Merrill Communications LLC
d/b/a Merrill Corporation
Exhibit 1006 pt. 8

WIDL and XML
RPC

B Application interoperability

B Web Interface Definition Language (WIDL)
XML Remote Procedure Call (RPC)

WIDL specification on CD-ROM

v |

©1998 THE XML HANDBOOK™

WIDL and XML
RPC

I Application interoperability

I Web Interface Definition Language (WIDL)
I XML Remote Procedure Call (RPC)

§ WIDL specification on CD-ROM

©1998 THE XML HANDBOOK™

XML goes a long way toward allowing
applications to interoperate, but some think it needs
to go a WIDL further. Among them are webMethods,

Inc., ‘ ‘ y who sponsor
this chapter, and Joe Lapp, who prepared ix.

ngineers numbered 12-345-68 through 23-457-89 ar Qops E-
Commerce Corporation say “XML is the solution o interopera-
bility,” These engineers gang up on the managers until the corpo-
rate gears succumb and reverse direction. Soon the sales reps are saying the
words “‘universal data format” more often than the words ‘object-ori-
ented.” Oops XML-enables its popular Loops product, renames the prod-
uct to Xoops, and then ships Xoops out the door.

Over the following weeks we eavesdrop on the support engineers: “Well,
if you have Company Q’s product you can use our XML feature with ic...
Well, to get it to talk to your purchasing system, you'll have to XML-enable
 the purchasing system... Well, their program uses a different DTD from
ours, so Xoops won't interoperate with it.”

Woops, Oops goofed with Xoops: XML alone is not quite enough.

©1998 THy XML HANDBOOQK™ 555

556 CHAPTER 38 | WIDL AND XML RPC

38.1 | XML alone is not quite enough

A client that hands a server data must tell the server what to do with the
data. The client does this by naming a service. A client must also under-
stand the data that the service returns. Two applications may communicate
only if they agree on the names of the services and on the types of the input
and the output data.

Furthermore, applications must agree on how to represent this data in
the messages that transfer between them. XML provides a way to represent
the data, but it does not associate input data and output data with service
names, and it does not provide a way to map between message types. Some-
thing is missing.

38.1.1 The missing piece

The obvious solution to the problem is to associate input DTDs with out-
put DTDs and to give these associations service names. This does provide
enough information for two applications to communicate, but it requires
both applications to be XML-enabled and it requires the applications to
conform to the same DTDs. While there may not be many XML-enabled
applications right now, eventually there will be, but it is unlikely that all
will agree on the same DTDs.

A better solution to the interoperability problem is to define application
interfaces in an abstract way. CORBA, DCOM, and DCE have all taken
this approach, and in these systems the abstractions are known as interface
specifications.

Interface specifications allow developers to create different but compati-
ble implementations of interfaces. In CORBA, DCOM, and DCE inter-
face specifications allow applications written in different programming
languages to communicate. We need to take this a step further. We must
also bridge between applications whose XML messages conform to different
DTDs.

The missing piece is an IDL - an Interface Definition Language. An IDL is
a language in which interface specifications are written.

webMethods, Inc. has specified an IDL for this purpose, an IDL called
WIDL. WIDL interface specifications enable middleware to map transpar-
ently between application interfaces and XML message DTDs. By delegat-
ing XML intelligence and accessibility issues to IDL-aware middleware, we

©1998 THE XML HANDBOOK™

38.2 | WIDL THE IDL

also simplify the application. An IDL such as WIDL allows us to maximize
an application’s accessibility.

38,12 The role of WIDL

WIDL is an acronym for Web Interface Definition Language. It is an IDL
that is expressed in XML. OMG IDL and Microsoft IDL are other exam-
ples of IDLs, but there are important differences between WIDL and con-
ventional IDLs.

WIDL differs from other IDLs primarily because it satisfies the 80/20
rule. It provides 80% of the capability of a conventional IDL with only
20% of the complexity. WIDL is consequently easy to learn, easy to read,
and relatively easy to implement.

This fact provides WIDL with a potentially large user base, but still
leaves room for more sophisticated IDLs, including new ones based on
XML. WIDL also goes a step further than conventional IDLs by requiring
all data items to have names, which simplifies the process of translating
documents into interfaces.

webMethods originally developed WIDL to wrap Web sites within APIs,
thereby giving applications programmatic access to the Web. Consequently,
the WIDL 1.x and 2.x specifications defined a single language that both
specified interfaces and defined how interface specifications map onto a

Web site.

WIDL 3.0 places the interface specification and the document-mapping
implementation in separate XML documents. WIDL 3.0 therefore defines
two components: an IDL component and a document-mapping compo-
nent. Together these components allow applications to communicate over a
network regardless of the programming languages in which the applications
are written, regardless of whether the applications speak XML, and regard-
less of the DTDs to which XML-speaking applications conform.

38,2 | WIDL the IDL

Lets take a look at the IDL component of WIDL 3.0. Example 38-1 shows
a short but complete example of a WIDL 3.0 interface specification.

©1998 THE XML HANDBOOKT

557

5 5 8 CHAPTER 38 | WIDL AND XML RPC

Example 38-1. A WIDL 3.0 interface specification.

<WIDL NAME="com.Fortunes-R-Us.Purchasing" VERSION="3.0">
<RECORD NAME="FortuneOrder">
<VALUE NAME="accountID" TYPE="id"/>
<VALUE NAME="zodiacSign"/>
</RECORD>
<RECORD NAME="FortuneReceipt">
<VALUE NAME="orderNumber" TYPE="i4"/>
<VALUE NAME='"fortune"/>
<VALUE NAME="accountBalance" TYPE="r4"/>
</RECORD> '
<METHOD NAME="orderFortune" INPUT="FortuneOrder"
OUTPUT="FortuneReceipt" RETURN="orderNumber"/>
</WIDL>

A WIDL document specifies a single interface. Example 38-2 is a DTD
that defines WIDL documents sufficiently for our purposes.

Interfaces should have names that are unique within their scope of use.
Naming an interface relative to the reverse order of a domain name provides
one way to accomplish this. A client may then identify interfaces by name,

A WIDL element contains one or more RECORD or METHOD ele-

ments.

38.0.1 Methods

The METHOD element identifies a service that the client may invoke.

Method names must be unique within the document. Methods may

optionally have input and output parameters, as indicated by the optional
INPUT and OUTPUT attributes.

The INPUT attribute provides a link to a RECORD element that enu-
merates the method’s input parameters. The OUTPUT attribute provides a
link to a RECORD element that enumerates the method’s output parame-
ters. The tag may optionally indicate that one of the output parameters is
the return value of the method when the interface is implemented in a pro-
gramming language. Methods may also identify the exceptions that they

raise in order to report method invocation failures.

©1998 THE XML HANDBOOK™

38.2 | WIDL THE IDL 559

Example 38-2. WIDL interface DTD.

Z | ELEMENT WIDL (RECORD | METHOD)+ >
<IATTLIST WIDL
NAME CDATA #REQUIRED

VERSION CDATA #FIXED "3.0"

>

< | ELEMENT METHOD EMPTY>
<!ATTLIST METHOD
NAME CDATA #REQUIRED
INPUT CDATA #IMPLIED
OUTPUT CDATA #IMPLIED
RETURN CDATA #IMPLIED
>
<! ELEMENT RECORD (VALUE | LIST | RECORDREF)* >
<!ATTLIST RECORD
NAME CDATA #REQUIRED
BASE CDATA #IMPLIED
>
<!-- Parameters -->
<|ELEMENT VALUE EMPTY >
<!ATTLIST VALUE
NAME CDATA #REQUIRED
TYPE CDATA "string"
DIM NMTOKEN 0
>
<!ELEMENT LIST EMPTY >
<!ATTLIST LIST
NAME CDATA #REQUIRED
DIM NMTOKEN 0

>
<!ELEMENT RECORDREF EMPTY >
= ATTLIST RECORDREF

NAME CDATA #REQUIRED
RECORD CDATA #IMPLIED
DIM NMTOKEN 0

382,20 Records

A RECORD element represents a record and conforms to the DTD shown
in Example 38-2. Record names must be unique within a document. A
record consists of a collection of zero or more parameter elements, each of
which must have a unique name within the scope of the record. If the
record provides a BASE attribute, the record inherits all of the named

©1998 ThHp XML HANDBOO K™

560

CHAPTER 38 | WIDL AND XML RPC

parameter elements found within the RECORD element to which the
attribute points.

The parameter element types are VALUE, LIST, and RECORDREFE

VALUE
An element that represents lexical data and has an optional TYPE
attribute that identifies the datatype. Datatypes include strings
(“string”), integers (“i4”), and floats (“r4”).

LIST

A LIST element represents a vector of arbitrary size consisting of
an arbitrary set of types.

RECORDREF
The RECORDREEF element identifies a RECORD element that
nests within the RECORDREF’s parent record.

Parameters have an optional DIM attribute. When DIM has a value of
“1” or “2” the parameter represents a single- or two-dimensional array.
When the attribute is absent, the value defaults to “0” to indicate that the
parameter is a single data item and not an array.

WIDL provides only a small number of simple data types. These data
types are sufficient to represent most of the types available to programming
languages. WIDL is compatible with other data definition languages such
as XML-Data and Resource Description Framework (RDF), so WIDL
may accommodate the sophisticated schema languages that are emerging.
This allows WIDL to support complex data types without itself becoming
complex.

38.3 | Remote procedure calls

WIDL provides the information that applications need to communicate,
but it does not perform the actual communication. An application that
requests a service of another application must issue a Remote Procedure
Call, or RPC, to the other application. An application issues an RPC by
packaging a message, sending the message to the other application, and
then waiting for the reply message.

©1998 THE XML HANDBOOK™

38.3 | REMOTE PROCEDURE CALLS

The RPC mechanism requires the applications to agree on the form of
the messages and on the transfer protocol by which the messages travel.
HTTP provides a POST method that allows a client to submit a document
to a server and to receive a document in response, so HTTP is a candidate

rotocol. Since HT'TP is nearly ubiquitous and since it tunnels through
firewalls, it’s obvious that we should use HTTP. The question is, should
XML be the message form?

[IOP and DCE are both industry standards for RPC messages. Either of
these would work, as it is possible to send them over HT'TP. We might
notice that these message representations are inflexible: senders and receiv-
ers must agree on how a message decomposes data into arguments, includ-
ing the positions of the individual arguments and the structures of these
arguments.

Yet if the message representation were XML, the applications would still
have to agree on the DTDs to which the messages conformed. Just as appli-
cations that use different IIOP or DCE message types cannot communi-
cate, applications that use different DTDs cannot communicate. Without
Jooking more closely, we might be inclined to conclude that XML is all
hype after all.

However, we are going to look more closely. These problems do afflict
XML, IIOP, and DCE alike. No reneging here. When we take that closer
look we find that, unlike IIOP and DCE, XML provides a way to solve the

problem.

That is, XML provides a way to ensure that so long as two applications
agree to conform to the same abstract interface specification, then those
two applications may communicate — even if the applications are hard-

coded to use different DTDs.

38.3.1 Representing RPC messages in XML

XML is an ideal notation for RPC messages because it allows us to label the
individual data constituents of a message semantically. These labels are
XMLs tags.

The only semantic labels available in IIOP and DCE are the numeric
Positions of the constituents. IIOP and DCE do not allow data to move to
new positions and they do not allow data to grow or shrink in unforeseen
ways. They also do not allow applications to discover the absence of data

891998 THE XML HANDBOOK™

561

562 CHAPTER 38 | WIDL AND XML RPC

from a message or to introduce new data items into a message indepen-
dently.

But the greatest benefit that XML brings to RPC is that XML moves 3
significant amount of information about a message into the message itself,
It is a benefit because it moves an equal amount of information out of the
programs that process the messages. This simplifies the programs that inte-
grate applications.

In all probability, industries will never completely agree on standard
interfaces or standard DTDs, so it will always be necessary to translate
between interfaces. XML provides interoperability by enabling a new class
of middleware to serve as generic application integrators.

38.3.2 Generic and custom message DTDs

There are two ways to represent RPC messages in XML. A generic docu-
ment type is capable of representing any message. The interface specifica-
tion determines the form that a message takes in a generic document type.

More specifically, the definition of a method uniquely determines the
DTDs of the request and reply messages that correspond to the method.

On the other hand, a custom document type is designed only to contain
the inputs or the outputs of a particular kind of service. There are many
possible custom document type definitions for a given interface method.

Let’s look at a few examples that are based on the Fortunes-R-Us pur-
chasing interface shown in Example 38-1. Example 38-3 contains three
RPC messages.

The first portrays what an instance of a generic document type might
look like for a message that invokes the “orderFortune” method. The same
document type scheme might be used for the reply message, which is the
second message of Example 38-3. The third message shown is an instance
of a custom-DTD reply.

There are many possible generic XML document types, and we can
expect to see industries creating them and using them. There are also many
possible custom document types for any given method. We can also expect
to see applications using custom document types to message other applica-
tions.

The trick is to ensure that we can integrate applications that use different
document types to represent the same information. Without this we do not
have interoperability. XML makes it feasible to provide large-scale interop-

©1998 THE XML HANDBOOK™

38.4 | INTEGRATING APPLICATIONS

Example 38-3. Generic- and custom-DTD RPC messages.
<RPC TYPE="REQUEST">
<VALUE NAME="accountID" TYPE="i4">2001</NUMBER>
<VALUE NAME="zodiacSign">Aquarius</VALUE>
</RPC>

<RPC TYPE="REPLY">
<VALUE NAME="orderNumber" TYPE="1i4">438553</NUMBER>
<VALUE NAME="fortune">You will use XML for RPC</VALUE>
<VALUE NAME="accountBalance" TYPE="r4">65.00</NUMBER>

</RPC>

<FORTUNE-RECEIPT>
<orderNumber>438553</orderNumber>
<fortune>You will use XML for RPC</fortune>
<accountBalance>65.00</accountBalance>
</FORTUNE-RECEIPT>

erability, but only if we design our messages so that integration middleware
may robustly identify data constituents by label.

38.4 | Integrating applications

WIDL and XML RPC together enable middleware to integrate applica-
tions. We'll use the term integration server to refer to middleware that
assumes this kind of responsibility.

A WIDL interface specification supplies an integration server with the
information the server needs to map between XML RPC messages and
native application interfaces. Interface specifications do not themselves
define the mappings, but they provide a common language in which to
express them.

Figure 38-1 shows how integration servers connect applications.
Integration servers need to integrate a wide variety of application inter-

faces. One application may implement an interface as a set of Java or C++
methods. Another may implement an interface as a set of functions in C.

Another application may input and output XML documents conforming
to custom DTDs. Still another may input and output XML documents in
the form of generic RPC messages. Integrating applications requires bridg-
ing between programming languages and document representations.

©1998 THe XML HANDBOOKIM

563

564 CHAPTER 38 | WIDL AND XML RPC

B2B Integration Server
Supplier

Your Company Supplier
Excel Web Site
Spreadsheet

XML

HTML

Reseller
Java
Applets B2B INTERNET
Integration OR
Server EXTRANET MM

C/C++, Visual Basic
PowerBuilder

ERP/MRP

Applications Integration

Server
Databases @

Figure 38-1 Connecting applications with XML RPC and integration servers,

The B2B Integration Server connects applications to applications
and applications to Web sites, over the Internet or an Extranet.

38.4.1 Stubs

Conventional RPC bridges programming languages through code snippets
known as stubs. A stub translates between the details of an interface and a
common data representation. One side of a stub speaks the language that is
native to an application and the other side speaks a common data represen-
tation.

By connecting the data representation ends of two stubs, one may bridge
between any two programming languages. In a client stub, the language-
specific side consists of a set of APIs (functions) that the client may call. In
a server stub, the language-specific side calls APIs that the server itself
exposes.

Figure 38-2 illustrates this property of stubs by portraying four stub pair-
ings. Here, XML is the common data representation, but in the usual case
intervening middleware will hide knowledge of XML from the stubs.

In diagram (a) an application written in Java is communicating with
another application written in Java. Diagrams (b) and (c) show that the
same application may also communicate with applications written in C++
or C. Diagram (d) depicts the Java application communicating with an

©1998 THE XML HANDBOOK™

38.4 | INTEGRATING APPLICATIONS

application that speaks XML. In this last scenario the XML-speaking appli-
cation has no stub, since the XML messages pass directly to the application.

R

JAVA XMLI{-—}lXML JAVA JAVA| XMLI{-——}I xMmL| ¢

= () (©

JAVA| XML |XML CH++ JAVA| XML XML
(b) (d)

Figure 38-2 Using stubs to make applications interoperable.

