

Merrill Communications LLC
d/b/a Merrill Corporation

Exhibit 1006 pt. 3

ADEPT•Editor:
Edit for content----­
management

I Structured authoring

I Automated document systems

-~1 Batch composition

©1998 THE XML HANDBOOKTM

Chapter __ ~

~2.

s:.<u•>.U·· ~···vns with large amount of document information
rypically require an XML authorjng and editing tool that

integrates with content management tools and comel}t
delivery tools. That combination yields a complete automated docu­
ment system.

22.1 1 Automated document systems
An automated document system can be the key to an organization gaining
significant competitive advantage through improvements in information
quality, time to market, and production costs (see Figure 22-1).

The designs of these systems usually emphasize data integrity, data reus­
ability, process automation, and workflow consistency. Data integrity is key
to the other design factors because without absolutely consistent data, the
rest becomes difficult or impossible to achieve.

Two key concepts, stn-tcture and co·ntent matta.gement play pivotal role in
rhe ·ucces ful deployment and operation of a high-performance automated
deeumem publishing system. Ler u look at what these terms mean and
why they are important.

© I 9 9 R T H IC X M L H A I' ll R o o K nl 297

298 CHAPTER 22 I ADEPT•EDITOR: EDIT fOR CONTENT MANAGEMENT

Structured
XML

Editor
Content

Management

Document
Component

Database

Document
Delivery

Figm·e 22-1 Automated document system compon ents.

22.1. 1 Structure

The contents of documents are often described as unstructured information,
in contrast to the structured information stored in a relational database. But
if you look at the right-hand view in Figure 22-2, the rendered document
clearly exhibits a structure. It is conveyed to the reader by stylistic conven­
tions, such as type size, numbering, and indentions.

So if the terms "structured" and "unstructured" information aren't really
accurate, what then do we mean when we use them?

If you look in the computer .fil for a word pr.oce sing doctunent, you
will flnd the sLyle informati n mixed in with tb real information - the data
content - of the document. In a database, however, rhere is nothing there
but pure abstract data.

So it isn't that documents have no structure, it is that the way most docu­
ments are stored obscures the abstract data with information about the way
it should look when presented. In a word, while databases contain abstrac­
tions, most document files contain renditions.

i(J I 'I 9 H THE X M L HA N J) u () () ~ '"

--
2 2 . 1 AUTOMATED DOCUMENT SYSTEMS

DESCRIPTION

FEED CIRCUIT RESISTANCE TEST

17HID para
@.] ptxl - Before proceeding v:llh this

operation, review Diagnostic Prep araban and

StatterFeedCircuil Test::, The following

operation will require a voll..meler, accurate lo

1110 of a volt
EJ ptxl - Ignitwn andJi'uel systems must be

disabled to prevent engin.e stat1 while perfmuJng

I I the following tests.

f7 i ~ s1 1.
I !_ EJ pt:d To disable the Igxlition a.nd Ji'uel

I systems, disconnect the Automatic Shutdovrn

Relay(ASD) The A30 relay is located in the

Power Di:>ltibution Center(PDG) Refer to 1he I I
I

PDC cover for proper relay location

,b C1J s1 - 2

~~ ptxt With all wiring harnesses hlld

j components properly connected, perfotm the

followingJ

!~\ liD s2 d

[

8 !:[! ptxt Connect the negat ive lead of1he

I
voltmeter to the batte:tyne.gative po:::t, and po:::ilive

lead to the baltety negative cable clamp

· ~ ~ fiuureref
. Rotate ancllwlcllj1c lgnitwn switch in 1he START

position, Obsetve 1he voltmeter, If voltage is

cleteclec~ correct poor contact between cable cl.:..mp

1 and posl

I~ :!] Sl - b

El

FEED CffiCUTT RESISTANCE

Before proceeding wit1l this operation, r eview

Diagnostic Preparation and Statter Feed Circwt

Tests. The foUowing operation will t equll·e a

voltmeter. accurate to 1/10 of a volt

Ignition and Fuel systems m1.1st be disabled to

prevent engme start while pe1 fanning the followll1g

l. To ells able the Ignihon and Fuel systems,

discotmect the Automatic Shutdo\'!n Relay

(ASD) Tile Af~D 1elay 1s located in th-:! Power

Distribution Center (PDC) , Refe1 to tl1c PDC

cover fo1· proper t•elay locatwn

With all wirll1g hamesses and components

properly connected, perfonn the following·

a Connect the negative lead of the volhnete1 to

the batt:ery negative pos~ and positive lead to

the batt:e1y negative cable clatnp + Rotate

and hold tl1e ignition switch lll the START

position Observe the voltmetet , If voltage ts

detected, correct poor contact between cable

Figru·e 22-2
(WYSIWYG).

Two v1ews of a document: structured and rendered

But what if that could be different? What if you could store a document
so that its natural structure and data content could always be distinguished
from style information? What if you could handle documents as if they
were data?

It can be different! And XML turns out to be the key, because XML
allows you to identifY and preserve the structure of any collection of text.
With XML, documents and databases are just two different places to keep
abstract structured data.

Because XML is a notation that preserves abstractions, the data in XML
documents can be treated just like other data, which can be automated,

© 1 'l '! H T H " X M J. H 11 N D n r 1 o ~ '"'

299

300 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT

processed, reused, protected, classified, and extracted for use in a limitless
variety of ways (see Figure 22-3.)

Using XML yields several key benefits:

Multiple outputs

XML document data is often described as "presentation independent"
because it is stored in a way that is independent of any particular medium.
That allows organizations to deliver their information automatically from a
single repository to the Web, CD-ROM, print, and other media. This is a
huge contrast to word processing and desktop publishing file formats,
which are already rendered with a specific output in mind, usually publish­
mg on paper.

Document
Component
Database

On-line
www

Paper

CD-ROM

Other delivery processes
Figure 22-3 Multiple outputs from a single XML source.

Reuse

Many organizations re-create existing information far more often than
they reuse existing information. That inefficiency causes inaccuracies, version
skew, delivery slips, and inflated costs. One of the primary reasons to build a
structured document repository is to eliminate those costs by enabling the
maximum possible reuse of existing information. Storing that information in

©1998 THE XML HANDBOOKTM

2 2 . 1 I Au T 0 MAT E D D 0 cu M EN T s ysTEMs 301

a structured database provides the controls needed to maintain the integrity
of the data regardless of when, where, and how often it is used.

Jnte1·change
Organiza ions can interchange their data freely with suppliers, partners,

and customers when the data is based on a standardized document repre­
sentation like XML.

Automation
Representing your document data in XlvlL and sto ring .it in a repository

can yield process improv ments through intensive automation that are sim­
llat in kind and degr e ro the benefits of implementing relational databases
to replace handwritten ledgers.

tt. l.t Content management

Any organization that manages large amounts of document information
should, sooner or later, seek both to structure that information and to store
that information in a content management system.

The specific method of content management varies. In some applica­
tions, document information is stored directly in a database. In many oth­
ers, it is stored under the control of a document management system.

Regardless of the specific approach, these system primarily ensure data
integrity through security controls that prevent unauthorized viewing and
changing, and revision controls that keep track of changes from one version
to the next.

Content management systems for XML documents invariably must keep
track of information at a highly granular level (see Figure 22-4). For exam­
ple, instead of storing complete books in a single chunk, "compound docu­
ments" are assembled from small components that are stored separately.

Some components are tiny. For example, individual cells in a table may
be stored in various places and appear together only when delivered as a
publication.

It can be a challenge to create such documents. Typical document cre­
ation tools are designed to create rendered pages, whether they are printed
pages or Web pages. But building compound documents out of reusable
components requires a structured authoring tool that is designed to handle
highly granular unrcndered documenrs. The tool must also integrate tightly

@1998 TH E X ML H AN DBO OK ™

302 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT

Figure 22-4 Compound documents are composed of a hierarchy of
components.

with databases of all kinds, including relational databases, document man­
agement systems, and content management systems.

Such systems can display collections of document components as if they
were single documents while preserving the properties of each individual
component. That approach allows an author to view every document com­
ponent within the context in which it is used, while at the same time ensur­
ing that the author changes only those components for which the author is
permitted to make changes, and that are not currently under revision by
another author.

© 1 9 9 H T H F X M L H A N 0 ll 0 ll K 1 M

22.2 I W H AT INF O RMATION W ARRAN TS THESE TO OLS? 303

22.2 1 What information warrants these
tools?

Should your organization approach its document applications through the
use of structured XML authoring tools integrated with content manage­
ment systems?

The answer depends on the characteristics of the information you create
and the processes you use to create it. There are a number of criteria to con-

sider.

tt.t.l High volume

Unless your organization publishes thousands or even millions of pages,
current content-management-based products may be too expensive to jus­
tify the return. If yours is a manufacturing organization larger than $100
million or a publishing company larger than $25 million, then you are
likely to reap sizable rewards from implementing an automated document
system.

tt.t.t Multiple publications

Most organizations need to publish their information on multiple outputs,
the most popular being the Web, CD-ROM, and print. That requirement
alone has been sufficient to justify an investment in a new automated docu­
ment system. But if you are aiming not only to deliver on multiple outputs,
but also to leverage the capabilities of electronic media, then it is even more
important for you to build a document repository that is media-indepen­
dent so that you can use each medium to its full advantage.

tt.2.il High value

The type of information we are talking about represents a large investment
in the "intellectual capital" required to create it, becau e it i the sort of
informacion that js either viral to a related produ t or is the product itself
Examples include operating guides, ervice manuals, parts catalogs, policy

©!9 98 THE XML HANDDOOK™

304 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT

and procedure manuals, and reference manuals (e.g., encyclopedias, legal
case books, legislation, regulations, and medical drug information).

t t.t.4 Long life

Closely associated with "high value" is "long life." Most types of informa­
tion that are worth a significant investment last for years or even decades. In
addition to the initial investment, this information often receives additional
investment throughout its lifetime in the form of revisions.

t t.t.s Reusable

Although there are exceptions, much of the information in a typical publi­
cation from a large organization either already existed before within other
documents or will be reused in the future.

tt.t.6 Consistent

Using XML makes the most sense if there are many documents of the same
type, or single large documents that have repetitive structures. For example,
while it is likely to be worth the investment to create a DTD for service
bulletins if you publish 30 every year, it is probably too costly to do the
same for a single annual report. On the other hand, single books like dictio­
naries and catalogs have benefited from the use ofXML.

tt.t.l Created by formal processes

This is the clearest differentiator of all. Virtually all information that comes
out of a process is that is formally defined can benefit from a formal struc­
ture. When applied to document information, a "formal" process normally
has the following characteristics: defined and repeatable workflow, assigned
resources, and mission-critical deliverables.

