UTILITY PATENT APPLICATION TRANSMITTAL
 (Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No. 7538P057
(maximum 12 characters)
First Named Inventor Philippe Kahn
Title: Method and System for Waking Up a Device Due to Motion

ADDRESS TO:	Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

APPLICATION ELEMENTS
See MPEP chapter 600 concerning utility patent application contents.

1. | 2. | Fee Transmittal Form (e.g., PTO/SB/17)
 (Submit an original and a duplicate for fee processing) |
| :--- | :--- |
| 3. Applicant Claims Small Entity Status. (37 CFR 1.27) | |

UTILITY PATENT APPLICATION TRANSMITTAL
 (Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No.	7538 P 057
(maximum 12 characters)	
First Named Inventor	

Title: Method and System for Waking Up a Device Due to Motion

ADDRESS TO:	Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

```
APPLICATION ELEMENTS
See MPEP chapter 600 concerning utility patent application contents.
1. __ Fee Transmittal Form (e.g., PTO/SB/17)
    (Submit an original and a duplicate for fee processing)
2. __ Applicant Claims Small Entity Status. (37 CFR 1.27)
3. }\textrm{X
Specification (Total Pages 24__)
    (preferred arrangement set forth below)
    - Descriptive Title of the Invention
    - Cross Reference to Related Applications
    - Statement Regarding Fed sponsored R & D
    - Reference sequence listing, a table,
        or a computer program listing appendix
            - Background of the Invention
            - Brief Summary of the Invention
            - Brief Description of the Drawings (if filed)
            - Detailed Description
            - Claim(s)
            - Abstract of the Disclosure
4. X Drawings(s)(35 USC 113) (Total Sheets _7_)
5. 
                    Oath or Declaration (Total Pages
```

\qquad

```
a. ___ Newly Executed (Original or Copy)
b.
``` \(\qquad\)
``` Copy from a Prior Application (37 CFR 1.63(d)) (for Continuation/Divisional with Box 18 completed)
i. - DELETIONS OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and \(1.33(\mathrm{~b})\).
c.
``` \(\qquad\)
``` Unsigned.
\begin{tabular}{lll} 
6. & Application Data Sheet. (37 CFR 1.76) \\
7. & C. & \\
8. CD-ROM or CD-R in duplicate, large table or Computer Program (Appendix)
\end{tabular}
```


I hereby request that the attached application not be published under 35 U.S.C. 122(b).

/Judith Szepesi/
Signature
Judith A. Szepesi
Typed or Printed Name
39,393
Registration No.

This request must be signed in compliance with 37 CFR $1.33(\mathrm{~b})$ and submitted with the application upon filing.

Applicant may rescind this nonpublication request at any time. If applicant rescinds a request that an application not be published under 35 U.S.C. 122(b), the application will be scheduled for publication at eighteen months from the earliest claimed filing date for which a benefit is claimed.

If applicant subsequently files an application directed to the invention disclosed in the attached application in another country, or under a multilateral international agreement, that requires publication of applications eighteen months after filing, the applicant must notify the United States Patent and Trademark Office of such filing within forty-five (45) days after the date of the filing of such foreign or international application.
Failure to do so will result in abandonment of this application (35 U.S.C. 122(b)(2)(B)(iii)).

United States Utility Patent Application
 FOR

Method and System for Waking Up a Device due to Motion

Inventors:

Philippe Kahn
Arthur Kinsolving
David Vogel
Mark Christensen

Prepared by:
BLAKELY, SOKOLOFF, TAYLOR \& ZafMAN LLP
12400 Wilshire Boulevard
Seventh Floor
Los Angeles, CA 90025-1026
(408) 720-8300

Attorney's Docket No. 7538P057

Method and System for Waking Up a Device due to Motion

FIELD OF THE INVENTION

[001] This invention relates to a method and system for waking up a device from an idle state.

BACKGROUND

[002] Technological progress has led to the proliferation of commercial electronic devices such as portable computers, game controllers, GPS devices, digital cameras, cellular telephones, and personal media players. Continuous improvements have allowed the users to enjoy many features and possible uses from a single mobile device. However, generally, the more applications a mobile device has, the faster the battery of the mobile device depletes. Therefore, it can be difficult to maximize battery life and provide a great user experience at the same time.

SUMMARY OF THE INVENTION

[003] The present invention provides a method and system to wake up a device due to motion. The system determines a dominant axis of a device. The device is placed in an idle state, after a period of inactivity or lack of motion. A sensor, such as an accelerometer, registers a motion of the device. A computation logic analyzes the motion data to determine if the motion data indicates a real motion. If so, the device is woken up.

BRIEF DESCRIPTION OF THE DRAWINGS

[004] The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
[005] Figure 1 is an illustration of one embodiment of moving a device that may require waking up the device.
[006] Figures 2 is a block diagram of one embodiment of a system.
[007] Figure 3 is a flowchart of one embodiment of determining whether to wake up a device based on motion data.
[008] Figure 4 is a flowchart of one embodiment of a process to create a long average of accelerations.
[009] Figure 5 is a flowchart of one embodiment of a process for determining whether a device should be woken up from an idle state.
[0010] Figure 6 is a flowchart of one embodiment of a process to detect and correct glitches in motion data.
[0011] Figure 7 is a block diagram of one embodiment of a computer system that may be used with the present invention.

DETAILED DESCRIPTION

[0012] A method and system for waking up a device due to motion of the device is described. Embodiments of the present invention are designed to determine if a device should be woken up from an idle state based on the analysis of motion data. In one embodiment, motion data for the dominant axis is analyzed and the device is woken up from idle state if the motion data analysis points to the motion being "real" motion as opposed to a mere jostle or glitch.
[0013] The following detailed description of embodiments of the invention makes reference to the accompanying drawings in which like references indicate similar elements, showing by way of illustration specific embodiments of practicing the invention. Description of these embodiments is in sufficient detail to enable those skilled in the art to practice the invention. One skilled in the art understands that other embodiments may be utilized and that logical, mechanical, electrical, functional and other changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
[0014] Figure 1 is an illustration of one embodiment of moving an idle device that may result in waking up the device. The idle state is defined, in one embodiment, as a state in which the device is not moving, and there is no active application which includes user interaction/display. In one embodiment, there may be multiple levels of idle state, e.g. where various subsystems are placed in a power-reduced state or not. When the device is in the idle state, the device is placed in low-power mode. In this state, there is sufficient power maintained to monitor at least one sensor. However, other elements and applications are turned off to extend the battery life of the device.

In one embodiment, some applications may remain active. For example, the device may be in the idle state, but continue a download, utilizing a network and memory store. In one embodiment, if at least one subsystem is turned off due to lack of device motion, this may be considered an "idle state."
[0015] In one embodiment, after a device 110 is placed on a horizontal surface 115 such as a desk or chair, after a period of inactivity the device 110 goes to the idle state to conserve the battery. In one embodiment, the device is placed into the pocket, purse, bag, or any other non-moving location, the device enters the idle state.
[0016] The system, in one embodiment, is designed to ensure that when the device is picked up by a user, the device is moved from the idle state to an active state rapidly. By initiating the transition from the idle state to the active state without requiring user input, the user wait is reduced. For example, when a user 100 picks up the device 110 from its position on the horizontal surface 115, the device is designed to wake up. In one embodiment, the device 110 is woken up from idle state and the user is presented the last active state of the device. In one embodiment, this may be sufficiently rapid that by the time the device is being viewed by the user, the prior state has been restored. In contrast, if the table on which the device is resting is shaken, or the purse is jostled, the device should not wake up. This reduces power usage, because the device is not continuously being woken up from small motions which occur when someone walks near a table, sits down, or similarly causes small motions.
[0017] Figure 2 is a block diagram illustrating one embodiment of a system 200 of the present invention. In one embodiment, the system 200 is a portable electronic device. The system 200 in one embodiment comprises motion sensor logic 210, sample period logic 230, glitch correcting logic 235, long average logic 240,
dominant axis logic 245 , memory 250 , computation logic 255 , and configuration logic 260.
[0018] In one embodiment, the motion sensor logic 210 comprises an accelerometer 220. In one embodiment, the motion sensor logic 210 also includes one or more additional sensors, such as orientation sensor 215.
[0019] In one embodiment, accelerometer 220 may be used to determine orientation of the device. The orientation may be determined using long averages of accelerations. The sample period logic 230 determines how frequently the motion sensor logic 210 obtains data. In one embodiment, the sample period is preconfigured. In one embodiment, the sample period is adjusted based on the application(s) using the sensor data.
[0020] The accelerometer 220 periodically samples motion data. The long average logic 240 calculates an average of the acceleration data over the sample period. In one embodiment, the long average logic 240 calculates the average of the accelerations over a number of measurements, rather than over a time period. In one embodiment, the long average logic 240 calculates accelerations over 5 minutes. In one embodiment, the long average logic 240 calculates accelerations over 20 measurements.
[0021] In one embodiment, the acceleration data is sent to the glitch correcting logic 235, where the data is analyzed to determine if any it represents a glitch, i.e., data outside a pre-determined range of acceptable data. For example, it is extremely unlikely if not impossible for motion data to go from zero acceleration to $10 \mathrm{~m} / \mathrm{s}$ acceleration in one reading. In one embodiment, the pre-determined range of data is a predetermine change in acceleration from a current acceleration. For
example, if the device is idle - e.g. not moving - the range of accelerations possible for the device is fairly limited. In one embodiment, glitch correcting logic 235 further may be used to discard non-human motions. For example, if the device is not being used but is in a moving vehicle, in one embodiment the vehicle's motion can be discarded as not fitting the signature of human motion.
[0022] In one embodiment, the glitch correcting logic 235 discards any abnormal accelerometer reading(s). In one embodiment, the non-glitch data is then passed on to the long average logic 240. In another embodiment, the glitch data is from the long average by glitch correcting logic 235 . In one embodiment, if a certain number of glitch data points have been discarded, glitch notifier logic 237 notifies the user. In one embodiment, glitch notifier logic 237 may also notify the manufacturer. The glitches generally are indicative that the accelerometer or sensor is malfunctioning.
[0023] The long average logic 240 calculates one or more long averages of acceleration based on the received motion data. In one embodiment, the long average logic 240 utilizes a ring buffer memory 250, discarding older data as new data is added to the long average. In one embodiment, the long average logic 240 creates a long average of accelerations along a single axis. In one embodiment, the dominant axis defined as the axis most impacted by gravity -- is used by the long average logic 240. In one embodiment, the axis corresponds to one of the axes of the accelerometer. In one embodiment, the axis is defined as the orientation experiencing the most pull from gravity. In one embodiment, the long average logic 240 creates long averages of accelerations along multiple axes.
[0024] Determining the orientation of an electronic device may include identifying a gravitational influence. The axis with the largest absolute long average may be the axis most influenced by gravity, which may change over time (e.g., as the electronic device is rotated). Therefore, a new dominant axis may be assigned when the orientation of the electronic device and/or the inertial sensor(s) attached to or embedded in the electronic device changes.
[0025] In one embodiment, the actual axis with the largest absolute long average over a sample period is assigned as the dominant axis. In alternative embodiment, the dominant axis does not correspond to one of the actual axes of the inertial sensor(s) in a current orientation, but rather to an axis that is defined as approximately aligned to gravity. In one embodiment, the dominant axis corresponds to a virtual axis that is a component of a virtual coordinate system. In one embodiment, a true gravity assessment, such as by doing trigonometric calculations on the actual axes based on the gravitational influence is performed to determine orientation.
[0026] In one embodiment, a long average of accelerations is computed by the long average logic 240 when the device goes into idle state after a period of inactivity. In one embodiment, the long average and the dominant axis for which it is computed are received by computation logic 255 . The computation logic 255 also receives, based on a new sample of motion data, a current dominant axis and an updated current long average for the current dominant axis.
[0027] If the prior and current dominant axes are the same, the computation logic 255 determines if the long average has changed by more than a predetermined threshold. In one embodiment, when the change in the dominant axis is larger than the threshold value, the computation logic 255 communicates with the power logic 265 and
the device state logic 270 , to power up the device and restore the last active device state. If the change in the dominant axis is not larger than the threshold value, the device is maintained in the idle state.
[0028] In one embodiment, if the new dominant axis is different from the prior dominant axis, the computation logic 255 communicates with the power logic 265 and configuration logic 260 to restore the device to the last active device state.
[0029] Figure 3 is a flowchart of one embodiment of determining whether to wake up a device based on motion data. At block 305, the process starts. In one embodiment, the process runs continuously. In one embodiment, the user may initiate the auto-wake-up system, or set a preference to have the auto-wake-up system on.
[0030] At block 310, the process determines if it is time to sample motion data. In one embodiment, the motion data is sampled periodically. If it is time to sample motion data, the process continues to block 315 . Otherwise, the process returns block 310 .
[0031] At block 315, the process gets sample motion data. In one embodiment, based on the sample motion data, at least one current/updated long average of accelerations is calculated. In one embodiment, the long average is based on a preset number of measurements, or on a preset time. The process continues to block 320.
[0032] At block 320, the process determines whether the device is in idle state. In one embodiment, the device is placed in idle state after the device has been inactive for a period of time. Inactive, in one embodiment, means that the device is not moving and that there are no user-interactive applications active on the device. In one embodiment, when the device is placed in idle state, a long average is initialized. If the
device is not in idle state, the process returns to block 310. If the process determines that the device is in idle state, the process continues to block 325 .
[0033] At block 325, the process determines if the device has experienced any motion, e.g. there is a difference between the readings of the accelerometer that are larger than a minimum threshold. In one embodiment, this determination is made by using a filter to remove accelerometer motions below the minimum threshold. If the process determines that no motion has been detected, the process returns to block 310. If the process determines that the accelerometer data indicates a movement of the device, the process continues to block 330 .
[0034] At block 330, the process determines if the movement is a "real" motion and not a mere jostle or bump. The device may move, for example, as a result of a little jostle of a desk or table on which the device is laying, a heavy step nearby, or something else that creates a very small motion, but which does not warrant waking up the device. In contrast, the device may move as a result of being picked up by a user intending to use the device. In this case, the movement is a "real" motion which warrants awakening the device.
[0035] If the motion is not a "real" motion, the process returns to block 310. If the movement is a "real" motion, the process continues to block 335. At block 335, the process wakes up the device. The process continues to block 340 .
[0036] At block 340, the process in one embodiment configures the device to restore the last device state when the device was active. In one embodiment, the system allows the user to customize the wake-up restoration of the device. For example, the user may customize the system not to start the previously-active applications, but to present a home screen. The process then ends.
[0037] Figure 4 is a flowchart of one embodiment of a process to create a long average of accelerations. The process 400 starts at block 405. In one embodiment, this process is continuously running when the device is powered.
[0038] At block 410, the long average logic, in one embodiment, receives motion data from the accelerometer. In one embodiment, the long average logic receives the data from a glitch correcting logic which removes abnormal data from the motion data before the motion data is passed to the long average logic. The process continues to block 415.
[0039] At block 415, the long average logic adds the sampled motion data to the long average, to create an updated long average of accelerations. In one embodiment, the long average logic maintains a long average only for the dominant axis (e.g., the axis on which the gravitational effect is detected). In another embodiment, the long average logic maintains an average for one or more axes. The process continues to block 420.
[0040] At block 420, the long average logic, in one embodiment, optionally sends the long averages of accelerations for a plurality of axes to the dominant axis logic for determination of the dominant axis. In an alternative embodiment, the dominant axis logic retrieves the long averages of accelerations for a plurality of axes from memory to determine the dominant axis. The process then returns to block 410, to continue receiving motion data.
[0041] Figure 5 is a flowchart of one embodiment of a process 500 for determining whether a device should be woken up from an idle state. The process starts at block 505. In one embodiment, the process is activated when a preset period with no motion has been detected.
[0042] At block 510, the process places the device in idle state after the device has been inactive for a period of time. The process continues to block 515.
[0043] At block 515, the computation logic receives data for the dominant axis DA1 of the idle device and accelerations along DA1 over a sampling period, computed by the long average logic after the device becomes idle. The process continues to block 520.
[0044] At block 520, the computation logic assigns the long average of accelerations along DA1 over a period to Idle Sample (IS). In one embodiment, IS is saved to memory. The process continues to block 525.
[0045] At block 525, the process receives new dominant axis data DA2 and the new acceleration data along DA2. The process continues to block 530 .
[0046] At block 530, the computation logic adds the new data to the long average of accelerations along DA2 to generate a Current Sample (CS). Also at block 530 , in one embodiment, the computation logic saves CS to memory. The process continues to block 535 .
[0047] At block 535, the computation logic compares the idle dominant axis DA1 with the current dominant axis DA2. If the current dominant axis DA2 is different from the idle dominant axis DA1, the process continues to block 545. In one embodiment, the comparison is within a range, e.g. a minimum change of one degree has to occur to identify DA2 as being different from DA1. In one embodiment, if the dominant axis has changed, then the orientation of the device has changed, and that warrants waking up the device. If DA2 is substantially the same as DA1, then the computation logic continues to block 540.
[0048] At block 540, the computation logic determines if the long average along the dominant axis has changed by more than a threshold value, i.e., if the difference between the Current Sample value and the Idle Sample value is larger than the threshold value. In one embodiment, the threshold value is set to 30 , which is approximately a $10^{\text {th }}$ of a g . If the difference between IS and CS is less than the threshold value, the process returns to block 510, to continue monitoring the idle state. CS becomes IS, for the next calculation.
[0049] If the computation logic determines that the change in the long average of accelerations along the dominant axis is greater than the threshold, then the computation logic continues to block 545. At block 545, the computation logic communicates with the power logic of the configuration logic to start up the device. The process then ends.
[0050] Figure 6 is a flowchart of an embodiment of a process 600 to detect and correct glitches in motion data. In one embodiment, this process is always active. In one embodiment, this process is active when the device is in the idle state. In one embodiment, the glitch correction takes place before the motion data is added to the long average. The process starts at block 605.
[0051] At block 610, the glitch correcting logic receives motion data from an accelerometer.
[0052] At block 615, the glitch correcting logic determines if the received motion data contains a glitch. In one embodiment, a glitch is a datum that indicates a motion outside an acceptable range. For example, it is extremely unlikely that a device would go from idle (e.g., no motion) to moving at an acceleration of 64 feet per second squared (equivalent to 2 g). The correcting logic examines each datum against a range
of acceptable data to determine if the datum falls within this range and, therefore, should be used in calculating the long average of accelerations. In one embodiment, the glitch correction logic utilizes the change in acceleration between two readings to determine whether there is a glitch.
[0053] If the glitch correcting logic determines that the motion data is not a glitch, the glitch correcting logic continues to block 625.
[0054] At block 625, the glitch correcting logic sends the motion data to the long average logic. The process then returns to block 610, to continue monitoring the acceleration data.
[0055] If at block 615, the glitch correcting logic determines that the motion data is outside the allowable range, the glitch correcting logic continues to block 635.
[0056] At block 635, the glitch correcting logic discards the unacceptable motion data. At block 640, the process determines whether there have been an excessive number of glitches. In one embodiment, the glitch correcting logic uses the motion data to detect a possible problem with the accelerometer. In one embodiment, an excessive number of glitches may indicate a problem with the accelerometer. If the process determines that there have been an excessive number of glitches, the process, at block 645, generates an alert regarding the problem. In one embodiment, the alert may be a message to alert the user of the device. In one embodiment, the alert may be a notification to one or more recipients via a network connection. For example, the system may notify a service provider, manufacturer, or other appropriate notification target.
[0057] The process then returns to block 610, to continue monitoring the acceleration data.
[0058] Figure 7 is a block diagram of one embodiment of a computer system that may be used with the present invention. It will be apparent to those of ordinary skill in the art, however that other alternative systems of various system architectures may also be used. The computer system may include a bus or other internal communication means 715 for communicating information, and a processor 710 coupled to the bus 715 for processing information. The system further comprises a random access memory (RAM) or other volatile storage device 750 (referred to as memory), coupled to bus 715 for storing information and instructions to be executed by processor 710. Main memory 750 also may be used for storing temporary variables or other intermediate information during execution of instructions by processor 710. In one embodiment, the system also comprises a read only memory (ROM) and/or static storage device 720 coupled to bus 715 for storing static information and instructions for processor 710 , and a data storage device 725 such as a flash memory, magnetic disk, optical disk and its corresponding disk drive. Data storage device 725 is coupled to bus 715 for storing information and instructions.
[0059] The system may include various input/output devices, such as a screen, audio output, keyboard, button, mouse, etc. These I/O devices may also be coupled to bus 715 through bus 765 for communicating information and command selections to processor 710. Another device, which may optionally be coupled to computer system 700, is a communication device 790 for accessing other nodes of a distributed system via a network. The communication device 790 may include any of a number of commercially available networking peripheral devices such as those used for coupling to an Ethernet, token ring, Internet, or wide area network. The communication device 790 may further be a null-modem connection, a wireless
connection mechanism, or any other mechanism that provides connectivity between the computer system 700 and the outside world. Note that any or all of the components of this system and associated hardware may be used in various embodiments of the present invention. It will be appreciated by those of ordinary skill in the art that any configuration of the system may be used for various purposes according to the particular implementation. The control logic or software implementing the present invention can be stored in main memory 750 , mass storage device 725 , or other storage medium locally or remotely accessible to processor 710 .
[0060] It will be apparent to those of ordinary skill in the art that the system, method, and process described herein can be implemented as software stored in main memory 750 or read only memory 720 and executed by processor 710. This control logic or software may also be resident on an article of manufacture comprising a computer readable medium having computer readable program code embodied therein and being readable by the mass storage device 725 and for causing the processor 710 to operate in accordance with the methods and teachings herein.
[0061] The present invention may also be embodied in a handheld or portable device containing a subset of the computer hardware components described above. For example, the handheld device may be configured to contain only the bus 715 , the processor 710 , and memory 750 and/or 725 . The present invention may also be embodied in a special purpose appliance including a subset of the computer hardware components described above. For example, the appliance may include a processor 710 , a data storage device 725 , a bus 715 , and memory 750 , and only rudimentary communications mechanisms, such as a small touch-screen that permits the user to communicate in a basic manner with the device. In general, the more
special-purpose the device is, the fewer of the elements need be present for the device to function. In some devices, communications with the user may be through a touch-based screen, or similar mechanism.
[0062] It will be appreciated by those of ordinary skill in the art that any configuration of the system may be used for various purposes according to the particular implementation. The control logic or software implementing the present invention can be stored on any machine-readable medium locally or remotely accessible to processor 710. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine readable medium includes read-only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices. In one embodiment, the system may be embodied in a signal, such as an electrical, optical, acoustical or other forms of propagated signal (e.g., carrier waves, infrared signals, digital signals, etc.).
[0063] In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

CLAIMS
What is claimed is:

1. A method comprising:
determining an idle sample value for a dominant axis of a device;
registering a motion of the device; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device.
2. The method of claim 1, wherein determining the idle sample value for the dominant axis comprises:
receiving motion data from a motion sensor;
processing the motion data to establish an idle sample value; and processing the idle sample value to establish the dominant axis.
3. The method of claim 2, wherein the motion sensor comprises an accelerometer.
4. The method of claim 2, wherein the idle sample value comprises a longaverage of accelerations over a sample period along the dominant axis recorded when the device goes to idle mode after a period of inactivity.
5. The method of claim 1 , further comprising determining the idle sample value for each of the other axes of the device.
6. The method of claim 1, wherein registering the motion of the device comprises:
receiving motion data from a motion sensor; and
processing the motion data to determine a current sample value of the dominant axis of the device.
7. The method of claim 1, further comprising comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value.
8. The method of claim 1, wherein the change in the dominant axis comprises a change in acceleration along the dominant axis.
9. The method of claim 1, wherein waking up the device further comprises configuring the device to return to a last active device state.
10. The method of claim 6, wherein the current sample value is a long average of accelerations.
11. The method of claim 6, further comprising determining the current sample value for each of the other axes of the device.
12. The method of claim 6, wherein the motion sensor comprises an accelerometer.
13. The method of claim 6, wherein processing the motion data further comprises
verifying whether the motion data comprises one or more glitches; and removing the one or more glitches in the motion data from the motion data before calculating the long average.
14. The method of claim 6, further comprising determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value.
15. The method of claim 8, further comprising:
determining a new dominant axis based on the motion data received from the motion sensor;
computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis determined when the device goes to idle mode after a period of inactivity; and
comparing the difference against a threshold value to establish whether to wake the device up.
16. A system comprising:
a long average logic to create one or more long averages of accelerations as measured by a motion sensor over a period of time;
a dominant axis logic to determine a dominant axis of a device based on motion data; and
a computation logic to determine if the long averages of accelerations indicate a true motion of the device.
17. The system of claim 16, further comprising a motion sensor logic to detect motion data.
18. The system of claim 17, wherein the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes.
19. The system of claim 16, further comprising a sample period logic to set the period over which motion data is collected to compute the one or more long averages of accelerations.
20. The system of claim 16, further comprising a power logic to activate the device when the motion data indicates the device should be woken up.
21. The system of claim 16, further comprising a device state logic to restore the device to a last active state.
22. The system of claim 21, wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up.
23. The system of claim 16, further comprising a glitch corrector logic to correct one or more glitches in the motion data.
24. The system of claim 23, wherein the glitch corrector removes the one or more glitches before the one or more long averages are calculated.

Abstract

A method comprises determining an idle sample value for a dominant axis of a device in an idle state. The method further comprises registering a motion of the device, and evaluating the motion. The method further comprises waking up the device when the analysis of the motion indicates a change in the dominant axis of the device and/or a level of acceleration beyond a threshold.

Figure 1

Page 30 of 1488

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Description	Fee Code	Quantity	Amount
Patent-Appeals-and-Interference:	Sub-Total in USD(\$)		
Post-Allowance-and-Post-Issuance:			
Extension-of-Time:			
Miscellaneous:	Total in USD (\$)		

Electronic Acknowledgement Receipt	
EFS ID:	4083563
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	7538 P 057
Receipt Date:	08-OCT-2008
Filing Date:	
Time Stamp:	19:57:12
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 1298$
RAM confirmation Number	4612
Deposit Account	022666
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Transmittal of New Application	7538P057_Transmittal.pdf	25268	no	2
			31b63fc0b719f7c0c50928d348064b56f2e6 ea75		
Warnings:					
Information:					
2	Nonpublication request from applicant.	7538P057_Nonpublication_Re quest.pdf	14417	no	1
Warnings:					
Information:					
3		7538P057_Application.pdf	79893	yes	24
			10800538ad03ee5940616a8555331b03ab bdoc8		
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Specification		1	18	
	Claims		19	23	
	Abstract		24	24	
Warnings:					
Information:					
4	Drawings-only black and white line drawings	7538P057_Formal_Figures.pdf	216458	no	7
			58a073a318e93935ac0a7809ef5efc43e38c		
Warnings:					
Information:					
5	Fee Worksheet (PTO-06)	fee-info.pdf	36448	no	2
			009 c 27 c 199 b 84 ccee 43 b 8741 cfc 52 f 209 bf 8 $05 c 8$		
Warnings:					
Information:					
Total Files Size (in bytes):			372484		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

PATENT APPLICATION FEE DETERMINATION RE Substitute for Form PTO-875		
APPLICATION AS FILED - PART I (Column 1) (Column 2)		
FOR	NUMBER FILED	NUMBER EXTRA
BASIC FEE (37 CFR 1.16(a). (b), or (c))	N/A	N/A
SEARCH FEE (37 CFR $1.16(\mathrm{k})$, (i), or (m))	N/A	N/A
EXAMINATION FEE (37 CFR 1.16(o). (p). or (q))	N/A	N/A
TOTAL CLAIMS (37 CFR 1.16(i))	24 minus $20=$	4
INDEPENDENT CLAIMS (37 CFR.1.16(h))	2 minus $3=$	
APPLICATION SIZE FEE (37 CFR 1.16(s))	If the specification and dra sheets of paper, the applic \$270 (\$135 for small entity) 50 sheets or fraction there 35 U.S.C. 41 (a)(1)(G) and	wings exceed 100 ation size fee due is) for each additiona of. See 37 CFR
MULTIPLE DEPENDENT CLAIM PRESENT (37 CFR 1.16 (j))		

* If the difference in column 1 is less than zero, enter " 0 " in column 2.

SMALL ENTITY	
RATE (\$)	FEE (\$)
N/A	
N/A	
N/A	
$\mathbf{x \$ 2 6}$	
$\times \$ 110$	
TOTAL	

* If the entry in column 1 is less than the entry in column 2, write " 0 " in column 3.
** If the "Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter "20"
*** If the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter "3".
I he "Highest Number Previously Paid for (I otal or Independent) is the highest number tound in the approprate box in column 1.
This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Pater and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Date Mailed: 10/23/2008

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

```
Applicant(s)
    Philippe Kahn, Residence Not Provided;
Power of Attorney: None
Domestic Priority data as claimed by applicant
Foreign Applications
```

If Required, Foreign Filing License Granted: 10/21/2008
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US $12 / 247,950$
Projected Publication Date: Request for Non-Publication Acknowledged
Non-Publication Request: Yes
Early Publication Request: No
Title
Method and System for Waking Up a Device Due to Motion
Preliminary Class
192

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent page 1 of 3
in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

United States Patent and Trademark Office

APPLICATION NUMBER	FLLING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TITLE
$12 / 247,950$	$10 / 08 / 2008$	Philippe Kahn	7538 P057

8791
BLAKELY SOKOLOFF TAYLOR \& ZAFMAN LLP 1279 OAKMEAD PARKWAY
SUNNYVALE, CA 94085-4040

CONFIRMATION NO. 8961
FORMALITIES LETTER

Date Mailed: 10/23/2008

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

Items Required To Avoid Abandonment:

An application number and filing date have been accorded to this application. The item(s) indicated below, however, are missing. Applicant is given TWO MONTHS from the date of this Notice within which to file all required items and pay any fees required below to avoid abandonment. Extensions of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR 1.136(a).

- The oath or declaration is missing.

A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the above Application Number and Filing Date, is required.
Note: If a petition under 37 CFR 1.47 is being filed, an oath or declaration in compliance with 37 CFR 1.63 signed by all available joint inventors, or if no inventor is available by a party with sufficient proprietary interest, is required.
The applicant needs to satisfy supplemental fees problems indicated below.
The required item(s) identified below must be timely submitted to avoid abandonment:

- To avoid abandonment, a surcharge (for late submission of filing fee, search fee, examination fee or oath or declaration) as set forth in 37 CFR $1.16(f)$ of $\$ 130$ for a non-small entity, must be submitted with the missing items identified in this notice.

SUMMARY OF FEES DUE:

Total additional fee(s) required for this application is $\mathbf{\$ 1 3 0}$ for a non-small entity

- \$130 Surcharge.

Replies should be mailed to:
Mail Stop Missing Parts
Commissioner for Patents
P.O. Box 1450

Alexandria VA 22313-1450
Registered users of EFS-Web may alternatively submit their reply to this notice via EFS-Web. https://sportal.uspto.gov/authenticate/AuthenticateUserLocalEPF.html

For more information about EFS-Web please call the USPTO Electronic Business Center at 1-866-217-9197 or visit our website at http://www.uspto.gov/ebc.

If you are not using EFS-Web to submit your reply, you must include a copy of this notice.

```
/eggolla/
```

Office of Data Management, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	$:$ Philippe Kahn, et al.
Appl. No.	$: 12 / 247,950$
Filed	$:$ October 8, 2008
For	: Method and System for Waking Up a Device Due to Motion
Customer No. $: 08791$	

Examiner: Not yet assigned
Art Unit: 3681
Confirmation No. 8961

CERTIFICATE OF TRANSMISSION
I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.

/Judith Szepesi/	December 22, 2008
Judith A. Szepesi	Date

Mail Stop Missing Parts
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450
RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION (FILING DATE GRANTED)

Sir:
In response to the Notice to File Missing parts of Application (Filing Date Granted) mailed October 23, 2008, please find enclosed:
(1) a duly executed Declaration and Power of Attorney with respect to the above-referenced patent application; and
(2) an authorization to charge $\$ 130.00$ in payment of the surcharge of 37 C.F.R. § 1.16(e) to Deposit Account No. 02-2666.

If any additional fee is required, please charge Deposit Account No. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: December 22, 2008
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393
1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				

Electronic Acknowledgement Receipt	
EFS ID:	4487637
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	22-DEC-2008
Filing Date:	08-OCT-2008
Time Stamp:	21:28:29
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 130$
RAM confirmation Number	6426
Deposit Account	022666
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	

File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1	Oath or Declaration filed	$\begin{aligned} & \text { 8689P057_Declaration_and_P } \\ & \text { OA.pdf } \end{aligned}$	226742 8bbe343b7579bba7780006984a5470c309 1 C387	no	4
Warnings:					
Information:					
2	Applicant Response to Pre-Exam Formalities Notice	8689P057_Response_to_Missin g_Parts.pdf		no	1
Warnings:					
Information:					
3	Fee Worksheet (PTO-06)	fee-info.pdf		no	2
Warnings:					
Information:					
Total Files Size (in bytes):			271882		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION (37 CFR 1.63)			Attorney Docket Number 8689P057	
			First Named Inventor Philippe Kahn	
			COMPLETE IF KNOWN	
			Application Number	12/247,950
Declaration Submitted with Initial Filing	区	Declaration Submitted after Initial	Filing Date	October 8, 2008
	OR	Filing (surcharge	Art Unit	3681
		required)	Examiner Name	Not yet assigned

I hereby declare that: (1) Each inventor's residence, mailing address, and citizenship are as stated below next to their name; and (2) I believe the inventor(s) named below to be the original and first inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
\square
(Title of the Invention)

```
the specification of which
    \square ~ i s ~ a t t a c h e d ~ h e r e t o . ~
            OR
\boxtimes was filed on (MM/DD/YYYY) 10/08/2008 as United States Application Number or
    PCT International Application Number
                                12/247,950
```

\qquad

``` and was amended on (MM/DD/YYYY) \(\square\) (if applicable).
```

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claim(s), as amended by any amendment specifically referred to above.

I do not know and do not believe that the claimed invention was ever known or used in the United States of America before my invention thereof, or patented or described in any printed publication in any country before my invention thereof or more than one year prior to this application. I do not know and do not believe that the claimed invention was in public use or on sale in the United States of America more than one year prior to this application, nor do I know or believe that the invention has been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve months (for a utility patent application) or six months (for a design patent application) prior to this application.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56, including for continuation-in-part applications, material information which became available between the filing date of the prior application and the national or PCT international filing date of the continuation-in-part application.

Authorization To Permit Access to Application by Participating Offices

If checked, the undersigned hereby grants the USPTO authority to provide the European Patent Office (EPO), the Japan Patent Office (JPO), and any other intellectual property offices in which a foreign application claiming priority to the above-identified application is filed access to the above-identified patent application. See 37 CFR 1.14(c) and (h). This box should not be checked if the applicant does not wish the EPO, JPO, or other intellectual property office in which a foreign application claiming priority to the above-identified application is filed to have access to the application.

In accordance with 37 CFR $1.14(\mathrm{~h})(3)$, access will be provided to a copy of the application-as-filed with respect to: (1) the above-identified application, (2) any foreign application to which the above-identified application claims priority under 35 USC 119(a)-(d) if a copy of the foreign application that satisfies the certified copy requirement of 37 CFR 1.55 has been filed in the above-identified US application, and (3) any U.S. application from which benefit is sought in the above-identified application.

In accordance with 37 CFR 1.14(c), access may be provided to information concerning the date of filing the Authorization to Permit Access to Application by Participating Offices.

Claim of Foreign Priority Benefits

I hereby claim foreign priority benefits under 35 U.S.C. 119 (a)-(d) or (f), or 365(b) of any foreign application(s) for patent, inventor's or plant breeder's rights certificate(s), or 365(a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below, by checking the box, any foreign application for patent, inventor's or plant breeder's rights certificate(s), or any PCT international application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s):

Prior Foreign Application Number(s)	Country	Foreign Filing Date (MM/DD/YYYY)	Priority Not Claimed	Certified Copy Attached?
			\square	\square Yes \square No
			\square	\square Yes \square No
			\square	\square Yes \square No
			\square	\square Yes \square No
			\square	\square Yes \square No

Appointment of Practitioners:

I hereby appoint the practitioners associated with Customer Number: $\mathbf{0 8 7 9 1}$ as my respective patent attorneys and patent agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the U.S. Patent and Trademark Office connected herewith.

If this patent application is assigned, then the undersigned hereby authorizes the patent attorneys and patent agents named herein to accept and follow instructions from the assignee(s) as to any action to be taken in the United States Patent and Trademark Office regarding this application without direct communication between the patent attorneys and patent agents and the undersigned. In the event of a change in the persons from whom instructions may be taken, at least one patent attorney or patent agent named herein will be so notified by the undersigned.

Correspondence:

Direct all correspondence to Customer Number 08791,

WARNING:

Petitioner/applicant is cautioned to avoid submitting personal information in documents filed in a patent application that may contribute to identity theft. Personal information such as social security numbers, bank account numbers, or credit card numbers (other than a check or credi) cart authorization form PTO-2039 submitted for payment purposes) is never required by the USPTO to suppon a petition or an application. If this type of personal information is included in documents submitted to the USPTO, pettioner/applicant should consider redacilng such personal information from the documents bofore submitting them to the USPTO. Petitioner/applicant is advised that the record of a patemt application is available to the public after publication of the application (unless a non-publlication request in compliance with 37 CFR 1.213 (a) is made in the application) or issuance of a patent. Funthermore, the record from an abandoned application may also be avaliable to the pubilic if the appilestion is referenced in a published application or an issued palent (see 37 CFR 1.14). Checks and credit card authorization forms PTO-2038 submilted for payment purposes are not ratained in the application flie and theretore are not publloly availabls. Petitioner/applicant is advised that documents which form the record ot a patent application (such as the PTO/SB/01) ans placed into the Privacy Act system of records DEPARTMENT OF COMMERCE, COMMERCE-PAT-7, System name: Patent Application Files. Documents not retained in an applicaton file (such as the PTO-203B) are placed Into the Privacy Act system of COMMERCE/PAT-TM-10, Systert name: Deposit Accounts and Electronic Fund's Transfer Proflles.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on Information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under $\mathbf{1 8}$ U.S.C. 1001 and that such willful false staternents may jeopardize the validity of the application or any patent issued thereon.

NAME OF SOLE OR FIRST INVENTOR: \square A petition has been filed for this undersigned inventor

NAME OF SECOND INVENTOR: \square A petition has been filed for thls undersigned inventor

NAME OF THIRD INVENTOR: \square A petition has been filed for this undersigned inventor

NAME OF FOURTH INVENTOR: \square A petition has been filed for this undersigned inventor

NAME OF FIFTH INVENTOR: \square A petition has been filed for this undersigned inventor
Full Name: \qquad

Mailing Address

Docket No. 9689Pos7

Date Mailed: 01/06/2009

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections
Applicant(s)
Philippe Kahn, Aptos, CA;
Arthur Kinsolving, Santa Cruz, CA;
David Vogel, Santa Cruz, CA;
Mark Andrew Christensen, Santa Cruz, CA;
Power of Attorney: The patent practitioners associated with Customer Number 08791
Domestic Priority data as claimed by applicant

Foreign Applications

Permission to Access - A proper Authorization to Permit Access to Application by Participating Offices (PTO/SB/39 or its equivalent) has been received by the USPTO.

If Required, Foreign Filing License Granted: 10/21/2008
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US $\mathbf{1 2} / \mathbf{2 4 7 , 9 5 0}$

Projected Publication Date: Request for Non-Publication Acknowledged
Non-Publication Request: Yes
Early Publication Request: No

Title

Method and System for Waking Up a Device Due to Motion
Preliminary Class
192

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15 (b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12, if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

Substitute for Form 1449/PTO					Complete if Known	
INFORMATION DISCLOSURE					Application Number	12/247,950
					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	3681
					Examiner Name	Not yet assigned
Sheet	1		of	1	Attorney Docket Number	8689 P 057
U.S. PATENT DOCUMENTS						
Examiner Initials*	Cite No.		cument Number	Publication Date MM-DD-YYYY	Name of Patentee orApplicant of Cited Document	Pages, Columns, Lines, Where Relevant
		Number-Kind $\operatorname{Code}^{2}(\mathrm{l}$ known)				Figures Appear
		Us-	6,013,007	1/11/2000	Root et al	
		us-	7,010,332	3/7/2006	Irvin et al	
		Us-	2005/0232404	10/20/2005	Gaskill	
		Us-	2007/0125852	6/7/2007	Rosenberg	
		Us-				
		Us-				
		us-				
		Us-				
		us-				
		Us-				
		Us-				
		Us-				
		Us-				
		us-				
		Us-				

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { Noo. } \end{aligned}$	Foreign Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns Lines, Where Relevan Passages or Relevant Figures Appear	T ${ }^{6}$

Examiner Signature		Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www usptogov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Electronic Acknowledgement Receipt	
EFS ID:	6206297
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	05-OCT-2009
Filing Date:	08-OCT-2008
Time Stamp:	21:32:03
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted wid	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1		8689P057_IDS_and_SB08.pdf		yes	3

	Multipart Description/PDF files in .zip description		
	Document Description	Start	End
	Transmittal Letter	1	2
	Information Disclosure Statement (IDS) Filed (SB/08)	3	3
Warnings:			
Information:			
Total Files Size (in bytes):		63770	
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.			
New Applications Under 35 U.S.C. 111			
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.			
National Stage of an International Application under 35 U.S.C. 371			
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.			
New International Application Filed with the USPTO as a Receiving Office			
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.			

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	$:$ Philippe Kahn, et al.
Appl. No.	$: 12 / 247,950$
Filed	$:$ October 8, 2008
For	: Method and System for Waking Up a Device Due to Motion

Customer No. : 08791

Examiner: Not yet assigned
Art Unit: 3681
Confirmation No. 8961
CERTIFICATE OF TRANSMISSION
I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.
/Judith Szepesi/ October 5, 2009 Judith A. Szepesi Date

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 together with copies of the documents cited on that form, except for copies not required to be submitted (e.g., copies of U.S. patents and U.S. published patent applications need not be enclosed). It is respectfully requested that the cited documents be considered and that the enclosed copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):
$\underline{\mathbf{X}} \quad 37$ C.F.R. §1.97(b).
\qquad 37 C.F.R. §1.97(c). If so, then enclosed with this Information Disclosure Statement is one of the following:
\qquad A statement pursuant to 37 C.F.R. §1.97(e) or
The Director is Authorized to charge in the amount of $\$ \underline{180.00}$ for the fee under 37 C.F.R. § 1.17(p).

37 C.F.R. §1.97(d). If so, then enclosed with this Information Disclosure Statement are the following:
(1) A statement pursuant to 37 C.F.R. §1.97(e); and
(2) A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1.17(p)$ for submission of the Information Disclosure Statement.

If there are any additional charges, please charge Deposit Account No. 02-2666.
Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: October 5, 2009
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393

1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

RESCISSION OF PREVIOUS NONPUBLICATION REQUEST

(35 U.S.C. 122 (b)(2)(B)(ii))
AND, IF APPLICABLE, NOTICE OF FOREIGN FILING
(35 U.S.C. 122(b)(2)(B)(iii))
Send completed form to:
Mail Stop PG Pub
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450
FAX: (703) 305-8568
Application Number $\frac{12247,950}{10 / 82008}$
Filing Date

Filing Date \quad 108/2008
First Named Inventor Philippe Kaln
Title METHODAND SYSTEM FOR WAKINGUPA DEVICEDUE TO MOTION
Attorney Docket No. $\quad 8689$ P057
Groap Art Unit $\quad 3655$
Examiner \qquad

A request that the above-identified application not be published under 35 U.S.C. 122(b) (nonpublication request) was included with the above-identified application on filing pursuant to 35 U.S.C. 122(b)(2)(B)(i).
I hereby rescind the previous nonpublication request.
If a notice of foreign or international filing is or will be required by 35 U.S.C. 122(b)(2)(B) (iii) and 37 CFR
1.213 (c), I hereby provide such notice. This notice is being provided no later than forty-five (45) days after the date of such foreign or intemational filing.

If a notice of subsequent foreign or international filing required by 35 U.S.C. 122(b)(2)(B)(iii) and 37 CFR 1.213(c) was not filed within forty-five (45) days after the date of filing of the foreign or international application, the application is ABANDONED, and a petition to revive under 37 CFR $1.137(\mathrm{~b})$ is required. See 37 CFR 1.137(f).
$\frac{10 / 72009}{\text { Date }}$
$\frac{(408) 720-8300}{\text { Telephone }}$

Telephone
Lester J. Vincent
Typed or Printed Name
31,460
Registration No.
This request must be signed in compliance with 37 CFR 1.33(b).
If information or assistance is needed in completing this form, please contact the Pre-Grant Publication Division at (703) $605-4283$ or by e-mail at PGPubGUSPTO.gov.

ELECTRONIC FILING STATEMENT
Date of Deposit:
10/7/2009
I hereby certify that this correspondence is being deposited with the United States Patent and Trademark Office via electronic filing through the United States Patent and Trademark Electronic Filing System on the date indicated above.

Name (Print Type) Jing Xin			
Signature:	/Jing Xin/	Date Signed:	1017/2009

Electronic Acknowledgement Receipt	
EFS ID:	6219919
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Lester Vincent/Ashley Xin
Filer Authorized By:	Lester Vincent
Attorney Docket Number:	8689P057
Receipt Date:	07-OCT-2009
Filing Date:	08-OCT-2008
Time Stamp:	21:07:30
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Miscellaneous Incoming Letter	DPTech8689P057_RescindLette r.PDF		no	1
Warnings:					
Information:					

Blakely Sokoloff Taylorr Zafman

WTELEOTHAR Bropery ind
S躯ON VAHEV

Trien OFFME

10/7/2009

MS PG Pub
Commissioner for Patents
Via EFS
P.O. Box 1450

Alexandria, Virginia 22313-1450

Re: USSN: 12/247,950 Filed: 10/8/2008
Assignee: DP Technologies, Inc.
Title: METHOD AND SYSTEM FOR WAKING UP A DEVICE DUE TO MOTION
Transmittal of Request to Rescind Previous Nonpublication Request Under 35 USC 122(b)(2)(B)(ji) and Notification of Foreign Filing Under 35 USC 122(b)(2)(B)(iii) Our File No.: 8689P057

Dear Sirs:

We have foreign filed the above-identified application. A Request and Certification under 35 USC 122(b)(2)(B)(i) has been submitted for this invention. We herewith submit a Request to Rescind Previous Nonpublication Request under 35 USC 122(b)(2)(B)(ii) and a Notification of Foreign Filing under 35 USC 122(b)(2)(B)(iii).

Respectfully submitted,
Blakely, Sokoloff, Taylor \& Zafman LLP

Lester J. Vincent
Reg. No. 31,460

[^0]

Date Mailed: 10/16/2009

Communication Regarding Rescission Of Nonpublication Request and/or Notice of Foreign Filing

Applicant's rescission of the previously-filed nonpublication request and/or notice of foreign filing is acknowledged. The paper has been reflected in the Patent and Trademark Office's (USPTO's) computer records so that the earliest possible projected publication date can be assigned.

The projected publication date is 04/08/2010.
If applicant rescinded the nonpublication request before or on the date of "foreign filing," ${ }^{1}$ then no notice of foreign filing is required.

If applicant foreign filed the application after filing the above application and before filing the rescission, and the rescission did not also include a notice of foreign filing, then a notice of foreign filing (not merely a rescission) is required to be filed within 45 days of the date of foreign filing. See 35 U.S.C. § 122(b)(2)(B)(iii), and Clarification of the United States Patent and Trademark Office's Interpretation of the Provisions of 35 U.S.C. § 122(b)(2)(B)(ii)-(iv), 1272 Off. Gaz. Pat. Office 22 (July 1, 2003).

If a notice of foreign filing is required and is not filed within 45 days of the date of foreign filing, then the application becomes abandoned pursuant to 35 U.S.C. § 122(b)(2)(B)(iii). In this situation, applicant should either file a petition to revive or notify the Office that the application is abandoned. See 37 CFR 1.137(f). Any such petition to revive will be forwarded to the Office of Petitions for a decision. Note that the filing of the petition will not operate to stay any period of reply that may be running against the application.

Questions regarding petitions to revive should be directed to the Office of Petitions at (571) 272-3282.
${ }^{1}$ Note, for purpose of this notice, that "foreign filing" means "filing an application directed to the same invention in another country, or under a multilateral international agreement, that requires publication of applications 18 months after filing".
/hsarwari/

Substitute for Form 1449/PTO INFORMA					Complete if Known	
					Application Number	12/247,950
STATEMENT BY APPLICANT (use as many sheets as necessary)					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	2612
					Examiner Name	Not yet assigned
Sheet	1		of	1	Attorney Docket Number	8689P057
U.S. PATENT DOCUMENTS						
ExaminerInitials*	Cite No. ${ }^{\text {' }}$		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant
		Number-Kind $\operatorname{Code~}^{2}{ }^{2}(\mathrm{~F}$ known)				Figures Appear
		Us-	2005/0210300	9/22/2005	Song et al	
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No } \end{aligned}$	Foreign Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T^{6}
		Country Code ${ }^{3}$ Number ${ }^{4}$ Kind Code ${ }^{5}$ (if known)				

Examiner Signature		Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www usptogov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Electronic Acknowledgement Receipt	
EFS ID:	6905054
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	28-JAN-2010
Filing Date:	08-OCT-2008
Time Stamp:	19:43:32
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment							no
File Listing:							
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)		
1		8689P057_IDS_and_SB08.pdf	63015	yes	3		

	Multipart Description/PDF files in .zip description		
	Document Description	Start	End
	Transmittal Letter	1	2
	Information Disclosure Statement (IDS) Filed (SB/08)	3	3
Warnings:			
Information:			
Total Files Size (in bytes):		63015	
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.			
New Applications Under 35 U.S.C. 111			
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.			
National Stage of an International Application under 35 U.S.C. 371			
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.			
New International Application Filed with the USPTO as a Receiving Office			
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.			

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	$:$ Philippe Kahn, et al	Examiner: Not yet assigned	
Appl. No.	$: 12 / 247,950$	Art Unit:	2612

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 together with copies of the documents cited on that form, except for copies not required to be submitted (e.g., copies of U.S. patents and U.S. published patent applications need not be enclosed). It is respectfully requested that the cited documents be considered and that the enclosed copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):
$\underline{\mathbf{X}} \quad 37$ C.F.R. §1.97(b).
\qquad 37 C.F.R. §1.97(c). If so, then enclosed with this Information Disclosure Statement is one of the following:
\qquad A statement pursuant to 37 C.F.R. §1.97(e) or
The Director is Authorized to charge in the amount of $\$ \underline{180.00}$ for the fee under 37 C.F.R. § 1.17(p).

37 C.F.R. §1.97(d). If so, then enclosed with this Information Disclosure Statement are the following:
(1) A statement pursuant to 37 C.F.R. §1.97(e); and
(2) A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1.17(p)$ for submission of the Information Disclosure Statement.

If there are any additional charges, please charge Deposit Account No. 02-2666.
Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: January 28, 2010
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393

1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

Title:Method and System for Waking Up a Device Due to Motion
Publication No.US-2010-0085203-A1
Publication Date:04/08/2010

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382, by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of Public Records, Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to publication, such status information is confidential and may only be obtained by applicant using the private side of PAIR.
Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent Electronic Business Center at 1-866-217-9197.

