

Merrill Communications LLC
d/b/a Merrill Corporation

Exhibit 1006 pt. 4

POET Content
Management
Suite

I Information life cycle

I Object data base

I Content management system components

© 1 99 8 THE XML HANDBO OK Th1

Chapter __ _.;

17

••• nfonnacion in general, and written content in particular, has a
cycle. Managing it has always been a challenge, and the chal­

lS mcreasmg.

21.1 1 Managing the inforn1ation life
cycle

The information content life cycle varies widely, depending on the type of
information being presented. For example, a newspaper might be published
on a daily basis. The information it contains is extremely time sensitive in
the first iteration of its lif:e cycle as breaking news.

The content of a newspaper becom.es important again as it is archived for
historical purposes and placed in knowledge bases for research purposes. In
a newspaper's second cycle, the presentation of information moves from
paper-based delivery to electronic delivery. The information may be
indexed and cross-referenced as an aid to reseuch that never existed in its

<D l lJ lJ ~ T 11 1·: X M I. 11 1\ :-.. .. 11 n l 1 (1 I< 1 ~•\ 1 365

366 CHAPTER 27 I POET CONTENT MANAGEMENT SUITE

paper-based form . The actual content of the newspaper i not chang d, but
the information might be reused in a condensed or edited future repcinr.

A mecUcal dictionary has yet another life cycle. Its information needs to
be timely, but is nor as time-sensitive as a newspaper. Medical terms change,
but trad itionally this type of publication has a fairly long life cycle. Many
terms need ro change before a reader feels the need to reinvest in a newer
edition of the dictionary. A typical print life cycle for such a dictionary can
be as long as four years . Ir is very expensive to reprint and manage su b. a
large body of information.

21. 1. 1 Changes to the information life cycle

Information life cycles change over time as new media and technologies
change the business model of information deuvery. The magazine indusrry
i a good example of how technology can affect the delivery and creation of
information.

Magazines like Time and Newsweek were revolutionary in the way they
created an entirely new format for di eminaring the news. Technology
helped make it possible to prim magazines on a weekly basis. The prolifera­
tion of special interest magazines such as Mens Health, and Outside Maga­
zine are a direct resuJt of the capabilities of deskcop publishing and more
efficient national distribution channels.

21.1.2 The World Wide Web has changed the
rules

Very few change in the history of information deuvery have been as pro­
found as the creation and rise of the World W ide Web. The Web has, in a
very short period of cjme, forced us co radkalJy rethink the information life
cycle.

Essentially, there are now two differem - y t complem nrary -life cycles,
one for print delivery and one for elecrronic. The changes that the Web has
pawned go beyond just life c:ycle management. Information is no longer

presented in a single format : e.g. n wspaper, magazine) manual, dictionaty,
encyclopedia.

Information needs to be able to change its presentation depending on
context. Is the information being presented in an electronic or print

© 1 998 THE XML H AND B OO K ™

2 7 . 1 I MAN A G IN G T H E I N F 0 R MA T I 0 N L I F E c y c L E 367

medium? Is the information supplemental or being cross-referenced from
some other body of information?

For example: In our medical dictionary scenario, medical definitions
might be available on-line to insurance claims adjusters who need ro look
up terms. Or, it might be available in the context of other medical publi a­
tions like a drug gu.ide.

The print life cycle for a medical dictionary might never be less than 4
years, bur rhe life cycle of the same publication on the World Wide Web or
CD-ROM might be far shorter. Web customers would mo t Likely ub­
scribe to this information and would want the most up-to-date information
at all times. Most likely the same publication will have more than one dis­
tribution medium and a complex life cycle to manage.

Managing today's information requires more flexibility than traditional
document management systems can provide. XML provides the appropri­
ate notation for storing and editing information over its entire life cycle.
What is needed are new tools and paradigms for managing and enabling
XML content.

21. 1.J Object-oriented components

The new paradigm for content management with XML is "components".
Document components are logical, hierarchical divisions of a document.
Through parsing, XML documents are automatically broken down into a
componem object structure. In a content management ystem, component
0bjecrs can be edited, v rsioned, and shared independ ntly of the docu­
rnenr that contains them.

Why are document components more powerful than monolithic docu­
ments? By brealcing a document down into components pieces of a ingle
document can be managed a if they were objects. This al lows authors to
work collahoratively on pieces of a large document while man.aging the
document li fe cycle through version control.

Document components can be nested inside one another according to
the natural structure of the documem itself. By reading the document type
definition (DTD), a contenr management system has the necessary infor­
mation needed to create document components according to user-defined
parameters.

©1 9 98 TH E XML HANDBOO K TM

368 CHAPTER 27 I POET CONTENT MANAGEMENT SUITE

Document (ver. 1)

Chapter 1 (ver. 0)

Chapter 2 (ver. 0)

' ,, ··:
Chapter 3 (ver. 0)

· ·1 Chapter 3 (ver. 1)
< ·-~ 'I __ C_h_a-pt-er- 3----,

I ct•CIIfn '------'

Figure 27-1 Nested document components.

As seen in Figure 27-1, a "document" component can contain "chapter"
components. (These components correspond to elements in the XML doc­
ument.)

A checkout can occur at any level in the hierarchy. Multiple clients can
check out different components in the same large document for collabora­
tive authoring.

The component structure of a document looks very much like a table of
contents would. Chapters might contains sections and subsections, tables
and figures.

Components present the user with a logical view of the document as
opposed to a storage-based view of a document. It is not necessary to care
how the document is actually stored, whether it be in files or in a database.
The most important view of a document is one that reflects the semantic
structure of the document itself. Components allow us access to the wodd
ofXML structured content in a way never before possible.

21.2 1 The POET Content Management
Suite

One approach to managing document life cycles with content management
is the POET Content Management Suite (POET CMS).

©1998 T HE XML HAND BO OK™

2 7. 2 I THE P 0 E T C 0 NT EN T MAN AGE MEN T SUITE 369

tJ.t.l POET CMS components

The architecture and components of POET CMS are shown in Figure 27-2.

Web Browser

)(Ml./SGML
Graphics
D~cumams
pTML Templates

POET Content
Client

Content SDK

CustomXML
Application

Content SDK

Figure 27-

~~~ 
~I NSAPioriSAPI 
~ WebServer 

I POETWeb 

XMLISGML 
Graphics 
Documents 
PTML Templates Iii 

t TCPIIP \ I POETContent M e 
~..--_.,, ! 1---S- erver - 1.. ·~ Database 

I Verity Indexing 

I Services 

~d~ , ~======~ 
I 

I 
I 
I 

I 
2 POET Content Management Suite . 

27.2.1.1 p OET Content Server 

The POET 
Object Server 
and includes 

Content Server provides the full functionality of the POET 
database product. However, it is optimized for content access 
a suite of tools for administering the database. 

The produ ct is packaged with a content-enabled version of the POET 
server plug-in. It uses server-side templates to dynamically 
deliver the latest content to the Web or the corporate intranet. 
HTML, XML, other documents, and graphics, directly from 

wt-b Factory 
assemble and 
It can deliver 
a POET data base. 

@]998 THE X ML HANDBOOKTM 



3 7 0 CHAPTER 27 I POET CONTENT MANAGEMENT SUITE 

27.2.1.2 POET Content Client 

The POET Content Client provides an immediately deployable solution to 
managing content in an editorial or delivery environment. The product is a 
Win95/NT end-user application that provides project management, ver­
sion control, document component exploration, viewing, querying and 
component sharing functionality. 

27.2.1.3 POET Content SDK 

The POET Content SDK is a development environment with several appli­
cation programming interfaces (API). 

The High-lev L Af>l provides an interface for performing common ta ks 
such as imp rring and validating documents, checking comp n nrs in and 
out, managing folders and proj cts, pressing ditions aod deliveri.ng con­
tent. 

The Navigation API provides object-oriented abstractions for traversing, 
accessing, and querying XML elements, attributes, and components, as well 
as common graphic and non-XML document files. 

The ActiveX API provides ready-made tree, list and query controls for 
embedding in an application, either without programming, by scripting 
with VBScript and JavaScript, or by interfacing with C++ or Java. 

21.2.2 The POET CMS Architecture 

The POET Content Management Suite architecture allows different types of 
client to access the database at one time. Editors can use the Coutent Client 
interface while reviewers are viewing the latest draft in Web browsers. Cus­
tom applications can run at the same time. A single server can access many 
different databases at once, and a single client can access many different 
servers. 

© 1998 THE XML HAN D DOOKTM 



27.2 I THE POET CONTENT MANAGEMENT SUITE 371 

21.2.J Using POET CMS 

27.2.1.1 Server-side content management 

Content management requires control. A database server needs to provide 
control over concurrent access by multiple clients, management of transac­
tions, user rights, and multi-threaded queries. 

Moreover, a content server must be able to address the challenges of 
structured documents effectively. Fine-grained control of locking and ver­
sioning is necessary. 

It is tight control of the database that enables flexibility for users. 
For example, the POET Content Server can operate in editorial and deliv­

ery environments concurrently. Users can edit and manage versions on the 
same system and database that is being used for delivery to the Web or the 
corporate intranet. Approved editions can be delivered at the same time 
that new content and versions of the documents are being created. 

Moreover, access can be controlled so that different people can access dif­
ferent versions. Web users on the public Internet might only get formally 
released material, while intranet users might see the most recent version of 
the information. 

27.2.3.2 Client-side editing and viewing 

The POET Content Client provides a familiar explorer-style interface for 
managing document components. Documents and components are stored 
as objects that can be organized into folders, dragged and dropped between 
projects, checked in and out, viewed, edited, and queried. The product pro­
vides the security and power of a traditional version control system with the 
added power of hierarchical component versioning. 

Let's take a closer look at a few of its functions. 

Version control 
In Figure 27-3 the main window shows the database for a very large docu­
ment, Taber's Cyclopedic /YfedicaL Dictionary. In the left-hand window pane 
is an explorer-style view of the database. Folders and publications can be 
viewed ju t as if they were on the file sy tern. 

©1998 THE XML HANDBOOKTM 



372 CHAPTER 27 I POET CONTENT MANAGEMENT SUITE 

In the case of XML documents, like this one, the document itself is not 
the smallest unit that can be browsed. Clicking on a document will reveal a 
new world of document components. Th.is particular document is broken 
up imo me user-defined component levels "MAINENTRY" and "SUBEN­
TRY', which are elements of rhe dictionary. 

1111 Eile ll.uer~ )!iew ~mow !!~ 

Dr rewDb 5 0 pen [•b ~Checkc·u! El.Chechn ~Undo "'#Change iii!Folder ~Edrtion K'Dele!e 

~ .!.og 

0 <MAINENTRY> necrose 
~ <MAIN ENTRY> necrosis 

I · 0 <MAl N ENTRY> necrotic 

~
- 0 <MAINENTRY> necrotomy 

0 <MAINENTRY> need 
e <MAlNENTRY> neede 

I' 0 <SUBENTRY> '"'"'"~;m 
0 <SUBENTRY> aspirating 
0 <SUBENTRY> alraumati• 

- 0 <S UBENTRY> cataract t 
· D <SUBENTRY> discission 
0 <SUBENTRY> Hagedorr, 
0 <SUBENTRY> hypoderrr 
0 <SUBENTRY> knfe nee 
0 <SUBENTRY> ll!l"LlMB rr 
0 <SUBENTRY> Oblilolor 
0 <SUBENTRY> Reverdin' 
0 <S UBENTRY> scalp veit 
D <SUBENTRY> stop neec 

0 <MAINENTRY> needle·stick 

Tas k completed success fully OK Con eel 

0 <SUBnlTRY> aneurysm r111edle 
Q <SUBENTRY> aspirating needle 
0 <SUBENTRY> atraumatic needle 
0 <SUBENTRY> cataract needle 
"" 

Q.~ference ... 

Figure 27-3 Component database w ith version selection dialog. 

Right-clicking on the elecr d component, in this case the MAlNEN­
TRY "needle" pops up a menu from which variou actions can be taken 
(Figure 27-4). Clicking on ' hange Version' brings up the "Available Ver­
sions" dialog that we saw in Figme 27-3, from wl1icb a specifi ver ion of 
rh.e componenr can be selected. Versions arc listed along with th. la t acti n 
perf~ rmed on them and the user who performed th action. 

~) 1 99H THE X ML HA ND ~O O K'"' 



27 . 2 j TH E POE T CON T ENT M ANA G EMENT S U I TE 

I I, , I, · , II 

u:ll file Q.uery Y:iew Yl!indow l:ielp 

0 New Db ~Open Db l (51 checkout 

£roperties 

~uery I ~ ~iew I ~ .B_rowse I 
@J Report 

Figrn·e 27-4 Right -click action menu in POET CMS. 

Checking out a component 
1 he right-click menu offers other actions a weH, including the possibility 
of checking-out th componenr in order co edit it. In Figmc 27-5, the 
MAINENTRY "neck" in d1 medical di tionary has been ch ked om. Tt 
and its subcomponents appear in red to indicate that they are checked out 
and cannot b m dified by another user until they are checked back in. 
check Olll. All od1 r component arc stili available for modi6cati n by other 
users. 

<D I ~ ~ 8 T II 1·: X M L I-1 II N ll 11 " () ' I •11 

373 



374 CHAPTER 27 I POET CONTENT MANAGEMENT SUITE 

I <a I 
[• .. EJo a- lf- lll.- u.-, 

D Now Db ~Open Db -'J ,:;i,cheokoc.• Eloched:"' ~Und>l .fict-.ang~ i0Fo!1:r ii:JEd~IO'l Jtoeret~ ~Up 

i , <LE1TER> 1101 l!l Ia- L•><Auoan O~<o. 
•' ~ <MAINENTRY> NecalOI I !! <SUOEtnAV> -nrmc;ol nook ol tholnomonn Clloo~Oiof ·~ ~ ~~NENTRY> neco!ltoriatis [I) <SUBENTRY> neck of the femur Checkout riCibo<tl! 

~r ~·~: .- ~<SUBENTRY> Madelung's neck Checkout nobod.Y 

II <SUBENTRY> anatomical neck of the humerui ~<SUBENTRY> neck of lhe mandible Checkout nobody 

~ <SUBENTRY> neck of the femur 
~<SUBENTRY> SlJ'gical neck ol the OOmerus Checkout nobody 
lr! <SUBENTRY> neck of lhelool.h Checkout nobody 

~ <SUBENTRY> M~lung's neck ~ <SUBENTRY> neck ollhe uterus Checkout nobody 
~ <SUBENTRY> neck of the mandible 

...J 
~ <SUBENTRY> webbed neck Checkout nobod.Y 

00 <SU BENTRY> $Ufgieo!ll neck of the humerus ~<SUBENTRY> wry neck Checkout nobody 

I §1 <SUBENTRY> neck of lhe loath 
~ <SUBENTRY> neck of the uterus 
~ <SUBENTRY> webbed neck 
~ <SUBENTRY> wry neck 

D <MA!NENTRY> neck conformer 
0 <MAINENTRY> neck lighting relle>~ 
0 <MAINENTRY> necr· 
0 <MAINENTAY> necrectomy 
D <MAINENTAY> necro 

l.if" <MAINENTRY> necrobiosis .=.l •• 
00 Log 'I ~uery I ~ ~ow I ~ .ll.rowve I 
Checking out component . 

Task COJI'Ipleted successfully 
Checked out component neck: ( 0-0-562863-13lv0) to C: 'TEHP, neck sgfk 

Figure 27-5 Checked-out components. 

Sharing a component 
A component can be shared by holding down the CTRL-SHIFT keys and 
dragging it into another project folder. All changes made to the component 
will be reflected in both projects. 

In Figure 27-6 the component "Executable unit properties" is being 
shared with the "Technical Manuals" folder, as indicated by the curved 
arrow in the cursor. 

© 1 9 9 R T H E X M L H A N D B 0 0 K 1M 



2 7 . 2 THE POET CON T E NT MAN AGEME N T SU ITE 

, SGML NavigaiOJ -(sgmldalabase.sdb:l] 

Wll file Query ~1ew ~1ndow !::!elp 

0 New Db ~Open Db 
1 

\ e.checko,Jt ' ,;ll [ ,, ·· J .,, 

,;9 C:\projects\wildflower\testdatabase\sgmldatabase.sdb at LOCAL 

rtJ llillJ GrephiC$ 

l'fJ tm1J 
~~~White Papers 
· :_ 0 Wildflower Pro mmer's Guide.rtf

