

Merrill Communications LLC
d/b/a Merrill Corporation

Exhibit 1006 pt. 5

I DTD schemas

I Aliases

I Combining multiple schemas

I Datatypes

I
@1998 THE XML HANDBOOKTM '

I XML markup

I Document type definitions

I Linking and addressing

I Style sheets

I XML-Data

I Web Interface Definition Language (WIDL)

©199 8 TH E XML HANDBOOKTM

The
Technology

ofXML

©1998 TH E X ML HANOBOOK1M

Creating a
document type
definition

I Document type declaration

I Element type declarations

I Attribute list declarations ...______ __

©199 8 TI-lE XML HANDBOOKTM

(hapter __ _

J2.

rearing your own document type definition is like creating
ur own markup language. If you have ever chafed at the
itations of a language with a fixed set of element types,

uch as HTML, TEl or LaTeX, then you will embrace the opportu
nity to create your own language.1

We should note again that it is possible to keep a document type defini
tion completely in your head rather than writing the declarations for a
DTD. Sometimes DTD designers do that while they are testing out ideas.
Usually, though, you actually commit your ideas to declarations so that a
validating processor can help you to keep your documents consistent.

Note also that, for the present, we are maintaining the distinction, dis
cussed in 4.4.3, "Document type, DTD, and markup declarations", on
page 61, between a document type, the XML markup rules for it (DTD),
and the markup declarations that declare the DTD. Those DTD declara
tions are connected to the big kahuna of markup declarations - the docu
ment type declaration.

1. With its own set of limitations!

11!1 !998 T HE XML H A NDBO OKTh1 449

4 50 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

i t . I 1 Document type declaration

A document type declaration for a particular document might say "This
document is a concert poster." The document type definition for the docu
ment would say "A concert poster must have the following features." As an
analogy: in the world of art, you can declare yourself a practitioner of a par
ticular m ovement, or you can define the movement by writing its manifesto.

The XML spec uses the abbreviation DTD to refer to document type
definitions because we speak of them much more often than document type
declarations. The DTD defines the allowed element types, arrributes and
entities and can express some constraints on their combination.

A document that conforms to its DTD is said to be valid. Just as an
English sentence can be ungrammatical, a document can fail to conform to
its DTD and thus be invalid. That does not necessarily mean, however, that
it ceases to be an XML document. The word valid does not have its usual
meaning here. An artist can fail to uphold the principles of an artistic move
ment without ceasing to be an artist, and an XML document can violate its
DTD and yet remain a well-formed XML document.

As the document type declaration is optional, a well-formed XML docu
ment can choose not to declare conformance to any DTD at all. It cannot
then be a valid document, because it cannot be checked for conformance to
a DTD. It is not invalid, because it does not violate the constraints of a
DTD.

XML has no good word for these merely well-formed documents. Some
people call them "well-formed", but that is insufficiently precise. If the doc
ument were not well-formed, it would not be XML (by definition). Saying
that a document is well-formed does not tell us anything about its conform
ance to a DTD at all.

For this reason, we prefer the terms used by the ISO for full-SGML: type
valid, meaning "valid with respect to a document type", and non-type-valid,
the converse.

Example 32-1 is an XML document containing a document type decla
ration and document type definition for mailing labels, followed by an
instance of the document type: a single label.

The document type declaration starts on the first line and ends with
"]>".The DTD declarations are the lines starting with "<!ELEMENT". Those
are element type declarations. You can also declare attributes, entities and
notations for a DTD.

©1998 THE XML HANDBOOK™

3 2. I f) U C U M I; NT 'I' Y I' F [) E C I. A R A ' l ' I () N

.](• "2-1. XML ,locumenl: with document type lleclaration
Exam•_!P=··,;.·'::__,..-.-;-------------~:...._ __________ _
;!-oocTYPE labe l r

< ! ELE!1F.Nl.' labe l (name, street, cit:y , state, country , code)>

< !ELEMENT name (-11-PCDA'l'A) >

<!ELEMENT stree t (#PCDATA) >

< ! ELEHEN'I' ci ty (irPCDATA)>

< !ELE!1ENT state (~PCDATA) >
<!ELEMENT country (irPCDA'rA) >

<! ELEMEN'l' code (JrPCDATA) >

] ><label>
<name>Rock N . Robyn</name>

<street>Jay B i r d Sl reel</ s t r eet>

<city>Bal t imore</city>

<state>MD</state>

<country>USA</country>

<code>~3214</code>

</label>

Recall hom 3.4, "Entities: The physical structure", on page 38 that an
XML document can be broken up into separate objects for storage, called
"entities" .1 The document type d.eclaration occurs in the first (or only)
entity to be parsed, called the "document entity".

In Example 32-1, all of the DTD declarations that define the label DTD
reside within the document entity. However, the DTD could have been
partially or completely def-ined somewhere else. ln that case, the document
type declaration would contain a reference to another entity containing

those declarations.
A document type declaration with only external DTD declarations looks

like Example 32--2.

Example 32-2. Doeumen't type dcelurntiou with m.:Hernal DTD tledarations

<?xml ver.sion :..= 11 l . 0 II?>

<!DOC'l'YPE LABEL SYSTE!1 "http: //www . sgw:l sourcC'.com/dtds/l abel. dtd " >

<LABEL>

</LABEL>

They keyword SYSTEM is described more completely in 33.9.1, "System
identifiers", on page 495. For now, we will just say that it tells the processor

1. Loosely, an entity is like a file.

I~ 1 'Jl) ('; T II):, X M] . 1-lt\ N ll I~()() K (,\I

451

4 52 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

to fetch some resource containing the external information. In this case, the
external information is made up of the declarations that define the label
DTD. They should be exactly the ones we had in the original label docu
ment. The big difference is that now they can be reused in hundreds, thou
sands, or even millions of label documents. Our simple DTD could be the
basis for the largest junk mailing in history!

All document type declarations start with the string "<!DOCTYPE".
Next they have the name of an element type that is defined in the DTD.
The root element in th in ranee (described in 31.4, "Elements", on page
434) must be of th Ly pe declared in he document typed claration . If any
of the DT D declarations are stored externally, the third parr of the docu
ment type declaration must be either "SYSTEM" or "PUBLIC". We will
cover "PUBLIC" later. If it is "SYSTEM", the final part must be a URI
pointing to the external declarations. A URI is, for all practical purposes, a
URL. URis are discussed in 34.4, "Uniform Resource Identifier (URI)", on
page 512.

Spec. Reference 32-1. DOCTYPE declaration
[28] doctypedecl : : = '<!DOCTYPE' S Name (S ExternaliD)? S? (' ['

(rnarkupdecl I PEReference I S)* ']' S?)? '>'

[75] ExternaliD : := 'SYSTEM' S SysternLiteral
I 'PUBLIC' S PubidLiteral S SysternLiteral

[29] rnarkupdecl : : = elernentdecl I AttlistDecl I EntityDecl
I NotationDecl I PI I Comment

J2.2 1 Internal and external subset

In Example 32-1, the DTD declarations were completely internal. They
were inside of the document type declaration. In Example 32-2, they were
completely external. In many cases, there will be a mix of the two. This sec
tion will review these options and show how most XML document type
declarations combine an internal part, called the internal subset and an
external part, called the external subset.

From now on, as we'll almost always be writing about DTD declarations,
we'll refer to them as "the DTD". ~Ve'll resort to the finer distinctions only
when necessary for clarity.

We will start with another example of a DTD:

©1998 THE XML HANDBO O K™

32.2 I IN TE RNA L AND EXTERNAL SUBS E T

Yl'
10

... 16 32-3. Garage sale announce1nent DTD.
"'xa r
;iELE~ENT GARAGESALE (DATE, TIME, PLACE, NOTES)>

<!ELEMENT DATE (#PCDATA)>
<!ELEMENT TIME (#PCDATA)>
<!ELEMENT PLACE (#PCDATA) >
<!ELEMENT NOTES (#PCDATA) >

These markup declarations would male up an ultra-simple DT for
garage sale announcements. 1 As you may have deduced, it declares five ele
,menr types. We wi ll get to the syntax of the declarations soon. Firsr we will
look at bow they would be used. These coLtld reside in a separate file called
garage. dtd (for instauc) and then every document that want d ro con
fotm to them would declare its conformance using a document type decla
ration. This is shown in Example 32-4.

Example 32-4. Conforming garage sale document.
<!DOCTYPE GARAGESALE SYSTEM "garage.dtd" >
<GARAGESALE>
<DATE>February 29, 1998< / DATE>
<TIME>7:30 AM</TIME>
<PLACE>249 Cedarbrae</PLACE>
<NOTES>Lots of high-quality junk for sale!< / NOTES >
</GARAGESALE>

Instead of a complete URL, we have just referred to the DTD's file name.
Actually, this is still a URL. It is a relative URL. That means that in a stan
dard Web server setup, the XML document entity and its DTD entity
reside in the same directory. You could also refer to a full URL as we did in
Example 32-2.

Example 32-5. Specifying a full URL
<!DOCTYPE GARAGESALE SYSTEM

"http: //www .tradestuff.com/stuff .dtd" >
<GARAGESALE>

</GARAGESALE>

1. A garage sale is where North Americans spend their hard-earned money on
other people's junk, which they will eventually sell at their own garage sales.

\1)1998 THE XML HANDBOOKTM

453

454 CHAPTER 32 I CREATING A DOCUMENT lYPE DEFINITION

The relative URL is more convenient while you are testing because you
do not need to have a full server installed. You can just put the two entities
in the same directory on your hard drive. But your DTD and your instance
can get even more cozy than sharing a directory. You can hoist your DTD
into the same entity as the instance:

Example 32-6. Bringing a DTD into the instance
<! DOCTYPE GARAGESALE
[

< !ELEMENT GARAGESALE (DATE, PLACE, NOTES)>
< !ELEMENT DATE (#PCDATA) >
< !ELEMENT TIME (#PCDATA) >
< !ELEMENT PLACE (#PCDATA) >
< !ELEMENT NOTES (#PCDATA) >
l >
<GARAGESALE>

</GARAGESALE>

The section between the square brackets is called the internal subset of
the document type declaration. For testing, this is very convenient! You can
edit the instance and the DTD without moving between entities. Since
entities usually correspond to files, this means that instead of moving
between two files, you need only edit one.

