

Merrill Communications LLC
d/b/a Merrill Corporation

Exhibit 1006 pt. 1

H

TM

.,.. The definitive XML resource:

applications, products, and

technologies!

.,.. Leverage your Web and

intranet expertise with

structured information

.,.. CD-ROM: Unique trialware,

demos, examples, specs, and

more-plus 55 great, gen

uinely free XML software

packages

Adobe®
FromeMake~ +SGML

Free Trial with
XML Update

CHARLES F. GOLDFARB · PAUL PRESCOD

THE DEFINITIVE XML SERIES FROM CHARLES F. GOLDFARB

The
XML
Handbook™

©1998 THE XML HANDBOOK™

ISBN 0-13-081152-1
90000

9 780130 811523

<
f~f~) The Charles F. Goldfarb Series on
,£1!! Open lnformaialon Nanaaemen•

"Open Information Management" (OIM) means managing informa
tion so that it is open to processing by any program, not just the pro
gram that created it. That extends even to application programs not
conceived of at the time the information was created.

OIM is based on the principle of data independence: data should
be stored in computers in non-proprietary, genuinely standardized
representations. And that applies even when the data is the content of
a document. Its representation should distinguish the innate infor
mation from the proprietary codes of document processing programs
and the artifacts of particular presentation styles.

Business data bases-which rigorously separate the real data from
the input forms and output reports-achieved data independence
decades ago. But documents, unlike business data, have historically
been created in the context of a particular output presentation style.
So for document data, independence was largely unachievable until
recently.

That is doubly unfortunate. It is unfortunate because documents
are a far more significant repository of humanity's information. And
documents can contain significantly richer information structures
than data bases.

It is also unfortunate because the need for 0 IM of documents is
greater now than ever. The demands of "repurposing" require that
information be deliverable in multiple formats: paper-based, online,
multimedia, hypermedia. And information must now be delivered
through multiple channels: traditional bookstores and libraries, the
World Wide Web, corporate intranets and extranets. In the latter
modes, what starts as data base data may become a document for
browsing, but then may need to be reused by the reader as data.

Fortunately, in the past ten years a technology has emerged that
extends to documents the data base's capacity for data independence.
And it does so without the data base's restrictions on structural free-

CD I 9 9 H THE X M L H AND B o 0 K '"'

dom. That technology is the "Standard Generalized Markup Lan
guage" (SGML), an official International Standard (ISO 8879) that
has been adopted by the world's largest producers of documents and
by the World Wide Web.

With SGML, organizations in government, aerospace, airlines,
automotive, electronics, computers, and publishing (to name a few)
have freed their documents from hostage relationships to processing
software. SGML coexists with graphics, multimedia and other data
standards needed for OIM and acts as the framework that relates
objects in the other formats to one another and to SGML documents.

The World Wide Web's HTML and XML are both based on
SGML. HTML is a particular, though very general, application of
SGML, like those for the above industries. There is a limited set of
markup tags that can be used with HTML. XML, in contrast, is a
simplified subset of SGML facilities that, like full SGML, can be used
with any set of tags. You can literally create your own markup lan
guage with XML.

As the enabling standard for OIM of documents, the SGML fam
ily of standards necessarily plays a leading role in this series. We pro
vide tutorials on SGML, XML, and other key standards and the
techniques for applying them. Our books vary in technical intensity
from programming techniques for software developers to the business
justification of OIM for enterprise executives. We share the practical
experience of organizations and individuals who have applied the
techniques of OIM in environments ranging from immense industrial
publishing projects to websites of all sizes.

Our authors are expert practitioners in their subject matter, not
writers hired to cover a "hot" topic. They bring insight and under
standing that can only come from real-world experience. Moreover,
they practice what they preach about standardization. Their books
share a common standards-based vocabulary. In this way, knowledge
gained from one book in the series is directly applicable when reading
another, or the standards themselves. This is just one of the ways in

©1998 THE XML HANDBOOK TM

which we strive for the utmost technical accuracy and consistency

with the OIM standards.
And we also strive for a sense of excitement and fun. After all, the

challenge of OIM-preserving information from the ravages of tech
nology while exploiting its benefits-is one of the great intellectual
adventures of our age. I'm sure you'll find this series to be a knowl
edgable and reliable guide on that adventure.

About the Series Editor

Dr. Charles F. Goldfarb invented the SGML language in 197 4 and
later led the team that developed it into the International Standard on
which both HTML and XML are based. He serves as editor of the
Standard (ISO 8879) and as a consultant to developers of SGML and
XML applications and products. He is based in Saratoga, CA.

About the Series Logo

The rebus is an ancient literary tradition, dating from 16th cen
tury Picardy, and is especially appropriate to a series involving fine
distinctions between things and the words that describe rhem. For the
logo, Andrew Goldfarb incorporated a rebus of the series name within
a stylized SGMLIXML comment declaration.

©1998 THE XML HAN0600KT'-'

<
fcFo) 'lhe Charles F. Goldfarb Series on
• Oi M Open lnformai:ion Manaaemenc

As XML is a subset of SGML, the Series List is categorized to show the degree to
which a title applies to XML. "XML Titles" are those that discuss XML explicitly
and may also cover full SGML. "SGML Titles" do not mention XML per se, but
the principles covered may apply to XML.

XML 'lii:les
Goldfarb, Pepper, and Ensign

I SGML Buyer's Guide ™: Choosing the Right XML
and SGML Products and Services
Megginson

I Structuring XML Documents

Leventhal, Lewis, and Fuchs

I Designing XML Internet Applications

Goldfarb and Prescod

I The XML HandbookT"

Jelllffe

I The XML and SGML Cookbook: Recipes for
Structured Information

SGML 'lii:les
Turner, Douglass, and Turner

I ReadMe. I st: SGML for Writers and Editors

Donovan

I Industrial-Strength SGML:An Introduction to
Enterprise Publishing
Ensign

I SGML:The Billion Dollar Secret

Rubinsky and Maloney

I SGML on the Web: Small Steps Beyond HTML

McGrath

I ParseMe.l st: SGML for Software Developers

DuCharme

I SGML CD

© 1998 THE XML HANDBOOKTM

The
XML
Handbook·M

I Charles F. Goldfarb
I Paul Prescod

Prentice Hall PTR, Upper Saddle River, NJ 07458
http:/ /www.phptr.com

©1998 TH E XML HANDBOOKTM

Library of Congress Cataloging-in-Publication Data

Goldfarb, Charles F.
XML handbook I Charles F. Goldfarb, Paul Prescod.

p. em. -- (Charles F. Goldfarb series on open information
management)

Includes index.
ISBN 0-13-081152-1 (pbk. : alk. paper)
1. XML (Document markup language) I. Prescod, Paul. II. Title.

III. Series.
QA76.76.H92G65 1998
005.7'2--dc21 98-16708

Edit01ial!Production Supervision: Patti G!terderi
Acquisitions Editor: Mark L. Taub
Editorial Assistant: Audri Ba;:.lan
Marketing Manager: Dan Rush
Manufacturing Manager: Alexis R. Heydt
Cover Design: Anthony Gemmellaro
Cover Design Direction: Jerry Votta
Series Design: Gail Cocker-Bogusz

It
© 1998 Prentice Hall PTR
Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, NJ 07458

CIP

Prentice Hall books are widely used by corporations and government agencies for training,
marketing, and resale.

The publisher offers discounts on this book when ordered in bulk quantities. For more information, contact:
orporate Sales D eportment, Phone: 00-382-3419; Fax: 201-236-71 4 l ; E-mail: corpsales@pr nhall.com;

or write: Prentice HnTI PTR, Corp. Sales D pl., One Lake Str e.t, Upp r Saddle Riv r, NJ 07458.

All rigbts res •rved. No part of this book may be
reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 54 3 2

ISBN 0-13-081152-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc. , Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall ofJapan , Inc., Tokyo
Simon & Schuster Asia Pte. Ltd. , Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

©1 9 98 THE XML HANDB O OKTM

Adob , the Adobe logo, Acmbut, From Mnke r, and PostScript are trademarks of Adobe Systems
JncorpomL d. Microsoft and Windows are r>gis t r cl trad · marks of Microsoft Corporation in the U.S. and
other ·ow1tdes. Dyna':D xt, Dynal3as , lnso, and th l nso Logo are trademarks or registered trademarks of
Inso Corporation.

The ML Handbook, HARP, and oth r r gi. t red and unregistered trademarks, service marks, logos,
company na mes, and product names appearing in this book or on its cover are the property of their respective
owners.

Series logo by Andrew Goldfarb for EyeTech Graphics, copyright ©1996 Andrew Goldfarb.

Series foreword copyright ©1996, 1997 Charles F. Goldfarb.

Excerpts from the following Intenmtiom1l Standard are copyright ©1986, 1988 International Organization for
Standardization, and are included wlt:U lhe kind permh;sion of the copyright owner:

ISO 8879:1986, Information processing- Text and office systems- Standard Generalized Markup
Language (SGML).

Complete copies of this standard can be obtained from the national member body of ISO in your country, or
contact ISO, case postale 56, CH-1211 Geneva 20, Switzerland.

Excerpts from the following World Wide Web Consortium documents are included in accordance with the
W3C IPR Document Notice, http://www.w3.org/Consortium/LegaVcopyright-documents.html. Copyright
©World Wide Web Consortium (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University) . All Rights Reserved.

Extensible Markup Language (XML) 1.0, http:l!www.w3.org/TRIREC-xml, W3C Recommendation
10-February-1998.

Extensible Linking Language (XLink), http://www.w3.org!TRIWD-xlink, W3C Working Draft 3-March-
1998.

XML Pointer Language (XPointer), http://www.w3.org!TRIWD-xptr, W3C Working Draft 03-March-1998.

A Proposal for XSL, http://www.w3.org!TRINOTE-XSL-970910, Note submitted to W3C on 27 August
1997.

HTML 4.0 Specification, http:llwww.w3.org/TRIREC-html401, W3C Recommendation, revised on 24-Apr-
1998.

The development of this book was partly subsidized by Sponsors, who provided both fin ancial support and
expert assistance in preparing the initial draft of the text identified with their nom . How ver, as the Authors
exercised final editorial control over the book, the Sponsors are in no way responsible for its content. In
particular, opinions expressed in this book are those of the Authors and are not necessarily those of the Series
Editor, Sponsors, or Publisher.

This book, and the CD-ROM included with it, contain software and descriptive materials provided by (or
adapted from materials made publicly nvniluble by) product developers, vendors, and service providers. Said
software and materiab have not be n r viewed, edited, or tested, and neither the Authors, Contributors,
Series Editor, Publisher, Sponsors, or other parties connected with this book are responsible for their
accuracy or reliability. H aders are warned that they use said software and materials at their own risk, and are
urged to test the softwar and confirm the validity of the information prior to use.

©1998 THE XML HANDBOOK "'

To Linda- With love, awe, and gratitude.

Charles F. Goldfarb

For Lilia- Your support makes it possible and
your love makes it worthwhile.

Paul Prescod

©1998 THE XML HANDBOOK™

Contents

Foreword
Preface

I Pan one The Who, What, and
Why ofXML

Chapter I Why X MLt
1.1 1 Text formatters and SGML

1.1.1 Formatting markup

1.1.2 Generalized markup
1.1.2.1 Common document representation
1.1.2.2 Customized document types
1.1.2.3 Rule-based markup

1.2 1 HTML and the Web
1.2.1 HTML gets extended - unofficially!

1.2.2 The World Wide Web reacts

1.3 1 Conclusion

©1 998 T HE XML HANDBOOKTM

XXXV

XXXV

I

2.

4

4

6

6
6

12

14

16

16

18

xiii

Xl V CONTENTS

Chapter 2 Where is XML goingt

2.1 1 Beyond HTML

2.2 1 Database publishing

2.3 1 Electronic commerce

2.4 1 Metadata

2.5 1 Science on the Web
Chapter:. Just enough XML

10

21

25

26

26

28

31

3.1 1 The goal 34

3.2 1 Elements: The logical structure 35

3.3 1 Unicode: The character set 37

3.4 1 Entities: The physical structure 38

3.5 1 Markup 39

3.6 1 Document types 40

3.7 1 Well-formedness and validity 44

3.8 1 Hyperlinking and Addressing 45

3.9 1 Stylesheets 47

3.1 o 1 Conclusion 47

Chapter • XML in the real world 48

4.1 1 Is XML for documents or for data? 49

4.2 1 Endless specbum of application opporhmities 50

4.2.1 Presentation-oriented publishing 52

4.2.2 Message-oriented middleware 54

4.2.3 Opposites are attracted 55

4.2.4 MOM and POP- They're so great together! 57

4.3 1 XML tools 58

4.4 1 XML jargon demystifier 59

4.4.1 Structured vs. unstructured 60

©1998 T HE XML HANOBOOK 'rM

CONTENTS XV

4.4.2 Tag vs. element 60

4.4.3 Document type, DTD, and markup declarations 61

4.4.4 Document, XML document, and document instance 62

4.4.5 Coding, encoding, and markup 63

4.5 1 Conclusion 63

1 Pan Two What You Can Do with XML 6S

chapcer s Personalized frequent -flyer
Web site 66

5.1 1 Today's frequent-flyer sites 67

5.1 1 What's wrong with today's Web model? 68

5.3 1 A better model for doing business on the Web 69

5.4 1 An XML-enabled frequent-flyer Web site 70

5.5 1 Understanding the Softland Air scenario 73

5.6 1 Towards the Brave New Web 76

Chapcer • Building an online auction
Web s~e 78

6. 1 1 Getting data from the middle tier 80

6.1.1 Defining the XML document structure 82

6.1.2 Using ASP files to generate XML documents 82

6.1.3 Generating XML from multiple databases 86

6.1.4 Generating XML from both databases and XML data sources
86

6.1 1 Building the user interface
6.2.1 Using procedural scripts

6.2.2 Using descriptive data binding

6.3 1 Updating the data source from the client

6.4 1 Conclusion
© 1 9 98 THE XML HANDB OOK TM

89

89

90

91

93

XVI CONTENTS

Chap•er 7 XML and EDI:
The new Web commerce 96

7.1 1 What is EDI? 97

7 .I. I Extra nets can't hack it 98

7.1.2 XML can! 99

7.1.3 The new EDI 99

7.1.4 Ubiquitous EDI: A quantum leap forward 100

7.1.5 The value of EDI 101

7.2 1 Traditional ED I: Built on outdated principles 103

7.2.1 The history ofEDI 104

7.2.2 EDI technology basics 104

7.2.3 The problems of traditional EDI 106

7.2.3.1 Fixed transaction sets
7.2.3.2 Slow standards evolution
7.2.3.3 Non-standard standards
7.2.3.4 High fixed costs
7.2.3.5 Fixed business rules

106
106
107
108
109

7.2.3.6 Limited penetration 110

7.3 1 The new ED I: Leveraging XML and the Internet 110

7.3.1 XML 111

7 .3.2 The Internet 113

7.3.3 Internet technologies

7.3.4 XML data storage

7.3.5 Data filtering

7.4 1 Conclusion
Chap•er a Supply chain integration

8.1 1 Linking up a supply chain

8.2 1 Supply chain integration requirements

8.3 1 The B2B Integration SeiVer

8.4 1 OveiView of the system

114

115

116

117

110

121

122

123

123

©19 9 8 THE XML HANDB O QKTM

CONTENTS XVll

8 •5 1 The manufacturer seiVices 124

8.5.1 B2B plug-in 125

8.5.2 Server stub 126

8.5.3 XML requests and replies 126

8.5.4 Java thin client 126

8.5.5 Manufacturer interface specification 127

8 .a 1 The supplier seiVices 128

8.6.1 Client stub 128

8.6.2 Supplier interface specification 129

8.7 1 Conclusion 130

chapter • Comparison shopping service
Web site 1 :Jl

t.l 1 Shopping online for books 133

t.1 1 The Junglee Shopping Guide 134

t.J 1 How the Shopping Guide works 135

t.4 1 Conclusion 137

chapter •• Natural language translation 140

1 o. 1 1 Mistakes can be costly 141

10.1 1 It's a small world 142

10.3 1 Business challenges 143

I 0.3.1 Cost containment

I 0.3.2 Fast-paced product development

I 0.3.3 Diverse documents

1 o.4 1 Translations today

1o.s 1 New directions
I 0.5.1 Components

I 0.5.2 Reduce reinvention with reuse

I 0.5.3 Identify changes with versioning

©1998 THE XML HANDBOQKTM

143

144

144

144

147

147

148

149

XVlll CONTENTS

I 0.5.4 Alignment enables concurrent authoring and
translation 150

1o.e 1 In the real world 151

Chapter 11 Securities regulation filings 152

1 1.1 1 Visualizing an XML document 154

1 1.2 1 An EDGAR Submission with XML 156

11.2.1 Reviewing the EDGAR DTD 157

11.2.2 Creating an instance of the DTD 158

11.2.3 Checking your EDGAR instance for conformance 158

11.2.4 Repairing non-conforming elements

I 1.2.5 Generating your EDGAR submission

I 1.2.6 Publishing for the SEC

I 1.2. 7 Repurposing for your Web site

11.3 1 Conclusion
Chapter 12 Help Desk automation

12.1 1 1he hapless Help Desk
12.1.1 The old way

12.1.2 What needed to be done?

12.1.3 Helping the Help Desk

12.2 1 How the Solution System works
12.2.1 Information flow

12.2.2 Architecture

12.3 1 Using the Help Desk Solution System
12.3.1 Make the query

12.3.2 Research product information

12.3.3 Write a solution

12.3.4 Update the repository

12.3.5 Route for approval

159

161

161

161

162

164

165

165

166

167

168

168

169

170

170

170

171

172

173

©1998 THE XML HANDBOOK™

12.3.6 Check in document to knowledge base

chapi:er 11 Extended linking
u. 1 1 The Shop notes application

13 .1.1 What is extended linking?

13.1.2 Displaying extended links

13.1.3 Notes survive to new versions of manuals

13.1.4 Vendors can use the notes

13.1 1 Other applications of extended linking
13.2.1 Public resource communities of interest

13.2.2 Guidance documents

13.2.3 Computer-augmented memory

13.2.4 Intellectual property management

13.3 1 Strong link typing
13.3.1 Hiding the installation log

13.3.2 Why do we need strong link typing?

13.3.3 Anchor role identification

13.4 1 Conclusion

CONTENTS XlX

175

176

177

178

179

180

181

181

182

183

184

185

185

186

186

187

187

I Part Three What's Being Done with XML 191

Chapi:er •• Hitachi Semiconductor 191

14. 1 1 Introduction 193

14.1 1 The business case 194

14.3 1 Phase 1: Creating a single source file 196

14.4 1 Phase 2: Automating transformations with XML 197

14.s 1 "Publishing on steroids" 198

14,6 1 Facilitation ofWeb-based searching 198

14.7 1 Quantifiable savings 200

14.a 1 Conclusion: A new dimension of automation 200

©1998 THE XML HANDBOOKTM

XX CONTENTS

Chap•er 1s The Washington Post 101

1 s.1 1 The Post Web site 203

1 s.1 1 Job searching online 204

I 5.2.1 Andersen Consulting 204

I 5.2.2 CACI International 204

I 5.2.3 Career Post 205

1 s.:~ 1 How JobCanopy works 20s

1 s.4 1 Summary 209

Chap•er 16 Frank Russell Company 11 o
1 cs. 1 1 Background 211

1 cs.1 1 Project strategy considerations 212

16.2.1 Proceeding from a theoretical abstraction to
practical applications 213

16.2.2 Phasing deliverables with measurable return on
investment 213

16.2.3 Continuing research in parallel with focused
development projects 213

16.2.4 Alignment with overall corporate strategies 214

16.2.5 Executive sponsorship 214

1 C5.3 1 Identifying the needs 215

16.3.1 Business requirements 215

16.3.1.1 Compliance 215
16.3.1.2 Premium typographic quality 215
16.3.1.3 Data integrity 216
16.3.1.4 Security 216

16.3.2 Technical requirements 216

16.3.2.1 Scalability 216
16.3.2.2 Low licensing impact for reader software 216
16.3.2.3 Ease of use 216
16.3.2.4 Cross-platform 217
16.3.2.5 Multilingual capability 217

©1998 THE XML HANDBOOK™

4 I Create an abstract architecture 16.

16.5 1 Implement applications
16.5.1 Real-world design issues

16.5.1.1 lnternetworking

16.5.2 Document representation
16.5.2.1 Abstract document representation
16.5.2.2 Rendered document representation

16.5.3 Phased implementation plan
16.5.3.1 Phase 1: Records management business study
16.5.3.2 Phase II: Document management of PDF files
16.5.3.3 Phase Ill: Document assembly and formatting
16.5.3.4 Phase IV: XML and the future

16.6 1 Conclusion
chap•er 1 7 A gent Discovery

17.1 1 Agent Discovery

17.2 1 Picture this
17.2.1 Access vs. integration

17.2.2 The solution: Web automation

17.:J 1 \Vhat is Web automation?

