

Merrill Communications LLC
d/b/a Merrill Corporation

Exhibit 1006 pt. 2

An online auction is the epitome of a complex
real—time interactive application, so the Micros-oft
Web Applications Tit-am built a realistic Auction Demo
to show how simply one can be implemented as an
XML three-tier Web application. This chapter is

sponsored by Microsoft Corporation.
, and wasprepared by Charles

Heinemanu.

lates an online auction using technologies that are available in
Internet Explorer 4.0 (IE 4.0). It allows you to View the items

available for auction, place bids on those items, and monitor the bids
placed by fellow bidders.

Like Other three—tier Web applications, the Auction Demo has data
. sources on the backend, a user interface on the client, and a Web server in

the middle. We’ll see how it was developed, using just three permanent Web

pages:

ring he Auction Demo is a three—tier Web application that simu-

userInterface.htm

This page uses Dynamic HTML (DHTML) to allow the Web
browser to present the auction information to the user. It contains
scripts that collect or update data on date middle tier by requesting
Active Server Pages (ASP).

auction.asp

This page is an ASP file. When userInterfacehtm requests this
page, the scripts in it are executed on the server. The scripts

@1998 THE XML HANDBOOKm 79

80

CHAPTER 6 | BUILDING AN ONLINE AUCTION WEB SITE

generate auction.xml, an XML document that contains the latest
auction data, which is delivered to the client.

makebid.asp

This page is requested by userInterface.htm when the user wants

to make a bid. It is executed on the middle tier, causing the data

source to be updated with the new bid information.

The user interface (UI) for the Auction Demo is shown in Figure 6—1. It is

the rendition of the userInterface.htm Dynamic HTML page, which is
downloaded to the client when the user clicks on a link to the auction.

That page has scripts within it that handle all the client—side activity.

That includes requesting data from the middle tier in order to display the

most current values of the items and bids. We’ll see later how the UI page

does its thing, but first let’s look at how the middle tier collects and trans-

mits the data. It does so by packaging the data as XML documents.

6.I | Getting data from the middle tier

The role of the middle tier in a Web application is to gather information
from data sources and deliver it in a consistent manner to clients. In the

Auction Demo we start with a single data source, an ODBC—compliant

database. (Later we’ll see how multiple data sources of different kinds can

be accessed.)

The “Auction” database used for the Auction Demo is a relational data—

base with two tables, an “Item” table and a “Bids” table. The “Item” table

contains data about each of the items up for auction. It is shown in Figure
6-2.

For the sake of clarity, we’ll just cover the “Item” table in this chapter (the

“Bids” are handled similarly). You can see the full demo at http: / /
www.microsoft.com/xml. We want to deliver the data in that table in the

form of an XML document, so the client’s user interface page won’t have to

know anything about the actual data source.

@1998 THE XML HANDBOOKTM

i1

CURRENT ITEMS E
Vase and Stones $3300
Still Life I Onions $3200
Sandstone $3500 ‘r'
Jewelry Box $2800
Personal Objects $3700
Still Life I Sweets $2800 E‘Eid‘ie"

Bread and Apples $2600 (enter name)

Rnbbits $3100 George
Risotto $3100 Ringo

Paul

opening price
RAnnoM BIDDER

'1 AC H‘Jl‘f‘i’ E

351$ Fannie: History Duannehiimscieen Mai
33

' Linda Mann
VASE AND STONES
iiopwigl‘il s 1997 Lima Mam a mine Mia-wail

Oil, 1996, 20x30 inches 5
FREE

(hm;
$3300
$3200
$3100
$3000

time

itfi
10:43? mil
10:47 RM
19:47 AM

10:44 QM

 [El—I-— “' J "i
:EE‘JIFIQ‘? dam-Hologiu—hnmlgsemboaMubarak]

 ' "I 'Egmwms-‘u'

Figure 6-1 The Auction Demo user interface.

Tlflii Alflst

fv’ass and Stones :Linda Mann
Still Life 1“ Onions :Linda Mann

Sandstone jLinda Mann
Jewelry Box Linda Mann

Personal Objects“ ILinda Mann
Still Life 1“ Sweets iLinda Mann
Bread and fipples lLinda Mann

Babbits lLinda Mann
Risotto l Linda Mann

l2EIx3EI inches on

izoxso inches on
lEUKBU inohss Oil

iaoeao inches ioii
12oeao inches Ion
!2oeao inches ion
l2ElK3U inohss Oil
!2E|}130 inohss .Oil
l2oe3o inches on

Figure 6-2 The Auction Demo item table.

@1998 THE XML HANDBOOKTM

Dimensions ' Materials '_ Year

fiaflmmjlw 0m. . ”Waikiki

1999

199?

1995

1994

1995

1994

1995

1999

_ 1995

81

82

CHAPTER 6 | BUILDING AN ONLINE AUCTION WEB SITE

6.l.l Defining the XML document structure

The key to creating useful XML documents is the proper structuring of the
data. For the Auction Demo, that means deciding how a record in the “Item”

table will be represented as an ITEM element in XML. There is a straight-
forward mapping, shown in the following data—less element:

Example 6-1. Template for an ITEM element.
<ITEM>

<TITLE></TITLE>
<ARTIST></ARTIST>
<DIMENSIONS></DIMENSIONS>
<MATERIALS></MATERIALS>
<YEAR></YEAR>

</ITEM>

For each field in the “Item” table, there is a corresponding subelement of
the ITEM element.

To generate XML documents with these ITEM elements, the Auction
Demo uses ASP files.

6.l.1 Using ASPfiles to generate XML
documents

XML can be generated on the middle tier using Active Server Pages. ASP
offers an environment in which Web authors can create documents dynam—

ically by intermixing markup languages with in—line scripts. The scripts can
be written in a variety of scripting languages, including [Script and
VBScript, and can invoke server-side components to access databases, exe—
cute applications, and process information.

When a browser requests an ASP file, it is first processed by the server,
which delivers a generated Web page containing standard markup.

In an ASP file, commands and scripts are delimited by “<%” and “%>”.

Everything not so delimited is markup or data that will appear in the gener—
ated page. For example, consider the following trivial ASP file:

The file, after establishing that the scripting language is VBScript, creates
the variable “Total” with the value “2”. The following line generates an

@1998 THE XML HANDBOOKW

6.1 1 GETTING DATA FROM THE MIDDLE TIER

Example 6-2. Sample ASP file.
<%@ LANGUAGE VBScript%>
<%DIM Total = 2%>
<AMOUNT><%=Total%></AMOUNT>
_____________—————————-

XML “AMOUNT” element whose content is generated by executing the
small script, which in this case retrieves the value of “Total”.

When the browser requests this file, it will actually receive the XML doc-
ument that is generated from the file, as shown in Example 6-3:

Example 6-3. XML document generated by sample ASP file.
<AMOUNT>2</AMOUNT>
__—_________——————-———

Note that the ASP syntax (<% . . . 0/o>) does not cause an XML parsing
error. That is because the ASP file is not itself an XML document. The ASP

file is processed on the server and only the generated XML document is
returned to the client.

In the case of the Auction Demo, the file auction.asp is used to access the
“Auction” database and generate XML containing the data within the
“Item” and "Bids” tables. The ability to generate XML on the middle tier
makes it possible to provide the Web application with content that can be
manipulated on the client and refreshed without having to refresh the entire
user interface.

In Example 6-4, aucrion.asp begins like the ASP file in Example 6—2, by
declaring the scripting language. The next two lines are the XML declara—
tion and the start-tag of the root element (AUCTIONBLOCK) of the
XML document to be generated, which we will call “auction.xml”.

Example 6-4. Start of auction.asp.
<%@ LANGUAGE VBScript %>
<?XML VERSION="1 . O " ?>
<AUCTIONBLOCK>
__________—__———————-—

Next, a connection to the “Auction” database is established and that con—
nection is opened:

©1998 THE XML HANDBOOKTM

83

84 CHAPTER 6 | BUILDING AN ONLINE AUCTION WEB SITE

Example 6-5. Connecting to the database.
<%

Set Conn = Server.CreateObject(”ADODB.Connection")
Conn.0pen ”Auction",”Auction","Auction"
%>

———————_______________

A “record set” variable (ItemRS) is now established to contain each

record of the “Item” table as it is accessed, and a “Do While” loop is begun
to perform the access.

Example 6-6. Preparing to access the “Item” records.
<%

Set ItemRS = Conn.Execute("select * from item")
Do While Not ItemRS.EOF
%>

———————_______——_____

Next, the template in Example 6—1 is used to create the XML ITEM ele—

ment that will be generated. Just as in Example 6-2, a small script is inserted
as the content of each subelement of ITEM within auction.asp. In this case,
the script extracts the corresponding field’s data from the record set.

Example 6-7. Markup and scripts to generate an ITEM element.
<ITEM>

<TITLE><%=ItemRS("Title")%></TITLE>
<ARTIST><%=ItemRS(”Artist")%></ARTIST>

<DIMENSIONS><%=ItemRS("Dimensions")%></DIMENSIONS>
<MATERIALS><%=ItemRS("Materials”)%></MATERIALS>
<YEAR><%=ItemRS(“Year”)%></YEAR>

</ITEM>
'§—-———_____________

After an ITEM element is generated, the script moves to the next record
in the record set. The loop is then repeated. Once all of the records have
been run through, the root element is ended.

The complete auction.asp file is in Example 6—9.
Example 6-10 is an abridged version of the XML document (auc-

tion.xml) generated by the auctionasp file in Example 6—9.

©1998THE XML HANDBOOKTM

6.1 | GETTING DATA FROM THE MIDDLE TIER

Example 6-8. Repeating the loop and ending the document.
<%
ItemRS.MoveNext

Loop
%>

</AUCTIONBLOCK>

Example 6-9. The complete auction.asp file.
<%@ LANGUAGE = VBSCript %>
<?XML VERSION="l.O"?>
<AUCTIONBLOCK>
<%

Set Conn = Server.CreateObject(”ADODB.Connection")
Conn.Open "Auction",“Auction”,"Auction”
Set ItemRS = Conn.Execute("select * from item")
Do While Not ItemRS.EOF
%>

<ITEM>

<TITLE><%=ItemRS("Title")%></TITLE>
<ARTIST><%=ItemRS("Artist")%></ARTIST>
<DIMENSIONS><%=ItemRS(”Dimensions”)%></DIMENSIONS>
<MATERIALS><%=ItemRS(”Materials”)%></MATERIALS>
<YEAR><%=ItemRS("Year")%></YEAR>

</ITEM>
<%
ItemRS.MoveNext

Loop
%>

</AUCTIONBLOCK>

Example 6-10. Abridged auction.xml document generated by auction.asp.
<?XML VERSION="l.O"?>
<AUCTIONBLOCK>

<ITEM>

<TITLE>Vase and Stones</TITLE>
<ARTIST>Linda Mann</ARTIST>
<DIMENSIONS>20 X 30 inches<DIMENSIONS>
<MATERIALS>Oil</MATERIALS>
<YEAR>1996</YEAR>

</ITEM>
<ITEM>

</ITEM>

</AUCTIONBLOCK>__.

@1998 THE XML HANDBOOKTM

85

86

CHAPTER 6 | BUILDING AN ONLINE AUCTION WEB smz

6.l.3 Generating XMLfrom multiple
databases

One powerful reason to generate XML documents on the middle tier is that

they can contain data that is sourced from multiple independent databases.

The technique is similar to what we’ve already seen. The only difference is
that multiple database connections are made instead of one.

The ASP file in Example 6-11 does just this, generating a single XML
document with data from the databases “Galleryl” and “Gallery2”.

The XML generated by the ASP file in Example 6-11 looks structurally

just like Example 6—10, an AUCTIONBLOCK element with multiple
ITEM children. However, the data content originates from two different
data sources.

Also notice that, for the DIMENSIONS, MATERIALS, and YEAR ele-

ments, the source fields in the “Gallery2” database are actually labeled dif—

ferently from the corresponding fields in “Gallery1.” One benefit of

consolidating the data on the middle tier is that the semantics can be iden—

tified consistently, and therefore made more easily accessible.

6.I.4 Generating XMLfrom both databases
and XML data sources

The middle tier can source data of different kinds, not just databases. In

Example 6-11, the ASP file, as in previous examples, first accesses data from

“Gallery I”, an ODBC compliant database. However, it then adds data

from “Gallery 3”, a source ofXML documents.

The Gallery3 XML document is processed by the MSXML parser
(details below), which allows access to the document’s data content. Note

that there is no way — and no need — to tell whether Gallery3 is a persistent
document, or was generated by another middle-tier application.

Also, look at the YEAR element. Just as with the Gallery2 database in the
previous example, the original semantic label — in this case the DATE

generic identifier — is changed on the middle tier to ensure consistency.

@1998 THE XML HANDBOOKTM

876.1 1 GETTING DATA FROM THE MIDDLE TIER

Example 6-11. Generating one XML document from two databases.____—_—————————-
<%@ LANGUAGE = VBScript %>
<?XML VERSION=”1.0"?>
<AUCTIONBLOCK>
<%

‘The connection to the Galleryl data source is made
Set Conn = Server.CreateObject("ADODB.Connection“)

Conn.Open "Galleryl",“Galleryl",”Galleryl"
Set ItemRS = Conn.Execute("select * from item“)
DO While Not ItemRS.EOF
%>

<ITEM>

<TITLE><%=ItemRS("Title")%></TITLE>
<ARTIST><%=ItemRS("Artist")%></ARTIST>
<DIMENSIONS><%=ItemRS("Dimensions")%></DIMENSIONS>
<MATERIALS><%=ItemRS("Materials")%></MATERIALS>
<YEAR><%=ItemRS("Year")%></YEAR>

</ITEM>
<%
ItemRS.MoveNext

Loop
%>

<%

'The connection to the Galleryz data source is made
Set Conn = Server.CreateObject("ADODB.Connection")

Conn.Open "Gallery2","Gallery2","Gallery2"
Set ItemRS = Conn.Execute("select * from item")
Do While Not ItemRS.EOF
%>

<ITEM>

<TITLE><%=ItemRS("Title")%></TITLE>
<ARTIST><%=ItemRS(”Artist")%></ARTIST>
<DIMENSIONS><%=ItemRS("Size")%></DIMENSIONS>
<MATERIALS><%=ItemRS("Medium")%></MATERIALS>
<YEAR><%=ItemRS("Date")%></YEAR>

</ITEM>
<%
ItemRS.MoveNext

Loop
%>

</AUCTIONBLOCK>———————————————_

©1998THE XML HANDBOOKTM

88 CHAPTER 6 BUILDING AN ONLINE AUCTION WEB SITE

Example 6-12. Generating one XML document from a database and
anothernXBdI.docunnent.

<%@ LANGUAGE = VBScript %>
<?XML VERSION="1.0"?>

<AUCTIONBLOCK>
<%

Set Conn Server.CreateObject("ADODB.Connection")
Conn.Open "Galleryl",”Galleryl",”Galleryl"
Set ItemRS = Conn.Execute("select * from item“)
Do While Not ItemRS.EOF
%>

<ITEM>

<TI"LE><%=ItemRS("Title")%></TITLE>
<AR”IST><%=ItemRS(”Artist")%></ARTIST>
<DIMENSIONS><%=ItemRS("Dimensions")%></DIMENSIONS>
<MATERIALS><%=ItemRS(”Materials")%></MATERIALS>
<YEAR><%=ItemRS("Year")%></YEAR>

</ITEM>
<%
ItemRS.MoveNext

Loop
%>

<%

'Here the connection to the Gallery3 data is made
Set XML 2 Server.CreateObject("msxml")
XML.URL = "http://datasource3/Gallery3.xml"
Set Items = XML.root.children

For I = 0 to Items.length — 1
%>

<ITEM>

<TITLE><%=Items.item(I).children.item(“TITLE").text%>
</TITLE>

<ARTIST><%=Items.item(I).children.item("ARTIST”).text%>
</ARTIST>

<DIMENSIONS><%=Items.item(I).children.item("DIMENSIONS").text%>
</DIMENSIONS>

<MATERIALS><%=Items.item(I).dhildren.item("MATERIALS").text%>
</MATERIALS>

<YEAR><%=Items.item(I).children.item("DATE").text%>
</YEAR>

</ITEM>
<%Next%>

</AUCTIONBLOCK>

©1998THE XML HANDBOOKTM

6.2 | BUILDING THE USER INTERFACE

6.1 | Building the user interface

The user interface is critical to the success of any application. It must allow

the user to interact with the application in an efficient and straightforward

manner. The user interface for the Auction Demo was built using DHTML.

DHTML is a set of features in Internet Explorer 4.0 for creating interac—

tive and visually interesting Web pages. It is based on existing HTML stan—

dards and is designed to work well with applications, ActiveX controls, and

other embedded objects.

With DHTML a developer can create a robust and efficient UI without

additional support from applications or embedded controls, or even return

trips to the server. A Dynamic HTML page is self—contained, using styles

and scripts to process user input and directly manipulate the HTML
markup and other text within the page.

Let’s see how userInterface.htm creates the Auction Demo interface by

using scripts and the [E 4.0 Document Object Model. Two basic techniques
are employed: procedural scripts and descriptive binding.

6.1.l Using procedural scripts

Internet Explorer 4.0 includes the MSXAJL parser, which exposes the parsed
XML document as a document object model.1 Once exposed, scripts can
access the data content of the XML elements and dynamically insert the
data into the user interface.

The userInterface.htm code in Example 6—13 applies MSXIWL to auc—

tion.xml, the XML document generated by auction.asp. That creates an

ActiveX object representing the parsed document.