© 1 998 THE XML HANDBO O K™

22.3 I CHARACTERISTICS TO CONSIDER 305

22.:1 1 Characteristics to consider

There are a numb r of importanr characteristics to look for in a structured
XML editor chat integrates with content management systems. These char­
acteristics are divided into th ree main categories:

Authoring issues
These issues affect those who create and revise the information,
not only full-time writers but also those who are occasional
contributors to the process.

Application development issues
These issues affect those who develop and maintain the products,
applications, and infrastructure to support the process.

Business issues
These issues affect those who have to approve the investment in
new technologies and who risk the most when an investment goes
wrong.

To illustrate these key characteristics, we will use illustrations based on
ArborText's ADEPT•Editor, a structured XML authoring tool that has
been integrated with several content management systems.

ll.il. l Authoring issues

When you look at a structured XML editor, you should look first to see if it
provides all the usual editing features such as cut, copy, paste, and drag and
drop, and convenience features such as a preferences panel and multi-level
undo.

Then you should look for two specific capabilities that are designed spe­
cifically for structured authoring:

Task-matched authoring tools
Creating highly structured documentation involves more than just
typing. An editor with "task-matched" authoring tools provides
editing tools that are appropriate for the type of data being
entered.

©1998 THE XML HANDBOOKTM

306 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT

Enforced consistency

To maintain the integrity of your data so that it remains
processable and reusable, you should look for a tool that prevents
your authors from creating data that is inconsistent or invalid.

Let's take a closer look at these two capabilities.

22.3.1.1 "Task-matched" tools

Writing a user manual involves a lot more than writing paragraphs and
heads. Typical technical documentation consists of large amounts of differ­
ent types of information. A portion of that information, of course, is rela­
tively "free-form" text, such as titles, paragraphs, and lists.

INSTALLATION

For installation, reverse the above procedures. Clean corrosion/dirt from
the cable and wire terminals before installing wiring to the solenoid

STARTER RELAY

The relay is located in the Power Distribution Center (PDC). Refer to the
PDC cover for relay location.

OTHER SPECIFICATIONS

Figure 22-5 Rendered view of"free-form" fragment of an XML document.

But even the character data is organized into a structure, and a structured
authoring tool should provide a way to navigate and edit the structure itself.
This capability should be provided through an alternative "structure view"
of the document.

Other information, especially the information in tables, is better suited
to a restricted form of data entry such as the various controls you see in the
dialog boxes of software programs. These controls include pushbutrons,
check boxes, radio buttons, drop-down selection lists, sliders (e.g., volume
controls), and other controls. These are shown in Figure 22-7

©1998 THE XML HANDBOOK™

2 2. 3 C!-!ARA CT F.RISTIC S 'J'O CONSID E R

G@ tO)JiC

- i @ title INSTALLATION

~ @I para
I @ ptxt For installation, reverse the above

p!Dcedmes, Clean corrosionldi!i ftorn the cable and

wit~ tenaimus befote it~Stallit>g witit~g to the solenoid

@title STARTERRELAY !
<[,(servinfo

@ 11ara
I [[])Jtxt - The telay is located itt the Power

Distnbution Centel (PDC) . R•)fet to the PDC

cover for tehy location,

_ @I servinfotype

t-• @] spec-other OTHER SPECIF1CATIONS
~ ' 8 @ ~ servinfo

Figure 22-6 Structure view offragment in Figut~e 22-5.

fi< Work Package

Figure 22-7 Dialog box v1ew fat~ entering specialized data in XML
documents.

An authoring tool for structured XML information should allow you to
match the type of information to be entered with the best view for the job.
In some cases, you will want all three capabilities concurrently for the same

document (see Figure 22-8).