l~l 6'J WildflowerProgrammersGuide sgm ,.(£]
El ~ <BOO K> BOOK

~ <CH.I>.PTER> High level interface
0 <SECT1 > The Wildflower High Level Programming
0 < S E CT1 > application objects
0 <SE CT 1 > Reporting logs
0 <S ECT1 > executable units

! 0 <S ECT1 >sample import program

13 : ~~~~~~~~~r~i~~f-J~~·rti~sj
It : $ <SECT2> expott properties
$ ~ <SECT 2> Properties for check in
f!: ~ <SECT2> Check·out properties

~ Log ? Query I~

f!~Stop ~Report

Figru·e 27-6 Sharing a component

Viewing a document
An object, such as an XML (or full SGML) component, graphic object, or
word processing document, can be viewed by dragging it onto the browser
toolbar. Depending on the object type, the browser will either view it
directly or launch an external program to view it.

(() I ') ') K T II li X M L I I ll N ll ll L) () K TM

375

376 CHAPTER 27 I POET CONTENT MANAGEMENT SUITE

In Figure 27-7 we see the Sofiquad Panorama viewer in the bottom win­
dow, viewing the component "microscope".

0 dAAINENTAY> mb01hinkl
0 <MAINENTR'(> flliC I Uicelou~

~· <MAINENTRY>~
0 <SUBENTRY> binocul~r rric: ro1cope

I D <SUBENTRY> compooodmicroscope
Q <SUBENTRY> doll; I reid f!JC.ID!tope

0 <SUBENTRY> elecllonmitro;C(Ipe

g ~~~:~~~:: :::~::Cepe ~
IJ <SUBENTRY> phasemicro;cope
0 <SUBENTRY> pol~nHIOO ll'IK:Iorcope
0 <SUBENTAY> i tam.l!leie<llonmicrortope
(!] <5U8EN1RY> 1implemic101COpe
CD <5U8EN1RY> slll. la!T(l micloscope
;:; ,C I IOI: . ITCV, -.l~ -~ - -~-'~- -~-----

~ l l!:!<tHJil[tfTR'I')br.rloJII~eoc. !l
0 ~SUBEN TRY! compound mtc1o1cope
0 <SUBENTRY> dotk held microscope
D (SUBE NT IWJ e!ec\ronrnicro!cope
[J <SUBE NTRY>~ micro<;cope

~
Cit113WT q.t~Jli'rJUIN'~

_t <SUBE NT RY> pha1e "*:ro1cope
<SUBENT RY> poltllrl~ronm~e ro1copo

§ <SUBE NT RY> 1.caon~ eleclron rNamcope
<SUBENTRY> 1• rOCio!cope
<SUBENTRY> tit ~'lll miclO'icope

~
<SUBENTRY> tlereorcopiciTIIClolcope
<SUBENTRY> IA.ravioleirric((} ~cope
<SUBENTRY) ~ r ay miclotcope

"""·· ~= E:<po~l
[liJlOI\

'"'"'
'"'"" '"'"" ·-,,.,
'"""' '""'

T~ = ••IIO.If ,.,.. -'""""" """* ""'"'' ""'"" ""'"" ----

.i"'.,Jf(ti!;:!I~V. ! AI
:vlli!JIItO~~ AM
mll!lll.~!/lOO AM
2/23/00 f:r,) l't\AM
2/23/98 -&!l'U:IIAM
2/23/96 ~53:0 1 AM
2/?J/989 5301 AM
2123/909 5J 01 AM
212~ 9 51 01 AM
2J23190 953.01 AM
2123/999 53.01 AM
2J2JI~953.01AM
21231989 5301M1
2123199 9 5J.01 AM

1:1 Lot 'I Qwryl ~ l!low ~!J il••w••J

I a:. r.:!., 5~.11 .£1..., I '!, lmi:'.:!!!:!::CI/LOCI\lfiW.,kol••\P\I•~·~• b::•-.!!"''"1 '~"""'"11' 7" 1~·;612f~~-l~~"L

• mh;raU \1[18
Q binocular mforotcope
~ao c:ornpound 4nlerolcope
Q dark-field microscope
q electron microscope
• light microscope
• operating microscope
• phue microscope
• polarization microscope
• scanning electron microscope
• simple microscope
11J slit-lamp microscope
• stereoscopic microscope
• ultraviolet microscope
• x-ray mlcroscope

t ltctron 1n ~rolcop•
A mic roscope that usesslreamsofeleclrons deOectedfromlheircourseby an elect rostaltcor
elec l romagnel ic fi eld fori he magnification of obj ects

Dere ~ p The fmal image 1s viewed on a Ouore sc enl sc reen or re corded on a photographic plate
Because or greater 1esolution, images may be magmr1ed up IO .400 ,0CO diameters
See tt:.to•t!ti!JI Iftl lnmmJCrft51i(.!!)D

light micros cope
A mtcroscopo that uses ord tnary lighl lo allow VIewing or I he object

operating microscope

Amicroscope designedforu se during sUige ryinvolvingsmall l issuesuchasnel\'es,vessels , the
inm~rea 1 ,orfa ll opianl u bes

' 'lci::i

I 1!

[I

~ .&

l"igure 27-7 Viewing a component

Full-text search
POET CMS supports several forms of searching. Figure 27-8 illustrates the
results of a full text search for the word "migraine" . The "Query" tab of the
main window lists all of the components that contain the word.

The search was conducted by means of a dialog box, in which the search
string was entered. The dialog offers the option of restricting the search to

the current version of components that contain the word, or returning all
versions that contain it.

©1 998 THF. XML HANDBOOKTM

2 7. 2 THE POET CONTENT MANAGEME NT SUITE

LJ <MAl N I: N I HY> neck ·nght1ng retlex
. 0 <MAINENTRY> necr·

.. 0 <MAINENTRY> necrectomy
. [J <MAINENTRY> necro·
~ <MAINENTRY> necrobiosis

~ _Log '? Query j ~ ~ew I ~ I!_rowse I
' 0 Stop @J Report

(;] <MAINENTRY> migraine _
ISJ <SUBENTRY> mrgra1ne pa1n
5 <MAINENTRY> headache

<MAINENTRY> vomiting
~ <MAINENTRY> vertigo
liD <MAIN ENTRY> teichopsia
liJ <SUBENTRY> signal symptom
$ <MAINENTRY> skin
[j <SUBENTRY> scintillating scotoma
O <MAINENTRY> review of systems
[J <MAINENTRY> retroperitoneal fibrosis
[I <MAINENTRY> Moebius' [Mbius'] disease
El <MAINENTRY> methylergonovine maleate
EJ <MAINENTRY> hyperhidrosis
[ID <MAIN ENTRY> hemicrania
li] <SUBENTRY> cluster headache
El <SUBENTRY> ergotamine tartrate
0 <M.~~~~~RY> ergonovine ~aleate

Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import
Import

nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody
nobody

Figure 27-8 Result of querying for components containing "migraine",

The query results can be can be used as a basis for checkout, viewing, and
editing by right-clicking on a component as if it were listed in the main
pane of the window.

Analysis The decreasing life cycles of information brought
about by the World Wide Web make a persuasive argument for
XML and content management. It is true that content
management was originally conceived for large-scale technical
publishing. However, it appears likely to play a significant role in
middle-tier Web applications as well, particularly as the value of
maintaining persistent metadata on the middle tier becomes
better appreciated.

©1998 THE XML HANDllOOKTM

377

HoTMetal
App ication
Server

I Middle-tier server tool

I Familiar HTML base

I WYSIWYG development environment

I Free trial version on CD-ROM

© 19 98 THE X ML HANDBOOK"''

• •• he landscape of the Web i rapjdJy changing. No longer are
Stade Web pages enough to give an organiz<!-tion the bu iness
edge h requires in today's highly compccitive w rld. No mat­

ter how well designed and link-intensive your Web page is, it won't
make the grade unless it can provide the interactive services that the
new generation of "Nintendo" trained, computer-savvy, business-ori­
ented Web users now demand.

Remaining competitive on the Web can be overwhelming for organiza­
tions that have struggled just to create today's static Web pages. How can
they cope with emerging requirements to provide a "personal experience"
on their Web site? This is especially difficult if the organization lacks the
technical resources it takes to add interactivity to their site.

28, 1 1 Dyna1nic descriptive 1narkup

The solution lies with a new generation of XML-based software for the
middle tier that relies on descriptive markup, rather than procedural scripts

@ 19l).S rl ' [-[[;, XML I-lr\I'IJI\l)()J;:I.\\ 379

3 8 0 CHAPTER 28 1 HoTMETAL APPLICATION SERVER

written in JavaScript, VBscript or C++. Products like SoftQuad's HoT­
MetaL Application Server (Ho TMetaL APPS) seek to introduce new func­
tionality painlessly by leveraging existing user expertise in HTML.

With Ho TMetaL APPS, for example, Web development is done directly
in XML markup, u.ing an extended set ofHTML tags. Because the source
markup is XML, the product can provide a "what-you-see-is-what-you-get"
(WYSIWYG) view of the page as well as the tagged view. (Figure 28-1)
Developers new to dynamic Web pages may find it easier to adapt to this
familiar paradigm than to deal with scripting code.

&[Greeting] &[FirstName]!
T h is Is the d a ta tha t you h ave s upplie d a b o ut yo ursel f . T o see so m e
time ly Informati o n w hich a pplies to yo u , cli ck the Cont in ue butto n
be low,

E-mt~ll Address:

Ne~me:

L ocotlon:

Type of Dwelling:

Figure 28-1 WYSIWYG view of a dynamic Web page in Ho TMetaL APPS.

ta.t I How HoTMetaL APPS works

The product has two components. The first is the development interface.
The second is the application server itself, which runs on several UNIX
platforms as well as liS, Windows NT, and Apache.

In order to allow the user to work in the familiar HTML Web page
development paradigm, the development interface is based on the vendor's
HoTMetaL Pro HTML editor, with additional features known as the Power
Pack. The latter includes support for special "MV" tags (described below),
plus documentation and sample applications.

© 1 998 T H E XML HANDBO OK ™

Also included is the HoTMetaL Personal Serv~; whi h run under Win­
dou;s 95 or Wbtdows NT .HoTMetttL Personal Server is a completely self­
contained environment that can be used for staging applications before they

go ro the ~eb. .
A fre' tnal vers10n of HoTMetaL APP. can be found on the CD-ROM

accompanying this book It works with existing Web browsers and for
those who have scripring language kills, Java crip and DHTML can be
integrated into its Web pages as well.

@@) @IDyour Personal Innovations: Registration (iliillJ (W!• J

OOITW} r·· ··--··· ··--- ----·---------· ·--···----·------··--···········--··--·······----····--····--····
I •

(@.a.~1)[Re~sterDB = re~ler. datJ (A WA..~~l J

I.~XME~il) Chqc};if t·mall adJrgss almdy ~J1slsi11 tlw databaSB ~

(!o(·IASS:;tl)[FoundPrevious = 0] (.lw~;~J)
l"Mif<ffT)~ILJir:'(Re~sterDB)' DELIMITER='!~

FlliLDS::'prevEmall,prevN ame,pravLocation,prevDwelling' FIL'l'ER=' ~re~Emrul EQ
Email)"]

Figure 28-2 HoTMetaLAPPS development interface.

382 CHAPTER 28 I HoTMETALAPPLICATION SERVER

ta.t.l Middle-tier server tags

The major difference between an HTML editor and the Ho TMetaL APPS
development interface (Figure 28-2) is support for a set of special "Middle­
tier serVer", or "MV" tags. Normally, XML and HTML tags such as "Hl"
and "TABLE" identifY elements of those types and are rendered by the cli­
ent browser.

MV tags, however, though resembling normal tags in syntax and method
of use, are interpreted by Ho TMetaL APPS and are never seen by the
browser. Instead, they dynamically control the generation of the page that
the browser eventually receives.

28.2.1.1 Data access tags

One group of MV tags enables the dynamic inclusion of data from data­
bases and other sources. They include:

MVOPEN
Opens a specified data source.

MVINPUT
Dynamically pulls data from a specified source into the Web page.

MVCLOSE
Closes a specified data source.

28.2.1.2 Conditional logic tags

This set of MV tags enables the Web site developer to perform conditional
processing. That is, the generated browser page can depend on conditions
occuring in the data or other changing information. Some examples are:

MVIF
Causes following text to be processed if a specified statement is
true.