17.4 1 Discovering common ground

17.5 1 What about XML?

17.6 1 Architecture principles

17.7 1 Conclusion
Chap•er •• Major Corporation

18.1 1 Background

18.2 1 First generation: Client/server

18. :J 1 Second generation: Three-tier
18.3.1 Data extraction

18.3.2 Database maintenance

18.4 1 Summary
©!998 THE XML HANDBOOKTM

CONTENTS XXI

217

220

220

220

220

221
221

222

222
223
224
228

230

lll

233

234

235

236

237

238

239

240

241

l4l

244

245

247

248

249

250

XX:ll CONTENTS

Ch•pter •• City Of Providence 252

1 ~. 1 1 The Providence Guide prototype 253

1 ~.2 1 Information architecture 255

1 ~.3 J Conversion to XML 255

1 ~.4 1 Generating the electronic book 255

19.4.1 Using multiple stylesheets 256

19.4.1.1 Contextual searching and personalization 256

1 ~.s 1 Web delivery 257

1 ~.cs 1 Dynamic Web delivery 258

1 ~.7 1 Updating the XML data 260

1 ~.8 1 Revising the Electronic Book 261

1 ~.~ 1 Summary 263

Ch•pter 20 lnternationa• Organization
for Standardization 264

20. 1 1 ISO 12083; DTDs for publishers 266

20.2 1 Adapting ISO 12083 to XML 266

20.2.1 Automated modifications 267

20.2.1.1 XML declaration 267
20.2.1.2 Omitted tag minimization rules 267
20.2.1.3 Grouped element type and attribute declarations 267
20.2.1.4 Comments in other declarations 268
20.2.1.5 Quoted default attribute values 268
20.2.1.6 Parameter entity references 268
20.2.1.7 Example of automated modifications 268

20.2.2 Assisted modifications 269

20.2.2.1 Attribute types and defaults 269
20.2.2.2 Declared content 270

20.2.3 Other modifications 271

20.2.3.1 Eliminating inclusions 272

20.2.3.2 Eliminating AND connectors 273
20.2.3.3 Eliminating exclusions 274

© 19 98 THE X ML H ANDBOOK™

20.2.3.4 Adding system identifiers

10.3 1 Conclusion

CONTENTS XX:lll

274

275

I Pan Four Tools for Working with XML 277

chap•er 21 FrameMaker+ SGML:
Editing+ composition

11 .1 1 Leveraging information

11.1 1 XML authming functions
21.2.1 Guided editing

21.2.2 Authoringflexibility

21.2.3 Problem correction

21 .2.4 Authoring utilities
21 .2.4.1 Cross-references
21.2.4.2 Indexing
21.2.4.3 Hypertext

21.2.5 Managing external content

21.2.6 Welljormedness support

11.3 1 Automated formatting and composition
21.3.1 Rule-based formatting

21.3.2 Interactive formatting

11.4 1 Document fragments

11.s 1 Publishing the document
21.5.1 Paper publishing

21.5.2 Online publishing
21.5.2.1 PDF
21.5.2.2 HTM L

11.cs 1 Customization and preparation
21.6.1 DTD customization

21.6.2 Defining formatting rules

21.6.3 Extensibility

©19 9 8 T HE XML HANDBOOK™

278

279

280

281

281

283

286

286
286
287

288

288

288

289

289

290

290

291

292

292
293

293

293

294

295

XXIV CONTENTS

Chapter 22 ADEPT•Editor:
Edit for content management 296

11. 1 1 Automated document systems 297

22.1.1 Structure 298

22.1.2 Content management 301

11.1 1 What information warrants these tools? 303

303

303

303

304

304

304

22.2. 7 Created by formal processes 304

11.3 1 Characteristics to consider 305

22.3.1 Authoring issues 305

22.3.1.1 "Task-matched" tools 306
22.3.1.2 Structure consistency 307

22.3.2 Development issues 309

22.3.2.1 Content management integration 309
22.3.2.2 Customization 312

22.3.3 Business issues 313

22.3.3.1 Authoring productivity 314
22.3.3.2 Batch composition 315
22.3.3.3 Presentation independence 316
22.3.3.4 Standards-based 317

Chapter 2:. X MetaL: Friendly XML editing 318

13.1 1 Familiar interface

13.1 1 HTML markup transition

13.3 1 Sbuctured editing
23.3.1 Multiple views

23.3.2 Tables

319

320

321

321

321

©1998 T HE XML H AND BOOK™

3 3 Named bookmarks 23 ..

23 .3.4 Samples and templates

23.3.5 Context-sensitive styles

23 .3.6 Default HTML styles

CONTENTS XXV

322

322

323

323

23.3.7 Direct DTD processing 323

23.3.8 Customization 323

21•4 1 Extend XML capabilities to outside authors 324

chapter 24 DynaTag visual conversion
environment 316

14.1 1 Concepts of document conversion 327

24.1.1 Data rescue 328

24.1.2 Style serves meaning 329

14.2 1 Converting documents with DynaTag 329

24.2.1 Getting started 329

24.2.2 Mapping 330

24.2.2.1 Automatic mapping
24.2.2.2 Variant detection
24.2.2.3 New-mapping helper
24.2.2.4 Conditional mapping
24.2.2.5 List wizard
24.2.2.6 Tables

331
331
332
332
332
332

24.2.2.7 Character mapping 332
24.2.2.8 Cross-references 333
24.2.2.9 Searching 334
24.2.2.1 o Comments 334
24.2.2.11 XML markup features 335
24.2.2.12 Capturing structure 335
24.2.2.13 Reuse 335

24.1 1 Prepruing for electronic publishing 336

Chapter 2s XML Styler: Graphical XSL
stylesheet editor 3 38

u.1 I Introduction to XSL 339

© 1 9 9 8 THE X M L HAND B o 0 K 1M

XXVI CONTENTS

u.1 1 Creating a stylesheet with XML Styler 340

15.3 1 XSL patterns 343

15.4 1 XSL actions 348

25.4.1 HTML!CSS flow objects 348

25.4.2 DSSSLjlow objects 348

u.s 1 Conclusion 349

Chapter !16 Astoria: Flexible content
management 1s1

16.1 1 Components are everywhere 353

26.1.1 Components in publishing 354

26.1.1.1 System simplification 354
26.1.1.2 Easier revision 354
26.1.1.3 Efficient authoring 355
26.1.1.4 Less routine editing 355
26.1.1.5 Fast, easy customization 355
26.1.1.6 Universal updates 355
26.1.1.7 Streamlined translations 356
26.1.1.8 Flexible distribution 356

26.1.2 XML makes components 356

26.1.3 Applications for content reuse 358

16.1 1 A content management implementation 359

26.2.1 Revision tracking 360

26.2.2 Search 361

26.2.3 Dynamic document assembly 362

Chapter !17 POET Content
Management Suite 164

17.1 1 Managing the information life cycle 365

27.1.1 Changes to the information life cycle 366

27.1.2 The World Wide Web has changed the rules 366

27.1.3 Object-oriented components 367

17.1 1 The POET Content Management Suite 368

©1998 THE XML HANDBOOK™

CONTENTS XXVll

27.2.1 POET CMS components 369

27.2.1.1 POET Content Server · 369

27.2.1.2 POET Content Client 370
27.2.1.3 POET Content SDK 370

21.2.2 The POET CMS Architecture 370

27.2.3 Using POET CMS 371

27.2.3.1 Server-side content management 371
27.2.3.2 Client-side editing and viewing 371

chapter 2a HoTMetaL Application Server 178

28.1 1 Dynamic descriptive markup 379

28.2 1 How HoTMetaL APPS works 380

28.2.1 Middle-tier server tags 382

28.2.1.1 Data access tags 382
28.2.1.2 Conditional logic tags 382

28.2.2 Guided construction of dynamic pages 383

28.3 1 Functionality can be friendly 383

Chap•er 20 Junglee Virtual DBMS 186

20.1 1 Why virtual database technology? 387

20.2 1 How the VDBMS works 389

29.2.1 Wrapper Development Kit (WDK) 389

29.2.2 The Extractor Development Kit (EDK) 390

29.2.3 VDB Server and Data Quality Kit 391

29.2.4 Administration interface 392

20.3 1 Applications ofVDB technology 392

Chapter :.o Free XML software 194

30.1 1 What do we mean by "free"? 395

30.2 1 The best XML free software 396

30.2.1 Parsers and engines 396

30.2.1.1 Xlink engines 396
30.2.1.2 XSL engines 397
30.2.1.3 DSSSL engines 398

©1998 THE XML HANDBOOKTM

XX:Vlll CONTENTS

30.2.1.4 SGMUXML parsers
30.2.1.5 XM L parsers
30.2.1.6 XML middleware

30.2.2 Editing and composition
30.2.2.1 XML editors

30.2.3 Control information development
30.2.3.1 XSL editors
30.2.3.2 DTD editors
30.2.3.3 DTD documenters

30.2.4 Conversion
30.2.4.1 General S-converters
30.2.4.2 Specific N-converters
30.2.4.3 General N-converters

30.2.5 Electronic delivery
30.2.5.1 XML browsers

30.2.6 Resources
30.2.6.1 Useful programs
30.2.6.2 Archiving software

400
401
408

412

412

414

414
415
415

416

416
416
417

417

417

419

419
421

I PaM: F~Ye The Technology of XML 423

Chapcer :. 1 XM L basics 424

3 1 • 1 1 Syntactic details
31.1.1 Case-sensitivity

3 1.1.2 Markup and data

3 1.1.3 White space

31.1.4 Names and name tokens

31.1.5 Literal strings

31.1.6 Grammars

3 1 .1. 1 Prolog vs. instance

3 1. 3 1 The logical sbuchrre

3 1.4 1 Elements

3 1.s 1 Attributes

426

426

427

428

428

429

431

431

432

434

436

©1998 THE XML HANDBOOK™

3 1•6 1 The prolog

31 .6.1 XML declaration
31.6.1.1 Version info

31.6.1.2 Encoding declaration
31.6.1 .3 Standalone document declaration

31.6.2 Document type declaration

31 •7 1 Markup miscellany
3 1. 7 .I Predefined entities

31.7.2 CDATA sections

31.7.3 Comments

3 1.B 1 Summary
chap•er 12 Creating a document

type definition

3 2.1 1 Document type declaration

3 2.2 1 Internal and external subset

32.3 1 Element type declarations

32.4 1 Element type content specification
32.4.1 Empty content

32.4.2 ANY content

32.4.3 Mixed content

32.5 1 Content models

n.6 1 Attributes
32.6.1 Attribute-list declarations

32.6.2 Attribute defaults

32.6.3 Attribute types
32.6.3.1 Attribute value normalization
32.6.3.2 CDATA and name token attributes
32.6.3.3 Enumerated and notation attributes
32.6.3.4 10 and IDREF attributes

©!998 T H E XML HANDBOOKTM

CONTENTS XXIX

438

439

440
440
441

441

441

442

444

446

447

448

450

452

455

456

457

457

458

459

462

463

464

466

467
468
470
470

XXX CONTENTS

32.6.3.5 ENTITY attributes
32.6.3.6 Summary of attribute types

12.7 1 Notation Declarations

Chap•er ;~;~ Entities: Breaking up
is easy to do

11.1 ()vervievv

472
473

474

476

477

u.2 1 Entity details 481

11.1 1 Classifications of entities 482

11.4 1 Internal general entities 483

u.s 1 External parsed general entities 485

33.5.1 External parsed entity support is optional 485

11.cs 1 U nparsed entities 486

11.7 1 Internal and exte1nal parameter entities 487

11.a 1 Markup may not span entity boundalies 490

33.8.1 Legal parameter entity reference 493

u.9 1 External identifiers 494

33.9.1 System identifiers 495

33.9.2 Public identifiers 495

u.1 o 1 Conclusion 496

Chap•er i4 XML Linking Language(Xlink 498

14.1 1 Basic concepts 5oo

34.1.1 Simple links 501

34.1.2 Link roles 502

34.1.3 Is this for real? 504

34.1.4 Link behaviors 505

34.1.4.1 Show 506

34.1.5 Actuate 508

34.1.6 Behavior 508

©1998 THE XML HANDBOOK™

34.:1 1 Extended links

34•2•1 Locator elements

34.2.2 Link groups

34•3 1 Addressing

34•4 1 Uniform Resource Identifier (URI)

34•5 1 Referring to IDs

34•6 1 Location terms

34.7 1 Conclusion
chap~er :~s Extensible Style

Language (XSL)

35.1 1 XSL overview

35.1.1 XSL stylesheets

35.:1 1 Referencing XSL stylesheets

35.3 1 Ru1es, patterns and actions

35.4 1 Flow Objects

35.5 1 UsingXSL

u.6 1 Patterns

u.7 1 Actions

u.s 1 Flow objects and characteristics

u.9 1 XSL and JavaScript

Chap~er :~o Adva.,.ced features
36.1 1 Conditional sections

36.1 1 Character references

36.3 1 Processing mstructions

36.4 1 Standalone document declaration

36.5 1 Is that all there is?
©1998 THE XML HANDBOOK™

CONTENTS XXXI

509

509

510

511

512

513

514

515

516

518

518

519

520

522

523

524

526

527

527

Sll

533

535

537

541

544

XX.Xll CONTENTS

Chap•er ;17 Reading the XML specification S4cs

37.1 1 AlookatXML'sgrammar

37.2 1 Constant strings

:n.3 1 Names

37.4 1 Occurrence indicators

37.5 1 Combining rules

37.6 1 Conclusion
Chap•er ;~a WIDL and XML RPC

38.1 1 XML alone is not quite enough
38.1.1 The missing piece

38.1.2 The role ofWIDL

38.2 1 WIDL the IDL
38.2.1 Methods

38.2.2 Records

38.3 1 Remote procedure calls
38.3.1 Representing RPC messages in XML

38.3.2 Generic and custom message DTDs

38.4 1 Integrating applications
38.4.1 Stubs

38.4.2 Document mapping

38.5 1 Interoperability attained
Chap•er ;~o XML-Data

39.1 1 Introduction

39.2 1 The Schema Element Type

39.3 1 The ElementType Declaration

39.4 1 Properties and Content Models
39.4.1 Element

548

549

550

551

552

552

SS4

556

556

557

557

558

559

560

561

562

563

564

565

568

S70

573

574

575

575

576

©1998 THE XML HANDBOOK™

39.4.2 Empty, Any, String, and Mixed Content

39.4.3 Group

39.4.4 Open and Closed Content Models

39•5 1 Default Values

39.6 1 Aliases and CoiTelatives

39•7 1 Class Hierarchies

u.s 1 Elements which are References
39.8.1 One-to-Many Relations

39.8.2 Multipart Keys

J9.9 1 Attributes as References

u.1 o 1 Constraints & Additional Properties
39.10.1 Min and Max Constraints

39.10. 1.1 Domain and Range Constraints

39.10.2 Other useful properties

J9.11 1 Using Elements from Other Schemas

J9.11 1 XML-Specific Elements
39.12.1 Attributes

J9.1 J 1 Entity declaration element types

u.l4 1 External declarations element type

:19.15 1 Datatypes
39.15.1 How Typed Data is Exposed in the API

39.15.2 Complex Data Types

39.15.3 Versioning of Instances

39.15.4 The Datatypes Namespace

39.1 5.5 What a datatype's URI Means

39.15.6 Structured Data Type Attributes

39.15.7 Specific Datatypes

:19.16 1 Mapping between Schemas
©1998 TK E XML HANDB OQ KTM

CONTENTS :XXXlll

576

578

579

580

581

582

583

585

586

587

588

588

589

590

590

591

591

592

593

593

596

596

597

597

598

599

599

603

XXXIV CONTENTS

19.17 1 Appendix A: Examples

19.18 1 Appendix B: An XML DTD for
XML-Data schemas

Chap•er •o The XML SPECtacular

19.19 1 Base standards
39.19.1 International Standards

39.19.1.1 Approved standards

39.19.2 W3C recommendations
39.19.2.1 Approved recommendations
39.19.2.2 Work in progress

19.10 1 XML applications
39.20.1 W3C recommendations

39.20.1.1 Approved recommendations
39.20.1.2 Work in progress

39.20.2 Other initiatives
39.20.2.1 Approved standards
39.20.2.2 Work in progress

Index
About the CD-ROM

609

612

618

620

620

620

621

621
622

624

625

625
625

628

628
628

610

©1998 THE XML HANDBOOKTM

Foreword

XML Ever}Where

When HTML crune ant the cene it sparked a publishing phenomenon.
rd.irt.ary people everywhere began to publish documents on the Web. Pre

entation on the Web became a topic of conversation not just within the
compure,r indu try but within coffeehouses. Overnight, it seemed as
though eryon had aWl b page.

I ee he same phenomenon happening today with XML. Where data
was once a mysterious binary blob, it has now become something ordinary
people can read and author because it's text. With XML, ordinary people
have the ability to craft their own data, the ability to shape and control
data. The significance of this shift is difficult to overstate, for not only does
it mean that more people can access data, but that there will undoubtedly
be more data to access. We are on the verge of a data explosion. One ignited
byXML.

By infusing the Web with data, XML makes the Web a better place for
people to interact, to do business. XML allows us to do more precise
searches, deliver software components, describe such things as collections of
Web pages and electronic commerce transactions, and much more. XML is

©1998 THE XML HANDBOOKT" XXXV

xliv PREFACE

We also thank Lilia Prescod, Thea Prescod, and Linda Goldfarb for serv
ing as our useability test laboratory. That means they read lots of chapters
and complained until we made them clear enough.

Prentice Hall PTR uses Adobe FrameMaker to compose the books in my
series. We thank Lani Hajagos of Adobe for providing Paul and me with
cop1es.

Paul and I designed, and Paul implemented, an SGML-based production
system for the book. It uses James Clark's Jade DSSSL processor,
FrameMaker+SGML, and som ingenious FrameMaker plug-ins designed
and implemented by Doug Yagaloff of Caxton, Inc. We thank Doug, and
also Randy Kelley, for their wizard-1 vel FrameMaker consuhing advice.

