Merrill Communications LLC
d/b/a Merrill Corporation
Exhibit 1006 pt. 5

I DTD schemas
B Aliases

B Combining multiple schemas

I Datatypes

©1998 THE XML HANDBOOK™

Part€ Five

I XML markup

I Document type definitions

B Linking and addressing

I Style sheets ~
I XML-Data !
I Web Interface Definition Language (WIDL)

©1998 THE XML HANDBOOK™

© ©1998 THE XML HANDBOOK™

The
Technology
of XML

Creating a
document type

definition

B Document type declaration
B Element type declarations

B Actribute list declarations

©1998 THE

XML HANDBOO K

™ -

Chapter

reating your own document type definition is like creating
your own markup language. If you have ever chafed at the
: limitations of a language with a fixed set of element types,
such as HTML, TEI or LaTeX, then you will embrace the opportu-
ity to create your own language.!
- We should note again that it is possible to keep a document type defini-
tion completely in your head rather than writing the declarations for a
DTD. Sometimes DTD designers do that while they are testing out ideas.
sually, though, you actually commit your ideas to declarations so that a
validating processor can help you to keep your documents consistent.

Note also that, for the present, we are maintaining the distinction, dis-
- cussed in 4.4.3, “Document type, DTD, and markup declarations”, on
‘Page 61, between a document type, the XML markup rules for it (DTD),
‘and the markup declarations that declare the DTD. Those DTD declara-
tions are connected to the big kahuna of markup declarations — the docu-
ment type declaration.

1. With its own set of limitations!

A
1998 Trg XML HANDBOOKT™ 449

450

CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

32.1 | Document type declaration

A document type declaration for a particular document might say “This
document is a concert poster.” The document type definition for the docy-
ment would say “A concert poster must have the following features.” As an
analogy: in the world of art, you can declare yourself a practitioner of a par-
ticular movement, or you can define the movement by writing its manifesto,

The XML spec uses the abbreviation DTD to refer to document type
definitions because we speak of them much more often than document type
declarations. The DTD defines the allowed element types, attributes and
entities and can express some constraints on their combination.

A document that conforms to its DTD is said to be valid. Just as an
English sentence can be ungrammatical, a document can fail to conform to
its DTD and thus be 7nvalid. That does not necessarily mean, however, that
it ceases to be an XML document. The word valid does not have its usual
meaning here. An artist can fail to uphold the principles of an artistic move-
ment without ceasing to be an artist, and an XML document can violate its
DTD and yet remain a well-formed XML document.

As the document type declaration is optional, a well-formed XML docu-
ment can choose not to declare conformance to any DTD at all. It cannot
then be a valid document, because it cannot be checked for conformance to
a DTD. It is not invalid, because it does not violate the constraints of a
DTD.

XML has no good word for these merely well-formed documents. Some
people call them “well-formed”, but that is insufficiently precise. If the doc-
ument were not well-formed, it would not be XML (by definition). Saying
that a document is well-formed does not tell us anything about its conform-
ance to a DTD at all.

For this reason, we prefer the terms used by the ISO for full-SGML: #ype-
valid, meaning “valid with respect to a document type”, and non-type-valid,
the converse.

Example 32-1 is an XML document containing a document type decla-
ration and document type definition for mailing labels, followed by an
instance of the document type: a single label.

The document type declaration starts on the first line and ends with
“I>”. The DTD declarations are the lines starting with “<!ELEMENT”. Those
are element type declarations. You can also declare attributes, entities and
notations for a DTD.

©1998 THE XML HanDBOOK™

32.1 | DOCUMENT TYPE DECLARATION

Fxample 39-1. XML document with document type declaration
{ ‘\i .

=hocTiPE labell
< ELEMENT label (name, street, city, state, country, code)>
< ELEMENT name (##PCDATA) >
LI ELEMENT street (#PCDATA) >
< 1ELEMENT city (##PCDATA) >
<IELEMENT state (KPCDATA) >
< | ELEMENT country (#PCDATA)>
< CLEMENT code (#PCDATA)>

]><1abe1>

<pame>Rock N.
ay Bird Street</street>

Robyn</name>
<street>J
<city>Baltimore</city>
<state>MD</state>
<country>USA</country>
<code>43314</code>
</label>

Recall from 3.4, “Entities: The physical structure”, on page 38 that an
XML document can be broken up into separate objects for storage, called
“ontities”.! The document type declaration occurs in the first (or only)
entity to be parsed, called the “document entity”.

In Example 32-1, all of the DTD declarations that define the label DTD
reside within the document entity. However, the DTD could have been
partially or completely defined somewhere else. In that case, the document
type declaration would contain a rveference to another entity containing
those declarations.

A document type declaration with only external D'TD declarations looks
like Example 32-2.

Example 32-2. Document type declaration with external DTD declarations

<?xml version="1.0"?>
<IDOCTYPE LABEL SYSTEM “"http://www.sgulsource.com/dtds/label.dtd">
<LABEL:>

DR

</LABEL>

They keyword systim is described more completely in 33.9.1, “System
identifiers”, on page 495. For now, we will just say that it tells the processor

1. Loosely, an entity is like a file.

WTOOR Ty XML HaNnDBooOR ™

451

4 5 2 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

to fetch some resource containing the external information. In this case, the
external information is made up of the declarations that define the labe]
DTD. They should be exactly the ones we had in the original label docy
ment. The big difference is that now they can be reused in hundreds, thoy.-
sands, or even millions of label documents. Our simple DTD could be the
basis for the largest junk mailing in history!

All document type declarations start with the string “<!DOCTYPE”.
Next they have the name of an element type that is defined in the DTD.
The root element in the instance (described in 31.4, “Elements”, on page
434) must be of the type declared in the document type declaration. If an
of the DTD declarations are stored externally, the third part of the docy-
ment type declaration must be either “SYSTEM” or “PUBLIC”. We will
cover “PUBLIC” later. If it is “SYSTEM?”, the final part must be a URJ
pointing to the external declarations. A URI is, for all practical purposes, a
URL. URIs are discussed in 34.4, “Uniform Resource Identifier (URI)”, on
page 512.

Spec. Reference 32-1. DOCTYPE declaration

[28] doctypedecl ::= '<!DOCTYPE' S Name (S ExternalID)? S? ('['
(markupdecl | PEReference | S)* ‘I §2)% ad
'SYSTEM' S SystemLiteral

| 'PUBLIC' S PubidLiteral S SystemLiteral

[75] ExternallID ::

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl
| NotationDecl | PI | Comment

32.2 | Internal and external subset

In Example 32-1, the DTD declarations were completely internal. They
were inside of the document type declaration. In Example 32-2, they were
completely external. In many cases, there will be a mix of the two. This sec-
tion will review these options and show how most XML document type
declarations combine an internal part, called the internal subser and an
external part, called the external subset.

From now on, as we'll almost always be writing about DTD declarations,
we'll refer to them as “the DTD”. We'll resort to the finer distinctions only
when necessary for clarity.

We will start with another example of a DTD:

©1998 THE XML HANDBOOK™

r

32.2 | INTERNAL AND EXTERNAL SUBSET

Example 32-3. Garage sale announcement DTD.
W GARAGESALE (DATE, TIME, PLACE, NOTES)>
<1 ELEMENT DATE (#PCDATA)>

<|ELEMENT TIME (#PCDATA)>
<|ELEMENT PLACE (#PCDATA)>
< ELEMENT NOTES (#PCDATA)>
S —

These markup declarations would make up an ultra-simple DTD for
garage sale announcements.! As you may have deduced, it declares five ele-
ment types. We will get to the syntax of the declarations soon. First we will
look at how they would be used. These could reside in a separate file called
garage.dtd (for instance) and then every document that wanted to con-
form to them would declare its conformance using a document type decla-
ration. This is shown in Example 32-4.

Example 32-4. Conforming garage sale document.
"<IDOCTYPE GARAGESALE SYSTEM "garage.dtd">
<GARAGESALE>

<DATE>February 29, 1998</DATE>

<PIME>7:30 AM</TIME>

<PLACE>249 Cedarbrae</PLACE>

<NOTES>Lots of high-quality junk for sale!</NOTES>
'</GARAGESALE>

Instead of a complete URL, we have just referred to the DTD’s file name.
Actually, this is still a URL. It is a relative URL. That means that in a stan-
dard Web server setup, the XML document entity and its DTD entity
teside in the same directory. You could also refer to a full URL as we did in
Example 32-2.

?;Eﬁmple 32-5. Specifying a full URL
<!DOCTYPE GARAGESALE SYSTEM

"http://www.tradestuff.com/stuff.dtd">
<GARAGESALE>

</GARAGESALE>

1. A garage sale is where North Americans spend their hard-earned money on
other people's junk, which they will eventually sell at their own garage sales.

©1998 Tyg XML HANDBOOKT™

453

454 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

The relative URL is more convenient while you are testing because yoy
do not need to have a full server installed. You can just put the two entitieg
in the same directory on your hard drive. But your DTD and your instance
can get even more cozy than sharing a directory. You can hoist your DT
into the same entity as the instance:

Example 32-6. Bringing a DTD into the instance
<!DOCTYPE GARAGESALE

[

<!ELEMENT GARAGESALE (DATE, PLACE, NOTES)>
<!ELEMENT DATE (#PCDATA)>

< !ELEMENT TIME (#PCDATA)>

<!ELEMENT PLACE (#PCDATA)>

<!ELEMENT NOTES (#PCDATA)>

1>

<GARAGESALE>

</GARAGESALE>

The section between the square brackets is called the internal subset of
the document type declaration. For testing, this is very convenient! You can
edit the instance and the DTD without moving between entities. Since
entities usually correspond to files, this means that instead of moving
between two files, you need only edit one.

Although this is convenient, it is not great for reuse. The DTD is not
available anywhere but in this file. Other documents cannot conform to
this DTD without copying the declarations into their internal subset.

