Merrill Communications LLC
d/b/a Merrill Corporation
Exhibit 1006 pt. 6



XML Linking
Language(XLink

I Linking and addressing
B Simple links
B Extended links




Chapter

ypertext links are the backbone of the World Wide Web.
Documents were shuffled around the Internet long before
| today’s Web existed, but it was the ease of moving from page
to page with hypertext links that made the Web into the mass market
phenomenon it is today.

" However, despite their centrality; Web links have many weaknesses. The
linking system that we use today is essentially unchanged from the earliest
‘version of the Web. Unfortunately, market inertia has prevented anything
more powerful from coming along ... until now.

The second specification in the XML family is XLink. It allows links that
go far beyond those provided by HITML. XLinks can have multiple end
points, be traversed in multiple directions, and be stored in databases and
groups independently of the documents they refer to.

O1998 Tue XML HANDBOO K D 499




500 CHAPTER 34 | XML LINKING LANGUAGE(XLINK

XLink is exciting, but we cannot take full advantage of it yet. It is stil]
being refined by the World Wide Web consortium.

Note The current version of XLink, and its companion
specification, XPointer, are working drafts and will change before
they are completed. The basic concepts are well understood and
will not change, but the specifics may change between now and
then.We will cover only the parts we consider most stable.

34.1 | Basic concepts

The most important (and sometimes subtle) distinction in any discussion
of hyperlinking is that of /inking versus addressing. Linking is simply declar-
ing a relationship between two things. If we say “George Washington and
Booker T. Washington share a last name” then we have linked those two
people in some way.

Addressing, on the other hand, is about describing how to find the two
things being linked. There are many kinds of addresses, such as mail
addresses, email addresses and URLs. When you create a link in XML, you
declare a relationship between two objects referred to by their addresses
(URIs). We refer to these objects as resources. We will discuss the addresses
(URIs) more in 34.3, “Addressing”, on page 511.

If you have created Web pages before, you are probably familiar with
HTMLs simple a element. Whether or not you are familiar with HTML,
that link is a good starting point for understanding hyperlinking in general.

The a stands for anchor. Anchor is essentially the HTML term for
resource. An HTML link has two ends, termed the source and destination.
When you click on the source end, (designated with an A element and HREF
attribute), the Web browser transports you to the other end. Example 34-1
shows how this works.

Example 34-1. An HTML (not XML) link
<A HREF="http://www.mysite.com">Go to my site!</A>

©1998 THE XML HANDBOOK™




34.1 | BASIC CONCEPTS

In this case, the A element itself describes a link, and its HREF ateribute
points to one of the resources (the destination). As we know, links connect
resources, so there must be at least one more resource involved. The other
resource, the source, is actually the text that forms the content of the A ele-
ment. As we will see, XML simple links also use the content of the link as
one of the resources.

The destination of the link in Example 34-1 does not necessarily know
that it is a destination. If you want to link to the Disney home page, you do
not need to inform Disney. If a particular document has fifty A elements
with HREF attributes, then you know that it has fifty links out. But the Web
provides no way to know how many links into it there are.

In the more general extended link case, we will link two things such that
neither end will “know” that it is being linked. The link exists in some third
Jocation (or fourth, or fifth, for multi-ended links). This is intuitive if you

o back to the definition of linking as defining a relationship. In a real-
world sense, I can “link” Jenny Jones and Oprah Winfrey just by speaking
of them in the same sentence. Unless they are interested in careers as web-
masters, they will probably never know. XLink provides a standardized way
to express this in markup.

We might even want to link something that is not explicitly labeled. For
instance, we might want to link the third paragraph of the fourth sub-point
of the second section of a legal document to the transcript of a relevant
court case.

This is analogous to the real world situation where you can either send
something to a labeled location (“Please take this to the White House.”) or
you can give directions to the destination. In hyperlinking terms, we would
consider either one of these to be an “address.” Obviously there must be
some way of locating a resource from a link, but it could be either an
address, a label or a combination of the two: “The building is 5 blocks
down the street from the White House.”

311 Simple links

Although XLink allows more flexible links than does HTML, it also offers
simple links that are not much more complicated than HTMUDs links are.
This sort of link is referred to as a simple link. A simple link has two ends, a
source and a destination, just like an HTML link. One end has content

O1998 Ty XML Hanpsook™

501




502 CHAPTER 34 | XML LINKING LANGUAGE(XLINK

that represents a resource (usually the source) and it refers to the other end

through a URL

Example 34-2. XML Simple Link

for more information, consult

<citation xml:link="simple" href="http://www.uw.ca/paper.xml">
Biemans (1997)

</mylink>

The biggest difference between this link and the HTML link is that this
element is not designated a link by its element type name. It is not called a
or any special element type name specified in the XML specification. You
can call your linking elements whatever you want to. This is an important
feature, because it allows you to have many different types of linking ele-
ments in a document, perhaps with different declarations, attributes and
behaviors. Just as XML allows you to use any element-type name for para-
graphs or figures, it allows you flexibility in your linking element-type
names.

The link is actually designated an XML link by its xm1:1ink attribute.
The xm1: prefix indicates that this attribute’s allowed values and semantics
are specified by the World Wide Web consortium. This attribute describes
what kind of link it is. In this case, it is a simple link.

34.12 Link roles

In HT'ML, link resources are either sources or destinations. The element
that describes the link is always the source. The resource referred to is
always the destination. In XML, this rigid distinction is not hard-wired. An
application can make cither or both links into sources or destinations. Con-
sider, for instance, if a Web browser made it possible to create notes about
someone else’s Web site and “stick” them on to it like Post-It notes. These
annotations might be represented as XLink extended links.

In this case, we actually want the application to make some form of click-
able “hotspot” at the other end, on the newspaper’s Web page. Of course we
don’t want them to have control of the actual linking element, or else they
might just choose not to show our link. So we want the link to exist in one

©1998 THE XML HANDBOOK™




34.1 | BASIC CONTCEPTS

Example 34-3. XLink annotations.

~annotation xml:link="extended"
href="http://www.mynewspaper .com">

As usual, your editorial is filled with the kind of claptrap and

willywag that gives me the heebie-jecbies!

</annotation>

spot and create a “hotspot” at another. This is the opposite of traditional
HTML links.

In order to reverse linking roles, we must somehow tell the application
that we want it to do so. One way would be to use an element-type name
that the application is hard-coded to understand as having that semantic.
For instance an “annotation server” might only deal with annotation ele-
ments, or perhaps a few different variants, and would thus know exactly
how to handle it.

Another way would be to use some form of stylesheet. But you would still
need to have something special in the document that would differentiate
annotations from other links (perhaps the annotation element-type name).
The stylesheet would provide an extra level of wanslation to allow your pri-
vate clement-type names to be interpreted as annotations by software.

Yet another way to solve this problem would be to provide an attribute
that describes the role of the link in the document and hypertext system.
Any of these are valid implementation approaches, and the XLink specifica-
tion provides a special role attribute to handle the last case. Example 34-4
isan example of that attribute in action.

Example 34-4. Role attribute

<hlink role="annotation"
xml : link="extended"
href="http://www.mynewspaper.com">
As usual, your editorial is filled with the kind of claptrap and
willywag that gives me the heebie-jeebiles!
</hlink>

[n this case, the role designation has moved from the element-type name
(how h1ink instead of annotation) to the role attribute. Which is more
Appropriate will depend on your D'TD, your software and your taste. XLink
could perh aps dictate one style or the other, but real world usage is not that
simple. For instance you might need to use an industry standard D'TD and

.'(‘P ) O e
BLOYS T XML Hanpnoogm™

503




504 CHAPTER 34 | XML LINKING LANGUAGE(XLINK

thus have no control over element-type names. In another application, yoy
might need to constrain the occurrence of certain kinds of linking elements,
and thus need to use element-type names and content models.

3413 Is this for real?

You might well ask whether all of this annotation stuff is likely to happen,
After all, there are all sorts of social, technical and financial difficulties
related to being able to annotate someone else’s Web page. Imagine annota-
tion spam: “Tired of reading this boring technical Web page? Click here for
HOT PICS!"!” It turns out that early versions of the pre-Netscape Mosaic
browser allowed remote annotations (using a proprietary linking scheme),
and you could share your annotations with friends or co-workers, but not
with everybody on the Web. There are various other experimental services
and products that provide the same ability for the modern-day Web. How-
ever, each uses a distinct link description notation so that they cannot share,

We may or may not get to the point where everybody can publish anno-
tations to the whole world, but we already have the technology to create
annotations that can be shared by other people we know. Unfortunately,
this technology has never been widely deployed. Perhaps XLink will solve
the link incompatibility problem and allow Web pages to become readable,
writeable, and even more linkable.

So what can you do without a world-wide link database? Well let’s say
that your organization was considering buying a very expensive software
product. You and your co-workers might agree to submit your opinions of
the product specifications published on the vendor’s Website. You could
make a bunch of external links from the vendor’s text to your comments on
it and submit that to your organizational link database. When your co-
workers go to see the page, their browsers can fetch your links and actually
display them as if they were part of the original document. When your co-
workers click on them, the browser will take them to your annotations.

In fact, with a reasonably big link database, you could annotate any Web
page you came upon in this manner. When others from your organization
came upon the page, they would see your annotations. In one sense, you are
editing the entire Web! Of course, the bigger your organization is, the more
points of view you can see on each page. On the other hand, sometimes you
might not want to share all of your comments with the entire company, so
you might have a smaller departmental database which is separate, and only

©1998 THE XML HANDBOOK™




34.1 | BASIC CONCEPTS

shared by your direct co-workers. And of course at the opposite end of the
spectruim, there might.he a database for everyone on the Web (if we can
make link database software that scales appropriately and find someone to
run it).