©1998 THE XML HANDBOOK™

28.3 I FUNCTIO N ALITY C A N BE PRIE N DLY 383

MVELSE
Causes alternative text to be processed when the MVIF statement
is false.

Note that the text that is processed because of the above tags can include
both MV tags to be processed on the server and ordinary text to be
included in the generated page.

21.2.2 Guided construction of dyna1nic pages

When creating dynamic Web pages with a procedural scripting language,
the developer must know the language commands and parameters and
where they can be used. In contrast, markup-based development is gov­
erned by an XML document type definition that allows entry of tags only
where appropriate.

In HoTMetaL APPS, for example, MV tags are entered in the Web page
via the "add markup" pull-down menu in the same manner as normal tags
can be entered. The available tag selection dynamically changes based on
document context, so adding tags in the right spot is automatic.

Moreover, since the programming parameters for MV tags are specified
as attributes, the Ho TMetaL APPS Attribute Inspector can guide the devel­
oper in their correct use. For example, in Figure 28-3, the Attribute Inspector
indicates required parameters in boldface.

-~~.l\/ll.IPOAT .!J

;: lllllllmllll ~

~~~~m.~ -= :~ 
~-

Figure 28-3 The Attribute Inspector 

IB.J I Functionality can be friendly 

The business requirement to engage the customer in the Web site experi­
ence is growing each day. No longer is it enough simply to present informa-

© I 9 9 H T H 1C X M l. J-1 11 N 0 ll 0 o K "' 



384 CHAPTER 28 1 HoTMETAL APPLICATION SERVER 

~ m 
Sea1ch Fa·,~orites 

Welcome Back, Bruce! 
Th is is the data that you have suppl iecl about your-sel f To see some timely 
inforrnation which applies to vou, click the Continue button below. 

E-mail Address : bsharpe@softquad.corn 

Name: Bruce Sharpe 

Location: West Coast 

Type of Dwelling: Detached House 

Figru·e 28-4 Dynamic XML-based Web Pages 

tion to those who visit your site. You must include them in the business 
process (Figure 28-4). 

XML is the enabling technology that will make such interaction perva­
sive. And there is no need for it to be limited to those with large budgets or 
huge technical staffs. Products like HoTMetaL Application Server offer the 
non-programmer the potential to build highly interactive Web sites in a 
tag-based environment, where today's Webmasters are already comfortable 
and proficient. 

<'-) l t) lJ H T 1-1 F X lv1 L H i\ N I) li ~) n K L/1.! 



   



Junglee Virtual 
DBMS 

I Middle-tier server tool 

I Virtual database technology 

I Wrappers and extractors 

©1998 THE XML HANDBOOKTM 



ith the explosive growth of the Internet, corporate intra­
nets, and the World Wide Web, a vast resource of data is 
now available. This data is scattered across Web sites, file 

systems, database systems and legacy applications. Writing applica­
tions to query and combine data from this wide variety of sources is a 
complex and difficult process. 

21.1 1 Why virtual database technology? 

All of the middle-tier approaches described in this book can integrate data 
from multiple sources and deliver it to the client in the form ofXML docu­
menrs. Some users, however, may find a compelling logic in going even fur­
ther, as Junglee Corporation has. 

Their VirtuaL Databa.se Management System (VDBMS) i designed to 
01ake the World Wide Web and other external data sources behave as a sin­
gle relational database- as part of your merprise or Web application infra­
Sttucrure. T he rdarional database view makes ir po ibJe to e ute 

© 1 ~l 9 8 T HE X M L 1-1 A r-; D ~ o o K 1·" 387 



388 CHAPTER 29 I JUNGLEEVIRTUALDBMS 

powerful queries using the industry-standard Structm·ed Query Language 
(SQL) , and results can be presented as relational tables or XML docwnent , 
as required by the application. 

The VDBMS leverages the power of XML to deliver results in a form 
that can be manipulated by the browser without round trips to the Web 
server. For example, XML al lows browser-side sorting and filtering of data, 
and presenration of rhe data to suit specific user preferences based on style 
sheets. Figw-e 29- 1 ill ustrates the core functional ity of rhe VDBMS. 

Development Phase Internet Web sites 
Operational Phase 

Figure 29-1 The Virtual Database Management System (VDBMS). 

©1 99 8 TH E XM L HAN DBO OK 'rM 



29.2 I How TH E VDBMS woRKS 389 

20.2 1 How the VDBMS works 

The Virtual Database Management System is an integrated Java-based system 
that enables you to develop and operate a "virtual database", a relational 
view over large collections of Web sites and other data sources. Database 
and Internet applications can access a virtual database using SQL, through 
ODBC and JDBC interfaces. 

The VDBMS provides a comprehensive set of tools for transforming the 
Internet into a database: 

• Wrapper Development Kit (WOK) 
• Extractor Development Kit (EDK) 
• VDB Server and Data Quality Kit 
• Administration Interface 

tt.t.l Wrapper Development Kit (WDK) 

Wrappers are Java programs designed to extract data from data sources 
(such as Web sites) on demand, and present the data in a tabular format. 
Figure 29-2 shows the wrapper development process. 

Web site 

Internet 

Wrapper programmer 
uses the WDK to 
analyze a web site 
and generate a wrapper 

Development Phase 

Operational Phase 

Figure 29-2 The wrapper development process. 

©1998 THE XML HANDBO OK™ 



390 CHAPTER 29 I }UNGLEE VIRTUAL DBMS 

The Wrapper Development Kit provides wrapper .frameworks, which are 
collections of Java classes. Using these frameworks, the wrapper program­
mer can easily customize data retrieval. The WDK provides a high-level 
abstraction for network access, HTML parsing, pattern-matching and rela­
tional data output, allowing the programmer to focus on the core issues of 
data manipulation. 

21.2.2 The Extractor Development Kit (EDK) 

Data integration often involves extracting structured data from "unstruc­
tured" text; that is, text whose computer representation intermixes style 
information with the abstract data. To do this, a wrapper uses a program 
called an extraction rule, a set of rules and dictionaries created by the pro­
grammer using the Extractor Development Kit (EDK). Figure 29-3 illus­
trates the extractor development process. 

!:xtraction programmer 
uses the EDK to analyze 

unstructured text on a 
web site and generate 

extraction rules and 
dictionaries 

Development Phase 

Operational Phase 

Figure 29-3 The extractor development process 

Extraction rules are expressed in a high level language called the Junglee 
Extraction Language (JEL). JEL allows programmers to specifY complex 

©1998 THE XML HANDBOOK™ 



29.2 1 How THE VDBMS WORKS 391 

textual patterns and linguistic structures to identify the context in which 
specific terms are used. Individual terms are listed in the dictionaries, and 
can be tagged with flags and values using the EDK compilers. Extraction 
rules and dictionaries are interpreted by the EDK Extraction Engine. 

'Jf,'J,J VDB Server and Data Quality Kit 

The VDB Server combines a collection of wrappers - and the necessary 
extractors- and presents them as a coherent relational database that can be 
queried using SQL through JDBC or ODBC. The VDB server can present 
results as tables or XML documents, as required by the application. 

The VDB Server can be configured with a relational cache (see Figure 
29-4), to improve query performance over Web data sources. The cache can 
be preloaded and refreshed depending on the application requirements. 

Virtual databases often deal with highly irregular data from sources that 
are outside the control of the VDB administrator, and are subject to large­
scale changes without notice. For this reason data transformation and data 
validation are key issues. 

The Data Quality Kit provides the capability to set up data transformers 
that map attribute values from different sources to a common representa­
tion and vocabulary. In addition, data validators can be set up to monitor 
conditions or enforce constraints at various levels - row, column, or table. 

VDB server 

Figure 29-4 The VDB Server 

©1998 THE XML HANDBOCJKTM 



3 9 2 CHAPTER 29 I }UNGLEE VIRTUAL DBMS 

Stability tests are unique to data from wrappers. Since wrappers often 
export data from Web sites that are subject to change, these tests are a vital 
first line of defense against corrupt data. These tests compare statistics of 
the data in a table against historical statistics for that table and report large 
deviations from historical trends. 

21.2.4 Administration interface 

The administration utility is used in conjunction with the VDB server to 
register or unregister each data source and the associated wrapper used to 
access it. Registration enables the data source to become visible as a set of 
one or more tables in the virtual database. 

The registration command permits the system administrator to set up 
authentication mappings between a VDB server user and the corresponding 
name to be used when accessing the data source. Registration also allows 
the system administrator to distribute the work load on the system over a 
number of workstations on the LAN. 

t t.i 1 Applications ofVDB technology 

The increasing use of the Internet to deliver information and provide 
sources leads to innovative applications of VDB technology, based on its 
capability to normalize disparate Web sites. Two such applications are 
described in this book. 

online recruitment 
Job seekers can utilize a powerful search capability through a 
virtual database of jobs aggregated from hundreds of corporate 
Web sites. See Chapter 15, "The Washington Post", on page 202. 

Web commerce 
Online shoppers can find products in dozens of categories - from 
hundreds of online merchants - and compare features, availability 
and pricing among merchants. See Chapter 9, "Comparison 
shopping service Web site", on page 132. 

©1998 THE XML HANDBOOK™ 



29.3 I APPLICATIONS OF VDB TECHN OL OGY 393 

But many more come to mind, including: 

corporate procurement 
Enable employees to find and compare products and services from 
approved suppliers. 

engineering design databases 
Provide engineers with integrated catalogs of design components 
from manufacturers, searchable by specific attributes. 

information management 
Integrate content from Web sites, news feeds, digital libraries and 
document databases to deliver value to the knowledge worker. 

©19 98 THE XML HANDBOOK ™ 



Free XML 
software 

I Editors 

I Browsers 

I Parsers 

I ... and More! 

©1998 TH E XML HANDBOOKTh1 



Chapter __ _ 

JO 

!though XML is a new specification, it has a long history of 
free software for the SGML family of standards (including 
HyTime and DSSSL) to draw on. As a result, we could be 

selective about what we included. 
The CD-ROM has over 55 fi·ee software titles, collected for The XML 

Handbook by Lars Marius Garshol. There is other useful software as well, 
as we'll see. 

JO.I 1 What do we n1ean by "free"? 

To meet our requirements for genuinely free sofrvvare, a product must: 

II Allow the user to do useful processing of the user's own 
documents. 

1:111 Have no time limit on its use. 

These requirements are easily met by software that is written only for free 
distribution. In the case of sharew<Ue and "lite" versions of commercial soft-

© !'J'JH TilE XML HA ~D ilU<lK"" 395 



396 CHAPTER 30 I FREE XML SOFTWARE 

ware, though, the fi·ee version might have less function than the full-fledged 
offering, or it may have a restriction that it is only for personal use, or some 
similar legal constraint to prevent commercial abuse. It can be shareware 
that gently nags, as long as it doesn't expire. 

Many of the programs are available under the GNU General Public 
License. That license meets all of our criteria and is available on the CD. 

We have included executable files for both Win32 and Macintosh when 
available. In the Unix world, we only provide binaries for Linux, not every 
variant under the Sun. 

Anything else doesn't meet our definition of free, but free isn't every­
thing. 

Demos, time-limited "trialware", and software that won't save the output 
or is otherwise unsuitable for production work, can still be useful. It can 
save you hours of product research and phone calls, and provide definitive 
answers about whether a product meets your requirements. 

Our sponsors have provided lots of software in the CD-ROM Sponsor 
Showcase. Some of their goodies will surprise and delight you, so be sure to 
take a look. 

And remember that the product descriptions only apply to the release 
being discussed. If you've tried out the software on the CD-ROM and you 
like it, be sure to visit the author's web site for the latest version. 

i0.2 1 The best XML free software 

i0.2.1 Parsers and engines 

10.2.1.1 Xlink engines 

xmllink, 17.Mor.98 release 
Bert Bas 

Information on web: 
http://www.w3.org/XML/notes.html 
Software on web: 
http://www. w3. org/XML/xmllink.zip 

©1998 THE XML HANDBOOK™ 



3 0. 2 I THE BEsT X M L FREE s 0 F TwA R E 397 

Sofovare included on CD-ROM Java): 
./freesw/others/xmllib. tar.gz 

This is a Java XML parser which also implements Xlink and an experi­
mental proposal for SQL-like typing. There are command-line utilities for 
showing how links are interpreted and ESIS-like output. 

30.2.1.2 XSL engines 

Sparse, 28.Feb. 98 release 

Jeremie Miller 

Information on web: 
http://www. j eremie.com/Dev/XSLI index. phtml 
Software on web: 
http://www. jeremie.com/Dev/XSLI sparse. js 
Software included on CD-ROM OavaScript): 
.I freesw/ others/ sparse.zip 

This is an XSL processor written in JavaScript. According to the author, 
it "is still of alpha quality and missing most of the features of the XSL Pro-

al" pas . 

The Microsoft XSL Processor; 7 Jan. 98 release 
Microsoft 

Information on web: 
http:/ /www.microsoft.com/xml!xsl! msxsl.htm 
Software on web: 
http:/ /www.microsoft.com/xml!xsl! downloads/ msxsl.zi p 

The Microsofr XSL processor is a command-line utility that can process 
XSL style sheers and deliver H TML ourput. This processor can also be used 
as an ActiveX control from MSIE 4.0. It requires MSIE 4.0. 

©!998 THE XML HANDBOOK™ 



398 CHAPTER 30 I FREEXMLSOFTWARE 

docproc, 07.Feb. 98 release 
Sean Russell 

Information on web: 
http:/ /javalab.uoregon.edu/ser/software/docproc/index.xml 
Software on web: 
http:/ /j avalab. uoregon.edu/ serf software/ distributions/ docproc_full.jar 
Software included on CD-ROM Uava): 