22.3.1.2 Structure consistency

Data integri~·y is the single most important factor in building a highly auto­
mated system that is built on top of structured data. The integrity of your
data is crucial because automated processes must rely on the validity and
consistency of your data in order to perform their functions properly.

~~~ l ~J lJ H T. 1-1 1~ X M L I I 1\ N P n l) ') K T M 

307 



308 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT 

r ~ @e !NSTAIJ.ATION 
EJ ~para 

1 00 phd - For installati:ln,. reverse the ab1 
procedures Clean corrosiorJdirt ftorn tiD 

wire terminals before installing wiring to 
€? servinfo 
@ !Hie STARTER RELA V 

I§ IHtra J 
1 @ phrt The relay is located in the Power 

DistnbutionCenter(PDC) Refer to th.e!PDC · 
cover for relay location 

otflrtyJoe 
oec-other OTIIER SPECIFICATIONS 
~ seiVinfo 
[;;] tnle STARTER 2 

@ ~ table Table L 

IIIII table 

1!01 vara 
1:1 ptxt • Engine should be up to operating 

ClooeFCJJm 

For installation, reverse the above procedures, Clean 

corrosion/dirt from the cable and wire tenninals before 

installing wiring to the solenoid 

STARTER RELAY 

The relay is located in the Power Distribution Center 

(PDC) Refer to the1PDC cover for relay location 

OTHER SPECIFICATIONS 

STARTER2 

Figure 22-8 ADEPT•Editor showing three views concurrently. 

One of the most important features of a structured XML editor is its 
capability to ensure that documents remain consistently structured at all 
times. This capability is especially important when that structured data is 
stored in a repository that is accessible to other authors and to automated 
processing applications. 

Data integrity enforcement is illustrated in Figure 22-9, which illustrates 
that an author is dragging the first step of the "Removal" procedure to the 
"Starter" title. The cursor "prohibited" symbol shows that the current drop 
point is invalid and will not be allowed. For valid drop points, the cursor 
changes to a checkmark or plus sign. 

Continuous consistency is also vital to ensure efficient workflow and 
repeatable processes. Authors who are allowed to create invalid and incon­
sistent data must either clean up their data later or turn it over to someone 
else to clean up. Either way, the organization pays the cost of extra work 
that adds no value but increases costs and time to market. 

© 1998 TH E XML HANDDOOK™ 



2 2 . 3 I cHARAcTER Is T I c s T 0 c 0 N s I D E R 309 

INSTALLATION 

SAFETY SWITCHES 

For Removal and Installation of the ParkiN eutral Switch, 

refer to Group 21, l'ransaxle. 

l
l?s 
I. D!scpnnect battery negative cable 

STARTER 

3.3LENGINE 

REMOVAL 

2. Raise vehicle. 
3. For easier servicing. do not remove the wiring from 

Figure .2.2-9 ADEPT • Editor showing prohibited drop point. 

22.11.2 Development issues 

Developing a powerful system to handle large amounts of structured XML 
documents is no different from other large automation projects. Building a 
system to suit your needs will i.nvolve a combination of standard produce 
and additional application development work in the form of onfiguring, 
programming, and other customizations. 

This section describes the key characteristics of a structured XML editor 
integrated with content management that primarily affect those who have 
to develop systems based on that tool. 

22.3.2.1 Content management integration 

As Figure 22~ 1 illustrates, a structured XML authoring roo! is just one of 
several pieces that comprise an nrerpri e olution for creating, managing, 
and delivering d cum nt informacion. One of the key additional tools is a 
content management system. 

Organizations can integrate structured XML authoring tools with many 
different tools for content management. Some start out by building their 
applications on the file system. Others plunge right into document man-

©!99 8 TH E XML HA ND BO O K™ 



310 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT 

agemenc or c mpon nr management. (Some ompooem management sy _ 
t ms describ th ir products as "authoring supporc" too ls because they are 
specifically designed with information authoring- and not jusr do umenc 
management- in mind.) 

Whatever system you choose to manage your cont nc, the approach you 
take to integrating your authoring tools with your con tent management 
t ol has an normous impa ron performance, calabiliry, and ease of use. 

Ideally, you would choose an authoring tool with an API (Application 
Program Interface) specifically designed to interface with content manage­
ment systems. Through that API, the authoring tool can "speak" with the 
content management system at a component level and not just at a docu­
ment level. 

Let's examine the facilities that this type of connection enables. 

Seamless user interface 

Instead of switching back and forth between the authoring tool and the 
user interface of the content management system, it is possible to "build in" 
to the authoring tool everything the user needs to browse, search, and select 
documents and document components from the content management sys­
tem. Figure 22-10 shows an example from ADEPT•Editor, which provides 
an interface that displays the contents of the content management system. 

Compound document authoring 
There are clear advantages to reusing existing information instead of wast­
ing the time and resources to create it again. To achieve optimum reuse, you 
should create your information in small, easily reusable components and 
build "compound documents" that are simply collections of these compo­
nents. 

But when the time comes to edit that information, you should look for a 
tool that can load compound documents without first combining all the 
separate components into a single monolithic document. That feature 
allows the authoring tool to deliver the following benefits: 

• You can open a compound document and check out only 
those components you want to change, which leaves the 
remaining components available for other authors to revise. 

© 1 9 98 TH E X ML HANDB OOKTM 



2 2 . . 1 C H A R A C T F. R I S T I C S T 0 C 0 N S I D lc R 

El"'l Demo Virtual FS Adapter [c:\adept\objo[ 

- @ '"" report 
- [§) &l rnerno 
• &I{::\:, j2008 

~-t t~\, vehicle -tEl rnodeldesc 
- § configlist 

- $1 "'"' servinfot_ype 
ffi -~ re air·rrl 

,,1 c ' ~ 

servinfotype, Starter Models 

1-User Demo DMS Adapter 

Figm·e 22-10 Browsing documents and components directly within a 

structut·ed X ML authoring tool. 

f.' You can open enormous documents very quickly because the 

authoring tool only loads the components necessary to fill the 

screen. 

ll)l You can perform "granular updates", where components that 

are changed can be reloaded without reloading everything else. 

Collaborative authoring 

Several users may have the same compound document open for viewing, 

but by enforcing p~rmissions and checkout at the component level, each 

user is restricted to editing the components he or she has checked out. This 

means that in a workgroup authoring environment, all subject matter 

experts can simultaneously edit their portions of the publication while see­

ing it in the context of the full publication. 

~~ l lJ l) R 'r II l', X M J. H /1. ~~ l" ll () o t-: l~- 1 

311 



312 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT 

22.3.2.2 Customization 

Customizing the document system can provide dramatic improvements in 
productivity, information quality, and/or performance. 

For example, some of the customization that is desirable for an auto­
mated document system is to build tools for authors. For example, forms 
and dialog boxes may provide a faster and easier user interface to certain 
types of information (see Figure 22-11). 

i:O adept jill Ia 
Fie Ed~ Toots 

Paul Klock 
Brian Mullo_y 
Phil Storey 

Select names from the list$ above 

~Memo Sty!< 

I r Business r Clossic r. ContempoJaly 

Figrn·e 22-11 Custom dialog box for entet·ing header information. 

The key to efficient application development is to choose products that 
come with appropriate tools for the purpose. For instance, Arbor Text's ACL 
Designer product supports customizing the ADEPT•Editor user interface. 
You can set up forms within the ADEPT window itself (see Figure 22-7) 
and you can set up dialog boxes that pop up when needed (Figure 22-11). 

<P I 9 9 H T II " X M L 1-l A N I) ll U 0 K ''" 



31 ?, 
2 2 . 5 I c II A I\ A c T E R I s T I c s T () c () N s I D E R J 

Many of rhc issues surrounding th e selection, implementation, and opera~ 
tion of an automated document system represent a significant impact on 

the busin ess SllCCCSS of' the projec t. 
Organizations tkn have earned outsGu1.diug returns from automated 

document systems built on XML or its parent, SCML, include the follow­

ing examples : 

• 1:-:[c:tvy equipment manuftcturer improves author productiviry 
by 100°/tJ, saving the th e l1iring of600 professionals over a 
five-year period. 

• Publisher of daily report reduces .~0% of its payroll costs by 
clirnillaLin g regular ovenirnc cilmugh streamlining its 

processcs. 
• Tc:x d->Ook publisher iucreases revcnm:s substantially by oHering 

CIJStomiz.ed versions of irs tex tbooks at prices competitive to 

standard versions. . 

IJ.I I~ l) 8 T II F, J< M I, IIi\ i~ I) ll ()ilK TI- l 



314 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT 

• Electronic equipment manufacturer reduces production lags 
from three weeks to two days. 

Let's consider the characteristics you should look for in an automated 
document system to help you achieve the sort of business successes 
described above. 

22.3.3.1 Authoring productivity 

Have you ever spent ten minutes writing a memo to your boss and another 
ten minutes formatting it to make it look good? If so, then you know how 
much time you can waste on tasks that add little value. 

With the adven ofWY fWYG w rd processing and desktop publishing 
software, authors spend as much as half rheir time manipulating the appear­
ance of their documents, and only the other half creacing coment. For 
many organizations, this is a tremendous unnecessary expense. 

In principle, authors are experts in the subject matter of the document 
while graphics designers are experts in the appearance of a document. When 
that principle is violated in practice, the productivity of the subject matter 
experts - the authors - drops by half or more. 

For those organizations that publish only on paper, using authors for 
document design represents a costly inefficiency. But for many organiza­
tions who deliver their information in multiple forms (e.g., in print and on 
the Web) and who aim to "personalize" documents through automatic 
assembly of document components to suit individual needs, WYSIWYG no 
longer makes any sense at all because the information may never be deliv­
ered in the same form in which it was created. 

With some tools, you may find that it is possible to force authors to leave 
the document design alone but still show them how the printed page will 
look. The problem with that approach is that the only way an author can 
affect a page layout is by rewriting to add or remove words. That could lead 
to an even greater loss of efficiency. 

Structured XML authoring .tools can separate content from presentation 
completely by showing a view of the data that uses formatting only to pro­
vide cues about meaning, instead of showing the actual rendition. For 
example, emphasized words are shown in italics and titles are shown in large 
bold letters, but column breaks and page breaks are not displayed (see Fig­
ure 22-13). 

© 1998 TH E XML HANDB OO KTM 



22.3 I CHARACTERISTICS TO CONS IDER 

:REMOVAL, 
REPLACEMENT, AND 
INSTALLATION 

SAFETY S\~CHES 

For Removal and Installation of the Park/Neutral Switch, 

re fer to GJoup 21, TtansaYJe 

S ARTER 

3.31 • .ENGINE 

REMOVAl. 

1 Disconnect battery negative cable 

2 Raise vehicle 

3 For easier servicmg, do not t emove the \oVlring from 

, statter at tlus time 