External links can be useful even without a link database. Without such a
database, there is no casy way to distribute your links to other people, so
you must communicate the links’ existence in some other way. For instance,
you could include a critique of a Web page as an attachment to an email.
You could also build a document full of links that annotated one of your
own Web pages with links to glossary and bibliographic information. We
might term each collection a link sheet. Depending on which link sheet the
reader used, he would get either the glossary links or the bibliographic links
or both sets of links overlapping.

If it makes sense to “project” a link from your home computer onto an
existing Website, then surely it makes just as much sense to link two exist-
ing Websites. For instance, we could make a link that is targeted towards
members of the SGML newsgroup that links the World Wide Web consor-
tium’s XML Web page to a related page we know about on the Web. This
link would still have two ends, but both could be sources and destinations
at the same time. If so, we would term that link bidirectional, because you
could #raverse it from either end. Because the link would exist on your Web
site, but link two other pages, we would call it out-of-line. And if it makes
sense to link two pages, then why not three, or four, or five? Extended links
allow this.

34.1.4 Link behaviors

XML authors usually go out of their way to avoid putting information
about formatting and other types of document behavior into XMI. docu-
ments. We've already been through all of the benefits of keeping your infor-
mation “pure”. As we have said, if you just mark up your documents
according to their abstractions, you can apply formatting and other behay-
ior through stylesheets.

On the other hand, there are a few link behaviors that are so common —
almost universal — that the XML working group decided that it would be
casicr to provide some attributes to specify them directly. This takes a layer
of abstraction out and thus makes hyperlinking a little bit easier. The con-

QU998 Tip XML HANDBOOKT™

505




506 CHAPTER 34 | XML LINKING LANGUAGE(XLINK

cepts of hyperlinking are already abstract, so anything that makes life a lictle
bit easier will help XLink to become popular.

The most interesting type of link behavior is r7aversal. When you click
on a hyperlink, you are traversing it. If a link is intended to embed informa-
tion from one resource in another, then the process of actually accomplish-
ing the embedding is a traversal.

The behavioral descriptions are still “abstract enough” to allow a variety
of specific behaviors, depending on the situation. The XLink spec says:

Spec. Reference 34-1. Behavior

The mechanism that XLink provides allows link authors to signal certain
intentions as to the timing and effects of traversal. Such intentions can be
expressed along two axes, labeled show and actuate. These are used to
express policies rather than mechanisms; any link-processing application
software is free to devise its own mechanisms, best suited to the user envi-
ronment and processing mode, to implement the requested policies.

What this means is that different types of software applications are
allowed to interpret these suggestions differently. For instance, you might
not think of a printer as a machine that would care about hyperlinks, but it
might be useful to have a printer that could directly print Web pages and
their annotations, or that could resolve graphics embedded through XLink.

34.1.41 Show

As the name implies, the show attribute describes how the results of a link
traversal should be shown. When you click on a Web link, that is a link tra-
versal — one initiated by your click. On the other hand, if you have ever
been to a site where a Web page comes up and says: “You will be forwarded
to another page in just a few seconds”, then that is a link traversal that is
automatic. Typically on the Web, when a link is traversed (manually or
automatically) it replaces the previous document in the Web browser win-
dow. XLink allows an author to request this behavior with the replace
value of the show attribute:

For example:

Occasionally you will also come across a link that actually opens a new
window, so that after traversal there is a window for the new page in front

©1998 THE XML HANDBOOK™




34.1 | BASIC CONCEPTS

Spec. Reference 34-2. Replace

“replace" indicates that upon traversal of the link, the designated resource
should, for the purposes of display or processing, replace the resource where
the traversal started.

Example 34-5. A replace link

ZA xml:link="simple” show="replace" href="http://www.gop.org/">
click here to visit the GOP</A>

of the window for the old page. XLink allows this through the new value of
the show attribute.

Spec. Reference 34-3. New

“new” indicates that upon traversal of the link, the designated resource
should be displayed or processed in a new context, not affecting that of the
resource where the traversal started.

Example 34-6. A new link

<A xml:link="simple" show="new" href="http://www.democrats.org/">
Click here to launch a new window and visit the the Dems.</A>

As we discussed before, a link can in fact represent any relationship. Con-
sider the relationship between a document and an embedded graphic or
even text fragment. This can be represented as a link also! Of course there
are ways to embed graphics and text using only XML entities, but XLink
provides another way of doing the same thing, which can be used in situa-
tions where the entity mechanism is not expressive enough by itself.

In this case, you can use the embed value:

Spec. Reference 34-4. Embed
‘embed” indicates that upon traversal of the link, the designated resource
should be embedded, for the purposes of display or processing, in the body

of the resource and at the location where the traversal started.

ﬁmple 34-7. An embed link

<A xml:link="gimple" show="embed"
href="http://www.democrats.org/logo.gif">

©OL998 T XML HANDBOOKT

507




508

CHAPTER 34 | XML LINKING LANGUAGE(XLINK

34.1.5 Actuate

The actuate attribute allows the author to describe when the link traversa]
should occur. For instance it could be user-triggered, such as by a mouse
click or a voice command. Or else it could be automatic, such as the auto-
matic embedding of a graphic, or an automatic forward to another Web
page (e.g. “This page has moved. You will be directed to the new page

momentarily.”)

The user value indicates that the traversal should be user-triggered.
When it is combined with a a show attribute of replace, it is a typical,
click-here-to-go-there link, at least in a graphical browser. On a text-based
browser, it might be a type-this-number-to-go-there link. On a spoken-
word browser it might be a say-this-number-to-go-there link.

When it is combined with a value of new it opens a new “context” (usu-
ally a browser window) at user command and leaves the old one open.
When it is combined with a value of embed, it would make a link that
expands into the embedded object. For instance a footnote or graphic
might expand in-place when you click on them.

The auto value of the actuate attribute is used to specify that traversal
should be automatic. For instance, most show="embed" links would specify
automatic traversal. If you combine show="new" with actuate="auto",
then you can create a Web page that immediately opens another Web page.
Perhaps with a stylesheet or other attribute, you could make them be side
by side. The final combination is show="replace" with actuate="auto".
You would use this to set up a “forwarding” link, such as the one we have
described, and thus forward users from one page to another.

34.1,6 Behavior

XLink also provides a behavior attribute for specifying more precise behav-
iors than the policies described above. You could fill this attribute with
commands provided by a browser vendor, or with “hooks” to invoke rules
in your stylesheet.

You should be careful with an attribute that is as vaguely defined as this
one. Wait until some conventions for its use arise before you fill your docu-
ments with markup that could be misinterpreted by confused software.

©1998 T XML HANDBOOK™




34.2 | EXTENDED LINKS

spec. Reference 34-5. Behavior attribute 7
A link author can also optionally use an attribute called behavior to com-
municate detailed instructions for traversal behavior. The contents, format,
and meaning of this attribute are unconstrained.

34,2 | Extended links

In this section, we will discuss more features of the extended links. One that
we have already discussed is the ability to specify them out-of-line.
Extended links also allow for more link ends, more advanced link roles, and
other good stuff. We will also be able to re-describe the simple links that we
have already seen in the terminology of the more general extended link sys-

tem.

34.2.1 Locator elements

The first extension we will undertake is links with more than two link ends.
Consider, for example, that you are redirecting users to several different
interpretations of a text. For instance if there were two competitive schools
of thought on a topic, each hotspot in the document might allow traversal
to a different interpretation of the topic. Now you have three link ends, one
for the source and one for each of the interpretations of it. Just as in real
life, XLink allows you to make logical links among two or more concepts.

The first big difference between simple links and extended links is that
‘we need to figure out how to specify the address of more than one destina-
tion link. We do this by putting locator sub-elements into the extended link
clement. Here is an example:

Example 34-8. Multi-ended link

<commentary xml:link="extended">

<locator href="roberts.xml" role="Roberts"/>

<locator href="beam.xml" role="Beam"/>

<locator href="goodwin.xml" role="Goodwin"/>
<P>My fellow Americans, this speech will go down in history...
~ S/commentary>

@ TS ’
PLY9Y8 THe XML HANDBOOK ™

509




5 10 CHAPTER 34 | XML LINKING LANGUAGE(XLINK

In this case, the three locators each address a resource. A sufﬁciently
sophisiticated browser displaying this document might represent each with
an icon or supply a popup menu that allows access to each of the resources.
It could even open a small window for each interpretation when the
hotspot is selected. This could be controlled by a stylesheet or a behavior
attribute. As you can see, each locator can have a different role, but they
could also share roles. The role just specifies a semantic for processing the
resource when processing the link, not some sort of unique identifier.

Locators can also have some other associated attributes. They can have
titles, specified through a title attribute. These provide information for
human consumption. The browser does not act on them. It merely passes
them on to the human in some way, such as a popup menu, or text on the
status bar. Locators can also have show, actuate and behavor attributes
with the same semantics as for a simple link. Locators seem very similar to
simple links because a simple link is a combination of a link and a locator.

In fact, this is how they are defined in the XML spec:

Spec. Reference 34-6. Simple links

Simple links can be used for purposes that approximate the functionality of
a basic HTML A link, but they can also support a limited amount of addi-
tional functionality. Simple links have only one locator and thus, for conve-
nience, combine the functions of a linking element and a locator into a
single element. As a result of this combination, the simple linking element
offers both a locator attribute and all the link and resource semantic
attributes.