Often you will combine both approaches. Some of the DTD declara-
tions can go in an external entity where it can be reused, and some of it can
go in the same entity as the instance. Often graphic entities (see 33.6,
“Unparsed entities”, on page 486) would be declared in the internal subset
because they are specific to a document. On the other hand, element type
declarations would usually be in the external subset, the external part of the
document type declaration:

Example 32-7. Reference to an external subset
<!DOCTYPE GARAGESALE SYSTEM "garage.dtd'>
<!ENTITY LOGO SYSTEM "logo.gif'>

] ><GARAGESALE> ... </GARAGESALE>

©1998 THE XML HANDBOOK™

32.3 | ELEMENT TYPE DECLARATIONS

The declarations in the internal subset are processed before those in the
external subset. This gives document authors the opportunity to override!
some kinds of declarations in the shared portion of the DTD.

Note that the content of both the internal subset and the external subset
makes up the DTD. garage.dtd may have a .dtd extension but that is just
a convention we chose to emphasize that the file contains DTD declara-
dons. It is 7ot necessarily the full set of them. The full set of DTD declara-
rions is the combination of the declarations in the internal and external

subsets.

Caution Many people believe that the file containing the
external subset is “the DTD”. Until it is referenced from a
document type declaration and combined with an internal subset
(even an empty one) it is just a file that happens to have markup
declarations in it. It is good practice, however, when an external
subset is used, to restrict the internal subset to declarations that
apply only to the individual document, such as entity declarations
for graphics.

It is often very convenient to point to a particular file and refer to it as
“the DTD” for a given document type. As long as the concepts are straight
in your mind, it does scem a trifle simpler than saying “the file that contains
the markup declarations that [intend to reference as the external subset of
the document type declaration for all documents of this type”.

32,3 | Element type declarations

Elements are the foundation of XML, markup. Every element in a valid
XML document must conform to an element type declared in the DTD.
Documents with elements that do not conform could be well-formed, but
not valid. Here is an example of an element type declaration:

Element type declarations must start with the string “<!'ELEMENT”,
followed by the name (or generic identifier of the element type being

L. Actually, preempt.

G998 Tup XML HANDROOKT™

455

456 CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

Example 32-8. Element type declaration.
<!ELEMENT memo (to, from, body)> T e

declared. Finally they must have a content specification. The content specifi-
cation above states that elements of this type must contain a to element fo]-
lowed by a from element followed in turn by a body element. Here is the
rule from the XML grammar:

Spec. Reference 32-2. Element type declaration
<!ELEMENT' S Name S contentspec S? '>'

Element type names are XML names. That means there are certain
restrictions on the characters allowed in them. These are described in
31.1.4, “Names and name tokens”, on page 428. Each element type decla-
ration must use a different name because a particular element type cannot
be declared more than once.

i Caution Unique element type declaration
. || Unlike attribute and entities, element types can be declared only

t il “

=y ONCE.

32.4 | Element type content
specification

Every element type has certain allowed content. For instance a document
type definition might allow a chapter to have a title in its content, but

would probably not allow a footnote to have a chapter in its content
(though XML itself would not prohibit that!).

There are four kinds of content specification. These are described in
Table 32-1.

©1998 THE XML HANDBOOK™

32.4 | ELUEMENT TYPE CONTENT SPECIFICATION

Table 32-1 Content specification types

Content spcciﬁcation type Allowed content

EMPTY content May not have content. They are typically used
for their attributes.

ANY content May have any content at all.

Mixed content May have character data or a mix of character

data and sub-elements specified in mixed con-
tent specification.

FElement content May have only sub-elements specified in ele-
ment content speciﬁcation

3140 Limpty content

Sometimes we want an element type that can never have any content. We
would give it a content specification of EMPTY. For instance an image ele-
ment type like HTMLs ing would include a graphic from somewhere ¢lse.
It would do this through an attribute and would not need any sub-elements
or character data content. A cross-reference element type might not need
content because the text for the reference might be generated from the tar-
get. A reference to an element type with the title “More about XML” might
become “See More abour XML on page 14”.

You can declare an element type to have empty content by using the
BMPTY keyword as the content specification:

Examplc 32-9. Enply element type

<!ELEMENT MY-EMPTY-ELEMENT EMPTV>

3242 ANY content

Occasionally, you want an element type to be able to hold any element or
character data. You can do this if you give it a content spec of ANY:

This is rarely done. Typically we introduce element type declarations to
express the structure of our document types. An element type that has an

. .
L1998 THE XML Hanphoog ™

457

458 CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

Example 32-10. Element type with ANY content.
<!ELEMENT LOOSEY-GOOSEY ANY>

—
—

aNy content specification is completely unstructured. It can contain any
combination of character data and sub-elements. Still, Any content element
types are occasionally useful, especially while a DTD is being developed. If
you are developing a DTD for existing documents, then you could declare
each element type to have ANY content to get the document to validate,
Then you could try to figure out more precise content specifications for
each element type, one at a time.

32.4.3 Mixed content

Element types with mixed content are allowed to hold either character data
alone or character data with child elements interspersed. A paragraph is a
good example of a typical mixed content element. It might have character
data with some mixed in emphasis and quotation sub-elements. The sim-
plest mixed content specifications allow data only and start with a left
parenthesis character (“(”), followed by the string #pcDATA and a final close
parenthesis (“)”):

Example 32-11. Data-only mixed content.

<!ELEMENT emph (#PCDATA)>
<!ELEMENT foreign-language (#PCDATA) >

You may put white space between the parenthesis and the string #PCDATA
if you like. The declarations above create element types that cannot contain
sub-elements. Sub-elements that are detected will be reported as validity
errors.

In other words, these elements do not really have “mixed” content in the
usual sense. Like the word “valid”, XML has a particular meaning for the
word that is not very intuitive. Any content specification that contains
#PcDATA is called mixed, whether sub-clements are allowed or not.

We can easily extend the DTD to allow a mix of elements and character
data:

©1998 THE XML HANDBOOK™

32.5 | CONTENT MODELS

Example 32-12. Allow a mix of character data and elements

Wparagraph (#PCDATA | emph) *>
<IELEMENT abstract (#PCDATA|emph|quot)*>
<;ELEMENT title (#PCDATA | foreign-language | emph)* >

Note the trailing asterisks. They are required in content specifications
that allow a mix of character data and elements. The reason that they are
there will be clear when we study content models. Note also that we can put
white space before and after the vertical bar (“|”) characters.

These declarations create element types that allow a mix of character data
and sub-elements. The element types listed after the vertical bars (“|”), are
the allowed sub-elements. The following would be a valid title if we com-
bine the declarations in Example 32-12 with those in Example 32-11

<title>this is a <foreign-language>tres gros</foreign-language>
title for an <emph>XML</emph> book</title>

The title has character data (“This is a”), a foreign-language sub-ele-
ment, some more character data (“title for an”), an emph sub-element and
some final character data “book”. We could have reordered the emph and
foreign-language elements and the character data however we wanted.
We could also have introduced as many (or as few) emph and foreign-
language elements as we needed.

32,5 | Content models

The final kind of content specification is a “children” specification. This
type of specification says that elements of the type can contain only child
elements in its content. You declare an element type as having element con-
tent by specifying a content model instead of a mixed content specification or
one of the keywords described above.

A content model is a pattern that you set up to declare what sub-element
types are allowed and in what order they are allowed. A simple model for a
memo might say that it must contain a from followed by a to followed by a
subject followed by a paragraph. A more complex model for a gquestion-
‘And-answer might require question and answer elements to alternate.

- A model for a chapter might require a single title element, one or two
- @Uthor elements and one or more paragraphs. When a document is vali-

I::01998 THE XML HANDBOOK™

460

CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

dated, the processor would check that the elements content matches the
model.

A simple content model could have a single sub-element type:
<!ELEMENT WARNING (PARAGRAPH)>

This says that a WARNING must have a single PARAGRAPH within it. As with
mixed content specifications, you may place white space before or after the
parentheses. We could also say that a WARNING must have a TITLE and then
a PARAGRAPH within it:
<!ELEMENT WARNING (TITLE, PARAGRAPH)>

The comma (“,”) between the “TTTLE” and “PARAGRAPH” GIs indj-
cates that the “TTTLE” must precede the “PARAGRAPH” in the “WARN-
ING” element. This is called a sequence. Sequences can be as long as you
like:
<IELEMENT MEMO (FROM, TO, SUBJECT, BODY)>

You may put white space before or after the comma (“,”) between two
parts of the sequence.

Sometimes you want to have a choice rather than a sequence. For instance
a document type might be designed such that a FIGURE could contain either
a GRAPHIC element (inserting an external graphic) or a CODE element (insert-

ing some computer code).
<!ELEMENT FIGURE (GRAPHIC|CODE)>

The vertical bar character (“|”) indicates that the author can choose
between the elements. You can put white space before or after the vertical

bar. You may have as many choices as you want:
<!ELEMENT FIGURE (CODE|TABLE | FLOW-CHART| SCREEN-SHOT)>

You may also combine choices and sequences using parenthesis. When
you wrap parenthesis around a choice or sequence, it becomes a content par-
ricle. Individual GIs are also content particles. You can use any content par-

ticle where ever you would use a GI in a content model:
<!ELEMENT FIGURE (CAPTION, (CODE|TABLE|FLOW-CHART |SCREEN-SHOT))>
<!ELEMENT CREATED ((AUTHOR | CO-AUTHORS), DATE)>

The content model for FIGURE is thus made up of a sequence of two con-
tent particles. The first content particle is a single element type name. The
second is a choice of several element type names. You can break down the
content model for CREATED in the same way.

You can make some fairly complex models this way. But when you write
a DTD for a book, you do not know in advance how many chapters the
book will have, nor how many paragraphs each chapter will contain. You
need a way of saying that the part of the content specification that allows
captions is repeatable — that you can match it many times.

