

Merrill Communications LLC
d/b/a Merrill Corporation

Exhibit 1006 pt. 8

W IDLandXML
RPC

I Application interoperability

I Web Interface Definition Language (WIDL)

I XML Remote Procedure Call (RPC)

I WID L specification on CD-ROM

© 1 9 98 THE XML HANDBOOKTM

W IDLandXML
RPC

I Application interoperability

I Web Interface Definition Language (WIDL)

I XML Remote Procedure Call (RPC)

I WIDL specification on CD-ROM

©1998 THE XML HANDBOOK1M

Chapter __ _

J8

ngineers numbered 12-345-68 through 23-457-89 at Oops£
Commerce Co1poration say 'XML is the solution to interopera
bility. "These mgineers gang up on the managers until the corpo

rate gears succumb and reverse direction. Soon the sales reps are saying the
words "universal data format" more often than the words "object-ori
ented. " Oops XML-enables its popular Loops product, renames the prod
uct to Xoops, and then ships Xoops out the door.

Over the following weeks we eavesdrop on the support engineers: "Well,
if you have Company Q's product you can use our XML feature with it. ..
Well, to get it to talk to your purchasing system, you'll have to XML-enable
the purchasing system ... Well, their program uses a different DTD from
ours, so Xoops won't interoperate with it."

Woops, Oops goofed with Xoops: XML alone is not quite enough.

©199R TH E XML HANll~llOK'·" 555

55 6 CHAPTER 38 I WIDL AND XML RPC

!18.1 1 XML alone is not quite enough

A client that hands a server data must tell the server what to do with the
data. The client does this by naming a service. A client must also under
stand the data that the service returns. Two applications may communicate
only if they agree on the names of the services and on the types of the input
and the output data.

Furthermore, applications must agree on how to represent this data in
the messages that transfer between them. XML provides a way to represent
the data, but it does not associate input data and output data with service
names, and it does not provide a way to map between message types. Some
thing is missing.

ill. J. J The missing piece

The obvious solution to the problem is to associate input DTDs with out
pur DTDs and to give these associations service names. This does provide
enough information for two applications to communicate, but it requires
both applications to be XML- nabled and it requires the applications to
conform to the same DTDs. W hile there may not be many XML-enabled
applications right now eventually there will be, but it is unlikely that all
will agree on rhe same DTDs.

A better solution to the interoperability problem is to define application
interfaces in an abstract way. CORBA, DCOM, and DCE have all taken
this approach, and in these systems the abstractions are known as interface
specifications.

Interface pecifications allow developers to create different but compati
ble implementadons of interfaces. In CORBA, DCOM, and DCE inter
Face specifications allow applications written in different programming
languages to communicate. We need to take this a step further. We must
also bridge b tween appUcarions whose XML messages conform to different
DTDs.

The missing piece is an IDL- an Interface Definition Language. An IDL is
a language in which interface specifications are written.

webMethods, Inc. has specified an IDL for th is purpose, an IDL called
WIDL. WIDL interface specifications enable middleware to map transpar
ently between appli<=<'ltion interfaces and XML message DTDs. By delegat
ing XML intell igence and accessibility issues to IDL-aware middleware, we

© 1 99 8 TH E XML H AN DB OO K™

38.2 I WIDL THE IDL 557

also simplifY the application. An IDL such as WIDL allows us to maximize
an application's accessibility.

J8, 1.2 The role of WID L

WIDL is an acronym for Wt?b Interface Definition Language. It is an IDL
that is expressed in XML. OMG IDL and Microsoft IDL are other exam
ples of IDLs, but there are important differences between WIDL and con
ventional IDLs.

WIDL differs from other IDLs primarily because it satisfies the 80/20
rule. It provides 80% of the capability of a conventional IDL with only
20% of the complexity. WIDL is consequently easy to learn, easy to read,
and relatively easy to implement.

This fact provides WIDL with a potentially large user base, but still
leaves room for more sophisticated IDLs, including new ones based on
XML. WIDL also goes a step further than conventional IDLs by requiring
all data items to have names, which simplifies the process of translating
documents into interfaces.

webMethods originally developed WIDL to wrap Web sites within APis,
thereby giving applications programmatic access to the Web. Consequently,
the WIDL l.x and 2.x specifications defined a single language that both
specified interfaces and defined how interface specifications map onto a
Web site.

WIDL 3.0 places the interface specification and the document-mapping
implementation in separate XML documents. WIDL 3.0 therefore defines
two components: an IDL component and a document-mapping compo
nent. Together these components allow applications to communicate over a
network regardless of the programming languages in which the applications
are written, regardless of whether the applications speak XML, and regard
less of the DTDs to which XML-speaking applications conform.

11.2 I WIDL the IDL

Let's take a look at the IDL component ofWIDL 3.0. Example 38-1 shows
a short but complete example of a WIDL 3.0 interface specification.

©1998 THE XML HANDBOOK™

55 8 CHAPTER 38 I WIDL AND XML RPC

Example 38-1. A WIDL 3.0 interface specification.
<WIDL NAME="corn.Fortunes-R-Us.Purchasing" VERSION="3.0">

<RECORD NAME="FortuneOrder">
<VALUE NAME="accountiD" TYPE="i4" / >
<VALUE NAME="zodiacSign"/>

</RECORD>
<RECORD NAME="FortuneReceipt">

<VALUE NAME="orderNumber" TYPE="i4"/>
<VALUE NAME="fortune"/>
<VALUE NAME="accountBalance" TYPE="r4" / >

< / RECORD>
<METHOD NAME="orderFortune" INPUT="FortuneOrder"

OUTPUT="FortuneReceipt" RETURN="orderNumber"/>
</WIDL>

A WIDL document specifies a single interface. Example 38-2 is a DTD
that defines WIDL documents sufficiently for our purposes.

Interfaces should have names that are unique within their scope of use.
Naming an interface relative to the reverse order of a domain name provides
one way to accomplish this. A client may then identifY interfaces by name.

A WIDL element contains one or more RECORD or METHOD ele-
ments.

i8.2.1 Methods

The METHOD element identifies a service that the client may invoke.

Method names must be unique within the document. Methods may
optionally have input and output parameters, as indicated by the optional
INPUT and OUTPUT attributes.

The INPUT attribute provides a link to a RECORD element that enu
merates the method's input parameters. The OUTPUT attribute provides a
link to a RECORD element that enumerates the method's output parame
ters. The tag may optionally indicate that one of the output parameters is
the return value of the method when the interface is implemented in a pro
gramming language. Methods may also identifY the exceptions that they
raise in order to report method invocation failures.

©1998 THE XML HANDBOOK™

3 8. 2 WIDL THE IDL

Example 38-2. WIDL interface DTD.

< ! ELE!•!ENT WIDL (RECORD I METHOD)+>

<!ATTLIST WIDL
NAME CDATA #REQUIRED
VERSION CDATA #FIXED 113.011

>
<!ELEMENT METHOD EMPTY>

<!ATTLIST METHOD
NAME CDATA #REQUIRED
INPUT CDATA #IMPLIED
OUTPUT CDATA #IMPLIED
RETURN CDATA #IMPLIED

>
<!ELEMENT RECORD (VALUE I LIST I RECORDREF)* >

<!ATTLIST RECORD
NAME CDATA #REQUIRED
BASE CDATA #IMPLIED

>
<1-- Parameters -->

<!ELEMENT VALUE EMPTY >

<!ATTLIST VALUE
NAME CDATA #REQUIRED
TYPE CDATA 11 String 11

DIM NMTOKEN 0

>
<!ELEMENT LIST EMPTY >
<!ATTLIST LIST

NAME CDATA #REQUIRED
DIM NMTOKEN 0

>
<!ELEMENT RECORDREF EMP'rY >
<!ATTLIST RECORDREF

NAME CDATA #REQUIRED
RECORD CDATA #IMPLIED
DIM Nl'1TOKEN 0

>

J8,2,2 Records

A RECORD element represents a record and conforms to the DTD shown
in Example 38-2. Record names must be unique within a document. A
record consists of a collection of zero or more parameter elements, each of
which must have a unique name within the scope of the record. If the
record provides a BASE attribute, the record inherits all of the named

© I 9 9 H T H E X M L H A N D B ') () I(LM

559

560 CHAPTER 38 I WIDLANDXMLRPC

parameter elements found within the RECORD element to which the
attribute points.

The parameter element types are VALUE, LIST, and RECORDREF.

VALUE
An element that represents lexical data and has an optional TYPE
attribute that identifies the datatype. Datatypes include strings
("string"), integers ("i4"), and floats ("r4").

LIST
A LIST element represents a vector of arbitrary size consisting of
an arbitrary set of types.

RECORD REF
The RECORDREF element identifies a RECORD element that
nests within the RECORDREF's parent record.

Parameters have an optional DIM attribute. When DIM has a value of
"1 " or "2" the parameter represents a single- or two-dimensional array.
When the attribute is absent, the value defaults to "0" to indicate that the
parameter is a single data item and not an array.

WIDL provides only a small number of simple data types. These data
rypes are sufficient ro represcn t most of the types available to programming
languages . WIDL is compatible with other data definition languages such
as XML-Data and Resource Description Framework (RDF), so WIDL
may accommodate the sophisticated schema languages that are emerging.
This allows WIDL to support complex data types without itself becoming
complex.

JB,J 1 Remote procedure calls

WlDL provides the information that applications need to communicate,
but it does not perform the a rual communication. An application char
requests a service of another application must i sue a Remote Procedure

all, or RPC, ro the oth r application. An app lication issues an RPC by
packaging a message, sending the message to the other application, and
then waiting for the r ply message.

© 19 9 8 T H E XML HAND B OO KTM

38.3 I REMOTE PROCEDURE CALLS 561

The RPC mechanism requires the applications to agree on the form of
the messages and on the transfer protocol by which the messages travel.
HTTP provides a POST method that allows a client to submit a document
to a server and to receive a document in response, so HTTP is a candidate
protocol. Since HTTP is nearly ubiquitous and since it tunnels through
firewalls, it's obvious that we should use HTTP. The question is, should
XML be the message form?

IIOP and DCE are both industry standards for RPC messages. Either of
these would work, as it is possible to send them over HTTP. We might
notice that these message representations are inflexible: senders and receiv
ers must agree on how a message decomposes data into arguments, includ
ing the positions of the individual arguments and the structures of these
arguments.

Yet if the message representation were XML, the applications would still
have to agree on the DTDs to which the messages conformed. Just as appli
cations that use different IIOP or DCE message types cannot communi
cate, applications that use different DTDs cannot communicate. Without
looking more closely, we might be inclined to conclude that XML is all
hype after all.

However, we are going to look more closely. These problems do afflict
XML, IIOP, and DCE alike. No reneging here. When we take that closer
look we find that, unlike IIOP and DCE, XML provides a way to solve the
problem.

That is, XML provides a way to ensure that so long as two applications
agree to conform to the same abstract interface specification, then those
two applications may communicate - even if the applications are hard
coded to use different DTDs.

iii,J.I Representing RPC messages in XML

XML is an ideal notation for RPC messages because it allows us to label the
indjvidual data constituents of a message semantically. These labels are
XMX.:s tags.

The only semantic labels available in IIOP and DCE are the numeric
positions of the constituents. IIOP and DCE do not allow data to move to
new positions and they do not allow data to grow or shrink in unforeseen
ways. They also do not allow applications to discover the absence of data

@1998 THE XML HANDBOOK™

562 CHAPTER 38 I WIDLANDXMLRPC

from a message or to introduce new data items into a message indepen
dently.

But the greatest benefit that XML brings to RP is that XML moves a
significant amount of information about a message into the messag its l£
It is a benefit because it moves an equal amount of information out of the
programs that process the messages. This simplifies the programs that inte
grate applications.

In all probability, industries will never completely agree on tandard
interfaces or standard DTDs, so it will always be necessary to translate
between interfaces. XML provides interoperability by enabling a new class
of middleware to serve as generic application integrators.

il.i.t Generic and custom message DTDs

There are two ways to represent RPC messages in XML. A generic docu
ment type is capable of representing any message. The interface specifica
tion determines the form that a message takes in a generic document type.

More specifically, the definition of a method uniquely determines the
DTDs of the request and reply messages that correspond to the method.

On the other hand, a custom document type is designed only to contain
the inputs or the outputs of a p rti ular kind of. ervi e. There are many
possible custom d umeot type definition tor a given interfa method.

Let's I k at a few examples that ar based on th Fortune -R-Us pw-
chasing interface shown in Example 38-l. Example 38-3 contains rhree
RPC messages.

The first portrays what an instance of a generic document type might
look like for a message that invokes the "orderFortune" method. The same
document type scheme might be used for the reply message, which is the
second message of Example 38-3. The third message shown is an instance
of a custom-DTD reply.

There are many possible generic XML document types, and we can
exp ct to e industries creating them and using rhem. There are also many
possibl custom d cument types for any given method. We can a.lso expecr
to ee appli ations using custom document types to message oilier applica
tions.

The trick is to ensure that we can integrate applicc rions that use different
document types to represent the same information. Wirhout this we do not
have interoperability. XML makes it feasible to provide large-scale interop-

©1998 THE XML HAN D BOOK™

3 8 0 4 IN T EGRA T ING APPLICATIONS

Example 38-3. Generic- and custom-DTD RPC messages.

<!U'C TYPE="REQUEST " >
<VALUE NAME="accountiD" TYPE="i4" >2001< / NUMBER>
<VALUE NAME="zodiacSign" >Aquarius</VALUE>

</RPC>

<RPC TYPE="REPLY">
<VALUE NAME="orderNurnber" TYPE="i4" >438553< / NUMBER>
<VALUE NAME="fortune" >You will use XML for RPC </VALUE>
<VALUE NAME="accountBalance" TYPE="r4 ">65.00< / NUMBER>

< /RPC>

<FORTUNE-RECEIPT>
<orderNurnber>438553< / orderNurnber>
<fortune >You will use XML for RPC</ for tune>
<accountBalance>65.00 </ accountBalance>

</FORTUNE-RECEIPT>

erability, but only if we design our messages so that integration middleware
may robustly identifY data constituents by !abel.

i8.4 1 Integrating applications

WIDL and XML RPC together enable middleware to integrate applica
tions. We'll use the term integration server to refer to middleware that
assumes this kind of responsibility.

A W1DL interface specification supplies an integration server with the
information the server needs to map between XML RPC messages and
native application interfaces. Interface specifications do not themselves
define the mappings, but they provide a common language in which to

express them.

Figure 38-1 shows how integration servers connect applications.

Integration servers need to integrate a wide variety of application inter
faces. One application may implement an interface as a set of Java or C++
methods. Another may implement an interface as a set of functions in C.

Another application may input and output XML documents conforming
to custom DTDs. Still another may input and output XML documents in
~he form of generic RPC messages. Integrating applications requires bridg
tng between programming languages and document represen tations.

© 1 9 9 8 T H E X M L H A N D B o 0 K TM

563

564 CHAPTER 38 I WIDLANDXMLRPC

828 Integration Server

INTERNET
OR

EXTRANET

The B2B Integration Server connects applications to applications
and applications to Web sites, over the Internet or an Extranei.

Figure 38-1 Connecting applications with XML RPC and integration servers.

il8.4.1 Stubs

Conventional RPC bridges programming languages through code snippets
known as stubs. A stub translates between the details of an interface and a
common data representation. One side of a stub speaks the language that is
native to an application and the other side speaks a common data represen
tation.

By connecting the data representation ends of two stubs, one may bridge
between any two programming languages. In a client stub, the language
specific side consists of a set of APis (functions) that the client may call. In
a server stub, the language-specific side calls APis that the server itself
exposes.

Figure 38-2 illustrates this property of stubs by portraying four stub pair
ings. Here, XML is the common data representation, but in the usual case
intervening middleware will hide knowledge ofXML from the stubs.

In diagram (a) an application written in Java is communicating with
another application written in Java. Diagrams (b) and (c) show that the
same application may also communicate with applications written in C++
or C. Diagram (d) depicts the Java application communicating with an

©1998 THE XML HANDBOOK™

38.4 I INTEGRATING APPLICATIONS 565

application that speaks XML. In this last scenario the XML-speaking appli
cation has no stub, since the XML messages pass directly to the application.

IJAVAIXMLI·~~r------..~
(c) ~

XML

Figure 38-2 Using stubs to make applications interoperable.

Figure 38-3 portrays how a developer uses stubs to integrate applications.
A developer generates an interface specification in WIDL and then runs the
specification through a WIDL compiler.

The WIDL compiler generates two source files in a programming lan
guage of the developer's choice. Both files are stubs, but one file is a client
stub and the other is a server stub. The developer then links the appropriate
stub into the client or server application. The stubs free the application
from knowledge of XML and allow middleware to map transparently
between interfaces and different XML document types.