It is both useful and convenient that simple links combine these two
things, but it means that we must be careful to keep the ideas separate in
our heads. The link describes a relationship. The locators say what resources
are being related. A simple link uses its content as one resource and the tar-
get of its href as the other.

3422 Link groups

It is often useful to be able to process a group of hyperlinked documents all
together. For instance, if one document contains some text and another

©1998 THE XML HANDBOOK™




34.3 | ADDRESSING 511

contains a rebuttal of the text, the browser might want to show them “side
by side™. It could also allow link traversals in one window to trigger the cor-
rect portion of the reburtal in the other.

Such processing can only work if the browser knows about both docu-
ments at the same time. Extended link groups allow you to tell the browser
about all of the nodes that should be processed together.

An extended link group element is a special kind of extended link. Tt
describes a list of other documents that should be seen to be in this link
giotp. Here is an example of such a link:

Example 34-9. Bixtended link group

<related-documents =ml:link="group">

<doc xml:link="document" href="annotation.html">
<doc xml:link="document" href="rebuttal.html">
<doc xml:link="document" href="support.html">
</related-documents>

In one sense, a link group is a small database of hyperlinks. A browser,
editor or other application could look in the link group to see which ele-
ments are hyperlink resources and what their behaviors and roles are.

3¢.3 | Addressing

Now that you know how to make all kinds of neat-o links, you might won-
der if XML also features neat-o addressing. Good guess! Of course, XML
allows the usual kinds of URLs that you use to navigate the Web. But now
that those have found their way onto everything from milk cartons to tele-
Cvision advertisments, it is time for something new: XPointers. XPointers
allow sophisticated addressing into the contents of XML documents. That
means that you can make a link to an element, or even a span of elements,
based on things like position, element type and 1D.

- Like XLink and XSL, XPointers are still under development. But the
concepts are not likely to change much. They are well established in exist-
18 projects like the Text Encoding Initiative and the HyTime International
Standard,

ets
RS T XML EAND B OO KT




5 12 CHAPTER 34 | XML LINKING LANGUAGE(XLINK

344 | Uniform Resource Identifier
(URI)

The basic form of address for XLink is a UR/, which stands for Uniform
Resource Identifier. Today’s most important form of URI is an extended
form of the URL or Uniform Resource Locator.

URLs are uniform, in that they have the same basic syntax no matter
what specific type of resource (e.g. Web page, newsgroup) is being
addressed or what mechanism is described to fetch it. They describe the
locations of Web resources much as a physical address describes a person’s
location. URLSs are hierarchical, just as most physical addresses are. A land
mail address is resolved by sending a letter to a particular country, and from
there to a local processing station, and from there to an individual. URLs
are similar.

The first part of a URL is the protocol. It describes the mechanism that
the Web browser or other client should use to get the resource. Think of it
as the difference between Federal Express, UPS, and the other courier ser-
vices. The most common such protocol is http which is essentially the
“official” protocol of the World Wide Web. The f£tp file transfer protocol is
also widely used, chiefly for large downloads such as new browser versions.

After the protocol, there is a hostname and then a datapath. The datapath
is broken into chunks separated by slash (“/”) characters, as you have no
doubt seen in hundreds of URLs. Technically, a URL ends at that point.

In a URI, the URL can be followed by an optional query and then an
optional fragment identifier. For instance you may have seen links into
HTML documents that look like this:

http://www.megabank.com/banking#about

“#about” is a fragment identifier. It refers to a particular HTML element.
XPointers are a similar concept for XML documents, but they are much
more flexible. Essentially, XPointers are an extension to URLs to allow you
to point not just 7o a document, but into the content of one.

For instance, on today’s Web, if you wanted to quote a particular para-
graph out of another document, you would go to that document and cut
and paste the text into yours. If; in the future, the text on the Web changes,

1. When URIs are finalized by the /nternet Engineering Task Force IETF RFC
1738 and IETF RFC 1808), they will also allow Universal Resource Names,

which aren't location-dependent and perhaps will reduce the number of bro-
ken links.

©1998 THE XML HANDBOOK™




34.5 | REFERRING 1TO IDS

yours does not. If that is what you want, that is fine. But XPointers allow
you to construct a “living document” that quotes and refers to the very lat-
est version of the paragraph. You can understand how important this ability
is for the types of annotations we have discussed. Without it, you could
only annotate complete documents.

34,5 | Referring to IDs

The simplest form of XPointer allows you to refer to a particular element
named with an 1D. This is also the most robust form of XPointer, because it
does not at all depend on the location of the referenced text within its doc-
ument. Consider this XML document:

<?xml version="1.0"?>
< I DOCTYPE HEATWAVE SYSTEM "heatwave.dtd">
<HEATWAVE>
<WAVE ID="summer.92">
<DURATION>July 22 to August 2</DURATION>
<TEMPERATURE>101 Degrees</TEMPERATURE>
< /WAVE>
<WAVE ID="summer.96">
<DURATION>June 15 to July 18</DURATION>
<TEMPERATURE>103 Degrees</TEMPERATURE>
< /WAVE>
</HEATWAVE>
If this document resides at http://www.hotdays.com/heatwave .xml,
then we could refer to the second HEATWAVE with this URI:

http://www.hotdays.com/heatwave.xml#id (summer.92)

The XPointer is the last little bit of the URI, after the pound-sign (“#7).
An important thing to note is that this XPointer does not 4o anything. It
refers to something. Whether the object is included, hyperlinked, or down-
loaded is competely a function of the context of reference.

For instance, you could use the XPointer in an XLink to create a hyper-
link to something, or in a browser to download a particular object. It is also
up to the software to decide whether the referred to element is returned
alone, or in the context of its document. For instance, if you use an
XPointer in a browser window, it would probably present the whole docu-
ment and highlight the referenced element. But if you use it in an XLink to
include a paragraph, it would probably take that paragraph out of its con-
text and present it alone in the new context.

BRI "Thn XML EHaNDEOGKT™

513




5 14 CHAPTER 34 | XML LINKING LANGUAGE(XLINK

34,6 | Location terms

In the URIL:

http://www.hotdays.com/heatwave.xml#id (summer.92)
The string id(summer.92) is called a location term. Another simple
XPointer location term is the 7oot location term. You use this to refer to the

root element of a referenced document. For example:
http://www.hotdays.com/heatwave.xml#root ()

That might seem strange, because you can implicitly refer to the root of a
document just by leaving off the XPointer. But with more advanced loca-
tion terms, we will actually be able to use the root (or an ID) as the starting
point for a location ladder. That means that we could, for example, ask for
the URI’s second sub-element, that element’s third sub-element of type p
and so forth. These types of XPointers are more fragile because document
reorganizations can break them. On the other hand, they allow you to refer
to things that have not been identified with an ID. This is important if you
are referring to text you cannot change, such as a document elsewhere on
the Web, or on a read-only medium.

For example, to refer to the root elements third sub-element of type

WAVE, you would do this:
http://.../heatwave.xml#root () .child(3, WAVE)

Elements of other types would be ignored.

The child location term is called a relative location term because it
depends upon a starting location identified by root() or id() which are abso-
lute location terms. The child location term is the most common type of
relative location term, but there are others. When you string them together,
they allow you to “navigate” around a document from absolute or relative
points. Here is the complete list:

The word “node”, used in the spec, is more general than “element”,
because it includes constructs like comments, processing instructions and
character strings.

So for instance, to refer to the element of type H1 that follows the parent
of the node with the ID graceland, you would create the following loca-

tion ladder:
http://.../something.xml#id(graceland) .parent().following(l, H1)

You can read the ladder like this: “Go to the element named graceland.
Go to its parent. Find the H1 following it.” Each statement represents a
step down the metaphoric ladder. By combining them, you can address any
element in an XML document.

©1998 THE XML HANDBOOK™




34.7 | CONCLUSION

Spec. Reference 34-7. Relative location texms

child

Identifies direct child nodes of the location source.

descendant
Identifies nodes appearing anywhere within the content of the
location source.

ancestor
[dentifies element nodes containing the location source.

preceding
[dentifies nodes that appear before (preceding) the location
source,

following
Identifies nodes that appear after (following) the location source.

psibling
Identifies sibling nodes (sharing their parent with the location
source) that appear before (preceding) the location source.

fsibling
Identifies sibling nodes (sharing their parent with the location
source) that appear after (following) the location source.

XPointers have more advanced and esoteric features, but they are still
under development and may change in the future.

34,7 | Conclusion

XLink and XPointer have the power to change the Web, and our lives, in
unforseeable ways. For more of the vision, see Chapter 13, “Extended link-
ing”, on page 176. For the current version of the specs, see the XML SPEC-
tacular on the CD-ROM.

U098 THE XML HANDBOOK T

515




Extensible Style
Language (XSL)

B Stylesheets for XML
B Style rules
I Actions

B Flow objects




Chapter

33

he Extensible Style Language (XSL) is a specification being
developed within the World Wide Web consortium for apply-
ing formatting to XML documents in a standard way. Under
e covers, XSL is based on DSSSL, a more powerful [nternational
andard from the ISO. However, XSL stylesheets do not look much
ke DSSSL stylesheets at all. The basic concepts of XSL are similar to
SSSL's, but they have been simplified and “prettified” for Web use.
[ere are some of the design principles that are being used to create

SL:

m  XSL should be straightforwardly useable over the Internet.
m  XSL stylesheets should be human-legible and reasonably clear,
m  XSL stylesheets shall be easy to create.

As you can see, usability is an important concern in its design!

As our verb tense implies, XSL is still under development. It is likely to
1ange quite a bit. The latest set of design goals includes features for anima-
on, interactivity and other very advanced features. XSL will be the topic of
1any books all by itself!