4, Remove tht ee starter attaching bolts from 

engine/trans axle 
' 5, Remove starler assembly from transmission housing 

Position the startet to gJm acces s to the wU1ngi 

IC..'OIC$1 DIM I 

REMOVAL, REPLACEMENT, 

AND INSTALLATION 

SAFETY SWITCHES 

For Removal and Installation 

of the Park/Neutral Switch, 

refer to Group 21, Transaxle. 

STARTER 

3.3L ENGINE 

REMOVAL 

1. Disconnect battery negative 

cable . 

Figru·e 22-13 Two views of a document, rendered with different 
stylesheets. 

Views designed only for aurh ring can provide addidonal assistance by 
displaying in easy-to-read form information chat may be tiny when finally 
presented. For example, copyright infoxmation may be print d in ciny let­
tel's but may be displayed in larger letters for authoring wirhot.u enlarging 
the entire view. 

22.3.3.2 Batch composition 

In traditional WYSIWYG environments, authors manually inspect and 
adjust column breaks and page breaks to keep related elements together and 
reduce excessive white space. But using a structured XML editor allows you 

315 



316 CHAPTER 22 I ADEPT• EDITOR: EDIT FOR CONTENT MANAGEMENT 

c create a system that automates page layouts and relieves authors from this 
low-value work. "Batch composition" is the technology that makes this pos­
ible. 

ADEPT•Publisher fmmArborTexr is one example of a tool that provides 
batch composition capabilities. By automaticaUy balancing pag "fullness'' 
with th need to keep related lements togeth r, the product produces 
atuactive pages with no need for manual imervention or inspe rion. ln 
addi i n, it an automaci ally generate supplemental rext, footnotes, end­
notes, tables of contents, cross references, indexes, and lists of figures, equa­
tions, and tables. 

Some organizations must lay out their documents to conform ro legal 
r quirements ud1 as the formatting of safety warnings. For example, it 
may be a requiremem that safety warnings appear in their entirety on rhe 
same page as rhe text to whid1 tb y are related. ADEPT•PubLisher can 
ensure that the document complies with that legal reqLLiremenr or issue a 
fatal error if ompJiance i not po ible (for example, if the safely warning 
exceeds the size of the page). This eliminates man ual inspe ri n and elJmi­
nates the liability risk from those errors that manual inspection inevitably 
overlooks. 

22.3.3.3 Presentation independence 

By its nature, information stored in XML is indep ndent of any particular 
way of presencing it. That means that through rhe application of a 
stylcsheer or other transformation method , XML information can be deliv­
ered from a sing! information base to multiple outputs, usually automati­
cally (see Figure 22-3). 

The alternative to this approach, which is in common practice today, is 
to set up apr cess where authors create th.e information with the goal of 
printing it and then hand off the informacion to another group thar handles 
online delivery. The online group onverts the info rmation to the onlJne 
format and manually adjusts the appearance, sequence, and links to adapt 
the information for online delivery. In that process, it is common to 

improve the information itself, but often those improvements are not 
reflected back to the original source. 

When the original information is revised, the online group has to make a 
decision: do they make the same revisions to the online information that 
were made to the printed information? Or do they convert the printed 

© 1 9 98 T H E XM L HA NDB OO KTM 



22 . 3 I C HA R A C TERI S TI CS TO CO N S IDER 317 

· nforrnation to the online format and then make all the manual changes 
~gain? No matter which way they go, the result is an expensive and wa tefu1 

process. 

Convert 
and Manual 

Clean-up 

Figure 22-14 Inefficient non-XML alternative to process in Figure 22-3. 

22.3.3.4 Standards-based 

Strucrured XML aurhoring tools are based on open standard that are out­
side the control of any individual vend r. XML, for example, is an 
appJoved re ommendation of the World Wide Web Con rtium (W3 ). 
W1rh cbe right choice of technology, you can protect your organization 
from dependen eon any single vendor. 

The key tO vendor-independence is to build your automated document 
system ba ed on open standards such as XML and its related specifications, 
XSL, XLink, the OM, and orh.er emerging specifications. Many of mese 
are di cussed later on in the book and orhers are in the CD-ROM's XML 
SPECtacular. 

Malcing the right decision. will also ensW'e high p rformance and maxi­
mwn calabilicy. Choosing overtly srandards-based tools, such as those 
described. in this chapter, will ensure that your data remains standards-com­
pliant throughout cl1e entire process of cre:1.ring, managing, and processing 
your information. 

©1998 T HE X ML HANDBOOK™ 



X MetaL: 
Friendly XMl 
editing 

I Structured authoring 

I Familiar interface 

I Outside authors 

©1998 TH E XML HANDBOOKn.< 



(bnpter __ _..; 

lJ 

• •• ML will be a new experience for most of today's Web site 
developers. If you are in that category, you might welcome a 

lliliilll tructured editor that is designed to be easy to use and to pro-
vide first-time XML editing capabilities right out of the box. Of 
course, those "friendliness" characteristics will need to be balanced 
against your functional requirements when choosing a product. 

2J. I 1 Familiar interface 

Often, simple differences in the editing interface will cause more problems 
For users th.an coping wirh unfamiliar rags. 

One way ro increas user comforc with a new technology is to provide 
th user with a familiar interface. Pu ll-down menus, the button bar, and 
short-cut keystrokes should be compatible with the most popular word pro­
cessing programs. The interface should be designed to provi e immediate 
familiariry and to lim.inate the learning curve typically experi need when a 
user switches to a new editing environment. 

(!) l ~ 'J ~ T 1-1 F. X M I. H A N D I\ 0 0 ~ 1·" 319 



320 CHAPTER 23 | XMETAL: FRIENDLY XML EDITING

Figure 23—1, illustrates the approach taken by SoftQuad’s XMetaL to we
ognize the importance of a comfortable editing environment and make the
transition transparent.

Ef-.Hu|..| |...|.'|h.-.| {n.m-unnnr:

ll'f'"? '—

   
 

Iilome .lnmn'ations Mz'lga'liirw Onlinu

  
 

 

ELorem Ipsa quuitor nephrly zatna yephrqui, phyrd primphcy lorem
:phyrd nphtlon»quitphte Izartaph phffphirqui hlpquium ipquium dd
Elphrggoly uncophillegedr

liphmqul, coard nt bipquiumed Internphtlonphli Bphn zatna yephrqui,
zartaph phFthirqui hipquium ipquium dd.

ii, I< aQ 3O Q C ; .0 E. 62 2' OU 3' 3 ,_, 3UIaT ma o— —‘ (D3 ,_,I O D E. 6' —. {'1 U 3‘3m o— a OJ (.0 H p: .2''—
 
 

 

  C‘ Lar'Em ipsa [aquitor . .

€35 Bplm lmkerp}: . I EJIFEIQI I
 
Figure 23-1 X/VletaL interface

13.! | HTML markup transition

Consider how easily an editor can help HTML Web site creators get started
with XML. It should be able to import both existing word—processing docu—
ments and HTML documents to serve as the basis for new XML docu—
ments.

le/kmL, for example, comes with a special XML/HTML rules set to

help new users start authoring well—formed XML documents using tags
from a familiar HTML baseline element—type set. This HTML foundation
can then be extended by adding new element types.

@1998 THE XML HANDBOOK-I'M

 



2 3. 3 I s T R u c T u RED EDITING 321 

Th produc supports the development of new element types and 
acrributes by helping users group them into HTML display classes. This 
immediately provides appropriate screen formatting for ongoing editing 

sessions. 
The user with existing HTML pages has another option as well. The edi­

tor has the capability (at least as far as the two languages permit) for auto­
matically making your HTML a well-formed XML document. 

ti.i 1 Structured editing 

The XML language was specifically designed to be user-friendly. Yet, 
because it is expected to carry abstract data between computer programs, it 
also has to be rigorous. 

HTML, on the other hand, was only designed to represent rendered 
pages for humans to read. We humans are so much smarter than computers 
that HTML doesn't have to be used quite so rigorously. 

For this reason, XML editors need structured editing capabilities, as we 
have seen. Providing these while maintaining user-friendliness can be a real 
challenge for a product. 

As an example, let's look at how XMetaL steps up to the challenge by 
examining some of its structured editing features. 

2J.J.I Multiple views 

XMetaL offers views of full document, structured document outline, or 
XML context. These enable flexible editing, navigating, and manipulating 
of large portions of your document. The outline view, illustrated in Figure 
23-2 will show the new element types that the Web developer has added, 
and the places where they can be used. 

2 J.J.t Tables 

A graphical table editor can be used to produce tables. These can be created 
in a what-you-see-is-what-you-get mode without intrusive markup require­
ments. 

©1 9 98 THE XML HA NDBOO K rM 



322 CHAPTER 23 I XMETAL: FRIENDLY XML EDITING 

r.J Xt.t et>l (alpha)- [ondek html( lllfilr.:J 
[lo I.cll l{IOW I-' FliiiMI lools T_cblo FOIII) iio l!{nlow l!el> 

:::::=;=.::::::::;;::~~ 

D ~ Iii I• ... ~ I ~ le 8 ..., • C• • l ... '"1!!!1 ~-'] <I>~ ! ~ .. ! '? tt- 111 ., 

a ~!ill!) 
E-J~ HGI!.e lllHQVO.tlO l\5 l!~g& z. i ne Onl 

f-::1~ HoJt~e Innovat ion::3 l!c.ga z1 ne 01• 

[-:l )E!J1&:0V> HOIC,e lnnov&tiOll3 U=. g a:.>.:1n1 
fi]I(-OLQEFS j 

!:-l ~ HoH!C I nno,: r.t1ons J\ sg.;. !lne 

w® 
S ® Ho!r•e Innov~tlD I-, ::; ME~ga<: l ne < 

l+i@ 

[':l@ HOI;· ~ Innovations Haga z1ne 
!!1 fE; Hm11e I nr•avat1ons Ma·;ta:irt 

~ ffi (f) Lot: etll ip~:t l oquit ca · n ephr 

I+J [> Pl i\TcJ J(QQU lt q •nighlflc)jh 

(BI,; l''ebr:u.:. t: •/ FeAture Pe•; ie:u: 

i±1~ Nephl:ly <:atn~ 
[~ fill!l; Trepht.~· Lore111 Pc lmph·:; ~ 

i::l [TBOD'r) TL c pht.'} Lon~n , Pl." l lup h 

ff](CC•LDCFS) 

ttl~ Tl:e~•h ty Larew Pt: l..llp 

@> 
®c 

!;] (CE"TER) 

I u ~ i If • ,. I := t= 

:Lor m jps11 loqultor nephrly zal ne y 
: phyrd nphtlon-qultphte ~arteph phff 
: lphrggoly uncophi I leged. 
' 
:phyrd moquit quiignificphnt mphrket 
: liphmqui, coard nt blpquiumed Ill 
: zartaph phffphirqui hipquium ipquiu 

FONT; .iJll_ £ 

Figure 23-2 Outline view showing element-type hiet archy 

2;1,;~,;~ Named bookmarks 

XML pages tend to be larger than typical HTML Web pages. A facility for 
named bookmarks lets you navigate lengthy XML pages and quickly return 
to important references. 

2 J,J,4 Samples and te1nplates 

To help users cope with the Brave New Web of structured information, 
XMetaL provides industry-specific samples and XML DTDs and templates, 
including one for HTML. Using these resources, Web developers can use or 
extend the HTML document type, and can employ industry-specific 
DTDs as well. 

© l 9 9 H T H E X M L HAN D tl 0 tJ K tM 



2 3 0 3 I s T R u c T u RED EDITIN G 323 

tJ.J.5 Context-sensitive styles 

You can specifY styles f-or individual elcm m and for all elem 'nts of a given 

cype. You can also a.~sociatc different styles with an dement type, a cording 

to th context in which the individual .lemenrs of rhar type c ur within 
your documents. For example, an unmd red li r item might rdinari ly have 

a round bullet bur if the List occurs nesred within another li t, a square bul­

let would be displayed instead. 

tJ.J.6 Default HTML styles 

For the HTML document type, XMetaL provides the default HTML styles 

out of the box. This eliminates lengthy set up times for those new to XML. 

It is also possible for Web developers to use existing HTML styles with 

newly-developed element types. Doing so can provide familiar user inter­

faces while preserving data with more descriptive markup. For example, 

data could be tagged as a "product" element but displayed in the style of an 

HTML "H3" element. 

21.J.7 Direct DTD processing 

XMetaL can read standard XML document type definitions and immedi­

