characterist } \$ 4 \text {) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { US-PGPPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 14: 57
\end{aligned}
\] \\
\hline S163 & 160 & (real\$1time\$2) near2 (annotation\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 23 \\
& 15: 12
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S164 & 44 & ((real\$1time\$2) near2 (annotation\$4)) and sharin\$4 & US-PGPUB; USPAT; USOCR & OR & OFF & 2012/01/23 \\
\hline S165 & 29 & \begin{tabular}{l}
US-5581686-\$.DID. OR US-20010018694-\$.DID. OR US-6621505\$.DID. OR US-6631402-\$.DID. OR US-5953724-\$.DID. OR US-6434541- \\
\$.DID. OR US-5983247-\$.DID. OR US-20030140045-\$.DID. OR US-6424980\$.DID. OR US-5721847-\$.DID. OR US-5371675-\$.DID. OR US-5008853\$.DID. OR US-6910017-\$.DID. OR US-5461708-\$.DID. OR US-5907820\$.DID. OR US-6014643-\$.DID. OR US-6075530-\$.DID. OR US-6714201- \\
\$.DID. OR US-6408430-\$.DID. OR US-5530942-\$.DID. OR US-5701400- \\
\$.DID. OR US-6339767-\$.DID. OR US-5987469-\$.DID. OR US-20030078883\$.DID. OR US-6446048-\$.DID. OR US-7421648-\$.DID. OR US-7512875- \\
\$.DID. OR US-7401076-\$.DID. OR US-20090089657-S.DID.
\end{tabular} & US-PGPUB; USPAT & OR & OFF & 2012/01/23 \\
\hline S166 & 10 & S165 and (xml or mark\$1up) & US-PGPUB: & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 23 \\
16: 21
\end{array}\right.
\] \\
\hline S167 & 1 & (08/902293).APP. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 24 \\
15: 37
\end{array}\right.
\] \\
\hline S168 & 15558 & (tranform\$4 or conver\$4 or translat\$4) near3 (xml\$1 or mark\$1up\$1 or html\$1) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 24 \\
16: 30
\end{array}\right.
\] \\
\hline S169 & 2891 & (combin\$4 or merg\$4) near3 (xml\$1 or html\$1 or mark\$1up\$2) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& \frac{2012 / 01 / 24}{16: 31} \\
& \hline
\end{aligned}
\] \\
\hline S170 & 949 & S169 and S168 & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 24 \\
16: 31
\end{array}\right.
\] \\
\hline S171 & 128 & S170 and @ay<"2001" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 16: 32
\end{aligned}
\] \\
\hline S172 & 107549 & (xml\$1 or html\$1 or mark\$1up\$1 or sgml\$1) near2 (languag\$4 or vocabu\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 24 \\
16: 46
\end{array}\right.
\] \\
\hline S173 & 124 & S172 and S171 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 16: 46
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \[
\begin{aligned}
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & & & \\
\hline S174 & 707 & ((transform\$4 or transfor\$4 or convert\$4) near2 (numerical\$4 or number or value \(\$ 4\))) same (xml\$1 or html\$1 or mark\$1up\$1 or html\$1) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
12012 / 01 / 24
\] \\
\hline S175 & 894 & ((transform \(\$ 4\) or translat \(\$ 4\) or convert\$4) near2 (numerical\$4 or number or value\$4)) same (xml\$1 or htmi\$1 or mark\$1up\$1 or htmi\$1) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDD & OR & OFF & \[
17: 11
\] \\
\hline S176 & 83 & S175 and @ay<"2001" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 17: 12
\end{aligned}
\] \\
\hline S177 & 5402 & ((numerical\$4) near2 (values\$4)) same (format\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 18: 02
\end{aligned}
\] \\
\hline S178 & 265 & (combin\$4 or merg\$4) near2 (numerical\$4 same value\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 18: 02
\end{aligned}
\] \\
\hline S179 & 0 & S178 and S167 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWWNT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 18: 02
\end{aligned}
\] \\
\hline S180 & 29 & S178 and S177 & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 18: 02
\end{aligned}
\] \\
\hline S181 & 6024 & (numerical\$4) near2 (values\$4)) same (format\$4 or styl\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { PRSS; } \\
& \text { EPO; JPO; } \\
& \text { DERWNTNT; } \\
& \text { BM TDB }
\end{aligned}
\] & OR & OFF & \[
1
\] \\
\hline S182 & 67 & ((numerical\$4) near2 (values\$4)) same (format\$4 or styl\$4)) same (tag\$1) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 24 \\
18: 05
\end{array}\right.
\] \\
\hline S183 & 2454 & (combin\$4 or merg\$4 or join\$4 or fus \(\$ 4\)) near2 (xml\$1 or mark\$1up\$1 or html\$1 or sgml\$1) & US-PGPUB USPAT; FPRS; & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 18: 10
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \[
\begin{aligned}
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & & & \\
\hline S184 & 280 & S183 and @ay<"2001" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { UPAT; } \\
& \text { IPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWNENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 18: 10
\end{aligned}
\] \\
\hline S185 & 422004 & (value\$4 or number\$4 or numerica\$4 or digi\$4) near3 (tags or meta\$1data\$1 or tag or mark\$1up\$1 or characteris\$4 or descript\$4) & US-PGPUB;
UPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 24 \\
& 18: 12
\end{aligned}
\] \\
\hline S186 & 78 & S185 and S184 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { RPRS; } \\
& \text { EPO; JPO; } \\
& \text { RERWENT; } \\
& \text { IBM IDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 18012 / 01 / 24 \\
& 18: 12
\end{aligned}
\] \\
\hline S187 & 1661 & (combin\$4 or merg\$4) near2 (data\$1 near3 set\$3)) same (differ\$4) & US-PGPUB;
USAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 12: 36
\end{aligned}
\] \\
\hline S188 & 268 & S187 and @ay<"2001" & \[
\begin{aligned}
& \begin{array}{l}
\text { US-PGPUB; } \\
\text { USPAT; } \\
\text { PRSS; } \\
\text { EPO; JPO; } \\
\text { DERWENT; } \\
\text { IBM TDB }
\end{array},
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 12: 37
\end{aligned}
\] \\
\hline S189 & 7 & (xml\$1 or mark\$1up\$1 or htm|\$1) and S188 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; ; } \\
& \text { DRMWNTNT; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 12: 37
\end{aligned}
\] \\
\hline S190 & 113 & & \[
\begin{aligned}
& \text { USPGPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 12012 / 01 / 25 \\
& 12: 54
\end{aligned}
\] \\
\hline S191 & 85 & S190 and (mark\$1up\$1 or html\$1 or xml\$1 or sgml\$1 or (name adj3 valu\$3 (adj pai\$3)) & \[
\begin{aligned}
& \text { USPGGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 12: 55
\end{aligned}
\] \\
\hline S192 & 66 & S191 and (combin\$4 or merg\$4 or transform\$4 or translat\$4) & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 12: 56
\end{aligned}
\] \\
\hline S193 & 40 & S191 and ((combin\$4 or merg\$4 or Stransform \(\$ 4\) or translat\$4) same (data \(\$ 4\) or number \(\$ 4\) or value \(\$ 4\) or digit\$4)) & \[
\begin{aligned}
& \text { US-PGPBB } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 12: 57
\end{aligned}
\] \\
\hline S194 & 1 & \(\sqrt{(12 / 222752) . A P P .}\) & \[
\begin{aligned}
& \text { US-PGPPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 13: 38
\end{aligned}
\] \\
\hline S195 & 1 & (09/573778).APP. & \[
\begin{aligned}
& \text { US-PGPPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 13: 39
\end{aligned}
\] \\
\hline 5196 & 1 & /"6223189").PN. & US-PGPUB; & OR & OFF & \(3^{2012 / 01 / 25}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \[
\begin{aligned}
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & & & 13:51 \\
\hline S197 & 0 & (63/397967).APP. & \[
\begin{aligned}
& \text { |S-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 13: 54
\end{aligned}
\] \\
\hline S198 & 1 & ("6339767").PN. & \[
\begin{aligned}
& \text { US-PGPPB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\left\{\begin{array}{l}
2012 / 01 / 25 \\
13: 54
\end{array}\right.