./ freesw/ others/ docproc.zi p 

docproc is a Java servlet that can be used to automatically convert XML 
documents to HTML and serve them on the web. docproc also comes as an 
application that can be run separately from any web server. docproc uses 
XSL, with Pnuts for scripting (Pnuts is similar to ECMAScript). The parser 
used by docproc is Lark. 

xslj, 0.4 
Henry Thompson 

Information on web: 
http:/ /www.ltg.ed.ac.uk/ ~ht/xslj.html 
Software on web: 
ftp:/ /ftp.cogsci.ed.ac. uk/ pub/XSL J I 
Software included on CD-ROM (Source): 
./ freesw/xslj/xslj-0. 4. tar.gz 
Software included on CD-ROM (Win 32): 
./ freesw/xslj/xslj-0 .4-bin-win32. tar.gz 

xslj is an XSL processor with support for nearly all of the XSL proposal. 
It converts the XSL stylesheets to DSSSL stylesheets for further processing 
with Jade, and so requires Jade to be installed. 

30.2.1.3 DSSSL engines 

Jade, 1.1 (General SGMLIXML tool) 
James Clark 

© 19 98 T H E XML HANDBOOK'" 



3 0 . 2 I THE BEsT X M L FREE s 0 F TwA R E 399 

biformation on web: 
htcp://www.jclark.c m/jade/ 
Software (m web: 
ftp:/ /ftp.jclark.com/pub/ jade/ 

oftz.vare included on CD-RO.l\1 (Source): 
./freesw/jade/jadel_ l .zip 
Software irtclu.ded on CD-ROM (Win32): 
./fteesw/jade/jadew l_l.zip 

Jade is James Clark's excellent DSSSL engine, which is really a general 
SGML tool for conversion from SGML to other SGML DTDs or to out­
put formats like RTF and TeX. Jade can process XML documents and can 
also output XML. 

DAE SDK 
Copernican Solutions 

Information on web: 
http:/ /www.copsol.com/products/ dae/ 
Software on web: 
http:/ /www.copsol.com/ products/ dae/ downloadreq.html 
Software included on CD-ROM Oava): 
./freesw/ others/ dae_ install.class 

This is a collection of Java tools from Copernican Solutions, which 
includes a DSSSL engine, a grove API, a Scheme interpreter (Kawa) and an 
XML parser. 

DAE Server SDK 
Copernican Solutions 

Information on web: 
http://www.copsol.com/products/daeserver/ 
Software on web: 
http:/ /www.cop ol.com/products/daeserver/downloadreq.html 
Software included on CD-ROM Oava): 

©1998 THE XML HANDBOOK™ 



400 CHAPTER 30 I FREE XML SOFlWARE 

. I freesw I others/ daeserver_install.class 

This is an extended version of the DAE SDK that has been integrated 
with the Jigsaw web server from the W3C. 

30.2.1.4 SGMUXML parsers 

SGMLSpm, 1.03ii (General SGMLIXML tool) 
David Megginson 

Information on web: 
http:/ /home.sprynet.com/ sprynet/ dmeggins/ software.html 
Software on web: 
http:/ /home.sprynet.com/sprynet/ dmeggins/SGMLSpm-1.03ii. tar.gz 
Software included on CD-ROM (Perl): 
./freesw/others/sgmlspm-1.03ii.tar.gz 

SGMLSpm reads ESIS output (from parsers like SP) and offers an event­
based interface to the parser. As long as the parser can parse XML this also 
works for XML. 

SP, 1.3 (General SGML/XML tool) 
James Clark 

Information on web: 
http:/ /www.jclark.com/sp/ 
Software on web: 
http:/ /www.jclark.com/sp/howtoget.htm 
Software included on CD-ROM {Wln32): 
./freesw/sp/sp 1_3.zip 
Software included on CD-ROM (Source): 
.I freesw/ sp/ sp-1.3. tar.gz 

SP is an SGMLIXML parser, and is fast, complete, highly conformant and 
very stable. SP has been the parser of choice for most of the SGML commu­
nity for many years and has been embedded in many other applications. 

©1998 THE XML HANDBOOK™ 



3 0 0 2 I T H E B E s T X M L F R E E s 0 F TwA R E 40 1 

The SP package includes the SX program, which can adapt arbitrary 
sGML documents to XML automatically. 

30.2.1.5 XML parsers 

Windows Foundation Classes, Release 34 
Sam Blackburn 

Information on web: 
http: I I ourworld.compuserve. om/h.omepages/ sam_blackbmn/wfc.h tm 
Software on web: 
http://ourworld.compuserve.com/homepages/sam_blackburn/wfc.zip 
Softtvrm included on CD-ROM (Win32): 
./freesw I others/wfc.zip 

WFC is a collection of C++ classes for Windows programming. Included 
are classes to parse and create XML documents. 

RXP, beta6 
Richard Tobin 

Software on web: 
ftp:/ /ftp.cogsci.ed.ac.uk/ pub/ richard/ rxp. tar.gz 
Software included on CD-ROM (Source): 
./freesw/others/rxp.tar.gz 

RXP is a non-validating parser written in C. It is distributed as C source 
and must be compiled before use. It supports Unicode and comes with a 
command-line application that prints out the parsed document. 

Dan Connolly's XML parser; 1.8 
Dan Connolly 

Information on web: 
http:/ lwww. w3.org/XMLI9705/hacking 
Software on web: 

©1998 THE XML H A N D BOOK TM 



402 CHAPTER 30 I FREE XML SOFIWARE 

http:/ /www.w3.org/XML/9705/xml.py 
Software included on CD-ROM (Python): 
.I freesw/ others/ dc_parser.zip 

This is a simple well-formedness (not complete) parser written in Python 
that handles both XML and HTML and can output lout. 

XML-Too/kit, 0.7 
David Schere 

Information on web: 
http:/ I csmctmto.interpoint.net/ didx/xml.html 
Software on web: 
http:/ I csmctmto.interpoint.net/ didx/ archive/xmltoolkit. tar.gz 
Software included on CD-ROM (Python): 
./freesw/ others/xmltoolkit. tar.gz 

The XML-Toolkit provides a non-validating XML parser, a WIDL 
implementation and the parser can also be used in a client/server model. 

LTXML, 0.9.5 
Edinburgh Language Technology Group 

Information on web: 
http:/ /www.ltg.ed.ac. uk/ software/xmll 
Software on web: 
http:/ /www.ltg.hcrc.ed.ac.uk/software/research_xml.html 
Software included on CD-ROM (Source): 
./freesw/ltxml/ltxml-0. 9. 5. tar.gz 
Software included on CD-ROM (Linux): 
./freesw/ltxml/ltxml-0. 9. 5-bin-linux. tar.gz 
Software included on CD-ROM (Mac): 
./freesw!ltxmllltxml-0.9.5-bin-mac.sea.hqx 
Software included on CD-ROM {Wtn32): 
./freesw!ltxml/ltxml-0.9.5-bin-win32.zip 

LTXML is a set of tools (including a parser) written in portable C. 
Included are: a program to strip out all XML markup, an XML normalizer 

©1998 THE XML HANDBOOKTM 



3 0 . 2 I TH E BE s T X M L FR EE s 0 F TwA R E 403 

(mainly useful for well-form~dness checking), an_ ESIS oucpurter, an element 
occurrence counter, a rokemzer, a down-u·anslauon too.l, a grep tool, a sort­
ing rool. some Linking tools as well as some ocher minor utilities. T he execut­
ables are mainly intended to be pipelined to produce various kinds of output, 
bur provide a C API that can be used to extend them for other purposes. 

expot, 19980405 

James Clark 

Information on web: 
h~tp :/ /www. jcl ark.com/xmll expac.html 
Software on web: 
ft:p: / /frp .jclark.com/ pub/xml/ expat.zip 
Software incltuled on CD-ROM (C source): 
./freesw/others/expat.zip 

expat is written in C, and is the parser previously known as XMLTok. It 
is used in Mozilla 5.0 and in a Perl parser module written by Larry Wall. 
expat does no validation, but aims to be a fully conforming well-formedness 
parser. This is a beta release. 

Tel Support for XML, I.Oo I 

Steve Ball 

Information on web: 
http:/ ltcltk.anu.edu.au/XMLI 
Software on web: 
http:/ /tcltk.anu.edu.au/XMLIXML-l .Oal. tcl.gz 
Software included on CD-ROM (tel): 
./freesw/others/tclxml.zip 

TCLXML is a validating XML parser written entirely in tel, but is an 
alpha release that has not been tested much. The parser offers several ways 
to access the in-memory document structure after parsing, but only one is 
documented. 

©1998 TH E XM L HANDBOOKTM 



404 CHAPTER 30 I FREE XML SOFIWARE 

Xparse, 0. 9/ 
Jeremie Miller 

Information on web: 
http:/ /www.jeremie.com/Dev/XML/index.phtml 
Software on web: 
http:/ /www.jeremie.com/Dev/XML/xparse.js 
Software included on CD-ROM OavaScript): 
./ freesw/ others/xparse.zip 

Xparse is a very simple XML parser for use in web pages. It reads an 
XML document and produces a document tree consisting of elements, Pis, 
comments and character data. 

XP, 0.2 
James Clark 

Information on web: 
http:/ /www.jclark.com/xmllxp/ 
Software on web: 
ftp:/ /ftp.jclark.com/pub/xmllxp.zip 
Software included on CD-ROM Oava 1.1): 
./freesw/others/xp.zip 

XP is written to be fully-conforming and as fast as possible. The empha­
sis is on server-side production use. There is no validation, only well­
formedness checking. Even though 0.2 is an alpha release it is very stable 
and extremely fast. 

DataChannel XML Parser (DXP), 1.0 beta I a 
Data Channel 

Information on web: 
http:/ /www.datachannel.com/ products/xml!D XP I 
Software on web: 
http:/ /www.datachannel.com/products/xmll regl.htm 
Software included on CD-ROM Oava): 

©199 8 THE XML HAND BO OK™ 



3 0 . 2 I TH E BEST X M L FREE S 0 F TWA R E 405 

./freesw/others/DXP.zip 

DXP is based on NXP, which was one of the first XML parsers, written 
by Norbert Miku la. It is validating and written for server-side use. There are 
borh ESIS and SAX interfaces and support for SGML Open entity catalogs. 

A full DOM interface and sophisticated error checking may appear in 
the full 1.0 version, so you may want to check the web site. 

XML::Parse, 25.Mar.98 release 
Larry Wall 

Information on web: 
ftp: / /www.wall.org/ pub/larry/ 
Software or1 web: 
ftp: / /www. wall.org/ pub/larry/x.mlparser-0.0. tar.gz 
Software inclttded ort CD-ROM (Peri): 
./ freesw/ others/ x m I parser-0. 0. tar. g-t 

This is a Perl wrapper around James Clark's XMLTok C parser (now 
known as expat). It is intended to be compiled into the Perl interpreter. It is 
undocumented and is not a final, official release. 

PyXMLTok, 13.Mar.98 release 
Jack Jansen 

Information on web: 
http:/ /www.python.org/pipermail/ 1998q l.doc-sig/03ebal bbb5c3.html 
Software on web: 
ftp://ftp.cwi.nl/pub/jack/pyxmltok.tar.gz 
Software included on CD-ROM (Python): 
./freesw/ others/ pyxmltok. tar.gz 

This is James Clark's XMLTok C parser module (now called expat) 
wrapped up as a Python module. This means that by compiling this into 
the Python interpreter (which is much easier than it sounds) one can have a 
fast C parser available from within Python. The interface is non-standard 
(i.e. not SAX). 

11:11 99 8 THE XML HANDBOOK ™ 



406 CHAPTER 30 I FREE XML SOFIWARE 

Lark, 1.0 final beta 
Tim Bray 

Information on web: 
http://www. textuality.com/Lark/ 
Software on web: 
http://www. textuality.com/Lark/lark. tar. gz 
Software included on CD-ROM Oava): 
./ freesw/ others/lark. tar.gz 

Lark was one of the two first XML parsers to appear, written by XML 
spec co-editor Tim Bray, but was non-validating for a long time. Tim Bray 
has now added Larval, a validating parser, to the package. 

Lark is fast, small and thread-safe. Larval is in version 0.8 and not yet fin­
ished. The interface is non-standard, but there is a SAX driver in the SAX 
package. 

Microsoft XML Parser in Java, 1.8 
Microsoft 

Information on web: 
http:/ /www.microsoft.com/workshop/author/xmllparser/ 
Software on web: 
http://www.microsoft.com/xmllparser/msxml.tar.gz 

This parser is validating, and has a non-standard interface, although a 
SAX driver is available in the SAX driver package. The parser implements 
the complete November 17, 1997, XML Working Draft, but has not been 
updated since the final recommendation. Lots of examples and documenta­
tion are bundled with the parser. 

XML for Java, 9.Feb.98 release 
IBM alpha Works 

Information on web: 
http:/ /www.alphaworks.ibm.com/formula/xml 
Software on web: 
http:/ /www.sil.org/sgmllxml4j-19980206.zip 

© 1998 THE XML HANDB OOK™ 



3 0 . 2 I T H E B E s T X M L F R E E s 0 F T w A R E 407 

Sofl:ware incLuded 011 CD-ROlv!: 
./freesw/orhers/xml4j-19980206.zip 

This parser was written by I<ento Tamura and Hiroshi Maruyama of the 
Tokyo Research Laboratory, IBM Japan. [t is a validating parser that con­
form to the 08.Dec.97 XML Working Draft and has not been updated 
since the releas of the XML Recommendation. 

The parser builds a tree structure object from an XML document, and 
can generate an XML document from a tree structure. There is also a SAX 
interface. 

Use of this product is subject to the IBM alpha Works license distributed 
with the software. However, the 90-day time limit is waived for purchasers 
of this book. 

!E./fred, I . I 
Micros tar 

Information on web: 
http:/ /www.microstar.com/X.ML/ index.htm 
Software on web: 
http:/ /www.microstar.com/X.ML/ aelfred-l.l.zip 
Software included on CD-ROM Oava): 
./freesw/others/aelfred-l.l.zip 

l.Elfred is designed to be small and fast, and is especially intended for use 
in Java applets (uses only two .class files). It has a non-standard interface, 
but comes with a SAX driver . .J.Elfred also handles a large number of differ­
ent Unicode encodings. 

l.Elfred reads the DTD, but does not validate the document. 

xmlproc, 0.30 
Lars Marius Garshol 

Information on web: 
http:/ /www.stud.ifi. uio.no/ ... larsga/ download/python/xml!xmlproc.html 
Software on web: 
http:/ /www.stud.ifi. uio.no/ ... larsga/ download/python/xml!xmlproc.zip 
Software included on CD-ROM (Python): 

©1998 THE XML HANDBOOK™ 



408 CHAPTER 30 I FREEXMLSOFfWARE 

./freesw/others/xmlproc.zip 

xmlproc is a validating parser written in Python. Ir implem tlts most of 
the XML Recommendation, bur not all. Some validation checks are not 
performed, ill gal characters are accepted in some places, and some input 
transforms are not per£ rmed. 

xmlproc has a non-standard interface, but comes with a SAX driver. 

xmllib, 0.1 
Sjoerd Mullender 

Information on web: 
http:/ /www.python.org/docllib/ 
node 162.html#SECTI ONOO 121000000000000000000 
Software on web: 
http:/ /www.cwi.nl/ftp/ sjoerd/xmllib. tar.gz 
Software included on CD-ROM (Python): 
./freesw/others/xmllib.tar.gz 

The xmllib parser is part of the Python 1.5 distribution. The version 
included here is a newer version than the one in the standard distribution. 
xmllib is non-validating, but a fairly complete well-formedness parser with 
a simple and intuitive interface. A SAX driver is available in saxlib. 

30.2.1.6 XML middleware 

XPublish, 1.0 
Media Design in *Progress 

Information on web: 
http:/ /interaction.in-progress.com/xpublish/index 
Software included on CD-ROM (Mac): 
./freesw/ others/xpublish 10 .sit 

XPublish is a web content management system based on XML. XPublish 
lets you write your documents in XML (and hybrids of HTML and XML) 
and publish them on the web as HTML. The XPublish editor is an Emacs 

©1998 THE XML HAND BOO K™ 



3 0 . 2 I THE BEsT X M L F R E E s 0 F TwA R E 409 

clone, with Lisp as an extension language. XPublish also helps you create a 
DTD and simplifies XML to HTML conversion. 

Frontier; 5.0. I 

Userland Software 

Tnjormation OrJ web: 
h rtp:/ /www.scl'ipti ng.cornJ fron tierS I 
Software on web: 
http:/ /www.scripting. com/ frontierS I downloads/ default.html 
Softu;are included on CD-ROM (Mac): 