Office of Data Managment, Application Assistance Unit (571) 272-4000, or (571) 272-4200, or 1-888-786-0101

Substitute for Form 1449/PTO					Complete if Known	
INFORMATION DISCLOSURE					Application Number	12/247,950
					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	2612
					Examiner Name	Not yet assigned
Sheet	1		of	2	Attorney Docket Number	8689P057
U.S. PATENT DOCUMENTS						
Examiner Initials*	Cite No.		cument Number	Publication Date	Name of Patentee orApplicant of Cited Document	Pages, Columns, Lines, Where Relevant
		Number-Kind $\operatorname{Code~}^{2}(1 / \mathrm{F}$ known)				Figures Appear
		Us-	6,353,449	3/5/2002	Gregg et al	
		us-	6,771,250	8/3/2004	Oh	
		Us-	2006/0161377	7/20/2006	Rakkola et al	
		us-	2007/0150136	6/28/2007	Doll et al	
		Us-	2007/0259716	11/8/2007	Mattice et al	
		Us-				
		us-				
		Us-				
		us-				
		Us-				
		Us-				
		us-				
		Us-				
		us-				
		Us-				

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	Cite	\qquad Country Code ${ }^{3}$ Number ${ }^{4}$ Kind Code ${ }^{5}$ (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T^{5}

Examiner Signature		Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www usptogov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

$\left.\begin{array}{||l|l|l|l|}\hline \text { Examiner } \\ \text { Signature }\end{array} \quad \begin{array}{l}\text { Date } \\ \text { Considered }\end{array}\right]$
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

PATENT COOPERATION TREATY

From the INTERNATIONAL SEARCHING AUTHORITY

To: LESTER VINCENT BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP 1279 OAKMEAD PARKWAY SUNNYVALE, CA 94085-4040	PCT NOTIFICATION OF TRANSMITTAL OF THE INTERNATIONAL SEARCH REPORT AND THE WRITTEN OPINION OF THE INTERNATIONAL SEARCHING AUTHORITY, OR THE DECLARATION (PCT Rule 44.1)
	Date of mailing (day/month/year) 31 MAR 2010
Applicant's or agent's file reference 8689P057PCT	FOR FURTHER ACTION See paragraphs 1 and 4 below
International application No. PCT/US2009/059900	International filing date (day/month/year) 07 October 2009
Applicant DP TECHNOLOGIES, INC.	

1. \searrow The applicant is hereby notified that the international search report and the written opinion of the International Searching Authority have been established and are transmitted herewith.
Filing of amendments and statement under Article 19:
The applicant is entitled, if he so wishes, to amend the claims of the international application (see Rule 46):
When? The time limit for filing such amendments is normally two months from the date of transmittal of the international search report.
Where? Directly to the International Bureau of WIPO, 34 chemin des Colombettes 1211 Geneva 20, Switzerland, Facsimile No.: +41 223388270
For more detailed instructions, see the notes on the accompanying sheet.
2.

The applicant is hereby notified that no international search report will be established and that the declaration under Article 17(2)(a) to that effect and the written opinion of the International Searching Authority are transmitted herewith.
3. \qquad With regard to the protest against payment of (an) additional fee(s) under Rule 40.2, the applicant is notified that:
\square the protest together with the decision thereon has been transmitted to the International Bureau together with the applicant's request to forward the texts of both the protest and the decision thereon to the designated Offices.

no decision has been made yet on the protest; the applicant will be notified as soon as a decision is made.
4. Reminders

Shortly after the expiration of 18 months from the priority date, the international application will be published by the International Bureau. If the applicant wishes to avoid or postpone publication, a notice of withdrawal of the international application, or of the priority claim, must reach the International Bureau as provided in Rules 90 bis. 1 and 90bis.3, respectively, before the completion of the technical preparations for international publication.
The applicant may submit comments on an informal basis on the written opinion of the International Searching Authority to the International Bureau. The International Bureau will send a copy of such comments to all designated Offices unless an intemational preliminary examination report has been or is to be established. These comments would also be made available to the public but not before the expiration of 30 months from the priority date.
Within 19 months from the priority date, but only in respect of some designated Offices, a demand for international preliminary examination must be filed if the applicant wishes to postpone the entry into the national phase until $\mathbf{3 0}$ months from the priority date (in some Offices even later); otherwise, the applicant must, within 20 months from the priority date, perform the prescribed acts for entry into the national phase before those designated Offices.
In respect of other designated Offices, the time limit of $\mathbf{3 0}$ months (or later) will apply even if no demand is filed within 19 months.
See the Annex to Form PCT/IB/301 and, for details about the applicable time limits, Office by Office, see the PCT Applicant's Guide, Volume II, National Chapters and the WIPO Internet site.

Name and mailing address of the ISA/US
Mail Stop PCT, Atm: ISAUS
Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Blaine R. Copenheaver
Telephone No. 571-272-7774

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT
(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference $8689 P 057 P C T$	FOR FURTHER ACTION	
as well as, where applicable, item 5 below.		

This international search report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This international search report consists of a total of 0 sheets.
It is also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report
a. With regard to the language, the international search was carried out on the basis of:

X the international application in the language in which it was filed.

- a translation of the international application into \qquad which is the language of a translation furnished for the purposes of international search (Rules 12.3 (a) and 23.1(b)).
b.This international search report has been established taking into account the rectification of an obvious mistake authorized by or notified to this Authority under Rule 91 (Rule 43.6bis(a)).
c.With regard to any nucleotide and/or amino acid sequence disclosed in the international application, see Box No. I

2.

Certain claims were found unsearchable (see Box No. II).
3. Unity of invention is lacking (see Box No. III).
4. With regard to the title,
the text is approved as submitted by the applicant.
\square the text has been established by this Authority to read as follows:
5. With regard to the abstract,

X the text is approved as submitted by the applicant.
\square the text has been established, according to Rule 38.2, by this Authority as it appears in Box No. IV. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.
6. With regard to the drawings,
a, the figure of the drawings to be published with the abstract is Figure No, $\underline{2}$ \qquad
as suggested by the applicant.
X as selected by this Authority, because the applicant failed to suggest a figure.
as selected by this Authority, because this figure better characterizes the invention.
b.none of the figures is to be published with the abstract.

[^1]| INTERNATIONAL SEARCH REPORT | | | International application No,
 PCT/US2009/059900 |
| :---: | :---: | :---: | :---: |
| ```A. CLASSIFICATION OF SUBJECT MATTER IPC(8) - G01P 15/00 (2009.01) USPC - 702/141 According to Intemational Patent Classification (IPC) or to both national classification and IPC``` | | | |
| B. FIELDS SEARCHED | | | |
| Minimum documentation searched (classification system followed by classification symbols) IPC(8) - G01P 15/00 (2009.01)
 USPC - 702/141 | | | |
| Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched | | | |
| Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) PatBase, MicroPatent | | | |
| C. DOCUMENTS CONSIDERED TO BE RELEVANT | | | |
| Category* | Citation of document, with indication, where appropriate, of the relevant passages | | Relevant to claim No. |
| X
 Y
 Y
 Y
 Y
 Y
 Y | US 2006/0161377 A1 (RAKKOLA et al) 20 July 2006 (20.07.2006) entire docume
 US 2007/0259716 A1 (MATTICE et al) 08 November 2007 (08.11.2007) entire do US 2007/0150136 A1 (DOLL et al) 28 June 2007 (28.06.2007) entire document US 6,353,449 B1 (GREGG et al) 05 March 2002 (05.03.2002) entire document US $6,771,250 \mathrm{~B} 1(\mathrm{OH}) 03$ August 2004 (03.08.2004) entire document | | $\begin{aligned} & \frac{1,5-7,10-12,14}{2-4,8,9,13,15-24} \\ & 2-4,8,15-24 \\ & 13 \\ & 9,21,22 \\ & 22 \end{aligned}$ |
| Further documents are listed in the continuation of Box C. | | | |
| * Special categories of cited documents:
 dociment defining the general state of the art which is not considered "T"later document published after the international filing date or priority
 date and not in conflict with the application but cited to understand
 the principle or theory underlying the invention
 "t be of particular relevance | | | |
| Date of the actual completion of the international search 18 November 2009 | | Date of mailing of the international search report
 31 MAR 2010 | |
| Name and Mail Stop P P.O. Box 1 Facsimile | ailing address of the ISA/US
 T, Attn: ISAUUS, Commissioner for Patents 0 , Alexandria, Virginia 22313-1450
 . 571-273-3201 | Authorized officer:
 Blaine R. Copenheaver
 PCT Helpdesk: $571-272-4300$
 PCT OSP: $571-272-7774$ | |

Form PCT/ISA/210 (second sheet) (July 2009)

PATENT COOPERATION TREATY

From the
INTERNATIONAL SEARCHING AUTHORITY

1. This opinion contains indications relating to the following items:

Box No. I Basis of the opinion
Box No. II Priority
Box No. III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
\square Box No. IV
Box No. V Reasoned statement under Rule 43bis.l(a)(i) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

Box No. VI Certain documents cited
Box No. VII Certain defects in the international application
Box No. VIII Certain observations on the international application

2. FURTHERACTION

If a demand for international preliminary examination is made, this opinion will be considered to be a written opinion of the International Preliminary Examining Authority ("lPEA") except that this does not apply where the applicant chooses an Authority other than this one to be the IPEA and the chosen IPEA has notified the International Bureau under Rule 66.1 bis(b) that written opinions of this International Searching Authority will not be so considered.
If this opinion is, as provided above, considered to be a written opinion of the IPEA, the applicant is invited to submit to the IPEA a written reply together, where appropriate, with amendments, before the expiration of 3 months from the date of mailing of Form PCT/ISA/220 or before the expiration of 22 months from the priority date, whichever expires later.
For further options, see Form PCT/ISA/220.
3. For further details, see notes to Form PCT/ISA/220.

Name and mailing address of the ISANS
Mali Stop PCT, Attr: ISAUS
Commissioner tor Patents
P.O. Box 1450, Alexandria, Virginla 22313-145
Facsimile No. 571-273-3201

| Date of completion of this opinion |
| :--- | :--- |
| 18 November 2009 |$|$| Authorized officer: |
| :--- |
| Blaine R. Copenheaver |
| PCT Helpdesk: 571-272-4300 |
| PCT OSP: 571-272-7774 |

Form PCT/ISA/237 (cover sheet) (July 2009)

WRITTEN OPINION OF THE INTERNATIONAL SEARCHING AUTHORITY	International application No. PCT/US2009/059900

Box No. I Basis of this opinion

1. With regard to the language, this opinion has been established on the basis of:

X the international application in the language in which it was filed.
\square a translation of the intermational application into \qquad which is the language of a translation furnished for the purposes of international search (Rules 12.3(a) and 23.1(b)).
2.This opinion has been established taking into account the rectification of an obvious mistake authorized by or notified to this Authority under Rule 91 (Rule 43bis.1(a))
3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, this opinion has been established on the basis of a sequence listing filed or furnished:
a. (means)

on paperin clectronic form
b. (time)

in the international application as filed
\square together with the international application in electronic formsubsequently to this Authority for the purposes of search
4. \square In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
5. Additional comments:

WRITTEN OPINION OF THE INTERNATIONAL SEARCHING AUTHORITY

Reasoned statement under Rule 43bis.1(a)(i) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement			
1. Statement			
Novelty (N)	Claims	2-4, 8-9, 13, 15-24	YES
	Claims	1, 5-7, 10-12, 14	NO
Inventive step (IS)	Claims	None	YES
	Claims	1-24	NO
Industrial applicability (IA)	Claims	1-24	YES
	Claims	None	NO

2. Citations and explanations:

Claims 1, 5-7, 10-12, and 14 lack novelty under PCT Article 33(2) as being anticipated by Rakkola et al. (hereinafter, Rakkola).
Referring to Claim 1, Rakkola discloses a method comprising: determining an idle sample value for a dominant axis of a device (paragraph 0044, if no significant data is forthcoming from the accelerometer [e.g. because the accelerometer data is not changing significantly over time], then the motion detector shifts to an idle mode; paragraph 0033, acceleration on the x-axis causes an interrupt on the main processor, whereas the other two components [y -axis and z -axis] are not factors in this interrupt decision - it is interpreted that the x -axis is a dominant axis, and the accelerometer data that is not changing over time represent idle sample values); registering a motion of the device (paragraph 0006 , a motion sensor detects acceleration of a device by analyzing the signal from the device's triaxial accelerometer); and waking up the device when the motion of the device indicates a change in the dominant axis of the device (paragraph 0015, higher level processing functions can be kept in an idle state until there is significant movement. The processor of the device housing the accelerometer can thus perform no tasks at all, until being interrupted by a signal generated by the motion detector when acceleration exceeds a predefined limit; paragraph 0017, once movement of the device is detected, the processor can be woken up).

Referring to Claim 5, Rakkola discloses determining the idle sample value for each of the other axes of the device (paragraph 0044, if no significant data is forthcoming from the accelerometer [e.g. because the accelerometer data is not changing significantly over time], then the motion detector shifts to an idle mode; paragraph 0042, accelerometer data for each of the three axes is averaged - accelerometer data is interpreted to include accelerometer values that are not changing over time [i.e., idle sample values]).

Referring to Claim 6, Rakkola discloses wherein registering the motion of the device comprises: receiving motion data from a motion sensor (paragraph 0039, motion detector 115 receives and analyzes the accelerometer output signal 110); and processing the motion data to determine a current sample value of the dominant axis of the device (paragraph 0001, processing of signals from an accelerometer; paragraph 0018, incoming acceleration data [i.e., current data] is summed into a single register per axis. When the number of samples has been summed, the output is divided by a shifting a bit vector in order to get an average value over a selected number of samples).

Referring to Claim 7, Rakkola discloses comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value (paragraph 0035, the motion detector can trigger an interrupt signal when thresholds are exceeded on selected axis/axes; paragraph 0042, a processor interrupt signal is provided if the average acceleration [i.e., current sample value] minus the reference level [i.e., idle value] exceeds a threshold).

Referring to Claim 10, Rakkola disclose wherein the current sample value is a long average of accelerations (paragraph 0018, incoming acceleration data [i.e., current data] is summed into a single register per axis. When the number of samples has been summed, the output is divided by a shifting a bit vector in order to get an average value over a selected number of samples).

Referring to Claim 11, Rakkola disclose determining the current sample value for each of the other axes of the device (paragraph 0042, accelerometer data for each of the three axes is averaged).

Referring to Claim 12, Rakkola discloses wherein the motion sensor comprises an accelerometer (paragraph 0014, the motion detector uses acceleration data that has been generated by an accelerometer).

Referring to Claim 14, Rakkola discloses determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value (paragraph 0035, the motion detector can trigger an interrupt signal when thresholds are exceeded on selected axis/axes; paragraph 0042, a processor interrupt signal is provided if the average acceleration [i.e., current sample value] minus the reference level [i.e., idle value] exceeds a threshold).

WRITTEN OPINION OF THE

 INTERNATIONAL SEARCHING AU'THORITY
Supplemental Box

In case the space in any of the preceding boxes is not sufficient.
Continuation of:

Claim 13 lacks an inventive step under PCT Article 33(3) as being obvious over Rakkola in view of Doll et al. (hereinafter, Doll).
Referring to Claim 13, Rakkola discloses wherein processing the motion data further comprises removing the one or more glitches in the motion data from the motion data before calculating the long average (paragraph 0042, adjusting acceleration measurements to offset errors [i.e., glitches]. Then accelerometer data for each of the three axes is averaged 315, which is a simple and power-efficient way of deemphasizing measurement errors), but does not explicitly disclose verifying whether the motion data comprises one or more glitches. In disclosing a periodic test signal is injected into a motion sensor (Abstract), Doll teaches verifying whether the motion data comprises one or more glitches (paragraph 0007, verifying proper operation of a motion sensor includes injecting a test signal into the motion sensor and then measuring the output of the sensor. Upon determining that the output is either above or below the acceptable range of output values, a fault is declared and an error signal generated). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola as taught by Doll in order to make sure that the system is operating with valid information.

Claims 2-4, 8, 15-20 and 23-24 lack an inventive step under PCT Article 33(3) as being obvious over Rakkola in view of Mattice et al. (hereinafter, Mattice)

Referring to Claim 2, Rakkola discloses wherein determining the idle sample value for the dominant axis comprises: receiving motion data from a motion sensor (paragraph 0039, the motion detector receives and analyzes the accelerometer output signal); processing the motion data to establish an idle sample value; and processing the idle sample value (paragraph 0001, processing of signals from an accelerometer; paragraph 0044, if no significant data is forthcoming from the accelerometer [e.g. because the accelerometer data is not changing significantly over time], then the motion detector shifts to an idle mode - it is interpreted that the accelerometer data that us not changing over time represent idle sample values), but is silent on establishing the dominant axis. In disclosing techniques for controlling a wager-based game played at a gaming system (Abstract), Mattice teaches processing the idle sample value to establish the dominant axis (paragraph 0155 , raw data corresponding to movement of a handheld device is received. The raw movement data is processed to yield an output indicating movement of the handheld device; paragraph 0156, determine a dominant axis of motion). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola as taught by Mattice in order to determine the axis with the greater amount of movement.

Referring to Claim 3, Rakkola discloses wherein the motion sensor comprises an accelerometer (paragraph 0014, the motion detector uses acceleration data that has been generated by an accelerometer).

Referring to Claim 4, Rakkola discloses wherein the idle sample value comprises a long-average of accelerations over a sample period along the dominant axis (paragraph 0018, incoming acceleration data [i.e., current data] is summed into a single register per axis. When the number of samples has been summed, the output is divided by a shifting a bit vector in order to get an average value over a selected number of samples; paragraph 0019, when the motion detector is enabled, a reference level [i.e., idle data] is calculated automatically. The reference levels are calculated for each of the three axes), but is silent on recording said accelerations when the device goes to idle mode after a period of inactivity. However, recording data during a specific period of time is known in the art and the specifics would be a matter of design choice. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola in order to continue collecting data when device is inactive.

Referring to Claim 8, Rakkola is silent wherein the change in the dominant axis comprises a change in acceleration along the dominant axis. Mattice teaches wherein the change in the dominant axis comprises a change in acceleration along the dominant axis (paragraphs 0053 and 0164, the handheld device may detect changes in acceleration with respect to one or more specified axes [x-axis, y-axis, and/or z-axis]). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola as taught by Mattice in order to determine whether the device is at rest or not.

Referring to Claim 15, Rakkola discloses computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis (paragraph 0042, a processor interrupt signal is provided if the average acceleration [i.e., current sample value] minus the reference level [i.e., idle value] exceeds a threshold); and comparing the difference against a threshold value to establish whether to wake the device up (paragraph 0035, the motion detector can trigger an interrupt signal when thresholds are exceeded on selected axis/axes), but does not explicitly disclose computing said difference when the device goes to idle mode after a period of inactivity; and determining a new dominant axis based on the motion data received from the motion sensor. However, calculating data during a specific period of time (i.e., period of inactivity) is known in the art and the specifics would be a matter of design choice. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola in order to continue collecting data when a device is inactive. Mattice teaches determining a new dominant axis based on the motion data received from the motion sensor (Fig. 2A, motion detection device 224; paragraph 0155, raw data [i.e., motion data] corresponding to movement of a handheld device is recelved; paragraph 0156, determine a dominant axis of motion; paragraph 00165 , the handheld device may detect changes in acceleration with respect to one or more axes). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola modified as taught by Mattice in order to determine whether the device is at rest or not.

WRITTEN OPINION OF THE

INTERNATIONAL SEARCHING AUTHORITY

Supplemental Box

In case the space in any of the preceding boxes is not sufficient

Continuation of:

Referring to Claim 16, Rakkola discloses a system comprising: a long average logic to create one or more long averages of accelerations as measured by a motion sensor over a period of tlme (paragraph 0018, incoming acceleration data is summed into a single register per axis. When the number of samples has been summed, the output is divided by a shifting a bit vector in order to get an average value over a selected number of samples); and a computation logic to determine if the long averages of accelerations indicate a true motion of the device (paragraph 0042, a processor interrupt signal is provided if the average acceleration minus the reference level exceeds a threshold, so that the processor can then monitor acceleration with the full accuracy and take actions in response to the detection of acceleration [i.e. motion of the device]), but is silent on a dominant axis logic to determine a dominant axis of a device based on motion data. Mattice teaches a dominant axis logic to determine a dominant axis of a device based on motion data (paragraph 0155, raw data corresponding to movement of a handheld device is received. The raw movement data is processed to yield an output indicating movement of the handheld device; paragraph 0156, determine a dominant axis of motion). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola as taught by Mattice in order to determine the axis with the greater amount of movement.

Referring to Claim 17, Rakkola discloses a motion sensor logic to detect motion data (paragraph 0006, a motion detector can detect acceleration [i.e., motion] of a device).

Referring to Claim 18, Rakkola discloses wherein the motion sensor logic comprises an accelerometer (Fig. 2, 205) to detect acceleration along one or more axes (paragraph 0006, a motion sensor detects acceleration of a device by analyzing the signal from the device's triaxial accelerometer; paragraph 0003, a triaxial accelerometer measures all three components of acceleration).

Referring to Claim 19, Rakkola discloses motion data is collected to compute the one or more long averages of accelerations (paragraph 0014, the motion detector uses acceleration data that has been generated by an accelerometer; paragraph 0018, incoming acceleration data is summed into a single register per axis. When the number of samples has been summed, the output is divided by a shifting a bit vector in order to get an average value over a selected number of samples), but is silent on a sample period logic to set the period over which motion data is collected. However, selecting the time during which to collect data is a common practice in the art, and the specifics would be a matter of design choice. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola in order to collect data during different periods of time.

Referring to Claim 20, Rakkola discloses a power logic (Fig. 2, 115) to activate the device when the motion data indicates the device should be woken up (paragraph 0017, once movement of the device is detected, the processor can be woken up for further analysis of movement; paragraph 0039, the low power motion detector 115 analyzes the accelerometer output signal 110 , and if the motion detector determines that significant acceleration is or may be present, then the motion detector sends a processor interrupt signal 120 to a processor 125 which is either in an idle state or is performing other tasks. The processor determines actions that need to be taken in response to the accelerometer output data).

Referring to Claim 23, Rakkola discloses a glitch corrector logic to correct one or more glitches in the motion data (paragraph 0042, adjusting acceleration measurements to offset errors [i.e., glitches]).

Referring to Claim 24, Rakkola discloses wherein the glitch corrector removes the one or more glitches before the one or more long averages are calculated (paragraph 0042, adjusting acceleration measurements to offset errors [i.e., glitches]. Then accelerometer data for each of the three axes is averaged 315, which is a simple and power-efficient way of deemphasizing measurement errors).

Claim 9 lacks an inventive step under PCT Article 33(3) as being obvious over Rakkola in view of Gregg et al. (hereinafter, Gregg)
Referring to Claim 9, Rakkola is silent wherein waking up the device further comprises configuring the device to return to a last active device state. In disclosing a communicating screen saver (Title), Gregg teaches wherein waking up the device further comprises configuring the device to return to a last active device state (Col. 1 lines 23-30, the screensaver is invoked after a few minutes of keyboard or mouse inactivity. Once invoked, the screensaver can only be deactivated by an input interrupt such as a movement of a mouse or a keyboard input. When interrupted [i.e., woken up], the screen is restored to its last active state). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola as taught by Gregg in order to provide a means of viewing and executing applications that were being utilized when the user left the device.

Claim 21 lacks an inventive step under PCT Article 33(3) as being obvious over Rakkola in view of Mattice, and further in view of Gregg.
Referring to Claim 21, Rakkola is silent on a device state logic to restore the device to a last active state. Gregg teaches a device state logic to restore the device to a last active state (Col. 1 lines $23-30$, the screensaver is invoked after a few minutes of keyboard or mouse inactivity. Once invoked, the screensaver can only be deactivated by an input interrupt such as a movement of a mouse or a keyboard input. When interrupted [i.e., woken up], the screen is restored to its last active state). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola as taught by Gregg in order to provide a means of viewing and executing applications that were being utilized when the user left the device.

WRITTEN OPINION OF THE	International application No.
INTERNATIONAL SEARCHING AUTHORITY	PCT/US2009/059900

PCT/US2009/059900

Supplemental Box

In case the space in any of the preceding boxes is not sufficient.
Continuation of:
Claim 22 lacks an inventive step under PCT Article 33(3) as being obvious over Rakkola in view of Mattice and Gregg, and further in view of Oh.

Referring to Claim 22, Rakkola, Mattice, and Gregg are silent wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up. In disclosing a portable computer system having an application program launcher for low power consumption (Title), Oh teaches wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up (Abstract and Col. 3 lines 13-25, using the launcher, a user selects [i.e., customizes] and executes one of several application programs in a program selectlon menu. If a launching signal is generated when the hand-held computer is at a low power consumption mode [i.e., idle mode], the hand-held computer wakes up from a sleep mode. At this time, a program selection menu is displayed on a screen). Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to include the above features in the invention of Rakkola modified as taught by Oh in order to provide a means of viewing and executing applications that were being utilized when the user left the device.

Claims 1 -24 meet the criteria set out in PCT Article 33(4), and thus have industrial applicability because the subject matter claimed can be made or used in industry.

Form PCT/ISA/237 (Supplemental Box) (July 2009)

Electronic Acknowledgement Receipt	
EFS ID:	7510789
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	28-APR-2010
Filing Date:	08-OCT-2008
Time Stamp:	21:37:05
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted w	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		8689P057_IDS_and_SB08.pdf		yes	4

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	$:$ Philippe Kahn, et al
Appl. No.	$: 12 / 247,950$
Filed	$:$ October 8, 2008
For	$:$Method and System for Waking Up a Device Due to Motion

Customer No. : 08791
Examiner: \quad Not yet assigned
Art Unit: $\quad 2612$
Confirmation No. 8961

CERTIFICATE OF TRANSMISSION

I hereby certify that this correspondence is being
submitted electronically via EFS Web on the date
shown below.

/Judith Szepesi/ April 28, 2010 Date

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 together with copies of the documents cited on that form, except for copies not required to be submitted (e.g., copies of U.S. patents and U.S. published patent applications need not be enclosed). It is respectfully requested that the cited documents be considered and that the enclosed copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):
$\underline{\mathbf{X}} \quad 37$ C.F.R. §1.97(b).
\qquad 37 C.F.R. §1.97(c). If so, then enclosed with this Information Disclosure Statement is one of the following:
\qquad A statement pursuant to 37 C.F.R. §1.97(e) or
The Director is Authorized to charge in the amount of $\$ \underline{180.00}$ for the fee under 37 C.F.R. § 1.17(p).

37 C.F.R. §1.97(d). If so, then enclosed with this Information Disclosure Statement are the following:
(1) A statement pursuant to 37 C.F.R. §1.97(e); and
(2) A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1.17(p)$ for submission of the Information Disclosure Statement.

If there are any additional charges, please charge Deposit Account No. 02-2666.
Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: April 28, 2010
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393

1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No 12/247,950	Applicant(s) KAHN ET AL.	
	Examiner SHIRLEY LU	Art Unit 2612	
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 1 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR $1.136(\mathrm{a})$. In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).			
Status			
2a) This action is FINAL. 2b) \square This action is non-final. 3) \square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.			
Disposition of Claims			
4) \boxtimes Claim(s) $1-24$ is/are pending in the application 4a) Of the above claim(s) \qquad is/are withd 5) Claim(s) \qquad is/are allowed. 6) \square Claim(s) \qquad is/are rejected. 7) \square Claim(s) \qquad is/are objected to.	n from conside ection requirem		
Application Papers			
9) \square The specification is objected to by the Exam 10) \square The drawing(s) filed on \qquad is/are: a) \square Applicant may not request that any objection to the Replacement drawing sheet(s) including the corr 11) \square The oath or declaration is objected to by the	pted or b) \square ob rawing(s) be held n is required if th miner. Note the	xaminer. 37 CFR 1 ected to. Action or	FR 1.121(d) TO-152.
Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for forei a) \square All b) \square Some * c) \square None of: 1. \square Certified copies of the priority docume $2 . \square$ \square Certified copies of the priority docume $3 . \square$ Copies of the certified copies of the p application from the International Bure * See the attached detailed Office action for a list	priority under 35 have been rece have been rece ty documents h (PCT Rule 17.2 of the certified	(d) or (f). No. \qquad d in this	Stage
Attachment(s)			
1) \square Notice of References Cited (PTO-892) 2) \square Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) \square Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date \qquad -.	4) \square 5) \square 6)	(PTO-413) \qquad atent Appli	

DETAILED ACTION

Election/Restrictions

Restriction to one of the following inventions is required under 35 U.S.C. 121:
I. Claims 1-15, drawn to a method and determining an idle sample value, classified in class 713 , subclass 323 .
II. Claims 16-24, drawn to a system and long average logic, classified in class 702, subclass 127.

The inventions are distinct, each from the other because of the following reasons:
Inventions I and II are related as combination and subcombination. Inventions in this relationship are distinct if it can be shown that (1) the combination as claimed does not require the particulars of the subcombination as claimed for patentability, and (2) that the subcombination has utility by itself or in other combinations (MPEP § 806.05(c)). In the instant case, the combination as claimed does not require the particulars of the subcombination as claimed because the combination as claimed does not require the particulars of the subcombination as claimed for patentability or the subcombination has utility by itself or in other combinations. The subcombination has separate utility such as a method of determining an idle sample value.

The examiner has required restriction between combination and subcombination inventions. Where applicant elects a subcombination, and claims thereto are subsequently found allowable, any claim(s) depending from or otherwise requiring all the limitations of the allowable subcombination will be examined for patentability in accordance with 37 CFR 1.104. See MPEP § 821.04(a). Applicant is advised that if any claim presented in a continuation or
divisional application is anticipated by, or includes all the limitations of, a claim that is allowable in the present application, such claim may be subject to provisional statutory and/or nonstatutory double patenting rejections over the claims of the instant application.

Restriction for examination purposes as indicated is proper because all these inventions listed in this action are independent or distinct for the reasons given above and there would be a serious search and/or examination burden if restriction were not required because at least one of the reason(s) apply.

Applicant is advised that the reply to this requirement to be complete must include (i) an election of a invention to be examined even though the requirement may be traversed (37 CFR 1.143) and (ii) identification of the claims encompassing the elected invention.

There is a search and/or examination burden for the patentably distinct species as set forth above because at least one of the above reason(s) applies.

Applicant is advised that the reply to this requirement to be complete must include (i) an election of a species or a grouping of patentably indistinct species to be examined even though the requirement may be traversed (37 CFR 1.143) and (ii) identification of the claims encompassing the elected species or grouping of patentably indistinct species, including any claims subsequently added. An argument that a claim is allowable or that all claims are generic is considered nonresponsive unless accompanied by an election.

The election may be made with or without traverse. To preserve a right to petition, the election must be made with traverse. If the reply does not distinctly and specifically point out supposed errors in the election of species requirement, the election shall be treated as an election without traverse. Traversal must be presented at the time of election in order to be considered
timely. Failure to timely traverse the requirement will result in the loss of right to petition under 37 CFR 1.144. If claims are added after the election, applicant must indicate which of these claims are readable on the elected species or grouping of patentably indistinct species.

Should applicant traverse on the ground that the species, or groupings of patentably indistinct species from which election is required, are not patentably distinct, applicant should submit evidence or identify such evidence now of record showing them to be obvious variants or clearly admit on the record that this is the case. In either instance, if the examiner finds one of the species unpatentable over the prior art, the evidence or admission may be used in a rejection under 35 U.S.C. 103(a) of the other species.

Upon the allowance of a generic claim, applicant will be entitled to consideration of claims to additional species which depend from or otherwise require all the limitations of an allowable generic claim as provided by 37 CFR 1.141.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shirley Lu whose telephone number is (571) 272-8546. The examiner can normally be reached on 8:30-5:00 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Daniel Wu can be reached on (571) 272-2964. The fax phone number for the organization where this application or proceeding is assigned is (571) 273-8300.

Art Unit: 2612

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
/Shirley Lu/

Primary Examiner, Art Unit 2612

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

| Applicant | $:$ Philippe Kahn, et al | Examiner: | Lu, Shirley |
| :--- | :--- | :--- | :--- | :--- |
| Appl. No. | $:$ 12/247,950 | Art Unit: | 2612 |
| Filed | $:$ October 8, 2008 | Conf No: | 8961 |

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

AMENDMENT

Sir:

In response to the election/restriction requirement set forth in the Office Action of February 17, 2011, applicants respectfully request the Examiner to enter the following amendments and consider the following remarks:

Amendments to the Claims are reflected in the listing of claims which begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

IN THE CLAIMS:

1. (Original) A method comprising:
determining an idle sample value for a dominant axis of a device;
registering a motion of the device; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device.
2. (Original) The method of claim 1, wherein determining the idle sample value for the dominant axis comprises:
receiving motion data from a motion sensor;
processing the motion data to establish an idle sample value; and
processing the idle sample value to establish the dominant axis.
3. (Original) The method of claim 2, wherein the motion sensor comprises an accelerometer.
4. (Original) The method of claim 2, wherein the idle sample value comprises a long-average of accelerations over a sample period along the dominant axis recorded when the device goes to idle mode after a period of inactivity.
5. (Original) The method of claim 1, further comprising determining the idle sample value for each of the other axes of the device.
6. (Original) The method of claim 1, wherein registering the motion of the device comprises:
receiving motion data from a motion sensor; and
processing the motion data to determine a current sample value of the dominant axis of the device.
7. (Original) The method of claim 1, further comprising comparing a difference between a current sample value along the dominant axis determined based
on the motion of the device and the idle sample value of the dominant axis against a threshold value.
8. (Original) The method of claim 1, wherein the change in the dominant axis comprises a change in acceleration along the dominant axis.
9. (Original) The method of claim 1, wherein waking up the device further comprises configuring the device to return to a last active device state.
10. (Original) The method of claim 6, wherein the current sample value is a long average of accelerations.
11. (Original) The method of claim 6, further comprising determining the current sample value for each of the other axes of the device.
12. (Original) The method of claim 6, wherein the motion sensor comprises an accelerometer.
13. (Original) The method of claim 6, wherein processing the motion data further comprises
verifying whether the motion data comprises one or more glitches; and removing the one or more glitches in the motion data from the motion data before calculating the long average.
14. (Original) The method of claim 6 , further comprising determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value.
15. (Original) The method of claim 8, further comprising:
determining a new dominant axis based on the motion data received from the motion sensor;
computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis determined when the device goes to idle mode after a period of inactivity; and
comparing the difference against a threshold value to establish whether to wake the device up.

Claims 16-24 (Canceled)
25. (New) A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
26. (New) The mobile device of claim 25, further comprising:
a long average logic to create one or more long averages of accelerations as measured by the motion sensor over a period of time, the long averages setting the idle sample value for the dominant axis.
27. (New) The mobile device of claim 26, further comprising a sample period logic to set the period over which motion data is collected to compute the one or more long averages of accelerations.
28. (New) The mobile device of claim 26, further comprising:
a computation logic to determine if the long averages of accelerations indicate a change in the dominant axis of the device.
29. (New) The mobile device of claim 26, further comprising a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated.

12/247,950
30. (New) The mobile device of claim 25, wherein the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes.
31. (New) The mobile device of claim 25, further comprising a device state logic to restore the device to a last active state.
32. (New) The mobile device of claim 31, wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up.
33. (New) A system to wake up a mobile device comprising:
a dominant axis logic to determine a current dominant axis of the device; and a power logic to move the device from an inactive state to an active state upon detection of a change in the dominant axis.

Remarks/Arguments

Reconsideration of the present application, as amended, is respectfully requested. Claims 16-24 have been cancelled. New claims 25-33 have been added. It is respectfully submitted that the amendment does not add new matter. Applicants reserve all rights with respect to the applicability of the Doctrine of Equivalents.

Examiner requires restriction to one of the following inventions under 35 U.S.C. 121:
I. Claims 1-15, classified in class 713, subclass 323; and
II. Claims 16-24, classified in class 702, subclass 127.

Applicant respectfully elects Group I to be examined, with traverse. Applicants respectfully submit that the long average logic recited in claims 16-24 is used in determining the idle sample value, as described in the Specification. Therefore, Applicant respectfully submits that the separate utility suggested by the Examiner is incorrect.

However, in order to expedite prosecution, applicants have canceled the claims of Group II, and added new claims drawn to the apparatus.

If a telephone interview would expedite the prosecution of this application, the Examiner is invited to contact Judith Szepesi at (408) 720-8300.

If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: March 17, 2011
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393
Customer No. 08791 1279 Oakmead Parkway Sunnyvale, CA 94085
(408) 720-8300

Electronic Acknowledgement Receipt	
EFS ID:	9679952
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	18-MAR-2011
Filing Date:	08-OCT-2008
Time Stamp:	02:39:02
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	no				
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		8689P057_RestrictionResp_Mar ch2011.pdf	28982	yes	6

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112 :

> The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the ert to whick it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.
> Claims 26-29 is/are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. Claim 26 recites "the long averages setting the idle sample value for the dominant axis." Proper action is required.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112 :
The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim(s) 1-15, 25-33 is/are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The term "long average(s)" in claim(s) $4,10,13,26-29$ is a relative term which renders the claim indefinite. The term "long average(s)" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Proper action is required.

Claim(s) 4, 10, 13, 26-29 recite(s) the limitation(s): long average(s). It is not clear what exactly is being claimed. The dependent claims are rejected under similar reasoning. Proper action is required.

The term "dominant axis" in claim(s) 1-2, 4, 6-8, 15, 25-33 is a relative term which renders the claim indefinite. The term "long average(s)" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Proper action is required.

Claim(s) 1-2, 4, 6-8, 15, 25-33 recite(s) the limitation(s): dominant axis. It is not clear what exactly is being claimed. The dependent claims are rejected under similar reasoning. Proper action is required.

Claim(s) 26 recite(s) the limitation(s): the long averages setting the idle sample value for the dominant axis. It is not clear what exactly is being claimed. The dependent claims are rejected under similar reasoning. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Proper action is required.

Claim(s) 10 recite(s) the limitation(s): the current sample value. There is insufficient antecedent basis for this/these limitation in the claim(s). The dependent claims are rejected under similar reasoning. Proper action is required.

Claim(s) 10 recite(s) the limitation(s): the current sample value. It is not clear what exactly is being claimed. It is also unclear as to which current sample value the claim is referring to. The dependent claims are rejected under similar reasoning. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Proper action is required.

Claim Rejections - 35 USC § 102

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

1. Claim(s) 1,5-7, 10-12, 14 is/are rejected under 35 U.S.C. 102(b) as being

 anticipated by Rakkola (20060161377).As to claim(s) 1, Rakkola disclose(s):
A method comprising: determining an idle sample value for a dominant axis of a device; registering a motion of the device; and waking up the device when the motion of the device indicates a change in the dominant axis of the device ([0015-44]).

As to claim(s) 5, Rakkola disclose(s):
determining the idle sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 6, Rakkola disclose(s):
registering the motion of the device comprises: receiving motion data from a motion sensor; and processing the motion data to determine a current sample value of the dominant axis of the device ([0015-44]).

As to claim(s) 7, Rakkola disclose(s):

Art Unit: 2612
comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value ([0015-44]).

As to claim(s) 10, Rakkola disclose(s):
the current sample value is a long average of accelerations ([0015-44]).
As to claim(s) 11, Rakkola disclose(s):
determining the current sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 12, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 14, Rakkola disclose(s):
determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value ([0015-44]).

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
2. Claim(s) 2-4, 8, 15, 25-30, 33 is/are rejected under $\mathbf{3 5}$ U.S.C. 103(a) as being
unpatentable over Rakkola (20060161377) in view of Mattice (20070259716).
As to claim(s) 2,
Rakkola disclose(s): data from a motion sensor; processing the motion data; and processing the idle sample value ([0015-44]).

The above art/combination does not expressly disclose to establish the dominant axis; to establish an idle sample value.

Rakkola disclose(s): processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 3, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 4,
Rakkola disclose(s):
the idle sample value comprises a long-average of accelerations over a sample period along the dominant axis; when the device goes to idle mode after a period of inactivity ([0015-44]).

The above art/combination does not expressly disclose recorded.
Mattice discloses recorded spatial signatures, spatial signatures may be tracked, recorded, and/or analyzed by one or more motion detector devices; recording motion data (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when the device is inactive, to track, record, and/or analyze the data. As to claim(s) 8,

The above art/combination does not expressly disclose the change in the dominant axis comprises a change in acceleration along the dominant axis.

Mattice discloses the change in the dominant axis comprises a change in acceleration along the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine whether the device is rest.

As to claim(s) 15,
Rakkola disclose(s): computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis; comparing the difference against a threshold value to establish whether to wake the device up ([0015-44]).

The above art/combination does not expressly disclose determining a new dominant axis based on the motion data received from the motion sensor; when the device goes to idle mode after a period of inactivity.

Rakkola disclose(s): updating values automatically and periodically, as a programmable parameter; computing when the device goes to idle mode after a period of inactivity ([0015-44]).

Mattice discloses determining a new dominant axis based on the motion data received from the motion sensor (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when a device is inactive, to determine whether the device is at rest, and to update values automatically and/or periodically, as a programmable parameter. As to claim(s) 25,

Rakkola disclose(s): A mobile device comprising: a motion sensor to register a motion of the mobile device; and a power logic to activate the device when the motion indicates a change in the dominant axis of the device ([0015-44]; see also claim 2).

The above art/combination does not expressly disclose a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data.

Mattice discloses a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim 2).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine the axis with the greater amount of movement (see also claim 2).

As to claim(s) 26,
Rakkola disclose(s): a long average logic to create one or more long averages of accelerations as measured by the motion sensor over a period of time ([0015-44]).

The above art/combination does not expressly disclose the long averages setting the idle sample value for the dominant axis.

Rakkola disclose(s): processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 27,
Rakkola disclose(s): to compute the one or more long averages of accelerations ([001544]).

Art Unit: 2612
The above art/combination does not expressly disclose a sample period logic to set the period over which motion data is collected.

Rakkola discloses logic to set a period over which motion data is collected; the number of samples summed to compute the one or more long averages of accelerations is a programmable setting ([0015-44]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a programmable setting to choose the number of samples collected and processed. As to claim(s) 28, Rakkola disclose(s):
a computation logic to determine if the long averages of accelerations indicate a change in the dominant axis of the device ([0015-44]).

As to claim(s) 29, Rakkola disclose(s):
a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated ([0015-44]; see also claim 13).

As to claim(s) 30, Rakkola disclose(s):
the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes ([0015-44]).

As to claim(s) 33,
A system to wake up a mobile device comprising: a dominant axis logic to determine a current dominant axis of the device; and a power logic to move the device from an inactive state to an active state upon detection of a change in the dominant axis (see claims 1, 25).

Art Unit: 2612
3. Claim(s) 9 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Gregg (6353449).

As to claim(s) 9,
The above art/combination does not expressly disclose waking up the device further comprises configuring the device to return to a last active device state.

Gregg discloses waking up the device further comprises configuring the device to return to a last active device state ([1, 23-30]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized when the user left the device.
4. Claim(s) 31 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449).

As to claim(s) 31,
a device state logic to restore the device to a last active state (see claim(s) 9).
5. Claim(s) 13 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Doll (20070150136).

As to claim(s) 13,
Rakkola disclose(s): processing the motion data further comprises; and removing the one or more glitches in the motion data from the motion data before calculating the long average ([0015-44]).

The above art/combination does not expressly disclose verifying whether the motion data comprises one or more glitches.

Doll discloses verifying whether the motion data comprises one or more glitches ([0007]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to ensure that the system utilizes and processes valid information and data.

6. Claim(s) 32 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449) in view of Oh (6771250).

As to claim(s) 32,
The above art/combination does not expressly disclose the device state logic allows user interaction to customize applications to be displayed when the device is woken up.

Oh discloses the device state logic allows user interaction to customize applications to be displayed when the device is woken up ([3, 13-25]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized and/or as desired by a user.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shirley Lu whose telephone number is (571) 272-8546. The examiner can normally be reached on 8:30-5:00 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Daniel Wu can be reached on (571) 272-2964. The fax phone number for the organization where this application or proceeding is assigned is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
/Shirley Lu/
Primary Examiner, Art Unit 2612

Notice of References Cited	Application/Control No. $12 / 247,950$	Applicant(s)/Patent Under Reexamination KAHN ET AL.	
	Examiner SHIRLEY LU	Art Unit 2612	Page 1 of 1

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	U	

${ }^{*}$ A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

BIB DATA SHEET
CONFIRMATION NO. 8961

EAST Search History

EAST Search History (Prior Art)

L5	7354		USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/28 } \\ & \text { 14:15 } \end{aligned}$
L6	3525	long adj average	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/28 } \\ & 14: 15 \end{aligned}$
L"	3	5 and L6	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2011 / 04 / 28}{14: 15}$
L8	8	(("20070259716") or ("6353449") or ("20070150136") or ("6771250")).PN.	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
L9	1	5 and L8	USPGPMB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR'	OOFF	$\begin{aligned} & \text { 2011/04/28 } \\ & 14: 15 \end{aligned}$
02	28		USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OOFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$

S3	7	S2 and remote\$4	USPGPUB; USPAT; USOCR; PPRS; EEO; JPO; DERWENT; IBM TDB	OR	OFF	2010/05/03 09:48
S4	2	S3 and distance\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2010105 / 03$ 09:49
55	1	20040095252'.pn. and distance\$1	USPCPUB; USPAT; USOCR; PPRS; EEO; JPO; DERNENT; IBM TDB	OR	OFF	2010/05/03 09:50
56	3552061	"20030222775.pn.and" distance\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	2010/05/03 10:14
S7	3552061	20030222775.pn. and" distance\$1	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	2010/05/03 10:14
88	0	20030222775".pn. and distance\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2010 / 05 / 03$ 10:14

S9	2	"20030098792".pn.	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2010/05/03 10:16
S10	0	"20030098792".pn. and temperature	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$201005 / 03$ 10:40
S11	0	"20030098792".pn. and temperature\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; BM TDB	OR	OFF	2010/05/03 10:40
S12	1	20030098792".pn. and motion	USPGPUB; USPAT; USOCR; FPRS; EEP; JPO; DERNENT; BMM TDB	OR	OFF	2010/05/03 10:43
${ }^{513}$	2	S2 and distance\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM_TDB	OR	OFF	2010/05/03 10:46
${ }^{174}$	11	baby adj seat and distance same counter	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2010/05/03 11:13

S15	19	baby adj seat and predetermined adj distance	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 17 \end{aligned}$
S16	2	'"20030122662".pn. and range	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERNENT; BM TDB	OR	OFF	201005003 $11: 20$
S17	167	car adj seat and predetermined adj distance	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2010/05/03 11:22
S18	167	car adj seat and predetermined adj distance	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; BM_ TDB	OR	OFF	$2010 / 05 / 03$ 11:23
S19	133	car adj seat and distance with signal\$1	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2010/05/03 11:24
30	14	car adj seat and predetermined adj distance with signal\$1	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; BM_ TDB	OR	OFF	2010105003 $11: 24$

S21	0	"7797212".pn. and counter	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$2010105 / 03$ 11:26
322	12	car adj seat and distance with signal\$1 adj strength $\$ 1$	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2010:05/03 $11: 27$
523	0		USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERNENT; BBM TDB	OR	OPF	2010 055/13 20:05
S24	1	"131848".apn. and automatic\$4	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	2010/05/13 20:05
S25	3	"131848".apn.	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2010/05/13 20:06
S26	1	"131848".apn. and automatic\$4	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BBM TDB	OR	OFF	2010/05/13 20:06

S27	12	lojack.as. and automatic\$4	USPGPBB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 201005 / 13 \\ & 20: 12 \end{aligned}$
S28	2	"7561102".pn.	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	2010/05/13 20:14
S29	2	" 7536169 ".pn.	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	2010/05/13 20:15
330	3940	counter with time with distance	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/01/10 } \\ & 12: 52 \end{aligned}$
331	245	counter with measur\$4 nears (time with distance)	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM_TDB	OR	OFF	2011/01/10 12:52
332	25	S31 and @rlad < "20060718"	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 54 \end{aligned}$

333	11598	"327"/\$.ccls. and rectifier	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 201101 / 111 \\ & 22: 16 \end{aligned}$
334	616	"327"/\$.ccls. and rectifier.ti.	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 201101 / 11 \\ & 22: 16 \end{aligned}$
335	36	3401573.1 and return adj signal with distance	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 49 \end{aligned}$
336	21	S35 and @rlad < "20060718"	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	2011/04/26
337	2	"20030034887".pn. and return adj signal	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 53 \end{aligned}$
338	2	"20030034887".pn.	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 18: 12 \end{aligned}$

339	2	"20030034887".pn. and return adj signal	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 18: 12 \end{aligned}$
S40	1	"20030034887".pn. and "10"	USPGPBB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM_TDB	OR	OFF	2011/04/26" 18:18
S41	2	'"20030034887. pn. and timer	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM_TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 18: 38 \end{aligned}$
S42	0	"20030098792".pn. and "72"	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	2011/04/26" 18:46
S43	1	"20030098792".pn. and "27"	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	2011/04/26 18:46
S44	0	"779712..apn. and low adj power	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2011 / 04 / 26$ $118: 53$

\$45	0	7779712".apn. and motion adj detector	USPGPUB; USPAT; USOCR; FPRS; POO; IPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26" } \\ & 18: 53 \end{aligned}$
S46	0	"779712.apn. and motion	USPGPUB; USPAT; USOCR; FPRS; EPO; POO; DERNENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
\$47	3	"779712".apn.	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26" } \\ & 18: 53 \end{aligned}$
\$48	2	6922147. pn. and temperature	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 19: 06 \end{aligned}$
\$49	6	$\begin{aligned} & (" 20030098792 ") \text { or ("20030034887") or } \\ & (" 6922147)) \cdot P N \text {. } \end{aligned}$	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OPF	$\begin{aligned} & \text { 2011/04/26" } \\ & \text { 19:31 } \end{aligned}$
550	3	S49 and (conserv\$4 sav\$4 power reduc\$4)	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	201/104/26

\$51	3	S49 and (conserv\$6 sav\$4 power reduc\$4)	USPGPUB; USPAT; USOCR; PPRS; EEO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
\$52	2	S49 and motion	USPGPUB; USPAT; USOCR; PPRS; EEO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 20: 56 \end{aligned}$
\$53	0	mion adj detector with sleep	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 05 \end{aligned}$
S54	52	motion adj detector with sleep adj mode	USPGPUB; USPAT; USOCR; PPSS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 05 \end{aligned}$
S55	10	S54 and @rlad < "20060718"	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 06 \end{aligned}$
\$56	9857		USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$

\$57	5	S56 and 554	USPGPUB; USPAT; USOCR; PPRS; EEP; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 21: 15 \end{aligned}$
\$58	638	signal adj edge adj detector	USPGPUB; USPAT; USOCR; PPSS; EEP; JPO; DERWENT; BM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 21: 18 \end{aligned}$
\$59	0	signal adj edge adj detector same reduce adj error	USPGPUB; USPAT; USOCR; PPRS; EEP; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
S60	33	signal adj edge adj detector same error	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 21: 19 \end{aligned}$
S61	10	signal adj edge adj detector with error	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 21: 19 \end{aligned}$
S62	3	signal adj edge adj detector with error with cunt\$\$	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 21 \end{aligned}$

\$63	3	signal adj edge adj detector with error with cunt\$4	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 22 \end{aligned}$
\$64	10	signal adj edge adj detector with error	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
S65	34	signal adj edge adj detector and measuu\$\$4 adj time	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; BM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
\$66	5	signal adj edge adj detector same measur\$4 adj time	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011104/26" } \\ & 21: 23 \end{aligned}$
867	3120	edge adj detect\$4 with counter	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; BM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 24 \end{aligned}$
\$68	86	edge adj detect\$4 with counter with error\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 24 \end{aligned}$

S69	23	S68 and @rlad < "20060718"	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; BM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 25 \end{aligned}$
S70	45	edge adj detect\$4 with reduc\$4 near3 erroor\$1	USPGPUB; USPAT; USOCR; PRRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 21: 26 \end{aligned}$
\$71	7	S70 and @rlad < "20060718"	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; BM_ TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 26 \end{aligned}$
S72	1	"247950.apn. and dominant adj axis	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 03 \end{aligned}$
S73	18		USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/26 } \\ & 22: 40 \end{aligned}$
S74	0	(200700259711").PN.	USPGPUB; USPAT; USOCR; FPRS; EPO; IPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/27 } \\ & 11: 57 \end{aligned}$

S75	2	("20070259716").PN.	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/27" } \\ & 11: 57 \end{aligned}$
S76	8	(("20070259716") or ("6353449") or ("20070150136") or ("6771250")).PN.	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/27" } \\ & 17: 37 \end{aligned}$
S77	1	"247950'.app. and (long adj average\$1 with idle)	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERNENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
S78	1	"247950".apn. and (long adj average\$1 with set\$4)	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
S79	1	"247950".apn. and (long adj average\$1 with idle adj sample)	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; BBM TDB	OR	OPF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 14 \end{aligned}$
S80	1	"247950. 2 apn. and (long adj averages'	USPCPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 17 \end{aligned}$

881	3524	long adj average	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; BM_ TDB	OR	OFF	$\begin{aligned} & \text { 2011104/27 } \\ & \text { 23:18 } \end{aligned}$
882	3524	-"long average"	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011104127 } \\ & \text { 23:19 } \end{aligned}$
S83	10	$\begin{aligned} & (" 20060161377 ") \text { or ("20070259716") or } \\ & (\text { ("6353449") or ("20070150136") or ("6771250")).PN. } \end{aligned}$	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011104/27 } \\ & 23: 26 \end{aligned}$
884	2	S83 and record\$4	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERNENT; BM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$
S85	1	"247950".apn. and dominant	USPGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 34 \end{aligned}$
S86	1	"247950".apn. and idle	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & \text { 2011/04/27 } \\ & 23: 40 \end{aligned}$

487	1	"247950".apn. and new adi dominant	USPCPUB; USPAT; USOCR; PRPS; EPO; JPO; DERWENT; BM TDB	OR	OFF	$\begin{aligned} & 201104127 \\ & 23: 43 \end{aligned}$
888	1	"200601613737.pn. and reference	$\begin{aligned} & \text { USPCPPBP;" } \\ & \text { USPAT; } \\ & \text { USCOR; PRS; } \\ & \text { EPO; JPO; } \\ & \text { DERNENT; } \\ & \text { BBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 0427 \\ & 23: 47 \end{aligned}$
889	0	"20070259716".pn. and (idle sleep)	USPCPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 201104127 \\ & 23: 54 \end{aligned}$
890	2	"'20070259716". pn.	$\begin{aligned} & \text { USPGPOB; } \\ & \text { USPAT; } \\ & \text { USCOR; PPR; } \\ & \text { EPO; JPO; } \\ & \text { DERNEN; } \\ & \text { BBM_TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 57 \end{aligned}$
891	1	"'247950":apn. and ide with omputis4	USPGPPB; USPAT; USCOR; PRS; EPO; JPO; DDRNEN; IBM TDB	OR	OFF	$\begin{aligned} & 2011004127 \\ & 23: 58 \end{aligned}$
992	1	"247950".apn. and idle	$\begin{aligned} & \text { USPCPPB; } \\ & \text { USPAT; } \\ & \text { USCOR; FPR; } \\ & \text { EPO; JPO; } \\ & \text { DERNENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$

4/28/2011 2:20:47 PM
C: Documents and Settings slul My Documents EAST Workspaces 12247950 .wsp

Substitute for Form 1449/PTO INFORMA					Complete if Known	
					Application Number	12/247,950
STATEMENT BY APPLICANT (use as many sheets as necessary)					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	2612
					Examiner Name	Not yet assigned
Sheet	1		of	1	Attorney Docket Number	8689P057
U.S. PATENT DOCUMENTS						
$\begin{aligned} & \text { Examiner } \\ & \text { Initials }^{*} \end{aligned}$	Cite No.'		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, here Relevant
		Number-Kind $\operatorname{Code~}^{2}{ }^{2}(\mathrm{l}$ known)				Figures Appear
		Us-	2005/0210300	9/22/2005	Song et al	
		us-				
		us-				
		us-				
		us-				
		us-				
		us.				
		us-				
		us-				
		us-				
		us.				
		us-				
		us-				
		us.				
		us-				

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Foreign Patent Document Country Code ${ }^{3}$ Number ${ }^{4}$ Kind Code ${ }^{5}$ (if known)	$\begin{gathered} \text { Publication } \\ \text { Date } \\ \text { MM-DD-YYYY } \end{gathered}$	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T^{6}

Examiner Signature	/Shirley Lu/ (04/28/2011)	Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www usptogov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR
COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PT0					Complete if Known	
INFORMATION DISCLOSURE					Application Number	12/247,950
STATEMENT BY APPLICANT (use as many sheets as necessary)					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	3681
					Examiner Name	Not yet assigned
Sheet	1		of	1	Attorney Docket Number	8689P057
U.S. PATENT DOCUMENTS						
Examiner Initials*	Cite No.		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Documen	Pages, Columns, Lines, Where Relevant
		Number-Kind $\operatorname{Code~}^{\text {e }}$ (f/ known)				Passages or Relevant Figures Appear
		Us-	6,013,007	1/11/2000	Root et al	
		Us-	7,010,332	3/7/2006	Irvin et al	
		Us-	2005/0232404	10/20/2005	Gaskill	
		Us-	2007/0125852	6/7/2007	Rosenberg	
		Us-				
		Us-				
		Us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		Us-				
		us-				
		Us-				

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Foreign Patent Document Country Code ${ }^{3}$ Number ${ }^{4}$ Kind Code ${ }^{5}$ (if known)	$\begin{gathered} \text { Publication } \\ \text { Date } \\ \text { MM-DD-YYYY } \end{gathered}$	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T^{6}

Examiner Signature	Shirley Lu/ (04/28/2011)	Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	12/247,950	Art Unit:	2612
Filed	October 8, 2008	Conf No:	8961
For	Method and System for Waking Up a Device Due to Motion	CERTIFICATE OF TRANSMISSION I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.	
Customer No.	08791	/Judith Szepe	August 12, 2011

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

AMENDMENT

Sir:

In response to the Office Action of May 12, 2011, applicants respectfully request the Examiner to enter the following amendments and consider the following remarks:

Amendments to the Claims are reflected in the listing of claims which begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

IN THE CLAIMS:

Abstract

1. (Original) A method comprising: determining an idle sample value for a dominant axis of a device; registering a motion of the device; and waking up the device when the motion of the device indicates a change in the dominant axis of the device.