Although this is convenient, it is not great for reuse. The DTD is not
available anywhere but in this file. Other documents cannot conform to
this DTD without copying the declarations into their internal subset.

Often you will combine both approaches. Some of the DTD declara
tions can go in an external entity where it can be reused, and some of it can
go in the same entity as the instance. Often graphic entities (see 33.6,
"Unparsed entities", on page 486) would be declared in the internal subset
because they are specific to a document. On the other hand, element type
declarations would usually be in the external subset, the external part of the
document type declaration:

Example 32-7. Reference to an external subset
< !DOCTYPE GARAGESALE SYSTEM "garage.dtd" >
< !ENTITY LOGO SYSTEM "logo.gif">
) ><GARAGESALE> ... </ GARAGESALE>

©1998 T H E XML HANDBOOK™

32.3 I ELEMEN T TYPE DECLARATIONS 455

The declarations in the internal subse are processed before tho e in the
xrernal subset. This gives do umenc authors rhe opportunity to override1

:orne kinds of declarations in the shared portion f the D
Note char the content of both the in ernal subset and the external subset

rnakes up the DTD. garage. dtd may have a . dtd enension bur that is just
a convemion we cho e to emphasize that the file contains TD declara
tions. Ir i not necessarily the fuJI set of them. The full set of DTD declara
tions is the combination f the d larati ns in the internal and external
subsets.

Caution Many people believe that the file containing the
external subset is "the DTD". Until it is referenced from a
document type declaration and combined with an internal subset
(even an empty one) it is just a file that happens to have markup
declarations in it. It is good practice, however, when an external
subset is used, to restrict the internal subset to declarations that
apply only to the individual document, such as entity declarations
for graphics.

It is often very convenient to point to a particular file and refer to it as
"the DTD" for a given document type. As long as the concepts are straight
in your mind, it does seem a trifle simpler than saying "the file that contains
the markup declarations that I intend to reference as the external subset of
the document type declaration for all documents of this type" .

12.1 1 Elen1ent type declarations

Elements are the foundation of XML markup. Every element in a valid
XML document must conform to an clement type declared in the DTD.
Documents with elements that do not conform could be well-formed, but
not valid. Here is an example of an clement type declaration:

Element type declarations must start with the string "<!ELEMENT",
followed by the name (or generic identifier of the element type being

1. Actually, preempt.

4 56 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

Example 32-8. Element type declaration.
<!ELEMENT memo (to, from, body)>

declared. Finally they must have a content specification. The content specifi
cation above states that elements of this type must contain a to element fol
lowed by a from element followed in turn by a body element. Here is the
rule from the XML grammar:

Spec. Reference 32-2. Element type declaration
<!ELEMENT' S Name S contentspec S? '>'

Element type names are XML names. That means there are certain
restrictions on the characters allowed in them. These are described in
31.1.4, "Names and name tokens", on page 428. Each element type decla
ration must use a different name because a particular element type cannot
be declared more than once.

Caution Unique element type declaration
Unlike attribute and entities, element types can be declared only
once.

1 Element type content
specification

Every element type has certain allowed content. For instance a document
type definition might allow a chapter to have a title in its content, but
would probably not allow a footnote to have a chapter in its content
(though XML itself would not prohibit that!).

There are four kinds of content specification. These are described in
Table 32-1.

©1998 THE XML HANDBOOKTM

3 2 . ·i I E L F M 1·: N T I' y p I' l: () N I' E N ']' s p E c I I' I c (\ T I 0 N 4 57

--Tttble 32··1 Content specification types

Content specification type Allowed content

EMPTY content

ANY content

Mixed contmt

Bement content

May not have content. They are typically used
for their attributes.

May have any content at all.

May have character data or a mix of character
data and sub-elements specified in mixed con·
tent specification.

May have only sub-elements specified in ele
ment content specification

n.t.l Empty content

Sometimes we want an element type that can never have any content. We
would give it a content specification of EMPTY. For instance an image ele
ment type like HTMts img would include a graphic from somewhere else.
It would do this through an attribute and would not need any sub .. elements
or character data content. A cross-reference element type might not need
content because the text for the reference might be generated from the tar
get. A reference to an element type with the title "More about XML" might
become "See More about XML on page 14".

You can declare an element type to have empty content by using the
EMP'rY keyword as the content specification:

Example :32-H. Empty element typ(~

<! ELEMEN'I' !1Y- EHP'J'Y- ELEMENT EMP 'I'Y>

n.~.2 ANY content

· ccasionally, you want an element type to be able to hold any clement or
character data. You can do this if you give it a content spec of ANY:

This is rarely done. Typically we introduce clement type declarations to
express the structure of our document types. An element type that has an

(\,) 1 q () ~ T II I~ X M l. l T ,\ N [) 1\ () l) [,- I ,\I

4 58 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

Example 32-10. Element type with ANY content.
<!ELEMENT LOOSEY-GOOSEY ANY>

ANY concen t specification is completely unstructured. It can co main any
combination of character data and sub-elements. Still, ANY content element
types are occasionally useful, e pecia!Jy while a DTD is being developed. If
you are developing a DTD for existing documems, then you could declare
each clement type ro have ANY content co get the document to validate.
Then you could try to figure out more precise content speci.6cations for
each element type, one at a time.

;n.4.J Mixed content

Element types with mixed content are allowed ro bold either character data
alone or character data with child elements interspersed. A paragraph is a
good example of a typical mixed content element. It might have character
data with some mixed in emphasis and quotation sub-elements. The sim
plest mixed content specifications allow data only and start with a left
parenthesis character ("("), followed by the string #PCDATA and a final dose
parenthesis (") "):

Example 32-11. Data-only mixed content.
<!ELEMENT emph (#PCDATA)>
<!ELEMENT foreign-language (#PCDATA) >

You may put white space b tween the paren hesis and the string 1~PCDATA
if you like. The declarati ns above create element types chat cannot contain
ub-elements. ub-elements rhat are detected will be reported as validity

errors.

Tn ocher words, these elements do not really have "mixed" concent in the
usual ense. Like the word "valid", XML has a particular meaning for the
word rhat is not very in uitive. Any contem specification tha contains
#PCDATA is called mixed, whether sub-elements ar al lowed or not.

We can easily extend the DTD to allow a mix of elements and character
data:

© 199 8 TH E XML HAN DBOO KTM

32.5 I CONTENT MODELS

Example 32-12. Allow a mix of character data and elements
;!ELEMENT paragraph (#PCDATA i emph)*>
<!ELEMENT abstract (#PCDATAiemphlquot)*>
<!ELEMENT title (#PCDATA I foreign-language I emph)* >

Note the trailing asterisks. They are required in content specifications
that allow a mix of character data and elements. The reason that they are
there will be clear when we study content models. Note also that we can put
white space before and after the vertical bar ("I") characters.

These declarations create element types that allow a mix of character data
and sub-elements. The element types listed after the vertical bars ("1"), are
the allowed sub-elements. The following would be a valid title if we com
bine the declarations in Example 32-12 with those in Example 32-11
<title>this is a <foreign-language>tres gros</foreign-language>

title for an <emph>XML</emph> book</title>

The title has character data ("This is a''), a foreign-language sub-ele
ment, some more character data ("tide for an"), an emph sub-element and
some final character data "book''. We could have reordered the emph and
foreign-language elements and the character data however we wanted.
We could also have introduced as many (or as few) emph and foreign

l anguage elements as we needed.

11.5 1 Content models

The final kind of content specification is a "children" specification. This
type of specification says that elements of the type can contain only child
elements in its content. You declare an element type as having element con
tent by specifying a content model instead of a mixed content specification or
one of the keywords described above.

A content model is a pattern that you set up to declare what sub-element
types are allowed and in what order they are allowed. A simple model for a
memm might say that it must contain a from followed by a to followed by a
subject followed by a paragraph. A more complex model for a question

cmd.-answer might require question and answer elements to alternate.

A model for a chapter might require a single title element, one or two
a\J.tnor elements and one or more paragraphs. When a document is vali-

~ 199 8 THE XML HANDBOOK™

459

460 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

dated, the processor would check that the element's content matches the
model.

A simple content model could have a single sub-element type:
<!ELEMENT WARNING (PARAGRAPH)>

This says that a WARNING must have a single PARAGRAPH within it. As with
mixed content specifications, you may place white space before or after the
parentheses. We could also say that a WARNING must have a TITLE and then
a PARAGRAPH within it:
<!ELEMENT WARNING (TITLE, PARAGRAPH)>

The comma(",") between the "TITLE" and "PARAGRAPH" Gis indi
cates that the "TITLE" must precede the "PARAGRAPH" in the "WARN
ING" element. This is called a sequence. Sequences can be as long as you
like:
<!ELEMENT MEMO (FROM, TO, SUBJECT, BODY)>

You may put white space before or after the comma (",") between two
parts of the sequence.

Sometimes you want to have a choice rather than a sequence. For instance
a document type might be designed such that a FIGURE could contain either
a GRAPHIC element (inserting an external graphic) or a CODE element (insert
ing some computer code).
<!ELEMENT FIGURE (GRAPHICICODE)>

The vertical bar character ("I") indicates that the author can choose
between the elements. You can put white space before or after the vertical
bar. You may have as many choices as you want:
<!ELEMENT FIGURE (CODEITABLE I FLOW-CHARTI SCREEN-SHOT)>

You may also combine choices and sequences using parenthesis. When
you wrap parenthesis around a choice or sequence, it becomes a content par
ticle. Individual Gis are also content particles. You can use any content par
ticle where ever you would use a GI in a content model:
<!ELEMENT FIGURE (CAPTION, (CODEITABLEIFLOW-CHARTISCREEN-SHOT))>
<!ELEMENT CREATED ((AUTHOR I CO-AUTHORS)' DATE)>

The content model for FIGURE is thus made up of a sequence of two con
tent particles. The first content particle is a single element type name. The
second is a choice of several element type names. You can break down the
content model for CREATED in the same way.

You can make some fairly complex models this way. But when you write
a DTD for a book, you do not know in advance how many chapters the
book will have, nor how many paragraphs each chapter will contain. You
need a way of saying that the part of the content specification that allows
captions is repeatable- that you can match it many times.

