Merrill Communications LLC
d/b/a Merrill Corporation
Exhibit 1006 pt. 3

ADEPTEditor:
Edit for content
management

B Structured authoring
B Automated document systems

B Batch composition

Another approach to XML authoring focuses on
structured editing in the context of the total
automated document system. This chapter is
sponsored by ArborText, Inc,,

‘ .y and was prepared by PG

Bﬁrﬂett.

rganizations with large amounts of document information
typically require an XML authoring and editing tool that
easily integrates with content management tools and content

2.1 | Automated document systems

An automated document system can be the key to an organization gaining
significant competitive advantage through improvements in information
quality, time to market, and production costs (see Figure 22-1).

The designs of these systems usually emphasize data integrity, data reus-
ability, process automation, and workflow consistency. Data integrity is key
to the other design factors because without absolutely consistent data, the
test becomes difficult or impossible to achieve.

Two key concepts, structure and content management, play pivotal roles in
the successful deployment and operation of a high-performance automared
document publishing system. Let us look at what these terms mean and
Why they are important.

©1998 THi XML HANDBOOK™ 297

298 CHAPTER 22 | ADEPTEDITOR: EDIT FOR CONTENT MANAGEMENT

Figure 22-1 Automated document system components,

1.0 Structure

The contents of documents are often described as unstructured information,
in contrast to the structured information stored in a relational database. But
if you look at the right-hand view in Figure 22-2, the rendered document
clearly exhibits a structure. It is conveyed to the reader by stylistic conven-
tions, such as type size, numbering, and indentions.

So if the terms “structured” and “unstructured” information aren’t really
accurate, what then do we mean when we use them?

If you look in the computer file for a word processing document, you
will find the style information mixed in with the real information — the daza
content — of the document. In a database, however, there is nothing there
but pure abstract data.

So it isn’t that documents have no structure, it is that the way most docu-
ments are stored obscures the abstract data with information about the way
it should look when presented. In a word, while databases contain abstrac-
tions, most document files contain renditions.

@1998 THE XML HANDBOOK™

22 .1 | AUTOMATED DOCUMENT SYSTEMS

griEl servinfolype

descrip — DESCRIPTION

& servinfo

titte —— FEED CIRCUIT RESISTANCE TEST

para

=] ptxl - Before proceeding wilh this
aperation, review Diagnostic Preparation and
Slarler Feed Circudl Tests. The following
operation will require a vollmeler, accurale Lo
1710 of a volt.

ptrl - Ignition and Tuel systems must be

DESCRIPTION e

R B R T R,

FEED CIRCUIT RESISTANCE |
TEST o

Before proceeding with this operation, review

Diagnostic Preparation and Starter Feed Circutt

disabled 1o prevent engine stal while perforiing || Tests. The following operation will require a
the following tests. || veltmeter, accurate to 1/10 of a volt
s1 1; g

¥

Ignition and Fuel systems must be disabled to :"4

E| ptzt To disable the Ignition and Fuel

prevent engine start while performing the following

| systers, disconnect the Automatic Shutdovn ': !
| , 4
i Relay (AST). The ASD relay is lacated in the g test 4
3 isltibuti Di I i) e . 27 "
il PowerDisleibiition Center(R C), Relextolhe "Il L To disable the Ignition and Fuel systems, e
' PDC cover for proper relay location 8, i : vy
| o e=]| disconnect the Automatic Ehutdovn Relay "y
i izl ptxt Wilh all witing hamesses and : (ASD) The ASD selay ss located in th= Power |
| components propetly connected, perfoun the | Distribution Center (PDC), Refer to the PDC]
| : .
’ | following] | | cover for proper relay location j
I s2 4 | 2 With all wiring hamesses and components
|2 E] ptrt Connecl the negalive lead of the —
: . properly connected, perfonm the following: .
‘ ! voltmeter 1o the battery negative post, and posilive Lol " wve lead of th I . ._‘
| | lead 1o the Laltery negative cable clamp iy a Connect the negéhve ead of the VD tmeter to o
| | | =] ® figureref " the hattery negative post, and positive lead to o
| : _Rotate and hold the {gnition switch in ihe START the hattery negative cable clamp ¢ Rotate
: ' posilion, Ohserve the vollmeter, I voltage is o and hold the ignition switch in the START o
o a Y "y i 'i
I | detecled, correct poor contacl between cable clamp ! pasition. Observe the voltmeter, IEvoltage 15|
50 and posl W)
| . detected, cotrect poor contact between cable

| d —b

Figure 22-2 Two views of a document: structured and rendered
(WYSIWYG).

But what if that could be different? What if you could store a document
so that its natural structure and data content could always be distinguished
from style information? What if you could handle documents as if they
were data?

It can be different! And XML turns out to be the key, because XML
allows you to identify and preserve the structure of any collection of text.
With XML, documents and databases are just two different places to keep
abstract structured data.

Because XML is a notation that preserves abstractions, the data in XML
documents can be treated just like other data, which can be automated,

O1998 T XMIL HANDDOOK ™

299

300

CHAPTER 22 | ADEPTeEDITOR: EDIT FOR CONTENT MANAGEMENT

processed, reused, protected, classified, and extracted for use in a limitless
variety of ways (see Figure 22-3.)

Using XML yields several key benefits:

Multiple outputs

XML document data is often described as “presentation independent”
because it is stored in a way that is independent of any particular medium,
That allows organizations to deliver their information automatically from 3
single repository to the Web, CD-ROM, print, and other media. This is a
huge contrast to word processing and desktop publishing file formats,
which are already rendered with a specific output in mind, usually publish-
ing on paper.

On-line
Www

Paper

CD-ROM

—~

> Other delivery processes

Figure 22-3 Multiple outputs from a single XML source.

Reuse

Many organizations re-create existing information far more often than
they reuse existing information. That inefficiency causes inaccuracies, version
skew, delivery slips, and inflated costs. One of the primary reasons to build a
structured document repository is to eliminate those costs by enabling the
maximum possible reuse of existing information. Storing that information in

©1998 THE XML HANDBOOK™

22.1 | AUTOMATED DOCUMENT SYSTEMS

4 structured database provides the controls needed to maintain the integrity
of the data regardless of when, where, and how often it is used.

Interchange
Organizations can interchange their data freely with suppliers, partners,
and customers when the data is based on a standardized document repre-

sentation like XML.

Automation

Representing your document data in XML and storing it in a repository
can yield process improvements through intensive automation that are sim-
ilar in kind and degree to the benefits of implementing relational databases
to replace handwritten ledgers.

12,12 Content management

Any organization that manages large amounts of document information
should, sooner or later, seek both to structure that information and to store
that information in a content management system.

The specific method of content management varies. In some applica-
tions, document information is stored directly in a database. In many oth-
ers, it is stored under the control of a document management system.

Regardless of the specific approach, these systems primarily ensure data
integrity through security controls that prevent unauthorized viewing and
changing, and revision controls that keep track of changes from one version
to the next.

Content management systems for XML documents invariably must keep
track of information at a highly granular level (see Figure 22-4). For exam-
ple, instead of storing complete books in a single chunk, “compound docu-
ments” are assembled from small components that are stored separately.

Some components are tiny. For example, individual cells in a table may
be stored in various places and appear together only when delivered as a
publication.

It can be a challenge to create such documents. Typical document cre-
ation tools are designed to create rendered pages, whether they are printed
pages or Web pages. But building compound documents out of reusable
components requires a structured authoring tool that is designed to handle
highly granular unrendered documents. The tool must also integrate tightly

©1998 THE XML HANDBOOK™

301

302 CHAPTER 22 | ADEPTeEDITOR: EDIT FOR CONTENT MANAGEMENT

Figure 22-4 Compound documents are composed of a hierarchy of
components.

with databases of all kinds, including relational databases, document man-
agement systems, and content management systems.

Such systems can display collections of document components as if they
were single documents while preserving the properties of each individual
component. That approach allows an author to view every document com-
ponent within the context in which it is used, while at the same time ensur-
ing that the author changes only those components for which the author is
permitted to make changes, and that are not currently under revision by
another author.

©1998 THE XML HANDBOOK™

29.:2 | WHAT INFORMATION WARRANTS THESE TOOLS?

92,2 | What information warrants these
tools?

Should your organization approach its document applications through the
use of structured XML authoring tools integrated with content manage-
ment systems?

The answer depends on the characteristics of the information you create
and the processes you use to create it. There are a number of criteria to con-

sider.

92.2.1 High volume

Unless your organization publishes thousands or even millions of pages,
current content-management-based products may be too expensive to jus-
tify the return. If yours is a manufacturing organization larger than $100
million or a publishing company larger than $25 million, then you are
likely to reap sizable rewards from implementing an automated document
system.

122 Multiple publications

Most organizations need to publish their information on multiple outputs,
the most popular being the Web, CD-ROM, and print. That requirement
alone has been sufficient to justify an investment in a new automated docu-
ment system. But if you are aiming not only to deliver on multiple outputs,
but also to leverage the capabilities of electronic media, then it is even more
important for you to build a document repository that is media-indepen-
dent so that you can use each medium to its full advantage.