But a great production system is nothing without a great Production
Editor. We were fortunate to have Patti Guerrieri, who epitomizes grace -
and skill - under fire. She coped with an untested system and a book that
doubled in size, and still met the deadline.

This was my second project in which Linda Burman served as marketing
consultant. I thank her- again- for her sage counsel and always cheerful
encouragement.

My personal thanks, also, to Mark Taub, now an Editor-in-Chief at
Prentice Hall PTR, for his help, encouragement, and management of the
project.

As the enior author, I gave myself the preface to write. I'm senior
because Paul's folks were conce.iving him about the same time that I was
conceiving SGML. (In return, Paul got to write the history chapter, because
for him it really is history.)

This gives me the opportunity to thank Paul publicly for the tremendous
reservoir of talent, energy, and good humor that he brought to the project.
The book benefitted not just from his XML knowledge and fine writing
skills, but from his expertise in SGML, Jade, and FrameMaker that enabled
us to automate the production of the book (with the previously acknowl
edged help from our friends).

Thanks, Paul.

Charles F. Goldfarb
Saratoga, CA
May 15, 1998

©l99X THE XML HA ND B OOKTM

FL _ r f"

|_.

..

_ ' "1;.

_. y;

I Pb.
‘ 1*.

XXXIV CONTENTS

J9.17 1 Appendix A: Examples

:~9.18 1 App ndix B: An XML DTD for
XML-Data schemas

Chapter •o The XML SPECtacular

J9.19 1 Base standards
39.19.1 International Standards

39.19.1.1 Approved standards

39.19.2 W3C recommendations
39.19.2.1 Approved recommendations
39.19.2.2 Work in progress

J9.20 1 XML applications
39.20.1 W3C recommendations

39.20.1 .1 Approved recommendations
39.20.1.2 Work in progress

39.20.2 Other initiatives
39.20.2.1 Approved standards
39.20.2.2 Work in progress

Index
About the CD-ROM

609

612

618

620

620

620

621

621
622

624

625

625
625

628

628
628

630

©1998 THE XML HANDBOOKTM

ForeworCI

XML Everywhere

When HTML came onto the scene it sparked a publishing phenomenon.
Ordinary people everywhere began to publish documents on the Web. Pre
sentation on the Web became a topic of conversation not just within the
computer industry, but within coffeehouses. Overnight, it seemed as
though everyone had a Web page.

I see the same phenomenon happening today wirh XML. Where data
was once a mysterious binary blob, it has now become something ordinary
people can read and author because it's text. With XML, ordinary people
have the ability to craft their own data, the ability to shape and control
data. The significance of this shift is difficult to overstate, for nor only does
it mean that more people can access data, bur that there will undoubtedly
be more data to access. We are on the verge of a data explosion. One ignited
byXML.

By infusing the Web with data, XML makes the Web a better place for
people to interact, to do business. XML allows us to do more precise
searches, deliver software components, describe such things as collections of
Web pages and electronic commerce transactions, and much more. XML is

© l 99 H THE XML HAt.;DHO O K 1" XXXV

XXX:Vl FOREWORD

changing not only the way we think about data, but the way we think about
the Web.

And by doing so, it's changing the way we think about the traditional
desktop application. I have already witnessed the impact of XML on all
types of applications from word processors and spreadsheets to database
managers and email. More and more, such applications are reaching out to
the Web, tapping into the power of the Web, and it is XML that is enabling
them to do so. Gone are the days of the i alated, incompatible application.
Here are the days of universal access and shared. data.

I joined Microsoft in the summer of 1996 with great faith in the Stan
dard Generalized Markup Language (SGML) and a dream that its potential
might one day be realized. As soon as I arrived at Microsoft, Jon Bosak of
Sun Microsystems and I began discussing the possibility of creating an
XML standard. Jon shared my enthusiasm for a markup language such as
XML, understanding what it could mean to Web communication.

My goal in designing an XML standard was to produce a very simple
markup language with as few abstractions as possible. Microsoft's success is
due in no small part to its ability to develop products with mass-market
appeal. It is this mass-market appeal that I wanted to bring to XML.
Together with Jon and other long-time friends from the SGML world,
C.M. Sperberg-McQueen, James Clark, Tim Bray, Steve DeRose, Eve
Maler, Eliot Kimber, Dave Hollander, Makoto Murata, and Peter Sharpe, I
co-designed the XML specification at the World Wide Web Consortium
(W3C). This specification, I believe, reflects my original goals.

It was truly an exciting time. For years, we had all been part of a maver
ick band of text markup enthusiasts, singing its praises every chance we
had, and before us was an opportunity to bring XML into the mainstream,
maybe even into the operating system. At last, we were getting our chance
to tell the World of the thing we had been so crazy about for all this time.

By the fall of 1996, many groups inside Microsoft, including Office, the
Site Server Electronic Commerce Edition, the Data Access Group, to cite a
few, were searching for an open format to enable interoperability on the
Web. It was then that I began working with the managers of Internet
Explorer 4, with the passionate Adam Bosworth, with Andrew Layman,
with Thomas Reardon, to define the Channel Definition Format (CDF).
CDF, the first major application ofXML on the Web, became an immedi
ate and incredible success, and XML started catching on like wildfire across
the Web.

© I 9 9 8 T H E X M L H A N D B Cl 0 ~ L"M

..
FOREWORD XXXVll

1 remember those weeks and months that followed as a time where it
seemed that everyday another new group within Microsofr began coding
applications using. XML. Developers, left an~ ri.ght w~re turning on to
){lv1L. They fi:eneucally began to develop applicauons usmg XML, because
XML gave rhem what tbey wanted: an easy-to-parse syntax for represeming
data. This flurry of activity was so great that by October of 1997, almost a
year after my arrival at Microsoft, Chairman Bill Gates announced XML as
"a breakthrough technology." Since thac time we've never lo ked back.

This book is an excellent starting point where you can learn and experi
ment with XML. As the inventor of SGML, Dr. Charles F. Goldfarb is one
of the most respected authorities on structured information. Charles has
had a very direct influence on XML, as XML is a true subset of SGML, and
he clearly understands the impact that XML will have on the world of data
driven, Web-based applications.

Charles and I share a common vision, that the most valuable asset for the
user or for a corporation, namely the data, can be openly represented in a
simple, flexible, and human-readable form. That it can easily travel from
server to server, from server to client, and from application to application,
fostering universal communication with anyone, anywhere. This vision can
now be realized through XML.

Enjoy the book!
Redmond, April 24, 1988

Jean Paoli
Product Unit Manager, XML Technologies
Microsoft Corporation
Co-editor of the XML Specification

©1998 THE XML HANDBOOK™

Preface

The World Wide Web is undergoing a radical change that will introduce
wonderful services for users and amazing new opportunities for Web site
developers and businesses.

HTML- the HyperText Markup Language- made the Web the world's
library. Now its sibling, XML - the Extensible Markup Language - has
begun to make the Web the world's commercial and financial hub. XML

f has just been approved as a W3C Recommendation, and already there are
millions ofXML files out there, with more coming online every day.

You can see why by comparing XML and HTML. Both are based on
SGML - the International Standard for structured information - but look
at the difference:

In HTML:
<p>P200 Laptop

Friendly Computer Shop

$1438

InXML:
<product>
<model>P200 Laptop</model>
<dealer>Friendly Computer Shop</dealer>
<price>$1438</price>
</product>

©199~ THE XML HA"llBOOK T.\1 XXXIX

Xl PREFACE

Both of these may appear the same in your browser, but the XML data is
smart data. HTML tells how the data should look, bur XML tells you what
it means.

With XML, your browser knows there is a product, and it knows the
model, dealer, and price. From a group of these it can show you the cheap
est product or closest dealer without going back to the server.

Unlike HTML, with XML you create your own tags, so they describe
exactly what you need to know. Because of that, your client-side applica
tions can access data sources anywhere on the Web, in any format. New
"middle-tier" servers sit between the data ources and the client, translating
everything into your own task-specific XML.

But XML data isn't just smart data, it's also a smart document. That
means when you display the information, the model name can be a differ
ent font from the dealer name, and the lowest price can be highlighted in
green. Unlike HTML, where text is just text to be rendered in a uniform
way, with XML text is smart, so it can control the rendition.

And you don't have to decide whether your information is data or docu
ments; in XML, it is always both at once. You can do data processing or
document processing or both at the same time.

With that kind of flexibility, it's no wonder that we're starting to see a
Brave New Web of smart, structured information. Your broker sends your
account data to Quicken using XML. Your "push" technology channel defi
nitions are in XML. Everything from math to multimedia, chemistry to

CommerceNet, is using XML or is preparing to start.
You should be too!
Welcome to the Brave New XML Web.

What about SGML?
This book is about XML. You won't find feature comparisons to SGML,

or footnotes with nerdy observations like "the XML empty-element tag
does not contradict the rule that every element has a start-tag and an end
tag because, in SGML terms, it is actually a start-tag followed immediately
by a null end-tag". 1

Nevertheless, for readers who use SGML, it is worth addressing the ques
tion of how XML and SGML relate. There has been a lot of speculation
about this.

1. Well, yes, I did just make that nerdy observation, but it wasn't a footnote, was
it?

© I 9 9 8 T H E X M L H A N D ~ 0 0 K 'rM

PREFACE xli

Some daim that XML will replace SGML because there will be so much
free and low-cost software. Others as ert that XML users, like HTML users
before them, will discover that they need more of SGML and will eventu
ally migrate co tb full standard.

Both assert ions are nonsense ... XML and SGML don't even compete.
XML is a simplified subset of SGML. The subsetting was optimized for

the Web environment, which implies data-processing-oriented (rather than
publishing-ori~nted), short lif~-s~an (in fact, usually dy~amically-gener
ated) information. The vast maJonty ofXML documents will be created by
computer programs and processed by other programs, then destroyed.
Humans will never see them.

Eliot Kimber, a member of both the XML and SGML standards com
mittees, says:

There are certain use domains for which XML is simply not
sufficient and where you need the additional features of SGML.
These applications tend to be very large scale and of long term;
e.g. , aircraft maintenance information, government regulations,
power plant documentation, etc.

Any one of them might involve a larger volume of information
than the entire use of XML on the Web. A single model of
commercial aircraft, for example, requires some four million
unique pages of documentation that must be revised and
republished quarterly. Multiply that by the number of models
produced by companies like Airbus and Boeing and you get a feel
for the scale involved.

I invented SGML, I'm proud of it, and I'm awed that such a staggering
volume of the world's mission-critical information is represented in it.

I'm also proud ofXML. I'm proud of my friend Jon Bosak who made it
happen, and I'm excited that the World Wide Web is becoming XML
based.

If you are new to XML, don't worry about any of this. All you need to
know is that the XML subset of SGML has been in use for a decade or
more, so you can trust it.

I am writing this the day after a meeting of the ISO committee that
develops the SGML standard. We had the largest attendance in our 20-year
history at that meeting. Interest in SGML has never been higher.

©1 998 TH E XML HANDBOOK ™

xlii PREFACE

You should share that interest if you produce documents on the scale of
an Airbus or Boeing. For the rest of us, there's XML.

About our sponsors
With all the buzz surrounding a hot technology like XML, it can be

tough for a newcomer to distinguish the solid projects and realisti applica
tions from the Auff and the fantasies. Om solution was to seek out compa
nies with real products and realisci applications and tell their stories in
sufficient detail that readers can see for themselves what is believable.

The application chapters are about what can be done with XML, exrrap
olacing from actual experience with one or more users or prototype imple
mentations. The case studie describe the XML experience of sp cific
named enterprise .

Some applications and case studies were done with full SGML before
XML had a formal existence, but are within XML's capabilities. The e are
de cribed as having b en done with XML. Parr of rhe proof ofXML's via
bility is rhat people have used its core functions fi r over ad ade.

The primary purpose of the tool chapters is to provide the vicarious
experience of u ing a variety fXML tools withour th effort of obtaining
evaluation copies and installing them. They also provide useful informacion
about uses and benefits ofXML in general, which upplements the applica
tion-oriented discussions in the earlier parts of d1e book.

There are also two sponsored chapters on new XML-related technolo
gies.

All sponsored chapters are identified with the name of the sponsor and
omctimes with th names of d1e experts who prepared rhe original text. AJl

of the chapters were edited by me, sometimes extensively, i.n order ro inte
grate them into the book. The editing objectives were to establish consis
tency of terminology and style, and to eliminate unnecessary duplication
among the chapters. I believe the result was faithful to rhe intentions of the
expert preparers with regard to bringing out the important characteristics of
their applications and products.

The sponsorship program was organized by Linda Burman, the pre ident
of L. A. Burman Associates, a consulting company chat provides marketing
and business development services co the XML and SGML industries.

We are grateful to our sponsors just as we are grateful to you, our readers.
Bod1 of you together make it possible for the XML Handbook to exist. In
the interests of everyone, we make our own editorial decisions and we don't
recommend or endorse any product or service offerings over any others.

© I 9 9 H T H E X M L H A N D B 0 0 K '"

PREFACE xliii

Our fourteen sponsors are:

• Adobe Systems Incorporated, http : I l www. adobe. com
• Arbor Text, Inc., http: I lwww. arbor text. com
• Chrystal Software, http: I l www. chrystal. com
• Frank Russell Company Advanced Technology Labs, http: I I

www.russell.com
• Inso Corporation, http: I l www. inso. com
• Interleaf, Inc., http: I l www. inter leaf. com
• ISOGEN International, http: I lwww. isogen . com
• Junglee Corporation, http: I l www. junglee. com
• Microsoft Corporation, http: I l www . microsoft. com
• Microstar Software Ltd., http: I lwww .micros tar. com
• POET Corporation, http: I l www .poet. com
• SoftQuad Inc., http: I l www. sq. com
• Texcel International, http: I lwww. texcel . com
• webMethods,http: llwww.webmethods . com

Acknowledgments
The principal acknowledgment in a book of this natw·e has to be to the

people who created the subject matter. In chis Cc'ISe, T rake special pl asure in
rhe fact that all of them are friends and colleagues of long standing in the
SGML community.

Tim Bray and C. Michael Sperberg-McQueen were the original editors
of the XML specification, later joined by Jean Paoli. Dan Connolly put the
project on the W3C "todo list" and shepherded i:t through the approval
process.

But all of them agree that, if a single person is to be thanked for XML, it
is Jon Bosak. Jon nor only sparked the original ideas and recruited the team,
but organized and chairs the W3C XML Working Group.

As Tim put it: "Without Jon, XML wouldn't have happened. He was
the prime mover."

Regarding the content of the book, Paul and I would like to thank Jean
Paoli, Eliot Kimber, David Siegel, Andy Goldfarb, Lars Marius Garshol,
and Steve Newcomb for contributing great material; Bryan Bell, inventor of
MIDI and document system architect extraordinaire, for his advice and
support; Steve Pepper and Bob D uCharme for talent-spotting and Richard
Lander for his insights into XSL.

1!:11998 TH E XML HANDB OO K™

xliv PREFACE

We also thank Lilia Prescod, Thea Prescod, and Linda Goldfarb for serv
ing as our useability test laboratory. That means they read lots of chapters
and complained until we made them clear enough.

Prentice Hall PTR uses Adobe FrameMaker to compose th books in my
series. We thank Lani Hajagos of Adobe for providing Paul and me with
cop1es.

Paul and I designed, and Paul implemented, an SGML-based production
system for the book. It uses James Clark's Jade DSSSL processor,
FrameMaker+ GML, and some ingenious FrameMaker plug-ins designed
and implemented by Doug Yagaloff of Caxton, Inc. We thank Doug, and
also Randy Kelley, for their wizard-level FrameMaker consulting advice.

But a great production system is nothing without a great Production
Editor. We were fortunate to have Patti Guerrieri, who epitomizes grace
and skill - under fire. She coped with an untested system and a book that
doubled in size, and still met the deadline.

This was my second project in which Linda Burman served as marketing
consultant. I thank her - again - for her sage counsel and aJways cheerful
encouragement.

My personal thanks, also, to Mark Taub, now an Editor-in-Chief at
Prentice Hall PTR, for his help, encouragement, and management of the
project.

As the senior author, I gave myself the preface to write. I'm senior
because Paul's folks were conceiving him about the same time that I was
conceiving SGML. (In return, Paul got to write the history chapter, because
for him it really is history.)

This gives me the opportunity to thank Paul publicly for the tremendous
reservoir of talent, energy, and good humor that he brought to the project.
The book benefitted not just from his XML knowledge and fine writing
skills, but from his expertise in SGML, Jade, and FrameMaker that enabled
us to automate the production of the book (with the previously acknowl
edged help from our friends).

Thanks, Paul.

Charles F. Goldfarb
Saratoga, CA
May 15, 1998

©1998 THE XML HANDBOOK™

u_..3..,

c....54_..___.I u_..._|
4w

H.wr....F#-__.

u...A....,._.a__,%J...

Par~ One

I The Brave New Web

I Data and documents

I Structured information
L__ __

I XM L concepts

I XML in the real world

C<:l i ')'I H T II F X SJ I. H ,\ N ll 11 <l o ~ ' ·"

The Who,
What, and

Why of
XML

©1998 THE XML HANDBOOKTM

WhyXML?

I What is XML) really?

I Origins in document processing

I Abstraction vs. rendition
'-------

1 Documents and data

©199M THE XML HANDBOOK 1"M

Chapter __ _____,.

1

of the most influential companies m the software
are promoting XML as the next step in the Web's

•(::VO:LUtlton. How can they be so confident about something
so new? More important: how can you be sure that your time invested
in learning and using XML will be profitable?

We can all safely bet on XML because the central ideas in this new tech
ology are in fact very old and have been proven correct across several

decades and thousands of projects. The easiest way to understand these
ideas is to go back to their source, the Standard Generalized Markup Lan
guage (SGML).

XML is, in fact, a streamlined subset of SGML, so SGMLs track record
is XMrs as well.

And if your interest is in moving data from Web sites to a browser or a
spreadsheet, stay with us. All of this is interconnected and extremely rele
vant. For the amazing truth about XML is that with it, data processing and
document processing are the same thing! If you understand where it all
comes from, you'll understand where it - and the Web - are going.

Cl998 TH E XM L H A NDBOOKTM 3

4 CHAPTER 1 I WHY XML?

1.1 1 Text formatters and SGML

XML comes from a rich history of text processing sys[ems. Text p1·ocessing is
the subdiscipline of computer science dedicated to creating computer systems
that can automate parts of the document creation and publishing process.
Text processing software includes simple word processors, advanced news
item databases, hypertext document presentation systems and other pub
lishing tools.

The first wave of automated text processing was computer typesetting.
Authors would type in a document and describe how they would like it to
be formatted. The computer would print out a document with the
described text and formatting.

We call the file format that contained the mix of the actual data of the
document, plus the description of the desired format, a rendition. Some
well-known rendition notations include troff, Rich Text Format (RTF), and
LaTeX

The system would convert the rendition into something physically per
ceivable to a human being - a presentation. The presentation medium was
historically paper, but eventually electronic display.

Typesetting systems sped up the process of publishing documents and
evolved into what we now know as desktop publishing. Newer programs
like Microsoft Word and Adobe Pagemaker still work with renditions, but
they give authors a nicer interface to manipulate them. The user interface to
the rendition (the file with formatting codes in it) is designed to look like
the presentation (the finished paper product). We call this What You See Is
What You Get (WYSIWYG) publishing. Since a rendition merely describes a
presentation, it makes sense for the user interface to reflect the end-product.