©1998 THE XML HANDBOOK™

32.5 | CONTENT MODELS

Sometimes you will also want to make an element optional. For instance,
some figures may not have captions. You may want to say that part of the
specification for figures is optional. ‘

XML allows you to specify that a content particle is optional or repeat-
able using an occurrence indicator. There are three occurrence indicators:

Table 32-2 Occurrence Indicators

Indicator Content particle is...

) Optional (0 or 1 time).
* Optional and repeatable (0 or more times)
- Required and repeatable (1 or more times)

Occurrence indicators directly follow a GI, sequence or choice. The
occurrence indicator cannot be preceded by white space.
For instance we can make captions optional on figures:
<|ELEMENT FIGURE (CAPTION?, (CODE|TABLE|FLOW-CHART |SCREEN-SHOT))>
We can allow footnotes to have multiple paragraphs:
<|ELEMENT FOOTINOTE (P+)>
Because we used the “+” indicator, footnotes must have at least one para-
“graph. We could also have expressed this in another way:
<|ELEMENT FOOTNOTE (P, P*)>
- This would require a leading paragraph and then 0 or more paragraphs
following. That would achieve the same effect as requiring 1 or more para-
‘graphs. The “+” operator is just a little more convenient than repeating the
receding content particle.
- We can combine occurrence indicators with sequences or choices:
'<!ELEMENT QUESTION-AND-ANSWER (INTRODUCTION,

(QUESTION, ANSWER)+,
COPYRIGHT?) >

It is also possible to make all of the element types in a content model
‘optional:

<IELEMENT IMAGE (CAPTION?)>

P This allows the 1MAGE element to be empty sometimes and not other
o mes. The question mark indicates that CAPTTON is optional. Most likely
‘these 1MACE elements would link to an external graphic through an

©1998 Ty xML HANDBOORK ™

461

462 CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

attribute. The author would only provide content if he wanted to provide 4
caption.

In the document instance, empty IMAGE clements look identical to hoyw
they would look if IMAGE had been declared to be always empty. There is ng
way to tell from the document instance whether they were declared a5
empty or are merely empty in a particular case.

32,6 | Attributes

Attributes allow an author to attach extra information to the elements in 2
document. For instance a code element for computer code might have a
lang attribute declaring the language that the code is in. On the other
hand, you could also use a 1ang sub-element for the same purpose. It is the
DTD designer’s responsibility to choose a way and embody that in the
DTD. Attributes have strengths and weaknesses that differentiate them
from sub-elements so you can usually make the decision without too much
difficulty.

The largest difference between elements and attributes is that attributes
cannot contain elements and there is no such thing as a “sub-attribute”.
Attributes are always either text strings with no explicit structure (at least as
far as XML is concerned) or simple lists of strings. That means that a
chapter should not be an attribute of a book element, because there would
be no place to put the titles and paragraphs of the chapter. You will typically
use attributes for small, simple, unstructured “extra” information.

Another important difference between elements and attributes is that
each of an element’s attributes may be specified only once, and they may be
specified in any order. This is often convenient because memorizing the
order of things can be difficult. Elements, on the other hand, must occur in
the order specified and may occur as many times as the DTD allows. Thus
you must use elements for things that must be repeated, or must follow a
certain pattern or order that you want the XML parser to enforce.

These technical concerns are often enough to make the decision for you.
But if everything else is equal, there are some usability considerations that
can help. One rule of thumb that some people use (with neither perfect
success nor constant abject failure) is that elements usually represent data
that is the natural content that should appear in every print-out or other
rendition, Most formatting systems print out elements by default and do

©1998 THE XML HANDBOOK™

32.6 | ATTRIBUTES

pot print out atributes unless you specifically ask for them. Attributes rep-
resent data that is of secondary importance and is often information about
the information ("metainformation”).

Also, attribute names usually represent properties of objects, but ele-
ment-type names usually represent parts of objects. So given a person ele-
ment, sub-elements might represent parts of the body and attributes might
represent properties like weight, height, and accumulated karma points.

We would advise you not to spend too much of your life trying to figure
out exactly what qualifies as a part and what qualifies as a property. Experi-
ence shows that the question “what is a property?” ranks with “what is the
good life?” and “what is art?”. The technical concerns are usually a good
indicator of the philosophical category in any event.

30.6.1 Attribute-list declarations

Attributes are declared for specific element types. You declare attributes for
a particular element type using an attribute-list declaration. You will often
see an attribute-list declaration right beside an element type declaration:

<!ELEMENT PERSON (#PCDATA)>
<!ATTLIST PERSON EMAIL CDATA #REQUIRED>

Attribute declarations start with the string “<!ATTLIST”. Immediately
after the white space comes an element type’s generic identifier. After that
comes the attribute’s name, its zype and its defauls. In the example above,
the attribute is named EMAIL and is valid on PERSON elements. Its value
must be character data and it is required — there is no default and the author
must supply a value for the attribute on every PERSON element.

Spec. Reference 32-3. Attribute-list declarations

[52] AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'
[53] AttDef ::= S Name S AttType S DefaultDecl

You can declare many attributes in a single attribute-list declaration. !

You can also have multiple attribute-list declarations for a single element

type:

1. That's why it is called a list!

©1998 THe XML HANDBOOK™

463

464 CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

Example 32-13. Declaring multiple attributes

<!ATTLIST PERSON EMAIL CDATA #REQUIRED
PHONE CDATA #REQUIRED
FAX CDATA #REQUIRED>

Example 32-14. Multiple declarations for one element type

<!ATTLIST PERSON HONORIFIC CDATA #REQUIRED>

<!ATTLIST PERSON POSITION CDATA #REQUIRED
ORGANIZATION CDATA #REQUIRED>

This is equivalent to putting the declarations altogether into a single
attribute-list declaration.

It is even possible to have multiple declarations for the same attribute of
the same element type. When this occurs, the first declaration of the
attribute is binding and the rest are ignored. This is analogous to the situa-
tion with entity declarations.

Note that two different element types can have attributes with the same
name without there being a conflict. Despite the fact that these attributes
have the same name, they are in fact different attributes. For instance a
SHIRT element could have an attribute s1zE that exhibits values smarr,
MEDIUM and LARGE and a PANTS element in the same DTD could have an
attribute also named SIZE that is a measurement in inches:

<!-- These are -->
<!ATTLIST SHIRT SIZE (SMALL|MEDIUM]LARGE) #REQUIRED>

<l-- two different attributes -->
<!ATTLIST PANTS SIZE NUMBER #REQUIRED>

It is not good practice to allow attributes with the same name to have dif-
ferent semantics or allowed values in the same document. That can be quite
confusing for authors.

32.6.2 Attribute defaults

Attributes can have default values. If the author does not specify an attribute
value then the processor supplies the default value if it exists. A DTD
designer can also choose not to supply a default.

Specifying a default is simple. You merely include the default after the
type or list of allowed values in the attribute list declaration:

©1998 THE XML HANDBOOK™

32.6 | ATTRIBUTES

| ACTLIST SHIRT STZE (SMALL|MEDTUM|LARGE) MEDIUM>
|ATTLIST SHOES SIZE NUMBER "13">

Any value that meets the constraints of the attribute list declaration is
legal as default value. You could not, however, use “abc” as a default value
for an attribute with declared type number any more than you could do so
in a start-tag in the document instance.

Sometimes you want to allow the user to omit a value for a particular
attribute without forcing a particular default. For instance you could have
an element SHIRT which has a sIzE attribute with a declared type of
NUMBER. But some shirts are “one size fits all”. They do not have a size. You
want the author to be able to leave this value out and you want the process-
ing system to zmply that the shirc is “one size fits all”. You can do this with

an impliable attribute:
<IATTLIST SHIRT SIZE NUMBER #IMPLIED>

The string “4IMPLIED” gives any processing program the right to insert
whatever value it feels is appropriate. This may seem like a lot of freedom to
give a programmer, but typically implied attributes are simply ignored. In
the case of our SHIRT, there is no need to worry about “one size fits all”
shirts because anybody can wear them. Authors should only depend upon
the implied value when they do not care or where there is a well-defined
convention of what the lack of a value “really” means. This is again a case of
semantics and would be communicated to the author through some other
document, DTD comment or other communication mechanism.

It is easy for an author to not specify a value for an attribute that is not
required: just do not mention the attribute. Note that specifying an
attribute value that is an empty string is o the same as not specifying an

attribute value:
<SHIRT> <!-- This conforms to the declaration above. -->
~ <8HIRT SIZE=""> <!-- This does *not* conform to the declaration. -->

The opposite situation to providing a default is where a document type
designer wants to force the author to choose a value. If a value for an
attribute is important and cannot reliably be defaulted, the designer can

require authors to specify it with a required attribute default:
SIATTLIST IMAGE URL CDATA #REQUIRED>

) In this case, the DTD designer has made the URL attribute required on all
TMAGE elements. This makes sense because without a URL to locate the
Image file, the image element is useless.

It may be surprising, but there are even times when it is useful to supply
an attribute value that cannot be overriden at all. This is rare, but worth
kﬂﬁwing about. Imagine, for instance, that an Internet directory maintainer

D1998 Ty xML HANDBOOKT

465

466 CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

like Yzhoo™ decides to write a robot ! that will automatically extract the
first section title of every document indexed by the directory. The difficulty
is that different DTDs will have different element-type names for titles,
HTML-like DTDs use H1 etc. DocBook-like DTDs use title. TEI-like
DTDs use head. Even if the robot knows about these DTDs, what about a]]
of the others? There are potentially as many DTDs in existence as there are
XML documents! It is not feasible to write a robot that can understand
every document type.