Example 6-13. Creating the auction document object.
var auction
auction.URL

new Activexobj ect ("msxml") ,-
"http: //Webserver/auction. asp " ;

1. The W3C is currently developing a common document object model for

XML and HTML. There is a working draft on the CD—ROM. The IE 4.0

Document Object Model attempts to maintain compliance with the W3C draft
as it evolves.

@1998 THE XML HANDBOOK1W

89

90

CHAPTER 6 | BUILDING AN ONLINE AUCTION WEB SITE

In Example 644, the script next retrieves the root element. It then navi—
gates the tree until it locates the TITLE element within the first ITEM ele—
ment of auction.xrnL The innerText property is used to insert the data
content of TITLE into the user interface as the value of the “item__title"
attribute, which appears on a DIV element.

Example 6-14. Extracting data from the auction document object.
var root = auction.root;

var itemO = root.children.item("ITEM",0)
var title = item0.chi1dren.item("TITLE”).text;
document.all("item_title").innerText = title;
<DIV ID="item_title"></DIV>
_________________—————————-

One of the benefits of using procedural scripts to display XML docu—
ments is that you can manipulate the data content of an XML element
before you display it. For example, if you wanted to display the dimensions
of each painting using the metric system, rather than feet and inches, your
script could simply convert the content of the DIMENSIONS element
from inches to centimeters.

6.2.! Using descriptive data binding

The [E 4.0 XZWL Data Source Object (XML D50) is a declarative alterna—
tive to the procedural scripts described in the last section. The XML D80
is an applet (see Example 6-15) that enables the data of XML elements to
be bound as the content of HTML elements.

Example 6-15. The IE 4.0 XML Data Source Object applet.
<APPLET ID=auction CODE=com.ms.xml.dso.XMLDSO.c1ass MAYSCRIPT

WIDTH=0 HEIGHT=0>

<PARAM NAME=“url" VALUE=“auCtion.asp">
</APPLET>
__________________———————-

In Example 6-15, the “url” parameter points the XML DSO to auc-
tion.asp, which causes auctionxml to be generated on the middle tier. A
persistent XML source could also have been used.

@1998 THE XML HANDBOOKTM

te the part of the userIn Example 6-16, data binding is used to popula

interface that shows the painting and the caption beneath it.

Example 6-16. Data binding with the XML DSO.
<TD>

<DIV STYLE="margin—1eft:16px;

margin—top:l6px;margin—right:l6px">
<DIV ID=pict></DIV>

<DIV CLASS="details">

<SPAN DATASRC=#auCtion DATAFLD=
<SPAN DATASRC=#auCtion DATAFLD=YE
<SPAN DATASRC=#auction DATAFLD=DIMENSION

MATERIALS>,
AR>,

S>

With the XML DSO applet embedded in the Web page, no scripting is
required to bind the data content of XML elements to HTML elements.
Instead, the name of the document object (ID of the APPLET in Example
6-15) is specified as the value of the DATASRC attribute, and the generic
identifier of the XML element is specified for the DATAFLD attribute.

One advantage of displaying XML with the XML DSO is that the XML
document is processed asynchronously to the rendering of the page. There—
fore, if the inventory of paintings were very large, the initial elements of the
XML document could be displayed even before the last elements were pro—
cessed.

6.3 | Updating the data source from the
client

trn on the client obtained data to display
on the middle tier. It can also enable the
king another middle tier page, make—

We have seen how userlnterfaceh
to the user by invoking auctionasp
user to make his own bid by invo

bid.asp.

In the Auction Demo, the u
name in the first row of the bi

ser bids by overwriting the price and bidder
d table. A bid therefore consists of the “title”

©19981WHLXML HANDBOOKTM

92

CHAPTER 6 | BUILDING AN ONLINE AUCTION WEB SITE

of the item currently displayed, the “price” of the new bid, and the name of
the new “bidder”.

These data items must be passed as parameters to makebid.asp, which
executes a script to process them and update the database. The script
returns to the client a "return message” XML document: a single element
containing information about the status of the processing.

The script in userlnterfacehtm (see Example 6-17) begins by assigning
the title of the current item up for auction to the “title” variable, the value
of the “price” text box to the “price” variable, and the value of the “bidder”
text box to the “bidder” variable.

It then creates the return message document object, which will state
whether makebid.asp successfully updated the database. The three variables
are passed as parameters to the ASP file when it is invoked.

Example 6-17. Sending a new bid to makebid.asp.
var title = current_item.children.item("TITLE").text;
var price = price.value;
var bidder = bidder.value;

var returnMsg = new ActiveXObject("msxml“);

returnMsg.URL = “http://auction/makebid.asp?title=" +
title + "&price=” + price + "&bidder=" + bidder;———————_—_—________

In Example 6—18, makebid.asp (called by userInterfacehtm in Example
6—17) assigns the values of the parameters “title”, “price”, and “bidder” to
variables with the same names.

The “BidRS” record set object is then created and a connection to the
“Auction” database is made. Note that the connection is made for both

reading and writing. The “Bids” table is then opened and the new informa—
tion is added to the record set, after which the connection is closed. The

process is much the same as it was for auction.asp, except that the database
is written to instead of just being read.

Finally, makebid.asp generates the return message document with the
status of the update.

©19981Wm XML HANDBOOKTM

6.4 [CONCLUSION

Example 6-18. The makebid.asp file updates the database.________________.__.
<%@ LANGUAGE = VBSCript %>
<%

title = Request.QueryString(”title")

price 2 Request.QueryString("price")
bidder = Request.QueryString("bidder”)

Set BidRS = Server.CreateObject("ADODB.RecordSet")
connect = "data source=Auction;user id=sa;password=;"
BidRS.CursorType = 2

BidRS.LockType = 3 ‘ read/write
BidRS.Open "Bids“, connect

BidRS.AddNew

BidRS(”item") = title
BidRS("price”) = price
BidRS(”bidder") = bidder
BidRS.Update
BidRS.Close

%>

<STATUS>OK</STATUS>

6.4 | Conclusion

The entire Auction Demo was built using the methods described above. You

can get a head start on building a similar Web application by modifying
these scripts to suit your particular requirements.

XML enables Web applications by providing dynamic, accessible content
that can be navigated and manipulated on the client. In addition, it enables
the updating of content without having to refresh the entire user interface.
This ability saves time by reducing round trips to the server for information
that already exists on the client.

With XML, users can manage data over the Internet just as they pres-
ently do on their local machines. As a result, the Web is made a more inter—
active and interoperable medium. As the information superhighway is
transformed into the data superhighway, Web applications similar to the

©19981¥w XML HANDBOOKW

93

94 CHAPTER 6 | BUILDING AN ONLINE AUCTION WEB SITE

Auction Demo will allow for better utilization of the vast resources made

available by the Web.

- Analysis The Auction Demo clearly illustrates the
'. architecture of a three-tier application. It uses the middle tier as a

transient data aggregator and normalizer. In other chapters you'll

, see different approaches to the middle tier, including persistent

l storage of metadata and the use of object paradigms rather than

' data paradigms.

@1993 THE XML HANDBOOKTM

XML and EDI:

The new Web

commerce

I Traditional EDI: Built on outdated principles

I Ubiquitous EDI: A quantum leap forward

I The New EDI: Leveraging XML and the Internet

@1998 THE XMLH OOOOOOO 1“

(flap!!!

XML and the Internet will dramatically reshape

the. Electronic Data-Imercbange-{EDIJ landscape. By
driving down eosmand complexity, EDI will become
a truly ubiquitous technology that will reshape
business as we kn_ow-it_._ This introduction to BB! is

sponsored by POIET Software Corporation. ' -.- - -
'-- - - - - ' -. ., developers of'objeét-m'ientetl
airtime for XMl-based infoniiation systems. It was
prepared by Mike Hogan.

lions of dollars in automating their internal processes. While
this investment has yielded significant improvements in effi—

ciency, that efficiency has not been extended to external processes.
In effect, companies have created islands of automation that are isolated

from their vendors and customers — their trading partners. The interaction

among companies and their trading partners remains slow and inefficient
because it is still based on manual processes.

0 ver the past several decades, corporations have invested tril—

1.l | What is EDI?

Electronic Data Interchange (EDI) has been heralded as the solution to this
problem. ED] is defined as the exchange of data between heterogeneous sys—
tems to support transactions.

EDI is not simply the exportation of data from one syStem to another,
but actual interaction between sysrems. For example, Company B is a sup-

plier to Company A. InSteacl of sending purchase orders, bills and checks in

@1998 THE XML HANDBOOKTM 97

98
CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

hard copy form, the two might connect their systems to exchange this same
data electronically.

In the process they could benefit in many other ways, including faster
turnaround on orders, better inventory control, reduced financial float,
complete real—time information about orders and inventory for improved
decision-making, reduced costs for manual data input, and more. Compa—
nies that have implemented EDI rave about the various benefits.

In fact, these benefits can be expanded to a chain of suppliers. For exam—
ple, Company C might be a supplier to Company B above. If companies B
and C implement EDI, then Company A gains the additional benefits of
superior integration with their entire supply chain of suppliers.

1.l.l Extrcmets can’t hack it

There is a significant gap between the business benefits described above and
the actual implementation of EDI. This is because the actual implementa—
tion of “traditional EDI” is fundamentally flawed. It is difficult and costly
to implement and, even worse, it requires a unique solution for each pair of
trading partners. This situation is analogous to requiring a unique tele-
phone line to be wired to each person to whom you wish to speak.

Many people falsely proclaimed the Internet as the solution to this prob—
lem. By implementing EDI over a single network, our problems would be
solved. This “solution” was so exciting it was even given its own name, the
extranet. Unfortunately, a network with a common protocol is still only a
partial solution.

This is because the systems implemented in each company are based on
different platforms, applications, data formats (notations), protocols, sche—
mas, business rules, and more. Simply “connecting” these systems over the
Internet does not, by itself, solve the problem. To use the phone system
analogy again, this is analogous to wiring each business into the global
phone network, only to realize that each company’s phone system is unique,
and incompatible with every other phone system.

And given the trillions ofdollars companies have invested in automation,
they are not simply going to replace these systems with new “compatible”
solutions, assuming such things existed.

@1998 THE XML HANDBOOKTM

7.1 | WHAT IS EDI?

1.1.: XML can!

The eXtensible Markup Language (XML) provides a solution for EDI over
the Internet. XML is a universal notation {data format) that allows comput-
ers to srore and transfer data that can be understood by any other computer
system. XML maintains the content and structure, but separates the busi-
ness rules from the data. As a result, each trading partner can apply its own
business rules. This flexibility is critical to creating a complete solution for
EDI.

There are additional technologies which are also part of the complete
solution. Security, for example, is critical to EDI. Transactional integrity,
connection stability, authentication and other services are also critical to

implementing a complete solution. These requirements are addressed by
technologies that are layered on top of the In ternet. We refer to them gener—
ically as Internet-based services.

The final piece of the EDI solution is data storage. XML introduces a
unique set of requirements for hierarchical naming and structure. It also
requires rich relationships and complex linking. XML’s use in EDI adds fur-
ther requirements for metadata and versioning. These requirements levy
heavy demands on database technology.

1.I.3 The new EDI

By combining XML, the Internet, Internet—based services and database

connecrivity, we have a complete solution for New ED]. Together, these
technologies will not only change EDI, they will change our entire business
landscape. EDI will metamorphose from a handful of unique interconnec-
tions, defined by the supply chain, into a “supply web”. The supply web is
an intelligent common fabric of commerce over the Internet.

According to Metealfe’s Lawl, the value of a network is roughly pr0por-
tional to the number of users squared. Imagine what this means when your
EDI “network” expands from a one-to-one proposition, to a true network
that encompasses practically every company in the world. Suddenly, the
trillions of dollars companies have invested in internal automation increase
in value by several factors. By the same token, this information can also be

1. Robert Metcalfe is the creator of Ethernet.

@1998 THE XML HANDBOOKTM

99

100 CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

extended to customers, adding significant value to the vendor—customer

relationship, thereby enhancing customer loyalty.

This is a pivotal time in the history of technology. With the emergence of

XML, all of the pieces are available to create a universal mechanism for

EDI. The Internet provides the transport. XML provides the flexible, exten—

sible, structured message format. Various Internet—based services provide

solutions for security, transactional integrity, authentication, connection

stability, network fail—over and more.

Add to this sophisticated data storage and you have all of the pieces nec-

essary to unite corporate islands of automation into a single coherent fabric

of electronic commerce. This will result in dramatic improvements in effi—

ciency, cost-savings, superior access to real—time data for analysis and deci-

sion—making, superior inventory management, and more.

Let’s examine these propositions in detail, and the technology that makes

them possible. The new EDI is already emerging as the driving force behind
the use ofXML on the Web.

LIA Ubiquitous EDI: A quantum leap
forward

Ubiquitous EDI will have a profound impact on business—to—business and I

business—to—consumer relationships. The many problems with current

implementations of EDI have relegated it to large enterprises and selected
industries. However, the combination of the Internet, Internet—based tech—

nologies, and XML will open up EDI not only to small-to-medium enter-

prises (SMEs), but also to individuals (Example 7—1).

Through deployment of these technologies, EDI will experience growth

and market penetration that will rival the e—mail market. Electronic com-

merce will finally blossom on the Web and become an everyday part of our

lives. In short, EDI will usher in a new era in computing. The Internet will

metamorphose from a transport for Web pages into a ubiquitous and seam-

less foundation for every imaginable transaction. In the future, EDI will

touch every aspect of computing.

Various forms of “data interchange” have been implemented with various

degrees of success. Examples include OLE and DDE for sharing data

among heterogeneous applications on the same computer. CORBA, Java

RMI, COM and COM+ are generalized technologies for data interchange

@1998 THE XML HANDBOOKTM

7.1 | WHAT IS EDI?

Example 7-1. The value of data interchange.
-_-—-_-_-_-_-_____————-—_———-———_—
Mike opens his company expense report, and in the microsecond it takes to
launch, he reminisces about the old days when he had to fill out these
things himself. Now the computer does it for him. Mike recently took a
trip to Utah to close a major deal. In the process he purchased a plane
ticket, a rental car and various meals. In the old days, he used to enter all of
these charges manually into an expense program...not any more.

Mike uses a corporate American Express card for these purchases. When
he opens the expense report, it automatically connects to American Express,
via EDI, and presents a list of new charges. Mike selects the charges that are
appropriate for this expense report.

American Express sends this data to Mike’s computer, which automati-
cally Formats the data into his expense report. Mike then clicks the send
button and the expense report is sent to his manager to approve. Then the
company’s bank insrantly wires the money to Mike's bank account.

Behind the scenes, all these companies are establishing connections, as
needed, to share information in a secure and reliable manner using XML
and the Internet. But Mike doesn’t concern himself with what goes on
behind the scenes, he’s off to close another big deal in Washington.___________—_——————

among systems. Then there is the traditional EDI market for the “Elec-
tronic exchange of data to support business transactions”.1

In focusing on the traditional EDI market, the seminal questions are:
“What is the real value of EDI?” and “Why should I care?”

1.l.5 The value ofEDI

While traditional EDI is very costly and difficult to implement, the poten—
tial benefits are very significant. Companies that have implemented EDI
rave about benefits like improved efficiency, vendor management, cost sav—

ings, superior access to information for decision making, tighter inventory
control, customer responsiveness, and its a competitive advantage that can
be marketed to attract new customers.

1. European WWW/crimp on Open Systems Rehniml Guide on Electronic Commerce
(EWOS ETC 066)

@1998 THE XML HANDBOOKTM

101

102 CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

EDI was initially implemented to improve efficiency by enabling compa—

nies to eliminate costly and slow manual methodologies, like the processing

of purchase orders and bills. It was thought that by allowing the computers

of two or more companies to share this information, they could achieve

dramatic improvements in efficiency.

However, the largest savings are derived from a complete shift to EDI

that allows companies to completely eliminate their hardcopy processes.

The traditional 80/20 rule applies in reverse to EDI, meaning that it is the

last 20% of your trading partners to convert to EDI who account for 80%

of the potential savings.

This is because even with 80% of your trading partners using EDI, you

must still maintain the same manual processes for the remaining 20% who

don’t. While most companies have not been able to completely convert

from hardcopy processes to EDI, the 20% savings companies have realized

have still been very significant. With ubiquitous EDI enabling companies

to completely eliminate their manual processes, the savings will improve
dramatically.

With EDI, companies are also able to manage their supply chains much

more efficiently. Through EDI, companies have been able to reduce the

average time from issuance of an order to receipt of goods from several
weeks, to a matter of days. By improving inventory control, companies are

able to minimize their investment in costly inventory, while still being able

to address spikes in business. For industries where inventory costs are a sig—

nificant part of their business, like manufacturing, this represents a signifi—

cant cost savings.

EDI also reduces the financial float by eliminating the typical order gen-

eration, delivery and processing, by 5-7 days. By combining EDI with Elec—

tronic Funds Transfer (EFT) companies can also reduce the financial float

by 8—10+ days. Based on the amount of money1 involved, this can represent
a significant savings.

EDI also provides companies with superior real—time information upon
which to base decisions. Everyone recalls stories of companies who simply

didn’t have the data to realize how bad things were, until it was too late.

With EDI, companies have access to complete data in real—time. The ability

1. Electronic Commerce/Electronic Data Interchange and Electronic Fundx Transfer
(EC/EDI/EFT), http: / /www . dfas . mil /dir_init / ec_edi/
index . htm

@1998 THE XML HANDBOOKTM

7.2 | TRADITIONAL EDI: BUILT ON OUTDATED PRINCIPLES

to collect, manipulate and measure information about your relationships
with vendors and customers can be critical to your company’s success.

Customer responsiveness is becoming increasingly important. Many
companies have leveraged technology to dramatically improve customer
responsiveness. A good example of this is Federal Express, which has created
a Web site where customers can track the status of their packages.