Figure 38-3 portrays how a developer uses stubs to integrate applications.
A developer generates an interface specification in WIDL and then runs the
specification through a WIDL compiler.

The WIDL compiler generates two source files in a programming lan-
guage of the developer’s choice. Both files are stubs, but one file is a client
stub and the other is a server stub. The developer then links the appropriate
stub into the client or server application. The stubs free the application
from knowledge of XML and allow middleware to map transparently
between interfaces and different XML document types.

3842 Document mapping

The document-mapping component of WIDL defines mappings between
interfaces and XML or HTML documents. This is the portion that pro-
vides the bridge between XML RPC messages and application APIs; that is,
the portion that makes the different XML document types indistinguish-
able to the application. webMethods originally developed this facility to
encapsulate HTMIL-based Web sites within APIs, but because XML does a
better job of labeling data than HTML does, the technology reaps more
benefits from XML.

WIDL document-mapping does its job through bindings. A binding
specifies how to map raw data into an RPC message or vice versa, where
raw data” means “data represented in a way that is natural to a program-

©1998 THE XML HANDBOOKT™

565

566 CHAPTER 38 | WIDL AND XML RPC

WIDL Interface Specification

- e > -

I —

s "
Client App| s y ; m
Business 6 /" Internet Integration
Logic ||B or Server
Intranet

Figure 38-3 Using WIDL for RPC over the Web.

ming language”. The best way to make sense of this is to look at an exam-
ple, so consider Example 38-4.

Example 38-4. A WIDL binding.

<OUTPUT-BINDING NAME="OrderReplyBinding">
<VALUE NAME="orderNumber" TYPE="id">
doc.orderNumber [0] . text</VALUE>
<VALUE NAME="'"fortune">doc.fortune[0].text</VALUE>
</OUTPUT-BINDING>

This binding applies to the custom-DTD reply message of Example
38-3. Each VALUE element corresponds to a data item that the binding
extracts from the message. In this case the binding extracts two strings, but
bindings may extract other data types, including records and even XML
documents.

Upon receiving the reply message, middleware applies this binding and
passes the two strings to the application. Since the application ordered the
fortune by issuing a function call on a client stub, the stub returns the
strings to the application as output parameters of the function. Middleware

©1998 THE XML HANDBOOK™

38.4 | INTEGRATING APPLICATIONS

completely shields the application from knowledge of XML and from
dependence on a specific XML document type.

In this example, the binding only retrieves the order number and the for-
tune from the reply message, indicating that the application cannot utilize
the account balance. The content of each VALUE element is a query,
expressed in a document query language, that specifies where to find these
items within the message. In this particular case, the query uses the web-
Methods Object Model, but WIDL is compatible with other query lan-

guages as well.

A binding may also define how to translate data into an RPC message.
WIDL supports several forms of messages. For request messages, the bind-
ing may have the data submitted via the HT'TP GET or POST methods,
thus providing the data as CGI query parameters. The binding may also
have the data submitted as an XML or an HTML message, constructing the
message from a particular template. Templates are a straightforward way to

generate XML.

Bindings provide a simple way to make applications compatible with a
variety of XML message DTDs. Bindings are most useful with custom doc-
ument types, since it is possible to hard-code document-mapping for
generic document types. Generic document types do not require the flexi-
bility that bindings provide, and by hard-coding them middleware can pro-
vide more efficient document-mapping.

An integration server puts bindings to work by using them to mask dif-
ferences in XML document types. By connecting the variable names of
bindings to parameter names in interface specifications, an integration
server may map any XML document type into any programming language.

To get a feel for the benefits of this capability, take a look at Figure 38-4.
Here industries and businesses have defined a variety of DTDs to which
different RPC document types conform. The interface defined with WIDL
captures a superset of the services and data available through the DTDs.
Although different client applications use different XML document types,
the integration server is able to bridge these differences to make the applica-
tion universally accessible.

©1998 THE XML HANDBOOK™

567

568 CHAPTER 38 | WIDL AND XML RPC

Simple Client

Integration
)\ Server
Consortium Client Y ; =
Internet — Simple DTD]\ & Back-end App
or g (e.g. ERP/MAP,
ndustry Leader + Intranet HConsortium DTOH = [T[E-commerce system
Consortium Client =) or Database App)
\EIdustry Leade}/ s
DTD

Industry Leader
Client

Figure 38-4 UsingWIDL to make different XML messages interoperable,

38,5 | Interoperability attained

WIDL, XML RPC, and integration servers are the pieces that provide
application interoperability. With them one can make any application
accessible over a network via XML and HTTP.

One can also make a single application available to client applications
that use different XML message formats. Or one can upgrade an applica-
tion, or substitute one application for another, and still allow all previous
clients to communicate with the new application.

These capabilities should give us second thoughts about hard-coding
servers to use specific XML document types. Servers should leave document
type decisions to middleware, empowering middleware to make the server
widely accessible.

©1998 THE XML HANDBOOK™

XML-Data is the name of a proposal for a DTD
schema language, a new way fo create and augment
document type definitions. This chapter is sponsored
by Microsoft Corporation;

he Internet holds within it the potential for integrating all
information into a global network (with many private but
integrated domains), promising access to information any
time and anywhere. However, this potential has yet to be realized. At
present, the Internet is merely an access medium.

To realize the Internet’s potential; we need to add intelligent search, data
xexchange adaptive presenrtation, and personalization. The Internet must go
beyond setting an information access standard and must set an mformauon
understanding standard, which means a standard way of representing dara so
that software can better search, move, display, and otherwise manipulate
information currently hidden in contextual obscurity.

XML is an important step in this direction. XML is a standardized nota-
tion for representing structured information. It is well-founded theoreti-
cally and is based on extensive industry experience. Although XML
documents are simple, readily-transmitted character strings, the notation
easily depicts a tree structure. A tree is a natural structure thar is richer than
asimple flat list, yet also respectful of cognitive and dara processing require-
ments for economy and simplicity.

©1998 THE XML HaNDROOK™ 571

572

CHAPTER 39 | XML-DATA

Valid XML documents belong to classes — document types — that deter-
mine the tree structure and other properties of their member documents.
The properties of the classes themselves comprise their document type defi-
nitions, or DTDs, which serve the same role for documents that schemas
do for databases.

And that is where the potential for enhancing the Web lies.

Today, the only standardized method of creating document type defini-
tions is through the use of markup declarations, a specialized syntax used
only for this purpose. What is needed is a method of augmenting the exist-
ing set of DTD properties with additional properties that will enable the
goal of true information understanding,

Fortunately, there are ways to accomplish this goal by using XML itself.
The W3C XML Working Group has agreed to work on a DTD schema Lan-
grage for XML. The DTD schema language will provide a means of using
XML instances to define augmented DTDs.

As a contribution to this effort, ArborText, DataChannel, Inso, and
Microsoft have co-authored the XML-Data submission to the W3C.

XML-Data is a notation, in the form of an XML document, that is both
an alternative to markup declarations for writing DTDs and a means of
augmenting DTDs with additional capabilities. For example:

® XML-Data supports rich data types, allowing for tighter
validation of data and reduced application effort. Developers
can use a list of standard data types, such as numbers or ISO
8601 dates, or define their own.

® Through the namespaces facility, XML-Data improves
expressiveness, ensuring the existence of uniquely qualified
names.

W XML-Data provides for greater and more efficient semantic
facilities by incorporating the concept of inheritance, enabling
one schema to be based on another. For instance, a bookstore
purchase order schema could be based on a general purpose
electronic-commerce purchase order schema,

Since XML-Data uses XML instance syntax, there are a number of other
benefits:

® The same tools that are used to parse XML can be used to
parse the XMI-Data notation.

©1998 THE XML HANDBOOKT™

39.1 | INTRODUCTION

® As the syntax is very similar to HTML, it should be easy for
HTML authors to learn and read.

® It s easily extensible.

The text of the XML-Data proposal follows, as contained in W3C Note
05 Jan 1998. A browseable version, can be found on the CD-ROM and at
http://www.w3.org/TR/1998/NOTE-XML-data. That version identifies the
individual authors and others whose help and contributions to the proposal
the authors acknowledged.

39.1 | Introduction

Schemas define the characteristics of classes of objects. This paper describes
an XML vocabulary for schemas, that is, for defining and documenting
object classes. It can be used for classes which as strictly syntactic (for exam-
ple, XML) or those which indicate concepts and relations among concepts
(as used in relational databases, KR graphs and RDF). The former are called

“syntactic schemas;” the latter “conceptual schemas.”

For example, an XML document might contain a “book” element which
lexically contains an “author” element and a “title” element. An XML-Data
schema can describe such syntax. However, in another context, we may
simply want to represent more abstractly that books have titles and authors,
irrespective of any syntax. XML-Data schemas can describe such concep-
tual relationships. Further, the information about books, titles and authors
might be stored in a relational database, in which XML-Data schemas
describe row types and key relationships.

One immediate implication of the ideas in this paper is that XML docu-
ment types can now be described using XML itself, rather than DTD sys-
tax. Another is that XML-Data schemas provide a common vocabulary for
ideas which overlap between syntactic, database and conceptual schemas.
All features can be used together as appropriate.

Schemas are composed principally of declarations for:

©1998 THE XML HANDBOOK™

573

574 CHAPTER 39 | XML-DATA

Concepts
Classes of objects

m Class hierarchies
m Properties

Relationships

® Indicated by primary key to foreign key matching
m Indicated by URI

XML DTD Grammars and Compatibility

® grammatical rules governing the valid nesting of the elements I
and attributes

m attributes of elements

® internal and external entities, represented by intEntityDecl
and extEntityDecl

B notations, represented by notationDcl
Datatypes giving parsing rules and implementation formats.

Mapping rules allowing abbreviated grammars to map to a |
conceptual data model. '

39.2 | The Schema Element Type |

All schema declarations are contained within a schema element, like this: '
<?XML version='1.0' ?>
<?xml :namespace

name="urn:uuid:BDC6E3F0-6DA3~11d1-A2A3-00AR00C14882/"

as="s"/?>
<s:schema id='ExampleSchema'>

<l-- schema goes here. -->

</s:schema>

The namespace of the vocabulary described in this document is named

“urn:uuid:BDCGE3F0-6DA3-11d1-A2A3-00AA00C14882/”.

©1998 THE XML HANDBOOK™

39.3 | THE ELEMENTTYPE DECLARATION

30.3 | The ElementType Declaration

The heart of an XML-Data schema is the element Type declaration, which
defines a class of objects (or “type of element” in XML terminology). The id
attribute serves a dual role of identifying the definition, and also naming
the specific class.
<elementType id="author"/>

Within an elementType, the description subelement may be used to pro-
vide a human-readable description of the elements purpose.

<elementType id="author">
<description>The person, natural or otherwise, who wrote
the book.</description>
</elementType >

30.4 | Properties and Content Models

Subelements within elementType define characteristics of the classs mem-
bers. An XML “content model” is a description of the contents that may
validly appear within a particular element type in a document instance.

<elementType id="author">
<string/>
</elementType>

<elementType id="Book">
<element type="#author" occurs="ONEORMORE" />
</elementType>

The example above defines two elements, author and book, and says that
a book has one or more authors. The author element may contain a string
of character data (but no other elements). For example, the following is

valid:

<Book>
<author>Henry Ford</author>
<author>Samuel Crowther</author>
</Book>

Within an elementType, various specialized subelements (element,
group, any, empty, string etc.) indicate which subelements (properties) are
allowed/required. Ordinarily, these imply not only the cardinality of the
subelements but also their sequence. (We discuss a means to relax sequence
later.)

©1998 THE XML HANDBOOK™

575

576 CHAPTER 39 | XML-DATA

30.4.1 Element

Element indicates the containment of a single element type (property). Each
element contains an href attribute referencing another element Tpe, thereby
including it in the content model syntacticly, or declaring it to be a prop-
erty of the object class conceptually. The element may be required or .
optional, and may occur multiple times, as indicated by its occurs attribute |
having one of the four values “REQUIRED”, “OPTIONAL”, “ZEROOR-
MORE” or “ONEORMORE?”. It has a default of “REQUIRED”.
<elementType id="Book">

<element type="#title" occurs="OPTIONAL"/>

<element type="#author" occurs="ONEORMORE"/>
</elementType>

The example above describes a book element type. Here, each instance of

a book may contain a title, and must contain one or more authors.
<Book>

<author>Henry Ford</author>

<author>Samuel Crowther</author>

<title>My Life and Work</title>
</Book>

When we discuss type hierarchies, later, we will see that an element type

may have subtypes. If so, inclusion of an element type in a content model
permits elements of that type directly and all its subtypes.

30.4.2 Empty, Any, String, and Mixed
Content

Empty and any content are expressed using predefined elements empty and
any. (Empty may be omitted.) String means any character string not con-
taining elements, known as “PCDATA” in XML. Any signals that any mix-
ture of subelements is legal, but no free characters. Mixed content (a
mixture of parsed character data and one or more elements) is identified by
a mixed element, whose content identifies the element types allowed in
addition to parsed character data. When the content model is mixed, any
number of the listed elements are allowed, in any order.

©1998 THE XML HANDBOOK™

39.4 | PROPERTIES AND CONTENT MODELS

<?XML version='1.0' ?>

<?xml :namespace
name="urn:uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882/"
as="s"/?>

<s:schema>

<elementType id="name">
<string/>
</elementType>

<elementType id="Person">
<any/>
</elementType>

<elementType id="author">
<string/>
</elementType>

<elementType id="titlePart">
<string/>
</elementType>

<elementType id="title">
<mixed><element type="#titlePart"/></mixed>
</elementType>

<elementType id="Book">
<element type="#title" occurs="OPTIONAL"/>
<element type="#author" occurs="ONEORMORE"/>
</elementType>

</s:schema>

<Book>

<author>Henry Ford</author>

<author>Samuel Crowther</author>

<title>My Life and<titlePart>Work</titlePart></title>
</Book>

Here, book is defined to have an optional #itle and one or more authors.
The name element has content model of 27y, meaning that free text is not
allowed, but any arrangement of subelements is valid. The content model of
title is mixed, allowing a free intermixture of characters and any number of
titleParts. The author, name and titleParts elements have a content model of
string.

©1998 THE XML HANDBOOK™

577

578

CHAPTER 39 | XML-DATA
39.43 Group

Group indicates a set or sequence of elements, allowing alternatives or
ordering among the elements by use of the groupOrder attribute. The
group as a whole is treated similarly to an element.

<elementType id="Book">
<element type="#title"/>
<element type="#author" occurs="ONEORMORE" />
<group occurs="OPTIONAL">
<element type="#preface"/>
<element type="#introduction"/>
</group>
</elementType>

In the above example, if a preface or introduction appears, both must,
with the preface preceding the introduction. Each of the following is valid:

<Book>
<author>Henry Ford</author>
</Book>

<Book>
<author>Henry Ford</author>
<preface>Prefatory text</preface>
<introduction>This is a swell book.</introduction>
</Book>

Sometimes a schema designer wants to relax the ordering restrictions
among elements, allowing them to appear in any order. This is indicated by
setting the groupOrder attribute to “AND”:

<elementType id="Book">
<element type="#title"/>
<element type="#author" occurs="0ONEORMORE" />
<group groupOrder="AND" occurs="OPTIONAL">
<element type="#preface"/>
<element type="#introduction"/>
</group>
</elementType>

Now the following is also valid:
<Book> r
<author>Henry Ford</author> |
<introduction>This is a swell book.</introduction>
<preface>Prefatory text</preface>
</Book>
Finally, a schema can indicate that any one of a list of elements (or
groups) is needed. For example, either a preface or an introduction. The
groupOrder attribute value “OR” signals this.

©1998 THE XML HANDBOOK ™™

39.4 | PROPERTIES AND CONTENT MODELS 579

<elementType id="Book">
<element type="#title"/>
<element type="#author" occurs="ONEORMORE" />
<group groupOrder="OR">
<element type="#preface"/>
<element type="#introduction"/>
</group>
</elenentType>

Now each of the following is valid:

<Book>
<author>Henry Ford</author>
<preface>Prefatory text</preface>
</Book>

<Book>

<author>Henry Ford</author>

<introduction>This is a swell book.</introduction>
</Book>

30.44 Open and Closed Content Models

XML typically does not allow an element to contain content unless that
content was listed in the model. This is useful in some cases, but overly in
others in which we would like the listed content model to govern the cardi-
nality and other aspects of whichever subelements are explicitly named,
while allowing that other subelements can appear in instances as well.