The vendor needs to achieve some form of standardization. But it cannot
force everyone to conform to the same DTD: that is exactly what XML is
supposed to avoid! Instead, they can ask all document creators to label the
elements that perform the role of section titles. They could do this with an
attribute, such as title-element. The robot can then use the content of
those elements to generate its index.

Each DTD designer thinks through the list of element types to add the
attribute to. They specify what their element types mean in terms of the
indexing system understood by the robot. They may not want authors
changing the value on an element by element basis. They can prevent this

with fixed atcributes:

<!ATTLIST H1 TITLE-ELEMENT CDATA #FIXED "TITLE-ELEMENT">
<!ATTLIST HEAD TITLE-ELEMENT CDATA #FIXED "TITLE-ELEMENT">
<!ATTLIST TITLE TITLE-ELEMENT CDATA #FIXED "TITLE~ELEMENT">

Now all of the appropriate elements are marked with the attribute. No
matter what else is in the DTD, the robot can find what it is looking for.

32.6.3 Attribute types

An important feature of attributes is that attributes have #pes that can
enforce certain lexical and semantic constraints. Lexical constraints are con-
straints like “this attribute must contain only numerals”. Semantic con-
straints are along the lines of “this attribute must contain the name of a
declared entity”. These constraints tend to be very useful in making robust
DTDs and document processing systems.

However, it is vital to remember that the value of an attribute is not
necessarily the exact character string that you enter between the
quotation marks. That string first goes through a process called aztribute-

1. A robot is an automatic Web information gatherer.

©1998 THE XML HANDBOOK™

32.6 | ATTRIBUTES

valne normalization on its way to becoming the attribute value. Since
attribute types apply to the normalized value, we had better digress for a
moment to master normalization.

32631 Attribute value normalization

XML processors normalize attribute values to make author’s lives simpler. If
it were not for normalization, you would have to be very careful where you
put white space in an attribute value. For instance if you broke an attribute

value across a line:
<GRAPHIC ALTERNATE-TEXT="This is a picture of a penguin
doing the ritual mating dance">

You might do this merely becuse the text is too long for a single line in a
text editor.

This sort of thing is normalized by the XML processor. The rules for this
are a little intricate, but most times they will just do what you want them
to. Let’s look at them.

All XML attribute values are entered as quoted strings. They start and
end with either single-quotes (') or double-quotes (“"”). If you want to
embed a single-quote character into an attribute value delimited by single
quotes or a double-quote character into an attribute value delimited by
double quotes, then you must use an entity reference as described in 31.7.1,
“Predefined entities”, on page 442.

The first thing the XML parser does to prepare for normalization is to
strip off the surrounding quotes.

Then, character references are replaced by the characters that they refer-
ence. As we discussed earlier, character references allow you to easily insert
“funny” characters.

Next, general entity references are replaced. This is important to note.
While it is true that entity references are not allowed in markup, unnormal-
ized attribute values are fext — a mixture of markup and dara. After normal-
ization, only the data remains.!

If the expansion for an entity reference has another entity reference
within it, that is expanded also, and so on and so forth. This would be rare
in an entity used in an attribute value. After all, attribute values are usually

L. Philosophically, attribute values are metadata, but it is an article of faith in the
XML world that metadata is dara.

W 0 e
DLD98 THE XML HANDDOOKT

467

468 CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

very short and simple. An entity reference in an attribute value cannot be to
an external entity.

Newline characters in attribute values are replaced by spaces. If the
attribute is known to be one of the tokenized types (see below), then the
parser must further remove leading and trailing spaces. So “ token >
becomes “token”. It also collapses multiple spaces between tokens into a
single space, so that “space between” would become “space between”. The
distinction between wunnormalized attribute value text and normalized
attribute value data trips up even the experts. Remember, when reading
about attribute types, that they apply to the normalized data, not the
unnormalized text.

32632 CDATA and name token attributes

The simplest type of attribute is a CDATA attribute. The CDATA stands
for “character data”. The declaration for such an attribute looks like this:

Example 32-15. CDATA Attributes
<!DOCTYPE ARTICLE[

<!ELEMENT ARTICLE>

<!ATTLIST ARTICLE DATE CDATA #REQUIRED>

1>
<ARTICLE DATE="January 15, 1999">

</ARTICLE>

Character data attribute values can be any string of characters. Basically
anything else is legal in this type of attribute value.

Name token (NMTOKEN) attributes are somewhat like cDATA attributes.
The biggest difference is that they are restricted in the characters that name
tokens allow. Name tokens were described in 31.1.4, “Names and name
tokens”, on page 428. To refresh your memory, they are strings made up of

1. If, in other words, attribute-list declarations were provided and the processor
is either a validating processor or a non-validating processor that decides to
read them.

©1998 THE XML HANDBOOK™

32.6 | ATTRIBUTLS
Jetters, numbers and a select group of special characters: period (*.”), dash

(“-7), underscore (“_") and colon (*:7).

Example 32-16. Name token attribute type
TTDOCTYPE PARTS-LIST[

&, ATTLIST PART DATE NMTOKEN #REQUIRED>

i
<PARTS-LIST>

_PART DATE="1998-05-04">. . .</PART>

</PARTS-LIST>

1>

An empty string is not a valid name token, whereas it would be a valid
CDATA attribute value.

Name tokens can be used to allow an attribute to contain numbers that
need special characters. They allow the dash, which can be used as a minus
sign, the period, which can be a decimal point, and numbers. These are use-
ful for fractional and negative numbers. You can also use alphabetic charac-
ters to specify units.

Name tokens can also be used for naming things. This is similar to how
you might use variable names in a programming language. For instance, if
you used XML to describe the structure of a database, you might use name
‘tokens to name and refer to fields and tables. The restrictions on the name
‘token attribute type would prevent most of the characters that would be
illegal in field and table names (spaces, most forms of puncutation, etc.). If
there is a reason that all fields or record names must be unique, then you
would instead use the 7D attribute type discussed in 32.6.3.4, “ID and
IDRETF attributes”, on page 470.

[f it is appropriate to have more than one name token, then you can use
the NMTOKENS attribute type which stands for “name tokens”. For instance
in describing a database:

~ One other difference between cpata attributes and NMTOKEN attributes is
n their normalization. This was discussed in 32.6.3.1, “Attribute value nor-
malization”, on page 467.

@15’5’8 THE XML HANDBOOE ™

469

470 CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

Example 32-17. Name tokens attribute type
<!DOCTYPE DATABASE [-

<!ELEMENT TABLE EMPTY>
<!ATTLIST TABLE NAME NMTOKEN #REQUIRED
FIELDS NMTOKENS #REQUIRED>
1>
<DATABASE>
<TABLE NAME="SECURITY" FIELDS="USERID PASSWORD DEPARTMENT">

</DATABASE>

32.633 [Enumerated and notation attributes

Sometimes as a DTD designer you want to create an attribute that can only
exhibit one of a short list of values: “small/medium/large”, “fast/slow”;
“north/south/east/west”. Enumerated attvibute types allow this. In a sense,
they provide a choice or menu of options.

The syntax is reminiscent of choice lists in element type declarations:
<IATTLIST CHOICE (OPTIONI|OPTION2|OPTION3) #REQUIRED>

You may provide as many choices as you like. Each choice is an XML
name token and must meet the syntactic requirements of name tokens
described in 31.1.4, “Names and name tokens”, on page 428.

There is another related attribute type called a notation attribute. This
attribute allows the author to declare that the element’s content conforms
to a declared notation. Here is an example involving several ways of repre-
senting dates:
<IATTLIST DATE NOTATION (EUROPEAN-DATE|US-DATE|ISO-DATE) #REQUIRED>

In a valid document, each notation allowed must also be declared with a
notation declaration.

32634 |D and IDREF attributes

Sometimes it is important to be able to give a name to a particular occur-
rence of an element type. For instance, to make a simple hypertext link or
cross-reference from one element to another, you can name a particular sec-
tion or figure. Later, you can refer to it by its name. The target element is

©1998 THE XML HANDBOOK™

32.6 | ATTRIBUTES
labeled with an /D attribute. The other element refers to it with an /DREF

actribute. This is shown in Example 32-18

Example 32-18. ID and IDREF used for cross-referencing
ZTDOCTYPE BOOK [

. |ELEMENT SECTION (TITLE, P*)>

| ATTLIST SECTION MY-ID ID #IMPLIED>

_|ELEMENT CROSS-REFERENCE EMPTY>

< IATTLIST CROSS-REFERENCE TARGET IDREF #REQUIRED>
#ele

1>

<BOOK>

o

<SECTION MY-ID="Why.XML.Rocks"><TITLE>Features of XML</TITLE>

</SECTION>

Wiaiis
Tf you want to recall why XML is so great, please see
the section titled <CROSS-REFERENCE TARGET="Why.XML.Rocks"/>.

< /BOOK>
T

The style sheet would instruct browsers and formatters to replace the
cross-reference element with the name of the section. This would probably
be italicized and hyperlinked or labeled with a page number if appropriate.

Note that we made the section’s My-1D optional. Some sections will not
need to be the target of a cross-reference, hypertext link or other reference
and will not need to be uniquely identified. The TaARGET attribute on
ROSS-REFERENCE is required. It does not make sense to have a cross-refer-
ence that does not actually refer to another element.
~ IDs are XML names, with all of the constraints described in 31.1.4,
“Names and name tokens”, on page 428. Every element can have at most
one ID, and thus only one attribute per element type be an 10 attribute. All
IDs specified in an XML document must be unique. A document with two
ID attributes whose values are the same is invalid. Thus “chapter” would not
be a good name for an 1D, because it would make sense to use it in many
places. “introduction.chapter” would be a logical ID because it would
uniquely identify a particular chapter.