!8.4.2 Document mapping

The document-mapping component of WIDL defines mappings between
interfaces and XML or HTML documents. This is the portion that pro
vides the bridge between XML RPC messages and application APis; that is,
the portion that makes the different XML documenc types indistinguish
able to the application. webMethods originally developed this facility to

encapsulate HTML-based Web sites within APis, but because XML does a
better job of labeling data than HTML does, the technology reaps more
benefits from XML.

WlDL document-mapping does its job through bindings. A binding
specifies how to map raw data into an RPC message or vice versa, where
"raw data" means "data represented in a way that is natural to a program-

©1998 THE XML HANDBOOKTM

566 CHAPTER 38 I WIDLANDXMLRPC

Integration

Server

Figure 38-3 Using WIDL for RPC over the Web.

ming language". The best way to make sense of this is to look at an exam
ple, so consider Example 38-4.

Example 38-4. A WIDL binding.
<OUTPUT-BINDING NAME="OrderReplyBinding">

<VALUE NAME="orderNumber" TYPE="i4">
doc.orderNumber[O] .text</VALUE>

<VALUE NAME="fortune" >doc. fortune[O] .text</VALUE>
</OUTPUT-BINDING>

This binding applies to the custom-DTD reply message of Example
38-3. Each VALUE element corresponds to a data item that the binding
extracts from the message. In this case the binding extracts two strings, but
bindings may extract other data types, including records and even XML
documents.

Upon receiving the Teply message middlewar applies this binding and
pas es the Lwo strings ro the applicati n. Since the application ordered the
fortune by issuing a function call on a client stub, the tub rerums the
strings to the application as utput parameters of the function. MiddJeware

©1998 THE XML HANDB OO K™

3 8. 4 I INTEGRATI NG A p pLIcA T I 0 N s 567

completely shields the application from knowledge of XML and from
dependence on a specific XML document type.

In this example, the binding only retrieves the order number and the for

tune from the reply message, indicating that the application cannot utilize
the account balance. The content of each VALUE element is a query,

expressed in a document query language, that specifies where to find these

items within the message. In this particular case, the query uses the web

Methods Object Model, but WIDL is compatible with other query lan

guages as well.

A binding may also define how to translate data into an RPC message.

WIDL supports several forms of messages. For request messages, the bind

ing may have the data submitted via the HTTP GET or POST methods,

thus providing the data as CGI query parameters. The binding may also
have the data submitted as an XML or an HTML message, constructing the

message from a particular template. Templates are a straightforward way to

generate XML.

Bindings provide a simple way to make applications compatible with a

variety ofXML message DTDs. Bindings are most useful with custom doc

ument types, since it is possible to hard-code document-mapping for

generic document types. Generic document types do not require the flexi

bility that bindings provide, and by hard-coding them middleware can pro

vide more efficient document-mapping.

An integration server puts bindings to work by using them to mask dif

ferences in XML document types. By connecting the variable names of

bindings to parameter names in interface specifications, an integration

server may map any XML document type into any programming language.

To get a feel for the benefits of this capability, take a look at Figure 38-4.
Here industries and businesses have defined a variety of DTDs to which

different RPC document types conform. The interface defined with WIDL
captures a superset of the services and data available through the DTDs.

Although different client applications use different XML document types,
the integration server is able to bridge these differences to make the applica
tion universally accessible.

© 1 99 8 THE XML HANDB OOK™

568 CHAPTER 38 I WIDLANDXMLRPC

Integration
Server

Back-end App
(e.g. ERP/MAP,

E-commerce system
or Database App)

Figure 38-4 UsingWIDL to make different XML messages interoperable.

!18.5 1 Interoperability attained

WIDL, XML RPC, and integration servers are the pieces that provide
application interoperability. With them one can make any application
accessible over a network via XML and HTTP.

One can also make a single application available to client applications
that use different XML message formats. Or one can upgrade an applica
tion, or substitute one application for another, and still allow all previous
clients to communicate with the new application.

These capabilities should give us second thoughts about hard-coding
servers to use specific XML document types. Servers should leave document
type decisions to middleware, empowering middleware to make the server
widely accessible.

©1998 THE XML HANDBOOK™

XML-Data is the name of a proposal for a DTD
schema language, a new way to create and augment
document type definitions. This chapter is sponsored
by Microsoft Corporation,

he Internet holds within it the porential for integrating all
information into a global network (with many private but
integrated domains), promising access to information any

H time and anywhere. However, this potential has yet to be realized. At
present, the Internet is merely an access medium.

To realize the Internet’s potential, we need to add intelligent search, data
xexchange, adaptive presentation, and personalization. The Internet must go

beyond setting an information access standard and must set an information

understanding standard, which means a standard way of representing data so
that software can better search, move, display, and otherwise manipulate
information currently hidden in contextual obscurity.

XML is an important step in this direction. XML is a standardized nora—
tion for representing structured information. It is well-founded theoreti-

cally and is based on extensive industry experience. Although XML
documents are simple, readily/«transn'iitted characrer Strings, the notation
easily depicrs a tree strucrure. A tree is a natural Structure that is richer than.

a Simple flat list, yet also respectful of cognitive and data processing require—
ments for economy and simplicity.

@1998 THE XML HANHHDLMLW 57]

572

CHAPTER 39 | XML-DATA

Valid XML documents belong to classes m document types — that deter-
mine the tree structure and other properties of their member documents.
The properties of the classes themselves comprise their document type defi—
nitions, or DTDs, which serve the same role for documents that schemas
do for databases.

And that is where the potential for enhancing the Web lies.
Today, the only standardized method of creating document type defini-

tions is through the use of markup declarations, a specialized syntax used
only for this purpose. What is needed is a method of augmenting the exist-
ing set ofDTD properties with additional properties that will enable the
goal of true information understanding.

Fortunately, there are ways to accomplish this goal by using XML itself.
The W3C XML Working Group has agreed to work on a DTD schema [am—

gzmge for XML. The DTD schema language will provide a means of using
XML instances to define augmented DTDs.

As a contribution to this effort, ArborText, DataChannel, Inso, and
Microsoft have co—authored the XIWL-Dam submission to the W3C.

XZWL-Dam is a notation, in the form of an XML document, that is both

an alternative to markup declarations for writing DTDs and a means of
augmenting DTDs with additional capabilities. For example:

I XZWL—Dam supports rich data types, allowing for tighter
validation of data and reduced application effort. Developers
can use a list of standard data types, such as numbers or ISO
8601 dates, or define their own.

I Through the namespaces facility, X/WL—Dzzm improves
expressiveness, ensuring the existence of uniquely qualified
names.

I XML-Dam provides for greater and more efficient semantic

facilities by incorporating the concept of inheritance, enabling
one schema to be based on another. For instance, a bookstore

purchase order schema could be based on a general purpose
electronic-commerce purchase order schema.

Since XIWL—Dam uses XML instance syntax, there are a number of other
benefits:

I The same tools that are used to parse XML can be used to
parse the XIWL-Dam notation.

©1998 THE XML HANDBOOK‘M

39.1 | INTRODUCTION

I As the syntax is very similar to HTML, it should be easy for
HTML authors to learn and read.

I It is easily extensible.

The text of the XZWL—Dam proposal follows, as contained in W3C Note
05flm 1998. A browseable version, can be found on the CD-ROM and at

http: / /www.w3 . org/TR/l998/NOTE—XML—data. That version identifies the

individual authors and others whose help and contributions to the proposal
the authors acknowledged.

39.I | Introduction

Schema: define the characteristics of classes of objects. This paper describes

an XML vocabulary for schemas, that is, for defining and documenting
object classes. It can be used for classes which as strictly syntactic (for exam—

ple, XML) or those which indicate concepts and relations among concepts
(as used in relational databases, KR graphs and RDF). The former are called

“syntactic schemas;” the latter “conceptual schemas.”

For example, an XML document might contain a “book” element which
lexically contains an “author” element and a “title” element. An XML—Data

schema can describe such syntax. However, in another context, we may
simply want to represent more abstractly that books have titles and authors,

irrespective of any syntax. XML-Data schemas can describe such concep—
tual relationships. Further, the information about books, titles and authors

might be stored in a relational database, in which XML—Data schemas

describe row types and key relationships.

One immediate implication of the ideas in this paper is that XML docu—

ment types can now be described using XML itself, rather than DTD sys—

tax. Another is that XML—Data schemas provide a common vocabulary for
ideas which overlap between syntactic, database and conceptual schemas.
All features can be used together as appropriate.

Schemas are composed principally of declarations for:

@1998 THE XML HANDBOOKTM

573

574

CHAPTER 39 | XML-DATA

Concepts

Classes of objects

I Class hierarchies

I Properties

Relationships

l Indicated by primary key to foreign key matching
I Indicated by URI

XML DTD Grammars and Compatibility

I grammatical rules governing the valid nesting of the elements
and attributes

I attributes of elements

I internal and external entities, represented by intEntityDecl
and extEntityDecl

l notations, represented by notationDcl

Datatypes giving parsing rules and implementationformats.

Mapping rules allowing abbreviated grammars to map to a
conceptual data model.

39.! | The Schema Element Type

All schema declarations are contained within a schema element, like this:
<?XML version=‘1.0' ?>

<?xml:namespace

name:”urnzuuid:BDC6E3FO—6DA3—lldl—A2A3—OOAAO0C14882/”
as=”s"/?>

<s:schema id='ExampleSchema'>
<l—— schema goes here. ——>

</s:schema>

The namespace of the vocabulary described in this document is named
“urnzuuid:BDC6E3F0-6DA3-l1dl-A2A3—00AAO0C14882/”.

©19981Wm XML HANDBOOKTM

39.3 | THE ELEMENTTYPE DECLARATION

39.3 | The ElementType Declaration

The heart of an XML—Data Schema is the elememType declaration, which
defines a class of objects (or “type ofelement” in XML terminology). The id
attribute serves a dual role of identifying the definition, and also naming

the specific class.
<elementType id="author"/>

Within an elementType, the description subelement may be used to pro-
vide a human—readable description of the elements purpose.
<elementType id="author">

<description>The person, natural or otherwise, who wrote
the book.</description>

</elementType >

39.1 | Properties and Content Models

Subelements Within elemenflj/pe define characteristics of the classs mem-
bers. An XML “content model” is a description of the contents that may

validly appear within a particular element type in a document instance.
<elementType id=”author">

<string/>
</elementType>

<elementType id=”Book”>

<element type=”#author” occurs=”ONEORMORE"/>
</e1ementType>

The example above defines two elements, author and book, and says that
a book has one or more authors. The author element may contain a string

of character data (but no other elements). For example, the following is
valid:
<Book>

<author>Henry Ford</author>
<author>Samuel Crowther</author>

</Book>

Within an elementType, various specialized subelements (element,
group, any, empty, string etc.) indicate which subelements (properties) are
allowedlrequired. Ordinarily, these imply net only the cardinality of the
subelernents but also their sequence. (We discuss a means to relax sequence
later.)

©19981Wm XML HANDBOOKTM

575 !

576

CHAPTER 39 | XML—DATA

39.4.! Element

Element indicates the containment of a single element type (property). Each

element contains an beefattribute referencing another elementYype, thereby

including it in the content model syntacticly, or declaring it to be a prop—

erty of the object class conceptually. The element may be required or

optional, and may occur multiple times, as indicated by its occurs attribute

having one of the four values “REQUIRED”, “OPTIONAL”, “ZEROOR—

MORE” or “ONEORMORE”. It has a default of “REQUIRED”.

<elementType id="Book">

<element type=”#title" occurs="OPTIONAL"/>

<element type="#author” occurs="ONEORMORE"/>

</elementType>

The example above describes a book element type. Here, each instance of

a book may contain a title, and mmt contain one or more authors.
<Book>

<author>Henry Ford</author>
<author>Samuel Crowther</author>

<tit1e>My Life and Work</title>
</Book>

When we discuss type hierarchies, later, we will see that an element type

may have subtypes. If so, inclusion of an element type in a content model

permits elements of that type directly and all its subtypes.

39.4.1 Empty, Any, String, and Mixed
Content

Empty and any content are expressed using predefined elements empty and

any. (Empty may be omitted.) String means any character string not con—

taining elements, known as “PCDATA” in XML. Any signals that any mix—

ture of subelements is legal, but no free characters. Mixed content (a

mixture of parsed character data and one or more elements) is identified by

a mixed element, whose content identifies the element types allowed in

addition to parsed character data. When the content model is mixed, any

number of the listed elements are allowed, in any order.

©19981Ww XML HANDBOOKTM

39.4 | PROPERTIES AND CONTENT MODELS

<?XML version='l.0‘ ?>

<?xml:namespace
name:”urn:uuid:BDC6E3F0—6DA3—lldl—A2A3—00AAOOC14882/"
as=”s"/?>

<szschema>

<elementType id=”name">
<string/>

</elementType>

<elementType id=”Person“>
<any/>

</elementType>

<elementType id=”author">
<string/>

</elementType>

<elementType id="titlePart”>
<string/>

</elementType>

<elementType id=”title”>

<mixed><element type=”#tit1ePart"/></mixed>
</elementType>

<elementType id=”Book”>

<element type="#title” occurs=”OPTIONAL”/>
<element type="#author" occurs=”ON;ORMOR;"/>

</elementType>

</s:schema>

<BOOk>

<author>Henry Ford</author>
<author>Samuel Crowther</author>

<title>My Life and<titlePart>Work</titlePart></title>
</Book>

Here, book is defined to have an optional title and one or more authors.

The name element has content model of any, meaning that free text is not

allowed, but any arrangement of subelements is valid. The content model of
title is mixed, allowing a free intermixture of characters and any number of
titlePnrtx. The author, name and titlePnrts elements have a content model of

string.

@1998 THE XML HANDBOOKTM

577

578 CHAPTER 39 | XML-DATA

39.4.3 Group

Group indicates a set or sequence of elements, allowing alternatives or
ordering among the elements by use of the groupOrdcr attribute. The
group as a whole is treated similarly to an element.
<elementType id="Book">

<element type=“#title"/>

<element type=”#author" occurs="ONEORMORE"/>
<group occurs="OPTIONAL">

<element type=”#preface”/>

<element type="#introduction”/>
</gr0up>

</elementType>

In the above example, if a preface or introduction appears, both must,
with the preface preceding the introduction. Each of the following is valid:<Book>

<author>Henry Ford</author>
</Book>

<Book>

<author>Henry Ford</author>

<preface>Prefatory text</preface>

<introduction>This is a swell book.</introduction></Book>

Sometimes a schema designer wants to relax the ordering restrictions
among elements, allowing them to appear in any order. This is indicated by
setting the groupOrder attribute to “AND”:
<elementType id="Book">

<element type="#title"/>

<element type=“#author” occurs=”ONEORMORE"/>
<group groupOrder="AND" occurs=“OPTIONAL">

<element type="#preface"/>
<element type="#introduction“/>

</group>

</elementType>

Now the following is also valid:
<Book>

<author>Henry Ford</author>

<introduction>This is a swell book.</introduction>
<preface>Prefatory text</preface>

</Book>

Finally, a schema can indicate that any one of a list of elements (or
groups) is needed. For example, either a preface or an introduction. The
groupOrder attribute value “OR” signals this.

@1998 THE XML HANDBOOKTM

39.4 | PROPERTIES AND CONTENT MODELS

<elementType id="Book">
<element type=”#title”/>

<element type="#author" occurs="ONEORMORE”/>
<group groupOrder="OR">

<element type="#preface”/>
<element type=”#introduction"/>

</group>
</elementType>

Now each of the following is valid:
<Book>

<author>Henry Ford</author>

<preface>Prefatory text</preface>
</Book>

<Book>

<author>Henry Ford</author>
<introduction>This is a swell book.</introduction>

</Book>

39.4.4 Open and Closed Content Models

XML typically does not allow an element to contain content unless that
content was listed in the model. This is useful in some cases, but overly in
others in which we would like the listed content model to govern the cardi—

nality and other aspects of whichever subelements are explicitly named,
while allowing that other subelements can appear in instances as well.

The distinction is effected by the content attribute taking the values
“OPEN” and “CLOSED.” The default is “OPEN” meaning that all ele-

ment types not explicitly listed are valid, without order restrictions. (This
idea has a close relation to the Java concept of a final class.)

For example, the following instance data for a book, including the
unmentioned element copyngthdte would be valid given the content mod-
els declared so far, because they have all been open.
<Book>

<author>Henry Ford</author>
<author>Samuel Crowther</author>

<title>My Life and Work</title>
<copyrightDate>1922</copyrightDate>

</Book>

However, had the content model been declared closed, as follows, the

capyrz'g/atDate element would be invalid.

©19981Wm XML HANDBOOKTM

579

580 CHAPTER 39 | XML-DATA

<elementType id=”Book" content="CLOSED”>
<element type="#title”/>

<element type="#author" occurs=”ONEORMORE"/>
<group groupOrder="SEQ“ occurs="OPTIONAL">

<element type=”#preface”/>

<element type="#introduction" occurs=”REQUIRED"/>
</group>

</elementType>

A closed content model does not allow instances to contain any elements
or attributes beyond those explicitly listed in the elementType declaration.