\] \\
\hline S199 & 1 & (55461708 ").PN. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 03
\end{aligned}
\] \\
\hline S200 & 2 & ("6621505") or ("5581686")).PN. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 12
\end{aligned}
\] \\
\hline S201 & 16518 & ((transfor\$4 or translat\$4 or convert\$4) near3 (numerical\$4 or number\$2 or value\$4)) same (format\$4) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT IBM TDB & OR & OFF & \[
12012 / 01 / 25
\] \\
\hline S202 & 5336 & S201 and @ay<"2001" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DRWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 18
\end{aligned}
\] \\
\hline S203 & 252 & (format\$4) near2 (numerical\$4 or values \(\$ 4\) or numbers\$4)) same (uniform\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USAT; } \\
& \text { PRSS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { BM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 19
\end{aligned}
\] \\
\hline S204 & 13 & S203 and S202 & US-PGPUB: USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 20
\end{aligned}
\] \\
\hline S205 & 39449 & (translat\$44 or convert\$4 or
transform \(\$ 4\)) near3 (measuremen\$4) & US-PGPUB;
UPPAT;
FPRS;
EPO; JPO;
DRWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 23
\end{aligned}
\] \\
\hline S206 & 69 & S187 and S205 & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 201 / 01 / 25 \\
& 14: 24
\end{aligned}
\] \\
\hline S207 & 1427 & (data\$4) near3 (conver\$4 or transla\$4)) same (metric\$4) & \begin{tabular}{|l|}
\hline US-PGPUB; \\
USPAT; \\
FPRS; \\
EPO; JPO; \\
DRWENT; \\
IBM TDB
\end{tabular} & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 26
\end{aligned}
\] \\
\hline S208 & 5 & S207 and S187 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { UPAT; } \\
& \text { FPRS; JPO; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 26
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \[
\begin{aligned}
& \text { DERWENT;| } \\
& \text { IBM TDB }
\end{aligned}
\] & & & \\
\hline 5209 & 7865 & (combin\$4 or merg\$4) near2 (data\$1 near3 set\$3)) & US-PGPUB; USPAT; FPRS; EPO; JPO; DERWENT; IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 27
\end{aligned}
\] \\
\hline S210 & 17 & S209 and S207 & US-PGPUB;
USPAT;
IPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 14: 27
\end{aligned}
\] \\
\hline S211 & 123 & ((combin\$4 or merg\$4) near3 (document\$4 or \(\mathrm{xml} \$ 1\) or sgml\$1 or htm|\$1)) same (differen\$4 near2 format\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USAT; } \\
& \text { IPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\frac{2012 / 01 / 25}{15: 15}
\] \\
\hline 5212 & 13187 & ((combin\$4 or merg\$4) near3 (document\$4 or \(\mathrm{xml} \$ 1\) or sgml\$1 or htm|\$1)) & \[
\begin{aligned}
& \hline \text { LS-PGPUB; } \\
& \text { SPPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { ERWENT; } \\
& \text { IBM TTB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 24
\end{aligned}
\] \\
\hline S213 & 13501 & (combin\$4 or merg\$4) near3 (document \(\$ 4\) or \(\mathrm{xm} \mid \$ 1\) or sgm| \(\$ 1\) or htm|\$1 or mark\$1up\$1)) & US-PGPUB;
UPPAT;
FPRS;
EPO; JPO;
DRENENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 24
\end{aligned}
\] \\
\hline S214 & 31341 & (Combin\$4 or merg\$4 or join\$4 or fus\$4) near3 (web\$1document\$4 or web\$1pag\$4 o or \(\mathrm{xml} \$ 1\) or sgml\$1 or htm|\$1 or mark\$1up\$1)) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { UPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 26
\end{aligned}
\] \\
\hline S215 & 3690 & (combin\$4 or merg\$4 or join\$4 or fus\$4) near3 (web\$1document\$4 or web\$1pag\$4 or xml\$1 or sgml\$1 or htm|\$1 or mark\$1up\$1)) & US-PGPUB;
吕PAT;
FPRS;
EPO; JPO;
BERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 26
\end{aligned}
\] \\
\hline S216 & 4811 & (combin\$4 or merg\$4 or join\$4 or
fus \(\$ 4\) or assemble\$4) near3
(web\$1document \(\$ 4\) or web \(\$ 1\) pag \(\$ 4\) or
xml\$1 or sgm \(\$ 1\) or html \(\$ 1\) or
mark \(\$ 1\) up \(\$ 1\))) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 27
\end{aligned}
\] \\
\hline S217 & 14160 & (web\$1document \(\$ 4\) or web\$1pag \(\$ 4\) or xml\$1 or sgml\$1 or htmi\$1 or mark\$1up\$1)) same ((format\$4 or style\$4 or type\$4 or languag\$4) near2 (differ\$4 or disimi\$4 or unlike\$4)) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 28
\end{aligned}
\] \\
\hline S218 & 61916 & (web\$1document\$4 or web\$1pag\$4 or xml\$1 or sgm|\$1 or htm|\$1 or mark\$1up\$1)) same (numerical\$4 or numbers \(\$ 4\) or value \(\$ 4\) or digit \(\$ 4\) or & US-PGPUB;
USPAT;
FPRS; JPO;
EPO; & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 30
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Imeasuremen \(\$ 4\) or metric \(\$ 4\) or sum \(\$ 4\) or total\$4) & \[
\begin{aligned}
& \text { |DERWENT: } \\
& \text { IBM TDB }
\end{aligned}
\] & & & \\
\hline S219 & 857 & S218 and S217 and S216 & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 31
\end{aligned}
\] \\
\hline S220 & 107 & S219 and @ay<"2001" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 15: 33
\end{aligned}
\] \\
\hline S221 & 38 & (rdml or (reusable adj marke\$1up)) & \begin{tabular}{l}
US-PGPUB; \\
\hline USPAT; \\
FPRS; \\
EPO; JPO; \\
EERWENT; \\
IBM TDB
\end{tabular} & OR & OFF & \[
\frac{2012 / 01 / 25}{15: 58}
\] \\
\hline 5222 & 17585 & ```
((translat$4 or transfor$4 or convert$4)
near3 (web$1document$4 or
web$1pag$4 or xml$1 or sgml$1 or
htm/$1 or mark$1up$1))
``` & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
RERWENT;
IBM TDB & OR & OFF & \[
\int_{17: 12}^{2012 / 01 / 25}
\] \\