L9998 THe XMI, HANDBOOK ™ 517




5 1 8 CHAPTER 35 | EXTENSIBLE STYLE LANGUAGE (XSL)

The important thing is that the central concepts will be the same as thoge
of DSSSL and the current XSL proposal. These concepts are the focus of
this chapter.

Note  XSLis changing quickly. This chapter outlines the
important ideas that are not likely to change.

The most important thing to get out of this chapter is a feeling for how
XML documents are actually processed. We have worked with them purely
as abstractions, but now we are going to put them to work. XSUs mecha-
nism for doing this is very similar to that of most XML processing tools.

35.1 | XSL overview

As we discussed earlier, XSL is used to apply style to XML documents. These
will usually be marked up entirely according to their abstract structure with-
out (in theory) markup specifically tailored for style application or any other
particular kind of processing. Thus XSL is the “missing link” between the
data that has been encoded for computer processing and the formatted ren-
dition required for comfortable reading. If you are trying to build a Web
page, style languages are very important. Even if you are not, they provide a
good example of how processing of XML documents proceeds.

35.1.1 XSL stylesheets

Most XSL code looks more or less like “ordinary” XML. Simple XSL
stylesheets are merely a specialized form of XML markup designed for for-
matting other XML documents. XSL is not defined in terms of a formal
DTD, but you can still think of it as a document type. The XSL language
defines element types and attributes, constrains them to occurring in partic-
ular places, and gives them semantics.

Let’s start simply and consider a stylesheet that would say that “Para-
graphs should use a 12pt font” and “Titles should be 20 point and bolded.”

©1998 THE XML HANDBOOK™




35.2 | REFERENCING XSL STYLESHEETS

These types of simple declarations are sufficient for many easy tasks. We say
that XSL is a “declarative” language because declarations are so important.
Declarative languages are easier to learn and use than are programming lan-
guages. They do not require complicated logical operations for simple tasks.
Here is an XSL stylesheet to accomplish these tasks:

Example 35-1. XSL Example

<xsl>
<rule>
<target-element type="p"/>
<paragraph font-size="12pt">
<children/>
</paragraph>
</rule>

<rule>
<target-element type="title"/>
<sequence font-size="20pt" font-weight="bold">
<children/>
</sequence>
</rule>
</xsl>

Fach rule element contains a target-element and an action. They say
that whenever the XSL processor encounters a p element in an XML docu-
ment, it should create a paragraph in the browser or word processor and
give it a font-size of 12 points. Similarly, it should look for title elements
and make them bold and 20pt. These are simple declarative rules. You do
not have to think about the order in which things will be processed, where
they are stored or other housekeeping tasks that programming languages
usually require you to look after.

351 | Referencing XSL stylesheets

There is currently a proposal to allow XML documents to refer to their
?tylesheets. It has no official standing but it is short, simple and does the job
it claims to, so it will probably become a defacto standard. Here is the rele-
vant text of that proposal:

O1998 Ty XML HANDBOOK M

519




520 CHAPTER 35 | EXTENSIBLE STYLE LANGUAGE (XSL)

Spec. Reference 35-1. xml : stylesheet processing instruction

The xml:stylesheet processing instruction is allowed anywhere in the prolog
of an XML document. The processing instruction can have pseudo-
attributes href (required), type (required), title (optional), media (optional),
charset (optional).

These are called “pseudo-attributes” instead of attributes because,
although they use attribute syntax, they do not describe properties of an
element. The only real syntactic difference between pseudo-attributes and
attributes is that you must use pseudo-attributes in the order they are
described. You can use attributes in any order.

The most important pseudo-attributes are href, which supplies a URI
for the stylesheet, and type, which says that the stylesheet is in XSL and not
DSSSL, CSS, or some other stylesheet language. You can also supply a
title that the browser might use when offering a list of stylesheet choices.
The media option allows you to specify what medium the stylesheet is for.
You could, for example, have different stylesheets for print (with footnotes
and page breaks), online (with clickable links), television (large text and
easy scroll controls) and telephone (read aloud with inflection representing
emphasis). XSL is not powerful enough yet to handle all of these media
equally well, but it will be one day.

Here is an example stylesheet processing instruction (PI):

Example 35-2. Stylesheet PI

<?xml:stylesheet href="http://www.sgmlsource.com/memo.xsl"
type="text/xsl"?>

You can also provide multiple PIs to allow for choice by media, title or
stylesheet language:

35.3 | Rules, patterns and actions

Every style sheet language consists of a series of statements that convert
structural elements (from the source document) into formatting objects.
Even the “Style” menu in Word for Windows consists of such a mapping. It

©1998 THE XML HANDBOOK™




35.3 | RULES,

Example 35-3. Alternative stylesheets

PATTERNS AND ACTIONS

Toxml:stylesheet rel=alternate
href="mystylel.xsl"
title="Fancy"
type="text/xsl"?>

<7xml:stylesheet
rel=alternate
href="mystyle2.css"
title="Simple"
type="text/css"?>

<7xml :stylesheet
rel=alternate
href="mystyle2.aur"
title="Aural"
type="text/aural"?>

takes “paragraph” elements and “maps” them to fonts, colors and other
typographic effects. LaTeX users and professional publishers are probably
quite comfortable with this idea of a stylesheet.

In XSL, this construct is called a rule. Rules have actions associated with
them. The actions translate elements into formatting constructs called flow
objects. Each element in a document matches a single rule. The entire point
of an XSL stylesheet is to look at each element in the document and apply

the correct rule.

Example 35-4. A simple rule

<rule>
<l-- pattern -->
<target-element type="emph"/>

<!l-- action -->
<font font-weight="bold">
<children/>
</sequence>
</rule>

This rule describes a pattern that matches emph elements and makes

them bold.

RILOO R T XML HANDBOOK M

321




>22 CHAPTER 35 | EXTENSIBLE STYLE LANGUAGE (XSL)
35.4 | Flow Objects

Of course we are going to need commands that actually describe the layout
of the finished product. XML provides a set of flow objects that represent the
components of the rendered document.

Imagine a typist taking an XML “manuscript” and typing it into a word
processor. He would have to use the constructs provided by the word pro-
cessor, such as paragraphs, bulleted lists, hypertext links and so on. In XSL
terms, those constructs are “flow objects”. They are so-called because text
flows from one to another, and they are each individual objects representing
things like characters, paragraphs, clickable links and pages.

Simple XSL stylesheets will typically contain paragraph flow objects,
external graphic flow objects, rule flow objects (for horizontal rules), table
flow objects and so forth. A table flow object might in turn contain para-
graphs. The paragraphs would contain character flow objects, and also
“sequence” flow objects that would apply formatting like italics and bold to
sequences of characters.

Conceptually, these objects form a tree. The page (or Web page) is the
root. Paragraphs, tables, sequences and other “container” objects are the
branches, and characters, graphics and other “atomic” objects are the leaves.
The leaf objects are called “atomic” because they are not made up of any
other objects, just as atoms are not made up of other atoms. The tree of
flow objects is called the “flow object tree.”

There is usually a relationship between your document’s patse tree and the
output flow object tree, but they are not identical. You could suppress ele-
ments so that they do not appear in the flow object tree. You could add text,
such as boilerplate copyright text. You could combine or re-order elements
and so forth. For instance, you would re-order and suppress elements to gen-
erate an index. XSL code for creating an index would surpress all elements
other than those bound for the index, and reorder them alphabetically.

Every flow object has characteristics. The exact set of characteristics that
a flow object exhibits depends on its class. For example, Web pages have
scroll bars, clickable links have destinations, fonts have font sizes, and pic-
tures have heights and widths.

The current version of XSL also has special flow objects that take advan-
tage of many Web designers’ knowledge of HTML. These are called the
“HTML flow objects” and they correspond to the element types in the
HTML DTD. If you format a document using them, it will look as if it

©1998 THE XML HANDBOOK™




35.5 | UsiNG XSL

«d been created in HI'ML directly. You can think of this process as a con-
rsion from XML markup to HTML markup.

The goal is usually not to create an actual HTML file, but rather to
sscribe the formatting of the document in terms that authors are already
miliar with. In theory, the HI'ML document exists only conceptually. In
-actice, browsers do not support XSL yet, so XSL processors really do out-
1t HTML documents that you can use on the Web as if you had created
iem by hand.

Caution At the time of writing, the future of the HTML
flow objects is unclear. Many people are confused by them. Some
think that XSL is related to HTML, depends on HTML, or is some
kind of XML to HTML conversion language.This confusion may be
enough to encourage the working group to provide DSSSL-inspired
flow objects exclusively.

Right now, however, the HTML flow objects are much more widely sup-
orted than the DSSSL ones. This is because there is so much software
ound that already knows how to handle HI'ML. We will use these flow
bjects for that reason. We will restrict our usage to only two of them. We
ill use the HTML P flow object to create new paragraphs and the FONT
ow object to apply a typographic style to a series of characters.

5.5 | Using XSL

he casiest way to get started with XSL is to use the simple XSL implemen-
tion called Sparse that is on the CD-ROM and is also available on the
/eb. The Web version is very easy to use and more up-to-date than the
D-ROM version. Sparse is nice because it is interactive, fast and user
iendly.