39.5 | Default Values

An element with occurs of REQUIRED or OPTIONAL (but not ONE-
ORMORE or ZEROORMORE) can have a default value specified.
CelementType id="Book">

<element type="#title"/>

<element type=“#author” occurs=”ONEORMORE"/>
<element type="#ageGrp" occurs="OPTIONAL">

<default>adult</default>
</element>

</elementType>

The default value is implied for all element instances in which it is syntac—
tically omitted.

To indicate that the default value is the only allowed value, the presence
attribute is set to “FIXED”.
<elementType id="Book”>

<element type="#title”/>

<element type="#author” occurs=”ONEORMORE"/>

<element type=”#ageGrp" occurs="OPTIONAL" presence="FIXED”>
<default>ADULT</default>

</element>

</elementType>

Presence has values of “IMPLIED,” “SPECIFIED,” “REQUIRED,” and
“FIXED” with the same meanings as defined in XML DTD.

@1998 THE XML HANDBOOKTM

39.6 | ALIASES AND CORRELATIVES 581

39.6 | Aliases and Correlatives

ElementTypes can be know be different names in different languages or
domains. The equivalence of several names is effected by the sameAs
attribute, as in

<elementTypeEquivalent id="livre" type=”#Book"/>
<elementTypeEquivalent id=”auteur" type="#author"/>

Elements are used to represent both primary object types (nouns) and

also properties, relations and so forth. Relations are often known by two
names, each reflecting one direction of the relationship. For example, hus-
band and wife, above and below, earlier and later, etc. The correlative ele-

ment identifies such a pairing.
<elementType id: “author">

<string/>
</elementType>

<elementType id: "wrote">
<correlative type="#author" />
<string/>

</elementType>

This indicates that “wrote” is another name for the “author” relation, but

from the perspective of the person, not the book. That is, the two fragments
below express the same fact:
<Person>

<name>Henry Ford</name>
</Person> I

<Book>

<title>My Life and Work</title>
<author>Henry Ford</author>

</Book>

<Person>

<name>Henry Ford</name>
<Wrote>My Life and Work</wrote>

</Person>

<Book>

<title>My Life and Work</title>
</Book>

A correlative may be defined simply to document the alternative name

for the relation. However, it may also be used within a content model where

@1998 THE thL HANDBOOKTM

582 CHAPTER 39 | XML-DATA

it permits instances to use the alternative name. Further it may to establish

constraints on the relation, indicate key relationships, etc.

39.1 | Class Hierarchies

ElementTypes can be organized into categories using the ruperE/pe
attribute, as in
<elementType id=“price”>

<string/>
</elementType>

<elementType id:”ThingsIveBoughtRecently”>
<element type="#price"/>

</elementType>

<elementType id:"PencilsIveBoughtRecently”>
<superType type=“#ThingsIveBoughtRecently"/>
<element type=”#price"/>

</elementType>

<elementType id:”BooksIveBoughtRecently">
<superType type:”#ThingsIveBoughtRecently”/>
<element type=”#price”/>

</elementType>

This simply indicates that, in some fashion, PencilslveBougbtRecently and
BookslveBougbtRecmtb/are subsets of T/aingslveBoug/atRecthy. It implies that
every valid instance of the subset is a valid instance of the superset. The
superset type must have an open content model.

There are restrictions that should be followed, based on the principle
that all instances of the species (subtype) must be instances of the genus
(supertype):

I The genus type must have content=“OPEN”.

I It must have either no groups or only groups with
groupOrder=“AND” (that is, no order constraints).

I You can add new elements and attributes.

Occurs cardinality can be decreased but not increased.

I Ranges and other constraints are cummulative, that is, all

apply (though the exact effect of this depends on the semantics
of the constraint type).

I Default values can be made FIXED defaults.

©19981fim XML HANDBOOKTM

39.8 | ELEMENTS WHICH ARE REFERENCES

To indicate that the content model of the subset should inherit the con-
tent model of a superset, we use a particular kind of superType called
“genus” ofwhich only one is allowed per ElementType. This copies the con—
tent model of the referenced element type and permits addition of new ele—
ments to it. Further. sub—elements occurring in the superset type, if declared

again, are replaced by the newer declarations.
<e1ementType id=“Book">

<element type="#title“/>

<element type="#author” occurs="ONEORMORE"/>
</e1ementType>

<elementType id:"BooksIveBoughtRecently">
<genus type="#Book"/>

<superType type:"#ThingsIveBoughtRecently”/>
<element type=“#price"/>

</elementType>

The above has the same effect as

<elementType id=“Book">

<element type=“#title"/>

<e1ement type=”#author" occurs="ONEORMORE”/>
</e1ementType>

<elementType id:”BooksIveBoughtRecently”>

<super"ype type="#Book”/>
 <super"ype type=”#ThingsIveBoughtRecently"/>

<element type="#title"/>
<element type="#author" occurs="ONEORMORE”/>
<e1ement type=”#price”/>

</elementType>

39.8 | Elements which are References

ElementTypes and the content model elements defined so far are sufficient
to declare a tree structure of elements. However, some elements such as
“author” are not only usable on their own, they also act as references to other
elements. For example, “Henry Ford” is the value of the nut/Jar subelement
of a boo/e element. “Henry Ford” is also the value of the name element in a

person element, and it can be used to connect these two.

©19981¥m XML HANDBOOKW

583

584 CHAPTER 39 | XML-DATA

<Book>

<author>Henry Ford</author>
<author>Samuel Crowther</author>

<tit1e>My Life and Work</title>
</Book>

<Person><name>Henry Ford</name></Person>

<Person><name>Samuel Crowther</name></Person>

In this capaciry, such subelemenr are often referred to as relations when
using “knowledge representation” terminology or “keys” when using data—
base terms. (The meaning of “relation” and “key” are slightly different, but
the fact which the terms recognize is the same.)

To make such references explicit in the schema, we add declarations for

keys andforeign keys.
<elementType id="name">

<string/>
</elementType>

<elementType id="Person">
<element id="pl” type="#name"/>

<key id="kl"><keyPart href="#pl"/></key>
</elementType>

<elementType id="author">
<string/>

<foreignKey range="#Person" key="#kl"/>
</elementType>

<elementType id=”title">
<string/>

</elementType>

<elementType id="Book”>
<element type="#title"/>
<element type="#author" occurs="ONEORMORE”/>

</e1ementType>

The key element within person tells us that a person can be uniquely
identified by his mzme. The foreignKey element within the amt/90V element
definition says that the contents of an author element are a foreign key
indentifying a person by name.

An uninformed user agent can still display the string “Henry Ford” even
if it cannot determine that is supposed to be a person. A savvy agent that
reads the schema can do more. It can locate the actual person.

This is the information needed for a join in database terminology.

@1998 THE XML HANDBOOK”

39.8 | ELEMENTS WHICH ARE REFERENCES

This mechanism not only handles the typical way in which properties are

expressed in databases, it also handles all cases in which the contents of an
element are to be interpreted as strings from a restricted vocabulary, such as
enumerations, XML nmtokens, etc.

<Book>

<author>Henry Ford</author>

<author>Samuel Crowther</author>

<title>My Life and Work</tit1e>
<lccn>HD9710.U54 F58 l973</1ccn>

<dewey>629.2/092/4 B</dewey >
<isbn>0405050887</isbn>

<series>Business<series>

</Book>

Although not shown here, presumably Icon, airway and isbn are declared
in the schema to be foreign keys to corrresponding fields of catalog records.
Series is a foreign key to a categorization of books, of which “Business” is
One category.

Keys can contain URIs, as in
<Book>

<author>httpz//SSA.gov/blab/people/Henry+Ford</author>
<author>httpz//SSA.gov/blab/people/Samuel+Crowther</author>
<title>My Life and Work</title>

</Book>

This is indicated in the schema by a datatype of “URI”.

<elementType id=”author">
<string/>

<datatype dt=”uri”/>
</elementType>

39.8.I One—to—Mcmy Relations

Element relations are binary. That is, we never express an n—to—l relation-
ship directly. We do not, for example, list within boo/es a single relation that
somehow resolves to all the authors. Instead, we always write the relation-
ship on the l—to—n side, but allow multiple occurrances of the subelemmt,
for example, allowing boo/es to have multiple occurrences of author.

©1998 THE XML HANDBOOKW

585

586

<author>Henry Ford</author>

<author>Samuel Crowther</author>
<title>My Life and Work</title></Book>

<Book>

<author>HarVey S. Firestone</author>
<author>Samuel Crowther</author>
<title>Men and Rubber</title></Book>

39.8.2 Multipart Keys

When the foreignKey el
(as it does not above) th

“Henry Ford”) should be used as the key value
eign keys, or cases where the element II
Part is used, as shown below.
<elementType id:

<string/>

</elementType>

”firstName">

<elementType id="lastName">
<string/>

</elementType>

<elementType id="Person">

<element id="pp1" type="#firstName"/>
<element id="pp2" type="#lastName"/><key id=“kl">

<keyPart href=“#ppl“/>
<keyPart href="#pp2"/>

</key>

</elementType>

<elementType id="author">

©19981¥m XML HANDBOOKTM

39.9 I ATTRIBUTES AS REFERENCES 587
<element id="apl“ type="#firstName"/>
<element id=”ap2" type="#lastName"/>
<domain type="#Book"/>
<range type="#Person"/>

<foreignKey range="#Person" key=”#kl“>
<foreignKeyPart href="#apl“/>
<foreignKeyPart href=”#ap2"/>

</foreignKey>
</elementType>

<Book>

<title>My Life and Work</title><author>

<firstName>Henry</firstName>
<lastName>Ford</lastName>

</author>
</Book>

39.9 | Attributes as References

An alternative way to express a reference is with an attribute.
<person id=”personl"><name>Henry Ford</name></Person>

<person id="person2"><name>Samuel Crowther</name></Person>
<Book>

<author name="Henry Ford"/>

<author name="Samuel Crowther“/>
<title>My Life and Work</title>

This allows us to link a book to a person, through the author relation,
using an attribute of the relation. This exactly parallels the construction we
saw above under “multipart keys,” where a subdement of author contained
the authors name. Here, an attribute of author contains the name. We can
express this in our schema as
<elementType id=“author”>

<attribute name=”name“ id="authorname"/>
<foreignKey range=”#Person“ key=“#kl">

<foreignKeyPart href="#authorname“/>
</foreignKey>

</elementType>

A widely-used variant of this is to use a URI as a foreign key:
@1998 THE XML HANDBOOKTM

588 CHAPTER 39 | XML-DATA

<Book>

<author href="http://SSA.gov/blab/people/Henry+Ford”/>

<author href=”http://SSA.gov/blab/people/Samuel+Crowther“/>
<title>My Life and Work</title>

</Book>

In this case, we are using the brefattribute to contain a URI. This is a
particular kind of foreign key, where the mags is any possible resource, and
where that resource is not identified by some combination of its properties
but insread by a name—resolution service. We indicate this by using an
attribute element, with (it: “URI”.
<elementType id="author">

<attribute name=”href" id=“authorhref” dt=”uri"/>
</elementType>

39." | Constraints & Additional

Properties

39.!“ Min and Max Constraints

Elements can be limited to restricted ranges ofvalues. The min and max ele-
ments define the lower and upper bounds.
<elementType id="age”>

<string/>
</elementType>

<elementType id="Person”>

<element hef="#age"><min>O</min><max>l3l</max></element>
</elementType>

Such intervals are balfiapm (that is, the min value is in the interval, and
the max value is the smallest value not in the interval).

This rule leads to the simplest calculation in most cases, and is unambig-
uous with respeCt to precision. In the above example, it is clear by these
rules the 130.9999 is in the interval and 131 is not. However, had we said
“all numbers from 0 to 130.99,,1 in practice we would have some ambiguity
regarding the status of 130.9999. Or interpretation would depend on the
precision that we inferred for the original statement. The issue is particu—
larly ambiguous for dates. (What exactly does “From December 5 to
December 8” mean? The use of half-open intervals for representation does
not, however, put any requirements on how processors must display inter-

©19981Wm XML HANDBOOKTM

39.10 | CONSTRAINTS & ADDITIONAL PROPERTIES 589

vals. For example, dates in some contexts display differently than their stor—
age. That is, the interval <min>l997—l2—05< /min><max>l997—12—O9</
max> might be displayed as “December 5 through December 8”.

In certain cases this rule for a half—open interval is impractical (for exam-
ple, what letter follows “2” in the latin alphabet?) If so, use maxIneinsive:
<elementType id="student">

<element type="#grade">

<min>A</min><maxInclusive>Z</maxInclusive></element>

</elementType>

39.I0.I.| Domain and Range Constraints

We can use the domain and range elements to add constraints to an ele—
ments use or value. The domain element, if present, indicates that the ele—
ment may only be used as a property of certain other elements. That is,
syntactically it may appear only in the content model of those other ele—
ment types. It constrains the sorts of schemas that can be written with the
element.

<elementType id="author”>
<string/>

<domain type=”#Book"/>

<attribute name="href" dt="uri"/>
</elementType>

The domain property above permits ant/Jar elements to be used only i
within elements which are either boo/es or subsets of books. Use of domain is '
optional. If omitted, there is simply no restriction. .

The range element is used with elements which are references and
declares a restriction on the types of elements to which the relation may
refer. Graphically, it describes the target end of a directed edge. Each range
element references one elementType, any of which are valid. In this case,
below, we have said that an author element must have an laref attribute
which is a URI reference to a Person or to an element type which is Person
or a subset of Person.

<elementType id="author">

<string/> |<domain type=”#Book"/>

<attribute name=”href” dt="uri" range=”#Person" />
</elementType>

|

©19981¥m XML HANDBOOKTM l

590 CHAPTER 39 | XML—DATA

3mm Other useful properties

Element and attribute types can have an unlimited amount of further infor-
mation added to them in the schema due to the open nature of XML with

namespaces.

39.” | Using Elements from Other
Schemas

A schema may use elements and attributes from other schemas in content
models. For example, a subelement named “http://books.org/date” could
be used within a [700k element as follows:
<?XML versionz'l.0' ?>

<?xm1:namespace
name:”urnzuuid:BDC6E3FO—6DA3—lldl—A2A3—OOAAOOC14882/"
as="s"/?>

<s:schema>

<elementType id=”author">
<string/>

</elementType>

<elementType id=”tit1e”>
<string/>

</elementType>

<elementType id=”Book">
<element type=”#title" occurs="OPTIONAL"/>
<element type="#author” occurs="ONEORMORE”/>
<element href="http://books.org/da:e" />

</elementType>
</s:schema>

This can be abbreviated by adopting the rule that namespace—qualified
names may be used Within the brefattribute value of an element or attribute
element.

©19981¥m XML HANDBOOKTM

39.12 | XML—SPECIFIC ELEMENTS

<?XML version='l.0' ?>

<?xml:namespace
name:”urnzuuid:BDC6E3FO—6DA3-lldl—A2A3—OOAAOOC14882/”
as="s”/?>

<?xml:namespace name=" http://books.org/” as="bk"/?>
<s:schema>

<elementType id="author”>
<string/>

</elementType>

<elementType id=”title">
<string/>

</elementType>

<e1ementType id=”Book">
<element type=”#title" occurs="OPTIONAL”/>
<element type=”#author” occurs:”ONEORMORE"/>
<element href=”bk:date” />

</e1ementType>
</s:schema>

39.” | XML-Specific Elements

39am Attributes

XML—Data schemas contain a number of facilities to match features of

XML DTDs or to support certain characteristics ofXML. The XML syntax
allows that certain properties can be expressed in a form called “attributes.”
To support this, an elementType can contain attribute declarations, which
are divided into attributes with enumerated or notation values, and all

other kinds.

An attribute may be given a default value. Whether it is required or

optional is signaled by pretence. (Presence ordinarily defaults to IMPLIED,
but if omitted and there is an explicit default, presence is set to the SPECI-
FIED.) See the DTD at the end of this document for syntactic details.

Attributes with enumerated (and notation) values permit a values

attribute, a space-separated list of legal values. The values attribute is
required when the atttype is ENUMERATION or NOTATION, else it is
forbidden. In these cases, if a default is specified, it must be one of the spec—
ified values.

@1998 THE XML HANDBOOKW

591

592 CHAPTER 39 | XML-DATA

<e1ementType id="Book”>
<element type="#title"/>

<e1ement type="#author” occurs=”ONEORMORE"/>
<attribute name=”copyright" />
<attribute name="ageGrp"

atttype="ENUMERATION"
values="child adult”

default=”adult” />

</elementType>

describes an instance such as

<book copyright="l922" ageGrp="adult">
<title>My Life and Work</title>
<author>

<firstName>Henry</firstName>
<lastName>Ford</lastName>

</author>
</Book>

Attributes may also reference elementTypes, meaning that one may use
the element type but with attribute syntax. This allows an attribute to
explicitly have the same name and semantics even when used on different

element types. There are of course some limits: The attribute can still occur

only once in an instance, and it cannot contain other elements. However,

this allows the semantics of the element type to be employed in attribute
syntax.