\hline S223 & 0 & S222 and ls216 &  & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 17: 13
\end{aligned}
\] \\
\hline S224 & 4811 & (combin\$ \(\$ 4\) or merg\$4 or join\$4 or
fos \(\$ 4\) oassemble \(\$ 4\) near3
(web \(\$ 1\) document \(\$ 4\) or web \(\$ 1\) pag \(\$ 4\) or
xml\$1 or sgml \(\$ 1\) or htmm \(\$ 1\) or
mark \(\$\) lup \(\$ 1)\) ) & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 17: 13
\end{aligned}
\] \\
\hline S225 & 1567 & S222 and S224 & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DREWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& \frac{2012 / 01 / 25}{17: 13}
\end{aligned}
\] \\
\hline S227 & 198 & S225 and @ay<"2001" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TID & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 17: 13
\end{aligned}
\] \\
\hline S228 & 106 & S225 and @ay<"2000" & US-PGPUB;
USPAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 17: 14
\end{aligned}
\] \\
\hline S229 & 59 &  & \[
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { US-PGPPB; } \\
\text { USPAT; } \\
\text { USOCR }
\end{array}\right.,
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 17: 21
\end{aligned}
\] \\
\hline S231 & 9 & S229 and @ay<"2000" & US-PGPUB: & R & OFF & 2012/01/25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \[
\begin{aligned}
& \text { ISPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & & & 17:22 \\
\hline S232 & 1 & (09/573780).APP. & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 25 \\
& 18: 06
\end{aligned}
\] \\
\hline S237 & 2 & (copy\$4 and past\$4) near3 (numerical\$4 same value\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
12012 / 01 / 26
\] \\
\hline S238 & 111 & (copy\$4 and (paste or pasting)) near3 (number\$2 or values\$3 or numeral\$3) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 08
\end{aligned}
\] \\
\hline S239 & 182 & (cop\$4 and (paste or pasting)) near3 (number\$2 or values\$3 or numeral\$3) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 09
\end{aligned}
\] \\
\hline S240 & 1625 & (merge\$4)near3 (format\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 09
\end{aligned}
\] \\
\hline S241 & 1625 & (merge\$4) near3 (format\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 09
\end{aligned}
\] \\
\hline S242 & 0 & S241 and S239 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
12012 / 01 / 26
\] \\
\hline S243 & 1207 & (cop\$4 and (paste or pasting)) near3 (number\$2 or values\$3 or numeral\$3 or text\$2) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 10
\end{aligned}
\] \\
\hline S244 & 3 & S243 and S241 & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 10
\end{aligned}
\] \\
\hline S245 & 5077 & (merge\$4 or keep\$2) near3 (format\$4) & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 11
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & DERWENT;
IBM TDB & & & \\
\hline S246 & 16 & S245 and S243 & \[
\begin{array}{l|}
\begin{array}{l}
\text { US-PGPUB } \\
\text { UPAT; } \\
\text { FPRS; } \\
\text { EPO; JPO; ; } \\
\text { DERWENT; }
\end{array}, \begin{array}{l}
\text { IBM TDB }
\end{array}
\end{array}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 11
\end{aligned}
\] \\
\hline S247 & 2362 & (cop\$4 and (paste or pasting)) near3 (number\$2 or values\$3 or numeral\$3 or text\$2 or character\$4 or conten\$4) & \[
\begin{array}{|l|}
\hline \text { US-PGPUB } \mid \\
\text { UPAT; } \\
\text { PPRS; } \\
\text { EPO; JPO; } \\
\text { DERWENT; } \\
\text { IBM TDB }
\end{array}
\] & OR & OFF & \[
12
\] \\
\hline S248 & 26 & S247 and S245 & US-PGPUB;
UPAT;
FPRS;
EPO; JPO; ;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 12012 / 01 / 26 \\
& 11: 14
\end{aligned}
\] \\
\hline S249 & 10 & S248 not S246 & US-PGPUB;
USAT;
PPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
3
\] \\
\hline S250 & 140 & ((cop\$4 and (paste or pasting)) near3 (number\$2 or values\$3 or numeral\$3 or text\$2 or character\$4 or conten\$4)) same (mark\$1up\$1 or xml\$1 or htm|\$1) & US-PGPUB;
USAT;
FPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 16
\end{aligned}
\] \\
\hline S251 & 118161 & ( (transform\$4 or translat\$4 or convert\$4) near3 (text\$2 or character \(\$ 4\) or number \(\$ 2\) or digit \(\$ 4\) or numeral\$2)) same (format\$4 or styl\$4 or font\$2 or color\$2 or size\$4) & US-PGPUB;
USAT;
IPRS;
EPO; JPO;
DERWENT;
IBM_TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 28
\end{aligned}
\] \\
\hline S252 & 5738 & (paste or pastin\$4) near3 (text\$2 or number\$2 or numeral\$2 or character\$4 or digit\$4) & US-PGPUB;
USPAT;
IPRS;
EPO; JPO;
DERWENT;
IBM TDB & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 29
\end{aligned}
\] \\
\hline S253 & 483 & S252 and S251 & US-PGPUB;
UPAT;
IPRS;
EPO; JPO;
DERWNT;
IBM TDB & OR & OFF & \[
1 \begin{aligned}
& 2012 / 01 / 26 \\
& 11: 29
\end{aligned}
\] \\
\hline S254 & 53 & S253 and @ay<"2000" & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { RERWENT; } \\
& \text { IBM TDB }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 11: 29
\end{aligned}
\] \\
\hline S255 & 2 & ("5956737") or ("5838906")).PN. & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR }
\end{aligned}
\] & OR & OFF & \[
\begin{aligned}
& 2012 / 01 / 26 \\
& 12: 18
\end{aligned}
\] \\
\hline S256 & 1 & (09/573780).APP. & US-PGPUB; & OR & OFF & 2012/01/26 \\
\hline
\end{tabular}


1/27/2012 6:22:03 PM
C:\Users \(\backslash\) mamin \(\backslash\) Documents EAST \(\backslash\) Workspaces \(\backslash 12222752\).w sp


A comparison of business process modeling methods

... Join node is for synchronous combine ofinputs, whereas merge node is for asynchronous ...