1.1.1 Formatting markup

The form of typesetting notation that predates WYSIWYG (and is still in
use today) is called formatting markup. Consider an analogy: you might
submit a manuscript to a human typesetter for publication. Imagine it had
no formatting, not even paragraphs or different fonts, but rather was a sin
gle continuous paragraph that was "marked up" with written instructions
for how it should be formatted. You could write very precise instructions
for layout: "Move this word over two inches. Bold it. Move the next work

©1998 THE XML HANDBOOK™

1.1 I TEXT FORMATTERS AND SGML 5

b
'd 1·t Move the next word underneath it. Bold it. Start a new line here."

es1 e ·
and so forth.

@f:::core and s even J!Hde.eta.«t
years ago our father~ ~, ~
brought forth on this t<J. n~n
continent a new nation,
conceived in liberty,
and dedicated to the
propositions that a~ped ile itat«4
men are created equa~

~,;;, Now we are engaged i n a
~ great civil war,
dip a. tuee testing whether that

nation, or any nation /

L_._ ~text(().~~
Figure 1-1 A manuscript "marked up" by hand

Formatting markup is very much the same. We "circle" text with instruc
tions called tags or codes (depending on the particular formatting markup
language). Here is an example of markup in one popular formatting
markup language called LaTeX.

E~mple 1-l. A document with formatting markup

This is a marked up document. It contains words that are {\it italicized},
{\bf bold faced}, {\small small} and {\large large}.

In this markup language, the curly braces describe the extent of the for
matting. So the italics started with the "\it" command extend until the end
of the word "italicized". Because the markup uses only ordinary characters

li:li998 THE XML HANDBOOK™

6 CHAPTER 1 I WHY XMU

on typical keyboards, it can be created using existing text editors instead of
special word processors (those came later).

1.1.2 Generalized markup

This process is adequate if your only goal is to type documents into the
computer, describe a rendition and then print them. Around the late sixties,
people started wanting to do more with their documents. In particular,
IBM asked Charles Goldfarb (the name may sound familiar) to build a sys
tem for storing, finding, managing, and publishing legal documents.

Goldfarb found that there were many systems within IBM that could not
communicate with each other. Each of them used a different command lan
guage. They could not read each other's files, just as you may have had trou
ble loading WordPerfect files into Word. The problem then, as now, was
that they all had a different representation (sometimes also called a file for
mat) for the information.

1.1.2.1 Common document representation

In the late sixties, Goldfarb and two other IBM researchers, Ed Mosher and
Ray Lorie, set out to solve this problem. The team recognized three impor
tant facts. First, the programs needed to support a common document rep
resentation.

That part is easy to understand. Tools cannot work together if they do
not speak the same language. & an analogy, consider the popularity of
Latin terms in describing chemical and legal concepts and categories. To a
certain extent, chemists and lawyers have chosen Latin as a common lan
guage for their fields. It made sense in the text processing context that the
common language should be some form of markup language, because
markup was well understood and very compatible with existing text editors
and operating systems.

1.1.2.2 Customized document types

Second, the three realized that the common format should be specific to

legal documents.

©1998 THE XML HANDBOOKTM

1.1 I TE XT F OR M A TT ER S AND S GML 7

This is a l.itde more sub de co grasp, but vital to understanding XML. The
a.rn could have invemed a simpl language, perhaps similar co the repre

re cacion of a standard word proces or, but that representation would not
~~e al lowed the sophisticated process.ing that was reqwred. Lawyers and
;cncists both use Latin, but they do not use the same terminology. Rather
~ey use Larin words as building blocks to create domain specific vocabular
ies (e.g. "habeas corpus", "ferruginous"). hese domain pecific vocabularies
ate even more important when we are describing docwnents w computers.

Computers are dumb
Usually we take for granted that computers are not very good at working
with text and documents. We would never, for instance, ask a computer to
search our hard disk and return a document that was a "letter" document,
that was to "Martha'' and that was about "John Smith's will". Even though
this example seems much simpler than something a lawyer or chemist
would run into, the fundamental problems are the same.

Most people recognize that the computer is completely incapable of
understanding the concepts of "letter", "Martha'' or "a will". Instead we
might tell it to search for those words, and hope that we had included them
all in the document. But what would happen if the system that we wanted
to search was massive? It might turn up hundreds of unrelated documents.
It might return documents that contained strings like "Martha, will you
please write me a letter and tell me how John is doing?"

The fundamental problem is that the computer does not in any way
understand the text. The solution is to teach the computer as much about
the document as possible. Of course the computer will not understand the
text in any real sense, but it can pretend to, in the same way that it pretends
t0 understand simple data or decimal numbers1

. We can make this possible
by reducing the complexity of the document to a few structural elements
chosen from a common vocabulary.

But computers can be trained
Once we "teach" computers about documents, we can also program them
to do things they would not have been able to otherwise. Using their new

l. We hope we haven't disillusioned anyone here. Computers may seem to know
everything about math, but it is all a ruse. As far as they are concerned, they
are only manipulating zeros and ones.

<01998 TH E XM L HANDB OOK ™

8 CHAPTER 1 I WHY XML?

"understanding" they can help us to navigate through large documents,
organize them, and automatically format the documents for publication in
many different media, such as hypertext, print or tape.

In other words, we can get them to process text for us! The range of
things we can get them to do with the documents is much wider than what
we would get with WYSIWYG word processors or formatting markup.

Let us go back to the analogy of the typesetter working with a document
marked up with a pen on paper to see why this is so powerful.

Imagine if we called her back the next day and told her to "change the
formatting of the second chapter". She would have a lot of trouble mentally
translating the codes for presentation back into high level constructs like
sections and paragraphs.

To her, a title would only look like a line of text with a circle around it
and instructions to make it italicized and 18 point. Making changes would
be painful because recognizing the different logical constructs would be dif
ficult. She probably could eventually accomplish the task by applying her
human intuition and by reading the actual text. But computers do not have
intuition, and cannot understand the text. That means that they cannot
reliably recognize logical structure based totally on formatting. For instance
they cannot reliably distinguish an italicized, 18 point title from an itali
cized, 18 point warning paragraph.

Even if human beings were consistent in formatting different types of
documents (which we are not) computers would still have trouble. Even in
a single document, the same formatting can mean two different things: ital
ics could represent any kind of emphasis, foreign words, certain kinds of
citations or other conventions.

Abstractions and renditions
Computers are not as smart as we are. If we want the computer to consider
a piece of text to be written in a foreign language (for instance for spell
checking purposes) then we must label it explicitly foreign-language and
not just put it in italics! We call "foreign language" the abstraction that we
are trying to represent, and we call the italics a particular rendition of the
abstraction.

Formatting information has other problems. It is specific to a particular
use of the information. Search engines cannot do very interesting searching
on italics because they do not know what they mean. In contrast, the search

©1~98 THE XML HANDB<lOKrM

1.1 I TE X T FORMATTERS AND SGML 9

. could do omethlng very interesting with citation elements: tr
engmc · d · d b I d uld return a list of what cuments are ctte y ot 1.er ocwnems.

0
Jralics are a form of markup spec.ific. to a particul~u appl ication: formar

l g or printing. In contrast, che cttatton element ts markup that can be
t n d by a variery of applications. That is why we call this form of trucrural
~~kup generalized markup. Generalized markup is rh alternative LO either
formatting markup or WY IWYi -r (lampooned by XML users as What You
See is AILYou t). GeneraUzed markup is abom g rring more.

Because of the ambiguiry of formatting, XML users typically do not
bocher to encode the document's presentational features at all, though XML
would allow it. We are not interested, for instance, in fonts, page breaks and
bullets. This formatting information would merely clutter up our abstract
d0 cument's representation. Although typographic conventions allow the

0 mputer to print out or display the document properly, we want our
markup to do more than that.

Stylesheets
or course we must still be able to generate high quality print and online
renditions of the document. Your readers do not want to read XML text
directly. Instead of directly inserting the formatting commands in the XML
document, we usually tell the computer how to generate formatted rendi
tions ftom the XML abstraction.

For example in a print presentation, we can make the content of TITLE

elements bold and large, insert page breaks before the beginning of chap
ters, and turn emphasis, citations and foreign words into italics. These rules
are specified in a file called a stylesheet. The stylesheet is where human
de~igners can express their creativity and understanding of formatting con
vendons. The tylesheet allow. the computer to amomatically convert the
document from the abstra cion to a formatt d rendici n.

We could use two clifferenr stylesheets to generar online and print rendi
tions of the d cument. In the on line rendition, there would be no page
breaks, but cro s-reference · would be r pr ented as li kable hyperrext
links. eneralized markup allows us to easily produce high-quality print
and online renditions of the same document.

This may well urn out to be he featur ' ofXML that will sav rganiza
ti0ns and individuals rhe most money in che near future. We can even use
two different tyl heets in the same medium. For in tance, the computer
cotdd format the same do ument into several different tyles (e.g. "New

C1:li998 THE XML HANDB OOK™

1 0 CHAPTER 1 I WHY XMU

York Times" style vs. "Wired Magazine") depending on the expressed pref
erences of a Web surfer, or even based on what Internet Service Provider
they use.

We can also go beyond just print and online formatting and have our
document be automatically rendered into braille or onto a text-to-speech
machine. Generalized markup is highly endorsed by those who promote the
accessibility of information to the visually impaired. XML should be simi
larly useful to those who want to widen the use of the Web.

Generalized markup documents are also "future-proof". They will not
have to be redone to take advantage of future technologies. Instead, new
stylesheets can be created to render existing documents in new ways.

Future renditions of documents might include three-dimensional virtual
reality worlds where books are rendered as buildings, chapters as rooms and
the text as wallpaper! Once again, the most important point is that these
many different renditions will be possible without re-encoding the docu
ment. There are millions of SGML documents that predate the Web, but
many of them are now published on it.

Typically, they were republished in HTML without changing a single ,
character of the SGML source's markup or data, or editing a single charac- '
ter of the generated HTML. The same will be true of the relationship
between XML and all future representations.

The key is abstraction. SGML and XML can represent abstractions, and
from abstractions you can easily create any number of renditions. This is a
fact well-known to the world's database programmers, who constantly gen
erate new renditions - reports and forms - from the same abstract data.

Element types

Enough hype about generalized markup! You probably want to know what
it looks like. To mark up a letter, we could identifY the components of the
letter like this:

Example 1-2. A simple memo
<to>Charles Goldfarb</to>
<from>Paul Prescod</from>
<re>John Smith's will</re>

<p>John Smith wants to update his will. Another wife left him.</p>

©1998 THE XML HANDBOOKTM

1.1 I TEXT FORMATTER S AND SGML 11

Tl ·5 cext wouJd b part of an XML document. The markup idencifies
~~nenrs, caUed clements, of the document i.n ways that the computer

co.mp Tl " " 1 th b · · f 1 understand. 1e tart-tag <to> mar {5 e egmnmg o an emenr
ca~ clle end,-tag "<lto>" marks the end of the element. Each element is an
an l 1. • " ' c , .. , d " .. · tat"Ce of an e ement type, sucn a.'i to , r.rom , r an p .
IllS ~ .

Jfyou use an XML-aware, y u may never work w1th markup at the cex-
al cag level, but you would still annotate sections of the document in this

~ay (using whatever graphical int rface th word processor pr vides).
Instead of each element type describing a formatting construct, each one

in tead describes the logical role of its elements - the abstraction it repre
sertrs. The goal is for the abstraction to be descriptive enough and suitably
chos 11 so that particular uses of the document (such as printing, searching
and so forth) can be completely automated as computer processes acting on
the elements.

For instance, we can search for a document that is "to" Martha, about
(''re'') John Smith's will. Of course the computer still does not understand
the human interaction and concepts of sender and receiver, but it does
know enough about the document to be able to tell me that in a "to" ele
m m of this particular document, the word "Martha" appears. If we
ex,panded the letter a little to include addresses and so forth, we could also
use an appropriate stylesheet to print it as a standard business letter.

Documents and databases
We can make our letter example even more precise and specific:

Example 1-3. Another letter
<to>Martha</ t o >
<from>Paul </ t o>
<re><customer-name>John Smith</ customer-name>

<customer-number>802-31348 - 5749 < / c ustomer-number>
<document- type-request>will </ document-type-request>

</re>

<p>John Smith wants to· update his will. Another wife l e ft him. </p>

If you are familiar with databases, you might recognize that this looks
database-ish in the sense that the customer number could be stored in a
special index and you could easily search and sort this document based on
customer numbers, document type requests and so forth.

C!998 THE XML HANDBOOK™

12 CHAPTER 1 I WHY XML?

Bur you can only do this sort of thing if your letter processing systern
understands your company's concepts of customer-numbers and your doc
uments consistently provide the information. In other words, you must
define your own set of element types just as the IBM team did.

In fact, many people have noticed that XML documents resemble tradi
tional relational and object database data in many ways. Once you have a ,
language for rigorously representing documents, those documents can be
treated more like other forms of data.

But the converse is also true. As we have described, structured docu- '
ments have many features in common with databases. They can preserve
the abstract data and prevent it from being mingled with rendition infor
mation.

Furthermore, you can actually use this structured markup to represent
data that is not what we would traditionally think of as documents, but too ,
complex to be handled in conventional databases. In this brave new world, ,
DNA patterns are data, and so are molecular diagrams and virtual reality
worlds. In other words, generalized markup allows us to blow the doors off ,
the word "document" and integrate diverse types of data. This database-iza- ·
tion of documents and document-ization of data is one of the major drivers
of the XML excitement. Prior to XML, the Web had no standard data .
interchange format for even moderately complex data.

It may not have been obvious to its early, publishing-oriented adapters,
that SGML would change the entire world of databases and electronic data '
interchange (EDI). But SGML:s unique usefulness as a data interchange ,
representation was a direct consequence of this second decision - to make
SGML extensible through a customized vocabulary (set of element types).

1.1.2.3 Rule-based markup

The IBM team's third realization was that if computer systems were to work
with these documents reliably, the documents would have to follow certain
rules.

For instance a courtroom transcript might be required to have the name
of the judge, defendant, both attorneys and (optionally) the names of mem
bers of the jury (if there is one). Since humans are prone to make mistakes,
the computer would have to enforce the rules for us.

In other words the legal markup language should be specified in some
formal way that would restrict elements appropriately. If the court stenogra-

!i) l ~'!R TH E XML HtiND n uo~-:'M

1 . 1 I TEX T F O R M ATT E R S A N D S GML 13

J ied co submjr a uans ript to the system without d1e e elements being
P 1er t~ly fill d in the sy tern would check its validity and complain that it
propel ·
was irwalid.

Of course, court transcripts have a different structure &om wills, ~hich
in wrn have a clifferent structure from memos. So you w uld need ro ngor

ly define what jt means for each type of document to be valid. In SGML
0~minology each of the e is a docmnent type and rhe formal definition that
~e cribes each cype is called a doctement type definition (DTD).

Once again we can see why it is so imporranc char the language provide
u with the flexib.iliry to choose our own vocabulary (ur own et of ele
ment rypes). After all, the constraints that we apply must be described in
terms of those element types. We use the word document type to refer both
to a vocabulary and the constraints on its use.

Once again, this concept is very common in the database world. Data
base people typically have several layers of checking to guarantee that
improper data cannot appear in their databases. For in ranee syntactic
checks guarantee that phone numbers are composed of digits and that peo
ple's names are not. Semantic checks en ure that business rules are followed
(such as "purchase order numbers muse be unique"). The database world
calls the set of constraints on the database structure a schema. In their termi
nology, DTDs are schemas for documents.

Once you have a document type worked out, you can describe for the
computer how to print or display documents that conform to it with a
stylesheet. So you might say that the address line in memos would be balded,
or that there should be two lines between speeches in a court transcript.
These processes can work reliably because documents are constrained by
the document type definition.

For instance, a letter cannot have a postscript ("P.S.") at the beginning of
the document nor an address at the end. Because there is no convention for
formatting such a letter, a stylesheet would not typically do a good job with
it. In fact, it might rash, as some word processors do when they try to load
corrupted docwnents. The document type definicion protects us from this. 1

In 1969, the IBM team developed a language that could implement their
vision of markup that was not specific to a particular system. They called it
the Generalized Markup Language (whlch, not coincidentally, has the same
initials as the names Goldfarb, Mosher and Lorie).

1. Of course, computer programmers will always invent new excuses for crashing
software.

©1 99 8 THE X ML HANDBOOK ™

14 CHAPTER 1 I WHY XML?

However, it wasn't until 197 4 that Goldfarb proved the concept of a "val
idating parser", one that could read a document type definition and check
the accuracy of markup, without going to the expense of actuaUy processing
a do ument. As b recalls it: ''At that point SGML was born - although it
still had a lot of growing up to do."

Between 1978 and 1986, Goldfarb acted as technical leader of a team of
users, programmers and academics that developed his nascent invention ·
into the robust International Standard (ISO 8879) they called the Standard
Generalized Markup Language.

That team, with many of the same players still involved, is now JTCl! .
WG4, which continues to develop SGML and related standards. Two of the ·
most important are HyTirne, which standardizes the representation of'
hyperlinking features, and DSSSL, which standardizes the creation of
stylesheet~. 1

The SGML standard took a long time to develop, but arguably it was
still ahead of the market when it was created. Over those years, the basic
concepts of GML were broadened to support a very wide range of applica
tions. Although GML was always extensible and generalized, the SGML .
standard added many features and options, many intended for niche mar
kets. But the niches had to be catered for: some of the niche users have doc
ument collections that rival the Web in size!

By the time it was standardized in 1986, SGML had become large, intri- ·
cate and powerful. In addition to being an official International Standard,
SGML is the defacto standard for the interchange of large, complex docu
ments and has been used in domains as diverse as programming language
design and airplane maintenance.

1.2 I HTML and the Web

In 1989, a researcher named Tim Berners-Lee proposed that information
could be shared within the CERN European Nuclear Research Facility
using hyperlinked text documents. He was advised to use an SGML-ish

I. Knowing the full names probably won't help much, but just in case, HyTime
is short for "Hypermedia/Time-based Structuring Language" and DSSSL
(pronounced "dis-sal") is short for "Document Style Semantics and Specifica
tion Language". We warned you that it wouldn't help much.

© I 9 9 8 T fl E X M L H A N D B 0 0 K 1 "

1.2 I HTML AND THE WEB 15

, ax by a colleague named Anders Berglund, an early adopter of th.e new fuML scandard. They starred fi·om a simple example document rype in the
SGML standard 1 and developed a hypertext version called the Hypertext
,Nft~rkup Language (HTML).

Rcl~cive to the 20 year evolution of SGML, HTML was developed in a
hurry but it ~ ~e job. Tim. called his hypertext syst~m the ~rid Wide
~b and today H 1s the mosr diverse, popular hyp~·text mformat1on system
'n ~istence . Irs simpJ iciry is widely believed co be an important parr of its
~uccess. The sinJplicicy of HTML and the other Web specifications allowed
pl!egtammers around the world to quicldy build systems and tools to work

with the Web.
HTML inherited some important strengths from SGML. With a few

e~ceptioas 1 its element types were generalized and descriptive, not format
ting constructs as in languages like TeX and Microsoft Word. This meant
chat HTML documents could be displayed on text screens, under graphical
user interfaces, and even projected through speakers for the sight impaired.

HTML documents used SGM:Ls simple angle bracket convention for
markup. That meant that authors could create HTML documents in
almost any text editor or word processor. The documents are also compati
ble with almost every computer system in existence.