<elementType id="Book">
<attribute href="bk:title"/>
<attribute href="bk:author"/>

<attribute name="copyright” />
<attribute name=“ageGrp"

type: “ ENUMERATION "

values="children adult" default="adult" />
</elementType>

describes an instance such as
<book

bk:author=”Henry Ford”
bk:title="My Life and Work”
ageGrp=“adult“/>

MM 3 | Entity declaration element types

This and the next two declarations cover entities. Entities are a shorthand

mechanism, similar to macros in a programming language.

@1998 THE XML HANDBOOKm

39.14 | EXTERNAL DECLARATIONS ELEMENT TYPE

<intEntityDcl name="LTG">
oanguage Technology Group

</intEntityDc1>
<ext3ntityDcl name=”dilbert" notation="#gif"

systemId="http://www.ltg.ed.ac.uk/~ht/dilb.gif"/>

Here as elsewhere, following XML, systemId must be a URI, absolute or
relative, and publicId, if present, must be a Public Identifier (as defined in
ISO/IEC 9070:1991, Information technology — SGML support facilities —

Registration procedures for public text owner identifiers). If a notation is
given, it must be declared (see below) and the entity will be treated as
binary, i.e., not substituted directly in place of references.
<notationDcl name=”gif" systemldz‘http://who.knows.where/‘/>

39.” | External declarations element

type

Although We allow an exrernal entity with declarations to be included, we
recommend a different declaration for schema modularization. The extDcls

declaration gives a clean mechanism For importing (fragments of) other
schemas. It replaces the common SGML idiom of declaring an external
parameter entity and then immediately referring to it, and has the same
import, namely, that the text referred to by the combination of systemld
and publicld is included in the schema in place of the extDcls element, and
that replacement text is then subjecr to the same validity constraints and
interpretation as the rest of the schema.

Note that in many cases the desired effect may be better represented by
referencing elements (and attributes) from the other schema or subclassing
from them.

39.I5 | Datatypes

A dataype indicates that the contents of an element can be interpreted as
both a string and also, more specifically, as an object that can be interpret—
eted more specifically as a number, date, etc. The datatype indicates that the

©1998THEXMLHANDBOOKTM

593 l '

594 CHAPTER 39 | XML-DATA

elements contents can be parsed or interpreted to yeild an object more spe—
cific than a String.

That is, we distinguish the “type” of an element from its “datatype.” The
former gives the semantic meaning of an element, such as “birthday” indi—
cating the date on which someone was born. The “datatype” represents the
parser class needed to decode the element’s contents into an object type
more specific than “string.” For example, “19541022” is the 22nd of Octo-

ber, 1954 in ISO 8601 date format. (That is, ISO 8601 parsing rules will
decode “19541022” into a date, which can then be stored as a date rather

than a string.

For example, we would like an XML author to be able to say that the

contents of a “size” element is an integer, meaning that it should be parsed
according to numeric parsing rules and that it can be stored in integer for—

mat. In some contexts an API can expose it as an integer rather than a
string.
<item>

<name>shirt</name>
<size>8</size>

</item>

There are two main contexrs for tlatatypes. First, when dealing with data-
base APIS, such as ODBC, all elements with the same name typically con—
tain the same type of contents. For example, all sizes contain integers or all
birthdays contain dates. We will return to this case shortly.

Second, and by contrast, the type of the content may vary widely from
instance to instance. The softer we make our software, the more often these

flexible cases occur. For example, size could contain the integer 8, or the
word “small” or even a formula for computing the size.

We expose the datatype of an element instance by use of a dell)? attribute.
where the value of the attribute is a URI giving the datatype. (The URI
might be explicitly in URI format or might rely on the XML namespace
facility for resolution.) For example, we might find a document containing
something like:
<?namespace

name:"urn:uuid:C2F4l010—65B3—1ldl—A29F—OOAAO0C14882/"
as="dt"?>

<?namespace name="http://zoosports.com/dt?" as="zoo”?>
<purchases>

<item>

<name>shirt</name>

<size dt:dt="int">8</size>
</item>
<item>

©1998THEXNH,HANDBOOKW

39.15 | DATATYPES

<name>shoes</name>

<size>large</size>
</item>
<item>

<name>suit</name>

<size dt:dt=”zoo:script">

=(shirtsize*l.05) + 3
</size>

</item>

</purchases>

Clearly this technique works for the heterogeneous typing in the above
example. It also works for the database case where all element’s of the same
type have the same datatype.
<item> <name>shirt</name> <size dt:dt="int“>8</size> </item>
<item> <name>shoes</name> <size dt:dt=”int">6</size> </item>
<item> <name>suit</name> <size dt:dt="int">12</size> </item>

As written above, this is inefficient. Fortunately, XML allows us in sche-

masto put attributes with default or fixed values, so we could say once that
all size elements have a datatype with value “int”. Having done so, our our

instance just looks like:
<item> <name>shirt</name> <size>l4</size> </item>
<item> <name>shoes</name> <size>6</size> </item>
<item> <name>suit</name> <size>l6</size> </item>

In a DTD, we can set a fixed attribute value, so that all size elements have
datatype “int” or we can set it as a default attribute value so that it is an inte-
ger except where explicitly noted otherwise.
<item> <name>shirt</name> <size>l4</size>

</item>
<item> <name>shoes</name>

<size dt:dt=”string“>large</size>
</item>
<item> <name>suit</name> <size>l6</size>
</item>

XML DTDs today allow such attributes. For example, a DTD can say
that all s/airt elements have integer datatype by the following:
<!ELEMENT size PCDATA >

<!ATTLIST size dt:dt "int“ #FIXED >

XML-Data schemas allow the equivalent, though with specialized syntax:
<elementType id="size” >

<datatype dt="int" />
</elementType>

Elements use datatype subelements to give the datatype so that an
optional presence attribute of the datatype element can indicate whether the
datatype is fixed or merely a defilult. Attributes can also have datatypes.

©19981Ww XML HANDBOOKTM

595

596 CHAPTER 39 | XML-DATA

Because there is no possibility of their being anything other than a fixed
type, the datatype of an attribute is signalled by a dt attribute:
<attribute id=”size" dt="int" />

39.l5.l How Typed Data is Exposed in the
API

Different APIs to typed data will use the datatype attribute differently. The
basic XML parser API should expose all element contents as strings regard-
less of any datatype attribute. (It might also contain supplementary meth—
ods to read values as more specific types such as “integer," thereby getting
more efficiency.) An ODBC interface could use the datatype attribute to
expose each type of element as a column, with the column’s datatype deter-
mined by the element type's datatype.

39.l5.1 Complex Data Types

If a datatype requires a complex structure for storage, or an object—based
storage, this is also handled by the dtzdt attribute, Where the datatype’s stor-
age format can be a structure, Java class, COM++ class, etc. For example, if
an application needed to have an element stored in a “Scheduleltem” struc—

ture and using some private format, it could note this like
<when dt:dt="zoo:SCheduleItem“>M*D1W4Bl9971022;lOO</when>

The datatype does not require a private format. It could also use subele—
ments and attributes such as
<when dt:dt="zoo:ScheduleItem2">

<month>*</month>

<day>1</day>
<week>4</week>

<begin>19971022</begin>
<recurs>100</recurs>

</when>

In the case of the graph—oriented interfaces (e.g. XML/RDF) the map-
ping from the XML tree to a graph should add a wrapping node for each
non-string data type. The datatype property gives the type of that node. For
example, the following two are graphically equivalent:
<size dt:dt="int”>8</size>
<size><dtzint>8</dt:int></size>

@1998 THE XML HANDBOOK”

39.15 | DATATYPES

39.l5.3 Versioning of Instances

Adding an attribute to an element does not change the other attributes or
pose any special versioning problems. For example, an application written
to expect an instance to contain “<birthday>19541022<ibirthday>" is not
harmed if the schema reveals that this is ISO 8601 format. Versioning

within datatypes should be handled by the author’s making sure that that
subtypes of datatypes retain all the characteristics of the supertype.

If a down-level application is given a datatype it cannot process, it should
expose the element contents as a supertype of the indicated datatype. In
practice, this will usually mean that unrecognized datatypes will be the
same as “clearing”. However, there are cases in which a type will be pro-
moted, For example exposing a boolean in a byte or word rather than a bit,
exposing a floating point number in a language’s native format, etc.

39.l5.4 The Datatypes Namespace

The datatype attribute “dt” is defined in the namespace named
“urnzuuid2C2F41010—65B3-11di—A29F-00AAO0C14882/”. (See the XML

Namespaces Note at the W3C site for details of namespaces.) The full
URN of the attribute is “urnzuuidzC2F41010—65B3—11d1—A29F-

00AAO0C14882/dt”.

You will have noticed that the value of the attribute, as used in the exam-

ples above, is not lexically a full URI. For example. it reads “int” or “string”
etc. Datatype attribute values are abbreviated according to the Following
rule: If it does not contain a colon, it is a datatype defined in the datatypes

namespace “urn:uuid:C2F41010—65B3-11d1—A29F-00AAO0C14882/”. If
it contains a colon, it is to be expanded to a full URI according to the same
rules used for other names, as defined by the XML Namespaces Note. For

example
<?namespace

name="urn:uuid:C2F4lOlO-65B3—1ldl-A29F-OOAAOOC14882/”
as="dt”?>

<?namespace name=”http://zoosports.com/dt?“ as="zoo"?>
<item>

<size dt:dt=”int">8</size>

<name dt:dt=”zoo:clothing“>shirt</name>
</item>

©1998 THE XML HANDBOOKTM

597

598 CHAPTER 39 | XML-DATA

has two datatypes whose full names are “urnzuuidzC2F41010—65B3—

1ldl—A29F—OOAAO0C14882/integer” and “http://Zoosports.com/thCloth—
ing”.

39.l5.5 What a datatype’s URI Means

Datatypes are identified by URIs. The URI as simply a reference to a sec—
tion of a document that defines the appropriate parser and storage format
of the element. To make this broadly useful, this document defines a set of

common data types including all common forms of dates, plus all basic
datatypes commonly used in SQL, C, C++, Java and COM (including
strings}.

The best form of such a document is that it should itself be an XML—

Data schema where each datatype is an element declaration. For this pur—
pose we define a <Synmx> subelement which can be used in lieu of a con-

tent model. We also define an <0bjecrtype> subelement. Each has a URI as

its value. This integrates data types with element types in general.
<schema:elementType id="int">
<syntax href=

"urn:uuid:C2F4lOl0—65B3—1ldl—A29F-OOAAOOC14882/num_to_int”/>
<objectType hrefz

"urnzuuid:C2F4lOlO—65B3—1ldl—A29F—00AAOOC14882/integer32"/>
</schema:elementType>

<schematelementType id="date.isoB60l”>
<syntax href=

"urn:uuid:C2F4lOlO—65B3—...882/date.isoB60l_to_int32"/>

<objecttype href:"urn:uuid:C2F41010—65B3—...882/integer32" />
</schema:elementType>

The objecttype sub-element can reference a structure, Java class,

COM++ coClass, etc. The syntax subelement identifies a parser which can
decode the element’s content (andfor attributes) into the object type given
the Storage type URI. Input to the parser is the element objecr exposing all
its attributes and content tree (that is, the subtree of the grove beginning
with the element containing the dt attribute). The objeCtType attribute in
particular is assumed available to the parser so that a single parser can sup-
port several objecttypes.

Having said this, all [writ data types should be built into the parsers for
efficiency and in order to ground the process. For these, the datatype ele—

©1998 THE XML HANDBOOK”

39.15 I DATATYPES

ments serve only to formally document the storage types and parsers, and to
give higher-level systems (such as RDF) a more formal basis for datatypes.

I do not currently propose that we attempt to write any universal nota-
tion for parsing rules. Certain popular kinds of formats, particularly dates,
are not easily expressed in anything but natural language or code, and the
parsers must be custom written code. In other words, the URIs for the basic
syntax and objecttype elements probably resolve only to text descriptions.

39.I5.6 Structured Data Type Attributes

Attributes in cannot XML have structure. I will separately propose some

techniques to avoid this problem, specifically that the XML API should
contain a method that treats attributes and subelements indistinguishably,

and also that the content which is an element’s value can be syntactically

separated from content which is an element’s properties.

39.l5.1 Specific Datatypes

This includes all highly—popular types and all the built—in types of popular
database and programming languages and systems such as SQL, Visual
Basic, C, C++ and Java(tm).

Name Parse type Storage type Examples

string pcdata string (Unicode) [Greek letters:
see CD-ROM

version]

@1998 THE XML HANDBOOKTM

599

600 CHAPTER 39 | XML-DATA

———-—————-——_____________________
number

int

float

fixed.l4.4

boolean

dateTime.iso86
01

A number, with

no limit on dig—
its, may poten—
tially have a

leading sign,
fractional digits,
and optionally
an exponent.

Punctuation

as in US English.

A number, with

optional sign, no
fractions, no

exponent.

Same as for“ 3,
number.

Same as “num-

ber” but no

more than 14

dights to the
left of the deci—

mal point, and
no more than 4

to the right.

“I” or “0”

A date in ISO

8601 format,

with optional
time and no

optional zone.
Fractional sec—

onds may be as
precise as nano-
seconds.

string

32—bit signed
binary

64-bit IEEE 488

64-bit signed
binary

bit

Structure or

object contain-

ingyear, month,

hour, minute,

second, nanosec—

0nd.

15, 3.14, —

123.456E+10

1, 58502, —13

314159265358

979E+1

12.0044

0, 1 (1==“true”)

19941 105T08:1

5:00301

@1998 THE XML HANDBOOKTM

39.15 601J DATATYPES

dateTime.iso86

Oltz

date.isoS60l

time.iso8601

time.iso8601.t
2

i1

i2

i4

i8

A date in ISO

8601 format,

with optional
time and

optional zone.
Fractional sec-

onds may be as

precise as nano—
seconds.

A date in ISO

8601 format.

(no time)

A time in ISO

8601 format,

with no date and

no time zone.

A time in ISO

8601 format,

with no date but

optional time
zone.

A number, with

optional sign, no
fractions, no

exponent.
H

II

Iv

@1998 THE XML HANDBOOKTM

Structure or

object contain—

ingyear, month,
hour, minute,

second, nanosec—

ond, zone.

Structure or

object contain—

ingyear, month,

day.

Structure or

object exposing
day, hour,
minute

Structure or

object contain—

ing day, hour,
minute,

zonehours, zone—

minutes.

8—bit binary

16—bit binary

32—bit binary

64-bit binary

19941105T08:1 I

5:5+03 '1

19541022

08:15—05:00

1: 255

1, 703, -32768

602

uil

ui2

ui4

ui8

r4

r8

float.IEEE.754

.32

float.IEEE.754

.64

uuid

CHAPTER 39 | XML-DATA

A number,

unsigned, no
fractions, no

exponent.

Same as “num—

ber.”

Hexidecimal

digits represent-

ing octets,

optional
embedded

hyphens which
should be

ignored.

8—bit unsigned

binary

16—bit unsigned

binary

32—bit unsigned

binary

64—bit unsigned

binary

IEEE 488 4-byte
float

IEEE 488 8—byte
float

IEEE 754 4—byte
float

IEEE 754 8—byte
float

128—bytes Unix
UUID structure

———_—___—_——————

1,255

1, 703, 62768

F04DA480—

65B9—1 1d1-

A29F—

00AAO0C14882

@1998 THE XML HANDBOOKTM

39.16 | MAPPING BETWEEN SCHEMAS

_________________._.—-——-——-—-—-

uri Universal Per W3C spec http:/I
Resource Identi— www.ics.uci.edu/
fier pub/ietf/uri/

draft-fielding—

uri-syntax-00.txt

http://
www.ics.uci.edu/

pub/ietf/uri/
http://
www.ietf.org/
html.charters/

urn—charter.html

bin .hex Hexidecimal no specified size
digits represent—

ing octets

char string 1 Unicode char-
acter (16 bits)

string.ansi string containing Unicode or sin— This does not
only ascii charac— gle—byte string. look Greek to
ters <= OXFF. me.

_______________________—————-—-—-—-—-

All of the dates and times above reading “i508601..” actually use a
restricted subset of the formats defined by ISO 8601. Years, if specified,
must have four digits. Ordinal dates are not used. OF formats employing
week numbers, only those that truncate year and month are allowed
(5.2.3.3 d, e and f).