: IDREF attributes must refer to an element in the document. You may
have as many [DREFs referring to a single element as you need. It is also

(:7 4 L\
P08 THE XML HanpBboo K™

471

472

CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

possible to declare an attribute that can potentially exhibit more than one
IDREF by declaring it to be of type IDREFS:
<IATTLIST RELATED-CHAPTERS TARGETS IDREFS #REQUIRED>

Now the TARGETS attribute may have one or more IDREFs as its valye,
There is no way to use XML to require that an attribute take two or more,
or three or more, (etc.) IDREFs. You will recall that we could do that sort
of thing using content models in element type declarations. There is ng
such thing as a content model for attributes. You could model this same si¢-
uation by declaring RELATED-CHAPTERS to have content of one or more or
two or more (ctc.) CHAPTER-REF elements that each have a single Tprer
attribute (named TARGET in this example):

Example 32-19. IDREF attributes
<!DOCTYPE BOOK][

<!ELEMENT RELATED-CHAPTERS (CHAPTER-REF+)>
<!ELEMENT CHAPTER-REF EMPTY>
<!ATTLIST CHAPTER-REF TARGET IDREF #REQUIRED>

13
<BOOK>

<RELATED~CHAPTERS>

<CHAPTER-REF TARGET="introduction.to.xml">
<CHAPTER-REF TARGET="xml.rocks">
</RELATED-CHAPTERS>

</BOOK>

As you can see, element type declarations have the benefit of having con-
tent models, which can define complex structures, and attributes have the
benefit of attribute types, which can enforce lexical and semantic con-
straints. You can combine these strengths to make intricate structures when
this is appropriate.

32635 ENTITY attributes

External unparsed entities are XMLs way of referring to objects (files, CGIl
script output, etc.) on the Web that should not be parsed according to
XMTs rules. Anything from HTML documents to pictures to word proces-

©1998 Tue XML HANDBOOK™

32.6 | ATTRIBUTES

sor files fall into this category. It is possible to refer to unparsed entities
using an attribute with declared type ENTITY. This is typically done either
o hypcrlink to, reference or include an external object:

Example 32-20. Entity atiribute type
“{BOCTYPE ARTICLE [
L {ATTLIST BOOK-REF TARGET ENTITY #REQUIRED>

PR

<IENTITY another-book SYSTEM
"hittp://www.buyOurBooks.com/TheOtherBook.html ">

1><BOOK>
;BOOK—REF target="another-book">

</BOOI>

You can also declare an attribute to be of type ENTITIES, in which case
its value may be the name of more than one entity. It is up to the applica-
tion or stylesheet to determine whether a reference to the entity should be
treated as a hot link, embed link or some other kind of link. The processor
‘merely informs the application of the existence and notation of the entity.
You can find information on unparsed entities and notations in Chapter
33, “Entities: Breaking up is easy to do”, on page 476 and 32.7, “Notation
Declarations”, on page 474.

3263.6 Summary of attribute types

There are two enumerated acwribute types: enumeration actributes and
NOTATTON attributes.

Seven attribute types are known as tokenized types because cach value

tepresents cither a single token (ID, IDREF, ENTITY, NMTOKEN) or a list of
tokens (TDREFS, ENTTTIES, and NMTOKENS).

The final type is the coaTa string type which is the least constrained and
can hold any combination of XML characters as long as “special characters”
(the quote characters and ampersand) are properly entered.

DIO9E Thy XML Mawphook™

473

474 CHAPTER 32 | CREATING A DOCUMENT TYPE DEFINITION

Table 32-3 Summary of attribute types

Type Lexical constraint Semantic constraint

CDATA None None

Enumeration Nmtoken Must be in the declared list.

NOTATION Name Must be in the declared list and 3
declared notation name.

ID Name Must be unique in document.

IDREF Name Must be some element’s ID.

IDREFS Names Must each be some element’s ID.

ENTITY Name Must be a declared entity name.

ENTITIES Names Must each be a declared entity name.

NMTOKEN Name Token None
NMTOKENs Name Tokens None

32,7 | Notation Declarations

Notations are referred to in various parts of an XML document, for describ-
ing the data content notation of different things. A data content notation is
the definition of how the bits and bytes of class of object should be inter-
preted. According to this definition, XML is a data content notation,
because it defines how the bits and bytes of XML documents should be
interpreted. Your favorite word processor also has a data content notation.
The notation declaration gives an internal name to an existing notation so
that it can be referred to in attribute list declarations, unparsed entity decla-
rations, and processing instructions.

The most obvious place that an XML document would want to describe
the notation of a data object is in a reference to some other resource on the
web. It could be an embedded graphic, an MPEG movie that is the target of
a hyperlink, or anything else. The XML facility for linking to these data
resources is the entity declaration, and as we discussed earlier, they are
referred to as unparsed entities. Part of the declaration of an unparsed entity
is the name of a declared notation that provides some form of pointer to the

©1998 THE XML HanDBOOK™

32.7 | NOTATION DECLARATIONS 4575

external definition of the notation. The external definition could be a pub-
lic or system identifier for documentation on the notation, some formal
specification or a helper application that can handle objects represented in

the notation.

Example 32-21. Notations for unparsed entities

ZINOTATION HTML SYSTEM "http: / /www . w3 ., org/Markup">
<INOTATION GIF SYSTEM "gifmagic.exe">

—

Another place that notations arise are in the notation attribute type. You
use this attribute type when you want to express the notation for the data
content of an XML element. For instance, if you had a date element that
used ISO or EU date formats, you could declare notations for each format:

Example 32-22. Notations for unparsed entities

<INOTATION ISODATE PUBLIC +//APPROPRIATLE-IDENTIFIER-HERE//>
<!NOTATION EUDATE PUBLIC +//APPROPRIATE-IDENTIFIER-HERE//>

< | ELEMENT TODAY (#PCDATA) >

<IATTLIST TODAY DATE-FORMAT NOTATION (ISODATEIEUDATE) #REQUIRED>

Now the DATE-FORMAT attribute would be restricted to those two
values, and would thus signal to the application that the content of the
TODAY element conforms to one or the other.

Finally, notations can be used to give XML names to the targets for pro-
cessing instructions. This is not strictly required by XML, but it is a good
practice because it provides a sort of documentation for the PI and could
even be used by an application to invoke the target.

This seems like a good way to close this chapter. DTDs are about
[improving the permanence, longevity, and wide reuse of your data, and the
predictability and reliability of its processing. If you use them wisely, they
will save you time and money.

l

Tip Learning the syntax of markup declarations so that you
can write DTDs is important, but learning how to choose the right
element types and attributes for a job is a subtle process that
requires a book of its own.We suggest David Megginson's
Structuring XML Documents, also in this series (ISBN 0-13-
642299-3).

- .
O0998 Thr XML HANDBOOKT™

Entities:

Breaking up is

easy to do

B Parameter and general
B Internal and external

B Parsed and unparsed

©1998 THE

OOOOOOOOO

Chapter

ML allows flexible organization of document text. The XML
constructs that provide this flexibility are called entities. They
allow a document to be broken up into multiple storage

33.1 | Overview

In simple cases, an entity is like an abbreviation in that it is used as a short
form for some text. We call the “abbreviation” the entity name and the long
form the entity content, That content could be as short as a character or as
long as a chapter. For instance, in an XML document, the entity dtd could
have the phrase “document type definition” as its content. Using a reference
to that entity is like using the word DTD as an abbreviation for that phrase
— the parser replaces the reference with the content.
. You create the entity with an entity declararion. Here is an entity declara-
tion for an abbreviation:

Entities can be much more than just abbreviations. There are several dif-
ferent kinds of entities with different uses. We will first introduce the ditfer-

© TR W "
©L998 THE XML HaANDBOOK™ 477

478 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

Example 33-1. Entity used as an abbreviation
<!ENTITY dtd "document type definition">

—_—
——

ent variants in this overview and then come back and describe them more
precisely in the rest of the chapter. We approach the topic in this way
because we cannot discuss the various types of entity entirely linearly. Our
first pass will acquaint you with the major types and the second one will tie
them together and provide the information you need to actually use them.

Another way to think of an entity is as a box with a label. The label is the
entity’s name. The content of the box is some sort of text or data. The entity
declaration creates the box and sticks on a label with the name. Sometimes
the box holds XML text that is going to be parsed (interpreted according to
the rules of the XML notation), and sometimes it holds data, which should
not be.

If the content of an entity is XML text that the processor should parse,
the XML spec calls it a parsed entity. The name is badly chosen because it is,
in fact, unparsed; it will be parsed only if and when it is actually used.

If the content of an entity is data that is not to be parsed, the XML spec
calls it an unparsed entity. This name isn’t so great either because, as we just
pointed out, an XML text entity is also unparsed.

We'll try to minimize the confusion and to avoid saying things like “a
parsed entity will be parsed by the XML parser”. But we sure wish they had
named them “text entity” and “data entity”.

The abbreviation in Example 33-1 is a parsed entity. Parsed entities,
being XML text, can also contain markup. Here is a declaration for a parsed
entity with some markup in it:

Example 33-2. Parsed entity with markup

<!ENTITY dtd "<term>document type definition</term>">

The processor can also fetch content from somewhere on the Web and
put that into the box. This is an external entity. For instance, it could fetch
a chapter of a book and put it into an entity. This would allow you to reuse
the chapter between books. Another benefit is that you could edit the chap-
ter separately with a sufficiently intelligent editor. This would be very useful
if you were working on a team project and wanted different people to work
on different parts of a document at once.

©1998 THE XML HANDBOOK™

33.1 | OVERVIEW

Example 33-3. External entity declaration
ZIENTITY intro-chapter SYSTEM "http://www.megacorp.com/intro.xml">

———

Entities also allow you to edit very large documents without running out
of memory. Depending on your software and needs, either each volume or
even each article in an encyclopedia could be an entity.