On the other hand, HTML only uses a fixed set of element types. As we
discussed before, no one document type can serve all purposes, so HTML
on ly adopted the first of GM:Ls revelations, that document representations
must be standardized. It is not extensible and therefore cannot be tailored
for particular document types, and it was not very rigorously defined until
year after its invention. By the time HTML was given a formal DTD,
there were already thousands ofWeb pages with erroneous HTML.2

1. That DTD was based on the very first published DTD, from a 1978 IBM
manual written by Goldfarb, derived in turn from work that he and Mosher
had done in the early 70's.

2. Today there are tens of thousands with misleading or downright erroneous
informational content, so perhaps bad HTML is not that big a problem in
practice.

Cli 998 THE XML HANDBOOK™

16 CHAPTER 1 I WHY XML?

1.2.1 HTML gets extended - unofficially!

As the Web grew in popularity many people started to chafe under HTML:s
fixed document type. Browser vendors saw an opportunity to gain market
share by making incompatible extensions to HTML. Most of the extensions
were formatting commands and thus damaged the Web's interoperability.
The firsr golden rule, standardization was in serious danger. ·

For instance Nerscape's popular CENTER element cannot be "pronounced"·
in a text to speech converter. A BLINK element cannot be rendered on sorne'
computers. Still, this was a fairly understandable reaction to HTMCs limi
tations.

One argument for implementing formatting constructs instead of
abstractions is that there are a fixed number of formatting constructs in
wide use, but an ever growing number of abstractions. Let's say that next
year biologists invent a new formatting notation for discussing a particular
type of DNA. They might use italics to represent one kind of DNA con
struct and bold to represent another. In other words, as new abstractions are
invented, we usually use existing formatting features to represent them. We
have been doing this for thousands of years, and prior to computerization,
it was essentially the only way.

We human readers can read a textual description of the meanings of the
features ("in this book, we will use Roman text to represent ... ") and we can
differentiate them from others using our reasoning and understanding of
the text. But this system leaves computers more or less out of the loop.

For instance superscripts can be used for trademarks, footnotes and vari
ous mathematical constructs. Italics can be used for references to book
titles, for emphasis and to represent foreign languages. Without generalized
markup to differentiate, computers cannot do anything useful with that
information. It would be impossible for them to translate foreign languages,
convert emphasis to a louder voice for text to speech conversion, or do cal
culations on the mathematical formulae.

1.2.2 The World Wide Web reacts

As the interoperability and scalability of the Web became more and more
endangered by proprietary formatting markup, the World Wide Web Con
sortium (headed by the same Tim Berners-Lee) decided to act. They'

©1998 THE XML HANDBOOKTM

1.2 I HTML AND THE WEB 17

d d the problem in three ways. First, they decided to adopt the SGML
tta ce

t ·on for attaching formarci ng to documents, the stylesheet.
can:ven '

They invented a simple HTML-specific stylesheet language called Cas-
cading Style Sheets (~SS) tha~ allowed peo~le to ~teach f~rmarting t?
I-[!ML documents wtthout fiUmg the HTML ttself With propnetary, rendt-

tion~oriented markup.

Second, they invented a simple mechanism for adding abstractions to

HTML. We will not look at that mechanism here, because XML makes it
obs0 1e~e. It allowed new abstractions to be invented but provided no mech
anism for constraining their occurrence. In other words it addressed two of
GM!Js revelations: it brought HTML back to being a single standard, more
or less equally supported by the major vendors, and it allowed people to
d fine arbitrary extensions (with many limitations).

But they knew that their stool would not stand long on two of its three
legs. The (weakly) extensible HTML and CSS are only stopgaps. For the
Web to move to a new level, it had to incorporate the third of SGMLs
important ideas, that document types should be formally defined so that
d0ct1men ts can be checked for validity against them.

Therefore, the World Wide Web Consortium decided to develop a sub
sen of SGML that would retain SGMLs major virtues but also embrace the
We~ ethic of minimalist simplicity. They decided to give the new language
ch catchy name Extensible Markup Language (XML). They also decided
to make related standards for advanced hyperlinking and stylesheets.

The first, called the Extensible Linking Language (XLink), is inspired by
1-lyTime, the ISO standard for linking SGML documents, and by the Text
En¢oding Initiative, the academic community's guidelines for applying
SGMl to scholarly applications.

The second, called the Extensible Style Language is a combination of
ideas from the Web's Cascading Style Sheets and ISO's DSSSL standard.1

1. This description necessarily presented as linear, straightforward, and obvious a
process that was actually messy and at times confusing. It is fair to say that
there were many people outside the World Wide Web Consortium who had a
better grasp on the need for XML than many within it, and that various mem
ber corporations "caught on" to the importance ofXML at different rates.

10 19 9B THE XML HANDBOOK™

18 CHAPTER 1 I WHY XMU

l.i 1 Conclusion

Now we've seen the origins of XML, and some of its key ideas. Unlike lots
of other "next great things" of the high-tech world, XML has solid roots .
and a proven track record. You can have confidence in XML because the
particular subset of SGML that is XML has been in use for a dozen years.

©1998 THE XML HANDllCHlK ·fM

o1 _
‘41.. 3‘?"L_ ,_

"7 r»

_ J _

’ .'| r '1"a i-
’ .H .15

{1:3 '9’.
"Pg. '- _.

.éJ
f?"

a...“ -

' J — .1.1" _ r.

. l -'

.1 JP
II c

had-n

r H P‘ -.
I ‘— _

.--‘ '1"-f- _ .
v” ‘n _ _

H... r'

47‘(4"

never before had access to the new features that XML offers.
It will take a while for the Web culture to understand the

strengths (and weaknesses) of the new language and learn how to
properly deploy it. Still, XML is already becoming a building block
for the next generation ofWeb applications and specifications.

T he XML effort is new ground in many senses. The Web has

!.I | Beyond HTML

XML was originally conceived as a big brother to HTML. As its name
implies, XML can be used to extend HTML or even define whole new lan-
guages completely unlike HTML. At first, the thousands of aurhors accus-
tomed to HTML will probably use it as a mere HTML extension and
slowly grow into its more powerful abilities.

For instance, a company might want to offer technical manuals on the
Web. Many manuals have a formatting For tables {e.g.. a table listing a soft-
ware product’s supported languages) and repeat the formatting on several

@1998 THE XML HANDBOOKTM 21

22 CHAPTER 2 | WHERE IS XML GOING?

tables in the manual (perhaps once per program in a package). The format-
ting of these tables can be very intricate.

For instance the rows may be broken into categories with borders
between them. The title of each column and row might be in a particular
font and color. The width of the columns might be very precisely described.
The final row (“the bottom line”) might be colored. HTML could provide
the formatting markup that the layout would require, but it would require a
lot of duplication. In fact, it would be such a hassle that most companies
would choose to use a graphic or an 1461056 Portable Document Format
(PDF) file instead.

To demonstrate how XML can help, we will use an example table from
the specification for HTML tables. We will simplify the example some—
what, but the XML solution will still be shorter (in characters) and easier to
read.

A graphic of a table
CODE-PAGE SUPPORT IN MICROSOFT WINDOWS

Code—Page | Name I Windows Windows Windows
ID | | NT 3.1 NT 3.51 95

1200 | Unicode (BMP of ISO 10646) | x x
1250 I Windows 3.1 Eastern European | X X X
1251 | Windows 3.1 Cyrillic i X X X
1252 [Windows 3.1 US (ANSI) | x x x
1253 [Windows 3.1 Greek I X X X
1254 | Windows 3.1 Turkish I X X X

1255 | Hebrew | X
1256 | Arabic | X
1257 | Baltic | X
1361 1 Korean (Johab) I X

Figure 2-1 A Formatted Table (based on an example in the HTML 4.0
Recommendation)

If there are many of these tables the cumulative effort of doing this man—
ual work can add up to a large burden, especially since it must be main—
tained as products change. Even with an HTML authoring tool, you will
probably have to do the layout manually, over and over again. As if this
internal expense was not disturbing enough, every person who reads the
annual report over the Web must download the same formatting informa—

©1998 THE XML HANDBOOKTM

2.1] BEYOND HTML

Example 2-1. The HTML Markup to Implement the Table (based on an
example in the HTML 4.0 Recommendation)_——————_———-—
<TABLE border="2“ frame=”hsides” rules="groups”>
<CAPTION>CODE—PAGE SUPPORT IN MICROSOFT WINDOWS</CAPTION>

<COLGROUP align="center">
<COLGROUP align="left">
<COLGROUP align="center" span=“2">
<COLGROUP align=“center“ span="3">
<THEAD valign="top“><TR><TH>Code—Page
ID<TH>Name
<TH>Windows
NT 3.1<TH>Windows
NT 3.51<TH>Windows
95
<TBODY>

<TR><TD>1200<TD>Unicode (BMP of ISO/IEC-10646)<TD>X<TD>X<TD>
<TR><TD>1250<TD>Windows 3.1 Eastern European<TD>x<TD>x<TD>x

<TR><TD>1251<TD>Windows 3.1 Cyrillic<TD>x<TD>x<TD>X
<"R><TD>1252<TD>Windows 3.1 Us (ANSI)<TD>X<TD>X<TD>X
<TR><TD>1253<TD>Windows 3.1 Greek<TD>X<TD>X<TD>X
<TR><TD>1254<TD>Windows 3.1 Turkish<TD>X<TD>X<TD>X
<TR><TD>1255<TD>Hebrew<TD><TD><TD>X
<TR><TD>1256<TD>Arabic<TD><TD><TD>X
<TR><"D>1257<TD>Baltic<TD><TD><TD>X

<TR><TD>1361<TD>Korean (Johab)<TD><TD><TD>X</TABLE>

tion row after row, column after column, table after table, year after year.

Right thinking Web page authors will understand that this situation is not
good. The repetition leads to longer download times, congested servers, dis—
satisfied customers and perhaps irate managers.

The XML solution would be to invent a simple extension to HTML that
is customized to the needs of the manual. It would have table elements that

would only require data that varies from table to table. None of the redun—
dant formatting information would be included. We would then use a
sophisticated stylesheet to add that information back in. The beauty of the
stylesheet solution is that the formatting information is expressed only in
one place. Surfers only have to download that once. Also, if your company
decides to change the style of the tables, all of them can be changed at once
merely by changing the stylesheet. Here is what that might look like:

The difference between this XML version and the HTML version is not

as dramatic as in some examples, but the XML version is clearer, has fewer
lines and characters and is easier to maintain. More important, the

stylesheet can choose to format this in many different ways as time goes by
and tastes change. All the XML version represents is the actual information
about Windows code pages, not the tabular format of a particular presenta—
tion of it.

@1998 THE XML HANDBOOKTM

23

24 CHAPTER 2 | WHERE IS XML GOING?

Example 2-2. XML Version of the Table
<CODE-PAGE-TABLE>

<CP NUM="1200" NAME="UniCOde (BMP of ISO/IEC-10646)”
PnATFORMS=”N"3.l NT3.51"/>

<CP NUM=”1250" NAME=”Windows 3.1 Eastern European”
PaATFORMS=”N"3.l N"3.51 WIN95”/>

<CP NUM="1251" NAME="Windows 3.1 Cyrillic"
PLATFORMS="NT3.1 NT3.51 WIN95"/>

<CP NUM="1252" NAME="WindOWS 3.1 US (ANSI)"
PLATFORMS="N”3.1 NT3.51 WIN95"/>

<CP NUM="1253" NAME="WindOWS 3.1 Greek"

PLATFORMS=”NT3.1 N"3.51 WIN95”/>
<CP NUM="1254" NAME="Windows 3.1 Turkish"

PLATFORMS=”N"3.1 N"3.51 WIN95"/>
<CP NUM="1255" NAME=”HebreW"

PLATFORMS="WIN95"/>
<CP NUM="1256" NAME="Arabic"

PaA"FORMS="WIN95”/>
<CP VUM="1257" NAME="Baltic”

PJA"FORMS=”WIN95"/>

<CP \IU'M="1261" NAME="Korean (Johab) “
PuATFORMS=”NT3.l NT3.51 WIN95”/>

One thing to note is that the extra download of a stylesheet does take
time. It makes the most sense to move formatting into a stylesheet when
that formatting will be used on many pages or in many parts of the same
page. The goal is to amortize the cost of the download over a body of text.
A similar caveat applies to the time it takes to make the stylesheet and
design the table elements. Doing so for a single table would probably not be
cost effective. Our example above basically shifts the complexity from the
document to the stylesheet, on the presumption that there will probably be
many documents (or at least many tables) for every stylesheet. In general,
XML is about short term investment in long term productivity.

Once you have made that investment you can sometimes realize more

radical productivity gains than you first intended. Imagine that you use
XML tables to publish the financial information in your company’s annual
report. Your accountants may be able to use their software’s report writing
feature to directly transfer accounting information into the XML table.
This can save one more opportunity for typos between the accountants’

printout and the Web author’s keyboard. There might also be opportunities
for automation at the other end of the spectrum. Other software might
transform the XML table directly into a format required for submission to
some government agency.

@1998 THE XML HANDBOOKTM

2.2 | DATABASE PUBLISHING 25

1.! | Database publishing

The last example hints at the way XML can interacr with systems that are
not typically associated with documentation. As documents become more
structured they can become integrated with the other structured data in an
organization. Some of the same techniques can be used to create them (such
as report writing software or custom graphical user interfaces) and some of
the same software will be able to read them (such as spreadsheets and data-

base software). One particularly popular application of XML will surely be
the publishing of databases to the Web.

Consider for instance a product database, used by the internal ordering
system of a toy manufacturer. The manufacturer might want the database
to be available on the Web so that potential clients would know what was
available and at what price. Rather than having someone in the Web design
department mark up the data again, they could build a connection between
their Web server and their database using the features typically built into
Web servers that allow those sorts of data pipes. The designers could then

make the producrs list beautiful using a stylesheet. Picrures of the toys
could be supplied by the database. In essence, the Web site would be merely
a view on the data in the database. As toys get added and removed from the
database, they will appear and disappear from the view on the Website. This
mechanism. also gives the Website maintainer the freedom to update the
“look and feel” of the Website without dealing with the database or the

plumbing that connects it to the Web server!

XML is also expected to become an important tool for interchange of
database information. Databases have typically interchanged information

using simple file formats like one—record per line with semi—colons between
the fields. This is not sufficient for the new object-oriented information

being produced by databases. Objects must have internal structure and
I links between them. XML can represent this using elements and attributes

to provide a common format for transferring database records between
databases. You can imagine that one database might produce an XML doc-
ument representing all of the toys the manufacturer produces and that doc-
ument could be directly loaded into another database either within the
company or at a customer’s site. This is a very interesting way of thinking
about documents, because in many cases human beings will never see them.

They are documents produced by and for computer software.

I @1998 THE XML HANDBOOKTM

26 CHAPTER 2 | WHERE IS XML GOING?

Example 2-3. A products database in XML___a<TOYS>
<ITEM>

<TITLE>GI John</TITLE>

<MANUFACTURER>War Toys Inc.</MANUFACTURER>
<PRICE>50.95</PRICE>
<IN-STOCK>3000</IN-STOCK>
</ITEM>
<ITEM>

<TITLE>Leggo!</TITLE>

<MANUFACTURER>GripS R US</MANUFACTURER>
<PRICE>64.95</PRICE>
<IN—STOCK>2000</IN—STOCK>
</ITEM>
<ITEM>

<TITLE>He11 On Wheels</TITLE>

<MANUFACTURER>Li'l Road Warriors</MANUFACTURER>
<PRICE>150.95</PRICE>
<IN—STOCK>3200</IN-STOCK>
</ITEM>
</TOYS>

2.3 | Electronic commerce

Presume that a retailer decides that it wants to start selling a line of toys
from the database. They might contact the manufacturer to organize the
sale. The two could agree on an XML-based producerequest message for»
mat and formalize it in an XML document type. In fact, there might
already be an industry Standard XML document type appropriate for the
task. Once that has been chosen, orders for the part can be sent automati—
cally from the purchaser’s computer to the supplier’s. This sort of electronic
commerce has been possible for years, but XML allows it to be easily stan—
dardized, highly extensible and wired into the backbone technologies of the
Internet. The easy availability of the software and standards will allow much
smaller organizations to use electronic commerce.

2.4 | Metadata

There is a special type of data that interests the larger Web publishers. It is
called metadata: information about information. XML is the basis for

@1998 THE XML HANDBOOK”

2.4 | METADATA

Example 2-4. An order for a Toy._______________—_——-—————-
<Toy—Order>
<Order—No>967634</Order—No>

<Message—Date>l9961002</Message—Date>
<Buyer—EAN>5412345000176</Buyer—EAN>

<Toy><Number>523953—432</Number><Quantity>l8</Quantity></Toy>
<Toy><Number>438312—7l6</Number><Quantity>13</Quantity></Toy>
<Toy><Number>232332—136</Number><Quantity>23</Quantity></Toy>
</Toy—Order>___.____________.________

metadata standards such as Microsoft’s Channel Definition Format (GDP)

for describing “Web Push Channels”, Netscape’s Meta Content Framework
(MCF) for tracking information about Web sites and the szg‘bmfir Inter-
net Content Selection which allows the filtering of inappropriate material
from computer screens based on external descriptions of content. These
applicaricrns are called metadata because they are used to describe other
information resources. The “violent content" label on a video tape is a per-

fect example of metadata. The data provided, “violent content” describes
the contents of the tape — it is data about data.

CDF describes things like about Web channels, such as their schedules
and logos and can carry a description of the channel. This may sound famil-
iar to you. If you think about it, you will notice that even TV Guide is
metadata! Some future online version might use XML. Netscape’s MCF can
describe things like who is in charge of a Web page, what other pages are
related to it, how they are related and so forth.

Example 2-5. Channel Description Format________.__
<?XML version="1.0“?>

<CHANNEL HREF="http://www.rocktv.com/channels">
<ABSTRACT>

RockTV is your 24—hour rock station! Nothing but geology,

geography and rock collecting. All day! All night!
</ABSTRACT>
</CHANNEL>
__

XML is convenient for these tasks for several reasons. It can be edited in

standard text editors and specialized XML word processors. XML’s syntax
will be familiar to the millions of Web maintainers who must eventually

learn to apply metadata. XML expresses the hierarchy and links of these
documents nicely. It is also well suited to encoding the textual portions of

©1998 THE XML HANDBOOKTM

27

28 CHAPTER 2 | WHERE 18 XML GOING?

specifications. For instance every channel will have a textual description

hoping to convince you to subscribe. XML can allow these descriptions to

use its hypermedia features to create very compelling displays.

The next step in the evolution of metadata on the Web is a standardized

layer on top of XML called Resource Description Framework (RDF). RDF is

still under development, but when it is finished, it will be an XML docu—

ment type for metadata that will be extensible at the metadata level as XML
is at the document level. What that means is that RDF documents will be

able to describe new relationships between documents, images and other

Web resources. This will allow new relational vocabularies to be developed

just as XML document types allow new markup vocabularies. Older meta—

data standards like PICS and CDF will eventually be revamped in terms of

XML and RDF. In one sense, this sounds very complicated: PICS is based
on RDF which is based on XML. But on the other hand, it will not be so

complicated in practice. PICS and CDF will have a set of element types

that you must learn to apply according to the XML syntax described in this

book. RDF, the middle layer, will only be visible to the wizards who invent

new ways of cataloging, describing and organizing information — the librar—
ians of the future.1

Example 2-6. Describing the owner of a document in RDF
<RDF:assertions href="http://www.bar.com/some.doc>

<bib:author>
<RDFzresource>

<bib:name>John Smith</bib:name>

<bib:email>john@smith.com</bib:email>
<bib2phone>+l (555) 123-4567</bib:phone>

</RDF:resource>
</bib:author>

</RDF:assertions>

1.5 | Science on the Web

Although the Web was originally invented in a physics laboratory for com—

munication among physicists, it never developed into a great system for

l. Luckily, the librarians of the present are very much involved in these standard-
ization efforts.