ately configure itself to accept matching XML instance files. There are no 

lengthy "rules building" setup steps. 

21.1.1 Customization 

With XMetaL you can record a common sequence of operations and exe­

cute it from a single keystroke combination. You can also customize tool­

bars and add your own functions through Visual Basic and OLE 
Automation. 

© 1 9 9 8 T H E X M L H A N D B 0 0 K T M 

I 



324 CHAPTER 23 I XMETAL: FRIENDLYXML EDITING 

2J.4 1 Extend XML capabilities to 
outside authors 

Many organizations thar use a·uctured ru le-based XML authoring tools 
wid1 in their publication departmenrs are unable ro extend the u e of these 
tools to oursidc authors. Typically the tools are expen ive and complex to 
learn and use. 

As a result, most out ide authors rely on using word processors with spe­
cialized authoring tylesheers. When an organization brings the work of 
these outside autho rs ba k in-hou e, onversion into XML is required. This 
is not only expensive and time consuming, but often problematic because 
correct srylesheet use is difficult to validate and impossible to enforce. 

vercly "fri. ndJy" XML editors that mimic the interface, functionality, 
and pricing structtue of popular word processors may provide a solution to 
this problem. With such products, it is more likely that outside authors 
could create XML directly, thereby eliminating the time and expense of 
conversiOn. 

© 1998 T H E XML H A ND BO O K™ 



 

 
  

  
  



Dyna Tag v· sua 
• convers1on 

environment 

I XML conversion tool 

I Document conversion concepts 

© 1 998 THE X ML HANDBOOK ™ 



(bopter __ __..; 

24 

•••• ord processor file formats faithfully record how data should 
look, but they are useless as reliable sources for processing 
that data. That's why so many of them need to be con-

verted to XML. 
Middle-tier data aggregators need to do it dynamically, and publishers 

need to do it as part of the authoring process. Both groups can benefit from 
understanding the concepts involved. 

24.1 1 Concepts of document 
• conversion 

An XML document consists of data intermixed with markup. The purpose 
of the markup is to describe the data: its meaning, structure , and other 
attributes. 

When data originates in a database, as in middle-tier applications, it is 
straightforward to incorporate it in an XML document. That is because a 
database keeps data in an abstract state; it isn't mixed up with reports, entry 

©I 9 9 H T H E X M L H A>-: ll ll u ll K .,." 327 

I I 



328 CHAPTER 24 I DYNATAG VISUAL CONVERSION ENVIRONMENT 

forms, or other rendition information. Moreover, the database schetna 
knows how to associate meaning with the data- meaning that is easily rep­
resented as element cypes and attributes when creating the XML docutnent. 

Creating an XML document is also straightforward with an XML struc­
tured editing system. Such systems, like databases, keep the data in an 
abstract state internally even if they present a rendered WYSIWYG view to 
the author. 

But the real garden variety word processors, beloved of authors and typ­
ists the world over, have no concept of data. They exist solely to create ren­
ditions and will happily mingle formatting commands with data, given the 
slightest opportunity. 

But despite that fact, many XML-savvy organizations use word proces­
sors regularly to create XML documents. They prefer not to invest in the 
retraining and process changes that switching authoring environments 
requires. 

Which is why XML conversion tools were invented. Many of them are 
essentially programming languages with varying degrees of XML-aware­
ness. (There are some on the CD-ROM accompanying this book.) They 
often require a programmer's skills to create rules for parsing word process­
ing formats, and they don't provide visual feedback. 

We'll see a different approach later in this chapter, but first we need to 
look at two key concepts: data rescue and style serves meaning. 

24.1. 1 Data rescue 

Converting a word processing document to XML typically involves more 
than just changing from one notation ("file format") to another. Instead of 
simply translating the document's formatting characteristics and content, it 
is necessary to isolate the real information content - the abstract data and 
its structure - from the style information. In other words, the data must be 
rescued from the rendered form, and stored in a notation - XML - that is 
capable of preserving structured data as an abstraction. 

Data rescue restores rendered content so that it can serve as dynamic 
information for many uses in a variety of delivery environments. (For an 
example, see Chapter 19, "City Of Providence", on page 252.) 

©1998 THE XML HANDBOOK™ 



2 4 . 2 I c 0 N vE RT IN G D 0 c uM EN T s wITH D y NAT A G 329 

24.1.2 Style serves meaning 

The basic principle behind data rescue is that the purpose of the style in 
word processing documents is to help convey the meaning of the data. [n 

other words, as an example, the reason for using a particular set of format­
ting instructions ~sue~ _as ~old, ceo ered, 18 point type) is o show that the 
data in that style ts a n tle . 

By raking advantage of chis principle, it is possible to transform word 
processing styles to XML markup. That task is ~ade ea ier when r~e wor~ 
processing documents use sryle templates const tencly, bu r even m thetr 
absence, combinations of formatting instructions can be used as we have 

seen. 

t4.1 1 Converting documents with 
DynaTag 

DynaTag is a graphical environment for converting word processing (WP) 
documents to XML. (It also contains other components, described later, 
that prepare the converted documents for electronic publishing on CD­
ROM and the Web.) It converts WP documents in Wes tern European lan­
guages and Japanese. 

The product is designed to simplifY the often complex task of mapping 
word processing style conventions to XML. Once a conversion i defined 
with DynaTag, it can be reused for other documents of the same type. 

Figure 24-1 illustrates one view of the product interface. The upper half 
of the window shows the input word processing file with its original for­
matting. Names of input formats appear on the left, and output objects 
(usually element types) appear on the right. The bottom portion of the 
screen changes depending on the current stage of the process. Here, the 
input formats tab is displayed. 

tt.t. I Getting started 

In DynaTag, the set of rules for transforming a class of WP documents is 
called a "project". Using the New Project Wizard shown in Figure 24-2, the 
user specifies the project and its initial WP source files. The WP document 

~1998 TH E XML H A NDBO QKTM 



330 CHAPTER 24 I DYNATAG VISUAL CONVERSION ENVIRONMENT 

Body Te<t 

List Bunet 

Providence is a major educational center Major educational institutions include: 

List Continue 

List Bullet 

List Continue 

List Bunet 

List Continue 

-CJ P"'o!Joph FQriJNI.ll 
CJ Character Formats 

•-+Johnson and Wales University 

Famous1orltscullnaryartsprogram 

•-+Rhode Island School o1 Design 

One of the United States' leading art collegE!s 

•-+ Providence College 

A Catholic institution famous for il:swinning basketball team 

Table-Framework Object T_ypes 

CJ Hyperte<t Object Types 

CJ Graphic Object Types 

1 )-C:.J lnvisibleWord·Processor Data 

Figure 24-1 Dyna Tag interface to mapping rules 

is analyzed and converted into an intermediate tagged form that retains all 
the content and formatting information. The product then displays a docu­
ment preview, formatted with the original WP styles. The document is now 
ready for mapping. 

24.2.2 Mapping 

Document conversion is driven by mapping rules. A mapping rule specifies 
how to convert an input format (a WP style) to the correct output object, 
which may be an XML element type. Multiple rules may yield the same 
output object. 

Several views are provided for sorting, organizing, and managing these 
mapping rules. Mapping rules from other projects can be used as a starting 
point for a new project. 

DynaTag's mapping tools provide a number of features for handling dif­
ferent input formats and creating the desired output. 

©1998 THE XML HANDBOOK™ 



24 . 2 I CONVERTI NG DO C UMENTS WITH D YN ATAG 331 

New l'oojecl Wizard . lniloal Foles I 

Figure 24-2 New project wizard. 

24.2.2.1 Automatic mapping 

The product automatically maps WP styles to XML element-types with the 
same names. This is a fast, easy way to get to well-formed XML when a spe­
cific DTD is not a requirement. Those with specific DTD requirements 
can choose their own element-type names and selectively map each input 
format to the desired type. 

24.2.2.2 Variant detection 

Dyna Tag detects not only WP styles, but also overrides of these styles, or 
variants. Variants can be mapped to unique element types or treated as 
equivalent to other instances of the WP style. 

For example, an author may have used a standard body text style, but 
applied extra indentation to indicate a block quotation. The product can 
detect this override and allow the user to map this instance to a <BLOCK­
QUOTE> element, while other body text maps to <PARA> elements. 

In other instances, the variant formatting may be meaningless. The 
author may have decreased the space before a paragraph to fit text on the 
printed page, or inserted a page break to force it to the next page. DynaTag 
can be instructed to ignore such variants. 

© 1 ~ ') R T HI ;, X M L H 1\ N [)I\()() K fM 



332 CHAPTER 24 I DYNATAG VISUAL CONVERSION ENVIRONMENT 

24.2.2.3 New-mapping helper 

A wizard helps users map WP styles to XML element types by guiding the 
creation of each mapping rule. 

24.2.2.4 Conditional mapping 

Conditional mappings create different mapping rules for different "condi­
tions" in the text. For example, an initial text pattern, such as the word 
"Warning" followed by a tab, can be used to map certain instances of the 
body text style to a <WARNING> element. Context (e.g., the preceding or 
following element type) and formatting properties can also be used for con­
ditional mappings. 

24.2.2.5 List wizard 

This wizard, shown in Figure 24-3, helps users map list formatting conven­
tions to element types. It can recognize different kinds of lists (ordered, 
unordered, term/definition), multiple list levels, and parts of lists (e.g., 
markers, paragraphs, continuation paragraphs). Different styles and levels 
of lists in the WP document may be identified and mapped using regular 
expression matching on the list markers (e.g., different types of bullets, 
sequence numbers and letters). 

24.2.2.6 Tables 

Tables are mapped automatically. However, if needed, tables may be 
divided into classes for special handling. For example, the table's width can 
be specified with attributes. Later, when the document is rendered in a 
browser, narrow tables can be formatted to display inline while wide tables 
are iconized for display in popup windows. 

24.2.2.7 Character mapping 

Styles that make format changes at the character level (e.g., emphasized 
text, book titles) can easily be mapped to proper, descriptive XML ele-

©1998 THE XML HANDBOOK™ 



CO NVE RTI N(~ DOCUMENTS W ITH DYNATAC 

I '"tlilld . Idanlify Genmnl Item I ' " .,., 

1• T iw~ !~ a $ptclal T ll -~1 ~e r n You 
m;;,v f,(•tl· • ..;:r.-e ;.'t ::pee 1nl fw::t .rtem 

2. Thi> is a generlii ·Dem. 

Tt•IS 1s: c1•xntnuahon p~ragtapn 
..,..,rt·.ict r follows anv rtern 

7. n11:: t:: ~ sreci:;lla.st !tern You 
rnay not h~ve a speci~lle.~t rtem 

Figure 24~:l List wizard. 

Sr.:l.::d the: ir.put. fotnr.3t belov .. • that ~orresp.Jnds.lo the gener·3llist iten1 If you 
dor·it see the pal tern you require lor a particular input formaL select the format 
arrd dick S~;"t Pattern 

rnents. ln cases where authors simply used formatting overrides to create 
bold, italic, or underlined text, bulk character mapping can be used to cre­