212.2.3 H’igh 'Ualue

The type of information we are talking about represents a large investment
fn the “intellectual capital” required to create it, because it is the sort of
information that is either vital to a related product or is the product itself.
Examples include operating guides, service manuals, parts catalogs, policy

©1998 Thg XML HANDBOOK™

303

304 CHAPTER 22 | ADEPTEDITOR: EDIT FOR CONTENT MANAGEMENT

and procedure manuals, and reference manuals (e.g., encyclopedias, legal
case books, legislation, regulations, and medical drug information).

1224 Long life

Closely associated with “high value” is “long life.” Most types of informa-
tion that are worth a significant investment last for years or even decades. In
addition to the initial investment, this information often receives additiona]
investment throughout its lifetime in the form of revisions.

12.2.5 Reusable

Although there are exceptions, much of the information in a typical publi-
cation from a large organization either already existed before within other
documents or will be reused in the future.

212.1.6 Consistent

Using XML makes the most sense if there are many documents of the same
type, or single large documents that have repetitive structures. For example,
while it is likely to be worth the investment to create a DTD for service
bulletins if you publish 30 every year, it is probably too costly to do the
same for a single annual report. On the other hand, single books like dictio-
naries and catalogs have benefited from the use of XML.

211247 Created by formal processes

This is the clearest differentiator of all. Virtually all information that comes
out of a process is that is formally defined can benefit from a formal struc-
ture. When applied to document information, a “formal” process normally
has the following characteristics: defined and repeatable workflow, assigned
resources, and mission-critical deliverables.

©1998 THE XML HANDBOOK™

22.3 | CHARACTERISTICS TO CONSIDER 305

92.3 | Characteristics to consider

There are a number of important characteristics to look for in a structured
XML editor that integrates with content management systems. These char-
acteristics are divided into three main categories:

Authoring issues
These issues affect those who create and revise the information,
not only full-time writers but also those who are occasional
contributors to the process.

Application development issues
These issues affect those who develop and maintain the products,
applications, and infrastructure to support the process.

Business issues
These issues affect those who have to approve the investment in
new technologies and who risk the most when an investment goes
wrong.

To illustrate these key characteristics, we will use illustrations based on
ArborText's ADEPTeEditor, a structured XML authoring tool that has

been integrated with several content management systems.

1.3.1 Authoring issues

When you look at a structured XML editor, you should look first to see if it
provides all the usual editing features such as cut, copy, paste, and drag and
drop, and convenience features such as a preferences panel and multi-level
undo.

Then you should look for two specific capabilities that are designed spe-
cifically for structured authoring;

Task-matched authoring tools
Creating highly structured documentation involves more than just
typing. An editor with “task-matched” authoring tools provides
editing tools that are appropriate for the type of data being
entered.

©1998 THg XML HANDBOOK™

306 CHAPTER 22 | ADEPTEDITOR: EDIT FOR CONTENT MANAGEMENT

Enforced consistency
To maintain the integrity of your data so that it remains

processable and reusable, you should look for a tool that prevents
your authors from creating data that is inconsistent or invalid.

Let’s take a closer look at these two capabilities.

223.1.1 "Task-matched’ tools

Writing a user manual involves a lot more than writing paragraphs and
heads. Typical technical documentation consists of large amounts of differ-
ent types of information. A portion of that information, of course, is rela-
tively “free-form” text, such as titles, paragraphs, and lists.

INSTALLATION

For installation, reverse the above procedures. Clean corrosion/dirt from
the cable and wire terminals before nstalling witing to the solenoid

STARTER RELAY

The relay is located in the Power Distribution Center (PDC). Refer to the
PDC cover for relay location.

OTHER SPECIFICATIONS

Figure 22-5 Rendered view of “free-form” fragment of an XML document.

But even the character data is organized into a structure, and a structured
authoring tool should provide a way to navigate and edit the structure itself.
This capability should be provided through an alternative “structure view”
of the document.

Other information, especially the information in tables, is better suited
to a restricted form of data entry such as the various controls you see in the
dialog boxes of software programs. These controls include pushbuttons,
check boxes, radio buttons, drop-down selection lists, sliders (e.g., volume
controls), and other controls. These are shown in Figure 22-7

©1998 THE XML HANDBOOK™

22.3 | CHARACTERISTICS TO CONSIDER 307

topic

=] title —— INSTALLATION

é,@ para

|»—L‘sj ptxt - For mstallation, reverse the dbaove
procedures. Clean comosinnfdirt fiora the cable and
wite terraivals before nstalling wiring to the solenoid.

(5] & servinfo
E.E] title - STARTER RELAY
[E] para
| _Z| ptst — The relay is located in the Power

Distrbution Center (PDC). Refer to the FDC
cover for xelay location,

= *’=_.' servinfotype

i | spec-other - OTHER SPECIFICATIONS

£ B ® servinfo

Figure 22-6 Structure view of fragment in Figure 22-5,

\
®

(sroms ||
=

, [
\ [_— X

Figure 22-7 Dialog box view for entering specialized data in XML
documents.

An authoring tool for structured XML information should allow you to
match the type of information to be entered with the best view for the job.
In some cases, you will want all three capabilities concurrently for the same
document (see Figure 22-8).

23.12 Structure consistency

* Data integrity is the single most important factor in building a highly auto-
mated system that is built on top of structured data. The integrity of your
data is crucial because automated processes must rely on the validity and
consistency of your data in order to perform their functions propetly.

QU998 THE XML HANDBOOQK ™

308

CHAPTER 22 | ADEPT*EDITOR: EDIT FOR CONTENT MANAGEMENT

ADEPT*Editor - Capvelle sqn

- = title
= {&Z] para « | INSTALLATION

“
‘(] ptrt — Forinstallalion, reverse the abi . .
procedures. Clean conosion/dirt from by || For installation, reverse the above procedures, Clean

wire feninals before inslalling wiring to corrosion/dirt from the cable and wire terminals before
installing wiring to the solenoid

INSTALLATION

& servinfo
[Z] title -~ STARTER RELAY
=] para
P[] pt¥t The relay is located in the Power
Dislribution Center (PDC). Refer to the]PDC
cover for relay location
nfotype
jec-other — OTHER SPECIFICATIONS
& servinfo
=] title STARTER 2
E ® table — Table L
| B table
[=l para
- [E] ptxt —— * Engine should be up 1o operating
{emperature. Exiremely heavy oil or light engine

) S

STARTER RELAY

The relay is located in the Power Distribution Center
(PDC) Refer to the!PDC cover for relay location

R R
SR

OTHER SPECIFICATIONS

.

STARTER 2

R s

A

-
-
SN

Figure 22-8 ADEPT«Editor showing three views concurrently.

One of the most important features of a structured XML editor is its
capability to ensure that documents remain consistently structured at all
times. This capability is especially important when that structured data is
stored in a repository that is accessible to other authors and to automated
processing applications.

Data integrity enforcement is illustrated in Figure 22-9, which illustrates
that an author is dragging the first step of the “Removal” procedure to the
“Starter” title. The cursor “prohibited” symbol shows that the current drop
point is invalid and will not be allowed. For valid drop points, the cursor
changes to a checkmark or plus sign.

Continuous consistency is also vital to ensure efficient workflow and
repeatable processes. Authors who are allowed to create invalid and incon-
sistent data must either clean up their data later or turn it over to someone
else to clean up. Either way, the organization pays the cost of extra work
that adds no value but increases costs and time to market.

©1998 THE XML HANDBOOK™

22.3 | CHARACTERISTICS TO CONSIDER

INSTALLATION

SAFETY SWITCHES

For Removal and Installation of the Park/Neutral Switch,
refer to Group 21, Transaxle,

|. Disconnect battery negative cable .. .

STARTER

3.3L ENGINE

REMOVAL

Duscontnech battery nesative cahle

2. Raise vehicle
3. For easier servicing, do not remove the wiring from

Figure 22-9 ADEPT«Editor showing prohibited drop point.

1232 Development issues

Developing a powerful system to handle large amounts of structured XML
documents is no different from other large automation projects. Building a
system to suit your needs will involve a combination of standard products
and additional application development work in the form of configuring,
programming, and other customizations.

This section describes the key characteristics of a structured XML editor
integrated with content management that primarily affect those who have
to develop systems based on that tool.

2321 Content management integration

As Figure 22-1 illustrates, a structured XML authoring tool is just one of
several pieces that comprise an enterprise solution for creating, managing,
and delivering document information. One of the key additional tools is a
content management system.

Organizations can integrate structured XML authoring tools with many
different tools for content management. Some start out by building their
applications on the file system. Others plunge right into document man-

©1998 THE XML HANDBOOKT™

309

3 1 O CHAPTER 22 | ADEPT<EDITOR: EDIT FOR CONTENT MANAGEMENT

agement or component management. (Some component management sys-
tems describe their products as “authoring support” tools because they are
specifically designed with information authoring - and not just document
management - in mind.)