divergence and convergence of sequence flow, just like traditional decision, merge, fork andjoin. ... Most ofthe models adopt XML (Extensible Markup Language) as their serial representation ...

prfy Versioning Ontine Markup Documents in a Networked Writing Classroom

SOw Wom wowhony
... Although there are many systems that employ markup that allows multiple users to correct an electronic document as if they were marking up a printed copy of the ... Therefore, a support function is needed to join separated CCML documents and to merge CCML documents ...
Gumer - Reserames - Xow as Eres

\section*{Create email alert}
```

Previous }\quad\23450%291011121
Next

```
merge or combine markup documen Searcl.

About Google Scholar - All About Google - Ay Citations

\begin{tabular}{|c|}
\hline Quembun \\
\hline images \\
\hline Miaps \\
\hline Viceos \\
\hline News \\
\hline Shoppirg \\
\hline Blogs \\
\hline ivore \\
\hline Any time \\
\hline Past hout \\
\hline Past 24 hours \\
\hline Past wesk \\
\hline Past monti \\
\hline Past year \\
\hline Custom mase．． \\
\hline From： \\
\hline To：atness \\
\hline 84：5esom \\
\hline Sxen \\
\hline
\end{tabular}


Ghe Fomat PDF／Adobe Acrobat－Wuck View

Sorted by date

A！：sesite
Sites with images
Pelated searches
Dictionary
Reading level
Mearby
Translated toreign page
Verbatim
Beset tools
（bonson＠uinues）Virginia Contio Gallego（virginiacortjo＠decduhu es）Tomas Escobar Fodriguez rew

Hem 60t－Extibis

 －Related Documents，\(x, x, x,-\cdots, x, x, x, x, \cdots, X,-\cdots, X, X\)（10 \()\) ineractive Data File，\(x\) ， \(x, x, x_{n}\)

XBRL：News Pageg－Business Exchange

An 1．sTo－XBRL－updated newe and aticles．Find the intest XBRL iniormation for business protessionals．Given that SES has recenty mandated the use of XBRL for ．．．

Downoad xor convener ree 1 － 1 sotwares－Yankepownoadoom

Aar ：\(: 567-1\) downloads－Xbrl converter freeware and Xbrl converter shareware． Get the \(x\) brl converter free triais ordered by downoad popuiarity．

Dovndoad Xbr tooltes 1－3 sofwares－Yankepoonhoadcom Whe yancorownetsomburwh－ochmi
Ms：：：：\％eन－ 3 downhads－Xbrl too！treware and Xbrl tool shareware，Get the xbrl tool free trias ordeted by download popularity．

\section*{K88징}
wow ratoraw－Translete this page

缷本市塇…

Gre XERL Sofvere
Creaie Exend
XBRL Docs \＆Financis
XBRL Finmolal Renoring
www．sumbreacom
industy Leading Tagging Solu
ano Hevewers cuide
SEC Beporting Sofmare
W6Howsucom control of external reporting

Engr and xpan Service mwnemarcuncos om
Trust us to make it easy Quali

See your ach here

\section*{Cobogle}

Searn

swoybing
images
Maps
Videos
News
Shopping
Books Elogs

Fights
Discusaione
Recipes
Applicatioris
Paterits
Fewer

Any time
Past hour
Past 24 hours
Past wosi
Past mont
Past year
answom Mnss...
From

\(64: 328004\)
sowieb

Sorted by date
as sesuk
Sites with images
Pelated searches
Dictionary
Readrig level
Mearby
Translated foreign pages
Verbatim
Peset tocio

Places The Evolution of Web hosungens: The Ascent of Xic by Dan
Any time-nec 31, 1999
[PDF] MLLPPE-28O01C - Fial
 Fs amat: PDF/Adobe Acrobat
Way \(z\), tse document so that the produced (orinted or dispiayed) copy corresponds to the .... symax, optional features, and capacity recuirements of a document's markup. ... and FOSis existing for the types of data being acquired, they should be used. ..... A style sheet combining all the elements style informaton as well as some page ...

ETD Electronic Thesis an..
suvenurewmberghonh
War \(6,: c y\) - Electronic Thesis and Dissentation Markup Lancuage (ETD-ML) ... The system devermines how to format the data and where the links go. ... Fist in your file "thesis.etd" you make the document type dectaration: <! ... Inevitably, software developers would join, and inevitaby, it would affert their writing in extreme ways
matoveragesomeonnomasenhem
Sto 2i. iser - HTML is the whutous data format ior Web pages; most inomation . It was designed to be reusable for batch processors to produce books, reports, and ... This markup minimization erred on the side of making these documents easier to ...... And yet the ability to combine resources that were developed independently is an ...
 whwhemTubosthts ehbestere
Fhe Fomat. PDF/Adobe Acrobat - Qucix Vew
Oy Gumbaco - Gted by 7 - Reated andes
Se: 1Ber - A Model for Mark-up and Fiendering, Frank Mitelbach and ... LATEX please join the propects electronic discussion ist. To do this data writhen in a certain "isnguage". These tags .... sncoded in the source document but is produced from tags ...
-yoerext iaxkus Lamuage - \(20-\) Fec Evitot

Sep et, 1ges . Abstract The Hypertext Markup Language (HTML) is a smple
markup .... (HTML) is a simple data format used to create hypetext documents that are poitable from one ... An SGML document consists of data characters and markup; the markup .... If muhiple META slements are provided with the same name, their combined ...