This is only accomplished through FedEx’s end—to—end dedication to
EDI. By capturing information about the package status at each step in the
process, and making this information accessible to customers, they have
made themselves leaders in customer support. This is critical to building

and growing businesses, especially in the Internet-age.

Some companies who have implemented EDI with one supplier, have
gone on to market this capability to other pocential customers, as a unique
selling point. This has enabled them to grow their business. As EDI
becomes more ubiquitous, the tide could shift to the point where compa»
nies will not accept vendors who are not EDI—capable. This refers back to
the dramatic savings that can be achieved by a complete conversion to EDI.

M | Traditional EDI: Built on outdated
principles

“Traditional” EDI is based on outdated principles that will cause it to fade
into technological obscurity, as it becomes embraced and replaced by the
“New” EDI. Traditional EDI refers to the use of rigid transaction sets with
business rules embedded in them. This model simply does not work in

today’s rapidly changing business environment.

This problem is compounded by the fact that companies have chosen to
interpret these transaction set standards in ways that suit their unique busi—
ness requirements. As a result, vendors who engage in EDI with multiple
customers typically must create a unique solution to handle the transaction
sets from each company. This makes the implementation of EDI far too
expensive, especially for SMEs.

These and other problems have hindered the growth of EDI. However,
by solving the problems of traditional EDI, we will usher in a new era,
where EDI is as common as an Internet account is today.

@1998 THE XML HANDBOOKTM

103

104 CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

1.1.! The history ofEDI

EDI is a process for exchanging data in electronic format between heteroge—
neous applications and/or platforms in a manner that can be processed
without manual intervention.

EDI dates back to the 19705, when it was introduced by the Transporta—
tion Data Coordinating Committee (TDCC). The TDCC created transac-

tion sets for vendors to 1 follow in order to enable electronic processing of
purchase orders and bills.

At the time, the technology landscape was very different from what it is
today. Lacking ubiquitous powerful CPUs, a common transport, and a file
format that allows for flexibility, they defined strict transaction sets. These

transaction sets addressed the needs for data content, structure and the pro—
cess for handling the data. In other words, the business rules were embed-
ded into the transaction set.

The incorporation of business rules into the definition of the transaction
set causes many problems, because:

1. Business rules vary from company to company;

2. Business rules for one size company may be completely inap-
propriate for companies of another size;

3. Business rules are subject to change over time according to
changes in market dynamics.

In short, the use of fixed and rigid transaction sets, while necessary at the
time, have limited the value of EDI, and therefore stunted its growth.

1.1.! EDI technology basics

Traditional EDI is based on fixed transaction sets. These transaction sets are

defined by standards bodies such as the United Nations Standard Messages
Directory for Electronic Data Interchange for Administration, Commerce
and Transport (EDIFACT), and the American National Standards Insti-

tute’s (ANSI) Accredited Standards Committee X12 sub-group.

1. TIM Alytbz'ml Vii/m ofED] Standards by Alan Chute, http: / /
www. filex. com/fileX/edimyth. htm

@1998 THE XML HANDBOOKTM

7.2 | TRADITIONAL EDI: BUILT ON OUTDATED PRINCIPLES 105

Transaction sets define the fields, the order of these fields, and the length
of the fields. Along with these transaction sets are business rules, which in ..

the lexicon of the EDI folks are referred to as “implementation guidelines”.

To actually implement EDI, the trading partners would follow these
steps:

1. Trading partners enter into an agreement, called a trading
arrangement.

They select a Value Added Network (VAN).

3. The trading partners typically either contract for, or build

themselves, custom software that maps between the two data
set formats used by these trading partners.

4. Each time a new trading partner is added, new software
would have to be written to translate the sender’s data set for

the recipient. In other words, you start from scratch with each
new trading partner.

Transaction sets are typically transmitted over expensive proprietary net—
work service providers called VANS, which generally base charges on a mix—
ture of fixed fees and message lengths. These fees can become quite
substantial, but they are typically overshadowed by the cost to build and
maintain the translation software. The VANS provide value—added services
such as:

1. Data validation (compliance) and conversion

2. Logging for audit trails

3 Customer support

4. A secure and stable network

Accountability5

6. Transaction roll—back to support uncommitted transactions

It is important to note that EDI is not simply the exportation of data
from one system to another, but a bi-directional mechanism for interaction

between systems. Because these disparate systems typically employ different
file formats (data notations), schemas, data exchange protocols, etc., the
process of exchanging data is very difficult.

@1998 THE XML HANDBOOKTM

106

CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

1.1.3 The problems of traditional EDI

Traditional EDI suffers from many problems that have limited its growth.
One of the most significant problems is the fact that it is based. on the trans—
fer of fixed transaction sets. This rigidity makes it extremely difficult to deal
with the normal evolution necessary for companies to introduce new prod-
ucts and services, or evolve or replace their computer systems.

In addition, these transaction sets include strict processes for handling
the data. These processes are not universally acceptabie to companies in var-
ious industries and of various sizes. This problem is compounded by a stan-
dardiaarion process that is too slow to accommodate the accelerating pace
of business today.

In addition, the high fixed costs of implementation have been too much
to juStiFy for SMEs. In short, there are a host of problems which, despite
the benefits of EDI, have prevented its universal adoption.

7.2.3.1 Fixed transaction sets

EDI is currently built on transaction sets that are fixed in nature. For exam—
ple, a contact field might include the individual’s name, title, company,
company address and phone number. However, the company does not have
the flexibility to add or subtract fields.

Why is this important?

Companies cannot be frozen in time by a fixed transaction set. This pre—
vents them from evolving by adding new services or producrs, changing
their computer systems and improving business processes. This inflexibiiity
inherent in the current custom solutions required to map data between
each trading partner pair is untenable, despite the significant benefits of
EDI (Example 7—2).

1.2.3.2 Slow standards evolution

EDI standards are defined by standards bodies that are structurally ill—
equipped to keep up with the rapid pace of change in the various business
environments they impact, as illustrated by Example 7-2.

These standards accmnmodate many companies with very different
needs. They also encompass not just the ontology, but the associated busi-

©1998 THE XML HANDBOOKTM

7.2 | TRADITIONAL EDI: BUILT ON OUTDATED PRINCIPLES

Example 7-2. Problems of traditional EDI: Healthcare//——The transaction sets created for the healthcare system were defined For the
traditional indemnity model, where the insurance company pays the doctor
on a per visit basis. However, the movement toward managed care was not
foreseen in this transaction set. Since managed care pays the doctor a set fee
per patient, but does not reimburse on a per visit basis, the standard trans—
action set simply doesn’t work.

The typical doctor sees a mixture of patients, some having managed care
insurance and others with indemnity insurance. In order to accommodate
this scenario, the doctor is forced to create a false “per visit” fee for managed
care patients. This false fee, which is required in order to “complete” the
transaction set, creates havoc with the doctor’s other billing systems, which
EDI was supposed to help.

Rigid transaction sets that enforce process as well as content are simply
ot flexible enough to address the ever—changing business environment.
%———

ness processes. As a result, it is very slow and difficult, if not impossible, to
develop one-size-flts—all solutions.

The current process for defining standards for transaction sets can take
years. This simply will not work in today’s business environment, which is
characterized by accelerated change and increased competition. However, in
an effort to jump—start the creation of industry ontologies in the form of
DTDs for XML, the work of the traditional EDI standards bodies could be
enormously valuable.

Historically, technology standards that are defined and managed in a top-
down fashion, like EDI standards, have been replaced by bottom-up stan-
dards that allow for independent and distributed development. In other
words, technologies like XML, that support greater flexibility and diversity,
while providing compatibility between implementations, typically replace
inflexible managed solutions like fixed transaction sets. The XML standard-
ization process is managed by the World Wide Web Consortium (W3C).

1.2.3.3 Non—standard standards

Despite the perception of standardization, there remains some flexibility in
the interpretation of these standards. The simple fact of the matter is that

@1998 THE XML HANDBOOKTM

107

l 08 CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

companies have unique needs, and these needs must be translated into the

information they share with their trading partners.

In practical terms, the customer is at a significant economic advantage in
defining these “standards”, vis—a—vis the supplier. As a result, suppliers are
forced to implement one-off solutions for each trading partner. In many of
the industries where EDI is more prevalent, the suppliers also tend to be the
smaller of the two partners, which makes the financial proposition even
worse (see 7.2.3.4, “High fixed costs”, on page 108).

Because of the various informational needs of companies, it is impracti—
cal to expect that EDI standards can be a one—size—fits—all proposition. The
variables of company size, focus, industry, systems, etc. will continue to cre—
ate needs that are unique to each company. As evidence, consider the
amounts companies spend on custom development and customization of
packaged applications.

7.2.3.4 High fixed costs

While large companies tout the financial and operational benefits of EDI,
these same benefits have eluded the SMEs. That is because of the high fixed
costs of implementation, which must be balanced against savings that are
variable.

Depending on the level of automation, implementing EDI for a large
enterprise is not substantially more expensive than it is for SMEs. In fact, it

can be more expensive for the SMEs. Larger companies can often imple—
ment a single EDI standard, while the SMEs must accommodate the vari-

ous standards of their larger partners. This can be very expensive.

Yet, ironically, the benefits are variable. 50, if savings are 2% of process—
ing costs, this might not be a substantial number for the manufacturer of

car seat springs, but it can be a huge number for GM, Ford or Chrysler.
SMEs simply do not have the scale to compensate for the high fixed costs of
traditional EDI.

Because of this some of the SMEs that claim to implement EDI are actu-
ally printing a hardcopy of the data feeds and re-typing them in their sys—
tems. The reason they implemented this faux—EDI is to meet customer

requirements, but they simply do not have the transactional scale to justify
the investment. Something must be done to bring down these costs (Exam—
ple 7—3).

@1998 THE XML HANDBOOKTM

7_2 | TRADITIONAL EDI: BUILT ON OUTDATED PRINCIPLES

Example 7-3. Problems of traditional EDI: Retail____________________————————-—-
One large retailer requires its vendors to implement EDI in order to qualify
as a vendor. However, like all traditional EDI implementations, the data set
is unique to the retailer.

For small companies, implementing this system can be quite an invest-
ment. Retail is a very fast-paced industry, because it is forced to cater to
ever—changing customer demands. As a result, some suppliers to this retailer
have implemented this costly technology, only to later lose their contract
with the retailer. In fact, because of the significant investment in technology
these companies were forced to make, they have sued the retailer.

If this technology were universally applicable, the vendor’s investment in
a single customer would be eliminated, as would the retailer’s legal liability.

7.2.3.5 Fixed business rules

Business rules are encapsulated in the definition of the transaction sets as
implementation guidelines. However, business rules are not something that
can be legislated, nor can they be rigid.

Business rules that are applicable for a large enterprise, may be com-
pletely inappropriate for an SME. To make matters worse, business rules for
a medium-sized enterprise may be wholly inappropriate for a small enter-
prise.

These business rules will also vary between industries. Even companies
that are in the same industry, and the same size will implement different
business rules. What’s more, business rules change over time. The earlier
healthcare example demonstrates this point.

Traditional EDI focuses too much on process as an integral part of the
transaction set. This is a fatal flaw. New technologies, like XML, support

the separation of process, or business rules, from the content and structure
of the data. Achieving this separation is critical to widespread adoption of
EDI.

The linkage between transaction sets and business rules creates addi—
tional problems. The real—life implementation of EDI typically requires cus—
tom solutions for each trading partner pair. This creates havoc when trying
to implement or modify global business rules.

For example, if your Company changed business policy to begin accept-
ing purchase orders, which you had refused to accommodate in the past,
you would have to manually change the individual software for each trad-

©1998 THE XML HANDBOOKTM

109

110 CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

ing partner. You could not make these changes on a global basis using tradi—
tional EDI.

This problem also impacts your ability to upgrade or replace your inter-

nal systems, since they are uniquely woven into the EDI software in place.
In essence, you can become locked into systems that may become obsolete

by the time you actually implement the total solution.

7.2.3.6 Limited penetration

EDI penetration has been very limited, when compared to the penetration
rates of other automation technologies. Yet the majority of the value of EDI
is derived by complete elimination of the hard—copy processes EDI is meant
to replace.

As mentioned above, EDI benefits do not follow the 80/20 rule, because

converting the first 80% of your vendors to EDI results in only 20% of the
potential cost savings. The remaining 80% of the costs remain, since the

company is forced to maintain all of the old manual process in tandem with

the electronic processes. The most significant savings come only from com—
pletely replacing all manual processes with EDI.

The real value of any network is in its adoption by users. Remember

Metcalfe’s Law: The value of any network is roughly proportional to the
number of users squared.

But EDI, in its current state, is not a single interlinked network. On the
contrary it is a series of one-to—one chains of data flow. As a result, it is vul—

nerable to alternative “networked” solutions like those enabled by XML,
the Internet, Internet—based services, and database connectivity.

1.3 | The new EDI: Leveraging XML
and the Internet

Now that we’ve established the tremendous benefits of EDI, and the struc—

tural problems of traditional EDI, the obvious question is: “How can we fix
the problems?”

Fortunately, new technologies are coming together to completely reshape
the EDI landscape. Today, EDI is currently implemented in a 1—to—1 man-

©1998 THE XML HANDBOOKTM

7.3 J THE NEW EDI: LEVERAGING XML AND THE INTERNET

ner between trading partners. These partnerships can then be extended

through tiers to create a supply chain.
This is all changing!

The new paradigm is the supply web. The supply web is based on utiliza—
tion of XML, the Internet, Internet—based services and database connectiv-

ity to create a network, or “web”, of trading partners.
Implementation and operational costs will plummet, trading partners

will implement one—size—fits—all solutions, and adoption will skyrocket And

the benefits will not be limited to the trading partners, they will be driven

down to end-users as well. EDI will become as commonplace as e—mail.

In short, EDI will dramatically alter the business computing landscape,
moving the world forward from our current islands of automation toward a

single fabric of commerce tying together businesses and end-users.

Traditional EDI is based on the technologies that existed in the 19708.

Now it is time to build a new EDI architecture on current technologies like
XML, the Internet, Internet—based services and database connectivity.

I XML provides the ability to separate the data and structure

from the processes.

I The Internet provides the ubiquitous connectivity upon which

a Web of interconnected trading partners can flourish.

I Internet technologies provide a layer of security,

authentication, transactional support and more, to support the
needs of EDI.

l Database connectivity means that XML data, and the business
rules that interact with that data, can be communicated

among disparate systems by means of middle—tier data filters

and aggregators.

Together, these technologies will remove the barriers to widespread adop-
tion of EDI. By leveraging these technologies, EDI will become more flexi—
ble, more powerful, less expensive and ultimately ubiquitous.

1.3.! XML

XML is closely related to HyperText Markup Language (HTML), the orig—
inal document representation of the World Wide Web, as both are based on

SGML. While HTML enables the creation of Web pages that can be

@1998 THE XML HANDBOOKTM

111

112

CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

viewed on any browser, XML adds tags to data so that it can be processed

by any application. These tags describe, in a standardized syntax, what the
data is, so that the applications can understand its meaning and how to pro—

cess it Example 7—4.

For example, in HTML a product name and a price might be somewhere
in the text. But the computer only knows that there is a collection of char-
acters and numbers. It cannot discern that this data represents a product

name and price. As a result, little can be done with the data.

With XML, however, the product name is tagged (e.g. product_name),

as is the product price (e.g. product_price). More importantly, there is an
association between the product price and the product name.

This information results in significant additional value. For example, a

user can now search for the best price on a specific product.

Example 7-4. XML insulates applications from diversity: Customer record

The following example demonstrates one of the values of XML. Below are

three different types of message documents from three different companies

(A,B and C). Each describes its respective company’s customer data:

Company A:
<Person name=“Mike Hogan" phone="6502864640"

E—mail=”mph@poet.com" />

Company B:
<Person name="Mike Hogan" street address="999 Baker Way"

city="San Mateo" zip="94404" phone=”6502864640"/>

Company C:
<Person name="Mike Hogan" phone=”6502864640"/>

The XML parser parses, or disassembles, the messages to show the “per-
son” element, which has associated attributes (“name”, “phone”, etc.). These

attributes, as you can see, differ in content and organization.

However, if your application was written to extract a person’s name and

phone number, it could work equally well with each of these document

types without modification. In fact, if these companies evolve their data to
include additional information, your application continues to function

without modification. This flexibility is one of the benefits ofXML.

XML documents must be “well-formed”, which means that most docu—

ment—type information — grammar and hierarchy — can be embedded in the

tags that “mark up” the individual document. There can also be an associ—

©19981¥m XML HANDBOOKTM

7.3 | THE NEW EDI: LEVERAGING XML AND THE INTERNET

ated document type definition (DTD), containing additional meta—informa-
tion that describes the data.

In either case, XML is self—describing. As a result, applications can be

very flexible in their ability to receive, parse and process very diverse sets of

information. This enables companies to write a single application that will
work with diverse sets of customers. In fact, such a system is even capable of

processing information from new trading partners in an ad hoc fashion.
This capability completely changes the dynamics of EDI.

Using XML, companies can separate the business rules from the content

and structure of the data. By focusing on exchanging data content and
structure, the trading partners are free to implement their own business

rules, which can be quite distinct from one another. Yet, using templates,
companies can work with legacy EDI, non—XML datatypes as well.1

1.3.! The Internet

Many companies heralded the cost savings and ubiquity of the Internet as

the death knell for VAN5. However, this future has not come to pass...yet.
The boldest of these claims was based on the notion that the extranet

would redefine the new computing paradigm. What these pundits failed to
realize was that the Internet alone does not address the needs of the EDI

community.

The EDI community is generally limited to the largest enterprises. EDI

is mission critical, and requires a dependable network. It also requires a level

of security that couldn’t find on the Internet. To put it simply, the savings
were not sufficient to justify the switch.