©1998 THE XML HANDBOOKTM

--
3 2 . 5 I c 0 N T E N T M 0 D E L s 461

Sometimes you will also want to make an element optional. For instance,
some figures may not have captions. You may want to say that part of the
specification for figures is optional.

)(ML allows you to specify that a content particle is optional or repeat
able using an occurrence indicatm: There are three occurrence indicators:

Table 32-2 Occurrence Indicators

Indicator Content particle is ...

Optional (0 or l. time).

*

+

Optional and repeatable (O or more times)

Required and repeatable (I or more times)

Occurrence indicators directly follow a GI, sequence or choice. The
occurrence indicator cannot be preceded by white space.

For instance we can make captions optional on figures:
<!ELEMENT FIGURE (CAPTION?, (CODEJTABLEJFLOW-CHARTJSCREEN-SHOT))>

We can allow footnotes to have multiple paragraphs:
<!ELEMENT FOOTNOTE (P+)>

Because we used the "+" indicator, footnotes must have at least one para
graph. We could also have expressed this in another way:
<!ELEMENT FOOTNOTE (P, P*)>

This would require a leading paragraph and then 0 or more paragraphs
following. That would achieve the same effect as requiring 1 or more para
graphs. The "+" operator is just a little more convenient than repeating the
preceding content particle.

We can combine occurrence indicators with sequences or choices:
<!ELEMENT QUESTION-AND-ANSWER (INTRODUCTION,

(QUESTION, ANSWER)+,
COPYRIGHT?)>

It is also possible to make all of the element types in a content model
optional:
<! ELE!1ENT IMAGE (CAPTION?)>

. This allows the IMAGE element to be empty sometimes and not other
tlmes. The question mark indicates that CAPTION is optional. Most likely
these IMAGE elements would link to an external graphic through an

©l!Y9H 'fill'. XMI. lli\NllllCJCJt;""

462 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

attribute. The author would only provide content if he wanted to provide a
caption.

In the document instance, empty IMAGE elements look identical to how
they would look if IMAGE had been declared to be always empty. There is no
way to tell from the document instance whether they were declared as
empty or are merely empty in a particular case.

J2.6 1 Attributes

Attributes allow an author to attach extra information to the elements in a
document. For instance a code element for computer code might have a
lang attribute declaring the language that the code is in. On the other
hand, you could also use a lang sub-element for the same purpose. It is the
DTD designer's responsibility to choose a way and embody that in the
DTD. Attributes have srrengtbs and weaknesses that differentiate them
from sub-elements so you can usually make the decision without too much
difficulty.

The largest difference between elements and attributes is that attributes
cannot contain elements and there is no such thing as a "sub-attribute".
Attributes are always either text strings with no expl icit structure (at least as
far as XML is concerned) or simple lists of strings. That means that a
chapter should not be an attribute of a book element, because there would
be no place to put the tides and paragraphs of the chapter. You will typically
use attributes for small, simple, unstructured "extra" information.

Another imp rtanr difference berween elements and attributes is tbar
each of an element's attributes may be speci£ed only one , and they may be
specified in any order. This is often convenient becau e memorizing the
order of things can be difficul . Elements, on the otber hand, must occur in
the order specified and mayo cur as many rimes as the DTD allows. Thus
you mu t us elements for thing rhat must be repeated, or must follow a
certain pattern or order char you want the XML parser to enforce.

T hes technical oncerns ar often enough to make the decision for you.
But if everything el e is equal, there are some usab ility considerations chat
can help. One ru le of thumb that some people use (with neither perfect
success nor constant abject failure) is that elements usually repre ent data
that is the natural content that should appear in v ry print-ouc or other
rend ition, Most formatting syst m print out elements by default and do

© 1 998 T HE XML HA ND BO O KTM

3 2 . 6 I AT T R I B u T E s 463

not print out attributes unless you specifically ask for them. Amibures rep
resent data that is of secondary importance and is often i11formacion about
the information ("metainformation ').

Also, attribute names usually represent properties of objects, but ele
ment-type names usually represent parts of objects. So given a person ele
ment, sub-elements might represent parts of the body and attributes might
represent properties like weight, height, and accumulated karma points.

We would advise you not to spend too much of your life trying to figure
out exactly what qualifies as a part and what qualifies as a property. Experi
ence shows that the question "what is a property?" ranks with "what is the
good life?" and ""':hat is ~rt?". The te~hnical concerns are usually a good
indicator of the ph1losoph1cal category m any event.

n.t. l Attribute-list declarations

Attributes are declared for specific element types. You declare attributes for
a particular element type using an attribute-list declaration. You will often
see an attribute-list declaration right beside an element type declaration:
<!ELEMENT PERSON (#PCDATA)>
<!ATTLIST PERSON EMAIL CDATA #REQUIRED>

Attribute declarations start with the string "<!ATTLIST". Immediately
after the white space comes an element type's generic identifier. Mter that
comes the attribute's name, its type and its default. In the example above,
the attribute is named EMAIL and is valid on PERSON elements. Its value
must be character data and it is required- there is no default and the author
must supply a value for the attribute on every PERSON element.

Spec. Reference 32-3. Attribute-list declarations
[52] AttlistDecl .. - ' < !ATTLIST' S Name AttDef* S? '>'
[53] AttDef : := S Name S AttType S DefaultDecl

You can declare many attributes in a single attribute-list declaration. 1

You can also have multiple attribute-list declarations for a single element
type:

1. That's why it is called a list!

<i:li998 THE XML HANDBOOKTM

464 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

Example 32-13. Declaring multiple attributes
<!ATTLIST PERSON EMAIL CDATA #REQUIRED

PHONE CDATA #REQUIRED
FAX CDATA #REQUIRED>

Example 32-14. Multiple declarations for one element type
<!ATTLIST PERSON HONORIFIC CDATA #REQUIRED>
<!ATTLIST PERSON POSITION CDATA #REQUIRED

ORGANIZATION CDATA #REQUIRED>

This is equivalent to putting the declarations altogether into a single
attribute-list declaration.

It is even possible to have multiple declarations for the same attribute of
the same element type. When this occurs, the first declaration of the
attribute is binding and the rest are ignored. This is analogous to the situa
tion with entity declarations.

Note that two different element types can have attributes with the same
name without there being a conflict. Despite the fact that these attributes
have the same name, they are in fact different attributes. For instance a
SHIRT element could have an attribute SIZE that exhibits values SMALL,

MEDIUM and LARGE and a PANTS element in the same DTD could have an
attribute also named SIZE that is a measurement in inches:

<!-- These are -->

<!ATTLIST SHIRT SIZE (SMALLIMEDIUMjLARGE) #REQUIRED>

<!-- two different attributes -->

<!ATTLIST PANTS SIZE NUMBER #REQUIRED>

It is not good practice to allow attributes with the same name to have dif
ferent semantics or allowed values in the same document. That can be quite
confusing for authors.

J'l.6.'l Attribute defaults

Attributes can have default values. If the author does not specifY an attribute
value then the processor supplies the default value if it exists. A DTD
designer can also choose not to supply a default.

SpecifYing a default is simple. You merely include the default after the
type or list of allowed values in the attribute list declaration:

©1998 THE XML HANDBOOKTM

3 2. 6 I ATTRIBuTEs 465

<!ATTLIST SHIRT SIZE (SMALLIMEDIUMILARGE) MEDIUM>
<!ATTLIST SHOES SIZE NUMBER "13">

Any value that meets the consuaints of the attribute list declaration is
legal as a default value. You could not, however, use "abc" as a default value
for an attrjbure with declared rype nurriber any more than you could do so
in a scan-(ag in the documerlt jnstance.

Sometimes you want to allow the user to omit a value for a particular
attribute without forcing a particular default. For instance you could have
an element SHIRT which has a SIZE attribute with a declared type of
NUMBER. But some shirts are "one size fits all". They do not have a size. You
want the author to be able to leave this value out and you want the process
ing system to imply that the shirt is "one size fits all". You can do this with
an impliable attribute:
<!ATTLIST SHIRT SIZE NUMBER #IMPLIED>

The string "#IMPLIED" gives any processing program the right to insert
whatever value it feels is appropriate. This may seem like a lot of freedom to
give a programmer, but typically implied attributes are simply ignored. In
the case of our SHIRT, there is no need to worry about "one size fits all"
shirts because anybody can wear them. Authors should only depend upon
the implied value when they do not care or where there is a well-defined
convention of what the lack of a value "really" means. This is again a case of
semantics and would be communicated to the author through some other
document, DTD comment or other communication mechanism.

It is easy for an author to not specifY a value for an attribute that is not
required: just do not mention the attribute. Note that specifYing an
attribute value that is an empty string is not the same as not specifYing an
accribute value:
<S)i lJRT> <!-- This conforms to the declaration above. -->
<SIHRT SIZE=""><!-- This does *not* conform to the declaration.-->

The opposite situation to providing a default is where a document type
designer wants to force the author to choose a value. If a value for an
attribute is important and cannot reliably be defaulted, the designer can
ret}uhe authors to specifY it with a required attribute default:
<!ATTLIST IMAGE URL CDATA #REQUIRED>

In this case, the DTD designer has made the URL attribute required on all
!MA:G,E: elements. This makes sense because without a URL to locate the
i age file, the image element is useless.

It may be surprising, but there ar even times when it is useful to supply
an attribute value that cannot be overriden at all. This is rare, but worth
knowlng about. Imagine, for instance, that an Internet directory maintainer

G l 9 9S THE XML HANDBOOK™

466 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

like Yahoo™ decides to write a robot 1 that will automatically extract the
first section title of every document indexed by the directory. The difficulty
is that different DTDs will have different element-type names for titles.
HTML-like DTDs use Hl etc. DocBook-like DTDs use title. TEl-like
DTDs use head. Even if the robot knows about these DTDs, what about all
of the others? There are potentially as many DTDs in existence as there are
XML documents! It is not feasible to write a robot that can understand
every document type.

The vendor needs to achieve some form of standardization. But it cannot
force everyone to conform to the same DTD: that is exactly what XML is
supposed to avoid! Instead, they can ask all document creators to label the
elements that perform the role of section titles. They could do this with an
attribute, such as title-element. The robot can then use the content of
those elements to generate its index.