ate consis tent XML markup for each different format. 

For example, in Figure 24-4, bold text is mapped to an output object 
called EMPH.BO LD, which in turn generates an XML element with the 
start-tag <EMPI-1 'I'YP.E"' "BOLD". 

24.2.2.8 Cross-references 

Each word processor has a recommended way to create automatic cross ref­
erences, typically printed as a reference to a page or a section title. lf authors 
follow the recommendations of their word processor, DynaTC1g automati·· 
cally converts the cross-references to hypertext liuks. ln the resulting XML, 
tags and attrib utes identify the source and destination of the link. 

\~) ) l) t) H I II I' X M I ~ 1-l A ~~ D I) l) () " I~~ 

333 



334 CHAPTER 24 I DYNATAG VISUAL CONVERSION ENVIRONMENT 

~ New Bulk Character Mapping [CJ 

Catches Unnamed Character Formats: 

Map To----==-==========-========,......,=1'1 
(Oj Qutput Object: 

r Merge ',l)'ith the >urrounding content in OLJtpLJt document 

r Qiscard from output document 

Figu,.e 24-4 Bul k character mapping. 

24.2.2.9 Searching 

Help 

Dynafftg provides fulltcxt searching for finding specific content that needs 
to be mapped. 

14.2.2.10 Comments 

All mappings can be annotated with comments for managmg mappmg 
tasks and for project documentation . 

G:i l ~Jli H '1' 111,: XM I. Hi\ N l) l\l ll)K 1'\
1 



24.2 I CONVERTING DOCUMENTS WITH DYNATAG 335 

24.2.2.11 XML markup features 

Users can view XML markup inside the user interface. They can also specifY 
attributes, create entities, and use other markup options to enrich the XML 

output. 

24.2.2.12 Capturing structure 

XML elements that contain other elements are sometimes called (surprise!) 
container elements. The complete structure of containers and containees can 
nest to many levels. Computer scientists refer to such a structure as a hierar­
chy, or tree structure. 

The element structure of an XML document is the basis for much pow­
erful processing. The content of containers can be hidden, or displayed in 
popup windows in a browser. Containers for chapters and sections are the 
basis for automatically generating a hypertext table of contents and for 
selective, on-demand printing. 

Most importantly, the concept of containment enables structured searches: 
highly efficient queries that narrow down searching to given elements for 
maximum precision in finding information. 

For example, a boolean search for "chocolate and milk" inside any one 
<RECIPE> element provides much more precision than searching for the 
same words across an entire cookbook. 

DynaTag's Container Wizard, shown in Figure 24-5, makes makes it easy 
to assign result element types to their proper level in the document structure. 
This panel of the Wizard shows that chapter, section, and subsection ele­
ment types have been created, and illustrates their hierarchical relationship. 

24.2.2.13 Reuse 

Once a project is finished, its mapping rules can be re-used for similar doc­
uments. DynaTag's batch converter pro esses groups of WP documents 
that share he same rules. The only human intervenrion required is starting 
rhe ba[ch s ripr and checking the log file upon completion. 

©1998 THE XML HANDBOOK™ 



336 CHAPTER 24 I DYNATAG VISUAL CONVERSION ENVIRONMENT 

Container Wizard - Setting the Level 

Click the Left and Right arrows to set the position of the new container with 
respect to the other level-number containers. 

To insert a new level in the middle, click Make 0 wn Level. Click Help for a 
description of level-number containers. 

Leva13 Level4 

Section 

Figure 24-5 Container wizard. 

t 4.i 1 Preparing for electronic 
publishing 

DynaTag also includes facilities to prepare a converted document for elec­
tronic distribution on CD-ROM and the World Wide Web, using Inso's 
suite of electronic publishing tools. Those facilities include a stylesheet edi­
tor with preview capability, graphics data format conversion to JPEG and 
TIFF, and a helper for developing contextual search forms. You can see the 
full suite in action in Chapter 19, "City Of Providence", on page 252. 

ID 1998 TilE XML HAND B<'OKrM 



  

  
 



XML Styer: 
Graphical XSL 
styles eet editor 

I Visual, standards-based design 

I Actions, patterns, and flow objects 

I Free copy on CD-ROM 

©1998 THE XML HANDBOOK"' 



XML Styler i a freeware graphical XSL style heet ecUr r 
ArborText Inc. The produce simplifies the creation and 

ificarion of scyleshee for XML documents. lr is imple­
mented as a jawz application that is designed to run on any Java Vir­
tual Machine (JVM). It bas been tested on Microsoft's JVM for 

Windows and Sun's JVM for Solaris. 

25. 1 1 Introduction to XSL 

XSL stylesheets separate form from content so that authors can present 
media-independent XML information . XSL offers powerful features for 
generating and suppressing content, reordering content, and associating 
style information with elements in differe m contexts. 

Although XML Styler hides most of the complexity of XSL from the 
stylesheer author, it is useful to have a general understanding of how XSL 
works. Broadly speaking, an XSL srylesheet consists of a collection of rules. 
Each rule associates a formatting behavior with an element type. 

C\.t' l lJ 9 H T 11 r. x M r. H I\ ~"' n p, n o ~-: 1 ' 1 339 



340 CHAPTER 25 I XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR 

A rule has two parts: a pattern and an action. The pattern identifies the 
element types that the rule applies to; for example, all EMPH elements, or all 
PARA elements occurring within an ABSTRACT. The action defines how the 
selected elements will be formatted. 

25.2 1 Creating a stylesheet with XML 
Styler 

Before looking at XML Styler and XSL in more detail, let's use XlviL Styler 
to create a stylesheet for a simple document type. We'll do this by format­
ting a particular XML document, mydoc. xml in Example 25-1. 

Example 25-1. A simple XML document. 
<?xml version='l.O'?> 
<doc><title>A Document</title> 
<para>This is a paragraph of text.</para> 
<para>Paragraphs can contain <emph>emphasized</emph> text.</para> 
</doc> 

Start XML Styler by running xmlstyler at the DOS or UNIX shell 
prompt or by double clicking on the XML Styler icon on your desktop. You 
can get XML Styler from the CD that accompanies this book. 

XML Styler will start, as shown in Figure 25-1. 

Choose "Create a new style sheet" and click "OK". This will start the 
new-stylesheet wizard. 

In order to simplify the creation of a new stylesheet, XML Styler can load 
the element type names used in your documents from either a plain-text file 
or an XML document. In this case, we'll get them from mydoc. xml, see Fig­
ure 25-2. 

The next panel in the-new stylesheet wizard lets you set the default font 
for your documents. Click "Next" to accept the defaults listed. 

One of the most useful features in XML Styler is the ability to link 
directly to a test document from within the editor. On the next panel, 
shown in Figure 25-3, select the preview option and point to the XML doc­
ument that you would like to preview while editing your stylesheet. 

©1998 THE XML HANDBOOKTM 



2 5 '2 

If r Edlr IJpl 

~XMl Stylm £i 

St;wting XML Siylct: 

__ I 
,____I 
__ _j 

b1 tJ.,w Style Shoel · Collect Tags- - - IF!J 

'In onJer co lir1k the :;tylfslr.t:<.:l t:o t-lH: docunwiH· inst;mcc, X!v!L Styla has 
to bu.ild; lin· l c~ HTM I, "ltlu, do .ut:rH.:J li". On lhc next JJ<.r.nd of th e wizard., ,_, 

341 



342 CHAPTER 25 I XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR 

~New Style Sheet -Select XML File for Prevrew - - EJ 

\lllould you ike to select an XML document to preview using this style-sheet? 

r No, I would like to ecil this style-sheet by bell 

r. Yes, I would ike to preview an XM..Iie wlh!his style-sheet 

N. \Home'v1Walsl1wtlcles\xmlstyler'snydoo.xml 

P' Attornalicaly update the preview window while edlfng 

Next~ 

Figure 25-3 Select an XML document for preview. 

you can choose the name of the glue document. The default is almost 
always a good choice. 

When the wizard finishes, XML Styler will have default rules for all the 
element types in the document and the browser will display your test docu­
ment using these default rules. See Figure 25-4. 

The default rules are not very useful for presenting this document. Let's 
add a rule for para. Begin by selecting the para element type in XML 
Styler and clicking "New ... ". The dialog box shown in Figure 25-5 will be 
presented. 

Click "Next" to proceed with creating a new rule for the para element 
type. Each para element in our XML document must be associated with 
some HTML element type. The obvious choice in this case is P; enter P in 
the dialog box shown in Figure 25-6 and click "Finish" to proceed. 

The resulting document is much improved, see Figure 25-7. 
Adding additional rules to associate title elements with Hl, and emph 

elements with EM completes the picture. See Figure 25-8. 

© I 9 9 8 T H E X M L HAND B o 0 K lM 



A DocumentThis is a paragraph of text Paragraphs can contain 

emphasised text 

Elements: 

I!H:il <root> 

@] em11h 

§.1 11ara 

@]title 

Figure 25-4 Preview using default rules. 

tS.J 1 XSL patterns 

25.3 I XSL PATTERNS 

In the simple document described above, every element type was used in a 
unique context. In more complex documents, this is not likely to be the 
case. Consider the recipe fragment shown in Example 25-2. 

Here we see the element type name used in three different contexts, as: 

• The recipe name 

• The name of a person, and 

• The name of a book. 

It is likely that each of these will be formatted in a different way. 

@ 1 ~ 9 R T H L'. X M L HAND n llll " ' '•" 

343 



344 CHAPTEn 25 I XML STYLER: Gni\J>HICAL XSL STYI.ESHEET En non 

~Oe•cube New Element Element Name 1E3 

8 Sequence 
i Horizontal rule 
8. Paragraph 

Literal: Section 

E val: format nurnber 
Literal: 'I 
Children 

~eler:t =~ 1::,: qet elernei tt n=:lrne irom u.e i•-:1 or 1 '/ij~ ;; nev1· n:.~me dir ectlf 

rnto th~ li>:-lcJ tc, cr c;:,te f1 r tJie ror -~n ..:,term:· Itt H1:::.t den:-.~ rrr:'t c• tr r en11~ · eri\t 

Elcnwnt- typc narne dicliog box. 

De&o:uho New F.l11mnnl · ffnw Ohjecl Usud ~ 

Seqo.1ence 
I Horlzonllll rule 
B P111eg<aph 

r. 
L~er oL S ec1lon 
E vallorffil!l number 
LileJal: 1 
Chlldr n 

-~; r:-lec..t th•:· till•iL /( ·~:~ r=:(•V·! (,. tf:,v-r: t tc:, ~ J P. u<~ .::-,:1 irt thrs r1.:: !'/ r 111-:o 

', 'o• J ' ' ~:'1 '/ edrt th: : t t r:(: 1-:'ltGr ~ i ::rng til~:. P.., t'e. Fdit ·:'/lf"!(l.-.1J"' 

Flow oiJjecl selection dialog box. 

~l](l CJH 1"' 111 ·: Xi\,11 .. 11 1\ l ... i l)jl,l)ll l\ 1.'.\ 



25.3 | XSL PATTERNS

A Document

This is a paragraph of text.

p m-agraphs C: an 0 ontain emphasis e (1 text.

   
_Figu-re 25-7 Preview using the new rule for para elements.

' XSL patterns can identify element types in different contexts in two
ays: with attribute tests, and by position.

Figure 25—9 shows the rule that matches only the recipe name.
._As you can see, the structure of the pattern on the left—hand side is

r'ughly analogous to the structure of the document. In this case, we see
_hat the rule applies only to name elements within (i.e., that are children of)
recipe elements. The dot next to name indicates that it is the element type

that is the target of this rule.
:A slightly more complex pattern is required to format book names prop—

Gfily. In this case, we want to make the contents of name elements italic if

Ehey occur inside of note elements that have a status attribute who’s value0. “a

18: credit”. See Figure 25—10.

”1 9 5) X T H 1:. \ M L H A N n n o 0 K W

345     

     
  



346 CHAPTER 25 I XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR 

... t\ Document 
This is a paragraph of text. 

Paragraphs can contain emphasised text. 

Conlllructlon Rule• I style Rules I Named styles I Macros I S 

Elements: 

&!'!!~ <root> 

s-[§] em11h 

s-[§] para 

s-[§] title 

Figure 25-8 Preview using our rules. 

Example 25-2. A fragment of a recipe in XML. 