Furthermore, connectivity is only a small part of the problem, the largest
issue is the exchange of data in a universal fashion.

All these issues have now been addressed.

I Technology is now available to provide dial—up services to

support the Internet in addressing up-time and throughput for
mission critical information.

I Security has improved dramatically.

1. IntroducingWL/EDI, http: / /www. geocities . com/WallStreet/
Floor/5815/start . htm

@1998 THE XML HANDBOOKTM

113

114

CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

l The use ofXML will broaden the EDI customer base to

include SMEs and individuals. This new group ofcustomers is
much more price sensitive, so they are inclined to seek an
Internet—based solution.

I The ability to exchange data in a more democratic and ad hoc

manner will cause an explosion in the average number of EDI
connections.

The current average number of EDI trading partners, for those compa-
nies who utilize EDI at all, is two. Building EDI solutions based on XML,
and operating this over the Internet, which offers a low-cost ubiquitous
transport, will dramatically expand the value of EDI, according to Met-
calfe’s Law.

1.3.3 Internet technologies

Internet technologies have improved, and continue to improve dramati-
cally, now providing a critical mass of technologies that is capable of replac-
ing the services of VANS. Consider the following list of VAN services, each
followed by the Internet-based alternatives that offer greater functionality
and flexibility:

Data validation and conversion

XML DTDs, XML validation, templates, and structure—based
data feed interpretation.

Intermediary—based logging for audit trails

Ubiquitous XML-savvy repositories employed by all trading
partners enables rich logging for audit trails. Combining these
with elecrronic signatures ensures sysrem and company
identification.

Consulting, customer service and customer support

This function could be handled by VANs capable of making the
transition to Internet technologies, or by the other legions of
consultants.

@1998 THE XML HANDBOOKTM

7.3 | THE NEW EDI: LEVERAGING XML AND THE INTERNET

Security and accountability

Public key cryptography, certificate authorities, digital signatures
can assure secure transactions.

Connection reliability, stability

New technologies in bandwidth allocation, general improvement
in the stability of the Internet and alternative fail-over solutions

like dial—up continue to move the Internet toward supporting

critical real—time data flow. (Remember, it was originally designed
to withstand nuclear attack!)

Trading partner negotiation

Directories (X500, LDAP, NDS, Active Directory), certificate

authorities, digital signatures, e—mail, Internet versions of the

Better Business Bureau, etc., can support this function.

Transactional support (roll-back, etc.)

The improvements in remote messaging systems and transaction

processing monitors provide a layer of transaction support that is

capable of adding transactional integrity even on unstable
networks.

Because of the knowledge and experience of the VAN community, and
because of the anticipated growth of the entire EDI market, the VAN com-

munity is well positioned to transition into consulting or systems integrator
roles, helping companies implement these new technologies.

1.3.4 XML data storage

In other technological transitions, data storage has been a moot point, since
the data could be mapped more—or—less directly into relational tables or file

systems. More recently, object—oriented database management systems
became available for this purpose.

XML data, however, is composed ofself-describing information elements
that are richly linked, and that utilize a hierarchical structure and naming
mechanism. These qualities enable new data—access capabilities based on the

tree structure, such as context—sensitive queries, navigation, and traversal.

@1998 THE XML HANDBOOKTM

115

116 CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

“Native” XML—based support for these new capabilities can be provided
by a value-added content management layer above the DBMS. POET CMS
is an example of an object-oriented data storage solution that was designed
for this type of use.

1.3.5 Datafiltering

The source of the vast majority of EDI—related information is currently in
mainframes and relational databases. This data will be marked—up on the fly
with XML tags. XML data will also come from data sources such as:

I XML content management systems
Various Internet resources

I EDI—XML documents, both full documents like purchase
orders and short inter-process messages

I Result sets from applications, also in XML

These diverse sources mus: be communicated with by a middle—tier “data
filter” that can speak to each source in a manner that the source will recog-
nize. The data must then be filtered in source-dependent ways, based on
ones confidence in the data, application of consisrent business logic, resolu—
tion of the various element-type name ontologies, response mechanisms,
security, caching for performance, etc. Only then can the application
address the data in a consistent manner and receive consistent responses
from the middle tier.

The role of a data filter is shown in Figure 7-1. Products such as POET
Object Server and POET CMS can be used to build one.

The middle tier could maintain valuable meta—information that would

add structure and context to the data stream. Such information could
include:

Routing for the query, response, etc.

Source of the information (to indicate credibility, etc.)
Time stamps

Data, DTD, and tag normalization

Context and navigation aids

@1998 THE XML HANDBOOKTM

7.4 | CONCLUSION 117

Application:

/

Result Sets I

MetaData

/ x

‘ 3 \e.
Mainframe RDBMS Native XMLContent

Middle Tier

Data Sources:

Figure 7-1 Data filter in an XML-based EDI system

Further details on XML content management and the use of object-ori-
ented storage systems in the management of XML data can be found in

Chapter 27, “POET Content Management Suite”, on page 364.

1.4 | Conclusion

After decades of investment in corporate data centers, we have created

islands of automation inside companies. Their isolation from trading part—
ners limits the value companies can recognize from these systems.

EDI offers the ability to change all of this. EDI offers benefits like:

improved efficiency

supply chain management
real—time data and metrics

better planning

superior execution

control systems

resource management

@1998 THE XML HANDBOOKm

118

CHAPTER 7 | XML AND EDI: THE NEW WEB COMMERCE

l cost savings

l superior access to information for decision making
I customer responsiveness
l and more.

However, traditional EDI is very difficult and expensive to implement.
Because of problems like rigid transaction sets that embed business rules,

slow standards development, high fixed costs, and limited market penetra-
tion, EDI has n0t achieved broad adoption. Fortunately, new technology is
now available to address these problems and, in the process, reshape the
EDI industry.

XML, the Internet, Internet-based services and database connecrivity are
combining to create a revolution in EDI. Instead of forcing companies to
adapt their systems and business processes to the EDI data, this data will
dynamically adapt to the companies’ existing systems.

EDI will no longer be isolated to certain industries or the largest enter—
prises, it will become as ubiquitous as e—mail. EDI will transition from a

one-to-one supply chain to a richly interconnected web of trading partners
forming the supply web. Proprietary networks will become extinct, over
time, and VANs will evolve or evaporate.

This supply web will result in dramatic improvements in efficiency.
Companies will slash costs, while improving access to critical information.
This information will be pushed all the way to the end—user, providing
superior customer support as well.

@1998 THE XML HANDBOOKm

Securities

regulation filings

I EDGAR: The U.S. Securities and Exchange Commission
quarterly reporting system

I Document creation and revision under rigid
conformance requirements

I Software visualization assistance for authors

@1998 THE XML HANDBOOKTM

Supply chain
integration

I Middle-tier Web application

I Web Interface Definition Language (WIDL)

I XML Remote Procedure Call (RPC)

©1998 THE XML HANDBOOKThl

Chapter __ _;

1a ~JL.U.j:, a man ufacturing bu iness is in some ways a lotlike
feeding a family. The borne i the facto ry and grocery tores

the uppliers. Parents manufacture meals for themselve
and for their children.

But before they can make a meal they must be sure the refrigerator is
stocked with the right foods in the necessary quantities. As they serve din
ners, the food levels diminish, so they have to time their shopping to be
sure that they always have enough Food for the next meal. Sometimes the
family must scale up to feed unexpected in-laws, and sometimes the family
must scale back when little Billy's big belly is staying at Grandma's.

8,1 I Linking up a supply chain

Manufacturers and suppliers struggle with these issues all the time. Suppli
ers are caught up in the challenge, as they must feed parts to multiple man
ufacturers. They must be sure that manufacturers have parts when they're
needed, but they have to be careful not to overstock their products when

© 1 9 ~ 8 T H E X M L H 11 ;-.; D ll o o K '·" 121

122 CHAPTER 8 I SUPPLY CHAIN INTEGRATION

manufacturer demand is not high enough to sell them. The supplier rna
itself be a manufacturer and have its own suppliers. y

A series of businesses that feed parts to one another in sequence is known
as a suppLy chain.

uppose Manufacturer X decides to maximize the efficiency of its link in
a supply chain. It wants to integrate its Manufactttrer Resource Planning
(MRP) system with the planning systems of its suppli rs, thereby providing
each side with rich inventory informati n in real-time.

T he manufactmer benefits by having access to up-to-dare availability
information of supplier parts, incl uding parts delivery ch dules. The sup
plier benefits by having access to d1e manufactmer's current parts inventory
levels and to the manufacturer's expected rates of depleting the inventory.

a.t 1 Supply chain integration
requirements

Manufactmer X does nor want to los an arm or a leg or a bevy of share
holders in rhe process of implementing rhe solution. Ir requires an inexpen
sive solution rhat it could put together in a period of weeks, rather than i.Q a
period f months or years. This rules out traditional Electronic Data Inter
change (ED!).

ln an earlier time, EDI might hav won hearts and ears and pocketbooks,
but now the Internet and XML offer better ways ro do things. Manufac
turer X is aware of what is curren tly possibly with technology and imposed
the folJ owing general requirements:

• The system must integrate with Manufacturer X's existing
MRP system.

• Manufacturer X must communicate with its suppliers over the
Internet. Private network solutions are too costly.

• Access to manufacrurer data must be secure. Only registered
suppliers may acces the data. Suppliers may not access the
data of other suppliers. Data must remain secure in transit
over the Internet.

• The effort and expense required of both Manufacturer X and
its suppliers must be minimized.

© 1 9 9 8 TH E XML H A N D B OO K TM

8 . 3 J THE B 2 B INTEGRA T I 0 N SERVER 123

The problem can be solved by employing a tool that allows disparate
applications to interoperate over the Web. Let's take a look at one.

a.J 1 The B2B Integration Server

The webMethods Business-to-Bu.siness Integration Server (B2B) sits between
applications to enable them to communicate despite differences between
ifhem. The applicarions need only agree in an abstract sense on the nature of
the services they offer, and on the data to be exchanged between these ser-

vices.
The server employs WIDL (Web Interface Definition Language) tech

nology for expressing these abstractions. Once the abstractions have been
esrablished, any two applications can communicate, regardless of their pro
gramming languages, whether they accept and/or receive XML messages,
and regardless of rhe DTDs o wb ich the XML messages conform.

In orher words, B2B makes applications accessible to one another over
the Web, and it makes existing Web data accessible to applications. It pro
vides the communications infrastructure needed to do the job, including
secudry, passage through firewalls, and access to proxies. It also translates
between message representations, such as URis, CGI query data, and differ
ing XML message document types.

Let's see how these capabilities can be applied to integrate a supply chain.

a.t 1 Overview of the system

A somewhat generalized version of the system architecture is depicted in
Figure 8-1.

The generalization allows us to demonstrate the applicability of the solu
tion to supply chains in general. Here, the B2B server sits on the manufac
turer's site and mediates all exchanges berween suppliers and the
manufacturer. B2B assumes responsibility for hiding netwod<, prorocol,
and security is ues from the supplier and manufacturer systems, and hiding
differences in how the systems are interfaced.
. Supplier systems access the manufacturer's MRP system to obtain part
mventory levels, and communication between the systems is completely

©1998 THE XML HANDB OOK™

124 CHAPTER 8 I SUPPLY CHAIN INTEGRATION

Manufacturer Suppliers

Figure 8-1 Supply chain integration architecture .

automated. The suppliers i sue requests to the B2B integration server in the
form of XML messages, sending the requests via the standard POST
method of HITP.

B2B translates these requests into calls to the MRP system. It then a:an -
lares re ponses fi·om the MRP system inc XML reply messages that it sene:(
back o th supplier. This request/reply mechanism fm accessing ervices is
called Remote Procedm'f! Crdl (RPC).

The MRP system must also access supplier data. In order to minimize
the impact on the suppliers, B2B uses standard URis and CGI queries for
the requests and allows both HTML and XML to be used in the responses.
(See Chapter 38, "WIDL and XML RPC", on page 554 for more informa
tion on these technologies.)

Upon receiving a response, the B2B server uses WIDL to convert the
HTML or XML into a data representation that is suitable for the MRP sys
tem to consume. It then passes the converted data to the system, complet
ing the request/response circuit.

a.s 1 The manufacturer seiVices

The manufacturer ervices compri e half of the complete integration solu
tion. These service give suppliers acce s to inventory level information
found in rhe manufacturer' MRP system.

©1 9 98 T H E XML H AN D BOOK TM

8 .5 I T H E MAN U FAC T UR ER SE RVI C ES 125

Figure 8-.2 haws how rhe manufacrurer provide~ ser: ices ro .irs suppliers.
A supplier Jss ues a request to the B2B server, wh 1ch Ln tum calls upon

ieee f software lmown as a "plug-in." The plug-in acts on the MRP sys
~em to perform rhe request and returns data back to B2B. B2B translates
the data into the appropriat form for delive1y to the supplier.

Custom B2B
Plug-in

XML Templates

XML

Figure 8-2 Providing suppliers with manufacturer services.

Supplier App

Several pieces shown in Figure 8-2 are key to the solution and merit
some discussion.

B.S. I B2B plug-in

The plug-in is code that Manufacturer X wrote to communicate with its
MRP system. It is written in Java and exposes an interface to the B2B
server. The most important "method" (or program function) of this inter
face is one that retrieves part information from the MRP system when the
method is called. The method inputs a part number and outputs informa
tion about the part.

The plug-i n will only return pan information to the suppliers that pro
vide rhe parts; suppliers cannot acquire information about the parts that
other suppliers provide. The plug- in accompHshes thls by looking up the
supplier's user name in the supplier registry to fetch the associated supplier
ID. The retrieved ID must match the supplier ID that the MRP database
associates with the part.

© 199 8 TH E X ML H AN DB OO K™

126 CHAPTER 8 I SUPPLY CHAIN INTEGRATION

8.5.2 Server stub

A server stub i a portion of code that links into the plug-in and t:b.at allows
the B2B server to invoke an Al'I that t:b.e plug-in exposes. Server stubs
enable tl1e B2B erver to communicate with plug-ins written in any pro
gramming language. They also benefit tl1e server by hiding the details of the
plug-in' method signatures (that is, its name and parameter definitions).

When a supplier requests B2B ro invoke a manufacturer service, B2B
hands the input parameter to the server stub telling tl1e stub which Java
method ro invoke on the plug-in. The stub invokes the method and then
provides B2B with the method's output parameters, which 2B returns ce
tl1e supplier.

8.5.il XML requests and replies

B2B communicates with the supplier via XML. It receives XML requests
from the suppJier and it sends XML replies back to the supplier. When B2B
receives a request it translates th XML into ·et of inpur parameters and
hands these parameters to the server stub. When the stub returns output
parameters, it translates tl1e outpur parameters into an XML reply.

Manufacturer X chose to tepresenr these XML request and reply mes
sages using a "generic" message DTD. A generic DTD is capable of repre
senting any set of input or output parameters, th ereby allowing all message
exchanges ro use che sam DTD. For efficiency, the olu cion uses an
encoder/decoder module to translate XML into input parameters and to

rranslare ourput parameters into XML.

8.5.4 Java thin client

The Java thin client is a piece of software that Manufacturer X developed
and distributed to all of its suppliers. It contains the webMethods thin cli
ent, which allows the client to submit and receive XML messages. However,
the supplier could choose to use any XML-aware client.

The thin cljenc provides suppliers with default behavior ro jump-srart
their integration efforts with software chat und rstands tl1e generic XML
DTD. To use the manufacturer services, the thin client must first establish a

©19 98 THE X M L H AND BO OK TM

8.5 I THE MANUFACTURER SERVICES

cure SSL session and log in to the server with a user name and a password
~~at Manufacturer X provided.

8.s.s Manufacturer interface specification

The solution requires that we define the set of services that the stub offers,
and it requires that we state the data inputs and outputs for each service.
We accomplish this by using WIDL 3.0 to define an interface specification.

Example 8-1 shows a portion of the interface specification that does the
job. A supplier invokes the "gerlnventory" method to retrieve inventory
information as a function of a part number.

Example 8-1. WIDL interface specification for the manufacturer services.
<WIDL NAME="com.Manufact-X.Partsinventory" VERSION="3.0" >

<RECORD NAME="PartHandle" >
<VALUE NAME="partNumber" />

</ RECORD>
<RECORD NAME="Partinvento ry" >

<VALUE NAME="inventoryLevel " TYPE="i4 "/ >
<VALUE NAME="targetLevel " TYPE="i4"/>

< /RECORD>

<METHOD NAME="getinventory" INPUT="PartHandle"
OUTPUT= "Partinventory"/ >

</ WIDL>

The developer uses the B2B release of the webMethods Automation Toolkit
to generate the server stub from this interface specification. The toolkit
includes GUI-based tools for designing the interface specification and for
generating the source code for the stubs, so that the developer does not
need to be familiar with either WIDL or XML.

©1998 T H E X ML HANDBOOK™

I I
I

I

127 I

I'

12 8 CHAPTER 8 I SUPPLY CHAIN INTEGRATION

8.6 1 The supplier services

The upplier services comprise the second half of the complete integration
solution. These services give the manufactu~er access to supplier inventory
levels and delivery schedules.

Figure 8-3 p rtrays how the manufacturer utilizes the services of the sup
plier. Suppli rs make their information available from Web servers in the
fo rm ofHTML or XML pages.

8.6.1 Client stub

The client stub provides APis that the plug-in calls to access the informa
tion found on these pages. The plug-in runs a background thread that peri
odically invokes these APis to retrieve supplier part information. The
thread updates the MRP system with the part information that the APis
return.