Each DTD designer thinks through the list of element types to add the
attribute to. They specifY what their element types mean in terms of the
indexing system understood by the robot. They may not want authors
changing the value on an element by element basis. They can prevent this
with fixed attributes:
<!ATTLIST Hl TITLE-ELEMENT CDATA #FIXED "TITLE-ELEMENT">

<!ATTLIST HEAD TITLE-ELEMENT CDATA #FIXED "TITLE-ELEMENT">

<!ATTLIST TITLE TITLE-ELEMENT CDATA #FIXED "TITLE-ELEMENT">

Now all of the appropriate elements are marked with the attribute. No
matter what else is in the DTD, the robot can find what it is looking for.

iU.6.J Attribute types

An important feature of attributes is that attributes have types that can
enforce certain lexical and semantic constraints. Lexical constraints are con
straints like "this attribute must contain only numerals". Semantic con
straints are along the lines of "this attribute must contain the name of a
declared entity". These constraints tend to be very useful in making robust
DTDs and document processing systems.

However, it is vital to remember that the value of an attribute is not
necessarily the exact character string that you enter between the
quotation marks. That string first goes through a process called attribute-

1. A robot is an automatic Web information gatherer.

©1998 THE XML HANDBOOK™

32.6 I AT T RIBU T ES

,valr~e normalization on its way to becoming the attribute value. Since
attribute typ apply to the normalized value, we had better digress for a
moment to master normali r..ation.

32.6.3.1 Attribute value normalization

){ML processors notmalize at ribute values to make aur.hor's lives simpler. If
ic were nor fo1· normalization, you would hav ro b very c.:1.reful where you
plJt white space i.n an attrlbut value. For instance if you broke an attribute
value across a line:
<GRAPHIC ALTERNATE·-'l'EXT= '"I'h is is a pic t u re o [a penguin

d oing the r itu a l ma ting d ance " >

You might do this merely becuse the text is too long for a single line in a
text editor.

This sort of thing is normalized by the XML processor. The rules for this
are a little intricate, but most times they will just do what you want them
ro. Let's look at them.

All XML attribute values are entered as quoted strings. They start and
end with either single-quotes (""') or double-quotes ("""). If you want to
embed a single-quote character into an attribute value delimited by single
quotes or a double-quote character into an attribute value delimited by
double quotes, then you must use an entity reference as described in 31.7 .1,
"Predefiucd entities", on page 442.

The first thing the XML parser docs to prepare for normalization is to

strip off the surrounding quotes.
Then, character references are replaced by the characters that they refer

ence. As we discussed earlier, character references allow you to easily insert
"fi " l unny c 1aracters.

Nexr, general enrity references are replaced. This is important to note.
While it is rrue rhat entity references are not allowed in markup, unnormal
ized attribute values arc text ·- a mixture of markup and data. After normal
ization, only the data remains. 1

lf the expansion f(Jr an entity reference has another entity reference
within it, that is expanded also, and so on and so forth. This would be rare
in an entity used in an attribute value. After all, attribute values are usually

l. Philosophically, attribute values are mctadata, but it is an ani de of faith in the
XML world rhat mctadata is data.

•!!J I lJ ~~ g 't 1-1 1,: X M L H 1\ N t1 n l) l) I(l•' 1

467

468 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

very short and simple. An entity reference in an attribute value cannot be to
an external entity.

Newline characters in attribute values are replaced by spaces. If the
attribute is known to be one of the tokenized types 1 (see below), then the
parser must further remove leading and trailing spaces. So " token "
becomes "token". It also collapses multiple spaces between tokens into a
single space, so that "space between" would become "space between". The
distinction between unnormalized attribute value text and normalized
attribute value data trips up even the experts. Remember, when reading
about attribute types, that they apply to the normalized data, not the
unnormalized text.

32.6.3.2 CDATA and name token attributes

The simplest type of attribute is a CDATA attribute. The CDATA stands
for "character data" . The declaration for such an attribute looks like this:

Example 32-15. CDATA Attributes
<!DOCTYPE ARTICLE[
<!ELEMENT ARTICLE>
<!ATTLIST ARTICLE DATE CDATA #REQUIRED>

l >
<ARTICLE DATE="January 15, 1999">

</ARTICLE>

Character data attribute values can be any string of characters. Basically
anything else is legal in this type of attribute value.

Name token (NMTOKEN) attributes are somewhat like CDATA attributes.
The biggest difference is that they are restricted in the characters that name
tokens allow. Name tokens were described in 31.1.4, "Names and name
tokens", on page 428. To refresh your memory, they are strings made up of

1. If, in other words, attribute-list declarations were provided and the processor
is either a validating processor or a non-validating processor that decides to
read them.

©1998 THE XML HAN DBOO K™

3 2. 6 I AT ·r I< r l> u T E s 469

letters, numbers and a select group of special characters: period (". "), dash
d (" ") d 1 (" ") ("-"), un erscore _ . an co on : .

Exmnple 32-l(j, Name token attr~bute type
:: ! DOC'rYPE PARTS - L I S'l' [----------------

< ! A'l'TLI ST PART DA'l'E NMTOKE N #REQOIRED>

J >
<PARTS-LIST >

< PART DA'l'E=' " 19 9 8 -· 0 5 -04 " > . .. </PART>

<I PAR'I'S - LIS'I'>
] > __ ___

An empty string is not a valid name token, whereas it would be a valid
CDATA attribute value.

Name tokens can be used to allow an attribute to contain numbers that
need special characters. T hey allow rhe dash, which can be used as a minus
ign, the period, which can be a decimal point, and numbers. T hes are use

ful fo r fractional and negative numbers. You can also use alphabetic charac
ters to specify units.

Name tokens can also be used for naming things. This is similar to how
you might use variable names in a programming language. For instance, if
you used X.ML to describe the structure of a database, you might use name
tokens to name and refer to fields and tables. The resrrictions on the name
token atuibute type would prevent most of the characters that would be
illegal in field and table names (spaces, most forms of puncutation, etc.). lf
there is a reason that all fields or record names must be unique, then yo u
would instead use the ID attribute type discussed in 32.6.3.4, "ID and
IDREF attributes" , ou page 470.

If it is app ropriate to have more than one name token, then you can use
the NMTOKENS attribute type which stands for "name tokens". l~or instance
in describing a database:

One other difference bcLween CDA'rA attributes and NM'l'OKEN attributes is
in their normalizatio11. This was discussed in 32.6.3.1, "Attribute value nor
malization", on page 467.

470 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

Example 32-17. Name tokens attribute type
<!DOCTYPE DATABASE [

< !ELEMENT TABLE EMPTY>
< !ATTLIST TABLE NAME NMTOKEN #REQUIRED

FIELDS NMTOKENS #REQUIRED>

l >
<DATABASE>

<TABLE NAME="SECURITY" FIELDS="USERID PASSWORD DEPARTMENT">

</DATABASE>

32.6.3.3 Enumerated and notation attributes

Sometimes as a DTD designer you want to create an attribute that can only
exhibit one of a short list of values: "small/medium/large", "fast/slow";
"north/ south/ east/west". Enumerated attribute types allow this. In a sense,
they provide a choice or menu of options.

The syntax is reminiscent of choice lists in element type declarations:
< !ATTLIST CHOICE (OPTIONliOPTION2IOPTION3) #REQUIRED>

You may provide as many choices as you like. Each choice is an XML
name token and must meet the syntactic requirements of name tokens
described in 31.1.4, "Names and name tokens", on page 428.

There is another related attribute type called a notation attribute. This
attribute allows the author to declare that the element's content conforms
to a declared notation. Here is an example involving several ways of repre
senting dates:
<!ATTLIST DATE NOTATION (EUROPEAN-DATEIUS-DATEIISO-DATE) #REQUIRED>

In a valid document, each notation allowed must also be declared with a
notation declaration.

32.6.3.4 ID and IDREF attributes

Sometimes it is important ro be able co give a name to a particular occur
rence fan element type. For instance, to make a simple hypertext link or
cross-reference from one elemenr to another, you can name a particular sec
tion or figure. Later, you can refer to it by its name. The target element is

©1998 THE XML HAN DB OOK™

32.6 I AI'Ji(!B\JTES 471

labeled with an !D attribute. The other element refers to it with an IDREF
actribure. This is shown in Example 32-18

Example :32-18. ID and IDRE}' used for cross-referencing

:;·;-ooCTYPE BOO!\ (

< !ELEMENT SECTION (T ITLE, P*) >
< !ATTLIS T SECTION MY - ID ID i!Ili!PL IED>
< ! ELEHENT CROSS - REFERENCE EMPTY>
< ! AT'l.'LI ST CROSS - REFERENCE TARGET IDREF II REQU IRED>

l >
<BOOK>

<SECTION !1Y--ID= "Why . XML. Rocks " ><TI'l'LE>Features of XML</T I~rLE>

</SECTION >

If you want to recall why XML i s so great, p lease see
the section t it l ed <CROSS - REFERENCE TARGET= "Wh y.XHL. Rocks " />.

< /BOOK>

The style sheet would instruct browsers and formatters to replace the
cross-reference element with the name of the section. This would probably
be italicized and hypcrlinked or labeled with a page number if appropriate.

Note that we made the section's MY-I D optional. Some sections will not
need to be the target of a cross-reference, hypertext link or other reference
and will not need to be uniquely identified. The 'l'ARGE'r attribute on
CROSS-REFERENCE is required. It does not make sense to have a cross-refer-
ence that docs not actually refer to another element.

IDs are XML names, with all of the constraints described in 31 .1 .4,
"Names and name tokens", on page 428. Every element can have at most
one ID, and rhus only one attribute per element type be an ID attribute. All
IDs specified in an XML document must be unique. A document with two
ID attributes whose values are the same is invJlid. 'T'hus "chapter" would not
be a good name for an ID, because it would make sense to use it in many
places. "inrroduction.chapter" would be a logical ID because it would
uniquely identify a particular chapter.