<recipe> 
<name>Corned Beef and Cabbage</name> 
<description>A classic New England boiled dinner. This is a 
delectable dinner if composed only of beef, onions, and 
cabbage. But for authenticity, additional vegetables 
are included.</description> 
<note>This dish is a Saint Patrick's Day favorite.</note> 
<note status="credit">This recipe comes from 
<name>The Joy of Cooking</name> by Rombauer and Becker.</note> 
<note status="personal"><name>Grandma Luhmen</name> likes it 
better without the <ingredient>beets</ingredient>.</note> 
<ingredient-list yields=" ... "> 

</recipe> 

©1998 THE XML HANDBOOKTM 



2 'i. 5 X S L I' /\ T T E l< N S 

- -

~[d1l Rule __ ~~EJ 
] 

a-!§ l'ecipe 

1-m nome 

=-
Attrihtrte$1 ·~l,Jallti er:-S: IID+Ciass I Prionty 

AG1ion 

B-@1 IJ·I 

L@] <:hildren 

Figw·e 25~9 The 1·ule fm r-ecipe names. 

status=ct eclit 

Figu·re 25-1 0 1 he 1·ule fm book names. 

II New 

[I Eclrt 

Delete 

Ecrt 

Delete 

347 



348 CHAPTER 25 I XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR 

t 5.4 1 XS L actions 

T he acrion part of an XSL rule describes how to format the element type 
selected by the pattern. XSL describes two sees of formatting objects, 
"HTML/CSS flow objects" and' 0 'SSL flow objects" . 

In addition to the flow objects, there are several "processing elements" 
that control the behavior of the XSL processor. In these examples, you've 
already seen the children processing element. This element tells the proces­
sor to recursively format the children of the current element (by finding the 
appropriate rule for each child), and insert the formatted results of that pro­
cess at the location where children occurs. 

Other examples of processing elements are select-elements, which provides 
a mechanism for reordering the content, and eva!, which allows the 
stylesheet to insert the result of evaluating an expression (calculating the 
child number of a list item element, for example) into the output. 

25.4.1 HTML/CSS flow objects 

The HTMLICSS flow objects are really nothing more than the HTML ele­
ment types that you want to use in your output. Internet Explorer 4. 0 and 
the Microsoft XSL processor both understand the HTMLICSS flow 
objects. 

When you are using XSL to generate HTML from your XML docu­
ments, you can use the CSS properties as attributes of the HTML element 
types. The XSL processor will automatically translate them into the appro­
priate CSS style attributes. For example, the action shown in Figure 25-11 
will format paragraphs in an abstract using the HTML P element type with 
smaller, italic text. 

XML Styler provides simple "tab pages" for easy access the properties of 
each element type. 

25.4.2 DSSSL flow objects 

The DSSSL flow objects are an abstract representation of formatted output. 
Each DSSSL flow object has a set of properties that control the details of 
the formatting for that object. The complete catalog of flow objects and 
their properties will have well-defined semantics in the final XSL standard. 

©1998 T H E XML HANDBOOK™ 



2'>.5 I CONC I. \IS I ON 349 

Figure 2f» .. Jl J1 The action for parag1·aphs in abstr·ac ts, using HTMI_. 

The XSL processor builds a cree of A.ow objects and then a rendering 
engine processes the flow objects and builds rhe outpm (on the appropriate 
media: nline, print, aural, etc.). Ar the tim of this writing, Henry 
Thompson's xslj processor, which works .in conjunction with James lark' 
Jade ngin , offers the on ly way to process XSL stylesheets that us DS SL 
flow objects. Both of these tools are available on the CD-ROM chat ac om­
panics this book. 

Figure 25 - l 2 shows d1 e same rul e for fi.mnarting paragraphs within an 
abstract usiug D SSS L flow obj ects. 

As in the HTM L/CSS case, XML Styla has tab pages f()r each of the 

DSSSL How objects. 

In this chapter, we've seen a brief overview of some of th e features ofXM L 
Styler and . demonstrated how it can be used to quickly aud easily c reate 
styleshcers withom having to learn the S)'lltactic details of' XSL. By creating 
stylcshcets hH your XMl, document insranccs , you. can begin ro sec how 

1 ;_.~ 1 'J lJ ~' ~ I' 11 1 ~ X 1'v1 L. ll 1\ ~,J l 1 n '1 () 1-: •1 "· 1 



350 CHAPTER 25 I XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR 

El-@1 abstl;lct 

L~ I'"'•' 
EJ-@1 @( 11aragmph 

I 
[m

10
lmi-PI

0
I
81
Iulrel:nlamliclmllllll•l·ll(!l 

- @] children 

Figm·e 25-12 The action for paragraphs in abstracts, using DSSSL. 

XML plus XSL will allow you to deliver your information the way you want 
it displayed. 

You can find more about XSL in Chapter 35 , "Extensible Style Language 
(XSL)", on page 516. 



  
  



Astoria: Flexible 
content 
management 

I Content management defined 

I Document components 

I Information reuse 

© 1 9 9 8 TH E X ML HANOBOtn;TM 



Chapter __ ---: 

2.6 

•••• echnical publications are critical in today's corporation. 
Behind rhese documents are rhe writers, artists, and editors 

develop and maintain the massive amounts of documen­
tation that keep a company running. Now, both publication manag-
ers and corporate directors are looking for better ways to leverage this 
wealth of data for higher returns throughout the enterprise. 

Many enterprises have found leverage in managing document content as 
components, rather than as entire publi cat ions. This practi ce is called content 
management, in contrast to dowment mmwgement. Middle-tin Web appli­
cations, in particular, benefit from the abilty to assemble compo nents with 

other data for delivery to the eli en r. 

26. 1 1 Con1ponents are evet)"vhere 

From new cars to software, compon ents are rh e way \·Ve make things tothy. 
In manufacturing industries as much as 800ftJ of products now consist of 

components drawn from a company's part libra ry or purchased from suppli-

@ l lJ l) H r ! I F. X l'v1 l.. H i\ N I) I' l) () r-. I ,\I 353 



3 54 CHAPTER 26 I AsTORIA: FLEXIBLE CONTENT MANAGEMENT 

ers. Product designers routinely tap into internal databases and online parts 
warehouse services in the course of drafting and specifYing new models. 

In software, most of the new code being written is as objects, self-con­
tained bundles of information and operations with the ability to send and 
receive messages in standard ways. Programs can be created by assembling a 
bunch of these object components and making them exchange information 
and services with each other. 

21.1.1 Components in publishing 

And now components are becoming the trend in publishing as well. Why? 
Because in publishing, as in other endeavors, components simplifY com­
plexity and increase flexibility for adapting to change. Consider these gen­
eral advantages of components and how they come into play in a content 
management publishing environment. 

26.1.1.1 System simplification 

Components make it possible to break down complex systems into pieces 
that are easier to understand and work with. For publishing groups this 
means that teams of writers and editors can work on components for the 
same document simultaneously. Users can more easily locate specific infor­
mation since components can be explicitly searched for. 

26.1.1.2 Easier revision 

When something needs to be revised or customized, changes can be made 
to just the component(s) affected, without having to redesign the whole 
document. If a single paragraph in a document needs to be revised, the 
author can check out just that paragraph from the content management 
system rather than the whole document. Or, if it's important to see the 
change in context, the author can check out the section the paragraph 
appears in. After editing, when the section is checked back in, versioning 
information is applied only to the paragraph that has changed. 

© 1 9 98 THE XM L HANDB OOKTM 



26.1 I COM PON E NTS ARE EV ER YWH ERE 355 

26.1.1.3 Efficient authoring 

Stud ies show that at l ast 30o/o of the c ntent created by technical publish­
ing groups is reusable - or would be, if people could find the information. 
Typically, ir's buried in doctunents, .scattered here and there in fil . sy~tems 
on various desktop systems and servers. Contem managemenr lumnare 
tb. need to redo work by providing a univer al repository or managing 
pubHshed and in-progress docwnents. The ability to unlock om nr from 
structured doclilllen.rs so chat individual compon nts of information an b 
independently ac ess d, tracked, and versioned enables writers and editors 
co immediately fo us on t:Xactly what they're lo Icing for. 

26.1.1.4 Less routine editing 

A huge amount of the editing process involves checking d. cumenrs for 
consist ncy and corre ring them for corporate style. Content management 
minimizes editing rime and tedium by nabling clirors to maintain glo sa­
ries as collections of components. This information can be added to or 
revised rapidly, every day if necessary, with the new material instantly avail­
able to all users. 

26.1.1.5 Fast, easy customization 

Component-level management means that documents can be customized 
by changing only what is unique about them. This approach makes it possi­
ble to rapidly provide markets and customers with tailored information. 

26.1.1.6 Universal updates 

Each information component exists in the repository as a single object. 
When authors want to reuse a component, instead of copying it, they sim­
ply create a pointer to the object. This approach eliminates the redundant 
work of having to try to find all places where the information appears and 
updat th m independently. Instead authors can revise the component in 
the reposit ry once, and it will be automatically updated in all documents 
that conrain it. 

©1998 TH E XML HANDBOOKT" 



3 56 CHAPTER 26 I AsTORIA: FLEXIBLE CONTENT MANAGEMENT 

26.1.1.7 Streamlined translations 

Translators typically work with a moving target, a source document that 
continues to change while translation is going on. Translated versions then 
have to be returned to translators for a laborious manual process of identify­
ing, changing, and checking new mater ial. Conrent managemenr can speed 
this process by providing translators with only those document components 
that are new, along with information about what has changed and exactly 
where the revisions should be inserted in the document. 

26.1.1.8 Flexible distribution 

Content management makes it easy to repurpose content for different 
media. Users can assign custom attributes to a particular component. For 
example, an attribute of an element could tell the software whether or not 
the element should be included when exporting a document for the Web, as 
opposed to printing it. Users can automate document assembly, including 
adjustments for target media. 

11.1.1 XML makes components 

XML brings intelligence to data. It breaks up the information into smaller 
information components. The smaller and more specific the component is, 
the more addressable and reusable it is. 

For example, the document in Figure 26-1 uses descriptive element type 
names to identifY the components and structure of the document. A com­
ponent is a piece of information that can be used independently, such as a 
paragraph, chapter, instructional procedure, warning note, part number, 
order quantity, graphic, side-bar story, video clip, or one of an infinite vari­
ety of additional information types. 

When managed by a content management system (Figure 26-2), these 
pieces can be controlled, revised, reused, and assembled into new docu­
ments. 

Another way XML adds value to information is through attributes, or 
"metadata'' (Figure 26-3). By adding "information about information", 
users can further describe the information for repurposing. A user assigns 
attributes to a particular component, for example to specifY whether or not 

©1998 THE XML HANDBOOK™ 



26 . 1 I COMPONENTS ARE EVE RYWHERE 357 

r-

Chapter (title) -

Section (1) -

Section (2) - 1~~~~~ 
Procedure --[ =: 

~-~-

Part Number 1 ·r-:
1 