./freesw/frontier/frontierS. 0 .l.sit.hqx 
Software includ.ed on CD-ROM (Win32): 
./freesw/frontierlfrontier50 l.z.ip 

Frontier is a scripting environment for web content management. It 
works with a lot of different data sources, including XML. Frontier is rather 
unique and difficult to describe, so be sure to check the information at the 
Frontier web site. An XML package called blox is also included. 

blox, I.Ob7 

Technology Solutions 

Information on web: 
http://www. techsoln.com/ frontier/blox/ 
Software on web: 
http://www. techsoln.com/ frontier/blox/ download/ 
Software included on CD-ROM (Mac): 
./freesw/frontier/blox.sit 
Software included on CD-ROM (Win32): 
./freesw/frontier/blox.zip 

blox is an XML tool suite for Frontier that includes a parser and tools for 
manipulating XML documents. 

©1998 TH E XML HANDBOQKTM 



41 0 CHAPTER 30 I FREE XML SOFTWARE 

PyDOM, 0.1 
Stephane Fermigier 

Information on web: 
http:/ /www.math.jussieu.fr/ ---fermigie/python/PyDOM/ 
Software on web: 
http:/ /www.math.jussieu.fr/ ..-fermigie/python/PyDOM/dom-O.l.zip 
Software included on CD-ROM (Python): 
./freesw/others/dom-O.l.zip 

PyDOM can build the DOM tree from a supplied XML parser (Dan 
Connolly's), an ESIS outputter, any SAX-compliant parser, the Python 
HTML parser (htmllib) or the Python SGML parser (sgmllib). 

This online version of this list was produced by a Python script that used 
PyDOM for navigation through the parsed document. PyDOM is prelimi­
nary software and may have some bugs. 

XML::Grove, 0.03 
Ken MacLeod 

Information on web: 
http:/ /bitsko.slc. ut. us/'"' ken/ perl-xml/ 
Software on web: 
http://bitsko.slc.ut.us/---ken/perl-xml/XML-Grove-0.03.tar.gz 
Software included on CD-ROM (Perl}: 
./freesw/others/xml-grove-0.03.tar.gz 

XML::Grove uses XML::Parse to build a tree structure from the parsed 
document that programs can access and change. Similar to DOM, that is, 
but based on ISO standards. 

saxlib, 0. 9 2 
Lars Marius Garshol 

Information on web: 
http:/ /www.stud.ifi. uio.no/ ---larsga/ download/ python/xmll 
Software on web: 
http:/ /www.stud.ifi. uio.no/ ---larsga/ download/python/xmll saxlib.zip 

© 1998 TH E XML HANDB OOK 'IM 



30 . 2 I THE BEST XML FREE S OFTWARE 411 

Software included on CD-ROM (Python): 
./freesw/ others/ saxlib.zip 

saxlib is a Python translation of the SAX parser interface. It has drivers 
for rhe xmllib parser and for rhe XML-Toollcit parser. There are also two 
demo applica ions: saxdemo.py, which produces canonical XML output 
and saxtimer.py: which measures the time used to parse a document with an 
empty document handler. 

SAX, 27 Jan.98 release 
David Megginson 

bifonnation on web: 
http:/ /www.microstar.com/XML/SAX/java-implementation.html 
So,ftware on web: 
http: //www.rnicrostar.com/XMLISAX/sax-java-19980 127 .zip 
Software included on CD-ROM Oava): 
./freesw/others/sax-java-19980127.zip 

SAX is a simple event-based API for XML parsers. It is not an official 
standard, since it was developed by the participants of the xml-dev mailing 
list instead of a standards body. However, SAX is very much a de facto stan­
dard, since it is supported by at least 9 parsers. 

This library contains the Java implementation of SAX, but no drivers. 

SAX drivers for Lark and MSXML, I 3.Mar.98 
release 

David Megginson 

Information on web: 
http://www.microstar.com/XML/ SAX/ drivers.html 
Software on web: 
http://www.microstar.com/XML/SAX/sax-java-drivers-19980313.zip 
Software included on CD-ROM Oava): 
./freesw/others/sax-java-drivers-19980313.zip 

This is a package consisting of two SAX drivers for Java parsers that do 
not support SAX natively, namely Lark and the Microsoft parser. 

©1998 TH E XML H A NDB O O K™ 



412 CHAPTER 30 I FREE XML SOFTWARE 

SAXDOM, 6.Apr. 98 release 
Don Park 

Information on web: 
http: I /www.docuverse.com/ personal/ saxdom.html 
Software on web: 
http:/ /www.docuverse.com/ personal/ saxdom04069 8 .zip 
Software included on CD-ROM Java): 
./freesw/others/saxdom040698.zip 

SAXDOM is a Java implementation of the Documenr Object Model 
that uses any AX client (just use the SAX package and any parser you like) 
to build the DOM document tree. SAXD M will contin ue to change as 
SAX and rhe DOM evolve. You may want to check rhe website to see if 
there is a new version. 

:10.'1.'1 Editing and composition 

30.2.2.1 XML editors 

PSGML, 1.0.1 with XML patch (General SGMLI 
XML tool) 

Lenart Staflin 
David Megginson 

Information on web: 
http:/ /www.lysator.li u.se/ projects/ about_psgml.html 
Software on web: 
ftp:/ /ftp.lysator.liu.se/pub/sgmll 
Software included on CD-ROM: 
./freesw/others/psgml-xml.zip (Elisp source) 

Emacs is easily one of the most powerful (if not the most powerful) text 
editors in the world. It has an internal Lisp programming language, which 
means that new modes are easy to write, and as a consequence Emacs has 
usage modes for most programming languages, as well as a web browser 
with CSS (and budding DSSSL) support and a world-class news reader. 

© 199 8 THE XM L HAN DBOO K™ 



30 . 2 J TH E BEST XML FREE SOFTWARE 413 

The user interface is quite unlike most modern editors, but Emacs comes 
with internal documentation that can help you out. 

pSGML is a full SGML mode that has been patched to support XML. It 
reads the DTD, can use an external parser to validate documents, does syn­
tax coloring, and a lot of other things. 

Visual XML, beta I 
Pierre Morel 

Information on web: 
http://www. piedou.com/visxmll 
Software on web: 
Imp:/ /www. piedou.com/visx:mJ/ download.htm 
Software included on CD-ROM Otwa): 
./freesw/others/visual-xml-b l .zip 

Visual XML is an XML editor written in Java with JFC (Swing). It lets 
you edit a tree view of the XML document. This is a test version and may 
have bugs. 

XED, 19.Mar.98 release 
Henry Thompson 

Information on web: 
http:/ /www.ltg.ed.ac. uk/ ""ht/xed.html 
Software on web: 
ftp:/ /ftp.cogsci.ed.ac. uk/pub/ht/ 
Software included on CD-ROM (Win32): 
./freesw/xed/xed.zip 
Software included on CD-ROM (Solaris 2.5): 
./freesw/xed/xed-solaris2.5.tar.gz 

XED is a simple XML editor written in C, Python and Tk. It tries to 

ensure that the author cannot write a document that is not well-formed and 
reads the DTD in order to be able to suggest valid elements to be inserted 
at any point in the document. 

The document is shown as text, not as a tree view. 

©1998 TH E XML HANDBOOKTM 



414 CHAPTER 30 I FREE XML SOFfWARE 

XML <PRO>, I.Ob 
Vervet Logic 

Information on web: 
http:/ /www.vervet.com/ 
Software on web: 
http:/ /www.vervet.com/beta.html 

XML < PRO > is a tree-based XML editor, with validation. 

Amaya, 1.2a 
World Wide Web Consortium 

Information on web: 
http://www. w3 .org/ Amaya/ 
Software on web: 
http://www. w3 .org/ Amaya/User/BinDist.html 
Software included on CD-ROM (Win32): 
./ freesw/ amaya/ amaya-1. 2a.exe 
Software included on CD-ROM Uava (Linux)): 
./freesw/amaya/amaya-java-LINUX-1.1 c. tar.gz 
Software included on CD-ROM (Linux): 
./freesw/amaya/amaya-LINUX-ELF-1.2a.tar.gz 

Amaya is the W3C testbed browser, and is an HTML browser (and edit­
ing tool) with CSS support. It also supports the MathML XML DTD and 
can edit and display presentational MathML graphically. 

JO.t.J Control information development 

30.2.3.1 XSL editors 

Arbor Text XML Styler; 2.0 
Arbor Text 

Information on web: 

©1998 T HE XML HANDB OO K™ 



30. 2 I THE B E ST XML FRE E SOF TW ARE 415 

hrtp:/ /www.arbortext.com/xmlsryler/ 
Softu-'are on web: 
hrrp://www. arborrext.com/ xmlstylerl registration .html 
Software included on CD-ROM (Win32): 
.Jfreesw/xmlsryle1Ixmlstyler2c.exe 
Software included on CD-ROM (Java}: 
. 1 freesw I xmlsryler /xmlstyler2c. zip 

XML Seyler lets you create XSL style sheets for your XML documents 
using a visual editor. The Windows version allows previewing with the XSL 
AcciveX control in MSIE 4.0. 

30.2.3.2 DTD editors 

tdtd, revision 0. 4 
Tony Graham 

hiforrnation on web: 
ftp:/ /ftp.mulberrytech.com/ pub/ mulberrytechltdtd/ 
Software on web: 
ftp:'/ /ftp.mulberrytech .com/ pub/ mulberrytech/ tdtd/ tdtd.zip 
Software included on CD-ROM: 
./freesw/others/tdtd.zip (Elisp files) 

This is an Emacs major mode for editing DTDs. It does syntax coloring 
and has some convenience macros for inserting commonly-typed con­
structs. 

30.2.3.3 DTD documenters 

per/SGML, IB.Sep. 97 (General SGMLIXML tool) 
Earl Hood 

Information on web: 
http:/ /www.oac. uci.edu/indiv/ ehood/ perlSGML.html 
Software on web: 

© 199 8 T HE XM L H AN DB OOK ™ 



414 CHAPTER 30 I FREE XML SOFTWARE 

XML <PRO>, I.Ob 
Vervet Logic 

Information on web: 
http:/ /www.vervet.com/ 
Software on web: 
http:/ /www.vervet.com/beta.html 

XML < PRO > is a tree-based XML editor, with validation. 

Amaya, 1.2a 
World Wide Web Consortium 

Information on web: 
http:/ /www.w3.org/Amaya/ 
Software on web: 
http://www. w3 .org/ Amaya/User/BinDist.html 
Software included on CD-ROM (Win32): 
./freesw/amaya/amaya-1 .2a.exe 
Software included on CD-ROM Uava (Linux)): 
./freesw/amaya/amaya-java-LINUX-1. 1 c. tar.gz 
Software included on CD-ROM (Linux): 
.I freesw/ amaya/ amaya-LINUX-ELF-1 .2a. tar. gz 

Amaya is the W3C testbed browser, and is an HTML browser (and edit­
ing tool) with CSS support. It also supports the MathML XML DTD and 
can edit and display presentational MathML graphically. 

iO.t.i Control information development 

30.2.3.1 XSL editors 

Arbor Text XML Styler, 2.0 
Arbor Text 

Information on web: 

©1998 THE XML HAN DBOOKTM 



30 . 2 / THE BEST XML FREE SOFTWARE 415 

http:/ 1 www. arbortex:t.com/xmlstyler/ 
So{twa,-e on web: . . 
ht p: / /www.arbortext.com/xmlsryle.r/ regtstratwn.html 
Software included on CD-ROM (Wm32): 
./freesw/xmlsryJer/xmlsryler2c.exe 
Software included on CD-ROM (java): 
.'/freesw/xmlsryler/xmlsryler2c.ztp 

XML Styler lets you create XSL style sheets for your XML documents 
using a visual editor. The Windows version allows previewing with the XSL 
ActiveX control in MSIE 4.0. 

30.2.3.2 DTD editors 

tdtd, revision 0. 4 
Tony Graham 

Information on web: 
ftp:/ /ftp.mu lberrytech.com/ pub/ mulberrytech/tdtd/ 
Software on web: 
ftp:/ I ftp.m ul berrytech.com/pu b/ m uJherrytech/ tdtd/ tdtd.zip 
Sof't1.1Jare included on CD-ROM: 
./freesw/others!tdtd.zip (Eli p files) 

This is an Emacs major mode for editing DTDs. It does syntax coloring 
and has some convenience macros for inserting commonly-typed con­
structs. 

30.2.3.3 DTD documenters 

per/SGML, IB.Sep. 97 (General SGMLIXML tooQ 
Earl Hood 

Information on web: 
http:/ /www.oac. uci.edu/indiv/ ehood/ perlSGML.html 
Software on web: 

©1 9 98 THE X M L HA N DB OO K ™ 



416 CHAPTER 30 I FREE XML SOF1WARE 

http:/ /www.oac. uci.edu/indiv/ehood/tarlperlSGML.1997Sep 18.tar.gz 
Software included on CD-ROM (Perl): 
./freesw/others/perlSGML.1997Sep 18.tar.gz 

perlSGML is a collection of Perl tools for working with full SGML, but 
they also work with XML. Included are DTD documentation tools, a 
DTD cliff tool and several useful related libraries. 

i0.2.4 Conversion 

30.2.4.1 General S-converters 

OmniMark LE, 4.0e2 (General SGMLIXML tool) 
OmniMark Technologies 

Information on web: 
http:/ /www.omnimark.com/ develop/ omle40/ 
Software on web: 
http:/ /www.omnimark.com/ develop/ omle40/ download/ omle40e2.exe 

OmniMark is a well-known tool in the SGML industry, where it is much 
used for SGML conversions and also non-SGML conversions due to its 
superb regular expression and SGML support. This prerelease version of 
OmniMark LE (a free, but limited version of the program) is the first ver­
sion of OmniMark to support XML. 

30.2.4.2 Specific N-converters 

RDF for XML, 9.Apr:98 release 
IBM alpha Works 

Information on web: 
http:/ /www.alpha Works.ibm.com/formula/rdfxml 
Software included on CD-ROM Uava): 

©1 99 8 T HE XML HAND BO OK™ 



30.2 I THE BEST XML FREE SOFTWARE 417 

./freesw/ others/ rdf.zip 

RDF for XML is an RDF implementation for building, querying and 
manipu lating RDF struccures as well as reading them from and writing 
chem to me XML represenracion. This implementation follows the 
16.Feb.98 RDF working draft. 

RDF for XML requi1·es the XML for Java XML parser. 
Use of this product is subject to the IBM alpha Works license distributed 

with the software. However, the 90-day time limit is waived for purchasers 
of this book. 

30.2.4.3 General N-converters 

DataChannel XML Generator, 0. I beta I 
Data Channel 

Information on web: 
http:/ /www.datachannel.com/press_room/xml_gen/ 
Software on web: 
http:/ /www.datachannel.com/ products/xml/ dxp/xmlgenerator.zip 
Software included on CD-ROM Uava): 
./freesw/ others/xmlgenerator.zip 

The DataChannel XML Generator takes a character-delimited file (such 
as an exported spreadsheet or database) and an XML template as input and 
produces XML output based on the template and input. 

10.2,5 Electronic delivery 

30.2.5.1 XML browsers 

Mozilla, B.Apr.98 release 
The Mozilla team 

Information on web: 

~1998 TH E XML H A NDBO O K™ 



418 CHAPTER 30 I FREE XML SOFIWARE 

http:/ /www.mozilla.org/ 
Software on web: 
http:/ /www.uwasa.fi/ ..-e75644/mozilla/MozFAQ.html 
Software included on CD-ROM (Win32 sources): 
./freesw/ mozilla/win_19980408.zip 
Software included on CD-ROM (Mac sources): 
./freesw/mozilla/mac_19980408.sit.bin 
Software included on CD-ROM (Unix sources): 
./freesw/mozilla/unix_19980408.tar.gz 

This is version 5 of Netscape Navigator, which can display XML docu­
ments with CSS stylesheets. Please note that this is a very preliminary test 
version and is known to have bugs. 

Jumbo, 980 I a I 
Peter Murray-Rust 

Information on web: 
http:/ I ala.vsms.nottingham.ac. uk/vsms/java/jumbo/ 
Software on web: 
http://ala.vsms.nottingham.ac.uk/vsms/java/jumbo/jan9801/jumbo9801a/ 
Software included on CD-ROM (Java): 
./freesw/others/jumbo980 lal.zip 

Jumbo was the first XML browser to appear, but does not support 
stylesheets, so documents are currently shown in a tree view. (There is built­
in support for some DTDs, notably CML.) Jumbo is not delivered with a 
parser, but installing a parser with a SAX driver in your class path will auto­
matically enable Jumbo to parse XML documents. 

DataChannel XML Viewer, 28Jul.97 release 
Data Channel 

Information on web: 
http:/ /xml.datachannel.com/XMLTreeViewer/demo.html 
Software on web: 
http: I /www.datachannel.com/ products/xmllxmlviewerappletki t.zip 
Software included on CD-ROM (Java): 

© 19 9 8 T H E XML HAN D BO O KTM 



30 . 2 I TH E B ES T XML FREE SOFTWARE 419 

./freesw/others/xmlviewerappletkit.zip 