MRP
ParlS DB

dll tc

Plug-in

WrDLfor
Supplier Sites

Figure 8-3 Providing the manufactu rer with supplier services.

The B2B server uses Web automation to mal<e (he upplier Web sites
available to the plug-in. B2B can provide Web auromari.on services to any
application, not just plug-ins, but Manufacturer X wanted ro centralize the
entire integration solution within the plug-in.

Web automation wraps a Web site so that it looks like a set of APis (func
tions). As shown in Figur 8-3, there is no need to put Web automation
technology on any of the wrapped web-sites themselves. The B2B erver

©1 99 8 TH E X ML HA N D BO O KTM

8 . 6 I THE SUPPLI E R SERVICES 129

erely sits between the Web site and the client (in this case, the plug-in)
:;d makes the web-site accessible to the client through the APis of a client

stub.

1.1.2 Supplier interface specification

A developer generates the client stub by first designing a WIDL 3.0 inter
face speci fication for the supplier services. Example 8-2 shows a portion of
this specification.

The interface specification defines the APis that the stub will expose,
including the input and output parameters of each API. Since the plug-in is
written in Java, the stub implements the APis as Java methods. The devel
oper links the client stub into the plug-in so that the plug-in can call these
methods. The stub methods in turn use the services of the B2B server.

Example 8-2. WIDL interface specification for the supplier services.
<WIDL NAME="com.Supplier . PartAv ailability" VERSION="3 . 0" >

<RECORD NAME="LoginProfile" >
<VALUE NAME="username" />
<VALUE NAME="password" />

</RECORD>
<RECORD NAME="Availability" >

<VALUE NAME="dateRefreshed" />
<RECORDREF NAME="parts" DIM="l" RECORD="Part"/ >

</RECORD>
<RECORD NAME= "Part">

<VALUE NAME="partNumber" />
<VALUE NAME="available!nventory" TYPE="i4 "/ >
<VALUE NAME="quantityinTransit" TYPE="i4" / >

</ RECORD>

<METHOD NAME="login" INPUT="LoginProfile"/>
<METHOD NAME="getAvailability" OUTPUT="Availability" />

< /WIDL>

Next the developer uses WIDL to wrap the supplier Web sites so that
each site conforms to the interface specification. The Toolkit does this
through direct interaction with a Web site, and again the developer need
not have any knowledge ofWIDL Once the WIDL files have been created,

©19 9 8 THE XML HANDBOOK™

130 CHAPTER 8 I SUPPLY CHAIN INTEGRATION

one configures the B2B server to wrap the Web sites by dropping the files
into a directory.

Each supplier site then has the same interface, consisting of the ser of
methods that the client stub exposes. The input parameters of a method fi ll
out a form on a supplier Web site. The output parameters of the method
contain data exu·acted from the pages that the site returns upon submitting
the form paramet rs.

This approach allows the suppliers to r turn th · informatio n in any form
- HTML pages using any presentation or XML messages using any DTD.
The supplier can even have a B2B lntegration Server receive the form
parameters and reply with XML messages, allowing rbe supplier to have
tight integration with other manufacturers as well. The manufacturer's B2B
server makes the form of the supplier data transparent to the plug-in.

Once per day, the plug-in iterates over the suppliers listed in the supplier
registry. For each supplier it retrieves a supplier ID, a URI, a user name, and
a password. The URI specifies the location of the supplier site. The user
name and password are items that the supplier provided to the manufac
turer; they allow the manufacturer to log in to the supplier site.

For each supplier in the registry, the plug-in invokes methods on the cli
ent stub. It first invokes "login" to authenticate with the supplier's site and
then invoke 'getAvailabilicy" to acquire the part availability data. Finally,
the plug-in writes the part availability data to the manufacturer's MRP
database, keeping the database accurate to within a day.

8.7 1 Conclusion

The B2B Integration Server allows Manufacturer X to integrate tightly with
its suppliers. It allows the manufacturer's MRP system to communicate
with the supplier planning systems without requiring the MRP system to
have any knowledge of the Internet, of XML, or of the supplier system
interfaces.

These facilities enabled Manufacturer X to implement the solution in
only two weeks. Had Manufacturer X gone with a CORBA solution or
with a solution involving traditional EDI, it would still be negotiating the
platform and protocol details with the suppliers. The B2B Integration Server
provided Manufacturer X with a significantly simpler, faster, and less expen-
ive way to get the job done.

©199 8 THE XML H A NDB O OK™

Comparison
shopping service
Web site

I Middle-tier Web application

I Virtual Database technology (VDB)

,____~1 Dynamic merchant Web site aggregation

© 199 8 THE XML HANDB O OKTM

Chapter __ _____,

pite the fears of some publishers that the Web would dry
up the market for books, so far the reverse has been true.

ot only are people buying books about the Web and its
technologies, but book selling over the Web is widely regarded as
proof of the viability of electronic commerce.

t.l 1 Shopping online for books
But there is plenry of room for improvement in the process. Consider what
the experience is like today.

A shopper seeking the best price for the best books on a given topic
doesn't have an easy time of it today. The shopper must view several Web
sites, initiate a search on each site for the desired product, and interpret the
results of each search.

Unfortunately, every Web site has a separate structure and vocabulary for
search and results presentation, making it awkward for the shopper to

quicldy evaluate the results. Figure 9-1, for example, shows the difference

r[J 1 ~J ~l H T H E X M L H i\)\; u 11 u C1 1...: l .\1 133

134 CHAPTER 9 I COMPARISON SHOPPING SERVICE WEB SITE

between the search and result pages of two online bookstores, Amazon. com
and Powells.com.

Amazon.com search

~ Search our Store
Enter Keywords

Amazon.com results I Krakauer

I search
Elgar Dreams: Ventures Among Men and Mountains - Usually ships in 24 hours

Jon Krakauer I Paperback I Published 1997
Our Price: $10.36 - You Save $2.59 (20%)
Read more abol!l !bls title .. ,

Powells.com search

Quick Search: r-1 K- r -ak-au_e_r ______ _,l L ~_ll_ln,.::' I J

Eiger Dreams by Krakauer. Jon
Published by Bantam DoubleDay Dell (0385488181)
Subject: Travel Writing, Section :~
In Stock: 13 at $12.95 (new, trade paper, Airport)

Powells.com results

Figure 9-1 Two bookstores, two views.

It would certainly be more convenient if all bookstores could be searched
with a single query, and all the results could be presented together. There is
now a Web service that does just that.

1.2 1 The]unglee Shopping Guide

The]unglee Shopping Guide is a configurable comparison shopping service
that uses Virtual Database (VDB) technology co aggregace dozens of mer
chant Web sites across a wide range of product categories, consolidating
them into a single shopping guide.

A customer enters specific attributes about a desired item, such as brand
name, price range author (for books) or categoq (for gifts) . The 'hopping
Guide do s che rest, automatically searching through thousands of produces
from a variety of merchan cs.

© 1 9 98 TH E XML H A N D B OOK™

9 .3 I H ow TH E SH O P P I NG Gu i DE wo R KS 135

The results are displayed in a single table. From it the customer can make
informed purchase decisions, comparing product features, availability, and

price.
The Shopping Guide leverages the power ofXML to deliver results in a

form char can be man ipulated by the browser wichou.c round rrips co che
Web server. For example, XML allow: browser-sid sorting and filtering of
data, and presentation of the data to suit specific user preferences ba ed on
scyl.esheets.

VDB technology makes this possible by ransforming the Internet into a
database. Data is collected from Web sites based on a user query, and struc
tured into a standard representatio.tl for each category. The search 1·esul ts are
deliver din XML, using a uniform document type definicion (DTD) for al l
sites, regard less of the original form of the data (typically HTML).

Figure 9-2 shows a sample result from book shopping.

<?XML version"1.0"?>
<!DOCTYPE booklist SYSTEM "book.dtd">
<booklist>
<Book>

<Merchant>Amazon.com </Merchant>
<Title> Eiger Dreams </title>
<Author> Krakauer, Jon </Author>
<Format> Paperback </Format>
<Price> $10.36 </Price>

<Availability> Ships in</Availability>
</book>
<lbooklist>

Figure 9-2 Sample books document.

Let's look at the underlying technology.

t.!l I How the Shopping Guide works

Figure 9-3 shows how the VDB manages this process using wrappers.

© 1 998 TH E XML H ANDBOOKTM

136 CHAPTER 9 I COMPARISON SHOPPING SERVICE WEB SITE

A wrappe~· is a Java program designed t extract data from Web sites . The
wrapper may in turn use extractors (nor shown) ro extract attributes from
unstmctured (non-XML) texr. Data transformations and data validation
are applied ro determine data i.ntegci ty.

A wrapper is reared for each Web site, while an extractor is typically cre
ated for an entire collection of Web sites with similar information. An
extraccor consists of extraction rules and dictionaries to provide sophisti
cated linguistic processing for unstructured text

Amazon.com search results

Amazon.com
Wrapper

Powells.com
Wrapper

Powells.com results

VDB server

Data transformers

Data validators

Figure 9-3 How the VDB works.

XML
<?XML version"1.0.?>
<IDOCTYPE booklisl SYSTEM "book did">
<bookllsb

Once the data is gathered and transformed, it can be presented in
response to a query in a combined form, such as the one shown in Figure 9-
4. The results are displayed using the XML DSO in Internet Explorer 4. 0. 1

© 19 98 THE XML H ANDDOOKTM

9.4 CUNC I U S I ON

Dynamic HTML a.nd daca binding are used to create a compelling user

experience. The Web h pper can choose between multiple views and can

manipulate rhe data from the browser without the need for round rrips ro

the server.

Compare prices
& availability at
many online
bookstores in
one step :

Author: I Krakauer

I Author

Jon
Krakauer

Jon
Krakauer

!I
!i Title II Pricell Vendor I

Eiger Dreams: Ventures Among

~
Amazon.com

Men and Mountains

Eiger Dreams: Ventures Among
Men and Mountains

Powells.com

Title :lL. _ _ _, ;._.-----~===============;;;;;;;;.!
TITLE

I AUTHOR

I VENDOR

FORMAT

r SHIPPING

r AVAILABILITY

l PRICE

More Info

Eiger Dreams: : Ventures Among Men and Mountains

Jon Krakauer

f Amazon.com

hllp:l/www.amazon com/exec/obidos/ISBN'"03854B8 i 8i

Fig•we 9-4 Shopping Guide unified 1·esults in XML.

9.4 I Conclusion

VDB technology transforms the Internet into a database enabling powerful

structured searches, while XML provides an efficient mechanism for deliv-

l. A NctJ"cilpe vct·sion is being developed.

<Q J l) 9 H 'f II 1·: X M L I J AN I) u ()I) K l o\ 1

137

13 8 CHAPTER 9 I C OMPARISON SHOPPING SERVICE WEB SITE

ering structured data to browsers. You can learn more about VDB in Chap
ter 29, "]w1glee Virtual DBM ",on page 386.

The XML version of the Junglee 'hopping Gu.ide is a working prototype
that illustrates the power of XML and VDB technology. Ir provides access
to hundred of merchants and million of pr ·lucrs.

Tip You can experience the XML Jung/ee Shopping Guide in
action at h ttp : I lwww . junglee. comltech lxml_demo .html.
Until browser support (or XML is ubiquitous, a version that
presents its results in HTML is available at http : 1 I
www . j ungl ee . comlshopl inde x .html

©1998 THE XML HANDBOOK'"

..

Natura
language
translation

I Content management

I New directions in translation

I Versioning

I Reuse

©199 8 THE X ML HANDBOOKTh1

Chapter __ ____,

tO

panies have tremendous opportunities to reach new cus
tomers in roday's global market. Improved global communi
cations allow companies to be known instantly around the

world. Modernized manufacturing practices make it possible to create
a diverse set of products brought to market faster than ever before.
Fewer trade barriers allow products to be sold and distributed glo
bally.

I 0.1 1 Mistakes can be costly

In the rush to new markets, some make careless mistakes that can be costly.
Here are a few examples from the Marketing Hall of Shame:

• Parker Pen planned ro introduce the balJ-poim pen ln a new
countty with che slogan: '1t won't leak in your pocket and
embanYlss you". The company introduced its product with the
mistranslated slogan: "It won't leak in your pocket and make you

1!) 1 99/i '!" 111:. X Ml . I-l ;\ 1'\ JllltltJK 1'1 141

142 CHAPTER 10 I NATURAL LANGUAGE TRANSLATION

pregnant". This was not the message that Parker Pen originally
conceived.

• The sales figures for the Chevy Nova in several Spanish
speaking countries were far below expectations. Mter some
analysis, GM found a tremendous problem. It wasn't in the car
itself, but in the name. Nova means "no go" in Spanish- not a
characteristic many of us hope for when buying a car.

• Mter repeated requests from their biggest customers in five
countries, a telecommunications manufacturer quickly added
a security menu option to a new model of cellular phone.
Although th new menu item was a trivial engineering change
and was implemented within a day, the documentation could
not keep pace. The change to the English, French, German,
and Spanish versions of the documentation took six weeks -
thirty times longer than the product change.

These examples, whether truth or urban myth, illustrat the importance
of accurate and timely language translation in roday's global marketplace.
T hese companies experienced short-term embarrassment for rheil' mistakes.
Other mistakes could be far more costly. What if the process of translation
was so complicated that it slowed the introduction of your product to a new
market by a year? What if a mistranslation introduced a safety issue for the
consumer?

I o.t 1 It's a small world

Products are coming to market faster, compressing product delivery times.
At the same time, expansion into new markets increases the need for more
languages. In response to these pressures, companies must accelerate time
tables, streamline processes, and manage document creation and translation
concurrently. This is not a luxury- it is a requirement.

Opening of global markets is not the sole reason for this increased need
for multilingual docurnems. Other factors are at play. The creation of inter
nacional organization through partnership and mergers such as Rover and
BMw, Ford and Mazda, and the European Union are increasing the
demand. Employ es are more mobile and more geographically dispers d.
Mor ource documenr content is written in languages orher than English.

© 199 8 TH E XML H AN DB OO KTM

1 0 . 3 I B us IN E s s c HALL E N G E s 143

Although English is recognized as the international language of business,
there remain s vexal compelling reasons for delivering information in the
native language of the consumer. First, it allows you to more effectively
communicate information and ideas to the target audience. Second, in
some cases, documentation in the local language is not just a good idea-it is
the law. Companies may nor be able to carry on business unless they pro
vide localized documentation. And for many, translation is required just to
keep up with the competition.

The more companies recognize the strategic benefits of concurrent prod
uct development and document delivery, the more serious the need for
solutions becomes. XML and content management are providing those
solutions today. And, as a result, making the world a much smaller market
place.

This chapter outlines the process used to translate technical information,
describes the challenges and areas for improvement, and explains how XML
and content management help companies control costs and make produc
tion more efficient.

•o.i 1 Business challenges

IO.i. l Cost containment

In the technical documentation market, companies spend millions of dol
lars ann ually on ranslation. An IBM study in 1995 estimated $50 billion
was spent for translation worldwide with an es timated annual growth rate
of 15%. And the cost is growing, dx.iven by the desire for simultaneous
worldwide law1eh of new products and the ne d to support new languages
and markets.

In some cases the development of documents in a different language vari
ant can be as high as 10% of the cost of the development of the source.
With global translation spending forecast to grow at 15% per annum, busi
nesses need to implement new solutions now.

Translation is expensive, costing 15 to 25 cents per word including revi
sions. It is also time-con ·uming: Translation and proofreading with one
review cycle takes many hours per page or chapter. Additional revisions cost
even more time and money.

© 1998 THE XM L HA ND BOOKTM

144 CHAPTER 10 I NATURAL LANGUAGE TRANSLATION

IO.J.2 Fast-paced product development

[n most indu tries, produ t developmenc schedules are now a fraction of
what they wer a decade ago. Also, productS in many industries demand a
frequ nt "technology refresh" to stay comperitiv , increasing the frequency
of product versions. W ith as Litcle as six weeks to deliver a product, these
companies cannot afford co double thar rim to revise and translate docu
mentation. These compressed schedules force companies to establish con
current processes.

Rapid pr duct development also allows compruues to manu.f'acture more
makes and models of their pr ducts. This increases complexity of mul6pJe
do ument variations that must all be released simulcaneously. Managing rhe
slight variation between pr ducts and their supporting documentation i
the k y ro streamlining the translation pr cess.

I O.J.J Diverse documents

The diversity of documents that must be developed, delivered, and main
tained is growing. Figure 10-1 shows an example.

An aucomotive manufacturer mal<es a de ign change to a part that is used
in five differ nt car models. All of the accompanying documentation,
induding the w rkshop manual and own rs guide must be modified to
reRe r the change.

Even if that change results in modifying only two paragraph of text
a h m dium used to distribute information, such as print, CD-ROM and

the World Wide Web, must be updated, Now multiply rhat by the number
f language need d in each cow1try where rhe cars are old. ll is appru· nt

that rhjs i a izabl problem.

10.4 1 Translations today

The greatest productivity improvements to be realized in the translation
process are not in the translation itself, but in making the entire process
more efficient. Although technology exists for automatic machine transla
tion, it is not perfect. Machine translation lacks the subtlety and error

© 19 98 TH E X M L H ANDB O OK TM

--

ORIGINAL -
ENGLISH

FRENCH
GERMAN

DUTCH
SWEDISH

WEB

CD-ROM

10.4 I TRANS LA T[ONS TODAY 145

Figure 10-1 Complexity is multiple products, languages, and media.

checking provided by a human translator. Translation remains an art, not
an exact science.