@1998 THE XML HANDBOOKTM

2.5 | SCIENCE ON THE WEB

communicating mathematical formulae. Markup for mathematics is more
complex than it seems at first to non—mathematicians, and the mathemati-
cians have not yet agreed exactly how they want to do it.

Suffice to say that there are some attempts to do math on the Web that
attempt to do too much and others that do not do enough. The World
Wide Web Consortium is working on a new XML-based language called
MathML. Hopefully MathML will strike a good middle ground. MathML
markup is demonstrated in Example 2—7 and a rendered formula is in Fig—
ure 2-2.

Example 2-7. MathML Markup for a Formula
<mrow>

<mrow>

<msup>
<mi >X< /mi>
<mn>2</mn>

</msup>
<mo>+< /mo>
<mrow>

<mn>4< /m.n>
<mo>&invisibletimes;</mo>
<mi>x</mi>

</mrow>
<mo>+</mo>
<mn>4</mn>

</mrow>
<mo>=</mo>
<mn>O</mn>

</mrow>
______________————-————

x2+4x+4=0

Figure 2-2 MathML Formu|a Rendered

The Chemical Mar/mp Language (CML) is an XML—based language for
describing the management of molecular information on computer net—
works. Using a Java viewer that is under development, users can view and
manipulate molecules in 2 and 3 dimensions. Bioinfiarmarir Sequence

©19981¥w XML HANDBOOKTM

29

'_ _ . _

30 CHAPTER 2 | WHERE IS XML GOING?

Markup Language is a standard for encoding DNA, RNA and protein
sequence information.

The specs for both of these applications are available on the CD—ROM
that accompanies this book.

As you can see, XML is branching out into a wide variety of problem
domains. Whatever your discipline, you should consider if there is some
part of your workflow that could be made more efficient with standardiza—
tion based on XML. In subsequent parts of this book, we will explore in
detail a wide array of applications of the kinds we have been describing.

©1998 THE XML HANDBOOKTM

just enough
XML

I Elements

I Character set

I Entities

I Markup

I Document types

@1998 THE XMLH AAAAAAAA TM

n this chapter we will explore the fundamental concepts of
XML documents and XML systems. If XML were a great work
of literature then this chapter would be the Cliff notes. The

chapter will introduce the ideas that define the language but will
avoid the nitty gritty details (the syntax) behind the constructs. As a
result, some concepts may remain slightly fuzzy because you will not
be able to work with them “hands on”. Later chapters will provide

that opportunity.
This early presentation of these ideas will allow you to see XML’s t'big

picture”. We will do this by walking through the design process for an
XML-like language. Hopefully by the end of the process, you will under-
stand each of the design decisions and XML’s overall architecture.

Our objective is to equip you with “just enoug ” XML to appreciate the
application scenarios and tool descriptions in the following parts of the
book, but being over—achievers we may go a little too far. Feel free to leave at
any time to read about XML in the real world.

@1998 THE XML HANDBOOKTM 33

r————_—‘

34 CHAPTER 3 I JUST ENOUGH XML

3.l | The goal

First we should summarize what we are trying to achieve. In short, “What is
XNlL used for?” XML is for the drgrm/ representation of documents. You
probably have an intuitive feel for what a document is. We will work from
your intuition.

Documents can be large and small 0. Both a multi—volume encyclopedia
and a memo can be viewed as documents. A particular volume of the ency—
clopedia can also be called a document. XML allows you to think of the
encyclopedia whichever way will allow you to get your job done most effi-
ciently. You’ll notice that XML will give you these sorts of options in many
places. XML also allows us to think of an email message as a document.
XML can even represent the message from a police department’s server to a
police officer’s handheld computer that reports that you have unpaid park—
ing rickets.I

When we say that we want to dzgittzlly represent documents we mean that
we want to put them in some kind of computer-readable code so that a
computer can help us store, process, search, transmit, display and print
them. In order for a computer to do useful things with a document, we are
going to have to tell it about the structure of the document. This is our sim—

ple goal: to put the documents in a code that the computer can “under—
stand” in—so—far as computers can understand anything.

XML documents can include pictures, movies and other multimedia, but

we will not actually represent the multimedia components as XML. If you
think of representation as a translation process, similar to language transla—
tion, then the multimedia components are the parts that we will leave in
their “native language” because they have no simple translation into the
“target language" (XML). We will just include them in their native formats

as you might include a French or Latin phrase in an English text without
explicit translation. Most pictures on the Web are files in formats called
GIF or JPEG and most movies are in a format called MPEG. An XML doc—

ument would just refer to those files in their native GIF, JPEG or MPEG
formats. If you were transcribing an existing print document into XML,
you would most likely represent the character-text parts as XML and the
graphical parts in these other formats.

1. Sorry about that.

@1998 THE XML HANDBOOKTM

3.2 I ELEMENTS: THE LOGICAL STRUCTURE

3.! | Elements: The logical structure

Before we can describe exactly how we are going to represent documents,
we must have a model in our heads of how a document is structured. Most

documents (for example books and magazines) can be broken down into
components (chapters and articles). These can also be broken down into

components (titles, paragraphs, figures and so forth). It turns out that just

about every document can be viewed this way.

In XML, these components are called elements. Each element represents a

logical component of a document. Elements can contain other elements and

can also contain the words and sentences that you would usually think of as
the text of the document. XML calls this text the document’s e/aaraeter data.

This hierarchical view ofXML documents is demonstrated in Figure 3—1.

Markup professionals call this the tree xtructure of the document. The ele—

ment that contains all of the others (e.g. book, report or memo is known as

the root element. This name captures the fact that it is the only element that

does not “hang” off of some other element.
The elements that are contained in the root are called its sub—elements.

They may contain sub-elements themselves. If they do, we will call them

branches. If they do not, we will call them leaves.

Thus, the chapter and article elements are branches (because they
have sub—elements), but the paragraph and title elements are leaves

(because they only contain character data).1 The root element is also
referred to as the document element because it holds the entire logical docu—
ment within it. The terms root element and document element are inter-

changeable.
Elements can also have extra information attached to them called

attributes. Attributes describe properties of elements. For instance a CIA—

record element might have a security attribute that gives the security rating
for that element. A CIA database might only release certain records to cer-

tain people depending on their security rating. It will not always be clear

which aspects of a document should be represented with elements and

which should be represented with attributes, but we will give some guide—
lines in Chapter 32, “Creating a document type definition”, on page 448.

1. You can see from this terminology that markup experts tend to have an envi—

ronmentalist bent. The latest word sweeping the markup world is “grove”, a

term that recognizes that a single document may have multiple trees, for
attributes (see below) as well as elements.

@1998 THE XML HANDBOOKTM

35

36 CHAPTER 3 |

Book

Article

Memo

i-

—T

JUST ENOUGH XML

—| Chapter

Title:
"The Hounds ofHell"l

Tirle:
"XML Is On the Rise”

Abs r racr

Section

Title:
"Introduction"

Paragraph:"Ir was a dark and
stormy night ..."

Paragraph:
"The darkness held

many secrets and [he
srorm much rain ..._"

Paragraph:
"XML is raking the
world by storm w."

Paragraph:
l'This article analyzes

the ...'

Tillc:
"Where XML Came

From"

Paragraph:"XML was inven red
under the all; ' “a...

Paragraph:
I‘XML is based upon...H

 ..—_
From Name: Paul Prescod Email: papresco@r..

To —- Name: Charles Goldfar

 3 —1 Email: charles@... l

 Subject: Another Memo Example I
Body

Figure 3-1 Hierarchical views of documents

Paragraph: Charles. I

@1998 THE XML HANDBOOKTM

3.3 | UNICODE: THE CHARACTER SET

Real—world documents do not always fit this tree model perfectly. They
often have non—hierarchical features such as cross—references or hypertext
links from one section of the tree to another. XML can represent these

structures too. In fact, XML goes beyond the powerful links provided by
HTML. More on this in 3.8, “Hyperlinking and Addressing”, on page 45

3.3 | Unicode: The character set

Texts are made up of characters. If we are going to represent texts, then we
must represent the characters that comprise them. So we must decide how
we are going to represent characters at the bits and bytes level. This is called
the character encoding. We must also decide what characters we are going to
allow in our documents. This is the character set. A particularly restrictive

character set might allow only upper-case characters. A very large character
set might allow Eastern ideographs and Arabic characters.

If you are a native English speaker you may only need the fifty-two
upper— and lower—case characters, some punctuation and a few accented
characters. The pervasive 7 bit ASCII character set caters to this market. It
has just enough characters (128) for all of the letters, symbols, some
accented characters and some other oddments. ASCII is both a character set

anal a character encoding. It defines what set of characters are available and
how they are to be encoded in terms of bits and bytes.

XML’s character set is Unicode, a sort of ASCII on steroids. Unicode
includes thousands of useful characters from languages around the world.1
However the first 128 characters of Unicode are compatible with ASCII

and there is a character encoding of Unicode, UTF—8 that is compatible
with 7 bit ASCII. This means that at the bits and bytes level, the first 128
characters of UTF—8 Unicode and 7 bit ASCII are the same. This feature of
Unicode allows authors to use standard plain-text editors to create XML

immediately.

1. It also includes some not—so-useful characters — there is an entire section dedi—

cated to “dingbats” and there is a proposal to include “Klingon”, the artificial
language from Star Tre/eTM.

©1998 THE XML HANDBOOKTM

37

38 CHAPTER 3 | JUST ENOUGH XML

3.4 | Entities: The physical structure

An XML document is defined as a series of characters. An XML processor

starts at the beginning and works to the end. XML provides a mechanism

for allowing text to be organized non-linearly and potentially in multiple

pieces. The parser reorganizes it into the linear structure.

The “piece-of-text” construct is called an entity. An entity could be as

small as a single character or as large as all the characters of a book.

Entities have names. Somewhere in your document, you insert an entity

reference to make use of an entity. The processor replaces the entity refer-
ence with the entity itself, which is called the replacement text. It works

somewhat like a wordprocessor macro.

For instance an entity named “sigma”, might contain the name of a
Greek character. You would use a reference to the entity whenever you

wanted to insert the sigma character. An entity could also be called “intro—

duction—chapter” and be a chapter in a book. You would refer to the entity

at the point where you wanted the chapter to appear.

One of the ideas that excited Ted Nelson, the man who coined the word

hypertext, was the idea that text could be reused in many different contexts
automatically. An update in one place would propagate across all uses of the
text. The feature ofXML that allows this is called the external entity. Exter—

nal entities are often referred to merely as entities, but the meaning is usu-

ally clear from context. An XML document can be broken up into many

files on a hard disk or objects in a database and each of them is called an

entity in XML terminology. Entities could even be spread across the Inter-

net. Whereas XML elements describe the document’s logical structure, enti-

ties keep track of the location of the chunks of bytes that make up an XML

document. We call this the physical structure of the document.

Note The unit ofXML text that we will typically talk about is

the entity. You may be accustomed to thinking about files, but

entities do not have to be stored as files.

For instance, entities could be stored in databases or generated on the fly

by a computer program. Some file formats (e.g. a 27sz file) even allow multi—

ple entities to reside in the same file at once. The term that covers all of

@1998 THE XML HANDBOOKTM

3.5 l MARKUP

these possibilities is entity, not file. Still, on most Web sites each entity will
reside in a single file so in those cases external entities and files will func-
tionally be the same. This setup is simple and efficient, but will not be suffi-
cient for very large sites.

Entities’ bread and butter occupation is less sexy than reusing bits of text
across the Internet. But it is just as important: entities help to break up
large files to make them editable, searchable, downloadable and otherwise
usable on the ordinary computer systems that real people use. Entities allow
authors to break their documents into workable chunks that can fit into

memory for editing, can be downloaded across a slow modem and so forth.
Without entities, authors would have to break their documents unnatu—

rally into smaller documents with only weak links between them (as is com—
monly done with HTML). This complicates document management and
maintenance. If you have ever tried to print out one of these HTML docu-
ments broken into a hundred HTML files then you know the problem.
Entities allow documents to be broken up into chunks without forgetting

that they aetually represent a single coherent document that can be printed,
edited and searched as a unit when that makes sense.

Non—XML objects are referenced in much the same way and are called
unpnrsed entities. We think of them as “data entities" because there is no
XML markup in them that will be noticed. Data entities include graphics,
movies, audio, raw text, PDF and anything else you can think of that is not
XML (including HTML and other forms of SGML).1 Each data entity has
an associated notation that is simply a statement declaring whether the
entity is a GIF, JPEG, MPEG, PDF and so forth.

Entities are described in all of their glorious (occasionally gory) detail in

Chapter 33, “Entities: Breaking up is easy to do”, on page 476

3.5 | Markup

We have discussed XML’s conceptual model, the tree of elements, its strat—

egy for encoding characters, Unicode, and its mechanism for managing the
size and complexity of documents, entities. We have not yet discussed how

1. Actually, a data entity could even contain XML, but it wouldn't be treated as
part of the main XML document.

@1998 THE XML HANDBOOKTM

39

40

CHAPTER 3 I JUST ENOUGH XML

to represent the logical structure of the document and link together all of
the physical entities.

Although there are XML word processors, one of the design goals of
XML was that it should be possible to create XML documents in standard

text editors. Some people are not comfortable with word processors and
even those who are may depend on text editors to “debug" their document
if the word processor makes a mistake, or allows the user to make a mistake.

The only way to allow authors convenient access to both the structure and

data of the document in standard text editors is to put the two right beside
each other, “cheek to check”.

As we discussed in the introduction, the stuff that represents the logical
structure and connecrs the entities is called markup. An XML document is
made up exclusively of markup and character data. Both are in Unicode.
Both are termed XIWL text. This last point is important! No matter how intu-
itive it might seem, we do not use the word “text” to mean character data.

Caution The term XML text refers to the combination of
character data and markup, not character data alone. Character

data + markup = text.

Markup is differentiated from character data by special characters
called delimiters. Informally, text between a less—than (“<”) and a
greater—than (“>”) character or between an ampersand (“&") and a
semicolon (“;”) character is markup. Those four characters are the
most common delimiters. This rule will become more concrete in later
chapters. In the meantime, here is an example of a small document to
give you a taste of XML markup.

The markup between the less-than and greaterwdian is called a tag.
You may be familiar with other languages that use similar syntax. These

include HTML and other SGML-based languages.

3.6 | Document types

The concept of a document type is fairly intuitive. You are well aware that

letters, novels and telephone books are quite different, and you are probably
comfortable recognizing documents that conform to one of these catego—
ries. No matter what its title or binding, you would call a book that listed

©19981Wm XML HANDBOOKTM

3.6 | DOCUMENT TYPES

Example 3-1. A small XML document
<?xml version=”l.0"?>

<!DOCTYPE Q-AND—A SYSTEM "http://www.q.and.a.com/faq.dtd">
<Q—AND-A>

<QUESTION>I'm having trouble loading a WurdWriter 2.0 file into
WurdPurformertWriter 7.0. Any suggestions?</QUESTION>

<ANSWER>Why don't you use XML?</ANSWER>

<QUESTION>What‘s XML?</QUESTION>

<ANSWER>It's a long story, but there is a book I can
recommend. . .</ANSWER>

</Q—AND—A>

names and phone numbers a phone book. So, a document type is defined
by its elements. If two documents have radically different elements or allow

elements to be combined in very different ways then they probably do not
conform to the same document type.

This notion of a document type can be formalized in XML. A document

type definition (or DTD) is a series of definitions for element types,
attributes, entities and notations. It declares which of these are legal within
the document and in what places they are legal. A document can claim to
conform to a particular DTD in its document type deelamtiorz.1

DTDs are powerful tools for organizational standardization in much the

same way that forms, templates and style—guides are. A very rigid DTD that
only allows one element type in a particular place is like a form: “Just fill in

the blanks!”. A more flexible DTD is like a style—guide in that it can, for
instance, require every list to haVe two or more items, every report to

have an abstract and could restrict footnotes from appearing within
footnotes.

DTDs are critical for organizational standardization, but they are just as
important for allowing robust processing of documents by software. For
example, a letter document with a chapter in the middle of it would be

most unexpected and unlikely to be very useful. Letter printing software
would not reliably be able to print such a document because it is not well

defined what a chapter in a letter looks like. Even worse is a situation where

a document is missing an element expected by the software that processes

1. The document type declaration is usually abbreviated “DOCTYPE”, because the

obvious abbreviation would be the same as that for document type definition!

@1998 THE XML HANDBOOKTM

41

42 CHAPTER 3 | JUST ENOUGH XML

it. If your mail program used XML as its storage format, you might expect

it to be able to search all of the incoming email addresses for a particular

person’s address. Let us presume that each message stores this address in a
from element. What do we do about letters without from elements when

we are searching them? Programmers could write special code to “work

around” the problem, but these kinds of workarounds make code difficult
to write.

HTML serves as a useful cautionary tale. It actually has a fairly rigorous
structure, defined in SGML, and available from the World Wide Web Con—

sortium. But everybody tends to treat the rules as if they actually came from

the World Wrestling Federation — they ignore them.

The programmers that maintain HTML browsers spend a huge amount

of time incorporating support for all of the incorrect ways people combine

the HTML elements in their documents. Although HTML has an SGML

DTD, very few people use it, and the browser vendors have unofficially

sanctioned the practice of ignoring it. Programming workarounds is expen—

sive, time consuming, boring and frustrating, but the worst problem is that

there is no good definition of what these illegal constructs mean. Some
incorrect constructs will actually make HTML browsers crash, but others

will merely make them display confusing or random results.

In HTML, the title element is used to display the document’s name at

the top of the browser window (on the title bar). But what should a browser
do if there are two titles? Use the first? Use the last? Use both? Pick one at

random? Since the HTML standard does not allow this construct it cer—

tainly does not specify a behavior. Believe it or not, an early version of

Netscape’s browser showed each title sequentially over time, creating a

primitive sort of text animation. That behavior disappeared quickly when

Netscape realized that authors were actually creating invalid HTML specifi-

cally to get this effect! Since authors cannot depend on non—sensical docu—
ments to work across browsers, or even across browser versions, there must

be a formal definition of a valid, reasonable document of a particular type.
In XML, the DTD provides a formal definition of the element types,

attributes and entities allowed in a document of a specified type.

There is also a more subtle, related issue. If you do not stop and think

carefully about the structure of your documents, you may accidently slip
back into specifying them in terms of their formatting rather than their

abstract structure. We are accustomed to thinking of documents in terms of
their rendition. That is because, prior to GML, there was no practical way

to create a document without creating a rendition. The process of creating a

@1998 THE XML HANDBOOKTM

3.6 | DOCUMENT TYPES

DTD gives us an opportunity to rethink our documents in terms of their
structure, as abstractions.

Here are examples of some of the declarations that are used to express a
DTD:

Caution A DTD is a concept; markup declarations are the

means of expressing it. The distinction is important because other

means of expressing DTDs are being proposed (see Chapter 39,

“XML-Data”, on page 5 70). However, most people, even

ourselves, don't make the distinction in normal parlance.We just

talk about the declarations as though they are the DTD that they
describe.

Example 3-2. Markup declarations
<!ELEMENT Q-AND-A (QUESTION,ANSWER)+>
<!—— This allows: question, answer, question, answer ... ——>

<!ELEMENT QUESTION (#PCDATA)+>
<!—— Questions are just made up of text ——>

<!ELEMENT ANSWER (#PCDATA)+>

<!—— Answers are just made up of text ——>

Some XML documents do not have a document type declaration. That

does not mean that they do not conform to a document type. It merely
means that they do not claim to conform to some formally defined docu-
ment type definition.