An author or DTD designer refers to an entity through an entity refer-
ence. The XML processor replaces the reference by the content, as if it were
an abbreviation and the content was the expanded phrase. This process is
called inclusion. After the operation we say either that the entity reference
has been replaced by the entity content or that the entity content has been
included. Which you would use depends on whether you are talking from
the point of view of the entity reference or the entity content. The content
of parscd entities is called their replacement text.

Here is an example of a parsed entity declaration and its associated refer-

ence:

Examplc 33-4. Intity Declaration
<1 DOCTYPE MAGAZINE [

AN
"<IENTITY title "Hacker Life">
Niea
>
<MAGAZINE>

<DITLE>&title; </TITLE>

Wi

<P>Welcome to the introductory issue of &title;. &title; is
geared to today's modern hacker.

AGAZINE>

Anywhere in the document instance that the entity reference “&title;”
appears, it is ,ep//zcer/ by the text “Hacker Life”. It is just as valid to say that
“Hacker Life” is included at each point where the reference occurs. The
ampersand character starts all general entity references and the semicolon

ends tt nem. 111(‘ rext betwem 1s an Cllllty name.

cc. Reference 33-1. General entity reference
EntityRef ::= '&' Name ';'

G99 g Ty NML HANDBOOEKT™

479

480

CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

We have looked at entities that can be used in the creation of XML doc-
uments. Others can only be used to create XML DTDs. The ones we have
been using all along are called general entities. They are called general enti-
ties because they can generally be used anywhere in a document. The ones
that we use to create DTDs are called paramerer entities.

We would use parameter entities for most of the same reasons that we use
general entities. We want document type definitions to share declarations
for element types, attributes and notations, just as we want documents to
share chapters and abbreviations. For instance many DTDs in an organiza-
tion might share the same definition for a paragraph element type named
para. The declaration for that element type could be bundled up with other
common DTD components and used in document type definitions for
memos, letters and reports. Each DTD would include the element type
declaration by means of a parameter entity reference.

Unparsed entities are for holding data such as images or molecular mod-
els in some data object notation. The application does not expect the pro-
cessor to parse that information because it is not XML text.

Although it is an oversimplification, it may be helpful in your mind to
remember that unparsed entities are often used for pictures and parsed enti-
ties are usually used for character text. You would include a picture through
an unparsed entity, since picture representations do not (usually!) conform
to the XML specification. Of course there are many kinds of non-XML
data other than graphics, but if you can at least remember that unparsed
entities are used for graphics then you will remember the rest also.

Example 33-5. Unparsed entity declaration
<!ENTITY picture SYSTEM "http://www.home.org/mycat.gif" NDATA GIF>

We use unparsed entities through an entity attribute. A processor does
not expand an entity attribute, but it tells the application that the use
occurred. The application can then do something with it. For instance, if
the application is a Web browser, and the entity contains a graphic, it could
display the graphic. Entity attributes are covered in 32.6.3.5, “ENTITY
attributes”, on page 472.

©1998 THE XML HANDBOOK™

33.2 | ENTITY DETAILS

33,1 | Entity details

Caution Like other names in XML, entity names are case-
sensitive: &charles; refers to a different entity from &Charles;.

It is good that XML entity names are case-sensitive because they are often
used to name letters. Case is a convenient way of distinguishing the upper-
case version of a letter from the lower-case one. “Sigma” would represent
the upper-case version of the Greek letter, and “sigma” would be the lower-
case version of it. It would be possible to use some other convention to dif-
ferentiate the upper- and lower-case versions, such as prefixes. That would
give us “uc-Sigma” and “lc-Sigma”.

Entities may be declared more than once, but only the first declaration is
binding. All subsequent ones are ignored as if they did not exist.

<IENTITY abc "abcdefghijklmnopgrst'> <!-- This is binding. --»>
<IENTITY abc "ABCDEFGHIJKLMNOPQRST"> <!-- This is ignored. -->
<IENTITY abc "AbCAELGhIjKIMnOpQrSt"> <l-- So ig this. i

Declarations in the internal DTD subset are processed before those in
the external subset, as described in Chapter 32, “Creating a document type
definition 7, on page 448. In practice, document authors can override
‘parameter entities in the external subset of the DTD by declaring entities of
the same name in the internal subset.

Entities are not difficult to use, but there are several variations and details
that you should be aware of. We have already covered the major varieties,
but only informally.

There is one special entity, called the document entity which is not
declared, does not have a name and cannot be referenced. The document
entity is the entity in which the processor started the current parse. Imagine
you download a Web document called catalog.xml. Before a browser can
display ic, it must start to parse it, which makes it the document entity. It
may include other entities, but because parsing started with catalog.xml,
thO% others are not the document entity. They are just ordinary external
entities,

- Ifyou click on a link and go to another XML Web page, then the proces-
SOr must parse that page before it can display it. That page is the document
entity for the new parse. In other words, even the simplest XML document

e
@ e
TUV9S v XM L HANDBOORT™

481

482 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

has at least one entity: the document entity. The processor starts parsing the
document in the document entity and it also must finish there.!

The document entity is also the entity in which the XML declaration
and document type declaration can occur.

You may think it is strange for us to call this an entity when it is not
declared as such, but if we were talking about files, it would probably not
surprise you. It is common in many computer languages to have files that
include other files. Even word processors allow this. We will often use the
word entity to refer to a concept analogous to what you would think of as a
file, although entities are more flexible. Entities are just “bundles of infor-
mation”. They could reside in databases, zip files, or be created on the fly by
a computer program.

33.3 | Classifications of entities

There are many interesting things that you can do with entities. Here are
some examples:

® You could store every chapter of a book in a separate file and
link them together as entities.

m You could “factor out” often-reused text, such as a product
name, into an entity so that it is consistently spelled and
displayed throughout the document.

® You could update the product name entity to reflect a new
version. The change would be instantly visible anywhere the
entity was used.

m You could create an entity that would represent “legal
boilerplate” text (such as a software license) and reuse that
entity in many different documents.

® You could integrate pictures and multimedia objects into your
document.

m You could develop “document type definition components”
that could be used in many document type definitions. These
would allow you to reuse the declarations for common

1. To put it mystically: it is the alpha and the omega of entities.

©1998 THE XML HANDBOOK™

33.4 | INTERNAL GENLRAL ENTITIES

clement types (such as paragraph and emphasis) across several
document types.

Because XML entities can do so many things, there are several different
varieties of them. But XML entities do not break down into six or eight dif-
ferent types with simple names. Rather, you could think of each entity as
having three properties that define its type. This is analogous to the way
that a person could be tall or short and at the same time male or female and
blonde or brunette.

| Similarly, entities can be internal or external, parsed or unparsed and gen-
eral or parameter. There is no single word for a short, male, brunette, and
there is similarly no single word for an internal, parsed, parameter entity.

Caution Some combinations of entity types are impossible.
Obviously an entity cannot be both internal and external, just as a
person could not be both blonde and brunette. It turns out that
due to restrictions on unparsed entities, there are five
combinations that are valid and three that are not.

Most of the rest of this chapter will describe the five types of entities in
greater depth. We will use one convention that might be confusing without
this note. In a section on, for instance, internal parsed general entities, we
may describe a constraint or feature of all general entities. When we do so,
we will use the word “general entity” instead of “internal general entity”.
This convention will allow us to avoid repeating text that is common
among cntity types. We will refer back to that text from other sections
when it becomes relevant.

33.4 | Internal gmlemﬂ entities

Internal parsed general entitics are the simplest itype of entity. They are
essentially abbreviations defined completely in the document type declara-
ton section of the XML document.

RURO S Ty XML Manpsoo ™

483

484 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

All internal general entities are parsed entities. This means that the XML,
processor parses them like any other XML text. Hence we will leave out the
redundant word “parsed” and refer to them simply as internal general entities,

The content for an internal general entity is specified by a string literal
after the entity’s name. The string literal may contain any markup, includ-
ing references to other entities. An example is in Example 33-6.

Example 33-6. Internal general entity

<?xml version="1.0"?>
<!DOCTYPE EXAMPLE SYSTEM "example.dtd"|[
<!ENTITY xml "Extensible Markup Language">
1>
<EXAMPLE>
&xml ;
</EXAMPLE>

Internal general entities can be referenced anywhere in a document
instance. They can also be referenced in the content of another general
entity. Because they are general entities, they cannot be used to hold
markup declarations for expansion in the DTD. They can only hold docu-
ment content. Because of this, Example 33-7 is not well-formed.

Example 33-7. Illegal: General entities cannot be reference in the DTD
<?xml version="1.0"?>
<!DOCTYPE EXAMPLE [
<!ENTITY xml "Extensible Markup Language">
&xml ;
1>

The grammar rules for internal general entities are described in Specifica-
tion reference 33-2.

Spec. Reference 33-2. Internal general entities

[{70] EntityDecl ::= GEDecl | PEDecl

[71] GEDecl ::= '<!ENTITY' S Name S EntityDef S? '>'

[73] EntityDef ::= EntityValue | (ExternallD NDataDecl?)

[9] EntityValue ::= '"' (["“%&"] | PEReference | Reference)* '"'
| "'" ({~%&'] | PEReference | Reference)* "'"

©1998 THE XML HANDBOOK™

33.5 | EXTERNAL PARSED GENERAL ENTITIES
33.5 | External parsed general entities

Every XML entity is cither internal or external. The content of internal
entities occurs right in the entity declarations. External entities get their
content from somewhere else in the system. It might be another file on the
hard disk, a Web page or an object in a database. Wherever it is, it is locared
through an external identifier. Usually this is just the word sysrmm followed
by a URI (see 34.4, “Uniform Resource Identifier (URI)”, on page 512).