Whatever system you choose to manage your content, the approach yoy
take to integrating your authoring tools with your content management
tool has an enormous impact on performance, scalability, and ease of use,

Ideally, you would choose an authoring tool with an API (Application
Program Interface) specifically designed to interface with content manage-
ment systems. Through that API, the authoring tool can “speak” with the
content management system at a component level and not just at a docu-
ment level.

Let’s examine the facilities that this type of connection enables.

Seamless user interface

Instead of switching back and forth between the authoring tool and the
user interface of the content management system, it is possible to “build in”
to the authoring tool everything the user needs to browse, search, and select
documents and document components from the content management sys-
tem. Figure 22-10 shows an example from ADEPT*Ed;tor, which provides
an interface that displays the contents of the content management system.

Compound document authoring

There are clear advantages to reusing existing information instead of wast-
ing the time and resources to create it again. To achieve optimum reuse, you
should create your information in small, easily reusable components and
build “compound documents” that are simply collections of these compo-
nents.

But when the time comes to edit that information, you should look for a
tool that can load compound documents without first combining all the
separate components into a single monolithic document. That feature
allows the authoring tool to deliver the following benefits:

® You can open a compound document and check out only
those components you want to change, which leaves the
remaining components available for other authors to revise.

©1998 THE XML HANDBOOK™

22.3 | CHARACTERISTICS TO CONSIDER 311

—[E] & eport
—[= & memo
&\ 2008

@, vehicle

L sevinfotype

Figure 22-10 Browsing documents and components directly within a
structured XML authoring tool.

i You can open enormous documents very quickly because the
authoring tool only loads the components necessary to fill the
screen.

@ You can perform “granular updates”, where components that
are changed can be reloaded without reloading everything else.

Collaborative authoring

Several users may have the same compound document open for viewing,
but by enforcing permissions and checkout at the component level, each
user is restricted to editing the components he or she has checked out. This
means that in a workgroup authoring environment, all subject matter
experts can simultaneously edit their portions of the publication while see-
ing it in the context of the full publication.

QLY98 THE XML HANDRBOOK™

312 CHAPTER 22 | ADEPTEDITOR: EDIT FOR CONTENT MANAGEMENT

22322 Customization

Customizing the document system can provide dramatic improvements in
productivity, information quality, and/or performance.

For example, some of the customization that is desirable for an augo.-
mated document system is to build tools for authors. For example, formg
and dialog boxes may provide a faster and easier user interface to certain
types of information (see Figure 22-11).

Paul Klock
Brian Mulloy
Phil Storey

Figure 22-11 Custom dialog box for entering header information,

The key to efficient application development is to choose products that
come with appropriate tools for the purpose. For instance, ArborText’s ACL
Designer product supports customizing the ADEPT*Editor user interface.
You can set up forms within the ADEPT window itself (see Figure 22-7)
and you can set up dialog boxes that pop up when needed (Figure 22-11).

@1998 THE XML HANDBOOK™

22 .3 | CHARACTRERISTICS TO CONSLDER 315

ALL Dasignet

eamploslontaine” - vaontvin

1.3.3 Business issues

Many of the issues surrounding the selection, implementation, and opera-

tion of an automated document system represent a significant impact on

the business success of the project. |
Organizations that have earned ouistanding returns from automated w

document systems built on XML or its parent, SGML, include the follow-

ing examples:

m Heavy equipment manufacturer improves author productivity
by 100%, saving the the hiring of 600 professionals over a
five-year period. H

m Publisher of daily report reduces 30% of its payroll costs by \
eliminating regular overtime through streamlining its ,
processes.

m Textbook publisher increases revenues substandially by offering, \
customized versions of its textbooks at prices competitive to
standard versions. |

™~ o -~
BID08 T XML ManDBOOK™ l

314 CHAPTER 22 | ADEPT<EDITOR: EDIT FOR CONTENT MANAGEMENT

m Electronic equipment manufacturer reduces production lags
from three weeks to two days.

Let’s consider the characteristics you should look for in an automated
document system to help you achieve the sort of business successes
described above.

2233.1 Authoring productivity

Have you ever spent ten minutes writing a memo to your boss and another
ten minutes formatting it to make it look good? If so, then you know how
much time you can waste on tasks that add little value.

With the advent of WYSIWYG word processing and desktop publishing
software, authors spend as much as half their time manipulating the appear-
ance of their documents, and only the other half creating content. For
many organizations, this is a tremendous unnecessary expense.

In principle, authors are experts in the subject matter of the document
while graphics designers are experts in the appearance of a document. When
that principle is violated in practice, the productivity of the subject matter
experts - the authors - drops by half or more.

For those organizations that publish only on paper, using authors for
document design represents a costly inefficiency. But for many organiza-
tions who deliver their information in multiple forms (e.g., in print and on
the Web) and who aim to “personalize” documents through automatic
assembly of document components to suit individual needs, WYSIWYG no
longer makes any sense at all because the information may never be deliv-
ered in the same form in which it was created.

With some tools, you may find that it is possible to force authors to leave
the document design alone but still show them how the printed page will
look. The problem with that approach is that the only way an author can
affect a page layout is by rewriting to add or remove words. That could lead
to an even greater loss of efficiency.

Structured XML authoring tools can separate content from presentation
completely by showing a view of the data that uses formatting only to pro-
vide cues about meaning, instead of showing the actual rendition. For
example, emphasized words are shown in italics and titles are shown in large
bold letters, but column breaks and page breaks are not displayed (see Fig-
ure 22-13).

©1998 THE XML HANDBOOK™

22.3 | CHARACTERISTICS TO CONSIDER

(2008 e, st

ADE P TAE e

REMOVAL, ||| REMOVAL, REPLACEMENT, [
| REPLACEMENT, AND | AND INSTALLATION 2
INSTALLATION o 3
| i SAFETY SWITCHES |

W
e
e

SAFETY SWITCHES

For Remaval and Installation of the Park/Neulral Switch,
refer to Group 21, Transaxle.

™

For Removal and [nstallation
of the Park/Neutral Switch,
refer to Group 21, Transaxle. =

e e T
e

S .
e

L

L)
J STARTER ; &
'y P
| 3.3L ENGINE " STARTER S
‘ A'l‘ "‘
’ REMOVAL :::\ :::
1, Disconnect battery negative cable ::: 3_3[_ ENG'NE :::u
2, Raise vehicle :: :::
3 For easier servicing, do not remove the wiring from o ,:_
starter at this time, :,:. REMOVA L. o
‘ 4, Remove three starter attaching bolts from ")) o
engineftransazde :‘ 1. Disconnect battery negatlve :::
5. Remave starler assembly from transimission housing, :.: :‘:
Position the starter to gain access to the winng | ,‘, ca b'e . ,:.

=2 e

Figure 22-13 Two views of a document, rendered with different
stylesheets.

Views designed only for authoring can provide additional assistance by
displaying in easy-to-read form information that may be tiny when finally
presented. For example, copyright information may be printed in tiny let-
ters but may be displayed in larger letters for authoring without enlarging
the entire view.

22332 Batch composition

In traditional WYSIWYG environments, authors manually inspect and
adjust column breaks and page breaks to keep related elements together and
reduce excessive white space. But using a structured XML editor allows you

©1998 THe XML HANDBOOKT™

315

3 1 6 CHAPTER 22 | ADEPTeEDITOR: EDIT FOR CONTENT MANAGEMENT

to create a system that automates page layouts and relieves authors from thjg
low-value work. “Batch composition” is the technology that makes this pos-
sible.

ADEPT*Publisher from ArborText is one example of a tool that proyides
batch composition capabilities. By automatically balancing page “fullness”
with the need to keep related elements together, the product produces
attractive pages with no need for manual intervention or inspection, Ip
addition, it can automatically generate supplemental text, footnotes, end-
notes, tables of contents, cross references, indexes, and lists of figures, equa-
tions, and tables.

Some organizations must lay out their documents to conform to legal
requirements, such as the formatting of safety warnings. For example, it
may be a requirement that safety warnings appear in their entirety on the
same page as the text to which they are related. ADEPT*Publisher can
ensure that the document complies with that legal requirement or issue a
fatal error if compliance is not possible (for example, if the safety warning
exceeds the size of the page). This eliminates manual inspection and elimi-
nates the liability risk from those errors that manual inspection inevitably
overlooks.

22333 Presentation independence

By its nature, information stored in XML is independent of any particular
way of presenting it. That means that through the application of a
stylesheet or other transformation method, XML information can be deliv-
ered from a single information base to multiple outputs, usually automati-
cally (see Figure 22-3).

The alternative to this approach, which is in common practice today; is
to set up a process where authors create the information with the goal of
printing it and then hand off the information to another group that handles
online delivery. The online group converts the information to the online
format and manually adjusts the appearance, sequence, and links to adapt
the information for online delivery. In that process, it is common to
improve the information itself, but often those improvements are noz
reflected back to the original source.