2. (Original) The method of claim 1, wherein determining the idle sample value for the dominant axis comprises:
receiving motion data from a motion sensor;
processing the motion data to establish an idle sample value; and processing the idle sample value to establish the dominant axis.
3. (Original) The method of claim 2, wherein the motion sensor comprises an accelerometer.
4. (Original) The method of claim 2, wherein the idle sample value comprises a long-average of accelerations over a sample period along the dominant axis recorded when the device goes to idle mode after a period of inactivity.
5. (Original) The method of claim 1, further comprising determining the idle sample value for each of the other axes of the device.
6. (Original) The method of claim 1, wherein registering the motion of the device comprises:
receiving motion data from a motion sensor; and
processing the motion data to determine a current sample value of the dominant axis of the device.
7. (Original) The method of claim 1, further comprising comparing a difference between a current sample value along the dominant axis determined based
on the motion of the device and the idle sample value of the dominant axis against a threshold value.
8. (Original) The method of claim 1, wherein the change in the dominant axis comprises a change in acceleration along the dominant axis.
9. (Original) The method of claim 1, wherein waking up the device further comprises configuring the device to return to a last active device state.
10. (Currently Amended) The method of claim 6, wherein the current sample value of the dominant axis of the device is a long average of accelerations.
11. (Original) The method of claim 6, further comprising determining the current sample value for each of the other axes of the device.
12. (Original) The method of claim 6, wherein the motion sensor comprises an accelerometer.
13. (Original) The method of claim 6, wherein processing the motion data further comprises
verifying whether the motion data comprises one or more glitches; and removing the one or more glitches in the motion data from the motion data before calculating the long average.
14. (Original) The method of claim 6, further comprising determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value.
15. (Original) The method of claim 8, further comprising:
determining a new dominant axis based on the motion data received from the motion sensor;
computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis determined when the device goes to idle mode after a period of inactivity; and
comparing the difference against a threshold value to establish whether to wake the device up.

Claims 16-24 (Canceled)
25. (Previously Presented) A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
26. (Currently Amended) The mobile device of claim 25, further comprising:
a long average logic to create one or more long averages of accelerations as measured by the motion sensor over a period of time, the long averages setting the idle sample value for the dominant axis.
27. (Previously Presented) The mobile device of claim 26, further comprising a sample period logic to set the period over which motion data is collected to compute the one or more long averages of accelerations.
28. (Previously Presented) The mobile device of claim 26, further comprising:
a computation logic to determine if the long averages of accelerations indicate a change in the dominant axis of the device.
29. (Previously Presented) The mobile device of claim 26, further comprising a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated.
30. (Previously Presented) The mobile device of claim 25, wherein the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes.
31. (Previously Presented) The mobile device of claim 25, further comprising a device state logic to restore the device to a last active state.
32. (Previously Presented) The mobile device of claim 31, wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up.
33. (Previously Presented) A system to wake up a mobile device comprising: a dominant axis logic to determine a current dominant axis of the device; and a power logic to move the device from an inactive state to an active state upon detection of a change in the dominant axis.

Remarks/Arguments

Applicants respectfully request consideration of the subject application as amended herein. This Amendment is submitted in response to the Office Action mailed May 12, 2011. Claims 1-15 and 25-33 are rejected.

In this Amendment, claims 10 and 26 have been amended. No claims have been canceled or added. It is respectfully submitted that the amendment does not add new matter.

Applicants reserve all rights with respect to the applicability of the Doctrine of Equivalents.

Claim Rejections under 35 U.S.C. §112, first paragraph

Claims 26-29 stand rejected under 35 U.S.C. §112, first paragraph, as failing to comply with the written description requirement. The Examiner objected to claim 26 which recites "the long averages setting the idle sample value for the dominant axis." Applicants have amended claim 26 to remove that limitation. In light of the above, Applicants respectfully request the withdrawal of the rejections under 35 U.S.C. 112, first paragraph.

Claim Rejections under 35 U.S.C. §112, second paragraph

Claims 1-15 and25-33 stand rejected under 35 U.S.C. §112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The Examiner objected to the term "long average(s)" as a relative term, which renders the claim indefinite. Applicants respectfully disagree. The term "long average" as defined in the Specification is "a long average of accelerations" which is an averaging of a plurality of acceleration measurements over the sample period. (See Specification as originally filed, paragraph $31,43,44$). While the term "long average" is used, it is simply a term used to describe the averaging of samples, it is not contrasted with a short average or any other type of average. Therefore, while the term long is used, it is not used as a relative term, but rather the name of the calculation is "long average." As the Applicants are permitted to be their own lexicographer, Applicants
respectfully submit that the term "long average" is well defined within the Specification, and not relative.

The Examiner objected to the term "dominant axis" as a relative term which renders the claim indefinite. Applicants respectfully disagree. The term "dominant axis" is defined as "the axis most impacted by gravity" (see Specification as originally filed, paragraph 23). This term is not relative, and is well defined in the Specification.

The Examiner noted that the term "current sample value" in claim 10 lacked antecedent basis. Applicants have amended claim 10.

In light of the above, Applicants respectfully request the withdrawal of the rejections under 35 U.S.C. 112, second paragraph.

Claim Rejections under 35 U.S.C. §102(b)

Claims 1, 5-7, 10-12, and 14 stand rejected under 35 U.S.C. §102(b) as being anticipated by U.S. Publication No. 2006/0161377 to Rakkola, et al (hereinafter "Rakkola").

Rakkola discusses an energy efficient acceleration measurement system. However, Rakkola teaches away from the present invention. In particular, Rakkola states that:

Another important aspect of the described motion detector's embodiments is that, when the motion detector is enabled, a reference level is calculated automatically. The benefit of this function is that there is consequently no need to consider offsets on different channels when setting threshold levels, and threshold levels can also be set independently from device orientation and from the vector of gravitational force. An averaging procedure is used for this reference level calculation as well (see previous description of averaging process for incoming acceleration data). The reference levels are calculated in this way for each of the three axes, assuming that a triaxial accelerometer is used. (Rakkola, paragraph 19). Rakkola concludes "The reference levels are set without regard to device orientation of the direction of gravity, and so setting of these reference levels is greatly streamlined, with corresponding reduction of power requirements." (Rakkola, paragraph 20). Therefore, Rakkola specifically teaches
away from "determining an idle sample value for a dominant axis of a device," since no such calculation is needed.

Claim 1 recites:
A method comprising:
determining an idle sample value for a dominant axis of a device;
registering a motion of the device; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device.
(Claim 1). As noted above, Rakkola teaches away from using gravitational force at all. Therefore, Rakkola does not teach or suggest waking up the device when the motion of the device indicates a change in the dominant axis of the device (e.g. as defined in the Specification the axis most impacted by gravity). Therefore, claim 1 is not anticipated by Rakkola.

Claim 24 recites:
A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
(Claim 24). As noted above, Rakkola specifically teaches away from using the change in the dominant axis, or any use of the dominant axis. Therefore, claim 24, and the claims which depend on it, are not anticipated by Rakkola.

Claim 33 recites:
A system to wake up a mobile device comprising:
a dominant axis logic to determine a current dominant axis of the device; and
a power logic to move the device from an inactive state to an active state upon detection of a change in the dominant axis.
(Claim 33). As noted above, Rakkola specifically teaches away from using the change in the dominant axis, or any use of the dominant axis. Therefore, claim 33 is not anticipated by Rakkola.

Claim Rejections under 35 U.S.C. §103(a)

Claims 2-4, 8, 15, 25-30, and 33 stand rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of U.S. Publication No. 2007/0259716 to Mattice, et al (hereinafter "Mattice").

Applicants reserve the right to swear behind Mattice. Mattice discusses the control of wager-based game using gesture recognition. While Mattice uses the term "gravitational acceleration" Mattice does not teach or suggest determining a dominant axis (e.g. an axis most impacted by gravity) much less using any such axis to determine when a device should be woken up. While the term "dominant axis" is used, it appears to refer to the axis experiencing the most motion from user input (see Mattice, Figure 6, paragraph 155). As noted above, Rakkola also does not teach or suggest this feature. Therefore, Applicants respectfully submit that Mattice does not teach or suggest using a dominant axis (e.g. an axis most impacted by gravity) for waking up the device either, and thus does not remedy the shortcomings of Rakkola discussed above. Therefore, claims 2-4, 8, 15, 25-30, and 33 are not obvious over the combination of Rakkola and Mattice.

Claim 9 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of U.S. Patent No. 6,353,449 to Gregg, et al (hereinafter "Gregg"). Gregg discusses a screensaver that communicates data, including application indicial representative of work in progress. (Gregg, Abstract). Gregg does not teach or suggest the use of a dominant axis, much less the use of a dominant axis to determine when to wake up a device. As noted above, Rakkola also does not teach or suggest this feature. Therefore, Gregg does not remedy the shortcomings of Rakkola discussed above. Therefore, claim 9 is not obvious over the combination of Rakkola and Gregg.

Claim 31 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of Gregg. As noted above, none of Rakkola, Mattice, or Gregg teach or suggest the use of a dominant axis (defined as the axis most impacted by gravity), to determine when to wake up a device. Therefore, the combination of references does not make claim 31, which incorporates claim 24, obvious.

Claims 13 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of U.S. Publication No. 2007/0150136 to Doll, et al (hereinafter "Doll"). Applicants reserve the right to swear behind Doll.

Doll discusses a test signal, which is injected into a motion sensor, to test whether a motion sensor is functioning properly (Doll, Abstract). Doll does not teach or suggest the use of a dominant axis, much less the use of a dominant axis to determine when to wake a device. As noted above, Rakkola also does not teach or suggest this feature. Therefore, claim 13, which incorporates claim 1, is not obvious over the combination of Rakkola and Doll.

Claim 32 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of Gregg in view of U.S. Patent No. $6,771,250$ to Oh. Oh discusses an application program launcher having a multi-point switch. Using the launcher, a user selects and executes one of several application programs registered in a program selection menu. (Oh, Abstract). Oh does not discuss a dominant axis at all, much less the use of a dominant axis to determine when to wake up a device. As noted above, none of Rakkola, Mattice, and Gregg teach or suggest this feature either. Therefore, claim 32, which incorporates claim 24, is not obvious over the combination of Rakkola, Mattice, Gregg, and Oh.

Conclusion

Applicant respectfully submits that in view of the amendments and discussion set forth herein, the applicable rejections have been overcome. Accordingly, the present and amended claims should be found to be in condition for allowance.

If a telephone interview would expedite the prosecution of this application, the Examiner is invited to contact Judith A. Szepesi at (408) 720-8300.

If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: August 12, 2011
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393
Customer No. 08791
1279 Oakmead Parkway Sunnyvale, CA 94085
(408) 720-8300

Electronic Acknowledgement Receipt	
EFS ID:	10727048
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	13-AUG-2011
Filing Date:	08-OCT-2008
Time Stamp:	02:45:41
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted wid	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1		8689P057_AmResp_Aug2011. pdf		yes	11

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 GFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known	
Application Number	$12 / 247,950$
Filing Date	October 8,2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	8689P057

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	4,285,041	8/18/1981	Smith	
		US-	4,578,769	3/25/1986	Frederick	
		us-	5,446,725	8/29/1995	Ishiwatari	
		us-	5,446,775	8/25/1995	Wright et al	
		us-	5,583,776	12/10/1996	Levi et al	
		US-	5,593,431	1/14/1997	Sheldon	
		us-	5,654,619	8/5/1997	Iwashita, Yasusuke	
		us-	5,778,882	7/14/1998	Raymond et al	
		US-	5,955,667	9/21/1999	Fyfe	
		us-	5,976,083	11/2/1999	Richardson, et al.	
		US-	6,122,595	9/19/2000	Varley et al	
		us-	6,135,951	10/24/2000	Richardson, et al.	
		us-	6,145,389	11/14/2000	Ebeling, et al.	
		us-	6,282,496	8/28/2001	Chowdhary	
		us-	6,369,794	4/9/2002	Sakurai et al	
		US-	6,428,490	8/6/2002	Kramer et al	
		us-	6,493,652	12/10/2002	Ohlenbusch et al	
		us-	6,496,695	12/17/2002	Kouji et al	
		us-	6,513,381	2/4/2003	Fyfe et al.	
		us-	6,522,266	2/18/2003	Soehren, et al.	
		us-	6,532,419	3/11/2003	Begin, et al.	
		us-	6,539,336	3/25/2003	Vock, et al.	
		us-	6,611,789	8/26/2003	Darley, Jesse	
		US-	6,700,499	3/2/2004	Kubo et al	
		us-	6,786,877	9/7/2004	Foxlin	
		us-	6,790,178	9/14/2004	Mault, et al.	
		us-	6,813,582	11/2/2004	Levi et al.	
		us-	6,823,036	11/23/2004	Chen	

Examiner
Signature

Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known	
Application Number	$12 / 247,950$
Filing Date	October 8,2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	$8689 P 057$

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	6,826,477	11/30/2004	Ladetto et al	
		US-	6,836,744	12/28/2004	Asphahani, et al.	
		us-	6,881,191	4/19/2005	Oakley, et al.	
		us-	6,885,971	4/26/2005	Vock, et al.	
		us-	6,898,550	5/24/2005	Blackadar, et al.	
		US-	6,928,382	8/9/2005	Hong et al	
		US-	6,941,239	9/6/2005	Unuma, et al.	
		us-	6,959,259	10/25/2005	Vock, et al.	
		US-	6,975,959	12/13/2005	Dietrich et al.	
		us-	7,054,784	5/30/2006	Flentov et al	
		Us-	7,057,551	6/6/2006	Vogt, Mark J	
		us-	7,072,789	7/4/2006	Vock, et al.	
		US-	7,092,846	8/15/2006	Vock, et al.	
		us-	7,148,797	12/12/2006	Albert	
		us-	7,158,912	1/20/2007	Vock, et al.	
		US-	7,169,084	1/30/2007	Tsuji, Tomoharu	
		us-	7,171,331	1/30/2007	Vock, et al.	
		US-	7,177,684	2/13/2007	Kroll et al	
		us-	7,212,943	5/1/2007	Aoshima, et al.	
		us-	7,220,220	5/22/2007	Stubbs, et al.	
		us-	7,297,088	11/20/2007	Tsuji, Tomoharu	
		us-	7,334,472	2/26/2008	Seo et al	
		US-	7,353,112	4/1/2008	Choi et al	
		Us-	7,382,611	2/12/2008	Klees, et al.	
		us-	7,387,611	6/17/2008	Inoue et al.	
		us-	7,451,056	11/11/2008	Flentov et al	
		US-	7,457,719	11/25/2008	Kahn et al	
		US-	7,467,060	12/16/2008	Kulach et al	

Examiner
Signature
Date Considered
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO					Complete if Known					
				STATEMENT BY APPLICANT (use as many sheets as necessary)					Application Number	12/247,950
									Filing Date	October 8, 2008
									First Named Inventor:	Philippe Kahn
									Art Unit	2612
									Examiner Name	Lu, Shirley
Sheet	3		of	8	Attorney Docket Number	8689P057				
U.S. PATENT DOCUMENTS										
Examiner Initials*	Cite No.'		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant				
		Number-Kind $\operatorname{Code}^{2}(\mid f$ known)				Passages or Relevant Figures Appear				
		us-	7,489,937	2/10/2009	Chung et al					
		us-	7,512,515	3/31/2009	Vock et al					
		us-	7,526,402	4/28/2009	Tenanhaus et al					
		us-	7,608,050	10/27/2009	Sugg, Christoper John					
		us-	7,640,804	1/5/2010	Daumer et al					
		us-	7,647,196	1/12/2010	Kahn et al.					
		us-	7,647,196	11/12/2010	Kahn et al					
		us-	7,653,508	1/26/2010	Kahn et al.					
		us-	7,752,011	7/6/2010	Niva et al					
		us-	7,753,861	7/13/2010	Kahn et al.					
		us-	7,774,156	8/10/2010	Niva et al					
		us-	7,857,772	12/28/2010	Bouvier et al					
		us-	2002/0023654	2/28/2002	Webb, James D					
		us-	2002/0089425	7/11/2002	Kubo et al					
		us-	2002/0109600	8/15/2002	Mault, James R.; et al.					
		Us-	2002/0118121	8/29/2002	Lehrman et al					
		us-	2002/0151810	10/17/2002	Wong, Philip Lim-Kong; et al.					
		us-	2002/0193124	12/19/2002	Hamilton et al					
		us-	2003/0018430	1/23/2003	Ladetto et al					
		us-	2003/0048218	3/13/2003	Milnes et al					
		us-	2003/0083596	5/1/2003	Kramer et al					
		us-	2003/0109258	6/12/2003	Mantyjarvi et al					
		us-	2003/0139692	7/24/2003	Barrey et al.					
		us-	2004/0106421	6/3/2004	Tomiyoshi et al					
		us-	2004/0225467	11/11/2004	Vock, Curtis A.; et al.					
		us-	2004/0236500	11/25/2004	Choi et al					
		us-	2005/0033200	2/10/2005	Soehren, Wayne A.; et al.					
		us-	2005/0202934	9/15/2005	Olrik et al					
Examine Signatur					Date Consider					

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known

Application Number	$12 / 247,950$
Filing Date	October 8, 2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	$8689 P 057$

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	2007/0213126	9/13/2007	Deutsch et al	
		us-	2007/0250261	10/25/2007	Soehren	
		us-	2007/0260418	11/8/2007	Ladetto et al	
		us-	2007/0260482	11/8/2007	Nurmela et al	
		us-	2008/0161072	7/3/2008	Lide et al	
		us-	2008/0171918	7/17/2008	Teller et al	
		us-	2009/0047645	2/19/2009	Dibenedetto et al	
		us-	2009/0098880	4/16/2009	Lindquist, Bjorn	
		us-	2009/0213002	8/27/2009	Rani et al	
		us-	2009/0234614	9/17/2009	Kahn et al.	
		us-	2009/0319221	12/24/2009	Kahn et al	
		us-	2010/0056872	3/4/2010	Kahn et al.	
		us-	2010/0057398	3/4/2010	Darley, Jesse; et al.	
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				

Examiner
Signature

Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)				Complete if Known		
				Application Number	12/247,950	
				Filing Date	October 8, 2008	
				First Named Inventor:	Philippe Kahn	
				Art Unit	2612	
				Examiner Name	Lu, Shirley	
Sheet		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published				T^{2}
		ANDERSON, lan, et al, "Shakra: Tracking and Sharing Daily Activity Levels with Unaugmented Mobile Phones," Mobile Netw Appl, 8/3/2007, pp 185-199				
		AYLWARD, Ryan, et al, "Sensemble: A Wireless, Compact, Multi-User Sensor System for Interactive Dance," International Conference on New Interfaces for Musical Expression (NIME06), June 4-8, 2006, pp 134-139				
		BACA, Arnold, et al, "Rapid Feedback Systems for Elite Sports Training," IEEE Pervasive Computing, October-December 2006, pp 70-76				
		BAKHRU, Kesh, "A Seamless Tracking Solution for Indoor and Outdoor Position Location," IEEE 16th International Symposium on Personal, Indoor, and Mobile Radio Communications, 2005, pp 2029-2033				
		BLILEY, Kara E, et al, "A Miniaturized Low Power Personal Motion Analysis Logger Utilizing MEMS Accelerometers and Low Power Microcontroller," IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, May 12-15, 2005, pp 92-93				
		BOURZAC, Katherine, "Wearable Health Reports," Technology Review, February 28, 2006, http://www.techreview.com/printer_friendly_article_aspx?id+16431, accessed 3/22/2007, 3 pages				
		CHENG, Fangxiang, et al, "Periodic Human Motion Description for Sports Video Databases," Proceedings of the Pattern Recognition, 2004, 5 pages				
		DAO, Ricardo, "Inclination Sensing with Thermal Accelerometers", MEMSIC, May 2002, 3 pages				
		FANG, Lei, et al, "Design of a Wireless Assisted Pedestrian Dead Reckoning System--The NavMote Experience," IEEE Transactions on Instrumentation and Measurement, Vol 54, No 6, December 2005, pp 2342-2358				
		HEALEY, Jennifer, et al, "Wearable Wellness Monitoring Using ECG and Accelerometer Data," IEEE Int. Symposium on Wearable Computers (ISWC'05), 2005, 2 pages				
		HEMMES, Jeffrey, et al, "Lessons Learned Building TeamTrak: An Urban/Outdoor Mobile Testbed," 2007 IEEE Int. Conf. on Wireless Algorithms, August 1-3, 2007, pp 219-224				

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)							
					Filing Date	October 8, 2008	
					First Named Inventor:	Philippe Kahn	
					Art Unit	2612	
					Examiner Name	Lu, Shirley	
Sheet	7		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS							
Examiner Initials*	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { Cite } \\ \mathrm{No} \end{array}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published					T^{2}
		JONES, L, et al, "Wireless Physiological Sensor System for Ambulatory Use," [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=\&arnumber=1612917\&isnumber=33861](http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=%5C&arnumber=1612917%5C&isnumber=33861), April 3-5, 2006					
		JOVANOV, Emil, et al, "A Wireless Body Area Network of Intelligent Motion Sensors for Computer Assisted Physical Rehabilitation," Journal of NeuroEngineering and Rehabilitation, March 2005, 10 pages					
		KALPAXIS, Alex, "Wireless Temporal-Spatial Human Mobility Analysis Using Real-Time Three Dimensional Acceleration Data," IEEE Intl. Multi-Conf. on Computing in Global IT (ICCGI'07), 2007, 7 pages					
		LEE, Seon-Woo, et al., "Recognition of Walking Behaviors for Pedestrian Navigation," IEEE International Conference on Control Applications, September 5-7, 2001, pp 1152-1155					
		MARGARIA, Rodolfo, "Biomechanics and Energetics of Muscular Exercise", Chapter 3, Oxford: Clarendon Press, 1976, pages 105-125					
		MILENKOVIC, Milena, et al, "An Accelerometer-Based Physical Rehabilitation System," IEEE SouthEastern Symposium on System Theory, 2002, pp 57-60					
		MIZELL, David, "Using Gravity to Estimate Accelerometer Orientation", Seventh IEEE International Symposium on Wearable Computers, 2003, 2 pages					
		ORMONEIT, D, et al, "Learning and Tracking Cyclic Human Motion," 7 pages					
		OTTO, Chris, et al, "System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring," Journal of Mobile Multimedia, Vol 1, No 4, 2006, pp 307-326					
		PARK, Chulsung, et al, "Eco: An Ultra-Compact Low-Power Wireless Sensor Node for RealTime Motion Monitoring," IEEE Int. Symp. on Information Processing in Sensor Networks, 2005, pp 398-403					
		SHEN, Chien-Lung, et al, "Wearable Band Using a Fabric-Based Sensor for Exercise ECG Monitoring," IEEE Int. Symp. on Wearable Computers, 2006, 2 pages					

| Examiner
 Signature | Date
 Considered | |
| :--- | :--- | :--- | :--- |

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)							
					Complete if Known		
					Filing Date	October 8, 2008	
					First Named Inventor:	Philippe Kahn	
					Art Unit	2612	
					Examiner Name	Lu, Shirley	
Sheet	8		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS							
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published					T^{2}
		"Sensor Fusion," <www.u-dynamics.com>, accessed 8/29/2008, 2 pages					
		TAPIA, Emmanuel Munguia, et al, "Real-Time Recognition of Physical Activities and Their Intensities Using Wireless Accelerometers and a Heart Rate Monitor," IEEE Cont. on Wearable Computers, October 2007, 4 pages					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 1-66 (part 1 of 3)					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 67-92 (part 2 of 3)					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 93-123 (part 3 of 3)					
		WECKESSER, P, et al, "Multiple Sensorprocessing for High-Precision Navigation and Environmental Modeling with a Mobile Robot," IEEE, 1995, pp 453-458					
		WEINBERG, Harvey, "MEMS Motion Sensors Boost Handset Reliability," http://www.mwrf.com/Articles/Print.cfm?ArticlelD=12740, June 2006, 3 pages					
		WIXTED, Andrew J , et al, "Measurement of Energy Expenditure in Elite Athletes Using MEMS-Based Triaxial Accelerometers," IEEE Sensors Journal, Vol 7, No 4, April 2007, pp 481-488					
		WU, Winston H, et al, "Context-Aware Sensing of Physiological Signals," IEEE Int. Conf. on Engineering for Medicine and Biology, August 23-26, 2007, pp 5271-5275					
		YOO, Chang-Sun, et al, "Low Cost GPS/INS Sensor Fusion System for UAV Navigation," IEEE Digital Avionics Systems Conference (DASC '03), 2003, 9 pages					

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Submission-Information Disclosure Stmt	1806	1	180	180
	Total in USD (\$)			180

Electronic Acknowledgement Receipt	
EFS ID:	10776209
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	08791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	19-AUG-2011
Filing Date:	08-OCT-2008
Time Stamp:	20:45:28
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes			
Payment Type	Deposit Account			
Payment was successfully received in RAM	$\$ 180$			
RAM confirmation Number	5309			
Deposit Account	022666			
Authorized User				
File Listing:	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (ifappl.)
Document Number	Document Description			

1	Non Patent Literature	8689P057_NPL1_Anderson.pdf	767816	no	15
			6 e 8892 c 73 f 139 cd 369080864 d 24 db 2 d 6 e 13 data		
Warnings:					
Information:					
2	Non Patent Literature	8689P057_NPL2_Aylward.pdf	1198346	no	6
Warnings:					
Information:					
3	Non Patent Literature	8689P057_NPL3_Baca.pdf	4594908	no	7
			$749 \mathrm{c} 7 \mathrm{~d} 4 \mathrm{c} 574 \mathrm{ce} 4587 \mathrm{~b} 8 \mathrm{c} 02 \mathrm{~b} 6 \mathrm{da9f44a6299}$ 7119 b		
Warnings:					
Information:					
4	Non Patent Literature	8689P057_NPL4_Bakhru.pdf	4253994	no	5
			$9 e a 5 b b b 23853 \mathrm{bbe} 8948316 \mathrm{eef5} \mathrm{dfc} 7 \mathrm{baf87}$ dcd95		
Warnings:					
Information:					
5	Non Patent Literature	8689P057_NPL5_Bliley.pdf	1610925	no	2
			โb0291b\|941		
Warnings:					
Information:					
6	Non Patent Literature	8689P057_NPL6_Bourzac.pdf	128059	no	3
Warnings:					
Information:					
7	Non Patent Literature	8689P057_NPL7_Cheng.pdf	240827	no	5
Warnings:					
Information:					
8	Non Patent Literature	8689P057_NPL8_Dao.pdf	205332	no	3
			$\mathrm{f5d} 4 \mathrm{a} 74878 \mathrm{de} 12741227 \mathrm{bad} 4 \mathrm{f} 59 \mathrm{a} 5879200$ 86 e 54		
Warnings:					
Information:					
9	Non Patent Literature	8689P057_NPL9_Fang.pdf	2722634	no	17
			69d5bc11e94ad32313db0650368d96431f/ ad298		
Warnings:					
Information:					

10	Non Patent Literature	8689P057_NPL10_Healey.pdf	166772	no	2
Warnings:					
Information:					
11	Non Patent Literature	8689P057_NPL11_Hemmes.pdf	907905	no	6
Warnings:					
Information:					
12	Non Patent Literature	8689P057_NPL12_Jones.pdf	39418	no	1
			 a2d0		
Warnings:					
Information:					
13	Non Patent Literature	8689P057_NPL13_Jovanov.pdf	1453931	no	10
Warnings:					
Information:					
14	Non Patent Literature	8689P057_NPL14_Kalpaxis.pdf	324099	no	7
			097c0f2fe09908a919870231b0956707f5c7 6376		
Warnings:					
Information:					
15	Non Patent Literature	8689P057_NPL15_Lee.pdf	367118	no	4
			8ete8b2ac5938a72772999883796359661		
Warnings:					
Information:					
16	Non Patent Literature	8689P057_NPL16_Margaria.pdf	1545714	no	22
			8d694def8a25ed43260581a6d9599d440a5		
Warnings:					
Information:					
17	Non Patent Literature	8689P057_NPL17_Milenkovic. pdf	1317357	no	4
Warnings:					
Information:					
18	Non Patent Literature	8689P057_NPL18_Mizell.pdf	146134	no	2
			02af0f475eabd33fe266629ec81b79b36b0d		
Warnings:					
Information:					

19	Non Patent Literature	8689P057_NPL19_Ormoneit. pdf	$\underset{\substack{\text { 422C455cceco9a37 cal } 13296670994889109 \\ \text { art2 }}}{361162}$	no	7
Warnings:					
Information:					
20	Non Patent Literature	8689P057_NPL20_Otto.pdf		no	20
Warnings:					
Information:					
21	Non Patent Literature	8689P057_NPL21_Park.pdf		no	6
Warnings:					
Information:					
22	Non Patent Literature	8689P057_NPL22_Shen.pdf		no	2
Warnings:					
Information:					
23	Non Patent Literature	8689P057_NPL23_SensorFusio n.pdf		no	2
Warnings:					
Information:					
24	Non Patent Literature	8689P057_NPL24_Tapia.pdf		no	4
Warnings:					
Information:					
25	Non Patent Literature	$\underset{\text { pdf }}{\text { 8689P057_NPL25_WangPart1. }}$	15683310 ba667db276d3312adda1f1116dal 13c60accc scr2	no	66
Warnings:					
Information:					
26	Non Patent Literature	8689P057_NPL26_WangPart2. pdf		no	26
Warnings:					
Information:					
27	Non Patent Literature	$\underset{\text { pdf }}{\text { 8689P057_NPL27_WangPart3. }}$		no	31
Warnings:					
Information:					

28	Non Patent Literature	8689P057_NPL28_Weckesser.pdf	1389496	no	6
Warnings:					
Information:					
29	Non Patent Literature	8689P057_NPL29_Weinberg.	255646	no	3
			$\begin{gathered} 41480 \mathrm{~b} 8002 \mathrm{e} 54 \mathrm{df508f9fa4ae29ef1214056} \\ 6 \mathrm{~d} 42 \end{gathered}$		
Warnings:					
Information:					
30	Non Patent Literature	8689P057_NPL30_Wixted.pdf	639050	no	8
Warnings:					
Information:					
31	Non Patent Literature	8689P057_NPL31_Wu.pdf	420501	no	5
Warnings:					
Information:					
32	Non Patent Literature	8689P057_NPL32_Yoo.pdf	865362	no	9
Warnings:					
Information:					
33		8689P057_IDS_and_SB08.pdf	138610	yes	10
			c77dda5af316135ac7fd0ad3d1c2cfbaf5bb 1366		
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Transmittal Letter		1	2	
	Information Disclosure Statement (IDS) Form (SB08)		3	10	
Warnings:					
Information:					
34	Fee Worksheet (SB06)	fee-info.pdf	30230	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			70601074		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	$:$	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	$:$	$12 / 247,950$	Art Unit:	2612

INFORMATION DISCLOSURE STATEMENT

Sir:
Enclosed is a copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 together with copies of the documents cited on that form, except for copies not required to be submitted (e.g., copies of U.S. patents and U.S. published patent applications need not be enclosed). It is respectfully requested that the cited documents be considered and that the enclosed copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):
\qquad 37 C.F.R. §1.97(b).
\qquad 37 C.F.R. §1.97(c). If so, then enclosed with this Information Disclosure Statement is one of the following:
\qquad A statement pursuant to 37 C.F.R. §1.97(e) or

XThe Director is Authorized to charge in the amount of $\$ 180.00$ for the fee under 37 C.F.R. § 1.17(p).

37 C.F.R. §1.97(d). If so, then enclosed with this Information Disclosure Statement are the following:
(1) A statement pursuant to 37 C.F.R. §1.97(e); and
(2) A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1.17(p)$ for submission of the Information Disclosure Statement.

If there are any additional charges, please charge Deposit Account No. 02-2666.
Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: August 19, 2011
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393

1279 Oakmead Parkway Sunnyvale, CA 94085
(408) 720-8300

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

DETAILED ACTION

Response to Arguments

a. Applicant argues starting on page(s) 6, that the terms "long average, dominant axis" is well defined in the specification.

In response, it is noted that these terms have been merely described in the specification in terms of exemplary embodiments. Thus, there are no explicit definitions in the specification. Furthermore, it is noted that although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See In re Van Geuns, 988
F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).
b. Applicant argues starting on page(s) 7, that the prior art teaches away from using gravitational force.

In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., using gravitational force) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See In re Van Geuns, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims.
c. Applicant argues starting on page(s) 9, that the prior art does not teach an axis most impacted by gravity.

In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., an axis most impacted by gravity) are not recited in the rejected claim(s). Although the claims are interpreted
in light of the specification, limitations from the specification are not read into the claims. See $I n$ re Van Geuns, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112 :
The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim(s) 1-15, 25-33 is/are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The term "long average(s)" in claim(s) 4, 10, 13, 26-29 is a relative term which renders the claim indefinite. The term "long average(s)" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Proper action is required.

Claim(s) 4, 10, 13, 26-29 recite(s) the limitation(s): long average(s). It is not clear what exactly is being claimed. The dependent claims are rejected under similar reasoning. Proper action is required.

The term "dominant axis" in claim(s) 1-2, 4, 6-8, 15, 25-33 is a relative term which renders the claim indefinite. The term "long average(s)" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of
ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Proper action is required.

Claim(s) 1-2, 4, 6-8, 15, 25-33 recite(s) the limitation(s): dominant axis. It is not clear what exactly is being claimed. The dependent claims are rejected under similar reasoning. Proper action is required.

Claim Rejections - 35 USC § 102

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

1. Claim(s) 1, 5-7, 10-12, 14 is/are rejected under 35 U.S.C. 102(b) as being

 anticipated by Rakkola (20060161377).As to claim(s) 1, Rakkola disclose(s):
A method comprising: determining an idle sample value for a dominant axis of a device; registering a motion of the device; and waking up the device when the motion of the device indicates a change in the dominant axis of the device ([0015-44]).

As to claim(s) 5, Rakkola disclose(s):
determining the idle sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 6, Rakkola disclose(s):
registering the motion of the device comprises: receiving motion data from a motion sensor; and processing the motion data to determine a current sample value of the dominant axis of the device ([0015-44]).

As to claim(s) 7, Rakkola disclose(s):

Art Unit: 2612
comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value ([0015-44]).

As to claim(s) 10, Rakkola disclose(s):
the current sample value of the dominant axis of the device is a long average of accelerations ([0015-44]).

As to claim(s) 11, Rakkola disclose(s):
determining the current sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 12, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 14, Rakkola disclose(s):
determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value ([0015-44]).

Claim Rejections - 35 USC § 103
The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
2. Claim(s) 2-4, $8, \mathbf{1 5}, \mathbf{2 5 - 3 0}, 33$ is/are rejected under 35 U.S.C. 103(a) as being
unpatentable over Rakkola (20060161377) in view of Mattice (20070259716).
As to claim(s) 2,
Rakkola disclose(s): data from a motion sensor; processing the motion data; and processing the idle sample value ([0015-44]).

The above art/combination does not expressly disclose to establish the dominant axis; to establish an idle sample value.

Rakkola disclose(s): processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 3, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 4,
Rakkola disclose(s):
the idle sample value comprises a long-average of accelerations over a sample period along the dominant axis; when the device goes to idle mode after a period of inactivity ([0015-44]).

The above art/combination does not expressly disclose recorded.
Mattice discloses recorded spatial signatures, spatial signatures may be tracked, recorded, and/or analyzed by one or more motion detector devices; recording motion data (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when the device is inactive, to track, record, and/or analyze the data. As to claim(s) 8,

The above art/combination does not expressly disclose the change in the dominant axis comprises a change in acceleration along the dominant axis.

Mattice discloses the change in the dominant axis comprises a change in acceleration along the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine whether the device is rest.

As to claim(s) 15,
Rakkola disclose(s): computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis; comparing the difference against a threshold value to establish whether to wake the device up ([0015-44]).

The above art/combination does not expressly disclose determining a new dominant axis based on the motion data received from the motion sensor; when the device goes to idle mode after a period of inactivity.

Rakkola disclose(s): updating values automatically and periodically, as a programmable parameter; computing when the device goes to idle mode after a period of inactivity ([0015-44]).

Mattice discloses determining a new dominant axis based on the motion data received from the motion sensor (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when a device is inactive, to determine whether the device is at rest, and to update values automatically and/or periodically, as a programmable parameter. As to claim(s) 25,

Rakkola disclose(s): A mobile device comprising: a motion sensor to register a motion of the mobile device; and a power logic to activate the device when the motion indicates a change in the dominant axis of the device ([0015-44]; see also claim 2).

The above art/combination does not expressly disclose a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data.

Mattice discloses a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim 2).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine the axis with the greater amount of movement (see also claim 2).

As to claim(s) 26,
Rakkola disclose(s): a long average logic to create one or more long averages of accelerations as measured by the motion sensor over a period of time ([0015-44]).

As to claim(s) 27,
Rakkola disclose(s): to compute the one or more long averages of accelerations ([001544]).

The above art/combination does not expressly disclose a sample period logic to set the period over which motion data is collected.

Rakkola discloses logic to set a period over which motion data is collected; the number of samples summed to compute the one or more long averages of accelerations is a programmable setting ([0015-44]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a programmable setting to choose the number of samples collected and processed. As to claim(s) 28, Rakkola disclose(s):
a computation logic to determine if the long averages of accelerations indicate a change in the dominant axis of the device ([0015-44]).

Art Unit: 2612
As to claim(s) 29, Rakkola disclose(s):
a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated ([0015-44]; see also claim 13).

As to claim(s) 30, Rakkola disclose(s):
the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes ([0015-44]).

As to claim(s) 33,
A system to wake up a mobile device comprising: a dominant axis logic to determine a current dominant axis of the device; and a power logic to move the device from an inactive state to an active state upon detection of a change in the dominant axis (see claims 1,25).

3. Claim(s) 9 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Gregg (6353449).

As to claim(s) 9,
The above art/combination does not expressly disclose waking up the device further comprises configuring the device to return to a last active device state.

Gregg discloses waking up the device further comprises configuring the device to return to a last active device state ([1, 23-30]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized when the user left the device.

Art Unit: 2612

4. Claim(s) 31 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449).

As to claim(s) 31,
a device state logic to restore the device to a last active state (see claim(s) 9).
5. Claim(s) 13 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Doll (20070150136).

As to claim(s) 13,
Rakkola disclose(s): processing the motion data further comprises; and removing the one or more glitches in the motion data from the motion data before calculating the long average ([0015-44]).

The above art/combination does not expressly disclose verifying whether the motion data comprises one or more glitches.

Doll discloses verifying whether the motion data comprises one or more glitches ([0007]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to ensure that the system utilizes and processes valid information and data.
6. Claim(s) 32 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449) in view of Oh (6771250).

As to claim(s) 32,

The above art/combination does not expressly disclose the device state logic allows user interaction to customize applications to be displayed when the device is woken up.

Oh discloses the device state logic allows user interaction to customize applications to be displayed when the device is woken up ($[3,13-25]$).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized and/or as desired by a user.

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a). A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shirley Lu whose telephone number is (571) 272-8546. The examiner can normally be reached on 8:30-5:00 M-F.