The distinction is effected by the content attribute taking the values
“OPEN” and “CLOSED.” The default is “OPEN” meaning that all ele-
ment types not explicitly listed are valid, without order restrictions. (This
idea has a close relation to the Java concept of a final class.)

For example, the following instance data for a book, including the
unmentioned element copyrightDate would be valid given the content mod-

els declared so far, because they have all been open.
<Book>
<author>Henry Ford</author>
<author>Samuel Crowther</author>
<title>My Life and Work</title>
<copyrightDate>1922</copyrightDate>
</Book>

However, had the content model been declared closed, as follows, the
copyrightDate element would be invalid.

©1998 THE XML HANDBOOK™

580 CHAPTER 39 | XML-DATA

<elementType id="Book" content="CLOSED">
<element type="#title"/>
<element type="#author" occurs="ONEORMORE" />
<group groupOrder="SEQ" occurs="OPTIONAL">
<element type="#preface"/>
<element type="#introduction" occurs="REQUIRED" />
</group> I
</elementType>
A closed content model does not allow instances to contain any elements

or attributes beyond those explicitly listed in the elementType declaration.

39.5 | Default Values

An element with occurs of REQUIRED or OPTIONAL (but not ONE-
ORMORE or ZEROORMORE) can have a default value specified.

<elementType id="Book'>
<element type="#title"/>
<element type="#author" occurs="ONEORMORE" />
<element type="#ageGrp" occurs="OPTIONAL">
<default>adult</default>
</element>
</elementType>

The default value is implied for all element instances in which it is syntac-
tically omitted.

To indicate that the default value is the only allowed value, the presence

attribute is set to “FIXED?”.
<elementType id="Book">

<element type="#title"/>

<element type="#author" occurs="0ONEORMORE" />

<element type="#ageGrp" occurs="OPTIONAL" pPresence="FIXED">

<default>ADULT</default>

</element>

</elementType>

Presence has values of “IMPLIED,” “SPECIFIED,” “REQUIRED,” and
“FIXED” with the same meanings as defined in XML DTD.

©1998 THE XML HANDBOOKT™

39.6 | ALIASES AND CORRELATIVES
39,6 | Aliases and Correlatives

ElementTypes can be know be different names in different languages or
domains. The equivalence of several names is effected by the sameAs
attribute, as in
<elementTypeEquivalent id="livre" type="#Book"/>
<elementTypeEquivalent id="auteur" type="#author"/>

Elements are used to represent both primary object types (nouns) and
also properties, relations and so forth. Relations are often known by two
names, each reflecting one direction of the relationship. For example, hus-
band and wife, above and below, earlier and later, etc. The correlative ele-
ment identifies such a pairing.

<elementType id= "author">
<string/>
</elementType>

<elementType id= "wrote">
<correlative type="#author" />
<string/>

</elementType>

This indicates that “wrote” is another name for the “author” relation, but
from the perspective of the person, not the book. That is, the two fragments
below express the same fact:

<Person>
<name>Henry Foxd</name>
</Person>

<Book>
<title>My Life and Work</title>
<author>Henry Ford</author>
</Book>

<Person>
<name>Henry Ford</name>
<wrote>My Life and Work</wrote>
</Person>

<Book>
<title>My Life and Work</title>
</Book>

A correlative may be defined simply to document the alternative name
for the relation. However, it may also be used within a content model where

©1998 THE XML HANDBOOK™

581

582

CHAPTER 39 | XML-DATA

it permits instances to use the alternative name. Further it may to establish

constraints on the relation, indicate key relationships, etc.

30,7 | Class Hierarchies

ElementTypes can be organized into categories using the
attribute, as in
<elementType id="price">
<string/>
</elementType>

<elementType id="ThingsIveBoughtRecently">
<element type="#price"/>
</elementType>

<elementType id="PencilsIveBoughtRecently">
<superType type="#ThingsIveBoughtRecently"/>
<element type="#price"/>

</elementType>

<elementType id="BooksIveBoughtRecently">
<superType type="#ThingsIveBoughtRecently"/>
<element type="#price"/>

</elementType>

super Type

This simply indicates that, in some fashion, PencilslveBoughtRecently and
BookslveBoughtRecentlyare subsets of ThingslveBoughtRecently. It implies that
every valid instance of the subset is a valid instance of the superset. The

superset type must have an open content model.

There are restrictions that should be followed, based on the principle
that all instances of the species (subtype) must be instances of the genus

(supertype):

m The genus type must have content="OPEN"”.

m [t must have either no groups or only groups with
groupOrder="AND?” (that is, no order constraints).

®m You can add new elements and attributes.

m Occurs cardinality can be decreased but not increased.

m Ranges and other constraints are cummulative, that is, all

apply (though the exact effect of this depends on the semantics

of the constraint type).
B Default values can be made FIXED defaults.

©1998 THE XML HANDBOOKT™

39.8 | ELEMENTS WHICH ARE REFERENCES

To indicate that the content model of the subset should inherit the con-
tent model of a superset, we use a particular kind of superType called
“genus” of which only one is allowed per ElementType. This copies the con-
cent model of the referenced element type and permits addition of new cle-
ments to it. Further, sub-elements occurring in the superset type, if declared
again, are replaced by the newer declarations.
<elementType id="Book">

<element type="#title"/>

<element type="#author" occurs="ONEORMORE" />
</elementType>

<elementType id="BooksIveBoughtRecently">
<genus type="#Book"/>
<superType type="#ThingsIveBoughtRecently“/>
<element type="#price"/>

</elementType>

The above has the same effect as

<elementType id="Book">

<element type="#title"/>

<element type="#author" occurs="ONEORMORE" />
</elementType>

<elementType id="BooksIveBoughtRecently">
<superType type="#Book"/>
<superType typez“#ThingsIveBoughtRecently"/>
<element type="#title"/>
<element type="#author" occurs="ONEORMORE" />
<element type="#price"/>

</elementType>

39,8 | Elements which are References

ElementTypes and the content model elements defined so far are sufficient
to declare a tree structure of elements. However, some elements such as
“quthor” are not only usable on their own, they also act as references to other
elements. For example, “Henry Ford” is the value of the author subelement
of a book clement. “Henry Ford” is also the value of the name element in a
person element, and it can be used to connect these two.

©1998 THE XML HANDBOOK™

583

584

CHAPTER 39 | XML-DATA

<Book>
<author>Henry Ford</author>
<author>Samuel Crowther</author>
<title>My Life and Work</title>
</Book>

<Person><name>Henry Ford</name></Person>

<Person><name>Samuel Crowther</name></Person>

In this capacity, such subelement are often referred to as relations when
using “knowledge representation” terminology or “keys” when using data-
base terms. (The meaning of “relation” and “key” are slightly different, but
the fact which the terms recognize is the same.)

To make such references explicit in the schema, we add declarations for
keys and foreign keys.

<elementType id="name">
<string/>
</elementType>

<elementType id="Person">

<element id="pl" type="#name"/>

<key id="kl"><keyPart href="#pl"/></key>
</elementType>

<elementType id="author">

<string/>

<foreignKey range="#Person" key="#kl"/>
</elementType>

<elementType id="title">
<string/>
</elementType>

<elementType id="Book">

<element type="#title"/>

<element type="#author" occurs="ONEORMORE"/>
</elementType>

The key element within person tells us that a person can be uniquely

identified by his name. The foreignKey element within the author element
definition says that the contents of an author element are a foreign key
indentifying a person by name.

An uninformed user agent can still display the string “Henry Ford” even
if it cannot determine that is supposed to be a person. A savvy agent that
reads the schema can do more. It can locate the actual person.

This is the information needed for a join in database terminology.

©1998 THE XML HANDBOOK™

39.8 | ELEMENTS WHICH ARE REFERENCES

This mechanism not only handles the typical way in which properties are
expressed in databases, it also handles all cases in which the contents of an
clement are to be interpreted as strings from a restricted vocabulary, such as
enumerations, XML nmtokens, etc.
<Book>
<author>Henry Ford</author>
<author>Samuel Crowther</author>
<title>My Life and Work</title>
<lcen>HD9710.U54 F58 1973</lcen>
<dewey>629.2/092/4 B</dewey >
<isbn>0405050887</1isbn>
<series>Business<series>

</Book>

Although not shown here, presumably lccn, dewey and isbn are declared
in the schema to be foreign keys to corrresponding fields of catalog records.
Series is a foreign key to a categorization of books, of which “Business” is

one category.

Keys can contain URIs, as in

<Book>
<author>http://SSA.gov/blab/people/Henry+Ford</author>
<author>http://SSA.gov/blab/people/Samuel+Crowther</author>
<title>My Life and Work</title>

</Book>

This is indicated in the schema by a datatype of “URI".

<elementType id="author">
<string/>
<datatype dt="uri"/>

</elementType>

39.8.1 One-to-Many Relations

Element relations are binary. That is, we never express an n-to-1 relation-
ship directly. We do not, for example, list within books a single relation that
somehow resolves to all the zuthors. Instead, we always write the relation-
ship on the 1-to-n side, but allow multiple occurrances of the subelement,
for example, allowing books to have multiple occurrences of author.

©1998 THE XML HANDBOOK™

585

586

CHAPTER 39 | XML-DATa
<Person><name>Henry Ford</name></Person>
<Person><name>Samuel Crowther</name></Person>
<Person><name>Harvey S. Firestone</name></Person>

<Book>
<author>Henry Ford</author>
<author>Samuel Crowther</authors
<title>My Life and Work</title>
</Book>

<Book>
<author>Harvey S. Firestone</author>
<author>Samuel Crowther</authors
<title>Men and Rubber</titles>
</Book>
This example shows a book with several persons as author, and also 2 per-
son who is author of several books, We discussed such many-to-many rela-

tions more under the topic of correlations.

3982 Multipart Keys

When the foreignKey element does not have foreignKeyPart sub-elements
(as it does not above) then the entirety of the elements contents (e.g.
“Henty Ford”) should be used as the key value. However, for muli part for-
eign keys, or cases where the element has several sub-elements, foreignKey-

Part is used, as shown below.

<elementType id="firstName">
<string/>

</elementType>

<elementType id="lastName">
<string/>
</elementType>

<elementType id="Person">
<element id="pp1l" type:"#firstName"/>
<element id="pp2" type="#lastName"/>
<key id="klvs
<keyPart href="#pp1"/>
<keyPart href="#pp2" />
</key>
</elementType>

<elementType id="author"s

©1998 THE XML HANDBoOOK™

39.9 | ATTRIBUTES As REFERENCES

<element id="apl® type="#firstName" />

<element id="ap2" type="#lastName" />

<domain type="#Book" />

<range type="#Person"/>

<foreignKey range="#Person" key="#kl">
<foreignKeyPart href="#ap1"/>
<foreignKeyPart href="#ap2"/>

</foreignKey>

</elementType>

<Book>
<title>My Life and Work</title>
<author>
<firstName>Henry</firstName>
<1astName>Ford</lastName>
</author>
</Book>

30,9 | Attributes as References

An alternative way to express a reference is with an attribute.

<person id:”personl"><name>Henry Ford</name></Persons>
<person id="person2"><name>Samuel Crowther</name></Person>

<Book>
<author name="Henry Ford"/>
<author name="Samuel Crowther" />
<title>My Life and Work</title>
</Book>

This allows us to link a book to a person, through the author relation,
using an atribute of the relation. This exactly parallels the construction we
saw above under “multipart keys,” where a subelement of author contained
the authors name. Here, an attribute of author contains the name, We can
express this in our schema as

<elementType id="author">
<attribute name="name" id="authorname" />
<foreignKey range="#Person" key="#kl">
<foreignKeyPart href="#authorname“/>
</foreignKey>
</elementType>

A widely-used variant of this is to use a UR] as a foreign key:

©1998 THE XML HANDBoOOKk™

587

588

CHAPTER 39 | XML-DATA

<Book>
<author href:"http://SSA.gov/blab/people/Henry+Ford”/>
<author href:"http://SSA.gov/blab/people/Samuel+Crowther“/>
<title>My Life and Work</title>

</Book>

In this case, we are using the Aref attribute to contain a URL This is a
particular kind of foreign key, where the range is any possible resource, and
where that resource is not identified by some combination of its properties
but instead by a name-resolution service,. We indicate this by using an

attribute element, with de= “URI”,
<elementType id="author">

<attribute name="href" id="authorhref" dt="uri"/>
</elementType>

39.10 | Constraints & Additional
Properties

39.10.1 Min and Max Constraints

Elements can be limited to restricted ranges of values. The miz and max ele-

ments define the lower and upper bounds.
<elementType id="age">

<string/>
</elementType>

<elementType id="Person's>
<element hef=“#age"><min>0</min><max>l31</max></element>
</elementType>

Such intervals are half-open (that is, the min value is in the interval, and
the max value is the smallest value not in the interval).

This rule leads to the simplest calculation in most cases, and is unambig-
uous with respect to precision. In the above example, it is clear by these
rules the 130.9999 is in the interval and 131 is not. However, had we said
“all numbers from 0 to 130.99,” in practice we would have some ambiguity
regarding the status of 130.9999. Or interpretation would depend on the
precision that we inferred for the original statement. The issuc is particu-
larly ambiguous for dates. (What exactly does “From December 5 to
December 8” mean? The use of half-open intervals for representation does
not, however, put any requirements on how processors must display inter-

©1998 THE XML HANDBOOKT™

39.10 | CONSTRAINTS & ADDITIONAL PROPERTIES

vals. For example, dates in some contexts display differently than their stor-
age. That is, the interval <min>1997-12-05< /min><max>1997-12-09</
max> might be displayed as “December 5 through December 8”.

In certain cases this rule for a half-open interval is impractical (for exam-
ple, what letter follows “2” in the latin alphabet?) If so, use maxlnclusive:
<elementType id="student"s>

<element type="#grade">
<min>A</min><maxInclusive>Z</maxTnclusives

</element>
</elementType>

39.10.1.1 - Domain and Range Constraints

We can use the domain and range elements to add constraints to an ele-
ments use or value. The domain element, if present, indicates that the ele-
ment may only be used as a property of certain other elements, That is,
syntactically it may appear only in the content model of those other ele.
ment types. It constrains the sorts of schemas that can be written with the
element.
<elementType id="author"s>

<string/>

<domain type="#Book"/>

<attribute name="href" dt="uri"/>
</elementType>

The domain property above permits author elements to be used only

within elements which are either books or subsets of books. Use of domain is
optional. I omitted, there is simply no restriction.

The range element is used with elements which are references and
declares a restriction on the types of elements to which the relation may
refer. Graphically, it describes the target end of a directed edge. Each range
clement references one elementType, any of which are valid. In this case,
below, we have said that an zuthor element must have an href attribute
which is a URI reference to a Person or to an element type which is Person
or a subset of Person.
<elementType id="author"s

<string/>
<domain type="#Book"/>

<attribute name="href" dt="yri" range="#Person" />
</elementType>

©1998 THE XML HANDBOOKT™

589

590 CHAPTER 39 | XML-DATA

30,102 Other useful properties

Element and attribute types can have an unlimited amount of further infor-
mation added to them in the schema due to the open nature of XML with
namespaces.

30.11 | Using Elements from Other
Schemas

A schema may use elements and attributes from other schemas in content
models. For example, a subelement named “http://books.org/date” could

be used within a book element as follows:
<?XML version='1.0"' 7>
<?xml :namespace
name="urn:uuid:BDC6E3F0~-6DA3-11d1-A2A3-00AA00C14882/"
as="g"/?>
<s:schema>
<elementType id="author">
<string/>
</elementType>

<elementType id="title">
<string/>
</elementType>

<elementType id="Book">
<element type="#title" occurs="OPTIONAL"/>
<element type="#author" occurs="ONEORMORE"/>
<element href="http://books.org/date" />
</elementType>
</s:schema>
This can be abbreviated by adopting the rule that namespace-qualified
names may be used within the href attribute value of an element or astribute

element,

©1998 THE XML HANDBOOK™

39.12 | XML-SPECIFIC ELEMENTS

<?XML version='1.0' ?>
<?xml :namespace
name="urn:uuid:BDC6E3F0-6DA3-11d1-A2A3~-00AA00C14882/"
as="g"/?>
<?xml:namespace name=" http://books.org/" as="bk"/?>
<g:schema>
<elementType id="author">
<string/>
</elementType>

<elementType id="title">
<string/>
</elementType>

<elementType id="Book">
<element type="#title" occurs="OPTIONAL"/>
<element type="#author" occurs="ONEORMORE"/>
<element href="bk:date" />
</elementType>
</s:schema>

30.12 | XML-Specific Elements

39.120.1 Attributes

XML-Data schemas contain a number of facilities to match features of
XML DTDs or to support certain characteristics of XML. The XML syntax
allows that certain properties can be expressed in a form called “attributes.”
To support this, an elementType can contain attribute declarations, which
are divided into attributes with enumerated or notation values, and all

other kinds.