[PaF] Sarkup Enhancement: Converting CEE Dictionaries into TEl, an...

Ga Fmat PDFiAdobe Acrobat - Suld Vent
fTatheve - -se - Oted by 1 - Betated articies
Ang 2s. hes - This paper describes the process of markup enhancement for six Gentrai and Eastern Europsan ... inc produced by the Slovenc pubishing house DZS, and based on ... transiating from original DZS SGML documents into a TEI dictonany document and ... cialized DTD that can serve as a general model for lexical data, and ...

Frequenty-Asked Questons ebout the Extensble harkhe Lenguage mi stmart mesthm
Teo :0, :2es - When you join a mailng hat you will be sent detals ci how to use it. .. XML. allows authors and oroviders to design their own document markup instead of being ... Ar application is free to use the data to produce an image of the part, generate a...
```

[PmF An ROF Editor and Poral for the Semantic Wet

```

```

Fa Fomat. PDF/Adobe Acrobat - Quck Vjew
by A kalympu - Gted by z - Related aricles
Ge20, TOO - combines WYSWIG HTML edting with a semantic web portal fot
guided ... mechanism for presenting data to human users. While ... Web aliows users
to create precise, unambiguous ... semanticaliy markup theil documents, we need a
tool..
Emoty elements in SGML HTML XNL and XHTAL

```

```

Sec ts tB% - More importantly it flustates the implioztons of the dession to make
HTML ... People who try write HTML documents so that contorm to XHTML ... The
vaidator regards the ">" character as character data, which of course is not ... Note
that athough markup is seguential, !near, it is mtended to express tree-like
structures.
How to White Dos Comments for the Javadoc Tool

```

```

-tas, 50% - This document describes the style guide, tag and mage conventons
we use in ... When this applet attempts to draw the image on * the screen, the data wi
be loaded..... In genera if the markup is intended to affect or produce
corumentation, nnn file that Tine javadoc too wili merge into tie documentation that it
produces.
Tip:These results include words similar to the words in your search. Show resufts that
include tie gract words in vour segrch.
Previgus : 2334
Achanced search: Search Helo Give us meoduach
Gorgle Home Adverting Programs Businesa Solutiors Frvary

```

\title{
[PT Las Cuentas Anuales y ei Fegistro Mercant - XBEL Espana \\  \\ Fio Gomat Mcrosot Powerpoint - Guck View \\ May 2s, 108- XBRL y el Depósito de Cuentas. Objetivo Éásico: Facilitar la gestión \\ de la PYME. Gomicriza la presentacion de depositos en sopote pape incluyeno
} los ...

\author{
12345678510 Nex \\ Acivanced search Searh Help Give us ieeciback \\ Gough Hone Advertising Frograms Business Solutons \\ New Privany Ferms About Googlo
}


Searm:


Show search toois

Computational Aspects ofResilient Data Extraction from Semistructured So


Beport Data Exiraction astera.com
mwo astaramonernise
Extraci reports data and integrate seamlessly with enterprise data
Website Data Extraction. Extract Accurate Data instantly.

Get Usable Data from Any Site
Frof - About Us - Schedule a Demo - Contact an Expert


Ge Gmat PDF/Adobe Acrobat - Guck Vien
by it bubla - Gter by 23 - Remare sricles
Computational Aspects of Resilient Data Extraction trom Semistructured
Sources. *. (Extended Abstract), Hasan Davulcu. Guizhen Ysiog. Michaei Kifer ...


Te Gomat Adobe PostScript - View as HTML
by i bavicu - Gred by 23 - Reinter sricles
Computational Aspects of Resilient Data Extraction. from Semistructured
Sources (Extended Abstract), Hasan Davilou. Guiahen Yang. Michael Kiter ...
[PDF Contputational Aspects ot Besidignt Eata Extraction front

Gs omat PDF/Adobe Acrobat - Gurk Yiew

Computational Aspects of Resilient Data Extraction from Semistructured
Sources (Extended Abstract), Hasan Dovilu, Guithen Yang*. Michaei kiter .

Computabona aspects of fesphent deta axtraction from .


... Automatic data extraction from semistructured sources such ...
627 The Lorel Quey Language lor Semistructured Data - Abiteboul, Quass, et ...
442 Wraper induction for intormation extraction - Kushmerick, Weid et al ...

Computailomat aspects of resibfent data extrantion from semistru.
ham oroctarmmmometas 335215

Computational aspects of resilient data extraction from semistructured sources ( extended abstract), Published by ACM 2000 Articie. Bibiometrics Data ..


Aus : , 2910 . . Computational Aspects of Resilient Data Extraction from Semistructured Sources

Gompatationiai Aspects of Resifgem Gata Exfraction from-Arnet.
brmenterorbuewphomendwa4gre
Davuicu, H., Yarg, G., Kifer, M., and Ramakrishnan. I.V. Computational Aspects of
Resilient Data Extraction from Semistructured Sources. In Proceedings of ..

PODS 2000: 136-144

Computational Aspects of Resilient Data Extraction from Semistructured
Sources ... Craig A. Gnoblock: Wrapper Generaion for Semi-structured internet
Sources. ...
Potection Eehnoues fom intornauon \(2 x\) rackon

by G areo - W0 - Gited by 1 - Felated antien
ar is, woy - Infomation extraction techologies meet the market need for ..
Aspects of Resilient Data Extraction from Semistructured Sources, PODS, 2000.

DRLife: Commutationa\} Aspects of Resifient Oaga Exfraction from...

Computational Aspects of Resilient Data Extraction from Semistructured
Sources. Bing Google Google Scholar Yahool Source: PODS. Year: cooo. Pages:
136-...
Ac. Why this ad?
Web Desa Extraction
wow cthomationswwhere comextrso
Fast, Powerful, Acurate \& Automated Data Extraction. Get Free Trial NOW
Free Tria - Talk to us


About Google

\section*{NPL Search Results}
```

20/5/1 (Item 1 from file: 8)

```

DIALOG(R)Flle 8: Ei Compendex (R)
(c) 2012 Elsevier Eng. Info. Inc. All rights reserved.
```

Managing a digitallibrary of legislation
Arnold-Moore, T.; Anderson, Ph.; Sacks-Davis, R.