Art Unit: 2612
If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Daniel Wu can be reached on (571) 272-2964. The fax phone number for the organization where this application or proceeding is assigned is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
/Shirley Lu/
Primary Examiner, Art Unit 2612

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp										
S2	, 28	\mid "5793291" \| "5949340"	"5966070"	"6104293"	"6535137"	"6714132"	?"6812844"	"6909365"	"6922154"	?"6924742"	"6930614"	"6998988").PN.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2010/05/03
53	3	S2 and remote\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$										
S4	3	S3 and distance\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF											
S5	,	"20040095252".pn. and distance\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	109										
S8	30	"20030222775".pn. and distance\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	1										
S9	\%	"20030098792".pn.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$12010 / 05 / 03$										
S10	30	"20030098792'.pn. and temperature		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$										
S11	3	/"20030098792".pn. and temperature\$1	/US-PGPUB;	OR	OFF	2010/05/03										

						10:40
S12	/1	"20030098792".pn. and motion		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 43 \end{aligned}$
S13	2	S2 and distance\$1	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { USPAT; } \\ & \text { MSOCR; } \\ & \text { FPRS; JPO; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 46 \end{aligned}$
S14	11	baby adj seat and distance same counter		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 13 \end{aligned}$
S15	[19	baby adj seat and predetermined adj Idistance		OR	OFF	$11: 17$
S16	${ }^{2}$	"20030122662".pn. and range	UUS-PGPUB; USPAT; USOCR; IPPRS; GPO; JPO; IERWENT; IBM TDB	OR	OFF	$11: 20$
S17	/167	car adj seat and predetermined adj distance	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; JPO; } \\ \text { EPERWENT; } \\ \text { IBM TDB } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 22 \end{aligned}$
S18	/167	car adj seat and predetermined adj distance	\|US-PGPUB; USPAT; UUSOCR; IPRRS; IEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 23 \end{aligned}$
S19	133	Car adj seat and distance with signal\$1	$\begin{aligned} & \text { US-PGUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \\ & \text { EPERWENT; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$

			IBM TDB			
520	14	car adj seat and predetermined adj distance with signal\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	1
S21	0	"7797212".pn. and counter	US-PGPUB USPAT; UUSOCR; IFPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 26 \end{aligned}$
S22	12	car adj seat and distance with signal\$1 adj strength\$1	US-PGPUB USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	120
S23	0	"1318".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	2
S24	1	"131848".apn. and automatic\$4	USPGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S25	3	"131848".apn.	USPGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|c} 2010 / 05 / 13 \\ 20: 06 \end{array}$
526	1	"131848".apn. and automatic\$4		OR	OFF	$\left\lvert\, \begin{gathered} 2010 / 05 / 13 \\ 20: 06 \end{gathered}\right.$
S27	12	lojack.as. and automatic\$4	US-PGPUB UUSPAT; UUSOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	20
S28	2	7561102".pn.	$\begin{aligned} & \begin{array}{l} \text { USSPGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	$2010 / 05 / 13$

			IEPO; JPO; DERWENT; IBM TDB			
S29	2	"7536169".pn.	US-PGPUB; USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	$2010 / 05 / 13$
530	[3940	counter with time with distance	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
531	245	counter with measur\$4 near5 (time with distance)	US-PGPUB; USPAT; USOCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
532	25	S31 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	12
533	11598	"327"/\$.ccls. and rectifier	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
534	616	"327"/\$.ccls. and rectifier.ti.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	
S35	36	$340 / 573.1$ and return adj signal with distance	US-PGPUB; USPAT; USOCR; IPRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 49 \end{aligned}$
536	21	S35 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; IPRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{gathered} 2011 / 04 / 26 \\ 17: 50 \end{gathered}$
S37	2	"20030034887".pn. and return adj signal	US-PGPUB;	OR	OFF	$\frac{2011 / 04 / 26}{17: 53}$

			$\begin{aligned} & \text { USOCR; } \\ & \text { PRPS; } \\ & \text { PEP; JPO; } \\ & \text { DERM TENT; } \end{aligned}$			
538	2	"20030034887".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
S39	2	"20030034887".pn. and return adj signal		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
540	1	"20030034887".pn. and "10"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 18 \end{aligned}$
541	2	"20030034887".pn. and timer		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 38 \end{aligned}$
S42	0	"20030098792".pn. and "72"	US-PGPUB; USPAT; USCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
S43	1	"20030098792".pn. and "27"		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
54	0	"779712".apn. and low adj power	$\begin{aligned} & \text { USS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \\ & \text { EPERWENT; } \\ & \text { IBM TIDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S45	0	"779712".apn. and motion adj detector		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$

S46	10	"779712".apn. and motion			OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S47	3	"779712".apn.	$\begin{aligned} & \text { USS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { HPRS; } \\ & \text { EPDP; JPE; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S48	2	"6922147".pn. and temperature	US-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 06 \end{aligned}$
S49	6	$\begin{aligned} & \text { ("20030098792") or ("20030034887") or } \\ & \hline(\text { "6922147")).PN. } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { MSPAT; } \\ \text { MSOCR; } \\ \text { IPRS; } \\ \text { IPDP; JPO; } \\ \text { IERWENT; } \\ \text { IBM TDB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
550	$\sqrt{3}$	S49 and (conserv\$4 sav\$4 power reduc\$4)	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PRRS; JPD; } \\ \text { BPRWENT; } \\ \text { BMM TDB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
551	/3	S49 and (conserv\$6 sav\$4 power reduc\$4)	US-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
552	${ }^{2}$	S49 and motion		OR	OFF	$2011 / 04 / 26$
553]	mtion adj detector with sleep	\|USPGPUB; UUSAT; "USOCR; IPRRS; :EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2011 / 04 / 26$
554	52	motion adj detector with sleep adj mode		OR	OFF	$2011 / 04 / 26$

			$\begin{aligned} & \text { IDERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
S55	10	S54 and @rlad < "20060718"	US-PGPUB USPAT; USOCR; FPRS; EPPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|l\|} 2011 / 04 / 26 \\ 21: 06 \end{array}$
S56	9857	(340/457,573.1,686.1,539.1,522,667).CCLS.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
S57	5	S56 and S54	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
S58	638	signal adj edge adj detector	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 18 \end{aligned}$
S59	\%	signal adj edge adj detector same reduce adj error	US-PGPUB; USPAT; USOCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
S60	33	Signal adj edge adj detector same error	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
561	10	signal adj edge adj detector with error	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
S62	3	signal adj edge adj detector with error with count\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	2
S63	3	signal adj edge adj detector with error with count\$4	$\begin{array}{\|l\|} \mid \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \end{array}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 22 \end{aligned}$

			IFPRS; EPO; JPO; DERWENT; IBM TDB			
564	10	signal adj edge adj detector with error	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRS; } \\ \text { EPO; JPO; } \\ \text { BERWENT; } \\ \text { IBM TTB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
S65	34	signal adj edge adj detector and measur\$4 Iadj time	\|US-PGPUB; :USPAT; !USOCR; IPRRS; IEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
566	5	signal adj edge adj detector same measur\$4 adj time	\|US-PGPUB; UUSAT; !USOCR; IPRRS; :EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
568	86	edge adj detect\$4 with counter with error\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 24 \end{aligned}$
569	23	S68 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 25 \end{aligned}$
S70	45	edge adj detect\$4 with reduc\$4 near3 error\$1	\|USPGPUB; USSAT; UUSCR; IPRRS; IEPO; JPO; DDERWENT; IBM TDB	OR	OFF	$\begin{array}{\|l} 2011 / 04 / 26 \\ 21: 26 \end{array}$
571	7	S70 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 26 \end{aligned}$
572	1	"247950".apn. and dominant adj axis	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 03 \end{aligned}$
573	18]("20060161377") or ("200702597") or	UUS-PGPUB;	OR	OFF	2011/04/26

		$\begin{aligned} & \text { ("20070150136") or ("6353449") or } \\ & \text { ("6771250")).PN. } \end{aligned}$	UUSPAT; UUSOCR; :FPRS; :EPO; JPO; DERWENT IIBM TDB			22:40
S74]	("200700259716").PN.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$11: 57$
S75	[2	("20070259716").PN.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
S76	8	("20070259716") or ("6353449") or	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 17: 37 \end{aligned}$
577	I	"247950".apn. and (long adj average\$1 with idle)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
S78	1	"247950".apn. and (long adj average\$1 with set\$4)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
S79	1	"247950".apn. and (long adj average\$1 with idle adj sample)	:US-PGPUB; USPAT; USOCR; :PRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
580	1	"247950".apn. and (long adj average\$1)	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 17 \end{aligned}$
581	3524	long adj average	USPGGPUB USPAT; UUSOCR; IFPRS; EPO; JPO; DERWENT;	\%	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 18 \end{aligned}$

			IBM TDB			
582	3524	"long average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
583	10	$($ ("20060161377") or ("20070259716") or $(" 6353449 ")$ or ("20070150136") or $($ (6771250 ")).PN.	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
584	2	S83 and record\$4	US-PGPUB USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	2
585	1	247950".apn. and dominant	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	2
586	1	247950".apn. and idle	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|l\|} 2011 / 04 / 27 \\ 23: 40 \end{array}$
587	1	247950".apn. and new adj dominant	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|c\|c\|c\|c\|c\|} 2011 / 04 / 27 \\ \hline \end{array}$
588	1	"20060161377".pn. and reference	USPGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
889	0	20070259716".pn. and (idle sleep)	US-PGPUB UUSPAT; UUSOCR; IFRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
590	${ }^{2}$	20070259716".pn.	$\begin{aligned} & \begin{array}{l} \text { USSPGPUB; } \\ \text { USPAT; } \\ \text { USPCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	2

			\#EPO; JPO; DERWENT; IBM TDB			
591	1	"247950".apn. and idle with comput\$4	$\begin{aligned} & \text { USS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPD; } \\ & \text { IERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
592	1	"247950".apn. and idle		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
593	0	20070259716".pn. and ("0053" "0155" "0165" "0210" "0254")		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
594	2	"20070259716".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
S95	2	"6353449".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 00 \end{aligned}$
596	2	"20070150136".pn.	USS-PGPUB; USPAT; USOCR; IPRRS; MPO; JPO; MERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 03 \end{aligned}$
597	7354	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$	$\begin{aligned} & \text { USS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPD; } \\ & \text { IERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
598	3525	long adj average	USSPGPUB; USPAT; USOCR; IPPRS; MPO; JPO; MERWENT; IBM TIDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
599	3	597 and 598	US-PGPUB; USPAT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$

			USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			
S100	:8	("20070259716") or ("63534449") or	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S101	1	S97 and S100		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S102	3668	"long average"		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S103	28		UUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IDERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S104	38	$340 / 573.1$ and return adj signal with distance		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S105	10	("20060161377") or ("20070259716") or ("6353449") or ("20070150136") or ("6771250")).PN.		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S106	2	S105 and record\$4	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S107	7852	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$

S108	3668	long adj average	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$	OR	OFF	1
S109	8	$((" 20070259716 ")$ or ("6353449") or $($ (20070150136") or ("6771250")).PN.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	1
S110	6	$\begin{aligned} & \text { (("20030098792") or ("20030034887") or } \\ & \text { ("6922147")).PN. } \\ & \text { (") } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	1
S111	3	S110 and (conserv\$6 sav\$4 power reduc\$4)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	1
S112	23	S104 and @rlad < "20060718"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	1

10/ 14/2011 4:03:17 PM
C:\Users\slu\Documents\EAST\Workspaces $\backslash 12247950$.wsp

REQUEST FOR CONTINUED EXAMINATION (RCE) TRANSMITTAL

Address to: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450

This is a Request for Continued Examination (RCE) under 37 C.F.R. § 1.114 of the above-identified application. Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to any utility or plant application filed prior to June 8, 1995, or to any design application. See instruction sheet for RCEs (not to be submitted to the USPTO) on page 2.

1. Submission required under 37 C.F.R. $\$ 1.114$ - Note: If the RCE is proper, any previously filed unentered amendments and amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs otherwise. If applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such amendment(s).
a. [] Previously submitted If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.
i. [] Consider the amendment(s)/reply under 37C.F.R. § 1.116 previously filed on \qquad (Any unentered amendment(s) referred to above will be entered. If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.
ii. [] Consider the arguments in the Appeal Brief or Reply Brief previously filed on \qquad
iii. [] Other \qquad
b. [X] Enclosed
i. [X] Amendment/Reply
ii. [] Affidavit(s)/Declaration(s)
iii. [X] Information Disclosure Statement (IDS)
iv. [] Other:
2. Miscellaneous
a. [] Suspension of action on the above-identified application is requested under 37 C.F.R. § 1.103(c)
b. [] Other
3. Fees The RCE fee under 37 C.F.R. § $1.17(\mathrm{e})$ is required by C.F.R. $\S 1.114$ when the RCE is filed.
a. [X] The Director is hereby authorized to charge the following fees, or credit any overpayments, to Deposit Account No. 02-2666
i. [X] RCE fee required under 37 C.F.R. § 1.17(e)
ii. [] Extension of time fee (37 C.F.R. §§ 1.136 and 1.17)
iii. [] Processing fee under 37 CFR § 1.17(i) for Limited Suspension of Action
iv. [] Other
b. [] Check in the amount of \$ \qquad enclosed
c. [] Payment by credit card (Form PTO-2038 enclosed) WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038. SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Request for continued examination	1801	1	930	930
	Total in USD (\$)			930

Electronic Acknowledgement Receipt	
EFS ID:	11824142
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	8791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	12-JAN-2012
Filing Date:	08-OCT-2008
Time Stamp:	17:01:06
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes			
Payment Type	Deposit Account			
Payment was successfully received in RAM	$\$ 930$			
RAM confirmation Number	4039			
Deposit Account	022666			
Authorized User				
File Listing:				
Document Number	Focument Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip
Pages (if appl.)				

1		8689P057_AmResp_Jan2012.pdf	49962	yes	11
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Amendment Submitted/Entered with Filing of CPA/RCE		1	1	
	Claims		2	5	
	Applicant Arguments/Remarks Made in an Amendment		6	11	
Warnings:					
Information:					
2		8689P057_Request_for_Exami ner_Initials.pdf	$\frac{134931}{\substack{\text { eob88a } 151519888897727505091300076200 \\ 95575}}$	yes	9
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Transmittal Letter		1	1	
	Information Disclosure Statement (IDS) Form (SB08)		2	9	
Warnings:					
Information:					
3	Request for Continued Examination (RCE)	8689P057_RCE_Transmittal.pdf		no	1
Warnings:					
This is not a USPTO supplied RCE SB30 form.					
Information:					
4	Fee Worksheet (SB06)	fee-info.pdf		no	2
Warnings:					
Information:					
Total Files Size (in bytes):			235535		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	12/247,950	Art Unit:	2612
Filed	October 8, 2008	Conf No:	8961
For	Method and System for Waking Up a Device Due to Motion	CERTIFICATE OF TRANSMISSION I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.	
Customer No.	08791	$\frac{\text { IJudith Szepe }}{\text { Judith A. Sze }}$	$\frac{\text { January } 12,2012}{\text { Date }}$

Mail Stop RCE
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

AMENDMENT

Sir:

In response to the Office Action of October 20, 2011, which was made final, applicants respectfully request the Examiner to enter the following amendments and consider the following remarks:

Amendments to the Claims are reflected in the listing of claims which begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

IN THE CLAIMS:

1. (Currently Amended) A method comprising:

receiving motion data from a motion sensor, the motion sensor sensing motion along three axes;
determining an idle sample value for a dominant axis of a device, the dominant axis defined as the axis with a largest effect from gravity among the three axes;
registering a motion of the device based on the motion data from the motion sensor; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device.
2. (Currently Amended) The method of claim 1, wherein determining the idle sample value for the dominant axis comprises:
receiving motion data from a motion sensor;
processing the motion data to establish an idle sample value; and
processing the idle sample value to establish the dominant axis.
3. (Currently Amended) The method of claim 1 [[2]], wherein the motion sensor comprises an accelerometer.
4. (Currently Amended) The method of claim 2, wherein the idle sample value comprises an long-average of accelerations over a sample period along the dominant axis recorded when the device goes to idle mode after a period of inactivity.
5. (Currently Amended) The method of claim $\underline{2}$ [[1]], further comprising determining the idle sample value for each of the other axes of the device.
6. (Currently Amended) The method of claim 1, wherein registering the motion of the device comprises:
receiving motion data from a motion sensor; and
processing the motion data to determine a current sample value [[of]] along the dominant axis of the device.
7. (Currently Amended) The method of claim $\underline{2}$ [[1]], further comprising comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value.
8. (Original) The method of claim 1, wherein the change in the dominant axis comprises a change in acceleration along the dominant axis.
9. (Original) The method of claim 1, wherein waking up the device further comprises configuring the device to return to a last active device state.
10. (Currently Amended) The method of claim 6, wherein the current sample value of the dominant axis of the device is an long average of accelerations over a sample period.
11. (Original) The method of claim 6, further comprising determining the current sample value for each of the other axes of the device.
12. (Canceled)
13. (Currently Amended) The method of claim 6, wherein processing the motion data further comprises:
verifying whether the motion data includes comprises one or more glitches; and removing the one or more glitches in the motion data from the motion data before calculating the long average.
14. (Original) The method of claim 6, further comprising determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value.
15. (Original) The method of claim 8, further comprising:
determining a new dominant axis based on the motion data received from the motion sensor;
computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis determined when the device goes to idle mode after a period of inactivity; and
comparing the difference against a threshold value to establish whether to wake the device up.

Claims 16-24. (Canceled)
25. (Currently Amended) A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
26. (Currently Amended) The mobile device of claim 25, further comprising:
a long average logic to create one or more long averages of accelerations over a sample period as measured by the motion sensor over a period of time.
27. (Canceled)
28. (Currently Amended) The mobile device of claim 26, further comprising:
a computation logic to determine if the long averages of accelerations indicate a change in the dominant axis of the device.
29. (Previously Presented) The mobile device of claim 26, further comprising a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated.
30. (Previously Presented) The mobile device of claim 25, wherein the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes.
31. (Previously Presented) The mobile device of claim 25, further comprising a device state logic to restore the device to a last active state.
32. (Previously Presented) The mobile device of claim 31, wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up.
33. (Currently Amended) A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes;
a dominant axis logic to compare an effect of gravity on the three axes, and to determine an eurrent dominant axis of the device experiencing a largest effect of gravity; and
a power logic to move the device from an inactive state to an active state upon detection of a change in the dominant axis experiencing the largest effect of gravity.
34. (New) The system of claim 33, further comprising:
a long average logic to create an average of accelerations over a sample period along the dominant axis; and
a computation logic to determine if the average of accelerations indicates the change in the dominant axis of the device.
35. (New) The system of claim 33, further comprising:
a device state logic to restore the device to one of: a last active state, a preset customized state.

Remarks/Arguments

Applicants respectfully request consideration of the subject application as amended herein. This Amendment is submitted in response to the Office Action mailed October 20, 2011, which was made final. Claims 1-15 and 25-33 are rejected. In this Amendment, claims 1-7, 10, 13, 25-26, 28, and 33 have been amended. Claims 12 and 27 have been canceled. New claims 34 and 35 have been added. Applicants reserve all rights with respect to the applicability of the Doctrine of Equivalents.

Therefore, claims 1-11, 13-15, 25, 26, and 28-35 are presented for examination. It is respectfully submitted that the amendment does not add new matter.

Claim Rejections under 35 U.S.C. $\$ 112$, second paragraph

Claims 1-15 and 25-33 stand rejected under 35 U.S.C. §112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The Examiner objected to the term "long average(s)" as a relative term, which renders the claim indefinite. Applicants have amended the claims to remove the term long average. This amendment of the claims does not add new matter.

The Examiner objected to the term "dominant axis" as a relative term that renders the claim indefinite. Applicants have amended the claims to include a specific definition of the term which is not relative. This addition of this language into the claims does not add new matter, as the definition comes from the Specification as filed.

In light of the above, Applicants respectfully request the withdrawal of the rejections under 35 U.S.C. 112, second paragraph.

Claim Rejections under 35 U.S.C. \$102(b)

Claims 1, 5-7, 10-12, and 14 stand rejected under 35 U.S.C. §102(b) as being anticipated by U.S. Publication No. 2006/0161377 to Rakkola, et al (hereinafter "Rakkola").

Rakkola discusses an energy efficient acceleration measurement system. However, Rakkola teaches away from the present invention. In particular, Rakkola states that:

Another important aspect of the described motion detector's embodiments is that, when the motion detector is enabled, a reference level is calculated automatically. The benefit of this function is that there is consequently no need to consider offsets on different channels when setting threshold levels, and threshold levels can also be set independently from device orientation and from the vector of gravitational force. An averaging procedure is used for this reference level calculation as well (see previous description of averaging process for incoming acceleration data). The reference levels are calculated in this way for each of the three axes, assuming that a triaxial accelerometer is used.
(Rakkola, paragraph 19). Rakkola concludes "The reference levels are set without regard to device orientation of the direction of gravity, and so setting of these reference levels is greatly streamlined, with corresponding reduction of power requirements." (Rakkola, paragraph 20). Therefore, Rakkola specifically teaches away from "determining an idle sample value for a dominant axis of a device," since no such calculation is needed.

Claim 1, as amended, recites:

1. A method comprising:
receiving motion data from a motion sensor, the motion sensor sensing motion along three axes;
determining an idle sample value for a dominant axis of a device, the dominant axis defined as the axis with a largest effect from gravity among the three axes;
registering a motion of the device based on the motion data from the motion sensor; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device.
(Claim 1). As noted above, Rakkola teaches away from determining a dominant axis, defined as the axis with a largest effect from gravity, and teaches away from using gravitational force at all. Therefore, Rakkola does not teach or suggest waking up the device when the motion of the device indicates a change in the dominant axis, e.g. the axis most impacted by gravity. Therefore, claim 1 is not anticipated by Rakkola.
Claims 5-7, 10-12, and 14 depend on claim 1, and incorporate its limitations, and therefore are also not anticipated by Rakkola.

Claim Rejections under 35 U.S.C. §103(a)

Claims 2-4, 8, 15, 25-30, and 33 stand rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of U.S. Publication No. 2007/0259716 to Mattice, et al (hereinafter "Mattice"). Applicants reserve the right to swear behind Mattice.

As noted above, Rakkola discusses an energy efficient acceleration measurement system. However, Rakkola teaches away from using gravitation.

Mattice discusses the control of wager-based game using gesture recognition. While Mattice uses the term "gravitational acceleration" Mattice does not teach or suggest determining an axis most impacted by gravity, much less using any such axis to determine when a device should be woken up. While the term "dominant axis" is used, it appears to refer to the axis experiencing the most motion from user input (see Mattice, Figure 6, paragraph 155).

As noted above, Rakkola also does not teach or suggest the identification of an axis with a largest impact from gravity, and using that axis identification. Therefore, Applicants respectfully submit that Mattice does not teach or suggest using a dominant axis (e.g. an axis most impacted by gravity) for waking up the device either, and thus does not remedy the shortcomings of Rakkola discussed above.

Claim 1, as amended, recites:

1. A method comprising:
receiving motion data from a motion sensor, the motion sensor sensing motion along three axes;
determining an idle sample value for a dominant axis of a device, the dominant axis defined as the axis with a largest effect from gravity among the three axes;
registering a motion of the device based on the motion data from the motion sensor; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device.
(Claim 1, as amended). As noted above, neither Rakkola nor Mattice teach or suggest determining an axis with a largest effect from gravity, and waking up the device when the motion of the device indicates a change in that axis. Claims 2-4, 8, and 15 depend on claim 1, and incorporate its limitations. Therefore, claims 2-4, 8, 15, are not obvious over the combination of Rakkola and Mattice.
(Claim 1, as amended). As noted above, neither Rakkola nor Mattice teach or suggest determining an axis with a largest effect from gravity, and waking up the device when the motion of the device indicates a change in that axis. Claims 2-4, 8, and 15 depend on claim 1, and incorporate its limitations. Therefore, claims 2-4, 8, 15, are not obvious over the combination of Rakkola and Mattice.

Claim 25, as amended, recites:
A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
(Claim 25, as amended). As noted above, neither Rakkola nor Mattice teach or suggest a power logic to activate the device when the motion indicates a change in the dominant axis of the device. Claims 26-30 depend on claim 25, and incorporate its limitations. Therefore, claims 26-30 are not obvious over the combination of Rakkola and Mattice.

Claim 33, as amended, recites:
A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes; a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and
a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity.
(Claim 33, as amended). As noted above, neither Rakkola nor Mattice teach or suggest a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity. Therefore, claim 33, and newly added claims 34-35 which depend on it, are not obvious over the combination of Rakkola and Mattice.

Claim 9 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of U.S. Patent No. 6,353,449 to Gregg, et al (hereinafter "Gregg"). Claim 9 depends on claim 1, and incorporates its limitations.

Gregg discusses a screensaver that communicates data, including application indicial representative of work in progress. (Gregg, Abstract). Gregg does not teach or suggest the identification of an axis having the largest impact from gravity, much less use such an axis to determine when to wake up a device. As noted above, Rakkola also does not teach or suggest this feature. Therefore, Gregg does not remedy the shortcomings of Rakkola discussed above. Therefore, claim 9 is not obvious over the combination of Rakkola and Gregg.

Claim 31 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of Gregg. Claim 31 depends on claim 25, and incorporates its limitations.

As noted above, none of Rakkola, Mattice, or Gregg teach or suggest a power logic which uses a change in a dominant axis of a device (defined as the axis most impacted by gravity), to wake up a device. Therefore, the combination of references does not make claim 31 obvious.

Claims 13 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of U.S. Publication No. 2007/0150136 to Doll, et al (hereinafter "Doll"). Applicants reserve the right to swear behind Doll. Claim 13 depends on claim 1, and incorporates its limitations.

Doll discusses a test signal, which is injected into a motion sensor, to test whether a motion sensor is functioning properly (Doll, Abstract). Doll does not teach or suggest the identification of an axis most impacted by gravity, much less the use such an axis to determine when to wake a device. As noted above, Rakkola also does not teach or suggest this feature. Therefore, claim 13 is not obvious over the combination of Rakkola and Doll.

Claim 32 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of Gregg in view of U.S. Patent No. 6,771,250 to Oh. Claim 32 depends on claim 25, and incorporates its limitations.

Oh discusses an application program launcher having a multi-point switch. Using the launcher, a user selects and executes one of several application programs registered in a program selection menu. (Oh, Abstract). Oh does not discuss identifying an axis most impacted by gravity at all, much less the use such an axis to determine when to wake up a device. As noted above, none of Rakkola, Mattice, and Gregg teach or suggest this feature either.

Therefore, claim 32 is not obvious over the combination of Rakkola, Mattice, Gregg, and Oh.

Conclusion

Applicant respectfully submits that in view of the amendments and discussion set forth herein, the applicable rejections have been overcome. Accordingly, the present and amended claims should be found to be in condition for allowance.

If a telephone interview would expedite the prosecution of this application, the Examiner is invited to contact Judith A. Szepesi at (408) 720-8300.

If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: January 12, 2012
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393
Customer No. 08791
1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	12/247,950	Art Unit:	2612
Filed	October 8, 2008	Conf No:	8961
For	Method and System for Waking Up a Device Due to Motion	CERTIFICATE OF TRANSMISSION I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.	
Customer No.	08791	$\frac{\text { /Judith Szepesi/ }}{\text { Judith A. Szepesi }}$	$\frac{\text { January } 12.2012}{\text { Date }}$
Mail Stop RCE			
Commissioner for Patents			
P.O. Box 1450			
Alexandria, Virg	ia 22313-1450		

REQUEST FOR EXAMINER INITIALS

Sir:
Applicants request that the Examiner initial the cited documents on Form PTO1449 submitted with an Information Disclosure Statement filed 8/19/2011 in the present application and return a copy of that initialed Form PTO-1449 to applicants. Applicants request the Examiner's initials in order to show consideration of the cited references.

A copy of the previously-submitted Form PTO-1449 is included herewith without copies of the previously submitted references.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: January 12, 2012
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393

1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known	
Application Number	$12 / 247,950$
Filing Date	October 8, 2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	8689 P057

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	4,285,041	8/18/1981	Smith	
		US-	4,578,769	3/25/1986	Frederick	
		us-	5,446,725	8/29/1995	Ishiwatari	
		us-	5,446,775	8/25/1995	Wright et al	
		us-	5,583,776	12/10/1996	Levi et al	
		US-	5,593,431	1/14/1997	Sheldon	
		us-	5,654,619	8/5/1997	Iwashita, Yasusuke	
		us-	5,778,882	7/14/1998	Raymond et al	
		US-	5,955,667	9/21/1999	Fyfe	
		us-	5,976,083	11/2/1999	Richardson, et al.	
		US-	6,122,595	9/19/2000	Varley et al	
		us-	6,135,951	10/24/2000	Richardson, et al.	
		us-	6,145,389	11/14/2000	Ebeling, et al.	
		us-	6,282,496	8/28/2001	Chowdhary	
		us-	6,369,794	4/9/2002	Sakurai et al	
		US-	6,428,490	8/6/2002	Kramer et al	
		us-	6,493,652	12/10/2002	Ohlenbusch et al	
		us-	6,496,695	12/17/2002	Kouji et al	
		us-	6,513,381	2/4/2003	Fyfe et al.	
		us-	6,522,266	2/18/2003	Soehren, et al.	
		us-	6,532,419	3/11/2003	Begin, et al.	
		us-	6,539,336	3/25/2003	Vock, et al.	
		us-	6,611,789	8/26/2003	Darley, Jesse	
		US-	6,700,499	3/2/2004	Kubo et al	
		us-	6,786,877	9/7/2004	Foxlin	
		us-	6,790,178	9/14/2004	Mault, et al.	
		us-	6,813,582	11/2/2004	Levi et al.	
		us-	6,823,036	11/23/2004	Chen	

Examiner
Signature

Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known	
Application Number	$12 / 247,950$
Filing Date	October 8,2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	$8689 P 057$

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	6,826,477	11/30/2004	Ladetto et al	
		US-	6,836,744	12/28/2004	Asphahani, et al.	
		us-	6,881,191	4/19/2005	Oakley, et al.	
		us-	6,885,971	4/26/2005	Vock, et al.	
		us-	6,898,550	5/24/2005	Blackadar, et al.	
		US-	6,928,382	8/9/2005	Hong et al	
		US-	6,941,239	9/6/2005	Unuma, et al.	
		us-	6,959,259	10/25/2005	Vock, et al.	
		US-	6,975,959	12/13/2005	Dietrich et al.	
		us-	7,054,784	5/30/2006	Flentov et al	
		Us-	7,057,551	6/6/2006	Vogt, Mark J	
		us-	7,072,789	7/4/2006	Vock, et al.	
		US-	7,092,846	8/15/2006	Vock, et al.	
		us-	7,148,797	12/12/2006	Albert	
		us-	7,158,912	1/20/2007	Vock, et al.	
		US-	7,169,084	1/30/2007	Tsuji, Tomoharu	
		us-	7,171,331	1/30/2007	Vock, et al.	
		US-	7,177,684	2/13/2007	Kroll et al	
		us-	7,212,943	5/1/2007	Aoshima, et al.	
		us-	7,220,220	5/22/2007	Stubbs, et al.	
		us-	7,297,088	11/20/2007	Tsuji, Tomoharu	
		us-	7,334,472	2/26/2008	Seo et al	
		US-	7,353,112	4/1/2008	Choi et al	
		Us-	7,382,611	2/12/2008	Klees, et al.	
		us-	7,387,611	6/17/2008	Inoue et al.	
		us-	7,451,056	11/11/2008	Flentov et al	
		US-	7,457,719	11/25/2008	Kahn et al	
		US-	7,467,060	12/16/2008	Kulach et al	

Examiner
Signature
Date Considered
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO					Complete if Known					
				STATEMENT BY APPLICANT (use as many sheets as necessary)					Application Number	12/247,950
									Filing Date	October 8, 2008
									First Named Inventor:	Philippe Kahn
									Art Unit	2612
									Examiner Name	Lu, Shirley
Sheet	3		of	8	Attorney Docket Number	8689P057				
U.S. PATENT DOCUMENTS										
Examiner Initials*	Cite No.'		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant				
		Number-Kind $\operatorname{Code}^{2}(\mid f$ known)				Passages or Relevant Figures Appear				
		us-	7,489,937	2/10/2009	Chung et al					
		us-	7,512,515	3/31/2009	Vock et al					
		us-	7,526,402	4/28/2009	Tenanhaus et al					
		us-	7,608,050	10/27/2009	Sugg, Christoper John					
		us-	7,640,804	1/5/2010	Daumer et al					
		us-	7,647,196	1/12/2010	Kahn et al.					
		us-	7,647,196	11/12/2010	Kahn et al					
		us-	7,653,508	1/26/2010	Kahn et al.					
		us-	7,752,011	7/6/2010	Niva et al					
		us-	7,753,861	7/13/2010	Kahn et al.					
		us-	7,774,156	8/10/2010	Niva et al					
		us-	7,857,772	12/28/2010	Bouvier et al					
		us-	2002/0023654	2/28/2002	Webb, James D					
		us-	2002/0089425	7/11/2002	Kubo et al					
		us-	2002/0109600	8/15/2002	Mault, James R.; et al.					
		Us-	2002/0118121	8/29/2002	Lehrman et al					
		us-	2002/0151810	10/17/2002	Wong, Philip Lim-Kong; et al.					
		us-	2002/0193124	12/19/2002	Hamilton et al					
		us-	2003/0018430	1/23/2003	Ladetto et al					
		us-	2003/0048218	3/13/2003	Milnes et al					
		us-	2003/0083596	5/1/2003	Kramer et al					
		us-	2003/0109258	6/12/2003	Mantyjarvi et al					
		us-	2003/0139692	7/24/2003	Barrey et al.					
		us-	2004/0106421	6/3/2004	Tomiyoshi et al					
		us-	2004/0225467	11/11/2004	Vock, Curtis A.; et al.					
		us-	2004/0236500	11/25/2004	Choi et al					
		us-	2005/0033200	2/10/2005	Soehren, Wayne A.; et al.					
		us-	2005/0202934	9/15/2005	Olrik et al					
Examine Signatur					Date Consider					

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. ${ }^{5}$). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. ${ }^{5}$). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known

Application Number	$12 / 247,950$
Filing Date	October 8, 2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	8689 P 057

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	2007/0213126	9/13/2007	Deutsch et al	
		us-	2007/0250261	10/25/2007	Soehren	
		us-	2007/0260418	11/8/2007	Ladetto et al	
		us-	2007/0260482	11/8/2007	Nurmela et al	
		us-	2008/0161072	7/3/2008	Lide et al	
		us-	2008/0171918	7/17/2008	Teller et al	
		us-	2009/0047645	2/19/2009	Dibenedetto et al	
		us-	2009/0098880	4/16/2009	Lindquist, Bjorn	
		us-	2009/0213002	8/27/2009	Rani et al	
		us-	2009/0234614	9/17/2009	Kahn et al.	
		us-	2009/0319221	12/24/2009	Kahn et al	
		us-	2010/0056872	3/4/2010	Kahn et al.	
		us-	2010/0057398	3/4/2010	Darley, Jesse; et al.	
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				

Examiner
Signature

Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)				Complete if Known		
				Application Number	12/247,950	
				Filing Date	October 8, 2008	
				First Named Inventor:	Philippe Kahn	
				Art Unit	2612	
				Examiner Name	Lu, Shirley	
Sheet		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published				T^{2}
		ANDERSON, lan, et al, "Shakra: Tracking and Sharing Daily Activity Levels with Unaugmented Mobile Phones," Mobile Netw Appl, 8/3/2007, pp 185-199				
		AYLWARD, Ryan, et al, "Sensemble: A Wireless, Compact, Multi-User Sensor System for Interactive Dance," International Conference on New Interfaces for Musical Expression (NIME06), June 4-8, 2006, pp 134-139				
		BACA, Arnold, et al, "Rapid Feedback Systems for Elite Sports Training," IEEE Pervasive Computing, October-December 2006, pp 70-76				
		BAKHRU, Kesh, "A Seamless Tracking Solution for Indoor and Outdoor Position Location," IEEE 16th International Symposium on Personal, Indoor, and Mobile Radio Communications, 2005, pp 2029-2033				
		BLILEY, Kara E, et al, "A Miniaturized Low Power Personal Motion Analysis Logger Utilizing MEMS Accelerometers and Low Power Microcontroller," IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, May 12-15, 2005, pp 92-93				
		BOURZAC, Katherine, "Wearable Health Reports," Technology Review, February 28, 2006, http://www.techreview.com/printer_friendly_article_aspx?id+16431, accessed 3/22/2007, 3 pages				
		CHENG, Fangxiang, et al, "Periodic Human Motion Description for Sports Video Databases," Proceedings of the Pattern Recognition, 2004, 5 pages				
		DAO, Ricardo, "Inclination Sensing with Thermal Accelerometers", MEMSIC, May 2002, 3 pages				
		FANG, Lei, et al, "Design of a Wireless Assisted Pedestrian Dead Reckoning System--The NavMote Experience," IEEE Transactions on Instrumentation and Measurement, Vol 54, No 6, December 2005, pp 2342-2358				
		HEALEY, Jennifer, et al, "Wearable Wellness Monitoring Using ECG and Accelerometer Data," IEEE Int. Symposium on Wearable Computers (ISWC'05), 2005, 2 pages				
		HEMMES, Jeffrey, et al, "Lessons Learned Building TeamTrak: An Urban/Outdoor Mobile Testbed," 2007 IEEE Int. Conf. on Wireless Algorithms, August 1-3, 2007, pp 219-224				

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)							
					Filing Date	October 8, 2008	
					First Named Inventor:	Philippe Kahn	
					Art Unit	2612	
					Examiner Name	Lu, Shirley	
Sheet	7		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS							
Examiner Initials*	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { Cite } \\ \mathrm{No} \end{array}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published					T^{2}
		JONES, L, et al, "Wireless Physiological Sensor System for Ambulatory Use," [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=\&arnumber=1612917\&isnumber=33861](http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=%5C&arnumber=1612917%5C&isnumber=33861), April 3-5, 2006					
		JOVANOV, Emil, et al, "A Wireless Body Area Network of Intelligent Motion Sensors for Computer Assisted Physical Rehabilitation," Journal of NeuroEngineering and Rehabilitation, March 2005, 10 pages					
		KALPAXIS, Alex, "Wireless Temporal-Spatial Human Mobility Analysis Using Real-Time Three Dimensional Acceleration Data," IEEE Intl. Multi-Conf. on Computing in Global IT (ICCGI'07), 2007, 7 pages					
		LEE, Seon-Woo, et al., "Recognition of Walking Behaviors for Pedestrian Navigation," IEEE International Conference on Control Applications, September 5-7, 2001, pp 1152-1155					
		MARGARIA, Rodolfo, "Biomechanics and Energetics of Muscular Exercise", Chapter 3, Oxford: Clarendon Press, 1976, pages 105-125					
		MILENKOVIC, Milena, et al, "An Accelerometer-Based Physical Rehabilitation System," IEEE SouthEastern Symposium on System Theory, 2002, pp 57-60					
		MIZELL, David, "Using Gravity to Estimate Accelerometer Orientation", Seventh IEEE International Symposium on Wearable Computers, 2003, 2 pages					
		ORMONEIT, D, et al, "Learning and Tracking Cyclic Human Motion," 7 pages					
		OTTO, Chris, et al, "System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring," Journal of Mobile Multimedia, Vol 1, No 4, 2006, pp 307-326					
		PARK, Chulsung, et al, "Eco: An Ultra-Compact Low-Power Wireless Sensor Node for RealTime Motion Monitoring," IEEE Int. Symp. on Information Processing in Sensor Networks, 2005, pp 398-403					
		SHEN, Chien-Lung, et al, "Wearable Band Using a Fabric-Based Sensor for Exercise ECG Monitoring," IEEE Int. Symp. on Wearable Computers, 2006, 2 pages					

| Examiner
 Signature | Date
 Considered | |
| :--- | :--- | :--- | :--- |

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)							
					Complete if Known		
					Filing Date	October 8, 2008	
					First Named Inventor:	Philippe Kahn	
					Art Unit	2612	
					Examiner Name	Lu, Shirley	
Sheet	8		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS							
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published					T^{2}
		"Sensor Fusion," <www.u-dynamics.com>, accessed 8/29/2008, 2 pages					
		TAPIA, Emmanuel Munguia, et al, "Real-Time Recognition of Physical Activities and Their Intensities Using Wireless Accelerometers and a Heart Rate Monitor," IEEE Cont. on Wearable Computers, October 2007, 4 pages					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 1-66 (part 1 of 3)					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 67-92 (part 2 of 3)					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 93-123 (part 3 of 3)					
		WECKESSER, P, et al, "Multiple Sensorprocessing for High-Precision Navigation and Environmental Modeling with a Mobile Robot," IEEE, 1995, pp 453-458					
		WEINBERG, Harvey, "MEMS Motion Sensors Boost Handset Reliability," http://www.mwrf.com/Articles/Print.cfm?ArticlelD=12740, June 2006, 3 pages					
		WIXTED, Andrew J , et al, "Measurement of Energy Expenditure in Elite Athletes Using MEMS-Based Triaxial Accelerometers," IEEE Sensors Journal, Vol 7, No 4, April 2007, pp 481-488					
		WU, Winston H, et al, "Context-Aware Sensing of Physiological Signals," IEEE Int. Conf. on Engineering for Medicine and Biology, August 23-26, 2007, pp 5271-5275					
		YOO, Chang-Sun, et al, "Low Cost GPS/INS Sensor Fusion System for UAV Navigation," IEEE Digital Avionics Systems Conference (DASC '03), 2003, 9 pages					

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

DETAILED ACTION

Response to Arguments

a. Applicant argues starting on page(s) 7, that the prior art does not specifically disclose the newly amended limitations.

In response, please see action below.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112 :

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim(s) 13, 26, 29, 34 is/are rejected under 35 U.S.C. 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The term "long average(s)" in claim(s) 13, 26, 29, 34 is a relative term which renders the claim indefinite. The term "long average(s)" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Any dependent claim(s) and/or similar limitation(s) is/are rejected for similar reason(s). Proper action is required.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person
having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

1. Claim(s) 1-8, 10-11, 14-15, 25-26, 28-30, 33-34 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Kahn (7987070) in view of Mattice (20070259716).

As to claim(s) 1, Rakkola disclose(s):
A method comprising: receiving motion data from a motion sensor, the motion sensor sensing motion along three axes; registering a motion of the device based on the motion data from the motion sensor, and waking up the device when the motion of the device indicates a change in the dominant axis of the device ([0015-44]).

The above art/combination does not expressly disclose determining an idle sample value for a dominant axis of a device, the dominant axis defined as the axis with a largest effect from gravity among the three axes.

Rakkola disclose(s): calculating reference levels for each of the three axes; programming threshold levels for each axis independently; collecting data for each of the three axes; idle states ([0015-44]).

Kahn disclose(s): identification of movement along 3 axes; determining dominant axis before or in conjunction with counting periodic motions; dominant axis, the axis most affected by gravity; comparing dominant axis to the other axes; determining movement from acceleration data of the axes; activating functions only when specified orientation detected ([7, 52 et seq.]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 2,
Rakkola disclose(s):
wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value ([0015-44]).

Rakkola disclose(s): processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54] see also claim(s) 1 and above claims).

As to claim(s) 3, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 4,
Rakkola disclose(s):
the idle sample value comprises an average of accelerations over a sample period along the dominant axis; when the device goes to idle mode after a period of inactivity ([0015-44]).

The above art/combination does not expressly disclose recorded.
Mattice discloses recorded spatial signatures, spatial signatures may be tracked, recorded, and/or analyzed by one or more motion detector devices; recording motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when the device is inactive, to track, record, and/or analyze the data.

As to claim(s) 5, Rakkola disclose(s):
determining the idle sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 6, Rakkola disclose(s):
registering the motion of the device comprises: processing the motion data to determine a current sample value along the dominant axis of the device ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 7, Rakkola disclose(s):
comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 8,
The above art/combination does not expressly disclose the change in the dominant axis comprises a change in acceleration along the dominant axis.

Mattice discloses the change in the dominant axis comprises a change in acceleration along the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine whether the device is rest.

As to claim(s) 10, Rakkola disclose(s):
the current sample value of the dominant axis of the device is an average of accelerations over a sample period ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 11, Rakkola disclose(s):
determining the current sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 14, Rakkola disclose(s):
determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value ([0015-44]).

As to claim(s) 15,
Rakkola disclose(s): computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis; comparing the difference against a threshold value to establish whether to wake the device up ([0015-44]).

The above art/combination does not expressly disclose determining a new dominant axis based on the motion data received from the motion sensor; when the device goes to idle mode after a period of inactivity.

Rakkola disclose(s): updating values automatically and periodically, as a programmable parameter; computing when the device goes to idle mode after a period of inactivity ([0015-44]).

Mattice discloses determining a new dominant axis based on the motion data received from the motion sensor (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when a device is inactive, to determine whether the device is at rest, and to update values automatically and/or periodically, as a programmable parameter. As to claim(s) 25, Rakkola disclose(s): A mobile device comprising: a motion sensor to register a motion of the mobile device; and a power logic to activate the device when the motion indicates a change in the dominant axis of the device ([0015-44]; see also claim 2).

The above art/combination does not expressly disclose a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes.

Mattice discloses a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim 2).
the dominant axis defined as an axis with a largest effect from gravity among three axes (see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account, and to determine the axis with the greater amount of movement (see also claim 1, 2).

As to claim(s) 26,
Rakkola disclose(s): a long average logic to create one or more averages of accelerations over a sample period as measured by the motion sensor; acceleration data along each of the axes ([0015-44]).

Rakkola disclose(s): to compute the one or more long averages of accelerations; logic to set a period over which motion data is collected; the number of samples summed to compute the one or more long averages of accelerations is a programmable setting ([0015-44]).

As to claim(s) 28, Rakkola disclose(s):
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device ([0015-44]; see also claim(s) 1, 25 and above claims).

As to claim(s) 29, Rakkola disclose(s):
a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated ([0015-44]; see also claim 13).

As to claim(s) 30, Rakkola disclose(s):

Art Unit: 2612
the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes ([0015-44]).

As to claim(s) 33,
A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes; a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity (see claim(s) 1, 25 and above claims).

As to claim(s) 34,
A long average logic to create an average of accelerations over a sample period along the dominant axis; and a computation logic to determine of the average of accelerations indicates the change in the dominant axis of the device (see claim(s) 1, 26, 28 and above claims).
2. Claim(s) 9, 31, 35 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Kahn (7987070) in view of Mattice (20070259716) in view of Gregg (6353449).

As to claim(s) 9, 31, 35,
The above art/combination does not expressly disclose waking up the device further comprises configuring the device to return to a last active device state.

Gregg discloses waking up the device further comprises configuring the device to return to a last active device state ([1, 23-30]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the

Art Unit: 2612
characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized when the user left the device.

3. Claim(s) 13 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola

 (20060161377) in view of Kahn (7987070) in view of Mattice (20070259716) in view of Doll (20070150136).As to claim(s) 13,
Rakkola disclose(s): processing the motion data further comprises; and removing the one or more glitches in the motion data from the motion data before calculating the long average ([0015-44]).

The above art/combination does not expressly disclose verifying whether the motion data includes one or more glitches.

Doll discloses verifying whether the motion data includes one or more glitches ([0007]).
It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to ensure that the system utilizes and processes valid information and data.
4. Claim(s) 32 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Kahn (7987070) in view of Mattice (20070259716) in view of Gregg (6353449) in view of Oh (6771250).

As to claim(s) 32,

The above art/combination does not expressly disclose the device state logic allows user interaction to customize applications to be displayed when the device is woken up.

Oh discloses the device state logic allows user interaction to customize applications to be displayed when the device is woken up ([3, 13-25]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized and/or as desired by a user.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shirley Lu whose telephone number is (571) 272-8546. The examiner can normally be reached on 8:30-5:00 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Daniel Wu can be reached on (571) 272-2964. The fax phone number for the organization where this application or proceeding is assigned is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Application/Control Number: 12/247,950
Page 12
Art Unit: 2612
/Shirley Lu/
Primary Examiner, Art Unit 2612

Notice of References Cited	Application/Control No. $12 / 247,950$	Applicant(s)/Patent Under Reexamination KAHN ET AL.	
	Examiner SHIRLEY LU	Art Unit 2612	Page 1 of 1

U.S. PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Name	Classification
	A	US-			
	B	US-			
	C	US-			
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

${ }^{*}$ A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp										
S2	, 28	\mid "5793291" \| "5949340"	"5966070"	"6104293"	"6535137"	"6714132"	?"6812844"	"6909365"	"6922154"	?"6924742"	"6930614"	"6998988").PN.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2010/05/03
53	3	S2 and remote\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$										
S4	3	S3 and distance\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF											
S5	,	"20040095252".pn. and distance\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	109										
S8	30	"20030222775".pn. and distance\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	1										
S9	\%	"20030098792".pn.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$12010 / 05 / 03$										
S10	30	"20030098792'.pn. and temperature		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$										
S11	3	/"20030098792".pn. and temperature\$1	/US-PGPUB;	OR	OFF	2010/05/03										

			$\begin{aligned} & \text { :USPAT; } \\ & \text { USOCR; } \\ & \text { PRSO; } \\ & \text { EPO; JPO; } \\ & \text { DERMENT; } \end{aligned}$			10:40
S12	/1	"20030098792".pn. and motion		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 43 \end{aligned}$
S13	[2	S2 and distance\$1	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRO; JPO; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 46 \end{aligned}$
S14	$\sqrt{11}$	bbaby adj seat and distance same counter		OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 13 \end{aligned}$
S15	19	baby adj seat and predetermined adj distance		OR	OFF	12
S16	${ }^{2}$	"20030122662".pn. and range	UUS-PGPUB; USPAT; USOCR; IPPRS; GPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{array}{\|l\|} 2010 / 05 / 03 \\ 11: 20 \end{array}$
S17	/67	car adj seat and predetermined adj distance	USS-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 22 \end{aligned}$
S18	/167	car adj seat and predetermined adj distance	UUSPGPUB; USPAT; USCR; IPRS; EPO; JPO; DDERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 23 \end{aligned}$
S19	133	Car adj seat and distance with signal\$1		OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$

			IBM TDB			
520	14	car adj seat and predetermined adj distance with signal\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	1
S21	0	"7797212".pn. and counter	US-PGPUB USPAT; UUSOCR; IFPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 26 \end{aligned}$
S22	12	car adj seat and distance with signal\$1 adj strength\$1	US-PGPUB USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	120
S23	0	"1318".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	2
S24	1	"131848".apn. and automatic\$4	USPGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S25	3	"131848".apn.	USPGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|c} 2010 / 05 / 13 \\ 20: 06 \end{array}$
526	1	"131848".apn. and automatic\$4		OR	OFF	$\left\lvert\, \begin{gathered} 2010 / 05 / 13 \\ 20: 06 \end{gathered}\right.$
S27	12	lojack.as. and automatic\$4	US-PGPUB UUSPAT; UUSOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	20
S28	2	7561102".pn.	$\begin{aligned} & \begin{array}{l} \text { USSPGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	$2010 / 05 / 13$

			IEPO; JPO; DERWENT; IBM TDB			
S29	2	"7536169".pn.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2010 / 05 / 13}{20: 15}$
S30	3940	counter with time with distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
531	245	counter with measur\$4 near5 (time with distance)	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
532	25	S31 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 54 \end{aligned}$
533	11598	"327"/\$.ccls. and rectifier	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
S34	$\boxed{616}$	"327"/\$.ccls. and rectifier.ti.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
S35	36	340/573.1 and return adj signal with distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 49 \end{aligned}$
S36	21	S35 and @rlad < "20060718"	USPAGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TIDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 50 \end{aligned}$
S37		"20030034887".pn. and return adj signal	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 53 \end{aligned}$

			$\begin{aligned} & \text { USOCR; } \\ & \text { PRPS; } \\ & \text { PEP; JPO; } \\ & \text { DERM TENT; } \end{aligned}$			
538	2	"20030034887".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
S39	2	"20030034887".pn. and return adj signal		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
540	1	"20030034887".pn. and "10"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 18 \end{aligned}$
541	2	"20030034887".pn. and timer		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 38 \end{aligned}$
S42	0	"20030098792".pn. and "72"	US-PGPUB; USPAT; USCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
S43	1	"20030098792".pn. and "27"		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
54	0	"779712".apn. and low adj power	$\begin{aligned} & \text { USS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \\ & \text { EPERWENT; } \\ & \text { IBM TIDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S45	0	"779712".apn. and motion adj detector		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$

S46	0	"779712".apn. and motion	\|US-PGPUB; "USPAT; "USOCR; "PRRS; "EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$		
S47	3	"779712".apn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$		
548	2	"6922147".pn. and temperature	UUS-PGPUB;USPAT; USOCR; FPRS; IEPO; JPO; IDRWENT; IBM TDB,$~$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 06 \end{aligned}$		
S49	6	$\begin{aligned} & \text { ("20030098792") or ("20030034887") or } \\ & \text { (6922147")).PN. } \end{aligned}$	\|US-PGPUB; USPAT; ISOCR; IPRRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$12011 / 04 / 26$		
550	3	S49 and (conserv\$4 sav\$4 power reduc\$4)	\|US-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; DBRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$		
551	3	S49 and (conserv\$6 sav\$4 power reduc\$4)	\|US-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$		
552	2	S49 and motion	\|US-PGPUB; USPAT;	UPOCR; IPRS;	EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$201 / 04 / 26$
553	0	mtion adj detector with sleep	\|USPGPUB; USPAT; USOCR; FPRS; IEPO; JPO; MDRWENT; IBM TDB	OR	OFF	2		
554	52	motion adj detector with sleep adj mode		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 05 \end{aligned}$		

			$\begin{aligned} & \text { IDERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
S55	10	S54 and @rlad < "20060718"	US-PGPUB USPAT; USOCR; FPRS; EPPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|l\|} 2011 / 04 / 26 \\ 21: 06 \end{array}$
S56	9857	(340/457,573.1,686.1,539.1,522,667).CCLS.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
S57	5	S56 and S54	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
S58	638	signal adj edge adj detector	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 18 \end{aligned}$
S59	\%	signal adj edge adj detector same reduce adj error	US-PGPUB; USPAT; USOCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
S60	33	Signal adj edge adj detector same error	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
561	10	signal adj edge adj detector with error	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
S62	3	signal adj edge adj detector with error with count\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	2
S63	3	signal adj edge adj detector with error with count\$4	$\begin{array}{\|l\|} \mid \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \end{array}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 22 \end{aligned}$

			IFPRS; EPO; JPO; DERWENT; IBM TDB			
564	10	signal adj edge adj detector with error	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRS; } \\ \text { EPO; JPO; } \\ \text { BERWENT; } \\ \text { IBM TTB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
S65	34	signal adj edge adj detector and measur\$4 Iadj time	\|US-PGPUB; :USPAT; !USOCR; IPRRS; IEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
566	5	signal adj edge adj detector same measur\$4 adj time	\|US-PGPUB; UUSAT; !USOCR; IPRRS; :EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
568	86	edge adj detect\$4 with counter with error\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 24 \end{aligned}$
569	23	S68 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 25 \end{aligned}$
S70	45	edge adj detect\$4 with reduc\$4 near3 error\$1	\|USPGPUB; USSAT; UUSCR; IPRRS; IEPO; JPO; DDERWENT; IBM TDB	OR	OFF	$\begin{array}{\|l} 2011 / 04 / 26 \\ 21: 26 \end{array}$
571	7	S70 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 26 \end{aligned}$
572	1	"247950".apn. and dominant adj axis	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 03 \end{aligned}$
573	18]("20060161377") or ("200702597") or	UUS-PGPUB;	OR	OFF	2011/04/26