An attribute may be given a default value. Whether it is required or
optional is signaled by presence. (Presence ordinarily defaults to IMPLIED,
but if omitted and there is an explicit default, presence is set to the SPECI-
FIED.) See the DTD at the end of this document for syntactic details.

Attributes with enumerated (and notation) values permit a values
attribute, a space-separated list of legal values. The values attribute is
required when the atttype is ENUMERATION or NOTATION, else it is
forbidden. In these cases, if a default is specified, it must be one of the spec-

ified values.

©1998 THE XML HANDBOOK™

591

592

CHAPTER 39 | XML-DATA
<elementType id="Book">
<element type="#title"/>
<element type="#author" occurs="ONEORMORE"/>
<attribute name="copyright" />
<attribute name="ageGrp"
atttype="ENUMERATION"
values="child adult"
default="adult" />
</elementType>

describes an instance such as

<book copyright="1922" ageGrp="adult">
<title>My Life and Work</title>
<author>
<firstName>Henry</firstName>
<lastName>Ford</lastName>
</author>
</Book>

Attributes may also reference elementTypes, meaning that one may use
the element type but with attribute syntax. This allows an attribute to
explicitly have the same name and semantics even when used on different
element types. There are of course some limits: The attribute can still occur
only once in an instance, and it cannot contain other elements. However,
this allows the semantics of the element type to be employed in attribute

syntax.

<elementType id="Book">
<attribute href="bk:title"/>
<attribute href="bk:author"/>
<attribute name="copyright" />
<attribute name="ageGrp"
type="ENUMERATION"

values="children adult" default="adult"

</elementType>

describes an instance such as
<book
bk:author="Henry Ford"
bk:title="My Life and Work"
ageGrp="adult"/>

/>

30.13 | Entity declaration element types

This and the next two declarations cover entities. Entities are a shorthand
mechanism, similar to macros in a programming language.

©1998 THE XML HANDBOOKT

39.14 | EXTERNAL DECLARATIONS ELEMENT TYPE

<intEntityDcl name="LTG">
Language Technology Group
</intEntityDcl>

<extEntityDcl name="dilbert" notation="#gif"
systemId=“http://www.ltg.ed.ac.uk/~ht/dilb.gif"/>

Here as elsewhere, following XML, systemld must be a URI, absolute or
relative, and publicld, if present, must be a Public Identifier (as defined in
ISO/IEC 9070:1991, Information technology — SGML support facilities —
Registration procedures for public text owner identifiers). If a notation is
given, it must be declared (see below) and the entity will be treated as
binary, i.e., not substituted directly in place of references.

<notationDcl name="gif" systemId='http://who.knows.where/'/>

30.14 | External declarations element
type

Although we allow an external entity with declarations to be included, we
recommend a different declaration for schema modularization. The extDcls
declaration gives a clean mechanism for importing (fragments of) other
schemas. It replaces the common SGML idiom of declaring an external
parameter entity and then immediately referring to it, and has the same
import, namely, that the text referred to by the combination of systemld
and publicld is included in the schema in place of the extDcls element, and
that replacement text is then subject to the same validity constraints and
interpretation as the rest of the schema.

Note that in many cases the desired effect may be better represented by
referencing elements (and attributes) from the other schema or subclassing
from them.

39.15 | Datatypes

A dataype indicates that the contents of an element can be interpreted as
both a string and also, more specifically, as an object that can be interpret-
eted more specifically as a number, date, etc. The datatype indicates that the

©1998 THE XML HANDBOOK™

593

594

CHAPTER 39 | XML-DATA

elements contents can be parsed or interpreted to yeild an object more spe-
cific than a string.

That is, we distinguish the “type” of an element from its “datatype.” The
former gives the semantic meaning of an element, such as “birthday” indi-
cating the date on which someone was born. The “datatype” represents the
parser class needed to decode the element’s contents into an object type
more specific than “string.” For example, “19541022” is the 22nd of Octo-
ber, 1954 in ISO 8601 date format. (That is, ISO 8601 parsing rules will
decode “19541022” into a date, which can then be stored as a date rather
than a string.

For example, we would like an XML author to be able to say that the
contents of a “size” element is an integer, meaning that it should be parsed
according to numeric parsing rules and that it can be stored in integer for-
mat. In some contexts an API can expose it as an integer rather than a
string.
<item>

<name>shirt</name>

<size>8</size>
</item>

There are two main contexts for datatypes. First, when dealing with data-
base APIs, such as ODBC, all elements with the same name typically con-
tain the same type of contents. For example, all sizes contain integers or all
birthdays contain dates. We will return to this case shortly.

Second, and by contrast, the type of the content may vary widely from
instance to instance. The softer we make our software, the more often these
flexible cases occur. For example, size could contain the integer 8, or the
word “small” or even a formula for computing the size.

We expose the datatype of an element instance by use of a d#:dt attribute,
where the value of the attribute is a URI giving the datatype. (The URI
might be explicitly in URI format or might rely on the XML namespace
facility for resolution.) For example, we might find a document containing
something like:

<?namespace
name="urn:uuid:C2F41010-65B3-11d1-A29F-00AA00C14882/"
as="dt"?>
<?namespace name="http://zoosports.com/dt?" as="zoo"?>
<purchases>
<item>
<name>shirt</name>
<size dt:dt="int">8</size>
</item>
<item>

©1998 THE XML HANDBOOK™

39.15 | DATATYPES

<name>shoes</name>
<size>large</size>
</item>
<item>
<name>suit</name>
<gize dt:dt="zoo:script">
=(shirtsize*1.05) + 3
</size>
</item>
</purchases>
Clearly this technique works for the heterogeneous typing in the above
example. It also works for the database case where all element’s of the same
type have the same datatype.

<item> <name>shirt</name> <size dt:dt="int">8</size> </item>
<item> <name>shoes</name> <size dt:dt="int">6</size> </item>
<item> <name>suit</name> <size dt:dt="int">12</size> </item>

As written above, this is inefficient. Fortunately, XML allows us in sche-
masto put attributes with default or fixed values, so we could say once that
all size elements have a datatype with value “int”. Having done so, our our
instance just looks like:

<item> <name>shirt</name> <size>ld</size> </item>
<item> <name>shoes</name> <size>6</size> </item>
<item> <name>suit</name> <size>1l6</size> </item>

In a DTD, we can set a fixed attribute value, so that all size elements have
datatype “int” or we can set it as a defauls attribute value so that it is an inte-
ger except where explicitly noted otherwise.
<item> <name>shirt</name> <size>l4</size>

</item>
<item> <name>shoes</name>

<gize dt:dt="string">large</size>
</item>
<item> <name>suit</name> <size>16</size>
</item>

XML DTDs today allow such attributes. For example, a DTD can say
that all shirt elements have integer datatype by the following:
<!ELEMENT size PCDATA >
<IATTLIST size dt:dt "int" #FIXED >

XML-Data schemas allow the equivalent, though with specialized syntax:

<elementType id="size" >
<datatype dt="int" />
</elementType>

Elements use datatype subelements to give the datatype so that an
optional presence attribute of the datatype element can indicate whether the
datatype is fixed or merely a default. Attributes can also have datatypes.

©1998 THE XML HANDBOOK™

595

596

CHAPTER 39 | XML-DATA

Because there is no possibility of their being anything other than a fixed
type, the datatype of an attribute is signalled by a dr attribute:

<attribute id="size" dt="int" />

30.15.1 How Typed Data is Exposed in the
API

Different APIs to typed data will use the datatype attribute differently. The
basic XML parser API should expose all element contents as strings regard-
less of any datatype attribute. (It might also contain supplementary meth-
ods to read values as more specific types such as “integer,” thereby getting
more efficiency.) An ODBC interface could use the datatype attribute to
expose each type of element as a column, with the column’s datatype deter-
mined by the element type’s datatype.

30.15.2 Complex Data Types

If a datatype requires a complex structure for storage, or an object-based
storage, this is also handled by the dt:dt attribute, where the datatype’s stor-
age format can be a structure, Java class, COM++ class, etc. For example, if
an application needed to have an element stored in a “Scheduleltem” struc-
ture and using some private format, it could note this like
<when dt:dt="zoo:ScheduleItem">M*D1W4B19971022;100</when>
The dartatype does not require a private format. It could also use subele-

ments and attributes such as
<when dt:dt="zoo:ScheduleItem2">

<month>*</month>

<day>1</day>

<week>4</week>

<begin>19971022</begin>

<recurs>100</recurs>
</when>

In the case of the graph-oriented interfaces (e.g. XML/RDEF) the map-

ping from the XML tree to a graph should add a wrapping node for each
non-string data type. The datatype property gives the type of that node. For
example, the following two are graphically equivalent:
<size dt:dt="int">8</size>
<size><dt:int>8</dt:int></size>

©1998 THE XML HANDBOOKT™™

39.15 | DATATYPES

30.15.3 Versioning of Instances

Adding an attribute to an element does not change the other attributes or
pose any special versioning problems. For example, an application written
to expect an instance to contain “<birthday>19541022</birthday>" is not
harmed if the schema reveals that this is ISO 8601 format. Versioning
within datatypes should be handled by the author’s making sure that that
subtypes of datatypes retain all the characteristics of the supertype.

If a down-level application is given a datatype it cannot process, it should
expose the element contents as a supertype of the indicated datatype. In
practice, this will usually mean that unrecognized datatypes will be the
same as “dustring”. However, there are cases in which a type will be pro-
moted, for example exposing a boolean in a byte or word rather than a bit,
exposing a floating point number in a language’s native format, etc.

39.15.4 The Datatypes Namespace

The datatype attribute “de” is defined in the namespace named
“urn:unid:C2F41010-65B3-11d1-A29F-00AA00C14882/”. (See the XML
Namespaces Note at the W3C site for details of namespaces.) The full
URN of the attribute is “urn:uuid:C2F41010-65B3-11d1-A29F-
00AA00C14882/dt”.

You will have noticed that the value of the attribute, as used in the exam-
ples above, is not lexically a full URL. For example, it reads “int” or “string”
etc. Datatype attribute values are abbreviated according to the following
rule: If it does not contain a colon, it is a datatype defined in the datatypes
namespace “urn:uuid:C2F41010-65B3-11d1-A29F-00AA00C14882/”. If
it contains a colon, it is to be expanded to a full URI according to the same
rules used for other names, as defined by the XML Namespaces Note. For
example
<?namespace

name="urn:uuid:C2F41010-65B3-11d1-A29F-00AA00C14882/"
as="dt"?>
<?namespace name="http://zoosports.com/dt?" as="zoo0"?>
<item>
<size dt:dt="int">8</size>

<name dt:dt="zoo:clothing">shirt</name>
</item>

©1998 THE XML HANDBOOK™

597

598 CHAPTER 39 | XML-DATA

has two datatypes whose full names are “urn:uuid:C2F41010-65B3-
11d1-A29F-00AA00C14882/integer” and “http://zoosports.com/dt2cloth-
ing”.

39.15.5 What a datatype’s URI Means

Datatypes are identified by URIs. The URI as simply a reference to a sec-
tion of a document that defines the appropriate parser and storage format
of the element. To make this broadly useful, this document defines a set of
common data types including all common forms of dates, plus all basic
datatypes commonly used in SQL, C, C++, Java and COM (including
strings).

The best form of such a document is that it should itself be an XML-
Data schema where each datatype is an element declaration. For this pur- '
pose we define a <Synzax> subelement which can be used in lieu of a con-
tent model. We also define an <objecttype> subelement. Each has a URI as
its value. This integrates data types with element types in general.
<schema:elementType id="int">
<syntax href=
"urn:uuid:C2F41010—65B3—11d1—A29F—00AAOOC14882/num_to_int"/>
<objectType href=

"urn:uuid:C2F41010-65B3-11d1-A29F-00AA00C14882/integer32" />
</schema:elementType>

<schema:elementType id="date.iso8601">
<syntax href=
"urn:uuid:C2F41010—65B3—...882/date.isoB60l_to_int32"/>
<objecttype href="urn:uuid:C2F41010-65B3-...882/integer32" />
</schema:elementType>

The objecttype sub-element can reference a structure, Java class,
COM++ coClass, etc. The syntax subelement identifies a parser which can
decode the element’s content (and/or attributes) into the object type given
the storage type URL. Input to the parser is the element object exposing all
its attributes and content tree (that is, the subtree of the grove beginning
with the element containing the dt attribute). The objectType attribute in
particular is assumed available to the parser so that a single parser can sup-
port several objecttypes.

Having said this, all basic data types should be built into the parsers for
efficiency and in order to ground the process. For these, the datatype ele-

©1998 THE XML HANDBOOKTM

39.15 | DATATYPES

ments serve only to formally document the storage types and parsers, and to
give higher-level systems (such as RDF) a more formal basis for datatypes.

I do not currently propose that we attempt to write any universal nota-
tion for parsing rules. Certain popular kinds of formats, particularly dates,
are not easily expressed in anything but natural language or code, and the
parsers must be custom written code. In other words, the URIs for the basic
syntax and objecttype elements probably resolve only to text descriptions.

39.15.6 Structured Data Type Attributes

Attributes in cannot XML have structure. I will separately propose some
techniques to avoid this problem, specifically that the XML API should
contain a method that treats attributes and subelements indistinguishably,
and also that the content which is an element’s value can be syntactically
separated from content which is an element’s properties.

30.15.7 Specific Datatypes
This includes all highly-popular types and all the built-in types of popular

database and programming languages and systems such as SQL, Visual
Basic, C, C++ and Java(tm).

Name Parse type Storage type ~ Examples

string pcdata string (Unicode) [Greek letters:
see CD-ROM
version]

©1998 THE XML HANDBOOK™

599

600

CHAPTER 39 | XML-DATA

number

int

float

fixed.14.4

boolean

dateTime.iso86
01

A number, with
no limit on dig-
its, may poten-
tially havea
leading sign,
fractional digits,
and optionally
an exponent.
Punctuation

as in US English.

A number, with
optional sign, no
fractions, no
exponent.

Same as for
[44 »
number,

Same as “num-
ber” but no
more than 14
dights to the
left of the deci-
mal point, and
no more than 4
to the right.

“1” Or “O”

A date in ISO
8601 format,
with optional
time and no
optional zone.
Fractional sec-
onds may be as
precise as nano-
seconds.

string

32-bit signed
binary

64-bit IEEE 488

64-bit signed
binary

bit

Structure or
object contain-
ingyear, month,
hour, minute,
second, nanosec-
ond.

15, 3.14, -
123.456E+10

1, 58502, -13

314159265358
979E+1

12.0044

0, 1 (1=="true”)

19941105T08:1
5:00301

©1998 THE XML HANDBOOKT

39.15

601

| DATATYPES

dateTime.iso86
0ltz

date.iso8601

time.is08601

time.is08601.t
z

il

i2

i4

i8

A date in ISO
8601 format,
with optional
time and
optional zone.
Fractional sec-
onds may be as
precise as nano-
seconds.

A date in ISO
8601 format.
(no time)

A time in ISO
8601 format,
withnodateand
no time zone.

A time in ISO
8601 format,
withnodatebut
optional time
zone.

A number, with
optional sign, no
fractions, no
exponent.

©1998 THE XML HANDBOOKT™

Structure or
object contain-
ingyear, month,
hour, minute,
second, nanosec-
ond, zone.

Structure or
object contain-
ingyear, month,
day.