Sparse has two windows, one for XML text, and one for XSL text. You
pe an XML document into one window, and an XSL stylesheet into the
ther. To get started, you can type the following document and stylesheet
1to the correct windows:

1998 THE XML HANDBOOK T

523




CHAPTER 35 | EXTENSIBLE STYLE LANGUAGE (XSL)

XML

<?XML version="1.0"?>
<para>This is a paragraph.</
para>

<para>This is too, but it has
<emph>emphasis</emph>.</para>

XSL

<rule>
<!-- look for paragraphs -->
<target-element type="para"/>

<!-- turn them into paragraph

flow objects -->
<P color="blue'">
<children/>
</P>
</rule>

<rule>
<!-- look for emphasis -->
<target-element type="emph"/>

<FONT color="red"><children/
></FONT>
</rule>

This formats para elements as blue paragraphs, and makes emph ele-
ments red.

35.6 | Patterns

Patterns allow the XSL processor to choose which elements to apply which
style rules to. Every pattern has a target-element that specifies the ele-
ments to be matched in the document. You can supply a type attribute to
force the target-element to only match elements of a certain element
type. So this rule bolds only emph elements:

<rule>
<target-element type="emph"/>

<FONT font-weight="bold">
<children/>
</FONT>
</rule>

On the other hand, the following rule bolds elements of any type:

©1998 THE XML HANDBOOK™




35.6 | PATTERNS

rule>
<target-element />

<FONT font-weight="bold">
<children/>

</FONT>
/rule>

If a rule matches elements of any type, we call it the default rule, because
is the rule that gets called when no other rule matches. You should almost
[ways have a default rule. If you do not have a default rule, and you forget
) supply a rule for a particular case, then elements of that type are cycled-
wrough but do not appear in the output.

We can also choose to match only elements with certain attributes:

rule>
<target-element>

<attribute name=security value="top-secret"/>
</target-element>

<sequence color="red">
<children/>

</sequence>

/rule>

An attribute element has attributes name, value and has-value. You
wist always specify the name, but you can either require the attribute to
onform to a particular value (top-secret in our example), or you can
1erely ask whether it conforms or not.

It is possible to match based on an element’s context. For instance if we
anted to change the color of all elements inside of a warning element, we
ould do so with the following rule:
rule>

<warning>

<target-element type="p"/>
</warning>

<sequence color="red">
/rule>

Essentially, the elements that surround the target-element define a pat-
>0 that is matched against elements in the document. We can do the same
fith the target element’s sub-elements.

1998 Ty XML HANDBOOK™

525




526 CHAPTER 35 | EXTENSIBLE STYLE LANGUAGE (XSL)

<rule>
<warning>
<target-element type="p"/>
<footnote>
</target-element>
</warning:>

<sequence color="red">
</rule>

This rule would only match elements of type p that contain at least one
footnote and are inside a warning.

XSLs patterns are very powerful and convenient. But it is when you pair
them with actions that you can actually make something exciting.

35.7 | Actions

After the XSL processor chooses a rule based on a pattern match, it looks at
the action part of the rule. The action says what objects to create in the out-
put tree. The actions can directly create flow objects, add literal text (such as
boilerplate text), and tell the XSL processor to process the source element’s
content to get access to its flow objects. We can start with the simplest case
first. Let’s assume that the input document had an hr element that was to

be turned into a horizontal-rule flow object. You can do that this way:
<rule>
<target-element type="hr"/>

<horizontal-rule/>
</rule>

That is simple because we can assume that hr is an empty element and
has no content. But most elements do have content. The content is made
up of character data and sub-elements. We call each such character string or
sub-element a child. We can process children by using the children ele-
ment. For instance if we want to put a horizontal rule before and after sec-

tions, and then process the children of the section, we would do this:
<rule>
<target-element type="section"/>

<horizontal-rule/>

<children>

<horizontal-rule/>
</rule>

We can also mix in literal text:

©1998 THE XML HANDBOOK™




35.8 | FLOW OBJECTS AND CHARACTLRISTICS

rule>
<target-element type="warning"/>

<horizontal-rule/>
<sequence font-size="20" font-weight="bold">
WARNTNG :
<sequence>
<children>
<horizontal-rule/>
/rule>
We've almost covered enough to do interesting things now. The last step
s actually the easiest. You just have to learn which flow objects and charac-

eristics are available for use in your XSL stylesheets.

5.8 | Flow objects and characteristics

\s we described earlier, there are two major sets of flow objects. There are
hose based upon HTML and those based upon DSSSL. They are not
neant to be used together. The HTML ones are casy to use if you already
now HTML, because they look and behave exactly as HTML elements do
n the Web. Here is the list of HTML element types that are available:

These element types can be created with the attributes that they would
isually have according to the HTML spec. You can also provide them with
eeributes that represent style properties from the Cascading Style Sheet Lan-
nage. You can get that full list from the XML SPECtacular on the CD-
ROM.

The DSSSL flow objects provided are:

Information about these flow objects is available through a link on the
“D-ROM. Each of them is described in a chapter of the DSSSL specifica-

0n.

35,9 | XSL and JavaScript

Sometimes formatting tasks can be quite tricky. They can be so tricky that
ou need the full power of a programming language to solve them. For
fistance, as a visual aid you might want every second row in a table to be
lue, or every title with a numeric attribute in a particular range to be in a

) e ;
EOI9RS: T iz XML HANDBOOK M

27




528 CHAPTER 35 | EXTENSIBLE STYLE LANGUAGE (XSL)

Spec. Reference 35-2. HTML flow objects in XSL

SCRIPT

PRE

HTML
TITLE
META
BASE

BODY

DIV

BR

SPAN

TABLE
CAPTION
COL
COLGROUP
THEAD
TBODY
TFOOT
TR
TD

A
FORM
INPUT
SELECT
TEXTAREA
HR
IMG
MAP
AREA
OBJECT
PARAM
FRAMESET

particular font, and other titles to be in a different font. These more com-
plicated tasks must be solved with the help of a full programming language.
Declarations alone are not enough.

XSL embeds such a language in the form of ECMAScript, a standardized
version of JavaScript. Although XSL technically uses the standardized form,
which is slightly different from JavaScript, we will refer to it as JavaScript
for familiarity. The differences are minor. The JavaScript variant in XSL is
essentially the same language used to make many Web pages interactive,
but with new features designed for applying style to documents. JavaScript
itself is beyond the scope of this book, and there are many good books that
already cover it. We will just demonstrate how XSL and JavaScript fit
together.

©1998 THE XML HANDDBOOK™




35.9 | XSL AND JAVASCRIPT

Spec. Relerence 35-3. DSSSL flow objects in XSL

scroll--used for online display

paragraph, paragraph-break--used for paragraphs
character--used for text

line-field--used for lists

external-graphic--used for including graphic images
horizontal-rule, vertical-rule--used for rules
score--used for underlining and scoring
embedded-Lext--used for bi-directional text

hor—-used For borders
flow objects for tables
table
table-part

table-colunn

table-row

table--cell

table-border
sequence--ugsed for specifying inherited characteristics
display-group--used for positioning flow objects
simple-page-sequence--used for simple page layout
link--used for hypertexlt links

Just as you can use JavaScript on a Web page when HTML “runs out of
steam”, you can use it in your stylesheets to solve the harder problems that
simple declarations cannot handle.

When JavaScript is used in XSL documents, it has access to many
advanced features of the underlying XML system, and this makes style
application easier. For instance, there is a query language for selecting and
returning document components. This is analogous to the way that data-
base query languages such as SQL select and return particular rows from a
database.

For instance, you might want to generate text at the source of a cross-ref-
erence based on data at the target. A typical cross reference would say some-
thing like: “See Chapter 1.1 ’Intro to Foobar”. Of course the chapter
number and title must be fetched from that other part of the document.
XSLs query features give you this access to information anywhere in the
document.

Here is an example of an XSL stylesheet with JavaScript code in it:

Now you can understand the reason for two other XSL design principles:

#  XSI. should provide a declarative language to do all common
formatting tasks.

© LG o
t\l)”h Pl XML Hanpsook

IA

529




530 CHAPTER 35 | EXTENSIBLE STYLE LANGUAGE (XSL)

Example 35-5. JavaScript stylesheet
<xsl>
<define-script>
var defaultFontSize = "12pt";

function hierarchicalIndent (elementType, element) {

return length(hierarchicalNumberRecursive (
elementType, element)) * 12pt;

}

</define-script>

<rule>

<element type="list">
<target-element type="item">
</element>
<DIV font-size="=defaultFontSize"
margin-left='=lin+hierarchicalIndent (element, "item") '>

<children/>

</DIV>

</rule>

</xsl>

m  XSL should provide an “escape” into a scripting language to
accommodate more sophisticated formatting tasks and to
allow for extensibility and completeness.

Tip  You may find the XML Styler helpful when create XSL
stylesheets.The software is free and is described in detail in
Chapter 25, “XML Styler: Graphical XSL stylesheet editor”, on
page 338.

©1998 THE XML HANDBOOK™







Advanced
features

B Conditional sections
B Character references
B DProcessing instructions

B Standalone declaration

©1998 THE XML HanpDBOOK™




Chapter ,

advanced users will get around to reading them. They do not

require advanced degrees in computer science or rocket sci-

_ence to understand. They are just a little esoteric. Most XML users
will get by without ever needing to use them.

T he features in this chapter are advanced in the sense that only

e

e

-
|

~36.1 | Conditional sections

Conditional sections can only occur in the external subset of the document
type declaration, and in external entities referenced from the internal sub-
set. The internal subset proper is supposed to be quick and easy to process.
In contrast, the external subset is supposed to retain some of the ful-SGML
mechanisms that make complicated DTDs easier to maintain. One of these
mechanisms is the conditional section, which allows you to turn on and off
a series of markup declarations.