		$\begin{aligned} & \text { ("20070150136") or ("6353449") or } \\ & \text { ("6771250)).PN. } \end{aligned}$	UUSPAT; UUSOCR; :FPRS; :EPO; JPO; DERWENT !IBM TDB			22:40
574	0	("200700259716").PN.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$11: 57$
S75	2	("20070259716").PN.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
S76	8	("20070259716") or ("6353449") or	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 201 / 04 / 27, \\ & 17: 37 \end{aligned}$
577	1	"247950".apn. and (long adj average....................................... idle)	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
578	1	"247950".apn. and (long adj average\$1 with set\$4)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
S79	1	"247950".apn. and (long adj average\$1 with idle adj sample)	UUS-PGPUB; USPAT; : UPOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\sqrt{2011 / 04 / 27}$
880	1	"247950".apn. and (long adj average\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 17 \end{aligned}$
581	3	long adj average	USSPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT;	\%	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 18 \end{aligned}$

			IIBM TDB			
582	3524	"long average"	US-PGPUB; USPAT; USOCR; IPPRS; IEP; JPO; IDRWENT; IBM TDB	OR	OFF	2
583	10	$((20060161377$ ") or ("20070259716") or ("6353449") or ("20070150136") or (" 6771250 ")). PN .	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
584	2	S83 and record\$4		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$
S85	1	247950".apn. and dominant	US-PGPUB; USPAT; USOCR; IPRRS; IED; JPO; IDPRWENT; IIBM TDB	OR	OFF	2
586	1	247950".apn. and idle	US-PGPUB; USPAT; USOCR; IPRRS; IEPO; JPO; IDRWENT; IIBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 40 \end{aligned}$
S87	1	"247950".apn. and new adj dominant	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPO; } \\ & \text { EPDR } \\ & \text { IERENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 201 / 04 / 27 \\ & 23: 43 \end{aligned}$
588	1	"20060161377".pn. and reference	$\begin{aligned} & \text { USPPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPO; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\sqrt{2011 / 04 / 27}$
589	10	20070259716".pn. and (idle sleep)		OR	OFF	$2311 / 04 / 27$
590	$]^{2}$	"20070259716".pn.			OFF	$\begin{aligned} & 201 / 04 / 27 \\ & 23: 57 \end{aligned}$

			MEPO; JPO; DERWENT; IBM TDB			
591	1	"247950".apn. and idle with comput\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
592	1	"247950".apn. and idle	\|US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
593	0	"0070259716".pn. and ("0053" "0155"	UUS-PGPUB; USAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
594	2	"20070259716".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
595	2	"6353449".pn.	UUS-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 00 \end{aligned}$
596	2	"20070150136".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 03 \end{aligned}$
597	7354	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$	USS-PGPUB; USPAT; USOCR; IFPRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
598	3525	long adj average		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
599		597 and 598	US-PGPUB; USPAT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$

			USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			
S100	:8	("20070259716") or ("63534449") or	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S101	1	S97 and S100		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S102	3668	"long average"		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S103	28		UUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IDERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S104	38	$340 / 573.1$ and return adj signal with distance		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S105	10	("20060161377") or ("20070259716") or ("6353449") or ("20070150136") or ("6771250")).PN.		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S106	2	S105 and record\$4	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S107	7852	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$

S108		long adj average		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S109		("20070259716") or ("6353449") or		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
5		$\begin{aligned} & (" 20030098792 ") \text { or ("20030034887") or } \\ & \hline(6922147 ")) . \mathrm{PN} \text {. } \end{aligned}$	UUS-PGPUB; UUSAT; USOCR; IPRS; EPO; JPO; DDERWENT; IBM TDB	OR	OFF	$\left\lvert\, \begin{aligned} & 201 / 10 / 14 \\ & 15: 57 \end{aligned}\right.$
$\sqrt{S 111}$		S110 and (conserv\$6 sav\$4 power reduc\$4)		OR	OFF	2011/10/14
$\sqrt{S 112}$		S104 and @rlad < "20060718"	UUS-PGPUB; UUSPAT; USOCR; IPRS; IEPO; JPO; IDERWENT; IBM TDB	OR	OFF	$\left\lvert\, \begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}\right.$
S113	1	tire with inches with sensor with (outside)	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S114		tire with sensor with (outside) same inches	UUS-PGPUB; UUSAT; UUSOCR; IPRS; IEPO; JPO; DDERWENT; IBM TDB	OR	OFF	2011/10/22
5		tire with sensor with (outside) same size	UUSPGPPB; UUSAT; USOCR; IPRS; EPO; JPO; IDERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
$\longdiv { 5 1 1 6 }$		"447841".apn. and ("18" "20")			OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$

			$\begin{aligned} & \text { IDERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
S117	3	"447841".apn.	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; } \\ \text { EPO; JPO; } \\ \text { BERWENT; } \end{array} \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S118]	"447841".apn.	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S119	1	S114 and ("18" "20")	\| US-PGPUB; USPAT; !USOCR; IPRRS; :EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S120	3	tire adj size with sensor with (outside)		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S121	6	tire adj size same sensor with (outside inside)	:US-PGPPB; :USPAT; USOCR; :IPRS; EPD; JPO; IDERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S123	331	tire with sensor with (outside) with (pressure temperature)		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 54 \end{aligned}$
S124	86	S123 and @rlad < "20080604"	UUS-PGPUB; USPAT; USOCR; IPRS; UPPO; JPO; IERWENT;	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 55 \end{aligned}$
S125	1	"20060161377".pn. and (axis axes)	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 01 / 22 \\ & 18: 25 \end{aligned}$
S126		"247950".apn. and dominant adj axis	US-PGPUB; USPAT; USOCR;		OFF	$\begin{aligned} & 2012 / 01 / 22 \\ & 18: 32 \end{aligned}$

			IIPPRS; EPO; JPO; DERWENT; BM TDB			
S127	12	dominant adj axis with gravity	$\begin{aligned} & \text { LUS-PGPUB;: } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPO; } \\ & \text { EPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\frac{2012 / 01 / 22}{19: 05}$
S128	5	S127 and @rlad < "20081008"		OR	OFF	$\begin{aligned} & 2012 / 01 / 22 \\ & 19: 06 \end{aligned}$
S129	12	dominant adj (axis axes)with gravity		OR	OFF	$\begin{aligned} & 2012 / 01 / 22 \\ & 19: 07 \end{aligned}$
S130	8125	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$	USS-PGPUB; USPAT; USOCR; IPRRS; GPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 01 / 22 \\ & 19: 17 \end{aligned}$
S131	38	S130 and dominant adj (axis axes)		OR	OFF	$\begin{aligned} & 2012 / 01 / 22 \\ & 19: 17 \end{aligned}$
S132		"20060161377".pn. and idle	US-PGPUB; UUPAT; USOCR; UPRS; MPO; JPO; MERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 01 / 22 \\ & 19: 25 \end{aligned}$

1/22/2012 8:30:15 PM
C: \Users\slu\Documents\EAST Workspaces $\backslash 12247950$.wsp

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	12/247,950	Art Unit:	2612
Filed	October 8, 2008	Conf No:	8961
For	Method and System for Waking Up a Device Due to Motion	CERTIFICATE OF TRANSMISSION I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.	
Customer No.	08791	$\frac{\text { Judith Szepe }}{\text { Judith A. Szep }}$	$\frac{\text { April 26. } 2012}{\text { Date }}$

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

AMENDMENT

Sir:

In response to the Office Action of January 26, 2012, applicants respectfully request the Examiner to enter the following amendments and consider the following remarks:

Amendments to the Claims are reflected in the listing of claims, which begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

IN THE CLAIMS:

1. (Previously Presented) A method comprising:

receiving motion data from a motion sensor, the motion sensor sensing motion along three axes;
determining an idle sample value for a dominant axis of a device, the dominant axis defined as the axis with a largest effect from gravity among the three axes;
registering a motion of the device based on the motion data from the motion sensor; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device.
2. (Previously Presented) The method of claim 1, wherein determining the idle sample value for the dominant axis comprises:
processing the motion data to establish an idle sample value; and
processing the idle sample value to establish the dominant axis.
3. (Previously Presented) The method of claim 1, wherein the motion sensor comprises an accelerometer.
4. (Previously Presented) The method of claim 2, wherein the idle sample value comprises an average of accelerations over a sample period along the dominant axis recorded when the device goes to idle mode after a period of inactivity.
5. (Previously Presented) The method of claim 2, further comprising determining the idle sample value for each of the other axes of the device.
6. (Previously Presented) The method of claim 1, wherein registering the motion of the device comprises:
processing the motion data to determine a current sample value along the dominant axis of the device.
7. (Previously Presented) The method of claim 2, further comprising comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value.
8. (Original) The method of claim 1, wherein the change in the dominant axis comprises a change in acceleration along the dominant axis.
9. (Original) The method of claim 1, wherein waking up the device further comprises configuring the device to return to a last active device state.
10. (Previously Presented) The method of claim 6, wherein the current sample value of the dominant axis of the device is an average of accelerations over a sample period.
11. (Original) The method of claim 6, further comprising determining the current sample value for each of the other axes of the device.
12. (Canceled)
13. (Currently Amended) The method of claim 6, wherein processing the motion data further comprises:
verifying whether the motion data includes one or more glitches; and removing the one or more glitches in the motion data from the motion data before calculating the long average.
14. (Original) The method of claim 6 , further comprising determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value.
15. (Original) The method of claim 8, further comprising:
determining a new dominant axis based on the motion data received from the motion sensor;
computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis determined when the device goes to idle mode after a period of inactivity; and
comparing the difference against a threshold value to establish whether to wake the device up.

Claims 16-24. (Canceled)
25. (Previously Presented) A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
26. (Previously Presented) The mobile device of claim 25, further comprising:
a long average logic to create one or more averages of accelerations over a sample period as measured by the motion sensor.
27. (Canceled)
28. (Previously Presented) The mobile device of claim 26, further comprising:
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device.
29. (Previously Presented) The mobile device of claim 26, further comprising a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated.
30. (Previously Presented) The mobile device of claim 25, wherein the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes.
31. (Previously Presented) The mobile device of claim 25, further comprising a device state logic to restore the device to a last active state.
32. (Previously Presented) The mobile device of claim 31, wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up.
33. (Previously Presented) A system to wake up a mobile device comprising:
a motion sensor to detect motion along three axes;
a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and
a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity.
34. (Previously Presented) The system of claim 33, further comprising:
a long average logic to create an average of accelerations over a sample period along the dominant axis; and
a computation logic to determine if the average of accelerations indicates the change in the dominant axis of the device.
35. (Previously Presented) The system of claim 33, further comprising:
a device state logic to restore the device to one of: a last active state, a preset customized state.

Remarks/Arguments

Applicants respectfully request consideration of the subject application as amended herein. This Amendment is submitted in response to the Office Action mailed January 26, 2012. Claims 1-11, 13-15, 25, 26, and 28-35 are rejected. In this Amendment, claim 13 has been amended. No claims have been canceled. No new claims have been added. Applicants reserve all rights with respect to the applicability of the Doctrine of Equivalents.

Therefore, claims 1-11, 13-15, 25, 26, and 28-35 are presented for examination. It is respectfully submitted that the amendment does not add new matter.

Claim Rejections under 35 U.S.C. $\$ 112$, second paragraph

Claims 13, 26, 29, and 34 stand rejected under 35 U.S.C. §112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The Examiner objected to the use of the term "long average" as a relative term. Applicants have amended claim 13 to remove the term.

With respect to claims 26, 29, and 34, the phrase "long average logic" is used in as the name of an element. Applicants may be their own lexicographers, and may use terms, which are clearly defined in the Specification. Applicants respectfully submit that the term "long average logic" can be found in the original Specification and figures referencing the same element. Therefore, the phrase is well defined, and not a relative term, and one of skill in the would understand that "the long average logic" is a logic element in the system. Therefore, Applicants respectfully request withdrawal of this rejection.

If the Examiner maintains that this term is a relative term, the Examiner is respectfully requested to contact Judith Szepesi, at 408-720-8300 $\times 3483$, to resolve any such issue.

Claim Rejections under 35 U.S.C. §103(a)

Claims 1-8, 10-11, 14-15, 25-26, 28-30, and 33-34 stand rejected under 35
U.S.C. §103(a) as being unpatentable over U.S. Patent Publication No. 2006/0161377 to Rakkola, et al (hereinafter "Rakkola") in view of U.S. Patent No. 7,987,070 to Kahn,
et al (hereinafter "Kahn") in view of of U.S. Publication No. 2007/0259716 to Mattice, et al (hereinafter "Mattice").

Claims 9, 31, and 35 stand rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Kahn in view of Mattice in view of U.S. Patent No. $6,353,449$ to Gregg, et al (hereinafter "Gregg").

Claim 13 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Kahn in view of Mattice in view of U.S. Publication No. 2007/0150136 to Doll, et al (hereinafter "Doll").

Claim 32 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Kahn in view of Mattice in view of Gregg in view of U.S. Patent No. 6,771,250 to Oh.

In each of these rejections, Kahn is utilized as a reference. Applicants respectfully submit that Kahn is prior art only under 35 U.S.C. 102(e). As noted in 35 U.S.C. 103(c)(1) "Subject matter developed by another person, which qualifies as prior art only under one or more of subsections (e), (f), and (g) of section 102 of this title, shall not preclude patentability under this section where the subject matter and the claimed invention were, at the time the claimed invention was made, owned by the same person or subject to an obligation of assignment to the same person."

The present invention was invented by a subset of the inventors named in the Kahn patent. Furthermore, both applications are assigned to the same entity, and are assigned to and owned by the same entity. Therefore, Kahn cannot be used as prior art against the present invention.

Applicants therefore respectfully submit that the claims are not obvious over the combination of references, since Kahn cannot be used as a reference.

Conclusion

Applicant respectfully submits that in view of the amendments and discussion set forth herein, the applicable rejections have been overcome. Accordingly, the present and amended claims should be found to be in condition for allowance.

If a telephone interview would expedite the prosecution of this application, the Examiner is invited to contact Judith A. Szepesi at (408) 720-8300.

If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: April 25, 2012
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393
Customer No. 08791 1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	$:$ Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	$: 12 / 247,950$	Art Unit:	2612

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

REQUEST FOR EXAMINER INITIALS

Sir:
Applicants request that the Examiner initial the cited documents on Form PTO1449 submitted with an Information Disclosure Statement filed 8/19/2011 in the present application and return a copy of that initialed Form PTO-1449 to applicants. Applicants request the Examiner's initials in order to show consideration of the cited references.

A copy of the previously-submitted Form PTO-1449 is included herewith without copies of the previously submitted references.

No fees are included herewith. If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: April 26, 2012
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393

1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known	
Application Number	$12 / 247,950$
Filing Date	October 8, 2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	8689 P057

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	4,285,041	8/18/1981	Smith	
		US-	4,578,769	3/25/1986	Frederick	
		us-	5,446,725	8/29/1995	Ishiwatari	
		us-	5,446,775	8/25/1995	Wright et al	
		us-	5,583,776	12/10/1996	Levi et al	
		US-	5,593,431	1/14/1997	Sheldon	
		us-	5,654,619	8/5/1997	Iwashita, Yasusuke	
		us-	5,778,882	7/14/1998	Raymond et al	
		US-	5,955,667	9/21/1999	Fyfe	
		us-	5,976,083	11/2/1999	Richardson, et al.	
		US-	6,122,595	9/19/2000	Varley et al	
		us-	6,135,951	10/24/2000	Richardson, et al.	
		us-	6,145,389	11/14/2000	Ebeling, et al.	
		us-	6,282,496	8/28/2001	Chowdhary	
		us-	6,369,794	4/9/2002	Sakurai et al	
		US-	6,428,490	8/6/2002	Kramer et al	
		us-	6,493,652	12/10/2002	Ohlenbusch et al	
		us-	6,496,695	12/17/2002	Kouji et al	
		us-	6,513,381	2/4/2003	Fyfe et al.	
		us-	6,522,266	2/18/2003	Soehren, et al.	
		us-	6,532,419	3/11/2003	Begin, et al.	
		us-	6,539,336	3/25/2003	Vock, et al.	
		us-	6,611,789	8/26/2003	Darley, Jesse	
		US-	6,700,499	3/2/2004	Kubo et al	
		us-	6,786,877	9/7/2004	Foxlin	
		us-	6,790,178	9/14/2004	Mault, et al.	
		us-	6,813,582	11/2/2004	Levi et al.	
		us-	6,823,036	11/23/2004	Chen	

Examiner
Signature

Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known	
Application Number	$12 / 247,950$
Filing Date	October 8, 2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	$8689 P 057$

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	6,826,477	11/30/2004	Ladetto et al	
		US-	6,836,744	12/28/2004	Asphahani, et al.	
		us-	6,881,191	4/19/2005	Oakley, et al.	
		us-	6,885,971	4/26/2005	Vock, et al.	
		us-	6,898,550	5/24/2005	Blackadar, et al.	
		US-	6,928,382	8/9/2005	Hong et al	
		US-	6,941,239	9/6/2005	Unuma, et al.	
		us-	6,959,259	10/25/2005	Vock, et al.	
		US-	6,975,959	12/13/2005	Dietrich et al.	
		us-	7,054,784	5/30/2006	Flentov et al	
		Us-	7,057,551	6/6/2006	Vogt, Mark J	
		us-	7,072,789	7/4/2006	Vock, et al.	
		US-	7,092,846	8/15/2006	Vock, et al.	
		us-	7,148,797	12/12/2006	Albert	
		us-	7,158,912	1/20/2007	Vock, et al.	
		US-	7,169,084	1/30/2007	Tsuji, Tomoharu	
		us-	7,171,331	1/30/2007	Vock, et al.	
		US-	7,177,684	2/13/2007	Kroll et al	
		us-	7,212,943	5/1/2007	Aoshima, et al.	
		us-	7,220,220	5/22/2007	Stubbs, et al.	
		us-	7,297,088	11/20/2007	Tsuji, Tomoharu	
		us-	7,334,472	2/26/2008	Seo et al	
		US-	7,353,112	4/1/2008	Choi et al	
		Us-	7,382,611	2/12/2008	Klees, et al.	
		us-	7,387,611	6/17/2008	Inoue et al.	
		us-	7,451,056	11/11/2008	Flentov et al	
		US-	7,457,719	11/25/2008	Kahn et al	
		US-	7,467,060	12/16/2008	Kulach et al	

Examiner
Signature
Date Considered
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO					Complete if Known					
				STATEMENT BY APPLICANT (use as many sheets as necessary)					Application Number	12/247,950
									Filing Date	October 8, 2008
									First Named Inventor:	Philippe Kahn
									Art Unit	2612
									Examiner Name	Lu, Shirley
Sheet	3		of	8	Attorney Docket Number	8689P057				
U.S. PATENT DOCUMENTS										
Examiner Initials*	Cite No.'		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant				
		Number-Kind $\operatorname{Code}^{2}(\mid f$ known)				Passages or Relevant Figures Appear				
		us-	7,489,937	2/10/2009	Chung et al					
		us-	7,512,515	3/31/2009	Vock et al					
		us-	7,526,402	4/28/2009	Tenanhaus et al					
		us-	7,608,050	10/27/2009	Sugg, Christoper John					
		us-	7,640,804	1/5/2010	Daumer et al					
		us-	7,647,196	1/12/2010	Kahn et al.					
		us-	7,647,196	11/12/2010	Kahn et al					
		us-	7,653,508	1/26/2010	Kahn et al.					
		us-	7,752,011	7/6/2010	Niva et al					
		us-	7,753,861	7/13/2010	Kahn et al.					
		us-	7,774,156	8/10/2010	Niva et al					
		us-	7,857,772	12/28/2010	Bouvier et al					
		us-	2002/0023654	2/28/2002	Webb, James D					
		us-	2002/0089425	7/11/2002	Kubo et al					
		us-	2002/0109600	8/15/2002	Mault, James R.; et al.					
		Us-	2002/0118121	8/29/2002	Lehrman et al					
		us-	2002/0151810	10/17/2002	Wong, Philip Lim-Kong; et al.					
		us-	2002/0193124	12/19/2002	Hamilton et al					
		us-	2003/0018430	1/23/2003	Ladetto et al					
		us-	2003/0048218	3/13/2003	Milnes et al					
		us-	2003/0083596	5/1/2003	Kramer et al					
		us-	2003/0109258	6/12/2003	Mantyjarvi et al					
		us-	2003/0139692	7/24/2003	Barrey et al.					
		us-	2004/0106421	6/3/2004	Tomiyoshi et al					
		us-	2004/0225467	11/11/2004	Vock, Curtis A.; et al.					
		us-	2004/0236500	11/25/2004	Choi et al					
		us-	2005/0033200	2/10/2005	Soehren, Wayne A.; et al.					
		us-	2005/0202934	9/15/2005	Olrik et al					
Examine Signatur					Date Consider					

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. ${ }^{5}$). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. ${ }^{5}$). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known

Application Number	$12 / 247,950$
Filing Date	October 8, 2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	8689 P057

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	2007/0213126	9/13/2007	Deutsch et al	
		us-	2007/0250261	10/25/2007	Soehren	
		us-	2007/0260418	11/8/2007	Ladetto et al	
		us-	2007/0260482	11/8/2007	Nurmela et al	
		us-	2008/0161072	7/3/2008	Lide et al	
		us-	2008/0171918	7/17/2008	Teller et al	
		us-	2009/0047645	2/19/2009	Dibenedetto et al	
		us-	2009/0098880	4/16/2009	Lindquist, Bjorn	
		us-	2009/0213002	8/27/2009	Rani et al	
		us-	2009/0234614	9/17/2009	Kahn et al.	
		us-	2009/0319221	12/24/2009	Kahn et al	
		us-	2010/0056872	3/4/2010	Kahn et al.	
		us-	2010/0057398	3/4/2010	Darley, Jesse; et al.	
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				

Examiner
Signature

Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. ${ }^{5}$). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)				Complete if Known		
				Application Number	12/247,950	
				Filing Date	October 8, 2008	
				First Named Inventor:	Philippe Kahn	
				Art Unit	2612	
				Examiner Name	Lu, Shirley	
Sheet		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published				T^{2}
		ANDERSON, lan, et al, "Shakra: Tracking and Sharing Daily Activity Levels with Unaugmented Mobile Phones," Mobile Netw Appl, 8/3/2007, pp 185-199				
		AYLWARD, Ryan, et al, "Sensemble: A Wireless, Compact, Multi-User Sensor System for Interactive Dance," International Conference on New Interfaces for Musical Expression (NIME06), June 4-8, 2006, pp 134-139				
		BACA, Arnold, et al, "Rapid Feedback Systems for Elite Sports Training," IEEE Pervasive Computing, October-December 2006, pp 70-76				
		BAKHRU, Kesh, "A Seamless Tracking Solution for Indoor and Outdoor Position Location," IEEE 16th International Symposium on Personal, Indoor, and Mobile Radio Communications, 2005, pp 2029-2033				
		BLILEY, Kara E, et al, "A Miniaturized Low Power Personal Motion Analysis Logger Utilizing MEMS Accelerometers and Low Power Microcontroller," IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, May 12-15, 2005, pp 92-93				
		BOURZAC, Katherine, "Wearable Health Reports," Technology Review, February 28, 2006, http://www.techreview.com/printer_friendly_article_aspx?id+16431, accessed 3/22/2007, 3 pages				
		CHENG, Fangxiang, et al, "Periodic Human Motion Description for Sports Video Databases," Proceedings of the Pattern Recognition, 2004, 5 pages				
		DAO, Ricardo, "Inclination Sensing with Thermal Accelerometers", MEMSIC, May 2002, 3 pages				
		FANG, Lei, et al, "Design of a Wireless Assisted Pedestrian Dead Reckoning System--The NavMote Experience," IEEE Transactions on Instrumentation and Measurement, Vol 54, No 6, December 2005, pp 2342-2358				
		HEALEY, Jennifer, et al, "Wearable Wellness Monitoring Using ECG and Accelerometer Data," IEEE Int. Symposium on Wearable Computers (ISWC'05), 2005, 2 pages				
		HEMMES, Jeffrey, et al, "Lessons Learned Building TeamTrak: An Urban/Outdoor Mobile Testbed," 2007 IEEE Int. Conf. on Wireless Algorithms, August 1-3, 2007, pp 219-224				

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)					Complete if Known		
					Application Number $\quad 12 / 247,950$		
					Filing Date	October 8, 2008	
					First Named Inventor:	Philippe Kahn	
					Art Unit	2612	
					Examiner Name	Lu, Shirley	
Sheet	7		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS							
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No }{ }^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published					T^{2}
		JONES, L, et al, "Wireless Physiological Sensor System for Ambulatory Use," [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=\&arnumber=1612917\&isnumber=33861](http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=%5C&arnumber=1612917%5C&isnumber=33861), April 3-5, 2006					
		JOVANOV, Emil, et al, "A Wireless Body Area Network of Intelligent Motion Sensors for Computer Assisted Physical Rehabilitation," Journal of NeuroEngineering and Rehabilitation, March 2005, 10 pages					
		KALPAXIS, Alex, "Wireless Temporal-Spatial Human Mobility Analysis Using Real-Time Three Dimensional Acceleration Data," IEEE Intl. Multi-Conf. on Computing in Global IT (ICCGI'07), 2007, 7 pages					
		LEE, Seon-Woo, et al., "Recognition of Walking Behaviors for Pedestrian Navigation," IEEE International Conference on Control Applications, September 5-7, 2001, pp 1152-1155					
		MARGARIA, Rodolfo, "Biomechanics and Energetics of Muscular Exercise", Chapter 3, Oxford: Clarendon Press, 1976, pages 105-125					
		MILENKOVIC, Milena, et al, "An Accelerometer-Based Physical Rehabilitation System," IEEE SouthEastern Symposium on System Theory, 2002, pp 57-60					
		MIZELL, David, "Using Gravity to Estimate Accelerometer Orientation", Seventh IEEE International Symposium on Wearable Computers, 2003, 2 pages					
		ORMONEIT, D, et al, "Learning and Tracking Cyclic Human Motion," 7 pages					
		OTTO, Chris, et al, "System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring," Journal of Mobile Multimedia, Vol 1, No 4, 2006, pp 307-326					
		PARK, Chulsung, et al, "Eco: An Ultra-Compact Low-Power Wireless Sensor Node for RealTime Motion Monitoring," IEEE Int. Symp. on Information Processing in Sensor Networks, 2005, pp 398-403					
		SHEN, Chien-Lung, et al, "Wearable Band Using a Fabric-Based Sensor for Exercise ECG Monitoring," IEEE Int. Symp. on Wearable Computers, 2006, 2 pages					

| Examiner
 Signature | Date
 Considered | |
| :--- | :--- | :--- | :--- |

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)							
					Complete if Known		
					Filing Date	October 8, 2008	
					First Named Inventor:	Philippe Kahn	
					Art Unit	2612	
					Examiner Name	Lu, Shirley	
Sheet	8		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS							
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published					T^{2}
		"Sensor Fusion," <www.u-dynamics.com>, accessed 8/29/2008, 2 pages					
		TAPIA, Emmanuel Munguia, et al, "Real-Time Recognition of Physical Activities and Their Intensities Using Wireless Accelerometers and a Heart Rate Monitor," IEEE Cont. on Wearable Computers, October 2007, 4 pages					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 1-66 (part 1 of 3)					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 67-92 (part 2 of 3)					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 93-123 (part 3 of 3)					
		WECKESSER, P, et al, "Multiple Sensorprocessing for High-Precision Navigation and Environmental Modeling with a Mobile Robot," IEEE, 1995, pp 453-458					
		WEINBERG, Harvey, "MEMS Motion Sensors Boost Handset Reliability," http://www.mwrf.com/Articles/Print.cfm?ArticlelD=12740, June 2006, 3 pages					
		WIXTED, Andrew J , et al, "Measurement of Energy Expenditure in Elite Athletes Using MEMS-Based Triaxial Accelerometers," IEEE Sensors Journal, Vol 7, No 4, April 2007, pp 481-488					
		WU, Winston H, et al, "Context-Aware Sensing of Physiological Signals," IEEE Int. Conf. on Engineering for Medicine and Biology, August 23-26, 2007, pp 5271-5275					
		YOO, Chang-Sun, et al, "Low Cost GPS/INS Sensor Fusion System for UAV Navigation," IEEE Digital Avionics Systems Conference (DASC '03), 2003, 9 pages					

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Electronic Acknowledgement Receipt	
EFS ID:	12637049
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	8791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	26-APR-2012
Filing Date:	08-OCT-2008
Time Stamp:	20:47:03
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		8689P057_AmResp_April2012. pdf		yes	8

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

DETAILED ACTION

Response to Arguments

a. Applicant argues starting on page(s) 7, that the prior art does not specifically disclose the newly amended limitations.

In response, please see action below.

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:
The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Claim(s) 1-11, 13-15, 25, 26, 28-35 is/are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. Claims $1,25,33$ recite "axis with a largest effect from gravity." Any dependent claim(s) and/or similar limitation(s) is/are rejected for similar reason(s). Proper action is required.

Claim1-11, 13-15, 25, 26, 28-35 is/are rejected under 35 U.S.C. 112 , first paragraph, as based on a disclosure which is not enabling. Limitation(s) critical or essential to the practice of the invention, but not included in the claim(s) is not enabled by the disclosure. See In re Mayhew, 527 F.2d 1229, 188 USPQ 356 (CCPA 1976). Any dependent claim(s) and/or similar limitation(s) is/are rejected for similar reason(s). Proper action is required.

Claim Rejections - 35 USC § 112
The following is a quotation of the second paragraph of 35 U.S.C. 112 :

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim(s) 26, 29, 34 is/are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The term "long average(s)" in claim(s) $13,26,29,34$ is a relative term which renders the claim indefinite. The term "long average(s)" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Any dependent claim(s) and/or similar limitation(s) is/are rejected for similar reason(s). Proper action is required.

The term "axis with a largest effect from gravity" in claim(s) 1-11, 13-15, 25, 26, 28-35 is unclear which renders the claim indefinite. The term is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Any dependent claim(s) and/or similar limitation(s) is/are rejected for similar reason(s). Proper action is required.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

1. Claim(s) 1-8, 10-11, 14-15, 25-26, 28-30, 33-34 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716).

As to claim(s) 1, Rakkola disclose(s):
A method comprising: receiving motion data from a motion sensor, the motion sensor sensing motion along three axes; registering a motion of the device based on the motion data from the motion sensor, and waking up the device when the motion of the device indicates a change in the dominant axis of the device ([0015-44]).

The above art/combination does not expressly disclose determining an idle sample value for a dominant axis of a device, the dominant axis defined as the axis with a largest effect from gravity among the three axes.

Rakkola disclose(s): calculating reference levels for each of the three axes; programming threshold levels for each axis independently; collecting data for each of the three axes; idle states ([0015-44]).

Rakkola disclose(s): wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value; processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 2,
Rakkola disclose(s):
wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value ([0015-44]).

Rakkola disclose(s): processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2;
[0053]; [0155-65]; [0210-54] see also claim(s) 1 and above claims).
As to claim(s) 3, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 4,
Rakkola disclose(s): dominant axis; when the device goes to idle mode after a period of inactivity ([0015-44]).

The above art/combination does not expressly disclose recorded.
Mattice discloses recorded spatial signatures, spatial signatures may be tracked, recorded, and/or analyzed by one or more motion detector devices; recording motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when the device is inactive, to track, record, and/or analyze the data, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 5, Rakkola disclose(s):
determining the idle sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 6, Rakkola disclose(s):
registering the motion of the device comprises: processing the motion data to determine a current sample value along the dominant axis of the device ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 7, Rakkola disclose(s):

The above art/combination does not expressly disclose the change in the dominant axis comprises a change in acceleration along the dominant axis.

Mattice discloses the change in the dominant axis comprises a change in acceleration along the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine whether the device is rest, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 10, Rakkola disclose(s):
the current sample value of the dominant axis of the device is an average of accelerations over a sample period ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 11, Rakkola disclose(s):
determining the current sample value for each of the other axes of the device ([0015-44]). As to claim(s) 14, Rakkola disclose(s):
determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value ([0015-44]). As to claim(s) 15,

Rakkola disclose(s): computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis; comparing the difference against a threshold value to establish whether to wake the device up ([0015-44]).

The above art/combination does not expressly disclose determining a new dominant axis based on the motion data received from the motion sensor; when the device goes to idle mode after a period of inactivity.

Rakkola disclose(s): updating values automatically and periodically, as a programmable parameter; computing when the device goes to idle mode after a period of inactivity ([0015-44]).

Mattice discloses determining a new dominant axis based on the motion data received from the motion sensor (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when a device is inactive, to determine whether the device is at rest, and to update values automatically and/or periodically, as a programmable parameter, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 25,
Rakkola disclose(s): A mobile device comprising: a motion sensor to register a motion of the mobile device; and a power logic to activate the device when the motion indicates a change in the dominant axis of the device ([0015-44]; see also claim 2).

The above art/combination does not expressly disclose a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes.

Mattice discloses a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim 2).
the dominant axis defined as an axis with a largest effect from gravity among three axes (see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account, and to determine the axis with the greater amount of movement (see also claims 1, 2).

As to claim(s) 26,

Rakkola disclose(s): a long average logic to create one or more averages of accelerations over a sample period as measured by the motion sensor; acceleration data along each of the axes ([0015-44]).

Rakkola disclose(s): to compute the one or more long averages of accelerations; logic to set a period over which motion data is collected; the number of samples summed to compute the one or more long averages of accelerations is a programmable setting ([0015-44]).

As to claim(s) 28, Rakkola disclose(s):
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device ([0015-44]; see also claim(s) 1, 25; above claim(s)).

As to claim(s) 29, Rakkola disclose(s):
a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated ([0015-44]; see also claim 13; above claim(s)).

As to claim(s) 30, Rakkola disclose(s):
the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes ([0015-44]).

As to claim(s) 33,
A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes; a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity (see claim(s) 1, 25; above claim(s)).

As to claim(s) 34,

A long average logic to create an average of accelerations over a sample period along the dominant axis; and a computation logic to determine of the average of accelerations indicates the change in the dominant axis of the device (see claim(s) 1, 26, 28; above claim(s)).
2. Claim(s) $9,31,35$ is/are rejected under 35 U.S.C. 103(a) as being unpatentable over

Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449).
As to claim(s) 9, 31, 35,
The above art/combination does not expressly disclose waking up the device further comprises configuring the device to return to a last active device state.

Gregg discloses waking up the device further comprises configuring the device to return to a last active device state ([1, 23-30]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized when the user left the device, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.
3. Claim(s) 13 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Doll (20070150136).

As to claim(s) 13,

Rakkola disclose(s): processing the motion data further comprises; and removing the one or more glitches in the motion data from the motion data before calculating the long average ([0015-44]).

The above art/combination does not expressly disclose verifying whether the motion data includes one or more glitches.

Doll discloses verifying whether the motion data includes one or more glitches ([0007]).
It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to ensure that the system utilizes and processes valid information and data, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.
4. Claim(s) 32 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449) in view of Oh (6771250).

As to claim(s) 32,
The above art/combination does not expressly disclose the device state logic allows user interaction to customize applications to be displayed when the device is woken up.

Oh discloses the device state logic allows user interaction to customize applications to be displayed when the device is woken up ([3, 13-25]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized and/or as desired by a user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shirley Lu whose telephone number is (571) 272-8546. The examiner can normally be reached on 8:30-5:00 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Daniel Wu can be reached on (571) 272-2964. The fax phone number for the organization where this application or proceeding is assigned is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
/Shirley Lu/
Primary Examiner, Art Unit 2612

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	0	(axis axes) with idle with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 40 \end{aligned}$
L2	66	(axis axes) with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$
L3	15	2 and @rlad < "20081008"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$
L4	0	(three) adj axes with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	15
L5	6	(three) adj axes with idle	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2012/06/16
L6	1	"247950".apn. and gravity	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 50 \end{aligned}$
L7		"247950".apn. and idle	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 57 \end{aligned}$
L8	1	"247950".apn. and wak\$4	US-PGPUB;	OR	OFF	2012/06/16

			$\begin{aligned} & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRSP; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$			16:00
L9	10685	(340/457,573.1,686.1,539.1,522,667).CCLS	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
L10	3855	long adj average	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
L11	88	ledge adj detect\$4 with counter with error\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S2	28		UUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$
53	7	S2 and remote\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$
54	${ }^{2}$	S3 and distance\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 49 \end{aligned}$
S5	1	"20040095252".pn. and distance\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 50 \end{aligned}$
58	0	"20030222775".pn. and distance\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT;	¢	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 14 \end{aligned}$

			IBM TDB			
59	${ }^{2}$	"20030098792".pn.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 16 \end{aligned}$
S10	10	"20030098792".pn. and temperature	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
511]	"20030098792".pn. and temperature\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S12	1	"20030098792".pn. and motion	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 43 \end{aligned}$
S13	/2	S2 and distance\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 46 \end{aligned}$
S14	11	baby adj seat and distance same counter	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USRSR; } \\ & \text { EPR; JPO; } \\ & \text { IBMWENT; } \end{aligned}$	OR	OFF	$\frac{2010 / 05 / 03}{11: 13}$
S15	$\sqrt{19}$	baby adj seat and predetermined adj distance	USPGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\left\lvert\, \begin{aligned} & 2010 / 05 / 03 \\ & 11: 17 \end{aligned}\right.$
S16	/2	"20030122662".pn. and range	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 20 \end{aligned}$
S17	[167	car adj seat and predetermined adj distance	$\begin{aligned} & \begin{array}{l} \text { USSPGPUB; } \\ \text { USPAT; } \\ \text { USPCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 22 \end{aligned}$

			IEPO; JPO; DERWENT; IBM TDB			
S18	167	car adj seat and predetermined adj distance	US-PGPUB USPAT; USOCR; FPRS; EPP; JPO; DERWENT; IBM TDB	OR	OFF	$11: 23$
S19	133	car adj seat and distance with signal\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2010/05/03
520	14	car adj seat and predetermined adj distance with signal\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$
S21	0	"7797212".pn. and counter	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	12
522	12	car adj seat and distance with signal\$1 adj strength\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	1
523	0	"1318.apn. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2010 / 05 / 13}{20: 05}$
S24	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S25	3	"131848".apn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
526	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT;	OR	OFF	2

			UUSOCR; FPRS; EPO; JPO; DERWENT; IIBM TDB			
S27	12	lojack.as. and automatic\$4		OR	OFF	${ }_{2010 / 05 / 13}^{20: 12}$
S28	2	"7561102".pn.	UUS-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\sqrt{2010 / 05 / 13}$
S29	2	\|"7536169".pn.		OR	OFF	20
530	3940	counter with time with distance	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
531	245	counter with measur\$4 near5 (time with distance)	US-PGPUB: USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
S32	25	S31 and @rlad < "20060718"	$\begin{aligned} & \text { MSS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { IPRS; JPO; } \\ & \text { BPRWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\sqrt{2011 / 01 / 10}$
533	11598	"327"/\$.ccls. and rectifier	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \\ & \text { IPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDBB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
534	616	"327"/\$.ccls. and rectifier.ti.	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRS; } \\ \text { EPO; JPO; } \\ \text { DRWENT; } \\ \text { IBM TDB } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$

S35	36	$340 / 573.1$ and return adj signal with distance	US-PGPUB; USPAT; USOCR; PPRS; :EPO; JPO; DERWENT; \|BM_TDB		OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 49 \end{aligned}$
536	21	S35 and @rlad < "20060718"	IBM TDB	OR	OFF	$1 \begin{aligned} & 2011 / 04 / 26 \\ & 17: 50 \end{aligned}$
537	[2	20030034887".pn. and return adj signal	US-PGPUB: USPAT; USOCR; IFPRS; :EPO; JPO; DERWENT; IIBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 53 \end{aligned}$
538	[2	"20030034887".pn.	UUS-PGPUB; USPAT; USOCR; IPRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
539	2	"20030034887".pn. and return adj signal	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
540	[1	"20030034887".pn. and "10"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 18 \end{aligned}$
S41	2	"20030034887".pn. and timer	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 38 \end{aligned}$
S42	30	20030098792".pn. and "72"	USS-PGPUB; USPAT; USOCR; "PRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
S43	1	20030098792".pn. and "27"	US-PGPUB; USPAT; USOCR; FPRS; JPO;		OFF	$\sqrt{2011 / 04 / 26}$

			IDERWENT; IBM TDB			
S44	0	"779712".apn. and low adj power	USS-PGPUB; USPAT; USOCR; IPPRS; IEO; JPO; IDERWENT; IIBM TDB	OR	OFF	$18: 53$
S45	0	"779712".apn. and motion adj detector	US-PGPUB; USPAT; USOCR; RPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S46	0	"779712".apn. and motion	USS-PGPUB; USPAT; ISOCR; IPPRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$18: 53$
S47	3	"779712".apn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
548	2	"6922147".pn. and temperature		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 06 \end{aligned}$
549	\%	$\begin{aligned} & \text { ("20030098792") or ("20030034887") or } \\ & \hline \end{aligned}$	US-PGPUB; USPAT; USOCR; RPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	1
550]	S49 and (conserv\$4 sav\$4 power reduc\$4)	पUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
551	3^{3}	S49 and (conserv\$6 sav\$4 power reduc\$. 4)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
552	${ }^{2}$	S49 and motion	US-PGPUB; USPAT; USOCR;	OR	OFF	2

			IIFPRS; EPO; JPO: DERWENT; BM TDB			
S53	0	mmion adj detector with sleep		OR	OFF	$2011 / 04 / 26$
S54	52	motion adj detector with sleep adj mode	\|US-PGPUB; USPAT; USOCR; IPRRS; UPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 05 \end{aligned}$
55	10	S54 and @rlad < "20060718"	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 06 \end{aligned}$
556	9857	(340/457,573.1,686.1,539.1,522,667).CCLS.		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
557	5	S56 and S54	\|USPGPUB; :USPAT; USOCR; IPRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
55	638	signal adj edge adj detector	\|US-PGPUB; USPAT; USOCR; UPRS; UPO; JPO; IERWENT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 18 \end{aligned}$
559	10	signal adj edge adj detector same reduce adj error	US PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
560	33	signal adj edge adj detector same error	$\begin{array}{\|c\|} \hline \text { USPGPUB; } \\ \text { USPAT; } \\ \text { UPOCR; } \\ \text { :PRS; JPO } \\ \text { EPORWENT; } \\ \hline \text { IBM TDB } \end{array}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
561	10	Signal adj edge adj detector with error	\|US-PGPUB;	OR	OFF	2011/04/26

			"USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			21:19
S62	3	signal adj edge adj detector with error with count\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \hline \text { BM TDB } \end{aligned}$	OR	OFF	2
563	3	signal adj edge adj detector with error with count\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2
564	\% 10	signal adj edge adj detector with error	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$2011 / 04 / 26$
S65	3 34	signal adj edge adj detector and measur\$4 adj time	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \hline \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
S66	5	signal adj edge adj detector same measur\$4 adj time	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	O	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
568	86	edge adj detect\$4 with counter with error\$1	$\begin{aligned} & \sqrt{\text { US-PGPUB; }} \\ & \sqrt{\text { USPAT; }} \\ & \sqrt{\text { USOCR; }} \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \hline \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 24 \end{aligned}$
S69	, 23	S68 and @rlad < "20060718"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2
S70	45	edge adj detect\$4 with reduc\$4 near3 error\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \end{aligned}$	OR	OFF	$2011 / 04 / 26$

			IBM TDB			
571	7	S70 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S72	1	"247950".apn. and dominant adj axis	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 03 \end{aligned}$
573	18	$\begin{aligned} & \text { ("20060161377") or ("200702597") or } \\ & \text { ("20070150136") or ("6353449") or } \\ & \text { ("671250")).PN. } \end{aligned}$	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 40 \end{aligned}$
574	0	("200700259716").PN.	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
S75	2	(20070259716").PN.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
576	8	("20070259716") or ("6353449") or	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 17: 37 \end{aligned}$
577	1	"247950".apn. and (long adj average\$1 with	US-PGPUB USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
578	1	"247950".apn. and (long adj average\$1 with set $\$ 4$)	US-PGPUB USPAT; UUSOCR; IFRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2011 / 04 / 27}{23: 11}$
S79	1	"247950".apn. and (long adj average\$1 with] idle adj sample)	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USPCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	2

			IEPO; JPO; DERWENT; IBM TDB			
580	1	"247950".apn. and (long adj average\$1)	US-PGPUB; USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	$2011 / 04 / 27$
581	$\sqrt{3524}$	long adj average	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
582	/3524	"long average"	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2011 / 04 / 27$
883	10	$\begin{aligned} & (\text { ("20060161377") or ("20070259716") or } \\ & (\text { (6353449") or ("20070150136") or } \\ & (\text { ("6771250")).PN. } \end{aligned}$	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
584	${ }^{2}$	S83 and record\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2011 / 04 / 27$
885	1	247950".apn. and dominant	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2011 / 04 / 27$
586	1	"247950".apn. and idle	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 40 \end{aligned}$
587	1	"247950".apn. and new adj dominant	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
588	1	"20060161377".pn. and reference	US-PGPUB;	OR	OFF	$2011 / 04 / 27$

			$\begin{aligned} & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$			
589	0	"20070259716".pn. and (idle sleep)		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 54 \end{aligned}$
S90		"20070259716".pn.	US-PGPUB; USAT; USOCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 57 \end{aligned}$
S91		"247950".apn. and idle with comput\$4		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
592	1	"247950".apn. and idle	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
593	0	"20070259716".pn. and ("0053" "0155"	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { MSOCR; } \\ \text { IPRRS; } \\ \text { EPO; JPO; } \\ \text { BERWENT; } \\ \text { IBM TDB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
S94	2	"20070259716".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
595	2	"6353449".pn.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 00 \end{aligned}$
596		"20070150136".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 03 \end{aligned}$

S97	7354	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM_TDB		OFF	$12011 / 04 / 28$
598	3525	long adj average	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
599	3	S97 and S98		OR	OFF	$\sqrt{2011 / 04 / 28}$
S100	8	$\begin{aligned} & \text { ("20070259716") or ("6353449") or } \\ & \hline \text { ("20070150136") or }(" 6771250 \text { ")).PN. } \end{aligned}$	US-PGPUB; USPAT: USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S101	1	S97 and S100	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S102	3668	"long average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S103	28		US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\left\lvert\, \begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}\right.$
S104	38	340/573.1 and return adj signal with distance	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S105	10	$((20060161377$ ") or ("20070259716") or ($\left.6353449^{\prime \prime}\right)$ or ("20070150136") or (" 6771250)). PN .	$\begin{aligned} & \begin{array}{l} \text { USPGPU; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PRS; } \end{array} \\ & \text { EPO; JPO; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$

			MDERWENT; IBM TDB			
S106	2	S105 and record\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { IPRO; JPO; } \\ & \text { MERWENT; } \\ & \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S107	7852	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S108	/3668	long adj average	UUS-PGPUB; USPAT; USOCR; IPRRS; IEPO; JPO; MERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S109	8	("20070259716") or ("6353449") or $($ (20070150136") or ("6771250")).PN.		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S110	\%	$\begin{aligned} & \text { !("20030098792") or ("20030034887") or } \\ & \hline(\text { " } 692147 \text { ")).PN. } \end{aligned}$	UUS-PGPUB; USPAT; UUSOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\sqrt{2011 / 10 / 14}$
S111	3	S110 and (conserv\$6 sav\$4 power reduc\$4)		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S112	23	S104 and @rlad < "20060718"		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S113	:1	tire with inches with sensor with (outside)	UUSPGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWNENT; IBM TDB	OR	OFF	$\begin{aligned} & 201 / 10 / 22 \\ & 18: 48 \end{aligned}$
S114	:1	tire with sensor with (outside) same inches	$\begin{aligned} & \text { USSPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$

			IIPPRS; EPO; JPO; DERWENT; BM_TDB			
S115	20	tire with sensor with (outside) same size	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM_TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S116	$]^{3}$	"447841".apn. and ("18" "20")	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S117	3	"447841".apn.	\|US-PGPUB; USPAT; USOCR; IPRRS; UPD; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S118	3	"447841".apn.		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S119	1	S114 and ("18" "20")	\|US-PGPUB; : USPAT; USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S120	3	tire adj size with sensor with (outside)	\|US-PGPUB; USPAT; USOCR; UPRS; UPO; JPO; IERWENT; IBM TDB	OR	OFF	$\frac{2011 / 10 / 22}{18: 50}$
S121	6	tire adj size same sensor with (outside inside)	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S123	331	tire with sensor with (outside) with (pressure temperature)	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 54 \end{aligned}$
S124	86	S123 and @rlad < "20080604"	UUS-PGPUB;	OR	OFF	/2011/10/22

			$\begin{aligned} & \text { :USPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; } \\ & \text { LIBM_TDB; } \end{aligned}$			18:55
S125	8488	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . C C L S . \end{aligned}$	\|US-PGPUB; : USPAT; USSCR; IPRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S126	347	tire with sensor with (outside) with (pressure temperature)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { BPERWENT; } \\ & \text { BMM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S127	3272	edge adj detect\$4 with counter	$\begin{aligned} & \hline \text { US-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MPRCR; } \\ & \text { GPO; JPO; } \\ & \text { BERWENT; } \\ & \hline \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S128	$\sqrt{39}$	340/573.1 and return adj signal with Idistance	\|US-PGPUB; : USPAT; !USOCR; IPRRS; :EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S129	23	S128 and @rlad < "20060718"	US-PGPUB: USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S130		("7987070").PN.	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 00 \end{aligned}$
S131	1	"247950".apn. and idle	$\begin{aligned} & \text { USPGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 32 \end{aligned}$
S132	208	(axis axes) with (idl\$4 sleep\$4) with accelerat\$4	$\begin{aligned} & \text { MSTPGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S133		S132 and @rlad < "20081008"	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { USPGUUB; } \\ \text { USPAT; } \\ \text { USOCR; } \end{array}\right. \\ & \hline \text { PPRS } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$

S134	9346	accelerometer with motion	$\begin{aligned} & \text { US-PGPUB; } \\ & \sqrt{\text { USPAT; }} \\ & \text { USOCR; } \\ & \text { FPRS } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$
S135	2	("20060161377").PN.	$\begin{aligned} & \text { US-PGPUB } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$1 \begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$

6/ 16/ 2012 4:06:34 PM
C:\Users\slu\Documents\EAST\Workspaces\12247950.wsp

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	12/247,950	Art Unit:	2612
Filed	October 8, 2008	Conf No:	8961
For	Method and System for Waking Up a Device Due to Motion	I hereby submitted ele shown below.	E OF TRANSMISSION is correspondence is being ly via EFS Web on the da
Customer No.	08791	/Judith Szep	$\frac{\text { September 21,2012 }}{\text { Date }}$

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

AMENDMENT

Sir:

In response to the Office Action of June 21, 2012, applicants respectfully request the Examiner to enter the following amendments and consider the following remarks:

Amendments to the Claims are reflected in the listing of claims, which begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

IN THE CLAIMS:

1. (Currently Amended) A method comprising:
receiving motion data from a motion sensor in a device, the motion sensor sensing motion along three axes;
determining an idle sample value for a dominant axis of [[a]] the device, the dominant axis defined as the axis with a largest effect from gravity among the three axes;
registering a motion of the device based on the motion data from the motion sensor; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device.
2. (Previously Presented) The method of claim 1, wherein determining the idle sample value for the dominant axis comprises:
processing the motion data to establish an idle sample value; and
processing the idle sample value to establish the dominant axis.
3. (Previously Presented) The method of claim 1, wherein the motion sensor comprises an accelerometer.
4. (Previously Presented) The method of claim 2, wherein the idle sample value comprises an average of accelerations over a sample period along the dominant axis recorded when the device goes to idle mode after a period of inactivity.
5. (Previously Presented) The method of claim 2, further comprising determining the idle sample value for each of the other axes of the device.
6. (Previously Presented) The method of claim 1, wherein registering the motion of the device comprises:
processing the motion data to determine a current sample value along the dominant axis of the device.
7. (Previously Presented) The method of claim 2, further comprising comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value.
8. (Original) The method of claim 1, wherein the change in the dominant axis comprises a change in acceleration along the dominant axis.
9. (Original) The method of claim 1, wherein waking up the device further comprises configuring the device to return to a last active device state.
10. (Previously Presented) The method of claim 6, wherein the current sample value of the dominant axis of the device is an average of accelerations over a sample period.
11. (Original) The method of claim 6, further comprising determining the current sample value for each of the other axes of the device.
12. (Canceled)
13. (Previously Presented) The method of claim 6, wherein processing the motion data further comprises:
verifying whether the motion data includes one or more glitches; and
removing the one or more glitches in the motion data from the motion data before calculating the average.
14. (Original) The method of claim 6, further comprising determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value.
15. (Original) The method of claim 8, further comprising:
determining a new dominant axis based on the motion data received from the motion sensor;
computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis determined when the device goes to idle mode after a period of inactivity; and
comparing the difference against a threshold value to establish whether to wake the device up.