Corresp. Author/ Affil: Arnold-Moore, T.: RMIT
Conference Title: Proceedings of the 1997 2nd ACM International Conference on Digital Libraries
Conference Location: Philadelphia, PA, USA Conference Date: 19970723-19970726
Sponsor: ACM
E.l. Conference No.:47163
Proceedings of the ACM International Conference on Digital Libraries (Proc ACM Int Conf Digital LIbr
) 1997(175-183)
Publication Date: 19970101
Publisher: ACM
Document Type: Conference Paper; Conference Proceeding Record Type: Abstract
Language: English Summary Language: English
Number of References:28

```

We provide an overview of the Themis system, a commercial implementation of a digital library of legislation. Themis uses SGML to store legislation. This allows a single source document to be exported in a number of different formats and presentations. Themis also allows access to different versions of legislation by specifying a point-in-time at which the law is required. We discuss how this is achieved in Themis and how versioning impacts the storage of fragments of documents and management of references within and between documents.
```

20/5/2 (Item f from file: 35)
DIALOG(R)File 35: Dissertation Abs Online
(c) 2012 ProQuest Info\&Learning. All rights reserved.

```

Conducting Internet inquiry projects: Comparing the motivation and achievement of two
groups of high-school biology students
Author: Jones, Brett David Degree: Ph.D.
Year: 1999
Corporate Source/ Institution: The University of North Carolina at Chapel Hill (0153)
Adviser: Gary B. Stuck
Source: Volume 6012A of Dissertations Abstracts International.
PAGE 4317 . 147 PAGES

The purpose of this study was to determine how different types of Internet access and different amounts of online support affected high-school biology students' motivation and achievement during an Internet inquiry project. Four classes of ninth- and tenth-grade honors students ( \(\mathrm{N}=100\) ) participated in an Internet inquiry project in which they were presented with an ecology question that required them to make a decision based on information that they gathered, analyzed, and synthesized from the Internet and their textbook. Students then composed papers with a rationale for their decision. Students in one group had access to pre-selected relevant Web sites, unlimited access to the entire Internet, and were provided with less online support (less structured group). Students in the other group had access to only pre-selected relevant Web sites and were provided with more online support that included a description of what they should have been looking for once they got to a Web site and how much time they should have spent on each section of the project (more structured group). The hypotheses were that students in the less structured group would be more motivated due to their greater choice of Web sites, but would achieve less than the more structured group because, they would spend time searching the Internet. The study was also designed to provide recommendations to teachers interested in implementing effective Internet inquiry projects.

Data sources included motivation questionnaires, ecology achievement tests, a computer
experience questionnaire, an ecology project questionnaire, students' ecology papers, time sheets, fieldnotes, and interviews with the teacher and the students. Surprisingly, students in the less structured group did not spend much time searching the Internet. This might explain why there were no significant differences in achievement between the two groups. Furthermore, students in both groups did not differ in their level of motivation. Two of the most important recommendations were: (1) to provide students with online support on the project Web page; and (2) to allow students to search the Internet for information in addition to providing them with pre-selected links to relevant Web sites.

20/5/3 (Item 1 from file: 2)
DIALOG(R)File 2: INSPEC
(c) 2012 The IET. All rights reserved.

Type checking higher-order polymorphic multi-methods
Author(s): Bourdoncle, F.'; Merz, S.
Affiliation(s):
\({ }^{1}\) Centre de Math. Appliquees, Ecole des Mines de Paris, Valbonne, France
Book Title: Conference Record of POPL '97: The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages
Inclusive Page Numbers: 302-15
Publisher: ACM, New York, NY
Country of Publication: USA
Publication Date: 1997
Conference Title: Proceedings of POPL'97: 24th ACM SIGPLAN-SIGACT
Conference Date: 15-17 Jan. 1997
Conference Location: Paris, France
Conference Sponsor: ACM
Number of Pages: viii+497
Language: English
Document Type: Conference Paper (PA)
Presents a new predicative and decidable type system, called \(M L_{<=}\), that is suitable for languages that integrate functional programming and parametric polymorphism in the tradition of ML, and classbased object-oriented programming and higher-order multi-methods in the tradition of CLOS (Common Lisp Object System). Instead of using extensible records as a foundation for object-oriented extensions of functional languages, we propose to reinterpret ML datatype declarations as abstract and concrete class declarations, and to replace pattern matching on run-time values by dynamic dispatch on run-time types. \(\mathrm{ML}_{<==}\)is based on universally quantified polymorphic constrained types. Constraints are conjunctions of inequalities between monotypes built from type constructors organized into extensible and partially ordered classes. We give type checking rules for a small, explicitly-typed functional language in the style of XML with multi-methods, show that the resulting system has decidable minimal types and discuss subject reduction. Finally, we propose a new object-oriented programming language based on the \(\mathrm{ML}_{\mathrm{s}}=\) type system. ( 41 refs.)
```

20/5/5 (Item 1 from file: 60)
DIALOG(R)File 60: ANTE: Abstracts in New Tech \& Engineer
(c) 2012 CSA. All rights reserved.
Multi-window internet search with webpage preload
Swahn, Alan Earl, USA
Document Type: Patent Record Type: Abstract
Language: English

```

Methods are described to preload a plurality of webpages from a hyperlink list either previously saved or returned by one or more search engines, where said webpages are displayed on demand in a web browser. The web browser has been augmented to display multiple webpages simultaneously and to allow changing the number of webpages displayed. Any displayed portion of this plurality of webpages can be captured to a standard graphics format for later use. The viewing magnification
factor can be changed for this plurality of webpages both globally for preloaded webpages not displayed and selectively for displayed webpages. The hyperlinks associated with any portion of this plurality of webpages can be saved as a list of hyperlinks (group bookmark) for later retrieval. A queue of favorite webpages can be dynamically created from this plurality of webpages by selecting one or more webpages and having the associated hyperlinks to said selected webpages appended to a queue of hyperlinks which is available for preloading, display, or saved as a group bookmark.

15/3,K/1 (Item 1 from file: 275)
DIALOG(R)File 275: Gale Group Computer DB(TM)
(c) 2012 Gale/Cengage. All rights reserved.

Take a meeting in a virtual room on the Net. (Instinctive Technology's eRoom workgroup software) (Software Review) (Evaluation)(Brief Article)
Plain, Stephen W.
Windows Sources, v4, n12, p134(1)
Dec, 1997
Document Type: Evaluation Brief Article
Language: English Record Type: Fulltext
Word Count: 614 Line Count: 00050
be shipping by the time you read this.
eRoom is a tool strictly for closed workgroups. You specify who can participate in a workgroup,
then set up virtual "rooms"--Web pages that contain a number of different types of objects: files, discussions, polls, announcements, and links to Web pages and other eRooms. You can set up Version Organizers that track documents and even...