39.“ | Mapping between Schemas

Certain uses of data emphasize syntax, others “conceptual” relations. Syn-
tactic schemas often have fewer elements compared to explicitly conceptual
ones. Further, it is usually easier to design a schema that merely covets syn-
tax rather than designing a well—thought—out conceptual data model. An
effect of this is that many practical schemas will nor contain all the elements

@1998 THE XML HANDEOOKTM

603

604 CHAPTER 39 | XML—DATA

that a conceptual schema would, either for reasons of economy or because

the initial schema was simply syntactic. But is it useful to make the implicit

explicit over time so that more generic processors can make use of data.

For example, the following schema is essentially syntax:

<elementType id="author">
<string/>

</elementType>

<elementType id="title">
<string/>

</elementType> '

<elementType id=“Book">
<element type="#title"/>
<element type="#author" occurs="ONEORMORE"/>

</elementType> I

with instances looking like this
<Book>

<title>Paradise Lost</title>
<author>Milton</author>

</Book>

On the other hand, a conceptual schema could look like this:

<elementType id="name">

<string/>
</elementType>

<elementType id="Person">
<element type="#name/> |

</elementType>

<elementType id="creator">
<range type="#Person/>

</elementType>

<elementType id="title">

<string/>
</elementType>

<elementType id="Book">
<element type="#title"/>
<element type="#creator" occurs="ONEORMORE"/>

</elementType>

If fully explicit, its instances would look something like this:

@1998 THE XML HANDBOOKTM

39.16 | MAPPING BETWEEN SCHEMAS

creator name

Milton

title Paradise Lost

<Person id=“thingl“>
<name>Milton</Person>

</Person>

<Book>

<title>Paradise Lost</tit1e>
<creator>

<Person>

<name>Milton</name>

</Person>
</creator>

</Book>

In any case, what we want to express is a diagram such as this:
To do this, we will add mapping information into the syntactic schema

which tells us how to interpolate the implied elements (and also to map
author to creator) thereby creating a conceptual data model.
<?xml:namespace href=“uri—to—the—conceptual—schema" as="c" ?>
<elementType id="author">

<string/>
</elementType>

<elementType id="title">
<string/>

</elementType>

<elementType id=”Book”>
<mapsTo type="c:book“/>
<element type=”#title"> <mapsTo type=”c:title"/> </element>

©19981Wm XML HANDBOOKW

605

606

CHAPTER 39 | XML-DATA

livesAt address street

CM i' Cherry Tre =

London

name Mary Poppins

 <element type=”#author" occurs=”ONEORMORE">
<mapsTo type="string">

<implies type=”c:name">

<implies type=”c:person">
<implies type=”c:creator"/>

</implies>
</implies>

</mapsTo>
</element>

</elementType>

A more complex case could involve needing to map several properties to
have a common implied node. For example, suppose we wanted that a street
element and city element should both imply the same address node.
<Person>

<name>Mary Poppins</name>
<street>l7 Cherry Tree Lane</street>

<city>London</city>
</Person>

That is, rather than creating two address nodes, we want to create only a
single one, and subordinate both the street and city to it. If the conceptual
schema has elements lives/It, address, street and city. we could write a map-
ping thus:

...definitions of name, street and city...

<elementType id=”Person">
<mapsTo type="c:person”/>
<element type="#name">

<string/>
<mapsTo type="c:name"/>

</element>

<element type="#street">
<string/>
<mapsTo type="c:street">

<implies type="c::address" id="livesAtAddress">
<implies type=”c:livesAt"/>

©19981Wm XML HANDBOOKm

39.16 | MAPPING BETWEEN SCHEMAS

7" Cherry Tre
street Lane

city

li'v'eeAt

London

liveeAt Sire:

. fine Park Lane
City

name Maraf Poppins \fi
</implies>

</mapsTo>
</e1ement>

<element type="#city”>
<string/>
<mapsTo type=“c:city”>

<implies type="#livesAtAddress"/>
</mapsTo>

</e1ement>

</elementType>

Elements may be repeated, so mapping rules need to accommodate repe-
titions. Suppose that someone has two addresses in the grammatical syntax,
this needs to map to two addresses in the graph while still keeping the
structure correct
<Person>

<name>Mary Poppins</name>
<street>17 Cherry Tree Lane</street>
<city>London</city>
<street>One Park Lane</street>

<city>London</city>
</Person>

©1998T¥w XML HANDBOOKTM

607

608

CHAPTER 39 | XML-DATA

<elementType id=“Person">
<mapsTo type="c:person"/>

<element type=“#name"> <string/>
<mapsTo type=”c:name"/>

</element>

<group occurs="ZEROORMORE"/>
<element type="#street">

<string/>
<mapsTo type="c:street">

<implies type="c::address” id="livesAtAddress">
<implies type="c:livesAt"/>

</implies>
</mapsTo>

</element>

<element type="#city“>
<string/>

<mapsTo type="c:city">
<implies type="#livesAtAddress”/>

</mapsTo>
</element>

</group>
</elementType>

Mappings within groups are handled together. Since street and city are in
a single group, each occurrence of such a group results in one address.

Text markup can also be handled by mapping. Suppose that for some
reason we choose to markup the number portion of a street address:<Person>

<name>Mary Poppins</name>
<street>< streetNumber>l7</ streetNumber >
Cherry Tree Lane</street>

<city>London</city>
</Person>

@1998 THE XML HANDBOOKTM

39.17 | APPENDIX A: EXAMPLES

I" Cherry Tre

street Lane

streetNumber

livesm 1:1r

Ci‘t‘y'

London

nama Mary Poppins

If this should be reflected in the graph,

We can do that with mapping such as:
<elementType id=”streetNumber">

<string/>
</elementType>

<elementType id=”street>
<mixed>

<element type=”# streetNumber">
<mapsTo type="c: streetNumber">

<implies type=”#livesAtAddress”/>
</mapsTo>

</element>
</mixed>

</elementType>

...Person defined as before...

39." | Appendix A: Examples

Some data:

©19981Wm XML HANDBOOKW

609

610 CHAPTER 39 | XML—DATA

<bk:booksAndAuthors>
<Person>

<name>Henry Ford</name>

<birthday>1863</birthday>
</Person>

<Person>

<name>Harvey S. Firestone</name>
</Person>

<Person>

<name>Samuel Crowther</name>
</Person>

<Book>

<author>Henry Ford</author>
<author>Samue1 Crowther</author>

<title>My Life and Work</title>
</Book>

<Book>

<?xml:namespace name="http://Company.com/schemas/books/" as=”bk”/>
<?xml:namespace name=”http://www.ecom.org/schemas/dc/" as="ecom" ?>

<author>Harvey S. Firestone</author>
<author>Samuel Crowther</author>

<title>Men and Rubber</title>

<ecom:price>23.95</ecom:price>
</Book>

</bk:booksAndAuthors>

The schema for httpz//companycom/schemas/books:
<?xml:namespace

name="urn:uuid:BDC6E3FO—6DA3-11dl—A2A3—00AAOOC14882/”
as="s”/?>

<?xm1:namespace

href="http://www.ecom.org/schemas/ecom/" as="ecom" ?>

<s:schema>

<elementType id=”name">
<string/>

</elementType>

<elementType id="birthday“>
<string/>
<dataType dt="date.ISOS601"/>

</elementType>

<elementType id="Person">
<element type="#name” id="pl"/>

©19981¥m XML HANDBOOKTM

39.17 | APPENDIX A: EXAMPLES 611

<element type="#birthday" occurs=”OPTIONAL">
<min>l700—01—0l</min><max>2100—Ol—Ol</max>

</e1ement>

<key id=”kl”><keyPart href=”#pl" /></key>
</elementType>

<elementType id="author">
<string/>

<domain type=”#Book"/>

<foreignKey range="#Person" key="#kl"/>
</elementType>

<elementType id="writtenWork”>
<element type="#author" occurs="ONEORMORE"/>

</e1ementType>

<elementType id="Book” >

<genus type="#writtenWork“/>
<superType

href="http://www.ecom.org/schemas/ecom/commercialltem"/>
<superType

href="http://www.ecom.org/schemas/ecom/inventoryltem”/>
<group groupOrder="SEQ" occurs=”OPTIONAL">

<element type="#preface"/>
<element type="#introduction”/>

</group>
<element hrefz

<e1ement href=”ecom:quantityOnHand"/>
</elementType>

"http://www.ecom.org/schemas/ecom/price”/>

<elementTypeEquivalent id="livre" type="#Book"/>
"auteur" type="#author”/><elementTypeEquivalent id:

</s:schema>

@1998 THE XML HANDBOOKTM

612 CHAPTER 39 | XML-DATA

3M8 | Appendix B: An XML DTD for
XML-Data schemas

<!ENTITY % nodeattrs 'id ID #IMPLIED'>

<!-— href is as per XML—LINK, but is not required unless
there is no content ——>

<!ENTITY % linkattrs

'id ID #IMPLIED

href CDATA #IMPLIED'>

<!ENTITY % typelinkattrs
'id ID #IMPLIED
type CDATA #IMPLIED'>

<!ENTITY % exattrs

‘name CDATA #IMPLIED

content (OPENICLOSED) ”OPEN" >

<!ENTITY % elementTypeElementsl

genus? correlative? superType*>

<!ENTITY % elementTypeElementsZ
description,

(min|minExclusive)?,
(max I maxInclusive)?,
domain*,
key*,

foreignKey*,

(datatype I (syntax?, objecttype+))?
mapsTo?>

<!ENTITY % elementConstraints
'min? max? default?'>

<!ENTITY % elementAttrs
‘occurs

(REQUIRED|OPTIONAL|ONEORMOREIZEROORMORE)
"REQUIRED" '>

<!ENTITY % rangeAttribute
'range CDATA #IMPLIED' >

<!—— The top—level container ——>

<!element schema ((elementType|linkType|
extendTypel

intEntityDcllextEntityDcl|

©199811m XML HANDBOOKTM

61339.18 | APPENDIX B: AN XML DTD FOR XML—DATA SCHEMAS

notationDcl|extDcls)*)>
<!attlist schema %nodeattrs;>

<!—— Element Type Declarations ——>

<!element elementType (%elementTypeElementsl;,

((element|group)*lempty|any|string|mixed)?,
attribute*

%elementTypeElementsZ)>

<!attlist elementType %nodeattrs;
%exattrs >

<!—— Element types allowed in content model ——>

<!—— Note this is just short for a model group with only
one element in it ——>

<!element element (%elementConstraints;) >

<!—— The type is required ——>
<!attlist element %typelinkattrs;

%elementAttrs;

presence (FIXED) #IMPLIED >

<!—— A group in a content model: and, sequential
or disjunctive ——>

<!element group ((group|element)+)>
<!attlist group %nodeattrs;

%elementattrs;
presence (FIXED) #IMPLIED

groupOrder (AND|SEQ|OR) 'SEQ'>

<!element any EMPTY>
<!element empty EMPTY>
<!element string EMPTY>

<!—- mixed content is just a flat, non—empty
list of elements ——>

<!—— We don't need to say anything about
<string/> (CDATA), it‘s implied ——>

<!element mixed (element+)>
<!attlist mixed %nodeattrs;>

<!element superType EMPTY>
<!attlist superType %linkattrs;>

<!element genus EMPTY>

<!attlist genus %typelinkattrs;>

©1998THE XML HANDBOOKW

TheXML
SPECtacular

I International Standards

I W3C Recommendations

I XML applications

I ... and More!

© 1998 THE XML HANDBOOKTM

(hl/lttf __ ---!

40

to the XML SPECtacular, a collection of the rele
standards and specifications that you can browse,

earch, and print. This collection was compiled for The
XML Handbook by Lars Marius Garshol.

For each document, we've included a link to a web site where you can
learn more about the underlying project and obtain the latest version.
Where copyright and production considerations allowed, we've also
included a browseable copy on the CD-ROM.

All documents categorized as W3C recommendations or W3C work in
process are subject to the W3C document use policy, which you can find on
the CD-ROM and on the Web.

Not all specifications were available in HTML, so some of them are
included as Adobe Portable Document Format (or PDF). A PDF viewer is
available for free from Adobe for Mac, MS Windows, DOS, Unix and OS/2.

619

620 CHAPTER 40 I THE XML SPECTACULAR

40.1 1 Base standards

40.1.1 International Standards

40.1.1.1 Approved standards

SGML: Standard Generalized Markup Language
Charles F. Goldfarb
Information on web:
http:/ /www.sil.org/ sgml

This standard is really the ancestor of nearly all the other standards listed
here. SGML is the mother tongue of most markup languages and the "big
brother" of XML.

HyTime
Charles F. Goldfarb
Steven R. Newcomb
Eliot Kimber
Peter Newcomb
Information on web:
http:/ /www.hytime.org/

HyTime is from the SGML family of International Standards. It
describes many different things. There of the most important are architec
tural forms, hyperlinking, and structuring of time-based media like sound
and film. Architectural forms is a technique for describing common seman
tics among different DTDs and is widely used. (The XLink standard uses
something like it.)

DSSSL
Sharon Adler
Anders Berglund
Jon Bosak
James Clark

©1998 THE XML HANDBOOK™

Information on web:
http://www. jclark.com/ dsssl/

4 0 . 1 I B A s E s T AN D A R D s 621

DSSSL is a powerful (and elegant!) style sheet language for SGML.
DSSSL can be thought of as the "big brother" ofXSL, but with a different
syntax.

Unicode

Information on web:
http://www. unicode.org/

Unicode is an advanced and very complete character coding system.
Using 16 bits (and various coding tricks), Unicode aims to encompass all
human scripts, both those in use today as well as archaic ones. Unicode pro
vides XMI.:s character set.

40.1.2 W3C recommendations

40.1.2.1 Approved recommendations

Extensible Markup Language (XML)
Tim Bray
Jean Paoli
C.M. Sperberg-McQueen

Information on web:
http:/ /www.w3 .org/TR/REC-xml
Document included on CD-ROM:
.I specs/w3c/ rec-xml.html

Here it is: the XML standard itself. For a standard it is mercifully short
and readable, and nicely unambiguous. This is definitely recommended
reading!

© 1 998 T HE XM L H AND B OOK""

• I

622 CHAPTER 40 I THE XML SPECTACULAR

Cascading Style Sheets (CSS2)
Hakon Wium Lie
Bert Bos

Information on web:
http:/ /www.w3.org/Style/CSS/
Document included on CD-ROM:
.I specs/w3c/ pr-css2/ index.html

CSS is the style sheet standard that is implemented in browsers today
and can be used right now. It is simple, but effective and elegant.

40.1.2.2 Work in progress

XML Linking Language (XLink)
Steve DeRose
Eve Maler

Information on web:
http:/ /www.w3.org/TR/WD-xlink
Document included on CD-ROM:
.I specs/w3c/WD-xlink.html

XLink is a crucial part of the XML standards family as it describes hyper
linking in XML documents and takes major steps beyond the hyperlinking
provided by HTML.

XML Pointer Language (XPointer)
Eve Maler
Steve DeRose

Information on web:
http:/ /www.w3.org/TR/WD-xptr
Document included on CD-ROM:
./specs/w3c/WD-xptr.html

XPointer is a companion standard to XLink that describes mechanisms
for addressing a particular part of a document.

©1998 THE XML HANDBOOK™

4 0 . 1 I B A s E sTAN DAR D s 623

Extensible Style Language (XSL)
Sharon Adler
Anders Berglund
James Clark
Istvan Cseri
Paul Grosso
Jonathan Marsh
Gavin Nicol
Jean Paoli
David Schach
Henry S. Thompson
Chris Wilson

Information on web:
http:/ /www.w3.org/Style/XSL/
Document included on CD-ROM:
./specs/w3c/ note-xsl-97091 O.html

XSL is what has been produced so far in phase 3 of the XML effort: a
proposal for the style sheet language for XML. The document included
here, though already implemented in products, is just a proposal, and it
seems likely that it will undergo considerable changes before it becomes a
recommendation.

Note that XSL incorporates Standard ECMA-262 ECMAScript: A gen
eral purpose, cross-platform programming language, which can be found
below.

Document Object Model (DOM)
Lauren Wood
Jared Sorensen
Lauren Wood
Steve Byrne
Mike Champion
Rick Gessner
Scott Isaacs
Arnaud Le Hors
Gavin Nicol
Peter Sharpe
Jared Sorensen

© l 9 9 8 T H E X M L H A N D B 0 0 K TM

624 CHAPTER 40 I THE XML SPECTACULAR

Bob Sutor
Vidur Apparao
Bill Smith
Chris Wilson

Information on web:
http:/ /www.w3.org/DOM/
Document included on CD-ROM:
./ specs/w3c/wd-dom/ cover.html

The Document Object Model is a very important related standard. It is
to be the standard API for accessing and manipulating XML and HTML
documents in browser, editors and other applications.

Nomespoces in XML
Tim Bray
Dave Bolander
Andrew Layman

Information on web:
http:/ /www.w3.org/TR/WD-xml-names
Document included on CD-ROM:
./specs/w3c/wd-xml-names.html

This namespace proposal sketches a way to ensure that names used in
XML DTDs are unique, so that names from different DTDs can be com
bined in a single document when need be.