When the original information is revised, the online group has to make a
decision: do they make the same revisions to the online information that
were made to the printed information? Or do they convert the printed

©1998 THE XML HANDBOOK™

r

information to the online format and then make all the manual changes
again? No matter which way they go, the result is an expensive and wasteful

Convert
<=p-| Pinted andMa(:\ual <> | Onine
Documents Clantp Documents

Figure 22-14 Inefficient non-XML alternative to process in Figure 22-3.

22.3 | CHARACTERISTICS TO CONSIDER

process

22334 Standards-based

Structured XML authoring tools are based on open standards that are out-
side the control of any individual vendor. XML, for example, is an
iﬂppl’OVCd recommendation of the World Wide Web Consortium (W3C).
With the right choice of technology, you can protect your organization
from dependence on any single vendor.

The key to vendor-independence is to build your automated document
system based on open standards such as XML and its related specifications,
XSL, XLink, the DOM, and other emerging specifications, Many of these
are discussed later on in the book and others are in the CD-ROM’s XML
SPECtacular.

Making the right decision will also ensure high performance and maxi-
mum scalability. Choosing overtly standards-based tools, such as those
described in this chapter, will ensure that your data remains standards-com-
pliant throughout the entire process of creating, managing, and processing
your information.

©1998 THE XML HANDBOOKT™

317

XMetal:

Friendly XML
editing

B Structured authoring
B Familiar interface

B Oustside authors

©1998 THE XML HANDBOOK™

(Impter

Another approach to an XML editor is to build
on user familiarity with word processors and HTML
to provide a friendly environment. The friendly folks
at SoftQuad Inc., - - Ly believe in
that approach and have spunsorcd thxs chapter,

B ML will be a new experience for most of today's Web site
developers. If you are in that category, you might welcome a
= structured editor that is designed to be easy to use and to pro-
~ vide first-time XML editing capabilities right out of the box. Of
<« » . » . . .
course, those “friendliness” characteristics will need to be balanced
~against your functional requirements when choosing a product.

23,1 | Familiar interface

Often, simple differences in the editing interface will cause more problems
| for users than coping with unfamiliar tags.

One way to increase user comfort with a new technology is to provide
the user with a familiar interface. Pull-down menus, the button bar, and
short-cut keystrokes should be compatible with the most popular word pro-
cessing programs. The interface should be designed to provide immediate
familiarity and to eliminate the learning curve typically experienced when a
user SWltCheS to a new Cdltlng environment.

O1998 Tny XML HANDBOO K™ 319

320

CHAPTER 23 | XMETAL: FRIENDLY XML EDITING

Figure 23-1, illustrates the approach taken by SoftQuad’s XMetaL to rec.
ognize the importance of a comfortable editing environment and make the
transition transparent.

Home Innovations Magazine Online

‘Lorem Ipsa loquitor nephrly zatna yephrqui, phyrd primphcy lorem
iphyrd nphtlon-quitphte kartaph phffohirqui hipquiurn ipquium dd
‘Iphrggoly uncophilleged.

1Phyrd mogult quiignificphnt mphrker lorem thloguitor cphme lorasta,
liphmgqul, coard nt bipquiumed Internphtionphl. Bphn zatna yephraui,
zartaph phffphirgui hipquium ipquium dd.

February Feature Review: Bread Machines

G Nephrly zatna

& Lorem ipsa loquitor

& Bphn limkcerph '
‘ sFeTwEES

Figure 23-1 XMetal interface

23.2 | HTML markup transition

Consider how easily an editor can help HTML Web site creators get started
with XML. It should be able to import both existing word-processing docu-
ments and HTML documents to serve as the basis for new XML docu-
ments.

XMetal, for example, comes with a special XML/HTML rules set to
help new users start authoring well-formed XML documents using tags
from a familiar HTML baseline element-type set. This HIML foundation
can then be extended by adding new element types.

©1998 THE XML HANDBOOK™

23.3 | STRUCTURED EDITING

The product supports the development of new element types and
aceributes by helping users group them into HTML display classes. This
immediately provides appropriate screen formatting for ongoing editing
sessions.

The user with existing HTML pages has another option as well. The edi-
tor has the capability (at least as far as the two languages permit) for auto-
matically making your HTML a well-formed XML document.

23.3 | Structured editing

The XML language was specifically designed to be user-friendly. Yet,
because it is expected to carry abstract data between computer programs, it
also has to be rigorous.

HTML, on the other hand, was only designed to represent rendered

ages for humans to read. We humans are so much smarter than computers
that HTML doesn't have to be used quite so rigorously.

For this reason, XML editors need structured editing capabilities, as we
have seen. Providing these while maintaining user-friendliness can be a real
challenge for a product.

As an example, let’s look at how XMetaL steps up to the challenge by
examining some of its structured editing features.

213.3.1 Multiple views

XMetal offers views of full document, structured document outline, or
XML context. These enable flexible editing, navigating, and manipulating
of large portions of your document. The outline view, illustrated in Figure
23-2 will show the new element types that the Web developer has added,
and the places where they can be used.

13,32 Tables

A graphical table editor can be used to produce tables. These can be created
in a what-you-see-is-what-you-get mode without intrusive markup require-
ments,

©1998 THE XML HANDBOOK™

321

322 CHAPTER 23 | XMETAL: FRIENDLY XML EDITING

| [alpha) - [index htmi]

[—J@} Howe Innovations lagazine Onl
H@ Hone Inmovations Hagazine O
HE@ Howe Innovations Nacgazin
(&l (COLDEFS >

Fi (RUYS > Hoie Innovatilons Magazine
(>

Ei(TR> Howe Innavatlons Magazine ¢

14 (10> D E 5 £ LIFESTYLE MAG
B (D, Howe Innovations Nagazine | || oo amemnarim 777 7""
#(H, Howe Innovations Mayaszin
>El® Lorerm ipea loquitor nephr
l*?ﬁ_’\/‘ Pliyrd eogquit guiignificph
@) February reature Revieuv:
1 (TABLE> Nephrly zatna
[(TEBLE; Trephty Lorem Pramphcs

i Home Innovations c

HLorem [psa loquitor nephrly zatna ya.
'phyrd nphtlon-gultphte hartaph phff"

=

LS XA

8 (R Trepity Lozem Primpl ~| {Phyrd mogquit quiignificphnt mphrkes:

& { liphrmaqui, coard nt bipquiumed I

&> 3 artaph phffphirqui hipguium ipquiu
i [CENTER »

N S s S R S
s i}) . S e e

Figure 23-2 Outline view showing element-type hierarchy

13.3.3 Named bookmarks

XML pages tend to be larger than typical HTML Web pages. A facility for
named bookmarks lets you navigate lengthy XML pages and quickly return
to important references.

13.3.4 Samples and templates

To help users cope with the Brave New Web of structured information,
XMetal provides industry-specific samples and XML DTDs and templates,
including one for HTML. Using these resources, Web developers can use or

extend the HTML document type, and can employ industry-specific
DTDs as well.

©1998 THE XML HANDBOOK!™

23.3 | STRUCTURED EDITING

13.3.5 Context-sensitive styles

You can specify styles for individual elements and for all elements of a given
type. You can also associate different styles with an element type, according
to the context in which the individual elements of that type occur within

our documents. For example, an unordered list item might ordinarily have
a round bullet, but if the list occurs nested within another list, a square bul-

Jet would be displayed instead.

23.3.6 Default HTML styles

For the HTML document type, XMetaL provides the default HTML styles

~ out of the box. This eliminates lengthy set up times for those new to XML.

It is also possible for Web developers to use existing HTML styles with
newly-developed element types. Doing so can provide familiar user inter-
faces while preserving data with more descriptive markup. For example,
data could be tagged as a “product” element but displayed in the style of an
HTML “H3” element.

13.3.7 Direct DTD processing

XMetal can read standard XML document type definitions and immedi-
ately configure itself to accept matching XML instance files. There are no
lengthy “rules building” setup steps.

213.3.8 Customization

With XMetal. you can record a common sequence of operations and exe-
cute it from a single keystroke combination. You can also customize tool-
bars and add your own functions through Visual Basic and OLE
Automation.

©1998 THE XML HANDBOOKTM

323

324 CHAPTER 23 | XMETAL: FRIENDLY XML EDITING

134 | Extend XML capabilities to
outside authors

Many organizations that use structured rule-based XML authoring tools
within their publication departments are unable to extend the use of these
tools to outside authors. Typically, the tools are expensive and complex to
learn and use.

As a result, most outside authors rely on using word processors with spe-
cialized authoring stylesheets. When an organization brings the work of
these outside authors back in-house, conversion into XML is required. This
is not only expensive and time consuming, but often problematic because
correct stylesheet use is difficult to validate and impossible to enforce.

Overtly “friendly” XML editors that mimic the interface, functionality,
and pricing structure of popular word processors may provide a solution to
this problem. With such products, it is more likely that outside authors
could create XML directly, thereby eliminating the time and expense of
conversion.