This is an applet (and an application) that shows a tree-based view of 
XML documents. 

Prototype, I 
Pierre Morel 

Information on web: 
ht~p:/ /www.pierlou .com/ protOtype/ 
Software on web: 
h1!tp:/ /www. pierlou.com/ prototype/ download.htm 
Sofo.vare included on CD-ROM (Java): 
./freesw/others/p.roto-full.zip 

Prototype is a program that reads a structured description of an applica­
tion, in the form of an XML document corresponding to a particular 
DTD. It produces the look and feel of the application. 

10.!1.6 Resources 

30.2.6.1 Useful programs 

This is a collection of software that is needed to run some of the packages 
included, but which does not have XML capabilities natively. We've linked 
to them here to help you find these packages if you don't have them already. 

Emacs 

• Web page: 
http://www.geek-girl.com/ emacs/ emacs.html 

• Win32 version: 
http://www.cs.washington.edu/homes/voelker/ntemacs.html 

• Software on CD-ROM (W'in32): 
./freesw/utils/emacs-19.34.zip 

~19 9 8 THE XML HANDBOOK™ 



420 CHAPTER 30 I FREE XML SOFfWARE 

• Software on CD-ROM (Linux): 
./freesw/utils/emacs-MBSK-Xll-20.2-4.i386.rpm 

• Software on CD-ROM (Source): 
./freesw/utils/emacs-20.2.tar.gz 

• Sadly, Emacs has not been available for the Mac since version 
18.59. 

Python 

• Web page: 
http://www. python.org/ 

• Software on CD-ROM (Win32): 
./freesw/utils/pyth151.exe 

• Software on CD-ROM (Mac): 
./freesw/utils/ macpython15b3.bin 

• Software on CD-ROM (Linux): 
./freesw/utils/python-1.5.1-l.i386.rpm 

• Software on CD-ROM (Source): 
./freesw/utils/pyth151.tgz 

Per/ 

• Web page: http://www.perl.com/. 

• Software on CD-ROM (Win32): 
./freesw/ utils/Pw32i316.exe 

• Software on CD-ROM (Mac): 
./freesw/utils/Mac_Perl_519r4_appl.bin 

• Software on CD-ROM (Linux): 
./freesw/utils/perl-5.004_03-1.i386.rpm 

• Software on CD-ROM (Source): 
./freesw/utils/perl5.004_04.tar.gz 

Other tools 

• Java Development Kit: http:/ /java.sun.com/ products/jdk/1.1 I 
• The T cl interpreter: http:/ I sunscript.sun.com/T clTkCore/ 

©1998 THE XML HANDBOOKTM 



3 0 . 2 I T H E B EsT X M L FR E E s 0 F TwA R E 421 

30.2.6.2 Archiving software 

Most of the software is distribured as a collection of fi les combined (or 
"archlved") into a single fi le for easier network delivery. T he uci liries used co 
create these archives often originated on the UNIX operating system as 
srandard UNIX tools, or as free software from the Free Software Fotmda~ 
cion's GNU colleccion bm all are available in Windows and DOS versions 

as well: 

• Win95/NT gunzip, unzip, tar: ftp://ftp.cs.washington.edu/ 
pub/ntemacsllatest/i386/utilities/i386/ 

• DOS unzip and gzip (gzip also unzips *.gz files): ftp:// 
ftp. u u.net/ pub/ archiving/ zip/MSDOS/ 

• DOS untar: ftp :/ /wuarchive.wustl.edu/systems/ibmpc/ 
garbo. uwasa.fi/ unix/ 

• NT/Win 95 unzip and gzip: ftp://ftp.uu.net/pub/archiving/ 
zip/WIN32/ 

• NT /Win 9 5 tar (tar program also untars): ftp:/ I 
sunsite.doc.ic.ac. ukl pub/ packages/ simtel/win95 I archiver/ 

©1998 TH E XML HANDBOOKTM 



 
I Syntactic details

I The prolog and the document instance

I I I XML declaration

I Elements and attributes

@1998 THE XML HANDBOOKTM



 

 
lines the most important of them. Essentially, it gives you
what you need to know to actually create XML documents.

In subequent chapters you will learn how to combine them, share text
between them, format them, and validate their structure.

Before looking at actual XML markup (don't worry. we’ll get there soon!)
we should consider some syntactic constructs that will recur throughout
our discussion oFXML documents. By syntax we mean the combination of
characters that make up an XML document. This is analogous to the dis-
tinction between sounds of words and the things that they mean. Essen—

tially, we are talking about where you can put angle brackets, quote marks,
ampersands, and other characters and where you cannot! Later we will talk
about what they mean when you put them together.

After that, we will discusses the components that make up an XML doc—
ument instancel. We will look at the distinction between the prolog (infor—

mation XML processors need to know about your document) and the
instance (the representation of the real document itself).

X ML’s central concepts are quite simple, and this chapter out-

 

1. Roughly, what the XML spec calls the “root element”.

©1998 THE XML HANDBOOKTM 425



 
426 CHAPTER 31 | XML BASICS

3|.I | Syntactic details

XML documents are composed of characters from the Unicode character

set. Any such sequence of characters is called a string. The characters in this
book can be thought of as one long (but interesting) string of text. Each
chapter is also a string. So is each word. XML documents are similarly
made up of strings within strings.

Natural languages such as English have a particular syntax. The syntax
allows you to combine words into grammatical sentences. XML also has
syntax. It describes how you combine strings into well-formed XML docu-
ments. We will describe the basics ofXML’s syntax in this section.

3 I. I .I Case-sensitivity

XML is case—sensitive. That means that if the XML specification says to
insert the word “ELEMENT”, it means that you should insert “ELE—
MENT” and not “element” or “Element” or “ElEmEnT”.

For many people, particularly English speaking people, case—insensitive
matching is easier than remembering the case of particular constructs. For
instance, if a document type has an element type named img English speak—
ers will often forget and insert IMG. They confuse the two because they are
not accustomed to considering case to be significant. This is also why some
people new to the Internet tend to TYPE IN ALL UPPER CASE. Most

applications of SGML, including HTML, are designed to be case-insensi-
tive. They argue that this eliminates case as a source of errors.

Others argue that the whole concept of case—insensitivity is a throwback
to keypunches and other early text—entry devices. They also point out that
case—sensitivity is a very complicated concept in an international character
set like Unicode for a variety of reasons.

For instance, the rules for case conversion of certain accented characters

are different in Quebec from what they are in France. There are also some
languages for which the concept of upper—case and lower—case does not exist

at all. There is no simple, universal rule for case-insensitive matching. In the
end, internationalization won out in XML’s design.3))

So mind your “p’s” and “q’s” and “PS” and “ s . Our authoritative labo-

ratory testing by people in white coats indicates that exactly 74.5% of all
XML errors are related to case—sensitivity mistakes. Of course XML is also

@1998 THE XML HANDBOOKTM



 

31.1 | SYNTACTIC DETAILS

spelling-sensitive and typo-sensitive, so watch out for these and other
byproducts of human fallibility.

Note that although XML is case-sensitive it is not case-prejudiced. Any-
where that you have the freedom to create your own names or text, you can
choose to use upper- or lower-case text, as you prefer. So although you must
type XML’S keywords exactly as they are described, your own strings can
mix and match upper— and lower-case characters however you like.

For instance, when you create your own document types you will be able
to choose element type names. A particular name could be all upper-case
(SECTION), all lower-case (section) or mixed—case (SeCtION). But
because XML is case-sensitive, all references to a particular element type
would have to use the same case. It is good practice to create a simple con—
vention such as all lower-case or all upper-case so that you do not have to
depend on your memory.

3|.I.I Markup and data

The constructs such as tags, entity references, and declarations are called
markup. These are the parts of your document that are supposed to be
understood by the XML processor. The parts that are between the markup
are typically supposed to be understood only by other human beings. That
is the character data. Here is what the XML specification says on this issue:

Spec. Reference 31-1. Markup___________________.____————-———————-
Markup takes the form of start«tags, end~tags, empty/«element tags, entity
references, character references, comments, CDATA section delimiters,
document type declarations, and processing instructions.

We haven’t explained what all of those things are yet, but they are easy to
recognize. All of them start with less—than (“<”) or ampersand (“8C”) charac—
ters. Everything else is character data.

@1998 THE XML HANDBOOKTM

 

427



 
428 CHAPTER 31 | XML BASICS

3 I. l .3 White space

There is a set of characters called white space characters that XML proces-
sors treat differently in XML markup. They are the “invisible” characters:

space (Unicode/ASCII 32), tab (Unicode/ASCII 9), carriage return (Uni-
code/ASCII 13) and line feed (Unicode/ASCII 10). These correspond
roughly to the spacebar, tab, and Enter keys on your keyboard.

When the XML specification says that white space is allowed at a partic—
ular point, you may put as many of these characters as you want in any
combination. Just as you might put two lines between paragraphs in a word
processor to make a printed document readable, you may put two carriage
returns in certain places in an XML document to make your source file
more readable and maintainable. When the document is processed, those
characters will be ignored.

In other places, white space will be significant. For instance you would
not want the processor to strip out the spaces between the words in your
document! Thatvvouldmakeithardtoread. 80 white space outside of markup
is always preserved in XML and white space within markup may be pre-
served, ignored, and sometimes combined in weird, and wonderful ways.
We will describe the combination rules as we go along.

3|.I.4 Names and name tokens

When you use XML you will often have to give things names. You will
name logical structures with element type names, reusable data with entity
names, particular elements with IDs, and so forth. XML names have cer—

tain common features. They are not nearly as flexible as character data:

Spec. Reference 31-2. Names

A Name [begins] with a letter or one of a few punctuation characters, and
[continues] with letters, digits, hyphens, underscores, colons, or full stops,
together known as name characters. Names beginning with the string
“xml”, [matched case—insensitively] are reserved for standardization in this
or future versions of this specification.~—-——————_—____——“

@1998 THE XML HANDBOOKTM



 

51.1 | SYNTACTIC DETAILS

In other words, you cannot make names that begin with the string “xml”
or somecase-insensitive variant like “XML” or “XmL”. Letters or under-
scores can be used anywhere in a name. You may include digits, hyphens
and full-stop (“.”) characters in a name, but you may not start the name
with one of them. Other characters, like various symbois and white space,

cannot be part ofa name.
There is another related syntactic construct called a name token. Name

tokens are jusr like narnes except that they may start with digits, hyphens,
full-stop characters, and the string XML.

Spec. Reference 31-3. Name tokens
An Nmtoken (name token) is any mixture of name characters.

In other words every valid name is also a valid name token, but here are
some name tokens that are not valid names:

Example 31-1. Name tokens____________________________________________.__________________________.
.l.a.name.token.but.not.a.name
2—a—name—token.but—not.a—name
XML—valid—name—token______—————-—-' 

Like almost everything else in XML, names, and name tokens are
matched case—sensitively. Names and name tokens do not allow white space,
most punctuation or other “funny” characters. The remaining “ordinary”
characters are called name characters.

3 l. I .5 Literal strings

The data (text other than markup) can contain almost any characters.
Obviously, in the main text of your document you need to be able to use
punctuation and white space characters! But sometimes you also need these
characters within markup. For instance an element might represent a hyper-
link and need to contain a URL. The URL would have to go in markup,
where characters other than the name characters are not usually allowed.

Literal strings allow users to use funny (non—name) characters within
markup, but only in contexts in which it makes sense to specify values that

©19981Ww XML HANDBOOKTM

 

429



 
430 CHAPTER 31 | XML BASICS

might require those characters. For instance, to specify the URL in the

hyperlink, we would need the slash character. Here is an example of such an
element:

<REFERENCE URL="http://www.documents.com/document.xml”> 

The string that defines the URL is the literal string. This one starts and

ends with double quote characters. Literal strings are always surrounded by
either single or double quotes. The quotes are not part of the string. Here is
what the XML spec says:

Spec. Reference 31-4. Literal data 

Literal data is any quoted string not containing the quotation mark used as
a delimiter for that string. Literals are used for specifying the content of
internal entities, the values of attributes, and external identifiers. 

You may use either single (“”’) or double (“1”) quotes to mark (delimit)

the beginning and end of these strings in your XML document. Whichever

type of quote the string starts with, it must end with. The other type may
be used within the literal and has no special meaning there. Typically you
will use double quotes when you want to put an actual single—quote charac-
ter in the literal and single quotes when you want to embed an actual dou—

ble quote. When you do not need to embed either, you can take your pick.
Here are some examples:

""his is a double quoted literal.”
 ‘"his is a single quoted literal.’

"'tis another double quoted literal.”

'"And this is single quoted" said the self—referential example.’

The ability to have quotes within quotes is quite useful when dealing
with human speech or programming language text:
”To be or not to be“

'"To be or not to be", quoth Hamlet.’
 "‘BEl', said Jean—Louis Gassee.”

'B = "TRUE";' 

Note that there are ways of including a double quote character inside of a

double—quoted literal. This is important because a single literal might
(rarely) need both types of quotes.

@1998 THE XML HANDBOOKTM



 

 

31.2 | PROLOG vs. INSTANCE

3 I . I .6 Grammars

Natural language syntax is described with a grammar. XMES syntax is also.
Some readers will want to dig in and learn the complete, intricate details of