40.2 1 XML applications

These are XML document types that have been designed for specific pur
poses.

©1998 THE XML HANDBOOK™

4 0. 2 I X M L A p pLI c A T I 0 N s 625

40.2.1 W3C recommendations

40.2.1.1 Approved recommendations

Mathematical Markup Language (MathML)
Patrick Ion
Robert Miner
Stephen Buswell
Stan Devitt
Angel Diaz
Nico Poppelier
Bruce Smith
Neil Soiffer
Robert Sutor
Stephen Watt

Information on web:
http://www. w3.org/Math/
Document included on CD-ROM:
./specs/w3c/rec-mathmllindex.html

MathML is the long-awaited solution to a problem many scientists and
teachers have struggled with: how to publish mathematical formulae on the
web.

40.2.1.2 Work in progress

Channel Definition Format (CDF)

Information on web:
http:/ /www.w3.org/TR/NOTE-CDFsubmit.html
Document included on CD-ROM:
./specs/w3c/NOTE-CDFsubmit.html

CDF is a DTD proposed by Microsoft for describing push channels.
One interesting aspect of this format is that it is already in use in MSIE 4.0,
so millions of CDF files already reside on the hard disks of users all over the
world.

©1998 THE XML HANDBOOKTM

626 CHAPTER 40 I THE XML SPECTACULAR

Web Interface Definition Language (WIDL)

Information on web:
http:/ /www.w3.org/TR/NOTE-widl
Document included on CD-ROM:
.I specs/w3c/ note-widl.html

WIDL is a proposed metalanguage for descriptions of web service inter
faces, from which client code can be generated automatically.

Resource Description Framework (RDF) Schemas

Information on web:
http:/ /www.w3.org/TR/WD-rdf-schema
Document included on CD-ROM:
.I specs/w3c/wd-rdf-schema/ index.html

RDF provides a standard framework for describing resource metadata
and as such is very important for the future development of search engines
and other web navigation applications.

XML-Data
Andrew Layman
EdwardJung
Eve Maler
HenryS. Thompson
Jean Paoli
John Tigue
Norbert H. Mikula
Steve De Rose

Information on web:
http://www.w3.org/TR/1998/NOTE-XML-data-0105
Document included on CD-ROM:
.I specs/w3c/ note-xml-data.html

XML-Data is a proposal to use XML documents, rather than markup
declarations, to describe DTDs. With XML-Data, the document type defi
nitions can be augmented with additional properties, such as inheritance
and datatypes.

©1998 THE XML HANDBOOKTM

4 0.2 I XML APPLICATIONS 627

Precision Graphics Markup Language (PGML)

Information on web:
http://www.w3.org/TR/1998/NOTE-PGML
Document included on CD-ROM:
.I specs/w3c/ note-pgml.html

PGML is a scalable vector graphics language based on the imaging model
of PostScript and PDF, with hooks for animation and dynamic behavior.

Standard Multimedia Integration Language (SMIL)
Stephan Bugaj
Dick Bulterman
Bruce Butterfield
Wo Chang
Guy Fouquet
Christian Gran
Mark Hakkinen
Lynda Hardman
Peter Hoddie
Klaus Hofrichter
Philipp Hoschka
Jack Jansen
George Kerscher
Rob Lanphier
Nabil Laya'ida
Stephanie Leif
Jonathan Marsh
Sjoerd Mullender
Didier Pillet
Anup Rao
Lloyd Rutledge
Patrick Soquet
Warner ten Kate
Jacco van Ossenbruggen
Michael Vernick
Jin Yu

Information on web:

©1998 THE XML HANDBOOK™

II

628 CHAPTER 40 I THE XML SPECTACULAR

http:/ /www.w3.org/TR/1998/PR-smil-19980409/
Document included on CD-ROM:
.I specs/w3c/ pr-smil/index.h tml

SMIL is a language for describing multimedia presentations. It allows for
the integration of independent multimedia objects into these presentations.

40.2.2 Other initiatives

40.2.2.1 Approved standards

ECMAScript (ECMA-262)

Information on web:
http:/ /www.ecma.ch/ stand/ ecma-262.htm
Document included on CD-ROM:
. I specs/ e262-pdf. pdf

ECMAScript is a merger of JavaScript and }Script, standardized and
described in detail. It is included here because it is the programming lan
guage used in XSL.

40.2.2.2 Work in progress

Simple API for XML (SAX)
David Megginson
A cast of thousands

Information on web:
http:/ /www.microstar.com/XMLISAX/
Document included on CD-ROM:
./specs/sax.html

SAX is an event-based API for XML parsers written in object-oriented
languages. Using SAX enables application programmers to switch XML
parsers without changing their applications.

SAX is not presently being standardized by an official standards body. It
is a defacto standard developed by the participants of the xml-dev mailing

© I 9 9 H TH E X M L HA N D ~ 0 0 K "JM

4 0. 2 I X M L A p pLI c A T I 0 N s 629

list. You should visit the web page, since SAX was due for an update when
we went to press.

Guidelines for using XML for Electronic Data
Interchange (XML-EDI)

Martin Bryan
Benoit Marchal
Norbert Mikula
Bruce Peat
David RR Webber

Information on web:
http:/ /www.geocities.com/WallStreet/Floor/5815/xmlediindex.htm
Document included on CD-ROM:
.I specs/ edi/index.html

XML-EDI describes the use ofXML in online commerce for exchanging
transaction information. This isn't a complete specification, but more of a
guideline to function as a precursor to a formal specification.

©1998 THE XML HANDBOOK™

Index
l A
Abstractions, 8-10, 299
ACL Designer (ArborText), 312-13
Active Server Pages, See ASP files
ActiveX controls, 89, 487
actuate attribute, 508, 510
ADEPT.Editor, 296-317

automated document systems, 297-302
content managemem, 297, 301-2
structure, 297, 298-301

See also Content management integration; Structured
XML editors

ADEPT.Publisher (ArborText), 316
Adobe Pagcmaker, 4
AElfred, 407
Agent Discovery, 232-41

access vs. integration, 235-36
architecture principles, 240-41
defined, 233-34, 237-38
image search/procuremem functionality of, 234
Web automation, 236-38
and XML, 239-40

Amaya, 414
Anchor role identification, 179, 187
Andersen Consulting Web site, 204-5
ANY content, 457-58
ApplioH:ion programming interface (API), 295
Arbor a t XML Styler, See XML Seyler (Arbor Text)
Archiving software, 421
ASP files, using to generate XML documents, 82-85
Astoria (Chrystal Software), !51, 352-63

components, 353-54
and XML, 356-58

componems in publishing, 354-56
authoring, 355
customization, 355
distribution, 356
editing, 355
revisions, 354
system simplification, 354
translations, 356
updates, 3 55

content management, 359-63
dynamic document assembly, 362-63
revision tracking, 360-61
search options, 361-62

content reuse, applications for, 358-59
Attributes, 35, 435, 436-38, 462-74

attribute-list declarations, 463-64
attribute-value normalization, 466-68
CDATA attribute, 468-70

630

default values, 464-66
defined, 462
ENTITY attributes, 472-73
enumerated and notation attributes, 470, 473
ID/IDREF attributes, 470-72
name token attributes, 468-70
summary of attribute types, 474-75
types, 466-74

Atrribute-value normalization, 466-68
Auction Web site, 78-94

ASP files, using to generate XML documents, 82-85
auction.asp, 79-80
"Auction" database, 80
databases, generating XML from, 86-88
item table, 80-81
makebid.asp, 80
multiple databases, generating XML from, 86
updating data source, from client, 91-93
user interface, 80, 81

building, 89-91
descriptive data binding, 90-91
procedural scripts, 89-90

userinterface.htm, 79-81
XML data sources, generating XML from, 86-88
XML document structure, defining, 82

Authoring issues, content management, 305
Automated document systems, 297-302

and consistency, 304
content management, 297, 301-2
formal processes, 304
and high value, 303-4
and high volume, 303
and long life, 304
and mulriple publications, 303
and reuse, 304
structure, 297, 298-30 1

Automatic mapping, DynaTag, 331

I B
B2B, See Business-to-Business Integration Server (B2B)
Batch composition, 315-16
behavior attribute, 508-9, 510
Berglund, Anders, 15
Berners-Lee, Tim, 14, 16
Bindings, WIDL, 565-67
Bioinformatic SeqLtcnce Markup Language, 29-30
BladeRunncr (Intcrleaf), 158-62

conformance checking, !58
normal mode, 158

fix element order utility, !60
insert missing element utility, 161
modes of operation, !58
non-conformance error report, !59
publish feature, 161
repair tools, !59

blox, 409
Books, shopping online for, 133-34

©1998 THE X:v!L HANDBOOKTM

Branches, 35
Business-ro-.Busiocss Integration Server (B2B), 123

m:umfiteturcr services, 124-27
B2B plug-in, 125
Java thin client, 126-27
manufacturer interface specification, 127
server stub, 126
XML requests/replies, 126

supplier services, 128-30
client stub, 128-29
supplier interface specification, 129-30

system architecture, 123-24

IC
CACI International job search site, 204-5
CareerPost job search site, Washington Post, 203, 205-7
Cascading Style Sheets (CSS), 17, 47, 622
CDATA attribute, 468-70
CDATA sections, 444-46
CDEnd, 443-44
CGI (Common Gateway Interface), 539
Channel Definition Format (CDF), 27, 625
Character data, 427
character encoding, 37
Ch~ractt:l' mapping, DyoaTag, 332-33
Ch~racrer rl:'rcrcnces, 53 -37
Character set, 3 7
Chemical Markup Language (CML), 29
hild, as relative loc:tlion rcrro, 515

Codes, 5
Coding, 63
Combining rules, 552
Comments, 446-47
Common document representation, 6
Comparison shopping service Web site, 132-38

Junglee Shopping Guide, 134-37
how it works, 135-37
andXML, 135

shopping online for books, 133-34
Components, 353-54
Compound document authoring, 302, 310-11
Conditional mapping, DynnTag, 332
Conditional sections, 533-35
Constant strings, 549-50
Container elements, 335
Content management, 58, 297, 301-2
Content management integration, 309-13

collnbora.cive aurhoring, 311
compound document authoring, 310-11
customization, 312
seamless user interface, 310

Content models, 459-62, 575-80
Content particle, 460
Content specification, 456
Con Lrol lnform:uion development software, free, 414-16
Conversion softwilre, frc~:, 416-17
Customized document types, 6-12

© 1998 THE XML HANDBO O K™

ID
DAE Server SDK, 399-400
Dan Connolly's XML Parser, 401-2
Database publishing, 25-26
Databases, 11-12

generating XML from, 86-88
Data binding, 90-91, 137

INDEX

DataChannel XML Generator, 417
DataChannel XML Parser (DXP), 404-5
DataChannelXML Viewer, 418-19
Data content, 298
Data filtering, 116-17
Data integrity, 297, 307-8
Data Object notations, 56
datapath, 512
Data rescue, 328
Data source, updating from client, 91-93
Default rule, 525
Delimiters, 40
descendant, as relative location term, 515
Descriptive data bi r1ding. 90-91
DestirJation, HTML links, 500
DHTML, 89
docproc, 398
Document conversion, 327-29
Document element, 35, 433
Document entities, 481-82
Document instance, 62, 431

631

Document Object Model (DOM), 89,317,623-24
Documents:

and databases, 11-12
defined, 49-50
digital representation of, 34
notations, 56
physical structure, 38
tree structure of, 35
well-formed, 44-45, 112-13, 549

Document type declaration, 41, 43, 438-39, 449, 450-52
Document type definition (DTD), 13,41-44,61-62, 113,

367,441
content models, 459-62
creating, 448-75
documenters, 415-16
editors, 415
element type content specification, 456-59
element type declarations, 450, 455-56
generic/custom message DTDs, 562-63
internal/external subset, 452

Docurm:nr types, 13, 40-44, 61
D M (Document Object Model), 317, 623-24
DSSSL, 14, 17. 47, 6~0-2 1

flow objects, 348-49
DSSSL engines, 398-400
dt:dt anributc, 594
DTD editors, 415
DTD schema language, 572
DynaBase, 254
Dynamic HTML, 80, 89, 137

632 INDEX

DynaTag, 254-55,260, 326-36
Container Wizard, 335-36
converting documents with, 329-36
document conversion, 327-29

data rescue, 328
style and meaning, 329

electronic publishing, preparing for, 336
mapping, 330-36

I E

automatic, 331
capturing structure, 335
character, 332-33
comments, 334
conditional, 332
cross-references, 333
list wizard, 332
new-mapping helper, 332
reuse, 335
searching, 334
tables, 332
variant detection, 331
XML markup features, 335

ECMAScript (ECMA-262), 528, 628
EDGAR, 155-62

BladeRunner (lnterleaf), 158-62
DTD:

creating and instance of, !58
reviewing, 157-58

instance:
checking for conformance, 158-59
non-conforming !:.lcmcms, repairing, 159-61

publishing for the SEC, 161
rcpurposing the Web site, 161-62
submission:

generating, 161
with XML, !56-57

See also BladeRunner {lnterleaf)
EDI (electronic data interchange), 12, 122

defined, 97-98
future of, 100-10 1
guidelines for using XML for, 629
history of, I 04
new EDI, 99-100, 110-17

data filtering, 116-17
and Internet, 113-14
Internet technologies, 114-15
and XML, 111-13
XML data storage, 115-16

technology description of, I 04-5
traditional, 103-10

implementation of, 98
problems of, I 06-10

value of, 101-3
and XML, 96-118
See also New EDI; Traditional EDI

Editing/composition:

free software, 412-14
tools, 58

Electronic commerce, and XML, 26
Electronic delivery, free software for, 417-19
Element content, 457, 459
Element Definition Document (EDD), 294
Elements, 35-37, 434-36

attributes, 35, 435, 462-74
empty, 434-35
rags vs., 60-61

Elemenc type content specification, 456-59
ANY content, 457-58
element content, 457, 459
empty content, 457
mixed content, 457, 458-59

Element type declarations, 450, 455-56
Element type names, 60, 456
Element types, 10-11
Emacs, 419-20
Empty content, 457
Empty elements, 434-35
En ·odiog, 63
Encoding declaration, 440-41
End-tags, 434
Entitie, 38-39, 451, 476-96

boundaries, and markup, 490-94
classifications of, 482-83
document, 481-82
entity content, 477
entity declaration, 477
entity name, 477
external, 38, 478-79, 483, 485-86
external identifiers, 494-96
general, 480, 483, 488
internal, 483-84
parameter, 480, 483, 487-90
parsed, 478, 483
predefined, 442-44
unparsed, 39, 474, 480, 483, 486-87

ENTITY attributes, 472-73
EntiLy declaration, 542
Entity reference, 38, 479

legal pa.ramcter, 493-94
Enumerated attribute types, 470
Enumera tion . ruibmcs, 470, 473
EPS, 56
expat, 403
Extended links, 176-88, 501-5, 509-11

bidirectionality of, 184
defined, 178
displaying, 179-80
link groups, 510-11
locator elements, 509-10
shop notes:

application, 1.77-78
compurer-augmcnted memory, 184
guidance documcnrs, 183-84
intellectual property management, 185

© 1998 THE XML HANDBO O K™

public resource communities of interest, 182-83
and vendors, 181

strong link typing, 185-87
anchor role identification, 187
hiding the installation log, 186
need for, 186

XPointers, 180-81
Extensible LinkiJ1g Language, Sr.t XLink
Extensible Markup Language, S((XML
Extensible Style Lnngtmgc, See XSL
External entity. 8, 471'!-79, 483
Exrernnl identifiers, 485, 494-%

public identifiers, 495-96
system identifiers, 495

External links, 46
External parsed general entities, 485-86
External ·ubset, 452-55
Extractor Development Kir (EDK), 390-91
Extractors, J 36

I F
Flow objects, 522-23

DSSSL flow objects, 348-49, 527
flow object tree, 522
HT.MLI S flow objects, 348, 522-23, 527

following, :'Ill relative locadon term, 515
Foreign keys, 584
Formattin~ markup, 4-6, 9
Fragment tdem ifier, 512
FrameMaker+SGML (Adobe) software, 194

customization/preparation, 293-95
defining for marring rules, 294
DTD cu~tom ization, 293-94
Element Definition Document (EDD), 294
exrcnsibil iry, 295

documcm frngrncms, 290
editing/composition, 278-95
interactive formatdng, 289-90
leveraging information, 279-80
publishing documents, 290-93

in HTML, 293
online, 292-93
on paper, 291
in PDF, 292

rule-ba~cd tormanlng. 289
XML :naholing fllnclions, 280-88

authoring flexibility, 281-82
authoring utilities, 286-88
cross-reference tool, 286
guided editing, 281
hypertext, 287-88
index generation utility, 286-87
managing external content, 288
problem correction, 283-85
unstructured template, 288
well-formedness, 288