©1998 THE XML HANDBOOK™

DynaTag visual
conversion
environment

B XML conversion tool

B Document conversion concepts

Chapter

A lot of the world's documents are in XML, buta
lov more aren't and need to be. This chnpter is
spomored by Inso Corporation, - -

, who have a tool for ge:tmg them

there.

ord processor file formats faithfully record how data should

look, but they are useless as reliable sources for processing
that data. That's why so many of them need to be con-

verted to XML.

‘Middle-tier data aggregators need to do it dynamically, and publishers

need to do it as part of the authoring process. Both groups can benefit from

understanding the concepts involved.

24.1 | Concepts of document
| conversion

An XML document consists of data intermixed with markup. The purpose
of the markup is to describe the data: its meaning, structure, and other
attributes.

When data originates in a database, as in middle-tier applications, it is
straightforward to incorporate it in an XML document. That is because a
database keeps data in an abstract state; it isn't mixed up with reports, entry

©1998 THE XML HANDBOOK ™ 327

328 CHAPTER 24 | DYNATAG VISUAL CONVERSION ENVIRONMENT

forms, or other rendition information. Moreover, the database schemy
knows how to associate meaning with the data — meaning that is easily rep-
resented as element types and attributes when creating the XML documene,

Creating an XML document is also straightforward with an XML stryc.
tured editing system. Such systems, like databases, keep the data in ap
abstract state internally even if they present a rendered WYSIWYG view tq
the author.

But the real garden variety word processors, beloved of authors and typ-
ists the world over, have no concept of data. They exist solely to create ren-
ditions and will happily mingle formatting commands with data, given the

slightest opportunity.

But despite that fact, many XML-savvy organizations use word proces-
sors regularly to create XML documents. They prefer not to invest in the
retraining and process changes that switching authoring environments
requires.

Which is why XML conversion tools were invented. Many of them are
essentially programming languages with varying degrees of XML-aware-
ness. (There are some on the CD-ROM accompanying this book.) They
often require a programmer’s skills to create rules for parsing word process-
ing formats, and they don't provide visual feedback.

We'll see a different approach later in this chapter, but first we need to
look at two key concepts: data rescue and style serves meaning.

A4%.1.1 Data rescue

Converting a word processing document to XML typically involves more
than just changing from one notation (“file format”) to another. Instead of
simply translating the document’s formatting characteristics and content, it
is necessary to isolate the real information content — the abstract data and
its structure — from the style information. In other words, the data must be
rescued from the rendered form, and stored in a notation — XML — that is
capable of preserving structured data as an abstraction.

Data rescue restores rendered content so that it can serve as dynamic
information for many uses in a variety of delivery environments. (For an

example, see Chapter 19, “City Of Providence”, on page 252.)

©1998 THE XML HANDBOOK™

F

24.2 | CONVERTING DOCUMENTS WITH DYNATAG 329

p4.1.2 Style serves meaning

The basic principle behind data rescue is that the purpose of the style in
word processing documents is to help convey the meaning of the data. In
other words, as an example, the reason for using a partigular set of format-
ting instructions (such as bold, centered, 18 point type) is to show that the
data in that style is a “title”.

By taking advantage of this principle, it is possible to transform word
processing styles to XML markup. That task is made easier when the word
processing documents use style templates consistently, but even in their
absence, combinations of formarting instructions can be used, as we have

scen.

242 | Converting documents with
DynaTag

DynaTag is a graphical environment for converting word processing (WP)
documents to XML. (It also contains other components, described later,
that prepare the converted documents for electronic publishing on CD-
ROM and the Web.) It converts WP documents in Western European lan-
guages and Japanese.

The product is designed to simplify the often complex task of mapping
word processing style conventions to XML. Once a conversion is defined
with DynaTag, it can be reused for other documents of the same type.

Figure 24-1 illustrates one view of the product interface. The upper half
of the window shows the input word processing file with its original for-
matting. Names of input formats appear on the left, and output objects
(usually element types) appear on the right. The bottom portion of the
screen changes depending on the current stage of the process. Here, the
input formats tab is displayed.

2121 Getting started

In DynaTag, the set of rules for transforming a class of WP documents is
called a “project”. Using the New Project Wizard shown in Figure 24-2, the
user specifies the project and its initial WP source files. The WP document

©1998 THE XML HANDBOOK™

330 CHAPTER 24 | DYNATAG VISUAL CONVERSION ENVIRONMENT

ynalag 4 D [prov438 dip] - C \Progiam Files\Inso\DynaT ag\examples\ProvGuidel mi(*

“Headingl

Heading1 Universities and Colleges

Body Text d diisslisial s

% Body Texst
“ List Bultet

include:

Providence is a major | cenler Major

List Bullet #Johnson and Wales Unlversity

List Continue Famous for Its cullnary arfs program # List Continu

List Bultet *=)Rhode Island School of Design 7 List Bullet

List Continue One of the United States' leading art colleges List Continu

List Bullet += Providence College List Bultel

List Conlinue A Catholic institution famous for its winning basketball team | List Cantin
—_—

@l;] Paragraph Formats
() (=] Character Formats
[«ﬁ (L] Table-Framework Object Types
(%] (] Hypertest Object Types

41 2 Graphic Object Types

{41 Invisible Word-Processer Data

Figure 24-1 Dynalag interface to mapping rules

is analyzed and converted into an intermediate tagged form that retains all
the content and formatting information. The product then displays a docu-
ment preview, formatted with the original WP styles. The document is now
ready for mapping,.

21422 Mapping

Document conversion is driven by mapping rules. A mapping rule specifies
how to convert an input format (a WP style) to the correct output object,
which may be an XML element type. Multiple rules may yield the same
output object.

Several views are provided for sorting, organizing, and managing these
mapping rules. Mapping rules from other projects can be used as a starting
point for a new project.

DynaTag’s mapping tools provide a number of features for handling dif-
ferent input formats and creating the desired output.

©1998 THE XML HANDBOOK™

24.2 | CONVERTING DOCUMENTS WITH DYNATAG

C:\Prnram FilasMnso\Dy... 200KB 12/23/97 4:37...
C:\Program FilestinsotDy,., 239KB 12/23/97 4:37...

~ Figure 24-2 New project wizard,

24221 Automatic mapping

The product automatically maps WP styles to XML element-types with the
same names. This is a fast, easy way to get to well-formed XML when a spe-
cific DTD is not a requirement. Those with specific DTD requirements
can choose their own element-type names and selectively map each input
format to the desired type.

24222 Variant detection

Dynalag detects not only WP styles, but also overrides of these styles, or
variants. Variants can be mapped to unique element types or treated as
equivalent to other instances of the WP style.

For example, an author may have used a standard body text style, but
applied extra indentation to indicate a block quotation. The product can
detect this override and allow the user to map this instance to a <BLOCK-
QUOTE> element, while other body text maps to <PARA> elements.

In other instances, the variant formatting may be meaningless. The
author may have decreased the space before a paragraph to fit text on the
printed page, or inserted a page break to force it to the next page. DynaTag
can be instructed to ignore such variants.

OT998 THi XML HANDBOOK ™

331

332 CHAPTER 24 | DYNATAG VISUAL CONVERSION ENVIRONMENT

24223 New-mapping helper

A wizard helps users map WP styles to XML element types by guiding the

creation of each mapping rule.

24224 Conditional mapping

Conditional mappings create different mapping rules for different “condj-
tions” in the text. For example, an initial text pattern, such as the word
“Warning” followed by a tab, can be used to map certain instances of the
body text style to a <WARNING> element. Context (e.g., the preceding or
following element type) and formatting properties can also be used for con-
ditional mappings.

24225 List wizard

This wizard, shown in Figure 24-3, helps users map list formatting conven-
tions to element types. It can recognize different kinds of lists (ordered,
unordered, term/definition), multiple list levels, and parts of lists (e.g.,
markers, paragraphs, continuation paragraphs). Different styles and levels
of lists in the WP document may be identified and mapped using regular
expression matching on the list markers (e.g., different types of bullets,
sequence numbers and letters).

2422.6 lables

Tables are mapped automatically. However, if needed, tables may be
divided into classes for special handling. For example, the table’s width can
be specified with attributes. Later, when the document is rendered in a
browser, narrow tables can be formatted to display inline while wide tables
are iconized for display in popup windows.

24227 Character mapping

Styles that make format changes at the character level (e.g., emphasized
text, book titles) can easily be mapped to proper, descriptive XML ele-

©1998 THE XML HANDBOOK™

24.2 | CONVERTING DOCUMENTS WITH DYNATAG

A r,__.d,.| Identily General Item

List Bullet

2. This fs & genersl tem. List Number Continue

" This fs another general tem. Lizt Number1)

3. This List Mumberl TR

List Numberl “HD9] <TAB»
Picture

Figure 24-3 List wizard,

‘ments. In cases where authors simply used formatting overrides to create
bold, italic, or underlined text, bulk character mapping can be used to cre-
ate consistent XML markup for cach different format.