If the document is to be useful as an XML document, it must still have

some structure, expressed through elements, attributes and so forth. When
you create a stylesheet for a document you will depend on it having certain
elements, on the element type names having certain meanings, and on the
elements appearing in certain places. However it manifests itself, that set of
things that you depend on is the document type.

You can formalize that structure in a DTD. In addition to or instead of a

formal computer—readable DTD, you can also write out a prose description.
You might consider the many HTML books in existence to be prose defini-
tions of HTML. Finally, you can just keep the document type in your head
and maintain conformance through careful discipline. If you can achieve

©19981Wm XML HANDBOOKTM

44

CHAPTER 3 | JUST ENOUGH XML

this for large, complex documents, your powers of concentration are
astounding! Which is our way of saying: we do not advise it. We will discuss
DTDs more in Chapter 32, “Creating a document type definition”, on
page 448.

3.1 | Well-formedness and validity

Every language has rules about what is or is not valid in the language. In
human languages that takes many forms: words have a particular correct
pronunciation (or range of pronunciations) and they can be combined in
certain ways to make valid sentences (grammar). Similarly XML has two
different notions of “correct”. The first is merely that the markup is intelli—

gible: the XML equivalent of “getting the pronunciation right”. A docu-
ment with intelligible markup is called a well—formed document. One
important goal of XML was that these basic rules should be simple so that
they could be strictly adhered to.

The experience of the HTML market provided a cautionary tale that
guided the development of XML. Much of the HTML on the Web does
not conform to even the simplest rules in the HTML specifications. This
makes automated processing of HTML quite difficult.

Because Web browsers will display ill-formed documents, authors con-
tinue to create them. In designing XML, we decided that XML processors
should actually be prohibited from trying to recover from a well—formednesr
error in an XML document. This was a controversial decision because there

were many who felt that it was inappropriate to restrict XML implementors
from deciding the best error recovery policy for their application.

The XML equivalent of “using the right words in the right place” is
called validity and is related to the notion of document types. A document
is valid if it declares conformance to a DTD in a document type declaration

and actually conforms to the DTD.

Documents that do not have a document type declaration are not really

invalid — they do not Violate their DTD — but they are not valid either,
because they cannot be validated against a DTD.

If HTML documents with multiple titles were changed over to use XML

syntax, they would be well-formed and invalid (presuming the HTML
DTD was also converted to XML syntax). If we remove the document type

@1998 THE XML HANDBOOKTM

3.8 | HYPERLINKING AND ADDRESSING

declaration, so that they no longer claim to conform to the HTML DTD,
then they would become merely well—formed but neither valid nor invalid.

Caution For most of us, the word “invalid"means

something that breaks the rules. It is an easy jump from there to
concluding that an XML document that does not conform to a
DTD is free to break any rules at all. So for clarity, we may
sometimes say “type-valid” and “non-type-valid”, rather than
“valid” and “invalid".

You should think carefully before you decide to make a document that is
well—Formed but nor valid. If the document is onewof-a-kind and is small,
then making it well—formed is probably sufficient. But if it is to be part of
any kind of information system (even a small one) or if it is a large docu—
ment, then you should write a DTD For it and validate your document reg—
ularly. When you decide to build or extend your information system, the
fact that the document is guaranteed to be consistent will make your pro-
gramming or stylesheet writing many times easier and your results much
more reliable.

3.8 | Hyperlinking and Addressing

If you have used the Web, then you probably do not need to be convinced
of the importance of hyperlinking. One thing you might not know, how—
ever, is that the Web's notions of hyperlink are fairly tame compared to
what is available in the best academic and commercial hypertext systems.
XML alone does not correct this, but it has an associated standard called
XLink that goes a long way towards making the Web a more advanced
hypertext environment.

The first deficiency of today’s Web links is that there are no standardized
mechanisms for making links that are external to the documents that they
are linking from. Let’s imagine, for example that you stumble upon a Web
page for your favorite music group. You read it, enjoy it and move on.
Imagine next week you stumble upon a Web page with all of the lyrics for
all of their songs (with appropriate copyrights, of course!). You think: there

@1998 THE XML HANDBOOKTM

45

46 CHAPTER 3 | JUST ENOUGH XML

should be a link between these two pages. Someone visiting one might want
to know about the other and vice versa.

What you want to do is make an external link. You want to make a link

on your computer that appears on both of the other computers. But of
course you do not have the ability to edit those two documents. XLink will

allow this external linking. It provides a representation for external links,

but it does not provide the technology to automatically publish those links
to the world. That would take some kind of [in/e databme that would track

all of the links from people around the world. Needless to say this is a big

job and though there are prototypes, there is no standardized system yet.

You may wonder how all of these links will be displayed, how readers will
select link sheets and annotations, how browsers will talk to databases and

so forth. The simple answer is: “nobody knows yet.”1
Before the first Web browser was developed there was no way to know

that we would develop a convention of using colored, underlined text to

represent links (and even today some browsers use other conventions).
There was also no way to know that browsers would typically have “back”

buttons and “history lists”. These are just conventions that arose and

browser features that became popular.

This same process will now occur with external links. Some user interface

(perhaps a menu) will be provided to apply external link sheets, and there

will probably be some mechanism for searching for link sheets related to a

document on the Web. Eventually these will stabilize into standards that

will be ubiquitous and transparent (we hope!). In the meantime, things are

confused, but that is the price for living on the cutting edge. XLink moves

us a notch further ahead by providing a notation for representing the links.

Another interesting feature ofXML extended links is that they can point

to more than one resource. For instance instead of making a link from a

word to its definition, you might choose to link to definitions in several dif—

ferent dictionaries. The browser might represent this as a popup menu, a

tiny window with the choices listed, or might even open one window for

each. The same disclaimer applies: the XML Link specification does not tell

browsers exactly what they must do. Each is free to try to make the most

intuitive, powerful user interface for links. XML brings many interesting

hypertext ideas from university research labs and high tech companies “to

the masses.” We still have to work out exactly how that will look and who

will use them for what. We live in interesting times!

1. But we've got some ideas. See Chapter 13, “Extended linking”, on page 176.

@1998 THE XML HANDBOOKTM

3.9 | STYLESHEETS

3.9 | Stylesheets

To a certain extent, the concerns described above are endemic to general—

ized markup. Because it describes structure, and not formatting, it allows

variations in display and processing that can sometimes disturb people.

However, as the Web has evolved, people have become less and less toler—

ant of having browser vendors control the “look and feel” of their docu-

ments. An important part of all communication, but especially modern

business communication, is the idea of style. Stylesheets allow us to attach

our own visual style to documents without destroying the virtue of general—

ized markup. Because the style is described in a separate entity, the

stylesheet, software that is not interested in style can ignore it.

For instance most search engines would not care if your corporate color

is blue or green, so they will just ignore those declarations in the stylesheet.

Similarly, software that reads documents aloud to the sight—impaired would

ignore font sizes and colors and concentrate on the abstractions — para—

graphs, sections, titles and so forth.

The Web has a very simple stylesheet language called Cascading Style

Sheet: (CSS), which arose out of the early battles between formatting and

generalized markup in HTML. Like any other specification, CSS is a prod—

uct of its environment, and so is not powerful enough to describe the for—

matting of documents types that are radically different in structure from
HTML.

Because CSS is not sufficient, the World Wide Web Consortium is work-

ing on a complementary alternative called the Extensible Stylesheet Lan—

guage (XSL). XSL will have many features from CSS, but will also borrow

some major ideas from ISO’s DSSSL stylesheet language. XSL will be

extensible, just as XML is, so that it will be appropriate for all document

types and not just for HTML. Like the linking specification, XSL is still

under development so its exact shape is not known. Nevertheless, there is a

proposal for a general design that we will review later on.

3. I 0 | Conclusion

There are a lot of new ideas here to absorb, but we’ll be repeating and reem—

phasizing them as we move along. At this point, though, we’re ready to look

in—depth at the ways that XML is being used in the real world.

@1998 THE XML HANDBOOKTM

47

XML in the real

world

I Real-world concepts

I Application scenarios

I Case studies

I XML tools

I Jargon demystified

@1998 THE XMLH OOOOOOO TM

(Imm—

sense to get a good idea of what XML is used for before dig—
ging into the details of the language.

And since XML may be somewhat different from the technologies that
you are accustomed to using, it is also helpful to see how people actually
work with it; how the tools are used.

We’re going to cover those subjects at length in the next three parts of the
book. In preparation, we need to examine some often elusive — but vital —

concepts relating to real—world use ofXML.

! pplications are the reason for using technology, so it makes

4.I | Is XML for documents or for data?

What is a document?

My dictionary says:

“Something written, inscribed, engraved, etc., which provides
evidence or information or serves as a record”.

©1998 THE XML HANDBOOKTM 49

50

CHAPTER 4 | XML IN THE REAL WORLD

Documents come in all shapes and sizes and media, as you can see in Fig—
ure 4—1. Here are some you may have encountered:

Long documents: books, manuals, product specifications

Broadsides: catalog sheets, posters, notices

Forms: registration, application, etc.

Letters: email, memos

Records: “Acme Co., Part# 732, reverse widget, $32.50, 5323
in stock”

I Messages: “job complete”, “update accepted”

An e-commerce transaction, such as a purchase, might involve several of
these. A buyer could start by sending several documents to a vendor:

I Covering note: a letter
I Purchase order: a form

I Attached product specification: a long document

The vendor might respond with several more documents:

I Formal acknowledgment: a message
I Thank you note: a letter
I Invoice: a form

The beauty ofXML is that the same software can process all of this diver—
sity. Whatever you can do with one kind of document you can do with all
the others. The only time you need additional tools is when you want to do
different kinds of things — not when you want to work with different kinds
of documents.

And there are lots of things that you can do.

4.! | Endless spectrum of application
opportunities

Sorry about that, we’ve been reading too many marketing brochures. But
it’s true, nevertheless.

@1998 THE XML HANDBOOK-“‘4

 \QWRWQQW.
\R‘m

 You have

mail.

WATED!

in}

as}

REWARD

Figure 4-1 Documents come in all shapes and sizes.

At one end of the spectrum we have the grand old man of generalized

markup, POP — Presentation—Oriented Publishing. You can see him in Fig—
ure 4—2.

At the other end of the spectrum is that darling of the data processors,

MOM — Message-Oriented Middleware. She smiles radiantly from Figure
4—3.

Let’s take a closer look at both of them.

@1998 THE XML HANDBOOKTM

51

52

CHAPTER 4 | XML IN THE REALWORLD

humoh

wri’res POP

dooumen’r

won’rs one

style for print

ono’rher

for CD-ROM

The coolest

for The Web

Figure 4-2 POP application.

4.1.l Presentation-oriented publishing

POP was the original killer app for SGML, XML’s parent, because it saves
so much money for enterprises with Web—sized document collections.

POP documents are chiefly written by humans for other humans to read.

@1998 THE XML HANDBOOKTM

4.2 l ENDLESS SPECTRUM OF APPLICATION OPPORTUNITIES

computer

lg generotes
lVlOlVl

— document

Q wropped

mg C in togs to
preserve

I data

ml to be utilizedby onother

computer

Figure 4-3 MOM application.

Instead of creating formatted renditions, as in word processors or desk-
top publishing programs, XML POP users create unformatted abstractions.
That means the document file captures what is in the document, but not

how it is supposed to look.

To get the desired look, the POP user creates a stylesheet, a set of com—
mands that tell a program how to format (andror otherwise process) the
document. The power of XML in this regard is that you don't need to
choose just one look — you can have a separate stylesheet For every purpose.1

1. We know that all office suites have some degree of stylesheet support today,
but XML (well, GML) did it first, and still is the only way to do it cleanly.

©1998 THE XML HANDEOOKTM

53

54 CHAPTER 4 | XML IN THE REALWORLD

At a minimum, you might want one for print, one for CD—ROM, and
another for a Web site.

POP documents tend to be (but needn’t be) long-lived, large, and with

complex structures. When delivered in electronic media, they may be inter-
active. How they will be rendered is of great importance, but, because XML
is used, the rendition information can be — and is — kept distinct from the
abstract data.

4.1.1 Message-oriented middleware

MOM is the killer app — actually, a technology that drives lots of killer apps
— for XML on the Web.

Middleware, as you might suspect from the name, is software that comes
between two other programs. It acts like your interpreter/guide might if
you were to visit someplace where you couldn’t speak the language and had
no idea of the local customs. It talks in the native tongue, using the native

customs, and translates the native replies — the messages — into your lan-

guage.

MOM documents are chiefly generated by programs for other programs
to read.

Instead ofwriting specialized programs (clients) to access particular data-
bases or other data sources (servers), XML MOM users break the old two—

tier client/server model. They introduce a third tier, the “middle tier”, that
acts as a data integrator. The middle-tier server does all the talking to the
data sources and sends their messages in XML to the client.

That means the client can read data from anywhere, but only has to
understand data that is in XML documents. The XML markup provides

information about the data (i.e., metadata) that was in the original data

source schema, like the database table name and field names (also called

“cell” or “column” names).

The MOM user typically doesn’t care much about rendition. He does
care, though, about extracting the original data accurately and making
some use of the metadata. His client software, instead of having a special-

ized module for each data source, has a single “XML parser” module. The

parser is the program that separates the markup from the data, just as it
does in POP applications.

And just like POP applications, there can be a Stylesheet, a set of com—
mands that tell a program how to process the document. It may not look

@1998 THE XML HANDBOOKTM

4.2 I ENDLESS SPECTRUM OF APPLICATION OPPORTUNITIES

much like a POP srylesheet — it might look more like a script or program —
but it performs the same function. And, as with FOP srylesheets, there can
be different MOM srylesheets for different document types, or to do differ-
ent things with message documents of a single document type.

There is an extra benefit to XML three—tier MOM applications in a net—

worked environment. For many applications, the middle—tier server can col-
lect all of the relevant data at once and send it in a single document to the

client. Further querying, sorting, and other processing can then take place
solely on the client system. That not only cuts down Web traffic and over-
head, but it vastly improves the endeuset’s perceived performance and his
satisfaction with the experience.

MOM documents tend to be (but needn’t be) short-lived, non-interac-

tive, small, and with simple structures.

4.1.3 Opposites are attracted

To XML, that is!

How is it that XML can be optimal for two such apparently extreme

opposites as MOM and POP? The answer is, the two are not really different
where it counts.

In both cases, we start with abstract information. For POP, it comes from
a human author’s head. For MOM, it comes from a database. But either

way, the abstract data is marked up with tags and becomes a document.
Here is a terminally cute mnemonic for this very important relationship:

Data + Markup = DocuMent

Aren’t you sorry you read it? Now you’ll never forget it.
But XML “DocuMents” are special. An application can do three kinds of

processing with one:

I Parse it, in order to extract the original data. This can be done
without information loss because XML represents both

metadata and data, and it lets you keep the abstractions
distinct from rendition information.

I Render it, so it can be presented in a physical medium that a
human can perceive. It can be rendered in many different
ways, for delivery in multiple media such as screen displays,
print, Braille, spoken word, and so on.

@1998 THE XML HANDBOOKTM

55

56

CHAPTER 4 | XML IN THE REALWORLD

I Hack it, meaning “process it as plain text without parsing”.
Hacking might involve cutting and pasting into other XML

documents, or scanning the markup to get some information
from it without doing a real parse.

The real revelation here is that data and documents aren’t opposites. Far
from it — they are actually two states of the same information.

The real difference between the two is that when data is in a database,

the metadata about its structure and meaning (the schema) is stored accord-
ing to the proprietary architecture of the database. When the data becomes

a document, the metadata is stored as markup.

A mixture of markup and data must be governed by the rules of some
flotation. XML and SGML are notations, as are RTF and Word file format.

The rules of the notation determine how a parser will interpret the docu—
ment text to separate the data from the markup.

Notations are not just for complete documents. There are also data

object notations, such as GIF, TIFF, and EPS, that are used to represent
such things as graphics, video (e.g., MPEG), and audio (e.g., AVI). Docu—
ment notations usually allow their documents to contain data objects, such
as pictures, that are in the objects’ own data object notations.

Data object notations are usually (not always) in binary; that is, they are
built-up from low-level ones and zeros. Document notations, however, are

frequently character—based. XML is character—based, which is why it can be
hacked.

In fact, a design objective of XML was to support the “desperate Perl
hacker” — someone who needs to write a program in a hurry, using a script—
ing language like Perl, and who doesn’t use a real XML parser. Instead, his

program scans the XML document as though it were plain text. The pro—
gram might search for markup strings, but can also search for data.

A hackerl often uses cues that have special meaning to him, like giving
special treatment to a tag that occurs at the start of a line, even though
those cues have no meaning to a parser. That’s why serious hackers do their

XML editing with programs that can preserve a document’s source and

1. As used here, and by most knowledgeable computer people, “hacker” has none

of the “cracker” stigma given the term in the popular press. The only security

compromised by a desperate Perl hacker is his job security, for leaving things
to the last minute!

@1998 THE XML HANDBOOKTM

4.2 | ENDLESS SPECTRUM OF APPLICATION OPPORTUNITIES

reproduce it character-for—character. They don’t let the software decide
which characters are important enough to preserve.

Since databases and documents are really the same, and MOM and POP

applications both use XML documents, there are lots of opportunities for
synergy.

4.1.4 MOM and POP — They’re so great
together!

Classically, MOM and POP were radically different kinds of applications,
each doing things its own way with different technologies and mental mod—
els. But POP applications frequently need to include database data in their
document content — think of an automotive maintenance manual that has

to get the accurate part numbers from a database.

Similarly, MOM applications need to include human—written compo—
nents. When the dealer asks for price and availability of the automotive
parts you need, the display might include a description as well.

With the advent of generalized markup, the barriers to doing MOM—like
things in POP applications began to disappear. Some of the POP-like
applications you’ll read about in the next part of the book appear to have
invented the middle tier on their own. And now, with the advent of XML,

MOM applications can easily incorporate POP functionality as well.

In fact, we’d go so far as to say there is no longer a difference in kind
between the two, only a difference in degree. There really is “an endless
Spectrum of application opportunities”. It is a multi—dimensional spectrum
where applications need not be implemented differently just because they
process different document types. The real differentiators are other docu—

ment characteristics, like persistency, size, interactivity, structural complex-
ity, percentage of human—written content, and the importance of eventual
presentation to humans.

At the extremes, some applications may call for specialized (or opti—
mized) techniques, but the broad central universe of applications can all be
implemented similarly. Much of the knowledge that POP application
developers have acquired over the years is now applicable to MOM applica—
tions, and vice versa. Keep that in mind as you read the application descrip—
tions and case studies.

@1998 THE XML HANDBOOKTM

57

58

CHAPTER 4 | XML IN THE REAL WORLD

That cross—fertilization is true ofproducts and their underlying technolo—
gies as well. All of the product descriptions in this book should be of inter—

est, whether you think ofyour applications as chiefly being MOM or being
POP. It is the differences in functionality and design that should cause you
to choose one product over another, not their marketing thrust or apparent
orientation. We’ve included detailed usage examples for leading tools in
each category so you can look beyond the labels.

4.3 | XML tools

Our coverage of tools falls into three broad categories.

Editing and composition

These are the classic tools of POP applications, but now with
applicability to the MOM world as well. Editors are used for

creating and revising documents. Composition tools produce
renditions, but composition functionality is sometimes included
in editors.