Structure or
object exposing
day, hour,
minute

Structure or
object contain-
ing day, hour,
minute,
zonehours, zone-
minutes,

8-bit binary

16-bit binary
32-bit binary
64-bit binary

19941105T08:1
5:5+03

19541022

08:15-05:00

1, 255

1,703, -32768

602

CHAPTER 39 | XML-DATA

uil A number,
unsigned, no
fractions, no
exponent.

ui2 "

uid
uis

rd Same as “num-
ber.”

r8

"

float.IEEE.754 _
.32

float.IEEE.754
.64

Hexidecimal
digits represent-
ing octets,
optional
embedded
hyphens which
should be

ignored.

uuid

8-bit unsigned 1, 255

binary

16-bit unsigned 1, 703, -32768

binary

32-bit unsigned
binary

64-bit unsigned
binary

IEEE 488 4-byte |

float '

IEEE 488 8-byte
float

IEEE 754 4-byte
float

IEEE 754 8-byte
float

F04DA480-
65B9-11d1-
A29F-
00AA00C14882

128-bytes Unix
UUID structure

©1998 THE XML HANDBOOK™

39.16 | MAPPING BETWEEN SCHEMAS
uri Universal Per W3C spec htep://
Resource Identi- www.ics.uci.edu/
fier pub/ietf/uri/

draft-fielding-
uri-syntax-00.txt
heep://
www.ics.uci.edu/
pub/ietf/uri/
htep://
www.ietf.org/
heml.charters/
urn-charter.html

bin.hex Hexidecimal no specified size
digits represent-
ing octets

char string 1 Unicode char-

acter (16 bits)

string.ansi string containing Unicode or sin- This does not
only ascii charac- gle-byte string. look Greek to
ters <= 0xFE me.

All of the dates and times above reading “is08601..” actually use a
restricted subset of the formats defined by ISO 8601. Years, if specified,
must have four digits. Ordinal dates are not used. Of formats employing
week numbers, only those that truncate year and month are allowed

(5.2.3.3d, eand f).

30.16 | Mapping between Schemas

Certain uses of data emphasize syntax, others “conceptual” relations. Syn-
cactic schemas often have fewer elements compared to explicitly conceptual
ones. Further, it is usually easier to design a schema that merely covers syn-
tax rather than designing a well-thought-out conceptual data model. An
effect of this is that many practical schemas will not contain all the elements

©1998 THE XML HANDBOOK™

603

604 CHAPTER 39 | XML-DATA

that a conceptual schema would, either for reasons of economy or because
the initial schema was simply syntactic. But is it useful to make the implicit
explicit over time so that more generic processors can make use of data.

For example, the following schema is essentially syntax:

<elementType id="author">
<string/>
</elementType>

<elementType id="title">
<string/>
</elementType>

<elementType id="Book">

<element type="#title"/>

<element type="#author" occurs="ONEORMORE"/>
</elementType>

with instances looking like this

<Book>
<title>Paradise Lost</title>
<author>Milton</author>
</Book> |

On the other hand, a conceptual schema could look like this:

<elementType id="name">
<string/>
</elementType>

<elementType id="Person">
<element type="#name/>
</elementType>

<elementType id="creator">
<range type="#Person/>
</elementType>

<elementType id="title">
<string/>
</elementType>

<elementType id="Book">

<element type="#title"/>

<element type="#creator" occurs="ONEORMORE"/>
</elementType>

If fully explicit, its instances would look something like this:

©1998 THE XML HANDBOOK™

39.16 | MAPPING BETWEEN SCHEMAS
crestor: name
Mitton
title ;
~—Paradise Lost

<Person id="thingl">
<name>Milton</Person>
</Person>

<Book>
<title>Paradise Lost</title>
<creator>
<Person>
<name>Milton</name>
</Person>
</creator>
</Book>

In any case, what we want to express is a diagram such as this:

To do this, we will add mapping information into the syntactic schema
which tells us how to interpolate the implied elements (and also to map
author to creator) thereby creating a conceptual data model.
<?xml :namespace href="uri-to-the-conceptual-schema" as="c" ?>
<elementType id="author">

<string/>
</elementType>

<elementType id="title">
<string/>
</elementType>

<elementType id="Book">

<mapsTo type="c:book"/>
<element type="#title"> <mapsTo type="c:title"/> </element>

©1998 THE XML HANDBOOK™

605

606

CHAPTER 39 | XML-DaTA

livesAt address street
17 Cherry Tree

city Lange

Hame London
e Mary Poppinz

<element type="#author" occurs="ONEORMORE">
<mapsTo type="string">
<implies type="c:name">
<implies type="c:person">
<implies type="c:creator"/>
</implies>
</implies>
</mapsTo>
</element>
</elementType>

A more complex case could involve needing to map several properties to
have a common implied node. For example, suppose we wanted that a szreet
element and ¢izy element should both imply the same address node.

<Person>
<name>Mary Poppins</name>
<street>17 Cherry Tree Lane</street>
<city>London</city>

</Person>

That is, rather than creating two address nodes, we want to create only a
single onc, and subordinate both the streer and city to it. If the conceptual
schema has elements livesAr, address, street and city, we could write a map-
ping thus:

...definitions of name, street and city...

<elementType id="Person">
<mapsTo type="c:person'"/>
<element type="#name">

<string/>
<mapsTo type="c:name"/>
</element>
<element type="#street">
<string/>

<mapsTo type="c:street">
<implies type="c::address" id="livesAtAddress"s>
<implies type="c:livesAt"/>

©1998 THE XML HANDBOOK™

39.16 | MAPPING BETWEEN SCHEMAS 607

1 7 Cherry Tred
street—P] Lane
city
livezAt
Londan
livesAt stre
. e\,‘Dﬁe Park Lane
city
name Mary Poppins London
» ¥ Fopp
</implies>
</mapsTo>
</element>
<element type="#city">
<string/>

<mapsTo type="c:city">
<implies type="#livesAtAddress"/>
</mapsTo>
</element>
</elementType>

Flements may be repeated, so mapping rules need to accommodate repe-
titions. Suppose that someone has two addresses in the grammatical syntax,
this needs to map to two addresses in the graph while still keeping the

structure correct.

<Person>
<name>Mary Poppins</name>
<street>17 Cherry Tree Lane</street>
<city>London</city>
<street>One Park Lane</street>
<city>London</city>

</Person>

©1998 THE XML HANDBOOK™

608 CHAPTER 39 | XML-DATA

<elementType id="Person">
<mapsTo type="c:person"/>
<element type="#name"> <string/>
<mapsTo type="c:name"/>
</element>
<group occurs="ZEROORMORE"/>
<element type="#street">
<string/>
<mapsTo type="c:street"> ‘
<implies type="c::address" id="livesAtAddress">
<implies type="c:livesAt"/> |

</implies>
</mapsTo>
</element>
<element type="#city"> ‘
<gtring/>

<mapsTo type="c:city">
<implies type="#livesAtAddress"/>
</mapsTo>
</element>
</group>
</elementType>

Mappings within groups are handled together. Since street and city are in
a single group, each occurrence of such a group results in one address.
Text markup can also be handled by mapping. Suppose that for some

reason we choose to markup the number portion of a street address:
<Person>
<name>Mary Poppins</name>
<street>< streetNumber>17</ streetNumber >
Cherry Tree Lane</street>
<city>London</city>
</Person>

©1998 THE XML HANDBOOK™

39.17 | APPENDIX A: EXAMPLES

sfreet‘-"”;’—’

stresthlumber
livesit 17
ity
\—b Londaon
i __'_ﬂ____dab Mary Poppins

If this should be reflected in the graph,

We can do that with mapping such as:
<elementType id="streetNumber">
<string/>
</elementType>

<elementType id="street>
<mixed>
<element type="# streetNumber">
<mapsTo type="c: streetNumber'>
<implies type="#livesAtAddress"/>
</mapsTo>
</element>
</mixed>
</elementType>

...Person defined as before...

30.17 | Appendix A: Examples

Some data:

©1998 THE XML HANDBOOKT™

610 CHAPTER 39 | XML-DATA

<7xml :namespace name="http://company.com/schemas/books/" as="bk"/>
<?xml :namespace name="http://www.ecom.org/schemas/dc/" as="ecom" ?>

<bk:booksAndAuthors>
<Person>
<name>Henry Ford</name>
<birthday>1863</birthday>
</Person>

<Person>
<name>Harvey S. Firestone</name>
</Person>

<Person>
<name>Samuel Crowther</name>
</Person>

<Book>
<author>Henry Ford</author>
<author>Samuel Crowther</author>
<title>My Life and Work</title>
</Book>

<Book>
<author>Harvey S. Firestone</author>
<author>Samuel Crowther</author>
<title>Men and Rubber</title>
<ecom:price>23.95</ecom:price>
</Book>
</bk:booksAndAuthors>

The schema for http://company.com/schemas/books:
<?xml : namespace
name="urn:uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882/"
as="g"/?>
<?xml : namespace
href="http://www.ecom.org/schemas/ecom/" as="ecom" ?>

<g:schema>

<elementType id="name">
<string/>
</elementType>

<elementType id="birthday">
<string/>
<dataType dt="date.ISO08601"/>
</elementType>

<elementType id="Person">
<element type="#name" id="pl"/>

©1998 THE XML HANDBOOK™

39.17 | APPENDIX A: EXAMPLES

<element type="#birthday" occurs="OPTIONAL">

<min>1700—01—01</min><max>2100—01—01</max>

</element>

<key id="kl"><keyPart href="#pl" /></key>
</elementType>

<elementType id="author">

<string/>

<domain type="#Book"/>

<foreignKey range="#Person” key="#kl1"/>
</elementType>

<elementType id="writtenWork">
<element type="#author" occurs="ONEORMORE" />
</elementType>

<elementType id="Book" >
<genus type="#writtenWork"/>
<guperType
hrefz"http://www.ecom.org/schemas/ecom/commercialltem"/>
<guperType
hrefz"http://www.ecom.org/schemas/ecom/inventoryItem“/>
<group groupOrder="SEQ" occurs="OPTIONAL">
<element type="#preface"/>
<element type="#introduction"/>
</group>
<element href:“http://www.ecom.org/schemas/ecom/price“/>
<element href="ecom:guantityOnHand"/>
</elementType>

<elementTypeEquivalent id="livre" type="#Book"/>
<elementTypeEquivalent id="auteur" type="#author"/>

</s:schema>

©1998 THE XML HANDBOOK™

611

612 CHAPTER 39 | XML-DATA

39.18 | Appendix B: An XML DTD for
XML-Data schemas

<!ENTITY % nodeattrs 'id ID #IMPLIED'>

<!-- href is as per XML-LINK, but is not required unless
there is no content -->

<!ENTITY % linkattrs
'id ID #IMPLIED
href CDATA #IMPLIED'>

<!ENTITY % typelinkattrs
'id ID #IMPLIED
type CDATA #IMPLIED'>

<!ENTITY % exattrs
'name CDATA #IMPLIED
content (OPEN]CLOSED) "OPEN" >

<!ENTITY % elementTypeElementsl
genus? correlative? superType*>

<!ENTITY % elementTypeElements?2
description,
(min|minExclusive)?,
(max | maxInclusive)?,
domain*,
key*,
foreignKey*,
(datatype | (syntax?, objecttype+))?
mapsTo?>

<!ENTITY % elementConstraints
'min? max? default?'>

<!ENTITY % elementAttrs
‘occurs
(REQUIRED | OPTIONAL | ONEORMORE | ZEROORMORE)
"REQUIRED" '>

<!ENTITY % rangeAttribute
'range CDATA #IMPLIED' >

<l-- The top-level container -->
<!element schema ((elementType|linkType|
extendType |

intEntityDel |extEntityDecl |

©1998 THE XML HANDBOOK™

39.18 | APPENDIX B: AN XML DTD FOR XML-DATA SCHEMAS

notationDcl|extDcls) *)>
<lattlist schema %nodeattrs;>

<!-- Element Type Declarations -->

<lelement elementType (%elementTypeElementsl;,

((element |group) * |empty|any|string|mixed) ?,

attribute*
gelementTypeElements2)>

<tattlist elementType %nodeattrs;
$exattrs >

<!-- Element types allowed in content model -->
<!l-- Note this is just short for a model group with only
one element in it -->

<!element element (%elementConstraints;) >

<!-- The type is required -->
<lattlist element $typelinkattrs;
$elementAttrs;

presence (FIXED) #IMPLIED >

<!-- A group in a content model: and, sequential
or disjunctive -->
<lelement group ((group|element)+)>
<lattlist group $nodeattrs;
%$elementattrs;

presence (FIXED) #IMPLIED
groupOrder (AND|SEQ|OR) 'SEQ'>

<lelement any EMPTY>
<!element empty EMPTY>
<lelement string EMPTY>

<!-- mixed content is just a flat, non-empty
list of elements -->
<!-- We don't need to say anything about
<string/> (CDATA), it's implied -->

<lelement mixed (element+)>
<lattlist mixed $nodeattrs;>

<lelement superType EMPTY>
<lattlist superType %$linkattrs;>

<!element genus EMPTY>
<lattlist genus %typelinkattrs;>

©1998 THE XML HANDBOOK™

The XML
SPECtacular

H International Standards
I W3C Recommendations
B XML applications

I ... and More!

©1998 THE XML HANDBOOK™

For those of you who like to dig into the source
material, our CD-ROM has plenty for you. Here's a
full descriprion,

elcome to the XML SPECtacular, a collection of the rele-
W vant standards and specifications that you can browse,

search, and print. This collection was compiled for The
XML Handbook by Lars Marius Garshol.

For each document, we've included a link to a web site where you can
learn more about the underlying project and obtain the latest version.
Where copyright and production considerations allowed, we've also
included a browseable copy on the CD-ROM.

All documents categorized as W3C recommendations or W3C work in
process are subject to the W3C document use policy, which you can find on
the CD-ROM and on the Web.

Not all specifications were available in HTML, so some of them are
included as Adobe Portable Document Format (or PDF). A PDF viewer is
available for free from Adobe for Mac, MS Windows, DOS, Unix and OS/2.

©1998 THe XML HANDBOQK™ 619

620 CHAPTER 40 | THE XML SPECTACULAR

40.1 | Base standards

40.1.1 International Standards

40.1.1.1 Approved standards

SGML: Standard Generalized Markup Language
Charles E Goldfarb

Information on web:
htep://www.sil.org/sgml
This standard is really the ancestor of nearly all the other standards listed |

here. SGML is the mother tongue of most markup languages and the “big
brother” of XML.

HyTime
Charles E. Goldfarb
Steven R. Newcomb
Fliot Kimber
Peter Newcomb
Information on web:
htep://www.hytime.org/

HyTime is from the SGML family of International Standards. It
describes many different things. There of the most important are architec-
tural forms, hyperlinking, and structuring of time-based media like sound
and film. Architectural forms is a technique for describing common seman-
tics among different DTDs and is widely used. (The XLink standard uses
something like it.)

DSSSL

Sharon Adler
Anders Berglund
Jon Bosak

James Clark

©1998 THE XML HANDBOOK™

40.1 | BASE STANDARDS

Information on web:
http://www.jclark.com/dsssl/

DSSSL is a powerful (and elegant!) style sheet language for SGML.
DSSSL can be thought of as the “big brother” of XSL, but with a different
syntax.

Unicode

Information on web:
http://www.unicode.org/

Unicode is an advanced and very complete character coding system.
Using 16 bits (and various coding tricks), Unicode aims to encompass all
human scripts, both those in use today as well as archaic ones. Unicode pro-
vides XMLs character set.

40,12 W3C recommendations

40.12.1 Approved recommendations

Extensible Markup Language (XML)
Tim Bray

Jean Paoli

C.M. Sperberg-McQueen

Information on web:
http://www.w3.0rg/ TR/REC-xml
Document included on CD-ROM:

Jspecs/w3c/rec-xml.html

Here it is: the XML standard itself. For a standard it is mercifully short
and readable, and nicely unambiguous. This is definitely recommended
reading

©1998 THE XML HANDBOOK™

621

622 CHAPTER 40 | THE XML SPECTACULAR

Cascading Style Sheets (CSS2)

Hakon Wium Lie
Bert Bos

Information on web:
htep://www.w3.org/Style/ CSS/
Document included on CD-ROM:
[specs/w3c/pr-css2/index.html
CSS is the style sheet standard that is implemented in browsers today
and can be used right now. It is simple, but effective and elegant.

40.122 Work in progress

XML Linking Language (XLink)

Steve DeRose
Eve Maler

Information on web:
http://www.w3.0rg/ TR/WD-xlink
Document included on CD-ROM:
[specs/w3c/WD-xlink.heml

XLink is a crucial part of the XML standards family as it describes hyper-
linking in XML documents and takes major steps beyond the hyperlinking
provided by HTML.

XML Pointer Language (XPointer)

Eve Maler
Steve DeRose

Information on web:
heep:/fwww.w3.0rg/ TR/WD-xptr
Document included on CD-ROM:
Jspecs/w3c/WD-xptr.html
XPointer is a companion standard to XLink that describes mechanisms
for addressing a particular part of a document.