15/3,K/2 (Item 2 from file: 275)
DIALOG(R)Fle 275: Gale Group Computer DB(TM)
(c) 2012 Gale/Cengage. All rights reserved.

InfoAccess' HTML Transit 2.0 is a champ at converting documents in bulk for the Web. (simple Web-authoring tool) (Software Review) (Brief Article)
Rapoza, Jim
PC Week, V13, n41, p102(2)
Oct 14, 1996
Document Type: Brief Article
Language: English Record Type: Fultext
Word Count: 480 Line Count: 00040
select which document styles would represent the top two heading styles in the HTML document. We could configure it to break a long document into several HTML pages, and we could add specific text and E-mail addresses to the bottom of every page.

After creating the template with this single document, we were able to convert a large number of documents that had similar formatting.

The main interface offers many more configuration options, such as how to handle graphics, table of contents and indexes, and navigational buttons. However, all of...

\section*{15/3,K/6 (Item 1 from file: 148)}

DIALOG(R) File 148: Gale Group Trade \& Industry DB
(c) 2012 Gale/Cengage. All rights reserved.

NCM: Trade credit protection -- quotes via NCM'S website.
M2 Presswire, NA
April 13, 1999
Language: English
Record Type: Fulltext
Word Count: 502 Line Count: 00044
mailing NCM a short proposal form.
NCM provides domestic and export credit insurance to companies of all sizes all over the world. Through its general website, www.nom. group.com, businesses can obtain information on the benefits of credit insurance (including access to finance and to a database of worldwide business intelligence): multinationals can learn about the tailored global policy, available in nine different languages and nineteen different currencies; large to medium-sized organisations about the international policy specially formulated for their needs; and small and growing businesses about the Compact Policy.
"The credit...


\begin{tabular}{|c|c|}
\hline Bing & merge or merg markup document with number format \\
\hline Weo & Weo More\% \\
\hline \begin{tabular}{l}
SERO: merge or mave mark docement with . \\
Bmen whens ombine or mers makup cocument. Bas c:
\end{tabular} & \begin{tabular}{l}
 \\
Usin MS Worc Mal herge Feature Mcrosot Word \\
. General Formatting: Mail Merge. ... markup balloons not ... This is used to let you see how your data will appear in the actual document. The number with the arrows on ... \\

\end{tabular} \\
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
Bese \\
Gese Bl Fumas
\end{tabular}} & \begin{tabular}{l}
Tan Erowser: merce-docmmem-maintain-fomating-neaderfooterphae... \\
merge-document-maintain-formatting-header-footer-page ... com asp vb document combine; ... merge document maintain formatting header footer page number; merge field; ... \\
 page
\end{tabular} \\
\hline & \begin{tabular}{l}
Using Kerge Fiens Microsot Word \\
When creating a mail merge document, you use merge fields to indicate where the information from each record of your data source should be inserted. This is easy to ... \\

\end{tabular} \\
\hline & \begin{tabular}{l}
Mail Merge anc Access tormat of telephone mumber \\
Mail Merge and Access format of telephone number Page showing the last \(10:-\)... Microsoft Word Document Properties \& Formatting Members, \\

\end{tabular} \\
\hline & \begin{tabular}{l}
Helowih Fomatina Percengaes n Mail kerge Master Document... \\
Help with Formatting Percentages in Mail Merge Master Document Microsoft Office ... >> Nonetheless, I've bookmarked your writeup on mail merge formatting \\

\end{tabular} \\
\hline & \begin{tabular}{l}
Customize Word 2002 \\
... is the use of "markup balloons" in Print ... or be formatted the same as text in the destination document. Merge formatting when pasting ... \\

\end{tabular} \\
\hline & \begin{tabular}{l}
Mrit Merse: Pon - -MSON - Explore Whdows Web, Olowd, ne ... \\
You can remedy this problem in your Main merge document by adding number and data format switches to ... Use formatting switches to change how dates and numbers are ... \\

\end{tabular} \\
\hline & \begin{tabular}{l}
Comparing Text Fes cor Typedbested Tex) \\
Merge comes with a number of ... that you can drag and drop a pair of Microsoft Word documents onto a Merge ... Merge is not therefore able to show you formatting ... \\

\end{tabular} \\
\hline & \begin{tabular}{l}
Barr Machonnells Toobox for Worderfect for WindoweMacros.... \\
"You need to include any 'resetting' formatting (page number, margins ... How to set Page Numbering in a Multiple Page Merge Document for WordPerfect\&REG; 9. \\

\end{tabular} \\
\hline & \begin{tabular}{l}
Rebing of Formatine mabil merse \\
When I perform the merge, I lose the cell formatting and the numbers ... and the numbers appear in my merged document as numbers without commas or dollar signs and ... \\

\end{tabular} \\
\hline & Prev \(\begin{array}{llllllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { Next }\end{array}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[b]{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
(Use as many sheets as necessary)
\end{tabular}}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & & Application Number & 12/222,752 \\
\hline & & & & Filing Date & August 15, 2008 \\
\hline & & & & First Named Inventor & Russell T. Davis \\
\hline & & & & Art Unit & 2176 \\
\hline & & & & Examiner Name & Mustafa A. Amin \\
\hline Sheet & 1 & of & 2 & Attorney Docket Number & 07643.0002-02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{U.S. PATENTS AND PUBLISHED U.S. PATENT APPLICATIONS} \\
\hline \multirow[t]{2}{*}{Examiner Initials} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Cite } \\
& \text { Co }
\end{aligned}
\]} & Document Number & \multirow[t]{2}{*}{\begin{tabular}{l}
issue or \\
Publication Date MM-YYYY
\end{tabular}} & \multirow[t]{2}{*}{Name of Patentee or Applicant of Cited Document} & \multirow[t]{2}{*}{Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear} \\