O1998 Tie XML HANDEOOK ™ 533




534 CHAPTER 36 | ADVANCED FEATURES

Like the internal and external subsets, conditional sections may contain
one or more complete declarations, comments, processing instructions, or
nested conditional sections, with optional white space between them.

A conditional section is turned on and off with a keyword. If the key-
word is INCLUDE, then the section is processed just as if the conditional sec-
tion markers did not exist. If the keyword is IGNORE, then the contents
are ignored by the processor as if the declarations themselves did not exist.

Example 36-1. Conditional sections
<! [INCLUDE [
<!|ELEMENT magazine (title, article+, comments* )>
11>
< | [IGNORE [
<!ELEMENT magazine (title, body)>
11>

This is a useful way of turning on and off parts of a DTD during devel-
opment.

The real power in the feature derives from parameter entity references.
These are described in 33.7, “Internal and external parameter entities”, on

page 487.

If the keyword of the conditional section is a parameter entity reference,
the processor replaces the parameter entity by its content before the proces-
sor decides whether to include or ignore the conditional section. That
means that by changing the parameter entity in the internal subset, you can
turn on and off a conditional marked section. In that way, two different
documents could reference the same set of external markup declarations,
but get slightly (or largely) different DTDs. For instance, we can modify
the example above:

Example 36-2. Conditional sections and parameter entities
<! [%editor[
<!BLEMENT magazine (title, article+, comments* )>
‘ 11>
<! [%author |
<!ELEMENT magazine (title, body)>
11>

o

©1998 THE XML HanpDBOOK™




36.2 | CHARACTER REFLRENCES 535

Now editors will have a slightly different DTD from authors. When the
parameter entities are set one way, the declaration without comments is
chosen:

Example 36-3.

Z1DOCTYPE MAGAZINE SYSTEM "magazine.dtd" |
<!ENTITY % editor "IGNORE">
<!ENTITY % author "INCLUDE">

1>

—

Authors do not have to worry about comments elements that they are not
supposed to use anyway. When the document moves from the author to the
editor, the parameter entity values can be swapped, and the expanded ver-
sion of the DTD becomes available. Parameter entities can also be used to
manage DTDs that go through versions chronologically, as an organiztion’s
needs change.

Conditional sections are also sometimes used to make “strict” and
“loose” versions of DTDs. The loose DTD can be used for compatibility
with old documents, or documents that are somehow out of your control,
and the strict D'TD can be used to try to encourage a more precise structure
for future documents.

36,2 | Character references

It is not usually convenient to type in characters that are not available on
the keyboard. With many text editors, it is not even possible to do so. XML
allows you to insert such a character with a character reference. If, for
instance, you wanted to insert a character from the “International Phonetic
Alphabet”, you could spend a long time looking for a combination of key-
board, operating system and text editor that would make that straightfor-
ward. Rather than buying special hardware or software, XML allows you to
refer to the character by its Unicode number.
Here is an example:

Example 36-4. Unicode character

<P>Here ig g special character from Unicode: &#161;.

OLo98 Tyy XML HANDBOOK




536 CHAPTER 36 | ADVANCED FEATURES

That includes the character numbered 161 in Unicode, which happens
to be the inverted exclamation mark. If you happen to know it, you could
also use that character’s hex value, by using a slightly different form of refer-
ence:

Example 36-5. Unicode character

<P>Here is a special character from Unicode: &#xAl;.

Hex is a numbering system often used by computer programmers that
translates naturally into the binary codes that computers use. The Unicode
Standard book uses hex, so those that have that book will probably prefer
this type of character reference over the other (whether they are program-
mers or not).

Here are the specifics on character references from the XML spec:

Spec. Reference 36-1. Character reference
CharRef ::= ‘'&#' [0-9]+ ';'
| r&#x' [0-9a-fA-Fl+ ';'

Spec. Reference 36-2. Interpreting character references

If the character reference begins with “&#x”, the digits and letters up to the
terminating ; provide a hexadecimal representation of the character’s code
point in ISO/IEC 10646. If it begins just with “&#”, the digits up to the

terminating ; provide a decimal representation of the character’s code point.

For our purposes, ISO/IEC 10646 is essentially Unicode. Think of Uni-
code as industry market-speak for the ISO version of the standard.

Note that character references are not entity references, though they look
similar to them. Entities have names and values, but character references
only have numbers. In a well-formed document, all entities except the pre-
defined ones must be declared and in a valid document even the predefined
ones must be declared. But numeric references are never declared.

Because Unicode numbers are hard to remember, it is often useful to
declare entities that stand in for them:

<!ENTITY inverted-exclamation "&#161;">

©1998 THE XML HANDBOOK™




36.3 | PROCESSING INSTRUCTIONS

Most likely this is how most XML users will refer to obscure characters.
There will probably be popular character entity sets that can be included in
2 DTD through a parameter entity. This will free them from learning
obscure character numbers and probably even from learning how to use
character references.

36,3 | Processing instructions

XML comments are for those occasions where you need to say something
to another human being without reference to the D'TD, and without
changing the way the document looks to readers or applications. Processing
instructions are for those occasions where you need to say something to
computer programn without reference to the DTD and without changing the
way that the document is processed by other computer programs. This is
only supposed to happen rarely.

Many people argued that the occasions would be so rare that XML
should not have processing instructions at all. But as one of us (Charles)
said in The SGML Handbook: “In a perfect world, they would not be
needed, but, as you may have noticed, the world is not perfect.” It turns out
that processing instruction use has changed over the years and is not as
frowned upon as it was in the early days of SGML.

Processing instructions are intended to reintroduce software-specific
markup. You might wonder why you would want to do that. Imagine that
you are creating a complex document, and, like a good user of a generalized
markup language, you are concentrating on the structure rather than the
formatting. Close to the deadline you print the document using the propri-
etary formartting system that has been foisted on you by your boss. There
are many of these systems, some of which are of fantastic quality and others
which are not.

Your document looks reasonable, but you need a way to make the first
letter of each paragraph large. However, reading the software’s manual, you
realize that the formatter does not have a feature that allows you to modify
the style for the first letter of a word. The XML Purist in you might want to
go out and buy a complete formatting system but the Pragmatist in you
knows that that is impossible.

Thinking back to the bad-old days of “What You See is All You Get”

word processors, you recall that all you really needed to do is to insert a

OUHo8 v xML HANDBOOK ™M

537




538 CHAPTER 36 | ADVANCED FEATURES

code in the beginning of each paragraph to change the font for the first let-
ter. This is not good “XML Style” because XML Purists do not insert for-
matting codes and they especially do not insert codes specific to a particular
piece of software — that is not in the “spirit” of generalized markup. Stll, in
this case, with a deadline looming and stubborn software balking, a process-
ing instruction may be your best bet. If the formatter has a “change font”
command it may be accessible through a processing instruction:

Example 36-6. Processing instruction

<CHAPTER>The Bald and the Dutiful

<P><?DUMB-FORMATTER . FONT="16PT" ?>N<?DUMB-FORMATTER . ENDFONT?>ick
took Judy in his arms</P>

If you find yourself using many processing instructions to specify format-
ting you should try to figure out what is wrong with your system. Is your
document’s markup not rich enough? Is your formatting language not pow-
erful enough? Are you not taking advantage of the tools and markup you
have available to you? The danger in using processing instructions is that
you can come to rely on them instead of more reusable structural markup.
Then when you want to reuse your information in another context, the
markup will not be robust enough to allow it.

Processing instructions start with a fixed string “<?”. That is followed by
a name and, after that, any characters except for the string that ends the PI,
T,

Here are the relevant rules from the XML specification:

Spec. Reference 36-3. Processing Instruction

[16] PI ::= '<?' PITarget (S (Char* - (Char* '?>' Char*)))? '?>'
[17] PITarget ::= Name - (('X' | 'x') ('‘M' | 'm') (‘L' | '1'))

This name at the beginning of the PI is called the P/ target. This name
should be standardized in the documentation for the tool or specification.
After the PI target comes white space and then some totally proprietary
command. This command is not processed in the traditional sense at all.
Characters that would usually indicate markup are totally ignored. The
command is passed directly to the application and it does what it wants to
with it. The command ends when the processor hits the string “?>”. There

©1998 THE XML HANDBOOK™




36.3 | PROCESSING INSTRUCTIONS

is absolutely no standard for the “stuff” in the middle. Markup is not recog-
nized there. Pls could use attribute syntax for convenience, but they could
also choose not to.

It is possible that more than one application could understand the same
instructions. They might come from the same vendor or one vendor might
agree to accept another vendor’s commands. For instance in the early days
of the Web, the popular NCSA (National Center for Supercomputing
Activities) Web Server introduced special commands into HTML docu-
ments in the form of special HTML comments. Because the NCSA server
was dominant in those days, many servers now support those commands.

Under XML we would most likely use processing instructions for the
same task. The virtue of XML processing instructions in this case is that
they are explicitly instructions to a computer program. In our opinion, one
of the central tenets of generalized markup is that it is important to be
explicit about what is going on in a document. Reusing markup constructs
for something other than what they were intended for is not explicit.

For instance, since comments are meant to be instructions to users, an
ambitious Web Server administrator might decide to write a small script
that would strip them out to save download time and protect internal com-
ments from being read by others. But if instructions to software (like the
NCSA server commands) were hidden in comments, they would be
stripped out as well. It would be better to use the supplied processing
instruction facility, which was designed for the purpose.

Better still (from a purist’s point of view) would be a robust XML-smart
mechanism for accomplishing the task. For instance, one thing that the
NCSA servers do is include the text of one HTML file into another. XMLs
entity mechanism (see Chapter 33, “Entities: Breaking up is easy to do”, on
page 476) can handle this, so you do not need processing instructions in
that case.