XML’s syntax. We will provide grammar rules for them as we go along.
These come right out of the XML specification. Ifyou want to learn how to
read them, you should skip ahead to Chapter 37, “Reading the XML speci—
fication”, on page 546. After you have read it, you can come back and
understand the rules as we present them. Another strategy is to read the
chapters without worrying about the grammar rules, and then only use
them when you need to answer a particular question about XML syntax.

You can recognize grammar rules taken from the specification by their
form. They will look like this:

Spec. Reference 31-5. An example of a grammar rule___—___—_————————
xhb ::: 'a‘ ‘good' ‘read'__—_—_—————————-—

We will not specifically introduce these rules, because we do not want to
interrupt the How of the text. They will just pop up in the appropriate place
to describe the syntax of something.

3m | Prolog vs. instance

Most document representations start with a header that contains informa—
tion about the real document and how to interpret its representation. This

is followed by the representation of the real document.
For instance, HTML has a HEAD element that can contain the TITLE and

META elements. After the HEAD element comes the BODY. This is Where the

representation of the real document resides. Similarly, email messages have
“header lines” that describe who the message came from, to whom it is
addressed, how it is encoded, and other things.

An XML document is similarly broken up into two main parts: apt-910g
and a document instance. The prolog provides information about the inter—
pretation of the document instance, such as the version of XML and the
document type to which it conforms. The document instance follows the

@1998 THE XML HANDBOOKTM

431



 

432 CHAPTER 31 | XML BASICS

prolog. It contains the actual document data organized as a hierarchy of ele—ments.

Spec. Reference 31-6. Document production
document ::= prolog element Misc*
______________________________________________________________________.

am | The logical structure

The actual content oFan XML document goes in the document instance. It
is called this because if it has a DTD, it is an inscance ofa class of docu-
ments defined by the DTD. Just as a particular person is an instance of the
class of “people”, a particular memo is an instance of the class of “memo
documents”. The Formal definition of “memo document” is in the memo
DTD.

Here is an example of a small XML document.

Example 31-2. Small XML Document
<?xml version="l.0"?>

<1DOCTYPE MEMO SYSTEM "memo.dtd">
<memo>

<from>

<name>Paul Prescod</name>

<email>papresco@prescod.com</email>
</from>
<to>

<name>Charles Goldfarb</name>

<email>charles@sgmlsource.com</email>
</to>

<subject>Another Memo Example</subject>
<body>

<paragraph> Charles, I wanted to suggest that we

<emphasis>not</emphasis> use the typical memo example in
our book. Memos tend to be used anywhere a small, simple
document type is needed, but they are just
<emphasis>so</emphasis> boring!
</paragraph>
</body>
</memo>
______________________________________________________________________

©19981¥m XML HANDBOOKTM



 

31.3 I THE LOGICAL STRUCTURE

Because a computer cannot understand the data of the document, it

looks primarily at the tags, the markup between the less—than and greater-

than symbols. The tags delimit the beginning and end of various elements.

The computer thinks of the elements as a sort of tree.

K I From [- Name: Paul Prescod j |' Email: papresco@... l
i- [ To |- lName: CharlesGoldfarb l E Email: charles@...

 Memo ‘
 

— l Subjecr: Another Memo Example ‘

| Body }- |- ‘ Paragraph: Charles, I .. . ‘
if!

Figure 31-1 The memo XML document viewed as a tree.

Figure 31-1 shows a graphical view of the logical structure of the docu—
ment. The MEMO element is called either the document element or the root

element.

The document element (memo) represents the document as a whole.

Every other element represents a component of the document. The from

and to elements are meant to indicate the source and target of the memo.

The name elements represent people’s names. Continuing in this way, the

logical structure of the document is apparent from the element—type names.

Experts refer to an element’s real—world meaning as its semantics. In a

particular DTD, the semantics of a P element might be “paragraph” and in

another it might mean pence. If you find yourself reading or writing

markup and asking: “But what does that mean?” or “What does that look

like?” then you are asking about semantics.

Computers do not know anything about semantics. They do not know

an HTTP protocol from a supermodel. Document type designers must

describe semantics to authors some other way. For instance they could send

email, write a book or make a major motion picture (well, maybe some

day). What the computer does care about is how an element is supposed to
look when it is formatted, or how it is to behave if it is interactive, or what

to do with the data once it is extracted. These are specified in miles/fleets and

computer programs.

©1998 THE XML HANDBOOKTM

 

433



434

 

CHAPTER 31 | XML BASICS

3 IA | Elements

XML elements break down into two categories. Most have content, which
is to say they contain characters, elements or both, and some do not. Those

that do not are called empty elements.

Here is an example of an element with content:

Example 31-3. Simple element
<tit1e>This is the title</title> 

Most elements have content. Elements with content begin with a start-

tag and finish with an end—tag. The “stuff” between the two is the element’s

content. In Example 31-3, “This is the title” is the content.

Spec. Reference 31-7. Element with content
[39] element ::= start—tag content End—tag

XML start—tags consist of the less-than (<) symbol (“left angle bracket”),

the name of the element’s type, termed a generic identifier (gi), and a
greater—than (>) symbol (“right angle bracket”). Start—tags can also include

attributes. We will look at those later in the chapter. The start—tag in Exam—
ple 31—3 is <TITLE> and its generic identifier is “TITLE”.

Spec. Reference 31-8. Start-tag
[40] STag ::= '<‘ Name (S Attribute)* S? '>'

XML end—tags consist of the string “</”, the same generic identifier (or

G1) as in the start—tag, and a greater-than (>) symbol. The end—tag in Exam—
ple 31—3 is </TITLE>.

You must always repeat the GI in the end-tag. This helps you to keep

track ofwhich end—tags line up with which start-tags. Ifyou ever forget one
or the other, the processor will know immediately, and will alert you that

the document is not well-formed. The downside of this redundancy is that

it requires more typing. Some people like belts and some prefer suspenders.

The XML Working Group likes belts and suspenders.

@1998 THE XML HANDBOOKTM



 

31.4 | ELEMENTS

Spec. Reference 31-9. End-tag_____________—_————————-
[42] ETag ::= ‘</‘ Name S? ‘>'_________________———-————

Note that less—than symbols in content are always interpreted as begin-
ning a tag. If the characters following them would not constitute a valid tag,
then the document is not well-formed.

Caution Use the word “tag"precisely

Many people use the ward "tag"imprecisely. Sometimes they
mean “generic identifier”. sometimes “element-type name".
sometimes “element type” and sometimes they actually mean

“tag". This leads to confusion. ln XML, tags always start with less-
than symbols and end with greater-than symbols. Nothing else is a
tag.Tags are not defined in DTDs; element types are defined in
DTDs.

It is possible for an element to have no content at all. Such an element is
called an empty element. One way to denote an empty element is to merely
leave out the content. But as a shortcut, empty elements may also have a
different syntax. Because there is no content to delimit, they may consist of
a single empty—element tag. That looks like this: <EmptyTag/>.

The slash at the end indicates that this is an empty—element tag, so there
is no content or end—tag coming up. The slash is meant to be reminiscent of
the slash in the end-tag of an element with both tags.

Spec. Reference 31-10. Empty-element tag
[44] EmptyElemTag ::= ‘<' Name (S Attribute) * S? '/>'____—_____———————-

Usually empty elements have attributes. Occasionally an empty element
without attributes will be used to flag a particular location in a document.
Here is an example of an empty element with an attribute:
<EMPTY—ELEMENT ATTR= " ATTVAL " />

In summary, elements are either empty or have content. Elements with
content are represented by a start—tag, the content, and an end-tag. Empty
elements can either have a start-tag and end—tag with nothing in between,

@1998 THE XML HANDBOOKTM

 

435



4 .) 6 CHAPTER 31 | XML BASICS

or a single empty-element tag. An element’s type is always identified by the
generic identifiers in its tags.

The reason we distinguish element types From genetic identifiers is
because the term “generic identifier” refers to the syntax of the XML docu—
ment — the characters that represent the real document. The term “element
type” refers to a property of a component of the real document.

3 I.5 | Attributes

In addition to content, elements may have (ma-mum. Attributes are a way of
attaching characterisrics or properties to eiements ofa document. Attributes
have names, just as real—world properties do. They also have values. For
instance, two possible attributes of people are their “shoe size” and “IQ”
(the attributes’ names), and two possible values are “12” and “12” (respec-
tively).

In a DTD, each attribute is defined for a Specific element type and is
allowed to exhibit a certain type ofvalue. Multiple element types could pro-
vide attributes with the same name and it is sometimes convenient to think

of them as the “same attribute” even though they technically are not.

Attributes have semantics also. They always mean something. For exam-
ple, an attribute named height might be provided for person elements
(allowed occurrence), exhibit values that are numbers (allowed values), and
represent the person’s height in centimeters (semantics).

Here is how attributes of person elements might look.

Example 31-4. Elements with attributes

<person height="165cm">Dale Wick</person>

<person height="165cm" weight="1651b”>Bill Bunn</person>_________________________________________________________________

As you can see, the attribute name does not go in quotes, but the
attribute value does.

Spec. Reference 31-11. Attributes

[41] Attribute ::= Name Eq AttValue
[25] Eq ::= S? ‘=' S?
———_—-—-—_—___—.—_.

@1998 THE XML HANDBOOKW

 



31.5 | ATTRIBUTES

Like other literals (see page 429), attributes can be surrounded by either

single (') or double (") quotes. When you use one type of quote, the other
can be used within that attribute value. As we discussed earlier, this makes it

convenient to create attribute values that have the quote characters within
them:

Example 31-5. Attribute values can have quotes in them
<PERSON HEIGHT='80"‘>

<PERSON QUOTE=”‘T0 be or not to be'”>

 

 

There are other ways of getting special characters into attribute values
and we will discuss them in 36.2, “Character references”, on page 535.

A DTD constrains an attribute’s allowed occurrence and values. One

possibility is to require an attribute to be specified for all elements. For
example, a military document might require section elements to have a
security attribute with the value unclassified, classified, or secret.
<1ATTLIST SECTION

SECURITY (unclassified | classified | secret) #REQUIRED >

The attribute would need to be specified for each section element:
<SECTION SECURITY:"unclassified“>...</SECTION>

It would be a validity error to create a section element without a
security attribute.

Usually empty elements have attributes. Sometimes an element with sub-
elements can be modeled just as well with an empty element and attributes.
Here are two ways of modeling a person element in an email message:

Example 31-6. Alternative person element
<FROM><NAME>Paul Prescod< /NAME>

<EMAIL>”papresco@prescod.com"</EMAIL>
</FROM>
vs.

<FROM NAME="Paul Prescod" EMAIL=“papresco@prescod.com"/>

 

 

Yet another way to do it would be to let the person’s name be data con—
tent:

As you can see, there can be many different ways to represent the same
construct. There is no one right way to do so. In the case ofperson, the last

©19981¥m XML HANDBOOKTM

 

437



438

 

CHAPTER 31 | XML BASICS

Example 31-7. Another alternative person element
<FROM><PERSON EMAIL="papresco@prescod.com">Paul Prescod

< / PERSON>
</FROM>

version shown is the most typical because the character data of a document

generally represents what you would expect to see in a “print—out”.

But that is not a hard and fast rule (after all, renditions vary widely).

Because there are so many ways to represent the same thing, it is advisable

to use a DTD. The constraints in a DTD can maintain consistency across a

range of documents, or even within a single large document. There may be

many ways to represent a particular concept, but once you choose one, let

the DTD help you stick to it.

31.6 | The prolog

XML documents should start with a prolog that describes the XML version

(“1.0”, for now), document type, and other characteristics of the docu—
ment.

The prolog is made up of an XML declaration and a document type decla—

ration, both optional. Though an author may include either, neither, or

both, it is best to try to maximize the amount of prolog information pro—

vided. This will make later processing more reliable.

The XML declaration must precede the document type declaration if

both are provided. Also, comments, processing instructions, and white

space can be mixed in among the two declarations. The prolog ends when

the first start—tag begins.

Here is a sample prolog as a warm—up:

Example 31-8. A simple prolog
<?xml version="l.0"?>

<!DOCTYPE DOCBOOK SYSTEM "http://www.davenport.org/docbook”>

This DTD says that the document conforms to XML version 1.0 and

declares adherence to a particular document type, DOCBOOK.

Here are the grammar rules for the prolog:

@1998 THE XML HANDBOOKTM



 

31.6 | THE PROLOG

Spec. Reference 31-12. Prolog
[22] prolog :1: XMLDecl? Misc* (doctypedecl Misc*)?
[27] Misc :2: Comment | PI | s

3 I .6.I XML declaration

The XML declaration is fairly simple. It has several parts and they fit
together one after another.

Spec. Reference 31-13. XML declaration_________________—-——————“
[23] XMLDecl ::= '<?xml‘ VersionInfo EncodingDecl? SDDecl? S? '?>'