Frank Russell Company, 210-31

©1998 THE XML HANDDOOKTM

INDEX

abstract architecture, crcctdng, 217-20
abstract document reprcscnrarion, 22 1
application implementation, 220-30

document representation, 220-22
intcrncrworking. 220
phased irnplcmcnraLion plan, 222-30

background, 2 11 - 12
business requirements, 215-16

compliance, 215
data integrity, 216
pretnium typographic quality, 215
security, 216

docu tncnr as~embly/formatting. 224-28
book :t$sCinbly, 226-27
docllmcm editing, 22· 26
d cumenr srrucrurc, 225-26

633

final-form qunUry requirements, 226
tcleasingbooks ~document n'lall:tgemmtS)'SU'm. 227-28

document mamtt,remcnt oF PDF files, 223-24
needs dcrcrmi nation, 21 -20
Portable Document Format (PDF), 22, 221-22
proj~crstmcgy, 212- 1 S

alignmcLlt wit:h corporate srrntegies, 214
continuiJlg r ·scar b in pnr:tllel with focused

dcvelopmcm projects, 213- 14
execurivc sponsorship, 214-15
from theoretical abstraction to practical applica

tions, 213
phasing deliverables with measurable return on

investment, 213
recocds manag~men t business study, 222
rendcr(Jd do Llillcnr t·cpresentll tion, 221-22
techn ica l requi remenr , 2 16· 1.7

cross-platform, 217
ease of use, 216
low licctl$ing impact for reader software, 216
mu ltilingual capability, 217
scal~hili ry, 216

XML and the future, 228-29
Free XML software, 394-421

control information development, 414-16
conversion, 4 16-17
editing/compo~ition, 412-14
electronic ddlvcry, 417-19
parsers/engines, 396-412
resources for, 419-21

Ftequent-nycr Web ites, 66-76
and HTMI .. 68
purpose of, 67-68
Softland Air, 70-71, 73-75
and XML, 69-76

Frontier, 409
fsibli ng, as relative location term, 515

I G
General entities, 480, 483, 488
Generalized markup, 6-14

634 INDEX

common document representation, 6
customized document types, 6-12
rule-based markup, 12-14

Generalized Markup Language, 13
General S-converrers, 416
Generic identifier, 455-56
GIF, 34,56
Government documents, 153

See also Securities regulation filings
Grammar, XML, 431, 548-49

I H
Hackers, 56-57
Hacking, 56
Help o~ k automation, 162-75

Help Desk Solution System, 167-75
architecture, 169
checking document into knowledge base, 175
information flow, 168
making the query, 170
research product information, 170-71
routing solutions document for approval, 173-74
updating the repository, 172-73
using, 170-75
writing a solution, 171-72

Texcel Information Manager, 167-68, 170
Texcel Work Queue, 169
traditional Help Desk, 165-66

helping, 167-68
needs of, 166-67

Hitachi Semiconductor, Inc., 192-200
business case, 194-95
and FrameMaker+SGML (Adobe) software, 194, 200
s~vings , 20
single source files, creating, 196
tmnsfo rmaaions, automating with XML, 197-98
Web-based searching, facilitation of, 198-99
and XSL, 198

hostname, 512
HoTMera.L Applicntion Server (HnTMeraL APPS)

(SoftQuad), 69, 72, 74, 76, 378-84
dynamic de crip aivc ma rkup, 379-80
dynamic pa1gc.1, guided construction of, 383
functionality, 383-84
HoTMetaL APPS Attribute Inspector, 383
HoTMetaL Personal Server, 381
HoTMetaL Pro HTML editor, 380
how it works, 380-84
middle-tier server tags, 382-83

conditional logic tags, 382-83
data access tags, 382

HTML, 14-17, 42, 111 , 449
Cascading Style Sheets (CSS), 17, 47

HTML/CSS flow objects, 348
Hyperlinking, 45-46
Hypertext, 38
Hypertext links, 499

Hypcnl!lC t Markup Language, See HTML
Hf llme, 14, 620

international standard, 511

I I
ID/IDREF attributes, 470-72
IDL (Interface D efinition Language), 556-57
IE 4.0 Document Objects Model, 89
IE 4.0 XML Data Source Object (XML DSO), 90-91
Inclusion, 479
Information life cycle:

changes in, 366
managing, 365-68
object-oriented components, 367-68
and World Wide Web, 366-67

Instance vs. prolog, 431-32
Interactive formatting, FrameMaker+SGML, 289-90
Internal entities, 483
Internal parsed general entities, 483-84
Internal subset, 452-55
Internationa l Organization for

rand~rdization (ISO), 264-75
See also ISO 12083

Internet-based services, 99
Internet Explorer 4.0, 69, 89, 136
ISO 12083, 266-75

IJ

AND connectors, eliminating, 271, 273
assisted modifications, 269-70

attribute types and defaults, 269-70
declared content, 270

automated modifications, 267-69
comments in declarations, 268
example of, 268-69
grouped element type and attribute declarations, 267
omitted tag minimization rules, 267
parameter entity references, 268
quoted default attribute values, 268
XML declaration, 267

exclusions, eliminating, 272, 274
inclusions, eliminating, 271, 272-73
system identifiers, adding, 272, 274-75

Jade, 398-99
Java Development Kit (JDK), 420
JavaScript, 70

and XSL, 527-30
Java Virtual Machine (JVM), 339
JDBC, 172
JobCanopy, 203-4, 205

how it works, 208
and Washington Post, 203-4

Job searching online, 204-5
Andersen Consulting, 204-5
CACI International job search site, 204-5

]PEG, 34
]Script, 82

© 1998 THE XML HAN D BO O K'M

JTC1/WG4, 14
Jumbo, 418
Junglee Shopping Guide, 134-37

how ir works, 135-37
and XML, 135-38

Junglec Virtual Darnbase M:magcment System (VDBMS), 387-93
ndministrruion imerfacc, 392
Extractor Development Kit (EDK), 390-91
how it works, 389-92
VDBMS technology, 387-88
VDB server nnd Data Quality Kit, 391-92
VDB te hnology applic~tions, 392-93

corporate procurement, 393
engi neering de.5ign databases, 393
information management, 393
online recruitment, 392
Web commerce, 392

Wrapper Development Kit (WDK), 389-90

I K
Keys, 584

I L
Lark, 406

SAX drivers for, 411
LaTeX, 4, 5, 449
Leaves, 35
Legal parnmcter entity reference, 493-94
Lexical onsH. ints, 466
Link behaviors, 505-9

actuate attribute, 508
behavior attribute, 508-9
show attribute, 506-7

Link database, 46
Linking vs. addressing, 500
Links:

extended, 176-88, 501-5, 509-11
simple, 178,501-2

Literal strings, 429-30
Location term, 514
Locator elements, 509-10
Logical structure, 432-33
LTXML, 402-3

I M
Major corporation client, 242-50

background, 244-45
client/server, 245-47
database maintenance, 249-50
data extraction, 248-49
second generation requirements, 247-48
SQml (Agave Software Design), 245-50

Markup. 39-40, 63, 427, 44 1-47
CDATA sections, 444-46
comments, 446-47
and data, 427
predefined entities, 442-44

©1998 THE XML HANDilOOK™

INDEX 635

Markup declarations, 61-62
MathML (Mathematica l Markup Langw1ge), 2~) . 625
M • sage- ric:ntcdMitld lewar•, SeeM M (Message-

Oriented Middlewad
Meta Content Framework (MCF), 27
Metadata, 26-28, 185, 356-58
Merainformation, 463
Microsoft Channel Definition Format (CDF), 27
Microsoft PowcrPoint, 168
Microsoft Word, 4, 168
Microsoft XML Parser in Java, 406
Micro~oft XSL processor, 397
Micld lc-der rools, 58
Mixed content, 457, 458-59
MOM (Message-Oriented Middleware), 51, 54-55

and POP, 57-58
Mozilla, 417-18
MPEG, 34
MSXML, SAX drivers for, 411
Multiple databases, generating XML from, 86

I N
Name characters, 429
Names, 428-29, 436, 456, 550

entities, 38
Namespaces in XML, 624
Name token attributes, 468-70
Name tokens, 429, 436, 469, 470
Natural language translation, 145-51

business challenges, 143-47
cost containment, 143
diversity of documents, 144
fast-paced product development, 144

mistakes, 141-42
multilingual documents, needed for, 142-43
translations:

current state of, 144-47
and last-minute changes, 146-47
machine, 144-45
as specialized service, 146

andXML, 147-51
alignment, and concurrent authoring/translation,

150-51
document components, 147-48
reuse, 148-49
versioning, 149-50

N-converters:
general, 417
specific, 416-17

N ' 'A(NnLion:tl CenterforSupercompmingAaiviti!s), 539
Near & l'n.r Designer 3.0 (Microsrar), 266-67, 268, 270
Net~Clpc, 69
New EDJ, 99-100, 110-17

data filtering, 116-17
and Internet, 113-14
Internet technologies, 114-15
and XML, 111-13
XML data storage, 115-16

636 INDEX

Normalized attribute value text, 468
Notation, 56

attributes, 470, 473, 475
data entities, 39

Notation declarations, 474-75, 487

I 0
Occurrence indicators, 461, 551-52
ODBC, 70, 594, 596
OLE Automation, 323
OmniMark LE, 416

I p
Parameter entities, 480, 483, 487-90
Parsed entities, 478, 483
Parsers/engines, 396-412
Parsing, 55
Perl, 56,420
perlSGML, 415-16
PI target, 538
Platform for Internet Content Selection, 27
POET Content Management Suite (POET CMS), 116,

364-77
architecture, 370
client-side editing/viewing, 371-77
components, 369-70

checking out, 373-74
sharing, 374-75

full-text search, 376-77
information life cycle, managing, 365-68
POET Content Client, 370
POET Content SDK, 370
POET Content Server, 369
POET Web Factory, 369
server-side content management, 371
version control, 371-73
viewing documents, 375-76
See also Information life cycle

POET Object Server, 116
POP (Presentation-Oriented Publishing), 51, 52-54

and MOM, 57-58
Portable Document Format (PDF), 22, 221-22

document management of PDF files, 223-24
preceding, as relative location term, 515
Precision Graphics Markup Language (PGML), 627
Predefined entities, 442-44, 467
Presence, 591
Presentation-Oriented Publishing, See POP (Presentation-

Oriented Publishing)
Procetlur:tl scriprs, 89·90
Processing instructions, 53 7-41
Prolog, 438- I

instance vs., 431-32
Prototype, 419
Providence (RI) Guide, 252-63

contextual searching/personalization, 256
conversion to XML, 255
DynaBase, 254, 259-61

dynamic Web delivery, 258-60
DynaTag,254-55,260,326-36
DynaText Browser, 254-56
DynaWeb, 257-59
electronic book:

generating, 255-56
revising, 261-62

information architecture, 255
multiple stylesheets, 256
prototype, 253-54
table of contents, 256
Web delivery, 257-58
XML data, updating, 260-61

PSGML, 412-13
psibling, as relative location term, 515
Public identifiers, 495-96, 593
PyDOM, 410
Python, 420
PyXMLTok, 405

I R
RDF forXML, 416-17
Relations, 584
Relative location terms, 514-15
Remote Procedure Calls (RPCs), 124

and WIDL, 560-63
Renditions, 4, 8-9, 55, 62, 298
Replacement text, 38, 479
Resource Description Framework (RDF), 28, 626
Rich Text Format (RTF), 4
Root element, 35, 425, 433
Root location term, 514
RPC messages, rcprcscming in XML, 561-63
Rule-based fo.n:haLti11g, Fr:uncMaker+SGML, 289
Rule-based markup, 12-14
RXP, 401

I S
SAX, 411,628-29
SAXDOM,412
SAX drivers for Lark and MSXML, 411
saxlib, 410-11
Schemas, 13, 573-74
S-converters, general , 416
Securities regulation filings, 152-62

EDGAR, 155-62
XML documents, visualizing, 154-56

Self-identifying information representations, 440
Semantic checks, 13
Semantic constraints, 466
SGML:

development of, 14
and HTML, 15
origin of, 14
standardization of, 14, 620
and text formatters, 4-14
XML as subset of, 3

SGML Handbook, The, 537

©1998 THE XML HANDBOOKTM

sgmlnorm, 400, 486
SGMLSpm, 400
SGMLIXML parsers, 400-401
show attribute, 506-7, 510
Simple API for XML (SAX), 411, 628-29
Simple links, 178, 501-2
SMU.. See rnndanl Multimedia Imq;tmion Language (SMIL)
Sofdand Air Web site, 70-71, 73-75
Source, HTML links, 500
SP, 400-401
Sparse, 397, 523-24
SQml (Agave Software Design), 245-50
Standalone document declaration, 441, 541-44
Srand:udi~cd Gcnerali1.ed Markup Lan~tagc, See SGML
Smndard Multimedia lmegrarion language {SMJL), 627-28
Starr-tags, 434
String, 426
Structural validity, 441
Structure, 297, 298-301
Structured vs. unstructured documents, 60
Structured XML editors:

application development issues, 305, 309-13
content management integration, 309-13

authoring issues, 305-9
structure consistency, 306, 307-9
task-matched authoring tools, 305, 306-7

business issues, 305, 313-17
authoring productivity, 314-15
batch composition, 315-16
presentation independence, 316-17
standards-based, 317

Stylesheets, 9-10, 13, 14, 47
referencing, 519-20

Sub-elements, 35
Supply chain, 120-30

Business-to-Business Integration Server (B2B), 123
manufacturer services, 124-27
supplier services, 128-30
system architecture, 123-24

integration requirements, 122-23
linking up, 121-22
Seet1lso Business-to-Business Integration Server (B2B)

Supply web, 111
Syntactic checks, 13
Syntax, XML, 27-28, 33, 425
System identifiers, 495

IT
Tag name, 60
Tags, 5, 40, 492

elements vs., 60-61
Tel interpreter, 420
Tel upporr for XML, 403
rdrd, 415
Text Encoding Initiative, 511
Text formatters:

codes, 5
element types, 10-11

©1998 THE XML HANDBOOK™

formatting markup, 4-6
generalized markup, 6-14
and SGML, 4-14
stylesheets, 9-10
tags, 5

Text processing, 4
TIFF, 56
Tokeni.:ted attribute types, 473
11-adlrional EDI, 103-10

implementation of, 98
problems of, 106-10

INDEX

fixed business rules, 1 09-1 0
fixed transaction sets, 1 06

troff, 4

IU

high fixed costs, 108-9
limited penetration, 110
non-standard standards, 107-8
slow standards evolution, 106-7

Unicode, 37, 40, 426, 535-37, 621
Unicode Standard Book, 536

637

Uniform Resource Identifiers (URis), 452, 500, 512-13
Uniform Resource Locators (URLs), 512-13
unique identifier (ID), 60
Universal Resource Names (URNs), 512fn
Unnormalized attribute value text, 468
Unparsed entities, 39, 474, 480, 483, 486-87
User defined string, 550
UTF-8, 37, 440

I V
Validity, 44-45, 492
Value Added Networks (VANs), 105, 114-15
Variants, 145, 331
VBScript, 82
Version info, 440
Virtual Database (VDB) technology, 134-37
Visual Basic, 323
Visual XML, 413

IW
Washington Post, 202-9

Career Post job search site, 203, 205-7
JobCanopy, 203-4, 205

how it works, 208
job searching online, 204-5
Web site, 203

Web, See World Wide Web (WWW)
Web lnrerFJ.ce Definition Language, See WIDL (Web

Interface Definition Language)
wcbMet:hods, lnc., 556

Automation Toolkit, 127
thin client, 126
WIDL, 556-57

Well-formed documents, 44-45, 112-13, 549
White space, 428

638 INDEX

WIDL (Web Interface Definition Language), 123, 234,
240-41, 626

bindings, 565-67
defined, 557-58
integrating applications, 563-68

document mapping, 565-68
stubs, 564-65

interoperability, attaining, 568
LIST element, 560
METHOD elment, 558-59
RECORD REF element, 560
RECORDS element, 559-60
Remote Procedure Call (RPC), 560-63
rod of, 557
VALUE element, 560
WIDL document, 558
WIDL element, 558

Windows Foundation Classes, 401
World Wide Web Consortium, 16-17, 47, 317
World Wide Web (WWW), 15

science on, 28-30
Wrapper Development Kit (WOK), 389-90
Wrappers, 136, 389-90, 596
WYSIWYG (What You See Is What You Get) , 4, 8, 314

I X
XED, 413
XLink, 17,45-46, 182-83, 186, 188,317,498-515,622

addressing, 511
basic concepts, 500-509
extended links, 501, 502-5
link behaviors, 505-9

actuate attribute, 508
behavior attribute, 508-9
show attribute, 506-7

link roles, 502-4
simple links, 501-2
Uniform Resource Identifiers (URis), 512-13