Claims 16-24. (Canceled)
25. (Previously Presented) A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
26. (Previously Presented) The mobile device of claim 25, further comprising:
a long average logic to create one or more averages of accelerations over a sample period as measured by the motion sensor.
27. (Canceled)
28. (Previously Presented) The mobile device of claim 26, further comprising:
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device.
29. (Previously Presented) The mobile device of claim 26, further comprising a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated.
30. (Previously Presented) The mobile device of claim 25, wherein the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes.
31. (Previously Presented) The mobile device of claim 25, further comprising a device state logic to restore the device to a last active state.
32. (Previously Presented) The mobile device of claim 31, wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up.
33. (Previously Presented) A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes;
a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and
a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity.
34. (Previously Presented) The system of claim 33, further comprising:
a long average logic to create an average of accelerations over a sample period along the dominant axis; and
a computation logic to determine if the average of accelerations indicates the change in the dominant axis of the device.
35. (Previously Presented) The system of claim 33, further comprising:
a device state logic to restore the device to one of: a last active state, a preset customized state.

Remarks/Arguments

Applicants respectfully request consideration of the subject application as amended herein. This Amendment is submitted in response to the Office Action mailed June 21, 2012. Claims 1-11, 13-15, 25, 26, and 28-35 are rejected. In this Amendment, claim 1 has been amended. No claims have been canceled. No new claims have been added. Applicants reserve all rights with respect to the applicability of the Doctrine of Equivalents.

Therefore, claims 1-11, 13-15, 25, 26, and 28-35 are presented for examination. It is respectfully submitted that the amendment does not add new matter.

Claim Rejections under 35 U.S.C. §112, first paragraph

Claims 1-11, 13-15, 25, 26, 28-35 stand rejected under 35 U.S.C. §112, first paragraph, as failing to comply with the written description requirement. Claims 1-11, $13-15,25,26,28-35$ stand rejected under 35 U.S.C. §112, first paragraph, as based on a disclosure which is not enabling. The Examiner suggests that the Specification does not describe "axis with a largest effect from gravity." Applicants respectfully disagree. The Specification as originally filed explains the determination of this axis in paragraphs 23-24, as follows:

In one embodiment, the long average logic 240 creates a long average of accelerations along a single axis. In one embodiment, the dominant axis - defined as the axis most impacted by gravity -- is used by the long average logic 240 . In one embodiment, the axis corresponds to one of the axes of the accelerometer. In one embodiment, the axis is defined as the orientation experiencing the most pull from gravity. In one embodiment, the long average logic 240 creates long averages of accelerations along multiple axes.

Determining the orientation of an electronic device may include identifying a gravitational influence. The axis with the largest absolute long average may be the axis most influenced by gravity, which may change over time (e.g., as the electronic device is rotated). Therefore, a new dominant axis may be assigned when the orientation of the electronic device and/or the inertial sensor(s) attached to or embedded in the electronic device changes.

Thus, the Specification explains that the axis most impacted by gravity, is the one experiencing the most pull from gravity. The concept that gravity exerts a force is well known in the art. It is clear that gravity pulls downward, as is known. Therefore, the
"axis most impacted by gravity" identifies the axis of the accelerometer which experiences the largest effect from the downward force of gravity. One of skill in the art would understand based on the definitions provided in the Specification, and the knowledge of gravity's pull on all objects on the Earth's surface, what the axis with a largest effect from gravity means.

Therefore, Applicants respectfully request withdrawal of this rejection.

Claim Rejections under 35 U.S.C. $\S 112$, second paragraph

Claims 26, 29, and 34 stand rejected under 35 U.S.C. $\S 112$, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Applicants respectfully not that the term "long average" is used only in the context of the name of an element, e.g. a "long average logic" which is defined in the Specification, in paragraph 23, as follows:

The long average logic 240 calculates one or more long averages of acceleration based on the received motion data. In one embodiment, the long average logic 240 utilizes a ring buffer memory 250, discarding older data as new data is added to the long average. In one embodiment, the long average logic 240 creates a long average of accelerations along a single axis.

As noted in the MPEP 2111.01 IV , "An applicant is entitled to be his or her own lexicographer and may rebut the presumption that claim terms are to be given their ordinary and customary meaning by clearly setting forth a definition of the term that is different from its ordinary and customary meaning(s). See In re Paulsen, 30 F.3d 1475, 1480, 31 USPQ2d 1671, 1674 (Fed. Cir. 1994)."

The term "long average logic" is clearly defined in the Specification and thus is not using the term "long" as a relative and thus indefinite term. Therefore, the phrase is well defined, and not a relative term, and one of skill in the art would understand that "the long average logic" is a logic element in the system which calculates averages of acceleration based on motion data. Therefore,

Applicants respectfully request withdrawal of this rejection.
The Examiner further rejected the term "axis with a largest effect from gravity" as indefinite. As noted above the term is clearly defined in the Specification. Applicants
assume that the objection is to the term "largest effect." The actual claim element is "the axis with a largest effect from gravity among the three axes." Thus the term "largest" clearly references the effect on one axis being larger than the effect on the other two axis.

Furthermore, Applicants respectfully note that the MPEP 2173.05(b) notes that "Acceptability of the claim language depends on whether one of ordinary skill in the art would understand what is claimed, in light of the specification." Applicants respectfully submit that given the knowledge of multiple axis, the determination of an axis having a largest effect from gravity clearly would be understood by one of skill in the art, as experiencing a larger effect than the other axes.

Applicants would further point to the "Training Examples, Supplementary Examination Guidelines for Determining Compliance with 35 U.S.C. § 112 and for Treatment of Related Issues in Patent Applications, 76 FR 7,162 (Feb. 9, 2011)" In particular, the case Seattle Box Co., Inc. v. Indus. Crating \& Packing, Inc., 731 F.2d 818, 221 USPQ 568 (Fed. Cir. 1984) discussed therein, in which the term "substantially equal to or greater" was found not to be indefinite. In this case, having one axis having a "larger" effect than another would be understood by one of skill in the art.

Applicants therefore respectfully submit that the term "largest effect" is not indefinite, and requests the withdrawal of this rejection.

Claim Rejections under 35 U.S.C. §103(a)

Claims 1-8, 10-11, 14-15, 25-26, 28-30, and 33-34 stand rejected under 35
U.S.C. §103(a) as being unpatentable over U.S. Patent Publication No. 2006/0161377 to Rakkola, et al (hereinafter "Rakkola") in view of U.S. Publication No. 2007/0259716 to Mattice, et al (hereinafter "Mattice").

Rakkola discusses an energy-efficient acceleration measurement system.
Rakkola's system includes an accelerometer, responsive to acceleration of the system, for providing an accelerometer output signal having a magnitude indicative of at least one component of the acceleration. A motion detector is responsive to the accelerometer output signal, and provides a processor interrupt signal, but only if the magnitude of acceleration reaches a threshold.

However, Rakkola specifically teaches away from using the axis with the largest effect from gravity by stating that "Another important aspect of the described motion detector's embodiments is that, when the motion detector is enabled, a reference level is calculated automatically. The benefit of this function is that there is consequently no need to consider offsets on different channels when setting threshold levels, and threshold levels can also be set independently from device orientation and from the vector of gravitational force. An averaging procedure is used for this reference level calculation as well (see previous description of averaging process for incoming acceleration data). The reference levels are calculated in this way for each of the three axes, assuming that a triaxial accelerometer is used." (Rakkola, paragraph 19). Thus it is an important aspect of Rakkola that the threshold levels are independent of the vector of gravitational force, and further that reference levels are calculated for each axis.

Therefore, it would substantially alter the functioning of Rakkola to utilize an axis most impacted by gravity.

Mattice discusses control of wager-based game using gesture recognition. Mattice simply notes that a tilt of a device may be detected by a change in gravitational acceleration. Although Mattice utilizes the term "dominant axis" Mattice references the "dominant axis of motion" which is the axis along which the user's motion is largest, and which is therefore augmented in analysis. (Mattice, paragraph 156).

Applicants respectfully submit that neither Rakkola nor Mattice teach or suggest "waking up the device when the motion of the device indicates a change in the dominant axis of the device," as recited in claim 1. Rakkola specifically teaches away from the use of a dominant axis, e.g. an axis having the largest gravitational effect from gravity. Mattice's dominant axis is only connected to the axis along which the largest motion is observed, and is used to augment the motions sensed. Therefore, the combination of Rakkola and Mattice does not make obvious claim 1, and the claims that depend on it.

Claim 25 recites in part "a power logic to activate the device when the motion indicates a change in the dominant axis of the device." As noted above, neither Rakkola nor Mattice alone or in combination teach or suggest activating the device when the motion indicates a change in the dominant axis of the device. Therefore, claim 25 and the claims that depend on it are not obvious over Rakkola and Mattice.

Claim 33 recites in part "a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity." As noted above, neither Rakkola nor Mattice alone or in combination teach or suggest activating the device when the motion indicates a change in the axis experiencing the largest effect of gravity. Therefore, claim 33 and the claims that depend on it are not obvious over Rakkola and Mattice.

Claims 9, 31, and 35 stand rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of U.S. Patent No. 6,353,449 to Gregg, et al (hereinafter "Gregg").

Gregg discusses various screen savers for computing devices. Gregg does not discuss dominant axis or movements at all, and therefore Gregg cannot remedy the shortcomings of Rakkola and Mattice discussed above. Therefore, for at least the same reasons advanced above with respect to their respective parent claims, claims 9, 31, and 35 are not obvious over Rakkola in view of Mattice, in view of Gregg.

Claim 13 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of U.S. Publication No. 2007/0150136 to Doll, et al (hereinafter "Doll").

Doll discusses a sensor self-test system for a motion sensor. However, Doll does not discuss waking up a device, much less waking up a device based on a change in a dominant axis. Therefore, for at least the same reasons advanced above with respect to claim 1, claim 13 is not obvious over Rakkola in view of Mattice, in view of Doll.

Claim 32 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of Gregg in view of U.S. Patent No. 6,771,250 to Oh.

Oh discusses an application program launcher, which may be used to launch applications from low power mode. While Oh discusses waking up a device, Oh does not discuss utilizing any motion data. Therefore, Oh cannot remedy the shortcomings of Rakkola, Mattice, and Gregg discussed above. Therefore, claim 32 is not obvious over the combination of Rakkola, Mattice, Greg, and Oh for at least the same reasons advanced above with respect to claim 25.

Conclusion

Applicant respectfully submits that in view of the amendments and discussion set forth herein, the applicable rejections have been overcome. Accordingly, the present and amended claims should be found to be in condition for allowance.

If a telephone interview would expedite the prosecution of this application, the Examiner is invited to contact Judith A. Szepesi at (408) 720-8300.

If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: September 21, 2012
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393
Customer No. 08791
1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

Electronic Patent Application Fee Transmittal				
Application Number:	12247950			
Filing Date:	08-Oct-2008			
Title of Invention:	Method and System for Waking Up a Device Due to Motion			
First Named Inventor/Applicant Name:	Philippe Kahn			
Filer:	Judith A. Szepesi			
Attorney Docket Number:	8689P057			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Submission- Information Disclosure Stmt	1806	1	180	180
	Total in USD (\$)			180

Electronic Acknowledgement Receipt	
EFS ID:	13812166
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	8791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	22-SEP-2012
Filing Date:	08-OCT-2008
Time Stamp:	02:47:54
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes			
Payment Type	Deposit Account			
Payment was successfully received in RAM	$\$ 180$			
RAM confirmation Number	9335			
Deposit Account	022666			
Authorized User				
File Listing:	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (ifappl.)
Document Number	Document Description			

1	Non Patent Literature	8689P057_NPL_ESSR.pdf	423896	no	10
			71050923 bd3fb 3336 ddbcb2a7c0baadd 65 5 baf98		
Warnings:					
Information:					
2	Foreign Reference	$\begin{gathered} \text { 8689P057_FOR_EP 1271099A2. } \\ \text { pdf } \end{gathered}$		no	21
Warnings:					
Information:					
3		8689P057_IDS_and_SB08.pdf		yes	3
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Transmittal Letter		1	2	
	Information Disclosure Statement (IDS) Form (SB08)		3	3	
Warnings:					
Information:					
4		8689P057_Request_for_Exami ner_Initials.pdf		yes	9
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Transmittal Letter		1	1	
	Information Disclosure Statement (IDS) Form (SB08)		2	9	
Warnings:					
Information:					
5		$\underset{\text { pdf }}{\text { 8689P057_AmResp_Sept2012. }}$	$\frac{113616}{\substack{\text { Sbat85562ec780684c2a6477bb7bectifdr } \\ \text { cobe }}}$	yes	11
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Amendment/Req. Reconsideration-After Non-Final Reject		1	1	
	Claims		2	5	

	Applicant Arguments/Remarks Made in an Amendment		6						
Warnings:									
Information:									
6	Fee Worksheet (SB06)	fee-info.pdf	30197	no	2				
Warnings:									
Information:									
Total Files Size (in bytes):			2938905						
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.									
New Applications Under 35 U.S.C. 111									
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.									
National Stage of an International Application under 35 U.S.C. 371									
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.									
New International Application Filed with the USPTO as a Receiving Office									
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.									

(54) Method and arrangement for debermining movement
(57) To detemine the movement of a device, a three-dimensional measurement of the device's acoeleration is provided in known directons with regard to the device, and average signals ($\bar{x}, \bar{y}, \bar{z})$ of acceleration sig. mals ($x ; y ; z$) paralfel to diferent axes are fomed to allow the engles (0, of , y of the device with respect to gravity to be defned. Acceleration change signals (x_{c}, y_{0}, z_{c}) are fomed by removing the everage signals $(\bar{x}, \bar{y}, \bar{z})$ from their respective acceleration signals (x, y, z) paralle to the different axes. The acceleration change signats
$\left(x_{C}, y_{c}, z_{C}\right)$ and the tilt angles $(0, \phi, n$ of the device are used for forming a component ($Z_{\text {ztot }}$) of the acceleration change of the deviee, which component is parallel to gravily ared independent of the position of the desvice.

FiG. 4 A

Đescription

FELD OF THE INVENTON

W0007. The preferred embotiment of the invention are disclosed in the depenctent clams.
[0008] The underlying idea of the invention is to measure device aceelerations parallel to three dimensions and to use slowly changing aceelerations for detemining tit angles of the device in relation to the direction of gravity. By removing slowty changing accelerations fom total accelerations, madily changing accelerations are obtaned. The
[000n The invention redates to a solution for deteming the movement of a device.

BACKGROUND OF THE INVENTION

[00023 Potable electronic devices are bemg used for increasingiy diversified purposes. Typicat examples of thess devices are mobla phones and oompuers The devices cary large amounts of data about the user, and they provide the user with aceess to various information chamels. However, up to the present the state assoctated with the movement of the device, or changes in the state, have not been whized to any larger extent, ahough they would atow to recognize the user's activity context, which depends on the user's activites related to work or spare time, swoh as negotiations, travel or felsure actitites.
[0003] One way of measuring the movement of a mobile devibe or to detemine the user's activy oontex is to use one or more accelerometers to measure the accelerations of the device none ormone directions. Accelerations parallet to different dimensions vary acording to activity contexi and they are charactenstic of each activity context inprinciple, it is therefore possibie to cientify activity contexts on the basis of the acceteration or movement data parallef to the dferent dimensions. For example, it is possibie to thy to identify whether the user is walking, running, wating up the stairs, of However, a problem involved in this is that the acceleromater signals change when the position of the device changes and therefore it is not possible to know the structural directions of the devioe to which the accelerations are really acting on. For example, it is not possible to measure the direotion of gravity in relation to the axes paralle to the devices structures and, therefore, measurements sanot be used for determining whether the dovice is in an even zpproximately correct position, or upside down.
[0004] An attempt to sove this problem has been to athon the device abwas in the same postion to the user. This does not, however, solve the problem, but complicates the use of the devics. In adcition, changes in the user's pose affect the position of the device and thereby change the directions of the aocelerations, which makes it more diffouft to recognise the direction of gravity in relation to the device.

SURMAAY OF THE RVENTION

[0005] I is an obect of the mention to provide an mproved method and an arrangement mplementing the method to determine a dinamic accleraton component paralle with grevity and independent of the position of a device. This is acheved by a method for detemining the movement of the device, in whioh method the acoleration of the device is measured at ieast in three diferent directions to provide a thee dimensionaimeastrement. The method also comprises the steps of generating acceleration signais parallel to three orthogonal axes, which are in a known orientation to the device; generating average signals of the acoeteration signals parallel to the diferent axes; defing tim angies of the device in relaton to the direction of gavity by means of the average signais; generating acceleration change signals by removing the average signais from their respective acceteration signais parallel to the difterent sxes, foming a component of the acceleration change of the device by means of the acceleration ohange signais and the thangies of the device, which component is paralel to gravily and independent of the postion of the device.
[000) The invention also relates to an arangement for determing the movement of a device, the arrangement being armanged to measure the acceleration of the device at ieast in three different directions to provide a three-bimensional measurement. The arrangement is arranged to measure acceleration signais in the direction of three orhugonai axes which are in a known orienation to the dovice; generate average signals of the acceleration signals paratiot to the different dxes; use the zverage signais for forming the angles of the device in relation to the difection of gravity; generate acceleration change signals by rennoving the average signals from their respactive aceleration signals paralle to the different axes; form a component of the acceleration change of the device by means of the acceleration change signals and the the angies of the device, which component is parallel to gravily and independent of the position of the device.
removing showly changing acceleratons fom total accelerations, rapoby changing zocelemations are oblaned. The gravity.
T000s, The method and arangement of the invention provide several advantages. They athow acceleration paralle: to grewity and charges in the accelaration to be determined irespective of the position of the device, which is impotant
when an activity context is to be identiged.
BRE OESCRIFTON OF THE ORAWMGS
[0010] in the following, the invention will be described in greater detal in connection with preferred embodinents and with reference to the accompanying drawings, in which

Figure 1 illustrates the structure of a moblie phone system;
Figuace 2 illustrates a centular adio system;
Figure 3 is a block diagram mustrating a mobie phone;
Figure 4 is a block diagram of the described arrangement,
Figure 48 is a flow diagram of the described arangement:
Figure 5 A shows slowly changing and rapidy changing accelerations parallel to three dinerent dimensions;
Figure 58 shows rapidy changing accelerations paraliel to three different cimensions;
Figure 6A shows graviy acting in a direction towards the upper right hand front coner of a space defined on the basis of the structural axes of the device;
Figure $6 B$ shows gravity acting in a direction towards the upper lefthand rear comer of a space detined on the basis of the structural axes of the device;
Figure 6 s shows gravity acting in a direction towards the upper left-hand front comer of a space defined on the basis of the siructural axes of the device:
Figure 60 shows gravily ading in a dirction towarcs the uper righthand rear comer of a space delined on the basic of the structural axes of the device;
Figure 6 E shows gravity acting in a direction towarde the lower ighthand front comer of a space dofined on the basis of the structural cxes of the device;
Figure of shows gravity acting in a direction towards the lower lefthand rear comer of a space defined on the beasis of the structural axess of the device;
Figure 6G shows gravity acting in a drection towards the lower lef hand front corner of a space defined on the basis of the structural axes of the device, and
Figure of shows gravily acting in a drection towards the lower nighthand rear coner of a space defined on the basis of the structural exes of the device.

OETAUEO DESCAPTION OF THE INVENTION

[004t The deseribed solution is applibabe in, although not tenticted to, potable cectronic user devices, such as moble phones and computers
[0012] Let us frst examine some aspecis relating to the actwity context of a potable user device. When carried by the user, the position of a ponable device usually varies accoring to shation, time and pace fa mobile phone may be upeide down in the pocke, attached to the belt in a horizontal position, of sifgty thted when held in hand). Changes in the postion of the device in tum cause changes in signals measured in the directions of the device's different dimensions, thus making the position of the device and its activity contexi very dificut to reognize. In fact, the most imponant prerequiste for activi context recognition is that the postion of the device is determined at least in the vetica: direction. Additionaly, the postion should be determined in notzontal drections as well.
[0013\} Before going into the described solution in cetall, let us examine an exanple of a radic system structure with reference to Figure 4 , because one application of the described solution is to use it in porable devices connected to a radio system, The radio system may be for example a GSM or UMTS radio syctem and it comprises a terrostria radio access network 2 and user equipnent UE 4 . The user oquipment 4 comprises two pars: a functional unit which is mosile equipment ME 6 , the radio teminal of which is used for seting up a radio link to the network 2, and a userspecifo module, i, a a subscriber identity module SM, 3 , which is a smant card conprising user dentity data and whion typically executes identification algorthms and stores encyption parameters and subseriber deta.

解 one or mors base stations 14. Each base station controller 12 controls madio resources through the base stations comected to it.
[0015] Since the illustration in Figure 1 is faitly generat, it is clarfied by a more detated example of a cellular radio system shown in Fgure 2. Figure 2 only comprises the most essential blocks, but a person skilled in the at will thd it apparent that a conventional cellular radio network aiso comprises other functions and structures; which need not be described in greater detail in this context. It should aso be noted that the structure shown in Figure 2 provides only one example
\{0016\} The celluar radio network thus typicaly comprises a fixed network infrastricture, i.e a network part 200 , and
user equipment202, such as fixedy mouned, wehile-mounted or handheld temimas, The network part 200 comprises base stations 204. A phral number of base stations 204 are in turn centrally controled by a rado network controller 206 commumioting with the base stations. A base station 204 comprises transcevers 408 and a mutiplexer 212.
[0017] The base staton 204 further comprises a control unt 210 whoh controls the operation of the tansoevers

208 and the multiplexer 212 . The multiplexer is used for arranging the traftio and control channels used by apturat number of transcevers 200 on one transmission link 214 .
 a bidiectional rado link 216 to the user equipment 202. The structure of the fames transierred on the bi-drectionat matio link 216 is defined for each system sepamtely. In the prefered embodimems of the invention, at basi a part of a signea is tansmited using three or more transmit antennas or thee or more beams provided by a purzi number of transmit antennas.
W0193 The radio network controher 206 comprisas a group swiching fieid 220 and a control unit 22 . The group switching field 220 is used for swithing speech and data and for connecting signalling circuits. The radio newoik subsystem 224 tormed of the base station 204 and the radio network controler 20 futher comprisas a thanscoder 226 . The trancoder 226 is ususily loothed as ciose to a mobile sewices swhening centre 228 as posbible, because speech can then be transferred between the transcoder 226 and the rado network controler 206 in a cellular radio network form, which saves transmission capacity.
[0020] The Iranscoder 226 convents diferent digital speech ooding formats used between the publio switched telephone network and the radio telephone network to make them compatible for example from a fixed network fomat to another form in the cellular nelwork, and vice versa. The control unt 222 caries out call control, mobiliy management, collection of statistical data and signalling
[002] Figure 2 tuther ilustrates the moble services swithing centre 228 and a gateway moble sorvices switching centre 230 which :s responsible for the extemal comeotions of the mobile communicatone system, in this case to: those to a public swithed telephone network 232.
G0022k With reterence to Figure 3 , let us then examine an example of a portable user teminal in a GSM or UMTS radio system. The temmel comprises a processor 200 in which the softwre routhes of the terminal ars executed. The processor 200 is responsible for digtat signat processing, for axample, ard it controle the operation of the other bocks The teminal display and its keypad 202 seve as the user intenece and they are used for displaying to the user visuat information, suoh as text and mages, processed by the processor 200 , the user nterface also allowing the user to produce stion information. The processor 200 siso carries out the checking of the sin module 204 . Intormation needed by the processor 200, such as the data needed for accelerometer calbration, is stored in a memory 206 . an acoberometer biock 208 comprises one or more accelerometers measurg acceleraton in at heast three omhogona: diections. Even in the case of ony one accelerometer it must be pruvided with elements that enable three-dmensonat acceleraton measurement. Acceteration signals provided by the accelarometers are suppled to the procescor 200 , whion cariess out the awhal signai processifg. A oodec block 210 comers a signal coming from the processor 200 into a format sutable to a speaker $2 t 2$ and the codec biock 210 converts a signal coning from a microphone 214 to a fomm sumable for the processor 200 . An BF block 216 in turn converts the dight sighat to be transmbed whion is received from the proeessor 200 to an analog radio frequency signal to allow it to be transmited th the fom of eleotromagnetic radiation over the artene 218 . Comespondingiy, the radio trequenoy signal receved by the antenna 248 is converted to tower frequency and tigitized in the RF block 246 before the signal is supplied to the processor 200. [00ss] Acoelerion is measured using one or more accelerometers which generate an blectie signa corresponding to the acceleration to their ouput poles. The accelerometermay be electromechancal, for example its operation may be based on a piezoeectic chstai, for example, in which a change in the charge distibution is proportional to a force acting on the orystal.
45 [0024] Let us then examine the disclosed sotution with reference to Figures $4 A$ and $4 B$. Figure $4 A$ is a oiock diagram Hustrating the cescribed solution, and Figure 43 is a fiow diagramot the mathod. An accearometer block 400 oomprises at least three accelerometers 402,404 and 406 which measure acceleration in the direction of three mutually orhogona: dimensions. The number of accierometers may be more than three; what is essential is that the measurement signals of the acelerometers can be used for foming aooleration signals parallel with all the three dimensions as denoted in block 500 . This structural solution is apparent to a person skiled in the art and therefore it will not be described in greater detail herein. The axes parallel to the measured dimensions are denoted with leters X, Y and Z, and they are preferably ether identical with the structura directions X_{d}, Y_{d} and Z_{d} of the device, or at least in a known relation to them. In other worde, the axes X, Y and Z represent the drections of the measurement axes, the dreotions X_{d}, Y_{d} and Z_{d} of the device's structural axes being parallel with the faces, or sides, of the device's cover of trame, or the like (the devices usually resemble a rectangular pism). The directions of the device's stuctural axes and the meastrement drections are in a predetemined relation to each other, the dependencies between the measurement directions and the device's stucturai dimensions being axpressed as $\theta=\theta_{1}+\Delta \theta_{1} \varphi=p_{1}+\Delta \varphi$ and $\gamma=\gamma_{1}+\Delta \gamma$, where θ is the angle between the device's stuctural direction X_{d} and gravity direction g, is the angle between the device's structurat
drection Y_{d} and graviy direction g, γ is the angle bewsen the device's stuctural direction Z_{0} and gravity direction 9 , 3nd the angles θ, φ, γ are within $\theta, \psi, \gamma \in[-\gamma / 2, w / 2]$
$[0025]$ The directions to be measured are preterabiy selected to yeate to the structural directions of the electronic device for example such that when the electronic device is in a vertea positon whth the display towards the user who sees the tetters in their corect postion), the Z_{d} axis points upward, the Y_{d} axis ponts horizonally from left to nght, and the X_{d} axis points horizontaly from front to back, directly to the user. The directions of the measured dimensione are thus prefercbly the same as the atuctura drections of the device, $e, X=X_{d}, Y=Y_{d}$ and $Z=Z_{d}$.
[002" Analog measurement signals parallel to the different dimensions are digitzed in an AD conventer 408. The fhering of the dighal acelerationsignals is shown in blocks 410 and 502 . It is camed out on the time plane by muitiplying a signea sample sequence of a finte lengh by a window 492 of a finte lengh and a sumble frequency conem, such as a fenning window, which is suitable for separañg dyname signals from static ones. In adition, the average of muttple winowed signals is caiculated in block 44 . Instead of calculating the actua average, the averaging can ba carried out using mean value calculation, low-pass filtering or other known methods. On the basis of the average, a static acceleration signai is formed, which hardly ever changes or which only reacts to slow changes. How stow pheromena should be taken into accuunt can be ireely sclected for example by means of the wincow used for calculating the average. The average is calculated using a desired time window which can be formed for example as a Hanning window, known per se, in block 412 . The Hanning windows for accelerations paralle to the diferent dimensions take the tolowing mathematical forme:
where x_{i} y and $z_{\text {i }}$ are acoebraton samples patalle to the diferent dimensions; n the numper of sanples in the window, $x^{w}, y_{i} j 3 z_{i}$; re modifed samples. Other possibie wirdows xrown per se inciude the Hamming, kaiser, Bessel and triangle windows. The average can be caloulated in block 444 by applying for exampie fomuia (2):

$$
\begin{equation*}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{w}, \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}^{w} j a \bar{z}=\frac{1}{n} \sum_{i=1}^{n} z_{i}^{w}, \tag{2}
\end{equation*}
$$

where \bar{x}, \bar{y} and \bar{z} represent the averages. Figure $5 A$ shows the different acoseration signais x, y and z, and the averaged acceleration signals \bar{x}, \ddot{y} and \bar{z}. As shown in Figure $5 \hat{A}$, the avereged signats \dot{x} y and \bar{z} are in a way statio DC signas of the measured acceleration signals, It is not necessary to form the averages \bar{x}, \bar{y} and \bar{z} from the windowed samples $x^{w /}, y_{i}^{w \prime}$ a $z_{i}^{\prime \prime}$, but the averages \bar{x}, \bar{y} and \bar{z} can also be calculated directiy from the samples x_{i}, y_{i} and z_{i}.
[0027] The averaged signals propagate futher to a scaling block 416 where the levels of the fitered signals are arranged to be proportionat to each other such that they may be used as sine function arguments. Since the averaged signals are in some cases directy applicable as sine function arguments; the scaling block 416 is not absolutely necessary in the disclosed solution. Soaling is used tor example for rectifying distorions, if any, in the accelerometer operation. Manufacturers usually incisde the operations to be carried out in the scaling block in the acceletometers they delver Sealing thus ensures that averaged acoeleration cannot exceed gravily acceleration, at least not on a continuous basis, and therefore the ratio of the accelerations measured in the different dimensions to the gravity acceleration corresponds to the rato of a sine function of a the angle to the drection of gravity, i.e $\bar{x} / g=\sin \left(\theta_{y}\right)$, $\bar{y} / g=\sin$ $\left(\varphi_{1}\right)$ and $\ddot{z} / \beta=\sin \left(y_{1}\right)$, where g_{1} corresponds to the angle between moosured acceleration direction X and gravity drection g, φ_{1} corresponds to the angle between measured accateration drection γ and gravity direction g, and ψ corresponds to the angle between measured acceleration direction Z and gravivy drection g. On the basis of angles φ_{1}, φ_{4} and γ_{1}, tit angles 8 . φ and γ between the device's structural directions and gravity direction can be formed, because the directions of the structural axes of the device and the directons of the measurement are known to be prowortional to each other.
\{0028 in block 48 the accelerations parallol to the different dimensions and measured by the accalerometers are
used to fom tit angles s, of and γ which ilustrate the deviation of the diferent strucural drections of the device from the gravity drection. This is also shown in block 504 if the structural directions of the device are the same as the directions of the measured acceterations, $\Delta \theta=\Delta \hat{A}=\Delta y=0$, and the angles can be fomed as reverse sien functions
 X_{d}, Y_{d} and Z_{d} from the measured directons X, Y and Z mus be taken into account by calcutating $\theta=\theta_{1}+\Delta \theta_{1}, \varphi_{1}=\varphi_{1}$ $+\Delta \varphi$ and $\gamma=\gamma_{1}+A \gamma$
[00s9] in block $4{ }^{2} 0$, the averaged ecoebrations \bar{x}, \bar{y} and \bar{z} are subtracted from the measured cocelerations x, y and z paraliel to the diferent dimensione in sequences equal to the sample windows in length, whereby change signale x_{0}, y_{c} and z_{c} representing a continuous change in the acceleratons are formed. This is shown in block 500 . These acceleration change signals x_{c}, y_{c} and x_{c} represent rapid acoeleration changes which are oten regular as well, and whioh relate to the user's activy contex, for example Figure $5 B$ shows the acceleration change signais x_{0}, y_{c} and z_{c} peralla to the different directions of the device's structural axes as a function of the on a freely selected scaie. The state of movement of the device may vary quite considerabiy in the different directions of the axes. As is chown in Figures 5 A and SB, the acceleration change signats are in a way dynamic AC signals of the measured acceleration signals. The subtraction is caried out for each dimension separately in sum bocks 422,424 and 426 in which negatione $-\bar{x},-\bar{y}$ and $-\dot{z}$ of the averaged acceleraitons are cided to the accelerations x, y and z.
[0030] In accordance with biock 508, the acceleration change signals and the tilt angles 9,9 and y of the device can be used in blook 428 for forming a component $z_{z i o t}$ of the acceleration change of the device, the component being parallet to the earth's gravity acceleration and indicating cuntinuousy changing vertical acoelerations patallel with gravily that act on the device. An assential aspect here is that in the vertea direction, the accelaration change component $Z_{\text {tot }}$ of the device can be determined irespective of the device's position. Venical acceleration change subcomponente of X_{2}, Y_{8} and z_{z} are fomed by multiplying the acoleration ohange signals x_{0}, y_{8} and z_{0} by sine functione of the device's till angles 9 , a and γ according to the following projections:

$$
\text { when } \operatorname{sgn}(\theta) \geq 0, \operatorname{sgn}(p) \geq 0 \text { and } \operatorname{sgn}(\gamma) \geq 0
$$

$$
x_{z}=-x_{c} \sin (\theta)
$$

$$
\gamma_{z}=-y_{c} \sin (p)
$$

$$
Z_{z}=-z_{2} \sin (\gamma) \text { and }
$$

(3) When $\operatorname{sgn}(\theta)<0, \operatorname{sgn}(\varphi)<0$ and $\operatorname{sgn}(\theta)<0$
$X_{2}=x_{0} \sin |\theta|$
$\gamma_{z}=y_{c} \sin |\varphi|$
$z_{z}=z_{s} \sin |\gamma|$
where sgni) denotes a sign function whether the angle is positive or negative), and i 61 , | ψ and ifl denote the absolute vatue of the angles 8 , φ and γ. The accelemtion change component z zon paralle to gravity is the sum of the subcomponents of acceleration change of the device: $Z_{z a t}=X_{z}+Y_{Z}+Z_{2}$.
[003n] Whin reference to figures $6 A$ to 64 , let us now examine an altemative way of forming for the device an acceleraton change component pareifet to the earth's gravily. In this embociment, the space depicted as a cube in Figures EA to bH is divided into eight parts relative to the comers of the cube. The direction of gravity with respect to each one of the three axes X, Y, Z may obtain two values $w / 4 \pm \pi / 4$ or $(w / 4 \pm \pi / 4)$ and thus the number of pats is 2 , $=8$. In this embodiment, the direction of a gravity vector is first delermined on the basis of the signs of tin angles θ, ψ and ψ. When the signs have been determined, the appropriate caiculation formula is selected. This procedure is entirely equivalent with formulae (3).
[0032 $\frac{1}{3}$ Fgure 6A, gravity direction of acting in the direction of the upper righthand front comer of the cube, and for the angles θ and φ it is thus valid that $\operatorname{sgn}(0)<0$, sgn $(\varphi)<0$. In addition, angle is defined $a s$ agn $(\theta \geq 0$. This provides the foltowing calculation formuas $1 / 8$ for the accsleration change components in the ventical direction:

$$
x_{z}=x_{c} \sin |\theta|
$$

$$
Y_{z}=y_{c} \sin \phi
$$

$$
z_{z}=-z_{c} \sin (y)
$$

[003s] in Flgue $8 B$, the gravity vector points to the uper befthand rear comer of the cube, and for thengles θ, φ and y it is thus vald that $\operatorname{sgn}(4) \geq 0, \operatorname{sgn}(\varphi) \geq 0$ and $\operatorname{sgn}(y) \geq 0$. This provides the following calculation formuiae $2 / 8$ for the acceleration change components in the vertical direction:

$$
x_{z}=-x_{c} \sin (\theta)
$$

$$
Y_{z}=-y_{c} \sin (\phi)
$$

$$
z_{z}=-z_{z} \sin (y)
$$

[003A] in Figure 6 c gravity drection g is acting in the direction of the upper let-hand front corner of the cube, and for tilt angles 0, and γ it is thus velid that $\operatorname{sgn}(\theta)<0$, sgn $(0) \geq 0$ and sgn $(\eta) \geq 0$. This provies the following calculation formulae $3 / 8$ ior the acceleration change components in the vertical direction:

$$
x_{z}=x_{c} \sin \theta \mid
$$

$$
y_{z}=-y_{c} \sin (\varphi)
$$

$$
z_{x}=-z_{c} \sin (\theta)
$$

T00353 in Figure 60 gravity direction gis aoting in the direction of the upper righthand rear comer of the oube, and for tit angles θ, ϕ and γ it is thus valid that sgn($\theta) \geq 0, \operatorname{sgn}(\varphi)<0$ and sgnd $\gamma \geq 0$. This provedes the following caloulation formulae $4 / 8$ tor the acceleration change components in the vertical direction:

$$
x_{z}=-x_{c} \sin (\theta)
$$

$$
Y_{z}=v_{8} \sin \mid \varphi
$$

$$
z_{2}=-z_{C} \sin (y)
$$

[0038] in Figure $6 E$ gravity cirection g is acting in the citrection of the lower rightiand from comer of the oube, and
 formulae $5 / 8$ to the acceleration change components in the vertical drection:

$$
\begin{aligned}
& x_{z}=x_{c} \sin |\theta| \\
& y_{z}=y_{c} \sin \mid \phi \\
& z_{z}=z_{c} \sin \theta
\end{aligned}
$$

[0037] in Fgure of gravity directiong is acting in the direction of the lower lefthand rear comer of the cube and for the anges θ, φ and y it is thus vald that $\operatorname{sgn}(\theta) \geq 0, \operatorname{sgn}(\varphi) \geq 0$ and $\operatorname{sgn}(\gamma)<0$. This provides the following calculaton formulae 68 for the accelaration change components in the vertical diroction:

$$
x_{z}=x_{\mathrm{c}} \sin (6)
$$

$Y_{z}=-\psi_{c} \sin (\varphi)$

anderent laitudes, and the like.

[0043\} Athough the mvention ts described above whth refence to an axample shown in the atrached drawings it is epparent that the mention is not restricted to it, but can vay in many ways within the inentive idea disclosed in the Btached claims.

claims

1. A method for detemining the movement of a device, in which method the accoleraton of the device is measured at leas: in three differem dreotions to provide a three-cimensonai measuremem, sharecterked by compring the sieps of
 ation to the deviee
(502) generating average signals (x, y, z) of the acoleration signals paralle to the dferent axes;
(504) defing thangles (6, , y) of the device in cetation to the drection of gravity (g) by means of the average $\operatorname{signals}(\dot{x}, \bar{y}, \vec{z})$;
(506) generating acceleration change signals $\left(x_{0}, y_{0}, z_{n}\right)$ by removing the average signais $(\bar{x}, \bar{y}, \bar{z})$ fom the respective acceleration signats (x, y, a) paratiel to the different axes;
(506) forming a component ($Z_{\text {tow }}$) of the acceleration change of the device by means of the acceleration change signat (x_{c}, y_{c}, z_{c}) and the the angles ($0, \psi, \gamma$ of the device, which component is paralle to gravity and independent of the position of the device.
2. A method acoording to clam , characterized by foming a horizontal acceleration ohange component ($Z_{\text {Hith }}$) by removing the acceteration change component panaliel to gravity from the acceleration ohange signals.

$$
y_{z}=y_{e} \sin |\varphi|
$$

3. A method according to chaim 1 , characterized in that the orhogonal axes are in known orientaions in relation to the structural directions of the device, and that tit angles of the stuctural directions of the deviee in relation to the direction of gravity are tormed using the average signals.
4. A method acoordng to chaim $f_{\text {, }}$ charactericed in that the acceleration change components X_{z}, Y_{Z} and Z_{z} are formed by muttiplying the aceleration change signals x_{0}, y_{c} and z_{c} by the sine function of the device's till angles θ, e and y acoording to the following projections:

$$
\text { if } \operatorname{sgn}(\theta) \geq 0, \operatorname{sgn}(\varphi) \geq 0 \text { and } \operatorname{sgn}(\gamma) \geq 0
$$

$$
\begin{aligned}
& x_{z}=-x_{c} \sin (\theta) \\
& y_{z}=-y_{c} \sin (\varphi)
\end{aligned}
$$

$$
z_{z}=-z_{c} \sin (\gamma) \text { or }
$$

$$
\text { if } \operatorname{sgn}(\theta)<0, \operatorname{sgn}(\phi)<0 \text { and } \operatorname{sgn}(\eta)<0
$$

$$
x_{z}=x_{c} \sin \theta \mid
$$

$$
Z_{z}=z_{e} \sin \mid \gamma
$$

where sgn() denctes a sign function, | θ, ipl and in denote the absolute vaiues of angles θ, 9 and γ and that an acoeleration change signal $Z_{\text {zut }}$ parallel to gravity is formed as the sum of the sub-components of acoleration change: $Z_{z t e t}=X_{z}+\gamma_{z}+Z_{z}$
5. A method according to claim 1 , characterized in that the spatial directions defined by the axes are divided into porions, separate tormulae being determined tor forming a vetical acceleration change component for each portion;
the potion in the direction of which gravity acts is detemined using the tit angles; and a vertical acceleration change componeni is formed acoording to the device portion in question.
6. A method acoording to cham 5 , characterized in that the spatial directions defined by the axes are dividec into eight potions stich that the direction of gravity in relation to each one of the three measuredaxis directions obtains the values $(\pi / 4 \pm \pi / 4)$ or $-(\pi / 4 \pm n / 4)$, separate fomulae being detemined for forming sub-components of vental acceleration ohange for each portion, and
 aceleration change are fomed as follows:

$$
x_{z}=x_{c} \sin \mid \theta
$$

$$
Y_{z}=y_{s} \sin |\phi|
$$

$$
z_{z}=-z_{c} \sin (y),
$$

If $\operatorname{sgn}(\theta) \geq 0, \operatorname{sgn}(\varphi) \geq 0$ and $\operatorname{sgn}(\gamma) \geq 0$ are valid for th angles θ, φ and γ, the sub-components X_{2}, Y_{2} and Z_{2} of acceleration change are formed as follows:

$$
\begin{aligned}
& x_{z}=-x_{c} \sin (\theta) \\
& Y_{z}=-y_{c} \sin (\phi)
\end{aligned}
$$

$$
z_{z}=-x_{s} \sin (y),
$$

if $\operatorname{sgn}(\theta)<0, \operatorname{sgn}(\phi) \geq 0$ and $\operatorname{sgn}(\gamma) \geq 0$ are valid for thengles 3,4 and γ the sub-components X_{Z}, Y_{z} and Z_{2} of aceleration change are fomed as follows:

$$
x_{z}=x_{0} \sin \theta
$$

$$
Y_{z}=-Y_{8} \sin (\varphi)
$$

$$
z_{z}=-z_{c} \sin (\gamma),
$$

if $\operatorname{sgn}(\theta) \geq 0, \operatorname{sgn}(\phi)<0$ and $\operatorname{sgn}(y) \geq 0$ are valid for thanges $\theta, 4$ and γ the sub-components X_{Z}, Y_{z} and Z_{2} of accelention change are fomed as follows:

$$
\begin{aligned}
& x_{z}=-x_{c} \sin (\theta) \\
& y_{z}=y_{z} \sin |\varphi|
\end{aligned}
$$

$$
z_{z}=-z_{c} \sin (y),
$$

If $\operatorname{sgn}(\theta)<0, \operatorname{sgn}(\varphi)<0$ and $\operatorname{sgn}(\gamma)<0$ are valid for til angles θ, φ and y the sub-components X_{Z}, Y_{Z} and Z_{Z} of acceleration change are formed as folows:

$$
x_{z}=x_{c} \sin \theta
$$

$$
\begin{aligned}
& y_{z}=y_{c} \sin |\varphi| \\
& z_{z}=z_{\mathrm{c}} \sin \mid y
\end{aligned}
$$

8. A method according to daim 1, characterized in that before the average signals are formed, the acceleration signals are windowed using a desired windowing function.
9. An arrangenent for detemining the movement of a device, the arangement beng aranged to measure the ac-
celeration of the device at least in three diferent directions to prowide a three-dimensional measurement charace terized in that the arangement is arranged to
measure acoleration signals (x, y, \bar{x}) paralle to three othogona: axes, whion are in a known orentation to the device;
generate average signals (x, y) of the acceleration signals paralle to the dfferent axes;
defne tht angles ($9,4, \gamma$) of the device in relation to the direction of gravty (s) by means of the average $\operatorname{signals}(\bar{x}, \bar{y}, \bar{z})$;
generate acceieraton change signais (x_{c}, y_{c}, z_{c}) by removing the average aignals ($\bar{x}, \bar{y}, \bar{z}$) from their respective acceleration signais (x, y, z) parallel io the different axes;
fom a componen: ($Z_{\text {zot }}$) of the acceleration change of the device by means of the aooelation change signals $\left(x_{0}, y_{e}, z_{c}\right)$ and the tilt angles $(0,6, y$ of the deviee, which component is parallel to gravity and mdependent of the position of the device.
10. An arrangement according to ciam 8 , characterized in that the arrangement is aranged to form a horizonta: acceleration change component by removing the acceleration change component parallol to gravity from the acceleration change signals.
11. An armagement acoording to olam 9, charscterized in that the orthogona axes are in known onientations in relation to the strucural directions of the device, and that the arrangement is arranged to tom tilt angles of the stuctural directons of the device in retabion to the drection of gravity by using the average signab.
12. An arrangement acording to olam 9 , characterized in that the arrangement aranged to tom the sub-components X_{z}, Y_{z} and Z_{z} of acoemation change by muthiying the acoeleration change signais x_{0}, Y_{c} and z_{c} by the sine function of the device's tilt angies θ, 4 and γ accorong to the following propections:

$$
i f \operatorname{sgn}(\theta) \geq 0, \operatorname{sgn}(\varphi) \geq 0 \text { and } \operatorname{sgn}(\gamma) \geq 0
$$

$$
x_{z}=-x_{c} \sin (\theta)
$$

$$
y_{z}=-y_{c} \sin (\varphi)
$$

$$
z_{z}=-z_{2} \sin (y),
$$

$$
\text { if } \operatorname{sgn}(0)<0, \operatorname{sgn}(\varphi)<0 \text { and } \operatorname{sgn}(\eta)<0
$$

$$
x_{z}=x_{z} \sin \theta
$$

$$
Y_{z}=y_{C} \sin \mid \varphi
$$

$$
z_{z}=z_{c} \sin |\gamma|
$$

Where sgno denotes a sign function, $10 \mid$, iof and ind denote the absolue vaiues of angles 8,9 and γ and that the amangement is arranged to form the acceleration change component $Z_{\text {tot }}$ parallel to gravity as the sum of the sub-components of acceleration change: $Z_{\text {zot }}=X_{z}+Y_{z}+Z_{z}$.
13. An arrangement acoording to claim 9 , characterized in that the spatial directions defined by the axes are dividod into portions, separate formulae being betermined for forming a venicat acceleration change componem for each portion:
the arrangenent is arranged to detemine the portion in the clrection of whioh gravity aots by using the tilt angles: and
the arrangement is arranged to torm the vertical acceleration change component according to the device portion in question.
14. An armagernent aocoring to dam 13, characterized in that the spatial difections defined by the exes are divide into eight portons such that the direction of gravity in relation to each one of the three measured axis directions obtans the values $(x / 4 \pm \pi / 4)$ or $-(\pi / 4 \pm \pi / 4)$, separate fombe being deined for each potion for foming sumcomponerts of yerteal accebretion oharge; and
if $\operatorname{sgr}(\theta)<0, \operatorname{sgn}(\varphi)<0$ and $\operatorname{sgn}(\gamma) \geq 0$ are vald for thengles $0, \psi$ and ψ the arragenent is arranged to fom the sub-components X_{z}, Y_{z} ard Z_{z} of acceleration change as follows:

$$
x_{z}=x_{c} \sin 10
$$

$$
Y_{z}=y_{s} \sin |\phi|
$$

$$
z_{z}=-z_{c} \sin (\gamma),
$$

f $\operatorname{sgn}(\theta) \geq 0, \operatorname{sgn}(\phi) \geq 0$ and $\operatorname{sgn}(\gamma) \geq 0$ are valid for tht angles θ, φ and γ, the arrengement is arranged to form the sub-components X_{z}, Y_{z} and Z_{z} of acceleration change as tollows:

$$
\begin{aligned}
& x_{z}=-x_{c} \sin (\theta) \\
& y_{\bar{z}}=-y_{0} \sin (\varphi)
\end{aligned}
$$

$$
z_{z}=-x_{0} \sin (\gamma)
$$

if $\operatorname{sgn}(\beta)<0$, sgnt $\varphi \geq 0$ and $\operatorname{sgn}(y) \geq 0$ are valid for tilt angles $8, \varphi$ and y the arangenent is arranged to form subcomponents X_{z}, Y_{2} and z_{z} of aceleration change as follows:

$$
x_{z}=x_{0} \sin \mid \theta
$$

$$
Y_{z}-Y_{8} \sin (\varphi)
$$

$$
z_{z}=-z_{c} \sin (\gamma),
$$

if $\operatorname{sgn}(\phi) \geq 0$, sgn $(\phi)<0$ and $\operatorname{sgn}(y) \geq 0$ are valid for thengles 0,4 and γ, the arrangement is arranged to form the sub-components X_{z}, Y_{z} and Z_{z} of acceteration change as tollows:

$$
x_{z}=-x_{c} \sin (\theta)
$$

$$
Y_{z}=y_{0} \sin |\varphi|
$$

$$
z_{z}=-z_{c} \sin (\gamma)
$$

If $\operatorname{sgn}(\theta)<0$, $\operatorname{sgn}(\varphi)<0$ and $\operatorname{sgn}(\gamma)<0$ are valid for thengles θ, φ and γ, the arengement is arranged to form the sub-components X_{z}, Y_{z} and Z_{z} of acceleration change as follows:

$$
x_{z}=x_{c} \sin \mid \theta
$$

16. An arrangement acording to ciam 9 , characterized in that the arrangement is arranged to window the acceleration signais using a desired windowing function before the average signals are formed

FIG. 1

EIG. 4A

MG. 5A

FIG. 5 B

FIG. 6A

FG. 6 C

FIG. 6 B

MG. 6D

FIG. 6E

FIG. 6F

FIG. 6 G

FG. 6H

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

\(\left.\begin{array}{ll|ll}Applicant \& : Philippe Kahn, et al \& Examiner: Lu, Shirley

Appl. No. \& : 12 / 247,950 \& Art Unit: \& 2612\end{array}\right]\)	Confirmation No. 8961

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

INFORMATION DISCLOSURE STATEMENT

Madam:

Enclosed is a copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 together with copies of the documents cited on that form, except for copies not required to be submitted (e.g., copies of U.S. patents and U.S. published patent applications need not be enclosed). It is respectfully requested that the cited documents be considered and that the enclosed copy of Information Disclosure Citation Form PTO-1449 or PTO/SB/08 be initialed by the Examiner to indicate such consideration and a copy thereof returned to applicant(s).