©1998 THE XML HANDBOOK™

40.1 | BASE STANDARDS 623

Extensible Style Language (XSL)

Sharon Adler
Anders Berglund
James Clark
Istvan Cseri

Paul Grosso
Jonathan Marsh
Gavin Nicol
Jean Paoli

David Schach
Henry S. Thompson
Chris Wilson

Information on web:
htep://www.w3.org/Style/XSL/
Document included on CD-ROM:
Ispecs/w3c/note-xsl-970910.html

XSL is what has been produced so far in phase 3 of the XML effort: a
proposal for the style sheet language for XML. The document included
here, though already implemented in products, is just a proposal, and it
seems likely that it will undergo considerable changes before it becomes a
recommendation.

Note that XSL incorporates Standard ECMA-262 ECMAScript: A gen-
eral purpose, cross-platform programming language, which can be found
below.

Document Object Model (DOM)
Lauren Wood

Jared Sorensen
Lauren Wood
Steve Byrne
Mike Champion
Rick Gessner
Scott Isaacs
Arnaud Le Hors
Gavin Nicol
Peter Sharpe

Jared Sorensen

©1998 THE XML HANDBOOKT™

624

CHAPTER 40 | THE XML SPECTACULAR

Bob Sutor
Vidur Apparao
Bill Smith
Chris Wilson

Information on web:
htep://www.w3.0org/DOM/
Document included on CD-ROM:
[specs/w3c/wd-dom/cover.html]
The Document Object Model is a very important related standard. It is
to be the standard API for accessing and manipulating XML and HTML

documents in browser, editors and other applications.

Namespaces in XML

Tim Bray
Dave Holander
Andrew Layman

Information on web:
htep:/fwww.w3.0rg/ TR/WD-xml-names
Document included on CD-ROM:
[specs/w3c/wd-xml-names.html

This namespace proposal sketches a way to ensure that names used in
XML DTDs are unique, so that names from different DTDs can be com-
bined in a single document when need be.

40.2 | XML applications

These are XML document types that have been designed for specific pur-

poses.

©1998 THE XML HANDBOOK™

40.2 | XML APPLICATIONS 625

40.2.1 W3C recommendations

402.1.1 Approved recommendations

Mathematical Markup Language (MathML)

Patrick Ion
Robert Miner
Stephen Buswell
Stan Devitt
Angel Diaz
Nico Poppelier
Bruce Smith
Neil Soiffer
Robert Sutor
Stephen Watt

Information on web:
http://www.w3.org/Math/
Document included on CD-ROM:
Ispecs/w3c/rec-mathml/index.html

MathML is the long-awaited solution to a problem many scientists and
teachers have struggled with: how to publish mathematical formulae on the
web.

402.12 Work in progress

Channel Definition Format (CDF)

Information on web:
htep:/fwww.w3.0rg/ TR/INOTE-CDFsubmit.html
Document included on CD-ROM:
[specs/w3c/NOTE-CDFsubmit.html

CDF is a DTD proposed by Microsoft for describing push channels.
One interesting aspect of this format is that it is already in use in MSIE 4.0,
so millions of CDF files already reside on the hard disks of users all over the
world.

©1998 THE XML HANDBOOK™

626 CHAPTER 40 | THE XML SPECTACULAR

Web Interface Definition Language (WIDL)

Information on web:

heep://www.w3.org/ TR/INOTE-widl |

Document included on CD-ROM:

Jspecs/w3c/note-widl.html |
WIDL is a proposed metalanguage for descriptions of web service inter-

faces, from which client code can be generated automatically.

Resource Description Framework (RDF) Schemas

Information on web:
heep:/fwww.w3.0rg/ TR/WD-rdf-schema
Document included on CD-ROM:
Jspecs/w3c/wd-rdf-schema/index.heml

RDF provides a standard framework for describing resource metadata
and as such is very important for the future development of search engines
and other web navigation applications.

XML-Data

Andrew Layman
Edward Jung
Eve Maler '
Henry S. Thompson
Jean Paoli

John Tigue

Norbert H. Mikula
Steve De Rose

Information on web:
heep://www.w3.org/ TR/1998/NOTE-XML-data-0105
Document included on CD-ROM:)
[specs/w3c/note-xml-data.html

XML-Data is a proposal to use XML documents, rather than markup
declarations, to describe DTDs. With XML-Data, the document type defi-
nitions can be augmented with additional properties, such as inheritance

and datatypes.

©1998 THE XML HANDBOOK™

40.2 | XML APPLICATIONS

Precision Graphics Markup Language (PGML)

Information on web:
htep://www.w3.0rg/TR/1998/NOTE-PGML
Document included on CD-ROM:
Jspecs/w3c/note-pgml.html
PGML is a scalable vector graphics language based on the imaging model
of PostScript and PDE with hooks for animation and dynamic behavior.

Standard Multimedia Integration Language (SMIL)

Stephan Bugaj
Dick Bulterman
Bruce Butterfield
Wo Chang

Guy Fouquet
Christian Gran
Mark Hakkinen
Lynda Hardman
Peter Hoddie
Klaus Hofrichter
Philipp Hoschka
Jack Jansen
George Kerscher
Rob Lanphier
Nabil Layaida
Stephanie Leif
Jonathan Marsh
Sjoerd Mullender
Didier Pillet
Anup Rao

Lloyd Rutledge
Patrick Soquet
Warner ten Kate
Jacco van Ossenbruggen
Michael Vernick
Jin Yu

Information on web:

©1998 THE XML HANDBOOK™

627

628

CHAPTER 40 | THE XML SPECTACULAR

hetp:/fwww.w3.0rg/ TR/1998/PR-smil-19980409/
Document included on CD-ROM:
[specs/w3c/pr-smil/index.html
SMIL is a language for describing multimedia presentations. It allows for
the integration of independent multimedia objects into these presentations.

40.2.2 Other initiatives

40.2.2.1 Approved standards
ECMAScript (ECMA-262)

Information on web:
htep://www.ecma.ch/stand/ecma-262.htm
Document included on CD-ROM:
[specs/e262-pdf.pdf

ECMAScript is a merger of JavaScript and JScript, standardized and
described in detail. It is included here because it is the programming lan-
guage used in XSL.

40222 Work in progress

Simple API for XML (SAX)

David Megginson
A cast of thousands

Information on web:
htep://www.microstar.com/XML/SAX/
Document included on CD-ROM:
[specs/sax.html

SAX is an event-based API for XML parsers written in object-oriented
languages. Using SAX enables application programmers to switch XML
parsers without changing their applications.

SAX is not presently being standardized by an official standards body. It
is a defacto standard developed by the participants of the xml-dev mailing

©1998 THE XML HANDBOOK™

40.2 | XML APPLICATIONS

list. You should visit the web page, since SAX was due for an update when
we went to press.

Guidelines for using XML for Electronic Data
Interchange (XML-EDI)

Martin Bryan
Benoit Marchal
Norbert Mikula
Bruce Peat

David RR Webber

Information on web:
hetp:/lwww.geocities.com/WallStreet/Floor/5815/xmlediindex.htm
Document included on CD-ROM:
[specs/edi/index.html

XML-EDI describes the use of XML in online commerce for exchanging
transaction information. This isn’t a complete specification, but more of a
guideline to function as a precursor to a formal specification.

©1998 THE XML HANDBOOKT

629

Index

A

Abstractions, 8-10, 299
ACL Designer (ArborText), 312-13
Active Server Pages, See ASP files
ActiveX controls, 89, 487
actuate attribute, 508, 510
ADEPT.Editor, 296-317
automated document systems, 297-302
content management, 297, 301-2
structure, 297, 298-301
See also Content management integradion; Structured
XML editors
ADEPT.Publisher (ArborText), 316
Adobe Pagemaker, 4
AElfred, 407
Agent Discovery, 232-41
access vs. integration, 235-36
architecture principles, 240-41
defined, 233-34, 237-38
image search/procurement functionality of, 234
Web automation, 236-38
and XML, 239-40
Amaya, 414
Anchor role identification, 179, 187
Andersen Consulting Web site, 204-5
ANY content, 457-58
Application programming interface (API), 295
Arbor Text XML Styler, See XML Styler (ArborText)
Archiving software, 421
ASP files, using to generate XML documents, 82-85
Astoria (Chrystal Software), 151, 352-63
components, 353-54
and XML, 356-58
components in publishing, 354-56
authoring, 355
customization, 355
distribution, 356
editing, 355
revisions, 354
system simplification, 354
translations, 356
updates, 355
content management, 359-63
dynamic document assembly, 362-63
tevision tracking, 360-61
search options, 361-62
content reuse, applications for, 358-59
Attributes, 35, 435, 436-38, 462-74
attribute-list declarations, 463-64
actribute-value normalization, 466-68
CDATA attribute, 468-70

630

default values, 464-66
defined, 462
ENTITY atcributes, 472-73
enumerated and notation arttributes, 470, 473
ID/IDREF attributes, 470-72
name token attributes, 468-70
summary of attribute types, 474-75
types, 466-74
Attribute-value normalization, 466-68
Auction Web site, 78-94
ASP files, using to generate XML documents, 82-85
auction.asp, 79-80
"Auction” database, 80
databases, generating XML from, 86-88
item rable, 80-81
makebid.asp, 80
multiple databases, generating XML from, 86
updating data source, from client, 91-93
user interface, 80, 81
building, 89-91
descriptive data binding, 90-91
procedural scripts, 89-90
userlnterface.htm, 79-81
XML data sources, generating XML from, 86-88
XML document structure, defining, 82
Authoring issues, content management, 305
Automated document systems, 297-302
and consistency, 304
content management, 297, 301-2
formal processes, 304
and high value, 303-4
and high volume, 303
and long life, 304
and multiple publications, 303
and reuse, 304
structure, 297, 298-301
Automatic mapping, DynaTag, 331

iB

B2B, See Business-to-Business Integration Server (B2B)
Batch composition, 315-16
behavior attribute, 508-9, 510
Berglund, Anders, 15
Berners-Lee, Tim, 14, 16
Bindings, WIDL, 565-67
Bioinformatic Sequence Markup Language, 29-30
BladeRunner (Interleaf), 158-62

conformance checking, 158

normal mode, 158

fix element order utility, 160

insert missing element udility, 161

modes of operation, 158

non-conformance error report, 159

publish feature, 161

repair tools, 159
blox, 409
Books, shopping online for, 133-34

©1998 THE XML HANDBOOKT™

Branches, 35

Business-to-Business Integration Server (B2B), 123

manufacturer services, 124-27
B2B plug-in, 125
Java thin client, 126-27

manufacturer interface specification, 127

server stub, 126

XML requests/replies, 126
supplier services, 128-30

client stub, 128-29

supplier interface specification, 129-30
system architecture, 123-24

iC

CACI International job search site, 204-5

CareerPost job search site, Washington Post, 203, 205-7

Cascading Style Sheets (CSS), 17, 47, 622
CDATA attribute, 468-70
CDATA sections, 444-46
CDEnd, 443-44
CGI (Common Gateway Interface), 539
Channel Definition Format (CDF), 27, 625
Character data, 427
character encoding, 37
Character mapping, DynaTag, 332-33
Character references, 535-37
Character set, 37
Chemical Markup Language (CML), 29
child, as relatiye location term, 515
Codes, 5
Coding, 63
Combining rules, 552
Comments, 446-47
Common document representation, 6
Comparison shopping service Web site, 132-38
Junglee Shopping Guide, 134-37
how it works, 135-37
and XML, 135
shopping online for books, 133-34
Components, 353-54
Compound document authoring, 302, 310-11
Conditional mapping, DynaTag, 332
Conditional sections, 533-35
Constant strings, 549-50
Container elements, 335
Content management, 58, 297, 301-2
Content management integration, 309-13
collaborative authoring, 311
compound document authoring, 310-11
customization, 312
seamless user interface, 310
Content models, 459-62, 575-80
Content particle, 460
Content specification, 456

Control information development software, free, 414-16

Conversion software, free, 416-17
Customized document types, 6-12

©1998 THE XML HANDBOOK™

INDEX

iD

DAE Server SDK, 399-400
Dan Connolly's XML Parser, 401-2
Database publishing, 25-26
Databases, 11-12

generating XML from, 86-88
Data binding, 90-91, 137
DataChannel XML Generator, 417
DataChannel XML Parser (DXP), 404-5
DataChannel XML Viewer, 418-19
Data content, 298
Data filtering, 116-17
Data integrity, 297, 307-8
Data Object notations, 56
dacapath, 512
Data rescue, 328
Data source, updating from client, 91-93
Default rule, 525
Delimiters, 40
descendant, as relative location term, 515
Deseriptive data binding, 90-91
Destination, HTML links, 500
DHTML, 89
docproc, 398
Document conversion, 327-29
Document element, 35, 433
Document entities, 481-82
Document instance, 62, 431

631

Document Object Model (DOM), 89, 317, 623-24

Documents:
and databases, 11-12
defined, 49-50
digital representation of, 34
notations, 56
physical structure, 38
tree structure of, 35

well-formed, 44-45, 112-13, 549

Document type declaration, 41, 43, 438-39, 449, 450-52
Document type definition (DTD), 13, 41-44, 61-62, 113,

367, 441

content models, 459-62
creating, 448-75
documenters, 415-16
editors, 415
element type content specification, 456-59
element type declarations, 450, 455-56
generic/custom message DTDs, 562-63
internal/external subset, 452

Document types, 13, 40-44, 61

DOM (Document Object Model), 317, 623-24

DSSSL, 14, 17, 47, 620-21
flow objects, 348-49

DSSSL engines, 398-400

dudr attribute, 594

DTD editors, 415

DTD schema language, 572

DynaBase, 254

Dynamic HTML, 80, 89, 137

632 INDEX

DynaTag, 254-55, 260, 326-36
Container Wizard, 335-36
converting documents with, 329-36
document conversion, 327-29

data rescue, 328

style and meaning, 329
electronic publishing, preparing for, 336
mapping, 330-36

automatic, 331

capturing structure, 335

character, 332-33

comments, 334

conditional, 332

cross-references, 333

list wizard, 332

new-mapping helper, 332

reuse, 335

searching, 334

tables, 332

variant detection, 331

XML markup features, 335

iE

ECMAScript (ECMA-262), 528, 628
EDGAR, 155-62
BladeRunner (Interleaf), 158-62
DTD:
creating and instance of, 158
reviewing, 157-58
instance:
checking for conformance, 158-59

non-conforming elements, repairing, 159-61

publishing for the SEC, 161
repurposing the Web site, 161-62
submission:
generating, 161
with XML, 156-57
See also BladeRunner (Interleaf)
EDI (electronic data interchange), 12, 122
defined, 97-98
future of, 100-101
guidelines for using XML for, 629
history of, 104
new ED], 99-100, 110-17
data filtering, 116-17
and Internet, 113-14
Internet technologies, 114-15
and XML, 111-13
XML data storage, 115-16
technology description of, 104-5
traditional, 103-10
implementation of, 98
problems of, 106-10
value of, 101-3
and XML, 96-118
See also New EDI; Traditional EDI
Editing/composition:

free software, 412-14
tools, 58
Electronic commerce, and XML, 26
Electronic delivery, free software for, 417-19
Element content, 457, 459
Element Definition Document (EDD), 294
Elements, 35-37, 434-36
attributes, 35, 435, 462-74
empty, 434-35
tags vs., 60-61
Element type content specification, 456-59
ANY content, 457-58
element content, 457, 459
empty content, 457
mixed content, 457, 458-59
Element type declarations, 450, 455-56
Element type names, 60, 456
Element types, 10-11
Emacs, 419-20
Empty content, 457
Empty elements, 434-35
Encoding, 63
Encoding declaration, 440-41
End-tags, 434
Entities, 38-39, 451, 476-96
boundaries, and markup, 490-94
classifications of, 482-83
document, 481-82
entity content, 477
entity declaration, 477
entity name, 477
external, 38, 478-79, 483, 485-86
external identifiers, 494-96
general, 480, 483, 488
internal, 483-84
parameter, 480, 483, 487-90
parsed, 478, 483
predefined, 442-44
unparsed, 39, 474, 480, 483, 486-87
ENTITY attributes, 472-73
Entity declaration, 542
Entity reference, 38, 479
legal parameter, 493-94
Enumerated attribute types, 470
Enumeration attributes, 470, 473
EPS, 56
expat, 403
Extended links, 176-88, 501-5, 509-11
bidirectionality of, 184
defined, 178
displaying, 179-80
link groups, 510-11
locator elements, 509-10
shop notes:
applicarion, 177-78
computer-augmented memory, 184
guidance documents, 183-84
intellectual property management, 185