For example, in Figure 24-4, bold text is mapped to an output object
called EMPH.BOLD, which in turn generates an XML element with thc
start-tag <EMPH TYPE="BOLD".

24228 Cross-references

Each word processor has a recommended way to create automatic cross ref-
erences, typically printed as a reference to a page or a section title. If authors
follow the recommendations of their word processor, Dynalag automati-
cally converts the cross-references to hypertext links. In the resulting XML,
tags and attributes identify the source and destination of the link.

BT X e
LIYIK T XML HANDBOOK ™

333

334 CHAPTER 24 | DYNATAG VISUAL CONVERSION ENVIRONMENT

] New B

Jlory vaiie)
lry vate) o]

[ary value) [~

ary vate) I

emph. bold

C__Emphasis
C__Foreign. Term
C__Pub Title

. #Ref

Figure 24-4 Bulk character mapping.

24229 Searching

Dynalag provides fulltext searching for finding specific content that needs
to be mapped.

242210 Comments

All mappings can be annotated with comments for managing mapping
tasks and for project documentation.

©1998 THE XML HANDBOOK™

24.2 | CONVERTING DOCUMENTS WITH DYNATAG

42211 XML markup features
Users can view XML markup inside the user interface. They can also specify
attributes, create entities, and use other markup options to enrich the XML

Output.

242212 Capturing structure

XML elements that contain other elements are sometimes called (surprise!)
container elements. The complete structure of containers and containees can
nest to many levels. Computer scientists refer to such a structure as a hierar-
chy, or tree structure.

The element structure of an XML document is the basis for much pow-
erful processing. The content of containers can be hidden, or displayed in
popup windows in a browser. Containers for chapters and sections are the
basis for automatically generating a hypertext table of contents and for
selective, on-demand printing.

Most importantly, the concept of containment enables structured searches:
highly efficient queries that narrow down searching to given elements for
maximum precision in finding information.

For example, a boolean search for “chocolate and milk” inside any one
<RECIPE> element provides much more precision than searching for the
same words across an entire cookbook.

DynaTag’s Container Wizard, shown in Figure 24-5, makes makes it easy
to assign result element types to their proper level in the document structure.
This panel of the Wizard shows that chapter, section, and subsection ele-
ment types have been created, and illustrates their hierarchical relationship.

242213 Reuse

Once a project is finished, its mapping rules can be re-used for similar doc-
uments. DynaTag’s batch converter processes groups of WP documents
that share the same rules. The only human intervention required is starting
the batch script and checking the log file upon completion.

©1998 THE XML HANDBOOKT

335

336 CHAPTER 24 | DYNATAG VISUAL CONVERSION ENVIRONMENT

| Container Wizard - Setting the Level

M ake i Lesel “‘—4_,

Section

Figure 24-5 Container wizard.

24.3 | Preparing for electronic
publishing

DynaTag also includes facilities to prepare a converted document for elec-
tronic distribution on CD-ROM and the World Wide Web, using Inso’s
suite of electronic publishing tools. Those facilities include a stylesheet edi-
tor with preview capability, graphics data format conversion to JPEG and
TIFE and a helper for developing contextual search forms. You can see the
full suite in action in Chapter 19, “City Of Providence”, on page 252.

©1998 THE XML HANDBOOK™

XML Styler:
Graphical XSL
stylesheet editor

B Visual, standards-based design

B Actions, patterns, and flow objects

B Free copy on CD-ROM

©1998 THE XML HANDBOOK™

Chapter _

Lord Chesterfield said that “style is the dress of
thought”, With XML Styler you can dress up your
XML documents in stylesheets without having to
weave the cloth yourself, This chapter is sponsored by
ArborText, Inc., , and
was prepared by Norman Walsh,

) *L"-'. from ArborText, Inc. The product simplifies the creation and
il " Y €)19
BBl 10 dification of stylesheets for XML documents. It is imple-
“mented as a Java application that is designed to run on any Java Vir-

~ tual Machine (JVM). It has been tested on Microsofts JVM for
Windows and Sun’s JVM for Solaris.

| . Hﬂ, he XML Styler is a freeware graphical XSL stylesheet editor

15.1 | Introduction to XSL

XSL stylesheets separate form from content so that authors can present
media-independent XML information. XSL offers powerful features for
generating and suppressing content, reordering content, and associating
style information with elements in different contexts.

Although XML Styler hides most of the complexity of XSL from the
stylesheet author, it is useful to have a general understanding of how XSL
works. Broadly speaking, an XSL stylesheet consists of a collection of rules.
Each rule associates a formatting behavior with an element type.

©1998 Tip XMI HANDBOOK M 339

340

CHAPTER 25 | XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR

A rule has two parts: a pattern and an action. The pattern identifies the
element types that the rule applies to; for example, all EMPH elements, or 4]
PARA elements occurring within an ABSTRACT. The action defines how the
selected elements will be formatted.

252 | Creating a stylesheet with XML
Styler

Before looking at XML Styler and XSL in more detail, let’s use XML Styler
to create a stylesheet for a simple document type. We'll do this by format-
ting a particular XML document, mydoc.sanl in Example 25-1.

Example 25-1. A simple XML document.

<?xml version='1.0"'?>

<doc><title>A Document</title>

<para>This 1s a paragraph of text.</para>

<para>Paragraphs can contain <emph>emphasized</emph> text.</para>
</doc>

Start XML Styler by running xmlstyler at the DOS or UNIX shell
prompt or by double clicking on the XML Styler icon on your desktop. You
can get XML Styler from the CD that accompanies this book.

XML Styler will start, as shown in Figure 25-1.

Choose “Create a new style sheet” and click “OK”. This will start the
new-stylesheet wizard.

In order to simplify the creation of a new stylesheet, XML Styler can load
the element type names used in your documents from either a plain-text file

or an XML document. In this case, we'll get them from mydoc.xml, see Fig-
ure 25-2.

The next panel in the-new stylesheet wizard lets you set the default font
for your documents. Click “Next” to accept the defaults listed.

One of the most useful features in XML Styler is the ability to link
directly to a test document from within the editor. On the next panel,
shown in Figure 25-3, select the preview option and point to the XML doc-
ument that you would like to preview while editing your stylesheet.

©1998 THE XML HANDBOOK™

25.2 | CREATING A STYLESHEET WiTH XML STYLER

C s Rt s e e

N:U-Imme:1nwa|3htslrlidx'—:s\:cmlsiyler'uny-:iuo;:ml

Figure 25-2 Collecting element-type names.

- I order o link the stylesheet to the document instance, XML Styler has
to build a licile HTMI, “olue documeni”. On the next panel of the wizard,

EN908 THE XML HaNDBoaKT™

341

342

CHAPTER 25 | XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR

""'.V‘INew Style Sheet - Select XML File for Preview

v

Figure 25-3 Select an XML document for preview.

you can choose the name of the glue document. The default is almost
always a good choice.

When the wizard finishes, XML Styler will have default rules for all the
element types in the document and the browser will display your test docu-
ment using these default rules. See Figure 25-4.

The default rules are not very useful for presenting this document. Let’s
add a rule for para. Begin by selecting the para element type in XML
Styler and clicking “New...”. The dialog box shown in Figure 25-5 will be
presented.

Click “Next” to proceed with creating a new rule for the para element
type. Each para element in our XML document must be associated with
some HTML element type. The obvious choice in this case is p; enter p in
the dialog box shown in Figure 25-6 and click “Finish” to proceed.

The resulting document is much improved, see Figure 25-7.

Adding additional rules to associate title elements with H1, and emph
elements with EM completes the picture. See Figure 25-8.

©1998 THE XML HANDBOOK™

25.3 | XSL PATTERNS 343

4 DocumentThis is a paragraph of text Paragraphs can contain
emphasised text.

- [Z] <root>
E] emph
[E] para

Figure 25-4 Preview using default rules.

25.3 | XSL patterns

In the simple document described above, every element type was used in a
unique context. In more complex documents, this is not likely to be the
case. Consider the recipe fragment shown in Example 25-2.

Here we sce the element type name used in three different contexts, as:

m The recipe name
m The name of a person, and
m The name of a book.

It is likely that each of these will be formatted in a different way.

Q1998 THuy XML HANDBOOK™

344 CHAPTER 25 | XML STYLER: GRAPHICAL XSL, STYLESHELT EDITOR

‘2 Desciribe New Element - Element Name

.. Harizontal rule
=i Paragraph
Literal: Section
- Ewal: format numbser
o Literal: 1
« Children

2 Desorbe New Element - Flow (bject Used

- Hotizontal rule
- Paragraph
- Literal Ssction
- Eval format numbet
o Litesal: 1
“ Children

Figure 253-6 Fow object selection dialog box.

1998 THE XML Hanprook™

25.3 | XSL PATTERNS

A Document

This is ap aragraph of text.

Paragraphs can ¢ otitain emphasieed text.

LSlylel - untitled. xsl

|E-[E] root:
E| emph
1= para

Figure 25-7 Preview using the new rule for para elements,

XSL patterns can identify element types in different contexts in two
ways: with attribute tests, and by position.