Content management

A major benefit of XML is the ability to store and work with

components of documents, rather than only being able to deal
with the document as a whole. These tools use databases to store

information components so they can be controlled, managed, and
assembled into end-products in the same way as components of
automobiles, aircraft, or other complex devices. Think of them as
the MOM and POP store (Figure 4—4).1

Middle-tier tools

These are the vital MOM application tools for creating middle—
tier servers. They integrate data sources and allow applications to
interoperate.

1. Generations ago the Mom and Pop store (grocery, convenience, etc.) was the

achievement of the entrepreneurial couple who’d lifted themselves out of the

working class. Today they'd have an Internet start—up and be striving for a suc—
cessful IPO!

@1998 THE XML HANDBOOKm

4.4 | XML JARGON DEMYSTIFIER

Figure 4-4 Content managementzThe MOM and POP store.

In each category, we cover a number of products with detailed usage
examples. Although there is often functional overlap among them, each has
unique strengths that are targeted towards a particular kind of use. We’ve
tried to emphasize those differences in order to discuss different tool char-
acteristics in each chapter.

There is also a survey of tools that are available for free, in categories such
as XML parsers, XSL engines, converters, and viewers. Some 55 of them are
on the CD-ROM accompanying this book.

Tool capabilities are also discussed in the application scenarios and case
studies.

4.4 | XML jargon demystifier

One of the problems in learning a new technology like XML is getting used
to the jargon. A good book will hold you by the hand, introduce terms
gradually, and use them precisely and consistently.

Out in the real word, though, people use imprecise terminology that
often makes it hard to understand things, let alone compare products. And,
unlike authors,1 they sometimes just plain get things wrong.

1. We should be so lucky!

@1998 THE XML HANDBOOKTM

59

60

CHAPTER 4 | XML IN THE REAL WORLD

For example, you may see statements like “XML documents are either

well-formed or valid.” As you’ve learned from this book, that simply isn’t
true. All XML documents are well—formed; some of them are also valid.1

In this book, we’ve taken pains to edit the application and tool chapters
to use consistent and accurate terminology. However, for product literature

and other documents you read, the mileage may vary. So we’ve prepared a
handy guide to the important XML jargon, both right and wrong. Think of
it as a MOM application for XML knowledge.

4.4.l Structured vs. unstructured

XML documents are frequently referred to as structured while other text,
such as rendition notations like RTF, are called unstructured.

In fact, renditions can have a rich structure, composed of elements like

pages, columns, and blocks. The real distinction being made is between
“abstract” and “rendered”. Keep that in mind when you read about “struc—
tured” and “unstructured”, even in this book

4.4.1 Tag vs. element

Tags aren’t the same thing as elements. Tags describe elements.

In Figure 4—5 the package, metaphorically speaking, is an element. The

contents of the package is the content of an element. The tag describes the
element. It contains two names:

I the element type name (“Wristwatch”), which says what type of
element it is, and

l a unique identifier, or ID (“ W 9042—3729”), which says which
particular element it is.

A tag could also include attributes describing other properties of the ele—
ment, such as Munufizcturer: “Hy TimePieee Company”.

When people talk about a tag name:

1. So does that mean a merely well-formed document is “invalid”? No, an invalid
document is one that isn't well—formed; it breaks the rules of the XML nota-

tion. Hey, we didn't promise to justify XML jargon, just to explain it.

@1998 THE XML HANDBOOKTM

4.4 | XML JARGON DEMYSTIFIER

1.They are referring to the element type name.

2.They are making an error, because tags aren’t named.

Figure 4-5 What's in a tag?

4.4.3 Document type, DTD, and markup
declarations

A document type is a class of similar documents, like telephone books, tech—
nical manuals, or (when they are marked up as XML) inventory records.

A document type definition (DTD) is the set of rules for using XML to

represent documents of a particular type. These rules might exist only in
your mind as you create a document, or they may be written out.

Markup declarations, such as those in Example 4-1, are XML’s way of

writing out DTDs.

Example 4-1. Markup declarations in the file greeting . dtd. _,
<!i:..JE:MENr1 greeting (salutation, addressee) >
<IELEMENT Salutation (#PCDATA) >
<lE.JEMENT addressee (#PCDATA) >

@1998 THE XML HANDBOOKTM

61

62 CHAPTER 4 | XML IN THE REALWORLD

It is easy to mix up these three constructs: a document type, XML’s

markup rules for documents of that type (the DTD), and the expression of

those rules (the markup declarations). It is necessary to keep the constructs
separate if you are dealing with two or more of them at the same time, as

when discussing alternative ways to express a DTD. But most of the time,

even in this book, “DTD” will suffice for referring to any of the three.

4.4.4 Document, XML document, and

document instance

The term document has two distinct meanings in XML.

Consider a really short XML document that might be rendered as:

Hello World

In one sense, the abstract message you get in your mind when you read

the rendition is the reed document. Communicating that abstraction is the
reason for using XML in the first place.

In a formal, syntactic sense, though, the complete text (markup + data,

remember) of Example 4—2, is the XAJL document. Perhaps surprisingly, that
includes the markup declarations for its DTD in Example 4—1. The XML

document, in other words, is a character string that represents the real docu—
ment.

In this example, much of that string consists of the markup declarations,
which express the greeting DTD. Only the last four lines describe the real

document, which is an instance of a greeting. Those lines are called the doc—
ument instance.

Example 4-2. A greeting document.
<?xml version: " 1 . 0 " ?>

<!DOCTYPE greeting SYSTEM “file://greeting.dtd">
<greeting>
<salutation>Hello</salutation>
<addressee>World</addressee>

</greeting>-————.——___——_

©19981¥m XML HANDBOOKTM

4.5 | CONCLUSION

4.4.5 Coding, encoding, and markup

People refer to computer programs as code, and to the act of programming
as coding.

There is also the word encoding, which refers to the way that characters

are represented as ones and zeros in computer storage. XML has a declara—

tion for specifying an encoding.

You’ll often see (in places other than this book) phrases like “XML-

encoded data”, “coded in HTML”, or “XML coding”.

But using XML isn’t coding. Not in the sense of programming, and not

in the sense of character encoding. What those phrases mean are “XML

document”, “marked—up in HTML”, and “XML markup”.1

4.5 | Conclusion

We’ve covered the key concepts ofXML itself, and of the ways in which it is

used in the real world. Now we are ready to examine those real—world uses

in depth, with application scenarios, case studies of actual users, and

detailed descriptions of the tools of the tag trade.

1. Although dynamic HTML pages contain so much scripting that the phrase

“HTML coding” is almost warranted.

©1998 THE XML HANDBOOKTM

63

Building an
online auction

Web site

I Three—tier Web application

I Dynamic generation of XML documents

I Extracting data from XML documents

I Creating a user interface

©1998 THE XMLH OOOOOOO TM

Personalized
freq uent-flrrer
Web site

I Three-tier XML Web application

I What makes Web sites "hot"

.___ _ _____;;I Client/server Web model is changing

I Website personalization

© 1 998 THE XML HANDB OOKTM

(bapter __ ____,

5

f you surf the Web as well as travel by air, you have probably
pped by your favorite airline frequent-flyer Web site. How

you rate that experience?

I 1 Today's frequent-flyer sites

might have been fun to find the site and to see all the last minute "bar
gains" offered for frequent flyers. Perhaps those specials were initially
enough to motivate you to return to the site, if only to dream of taking a
vacation in the middle of your biggest project!

Beyond viewing the posted specials, perhaps you interacted with the site
in a limited way, by entering your frequent flyer number to see your current
point balance. But during heavy traffic hours on the Web, such interactions
can take quite a long time.

And once you know how many points you've accumulated, what about
rhe whole series of new questions it stimulate for which th Web ite can't
previde an answer. At that point, you must resort to calling the "1-800"

©1998 THE XML HANDBOQKThl 67

68 CHAPTER 5 I PERSONALIZED FREQUENT-FLYER WEB SITE

number to learn more about your award options and eventually book
flight. a

Bottom line: once the novelty wears off, this Web experience, like count
less others, is less than satisfYing.

5.1 1 What's wrong with today's Web
model?

Today's Web model is a "client/server" model. In this model, any personal
ized interaction takes place on the Web server you have contacted. As a
result, there is little of it.

Typical Web pages today are static brochures rendered in HTML to pr0 -

vide eye-appealing display. In fact, the Web sites that are rated the "hottest"
in today's market are those that provide multi-media sizzle - heavy on
graphics, animation, and sound. Personalized content, while a consider
ation, has not yet become the primary distinguishing characteristic of a
"hot" Web site. But as the shift takes place from simply providing entertain
ment value to facilitating business transactions, personalized content will
become "hot".

In today's airline frequent-flyer Web sites, there is a great deal of HTML
information that the customer can view. If this information and its associ
ated links changes daily, the Web site becomes more interesting and is more
lik ly r generate return visits. Likewise, interactivity generates more site
traffi .

But currently interactivity r quires lengthy periods where the customer
must b 'conne ted" to remote servers. Queries from the cusromer go to

the server and resulting responses are shipped back to the cust mer for
viewing in HTML. Unfortunately, a Web server can handle only a limited
number of connections at one time.

Every time a new piece of information .is requested, a transaction
between the client's Web browser and remote Web servers is requ ired.
Sooner or later the number of transacti ns slows the server and rhe cus,..
tomer experiences lengthy time-outs when queries are processed and data is
transferred back to the browser.

© 199 8 T H E X ML HA NO BO OK TM

5. 3 I
A BET TE R M 0 DEL F 0 R D 0 IN G BUSINESS 0 N THE WEB 69

s.! 1 A better model for doing business
on the Web

T1 day, XML has enabled a new breed of Web server oflWare, one mat
I~ w ' rhe Web developer to add a new "middl tier" server to the W, b

a ;del. ne example of such soflWare is Ho TM(JtaL Application Serve1;
~scr1b din Chapter 28, "HoTMetaL Application Server", on page 378. It
i used in Figure 5-1 to illustrate the new three-tier Web architecture.

'Figure 5-1 Three-tier architecture with Ho TMetaL Application Server:

Remember, in the old Web model, the customer using a browser such as
Internet Explorer or Netscape on the client interacted directly with data
sources on remote servers. The client maintained its connection throughout
the interactive session. Each query was sent a response in HTML which
could be directly viewed by the client browser. Maintaining the connection
between the client and server was critical.

Ci:ll998 THE XML HANDBOOK™

70 CHAPTER 5 I PERSONALIZED FREQUENT-FLYER WEB SITE

In the new three-tier Web model, the information that firs the profile of
the customer is reo·ieved at once from remote databases by software on the
middle tier, either as XML documents or through an ODBC or similar
database connection. From that point, continued interaction with the
remote databases is no Longer required. The connection to the remote serv~
ers can be, and is, terminated.

nee all information char fits the customer profile has been assembled by,
software on the middle tier, it is sem in XML to th client. Now th~
requirement for further interaction between the client and the middle tier
server is eliminated as well.

Rich XML data, directly usable by client applications and scripting lan
guages Like far;aScript, has been delivered to the client. T he connection
between the client and middle tier server can now be terminated. At this
point, all computing becomes client-based, resulting in a much more effi
cient use of the Web and a much more satisfying customer experience.

To understand the new three-tier Web model better, one must under
stand the role XML plays as an enabling technology. One must also under
stand how efficient delivery of structured data to the client makes all the
difference.

5.4 1 An XML-enabled frequent-flyer
Web site

Initially, differences between the Softland Air XML-enabled frequent-flyer
Web site shown in Figure 5-2 and existing frequenc-B.ye.J· sites may not be
apparent. Both provide a pleasing HTML-rendered site brochure. Both
enable you to select the services you wish to use. But here the similarities
end. New business functions, not possible with today's non-XML sites,
quickly become apparent.

From the initial Soft/and Air screen you can select the "frequent flyer"
option. This option will cause the frequent-flyer page in Figure 5-3 to be
displayed, by traversing a simple hyperlink. When the frequent-flyer page is
displayed, it asks you to enter your membership identification number.

Once you have entered your membership number, a personalized, inter
active Web experience begins. The next screen that is displayed (Figure 5-4)
not only returns your number of frequent flyer points, but shows you desti
nations for which you have already qualified for awards. This screen will

(£)!998 TH E XM L HAN D ~OOKTM

5.4 I AN XML-ENABLED FREQUENT-FLYER W E B SITE 71

Schedules Frequent Flyer

Reservations

Figure 5-2 "Welcome to Soft/and Air"

vary from member to member, based upon the points a member has in the
frequent-flyer database and other personal information the database holds,
such as point of origin.

In addition to showing you the awards you have already earned, the Soft
land Air Web site enables you to select destinations of interest. You can see
that you have 46,000 points and are qualified to go anywhere in North
America in economy through first class. You can also go to Hawaii or the
Caribbean by economy class. You do not qualify to go to Europe, but you
can see that you nearly have enough points for a European trip.

Suppose you are interested in going to Europe. To learn more about
options to get there, you would select a destination on the ''Awards Spe
cials" part of the screen. This destination information is added to your pro
file, along with your point of origin and the number of points you currently
have. lt will be used to personalize the ongoing transactions.

Once you have selected a destination, the Web page shows you awards,
both on oft/and Air and on parmer airl ine , that fit the destination you
have selected. From tllis screen you can see what destinations in Europe

©1998 TH E XML HANDBOOK™

72 CHAPTER 5 I PERSONALIZED FREQUENT-FLYER WEB SITE

~: enroll
Members, sign In here

newsletter j 1AB~5 , FAQs

\, plan awards
Soltland Air takes you

Into the slipstream of

newsletter Frequent Flyer Program

technology.

Figure 5-3 "Members, sign in here"

most nearly "fit" with the number of award points you hold. As you do not
currently qualify for a trip to Europe, you can use the "Planned Trips" por
tion of the screen to determine what trips you can take by this summer in
order to qualify for the award you want.

Using the screen in Figure 5-4, you can plan trips and even book tickets.
In this way you can put enough miles in the bank to be able to earn the
award to Europe.

Notice how the entire transaction is personalized for the client interact
ing with the Web site. It is also important to note that aside from logging
on to enter your membership number and select the frequent-flyer transac
tion, all other transactions occurred on the PC in your home or office.
Because the middle-tier server can aggregate data from remote sources,
package it as XML documents, and send it to the client, a continuous con
nection to the servers was not required.

This is quite a different model from what we have today on the Web.
And XML, working with programs like SoftQuad's Ho TM taL Application
Server in the middle tier, is the reason.

© 1998 T HE XML HANDBOOKTM

5. 5 I uNDERsTANDING THE s 0 F T LAND A I R s c EN A R I 0 73

Softland Air

ard Awards

Available with your
current points
plus planned travel

I Requires more points

Specials

Oll&ilnatlon:

Welcome back, Bruce. You currently l1ave 46000 points. 00

Clrck on th e award you are in terested in :

Destination
North America
Hawaii or the Caribbean
Europe
Asia

Clrck on !he av1ard you are interested in

Airline To
SPERliNG 0 AIRLINES Paris
SPERLING 0 AIRLINES Frankfurt
t TIIILUIJM Airways london

Until Economy Business First
Aug
Sep 30

Jut3ouaiiiml
Figu•·e 5-4 Personalized frequent-flyer information

5.5 1 Understanding the Softland Air . scenario

When you connect to the Soft/and Air Web site you first sign in with your
membership ID. Your membership number is used to extract your name,
the number of award points you have earned, and your point of origin from
the "member information" database. This information is sent from remote
databases to the middle tier server, which combines it into an XML docu
ment (see Figure 5-5). Once the data is in XML, the member name, point
of origin, and number of award points can be addressed and used by mid
dle~tier and client applications.

At this point, the middle-tier software knows who signed on. It can
request all relevant awards informacion from both its own awards database
ancl the remote darabases maintained by its partner airli nes. Figme 5-6
sh0w the XML data for award specials item from remot awards data
bases. Note thar because this clara is in XML, we can easily see the number

©!9 98 THE XM L HANDBOOK TM

7 4 CHAPTER 5 I PERSONALIZED FREQUENT-FLYER WEB SITE

<XML ID = "customerlnfoXML" TYPE = "textlxml">
<CUSTOMER

</XML>

ID = "TheMember"
MEMBERID = "1AB345"
FIRST = "Bruce"
LAST ="Sharpe"
POINTS = "46000"
CITY = "Vancouver"
CONTINENT = "NA"/>

OI IKI

Figure 5-5 XML document generated from member information database

of points required for each award, the partner airline name, the point of ori
gin, the destination, and the dates the special runs. Again, this information
is available for use by both middle-tier and client-side processing based on
member queries.

The middle-tier server can also request all flight point earnings informa
tion from all remote flight information databases, as shown in Figure 5-7.
We can easily see the number of points that would be earned from each
flight, the partner airline name, the point of origin, the destination, and the
date of flight and class of service. This information is available for use by
middle-tier and client-side processing.

The information that is sent to the middle tier is compact, personalized,
and precise. It differs from HTML because it contains the actual abstract
data, not the look of the screen. Middle-tier software, like the Ho TMetaL
Application Server, acts to assemble and deliver the right information at the
right time, minimizing Web traffic and providing a higher degree of user
interaction and satisfaction.

©1998 THE XML HANDB00K17d

5.5 I UNDERSTANDING THE SOFTLAND AIR SCENARIO 75

- <XML ID = "specialslnfoXML" TYPE= "textlxml">
<SPECIAL_ITEM

ECONOMY = "50000"
BUSINESS = "60000"
FIRST = "70000"
PARTNER_NAME = "Sperling Airlines"
FROM_ CITY= "Vancouver"
FROM_CONT = "NA"
TO_CITY ="Paris"
TO_CONT = "EUR"
START= "02/Apr/1998"
END = "Aug 30"/>

<SPECIAL_ ITEM
ECONOMY = "52000"
BUSINESS = "62000"
FIRST = "72000"
PARTNER_ NAME = "Sperling Airlines"
FROM CITY = "Vancouver"

- .,:

~
'.

Figure 5-6 XML document generated from award specials database

<XML ID = "flightlnfoXML" TYPE = "textlxml">
<FLIGHT

POINTS = "1 0000"
PARTNER_ NAME = "Sperling Airlines"
FROM_CITY ="Vancouver"
FROM_CONT = "NA"
TO_CITY ="New York"
TO_CONT = "NA"
DEPART= "Jun 01"
FLIGHTCLASS = "business"/>

<FLIGHT
POINTS = "20000"
PARTNER_ NAME= "Sperling Airlines"
FROM_CITY ="Vancouver"
FROM_CONT = "NA"
TO_ CITY= "Paris"
TO_CONT = "EUR"
DEPART = "May 02"

Figure 5-7 XML document with flight point earnings

!01998 TH E XML H ANDBOOK Th'

7 6 CHAPTER 5 I PERSONALIZED FREQUENT-FLYER WEB SITE

5.6 1 Towards the Brave New Web

The World Wide Web continues to evolve rapidly. Today the "hottest" Web
sires are chose that provide multimeclia sizzle. Bur as the shif-t: takes place
from simply providing entertainment value to facilitating business transac
tion , dynamic personalized content wil l become "hot".

Products like SoftQuad's HoTMetaL Application Server allow the Web
site developer to add a new middle tier server to the Web model. It is this
middle tier that enables business transactions in a way that was simply not
possible before XML.

The Soft/and Air scenario shows how a middle-tier server, using XML as
a structured information interchange representation, enables personalized
data aggregation and organization from multiple remote databases, and
interactive delivery to client browsers based upon end-user requirements.

©1998 THE XML HANDBOOK lU