Here is how a typical document gets revised and translated today (Figure
10-2). Generally, the work begins on the source language document. A vari
ety of people including photographers, authors, technicians, marketing and
legal, create and review the text and graphics. After identifying the changes
and redundant content, the material is sent out for translation. This manual
process reduces unnecessary translation and allows the translator to avoid
re-translating content that has not changed. The newly translated material
is returned and integrated into a document called a "variant", a document
containing the translated content for a single language. Since most compa
nies require multiple languages, there will be multiple variants that must be
kept in sync with the source.

As changes occur to the source document, incremental revisions are sent
out for translation. During this stage, translators may need to directly inter-

© I ~ ~ H T H 1'. X M L H A N D n tl ll K I'M

146 CHAPTER 10 I NATURAL LANGUAGE TRANSLATION

Figure 10-2 The process of t ranslating documents.

act with the original author to resolve ambiguities in meaning which are
bound to exist.

Things really heat up when product development is complete. The final
content, often including changes to previously submitted conrent, is sent
out for translation. The final set of transla[ions are then integrated into the
variant documenrs. After tran la6on to the target languages is completed, a
final check nsure. all changes are complete, and reflected in the transla
tions and iusened in the proper place .

Translation is a specialized service, so most companies contract with
experts to perform this task. The most accurate translators are native speak
ers, often requiring pieces of the document to be sent all over the world.
This increases the complexity of communication and causes synchroniza
tion nightmares when a last-minute engineering change occurs. And you
thought it was hard to communicate with your documentation department
down the hall!

Last minute changes can put on-time delivery at risk, leaving you three
choices to meet the delivery date: Increase the translation staff, extend the

© 1 9 98 TH E X ML H A N D B OO K TM

10.5 I NEW DIRECTIONS 147

delivery date, or ship the product without appropriate documentation.
Given the huge cost, both monetarily and in customer satisfaction, which
would you choose?

1 o.s 1 New directions

The biggest challenge in the management of today's language translation is
to manually keep track of content- what is new, reused, revised, translated,
reviewed, and approved. With the combination ofXML and content man
agement, companies can automate this critical function to simplifY pro
cesses, shorten time-to-market, reduce rework, and control costs.

10.5.1 Components

The key to making the translation process more efficient is to work with
smaller parts. XML breaks up the information into smaller information
components (Figure 10~3). The smaller and more specific the component
is, the more addressable and reusable it is. With smaller information units,
it is easier co pinpoint changes, translate only new information, and auto
matically update information reused throughout the document. Similar to

advanced technologies and methods used in engineering and manufactur
ing of irems such as cdlular phones, new cars, and software, components
simplify complexity and increase flexibility for adapting to change.

A component is a piece of information that can be used independencly,
such as a paragraph, chapter, instructional procedure, warning note, part
number, order quantity, graphic, side-bar story, video clip, or one of an infi
nite variety of additional information cypes. 1 For the translation process,
components have a positive and profound impact.

When managed by a content management system, these components can
be controlled, revised, reused, and assembled into new documents.

1. For more information about components, see Chapter 26, "Astoria: Flexible
content management", on page 352.

©1998 THE XML HANDBOOK 'rM

148 CHAPTER 10 I NATURAL LANGUAGE TRANSLATION

Chapter (title)

Section (1) -

Section (2)

Procedure -[

Part Number 1
Note

Reference

Subsection (2.1)

~-

' -

XML
<chapter>
<title>Maintaining Your Car</title>
<section>
<description>lt is important to follow
a regularly scheduled routine of
maintenance. </description></section>

<section>
<procedure>Checking Fluids
<step> Check your oil, water, wiper fluid,
and engine coolant/antifreeze level.

Figure 10-3 Document components described with XML.

I 0.5.2 Reduce reinvention with reuse

The abi licy ro reu e comp nents within documents has an important
impact on the tran lation process. Reuse can be as simple as locating a com
ponent from one d cumenr and linking .it into a new document. This
meth d of l.inked reuse instead of copying makes updates more efficient.
When components stored in a conrent management system change, the
information is revised only one rime. All of the d. cLUnems conra.ining that
component are automatically updated.

Reuse is helpful even before translation. Using a content management
system, the original technical writer can create a standard glossary contain
ing translated terms and phrases (Figure 10-5). With assistance from the
content management system from inside the authoring tool, the writer is
prompted with approved terms, phrases, and other content.

The wri ter can easily reuse components or create new terms. This allows
for greater control over document c ncenc and terminology reducing ambi
guities, inconsistencies, and unneeded rework. One example of a comroUed
language is Simplified English, used in the aerospace industry.

The typ of automated reus shown in Figure 10-4 will also help in the
rran lacion process. The glossary can be translated once into the target lan
guages. The glo sary terms wilJ be aummatically inserted into the language
prototype before being passed to the translator. This reduces the volume of
work by reducing the amount of new material.

©199 8 T HE X ML HANDBOOK ™

1 0 . 5 I NEw DIREcT I 0 N s 149

,.,-,, -.=:::;;;;,-;-...

? giveme

selector _[~~~~~

<terms>
gear selector
gear selector cable
selector
selector cable
selector cable nut
select lever
transmission selector

Glossar
<tasks>
<warnings>
<terms>
accelerate
air cleaner
drain plug
gear selector
gear selector cable
selector cable
selector cable nut
transmission selector

Figure 10-4 Reuse of glossary terms reduces rework.

When a standard term in the glossary needs to change, me update is made
once. All rhe documencs using me term are automatically updated. Reuse
make it impler to identify changes and reduces rework. Thi approach can
l'educe total translation time by 50% and reduce costs by 15o/o.

I o.s.J Identify changes with versioning

When components are maintained in a contenr management sy tern,
changes cw be automatically recorded and tracked (Figure 10-5). Without
burdening the author, the system automatically collect revisi n informa
tion arid idenrifics what changed. Instead of sen ling th · entire document,
only modified components need to be extracted and sent for translation.
This streamlines th process becau e it reduces the volume of data being
sent out and relieves the cranslator from manually identifying the changes
from previous versions.

Another benefit of componems is that they can be trwslated as they
become available rather rhan waiting for a complete document. This makes ir
pos ible to manage concurrent translation along with product developmenr.

©1998 THE XML HANDBOOK™

150 CHAPTER 10 I NATURAL LANGUAGE TRANSLATION

procedure
title r---ra~Arl~
s tep
step
step

warning··---~ .. ~
Translate

Figure 10-5 Component versioning saves time by identifying only pieces
that change.

1 0.5.4 Alignment enables concurrent
authoring and translation

When stored in the content management system, the source and target lan
guage of the document are guaranteed to be aligned with identical struc
tures (igure 10-6). For in tanc , if the source contains a <procedure>
element with a u.n.ique atrribute f "1 23," the language variants will also
contain thi elemen with ellis attribute.

- - - -- - - -- - - -
Figure 10-6 Source and target language documents have identical
structures.

© 1 998 TH E X ML H A N D B OO K ™

10.6 I IN THE REAL WORLD 151

This alignm nt has several immediate advantages. First, when a source
language component is ready for translation, its language variants are also
identified. These components can be clearly identified, locked, and submit
red w the translator. After translation, the components are correctly ver
sioned providing a full life-cycle history of all components including the
language variants. Since the structures are identical, it is also easy to identify
and distribute changes to end-users, regardless of language used.

10.1 1 In the real world

A major automotive manufacturer produces all the documencation required
to deliver a fully serviceable automobile to buyers. Th is docu.menca ion
includes in-car handbooks, workshop manuals, customer representative
training guides and reference material. The documentation is translated
into a variety of languages for the company's global markets. Currently,
these guides are delivered in a hard copy format as well as in multimedia
such as CD-ROMs.

After installing Chrystal Sofrware's Astoria ontent management solution
and implementing concep(S described in th is chapter composition time for
each language version went from about three weeks to less than 2 days.
With the time saved, the company can better manage the rranslation pro
cess. They now review documents in-h use and control updates and ver
sions within the content managemem sy. rem, reducing tbe dependency on
translation suppliers for review. A a result, overall production time for
updates was cut by 50%.

By using XML and content management for managing the creation,
translation, and revision of multiple document sets) companies can:

• Reduce initial translation costs by reusing common content
across documents.

• Improve document consistency through controlled vocabulary
authoring.

• Improve re-translation by pinpointing re-translation units.

• Shorten time to market by overlapping authoring and
translation processes and minimizing volume of translation.

©!998 THE XML HANDBOOK™

Filing documents to canfarmto government
regulations15 a necessity in enterprises throughout
the world. Although knowing that the misery is
shared won‘1; make the task any easier.- the
informationinthis chaptercan, The chapter”13.

sponsored by Interieaf. Inn, .--- - - -- . .

and must be completed with extreme care. The penalties for

error can be large. Many enterprises have seized on XML

(and its parent, SGML) as a solution. An XML DTD and validating

parser can enforce many of the requirements for completing a govern—

ment filing.
Indeed, many government agencies use XML themselves and some allow

or even require their filings to be XML documents. However, even if XML
use isn’t a filing requirement, there are plenty of benefits from using XML
to prepare your filings, as we’ll see in this chapter.

But creating XML in the raw can be intimidating to the non-program—
mer business analysts or other content experts who must prepare the filings.
These professionals could take charge of their own XML documents if they
had the right sort of Visual tools.

G overnment documents tend to be rigid in their requirementsI

@1998 THE XML HANDBOOKFM 153 I

154 CHAPTER 11 | SECURITIES REGULATION FILINGS

"J | Visualizing an XML document

The following examples illustrate the difference betWeen writing XML ele-
ment type declarations and generating them with a visual tool. Figure 11-1
shows a DTD in the standardized plain—text Form that is processed by XML
software. To create this, the actual XML element type declarations must be
typed out, completely and correctly.

-U [HPDATA>

.'<!ELEMENT slree|2 -o [uPCDATA] >
: (IELEMENT submission - U [lille.subtit|e?,accession-number,lype,public-doc-count,

filing-date.filer",document+] >

 NT table vEI[flFCDATA[Wicaplionlslelarticlellugend]
leaded i headgear-end I periodend [periodlypel alowences I
bonds 1 cash 1 eggs I changes | common I current-assets]
depleeialion I discanlinued I epodilutadl epspiimary |
ewaordmly | mom-combing l income-males | income-tax |
Hemimemel inventory l loss-piwifion lmuflipiiet l
not-income | char-expenses l nlheI-se l we I preferred l

; receivables | sales | mums I total-assets | told-costs; l
; i; lolaHrabiBty I total—revenues? >

|I<|ELEMENT text - El [fiPCDATA | table [page]" >

'.<!ELEME

." <!ELEMENT litle - U [#PCDATA] >

(IELEMENT total-assets - D [#PCDATA] >

I<lELEMENT total-costs - U [fiPCDATA] >

I<!ELEMENT type - E] [flPCDATA] >

Alternatively, a DTD could be assembled using a visual tool (see Figure
11-2). The user need only point and click the mouse on the appropriate ele—
ment type (in this case, business—address was selected), and the tool
automatically generates the opening and closing tags. The tool also shows
all the element types that are subordinate to business—address, such as
street-.1 and streetz. Additionally, when defining the DTD for

@1998 THE XML HANDBOOKTM

_#—I— . _

11.1 | VISUALIZING AN XML DOCUMENT 155

bigness—address, the content developer can indicate which related ele-
ment types are mandatory, thereby ensuring that all the necessary elements
are completed.

Figure 11-2 Visual DTD modeling.

In Figure 11—3, a document is being created for the US. Securities and
Exchange Commission (SEC). It is a quarterly report known, for some rea-
son, as EDGAR.

The data and markup are entered manually in a plain—text programmer’s
editor. There are no built-in validation checks to ensure that the markup is
correct, with the correct spelling, syntax, and closing tags (although some of
those could be validated externally). And there are no simple means for
aligning columns when editing tables.

Figure 11—4 shows what is possible with a visual tool. In the screen shot,
the items on the left strip (outside the document margins) identify the
XML elements on each line. And the user can insert the XML tags graphi—
cally into the document to improve the appearance and the alignment of
the table columns.

©1998 THE XML HANDBOOKTM

156

CHAPTER 11 | SECURITIES REGULATION FILINGS

| <!DOCTYPE sec-document SYSTEM "edgardtd" >
<I--I|eaf document contains a separator-->
<I--|Ieaf document contains a title with content SECURITIES AND EXCHANGE COMM|SSION~->
<I--Ileaf document contains a separtor-->

- (submission)
(sec-header)
< accession-numbeDACCE SSI 0 N N U MB ER: 000104?4BS-SB-00599<Jaccession-number)
<type>CDNFORMED SUBMISSIDN TYPE:10-0£A<Jtype>

- < I -~| leaf document specifies element name as public-document-cou-->
<puhlic-documont-counb PU BLIC D 0 CUM E N T COUN T: 2< public-document-count>
(Ifling‘dathlLED AS 0 F DAT E: 2019-02-20<in|ing-date><filer>

<company-data>
< contormed-name> [exact name of registrant as specified in its charter]< r’conformed-name)
<!--I|eat document missing element assigned-sic-->
< assigned-sic> <x’assigned-sic>

dcompany-data)
< ffiler>
< sec-header)

<document>
<!--I|eaf document contains a separator-->

'<type> FORM 10<l¢010?>0#3. <Jtype>
<sequence>DUCUMENT SEQUENCE: 1<fsequence>

' <description>QUARTERLY REPDRT PURSUANT T0 SECTION 13 0R15[d]0F THE
SECURITIES EXCHANGE ACT 0F1834.<rtdescription>
<tth>|ndicate by check [X] whether the registrant [1) has filed all reports

. required to be filed by Section 13 or 15 [d] of the Securities <SR>
Exchange Act of 1934 during the preceding 12 months [or for such shorter

. period that the registrant was required to file such <SR>
reports], and [2] has been subiect to such filing requirements for
the last 80 days<fte>rt>
<text><ftext>
<I--|Ieal document contains element text2-->
<I--Ileaf document contains element NormaI-->

- <teirt>

Figure 11-3 Standard plain-text XML document instance.

An XML Visual editing and publishing tool could make a difference in a
government filing application. Let’s see how.

“.1 | An EDGAR Submission with

XML

It is the beginning of your company’s new fiscal quarter. As are all public
companies in the U.S., your company is required to make an EDGAR sub—

mission to the SEC. You are responsible for generating the EDGAR sub—

©1998 THE XML HANDBOOKTM

11.2 | AN EDGAR SUBMISSION WITH XML

Inlelleal BladeH unnel

DOCUMENT SEQUENCE: 2

I‘ll! [MilomEND“!IN:
TIII shut mum wally mm: mm wand bill me consolidmd balance shuts and tansdlm

paw : at I flu mlWForm 10-9 form "in: mom/ts maul Dam

Cash and cash twins-
Wtflu
Will}.
tumourCumm: “ISL.
Property and WW.
mm__
Tom 31111
Summit:

mission from information provided to you by the legal and financial
departments.

Also, you have been asked to generate an HTML version of the EDGAR
submission for your company's Web Site. However, some content from the
formal SEC submission should not be include in the HTML version. The
publishing challenge you face new is how do you quickly and easily generate
multiple versions of the EDGAR submission with full or partial content?

I l.1.l Reviewing the EDGAR DTD

The SEC published the EDGAR DTD for public use. The DTD is avail—
able from the SEC Web Site. The DTD defines the required contents for an
EDGAR submission and how that content must be organized. So, you
obtain a copy of the DTD file. What do you do with it? How do you easily
read and understand it?

@1998 THE XML HANDBOOKTM

157

158 CHAPTER 11 l SECURITIES REGULATION FILINGS

In Figure 11—1 we saw what the DTD looks like in its native form. To
many, the content is not user—friendly! Someone who knows how to read a
DTD can use it to gain an understanding of the document structure
requirements. However, in your position at your company, you are neither a
programmer nor a DTD expert.

An alternative, graphical view of the DTD was shown in Figure 1 1-2, as
presented by a visual modeling tool. With this view, the relationship of one
section of an EDGAR submission to another is obvious. The optional sec—
tions are identified with question marks. With this information you are
more easily able to formulate a submission that will conform to the SEC’s
regulatory requirements.

IMJ Creating an instance of the DTD

With an understanding of the content and structure of an EDGAR submis—
sion, you begin constructing your company’s submission. Interleaf
BladeRunner simplifies the task of creating an initial submission containing
the minimal required sections. With a copy of the EDGAR DTD on your
desktop, you can create your initial submission document (Le. an EDGAR
DTD instance) with a single click of the mouse.

Now you can begin entering the content that you obtain from the Legal
and Finance departments. As you author the submission document, how
can you be assured that it will conform to the SEC regulations?

ll.2.3 Checking your EDGAR instancefor
conformance

As you continue to add to the EDGAR document, it is very important that
the organization ofyour information adheres to the structure rules as defined
in the DTD. InterleafBJadeflunner provides two modes of operation:

I “Normal mode” allows you to enter text freely into your
submission document. This mode will be useful after you have
become familiar with the requirements of the DTD;

I “Conformance checking” mode prevents you from creating a
document that does not conform to the rules as defined by the
DTD.

@1998 THE XML HANDBOOKTM

11.2 | AN EDGAR SUBMISSION WITH XML

SECURITIES AND EXCHANGE COMMISSION;
WASHINGI'ON, D.C. 20549

x: .1 N NUMBER: 0001017469-98-00699
QUBLIC Wflll‘ MNT‘I 1

.0} DATE: «November»,- «13v «2019,

? HELL CORPORATION

U wmhunumm-
.. t! Regmm as spedflediniu W)

Lu Angllu
.. flflwwfl :xetw‘vt offites)Calitomia

(Sim nf Incorporation)

Figure 11-5 Enforcing the DTD in conformance checking mode.

As you become more experienced in creating an EDGAR document, you
may find yourself switching between these two modes. Therefore, after you
have created the submission document, it is important to be able to validate
it for conformance.