~~~~ 
Note - l. ~

Reference ---fH-~~;_;~=--­
Subsection (2.1)-

Figure 26-1 Document components described with XML.

L

SECTION
SECTION

STEP
L ·· NOTE

STEP
STEP

PROCEDURE
REFERENCE
STEP
STEP
STEP
STEP

Figure 26-2 Hierarchical structure shown in content management system.

©1998 THE XML HANDBOOKTM

3 58 CHAPTER 26 I AsTORIA: FLEXIBLE CONTENT MANAGEMENT

to include it when publishing the document for the Web, as opposed to
printing it. When the document is published the content management sys­
tem will make the proper adjustments for the target medium.

Metadata can also be used to identify the intended audience for specific
components. In this case, a "beginner" requires more information than an
"expert". The content management system will assemble a document and
publish the information that matches these criteria.

<step audience="beginner">Keep the
engine running and park car
on level ground.</step>

<step audience="expert">Keep the
engine running.</step>
Figure 26-3 Metadata can identify the intended audience.

t6.1.J Applications for content reuse

Reuse, the most compelling feature of content management, allows content
within any document to be used elsewhere in the repository. Reuse means
writing the information once and linking to it from other documents. This
can be very useful when multiple documents contain standard "boilerplate"
information. This repurposing of information saves users countless hours of
rework and duplication of effort.

Applications for information reuse are everywhere. Reuse can be as sim­
ple as finding a description from one document and linking it into a new
document. Common content creates an "information pool" of reusable
pieces available to individuals or groups inside the company Figure 26-4.
Linked reuse, instead of copying, makes updates more efficient and reduces
redundant storage.

Organizations that maintain common glossaries of business terms can
benefit from reuse. When glossary information stored in a content manage­
ment system changes, the information is revised only one time. All of the
documents containing that information are automatically updated.

©1998 THE XML HANDBOOKTM

26. 2 I A C O N TEN T MANA G EM E NT IMPLEM E NTA T ION 359

components stored
as single objects

ComP,onent is checked out,
edite<:1, and checl<ed back ln.

Figure 26-4 Component reuse.

Because warnjngs and cautions usually require careful wording, organiza­
tions strive for uniformity across all documents. Manually locating and
changing dozens of these elements in hundreds of comexts can consume
countless hours. Content management solves that problem by allowing
'XML documents to reuse content across documents.

For global business processes, lin! ed reuse help organization get to

marl et faster around the world. By identifying the newly revis d informa­
tion in a repair manual, only me new information wil l be translated into
the targ t languages saving valuable time and money.

16.t 1 A content management
implementation

IT'o better understand what content management systems provide, it is help­
ful to look at an actual product in action.

~1 99 8 T HE XM L HA NDBO O KTh'

360 CHAPTER 26 I AsTORIA: FLEXIBLE CONTENT MANAGEMENT

Chrystal Software's Astoria, like other component-based content manage­
ment systems, attempts to provide value beyond that of generalized docu­
ment management systems. It does so by managing the content of the
document as a set of components (see Figure 26-5).

Structured documents (XML, SGML)

(Word, Excel. PowerPolnt.

Components • • •• Unstructured documents \

Quark XPress, PageMaker) ~------

Technical Illustrations----...~ Astoria Reposlto ___ C:~'.:C:~~:-
••

(cgm, .. .)). • • • • • I II Jt. j
Screenshots (pic, gif, ; •

tiff, bmp,:c~~~~~ams-(-sc_m_)___ /C {- ~ l __________ j

Audio (au, wav, .. .)

Logos (eps, bmp,
wmf, pic, tiff, ...)

Figure 26-5 The Astoria repository.

~ Documents

u
Some of the product's "off-the-shelf" capabilities are described in the fol­

lowing sections. Customization for specialized requirements is possible
through its software development kit, a public C++ application program­
ming Interface.

21.2. 1 Revision tracking

Astoria automatically collects revision information at each check-in, indi­
cating time, date, author, revision number, and an optional comment. Past
versions are available for republishing or to provide an audit trail (see Figure
26-6).

For XML documents, revision history is detected and maintained at the
omponent level, not just at the document level. A sophisticated differenc­

ing engine is used to apply revision information to only the content that
changes during an editing session.

© 1 998 T H E XML HANDBOOK TM

2 6. 2 I A c 0 N T E N T MAN A GE MEN T IM p LEMENT A T I 0 N 361

ShoW 1-lislor.v Ef

lmporl

Made changes based on Led
Updated procedures
Made changes based on Mal

Figure 26-6 Revision history of a paragraph,

~iew

.Copy

Hevigate

At important milestones such as release dates and the beginning of
review cycles, users can formalize document versions into "editions". The
document state can then be recreated for that point in time by opening the
appropriate edition.

21.2.2 Search

Astoria's search options let users locate documents created in more than 50
common applications. Advanced indexing enhances search by looking for
various forms of the word (e.g., plural, tenses, root). Matching documents
can be selected for viewing and editing.

By applying "custom attributes" to documents, users add "information
about information." Custom attributes can automatically be created from
XML metadata. In addition to custom attributes, document structure, data
content, and version information can be used in queries (see Figure 26-7).

Another form of search, "where-used queries", locates content that is
reused in multiple XML documents. Users can determine whether changes
LO rhat content are appropriate in all contexts before committing to the
hange.

©1 998 THE XM L HA ND~OOKTM

362 CHAPTER 26 I AsTORIA: FLEXJDLE CONTENT MANAGEMENT

Within S COJle: ,..

Seard; Hits: ~

F·r·ovide EJ.dequE!.te ventilation when usinr::J this procedure.
Hir~Jh voltages ca.pable of causin9 death are exposed dur

DeJr ~Jet o us c:hernio:ds me used in the procedure. Be sure

Figure 26-7 Sec:wch results refined with XML structure and metadata.

21.2.1 Dynanl-ic docutnent assetnbly

One of the compelling benefits of managing documents at the component
level is that users can effectively create an information pool from which to

draw. Figure 26-8 shows how users can search for information meeting
unique criteria, organize it as they wish, and dynamically create a new deliv­
erable.

@ 19<JR Ti lE XML HA N DfltlOI-:: •tM

2 6. 2 1\ C 0 1~ T E 1\1 ·r M /I i'! A < ; 1': ;\ ·1 g N T I ;\•1 I' I , 1·, M 1.: i'l I" A 1' I U i' l

For exampl , a financial portfolio manager could creare a seri · s of. rticles

and recommendarions whi. b could then be organized dynamically into

un ique documenrs based on me profile of ea h invesror.

Amdf.'I'Si.$ The monoGTemer,t tJrrd ,'Jmdr.rction of i;·r1'orrnat:Jon
,';)' Q I' '

as cornj:Jor'lents i.> a powerful idecr . Not suitc;b/e for cr rwvel,
;;erhaj;s, but emirrently appropriat~~ fi:;r the l'rlis.s ion-ctitico/ data
that is part.-cmd-/XIrcel of creating ond marketing r:odoy's comf:>lex
fJroducts - on the Web o11d ~hewhere .

[)ocumcnl Construction 13

SERVICE-OPERATION. f ront Brake Band ..
SE.RVICE·OPERATJON: 213 Modei$(Honda 3AT Trammln i
SERVICE-OPERA TIQN. Kickdown Cable (VehioiC* Wrlh Kic
SERVICE-OPERATION· DeprC*s accelerator pedal fvlly dow
SEAVICE·OPERATION: 600, 825 & 827 Models (Honda MP
SERVICE·OPERATION: Carbureltor Engines
WOAKSTEPS: Looven kiokr:lown cable lock nut~ to end oft

WORKSTEPS: Cj1eck throttle cable at ~:a r burellor for oouect
WORKSTEPS: Slacken
WORKSTEPS: Disoonnect fi
WOAKSTEJ:S:. Remo~r_attembl~. Slacken kic,kd

Figure 26-6 Assembling new documents by searching fo1· relevant
components.