Pursuant to 37 C.F.R. § 1.97, the submission of this Information Disclosure Statement is not to be construed as a representation that a search has been made and is not to be construed as an admission that the information cited in this statement is material to patentability.

Pursuant to 37 C.F.R. § 1.97, this Information Disclosure Statement is being submitted under one of the following (as indicated by an " X " to the left of the appropriate paragraph):
\qquad 37 C.F.R. §1.97(b).
X
37 C.F.R. §1.97(c). If so, then enclosed with this Information Disclosure Statement is one of the following:
\qquad A statement pursuant to 37 C.F.R. §1.97(e) or
\mathbf{X} The Director is Authorized to charge in the amount of $\$ \underline{180.00}$ for the fee under 37 C.F.R. § 1.17(p).

37 C.F.R. §1.97(d). If so, then enclosed with this Information Disclosure Statement are the following:
(1) A statement pursuant to 37 C.F.R. §1.97(e); and
(2) A check for $\$ 180.00$ for the fee under 37 C.F.R. $\S 1.17(p)$ for submission of the Information Disclosure Statement.

If there are any additional charges, please charge Deposit Account No. 02-2666.
Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: September 20, 2012
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393

1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known	
Application Number	$12 / 247,950$
Filing Date	October 8,2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	8689P057

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	4,285,041	8/18/1981	Smith	
		US-	4,578,769	3/25/1986	Frederick	
		us-	5,446,725	8/29/1995	Ishiwatari	
		us-	5,446,775	8/25/1995	Wright et al	
		us-	5,583,776	12/10/1996	Levi et al	
		US-	5,593,431	1/14/1997	Sheldon	
		us-	5,654,619	8/5/1997	Iwashita, Yasusuke	
		us-	5,778,882	7/14/1998	Raymond et al	
		US-	5,955,667	9/21/1999	Fyfe	
		us-	5,976,083	11/2/1999	Richardson, et al.	
		US-	6,122,595	9/19/2000	Varley et al	
		us-	6,135,951	10/24/2000	Richardson, et al.	
		us-	6,145,389	11/14/2000	Ebeling, et al.	
		us-	6,282,496	8/28/2001	Chowdhary	
		us-	6,369,794	4/9/2002	Sakurai et al	
		US-	6,428,490	8/6/2002	Kramer et al	
		us-	6,493,652	12/10/2002	Ohlenbusch et al	
		us-	6,496,695	12/17/2002	Kouji et al	
		us-	6,513,381	2/4/2003	Fyfe et al.	
		us-	6,522,266	2/18/2003	Soehren, et al.	
		us-	6,532,419	3/11/2003	Begin, et al.	
		us-	6,539,336	3/25/2003	Vock, et al.	
		us-	6,611,789	8/26/2003	Darley, Jesse	
		US-	6,700,499	3/2/2004	Kubo et al	
		us-	6,786,877	9/7/2004	Foxlin	
		us-	6,790,178	9/14/2004	Mault, et al.	
		us-	6,813,582	11/2/2004	Levi et al.	
		us-	6,823,036	11/23/2004	Chen	

Examiner
Signature

Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known	
Application Number	$12 / 247,950$
Filing Date	October 8,2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	$8689 P 057$

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	6,826,477	11/30/2004	Ladetto et al	
		US-	6,836,744	12/28/2004	Asphahani, et al.	
		us-	6,881,191	4/19/2005	Oakley, et al.	
		us-	6,885,971	4/26/2005	Vock, et al.	
		us-	6,898,550	5/24/2005	Blackadar, et al.	
		US-	6,928,382	8/9/2005	Hong et al	
		US-	6,941,239	9/6/2005	Unuma, et al.	
		us-	6,959,259	10/25/2005	Vock, et al.	
		US-	6,975,959	12/13/2005	Dietrich et al.	
		us-	7,054,784	5/30/2006	Flentov et al	
		Us-	7,057,551	6/6/2006	Vogt, Mark J	
		us-	7,072,789	7/4/2006	Vock, et al.	
		US-	7,092,846	8/15/2006	Vock, et al.	
		us-	7,148,797	12/12/2006	Albert	
		us-	7,158,912	1/20/2007	Vock, et al.	
		US-	7,169,084	1/30/2007	Tsuji, Tomoharu	
		us-	7,171,331	1/30/2007	Vock, et al.	
		US-	7,177,684	2/13/2007	Kroll et al	
		us-	7,212,943	5/1/2007	Aoshima, et al.	
		us-	7,220,220	5/22/2007	Stubbs, et al.	
		us-	7,297,088	11/20/2007	Tsuji, Tomoharu	
		us-	7,334,472	2/26/2008	Seo et al	
		US-	7,353,112	4/1/2008	Choi et al	
		Us-	7,382,611	2/12/2008	Klees, et al.	
		us-	7,387,611	6/17/2008	Inoue et al.	
		us-	7,451,056	11/11/2008	Flentov et al	
		US-	7,457,719	11/25/2008	Kahn et al	
		US-	7,467,060	12/16/2008	Kulach et al	

Examiner
Signature
Date Considered
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO					Complete if Known					
				STATEMENT BY APPLICANT (use as many sheets as necessary)					Application Number	12/247,950
									Filing Date	October 8, 2008
									First Named Inventor:	Philippe Kahn
									Art Unit	2612
									Examiner Name	Lu, Shirley
Sheet	3		of	8	Attorney Docket Number	8689P057				
U.S. PATENT DOCUMENTS										
Examiner Initials*	Cite No.'		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant				
		Number-Kind $\operatorname{Code}^{2}(\mid f$ known)				Passages or Relevant Figures Appear				
		us-	7,489,937	2/10/2009	Chung et al					
		us-	7,512,515	3/31/2009	Vock et al					
		us-	7,526,402	4/28/2009	Tenanhaus et al					
		us-	7,608,050	10/27/2009	Sugg, Christoper John					
		us-	7,640,804	1/5/2010	Daumer et al					
		us-	7,647,196	1/12/2010	Kahn et al.					
		us-	7,647,196	11/12/2010	Kahn et al					
		us-	7,653,508	1/26/2010	Kahn et al.					
		us-	7,752,011	7/6/2010	Niva et al					
		us-	7,753,861	7/13/2010	Kahn et al.					
		us-	7,774,156	8/10/2010	Niva et al					
		us-	7,857,772	12/28/2010	Bouvier et al					
		us-	2002/0023654	2/28/2002	Webb, James D					
		us-	2002/0089425	7/11/2002	Kubo et al					
		us-	2002/0109600	8/15/2002	Mault, James R.; et al.					
		Us-	2002/0118121	8/29/2002	Lehrman et al					
		us-	2002/0151810	10/17/2002	Wong, Philip Lim-Kong; et al.					
		us-	2002/0193124	12/19/2002	Hamilton et al					
		us-	2003/0018430	1/23/2003	Ladetto et al					
		us-	2003/0048218	3/13/2003	Milnes et al					
		us-	2003/0083596	5/1/2003	Kramer et al					
		us-	2003/0109258	6/12/2003	Mantyjarvi et al					
		us-	2003/0139692	7/24/2003	Barrey et al.					
		us-	2004/0106421	6/3/2004	Tomiyoshi et al					
		us-	2004/0225467	11/11/2004	Vock, Curtis A.; et al.					
		us-	2004/0236500	11/25/2004	Choi et al					
		us-	2005/0033200	2/10/2005	Soehren, Wayne A.; et al.					
		us-	2005/0202934	9/15/2005	Olrik et al					
Examine Signatur					Date Consider					

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. ${ }^{5}$). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known

Application Number	$12 / 247,950$
Filing Date	October 8, 2008
First Named Inventor:	Philippe Kahn
Art Unit	2612
Examiner Name	Lu, Shirley
Attorney Docket Number	8689 P057

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (If known)				
		us-	2007/0213126	9/13/2007	Deutsch et al	
		us-	2007/0250261	10/25/2007	Soehren	
		us-	2007/0260418	11/8/2007	Ladetto et al	
		us-	2007/0260482	11/8/2007	Nurmela et al	
		us-	2008/0161072	7/3/2008	Lide et al	
		us-	2008/0171918	7/17/2008	Teller et al	
		us-	2009/0047645	2/19/2009	Dibenedetto et al	
		us-	2009/0098880	4/16/2009	Lindquist, Bjorn	
		us-	2009/0213002	8/27/2009	Rani et al	
		us-	2009/0234614	9/17/2009	Kahn et al.	
		us-	2009/0319221	12/24/2009	Kahn et al	
		us-	2010/0056872	3/4/2010	Kahn et al.	
		us-	2010/0057398	3/4/2010	Darley, Jesse; et al.	
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				

Examiner
Signature

Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. ${ }^{5}$). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 223131450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)				Complete if Known		
				Application Number	12/247,950	
				Filing Date	October 8, 2008	
				First Named Inventor:	Philippe Kahn	
				Art Unit	2612	
				Examiner Name	Lu, Shirley	
Sheet		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published				T^{2}
		ANDERSON, lan, et al, "Shakra: Tracking and Sharing Daily Activity Levels with Unaugmented Mobile Phones," Mobile Netw Appl, 8/3/2007, pp 185-199				
		AYLWARD, Ryan, et al, "Sensemble: A Wireless, Compact, Multi-User Sensor System for Interactive Dance," International Conference on New Interfaces for Musical Expression (NIME06), June 4-8, 2006, pp 134-139				
		BACA, Arnold, et al, "Rapid Feedback Systems for Elite Sports Training," IEEE Pervasive Computing, October-December 2006, pp 70-76				
		BAKHRU, Kesh, "A Seamless Tracking Solution for Indoor and Outdoor Position Location," IEEE 16th International Symposium on Personal, Indoor, and Mobile Radio Communications, 2005, pp 2029-2033				
		BLILEY, Kara E, et al, "A Miniaturized Low Power Personal Motion Analysis Logger Utilizing MEMS Accelerometers and Low Power Microcontroller," IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, May 12-15, 2005, pp 92-93				
		BOURZAC, Katherine, "Wearable Health Reports," Technology Review, February 28, 2006, http://www.techreview.com/printer_friendly_article_aspx?id+16431, accessed 3/22/2007, 3 pages				
		CHENG, Fangxiang, et al, "Periodic Human Motion Description for Sports Video Databases," Proceedings of the Pattern Recognition, 2004, 5 pages				
		DAO, Ricardo, "Inclination Sensing with Thermal Accelerometers", MEMSIC, May 2002, 3 pages				
		FANG, Lei, et al, "Design of a Wireless Assisted Pedestrian Dead Reckoning System--The NavMote Experience," IEEE Transactions on Instrumentation and Measurement, Vol 54, No 6, December 2005, pp 2342-2358				
		HEALEY, Jennifer, et al, "Wearable Wellness Monitoring Using ECG and Accelerometer Data," IEEE Int. Symposium on Wearable Computers (ISWC'05), 2005, 2 pages				
		HEMMES, Jeffrey, et al, "Lessons Learned Building TeamTrak: An Urban/Outdoor Mobile Testbed," 2007 IEEE Int. Conf. on Wireless Algorithms, August 1-3, 2007, pp 219-224				

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

| Examiner
 Signature | Date
 Considered | |
| :--- | :--- | :--- | :--- |

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

Substitute for Form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)							
					Complete if Known		
					Filing Date	October 8, 2008	
					First Named Inventor:	Philippe Kahn	
					Art Unit	2612	
					Examiner Name	Lu, Shirley	
Sheet	8		of	8	Attorney Docket Number	8689P057	
NON PATENT LITERATURE DOCUMENTS							
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \mathrm{No}^{1} \end{aligned}$	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published					T^{2}
		"Sensor Fusion," <www.u-dynamics.com>, accessed 8/29/2008, 2 pages					
		TAPIA, Emmanuel Munguia, et al, "Real-Time Recognition of Physical Activities and Their Intensities Using Wireless Accelerometers and a Heart Rate Monitor," IEEE Cont. on Wearable Computers, October 2007, 4 pages					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 1-66 (part 1 of 3)					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 67-92 (part 2 of 3)					
		WANG, Shu, et al, "Location Based Services for Mobiles: Technologies and Standards, LG Electronics MobileComm," IEEE ICC 2008, Beijing, pages 93-123 (part 3 of 3)					
		WECKESSER, P, et al, "Multiple Sensorprocessing for High-Precision Navigation and Environmental Modeling with a Mobile Robot," IEEE, 1995, pp 453-458					
		WEINBERG, Harvey, "MEMS Motion Sensors Boost Handset Reliability," http://www.mwrf.com/Articles/Print.cfm?ArticlelD=12740, June 2006, 3 pages					
		WIXTED, Andrew J , et al, "Measurement of Energy Expenditure in Elite Athletes Using MEMS-Based Triaxial Accelerometers," IEEE Sensors Journal, Vol 7, No 4, April 2007, pp 481-488					
		WU, Winston H, et al, "Context-Aware Sensing of Physiological Signals," IEEE Int. Conf. on Engineering for Medicine and Biology, August 23-26, 2007, pp 5271-5275					
		YOO, Chang-Sun, et al, "Low Cost GPS/INS Sensor Fusion System for UAV Navigation," IEEE Digital Avionics Systems Conference (DASC '03), 2003, 9 pages					

Examiner Signature		Date Considered	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO INFORMA					Complete if Known	
			DISCLO		Application Number	12/247,950
STATEMENT BY APPLICANT (use as many sheets as necessany)					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	2612
					Examiner Name	Lu, Shirley
Sheet	1		of	1	Attorney Docket Number	8689P057
U.S. PATENT DOCUMENTS						
Examiner Initials*	Cite No. ${ }^{\text {' }}$		cument Number	Publication Date MM-DD-YYYY	Name of Patentee orApplicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind $\operatorname{Code~}^{\text {(}}$ (f known)				
		Us-	7,987,070	7/26/2011	Kahn et al	
		Us-	2007/0102525	5/10/2007	Orr, Kevin, et al	

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Foreign Patent Document		Name of Patentee or Applicant of Cited Document	Pages, Columns,	T6
		Country Code ${ }^{3}$ Number ${ }^{4}$ Kind Code ${ }^{5}$ (if known)			Passages or Relevant Figures Appear	
		EP 1271099 A2	1/2/2003	Nokia Corp		

NON PATENT LITERATURE DOCUMENTS						
Examiner Initials**	Cite No	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published	T^{2}			

Examiner Signature		Date Considered	

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of reign of the Emperor must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6} \mathrm{Applicant}$ is to place a check mark here if English language translation is attached.
This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450. If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	12/247,950	Art Unit:	2612
Filed	October 8, 2008	Conf No:	8961
For	Method and System for Waking Up a Device Due to Motion	CERTIFICATE OF TRANSMISSION I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.	
Customer No.	08791	IJudith Szepes	$\frac{\text { September 21, } 2012}{\text { Date }}$

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

REQUEST FOR EXAMINER INITIALS

Applicants request that the Examiner initial the cited documents on Form PTO1449 submitted with an Information Disclosure Statement filed 8/19/2011 in the present application and return a copy of that initialed Form PTO-1449 to applicants. Applicants request the Examiner's initials in order to show consideration of the cited references.

A copy of the previously-submitted Form PTO-1449 is included herewith without copies of the previously submitted references.

No fees are included herewith. If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: September 20, 2012
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393

1279 Oakmead Parkway
Sunnyvale, CA 94085
(408) 720-8300

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

DETAILED ACTION

Response to Arguments

a. Applicant argues starting on page(s) 9, that the prior art does not specifically disclose "waking up the device when the motion of the device indicates a change in the dominant axis of the device."

In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., specific dimension) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See In re Van Geuns, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). Please also see action below.

In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See In re Keller, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); In re Merck \& Co., 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986).

In response to applicant's argument that the benefit of the function would be different, and that it would substantially alter the functioning, the fact that applicant has recognized another advantage which would flow naturally from following the suggestion of the prior art cannot be the basis for patentability when the differences would otherwise be obvious. See Ex parte Obiaya, 227 USPQ 58, 60 (Bd. Pat. App. \& Inter. 1985).

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112 :
The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim(s) 26, 29, 34 is/are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The term "long average(s)" in claim(s) 13, 26, 29, 34 is a relative term which renders the claim indefinite. The term "long average(s)" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Any dependent claim(s) and/or similar limitation(s) is/are rejected for similar reason(s). Proper action is required.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

1. Claim(s) 1-8, 10-11, 14-15, 25-26, 28-30, 33-34 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716).

As to claim(s) 1, Rakkola disclose(s):
A method comprising: receiving motion data from a motion sensor in a device, the motion sensor sensing motion along three axes; registering a motion of the device based on the motion data from the motion sensor; and waking up the device when the motion of the device indicates a change in the dominant axis of the device ([0015-44]).

The above art/combination does not expressly disclose determining an idle sample value for a dominant axis of the device, the dominant axis defined as the axis with a largest effect from gravity among the three axes.

Rakkola disclose(s): calculating reference levels for each of the three axes; programming threshold levels for each axis independently; collecting data for each of the three axes; idle states ([0015-44]).

Rakkola disclose(s): wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value; processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 2,
Rakkola disclose(s):
wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value ([0015-44]).

Rakkola disclose(s): processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54] see also claim(s) 1 and above claims).

As to claim(s) 3, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 4,
Rakkola disclose(s):
the idle sample value comprises an average of accelerations over a sample period along the dominant axis; when the device goes to idle mode after a period of inactivity ([0015-44]).

The above art/combination does not expressly disclose recorded.
Mattice discloses recorded spatial signatures, spatial signatures may be tracked, recorded, and/or analyzed by one or more motion detector devices; recording motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when the device is inactive, to track, record, and/or analyze the data, to
collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 5, Rakkola disclose(s):
determining the idle sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 6, Rakkola disclose(s):
registering the motion of the device comprises: processing the motion data to determine a current sample value along the dominant axis of the device ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 7, Rakkola disclose(s):
comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 8,
The above art/combination does not expressly disclose the change in the dominant axis comprises a change in acceleration along the dominant axis.

Mattice discloses the change in the dominant axis comprises a change in acceleration along the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to
determine whether the device is rest, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 10, Rakkola disclose(s):
the current sample value of the dominant axis of the device is an average of accelerations over a sample period ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 11, Rakkola disclose(s):
determining the current sample value for each of the other axes of the device ([0015-44]). As to claim(s) 14, Rakkola disclose(s):
determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value ([0015-44]). As to claim(s) 15,

Rakkola disclose(s): computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis; comparing the difference against a threshold value to establish whether to wake the device up ([0015-44]).

The above art/combination does not expressly disclose determining a new dominant axis based on the motion data received from the motion sensor; when the device goes to idle mode after a period of inactivity.

Rakkola disclose(s): updating values automatically and periodically, as a programmable parameter; computing when the device goes to idle mode after a period of inactivity ([0015-44]).

Mattice discloses determining a new dominant axis based on the motion data received from the motion sensor (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when a device is inactive, to determine whether the device is at rest, and to update values automatically and/or periodically, as a programmable parameter, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 25,
Rakkola disclose(s): A mobile device comprising: a motion sensor to register a motion of the mobile device; and a power logic to activate the device when the motion indicates a change in the dominant axis of the device ([0015-44]; see also claim 2).

The above art/combination does not expressly disclose a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes.

Mattice discloses a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim 2).
the dominant axis defined as an axis with a largest effect from gravity among three axes (see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account, and to determine the axis with the greater amount of movement (see also claims 1, 2).

As to claim(s) 26,
Rakkola disclose(s): a long average logic to create one or more averages of accelerations over a sample period as measured by the motion sensor; acceleration data along each of the axes ([0015-44]).

Rakkola disclose(s): to compute the one or more long averages of accelerations; logic to set a period over which motion data is collected; the number of samples summed to compute the one or more long averages of accelerations is a programmable setting ([0015-44]).

As to claim(s) 28, Rakkola disclose(s):
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device ([0015-44]; see also claim(s) 1, 25; above claim(s)).

As to claim(s) 29, Rakkola disclose(s):
a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated ([0015-44]; see also claim 13; above claim(s)).

As to claim(s) 30, Rakkola disclose(s):
the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes ([0015-44]).

As to claim(s) 33,
A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes; a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity (see claim(s) 1,25 ; above claim(s)).

As to claim(s) 34,
A long average logic to create an average of accelerations over a sample period along the dominant axis; and a computation logic to determine of the average of accelerations indicates the change in the dominant axis of the device (see claim(s) 1, 26, 28; above claim(s)).
2. Claim(s) $9,31,35$ is/are rejected under 35 U.S.C. 103(a) as being unpatentable over

Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449).
As to claim(s) 9, 31, 35,
The above art/combination does not expressly disclose waking up the device further comprises configuring the device to return to a last active device state.

Gregg discloses waking up the device further comprises configuring the device to return to a last active device state ([1, 23-30]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the
characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized when the user left the device, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

3. Claim(s) 13 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Doll (20070150136).

As to claim(s) 13,
Rakkola disclose(s): processing the motion data further comprises; and removing the one or more glitches in the motion data from the motion data before calculating the long average ([0015-44]).

The above art/combination does not expressly disclose verifying whether the motion data includes one or more glitches.

Doll discloses verifying whether the motion data includes one or more glitches ([0007]).
It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to ensure that the system utilizes and processes valid information and data, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.
4. Claim(s) 32 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola

(20060161377) in view of Mattice (20070259716) in view of Gregg (6353449) in view of Oh (6771250).

As to claim(s) 32,
The above art/combination does not expressly disclose the device state logic allows user interaction to customize applications to be displayed when the device is woken up.

Oh discloses the device state logic allows user interaction to customize applications to be displayed when the device is woken up ([3, 13-25]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized and/or as desired by a user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

Conclusion
THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a). A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136 (a) will be calculated from the mailing date of the advisory action. In
no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shirley Lu whose telephone number is (571) 272-8546. The examiner can normally be reached on 8:30-5:00 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Daniel Wu can be reached on (571) 272-2964. The fax phone number for the organization where this application or proceeding is assigned is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
/Shirley Lu/
Primary Examiner, Art Unit 2681

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	10977	(340/457,573.1,686.1,539.1,522,667).CCLS.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2012/11/04
L2	3973	long adj average	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$12012 / 11 / 04$
L3	73	(axis axes) with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\left\lvert\, \begin{aligned} & 2012 / 11 / 04 \\ & 01: 49 \end{aligned}\right.$
L4	17	L3 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$12012 / 11 / 04$
L5	17	L3 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { UUSPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	012
L6	10977	(340/457,573.1,686.1,539.1,522,667).CCLS.	:US-PGPUB; USPAT; USOCR; :PRR; :EPO; JPO; :DERWENT; IBM_TDB	OR	OFF	\mid
L7	73	(axis axes) with wak\$4 adj up		OR	OFF	$\left.\right\|_{01: 50} ^{2012 / 11 / 04}$
S2	28	\|	US-PGPUB;		OFF	2010/05/03

			$\begin{aligned} & \text { UUSPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			09:48
53	17	S2 and remote\$4		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$
S4	/2	S3 and distance\$1	US-PGPUB; USPAT; USCR; PPRS; EPO; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 49 \end{aligned}$
55	1	"20040095252".pn. and distance\$1		OR	OFF	$12010 / 05 / 03$
58	10	"20030222775".pn. and distance\$1	UUS-PGPUB; USAT; USOCR; IPRS; EPO; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 14 \end{aligned}$
59	[2	"20030098792".pn.	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { USOCR; } \\ & \text { IPRO; JPO; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 16 \end{aligned}$
S10	10	"20030098792".pn. and temperature	USS-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S11	O	"20030098792".pn. and temperature\$1	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; JPO; } \\ \text { DERWWENT; } \\ \text { IBM TDB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S12	$]^{1}$	"20030098792".pn. and motion	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT;	\%	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 43 \end{aligned}$

			IBM TDB			
S13	2	S2 and distance\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 46 \end{aligned}$
S14	11	baby adj seat and distance same counter	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 13 \end{aligned}$
S15	19	baby adj seat and predetermined adj distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{array}{\|c} 2010 / 05 / 03 \\ 11: 17 \end{array}$
S16	2	"20030122662".pn. and range	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$12010 / 05 / 03$
S17	167	car adj seat and predetermined adj distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 22 \end{aligned}$
S18	167	car adj seat and predetermined adj distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\frac{2010 / 05 / 03}{11: 23}$
S19	133	car adj seat and distance with signal\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$
S20	14	car adj seat and predetermined adj distance with signal\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$
S21	0	"7797212".pn. and counter	$\begin{aligned} & \text { US-PGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 26 \end{aligned}$

			IEPO; JPO; DERWENT; IBM TDB			
S22	12	car adj seat and distance with signal\$1 adj strength\$1	US-PGPUB USPAT; USOCR; FPRS; EPP; JPO; DERWENT; IBM TDB	OR	OFF	$1 / 2010 / 05 / 03$
S23	0	"1318.apn. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S24	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S25	3	"131848".apn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S26	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S27	12	lojack.as. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\sqrt{2010 / 05 / 13}$
S28	2	"7561102".pn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S29	2	"7536169".pn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2010 / 05 / 13$
S30	3940	Icounter with time with distance	US-PGPUB;	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$

			UUSOCR; IFRS; :EPO; JPO; DERWENT; IBM TDB			
531	245	counter with measur\$4 near5 (time with distance)	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
532	25	S31 and @rlad < "20060718"	US-PGPUB; USPAT; USCR; PRRS; EPO; JPO; DERWNT;	OR	OFF	$\sqrt{2011 / 01 / 10}$
533	11598	"327"/\$.ccls. and rectifier	UUS-PGPUB; USPAT; USOCR; IPRS; JPO; EPORWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
S34	616	"327"/\$.ccls. and rectifier.ti.	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
S35	36	340/573.1 and return adj signal with distance	USSPGPUB; USPAT; USCR; PRRS; EPOP JPO; DERWNT;	OR	OFF	2011/04/26
536	21	S35 and @rlad < "20060718"	US-PGPUB; USPAT; USCRP; FPRS; EPO; JPO; DERWNT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 50 \end{aligned}$
537	2	"20030034887".pn. and return adj signal	US-PGPUB; USPAT; USCR; PRRS; EPOP JPO; DERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 53 \end{aligned}$
538	2	"20030034887".pn.	UUS-PGPUB; USPAT; USOCR; IPRS; JPO; EPORWNNT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$

539		"20030034887".pn. and return adj signal	"US-PGPUB; "USAT; "USOCR; IPRS; IEPO; JPO; IDRWENT; IBM_TDB		OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
S40		"20030034887".pn. and "10"		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 18 \end{aligned}$
S41		"20030034887".pn. and timer	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; ; JP; } \\ & \text { EPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 38 \end{aligned}$
S42		"20030098792".pn. and "72"		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
543	1	"20030098792".pn. and "27"	UUS-PGPUB; UUSAT; UUSCR; IPRS; IEPO; JPO; IDERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
544	0	"779712".apn. and low adj power	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S45		"779712".apn. and motion adj detector		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S46		"779712".apn. and motion	"US-PGPUB;USPAT;USOCR;IPRS;EPO; JPO;DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
547		"779712".apn.			OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$

			IDERWENT; IBM TDB			
S48	["6922147".pn. and temperature	USS-PGPUB; USPAT; USOCR; IPPRS; IEO; JPO; IDERWENT; IIBM TDB	OR	OFF	12
S49	6	$\begin{aligned} & \text { /("20030098792") or ("20030034887") or } \\ & \hline(692147 \text { ")).PN. } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPO; } \\ & \text { EPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
S50	3	S49 and (conserv\$4 sav\$4 power reduc\$4)		OR	OFF	19
S51	3	S49 and (conserv\$6 sav\$4 power reduc\$4)		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
552	2	S49 and motion		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 20: 56 \end{aligned}$
553	0	mtion adj detector with sleep	US-PGPUB; USPAT; USOCR; RPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
554	52	motion adj detector with sleep adj mode	UUS-PGPUB; USPAT; USOCR; IPRRS; IEPO; JPO; IDRWENT; IBM TDB	${ }^{\circ}$	OFF	2
S55	10	S54 and @rlad < "20060718"		OR	OFF	2106
S56	9857	(340/457,573.1,686.1,539.1,522,667).CCLS.	$\begin{aligned} & \text { MSPPGPUB; } \\ & \text { MSPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$21: 15$

			IIPPRS; EPO; JPO; DERWENT; BM_TDB			
557	5	S56 and S54	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM_TDB	OR	OFF	$2011 / 04 / 26$
55	638	signal adj edge adj detector	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 18 \end{aligned}$
559	O	signal adj edge adj detector same reduce Jadj error	\|US-PGPUB; USPAT; USOCR; IFPRS; IEPO; JPO; BERWENT; IBM TDB	OR	OFF	$2011 / 04 / 26$
560	33	signal adj edge adj detector same error	:US-PGPUB; : USPAT; !USOCR; IPRRS; :EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
561	10	signal adj edge adj detector with error	\|US-PGPUB; : USPAT; USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$2011 / 04 / 26$
562	3	signal adj edge adj detector with error with count\$4	\|US-PGPUB; :USAT; !USOCR; IPRRS; :EDO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 21 \end{aligned}$
563	3	signal adj edge adj detector with error with count\$4		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 22 \end{aligned}$
564	10	signal adj edge adj detector with error	UUS-PGPUB; USPAT; USOCR; UPRS; UPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
S65	34	signal adj edge adj detector and measur\$4	\|US-PGPUB;	OR	OFF	2011/04/26

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& ! adj time

a \& \& \& \& 21:23

\hline S66 \& 5 \& signal adj edge adj detector same measur\$4 adj time \& \& OR \& OFF \& $$
\begin{aligned}
& 2011 / 04 / 26 \\
& 21: 23
\end{aligned}
$$

\hline S68 \& 88 \& edge adj detect\$4 with counter with error\$1 \& $$
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
$$ \& OR \& OFF \& \[

2011 / 04 / 26
\]

\hline S69 \& 23 \& S68 and @rlad < "20060718" \& $$
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
$$ \& OR \& OFF \& \[

$$
\begin{aligned}
& 2011 / 04 / 26 \\
& 21: 25
\end{aligned}
$$
\]

\hline S70 \& 45 \& edge adj detect\$4 with reduc\$4 near3 error\$1 \& \& OR \& OFF \& $$
\begin{aligned}
& 2011 / 04 / 26 \\
& 21: 26
\end{aligned}
$$

\hline S71 \& 3 \& S70 and @rlad < "20060718" \& :US-PGPUB;
:USPAT;
USOCR;
FPRS;
EPO; JPO;
DERWENT;

IBM TDB \& OR \& OFF \& $$
\sqrt{2011 / 04 / 26}
$$

\hline S72 \& , \& "247950".apn. and dominant adj axis \& | US-PGPUB; |
| :--- |
| USPAT; |
| USOCR; |
| FPRS; |
| EPO; JPO; |
| DERWENT; |
| IBM TDB | \& OR \& OFF \& \[

2011 / 04 / 26
\]

\hline S73 \& ,18 \& $$
\begin{aligned}
& \text { (("20060161377") or ("200702597") or } \\
& \text { ("20070150136") or ("6353449") or } \\
& \text { ("6771250")).PN. }
\end{aligned}
$$ \& \& OR \& OFF \& \[

$$
\begin{aligned}
& 2011 / 04 / 26 \\
& 22: 40
\end{aligned}
$$
\]

\hline S74 \& 3 \& ("200700259716").PN. \& US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; \& OR \& OFF \& $\sqrt{2011 / 04 / 27}$

\hline
\end{tabular}

			IIBM TDB			
S75	2	("20070259716").PN.	US-PGPUB; USPAT; \|SPOCR; IERO; JPO; IDRWENT; IBM TDB	OR	OFF	$2011 / 04 / 27$
S76	8	$\sqrt{(" 20070259716 ") \text { or }(" 6353449 ") \text { or }}$	USS-PGPUB; USPAT; USOCR; IPPRS; IPO; JPO; DERWENT; IBM TDB	OR	OFF	1
S77	1	"247950".apn. and (long adj average\$1 with (idle)	US-PGPUB; USPAT; USOCR; IFPRS; IEPO; JPO; DERWENT; BM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
S78	1	"247950".apn. and (long adj average\$1 with	US-PGPUB; USPAT; USOCR; IPRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
S79	1	"247950".apn. and (Iong adj average\$1 with idle adj sample)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\sqrt{2011 / 04 / 27}$
S80	1	"247950".apn. and (long adj average\$1)	US-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	$2011 / 04 / 27$
581]3524	long adj average	US-PGPUB; USPAT; USOCR; IPRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 18 \end{aligned}$
S82	[3524	"Iong average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 19 \end{aligned}$
583	$\sqrt{10}$	("20060161377") or ("20070259716") or ("6353449") or ("20070150136") or ("6771250")).PN.	$\begin{aligned} & \text { USSPGPB; } \\ & \text { USPAT; } \\ & \text { ISPRS; } \end{aligned}$	OR	OFF	$2011 / 04 / 27$

			MEPO; JPO; DERWENT; IBM TDB			
584	${ }^{2}$	S83 and record\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \\ & \text { IPOP JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$
585	1	"247950".apn. and dominant	\|US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
586	1	"247950".apn. and idle	UUS-PGPUB; USAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 40 \end{aligned}$
587	1	"247950".apn. and new adj dominant	IUS-PGPUB;UUPAT; USOCR; IPPRS; IEPO; JPO; IDERWENT; IIBM TDB,	OR	OFF	2
588	1	"20060161377".pn. and reference	UUS-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 47 \end{aligned}$
S89	10	20070259716".pn. and (idle sleep)		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 54 \end{aligned}$
S90	${ }^{2}$	"20070259716".pn.	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { FPRS; JPO; } \\ & \text { MERWENT; } \\ & 1 \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 57 \end{aligned}$
S91	1	"247950".apn. and idle with comput\$4	US-PGPUB; USPAT; USCR; PRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
592	${ }^{1}$	"247950".apn. and idle	US-PGPUB; USPAT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$

			USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			
593	0	"20070259716".pn. and ("0053" "0155"	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
594	2	"20070259716".pn.	USS-PGPUB; USPAT; USOCR; IPRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
595	2	"6353449".pn.	US-PGPUB; USPAT; USOCR; IPRRS; :EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 00 \end{aligned}$
55	2	"20070150136".pn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERM TNT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 03 \end{aligned}$
597	7354	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) \text {.CCLS. } \end{aligned}$	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
598	3525	long adj average	US-PGPUB; USPAT; USOCR; PRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
599	3	S97 and 598	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S100	8	("20070259716") or ("6353449") or	US-PGPUB: USPAT: USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$

S101	1	S97 and S100	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PPRS; } \\ \text { EDO; JPO; } ; \\ \text { DIBMENT; } \\ \text { IBM TDB } \end{array} \end{aligned}$		OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S102	\|3668	"long average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S103			$\begin{aligned} & \text { MSS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { IPRS; JPO; } \\ & \text { IPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S104	38	$340 / 573.1$ and return adj signal with distance	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRRS; } \\ \text { IPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM TDB } \end{array}=1 \end{aligned}$	OR	OFF	2011/10/14
S105	$\sqrt{10}$	("20060161377") or ("20070259716") or $($ (6353449") or ("20070150136") or $($ (6771250 ")). PN.	USS-PGPUB; USPAT; UUSCR; IPRRS; IEPO; JPO; IDRWENT; IIBM TDB,	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S106	2	S105 and record\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S107	7852	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . C C L S . \end{aligned}$		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S108	3668	long adj average	UUSPGPUB; USPAT; USOCR; IPRS; EPOP JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S109		("20070259716") or ("6353449") or $(20070150136$ ") or $(" 6771250$ " $)$). PN.	$\begin{aligned} & \text { MUSPGPUB; } \\ & \text { MSPAT; } \\ & \text { MPRRS; } \\ & \text { EPO; JPO; } \end{aligned}$		OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$

			MDERWENT; IBM TDB			
S110	6	$\begin{aligned} & (\text { ("20030098792") or ("20030034887") or } \\ & \hline(692147 ") \text {).PN. } \end{aligned}$	\| US-PGPUB; UUSAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S111	3	S110 and (conserv\$6 sav\$4 power rreduc\$4)	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S112	23	S104 and @rlad < "20060718"		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S113	1	tre with inches with sensor with (outside)	\|US-PGPUB; : USPAT; UUSOCR; :IPRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S114	[tire with sensor with (outside) same inches	\|US-PGPUB; : USPAT; !USOCR; :IPRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S115	20	tire with sensor with (outside) same size	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S116	3	"447841".apn. and ("18" "20")	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S117	3	"447841".apn.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S118		"447841".apn.	US-PGPUB; USPAT; USOCR;	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$

			IIPRRS; EPO; JPO; DERWENT; BM TDB			
S119	1	S114 and ("18" "20")		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S120	3	tire adj size with sensor with (outside)		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S121	6	tire adj size same sensor with (outside inside)	\|US-PGPUB; USPAT; USOCR; IPRRS; JPO; IDERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S123	33	tire with sensor with (outside) with (pressure temperature)		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 54 \end{aligned}$
S124	86	S123 and @rlad < "20080604"	\|US-PGPUB; MSPAT; ULSCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 55 \end{aligned}$
S125	8488	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) \text { CCLS. } \end{aligned}$	\|US-PGPUB; USPAT; USOCR; IPPRS; UPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S126	347	tire with sensor with (outside) with (pressure temperature)	$\begin{aligned} & \text { USGPGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { FPRS; JPO; } \\ & \text { BERWENT; } \\ & \text { BMM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
5127	3272	edge adj detect\$4 with counter	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S128	39	/ $340 / 573.1$ and return adj signal with	\|US-PGPUB;	OR	OFF	2012/05/19

		distance	$\begin{aligned} & \text { :USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPRO; } \\ & \text { DERWENT; } \end{aligned}$			18:59
S129	23	S128 and @rlad < "20060718"	UUS-PGPUB; USPAT; USOCR; IPRS; EPOP; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S130	2	("7987070").PN.	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 00 \end{aligned}$
S131	1	"247950".apn. and idle	$\begin{aligned} & \text { UUSPGPUB; } \\ & \text { MUSAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 32 \end{aligned}$
S132	208	(axis axes) with (idl\$4 sleep\$4) with accelerat\$4	US-PGPUB; USPAT; USOCR;	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S133	20	S132 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S134	$\sqrt{9346}$	accelerometer with motion	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$
S135	2	("20060161377").PN.	US-PGPUB; USPAT; USOCR; PPRS; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$
S136]	(axis axes) with idle with wak\$4 adj up	US-PGPUB; USPAT; USCR; PRRS; EPO; JPO; DERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 40 \end{aligned}$
S137	66	(axis axes) with wak\$4 adj up	US-PGPUB; USPAT; USOCR; EPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$
S138	15	S137 and @rlad < "20081008"	US-PGPUB; USPAT: USOCR;	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$

			"PPRS; EPO; JPO; DERWENT; BM TDB			
S139	I	(three) adj axes with wak\$4 adj up	UUS-PGPUB; USPAT; USOCR; IPRS; UPO; JPO; IERWENT; IBMTDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 44 \end{aligned}$
S140	6	(three) adj axes with idle	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 44 \end{aligned}$
S141	1	"247950".apn. and gravity		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 50 \end{aligned}$
S142	1	"247950".apn. and idle	\|US-PGPUB; USPAT; USOCR; IPRRS; JPO; IEPORWENT; IBM TDB	OR	OFF	$\sqrt{2012 / 06 / 16}$
S143	1	"247950".apn. and wak\$4		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 00 \end{aligned}$
S144	10685	(340/457,573.1,686.1,539.1,522,667).CCLS.	\|US-PGPUB; : USPAT; USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S145	3855	long adj average	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S146	88	ledge adj detect\$4 with counter with error\$1		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$

11/4/2012 1:51:56 AM
C:\Users\slu\Documents\EAST\Workspaces\12247950.wsp

REQUEST FOR CONTINUED EXAMINATION (RCE) TRANSMITTAL

Address to: Mail Stop RCE, Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450

This is a Request for Continued Examination (RCE) under 37 C.F.R. § 1.114 of the above-identified application. Request for Continued Examination (RCE) practice under 37 CFR 1.114 does not apply to any utility or plant application filed prior to June 8, 1995, or to any design application. See instruction sheet for RCEs (not to be submitted to the USPTO) on page 2.

1. Submission required under 37 C.F.R. $\$ 1.114$ - Note: If the RCE is proper, any previously filed unentered amendments and amendments enclosed with the RCE will be entered in the order in which they were filed unless applicant instructs otherwise. If applicant does not wish to have any previously filed unentered amendment(s) entered, applicant must request non-entry of such amendment(s).
a. [] Previously submitted If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.
i. [] Consider the amendment(s)/reply under 37C.F.R. § 1.116 previously filed on \qquad (Any unentered amendment(s) referred to above will be entered. If a final Office action is outstanding, any amendments filed after the final Office action may be considered as a submission even if this box is not checked.
ii. [] Consider the arguments in the Appeal Brief or Reply Brief previously filed on \qquad
iii. [] Other \qquad
b. [X] Enclosed
i. [X] Amendment/Reply
ii. [] Affidavit(s)/Declaration(s)
iii. [] Information Disclosure Statement (IDS)
iv. [] Other \qquad
2. Miscellaneous
a. [] Suspension of action on the above-identified application is requested under 37 C.F.R. § 1.103(c)
b. [] Other
3. Fees The RCE fee under 37 C.F.R. § $1.17(\mathrm{e})$ is required by C.F.R. $\S 1.114$ when the RCE is filed.
a. [X] The Director is hereby authorized to charge the following fees, or credit any overpayments, to Deposit Account No. 02-2666
i. [X] RCE fee required under 37 C.F.R. § 1.17(e)
ii. [] Extension of time fee (37 C.F.R. §§ 1.136 and 1.17)
iii. [] Processing fee under 37 CFR § 1.17(i) for Limited Suspension of Action
iv. [] Other
b. [] Check in the amount of \$ \qquad enclosed
c. [] Payment by credit card (Form PTO-2038 enclosed)

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038. SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	12/247,950	Art Unit:	2681
Filed	October 8, 2008	Conf No:	8961
For	Method and System for Waking Up a Device Due to Motion	CERTIFICATE OF TRANSMISSION I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.	
Customer No.	08791	/Judith Szepe	February 6, 2013

Mail Stop RCE
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

AMENDMENT

Sir:

In response to the Office Action of November 6, 2012, which was made final, applicants respectfully request the Examiner to enter the following amendments and consider the following remarks:

Amendments to the Claims are reflected in the listing of claims, which begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

Amendments to the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method comprising:
receiving motion data from a motion sensor in a device, the motion sensor sensing motion along three axes;
determining an idle sample value for a dominant axis of the device, the dominant axis defined as the axis with a largest effect from gravity among the three axes;
registering a motion of the device based on the motion data from the motion sensor; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device, indicating a change in the axis with the largest effect from gravity among the three axes.
2. (Previously Presented) The method of claim 1, wherein determining the idle sample value for the dominant axis comprises:
processing the motion data to establish an idle sample value; and
processing the idle sample value to establish the dominant axis.
3. (Previously Presented) The method of claim 1, wherein the motion sensor comprises an accelerometer.
4. (Previously Presented) The method of claim 2, wherein the idle sample value comprises an average of accelerations over a sample period along the dominant axis recorded when the device goes to idle mode after a period of inactivity.
5. (Previously Presented) The method of claim 2, further comprising determining the idle sample value for each of the other axes of the device.
6. (Previously Presented) The method of claim 1, wherein registering the motion of the device comprises:
processing the motion data to determine a current sample value along the dominant axis of the device.
7. (Previously Presented) The method of claim 2, further comprising comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value.
8. (Original) The method of claim 1, wherein the change in the dominant axis comprises a change in acceleration along the dominant axis.
9. (Original) The method of claim 1, wherein waking up the device further comprises configuring the device to return to a last active device state.
10. (Previously Presented) The method of claim 6, wherein the current sample value of the dominant axis of the device is an average of accelerations over a sample period.
11. (Original) The method of claim 6, further comprising determining the current sample value for each of the other axes of the device.
12. (Canceled)
13. (Previously Presented) The method of claim 6, wherein processing the motion data further comprises:
verifying whether the motion data includes one or more glitches; and
removing the one or more glitches in the motion data from the motion data before calculating the average.
14. (Original) The method of claim 6, further comprising determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value.
15. (Original) The method of claim 8, further comprising:
determining a new dominant axis based on the motion data received from the motion sensor;
computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis determined when the device goes to idle mode after a period of inactivity; and
comparing the difference against a threshold value to establish whether to wake the device up.

Claims 16-24. (Canceled)
25. (Previously Presented) A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
26. (Previously Presented) The mobile device of claim 25, further comprising:
a long average logic to create one or more averages of accelerations over a sample period as measured by the motion sensor.

27. (Canceled)

28. (Previously Presented) The mobile device of claim 26, further comprising:
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device.
29. (Previously Presented) The mobile device of claim 26, further comprising a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated.
30. (Previously Presented) The mobile device of claim 25, wherein the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes.
31. (Previously Presented) The mobile device of claim 25, further comprising a device state logic to restore the device to a last active state.
32. (Previously Presented) The mobile device of claim 31, wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up.
33. (Previously Presented) A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes;
a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and
a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity.
34. (Previously Presented) The system of claim 33, further comprising:
a long average logic to create an average of accelerations over a sample period along the dominant axis; and
a computation logic to determine if the average of accelerations indicates the change in the dominant axis of the device.
35. (Previously Presented) The system of claim 33, further comprising:
a device state logic to restore the device to one of: a last active state, a preset customized state.

Remarks/Arguments

Applicants respectfully request consideration of the subject application as amended herein. This Amendment is submitted in response to the Office Action mailed November 6, 2012, which was made final. Claims 1-11, 13-15, 25, 26, and 28-35 are rejected. In this Amendment, claim 1 has been amended. No claims have been canceled or added. Applicants reserve all rights with respect to the applicability of the Doctrine of Equivalents.

Claim Rejections under 35 U.S.C. §112, second paragraph

Claims 26, 29, and 34 stand rejected under 35 U.S.C. $\S 112$, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention, in objecting to the use of the term "long average logic."

Applicants respectfully not that the term "long average" is used only in the context of the name of a logical element, e.g. a "long average logic" which is defined in the Specification, in paragraph 23, as follows:

The long average logic 240 calculates one or more long averages of acceleration based on the received motion data. In one embodiment, the long average logic 240 utilizes a ring buffer memory 250, discarding older data as new data is added to the long average. In one embodiment, the long average logic 240 creates a long average of accelerations along a single axis.

As noted in the MPEP 2111.01 IV, "An applicant is entitled to be his or her own lexicographer and may rebut the presumption that claim terms are to be given their ordinary and customary meaning by clearly setting forth a definition of the term that is different from its ordinary and customary meaning(s). See In re Paulsen, 30 F.3d 1475, 1480, 31 USPQ2d 1671, 1674 (Fed. Cir. 1994)."

Furthermore, Applicants respectfully note that the MPEP 2173.05(b) notes that "Acceptability of the claim language depends on whether one of ordinary skill in the art would understand what is claimed, in light of the specification." One of skill in the art reading these claims would see that "long average logic" is a name for a logic element, and the term "long" is not used as a relative term, but rather as portion of a name.

Thus, the phrase is well defined, and not a relative term, and one of skill in the art would understand that "the long average logic" is a logic element in the system which calculates averages of acceleration based on motion data. Therefore, Applicants respectfully request withdrawal of this rejection.

Claim Rejections under 35 U.S.C. §103(a)

Claims 1-8, 10-11, 14-15, 25-26, 28-30, and 33-34 stand rejected under 35
U.S.C. §103(a) as being unpatentable over U.S. Patent Publication No. 2006/0161377 to Rakkola, et al (hereinafter "Rakkola") in view of U.S. Publication No. 2007/0259716 to Mattice, et al (hereinafter "Mattice").

Rakkola discusses an energy-efficient acceleration measurement system. Rakkola's system includes an accelerometer, responsive to acceleration of the system, for providing an accelerometer output signal having a magnitude indicative of at least one component of the acceleration. A motion detector is responsive to the accelerometer output signal, and provides a processor interrupt signal, but only if the magnitude of acceleration reaches a threshold.

However, Rakkola specifically teaches away from using the axis with the largest effect from gravity by stating that "Another important aspect of the described motion detector's embodiments is that, when the motion detector is enabled, a reference level is calculated automatically. The benefit of this function is that there is consequently no need to consider offsets on different channels when setting threshold levels, and threshold levels can also be set independently from device orientation and from the vector of gravitational force. An averaging procedure is used for this reference level calculation as well (see previous description of averaging process for incoming acceleration data). The reference levels are calculated in this way for each of the three axes, assuming that a triaxial accelerometer is used." (Rakkola, paragraph 19). Thus it is an important aspect of Rakkola that the threshold levels are independent of the vector of gravitational force, and further that reference levels are calculated for each axis.

Therefore, it would substantially alter the functioning of Rakkola to utilize an axis most impacted by gravity.

Mattice discusses control of wager-based game using gesture recognition. Mattice notes that a tilt of a device may be detected by a change in gravitational acceleration, but does not teach or suggest utilizing gravity in determining whether to wake up a device. Although Mattice utilizes the term "dominant axis" Mattice references the "dominant axis of motion" which is the axis along which the user's motion is largest, and which is therefore augmented in analysis. (Mattice, paragraph 156).

Applicants respectfully note that the proposed combination of Rakkola and Mattice is inappropriate. In particular, MPEP § 2145(X)(D)(2): clarifies that

References Cannot Be Combined Where Reference Teaches Away from Their Combination

It is improper to combine references where the references teach away from their combination. In re Grasselli, 713 F.2d 731, 743, 218 USPQ 769, 779 (Fed. Cir. 1983) (The claimed catalyst which contained both iron and an alkali metal was not suggested by the combination of a reference which taught the interchangeability of antimony and alkali metal with the same beneficial result, combined with a reference expressly excluding antimony from, and adding iron to, a catalyst.).

Because Rakkola specifically teaches away from utilizing gravitational force, adding the use of gravitational force from Mattice to the Rakkola reference is not appropriate. Therefore, the examiner's proposed combination is inapt, and the claims should be found patentable.

Furthermore, Applicants respectfully submit that even if the combination were considered, the combination of Rakkola and Mattice do not teach or suggest "waking up the device when the motion of the device indicates a change in the dominant axis of the device," as recited in claim 1.

Rakkola specifically teaches away from the use of a dominant axis, e.g. an axis having the largest gravitational effect from gravity, for waking up a device. Mattice's dominant axis is only connected to the axis along which the most motion is observed, and is used to augment the motions sensed. Mattice does not utilize gravity-based calculations for waking up the device.