A minimal XML declaration looks like this:

Example 31-9. Minimal XML declaration
<?xml version=”l.0"?>

Here is a more expansive one, using all of its parts:

Example 31-10. More expansive XML declaration
<?xm1 version="l.0" encoding="UTF-B" standalone="yes”?>

There is one important thing to note in the last example. It looks like a
Start—tag with attributes, but it is not. The diflferent parts of the XML decla-
ration just happen to look like attributes. Well, not quite “just happen”: it
could have had a completely different syntax. but that would have been
harder to memorize. So the parts were chosen to look like attributes to
reduce the complexity of the language. One important difference between
XML declaration parts and attributes is that the parts are strictly ordered
whereas attributes can be specified in any order.

@1998 THE XML HANDBOOKTM

 

439



 

440 CHAPTER 31 | XML BASICS

3|.6.l.l Version info

The version info part of the XML declaration declares the version of XML

that is in use. It is required in all XML declarations. At the time of writing,
the only valid version string is “1.0”. But if you always use the version

string, you can be confident that future XML processors will not think that

your document was meant to conform to XML version 2.0 or 3.0 when

and if those languages become available. Since they do not exist yet, you

cannot know ifyour documents will be compatible with them.

In fact, the only reason that the XML declaration is optional is so that
some HTML and SGML documents can be used as XML documents with—

out confusing the software that they usually work with. You can imagine
that an older browser would not react nicely to an HTML document with

an XML declaration. But this “backwards compatibility” consideration is

only temporary. Future versions ofXML may require the XML declaration.

The XML version information is part of a general trend towards infor—

mation representations that are self-identifi/ing. This means that you can

look at an XML document and (if it has the declaration) know immediately
both that it is XML and what version of XML it uses. As more and more

document representations become self—identifying, we will be able to stop
relying on error-prone identification schemes like file extensions.

3|.6.|.2 Encoding declaration

An XML declaration may also include an encoding dalmatian. It describes

what character encoding is used. This is another aspect of being self—identi—
fying. If your documents are encoded in the traditional 7—bit—ASCII used

on most operating systems and with most text editors, then you do not

need to worry about the encoding—declaration. 7—bit-ASCII is a subset of a

Unicode encoding called UTF—8 which XML processors can automatically
detect and use. If you use 7-bit ASCII and need to encode a character out-

side of 7—bit-ASCII, such as the trademark sign or a non-English character,
you can do so most easily by using a numeric character reference, as

described in 36.2, “Character references”, on page 535.

@1998 THE XML HANDBOOKTM



 

31.7 | MARKUP MISCELLANY

Spec. Reference 31-14. Encoding declaration 
[80]EncodingDecl: := S 'encoding‘

Eq ( I u l EncName u n l I n I n EncName u u u )

[81]EncName: := [A—Za—z] ([A—Za—ZO-9 ._] I '- ' ) * 

3|.6.l.3 Standalone document declaration

An XML declaration can include a standalone document declaration. It

declares what components of the document type definition are necessary
for complete processing of the document. This declaration is described in
36.4, “Standalone document declaration”, on page 541.

3|.6.l Document type declaration

Somewhere after the XML declaration (if present) and before the first ele-

ment, the document type declaration declares the document type that is in
use in the document. A “book” document type, for example, might be

made up of chapters, while a letter document type could be made up of ele—
ment types such as ADDRESS, SALUTATION, SIGNATURE, and so forth.

The document type declaration is at the heart of the concept of structural
validity, which makes applications based on XML robust and reliable. It
includes the markup declarations that express the document type definition
(DTD).

The DTD is a formalization of the intuitive idea of a document type.

The DTD lists the element types available and can put constraints on the
occurrence and content of elements and other details of the document

structure. This makes an information system more robust by forcing the

documents that are part of it to be consistent.

3|.1 | Markup miscellany

This section contains information on some more useful markup constructs.

They are not as important or as widely used as elements, attributes and the
XML declaration, but they are still Vital parts of a markup expert’s toolbox.

@1998 THE XML HANDBOOKTM

 

441

 



 
442 CHAPTER 31 | XML BASICS

3 l.1.l Predefined entities

Sometimes when you are creating an XML document, you want to protect

certain characters from markup interpretation. Imagine, for example, that

you are writing a user’s guide to HTML. You would need a way to include
an example of markup. Your first attempt might be to create an example

element and do something like this:

Example 31-11. An invalid approach to HTML examples in XML
<p>HTML documents must start with a DOCTYPE, etc. etc. This
is an example of a small HTML document:
<example>

 

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>

A document‘s title

<H1>A document's title</Hl>
</HTML>

 

</example> 

This will not work, however, because the angle brackets that are sup-

posed to represent HTML markup will be interpreted as if they belonged to
the XML document you are creating, not the mythical HTML document

in the example. Your XML processor will complain that it is not appropri-
ate to have an HTML DOCTYPE declaration in the middle of an XML

document! There are two solutions to this problem: predefined entities and
CDATA sections.

Predefined entities are XML markup that authors use to represent charac—
ters that would otherwise be interpreted as having a special meaning, such

as a start—tag or an entity reference. There are five predefined (“built-in”)
entities in XML. These were included precisely to deal with this problem.

They are listed in Table 31—1.

@1998 THE XML HANDBOOKTM



 

31.7 | MARKUP MISCELLANY

_______________.———————

Table 31-1 Predefined entities

Entity reference Character

&amp; 86

Mt; <

8Cgt; >

8(apos; '

&quot; "
_________________——-—————

Why these specific five characters?

Spec. Reference 31-15. Predefined entities_________________.——-—-—-—

The ampersand character (86) and the left ange bracket (<) may appear in
their literal form only when used as markup delimiters, or within a com-
ment, a processing instruction, or a CDATA section. [...] If they are needed
elsewhere, they must be escaped using either numeric character references
or the strings “&amp;” and “8Clt;” respectively._______________———-—————-

Spec. Reference 31-16. Attribute values
To allow attribute values to contain both single and double quotes, the

apostrophe or single—quote character C) may be represented as “8Capos;”,
and the double-quote character (") as “8(quot;”.

An entity for the right angle bracket is also provided because it is some—
times useful to avoid putting a special string called CDEnd (discussed later)
into your document. But you do not have to use this entity in most cases.

We can use references to the predefined entities to insert these characters,
instead of typing them directly. Then they will not be interpreted as
markup:

When your XML processor parses the document, it will replace the
entity references with actual characters. It will not interpret the characters it
inserts as marl-cup, but as “plain ’01 data characters” (character data).

@1998 THE XML HANDBOOKTM

 

443



444

 

CHAPTER 31 | XML BASICS

Example 31-12. Writing about HTML in XML
<p>HTML documents must start with a DOCTYPE, etc. etc. This
is an example of a small HTML document:
<EXAMPLE>

&lt;!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
&lt;HTML>
&lt;HEAD>
&lt;TITLE>A document's title
&lt;/TITLE>
&lt;/HEAD>
&lt;/HTML>

</EXAMPLE>

 

 

3 IJJ CDATA sections

While predefined entities are convenient, human beings are not as good at
decoding them as computers are. Your readers will get the translated ver—
sion, so they will be fine. But as the author, you will spend hours staring at
character entity references while you are editing your XML document. You
may also spend hours replacing special characters with character entity ref—
erences. This can get annoying.1

Another construct, called a CDATA section, allows you to ask the pro—
cessor not to interpret a chunk of text as containing markup: “Hands offl
This isn’t meant to be interpreted.” CDATA stands for “character data”. You

can mark a section as being character data using this special syntax:

Example 31-13. CDATA section
'<l[CDATA[' content ']]>' 

Here are some examples:

As you can see, it does not usually matter what you put in CDATA sec—
tions because their content is not scanned for markup. There is one obvious
exception (and one not-so—obvious corollary). The string that ends the
CDATA section, “]]>” (known as CDEnd) cannot be used inside the section:

<![CDATA[

JavaScript code: if( a[c[5]]> 7 ) then...
]]>

1. This is especially nasty when you are writing an XML book, where examples
tend to contain may angle brackets.

@1998 THE XML HANDBOOKTM



31.7 1 MARKUP MISCELLANY

Example 31-14. Writing about HTML in a CDATA section____—————_————
<! [CDATA[
<HTML>

This is an example from HTML for Dumbbells!

<p>It may be a pain to write a book about HTML in HTML,
but it is easy in XML!
</HTML>

]]>_____—_—__——————

Example 31-15. Java code in a CDATA section
<![CDATA[

if( foo.getContentLength() < O && input = foo.getInputStream() )
open = true;

 

]]> 

The first occurrence of CDEnd in the middle of the JavaScript expres-

sion will terminate the section. You simply cannot use a CDATA section for
content that includes CDEnd. You must end the section and insert the

character:

<![CDATA[

JavaScript code: if( a[c[5]]]]>><![CDATA[ 7 ) then...
]]>

This is quite painful and can cause a problem for embedding program—
ming languages. But even in those languages, CDEnd is probably a fairly
rare character string, so you should just keep an eye out for it.

The non—obvious corollary is:

Caution CDEnd (“]]>”) should only be used to close

CDATA sections. It must not occur anywhere else in an XML
document.

This is an absolute requirement, not just a recommendation. Because of
it you can easily check that you have closed CDATA sections correctly by
comparing the number of CDEnd strings to the number of sections. If you
do not close a CDATA section correctly, some of your documents markup

may be interpreted as character data. Since (“]]>”) is not something that
typical documents contain, this restriction is rarely a problem.

@1998 THE XML HANDBOOKTM

 

445



446

 

 
CHAPTER 31 | XML BASICS

With all of these warnings, CDATA sections may sound tricky to use.
but they really aren’t. This book, for example, has several hundred. Misrake;
involving CDATA sections are usually quite blatant, because either markup
will show up in your rendered document, or data characters will be inter.-
preted as markup and probably trigger an error message.

Predefined entities and CDATA sections only relate to the interpretation
of the markup, not to the properties of the real document that the markuprepresents.

3 l.1.3 Comments

tions of the document. For example, you might insert a note to yourself to.
clean up the wording of a section, a note to a co—author explaining the rea~
son for a particular section of the document, or a note in a DTD describing.
the semantics of a particular element. This information can be hidden from
the application in a comment. Comments should never be displayed in a
browser, indexed in a search engine, or otherwise processed as part of the
data of the real document. They may, however, be treated as metadata.

Example 31-16. A comment

<.'—— This section is really good! Let's not change it. —->

Comments consist of the characters “<l——” followed by almost anything
and ended by “——>”. The “almost anything” in the middle cannot contain
the characters “-—”. This is a little bit inconvenient, because people often use
those two characters as a sort of dash, to separate thoughts. This is another
point to be careful of, lest you get bitten.

Spec. Reference 31-17. Comment

 

Comments can go jusr about anywhere in the instance or the prolog.
However, they cannot go within declarations, tags, or other comments.
Here is a document using some comments in several correct places:

@1998 THE XML HANDBOOKTM



   

31.8 | SUMMARY

0 31-17. Comments all over the placeExamPl——-"‘ "1.0"?>
<9xm1 version: .

i There is no other vers1on yet! --><."‘

<|-_ Now on to the doctype —>
<1DOCTYPE EXAMPLE [

<l—— This is a comment in the

doctype declaration internal subset! ——>
<1ELEMENT EXAMPLE (#PCDATA)>
(1-- This is a very simple DTD. ——>

]> <.__ Here comes the "root" or "document" element. ——>
<EXAMPLE>This is some character data.
<.__ That was some character data. ——>
< /EXAMPLE>
<!—— That's all folks ——>__-________———_

Markup is not recognized in comments. You can put less—than and

ampersand symbols in them, but they will not be recognized as the start of
elements or entity references.

Comments are a good place to describe the semantics of element types

and attributes. So you might use a comment to tell other DTD maintainers

and authors that an element type with a cryptic name like p is actually

intended to model paragraphs and not (for example) British currency.

Comments are not just about being helpful to other people. After all, even

expert document type designers have a limited and imperfect memory.

Some day even you will wonder exactly what it was you meant by a particu—

lar element—type name. The DTD comments will help. The job that you are

saving might be your own!

“.8 | Summary

An XML document is composed of a prolog and a document instance. The
prolog is optional, and provides information about how the document is

structured both physically (where its parts are) and logically (how its ele—

ments fit together). Elements and attributes describe the logical structure.
Entities describe the physical structure. To use a rough analogy, the entities
are like a robot’s body parts, the elements are his thoughts, and stylesheets
and software provide his behavior.

©1998THE XML HANDBOOKTM

 

447

  

 