\hline & & Number-Kind Code \({ }^{2}\) (if known) & & & \\
\hline M.A./ & & US-5,983,247 & 11-1999 & Yamanaka et al. & \\
\hline & & US-2003/0140045 & 07-2003 & Heninger et al. & \\
\hline & & US-6,424,980 & 07-2002 & lizuka et al. & \\
\hline & & US-5,721,847 & 02-1998 & Johnson, Jeffrey J. & \\
\hline & & US-5,371,675 & 12-1994 & Greif et al. & \\
\hline & & US-5,008,853 & 04-1991 & Bly et al. & \\
\hline & & US-6,910,017 & 06-2005 & Woo et al. & \\
\hline & & US-2003/0078883 & 04-2003 & Stewart et al. & \\
\hline & & US-6,446,048 & 09-2002 & Wells et al. & \\
\hline & & US-5,461,708 & 10-1995 & Kahn, Philippe R. & \\
\hline & & US-5,907,820 & 05-1999 & Pan, Shaoher X & \\
\hline & & US-6,014,643 & 01-2000 & Minton, Vernon F. & \\
\hline & & US-6,339,767 & 01-2002 & Rivette et al. & \\
\hline & & US-6,075,530 & 06-2000 & Lucas et al. & \\
\hline & & US-6,714,201 & 03-2004 & Grinstein et al. & \\
\hline & & US-6,408,430 & 06-2002 & Gunter et al. & \\
\hline & & US-5,530,942 & 06-1996 & Tzou et al. & \\
\hline & & US-6,223,189 & 04-2001 & Steffens et al. & \\
\hline & & US-5,701,400 & 12-1997 & Amado, Carlos Armando & \\
\hline & & US-5,987,469 & 11-1999 & Lewis et al. & \\
\hline & & US-5,581,686 & 12-1996 & Koppolu et al. & \\
\hline & & US-2001/0018694 & 08-2001 & Iwamoto et al. & \\
\hline & & US-6,621,505 & 09-2003 & Beauchamp et al. & \\
\hline & & US-6,631,402 & 10-2003 & Devine et al. & \\
\hline & & US-5,953,724 & 09-1999 & Lowry, David D. & \\
\hline & & US-5,737,739 & 04-1998 & Shirley et al. & \\
\hline & & US-5,895,476 & 04-1999 & Orr et al. & \\
\hline & & US-6,052,710 & 04-2000 & Saliba et al. & \\
\hline & & US-6,112,242 & 08-2000 & Jois et al. & \\
\hline & & US-6,173,272 & 01-2001 & Thomas et al. & \\
\hline & & US-6,173,316 & 01-2001 & De Boor et al. & \\
\hline & & US-6, 192,362 & 02-2001 & Schneck et al. & \\
\hline \(\stackrel{\square}{ }\) & & US-6,185,573 & 02-2001 & Angelucci et al. & \\
\hline
\end{tabular}

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. /M.A./
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{6}{*}{\begin{tabular}{l}
INFORMATION DISCLOSURE STATEMENT BY APPLICANT \\
(Use as many sheets as necessary)
\end{tabular}}} & \multicolumn{2}{|r|}{Complete if Known} \\
\hline & & & Application Number & 12/222,752 \\
\hline & & & Filing Date & August 15, 2008 \\
\hline & & & First Named Inventor & Russell T. Davis \\
\hline & & & Art Unit & 2176 \\
\hline & & & Examiner Name & Mustafa A. Amin \\
\hline Sheet & 2 & of & Attorney Docket Number & 07643.0002-02 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ U.S. PATENTS AND PUBLISHED U.S. PATENT APPLICATIONS } \\
\hline M.MA./ & US-6,212,494 & \(04-2001\) & Boguraev, Branimir K. & \\
\hline & & US-6,249,291 & \(06-2001\) & Popp et al. & \\
\hline & & US-6,317,783 & \(11-2001\) & Freishtat et al. & \\
\hline & & US-6,502,112 & \(12-2002\) & Baisley, Donald Edward & \\
\hline & & US-6,502,101 & \(12-2002\) & Verprauskus et al. & \\
\hline & & US-6,643,633 & \(11-2003\) & Chau et al. & \\
\hline & & US-6,718,216 & \(04-2004\) & Claussen et al, & \\
\hline & & US-7,650,355 & \(01-2010\) & Davis, Russell T. & \\
\hline & & US-7,421,648 & \(09-2008\) & Davis, Russell T. & \\
\hline & & US-7,512,875 & \(03-2009\) & Davis, Russell T. & \\
\hline & & US-7,401,076 & \(07-2008\) & Davis, Russell T. & \\
\hline & & US-2009/0083613 & \(03-2009\) & Davis, Russell T. & \\
\hline & US-2008/0028340 & \(03-2009\) & Davis, Russell T. & \\
\hline
\end{tabular}

Note: Submission of copies of U.S. Patents and published U.S. Patent Applications is not required.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{FOREIGN PATENT DOCUMENTS} \\
\hline Examiner Initials & Cite No. \({ }^{1}\) & \begin{tabular}{l}
Foreign Patent Document \\
Country Code \({ }^{3}\) Number \({ }^{4}\) Kind Code \({ }^{5}\) (if known)
\end{tabular} & Publication Date MM-DD-YYYY & Name of Patentee or Applicant of Cited Document & Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear & Translation \({ }^{6}\) \\
\hline & & & & & & \\
\hline
\end{tabular}


EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
APPLICATION \\
NMMBER
\end{tabular} & \begin{tabular}{c} 
FILING or \\
371 (c) DATE
\end{tabular} & \begin{tabular}{c} 
GRP ART \\
UNIT
\end{tabular} & FL FEE REC'D & ATTY.DOCKET.NO & TOT CLAIMS & IND CLAIMS \\
\hline \(12 / 222,752\) & \(08 / 15 / 2008\) & 2176 & 2580 & \(07643.0002-02\) & 27 & 5
\end{tabular}

22852
FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER
LLP
901 NEW YORK AVENUE, NW
WASHINGTON, DC 20001-4413

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)
Russell T. Davis, Bethesda, MD;
Assignment For Published Patent Application
E-Numerate Solutions, Inc.
Power of Attorney:
Arthur Garrett--20338
James Hammond--31964
Charles O'Rourke--26014
Jeffrey Berkowitz--36743
Robert Converse Jr--27432
Charles Van Horn--40266
Edward Yoches--30120
Richard Burgujian--31744

\section*{Domestic Priority data as claimed by applicant}

This application is a DIV of 09/573,778 05/18/2000 PAT 7421648
which claims benefit of \(60 / 135,52505 / 21 / 1999\)
and claims benefit of 60/183,152 02/17/2000
Foreign Applications (You may be eligible to benefit from the Patent Prosecution Highway program at the USPTO. Please see http://www.uspto.gov for more information.)

If Required, Foreign Filing License Granted: 09/04/2008
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US 12/222,752
Projected Publication Date: Not Applicable
Non-Publication Request: No
Early Publication Request: No

\section*{Title}

COMBINING REUSABLE DATA MARKUP LANGUAGE DOCUMENTS

\section*{Preliminary Class}

715

\section*{PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES}

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

\section*{LICENSE FOR FOREIGN FILING UNDER}

\section*{Title 35, United States Code, Section 184}

Title 37, Code of Federal Regulations, 5.11 \& 5.15

\section*{GRANTED}

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as```