Figure 25-9 shows the rule that matches only the recipe name.

As you can see, the structure of the pattern on the left-hand side is
roughly analogous to the structure of the document. In this case, we see
that the rule applies only to name elements within (i.e., that are children of)
recipe elements. The dot next to name indicates that it is the element type
that is the target of this rule.

A slightly more complex pattern is required to format book names prop-
erly. In this case, we want to make the contents of name elements italic if
E—:hey occur inside of note elements that have a status attribute who’s value
is “credit”. See Figure 25-10.

©1998 Thy XML 1 ANDBOOK ™

345

346 CHAPTER 25 | XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR

’ 73 N:\Home\nwalsh\articles\xmislyler\mydoc_html - Microsoft Intern... B [w] [£3
r |

A Document
This 15 a paragraph of text.

Paragraphs can contain emphasized text.

B-E] emph

B-E] para
H-EF] title

Figure 25-8 Preview using our rules.

Example 25-2. A fragment of a recipe in XML.

<recipe>

<name>Corned Beef and Cabbage</name>

<description>A classic New England boiled dinner. This is a
delectable dinner if composed only of beef, onions, and
cabbage. But for authenticity, additional vegetables

are included.</description>

<note>This dish is a Saint Patrick's Day favorite.</note>
<note status="credit">This recipe comes from

<name>The Joy of Cooking</name> by Rombauer and Becker.</note>
<note status="personal'"><name>Grandma Luhmen</name> likes it
better without the <ingredient>beets</ingredient>.</note>
<ingredient-list yields="...">

e

</recipe>

©1998 THE XML HANDBOOK™

25.3 | XSL PATTERNS 347

":[dit Rule

j E-@ I‘ﬁil)e E-1E] i
L@ name \—@ chililren

B-El

L—E.J chilidren

F-igurc 253-1@ The rule for book names.

WI09E Tur XML HanNDBOOKT™

348 CHAPTER 25 | XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR

25.4 | XSL actions

The action part of an XSL rule describes how to format the element type
selected by the pattern. XSL describes two sets of formatting objects,
“HTML/CSS flow objects” and “DSSSL flow objects”.

In addition to the flow objects, there are several “processing elements”
that control the behavior of the XSL processor. In these examples, you've
already seen the children processing element. This element tells the proces-
sor to recursively format the children of the current element (by ﬁnding the
appropriate rule for each child), and insert the formatted results of that pro-
cess at the location where children occurs.

Other examples of processing elements are select-elements, which provides
a mechanism for reordering the content, and eval, which allows the
stylesheet to insert the result of evaluating an expression (calculating the
child number of a list item element, for example) into the output.

25.4.1 HTML/CSS flow objects

The HTML/CSS flow objects are really nothing more than the HTML ele-
ment types that you want to use in your output. [nternet Explorer 4.0 and
the Microsoft XSL processor both understand the HTML/CSS flow
objects.

When you are using XSL to generate HITML from your XML docu-
ments, you can use the CSS properties as attributes of the HTML element
types. The XSL processor will automatically translate them into the appro-
priate CSS style attributes. For example, the action shown in Figure 25-11
will format paragraphs in an abstract using the HTML p element type with
smaller, italic text.

XML Styler provides simple “tab pages” for easy access the properties of
each element type.

1542 DSSSL flow objects

The DSSSL flow objects are an abstract representation of formatted output.
Each DSSSL flow object has a set of properties that control the details of
the formatting for that object. The complete catalog of flow objects and
their properties will have well-defined semantics in the final XSL standard.

©1998 THE XML HANDBOOK™

25.5 | CONCLUSION

‘ E‘E.] abstract
L] para

fort-style: falic
children

The XSL processor builds a tree of flow objects and then a rendering
engine processes the flow objects and builds the output (on the appropriate
dia: online, print, aural, etc.). At the time of this writing, Henry
ompson’s xslj processor, which works in conjunction with James Clark’s
de engine, offers the only way to process XSL stylesheets that use DSSSL
flow objects. Both of these tools are available on the CD-ROM that accom-
‘panies this book.

Figure 25-12 shows the same rule for formatting paragraphs within an
abstract using DSSSL flow objects.

As in the HTML/CSS case, XML Styler has tab pages for cach of the
DSSSL flow objects.

155 | Conclusion

In this chapter, we've seen a brief overview of some of the features of XML
Styler and demonstrated how it can be used to quickly and easily create
stylesheets without having to learn the syntaciic details of XSL. By creating
stylesheets for your XML document instances, you can begin to see how

WVYIE THE XML HANDBOO R

349

3 5 0 CHAPTER 25 | XML STYLER: GRAPHICAL XSL STYLESHEET EDITOR

-4 Edit Rule

AE- =] abstract
I——',El para |

| r‘ {1e
'—font-posture: italic
—E] children

Figure 25-12 The action for paragraphs in abstracts, using DSSSL.

XML plus XSL will allow you to deliver your information the way you want
it displayed.

You can find more about XSL in Chapter 35, “Extensible Style Language
(XSL)”, on page 516.

@1998 THE XML HaNDBOOK™

Astoria: Flexible
content
management

B Content management defined
§ Document components

B Information reuse

©1998 THE XML HANDBOOK™

Chapter

Document management is about managing
documents as a whole, regardless of what is inside
them. Content management, on the other hand, gets
deep down inside and so is far more powerful. This

| perspective on content management focuses on the
business problems it can solve. It is sponsored by
Chrystal Software, a Xerox New Enterprise company,
] e e ik and was prepared by
Sean Baird, Robin Gellerman, and Kari Johnson.

echnical publications are critical in today's corporation.
Behind these documents are the writers, artists, and editors
who develop and maintain the massive amounts of documen-
ation that keep a company running. Now, both publication manag-
ers and corporate directors are looking for better ways to leverage this
wealth of data for higher returns throughout the enterprise.

Many enterprises have found leverage in managing document content as
components, rather than as entire publications. This practice is called content
management, in contrast to document management. Middle-tier Web appli-
cations, in particular, benefit from the abilty to assemble components with
other data for delivery to the client.

26.1 | Components are everywhere

From new cars to software, components are the way we make things today.
In manufacturing industries as much as 80% of products now consist of
components drawn from a company’s part library or purchased from suppli-

DLY98 THE XML HANDEOQR™ 353

354 CHAPTER 26 | ASTORIA: FLEXIBLE CONTENT MANAGEMENT

ers. Product designers routinely tap into internal databases and online parts
warehouse services in the course of drafting and specifying new models.

In software, most of the new code being written is as objects, self-con-
tained bundles of information and operations with the ability to send and
receive messages in standard ways. Programs can be created by assembling a
bunch of these object components and making them exchange information
and services with each other.

26.1.1 Components in publishing

And now components are becoming the trend in publishing as well. Why?
Because in publishing, as in other endeavors, components simplify com-
plexity and increase flexibility for adapting to change. Consider these gen-
eral advantages of components and how they come into play in a content
management publishing environment.

26.1.1.1 System simplification

Components make it possible to break down complex systems into pieces
that are easier to understand and work with. For publishing groups this
means that teams of writers and editors can work on components for the
same document simultaneously. Users can more easily locate specific infor-
mation since components can be explicitly searched for.

26.1.1.2 Easier revision

When something needs to be revised or customized, changes can be made
to just the component(s) affected, without having to redesign the whole
document. If a single paragraph in a document needs to be revised, the
author can check out just that paragraph from the content management
system rather than the whole document. Or, if it’s important to see the
change in context, the author can check out the section the paragraph
appears in. After editing, when the section is checked back in, versioning
information is applied only to the paragraph that has changed.

©1998 THE XML HANDBOOK™

26.1 | COMPONENTS ARE EVERYWHERE

26.1.1.3 Efficient authoring

Srudies show that at least 30% of the content created by technical publish-
ing groups is reuslablc? — or would be, if people could find the infbnnation.
Typically, it’s buried in documents, scattered here and there in file systems
on various desktop systems and servers. Content management eliminates
the need to redo work by providing a universal repository for managing
published and in-progress documents. The ability to unlock content from
structured documents so that individual components of information can be
indepcndently accessed, tracked, and versioned enables writers and editors
to immediately focus on exactly what they're looking for.

26.1.1.4 Less routine editing

A huge amount of the editing process involves checking documents for
consistency and correcting them for corporate style. Content management
minimizes editing time and tedium by enabling editors to maintain glossa-
ries as collections of components. This information can be added to or
revised rapidly, every day if necessary, with the new material instantly avail-
able to all users.

26.1.1.5 Fast, easy customization

Component-level management means that documents can be customized
by changing only what is unique about them. This approach makes it possi-
ble to rapidly provide markets and customers with tailored information.

26.1.1.6 Universal updates

Each information component exists in the repository as a single object.
When authors want to reuse a component, instead of copying it, they sim-
ply create a pointer to the object. This approach eliminates the redundant
work of having to try to find all places where the information appears and
update them independently. Instead authors can revise the component in
the repository once, and it will be automatically updated in all documents
that contain it.