As shown in Figure 11—5, BladeRunner provides a non—conformance error
report that identifies various types of structure errors you may have created
while using the normal mode of operation.

IMA Repairing non-conforming elements

If your submission document contains structural errors, you obviously
must fix those before submitting it to the SEC. BiadeRm/mer includes

“repair tools” for repairing structure errors. Figure “-6
For example, one of the elements of an EDGAR Submission document is

“submission date”. Since you are new to the EDGAR submission document
type, you instinctively enter the date as follows:
April 5, 1998

@1998 THE XML HANDBOOKTM

159

160

CHAPTER 11 | SECURITIES REGULATION FILINGS

1 lnterleaf BladeFlunner -- validation_errors.trtt

.Dooument: - tyrel.doo _ i i H i i l
: DTD: edgar-aml-dtddtd

. Found 5 validation errors.

Missing required element: "type" [following "aooession-number"] '
_I lnvalid position for element: "month"

. lnvalid position for element: "day" ,_ .l Invalid position for element: "year" '
Figure 11-6 Conformance checking error report. '

Figure 1 1-6 shows that this presentation of the submission date is “non-
conforming” according to the EDGAR DTD. The submission is correctly
presented as follows:

1998 April 5

Another example is the accession number, which is a required piece of
information for the EDGAR document. There is a structure flow rule in
the EDGAR DTD which requires that the accession number paragraph in
the document must be Followed by the type of document. However, being
unfamiliar with the document structure, when you created the document
you forgot to enter the “type” paragraph following the “accession number”
paragraph.

These are examples of two non-conforming document structures which
BladeRumrer provides a utility to repair. For the firsr example above, you are
able to use the “fix element order” utility to correctly sequence a non-con—
forming organization of information. For the second example, you are able

@1998 THE XML HANDBOOKTM

11.2 1 AN EDGAR SUBMISSION WITH XML

to use the “insert missing element” utility to insert some or all missing ele—
ments within the EDGAR document.

I 1.1.5 Generating your EDGAR submission

Now you have a complete and conforming submission document. The next
step is to publish the document in two electronic forms: in XML for sub—
mission to the SEC, and in HTML to place on your Web site for viewing

by any Web browser. Recall that for the Web site you must also remove
some of the document content and reorganize the information.

II.!.6 Publishingfor the SEC

BladeRunner includes a “Publish” feature that allows you to transform doc-

uments into different representations. You can also conditionally publish a
document according to user-defined rules and specifications, according to
the content of the document, and/or according to rules embedded within
the document’s DTD.

You publish the formal submission as an XML instance and route it to
Legal for review. It can be accompanied by an XSL stylesheet that specifies
the formatting and presentation rules.

IMJ Repurposingfor your Web site

To produce the Web site version, you first apply conditional publishing
rules to the document. In this case, the conditional rules would specify that:

1. The overview section of the EDGAR document should

appear in the Web version ahead of the financial data table. In
the formal SEC submission, the overview section appears at
the end.

2. Information that appears ahead of the financial data table in
the formal SEC submission should not appear in the Web
version.

@1998 THE XML HANDBOOKTM

161

162

CHAPTER 11 | SECURITIES REGULATION FILINGS

3. Information that appears following the financial data table in
the formal SEC submission should not appear in the Web
version.

Next you position the EDGAR document (the same document that was

used to create the formal SEC submission) adjacent to the BladeRunner
Catalog for Web delivery.

You can now use the same “Publish” feature that you used to generate the
SEC submission, except this time you specify that HTML should be pro—
duced.

I I.3 | Conclusion

Several business process improvements result when government filings such
as EDGAR are prepared with XML and a visual document production tool
like Interleaf BladeRunner.

1. Making the EDGAR submission in a timely fashion with
assurance that the submission is complete.

2. Making company information available to the general public
immediately following your formal submission to the SEC.

3. Publishing multiple presentations of the company’s financial
information without having to create and manage different
documents for each.

4. Lowering the overhead cost ofproducing an EDGAR submis-
sion.

@1998 THE XML HANDBOOKTM

Help Desk
automation

I Content management application

I Technical support knowledge base

I Web-based extranet system

©1998 THE XML HANDBOOKTM

Chapter __ --~

12.

echnical support is the bane of many high-tech enterprises.
as products get more complicated, the Help Desk

becomes the front line in the battle for customer
satisfaction. But as this application demonstrates, the Help Desk

might need help itself.

12.1 1 The hapless Help Desk
Consider the plight of the Help Desk at a manufacturer of sophisticated,
highly customized equipment that includes software-controlled electronic
and mechanical components.

12.1.1 The old way

When our story began, the solutions provided by Support Engineers at the
Help Desk varied with regard to accuracy, completeness, and applicability
to the particular problem the customer faced. In addition, they were in

ID!9 ~) H T il E X M L HA"DHOOK"" 165

166 CHAPTER 12 j HELP DESK AUTOMATION

many different file formats, so engineers in different locations might not be
able to view a solution.

The speed with which a Support Engineer could obtain a solution also
varied widely. Technical fixes and workarounds were stored as whole docu
ments on the file sysrem, malcing the clara in them diffi u.lt co maintain,
update, and retrieve. A solution document authored by a Support Engineer
could cover any number of distinct copies, but was categorized as a single
file penaining to only one topic.

Further, there was no auromated way co verify the integrity of the source
material and to update all instances of the same information that might
occur in separate documents. Nor was it easy co share the informacion
among Help Desk personnel, as the authoring tool was not in regrated with
the solurion reposirory.

In other words, mere was no way to ensure that the customer was getting
the most up-to~date, correct, and per onalized solution to his problem.
This resulted in poor customer satisfaction and high support c sts.

I 2.1.2 What needed to be done?

With the advent of ever faster and more comprehensive communications -
and the Web as a straregic delivery platform - customers have come to
expect fast, highly specific information. The success of the company
depended on satisfied customers and functioning equipment.

To meet that need, the company realized, the Help Desk had to be
linked into a knowledge reposhory containing the installation, mainte~
nance, and reference documentation for the products, as well as the custom
solutions developed by the Support Engineers in the course of assisting
Field Engineers and customers.

Ideally, solutions should be generated that are accurate and personalized
for each customer. Therefore, in this application, the Support Engineers
must be provided with a tool for authoring custom solution documents, as
well as the means to search for and retrieve relevant information from the
knowledge base. Moreover, it is desirable to maximize the Help Desk
investment by provided a controlled means to add these solutions to the
knowledge repository for use by others.

Additional requirements were the ability to share and reuse information
gathered in the field into the knowledge repository, providing accessible,
usable feedback for the product documentation cycle. At the same time, the

©1998 THE XML HANDBOOK™

1 2 . 1 j T H E H A P L E S S H E L P D E S K 167

organization. want~d to gain portable, modular information that could be
shared with Jts busmess partners and OEMs.

To show how an organization could accomplish these goals, an XML
based Help Desk Solution System prototype was developed. The prototype
uses Texcel Information Manager, a content management system that is
tuned to manage XML data content, element structure, metadata, and
links. 1 he product combines a dynamic document repository built on
object database technology with applications for collab rativ authoring,
such as workflow and electronic review and commenting. Customized Java
applets and integration with an existing call-tracking system comprise the
balance of the prototype.

n. l.i Helping the Help Desk

Consider a scenario with the prototype system in use.
In this scenario a field engineer experiences a problem with a piece of

equipment installed at a customer site. He visits the manufacturer's techni
cal support Web si te, and attempts to solve his problem by searching for
published technical solution information. No relevant published informa
tion is found, so the call is automatically routed to a Support Engineer at
corporate headquarters who is using the Help Desk Solution System.

The Support Engineer calls up customer information from the customer
tracking system, which is integrated with the Solution System, to determine
the appropriate model number and other customer usage characteristics.
Then he searches for applicable technical information in the dynamic
knowledge repository, which consists of both published and in-process
technical and maintenance documents, technical notes, training materials,
and workarounds and customer solution documents submitted by other
support personnel.

Although useful, the information already available and published does
not specifically address the customer's problem. So the Support Engineer
generates a new, custom XML solution document that combines informa
tion gained on the call, customer data, and information in the repository.

The new solution is checked into the repository, and automated system
supplied metadata is generated. Once in the repository, the solution docu
ment is available to other Support Engineers, although still in draft form.

The document is then automatically routed for review and approval via
an integrated workflow system, part of the standard Texcel Information

© !9 98 T HE XM L H ANDBO O KTM

168 CHAPTER 12 I HELP DESK AUTOMATION

Manager product. Subject matter experts and technical editors comment on
the document, using the browser-based review and commenting tool com
ponent of the product.

In addition, references to source material indicated by the Support Engi
neer are turned into cross-repository links to maintenance information. The
new XML solution document is now available in final form for search and
retrieval by other Support Engineers.

I t.t 1 How the Solution System works

J t.t. J Information flow

Support Engineers interact with the Solution System through a Java applet
run from a standard Web browser. The back-end knowledge repository
built using Texcel Information Manager contains maintenance and reference
information marked up in XML.

The repository also contains other material contributed by subject mat
ter experts in popular file formats such as Word and PowerPoint, and various
graphics formats. XML metadata is associated with all objects managed in
the repository. A customer support call-tracking system, running on an
SQL database, also supplies data to the Solution System.

Support Engineers create custom, personalized solution documents using
an embedded XML editing tool. The solution documents incorporate the
correct product model numbers and other details from the customer
records in the SQL call tracking system, which is automatically integrated
into fields within the solution editor.

Once authored and approved, the solutions are categorized and stored in
the repository in a way that facilitates economical querying. Each element
within a solution document instance is decomposed into a unique object in
the repository. A solution document instance or any element contained
therein can be retrieved on demand.

©1 998 TH E XML HAN DBOO K ™

1 2. 2 I H 0 w THE s 0 L u T [0 N sysTEM w 0 R K s 169

12.2.2 Architecture

The XML Help Desk Solution System consists of several client, server, and
database components, as shown in Figure 12-1. The clients are a Java applet
for solution research and authoring, and the Texcel Work Queue (an auto
matically generated co-do list).

The Java applet provides a GUI interface for querying the repository, and
a query results display, as well as an integrated solution editor, a help Func
tion, and a research and discovery function. The Work Queue delivers tasks
to the user according to his role in the review and approval cycle.

The Java server application connects to multiple Java applet clients,
interfaces with the document repository as well as the SQL database
(through JDBC), and handles the workflow initiation and routing.

I Re~ti~·f~···~."s~ I XML Ret~:!~~ry __I ~o~~ow Reposito;J

m•c «OBM< I j

I
- __ . _ _ ,. ~---~-

I Texcel Java Server Application w;b I HT"iPScrv~; "I ,_ f- -

Connection ' I
whh Java
Serve••

Application I
I

l ,.
L~.~va Applet

/

Download
the Applet

,.
[WorkQueuc

Figure 12-1 The XML Help Desk Solution System.

©I 9 9 H T H E X M L H 11 N DB 0 o K ·rM

I Databases I Rcposltot•ics J

r Server Application~

Texcel Help De'k Client
'- '

170 CHAPTER 12 j HELP DESK AUTOMATION

• t .J 1 Using the Help Desk Solution
System

Now let's step through the application scenario and discuss the tools and
technology - including the role of XML - in use at each step. We start at
the Support Engineer's desk, where he is researching a solution to a problem
reported by a Field Engineer on behalf of a cu tomer.

lt.il. l Make the query

The Support Engineer queries the repository for solution documents that
match the problem reported by the Field Engineer (Figure 12-2).

The Help Desk Solution System Java applet is running in a standard Web
browser.

SQL queries are run against the customer call tracking system, incorpo
rating the appropriate product name and type into the correct fields in the
applet.

The search process uses the Texcel query language, which is specifically
designed and optimized to query XML (and full SGML) data. The search
can find information contained in any element or piece of metadata, based
on any combination of element types, metadata, and data content. Searches
can be run on material that is not yet released, such as solutions and refer
ence material that is in draft form; this status information is stored as meta
data.

The search tool GUI shields the user from the complexity of the query
language, while generating well-formed queries and usable results.

The results of the search are presented in a tabular format in the Solution
System applet. When an item is selected, it is converted on the fly from
XML to HTML, using standard functionality of the Texcel Information
Manager Web Application module.

12.il.2 Research product information

Tb Support Engineer researches background information in the product
information repository using the Texcel Information Manager •xplorer
interface (Figure 12-3).

©1 998 THE XML HANDBO OK ™

I 2. 3 US!NG TH E H EL P DE S !-: SO LU TI O N SY ST E M

Help Desk Solution System

solUtion Editor search Tools

Product Type:

proorem Type

Agent Name:

Status:

oate:

Month f01::J Day f01::J Year jr998 t:J
Prootem statement that contarns ·

Oesl<lop not 1auncl1ing

Solution Statement tl·rat contains:

SEARCH

Figu,.e 12-2 Search panel of client appl et

Use of XML provides both tagged elements and metadata. The element
structure can be seen in the repository browser and used for various func
tions. For example, a user can select a single element for updating.

A logical st ructure has been created for the repository, much like the
folders and subfolders used in file system organization, making navigation
straightforward.

lt.J.J 1Vrite a solution

The Support Engineer develops a new solution to the specific problem,
based on interaction with the Field Engineer as well as research into the
knowledge repository (Figure 12-4).

An XML document type is used that has been designed for the Solution
System application.

171

172 CHAPTER 12 I HELP DESK AUTOMATION

o .. ~top
f Dom~in
8 jppdb

I
D doctypes

$ toxcel
sale$
marketing
consuMing
development

e documentation
8 \l:JI IM 2 0 lnstollotion Guide

1

--'b Pub UDT _bookmork _target
- 'b Pub Entlist alpho buU copy rAn

8 book

Once you have installed the software, you can test that il is
rking properly,

o test the software

I . Click the Start button and point to Programs Then point to
Toxcel and seleciiM Desktop.

tu~_mi2. gif
After a few moments, the IM Desktop should appear

m2_desktop.gif

If you chose to install the sample repository that comes with IM, '
you can open it by ...

Figure 12-3 Browsing the repository for research and discovery.

Tags are not visible to the end user. Instead, the Support Engineer is able
to use standard word processing functions, such as creating bulleted lists
and specifying fonts.

The new document automatically includes the customer ID number and
the part number f the machi ne that was malfunction ing, which ha been
exrracted from the QL database through a JDBC interface to the relational
database. This information is inserted into th document and tagged with
XML, as shown in Example 12- 1.

lt.J.4 Update the repository

The document is completed and submitted to the repository.

T he olution document is composed and an XML parser runs to check
the solution document for well-formedness.

The user selects the priority level of the document, which is used to
determine which review process is used.

©1998 THE XML HANDBOOK™

1 2 . :; U S I N (; 'f' 1-1 E I-1 E I. l' [) E S K S 0 L UTI 0 N SYSTEM

"'"ouciN mt

C)om I

ooatorner WEI & unatlle to launch IM Dosktop betauae ontM Information Manager tcon I referred l1im to the
aucllon ~uuun~oflnformil11on 1\11!naoor)not~ll11!1on GuidO, The foil oiling is tolwn cl ircctly from 111ot section

Testing the softwaml

To test the "oftware

u Cli ck t11 0 !•it(.lrt llUlton and poinl to Pt unrmns, 1'1wn point to Texcel and sele r;tiM Desklop Aller~ fevl moments, tl1e IM
Desktop should 8ppom.

u liyou r. hose to lnsla111he S~l rn p l e repository tll<ll cornos vo;flh IM, you cm1 open il by ..

1\ftct' l t yi ll ~J the above, 111c C L IShll"ncrw~s n!Jie lo lmmctl tho applicafton and W<~s vety happy

Figure 12-4 XML Solution Editot- running within a java client

The solution document is now available to all users although still in draft
or unappwved form.

Because th e Support Engineer has authored new information, the solution
documellt i!i automatically routed for approval. The routing is managed
through the work queue shown in Figw:e 12--5.

T'he solution document is submitted to the Java server application,
which cotnJmJnicatcs witb the 'Jexcel workflow repository.

A "case" or process is selected and the document is automatically routed
to rhc correct people, such as the technical editors and engineers, for review
and approval.

I~ 1 ~) ~ ~ X T Jl 1·: X lvf L I [1\ N u 1\ () () K l M

173

174 CHAPTER 12 I HELP DESK AUTOMATION

Example 12-1. Solution document marked up in XML.
<?XML version-"1.0"?>
<solution id="solution-1000">
<solution-info>
<owner>Derek Yoo</owner>
<date>Sat Jan 31 22:30:50 1998</date>
</solution-info>
<product-grp>
<product-type>SST</product-type>
<product-name>Self Service Terminal lOOA</product-name>
</product-grp>
<problem-grp>
<problem-statement> Terminal lOOA will not recover from a power
failure. Screen remains blank after power is restored.
< / problem-statement>
</problem-grp>
<solution-grp>
<solution-statement>
<para>The solution is to simply turn the main power switch for the
terminal off and then on again.</para>
</solution-statement>
<testing-steps>
<step></step>
</testing-steps>
</ solution-grp>
< / solution>

Figure 12-5 Work queue component of Solution System.

©1998 THE XML HANDBOOKTM

12 . 3 I USING THE H ELP DESK SOLUTION SYSTEM 175

1 'I.J.6 Check in document to knowledge base

The solution document is checked into the knowledge base and shredded

into XML objects.
The check-in process parses the document and labels each element with a

unique repository identifier, which can be used for retrieval and linking
purposes. In addition, individual elements can be caUed out of the reposi
tory and reused in new solution documents as either copies of, or links m,
the original information. T hese capabilities are part ofTexcel Information
Manager's support for XML.