IDREF attributes must refer to an element in the document. You may
have as many [DREFs referring to a single clement as you need. It is also

~v 1 9 9 R T H 1·: X M L [·J 1\ N n li u o K LM

472 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

possible to declare an attribute that can potentially exhibit more than one
IDREF by declaring it to be of type IDREFS:

<!ATTLIST RELATED-CHAPTERS TARGETS IDREFS #REQUIRED>

Now the TARGETS attribute may have one or more IDREFs as its value.
There is no way to use XML to require that an attribute take two or more,
or three or more, (etc.) IDREFs. You will recall that we could do that son
of thing using content models in element type declarations. There is no
such thing as a content model for attributes. You could model this same sit
uation by declaring RELATED-CHAPTERS to have content of one or more or
two or more (etc.) CHAPTER-REF elements that each have a single IDREF

attribute (named TARGET in this example):

Example 32-19. IDREF attributes
<!DOCTYPE BOOK[

<!ELEMENT RELATED-CHAPTERS (CHAPTER-REF+)>
<!ELEMENT CHAPTER-REF EMPTY>
<!ATTLIST CHAPTER-REF TARGET IDREF #REQUIRED>

l >
<BOOK>

<RELATED-CHAPTERS>
<CHAP'I'ER-REF TARGET=" introduction. to. xml ">
<CHAPTER-REF TARGET="xrnl.rocks">
</RELATED-CHAPTERS>

</BOOK>

As you can see, element type declarations have the benefit of having con
tent models, which can define complex structures, and attributes have the
benefit of attribute types, which can enforce lexical and semantic con
straints. You can combine these strengths to make intricate structures when
this is appropriate.

32.6.3.5 ENTITY attributes

External unparsed entities are XML:s way of referring to objects (files, CGI
script output, etc.) on the Web that should not be parsed according to
XML:s rules. Anything from HTML documents to pictures to word proces-

©1998 THE XML HANDBOOKTM

3 2. G I ATT IZ Ill u T E s 473

sor files fall into this category. It is po iblc to refer to unparsed entities
using an ato:ibute ~irh decl~·ed type ENTITY. Th~s is typically done either
to byperlink to, reference or mclude an external obJ ect:

Example :32-20. Entity ath·ibute type
·~~!DOC'l'\' PE AR'ri CJ.d:l [
<! ATTLI .S'I' BOOK - REF 'l'ARGE'I' ENTI 'I'Y #REQU I RE D>

< !ENTITY anothG r-book SYS TEM
"hl: t p: I /wvvw. buyOurBooks . com/TheOtherBook. html " >

]><BOOK>

<BOOK - .REF target ~"another-book " >

</BOOK>

You can also declare an attribute to be of type ENTTT!l·}), in which case
its value may be the name of more than one enti ty. 1r is up to the applica~
tion or stylesheer to determine whether a reference t the entity hould be
treated as a hot link, embed li nk or some other kind of link. The pro essor
merely informs the application of th e existence and notation of the entity.
You can find information on unparscd entities and notations in Chapter
33, "Entities: Breaking up is easy to do", on page 476 and 32 .7, "Notation
Declarations", on page 474 .

32.6.3.6 Summary of attribute types

There are two enumerated attribute types: enumeration attributes and
NOTATION attributes.

Seven attribute types arc know n as tol<mized. types because each value
represents either a single roken (ID, :mrmF, EN'l'ITY, NMTOKEN) or a list of
tokens (IDREFS , EN'riTIES, and NMTOKENS).

The final type is the CDATA string type which is the least constrained and
can hold any combination ofXMI. characters as long as "special characters"
(the quote characters and ampersand) arc properly emcred.

l.l.! 1
l) l) :-~ ·1 11 F. X ;vr L ll 1\ i-~ D 11 u n I(1 .\I

4 7 4 CHAPTER 32 I CREATING A DOCUMENT TYPE DEFINITION

Table 32-3 Summary of attribute types

Type Lexical constraint Semantic constraint

CD ATA None None

Enumeration Nmtoken Must be in the declared list.

NOTATION Name Must be in the declared list and a
declared notation name.

ID Name Must be unique in document.

IDREF Name Must be some element's ID.

IDREFS Names Must each be some element's ID.

ENTITY Name Must be a declared entity name.

ENTITIES Names Must each be a declared entity name.

NMTOKEN Name Token None

NMTOKENs Name Tokens None

Jt.l 1 Notation D eclarations

Notations are referred to in various parts of an XML document, for describ
ing the data content notation of different things. A data content notation is
the definition of how the bits and bytes of class of object should be inter
preted. According to this definition, XML is a data content notation,
because it defines how the bits and bytes of XML documents should be
interpreted. Your favorite word processor also has a data content notation.
The notation declaration gives an internal name to an existing notation so
that it can be referred to in attribute list declarations, unparsed entity decla
rations, and processing instructions.

The most obvious place that an XML document would want to describe
the notation of a data object is in a reference to some other resource on the
web. It could be an embedded graphic, an MPEG movie that is the target of
a hyperlink, or anything else. The XML facility for linking to these data
resources is the entity declaration, and as we discussed earlier, they are
referred to as unparsed entities. Part of the declaration of an unparsed entity
is the name of a declared notation that provides some form of pointer to the

©1998 THE XML HANDBOOKTM

32 . 7 I NOTATION DECLARATIO NS 475

e:xrernal definicion of the notation. The ext rnal definicion could b a pub
lic or system identifier for documentation on the notation, some formal
specifica~on or a helper application that can handle objects represented in
rhe notatwn.

Example :32-21. Notations for unparscd entities
:!NOTATION HTML SYS TE!-1 "http: //www.w3 .org/Markup ">
<!NOTAT I ON GI F SYSTEM "gifmagic.exe">

Another place that notation aris are in the notation amibute rype. You
use this amibute type when you wanr to express the notation for the data
conrenr of an XML element. For instance, if you had a dare element that
used ISO or EU date formats, you could dedar notations for each format:

Example 32-22. Notations for unparse(l entities
<!NOTATION ISODA'rE PUBL I C +// APPROPRIATE-IDENTIFI ER-HERE// >
<!NOTATI ON EUDA'I'E PUBLIC +//APPROPRIATE-IDENTIFIER-HERE//>
<!ELENEN'I' TODAY (#PCDATA)>
<!ATTLIST TODAY DATE-FORNAT NOTATION (ISODATEIEUDATE) #REQU IRED>

Now the DATE-FORMAT attribute would be restricted to those two
values, and would thus signal to the application that the content of the
TODAY element conforms to one or the other.

Finally, notations can be used to give XML names to the targets for pro
cessing instructions. This is not strictly required by XML but it is a good
practice because it provides a sort of documentation for the PI and could
even be used by an application to invoke the target.

This seems W{e a good way to close this chapter. DIDs are about
improving the permanence, longevity, and wid reuse of your data, and the
predictability and reliability of its processing. If you use them wi ely, they
will save you time and money.

1'ip Learning the syntax of markup declarations so that you
can write DTDs is important, but learning how to choose the right
element types and attributes for a job is a subtle process that
requires a book of its own. We suggest David Megginson's
Structuring XML Documents, also in this series (ISBN 0-13-
642299-3).

(<}J]')'JR Till'. X ML ll t\N lll\0()1(1"'

Entities:
Breaking up is
easy to do

I Parameter and general

I Internal and external

I Parsed and unparsed

© 1 998 T H E X ML HANDBOOK ,.,,

Chapter __ _

JJ

ML allows flexible organization of document text. The XML
constructs that provide this flexibility are called entities. They
allow a document to be broken up into multiple storage

objects and are important tools for reusing and maintaining text.

JJ.I I Ove1view

In simple cases, an entity is like an abbreviation in that it is used as a short
form for some text. We call the "abbreviation" the entil]' name and the long
fQ~·m the entity content. That content could be as short as a character or as
long as a chapter. For in ranee, in an XML document, the entity dtd could
have the phrase "document rype definition'' as ics content. Using a reference
to rhar entity is like using the word DTD as an abbreviation for chat phrase
-the parser replaces the reference with the content.

You create the entity with an entil]' declaration. Here is an entity declara
tion for an abbreviation:

Entities can be much more than just abbreviations. There are several dif
ferent kinds of entities with different uses. We will first introduce the differ-

© l 9 9 H THE X M L HAN ll 1\ ll tl I' 1' ·" 477

4 7 8 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

Example 33-1. Entity used as an abbreviation
< !ENTITY dtd "document type definition">

ent variants in this overview and then come back and describe them more
precisely in the rest of the chapter. We approach the topic in this way
because we cannot discuss the various types of entity entirely linearly. Our
first pass will acquaint you with the major types and the second one will tie
them together and provide the information you need to actually use them.

Another way to think of an entity is as a box with a label. The label is the
entity's name. The content of the box is some sort of text or data. The entity
declaration creates the box and sticks on a label with the name. Sometimes
the box holds XML text that is going to be parsed (interpreted according to
the rules of the XML notation), and sometimes it holds data, which should
not be.

If the content of an entity is XML text that the processor should parse,
the XML spec calls it a parsed entity. The name is badly chosen because it is,
in fact, unparsed; it will be parsed only if and when it is actually used.

If the content of an entity is data that is not to be parsed, the XML spec
calls it an unparsed entity. This name isn't so great either because, as we just
pointed out, an XML text entity is also unparsed.

We'll try to minimize the confusion and to avoid saying things like "a
parsed entity will be parsed by the XML parser". But we sure wish they had
named them "text entity'' and "data entity".

The abbreviation in Example 33-1 is a parsed entity. Parsed entities,
being XML text, can also contain markup. Here is a declaration for a parsed
entity with some markup in it:

Example 33-2. Parsed entity with markup
<!ENTITY dtd "<term>document type definition</ term>">

T he processor can also fetch contem from somewhere on the Web and
put that inro ilie box. Tlus is an external enticy: For instanc , it could fetch
a dupter of a book and put ir imo an entiry. This would al low you to reuse
the chapter berween books. Anoilier benefit is that you could edit the chap
ter separately with a sufficiently imelligent editor. This would be very useful
if you were working on a team project and wanted different people to work
on different parts of a document at once.

©1998 THE XML HANDBOOK™

33.1 I OVERVIEW 479

E"mnple 33-3. Exte1·nnl entity declaration
<! e:N'l'ITY intra-c hapter SYSTEM "ht t p://www. megacorp. c om/ i ntro. xml">

Entities also allow you to ed.ir very larg documents without running out
of memory. Depending on your software and needs, either each volume or
even each article in an encyclopedia could be an entity.

An aud1or or DTD designer refers to an ntity through an entity refer
mce. The XML processor replaces the reference by the comem, as if it were
an abbreviation and rhe content was the expanded pJuase. This process is
·called inclusion. Mter the operation we say either that the entity referenc
has been replaced by the nrity comenr or that the entity content has been
included. Which you would use depends on whether you ar talking from
rhe point of view of the entity reference or the entity comem. The content
of parsed entities is called their ,-eplacement text.