XLink engines, 396-97
XMetaL, 318-24

HTML markup transition, 320-21
interface, 319-20
outside authors, extending XML capabilities to, 324
structured editing, 321-23

context-sensitive styles, 323
customization, 323
default HTML styles, 323
direct DTD processing, 323
multiple views, 321
named bookmarks, 322
samples/templates, 322
tables, 321

XML::Grove, 410
XML::Parse, 405
xml:link attribute, 502
XML <PRO>, 414
XML:

advanced features, 532-45
application opportunities, 58
as approved recommendation, 621
attributes, 35, 435, 436-38
automation, 301
case sensitivity, 426-27
character references, 535-37
conditional sections, 533-35
and database publishing, 25-26
defined, 3-4
as digital representation of documents, 34
documents, meanings in, 62
document types, 40-44
and document variety, 49-50
and ED!, 96-118
and electronic commerce, 26
elements, 35-37, 434-36
end-rags, 434
entities, 38-39
free software, 394-421
fundamental concepts of, 32-47
grammar, 431, 548-49
as HTML extension, 21-22
and HTML extensions, 23
hyperlinking/addressing, 45-46
interchange, 30 I
jargon demystifier, 59-63
and Junglee Shopping Guide, 135-38
literal strings, 429-30
logical structure, 432-33
markup, 39-40, 441-47

COAT A sections, 444-46
comments, 446-47
and data, 427
predefined entities, 442-44

metadata, 26-28
multiple outputs, 300
names/name tokens, 428-29, 436, 456
origin of, 17
processing instructions, 53 7-41
prolog, 438-41

instance vs., 431-32
purpose of, 34
representing RPC messages in, 561-62
Resource Description Framework (RDF), 28
reuse, 300-30 l
standalone document declaration, 541-44
start-tags, 434
structured vs . unstructured documents, 60
stylesheets, 23, 433
syntax, 27-28, 33, 425
and table formatting, 21-23
tags, 433

elements vs., 60-61
tools, 58-59
Unicode, 37
white space, 428

©1998 THE XML HANDB O OKrM

XML basics, 424-47
XML browsers, 417-19
XML-Data, 570-616, 626

aliases, 581-82
attributes, 591-92

as references, 587-88
class hierarchies, 582-83
correlatives, 581-82
daratypes, 593-603

complex, 596
and exposure in API, 596
namespace, 597-98
specific, 599-603
structured data type attributes, 599
URis, 598-99
versioning of instances, 597

default values, 580
domain and range constraints, 589
elemenrs fro m other schcm~s, using, 590-91
elements as refe rences, 583-87

multipart keys, 586-87
one-to-many relations, 585-86

elemenrType declaration, 575
entity declaration elemenr types, 592-93
examples, 609-11
exterual declarations element type, 593
and illl• eri tance, 572
mi11/ max collstraints, 588-90
namespaces facility, 572
properties/content models, 575-80

element, 576
empty/any/string/mixed content, 576-77
group, 578-79
open and closed content models, 579-80

and rich data types, 72
schema element type, 574
schemas, 573-74

mapping between, 603-9
XML DTD for, 612-16

XML-specific elements, 591-92
XML dam sources, generating XML from, 86-88
XML declaration, 438,439-41

encoding declaration, 440-41
standalone documenr declaration, 441
version info, 440

XML document, defined, 62
XML DSO, data binding with, 90-91
XML-EDI, 629
XML editors, 412-14
XML for Java, 406-7
xmllib, 408
xmllink, 396-97
XML middleware, 408-12
XML parser~. 401 -8
XML poinrcr language, See XPointers
xmlproc, 407-8
XML specification:

combining rules, 552

©1998 THE XML HANDBOOK™

constant strings, 549-50
grammar, 548-49

INDEX

names, 428-29, 436, 456, 550
occurrence indicators, 461, 5 51-52
reading, 546-53
tokens, 547-48

XMLSPECtacular, 317,618-29
base standards, 620-24
international standards, 620-21
XML applications, 624-29

XML standard, 621
XML Seyler (Arbor Text), 338-50, 414-15

creating a stylesheet with, 340-43
default rules, 342
XSL actions, 348-49
XSL patterns, 343-47
XSL stylesheets, 339-40

XML text, 40
XML-Toolkit, 402
XML tools, 58-59

content management, 58
editing/composition, 58
free tools, 59
middle-tier tools, 58

XP, 404
IDs, referring to, 513
location terms, 514-15

Xparse, 404
XPointers, 180-81, 188,511-15,622
XPublish, 408-9
XSL, 17, 198,317,516-30,623

actions, 348-49, 520-21, 526-27
DSSSL flow objects, 348-49, 527
HTMLICSS flow objects, 348, 527

design principles, 517
flow objects, 522-23, 527
and JavaScript, 527-30
patterns, 343-47, 520-21, 524-26
rules, 520-21
Sparse, 397, 523-24
stylesheets, 339-40, 518-19

referencing, 519-20
using, 523-24

XSL editors, 414-15
XSL engines, 397-98
xslj, 398

I y
Yahoo, 466

639

o.c l

LICENSE AGREEMENT AND LIMITED WARRANTY

READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE OPENING
THIS SOFTWARE MEDIA PACKAGE. THIS LEGAL DOCUMENT IS AN AGREEMENT
BETWEEN YOU AND PRENTICE-HALL, INC. (THE "COMPANY"). BY OPENING THIS
SEALED SOFTWARE MEDIA PACKAGE, YOU ARE AGREEING TO BE BOUND BY
THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THESE TERMS AND
CONDITIONS, DO NOT OPEN THE SOFTWARE MEDIA PACKAGE. PROMPTLY
RETURN THE UNOPENED SOFTWARE MEDIA PACKAGE AND ALL ACCOMPANYING
ITEMS TO THE PLACE YOU OBTAINED THEM FOR A FULL REFUND OF ANY SUMS
YOU HAVE PAID.

I. GRANT OF LICENSE: In consideration of your payment of the license fee, which is part of
the price you paid for this product and your agreement to abide by the tcm1s ru1d condi tions of
this Agreement, the Company gJ1111 ts to you a nonexclu iv · right to use and di splay th copy of
the enclosed software progrum (hereinafter the "SOFfWAR ") n a single omputer (i.e., with a
single CPU) at a single location so long as you comply with the terms of this Agreement. The
Company reserves all rights not expressly granted to you under this Agreement.

2.0WNERSHIP OF SOFTWARE: You own only the magnetic or physical media (the enclosed
software media) on which the SOFTWARE is recorded or fixed, but the Company retains all the
rights, title, and ownership to the SOFTWARE recorded on the original software media copy(ies)
and all subsequent copies of the SOFTWARE, regardless oftbcf01m or media on which the orig
inal or other copies may exist. This license is not a sale of the original SOFTWARE or any copy
to you.

3.COPY RESTRICTIONS: This SOFTWARE and the accompanying printed materials and
user manual (the "Documentation") are the subject of copyright. You may not copy the Docu
mentation or the SOFTWARE, except that you may make a single copy of the SOFTWARE for
backup or archival purposes only. You may be held legally responsible for any copying or copy
right in fringement which is caused or encouraged by your failure to abide by the terms of this
restriction.

4.USE RESTRICTIONS: You may not network the SOFTWARE or otherwise use it on more
than one computer or computer terminal at the same time. You may physically transfer the SOFT
WARE from one computer to another provided that the SOFTWARE is used on only one com
puter at a lime. You may di tribute c pies of the SOFTWARE or Documentation to otbers.
You may ru:.u, reverse engineer, disassemble, decompile, modify, adapt, translate, or create deriva
tive works based on U1e SOFTWARE or the Documentati n without th prior written consent f
the Company.

5. TRANSFER RESTRICTIONS: The enclosed SOFTWARE is licensed only to you and may
not be transferred to any one else without the prior written consent of the Company. Any unau
thorized transfer of the SOFTWARE shall result in the immediate termination of this Agreement.

6. TERMINATION: This license is effective until terminated. This license will terminate auto
matically without notice from the Company and become null and void if you fail to comply with
any provisions or limitations of this license. Upon termination, you shall destroy the Documenta
tion and all copies of the SOFTWARE. All provisions of this Agreement as to warranties, limita
tion of liability, remedies or damages, and our ownership rights shall survive termination.

7. MISCELLANEOUS: This Agreement shall be construed in accordance with the laws of the
United States of America and the State of New York and shall benefit the Company, its affiliates,
and assignees.

8.LIMITED WARRANTY AND DISCLAIMER OF WARRANTY: The Company warrants
that the SOFTWARE, when properly used in accordance with the Documentation, will operate in
substantial conformity with the description of the SOFTWARE set forth in the Documentation.
The Company does not warrant that the SOFTWARE will meet your requirements or that the

©1998 THE XML HANDBOOK™

operation of the SOFfWARE will be uninterrupted or error-free. The Company warrants that the
media on which the SOFfWARE is delivered shall be free from defects in materials and work
manship under normal use for a period of thirty (30) days from the date of your purchase. Your
only remedy and the Company's only obligation under these limited warranties is, at the Com
pany's option, return of the warranted item for a refund of any amounts paid by you or replace
ment of the item. Any replacement of SOFfWARE or media under the warranties shall not
extend the original warranty period. The limited warranty set forth above shall not apply to any
SOFfWARE which the Company determines in good faith has been subject to misuse, neglect,
improper installation, repair, alteration, or damage by you. EXCEPT FOR THE EXPRESSED
WARRANTIES SET FORTH ABOVE, THE COMPANY DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRAN
TIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. EXCEPT
FOR THE EXPRESS WARRANTY SET FORTH ABOVE, THE COMPANY DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATION REGARDING THE USE
OR THE RESULTS OF THE USE OF THE SOFfWARE IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE.

IN NO EVENT, SHALL THE COMPANY OR ITS EMPLOYEES, AGENTS, SUPPLIERS, OR
CONTRACTORS BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSE
QUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE LICENSE
GRANTED UNDER THIS AGREEMENT, OR FOR LOSS OF USE, LOSS OF DATA, LOSS
OF INCOME OR PROFIT, OR OTHER LOSSES, SUSTAINED AS A RESULT OF INJURY
TO ANY PERSON, OR LOSS OF OR DAMAGE TO PROPERTY, OR CLAIMS OF THIRD
PARTIES, EVEN IF THE COMPANY OR AN AUTHORIZED REPRESENTATIVE OF THE
COMPANY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO
EVENT SHALL LIABILITY OF THE COMPANY FOR DAMAGES WITH RESPECT TO
THE SOFfWARE EXCEED THE AMOUNTS ACTUALLY PAID BY YOU, IF ANY, FOR
THE SOFfWARE.

SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRANTIES
OR LIABILITY FOR INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAM
AGES, SO THE ABOVE LIMITATIONS MAY NOT ALWAYS APPLY. THE WARRANTIES
IN THIS AGREEMENT GIVE YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO
HAVE OTHER RIGHTS WHICH VARY IN ACCORDANCE WITH LOCAL LAW.

ACKNOWLEDGMENT

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT,
AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE
THAT THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE
AGREEMENT BETWEEN YOU AND THE COMPANY AND SUPERSEDES ALL PROPOS
ALS OR PRIOR AGREEMENTS, ORAL, OR WRITTEN, AND ANY OTHER COMMUNICA
TIONS BETWEEN YOU AND THE COMPANY OR ANY REPRESENTATIVE OF THE
COMPANY RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

Should you have any questions concerning this Agreement or if you wish to contact the Company
for any reason, please contact in writing at the address below.

Robin Short
Prentice Hall PTR
One Lake Street
Upper Saddle River, New Jersey 07458

©1998 THE XML HANDBOOK™

About the CD-ROM

The CD-ROM is packed with useful XML tools and information. There
are three main areas:
• A hand-picked collection of genuine, productive, no-time-limit XML

free software. There are over 55 titles. A full description can be
found in the Free XML software chapter.

• A showcase for leading XML software and service providers. It
features in-depth product and service information, white papers,
XML samples, live demos, and trialware.

• The XML SPECtacular, a collection of the relevant specifications
that you can browse, search, and print.

How to Use the CD-ROM

The CD-ROM supports Windows 95, Windows NT, and UNIX systems.
Simply load index.htm, located in the root di rectory of the CD-ROM,
into your Web browser.

License Agreement

Use of The XML Handbook™ CD-ROM is subject to the terms of the
License Agreement and Limited Warranty on the preceding pages.

WARRANTY LIMITS
READ AGREEMENT FOLLOWING THE INDEX

AND THIS LABEL BEFORE OPENING
SOFTWARE MEDIA PACKAGE.

BY OPENl NO THIS SEALED SOFfWARE MEDIA PACKAG E, YOU ACCEii'T
AN D AGREE TO 'I'HE TERMS AND CONDITIONS PRINTED BELOW. 1r: YOU
DO NOT AGREE, DO NOT OPEN THE PACKAGE. SIMPLY RETURN THE
SEALED PACKAGE.

The software mcc.l iu is c.li srriburcd on tin ''As IS" basis, withpul wnrrnnty. Neither
lb <: oul hors, the soflwnrc developers nor l'rcnl ice I loll mnk" ony reprcsemntlon, or
wnrrnnly, eit her expres> Qr imrllecl, wi th resr cct In the sol'lworc 11mgrnms, their
quality, accu .1 y, or fitness for n spec ifi c purpo~e . 1'hcrel'nrc, noJ iher the nuth<)rs,
the iiulh v 1ro (levclope . nor Prentice Hull shnll have uny IJnhilily to y<.>u ur •ll\Y
otho•· person or culity wl l11 respect I ~ ny liability, los~. or dnmngc cn u~cd or
ullcgod to hnvc been caused directly OJ' ind in•clly by ptog nun · cnntuincd on I he
mcuin. This includes, hut ~~ not limited 10. interruption ur SCI'Vicc, lo ·s of data,
loss of classrot)ltl lime, lu~s of consult ing or nntidpnwry }Jrufils, or consot}uenti:ol
damng~s from the tl.'ic or thr.sc prtlgnun~. If medi a is defecti ve, you mny re turn it
for n rcp lncomcnt.

lxML/HTMLI <'CJ'C) (_~jl\-•~ CIIAHI.l•:~ l •'. C::OJ.D l •'AHB Sl~a{Jl•!S ON () l"J•:N IN1•'0Hl\1A'J'JON 1.\'JANAGJ•! .MJ•;N 'J ' ·--
THE XML HANDBOOI< '"

"111is lwoft is 1111 t•xcdlmr slt1rli119 poi11t .when· ~"'~ ctlll lwr11 ~~~ui cxpt-rifftCttt with KML. . As the invnttor of
S ,,V\ L, Dr. Chm~t:.S F. wltifitrh Is VHC of the IHO.'i! t'C5fUCtcd tWtlwrittcs Ott stn~ct11rcd i11tonw~tiort. Ch1wit:s
11111J 1 sh11 n· 11 CoHill lOll t l.~lo11: Utili the t11ost l'tlluablc nssct tor the t~ser tH' f(w ~~ corpvmtioH, w~t·ftcltj the
dntn, Ct:iH be VfJCHitJ rcprcscl·tter.l i11 ~~ sit11plc, flexible, 1mrl ht~ltllm - n'11d11hle tiwm. This uision cn11 11o'w he
ret:ilized tl1rou9h KML'
, rf' ,,,,,{ ~'Jrewo J tJ Jean Paoli, Microsoft XML architect "'IL t;O •uti .r 'JI tl1r W3(' Xrh •pi cil 'alrUI

Learn the secrets of successful
real-world business applications
using XML products from
Microsoft' and these leading
XML companies:

~ SoftQuad

CHRYSTAL
software

MICROSTAR

webMethods

" Inso·
~

.._ CIOrp.

TEX~

The definitive resource for the Brave New Web of smart
structured data and electronic commerce

~ Start by understanding what XML is, why it came to be, how it differs from
HTML, and the handful of vital concepts that you must understand to apply
XML quickly and successfully

~ Experience what it's like to use XML, through illustrated walk-throughs of XML
tools- including hot new Web servers fore-commerce, content management,
structuring, creation, and presentation

~ Master the details of the XML language and related technologies from
reader-friendly, in-depth presentations

The accompanying CD-ROM brings together an amazing set of XML resources:

~ An expert selection of free XML software-over 55 packages!

~ XML Sponsor Showcase: leading vendors present trialware, demos, in-depth
information, examples, and more

~ XML SPECtacular-complete, browseable, printable copies of vital
XML-related standards and specs

About the Authors
CHARLES F. GOLDFARB is the inventor of SGML, the International Standard (ISO
8879) on which both XML and HTML are based. He is the author of The SGML
Handbook and co-author of the SGML Buyer's Guide.

PAUL PRESCOD is a leading XML consulting engineer and a member of the W3C
XML team that is working on the development of XML and XI ink.

PRENTICE HALL i Upper Saddle River, NJ 07458 I http:j /www.phptr.com

$44.95 U.S./$63.00 Canada

ISBN 0-13-081152-1

0 l J . 9 78 01 30 LJ Tr