©1998 THE XML HANDBOOK™

-

public resource communities of interest, 182-83
and vendors, 181
strong link typing, 185-87
anchor role identification, 187
hiding the installation log, 186
need for, 186
XPointers, 180-81
Extensible Linking Language, See XLink
Extensible Markup Language, See XML
Extensible Style Language, See XSL
External entity, 38, 478-79, 483
External identifiers, 485, 494-96
public identifiers, 495-96
system identifiers, 495
External links, 46
External parsed general entities, 485-86
External subset, 452-55
Extractor Development Kit (EDK), 390-91
Extractors, 136

ir

Flow objects, 522-23
DSSSL flow objects, 348-49, 527
flow object tree, 522
HTML/CSS flow objects, 348, 522-23, 527
following, as relative location term, 515
loreign keys, 584
Formarting markup, 4-6, 9
Fragment identifier, 512
FrameMaker+SGML (Adobe) software, 194
customization/preparation, 293-95
defining formatting rules, 294
DTD customization, 293-94
Element Definition Document (EDD), 294
extensibility, 295
document fragments, 290
editing/composition, 278-95
interactive formatting, 289-90
leveraging information, 279-80
publishing documents, 290-93
in HTML, 293
online, 292-93
on paper, 291
in PDF, 292
rule-based formatting, 289
XML authoring functions, 280-88
authoring flexibility, 281-82
authoring utilities, 286-88
cross-reference tool, 286
guided editing, 281
hypettext, 287-88
index generation utility, 286-87
managing external content, 288
problem correction, 283-85
unstructured template, 288
well-formedness, 288
Frank Russell Company, 210-31

©1998 THE XML HANDBOOK™

INDEX 63 3

abstract architecture, creating, 217-20
abstract document representation, 221
application implementation, 220-30
document representation, 220-22
internetworking, 220
phased implementation plan, 222-30
background, 211-12
business requirements, 215-16
compliance, 215
data integrity, 216
premium typographic quality, 215
secutity, 216
document assembly/formarting, 224-28
book assembly, 226-27
document ediring, 225-26
document structure, 225-26
final-form quality requirements, 226
releasing books w document management system, 227-28
document management of PDF files, 223-24
needs determination, 215-20
Portable Document Format (PDF), 22, 221-22
project strategy, 212-15
alignment with corporate strategies, 214
continuing research in parallel with focused
development projects, 213-14
executive sponsorship, 214-15
from theoretical abstraction to practical applica-
tions, 213
phasing deliverables with measurable return on
investment, 213
records management business scudy, 222
rendered document representation, 221-22
technical requirements, 216-17
cross-platform, 217
ease of use, 216
low licensing impact for reader software, 216
multilingual capabilicy, 217
scalability, 216
XML and the future, 228-29
Free XML software, 394-421
control information development, 414-16
conversion, 416-17
editing/composition, 412-14
electronic delivery, 417-19
parsers/engines, 396-412
resources for, 419-21
Frequent-flyer Web sites, 66-76
and HTML, 68
purpose of, 67-68
Softland Air, 70-71, 73-75
and XML, 69-76
Frontier, 409
fsibling, as relative location term, 515

1 G

General entities, 480, 483, 488
Generalized markup, 6-14

634

INDEX

common document representation, 6
customized document types, 6-12
rule-based markup, 12-14
Generalized Markup Language, 13
General S-converters, 416
Generic identifier, 455-56
GIE 34, 56
Government documents, 153
See also Securities regulation filings
Grammar, XML, 431, 548-49

i H

Hackers, 56-57
Hacking, 56
Help Desk automation, 162-75
Help Desk Solution System, 167-75
architecture, 169
checking document into knowledge base, 175
information flow, 168
making the query, 170
research product information, 170-71
routing solutions document for approval, 173-74
updating the repository, 172-73
using, 170-75
writing a solution, 171-72
Texcel Information Manager, 167-68, 170
Texcel Work Queue, 169
traditional Help Desk, 165-66
helping, 167-68
needs of, 166-67
Hitachi Semiconductor, Inc., 192-200
business case, 194-95
and FrameMaker+SGML (Adobe) software, 194, 200
savings, 200
single source files, creating, 196
transformations, automating with XML, 197-98
Web-based searching, facilitation of, 198-99
and XSL, 198
hostname, 512
HoTMetal Application Server (HoTMetaL. APPS)
(SoftQuad), 69, 72, 74, 76, 378-84
dynamic deseriptive markup, 379-80
dynamic pages, guided construction of, 383
functionality, 383-84
HoTMetalL APPS Attribute Inspector, 383
HoTMetal Personal Server, 381
HoTMetaL Pro HTML editor, 380
how it works, 380-84
middle-tier server tags, 382-83
conditional logic tags, 382-83
data access tags, 382
HTML, 14-17, 42, 111, 449
Cascading Style Sheets (CSS), 17, 47
HTML/CSS flow objects, 348
Hyperlinking, 45-46
Hypertext, 38
Hypertext links, 499

Hypertext Markup Language, See HTML
Hy I'ime, 14, 620
international standard, 511

i

ID/IDREEF attributes, 470-72
IDL (Interface Definition Language), 556-57
IE 4.0 Document Objects Model, 89
IE 4.0 XML Data Source Object (XML DSO), 90-91
Inclusion, 479
Information life cycle:
changes in, 366
managing, 365-68
object-oriented components, 367-68
and World Wide Web, 366-67
Instance vs. prolog, 431-32
Interactive formatting, FrameMaker+SGML, 289-90
Internal entities, 483
Internal parsed general entities, 483-84
Internal subset, 452-55
International Organization for
Standardization (ISO), 264-75
See also 1ISO 12083
Internet-based services, 99
Internet Explorer 4.0, 69, 89, 136
ISO 12083, 266-75
AND connectors, eliminating, 271, 273
assisted modifications, 269-70
attribute types and defaults, 269-70
declared content, 270
automated modifications, 267-69
comments in declarations, 268
example of, 268-69
grouped element type and attribute declarations, 267
omitted tag minimization rules, 267
parameter entity references, 268
quoted default attribute values, 268
XML declaration, 267
exclusions, eliminating, 272, 274
inclusions, eliminating, 271, 272-73
system identifiers, adding, 272, 274-75

i

Jade, 398-99
Java Development Kit (JDK), 420
JavaScript, 70
and XSL, 527-30
Java Virtual Machine (JVM), 339
JDBC, 172
JobCanopy, 203-4, 205
how it works, 208
and Washington Post, 203-4
Job searching online, 204-5
Andersen Consulting, 204-5
CACI International job search site, 204-5
JPEG, 34
JScript, 82

©1998 THE XML HANDBOOK™

JTC1/WGA4, 14

Jumbo, 418

Junglee Shopping Guide, 134-37
how it works, 135-37
and XML, 135-38

Junglee Vireual Dambase Management System (VDBMS), 387-93

administration interface, 392

Extractor Development Kit (EDK), 390-91

how it works, 389-92

VDBMS technology, 387-88

VDB server and Data Quality Kit, 391-92

VDB technology applications, 392-93
corporate procurement, 393
enginecring design databases, 393
information management, 393
online recruitment, 392
Web commerce, 392

Wrapper Development Kit (WDK), 389-90

i K

Keys, 584

L

Lark, 406
SAX drivers for, 411
LaTeX, 4, 5, 449
Leaves, 35
Legal parameter entity reference, 493-94
Lexical constraints, 466
Link behaviors, 505-9
actuate attribute, 508
behavior attribute, 508-9
show attribute, 506-7
Link database, 46
Linking vs. addressing, 500
Links:
extended, 176-88, 501-5, 509-11
simple, 178, 501-2
Literal strings, 429-30
Location term, 514
Locator elements, 509-10
Logical structure, 432-33
LTXML, 402-3

M

Major corporation client, 242-50
background, 244-45
client/server, 245-47
database maintenance, 249-50
data extraction, 248-49
second generation requirements, 247-48
SQml (Agave Software Design), 245-50
Markup, 39-40, 63, 427, 441-47
CDATA sections, 444-46
comments, 446-47
and data, 427
predefined entities, 442-44

©1998 THE XML HANDBOOK™

INDEX 635

Markup declarations, 61-62

MathML (Mathematical Markup Language), 29, 625

Message-Oriented Middleware, See MOM (Message-
Oriented Middleware)

Meta Content Framework (MCF), 27

Metadata, 26-28, 185, 356-58

Metainformation, 463

Microsoft Channel Definition Format (CDF), 27

Microsoft PowerPoint, 168

Microsoft Word, 4, 168

Microsoft XML Parser in Java, 406

Microsoft XSL processor, 397

Middle-tier tools, 58

Mixed content, 457, 458-59

MOM (Message-Oriented Middleware), 51, 54-55

and POPD, 57-58

Mozilla, 417-18

MPEG, 34

MSXML, SAX drivers for, 411

Multiple databases, generating XML from, 86

N

Name characters, 429
Names, 428-29, 436, 456, 550
entities, 38
Namespaces in XML, 624
Name token attributes, 468-70
Name tokens, 429, 436, 469, 470
Natural language translation, 145-51
business challenges, 143-47
cost containment, 143
diversity of documents, 144
fast-paced product development, 144
mistakes, 141-42
multilingual documents, needed for, 142-43
translations:
current state of, 144-47
and last-minute changes, 146-47
machine, 144-45
as specialized service, 146
and XML, 147-51

alignment, and concurrent authoring/translation,

150-51
document components, 147-48
reuse, 148-49
versioning, 149-50
N-converters:
general, 417
specific, 416-17
NCSA (National Center for Supercomputing Activities), 539
Near & Far Designer 3.0 (Microstar), 266-67, 268, 270
Netscape, 69
New EDI, 99-100, 110-17
data filtering, 116-17
and Internet, 113-14
Internet technologies, 114-15
and XML, 111-13
XML data storage, 115-16

6 3 6 INDEX

Normalized attribute value text, 468 dynamic Web delivery, 258-60
Notation, 56 DynaTag, 254-55, 260, 326-36
actributes, 470, 473, 475 DynaText Browser, 254-56

data entities, 39 DynaWeb, 257-59
Notation declarations, 474-75, 487 electronic book:
l O generating, 255-56

revising, 261-62
Occurrence indicators, 461, 551-52 information architecture, 255
ODBC, 70, 594, 596 multiple stylesheets, 256
OLE Automation, 323 prototype, 253-54
OmniMark LE, 416 table of contents, 256
Web delivery, 257-58

I P XML data, updating, 260-61

PSGML, 412-13
psibling, as relative location term, 515

Public identifiers, 495-96, 593

Parameter entities, 480, 483, 487-90
Parsed entities, 478, 483

Parsers/engines, 396-412 PyDOM, 410
kAR Python, 420
Perl, 56, 420 BYXMI Tok, 405
perlSGML, 415-16 o e
PI target, 538 I R
Platform for Internet Content Selection, 27
POET Content Management Suite (POET CMS), 116, RDF for XML, 416-17
364-77 Relations, 584
architecture, 370 Relative location terms, 514-15
client-side editing/viewing, 371-77 Remote Procedure Calls (RPCs), 124
components, 369-70 and WIDL, 560-63
checking out, 373-74 Renditions, 4, 8-9, 55, 62, 298
sharing, 374-75 Replacement text, 38, 479
full-text search, 376-77 Resource Description Framework (RDF), 28, 626
information life cycle, managing, 365-68 Rich Text Format (RTF), 4
POET Content Client, 370 Root element, 35, 425, 433
POET Content SDK, 370 Root location term, 514 .
POET Cortent Setver; 369 RPC messages, representing in XML, 561-63

Rule-based formatting, FrameMaker+SGML, 289

POIBT Mich Bautury, 567 Rule-based markup, 12-14

server-side content management, 371
version control, 371-73 el
viewing documents, 375-76 I S
See also Information life cycle
POET Object Server, 116 SAX, 411, 628-29
POP (Presentation-Oriented Publishing), 51, 52-54 SAXDOM, 412
and MOM, 57-58 SAX drivers for Lark and MSXML, 411
Portable Document Format (PDF), 22, 221-22 saxlib, 410-11
document management of PDF files, 223-24 Schemas, 13, 573-74
preceding, as relative location term, 515 S-converters, general, 4,16
Precision Graphics Markup Language (PGML), 627 Securities regulation filings, 152-62
Predefined entities, 442-44, 467 EDGAR, 155-62 o
Presence, 591 XML documents, visualizing, 154-56
Presentation-Oriented Publishing, See POP (Presentation- Self—idcptifKin information representations, 440
Oriented Publishing) Semant{c chec] s,.13
Procedural scripts, 89-90 Semantic constraints, 466
Processing instructions, 537-41 SGML:
Prolog, 438-41 development of, 14
instance vs., 431-32 and HTML, 15
Prototype, 419 origin of, 14
Providence (RI) Guide, 252-63 standardization of, 14, 620
contextual searching/personalization, 256 and text formatters, 4-14
conversion to XML, 255 XML as subset of, 3
DynaBase, 254, 259-61 SGML Handbook, The, 537

©1998 THE XML HANDBOOK™

sgmlnorm, 400, 486
SGMLSpm, 400
SGML/XML parsers, 400-401
show attribute, 506-7, 510
Simple API for XML (SAX), 411, 628-29
Simple links, 178, 501-2
SMIL, See Standard Multimedia Integration Language (SMIL)
Softland Air Web site, 70-71, 73-75
Source, HTML links, 500
SP, 400-401
Sparse, 397, 523-24
SQml (Agave Software Design), 245-50
Standalone document declaration, 441, 541-44
Standardized Generalized Markup Language, See SGML
Standard Multimedia Integration Language (SMIL), 627-28
Start-tags, 434
String, 426
Structural validity, 441
Structure, 297, 298-301
Structured vs. unstructured documents, 60
Structured XML editors:
application development issues, 305, 309-13
content management integration, 309-13
authoring issues, 305-9
structure consistency, 306, 307-9
task-matched authoring tools, 305, 306-7
business issues, 305, 313-17
authoring productivity, 314-15
batch composition, 315-16
presentation independence, 316-17
standards-based, 317
Stylesheets, 9-10, 13, 14, 47
referencing, 519-20
Sub-elements, 35
Supply chain, 120-30
Business-to-Business Integration Server (B2B), 123
manufacturer services, 124-27
supplier services, 128-30
system architecture, 123-24
integration requirements, 122-23
linking up, 121-22
See also Business-to-Business Integration Server (B2B)
Supply web, 111
Syntactic checks, 13
Syntax, XML, 27-28, 33, 425
System identifiers, 495

7

Tag name, 60
Tags, 5, 40, 492
elements vs., 60-61
Tl interpreter, 420
Tel Supporrt for XML, 403
tded, 415
Text Encoding Initiative, 511
Text formatters:
codes, 5
element types, 10-11

©1998 THE XML HANDBOOK™

637

INDEX

formatting markup, 4-6
generalized markup, 6-14
and SGML, 4-14
stylesheets, 9-10
tags, 5
Text processing, 4
TIFE, 56
Tokenized atcribute types, 473
Traditional EDI, 103-10
implementation of, 98
problems of, 106-10
fixed business rules, 109-10
fixed transaction sets, 106
high fixed costs, 108-9
limited penetration, 110
non-standard standards, 107-8
slow standards evolution, 106-7
troff, 4

iU

Unicode, 37, 40, 426, 535-37, 621

Unicode Standard Book, 536

Uniform Resource Identifiers (URIs), 452, 500, 512-13
Uniform Resource Locators (URLs), 512-13

unique identifier (ID), 60

Universal Resource Names (URNs), 512fn
Unnormalized attribute value text, 468

Unparsed entities, 39, 474, 480, 483, 486-87

User defined string, 550

UTE-8, 37, 440

%

Validity, 44-45, 492

Value Added Networks (VANs), 105, 114-15
Variants, 145, 331

VBScript, 82

Version info, 440

Virtual Database (VDB) technology, 134-37
Visual Basic, 323

Visual XML, 413

nw

Washington Post, 202-9

CareerPost job search site, 203, 205-7

JobCanopy, 203-4, 205

how it works, 208

job searching online, 204-5

Web site, 203
Web, See World Wide Web (WWW)
Web Interface Definition Language,See WIDL (Web

Interface Definition Language)

webMethods, Inc., 556

Automation Toolkit, 127

thin client, 126

WIDL, 556-57
Well-formed documents, 44-45, 112-13, 549
White space, 428

63 8 INDEX

WIDL (Web Interface Definition Language), 123, 234,
240-41, 626
bindings, 565-67
defined, 557-58
integrating applications, 563-68
document mapping, 565-68
stubs, 564-65
interoperability, attaining, 568
LIST element, 560
METHOD elment, 558-59
RECORDREF element, 560
RECORDS element, 559-60
Remote Procedure Call (RPC), 560-63
roel of, 557
VALUE element, 560
WIDL document, 558
WIDL element, 558
Windows Foundation Classes, 401
World Wide Web Consortium, 16-17, 47, 317
World Wide Web (WWW), 15
science on, 28-30
Wrapper Development Kit (WDK), 389-90
Wrappers, 136, 389-90, 596
WYSIWYG (What You See Is What You Get), 4, 8, 314