In this section, we are interested specifically in external parsed general
entities. Here is an example of such an entity:
<{ENTITY ent SYSTEM "http://www.house.gov/Constitution.xml">

It is the keyword sysTeM that tells the processor that the next thing in the
declaration is a URIL The processor gets the entity’s content from that URL
The combination of svsTemM and the URI is called an external identifier
because it identifies an external resource to the processor. There is another
kind of external identifier called a puBLIC identifier. Tt is denoted by the
keyword puBLIC. External identifiers are described in 33.9, “External iden-
tifiers”, on page 494

External parsed general entities can be referenced in the same places that
internal general entities can be — the document instance and the replace-
ment text of other general entities — except not in the value of an attribute.

33.5.1 External parsed entity support is
optional

XML processors are allowed, but not required, to validate an XML docu-
ment when they parse it. The XML specification allows a processor that is
not validating a document to completely ignore declarations of external
parsed entities (both parameter and general). There is no way to control this
behavior with the standalone document declaration or any other XML
‘markup.

- The reason for this is improved Web surfing performance. The XML
~working group thought that it was important for processors to be able to
download the minimum amount of data required to do their job and no
more. For instance, a browser could display unresolved external parsed enti-
ties as hypertext links that the user could click on to receive. Because the

D998 Ty XML HANDBOOK ™

485

86 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

entity would only be downloaded on demand, the original page might dis-
play faster.

Unfortunately this is very inconvenient for authors, because it means
that external parsed entities are essentially unreliable in systems that you do
not completely control (e.g. the Internet vs. an intranet).

"1 Caution External parsed entity processing is optional
3 P j:' XML processors can ignore external parsed entities. If you use
. them to store parts of your documents, those parts will only show
» ‘,’ up at the browser vendor's option.

In practice this probably means that you should not put documents that
use external entities on the Web until a pattern for browser behavior
emerges. In the meantime, tools like James Clark’s sgmlnorm (part of SP)
(see 400) can read an XML document that uses external entities and expand
all of the entities for you. Hopefully future versions of the XML specifica-
tion will make external entity inclusion mandatory.

33.6 | Unparsed entities

Every XML entity is either an wunparsed<> entity or a parsed<> entity.
Unparsed entities external entities that the XML processor does not have to
parse. For example a graphic, sound, movie or other multimedia object
would be included through an unparsed entity. You can imagine the num-
ber of error messages you would get if an XML processor tried to interpret a
graphic as if it were made up of XML text!

It is occasionally useful to refer to an XML document through an
unparsed entity, as if it were in some unparsable representation. You might
embed a complete letter document in a magazine document in this way.
Rather than extending the magazine DTD to include letter elements, you
would refer to it as an unparsed entity. Conceptually, it would be handled
in the same way a picture of the letter would be handled. If you refer to it as
an unparsed entity, the processor that handles the magazine does not care

that the letter is actually XML.

©1998 THE XML HANDBOOK™

%%, 7 l INTERNAL AND EXTERNAL PARAMETER ENTITIES

All unparsed entities are external entities because there is no way to
ypress non-XML information in XML entities. They are also all general
ntities because it is forbiddent (and senseless) to embed data in XML
YT'Ds. Hence, the term “unparsed entity” implies the terms “general” and
external .

Syntactically, declarations of unparsed entities are differentiated from
hose of other external entities by the keyword NpaATA followed by a notation

jame.

ppec. Reference 33-3. Non-XML data declaration
Databecl ::= S 'NDATA' S Name

The name at the end is the name of a declared notation. Notation decla-
ations are described in 32.7, “Notation Declarations”, on page 474. The
yrocessor passes this to the application as a hint about how the application
hould approach the entity.

If the application knows how to deal with that sort of entity (for instance
fit is a common graphics notation) then it could do so directly. A browser
night embed a rendition of the entity. It might also make a hyperlink to the
ntity. If it needs to download or install some other handler such as a Java
rogram or Active-X control, then it could do so. If it needs to ask the user
vhat to do it could do that also. The XMI. specification does not say what
t must do. XML only expects processors to tell applications what the
leclared notation is and the applications must figure out the rest.

In the rare case that the entity is an XML document, the application
night decide to process it, create a rendition of it, and then embed it. Alter-
atively, it might decide to make a hyperlink to it.

3.7 | Internal and external parameter
entities

XML entities are classified according to whether they can be used in the
OTD or in the document instance. Entities that can only be used in the
ITD are called parameter entities. For instance, you might want to wrap

YO8 THE XML HaNDBOO K™

487

488 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

up a few declarations for mathematical formuale element types and reuse
the declarations from DTD to DTD.

The other entities can be used more generally (throughout the entire
document instance), and are called general entities. Authors can use general
entities as abbreviations, for sharing data among documents, including pic-
tures, and many similar tasks.

There is an important reason why the two types are differentiated. When
authors create documents, they want to be able to choose entity names
without worrying about accidently choosing a name that was already used
by the DTD designer. If there were no distinction between entities specific
to the DTD and general to the document instance, according to XML
rules, the first declaration would win. That means that either the author
would accidently take the place of (“clobber”) a declaration that was meant
to be used in the DTD, and thus trigger a cryptic error message, or the
DTD designer’s entity would clobber the entity that was meant to go in the
document instance, and a seemingly random string of DTD-text would
appear in the middle of the document! XML prevents this by having two
different types of entities with distinct syntaxes for declaration and use.

Parameter entities are distinguished from general entity declarations by a
single percent symbol in their declaration, and by a different syntax in their
use. Here is an example of a parameter entity declaration and use

Example 33-8. Parameter entity
<!DOCTYPE EXAMPLE [

<!-- parameter entity declaration -->

<!ENTITY % example-entity "<!ELEMENT EXAMPLE (#PCDATA)>">
<!l-~ parameter entity use -->

$example-entity;

1>

<EXAMPLE>

</EXAMPLE>

The entity in Example 33-8 is declared with a syntax similar to that of
general entities, but it has a percent sign between the string <!ENTITY and
the entity’s name. This is what differentiates parameter entity declarations
from general entity declarations. If you want a general entity you just leave
the percent character out.

The entity contains a complete element type declaration. It is referenced
on the line after it is declared. Parameter entity references start with the per-

©1998 THE XML HANDBOOK™

38.7 l INTERNAL AND EXTERNAL PARAMETER ENTITILS

cent-sign and end with the semicolon. The parser replaces the entity refer-
ence with the entity’s content. In Example 33-8, the processor replaces the
reference with the element type declaration “<!ELEMENT EXAMPLE
(#PCDATA)>". It then parses and interprets the element type declaration
as if it had occurred there originally. The element type is declared and so the
example is valid.

Spec. Reference 33-4. Parameter Entity Declaration

"ﬁjﬂ PEDecl ::= '<IDENTITY' S '$' S Name S PEDef S? '>!
[74] PEDef ::= Entityvalue | ExternallD
[75) pxternallID ::= 'SYSTEM' S SystemLiteral

| 'PUBLIC' S PubidLiteral S SystemLiteral
[69] PEReference ::= '%' Name ';'

Parameter entities can be external, just as general entities can be. But
they can never be unparsed. Parameter entities exist to provide building
blocks for reusing markup declarations and making ID’I'Ds more flexible. It
would not make sense to tell the XML processor not to process one! An
example of an external parameter entity is in Example 33-9.

Example 33-9. External parameter entity
< | DOCTYPE LXAMPLE [
<!-- parameter entity declaration -->
<IENTITY % example-entity SYSTEM "pictures.ent">
<!-- parameter entity use -->
Sexanple-entity;
1>
<EXAMPI E>
</EXAMPLE>

Parameter entities cannot be referenced in the document instance. In
fact, the percent character is not special in the document instance, so if you
try to reference a parameter entity in the instance, you will just get the
entity reference text in your data, like “%this;”.

- Parameter entities can only be referenced after they have been declared.
General entities, in contrast, may be referenced before they are declared:

This works because the entity replacement for susee; does not take
place until the point where the user entity is referenced. Remember that
general entities can only be expanded in the document instance. So the fact

DR T M L HANDBGO K™

489

490 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

Example 33-10. General entity usage

<!ENTITY user "This entity uses &usee;.">
<!ENTITY usee "another entity">

that user refers to usee is recorded, but the replacement is not immediately
done. Later, in the document instance, the author will refer to the user
entity using the general entity reference, &user;. At that point, the inclu-
sion of its replacement text will trigger the expansion of the susee; entity
reference and the inclusion of its replacement text.

As you know, all entity declarations are in the DTD. The document
instance comes after the DTD. The general entity expansions do not take
place until they are referenced in the document instance, so general entity
reference expansions will always take place after all of the declarations have
been processed, no matter what the order of the general entity declarations
in the DTD. Hence, the content of general entities can contain references
to other general entities that are declared after them, but the content of
parameter entities cannot.

33.8 | Markup may not span entity
boundaries

Parsed entities may contain markup as well as character data, but elements
and other markup must not span entity boundaries. This means that a par-
ticular element may not start in one entity and end in another. If you think
of entities as boxes, then an element cannot be half in one box and half in
another. This is an example of illegal entity use:

Example 33-11. Elements spanning entity boundaries.
< !DOCTYPE EXAMPLE [

<!ENTITY start "<title>This is a">

<!ENTITY finish "title</title>">
1>

&start; &finish;

©1998 THE XML HANDBOOK™

33.8 | MARKUP MAY NOT SPAN ENTITY BOUNDARIES

This document is not well-formed. When the entity references are
replaced with their text, they create a title element. This element spans the
entities.

Other markup cannot span entities either. Declarations, comments, pro-
cessing instructions and entity references must all finish in the entity in
which they started. This applies to the document entity as much as any
other. Markup strings and elements may not start in the document entity
and finish in an included entity. This is a subtle but important rule. Docu-
ments which fail to conform are not well-formed.

In Example 33-12, entities are used in ways that are illegal. They are all
illegal because they start markup without finishing it or finish it without

starting it.