If you want to insert the date into a document, then you could connect
the external entity to a CGI! that returns the date. If you want to insert
information from a database then you could have software that generates
XML entities with the requested information.

Sometimes, though, the processing instruction solution may be the most
expedient. This is especially the case if your application vendor has set it up

1. CGI is the “Common Gateway Interface”, a specification for making Web
y P g
pages that are generated by the server when the user requests them, rather than
in advance.

©1998 THE XML HANDBOOK'™

539




540 CHAPTER 36 | ADVANCED FEATURES

that way. If your document is heavily dependent on a database or other pro-
gram, then it is not very “application independent” in any case. If a docu-
ment is inherently dependent on an application then you may decide that
strictly adhering to generalized markup philosophy is just too much work.
In the end you must choose between expediency and purity. Most people
mix both.

Processing instructions are appropriate when you are specifying informa-
tion about a document that is unrelated to the actual structure of the docu-
ment. Consider, for instance, the problem of specifying which stylesheets
go with which XML documents on a web site. Given enough money and
time you could erect a database that kept track of them. If you already had
your XML documents in a text database then this would probably be the
most efficient mechanism. If you did not have a text database set up, then
you could merely keep the information in a flat text file. But you would
have to keep that external information up-to-date and write a program to
retrieve it in order to do formatting. It would probably be easier to simply
stick the information somewhere in the file where it is easy to find (such as
at the beginning).

You could add a STYLESHEET element or attribute to each document, but
that could cause three problems. First, it would violate the XML Purist
principle that elements should represent document components and not
formatting or other processing information. Second, if you are using D'T'Ds
with your documents then you must add the element or attribute to each

DTD that you will be using. This would be a hassle.

The third reason to use processing instructions instead of elements is the
most concrete: you may not be able to change those DTDs. After all,
DTDs are often industry (or international!) standards. You cannot just go
monkeying around with them even if you want to. Instead, you could puta
processing instruction at the start of each document. Processing instruc-
tions are not associated with particular DTDs and they do not have to be
declared. You just use them.

As we described in an earlier chapter (page 519), XML provides a pro-
cessing instruction for including stylesheets:

Example 36-7. Stylesheet PI

<?xml:stylesheet
href="http://www.sgmlsource.com/memo.xsl"
type="text/xsl"?>

©1998 THE XML HANDBOOK™




36.4 | STANDALONE DOCUMENT DECLARATION

Note that the stylesheet processing instruction does not really add any-
thing to the content or structure of the document. It says something about
how to process the document. It says: “This document has an associated
stylcshect and it is available at such and such a location.” It is not always
obvious what is structural information and what is merely processing infor-
mation. If your instruction must be embedded in documents of many
types, or with DTDs that you cannot change, then processing instructions
are typically your best bet.

The XML encodingPl is an example of another processing instruction. It
says what character encoding the file uses. Again this information could be
stored externally, such as in a database, a text file or somewhere else, but
XML designers decided (after weeks of heated discussion) that it would be
most convenient to place it in the XML document itself rather than require
it to be stored (and transmitted across the Internet) externally.

If you go back to 31.6.1, “XML declaration”, on page 439 you will also
notice that the XML declaration has the same prefix (“<?”) and suffix (“?>”)
as processing instructions do. Formally speaking, the XML declaration is a
special form of processing instruction. From an SGML processor’s point of
view, it is a processing instruction that controls the behavior of a particular
class of software: XML processing software. Software that treats XML as
just another kind of SGML will ignore it, as they do other types of process-
ing instructions.

To summarize: Pls (processing instructions) were invented primarily for
formatting hacks but based on our experience with SGML we know that
they are more widely useful. There are already predefined processing
instructions in the XML specification for some kinds of processing. Pro-
cessing instructions will probably be used for other things in the future.
Everything that can be accomplished with PIs would be accomplished by
other means in a perfect world of pure generalized markup, but in the real
world they are often convenient.

364 | Standalone document declaration

We should start by saying that the standalone document declaration is only
'fiemgned for a small class of problems, and these are not problems that most
AML users will run into, We do not advise its use. Nevertheless, it is part of

©1998 Ty xML HANDBOOKT™

541




542 CHAPTER 36 | ADVANCED FEATURES

XML and we feel that you should understand it so that you can understand
why it is seldom useful.

A DTD is typically broken into two parts, an external part that contains
declarations that are typically shared among many documents, and an
internal part that occurs within the document and contains declarations
that only that document uses (see Chapter 32, “Creating a document type
definition 7, on page 448). The external part includes all external parameter
entities, including both the external subset of the document type declara-
tion and any external entities referenced from the internal subset.

The DTD describes the structure of the document, but it can also con-
trol the interpretation of some of the markup and declare the existence of
some other entities (such as graphics or other XML documents) that are
required for proper processing. For instance, a graphic might only be used
in a particular document, so the declaration that includes it (an entity decla-
ration) would usually go in the internal subset rather than the external one.

Processors that validate a document need the entire DTD to do so. A
document is not valid unless it conforms to both the internal and external
parts of its DTD. But sometimes a system passes a document from program
to program and it does not need to be validated at each stage. For instance,
two participants in an electronic data interchange system might agree that
the sender will validate the document once, instead of having both partici-
pants validate it.

Even though the receiving processor may not be interested in full valida-
tion, it may need to know if it understands the document in exactly the
same way that the sender did. Some features of the DTD may influence this
slightly. Documents with defaulted attributes would be interpreted differ-
ently if the attribute declarations are read rather than ignored. Entity decla-
rations would allow the expansion of entity references. Attribute values can
only be normalized according to their type when the attribute declarations
are read. Some white space in content would also be removed if the DTD
would not allow it to be interpreted as text.

If a process can reliably skip a part of the DTD dedicated exclusively to
validation, then it would have less data to download and process and could
let the application do its work (browsing, searching, etc.) more quickly. But
it would be important for some “mission critical” applications to know if
they are getting a slightly different understanding of the document than
they would if they processed the entire DTD.

The standalone document declaration allows you to specify whether a pro-
cessor needs to fetch the external part of the DTD in order to process the

©1998 THE XML HANDBOOK™




36.4 | STANDALONE DOCUMENT DECLARATION

document “exactly right.” The Standalone document declaration may take
the values (case sensitive) of yes and no.

A value of yes says that the document is standalone and thus does not
depend on the external part of the DTD for correct interpretation. A value
of 7o means that it either depends on the external DTD part or it might, so
the application should not trust that it can get the correct information
without it. You could always use no as the value for this attribute, but in
some cases applications will then download more data than they need to do
cheir jobs. This translates into slower processing, more network usage and
SO forth.

Example 36-8. A standalone document declaration that forces processing of
the internal subset.

zgzafm;érsion:“l.O” standalone="no"?>

<! DOCTYPE MEMO SYSTEM "http://www.sgmlsource.com/memo.dtd" [
<IENTITY % pics SYSTEM "http://www.sgmlsource.com/pics.ent">
%pics;

1>

<MEMO></MEMO>

Example 36.4, “Standalone document declaration”, on page 541 will tell
the application that unless the processor fetched the pictures, the applica-
tion might get a slightly different understanding of the document than it
would if it processed the whole document. For instance, the MEMO element
might have defaulted attributes.

But if the value is yes, the receiving application may choose not to get the
external part of the DTD. This implies that it will never know what was in
it. Still, it needs to be able to trust the accuracy of the declaration. What if
the security level for a document is set in an attribute and the default level is
top-secret? It would be very bad if a careless author could obscure that
with a misleading standalone document declaration. In the scenario we out-
lined, the sender has already validated the document. So the sender has
enough information to check that the information is correct. The XML
specification requires a validating processor to do this (see Specification ref-
erence 36-4).

The last one is very likely to happen. Often people use white space
between tags to make the source XML document readable, but that can
slightly change the interpretation of the document, Validating processors
Wil tell applications that there are some contexts where character data is not

QL9908 Tuy XML HaNDBOOKM

543




544 CHAPTER 36 | ADVANCED FEATURES

Spec. Reference 36-4. Standalone document declaration

The standalone document declaration must have the value “no” if any
external markup declarations contain declarations of:

m actributes with default values, if elements to which these
attributes apply appear in the document without specifications
of values for these attributes, or

m entities (other than amp, It, gt, apos, quot), if references to
those entities appear in the document, or

m  actributes with values subject to normalization, where the
attribute appears in the document with a value which will
change as a result of normalization, or

m clement types with element content, if white space occurs
directly within any instance of those types.

legal, so the white space occuring in those places must be merely formatting
white space (see 32.5, “Content models”, on page 459). If an application
that does not want to validate a document is to get exactly the same infor-
mation out of the document, it must know whether there are any elements
where white space should be interpreted just as source formatting. We say
that this sort of white space is insignificant.

The standalone document declaration warns the application that this is
the case so that mission critical applications may download the DTD just
to get the right information out of the document, even when they are not
interested in validating it.

The standalone document declaration is fairly obscure and it is doubtful
if it will get much use outside of a few mission critical applications. Even
there, however, it is safest to just get the external data and do a complete
validation before trusting a document. You might find that it had been cor-
rupted in transit.

36,5 | Is that all there is?

We've pretty much covered all the details of XML, certainly all that are
likely to see extensive use. There are some things we didn’t touch on, such as
restrictions that must be observed if you are using older SGML tools to

©1998 THE XML HaNDBOOK™




36,5 | [§ THAT ALL THERE I§? 545

process XML. As the generalized markup industry is retooling rapidly for
XML, such restrictions will be short-lived and, we felt, did not warrant
complicating our XML rutorial.