Here is an example of a parsed entity declaration and its associated refer
ence:

Example 33 .. 4 , Entity Declaration

~C'l'YPE MAGAZINE [

<!EN'l'ITY titl e "Hacker Li f e " >

l >

<MAGAZINE>
<T I TLE>&tit l e;</ TI TLE>

<P >VIle lc ome to t he introductory issue of: .'L ti tle; . &t itl e; is

geared to Loday ' s moder n hacker.

</MAGAZINE>

Anywhere in the document instance that the entity reference "&title;"
appears, it is replaced by the text "Hacker Life". It is just as valid to say that
"Hacker Life'' is i~tcluded at each point where the reference occurs. The
ampersand character starts all general entity references and the semicolon
ends them. The text between is an entity name.

~-~~ltcft! t-ence 33 .. 1 . Cencra1 entity refcl'cnce
[68] EntityHeJ .. ·- ' & ' Name '·'

- •. -.,. I

<i~ l <) ') ~ T II 1'. X M l.

480 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

We have looked at entities that can be used in the creation of XML doc
uments. Others can only be used to create XML DTDs. The ones we have
been using all along are called general entities. They are called general enti
ties because they can generally be used anywhere in a document. The ones
that we use to create DTDs are called parameter entities.

We would use parameter entities for most of the same reasons that we use
general entities. We want document type definitions to share declarations
for element types, attributes and notations, just as we want documents to
share chapters and abbreviations. For instance many DTDs in an organiza
tion might share the same definition for a paragraph element type named
para. The declaration for that element type could be bundled up with other
common DTD components and used in document type definitions for
memos, letters and reports. Each DTD would include the element type
declaration by means of a parameter entity reference.

Unparsed entities are for holding data such as images or molecular mod
els in some data object notation. The application does not expect the pro
cessor to parse that information because it is not XML text.

Although it is an oversimplification, it may be helpful in your mind to
remember that unparsed entities are often used for pictures and parsed enti
ties are usually used for character text. You would include a picture through
an unparsed entity, since picture representations do not (usually!) conform
to the XML specification. Of course there are many kinds of non-XML
data other than graphics, but if you can at least remember that unparsed
entities are used for graphics then you will remember the rest also.

Example 33-5. Unparsed entity declaration
<!ENTITY picture SYSTEM "http://www.home.org/mycat . gif" NDATA GIF>

We use unparsed entities through an entity attribute. A processor does
not expand an entity attribute, but it tells the application that the use
occurred. The application can then do something with it. For instance, if
the application is a Web browser, and the entity contains a graphic, it could
display the graphic. Entity attributes are covered in 32.6.3.5, "ENTITY
attributes", on page 472.

© 1998 THE XML HANDB OOKTM

1 '\ . 2 I E N T I T\']) E T II I I. s 481

JJ,2 1 Entity details

Ctlution Like other names in XML, entity names are case
sensitive: &charles; refers to a different entity from &Charles;.

It \s good rhar XML em:icy names are case-sensi riv because they are ofren
used co name letter . ase is a convenient way f distinguishing the upp r
case version of a lerter from the low r-case one. "Sigma" would represent
rhe upper-case version f the reek letter, and "sigma" w uld be the lower
case version of it. It would be possible o use some ther convemion co dif
ferentiate rh uppe1'- and lower-case versions, such as pr fixes. Thar would
giv us "uc-Sigma" and "lc-Sigma'' .

Entities may be declared mo(e than once, but only the first declaration is
binding. All subsequent nes are ignored as if they did not exist.
<! ENT ITY abc "abcdefghi j klmnopqrs t " > < ! - - Th i s i s binding. - - >
<! EN'r iTY abc " ABCDEFGH IJI·~LHNOPQR.ST " > < 1 - - This i s ignored. - - >
<' ENTI TY abc "AbCdEfGh ij Kl MnOpQrSt " > < ! - - So i s this . - - >

Declarations in the internal DTD subset arc processed before rhose in
the external subset, as described in Chapr r 32, "Creating a document typ
defini[ion '' on page 448. ln practi e, doctunen amhors can override
parameter entities in th external subset of the DTD by cledariJ1g entities of
rhe same name in rhe internal sub ec.

Entities are not difficult to use, but there are several variations and details
that you should be aware of. We have already covered the major varieties,
but only informally.

There is one special entity, called the documm t mtity which is not
declared, does not have a name and cannot be referenced. 1 he document
entity is th e enti ry in which ·the processor started the current parse. Imagine
you download a Web document called catalog . xml. Before a browser can
display ir, it must start to parse it, which makes it the document entity. lt
may include other entities, but because p<trsing started with catalog. xml,
those others are not the document entity. They are just ordinary external
entities.

lf you click on a link and go ro another XML Web page, th n rhe pr ces
sor .must par e that page befi re it can di play it. That page i the document
CVlmy fo r d1e new parse. ln other words, even th simplest XML do ument

fill l ~, l) A .!'II l;, X M [H ,, N l) Ill)() I(I,'\

482 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

has at least one entity: the document entity. The processor starts parsing the
document in the document entity and it also must finish there. 1

The document entity is also the entity in which the XML declaration
and document type declaration can occur.

You may think it is strange for us to call this an entity when it is not
declared as such, but if we were talking about files, it would probably not
surprise you. It is common in many computer languages to have files that
include other files. Even word processors allow this. We will often use the
word entity to refer to a concept analogous to what you would think of as a
file, although entities are more flexible. Entities are just "bundles of infor
mation". They could reside in databases, zip files, or be created on the fly by
a computer program.

JJ.J 1 Classifications of entities

There are many interesting things that you can do with entities. Here are
some examples:

• You could store every chapter of a book in a separate file and
link them together as enticie .

• You could "factor out" often-reused text, such as a product
name, into an entity so that it is consistently spelled and
displayed throughout the document.

• You could update the product name entity to reflect a new
version. The change would be instantly visible anywhere the
entity was used.

• You could create an entity that would represent "legal
boilerplate" text (such as a software license) and reuse that
entity in many different documents.

• You could integrate pictures and multimedia objects into your
document.

• You could develop "document type definition components"
that could be used in many document type definitions. These
would allow you to reuse the declarations for common

1. To put it mystically: it is the alpha and the omega of entities.

©199 8 THE XML HA N DB O OK TM

:; :i . 4 I l NT lc 1z N A 1. l; r:. N r-: R A 1. "NT 1 1· 1 E s 483

clement types (such as paragraph and emphasis) across several
document types .

Because X.ML entiries can do o many thin gs, there are several different
varieties of them. But XML cnrities do not break down into .s ix or eight dif
ferent types with simple names. Rath er, you could think of each enrity as
having three properties chat de.line its type. T his is analogous to the way
that a person cotJd be tall or shan and at the same time male or female and

blonde or brunette.

Similarly, entities can be internal or extemtd, pa·rsed or rmparsed and gen
tt.ml or parmneter. T here is no single wo rd for a hart, male, brunette, and
there is similarly no single word for an internal, par ed, parameter entity.

Cm£tion. Some combinations of entity types are impossible.
Obviously an entity cannot be both internal and external,just as a
person could not be both blonde and brunette. It turns out that
due to restrictions on unparsed entities, there are five
combinations that are valid and three that are not.

Most of the rest of this chapter will describe the five types of entities in
greater depth. W e will use one conven tion that might be confusing wi thout
this note. In a section on, for instance, intern al parsed general entities, we
may describe a constraint or feature of all general entities. When we do so,
we will use the word "general entity" instead of " internal general entity" .
T his convention will allow us to avoid repeating text that is common
among entity types. We will refer back to that text from other sections
when it becomes rel evant.

JJ.t i Internal genera] entities

Internal parsed general enti ties are the si mplest t-ype of entity. T hey are
essentially abbreviations defined completely in the document type declara
tion section of th e XML docum ent.

484 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

All internal general entities are parsed entities. This means that the XML
processor parses them like any other XML text. Hence we will leave out the
redundant word "parsed" and refer to them simply as internal general entities.

The content for an internal general entity is specified by a string literal
after the entity's name. The string literal may contain any markup, includ
ing references to other entities. An example is in Example 33-6.

Example 33-6. Internal general entity
<?xrnl version="l.O"?>
<!DOCTYPE EXAMPLE SYSTEM "exarnple.dtd" [

<!ENT ITY xrnl "Extensible Markup Language">
]>

<EXAMPLE>
&xrnl;

</EXAMPLE>

Internal general enuues can be referenced anywhere in a document
instance. They can also be referenced in the content of another general
entity. Because they are general entities, they cannot be used to hold
markup declarations for expansion in the DTD. They can only hold docu
ment content. Because of this, Example 33-7 is not well-formed.

Example 33-7. Illegal: General entities cannot be reference in the DTD
<?xrnl version="l.O"?>
<!DOCTYPE EXAMPLE[

l >

<! ENTITY xrnl "Extens ible Markup Language">
&xrnl;

The grammar rules for internal general entities are described in Specifica
tion reference 33-2.

Spec. Reference 33-2. Internal general entities
[70] EntityDecl : := GEDecl I PEDecl
[71] GEDecl : := '<!ENTITY' S Name S EntityDef S? ' >'
[73] EntityDef : := EntityValue I (ExternaliD NDataDecl?)
[9] EntityValue .. - ([A%&"] I PEReference I Reference)*

"'" ([A%&'] I PEReference I Reference)*

I ~ ~ t

©1998 THE XML HANDB OO KTM

33.5 I E XTERNAL I' A R S ED (; f' NE R A L E NTITI ES 485

J J.5 1 External parsed general entities

Every XlVIL entity is either inrernal or external. The ontent of imernaJ
entities occurs rigbc io th ntiry declarations. ExtemaJ entities get their
content from som where else in the system. It migbt be another file on the
hard disk a Web page or an object in a database. Wherever it is, it is located
through an external identifitn: Usually this is just the word SYS'l'EM followed
by a URI (see 34.4, 'Uniform Resour e Identifier (UlU)", on page 512).

fn this section, we are interested specifically in external parsed general
entities . Here is an example of such an entity:
<! ENT I TY en t SYSTE!1 "http://W\VIv.hou se .gov /Const itution. :Gnl" >

Ic is the keyword SYS'rEM that tells the processor that tb next thing in the
declaration is a URI. The processor gets the entity's content from that URI.
The combination of SYSTEM and the URI is called an external identifier
because it identifies an external resource to the processor. There is anorher
kind of external identifier called a PUBLIC identifier. It is denoted by the
keyword PUBLI C. External identifiers are described in 33.9, "External iden
tifiers", on page 494

External parsed general ntities can be referenced in the same pia es that
in ternal general entities can he - the docum n inscanc and th replace
ment text of other general entities -- except not in the value of an attribute.