I X

XED, 413
XLink, 17, 45-46, 182-83, 186, 188, 317, 498-515, 622
addressing, 511
basic concepts, 500-509
extended links, 501, 502-5
link behaviors, 505-9
actuate attribute, 508
behavior attribute, 508-9
show attribute, 506-7
link roles, 502-4
simple links, 501-2
Uniform Resource Identifiers (URIs), 512-13
XLink engines, 396-97
XMetal,, 318-24
HTML markup transition, 320-21
interface, 319-20
outside authors, extending XML capabilities to, 324
structured editing, 321-23
context-sensitive styles, 323
customization, 323
default HTML styles, 323
direct DTD processing, 323
multiple views, 321
named bookmarks, 322
samples/templates, 322
tables, 321
XML::Grove, 410
XML::Parse, 405
xml:link attribute, 502
XML < PRO >, 414
XML:

advanced features, 532-45
application opportunities, 58
as approved recommendation, 621
attributes, 35, 435, 436-38
automation, 301
case sensitivity, 426-27
character references, 535-37
conditional sections, 533-35
and database publishing, 25-26
defined, 3-4
as digital representation of documents, 34
documents, meanings in, 62
document types, 40-44
and document variety, 49-50
and EDI, 96-118
and electronic commerce, 26
elements, 35-37, 434-36
end-tags, 434
entities, 38-39
free software, 394-421
fundamental concepts of, 32-47
grammar, 431, 548-49
as HTML extension, 21-22
and HTML extensions, 23
hyperlinking/addressing, 45-46
interchange, 301
jargon demystifier, 59-63
and Junglee Shopping Guide, 135-38
literal strings, 429-30
logical structure, 432-33
markup, 39-40, 441-47
CDATA sections, 444-46
comments, 446-47
and data, 427
predefined entities, 442-44
metadata, 26-28
multiple outputs, 300
names/name tokens, 428-29, 436, 456
origin of, 17
processing instructions, 537-41
prolog, 438-41
instance vs., 431-32
purpose of, 34
representing RPC messages in, 561-62
Resource Description Framework (RDF), 28
reuse, 300-301
standalone document declaration, 541-44
start-tags, 434
structured vs. unstructured documents, 60
stylesheets, 23, 433
syntax, 27-28, 33, 425
and table formatting, 21-23
tags, 433
elements vs., 60-61
tools, 58-59
Unicode, 37
white space, 428

©1998 THE XML HANDBOOK™

XML basics, 424-47
XML browsers, 417-19
XML-Data, 570-616, 626
aliases, 581-82
attributes, 591-92
as references, 587-88
class hierarchies, 582-83
correlatives, 581-82
datatypes, 593-603
complex, 596
and exposute in API, 596
namespace, 597-98
specific, 599-603
structured dara type attributes, 599
URIs, 598-99
versioning of instances, 597
default values, 580
domain and range constraints, 589
elements from other schemas, using, 590-91
elements as references, 583-87
multipart keys, 586-87
one-to-many relations, 585-86
elementType declaration, 575
entity declaration element types, 592-93
examples, 609-11
external declarations element type, 593
and inheritance, 572
min/max constraints, 588-90
namespaces facility, 572
properties/content models, 575-80
element, 576
empty/any/string/mixed content, 576-77
group, 578-79
open and closed content models, 579-80
and rich data types, 72
schema element type, 574
schemas, 573-74
mapping between, 603-9
XML DTD for, 612-16
XML-specific elements, 591-92
XML data sources, generating XML from, 86-88
XML declaration, 438, 439-41
encoding declaration, 440-41
standalone document declaration, 441
version info, 440
XML document, defined, 62
XML DSO, data binding with, 90-91
XML-EDI, 629
XML editors, 412-14
XML for Java, 406-7
xmllib, 408
xmllink, 396-97
XML middleware, 408-12
XML parsers, 401-8
XML pointer language, See XPointers
xmlproc, 407-8
XML specification:
combining rules, 552

©1998 THE XML HANDBOOKTM

INDEX

constant strings, 549-50
grammar, 548-49
names, 428-29, 436, 456, 550
occurrence indicators, 461, 551-52
reading, 546-53
tokens, 547-48
XML SPECracular, 317, 618-29
base standards, 620-24
international standards, 620-21
XML applications, 624-29
XML standard, 621
XML Styler (ArborText), 338-50, 414-15
creating a stylesheet with, 340-43
default rules, 342
XSL actions, 348-49
XSL patterns, 343-47
XSL stylesheets, 339-40
XML text, 40
XML-Toolkit, 402
XML tools, 58-59
content management, 58
editing/composition, 58
free tools, 59
middle-tier tools, 58
XP, 404
IDs, referring to, 513
location terms, 514-15
Kparse, 404
XPointers, 180-81, 188, 511-15, 622
XPublish, 408-9
XSL, 17, 198, 317, 516-30, 623
actions, 348-49, 520-21, 526-27
DSSSL flow objects, 348-49, 527
HTML/CSS flow objects, 348, 527
design principles, 517
flow objects, 522-23, 527
and JavaScript, 527-30
patterns, 343-47, 520-21, 524-26
rules, 520-21
Sparse, 397, 523-24
stylesheets, 339-40, 518-19
referencing, 519-20
using, 523-24
XSL editors, 414-15
XSL engines, 397-98
xslj, 398

iy

Yahoo, 466

639

LICENSE AGREEMENT AND LIMITED WARRANTY

READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE OPENING
THIS SOFTWARE MEDIA PACKAGE. THIS LEGAL DOCUMENT IS AN AGREEMENT
BETWEEN YOU AND PRENTICE-HALL, INC. (THE “COMPANY”). BY OPENING THIS
SEALED SOFTWARE MEDIA PACKAGE, YOU ARE AGREEING TO BE BOUND BY
THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THESE TERMS AND
CONDITIONS, DO NOT OPEN THE SOFTWARE MEDIA PACKAGE. PROMPTLY
RETURN THE UNOPENED SOFTWARE MEDIA PACKAGE AND ALL ACCOMPANYING
ITEMS TO THE PLACE YOU OBTAINED THEM FOR A FULL REFUND OF ANY SUMS
YOU HAVE PAID.

1.GRANT OF LICENSE: In consideration of your payment of the license fee, which is part of
the price you paid for this product, and your agreement to abide by the terms and conditions of
this Agreement, the Company grants to you a nonexclusive right to use and display the copy of
the enclosed software program (hereinafter the “SOFTWARE") on a single computer (i.e., with a
single CPU) at a single location so long as you comply with the terms of this Agreement. The
Company reserves all rights not expressly granted to you under this Agreement.
2.0WNERSHIP OF SOFTWARE: You own only the magnetic or physical media (the enclosed
software media) on which the SOFTWARE is recorded or fixed, but the Company retains all the
rights, title, and ownership to the SOFTWARE recorded on the original software media copy(ies)
and all subsequent copies of the SOFT'WARE, regardless of the form or media on which the orig-
inal or other copies may exist. This license is not a sale of the original SOFTWARE or any copy
to you.

3.COPY RESTRICTIONS: This SOFTWARE and the accompanying printed materials and
user manual (the “Documentation”) are the subject of copyright. You may not copy the Docu-
mentation or the SOFTWARE, except that you may make a single copy of the SOFTWARE for
backup or archival purposes only. You may be held legally responsible for any copying or copy-
right infringement which is caused or encouraged by your failure to abide by the terms of this
restriction.

4.USE RESTRICTIONS: You may not network the SOFTWARE or otherwise use it on more
than one computer or computer terminal at the same time. You may physically transfer the SOFT-
WARE from one computer to another provided that the SOFTWARE is used on only one com-
puter at a time. You may not distribute copies of the SOFTWARE or Documentation to others.
You may not reverse engineer, disassemble, decompile, modify, adapt, translate, or create deriva-
tive works based on the SOFTWARE or the Documentation without the prior written consent of
the Company.

5. TRANSFER RESTRICTIONS: The enclosed SOFTWARE is licensed only to you and may
not be transferred to any one else without the prior written consent of the Company. Any unau-
thorized transfer of the SOFTWARE shall result in the immediate termination of this Agreement.
6. TERMINATION: This license is effective until terminated. This license will terminate auto-
matically without notice from the Company and become null and void if you fail to comply with
any provisions or limitations of this license. Upon termination, you shall destroy the Documenta-
tion and all copies of the SOFTWARE. All provisions of this Agreement as to warranties, limita-
tion of liability, remedies or damages, and our ownership rights shall survive termination.

7. MISCELLANEOUS: This Agreement shall be construed in accordance with the laws of the
United States of America and the State of New York and shall benefit the Company, its affiliates,
and assignees.

8.LIMITED WARRANTY AND DISCLAIMER OF WARRANTY: The Company warrants
that the SOFTWARE, when properly used in accordance with the Documentation, will operate in
substantial conformity with the description of the SOFTWARE set forth in the Documentation.
The Company does not warrant that the SOFTWARE will meet your requirements or that the

©1998 THE XML HANDBOOK™

—

operation of the SOFTWARE will be uninterrupted or error-free. The Company warrants that the
media on which the SOFTWARE is delivered shall be free from defects in materials and work-
manship under normal use for a period of thirty (30) days from the date of your purchase. Your
only remedy and the Company’s only obligation under these limited warranties is, at the Com-
pany’s option, return of the warranted item for a refund of any amounts paid by you or replace-
ment of the item. Any replacement of SOFTWARE or media under the warranties shall not
extend the original warranty period. The limited warranty set forth above shall not apply to any
SOFTWARE which the Company determines in good faith has been subject to misuse, neglect,
improper installation, repair, alteration, or damage by you. EXCEPT FOR THE EXPRESSED
WARRANTIES SET FORTH ABOVE, THE COMPANY DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRAN-
TIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. EXCEPT
FOR THE EXPRESS WARRANTY SET FORTH ABOVE, THE COMPANY DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATION REGARDING THE USE
OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE.

IN NO EVENT, SHALL THE COMPANY OR ITS EMPLOYEES, AGENTS, SUPPLIERS, OR
CONTRACTORS BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE LICENSE
GRANTED UNDER THIS AGREEMENT, OR FOR LOSS OF USE, LOSS OF DATA, LOSS
OF INCOME OR PROFIT, OR OTHER LOSSES, SUSTAINED AS A RESULT OF INJURY
TO ANY PERSON, OR LOSS OF OR DAMAGE TO PROPERTY, OR CLAIMS OF THIRD
PARTIES, EVEN IF THE COMPANY OR AN AUTHORIZED REPRESENTATIVE OF THE
COMPANY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO
EVENT SHALL LIABILITY OF THE COMPANY FOR DAMAGES WITH RESPECT TO
THE SOFTWARE EXCEED THE AMOUNTS ACTUALLY PAID BY YOU, IF ANY, FOR
THE SOFTWARE.

SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRANTIES
OR LIABILITY FOR INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAM-
AGES, SO THE ABOVE LIMITATIONS MAY NOT ALWAYS APPLY. THE WARRANTIES
IN THIS AGREEMENT GIVE YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO
HAVE OTHER RIGHTS WHICH VARY IN ACCORDANCE WITH LOCAL LAW.

ACKNOWLEDGMENT

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT,
AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE
THAT THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE
AGREEMENT BETWEEN YOU AND THE COMPANY AND SUPERSEDES ALL PROPOS-
ALS OR PRIOR AGREEMENTS, ORAL, OR WRITTEN, AND ANY OTHER COMMUNICA-
TIONS BETWEEN YOU AND THE COMPANY OR ANY REPRESENTATIVE OF THE
COMPANY RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT.

Should you have any questions concerning this Agreement or if you wish to contact the Company
for any reason, please contact in writing at the address below.

Robin Short

Prentice Hall PTR

One Lake Street

Upper Saddle River, New Jersey 07458

©1998 THE XML HANDBOOKTM

About the CD-ROM

The CD-ROM is packed with useful XML tools and information. There

are three main areas:

* A hand-picked collection of genuine, productive, no-time-limit XML
free software. There are over 55 titles. A full description can be
found in the Free XML software chapter.

* A showcase for leading XML software and service providers. It
features in-depth product and service information, white papers,
XML samples, live demos, and trialware.

e The XML SPECtacular, a collection of the relevant specifications
that you can browse, search, and print.

How to Use the CD-ROM

The CD-ROM supports Windows 95, Windows NT, and UNIX systems.
Simply load index.htm, located in the root directory of the CD-ROM,
into your Web browser.

License Agreement

Use of The XML Handbook™ CD-ROM is subject to the terms of the
License Agreement and Limited Warranty on the preceding pages.

9]99

S

8 p,
Pfe eﬂf/‘[}e
I3 :’”ce‘/"/nl/ .Ha// P

WARRANTY LIMITS

READ AGREEMENT FOLLOWING THE INDEX
AND THIS LABEL BEFORE OPENING
SOFTWARE MEDIA PACKAGE.

BY OPENING THIS SEALED SOFTWARE MEDIA PACKAGE, YOU ACCEPT
AND AGREE TO THE TERMS AND CONDITIONS PRINTED BELOW. IF YOU
DO NOT AGREE, DO NOT OPEN THE PACKAGE. SIMPLY RETURN THE
SEALED PACKAGE.

The software media is distributed on an “As IS" basis, without warranty, Neither
the authors, the software developers nor Prentice Hall make any representation, or
warranty, either express or implied, with respect to the software programs, their
quality, accuracy, or fitness for a specific purpose. Therefore, neither the authors,
the software developers nor Prentice Hall shall have any liability to you or any
other person or entity with respect to any liability, loss, or damage cavsed or
nllcgucf to have been caused direetly or indirectly by programs contained on the
medin. This includes, but is not limited to, mterruption of service, loss of data,
lass of classroom time, loss of consulting or anticipatory profits, or consequential
damages from the use of these programs. I media is defective, you may return it
for a replacement.

XML/HTML <';j'”\'1> CHARLES 1% GOLDFARB SERIES ON OTPEN INFORMATION MANAGIMIENT
Q1M

THE XMI HANDBOOK"

“This book is an excellent starting point where you can learn and experiment with XML As the inventor of
SGML, D Charles F. Goldfarb is one of the wiost vespected authoritics on structured information. Charles
and | shave a commion vision: that the wost valuable assct for the user or for a corporation, nawiely the
data, can be openly wprcscutcd in a simple, flexible, and human-veadable form. This vision can now be
realized through XML,

e Forewerd by Jean Paoli, Microsoft XML architect and co-ecitar of the W30 XML specificatior

Learn the secrets of successfl | The definitive resource for the Brave New Weh of smart
real-world business applications | structured data and electronic commerce

using XML products from ‘ . . . e
Microsoft' and thes leading | P Start by understanding what XML is, why it came to be, how it differs from
XML companes: HTML, and the handful of vital concepts that you must understand to apply

XML quickly and successfully

> Experience what it's like to use XML, through illustrated walk-throughs of XML

"‘ AdObe tools—including hot new Web servers for e-commerce, content management,
structuring, creation, and presentation

@ . > Master the details of the XML language and related technologies from
4 SoftQuad reader-friendly, in-depth presentations

CHRYSTAL

software

In af P XML Sponsor Showcase: leading vendors present trialware, demos, in-depth

[.x-\' information, examples, and more

P XML SPECtacular—complete, browseable, printable copies of vital

The accompanying CD-ROM brings together an amazing set of XML resources:

P An expert selection of free XML software—over 55 packages!

\
|
WIGRER T 4R ' XML-related standards and specs
< POET >)
Ahout the Authors
/aa\ CHARLES F. GOLDFARB is the inventor of SGML, the International Standard (ISO
i s, 8879) on which both XML and HTML are based. He is the author of The SGML
i Handbook and co-author of the SGML Buyer's Guide.
Mo Russell PAUL PRESCOD is a leading XML consulting engineer and a member of the W3C
| XML team that is working on the development of XML and Xlink.
s |
. | PRENTICE HALL ! Upper Saddle River, NJ 07458 | http://www.phptr.com
webMethods 1 $44.95 11.5./963.00 Canada
o Inso ISBN 0-13-081152-1

90000
TEXCEL 0 2100334100, 978013 1152