Analysis At first glance, this application appears to have
many of the characteristics of the "large tech manual" publishing
applications, perhaps because tech manuals are part of the
information base. But other aspects of the application are more
like classic database systems, with an emphasis on capturing bits
of data, "cleaning" them, combining them with other data, and
presenting them together in reports.
XML, of course, works both ends of this street quite well, and this
app demonstrates that the ends are really connected; that XML
document processing and XML data processing are only different
in degree, not in kind.

©199H T il E XML HANDBOOKTM

Extended linkimg

I Extended linking defined

I XLink applications

I XPointers L__ _ _.;

I Strong link typing

©1998 THE XML HANDBOOK™

(bapter __ ~

1J

uture generations of Web browsers and editors will reduce the effort
required to keep our personal affairs organized and our corporate
memories up to the minute. The productivity of many kinds of work
will be enhanced, and in many ways. It's all going to happen basically
because of two simple enhancements to the Web paradigm.

The W3C's draft XLink "extended link" facility proposes to give all of us
the ability to annotate documents, and to share those annotations with oth
ers, even when we cannot alter the documents we are annotating. In other
words, we won't have to change a document in order to supply it with our
own annotations - annotations that a browser can make appear as though
they were written right into the an nora ted document.

I i.l 1 The Shop notes application

As an example, consider a technician's set of online maintenance manuals.
These are electronic books that the technician is not (and should not be)
authorized to change. With the Web's existing HTML hyperlinks, the tech-

177

1 7 8 CHAPTER 13 I ExTENDED LINKING

nician cannot write a note in a manual that can take future readers of that
manual, including himself, to his annotations. Nor can the technician's
annotations be displayed in their proper context - the parts of the manual
that they are about.

I i.l.l What is extended linking?

By using extended linking, when the technician makes an annotation, he
does so purely by authoring his own document; no change is made to the
read-only manual document that he is annotating.

The big difference between "extended" linking and present-day HTML
linking is this. With an HTML (or "simple") link, traversal can only begin
at the place where the link is; traversal cannot begin at the other end. With
an "extended" link, however, you can click on any of the link's anchors, and
traverse to any other anchor, regardless of where the link happens to be.

Tip Extended linking allows the starting anchor of a link to be
different from the link itself. Instead of HTML 's "A" tagged
element that is linked to one other element, you can have (say) an
"L" tag that links two or more other elements to one another.

A simple link (top of Figure 13-1) is always embedded ("inline") in (for
example) the InstallLog text from which it provides traversal; the link can
not be traversed by starting at the target anchor (for example, the Installa
tion procedure document).

An extended link (bottom of Figure 13-1) can appear in a separate docu
ment, and provide traversal between the corresponding parts of two other
documents: for example, the technician's shop notes document
("TechLog") and the read-only installation manual. Because the location of
this particular link is not the same as any of its anchors, it is said to be "out
of-line" (not embedded).

In our example, an annotation takes the form of just such an extended
link element.

©1998 THE XML HANDBOOKTM

1 3 . 1 I T H E s H 0 p N 0 T E s A p p L I cAT I 0 N 179

Simple inline link

Extended, out-of-line link

Figure 13-1 Simple vs. extended linking.

1 1.1.2 Displaying extended links

Installation:

Task 1: Insert the smaller fj •

on the underside oJ

Task 2: Take the articulate
tighten to 15 foot-J

One way to realize the benefits of extended links is to display an icon at
each anchor that indicates something about the other anchor. (The mecha
nism that supports this is discussed in greater detail under "Strong link typ
ing", below.)

For example, as shown in Figure 13-2, a reader of the installation manual
on the right will know that, if he clicks on the exclamati n point displayed
near Task 2, he wiU see a sh p note abour that task. If he clicks on the
pound sign, he will be shown the serial number of a part that was installed
according to the procedure, recorded in an "InstallLog" document.

Similarly, a reader of the annotation in the shop notes document
("TechLog") will know that clicking on the "I" icon will bring him to the
installation instruction that the annotation discusses.

©199 8 TH E XML HANDBOO K™

18 0 CHAPTER 13 I EXTENDED LINKING

Install Log

part serial #
DX24755D- 438C

o ff if ''I_ ------... I
is :: V 7 XL.;nk~) ?.
1~ or-~ ~~~o!J~

OK

Task 1: Insett the smaller c •
on the underside o1

7 Task 2: Take the articulatd :
tighten to 15 foot-J

~-~
Figure 13-2 The exclamation point icon near Task 2 indicates that a shop
note is available .

I J.I.J Notes survive to new versions of
manuals

The technician's annotations - his "shop notes" - accumulate over time,
and they represent a val uable asset that must be maintained. If the techni
cian were to write shop notes inside each manual, when a new version of a
manual is received it would be a chore to copy annotations from the old
manual to the new manual.

With extended linking, however, the annotations are not in the old ver
sion; they are in a separate document. Therefore, the shop notes don't dis
appear when an annotated manual is replaced by a newer version.

That i because each link is equipped with "pointers" - pieces of infor
mation rhat can tell a browser where (for example) clickable icons should be
rendered rhat indicate the availability of an annotation. Each such
"XPointer" (as it is called) can point at anything in any XML document.

In our technician's shop, when a manual is replaced by a new version, the
XPointers keep on working, even with the new manual, so the new manual
is instantly and automatically equipped with the old manual's annotations.

In most cases, the XPointers don't have to be changed, because they con
tinue to point at the right things, even in the new manual. If, because of
differences between the old and new versions of the manual, some XPoint-

© 199 8 T H E X M L HA ND U OOK ™

13.2 \ OTHER APPLI C ATIONS OF EXTENDED LINKING 181

ers in the shop notes don't stiH point at the right things (or perhaps have
nothing to poinr at any more), certain techniques can be used to detect
each such situation. By dealing with these pl'oblem spors, the maintainers
of the shop notes can minimize their efforts.

Moreover, XPointers and ex:rended links enhance the potential for
achieving high levels of quality and c nsiscency, even when there are volu
minous shop notes that annotate many manuals.

1 i1.1.4 Vendors can use the notes

Some shop notes may also have value to the vendors of the manuals they
annotate; they may beneficially influence subsequent versions of the man
ual. An editor of the manual can load (i.e., make his browser aware of) all
the shop notes of many repair shops; this has the effect of populating the
manual with icons representing the annotations of all the shops. The most
common trouble spots in the manual will be made obvious by the crowds of
annotation icons that they appear to have accumulated (Figure 13-3).

The fact that the shop notes take the form of interchangeable XML doc
uments that use standardized extended links makes the task of sharing
internal shop notes with manual vendors as easy as sending them any other
kind of file. There is no need to extract them from some other resource, or
to format them in such a way that they can be understood by their recipi
ents. They are ready to work just as they are, in the tradition of SGML,
HyTime, HTML, and now XML.

I 1.1 1 Other applications of extended
linking

The above "shop notes" example is just a sample of the kinds of enhance
ments that extended linking will bring to our interactions with information
resources. Some of the broader implications are a bit more startling.

©!998 THE X ML HAND BOOK™

182 CHAPTER 13 I ExTENDED LINKING

·----
Figure 13-3 Task 18 evidently prompted three kinds of annotations in four
different shop logs.

I J.'l.l Public resource communities of
interest

For example, many web sites today contain HTML links to public
resources. One is the U.S. Government's online service for translating any
U.S. postal code into its corresponding Congressional district and the name
of its current incumbent Representative (http: //www. house. gov I zip/

ZIP2Rep. html).

However, if those HTML links were to become XLink extended links, an
XLink-enabled browser could render this U.S. government Web page in
such a way as to add to it a catalog of the activists and lobbying organiza
tions who refer readers of their websites to this particular U.S. government

©!9'J8 THE XML HANDBOOK™

1 3. 2 I 0 TH E R A p pLI c A T I 0 N s 0 F E XTENDED LINKING 183

resource. The "marketplace of ideas" represented by the aggregate of such
orgaillzarions is thus revealed in a new and interesting way.

1 !1.2.2 Guidance documents

Another srarcling possibiliry is the association of br wser-concrolling meta
data wirh any and all Web resources.

In this scenario a document of annotations (or a set f such documents)
can be a user's companion during excursions on the Web. These an nota
tions might make suggestions o users as to where to find more recent mate
rial, or they might even tal< control of the browser's link traversal ability in
order to protect chil cL·en fro m disturbi ng materi.al.

While the latter XLi.nk-enabled possibili ty may sound inimical to the
freedom of speech, in fact ic enhances liberty. It provides a new public
medium for free speech: documents that censor the Web and/or otherwise
provide guidanc o Web travelers in the form of annotations that appear
~mly in their designated contexts.

Of cours , no adult is required to use any such_ guidance document, just
as no one is required to read any particular book, but it's easy co pred ict tha
many will pay for rh privilege of using many kind of such "guidance doc
uments."

More importantly, everyone will have the tools to write such guidance
documents, so the technical ability to provide guidance (and, yes, even to
provide censorship services) will be widely distributed, rather than being
·dangerously oncentt·ated in a few generalized rating services. he creati.on
and maintenance of guidanc do umems may weJl become a thriving cot
tage industry. Anyone can be a critic.

In the case of electronic commerce, it's easy to imagine that vendors will
attempt co provide guidance documents de .igned to anna ate the on line
sales caralogs of their comp<.:ticors. In response, some providers of nline
sales catalogs will take steps to render the pointers in these kinds of guid
ance documents invalid and unmaintainable.

Regardless of all this, the overall impact on electronic commerce will cer
tainly be positive; increasing the meaningful interconnectedness of the Web
will help more people find exactly what they're looking for.

And it may turn out t b a mistake, in many case 1 for catalog owners co
attempt to render the poimers used to annorace their catalogs invalid,
because similar pointers could be used, for example, by impartial consumer

©1 9 98 THE XML HANDB O OK™

184 CHAPTER 13 I ExTENDED LINKING

testing organizations w attach "best buy" recommendations w certain
products. T he guidance docwnents of consumer testing organizations will
probably be quite popular, and well worth the cost of using them.

I 1.2.1 Computer-augmented memory

Extended linking has the potential to make radical improvements in our
ability to keep track of what we are doing. Someday, we can expect to auto
matically annotate each piece of information we work with in such a way
that, in effect, it refers future readers to the work we did with respect to it.

In other words, practically everything we do can be usefully seen as an
annotation of one or more other pieces of work. If everything we do is, in
some sense, an annotation of one or more other things, everything we do
can all be found far more easily, starting from any piece of work anywhere
in the "chain" (or, more likely, "tree" or "graph'') of relevant information.

This is because extended linking allows all links to be bidirectional. (Or,
rather, "n-directional", to account for extended links with more than two
ends.) All of the connections among our affairs can then be tracked more or
less automatically, so that each of us can enjoy a radical reduction in filing,
cross-indexing, and other organizational chores, and with vastly increased
ability to find what we're looking for quickly and easily.

Obviously, this same idea is even more significant in the realm of corpo
rate memory. Even with today's behemoth enterprise integration technolo
gies, it's still too hard to figure out what has happened, who is doing what,
how various plans and projects are going to integrate, and where the rele
vant paperwork can be found.

Going a step further, there is an ISO standardization activity (ISO CD
13250) seeking ways to exploit extended linking in such a way as to create
living, easily explored and maintained "maps" of all of the information
resources available to an organization (see "Topic Navigation Maps",
http: 1 / www. high text. com/ tnm). This goal sounds almost insanely ambi
tious, but extended linking, in combination with strong link typing (see
below), could make it practical and achievable.

© 199 8 TH E XM L HA ND BO OK ™

13 . 3 I S T RONG LINK TYPING 185

1 !.'1.4 Intellectual property management

The advent of extended linking also offers interesting new possibilities for
the management and exploitation of intellectual property.

For example, m cadata regarding the licensing policies of owners of Web
resources could be associated with those resources by means of extended
links. uch metadata could be changed when the resources are sold or
licensed, without requiring any d1anges to the assets themselves.

This method greatly reduces the likelihood of inadvertent damage to the
assets, and greatly increases the ease with which ownership and/or manage
ment policies can change. There i already an official, internationally-rati
fied ISO standard for using extended linking fo r exactly chis pillpose (see
http: / /www.ornl.gov/ sgml / wg8 / document / n192 0 / html / clause-

6. 7 .html#clause-6. 7. 3).

Such activity policies, and the means by which they are associated with
online assets, could well become a source of private law that will strongly
influence the development of intelligent agents (see http: I I
www. hytime. org / papers / higgins 1. html).

11.1 1 Strong link typing

With the XLink extended link facility, there is no limit to the number of
links that can be traversed from a single point in a single document. Many
different document can contain links to the very same anchor, with the
result that, theoretically, at least, an unlimited number of traversals are pos
sible, starting from a single point. In addition, there are no limits on the
kinds of annotations that can be made, nor on the purposes to which such
annotations may be put.

Therefore, it makes sense to provide some easy way to sort the annota
tions (i.e., the links) into categories. For example, some kinds of annota
tions will be made in order to provide "metadata'' about the document, and
these will often take effect in some way other than by rendering an icon on
the display screen. Some kinds of annotations are interesting only for spe
cialized purposes.

©1998 TH E XM L H A ND BO OK TM

18 6 CHAPTER 13 I ExTENDED LINKING

I :1.:1. 1 Hiding the installation log

Going back to our earlier example, the technician can create an annotation
that indicates the serial nwnber of a new parr that he installed in accor
dance with a particular main tenance procedure. The fact that such an anno
tation is available would be of interest only to someone who was auditing
the installat ion of parts; it probably wouldn't appear even to the technician,
despite the face that it was he who created the annotation.

The technician's installation log annotation can be hidden from most
people because it is "strongly typed": it has been clearly and unambiguously
labeled as to its intended meaning and pmpose, so all browsers can see what
kind of linlc it is. In effect, the link says, "I am a Part-Installation-Log
Entry." People who aren't interested in part installation record can arrange
for their browsers to hid them.

1 i.i.t Why do we need strong link typing?

People may still choose to be made aware of other kinds of annotations
made by our technician. For example, other technicians may wish to read
our technician's accounts of any special situations that he has experienced
when attempting to follow a particular instruction, or about successful and
unsuccessful experiments with substitute parts.

The notion of "strong link typing" is virtually absent from HTML links.
Basically, in HTML, the browser software knows where the user can go, but
not why the author of the document being browsed thought the user might
like to go there. The human reader can usually divine something from the
context about the material that will be shown if the "anchor" hyperlink is
traversed, but the browser itself is basically unable to help the user decide
whether to dick or not to click, so it can't hide any available traversals.

To be able to hide the availability of unwanted kinds of links can save a
lot of time and effort. So the draft W3C XLink recommendation also pro
vides for the additi n of strong typing features, not only to extended links,
but also to the "simple" links that closely resemble the familiar HTML
"anchor" (<a>) element. Thus, browsers can start supporting strong link
typing promptly, even before they can handle extended linking.

©1 99 8 T HE X M L H ANDBOOK™

1 3 . 4 I c 0 N c L us I 0 N 187

1 iJ,il.il Anchor role identification

The notion of strong link typing includes the notion of "anchor role" desig

nation.
For example, the simple link at the top of Figure 13-1 characterizes its

target anchor as an installation instruction; in the d iagram, chis is indicated
by the 'T' icon in the arrowhead . irnilarly, the extended link at the bottom
of Figw· 13- l characterizes one of its anchor as a shop note (the exclama
tion point) and rhe ocher anchor as an installation instruction (another "I'
arrowhead).

Thus a link can do more than just identify itself by saying, for example,
"I am a Part Installation Log Entry." It can also specify which of its anchors
fulfill which roles in the relationship it expresses.

For example, om Part Installation Log Entry link can say, in effect, "I sig
nify char pan [pointer to nny in parr catalog or inven tory record] was
install d in [pointer to informacion chat identifies the uni t being main
rained] in accordance with maintenance di rective [XPointer to instruction
in manual]."

In other words, rhe log entry link is a thre -ended link whose anchor
roles might be nan1ed "replacement-parr" (indicated with a "#" icon),
"maintained-unit" ("@" icon), and "maintenance-directive" ("I" icon) (Fig
ure 13-4).

The fact that an anchor plays some specific role in a relation hip often
determines whether the relationship is interesting or even relevant in a
given application context.

I !l.t 1 Conclusion

It is easy to see that the impact of extended linking will be significant, and
that technical workers and electronic commerce will be early beneficiaries.
Extended linking will enhance the helpfulness and usefulness of the Web
environment. The burden of many kinds of paperwork will be very sub
stantially mitigated.

On the horizon, there appears to be serious potential for significant
improvements in the availability of all kinds of knowledge, due to the possi
bility of creating and interchanging Topic Navigation Maps. Intellectual

© !9 98 T H E XML H A NDB O OK™

18 8 CHAPTER 13 I ExTENDED LINKING

lnetaiiLog

This subassembly contains
used in both the BH60 ass<
engine cores. It incorpora~

Task 1: Insert the smalle r o
1

on the underside oJ

I

Task 2 : Take the articulated
tighten to 15 foot-r

Figure 13-4 Link w ith two traversal possibilit ies at each anchor, distinguish
able because of anchor ro le identification.

property management, and the Web-based utilization of intellectual prop
erty, will become easier and more orderly.

All of these benefits, and probably many more, emanate from two very
simple enhancements of the Web paradigm in the draft XLink and XPoint
ers recommendations of the World Wide Web Consortium:

• Allowing the starting anchor of a link to be different from the
link itself; and

• Strong link typing, in which links plainly exhibit the kind of
relati nship they represent, and the roles their anchors play in
that relationship.

Tip For more on X Link and XPointers, see Chapter 3 4,
"Extensible Linking Language (XLink)", on page 498. The text of
the XLink and XPointer drafts are on the CD-ROM.

© 19 98 TH E X M L HANDBOOKrM