J J.5.1 External parsed ent-ity support is
optional

XML processors are allowed, but not required, to validate an XML docu
ment when they parse it. The XML specificati n allows a processor that is
not validating a document to completely ignore declarations of external
parsed entities (both parameter and general) . There is no way to control this
behavior with the standalone document declaration or any other XML
markup.

The reason for this is improved Web surfing performance. The XML
working group thought that it was important for processors to be able to

download the minimum amount of data required to do their job and no
~ore. For instance, a browser could display unresolved external parsed enti
ties as hypertext links that the user could cli ck on to receive. Because the

~~ I ~ ') H T II 1·: X lvi L H ;\ N ll ll () () I(j '"

8 6 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

entity would only be downloaded on demand, the original page might dis
play faster.

Unfortunately this is very inconvenient for authors, because it means
that external parsed entities are essentially unreliable in systems that you do
not completely control (e.g. the Internet vs. an intranet).

Caution External parsed entity processing is optional
XML processors can ignore external parsed entities. If you use
them to store parts of your documents, those parts will only show
up at the browser vendor's option.

In practice this probably means that you should not put documents that
use external entities on the Web until a pattern for browser behavior
emerges. In the meantime, tools like James Clark's sgmlnorm (part of SP)
(see 400) can read an XML document that uses external entities and expand
all of the entities for you. Hopefully future versions of the XML specifica
tion will make external entity inclusion mandatory.

ii.l 1 Unparsed entities

Every XML entity is either an unparsed<> entity or a parsed<> entity.
Unparsed entities external entities that the XML processor does not have to

parse. For example a graphic, sound, movie or other multimedia object
would be included through an unparsed entity. You can imagine the num
ber of error messages you would get if an XML processor tried to interpret a
graphic as if it were made up ofXML text!

It is occasionally useful to refer to an XML document through an
unparsed entity, as if it were in some unparsable representation. You might
embed a complete letter document in a magazine document in this way.
Rather than extending the magazine DTD to include letter elements, you
would refer to it as an unparsed entity. Conceptually, it would be handled
in the same way a picture of the letter would be handled. If you refer to it as
an unparsed entity, the processor that handles the magazine does not care
that the letter is actually XML.

© 1 998 THE XM L HANDBOOKTM

33.7 I INTER N Al. AN D EXTERNAl. PARAMETER ENTIT IES 487

AU unparsed encitie are external entities because there is no way to
:x:press non-XM information in XML entities. They are also all general
nticies because it is forbidden (and s n eJess) to embed data in XML
)TDs. Hence, the term "unparsed entity" implies the terms "general" and
external".

Syntactically, declarations of unparsed entities are differentiated from
hose of other external entities by the keyword NDATA followed by a notation

tame.

lpe . Reference 33-3. Non-XML data declaration
a~aDec~ :: = s 'NDATA' s Name

The uamc at the end is the name of a declared notation. Notation decla
arions are described in .:32.7, "Notation Declarations", on page 474. The
)rocessor passes this to the application as a hint about how the application
hould approach the entity.

If the application knows how to deal with that sort of entity (for instance
fit is a common graphics notation) then it could do so directly. A browser
night embed a rendition of the entity. It might also make a hyperlink to the
~ntity. If it needs to download or install some other handler such as a Java
xogram or Active-X control, then it could do so. If it needs to ask the user
Nhat to do it could do that also. The XML specification docs not say what
t must do. XML only expects processors to tell applications what the
aeclared notation is and the applications must figure out the rest.

In the rare case that the entity is an XML document, the application
night decide to process it, create a rendition of it, and then embed it. Alter
lativcly, it might decide to make a hyperlink to it.

i i,J I Internal and external paran1eter
entities

KML entities are classified according to whether they can be used in the
DTD or in the document instance. Entities that can only be used in the
DTD are called parmneter entities. For instance, you might want to wrap

il> I ~ ,, g 1' fl 1·: X MI. 1-l 1\ N I) ~"() I(J M

488 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

up a few declarations for mathematical formuale element types and reuse
the declarations from DTD to DTD.

The other entities can be used more generally (throughout the entire
document instance), and are called general entities. Authors can use general
entities as abbreviations, for sharing data among documents, including pic
tures, and many similar tasks.

There is an important reason why the two types are differentiated. When
authors create documents, they want to be able to choose entity names
without worrying about accidently choosing a name that was already used
by the DTD designer. If there were no distinction between entities specific
to the DTD and general to the document instance, according to XMCs
rules, the first declaration would win. That means that either the author
would accidently take the place of ("clobber") a declaration that was meant
to be used in the DTD, and thus trigger a cryptic error message, or the
DTD designer's entity would clobber the entity that was meant to go in the
document instance, and a seemingly random string of DTD-text would
appear in the middle of the document! XML prevents this by having two
differem types of entities with distinct syntaxes for declaration and use.

Parameter entities are distinguished from general entity declarations by a
single percent symbol in their declaration, and by a different syntax in their
use. Here is an example of a parameter entity declaration and use

Example 33-8. Parameter entity
<!DOCTYPE EXAMPLE[

<!-- parameter entity declaration -->

<!ENTITY % example-entity "<!ELEMENT EXAMPLE (#PCDATA)>">
<!-- parameter entity use -->

%example-entity;
]>

<EXAMPLE>
</EXAMPLE>

The entity in Example 33-8 is declared with a syntax similar to that of
general entities, but it has a percent sign between the string <!ENTITY and
the entity's name. This is what differentiates parameter entity declarations
from general entity declarations. If you want a general entity you just leave
the percent character out.

The entity contains a complete element type declaration. It is referenced
on the line after it is declared. Parameter entity references start with the per-

©1998 THE XML HANDBOOK™

:H .7] N T F R N i\ L A N)) 1'. X T 1·: R N A L P A R A M E T lc R E N T I T 1 E S

cent-sign and en l with the semicolon. The par er replaces the entity refer
ence with rhe ntiry's conrenr. L1 Example 33-8, the pmcessor replaces the
reference with the clement type declaration "<!ELEMENT XAMPLE
(#PCDATA)>". It then parses and interprets the element type declaration
as jfit had occurred there originally. T h cl ment type is declared and so the
example is valid.

Spec. H.efercnce :33-"1. Parmueter Entity Declaration

[7 2] PEDecl : : ... ' < !EN'l'ITY ' S '"" ' S Na meS PEDef S? ' > '

[7<1] PEDe f :: = Ent ityValue I Exl:ernaliD
[75) ExternaliD ' SYSTEM ' S SystemLitera l

I ' PUBLI C ' S PubidLi tera] S Sys t emTJi teral

[69] PERefe rence : := '%' Name '·'

Parameter ennues can be external, just as general entitles can be. But
they can never be unparsed. Parameter entities exist to provide building
blocks for reusing markup declarations and making DTDs more flexible. It
would not make sense to tell the XML processor not to process one! An
example of an ex ternal parameter entity is in Example 33-9.

Example :3:3-H. R·dcrnal parametea· tmlity

< ! DOC'rYPE EXAMPLE [

< ' - -parameter enti ty declara t ion -->

< ' E:NTI'l'Y% examp l e-entity SYS'l'EM "pictures.ent" >

< ! - - parameter ent ity u se - ->

%example-ent it~';

J >

<EXAMPLE>

</EXAt1PLE>

Parameter entitles cannot be referenced in the document instance. [n
fact, the percent character is not special in the document instance, so if you
try to reference a parameter entity in the instance, you will just get the
entity reference text in your data, like "%this; ".

Parameter entities can only be referen ced after they have been declared.
General entities, in contrast, may be referenced before they are declared:

This works because the entity replacement fCJr &usee ; does not take
place until the point where the user entity is refirenced. Remember that
general entities can only be expanded in th e document instance. So the fact

489

490 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

Example 33-10. General entity usage
<!ENTITY user "This entity uses &usee;.">
<!ENTITY usee "another entity">

that user refers to usee is recorded, but the replacement is not immediately
done. Later, in the document instance, the author will refer to the user

entity using the general entity reference, &user;. At that point, the inclu
sion of its replacement text will trigger the expansion of the &usee; entity
reference and the inclusion of its replacement text.

As you know, all entity declarations are in the DTD. The document
instance comes after the DTD. The general entity expansions do not take
place until they are referenced in the document instance, so general entity
reference expansions will always take place after all of the declarations have
been processed, no matter what the order of the general entity declarations
in the DTD. Hence, the content of general entities can contain references
to other general entities that are declared after them, but the content of
parameter entities cannot.

JJ.I 1 Markup may not span entity
boundaries

Parsed entities may contain markup as well as character data, but elements
and other markup must not span entity boundaries. This means that a par
ticular element may not start in one entity and end in another. If you think
of entities as boxes, then an element cannot be half in one box and half in
another. This is an example of illegal entity use:

Example 33-11. Elements spanning entity boundaries.
<!DOCTYPE EXAMPLE[

]>

<!ENTITY start "<title>This is a">
<!ENTITY finish "title< / title>">

&start;&finish;

©1998 TH E XML HANDBOOK™

3 3. 8 MARKUP MAY NOT SPAN ENTITY llOUNDARIES

This document is not well-formed. When the entity references are
replaced with their text, they create a title element. This element spans the

entities.
Other markup cannot span entities either. Declarations, comments, pro

cessing instrumions and entity references must all finish in the entity in
which they started. This applies to the document entity as much as any
other. Markup strings and elements may not start in the document entity
and finish in an included entity. This is a subtle but important rule. Docu
ments which fail to conform are not well-formed.

In Example 33-12, entities are used in ways that are illegal. They are all
illegal because they start markup without finishing it or finish it without

starting it.