©1998 ThHE XML HANDBOOKTM

355

3 5 6 CHAPTER 26 | ASTORIA: FLEXIBLE CONTENT MANAGEMENT

26.1.1.7 Streamlined translations

Translators typically work with a moving target, a source document thae
continues to change while translation is going on. Translated versions thep
have to be returned to translators for a laborious manual process of identify-
ing, changing, and checking new material. Content management can speed
this process by providing translators with only those document components
that are new, along with information about what has changed and exactly
where the revisions should be inserted in the document.

26.1.1.8 Flexible distribution

Content management makes it easy to repurpose content for different
media. Users can assign custom attributes to a particular component. For
example, an attribute of an element could tell the software whether or not
the element should be included when exporting a document for the Web, as
opposed to printing it. Users can automate document assembly, including
adjustments for target media.

26.12 XML makes components

XML brings intelligence to data. It breaks up the information into smaller
information components. The smaller and more specific the component is,
the more addressable and reusable it is.

For example, the document in Figure 26-1 uses descriptive element type
names to identify the components and structure of the document. A com-
ponent is a piece of information that can be used independently, such as a
paragraph, chapter, instructional procedure, warning note, part number,
order quantity, graphic, side-bar story, video clip, or one of an infinite vari-
ety of additional information types.

When managed by a content management system (Figure 26-2), these
pieces can be controlled, revised, reused, and assembled into new docu-
ments.

Another way XML adds value to information is through attributes, or
“metadata” (Figure 26-3). By adding “information about information”,
users can further describe the information for repurposing. A user assigns
attributes to a particular component, for example to specify whether or not

©1998 THE XML HanDBOOK™

26.1 | COMPONENTS ARE EVERYWHERE 357

Chapter (title) —| | IEEG_—
Section (1) —
Section (2) |
Procedure «[| s
Part Number —1 | ‘——
Note {
Reference~1~4?'r
Subsection (2.1)—|| | e—

Figure 26-1 Document components described with XML,

Book
- g CHAPTER
B TITLE
Em SECTION
@ SECTION
L g% PROCEDURE
| - @ PART
@ STEP
| L g NOTE
— @ STEP
| — @ STEP
— @ STEP
@ SUBSECTION
L g PROCEDURE
@ REFERENCE
@ STEP
@ STEP
B> STEP
E STEP

Figure 26-2 Hierarchical structure shown in content management system.

\
©1998 THE XML HANDBOOKT™

35 8 CHAPTER 26 | ASTORIA: FLEXIBLE CONTENT MANAGEMENT

to include it when publishing the document for the Web, as opposed to
printing it. When the document is published, the content management sys-
tem will make the proper adjustments for the target medium.

Metadata can also be used to identify the intended audience for specific
components. In this case, a “beginner” requires more information than an
“expert”. The content management system will assemble a document and
publish the information that matches these criteria.

<step audience="beginner">Keep the
engine running and park car
on level ground.</step>

<step audience="expert">Keep the
engine running.</step>
Figure 26-3 Metadata can identify the intended audience,

26.1.3 Applications for content reuse

Reuse, the most compelling feature of content management, allows content
within any document to be used elsewhere in the repository. Reuse means
writing the information once and linking to it from other documents. This
can be very useful when multiple documents contain standard “boilerplate”
information. This repurposing of information saves users countless hours of
rework and duplication of effort.

Applications for information reuse are everywhere. Reuse can be as sim-
ple as finding a description from one document and linking it into a new
document. Common content creates an “information pool” of reusable
pieces available to individuals or groups inside the company Figure 26-4.
Linked reuse, instead of copying, makes updates more efficient and reduces

Ying
redundant storage.

Organizations that maintain common glossaries of business terms can
benefit from reuse. When glossary information stored in a content manage-
ment system changes, the information is revised only one time. All of the
documents containing that information are automatically updated.

©1998 THE XML HANDBOOK™

26.2 | A CONTENT MANAGEMENT IMPLEMENTATION

C ti ked out,
e&?é%?gﬁ c':]?l(—gcgs}ecd%agliJ }n.
Astoria Reposito

|) [l |
Components stored
as single objects
\

Component is updated
automatically wherever used

Figure 26-4 Component reuse.

Because warnings and cautions usually require careful wording, organiza-
tions strive for uniformity across all documents. Manually locating and
changing dozens of these elements in hundreds of contexts can consume
countless hours. Content management solves that problem by allowing
XML documents to reuse content across documents.

For global business processes, linked reuse helps organizations get to
market faster around the world. By identifying the newly revised informa-
tion in a repair manual, only the new information will be translated into
the target languages saving valuable time and money.

262 | A content management
implementation

To better understand what content management systems provide, it is help-
ful to look at an actual product in action.

©1998 THE XML HANDBOOK™

359

360 CHAPTER 26 | ASTORIA: FLEXIBLE CONTENT MANAGEMENT

Chrystal Software’s Astoria, like other component-based content manage-
ment systems, attempts to provide value beyond that of generalized docy-
ment management systems. It does so by managing the content of the
document as a set of components (see Figure 26-5).

Structured documents (XML, SGML) Coﬂ) onenty
Unstructured documents N m
(Word, Excel, PowerPoint, | N |
Quark XPress, PageMaker....)

Collecti
Technical lllustrations ons

A (“Astoria Reposito

(cgm,..) — / | I
Screenshots (pic, gif, » ! . !
tiff, bmp, jpeg,...) —— X ! :

Screencams (scm) ———p \\\ . S 3

Video (mpeg, avi,...) ,/»'7/1 4 Documents

>
Audio (au, wav,...) ;/1

Logos (eps, bmp, ~ -
wmf, pic, tiff,...)

Figure 26-5 The Astoria repository.

Some of the product’s “off-the-shelf” capabilities are described in the fol-
lowing sections. Customization for specialized requirements is possible
through its software development kit, a public C++ application program-
ming Interface.

26.2.1 Revision tracking

Astoria automatically collects revision information at each check-in, indi-
cating time, date, author, revision number, and an optional comment. Past
versions are available for republishing or to provide an audit trail (see Figure
26-6).

For XML documents, revision history is detected and maintained at the
component level, not just at the document level. A sophisticated differenc-
ing engine is used to apply revision information to only the content that
changes during an editing session.

©1998 THE XML HANDBOOK™

26.2 | A CONTENT MANAGEMENT IMPLEMENTATION

Ghow History

2/13/98 2/10/98 Phil Madison tMade changes based on Leg
812/97 8/12/97 Brigette Zeiss Updated procedures ‘
7/30/96 7/30/36 AndyWashburn Made changes based on Ma
319/96 3/19/96 AndyWashbum

Figure 26-6 Revision history of a paragraph.

At important milestones such as release dates and the beginning of
review cycles, users can formalize document versions into “editions”. The
document state can then be recreated for that point in time by opening the
appropriate edition.

16.2.2 Search

Astoria’s search options let users locate documents created in more than 50
common applications. Advanced indexing enhances search by looking for
various forms of the word (e.g., plural, tenses, root). Matching documents
can be selected for viewing and editing.

By applying “custom attributes” to documents, users add “information
about information.” Custom attributes can automatically be created from
XML metadata. In addition to custom attributes, document structure, data
content, and version information can be used in queries (see Figure 26-7).

Another form of search, “where-used queries”, locates content that is
reused in multiple XML documents. Users can determine whether changes
o that content are appropriate in all contexts before committing to the
change.

©1998 ThHp XML HANDBOOK™

361

362 CHAPTER 26 | ASTORIA: FLEXIBLE CONTENT MANAGEMENT

}s Astoria Search - [New Seaich|

Warning Frovide adequate vertilation when using this procedure.
“Warning Highwoltages capahle of causing death are exposed dur
WiErming Dangerous chemicals are used in the procedure. Be sure

Figure 26-7 Search results refined with XML structure and metadata.

16.2.3 Dynamic document assembly

One of the compelling benefits of managing documents at the component
level is that users can effectively create an information pool from which to
draw. Figure 26-8 shows how users can search for information meeting
unique criteria, organize it as they wish, and dynamically create a new deliv-
erable.

©1998 TrHr XML HaNpDBOOK™

N
(N}

26.2 | A CONTENT MANAGEMENT ITMPLEMENTATION)

For example, a financial portfolio manager could create a series of articles
and recommendations which could then be organized dynamically into
unique documents based on the profile of each investor.

Amﬁy"s‘iﬂ The management and production of information
as cornponents is g powerful idea Mot suitable for a novel,
perhaps, bui eminently apjpropriate for the mission-critical daia
thai is parr-and-parcel of creating and marketing ioday's complex
products — on the Web and slsewhere.

Ill.n.uuwn! Constiuction

bickdonn ever

s |
EPS:

‘W0
WORKS TEPS: Slacken
Wg KS'{EPS: Disoonnect

Figure 26-8 Assembling new documents by searching for relevant
~ Components,

1998 THe XML HanDBOO K™