Example 33-12. Illegal entities

<IDOCTYPE TEST[
<1ENTITY illegall "This will soon be illegal">
<!ENTITY illegal2 "This will too <em'>
<IENTITY illegal3 "This will also ">

<IENTITY illegald "And so will <!-- this">

<IENTITY illegal5 "And this &too">

<l-- note that none of these are illegal yet. -->
1><TEST>
<!-- These references are all illegal -->
&illegall; <!-- Start-tag in entity with no end-tag there., ~-->
&illegal2; <!-- Start of tag in entity -->
&illegall3; <!-- End-tag in entity with no start-tag there, -->
&illegald; <!-- Comment start but no end in entity. -->
&illegal5; <!-- Entity reference starts in entity. -->
S TEST>

The entities in Example 33-13 can be used legally or illegally. They do
not necessarily represent the start or end of elements or markup, because
they do not contain the strings that are used to start a tag (“<”), comment
("<!--"), general entity reference (“&”) or other markup. Entity content is
interpreted as markup if the replacement text would be interpreted as
matkup in the same context. In other words, the processor expands the
entity and then looks for markup. If the markup it finds spans entity
boundaries, then it is illegal.

In this case, it is not the declared entities themselves that are causing the
problem, bur the fact that elements, entities and markup started in the doc-

ON998 Tur XML HANDBOOK M

491

492 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

Example 33-13. Sometimes legal entities

<?xml version="1.0"7?>

<!DOCTYPE TEST[

<!ELEMENT TEST (#PCDATA)>

<!ENTITY maybelegall "em>"> <!-- May not be part of tag -->
<!ENTITY maybelegal2 "-->"> <!-- May not be part of comment -->
<!ENTITY maybelegal3 "ph>"> <!-- May not be part of tag -->

1>

<TEST>

&maybelegall; <!-- Legal: Interpreted as character data -->
&maybelegal2; <!-- Legal: Interpreted as character data -->
&maybelegal3; <!-- Legal: Interpreted as character data -->
<gmaybelegall; <!-- Illegal: Markup (tag) spans entities -->

<!-- &maybelegal2; <!-- Ignored: entity ref ignored in comment -->
<em&maybelegal3; <!-- Illegal: Markup (tag) spans entities -->
</ TEST>

ument entity must end there, just as in any other entity. The context of an
entity reference is very important. That is what decides whether it is legal or
illegal.

This is true even of entities that hold complete tags, elements, comments,
processing instructions, character references, or entity references. Refer-
ences to those entities are legal anywhere their replacement text would be
legal. The same applies to validity (conformance to a document type defini-
tion). Example 33-14 is well-formed, but not valid, because the fully
expanded document would not be valid. Validity is covered in Chapter 32,
“Creating a document type definition ", on page 448.

Example 33-14. Well-formed but not valid

<?xml version="1.0"7?>
<! DOCTYPE TEST [
<!ELEMENT EVENT (TIME, DESCRIPTION)>
<! ELEMENT TIME (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ENTITY accident "<ERROR>Error</ERROR>">
1>
<EVENT>&accident ; </EVENT>

The document in the example is well-formed. Both the EVENT and ERROR
elements start and end in the same entity. It meets all of the other rules
required for it to be well-formed. But it is not valid, because accident’

©1998 THE XML HANDBOOK™

33.8 I MARKUP MAY NOT SPAN ENTITY BOUNDARIES

replacement text consists of an ERROR element which is not valid where the
entity is referenced. (in the EVENT element).
Conceptually, validation occurs after all entities have been parsed.

Spec. Reference 33-5. General entity definition

W’EntityDecl ::= GEDecl | PEDecl

[711] GEDecl ::= '<!ENTITY' S Name S EntityDef S? '>'
(731 EntityDef ::= EntityValue | (ExternallD NDataDecl?)
(721 PEDecl ::= '<!ENTITY' S '$' S Name S PEDef S? '>'
(74] PEDef ::= Entityvalue | ExternallD

—

33.8.1 Legal parameter entity reference

Neither general entities nor parameter entities may span markup bound-
aries, but parameter entities have other restrictions on them. There are pre-
cise places that parameter entity references are allowed. Within the internal
subset, the rules are simple: parameter entities can only be expanded in
places where full markup declarations are allowed. For them to be legal in
these contexts they must always contain one or more markup declarations.

Ex mple 33-15. Multiple markup declarations in one parameter entity

<IENTITY % several-declarations

¢ "<!ELEMENT FOO (#PCDATA)>
<!ELEMENT BAR (#PCDATA)>
<!ELEMENT BAZ (#PCDATA)>"
‘tseveral-declarations;

Because of the way XML handles white space, this entity declaration’s
replacement text is parsed as it would if the entity declaration had occurred
on a single line. In this case we have defined the literal entity value over sev-
eral lines to make the DTD more readable. When we refer to the parameter
entity “several-declarations”, the three element types are declared.

The rules for parameter entities in the external subset are much more
complex. This is because parameter entities in the external subset are not
restricted to complete markup declarations. They can also be parts of a
markup declaration. XML restricts parameter entities in the internal subset
0 full declarations because the internal subset is supposed to be very easy to
Process quickly by browsers and other processors. The external subset

BUPO8 THp XML Hanosook™

493

494 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

allows more complex, powerful parameter entity references. For instance, in
the external subset, this would be a legal series of declarations:

Example 33-16. Entities in the external subset
<!ENTITY ent-name "the-entity">

<!ENTITY ent-value "This is the entity">
<!ENTITY $%$ent-name; %ent-value;>

Both the name and the replacement text of the final entity declaration
are specified through parameter entity references. Their replacement texts
become the entity’s name and replacement text.

The tricky part is that there are only particular places that you can use
parameter entity references in markup declarations. You might wonder, for
instance, if you could replace the string “<!ENTITY” with a parameter
entity reference. You might guess that this is impossible because XML does
not allow a markup declaration to start in one entity and end in another.
You would guess correctly. It would be harder to guess whether you could
use an entity reference to fill in the string “ENTITY” which follows the “<!”
It turns out that this is illegal as well.

To be safe, we would advise you to stick to using parameter entities only
to hold full markup declarations until you are familiar with the text of the
XML specification itself. The specification uses a special convention in the
grammar to describe the places that parameter entity replacement is allowed
in the external subset. There are just too many places for us to list them
here.

33.9 | External identifiers

External identifiers refer to information outside the entity in which they
occur. There are two types. System identifiers use URIs to refer to an object
based on its location. Public identifiers use a publicly declared name to refer
to information.

Spec. Reference 33-6. External identifier

[75] ExternalID ::= 'SYSTEM' S SystemLiteral
| 'PUBLIC' S PubidLiteral S SystemLiteral

©1998 THE XML HANDBOOK™

33.9 | EXTERNAL IDENTIFIERS

33.0.1 System identifiers

The SystemLiteral that follows the keyword sysTmm is just a URIL Here is
another example of that:
C1ENTITY ent SYSTEM "http://www. entities.com/ent.xml">

You can also use relative URIs to refer to entities on the same machine as
the referring entity. A relative URI is one that does not contain a complete
machine name and path. The machine name and part of the path are
implied from the context.

Example 33-17. Local external general entity

ZIENTITY local SYSTEM "local.xml">

If this were declared in a document at the URI http: //www.baz.org/,
then the processor would fetch the replacement text from http://
www.baz.org/local .xml.

These URIs are relative to the location of the referring entity (such as an
external parameter entity or the external subset of the DTD) and not neces-
sarily to the document entity. If your document entity is on one machine,
and it includes some markup declarations from another machine, relative
URIs in the included declarations are interpreted as being on the second
machine.

For example, your document might be at http://www.myhome.com. It
might include a DTD component with a set of pictures of playing cards
from http://www.poker.com/cards.dtd. If that DTD component had a
URI, 4Heartss.gif, it would be interpreted relative to the poker site, not
yours.

3391 Public identifiers

It is also possible to refer to a DTD component or any entity by a name, in
addition to a URL This name is called a “public identifier”. If a few entities
become widely used in XML circles then it would be inefficient for every-
one to fetch the entities from the same servers. Instead, their software
should come with those entities already installed (or else it should know the
most efficient site from which to download them, perhaps from a corporate

O1998 THr XML HANDBOOK ™

495

496 CHAPTER 33 | ENTITIES: BREAKING UP IS EASY TO DO

intranet). To enable these smarter lookup mechanisms, you would refer to

those DTDs by public identifiers, like this:

Example 33-18. Referencing a DTD by public identifier

<!DOCTYPE MEMO PUBLIC "-//SGMLSOURCE//DTD MEMO//EN"
"http://www.sgmlsource.com/dtds/memo.dtd">
<MEMO> </MEMO>

The public identifier is a unique name for the entity. It should be unique
world-wide. Usually they contain corporate or personal names to make
them more likely to be unique. If the software knows how to translate the
public identifier into a URI, it will do so. If not, it will use the system iden-
tifier.

Right now, the translation from public identifier to URI is typically
cither hard-wired into a processor or controlled through files called “entity
catalogs”. Entity catalogs list public identifiers and describe their URIs, in
the same way that phone books allow you to look up a name and find a
number. Documentation for XML software should mention the format of
the catalogs it supports, if any.

In the future there may be intranet- and Internet-wide systems that will
look up a public identifier and download the DTD from the site that is
closest to you. The Web’s designers have been promising this feature for
years and XML is ready when they deliver. In the meantime, the system
identifier following the public identifier will be used.

33.10 | Conclusion

As you can see, XML separates issues of logical structure from those of the
physical storage of the document. This means that document type designers
do not have to forsee every possible reasonable way of breaking up a docu-
ment when they design the document type. This is good, because that sort
of decision is best made by those who know their system resource limits,
bandwidth limits, editor preferences, and so forth. The document type
designer, in contrast, takes responsibility for deciding on a good structure
for the document.

©1998 THE XML HANDBOOK™