Example 33-12. Illegal entities
<!DOCTYPE TEST[

<!ENTITY illegall "This
<!ENTITY illegal2 "This
<!ENTITY illegal3 "This
<!ENTITY illegal4 "And
<!ENTITY illegal5 "And

wi ll soon be illegal">
will too <em">
will also ">

so will <!-- this">
this &too">

<!-- note that none of these are illegal yet. -->

]><TEST>
<!-- These references are all illegal -->
&illegall; <!-- Start-tag in entity with no end-tag there . -- >
&illegal2; < 1 -- Start of tag in entity-->
&illegal3; <!-- End-tag in entity with no start-tag there . -- >
&illegal4; <'--Comment start but no end in entity. -->
&illegal5; <'-- Entity reference starts in entity. -->
</TEST>

The entities in Example 33-13 can be used legally or illegally. They do
not necessarily represent the start or end of elements or markup, because
they do not contain the strings that are used to start a tag ("<"), comment
("<!--"), general entity reference ("&") or other markup. Entity content is
interpreted as markup if the replacement text would be interpreted as
markup in the same context. In other words, the processor expands the
entity and then looks for markup. If the markup it finds spans entity
b<!mndaries, then it is illegal.

In this case, it is not the declared entities themselves that are causing the
problem, but the fact that elements, entities and markup started in the doc-

@I 9 9 R THE X M L HAND ll 0 o K JM

491

492 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

Example 33-13. Sometimes legal entities
<?xml version="l.O"?>
<!DOCTYPE TEST[
<!ELEMENT TEST (#PCDATA)>
<!ENTITY maybelegall "em>.,> < '-- May
<!ENTITY maybelegal2 " -->II> < '-- May
<!ENTITY maybelegal3 "ph>"> <' -- May
l >
<TEST>
&maybelegall; <!-- Legal: Interpreted
&maybelegal2; <!-- Legal: Interpreted
&maybelegal3; <!-- Legal: Interpreted

not
not
not

as
as
as

be part of tag -->
be part of comment
be part of tag -->

character data -->
character data -->
character data -->

<&maybelegall; <!-- Illegal: Markup (tag) spans entities -->

-->

<!-- &maybelegal2; <!-- Ignored: entity ref ignored in comment -->
<em&maybelegal3; <!-- Illegal: Markup (tag) spans entities -->
</TEST>

ument entity must end there, just as in any other entity. The context of an
entity reference is very important. That is what decides whether it is legal or
illegal.

This is true even of entities that hold complete tags, elements, comments,
processing instructions, character references, or entity references. Refer
ences to those entities are legal anywhere their replacement text would be
legal. The same applies co validity (conformance to a docurnenr rype defini
tion). Example . 3-14 is well-formed, but not valid, because the fully
expanded document would nor be valid. Validiry is covered in Chapter 32,
"Creating a docum n typed fin.Jtion '',on page 448.

Example 33-14. Well-formed but not valid
<?xml version="l.O"?>
<!DOCTYPE TEST[

<!ELEMENT EVENT (TIME, DESCRIPTION)>
<!ELEMENT TIME (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ENTITY accident "<ERROR>Error< / ERROR> ">

]>

<EVENT>&accident;</EVENT>

The document in the example is well-formed. Both the EVENT and ERROR

elements start and end in the same entity. It meets all of the other rules
required for it to be well-formed. But it is not valid, because accident's

©19 98 THE XML HANDBO OK ™

3 3 . 8 MARKU P MAY N OT SPA N ENT IT Y BOU N DAR IE S

replacement text con~is ts of an ERROR el ment which is not valid where the
entity is referenced. (m he EVENT element).

Conceptually, validation occurs after all entities have been parsed.

Spec. Rcfet·encc 33-5. General entity definition
[70j Ent i tyDecl : := GEDec l I PEDec l
[7l } GEDecl : : = '<!ENTITY' S NameS EntityDe f S? '>'
[? 3) EntityDef: : := EntityValue I (Externali D NDa taDecl?)
[72] PEDec l : : = ' < !ENTITY' S ' %' S Na meS PEDef S? ' >'
[74) PEDe f : : = EntityValue I ExternaliD

J J.B.I Legal parantete1- entity reference

J'teither general entities nor parameter entities may span markup bound
aries, bu t parameter entities have other restrictions on them. There are pre
cjse places thar parameter enrity references are allowed. Wi thin the imernal
subset, the n tles are simple: parameter en tities can only be expanded in
places where full markup declarations are allowed. For them to be legal in
these contexts they must always contain one or more markup declarations.

Example 33-15. Multiple markup declarations in one parameter entity
< !ENTI TY % several-declarat i ons

" < !ELEMENT FOO (ltPCDATA) >
< ! ELEMENT BAR (#PCDATA) >
< !ELEMENT BAZ (#PC DATA) > "

%s everal - dec l ara tions ;

Because of the way XML handles white space, this entity declaration's
replacement text is parsed as it would if the entity declaration had occurred
on a single line. In this case we have defined the literal entity value over sev
@rallines to make the DTD more readable. When we refer to the parameter
entity "several-declarations", the three element types are declared.

The rules for parameter entities in the external subset are much more
complex. This is because parameter entities in the external subset are not
restricted to complete markup declarations. They can also be parts of a
markup declaration. XML restricts parameter entities in the internal subset
to full declarations because the internal subset is suppo ed to be very easy to
process quickly by browsers and other processors. The external subset

@; I ') '> R ']' H lc X M L 11 1\ N D ll o ('l h: 'LM

493

494 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

allows more complex, powerful parameter entity references. For instance, in
the external subset, this would be a legal series of declarations:

Example 33-16. Entities in the external subset
<!ENTITY ent-name "the-entity">
<!ENTITY ent-value "This is the entity">
<!ENTITY %ent-name; %ent-value;>

Both the name and the replacement text of the final entity declaration
are specified through parameter entity references. Their replacement texts
become the entity's name and replacement text. ,

The tricky part is that there are only particular places that you can use
parameter entity references in markup declarations. You might wonder, for
instance, if you could replace the string "<!ENTITY" with a parameter
entity reference. You might guess that this is impossible because XML does
not allow a markup declaration to start in one entity and end in another.
You would guess correctly. It would be harder to guess whether you could
use an entity reference to fill in the string "ENTITY" which follows the"<!"
It turns out that this is illegal as well.

To be safe, we would advise you to stick to using parameter entities only
to hold full markup declarations until you are familiar with the text of the
XML specification itsel£ The specification uses a special convention in the
grammar to describe the places that parameter entity replacement is allowed
in the external subset. There are just too many places for us to list them
here.

i i.t 1 External identifiers

External identifiers refer to information outside the entity in which they
occur. There are two types. System identifiers use URis to refer to an object
based on its location. Public identifiers use a publicly declared name to refer
to information.

Spec. Reference 33-6. External identifier
[75] ExternaliD : := 'SYSTEM' S SystemLiteral

I 'PUBLIC' S PubidLiteral S SystemLiteral

© 1998 THE XML HANDBO O KTM

3 3 . 9 I E X T E R N A L I 0 E N T I l' I E R s 4 9 5

u.t.l Systen~ identifiers

The SystemLiteral that follows the keyword SYSTEM is just a URI. Here is
another example of that:
<!ENTITY ent SYSTEM "http:/ /www .entities.com/ent.xml ">

You can also use relative URis to refer to entities on the same machine as
the referring entity. A relative URI is one that does not contain a complete
machine name and path. The machine name and part of the path are
implied from the context.

Example 33-17. Local external gene1·al entity

<!ENTITY local SYSTEM "local.xml">

If this were declared in a document at the URI http ://www. baz . org I ,

then the processor would fetch the replacement text from http: II

www.baz .org/local.xml.

These URis are relative to the location of the referring entity (such as an
external parameter entity or the external subset of the DTD) and not neces
sarily to the document entity. If your document entity is on one machine,
and it includes some markup declarations from another machine, relative
URis in the included declarations are interpreted as being on the second
machine.

For example, your document might be at http: //www. myhome. com. It
might include a DTD component with a set of pictures of playing cards
from http: //www. poker. com/ cards. dtd. If that DTD component had a
URI, 4Heartss. gif, it would be interpreted relative to the poker site, not
yours.

J J.9.2 Public identifiers

It is also possible to refer to a DTD component or any entity by a name, in
addition to a URI. This name is called a "public identifier". If a few entities
become widely used in XML circles then it would be inefficient for every
one to fetch the entities from the same servers. Instead, their software
should come with those entities already installed (or else it should know the
most efficient site from which to download them, perhaps from a corporate

© 1 ~ 9 H T H I' X M L !-! ;1 N ll 1\ o 0 I('"

I '

496 CHAPTER 33 I ENTITIES: BREAKING UP IS EASY TO DO

intranet). To enable these smarter lookup mechanisms, you would refer to
those DTDs by public identifiers, like this:

Example 33-18. Referencing a DTD by public identifier
<!DOCTYPE MEMO PUBLIC " - / / SGMLSOURCE/ / DTD MEMO // EN "

"http ://www.sgmlsou rce .com/ d t ds / memo. dtd">
<MEMO> < /MEMO>

The public identifier is a unique name for the entity. It should be unique
world-wide. Usually they contain corporate or personal names to make
them more likely to be unique. If the software knows how to translate the
public identifier into a URI, it will do so. If not, it will use the system iden
tifier.

Right now, the translation from public identifier to URI is typically
either hard-wired into a processor or controlled through files called "entity
catalogs". Entity catalogs list public identifiers and describe their URis, in
the same way that phone books allow you to look up a name and find a
number. Documentation for XML software should mention the format of
the catalogs it supports, if any.

In the future there may be intranet- and Internet-wide systems that will
look up a public identifier and download the DTD from the site that is
closest to you. The Web's designers have been promising this feature for
years and XML is ready when they deliver. In the meantime, the system
identifier following the public identifier will be used.

i i. l 0 1 Conclusion

As you can see XML separates issue of logical structure from chose of the
physical srorage of the documem. This means that document type designer
do not have ro forsee ev ry possible reasonable way of breaking up a docu
ment when they design the document o/I e. This is good, because rhar orr
of decision is best made by those who know their syst m resource Limits,
bandwidth limits, editor preferences, and so forth. The document type
designer, in contrast, takes responsibility for deciding on a good structure
for the document.

© 1 9 98 TH E X M L H A NDB OO K™