[n any case, you are now well-prepared — or will be after reading Chapter
37, “Reading the XML specification”, on page 546 — to tackle the XML

spec yourself. You'll find it in the XML SPECrtacular section of the CD-
ROM that accompanies this book.

10|y .
ALO98 T XML Hanpnoog™




Reading the
XML
specification

B Grammars
B Rules
B Symbols




(hapter

37

he XML specification is a little tricky to read, but with some
work you can get through it by reading and understanding
the glossary and applying the concepts described so far in this
“book. One thing you'll need to know is how to interpret the produc-
tion rules that make up XMLs grammar. This chapter teaches how to
ead those rules.

- When discussing a particular string, like a tag or declaration, we often
‘want to discuss the parts of that string individually. We call each part of the
string a token. Tokens can always be separated by white space as described
above. Sometimes the white space between the tokens is required. For
instance we can represent the months of the year as tokens:

Example 37-1. Tokens
JANUARY FEBRUARY MARCH APRIL MAY JUNE

White space between tokens is normalized (combined) so that no matter
how much white space you type, the processor treats it as if the tokens were

©1998 THr XML HANDBOOK™ 547



548 CHAPTER 37 | READING THE XML SPECIFICATION
separated by a single space. Thus the example above is equivalent to the fol-

lowing:

Example 37-2. Tokens after normalization
JANUARY FEBRUARY MARCH APRIL MAY JUNE

Whenever we discuss strings made up of tokens, you will know that you
can use as much white space between tokens as you need and the XML pro-
cessor will normalize it for you.

37.1 | A look at XMLs grammar

There are two basic techniques that we could use to discuss XMLs syntax
precisely. The first is to describe syntactic constructs in long paragraphs of
excruciatingly dull prose. The better approach is to develop a simple system
for describing syntax. In computer language circles, such systems are called
grammars. Grammars are more precise and compact. Although they are no
less boring (as you may recall from primary school), you can skip them eas-
ily until you need to know some specific detail of XMLs syntax.

As a bonus, once you know how to read a grammar, you can read the one
in the XML specification and thus work your way up to the status of “lan-
guage lawyer”.! As XML advances, an ability to read the specification will
help you to keep on top of its progress.

The danger in this approach is that you might confuse the grammar with
XML markup itself. The grammar is just a definitional tool. It is not used in
XML applications. You don't type it in when you create an XML docu-
ment. You use it to figure out what you can type in. Before “the new curric-
ulum”, students were taught grammar in primary school. They would be
taught parts of speech and how they could combine them. XMLs grammar
is the same. It will tell you what the parts of an XML document are, and
how you can combine them.

Grammars are made up of production rules and symbols. Rules are sim-
ple: they say what is allowed in a particular place in an XML document.

1. You too can nitpick about tiny language details and thus prove your superior-
ity over those who merely use XML rather than obsess over it.

©1998 THE XML HANDBOOK™




37.2 | CONSTANT STRINGS
Rules have a symbol on the left side, the string “::=” in the middle and a list
of symbols on the right side:
people ::= 'Melissa, ' 'Tiffany, ' 'Joshua,' 'Johan'

If this rule were part of the grammar for XML (which it is not!) it would
say that in a particular place in an XML document you could type the
names listed.

The symbols on the right (the names, in the last example) define the set
of allowed values for the construct described by the rule (“people”). An
allowed value is said to match. Rules are like definitions in a dictionary. The
left side says what is being defined and the right side says what its definition
is. Just as words in a dictionary, are defined in terms of other words, sym-
bols are defined in terms of other symbols. Rules in the XML grammar are
preceded by a number. You can look the rule up by number. If an XML
document does not follow all of the XML production rules, it is not well-

ﬁ)rmed.

37,2 | Constant strings

The most basic type of symbol we will deal with is a constant string. These
are denoted by a series of characters in between single quote characters.
Constant strings are matched case-sensitively (as we discussed carlier). Here

are some examples:

AlphabetStart ::= 'ABC'
Examplel ::= '<!DOCTYPE'

This would match (respectively) the strings
ABC
<!DOCTYPE

When we are discussing a constant string that is an English word or
abbreviation, we will refer to it as a keyword. In computer languages, a key-
word is a word that is interpreted specially by the computer. So your
‘mother’s maiden name is not (likely) a keyword, but a word like #REQUTRED
1S,

Symbols in XMUDs grammar are separated by spaces, which means that
you must match the first, and then the second, and so on in order.

;§1phabetstartAndEnd r o= VABE' “XYZ'
DNumbersAndLetters ::= '123" 'QPZ'
| These would match:

BRI S Ty XML HANDBOGK™

549




5 5 0 CHAPTER 37 | READING THE XML SPECIFICATION

Note that a space character in the grammar does not equate to white
space in the XML document. Wherever white space can occur we will use
the symbol “S”. That means that wherever the grammar specifies “S”, you
may put in as much white space as you need to make your XML source file
maintainable.

SpacedOutAlphabet ::= 'ABC' S 'XYZ'

matches:

ABC XYZ
ABC XVZ
ABC XYz

This is the first example we have used where a single rule matches multi-
ple strings. This is usually the case. Just as in English grammar there are
many possible verbs and nouns, there are many possible strings that match
the rule spacedoutalphabet, depending on how much white space you
choose to make your XML source file maintainable.

Obviously XML would not be very useful if you could only insert pre-
defined text and white space. After all, XML users usually like to choose the
topic and content of their documents! So they need to have the option of
inserting their own content: a wser defined string. The simplest type of user
defined string is character data. This is simply the text that isn’t markup.
You can put almost any character in character data. The exceptions are
characters that would be confused with markup, such as less-than and
ampersand symbols.

37.3 | Names

The XML specification uses the symbol “Name” to represent names. For
|y ¥y P

example:

PersonNamedSmith :: = Name S 'Smith'

When we combine the name, the white space and the constant string,
the rule matches strings like these:

Christina Smith

Allan Smith
Michael Smith
Black Smith
Bla_ck Smith
_Black Smith

©1998 THE XML HANDBOOK™




37.4 | OCCURRENCE INDICATORS

37.4 | Occurrence indicators

Sometimes a string is optional. We will indicate this by putting a question
mark after the symbol that represents it in a rule:

pescription ::= 'Tall' S? 'dark'? S? 'handsome'? S? 'person'

Tall person

Tallperson

Tall handsomeperson

Tall dark person

Talldarkhandsomeperson

Notice that optionality does not affect the order of the tokens. For exam-
ple, dark can never go before tall. We can also allow a part of a rule to be
matched multiple times. If we want to allow a part to be matched one or
more times, we can use the plus symbol and make it repeatable.
vVeryTall ::= 'A' S ('very' S)+ 'tall' S 'person.'

A very tall person.
A very very tall person.
A very very very tall person.

An asterisk is similar, but it allows a string to be matched zero or more
times. In other words it is both repeatable and optional.
VerySmall ::= 'A' S ('very' S)* 'small' S 'person.'
A small person.

A very small person.
A very very small person.
A very very very small person.

Symbols can be grouped with parentheses so that you could, for instance,
make a whole series of symbols optional at once. This is different from
making them each optional separately because you must either supply
strings for all of them or none:

Description2 ::= 'A' S ('tall' S 'dark' S 'handsome' S)? ‘man.'

This rule matches these two strings (and no others):

A tall dark handsome man.
A man.

We will sometimes have a choice of symbols to use. This is indicated by

separating the alternatives by a vertical bar:
Description3 ::= 'A' S ('short'|'tall') S
("fair'|'tan'|'dark') S ('man'|'woman'}) '.'
A tall dark man.
A short fair woman.
A short tan man.
A tall dark woman.
Note that we broke a single long rule over two lines rather than having it

run off of the end of the page. This does not in any way affect the meaning

©1998 Tue XML HANDBOOKM

551




5 5 2 CHAPTER 37 | READING THE XML SPECIFICATION

of the rule. Line breaks are just treated like space characters between the
symbols.
We can combine all of these types of symbols. This allows us to make

more complex rules.

Book ::= (('Fascinating'|'Intriguing') S ('XML']|'SGML') S 'Book')
| ('Yet another HTML' S 'Book')

Fascinating XML Book

Yet another HTML Book

Intriguing SGML Book

So in this case, you should treat the first large parenthesized expression
(saying good things about SGML and XML books) as one option, and the
second (saying not as good things about HTML books) as another. Inside
the first set, you can choose different adjectives and book types, but the
ordering is fixed and there must be white space between each part.

37,5 | Combining rules

Finally, rules can refer to other rules. Where one rule refers to another, you
just make a valid value for each part and then put the parts together like

building blocks.

FunnyDate ::= Month S Day ',' Year

Month ::= 'Jan'|'Feb'|'Mar'|'Apr'|'May'|'Jun’
|*Jul'|'Aug'|'Sep'|'Oct"'| 'Nov'| 'Dec'

Day =:= ('1'|*2"]*3*)2
(‘1234578 |r9r|t0")

Year ::= '1998'|'1999'|'2000']|'2001'|'2002"

This would match strings such as:

Jan 21,1998
May 35,2000
Sep 2,2002

As you can see, this is not quite a strict specification for dates, but it gets
the overall form or syntax of them right.

37,6 | Conclusion

We've explained the bulk of what is needed to understand XMLs produc-
tion rules. There are a few more details that you can find in section 6 of the
XML spec itself. It is included in the XML SPECtacular on the CD-ROM.

©1998 THE XML HANDBOOK™