In contrast, claim 1 recites that the "change in the dominant axis of the device" is used as a tool to wake up the device. Even if the combination of Rakkola and Mattice were valid, the combination of references does not teach or suggest this limitation.

Therefore, the combination of Rakkola and Mattice does not make obvious claim 1, and the claims that depend on it.

Claim 25 recites in part "a power logic to activate the device when the motion indicates a change in the dominant axis of the device." As noted above, Rakkola and Mattice should not be combined. Furthermore, the combination of Rakkola and Mattice does not teach or suggest activating the device when the motion indicates a change in the dominant axis of the device. Therefore, claim 25 and the claims that depend on it are not obvious over Rakkola and Mattice.

Claim 33 recites in part "a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity." As noted above, Rakkola and Mattice should not be combined.
Furthermore, the combination of Rakkola and Mattice does not teach or suggest activating the device when the motion indicates a change in the axis experiencing the largest effect of gravity. Therefore, claim 33 and the claims that depend on it are not obvious over Rakkola and Mattice.

Claims 9, 31, and 35 stand rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of U.S. Patent No. 6,353,449 to Gregg, et al (hereinafter "Gregg").

Gregg discusses various screen savers for computing devices. Gregg does not discuss dominant axis or movements at all. Therefore Gregg cannot remedy the shortcomings of Rakkola and Mattice discussed above. Therefore, for at least the same reasons advanced above with respect to their respective parent claims, claims 9, 31, and 35 are not obvious over Rakkola in view of Mattice, in view of Gregg.

Claim 13 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of U.S. Publication No. 2007/0150136 to Doll, et al (hereinafter "Doll").

Doll discusses a sensor self-test system for a motion sensor. However, Doll does not discuss waking up a device, much less waking up a device based on a change in a dominant axis. Therefore, for at least the same reasons advanced above with respect to claim 1, claim 13 is not obvious over Rakkola in view of Mattice, in view of Doll.

Claim 32 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of Gregg in view of U.S. Patent No. 6, 771,250 to Oh.

Oh discusses an application program launcher, which may be used to launch applications from low power mode. While Oh discusses waking up a device, Oh does not discuss utilizing any motion data, much less using a change in the dominant axis. Therefore, Oh cannot remedy the shortcomings of Rakkola, Mattice, and Gregg discussed above. Therefore, claim 32 is not obvious over the combination of Rakkola, Mattice, Greg, and Oh for at least the same reasons advanced above with respect to claim 25.

Conclusion

Applicant respectfully submits that in view of the amendments and discussion set forth herein, the applicable rejections have been overcome. Accordingly, the present and amended claims should be found to be in condition for allowance.

If a telephone interview would expedite the prosecution of this application, the Examiner is invited to contact Judith A. Szepesi at (408) 720-8300.

If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: February 6, 2013
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393
Customer No. 08791
1279 Oakmead Parkway Sunnyvale, CA 94085
(408) 720-8300

Electronic Patent Application Fee Transmittal				
Application Number:	12247950			
Filing Date:	08-Oct-2008			
Title of Invention:	Method and System for Waking Up a Device Due to Motion			
First Named Inventor/Applicant Name:	Philippe Kahn			
Filer:	Judith A. Szepesi			
Attorney Docket Number:	8689P057			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Request for continued examination	1801	1	930	930
	Total in USD (\$)			930

Electronic Acknowledgement Receipt	
EFS ID:	14896164
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	8791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	07-FEB-2013
Filing Date:	08-OCT-2008
Time Stamp:	02:35:57
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes					
Payment Type	Deposit Account					
Payment was successfully received in RAM	$\$ 930$					
RAM confirmation Number	7603					
Deposit Account	022666					
Authorized User						
File Listing:						
Document Number	Focument Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip		Pages
:---:						
(if appl.)						

1	Request for Continued Examination (RCE)	8689P057_RCE_Transmittal.pdf		no	
Warnings:					
This is not a USPTO supplied RCE SB30 form.					
Information:					
2		$\underset{\text { pdf }}{\text { 8689P057_AmResp_Jan2013. }}$		yes	10
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Amendment Submitted/Entered with Filing of CPA/RCE		1	1	
	Claims		2	5	
	Applicant Arguments/Remarks Made in an Amendment		6	10	
Warnings:					
Information:					
3	Fee Worksheet (SB06)	fee-info.pdf	30420	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			162174		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

DETAILED ACTION

Response to Arguments

a. Applicant argues starting on page(s) 7, that the reference teaches away and would substantially alter the functioning of Rakkola.

In response to applicant's argument that there is no teaching, suggestion, or motivation to combine the references, the examiner recognizes that obviousness may be established by combining or modifying the teachings of the prior art to produce the claimed invention where there is some teaching, suggestion, or motivation to do so found either in the references themselves or in the knowledge generally available to one of ordinary skill in the art. See In re Fine, 837 F.2d 1071, 5 USPQ2d 1596 (Fed. Cir. 1988), In re Jones, 958 F.2d 347, 21 USPQ2d 1941 (Fed. Cir. 1992), and KSR International Co. v. Teleflex, Inc., 550 U.S. 398, 82 USPQ2d 1385 (2007). In this case, the motivation would have been to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, collect data for each of the three axes, activate functions when specified conditions are detected, determine the axis with the greater amount of movement, adjust values according to other factors that should be taken into account, perform specific actions as a response to movement.

In response to applicant's argument that the benefit of the function would be different, and that it would substantially alter the functioning, the fact that applicant has recognized another advantage which would flow naturally from following the suggestion of the prior art cannot be the basis for patentability when the differences would otherwise be obvious. See $E x$ parte Obiaya, 227 USPQ 58, 60 (Bd. Pat. App. \& Inter. 1985).
b. Applicant argues starting on page(s) 8 , that the prior art does not specifically disclose the newly amended limitations.

In response, please see action below. In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See In re Keller, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); In re Merck \& Co., 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986). Please also see action below.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112 :
The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim(s) 26, 29, 34 is/are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The term "long average(s)" in claim(s) $26,29,34$ is a relative term which renders the claim indefinite. The term "long average(s)" is not defined by the claim, the specification does not provide a standard for ascertaining the requisite degree, and one of ordinary skill in the art would not be reasonably apprised of the scope of the invention. Though the claims are read in light of the specification, the limitations from the specification are not read into the claims, and the broadest reasonable interpretation has been given to the claims. Any dependent claim(s) and/or similar limitation(s) is/are rejected for similar reason(s). Proper action is required.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

1. Claim(s) 1-8, 10-11, 14-15, 25-26, 28-30, 33-34 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716).

As to claim(s) 1, Rakkola disclose(s):
A method comprising: receiving motion data from a motion sensor in a device, the motion sensor sensing motion along three axes; registering a motion of the device based on the motion data from the motion sensor; and waking up the device when the motion of the device indicates a change in the dominant axis of the device ([0015-44]).

The above art/combination does not expressly disclose determining an idle sample value for a dominant axis of the device, the dominant axis defined as the axis with a largest effect from gravity among the three axes; indicating a change in the axis with the largest effect from gravity among the three axes.

Rakkola disclose(s): calculating reference levels for each of the three axes; programming threshold levels for each axis independently; collecting data for each of the three axes; idle states; wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value; processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors; if motion detector receives significant data from accelerometer, activates an interrupt; movement detected, woken up, perform specific actions as a response to movement ([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, collect data for each of the three axes, activate functions when specified conditions are detected, determine the axis with the greater amount of movement, adjust values according to other factors that should be taken into account, perform specific actions as a response to movement. As to claim(s) 2,

Rakkola disclose(s):
wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value ([0015-44]).

Rakkola disclose(s): processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54] see also claim(s) 1 and above claims).

As to claim(s) 3, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 4,
Rakkola disclose(s):
the idle sample value comprises an average of accelerations over a sample period along the dominant axis; when the device goes to idle mode after a period of inactivity ([0015-44]).

The above art/combination does not expressly disclose recorded.
Mattice discloses recorded spatial signatures, spatial signatures may be tracked, recorded, and/or analyzed by one or more motion detector devices; recording motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when the device is inactive, to track, record, and/or analyze the data, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 5, Rakkola disclose(s):
determining the idle sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 6, Rakkola disclose(s):
registering the motion of the device comprises: processing the motion data to determine a current sample value along the dominant axis of the device ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 7, Rakkola disclose(s): based on the motion of the device and the idle sample value of the dominant axis against a threshold value ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 8,
The above art/combination does not expressly disclose the change in the dominant axis comprises a change in acceleration along the dominant axis.

Mattice discloses the change in the dominant axis comprises a change in acceleration along the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine whether the device is rest, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 10, Rakkola disclose(s):
the current sample value of the dominant axis of the device is an average of accelerations over a sample period ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 11, Rakkola disclose(s): value and the idle sample value being greater than a threshold value ([0015-44]; see also claim(s) 1 and above claim(s)).

As to claim(s) 15,
Rakkola disclose(s): computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis; comparing the difference against a threshold value to establish whether to wake the device up ([0015-44]).

The above art/combination does not expressly disclose determining a new dominant axis based on the motion data received from the motion sensor; when the device goes to idle mode after a period of inactivity.

Rakkola disclose(s): updating values automatically and periodically, as a programmable parameter; computing when the device goes to idle mode after a period of inactivity ([0015-44]).

Mattice discloses determining a new dominant axis based on the motion data received from the motion sensor (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when a device is inactive, to determine whether the device is at rest,
and to update values automatically and/or periodically, as a programmable parameter, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 25,
Rakkola disclose(s): A mobile device comprising: a motion sensor to register a motion of the mobile device; and a power logic to activate the device when the motion indicates a change in the dominant axis of the device ([0015-44]; see also claim 2).

The above art/combination does not expressly disclose a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes.

Mattice discloses a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim 2).
the dominant axis defined as an axis with a largest effect from gravity among three axes (see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values
according to other factors that should be taken into account, and to determine the axis with the greater amount of movement (see also claims 1, 2).

As to claim(s) 26,
Rakkola disclose(s): a long average logic to create one or more averages of accelerations over a sample period as measured by the motion sensor; acceleration data along each of the axes ([0015-44]).

Rakkola disclose(s): to compute the one or more long averages of accelerations; logic to set a period over which motion data is collected; the number of samples summed to compute the one or more long averages of accelerations is a programmable setting ([0015-44]; see also claim(s) 1 and above claim(s)).

As to claim(s) 28, Rakkola disclose(s):
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device ([0015-44]; see also claim(s) 1, 25; above claim(s)).

As to claim(s) 29, Rakkola disclose(s):
a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated ([0015-44]; see also claim 13; above claim(s)).

As to claim(s) 30, Rakkola disclose(s):
the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes ([0015-44]; see also claim(s) 1 and above claim(s)).

As to claim(s) 33,
A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes; a dominant axis logic to compare an effect of gravity on the three axes, and to determine an
axis of the device experiencing a largest effect of gravity; and a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity (see claim(s) 1, 25; above claim(s)).

As to claim(s) 34,
A long average logic to create an average of accelerations over a sample period along the dominant axis; and a computation logic to determine of the average of accelerations indicates the change in the dominant axis of the device (see claim(s) $1,26,28$; above claim(s)).
2. Claim(s) $9,31,35$ is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449). As to claim(s) 9, 31, 35,

The above art/combination does not expressly disclose waking up the device further comprises configuring the device to return to a last active device state.

Gregg discloses waking up the device further comprises configuring the device to return to a last active device state ([1, 23-30]; see also claim(s) 1 and above claim(s)).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized when the user left the device, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

3. Claim(s) 13 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Doll (20070150136).

As to claim(s) 13,
Rakkola disclose(s): processing the motion data further comprises; and removing the one or more glitches in the motion data from the motion data before calculating the long average ([0015-44]).

The above art/combination does not expressly disclose verifying whether the motion data includes one or more glitches.

Doll discloses verifying whether the motion data includes one or more glitches ([0007]; see also claim(s) 1 and above claim(s)).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to ensure that the system utilizes and processes valid information and data, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.
4. Claim(s) 32 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449) in view of Oh (6771250).

As to claim(s) 32,

The above art/combination does not expressly disclose the device state logic allows user interaction to customize applications to be displayed when the device is woken up.

Oh discloses the device state logic allows user interaction to customize applications to be displayed when the device is woken up ([3, 13-25]; see also claim(s) 1 and above claim(s)).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized and/or as desired by a user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shirley Lu whose telephone number is (571) 272-8546. The examiner can normally be reached on 8:30-5:00 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Daniel Wu can be reached on (571) 272-2964. The fax phone number for the organization where this application or proceeding is assigned is (571) 273-8300.

Art Unit: 2681
Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
/Shirley Lu/
Primary Examiner, Art Unit 2681

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	10977	(340/457,573.1,686.1,539.1,522,667).CCLS.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2012/11/04
L2	3973	long adj average	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$12012 / 11 / 04$
L3	73	(axis axes) with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\left\lvert\, \begin{aligned} & 2012 / 11 / 04 \\ & 01: 49 \end{aligned}\right.$
L4	17	L3 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$12012 / 11 / 04$
L5	17	L3 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { UUSPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	012
L6	10977	(340/457,573.1,686.1,539.1,522,667).CCLS.	:US-PGPUB; USPAT; USOCR; :PRR; :EPO; JPO; :DERWENT; IBM_TDB	OR	OFF	\mid
L7	73	(axis axes) with wak\$4 adj up		OR	OFF	$\left.\right\|_{01: 50} ^{2012 / 11 / 04}$
S2	28	\|	US-PGPUB;		OFF	2010/05/03

			$\begin{aligned} & \text { UUSPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			09:48
53	17	S2 and remote\$4		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$
S4	/2	S3 and distance\$1	US-PGPUB; USPAT; USCR; PPRS; EPO; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 49 \end{aligned}$
55	1	"20040095252".pn. and distance\$1		OR	OFF	$12010 / 05 / 03$
58	10	"20030222775".pn. and distance\$1	UUS-PGPUB; USAT; USOCR; IPRS; EPO; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 14 \end{aligned}$
59	[2	"20030098792".pn.	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { USOCR; } \\ & \text { IPRO; JPO; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 16 \end{aligned}$
S10	10	"20030098792".pn. and temperature	USS-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S11	O	"20030098792".pn. and temperature\$1	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; JPO; } \\ \text { DERWWENT; } \\ \text { IBM TDB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S12	$]^{1}$	"20030098792".pn. and motion	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT;	\%	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 43 \end{aligned}$

			IBM TDB			
S13	2	S2 and distance\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 46 \end{aligned}$
S14	11	baby adj seat and distance same counter	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 13 \end{aligned}$
S15	19	baby adj seat and predetermined adj distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{array}{\|c} 2010 / 05 / 03 \\ 11: 17 \end{array}$
S16	2	"20030122662".pn. and range	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$12010 / 05 / 03$
S17	167	car adj seat and predetermined adj distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 22 \end{aligned}$
S18	167	car adj seat and predetermined adj distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\frac{2010 / 05 / 03}{11: 23}$
S19	133	car adj seat and distance with signal\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$
S20	14	car adj seat and predetermined adj distance with signal\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$
S21	0	"7797212".pn. and counter	$\begin{aligned} & \text { US-PGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 26 \end{aligned}$

			IEPO; JPO; DERWENT; IBM TDB			
S22	12	car adj seat and distance with signal\$1 adj strength\$1	US-PGPUB USPAT; USOCR; FPRS; EPP; JPO; DERWENT; IBM TDB	OR	OFF	$1 / 2010 / 05 / 03$
S23	0	"1318.apn. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S24	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S25	3	"131848".apn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S26	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S27	12	lojack.as. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\sqrt{2010 / 05 / 13}$
S28	2	"7561102".pn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S29	2	"7536169".pn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2010 / 05 / 13$
S30	3940	Icounter with time with distance	US-PGPUB;	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$

			UUSOCR; IFRS; :EPO; JPO; DERWENT; IBM TDB			
531	245	counter with measur\$4 near5 (time with distance)	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
532	25	S31 and @rlad < "20060718"	US-PGPUB; USPAT; USCR; PRRS; EPO; JPO; DERWNT;	OR	OFF	$\sqrt{2011 / 01 / 10}$
533	11598	"327"/\$.ccls. and rectifier	UUS-PGPUB; USPAT; USOCR; IPRS; JPO; EPORWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
S34	616	"327"/\$.ccls. and rectifier.ti.	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
S35	36	340/573.1 and return adj signal with distance	USSPGPUB; USPAT; USCR; PRRS; EPOP JPO; DERWNT;	OR	OFF	2011/04/26
536	21	S35 and @rlad < "20060718"	US-PGPUB; USPAT; USCRP; FPRS; EPO; JPO; DERWNT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 50 \end{aligned}$
537	2	"20030034887".pn. and return adj signal	US-PGPUB; USPAT; USCR; PRRS; EPOP JPO; DERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 53 \end{aligned}$
538	2	"20030034887".pn.	UUS-PGPUB; USPAT; USOCR; IPRS; JPO; EPORWNNT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$

539		"20030034887".pn. and return adj signal	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { YPRS; JPO; } \\ & \text { IPRWENT; } \\ & \text { IBM TDB } \end{aligned}$		OFF	$\sqrt{2011 / 04 / 26}$
540	1	"20030034887".pn. and "10"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT BM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 18 \end{aligned}$
541	2	"20030034887..pn. and timer		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 38 \end{aligned}$
S42	0	["20030098792".pn. and "72"	UUS-PGPUB; USPAT; USOCR; IPRRS; EPD; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
543	1	"20030098792".pn. and "27"	US-PGPUB; USPAT; USOCR; IPRS; ; JPO; IEPORWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
544	0	"779712".apn. and low adj power	US-PGPUB; USPAT; USOCR; IPRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S45	0	"779712".apn. and motion adj detector		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S46		"779712".apn. and motion	US-PGPUB; USPAT; USOCR; IPRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S47		"779712".apn.	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPO;	$\sqrt{O R}$	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$

			IDERWENT; IBM TDB			
S48	["6922147".pn. and temperature	USS-PGPUB; USPAT; USOCR; IPPRS; IEO; JPO; IDERWENT; IIBM TDB	OR	OFF	12
S49	6	$\begin{aligned} & \text { /("20030098792") or ("20030034887") or } \\ & \hline(692147 \text { ")).PN. } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPO; } \\ & \text { EPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
S50	3	S49 and (conserv\$4 sav\$4 power reduc\$4)		OR	OFF	19
S51	3	S49 and (conserv\$6 sav\$4 power reduc\$4)		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
552	2	S49 and motion		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 20: 56 \end{aligned}$
553	0	mtion adj detector with sleep	US-PGPUB; USPAT; USOCR; RPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
554	52	motion adj detector with sleep adj mode	UUS-PGPUB; USPAT; USOCR; IPRRS; IEPO; JPO; IDRWENT; IBM TDB	${ }^{\circ}$	OFF	2
S55	10	S54 and @rlad < "20060718"		OR	OFF	2106
S56	9857	(340/457,573.1,686.1,539.1,522,667).CCLS.	$\begin{aligned} & \text { MSPPGPUB; } \\ & \text { MSPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$21: 15$

			IIPPRS; EPO; JPO; DERWENT; BM_TDB			
557	5	S56 and S54	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM_TDB	OR	OFF	$2011 / 04 / 26$
55	638	signal adj edge adj detector	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 18 \end{aligned}$
559	O	signal adj edge adj detector same reduce Jadj error	\|US-PGPUB; USPAT; USOCR; IFPRS; IEPO; JPO; BERWENT; IBM TDB	OR	OFF	$2011 / 04 / 26$
560	33	signal adj edge adj detector same error	:US-PGPUB; : USPAT; !USOCR; IPRRS; :EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
561	10	signal adj edge adj detector with error	\|US-PGPUB; : USPAT; USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$2011 / 04 / 26$
562	3	signal adj edge adj detector with error with count\$4	\|US-PGPUB; :USAT; !USOCR; IPRRS; :EDO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 21 \end{aligned}$
563	3	signal adj edge adj detector with error with count\$4		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 22 \end{aligned}$
564	10	signal adj edge adj detector with error	UUS-PGPUB; USPAT; USOCR; UPRS; UPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
S65	34	signal adj edge adj detector and measur\$4	\|US-PGPUB;	OR	OFF	2011/04/26

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& ! adj time

a \& \& \& \& 21:23

\hline S66 \& 5 \& signal adj edge adj detector same measur\$4 adj time \& \& OR \& OFF \& $$
\begin{aligned}
& 2011 / 04 / 26 \\
& 21: 23
\end{aligned}
$$

\hline S68 \& 88 \& edge adj detect\$4 with counter with error\$1 \& $$
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
$$ \& OR \& OFF \& \[

2011 / 04 / 26
\]

\hline S69 \& 23 \& S68 and @rlad < "20060718" \& $$
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT; } \\
& \text { USOCR; } \\
& \text { FPRS; } \\
& \text { EPO; JPO; } \\
& \text { DERWENT; } \\
& \text { IBM TDB }
\end{aligned}
$$ \& OR \& OFF \& \[

$$
\begin{aligned}
& 2011 / 04 / 26 \\
& 21: 25
\end{aligned}
$$
\]

\hline S70 \& 45 \& edge adj detect\$4 with reduc\$4 near3 error\$1 \& \& OR \& OFF \& $$
\begin{aligned}
& 2011 / 04 / 26 \\
& 21: 26
\end{aligned}
$$

\hline S71 \& 3 \& S70 and @rlad < "20060718" \& :US-PGPUB;
:USPAT;
USOCR;
FPRS;
EPO; JPO;
DERWENT;

IBM TDB \& OR \& OFF \& $$
\sqrt{2011 / 04 / 26}
$$

\hline S72 \& , \& "247950".apn. and dominant adj axis \& | US-PGPUB; |
| :--- |
| USPAT; |
| USOCR; |
| FPRS; |
| EPO; JPO; |
| DERWENT; |
| IBM TDB | \& OR \& OFF \& \[

2011 / 04 / 26
\]

\hline S73 \& ,18 \& $$
\begin{aligned}
& \text { (("20060161377") or ("200702597") or } \\
& \text { ("20070150136") or ("6353449") or } \\
& \text { ("6771250")).PN. }
\end{aligned}
$$ \& \& OR \& OFF \& \[

$$
\begin{aligned}
& 2011 / 04 / 26 \\
& 22: 40
\end{aligned}
$$
\]

\hline S74 \& 3 \& ("200700259716").PN. \& US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; \& OR \& OFF \& $\sqrt{2011 / 04 / 27}$

\hline
\end{tabular}

			IBM TDB			
S75	2	[${ }^{(20070259716 ") . P N .}$	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
S76	8	$\sqrt{(" 20070259716 ") \text { or }(" 6353449 ") \text { or }}(\text { (20070150136") or ("6771250")).PN. }$	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 17: 37 \end{aligned}$
577	1	"247950".apn. and (long adj average\$1 with idle)	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
578	1	"247950".apn. and (long adj average\$1 with	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
S79	1	"247950".apn. and (long adj avera................... Iidle adj sample)	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 14 \end{aligned}$
S80	1	"247950".apn. and (long adj average\$1)	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 17 \end{aligned}$
581	/3524	long adj average	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 18 \end{aligned}$
582	/3524	"Iong average"	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 19 \end{aligned}$
583	10	("20060161377") or ("20070259716") or :("63534499) or ("20070150136") or ("671250")).PN.	$\begin{aligned} & \text { US-PGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\sqrt{2011 / 04 / 27}$

			MEPO; JPO; DERWENT; IBM TDB			
584	${ }^{2}$	S83 and record\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \\ & \text { IPOP JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDR } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$
585	1	"247950".apn. and dominant	\|US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
586	1	"247950".apn. and idle	UUS-PGPUB; USAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 40 \end{aligned}$
587	1	"247950".apn. and new adj dominant	IUS-PGPUB;UUPAT; USOCR; IPPRS; IEPO; JPO; IDERWENT; IIBM TDB,	OR	OFF	2
588	1	"20060161377".pn. and reference	UUS-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 47 \end{aligned}$
S89	10	20070259716".pn. and (idle sleep)		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 54 \end{aligned}$
S90	${ }^{2}$	"20070259716".pn.	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { FPRS; JPO; } \\ & \text { MERWENT; } \\ & 1 \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 57 \end{aligned}$
S91	1	"247950".apn. and idle with comput\$4	US-PGPUB; USPAT; USCR; PRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
592	${ }^{1}$	"247950".apn. and idle	US-PGPUB; USPAT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$

			USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			
593	0	"20070259716".pn. and ("0053" "0155"	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
594	2	"20070259716".pn.	USS-PGPUB; USPAT; USOCR; IPRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
595	2	"6353449".pn.	US-PGPUB; USPAT; USOCR; IPRRS; :EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 00 \end{aligned}$
55	2	"20070150136".pn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERM TNT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 03 \end{aligned}$
597	7354	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) \text {.CCLS. } \end{aligned}$	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
598	3525	long adj average	US-PGPUB; USPAT; USOCR; PRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
599	3	S97 and 598	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S100	8	("20070259716") or ("6353449") or	US-PGPUB: USPAT: USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$

S101	1	S97 and S100	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PPRS; } \\ \text { EDO; JPO; } ; \\ \text { DIBMENT; } \\ \text { IBM TDB } \end{array} \end{aligned}$		OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S102	\|3668	"long average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S103			$\begin{aligned} & \text { MSS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { IPRS; JPO; } \\ & \text { IPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S104	38	$340 / 573.1$ and return adj signal with distance	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRRS; } \\ \text { IPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM TDB } \end{array}=1 \end{aligned}$	OR	OFF	2011/10/14
S105	$\sqrt{10}$	("20060161377") or ("20070259716") or $($ (6353449") or ("20070150136") or $($ (6771250 ")). PN.	USS-PGPUB; USPAT; UUSCR; IPRRS; IEPO; JPO; IDRWENT; IIBM TDB,	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S106	2	S105 and record\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S107	7852	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . C C L S . \end{aligned}$		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S108	3668	long adj average	UUSPGPUB; USPAT; USOCR; IPRS; EPOP JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S109		("20070259716") or ("6353449") or $(20070150136$ ") or $(" 6771250$ " $)$). PN.	$\begin{aligned} & \text { MUSPGPUB; } \\ & \text { MSPAT; } \\ & \text { MPRRS; } \\ & \text { EPO; JPO; } \end{aligned}$		OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$

			MDERWENT; IBM TDB			
S110	6	$\begin{aligned} & (\text { ("20030098792") or ("20030034887") or } \\ & \hline(692147 ") \text {).PN. } \end{aligned}$	\| US-PGPUB; UUSAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S111	3	S110 and (conserv\$6 sav\$4 power rreduc\$4)	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S112	23	S104 and @rlad < "20060718"		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S113	1	tre with inches with sensor with (outside)	\|US-PGPUB; : USPAT; UUSOCR; :IPRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S114	[tire with sensor with (outside) same inches	\|US-PGPUB; : USPAT; !USOCR; :IPRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S115	20	tire with sensor with (outside) same size	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S116	3	"447841".apn. and ("18" "20")	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S117	3	"447841".apn.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S118		"447841".apn.	US-PGPUB; USPAT; USOCR;	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$

			IIFPRS; EPO; JPO: DERWENT; BM TDB			
S119	1	S114 and ("18" "20")	:US-PGPUB; : USPAT; !USOCR; IPRRS; :EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S120	3	tire adj size with sensor with (outside)		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S121	6	tire adj size same sensor with (outside inside)	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S123	331	tire with sensor with (outside) with (pressure temperature)		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 54 \end{aligned}$
S124	86	S123 and @rlad < "20080604"		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 55 \end{aligned}$
S125	8488	$\begin{aligned} & \frac{((340 / 669) \text { or }(702 / 141) \text { or }}{(345 / 325,156)) . C C L S .} \end{aligned}$	\|USPGPUB; UUSAT; !USOCR; "PPRS; :EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S126	347	tire with sensor with (outside) with (pressure temperature)	US-PGPUB: USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S127	3272	edge adj detect\$4 with counter		OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S128	/39	340/573.1 and return adj signal with	UUS-PGPUB;	OR	OFF	2012/05/19

		distance	$\begin{aligned} & \text { :USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPRO; } \\ & \text { DERWENT; } \end{aligned}$			18:59
S129	23	S128 and @rlad < "20060718"	UUS-PGPUB; USPAT; USOCR; IPRS; EPOP; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S130	2	("7987070").PN.	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 00 \end{aligned}$
S131	1	"247950".apn. and idle	$\begin{aligned} & \text { UUSPGPUB; } \\ & \text { MUSAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 32 \end{aligned}$
S132	208	(axis axes) with (idl\$4 sleep\$4) with accelerat\$4	US-PGPUB; USPAT; USOCR;	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S133	20	S132 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S134	$\sqrt{9346}$	accelerometer with motion	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$
S135	2	("20060161377").PN.	US-PGPUB; USPAT; USOCR; PPRS; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$
S136]	(axis axes) with idle with wak\$4 adj up	US-PGPUB; USPAT; USCR; PRRS; EPO; JPO; DERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 40 \end{aligned}$
S137	66	(axis axes) with wak\$4 adj up	US-PGPUB; USPAT; USOCR; EPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$
S138	15	S137 and @rlad < "20081008"	US-PGPUB; USPAT: USOCR;	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$

			"PPRS; EPO; JPO; DERWENT; BM TDB			
S139	I	(three) adj axes with wak\$4 adj up	UUS-PGPUB; USPAT; USOCR; IPRS; UPO; JPO; IERWENT; IBMTDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 44 \end{aligned}$
S140	6	(three) adj axes with idle	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 44 \end{aligned}$
S141	1	"247950".apn. and gravity		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 50 \end{aligned}$
S142	1	"247950".apn. and idle	\|US-PGPUB; USPAT; USOCR; IPRRS; JPO; IEPORWENT; IBM TDB	OR	OFF	$\sqrt{2012 / 06 / 16}$
S143	1	"247950".apn. and wak\$4		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 00 \end{aligned}$
S144	10685	(340/457,573.1,686.1,539.1,522,667).CCLS.	\|US-PGPUB; : USPAT; USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S145	3855	long adj average	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S146	88	ledge adj detect\$4 with counter with error\$1		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$

11/4/2012 1:09:07 AM
C:\Users\slu\Documents\EAST\Workspaces\12247950.wsp

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	0	(axis axes) with idle with wak\$4 adj up	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 40 \end{aligned}$
L2	66	(axis axes) with wak\$4 adj up		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$
L3	15	2 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$2012 / 06 / 16$
L4	0	(three) adj axes with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\frac{2012 / 06 / 16}{15: 44}$
L5	6	(three) adj axes with idle	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 44 \end{aligned}$
L6	1	"247950".apn. and gravity		OR	OFF	$2012 / 06 / 16$
L7		"247950".apn. and idle	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 57 \end{aligned}$
L8	1	"247950".apn. and wak\$4	/: ${ }^{\text {US-PGPUB; }}$	OR	OFF	2012/06/16

						16:00
L9	10685	(340/457,573.1,686.1,539.1,522,667).CCLS.	UUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
L10	3855	long adj average		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
L11	88	ledge adj detect\$4 with counter with error\$1		OR	OFF	1
52	[28		USSPGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$
53	17	S2 and remote\$4	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USCR; } \\ \text { PRSS; } \\ \text { EPD; JPO; ; } \\ \text { DRWENT; } \\ \text { IBM TDB } \end{array}, \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$
54	\%	S3 and distance\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPO; } \\ & \text { IPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 49 \end{aligned}$
S5	1	"20040095252".pn. and distance\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 50 \end{aligned}$
58	0	"20030222775".pn. and distance\$1	$\begin{aligned} & \text { USTPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { BERWENT; } \end{aligned}$	\%	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 14 \end{aligned}$

			IBM TDB			
59	${ }^{2}$	"20030098792".pn.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 16 \end{aligned}$
S10	10	"20030098792".pn. and temperature	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
511]	"20030098792".pn. and temperature\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S12	1	"20030098792".pn. and motion	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 43 \end{aligned}$
S13	/2	S2 and distance\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 46 \end{aligned}$
S14	11	baby adj seat and distance same counter	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USRSR; } \\ & \text { EPR; JPO; } \\ & \text { IBMWENT; } \end{aligned}$	OR	OFF	$\frac{2010 / 05 / 03}{11: 13}$
S15	$\sqrt{19}$	baby adj seat and predetermined adj distance	USPGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\left\lvert\, \begin{aligned} & 2010 / 05 / 03 \\ & 11: 17 \end{aligned}\right.$
S16	/2	"20030122662".pn. and range	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 20 \end{aligned}$
S17	[167	car adj seat and predetermined adj distance	$\begin{aligned} & \begin{array}{l} \text { USSPGPUB; } \\ \text { USPAT; } \\ \text { USPCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 22 \end{aligned}$

			IEPO; JPO; DERWENT; IBM TDB			
S18	167	car adj seat and predetermined adj distance	US-PGPUB USPAT; USOCR; FPRS; EPP; JPO; DERWENT; IBM TDB	OR	OFF	$11: 23$
S19	133	car adj seat and distance with signal\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2010/05/03
520	14	car adj seat and predetermined adj distance with signal\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$
S21	0	"7797212".pn. and counter	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	12
522	12	car adj seat and distance with signal\$1 adj strength\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	1
523	0	"1318.apn. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2010 / 05 / 13}{20: 05}$
S24	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S25	3	"131848".apn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
526	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT;	OR	OFF	2

			UUSOCR; FPRS; EPO; JPO; DERWENT; IIBM TDB			
S27	12	lojack.as. and automatic\$4		OR	OFF	${ }_{2010 / 05 / 13}^{20: 12}$
S28	2	"7561102".pn.	UUS-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\sqrt{2010 / 05 / 13}$
S29	2	\|"7536169".pn.		OR	OFF	20
530	3940	counter with time with distance	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
531	245	counter with measur\$4 near5 (time with distance)	US-PGPUB: USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
S32	25	S31 and @rlad < "20060718"	$\begin{aligned} & \text { MSS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { IPRS; JPO; } \\ & \text { BPRWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\sqrt{2011 / 01 / 10}$
533	11598	"327"/\$.ccls. and rectifier	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \\ & \text { IPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDBB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
534	616	"327"/\$.ccls. and rectifier.ti.	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRS; } \\ \text { EPO; JPO; } \\ \text { DRWENT; } \\ \text { IBM TDB } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$

S35	36	$340 / 573.1$ and return adj signal with distance	US-PGPUB; USPAT; USOCR; PPRS; :EPO; JPO; DERWENT; \|BM_TDB		OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 49 \end{aligned}$
536	21	S35 and @rlad < "20060718"	IBM TDB	OR	OFF	$1 \begin{aligned} & 2011 / 04 / 26 \\ & 17: 50 \end{aligned}$
537	[2	20030034887".pn. and return adj signal	US-PGPUB: USPAT; USOCR; IFPRS; :EPO; JPO; DERWENT; IIBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 53 \end{aligned}$
538	[2	"20030034887".pn.	UUS-PGPUB; USPAT; USOCR; IPRRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
539	2	"20030034887".pn. and return adj signal	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
540	[1	"20030034887".pn. and "10"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 18 \end{aligned}$
S41	2	"20030034887".pn. and timer	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 38 \end{aligned}$
S42	30	20030098792".pn. and "72"	USS-PGPUB; USPAT; USOCR; "PRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
S43	1	20030098792".pn. and "27"	US-PGPUB; USPAT; USOCR; FPRS; JPO;		OFF	$\sqrt{2011 / 04 / 26}$

			DERWENT; IBM TDB			
S44	0	"779712".apn. and low adj power	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S45	0	"779712".apn. and motion adj detector	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S46	O	"779712".apn. and motion	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S47	3	"779712".apn.	US-PGPUB; USPAT; USOCR; EPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
548	${ }^{2}$	"6922147".pn. and temperature	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 06 \end{aligned}$
S49	6	$\begin{aligned} & (\text { ("20030098792") or ("20030034887") or } \\ & \hline(6922147 ") \text {.PN. } \end{aligned}$	US-PGPPB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
550	3	S49 and (conserv\$4 sav\$4 power reduc\$4)	US-PGPUB; USPAT; USOCR; PRRS; JPO; ERENWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
551	3	S49 and (conserv\$6 sav\$4 power reduc\$. 4)	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
552	${ }^{2}$	S49 and motion	USPGPUB UUSPAT; USOCR;	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 20: 56 \end{aligned}$

			IIPRRS; EPO; JPO; DERWENT; BM TDB			
55	10	Imtion adj detector with sleep	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 05 \end{aligned}$
554	52	motion adj detector with sleep adj mode	\|US-PGPUB; USPAT; ULSCR; "PRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	2
55	10	S54 and @rlad < "20060718"	UUS-PGPUB; UUSAT; USOCR; IPRRS; IEPO; JPO; BERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 06 \end{aligned}$
556	9857	(340/457,573.1,686.1,539.1,522,667).OCLS.	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; ; } \\ & \text { EPD; JPO; } \\ & \text { BERWENT; } \\ & \hline \text { BM TDB } \end{aligned}$	OR	OFF	$\frac{2011 / 04 / 26}{21: 15}$
557	5	S56 and S54	US PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
558	638	signal adj edge adj detector	\|US-PGPUB; USPAT; USOCR; IPRRS; UPO; IERWENT; IBM TDB	OR	OFF	2
559	10	signal adj edge adj detector same reduce adj error	$\begin{aligned} & \text { USGPGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { FPRS; JPO; } \\ & \text { BERWENT; } \\ & \text { BMM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
560	33	signal adj edge adj detector same error	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2011 / 04 / 26$
561	10	Signal adj edge adj detector with error	\|US-PGPUB;	OR	OFF	2011/04/26

			"USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB			21:19
S62	3	signal adj edge adj detector with error with count\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \hline \text { BM TDB } \end{aligned}$	OR	OFF	2
563	3	signal adj edge adj detector with error with count\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2
564	\% 10	signal adj edge adj detector with error	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$2011 / 04 / 26$
S65	3 34	signal adj edge adj detector and measur\$4 adj time	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \hline \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
S66	5	signal adj edge adj detector same measur\$4 adj time	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	O	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
568	86	edge adj detect\$4 with counter with error\$1	$\begin{aligned} & \sqrt{\text { US-PGPUB; }} \\ & \sqrt{\text { USPAT; }} \\ & \sqrt{\text { USOCR; }} \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \hline \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 24 \end{aligned}$
S69	, 23	S68 and @rlad < "20060718"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	2
S70	45	edge adj detect\$4 with reduc\$4 near3 error\$1	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \end{aligned}$	OR	OFF	$2011 / 04 / 26$

			IBM TDB			
571	7	S70 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
S72	1	"247950".apn. and dominant adj axis	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 03 \end{aligned}$
573	18	$\begin{aligned} & \text { ("20060161377") or ("200702597") or } \\ & \text { ("20070150136") or ("6353449") or } \\ & \text { ("671250")).PN. } \end{aligned}$	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 40 \end{aligned}$
574	0	("200700259716").PN.	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
S75	2	(20070259716").PN.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
576	8	("20070259716") or ("6353449") or	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 17: 37 \end{aligned}$
577	1	"247950".apn. and (long adj average\$1 with	US-PGPUB USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 11 \end{aligned}$
578	1	"247950".apn. and (long adj average\$1 with set $\$ 4$)	US-PGPUB USPAT; UUSOCR; IFRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2011 / 04 / 27}{23: 11}$
S79	1	"247950".apn. and (long adj average\$1 with] idle adj sample)	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USPCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	2

			IEPO; JPO; DERWENT IBM TDB			
580	["247950".apn. and (long adj average\$1)	US-PGPUB; USPAT; USOCR; :FPRS; :IEPO; JPO; DERWENT; IBM TDB	OR	OFF	\mid
581	[3524	long adj average	UUS-PGPUB; USPAT; !USOCR; IPRS; IEPO; JPO; DERWENT; IBM TDB	OR	OFF	2
582	$\sqrt{3524}$	"Iong average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 19 \end{aligned}$
583	10	("20060161377") or ("20070259716") or $($ (6353449 ") or ("20070150136") or ("6771250")). PN .	US-PGPUB; USPAT; USOCR; IPRRS; EPD; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$
S84	2	S83 and record\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$
S85	1	"247950".apn. and dominant	US-PGPUB; USPAT; USOCR; IFPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 34 \end{aligned}$
586	1	"247950".apn. and idle	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 40 \end{aligned}$
587	["247950".apn. and new adj dominant	US-PGPUB; UUSPAT; USOCR; FPRR; :EPO; JPO; :DERWENT; IIBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 43 \end{aligned}$
S88]	"20060161377".pn. and reference	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \end{aligned}$	OR	OFF	$2011 / 04 / 27$

			$\begin{aligned} & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$			
589	0	"20070259716".pn. and (idle sleep)		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 54 \end{aligned}$
S90		"20070259716".pn.	US-PGPUB; USAT; USOCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 57 \end{aligned}$
S91		"247950".apn. and idle with comput\$4		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
592	1	"247950".apn. and idle	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
593	0	"20070259716".pn. and ("0053" "0155"	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { MSOCR; } \\ \text { IPRRS; } \\ \text { EPO; JPO; } \\ \text { BERWENT; } \\ \text { IBM TDB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
S94	2	"20070259716".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
595	2	"6353449".pn.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 00 \end{aligned}$
596		"20070150136".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 03 \end{aligned}$

S97	7354	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM_TDB		OFF	$12011 / 04 / 28$
598	3525	long adj average	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
599	3	S97 and S98		OR	OFF	$\sqrt{2011 / 04 / 28}$
S100	8	$\begin{aligned} & \text { ("20070259716") or ("6353449") or } \\ & \hline \text { ("20070150136") or }(" 6771250 \text { ")).PN. } \end{aligned}$	US-PGPUB; USPAT: USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S101	1	S97 and S100	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S102	3668	"long average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S103	28		US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\left\lvert\, \begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}\right.$
S104	38	340/573.1 and return adj signal with distance	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S105	10	$((20060161377$ ") or ("20070259716") or ($\left.6353449^{\prime \prime}\right)$ or ("20070150136") or (" 6771250)). PN .	$\begin{aligned} & \begin{array}{l} \text { USPGPU; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PRS; } \end{array} \\ & \text { EPO; JPO; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$

			MDERWENT; IBM TDB			
S106	2	S105 and record\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { IPRO; JPO; } \\ & \text { MERWENT; } \\ & \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S107	7852	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S108	/3668	long adj average	UUS-PGPUB; USPAT; USOCR; IPRRS; IEPO; JPO; MERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S109	8	("20070259716") or ("6353449") or $($ (20070150136") or ("6771250")).PN.		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S110	\%	$\begin{aligned} & \text { !("20030098792") or ("20030034887") or } \\ & \hline(\text { " } 692147 \text { ")).PN. } \end{aligned}$	UUS-PGPUB; USPAT; UUSOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\sqrt{2011 / 10 / 14}$
S111	3	S110 and (conserv\$6 sav\$4 power reduc\$4)		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S112	23	S104 and @rlad < "20060718"		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S113	:1	tire with inches with sensor with (outside)	UUSPGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWNENT; IBM TDB	OR	OFF	$\begin{aligned} & 201 / 10 / 22 \\ & 18: 48 \end{aligned}$
S114	:1	tire with sensor with (outside) same inches	$\begin{aligned} & \text { USSPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$

			IIPRS; EPO; JPO; DERWENT BM TDB			
S115	20	tire with sensor with (outside) same size	UUS-PGPUB;USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM_TDB,$~$	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S116	3	"447841".apn. and ("18" "20")	US-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; MERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S117	3	"447841".apn.	USS-PGPUB; USPAT; USOCR; IPRRS; EPD; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S118	3	"447841".apn.	USS-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; ; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S119	1	S114 and ("18" "20")	US-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; IERWENT;	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S120	3	tire adj size with sensor with (outside)	US-PGPUB; USPAT; USOCR; FPRS; \|EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S121	6	tire adj size same sensor with (outside inside)	USGPGPUB; USPAT; USOCR; FPRS; EPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S123	331	tire with sensor with (outside) with (pressure temperature)	USSPGPUB; USPAT; USOCR; FPRS; EPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 54 \end{aligned}$
S124	\% 86	SS123 and @rlad < "20080604"	US-PGPUB;	OR	OFF	2011/10/22

			$\begin{aligned} & \text { :USPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; } \\ & \text { LIBM_TDB; } \end{aligned}$			18:55
S125	8488	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . C C L S . \end{aligned}$	\|US-PGPUB; : USPAT; USSCR; IPRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S126	347	tire with sensor with (outside) with (pressure temperature)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { BPERWENT; } \\ & \text { BMM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S127	3272	edge adj detect\$4 with counter	$\begin{aligned} & \hline \text { US-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MPRCR; } \\ & \text { GPO; JPO; } \\ & \text { BERWENT; } \\ & \hline \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S128	$\sqrt{39}$	340/573.1 and return adj signal with Idistance	\|US-PGPUB; : USPAT; !USOCR; IPRRS; :EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S129	23	S128 and @rlad < "20060718"	US-PGPUB: USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S130		("7987070").PN.	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 00 \end{aligned}$
S131	1	"247950".apn. and idle	$\begin{aligned} & \text { USPGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 32 \end{aligned}$
S132	208	(axis axes) with (idl\$4 sleep\$4) with accelerat\$4	$\begin{aligned} & \text { MSTPGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S133		S132 and @rlad < "20081008"	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { USPGUUB; } \\ \text { USPAT; } \\ \text { USOCR; } \end{array}\right. \\ & \hline \text { PPRS } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$

S134	9346	accelerometer with motion	$\begin{aligned} & \text { US-PGPUB; } \\ & \sqrt{\text { USPAT; }} \\ & \text { USOCR; } \\ & \text { FPRS } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$
S135	2	("20060161377").PN.	$\begin{aligned} & \text { US-PGPUB } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$1 \begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$

[^2]

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	89	(axis axes) with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	1
L2	19	L1 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 17: 36 \end{aligned}$
L3	19	L1 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 17: 36 \end{aligned}$
S2			$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$1010 / 05 / 03$
S3	7	S2 and remote\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2010/05/03
S4		S3 and distance\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2010/05/03
55		"20040095252".pn. and distance\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & \hline 09: 50 \end{aligned}$
58	0	"20030222775".pn. and distance\$1	US-PGPUB;		OFF	2010/05/03

			$\begin{aligned} & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \end{aligned}$			10:14
59	$]^{2}$	"20030098792".pn.		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 16 \end{aligned}$
S10	0	"20030098792".pn. and temperature	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { USPAT; } \\ & \text { MSOCR; } \\ & \text { PPRS; JPO; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S11	0	"20030098792".pn. and temperature\$1	पUS-PGPUB; USAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S12	1	"20030098792".pn. and motion	पUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DRENENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 43 \end{aligned}$
S13	2	S2 and distance\$1		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 46 \end{aligned}$
S14	! 1	baby adj seat and distance same counter	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { EPRS; JPO; } \\ \text { EPERWENT; } \\ \text { IBM TDB } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 13 \end{aligned}$
S15	19	baby adj seat and predetermined adj distance	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 17 \end{aligned}$
S16	2	"20030122662".pn. and range	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { UPOCR; } \\ & \text { FPRS; JPO; } \\ & \text { MERWENT; } \end{aligned}$	\%	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 20 \end{aligned}$

			IBM TDB			
S17	167	car adj seat and predetermined adj distance	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	1
S18	167	car adj seat and predetermined adj distance	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT IBM TDB	OR	OFF	$1 \begin{aligned} & 2010 / 05 / 03 \\ & 11: 23 \end{aligned}$
S19	133	car adj seat and distance with signal\$1	US-PGPUB USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	120
520	14	car adj seat and predetermined adj distance with signal\$1	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	$\frac{2010 / 05 / 03}{11: 24}$
S21	0	"7797212".pn. and counter	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 26 \end{aligned}$
S22	12	car adj seat and distance with signal\$1 adj strength\$1	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 27 \end{aligned}$
523	0	"1318".apn. and automatic\$4	USPGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\left\lvert\, \begin{gathered} 2010 / 05 / 13 \\ 20: 05 \end{gathered}\right.$
S24	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\left\lvert\, \begin{aligned} & 2010 / 05 / 13 \\ & 20: 05 \end{aligned}\right.$
S25	${ }^{3}$	"131848".apn.	$\begin{aligned} & \begin{array}{l} \text { USSPGPUB; } \\ \text { USPAT; } \\ \text { USPCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	2

			IEPO; JPO; DERWENT; IBM TDB			
S26	1	"131848".apn. and automatic\$4	US-PGPUB; USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|c} 2010 / 05 / 13 \\ 20: 06 \end{array}$
S27	12	lojack.as. and automatic\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|l} 2010 / 05 / 13 \\ 20: 12 \end{array}$
528	${ }^{2}$	"7561102".pn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	20
S29	2	"7536169".pn.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
530	3940	counter with time with distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
531	245	counter with measur\$4 near5 (time with distance)	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
532	25	S31 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 54 \end{aligned}$
533	11598	"327"/\$.ccls. and rectifier	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
534	616	"327"/\$.ccls. and rectifier.ti.	US-PGPUB; USPAT;	OR	OFF	$\mid 2011 / 01 / 11$

			UUSOCR; FPRS; EPO; JPO; DERWENT; IIBM TDB			
535	36	340/573.1 and return adj signal with distance	$\begin{aligned} & \text { USSPGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PRRS; JPO; } \\ & \text { DERWENT; } \end{aligned}$ IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 49 \end{aligned}$
S36	21	S35 and @rlad < "20060718"	UUS-PGPUB; USAT; USOCR; IPRS; EPOP JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 50 \end{aligned}$
537	2	"20030034887".pn. and return adj signal	UUS-PGPUB; USPAT; USOCR; IPRS; JPO; EPORWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 53 \end{aligned}$
538	2	"20030034887".pn.	USS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 201 / 04 / 26 \\ & 18: 12 \end{aligned}$
539	2	"20030034887".pn. and return adj signal	US-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
S40	1	"20030034887".pn. and "10"	UUS-PGPUB; USPAT; USOCR; IPRS; JPO; EPERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 18 \end{aligned}$
541	2	"20030034887".pn. and timer	US-PGPUB; USPAT; USOCR; IPRS; EPD JPO; DERM TDN;	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 38 \end{aligned}$
S42	0	"20030098792".pn. and "72"	US-PGPUB; USPAT; USCRT; FPRS; JPO; EPORWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$

543	1	"20030098792".pn. and "27"	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB;: } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; } \\ \text { EPO; JPO; ; } \\ \text { DREWENT; } \\ \text { IBM TDB } \end{array} \text { : } \end{aligned}$		OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
S44	0	"779712".apn. and low adj power			OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S45	0	"779712".apn. and motion adj detector		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S46	0	"779712".apn. and motion	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S47	3	"779712".apn.	UUS-PGPUB; UUSAT; UUSOCR; IPRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
548	2	"6922147".pn. and temperature	UUS-PGPUB; :USPAT; "USOCR; IPRS; IEPO; JPO; IDERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 06 \end{aligned}$
S49	6	(("20030098792") or ("20030034887") or	UUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
S50		S49 and (conserv\$4 sav\$4 power reduc\$4)	UUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DDERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
S51		S49 and (conserv\$6 sav\$4 power reduc\$4)	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPO; } \\ & \text { EPO } \end{aligned}$		OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$

			DERWENT; IBM TDB			
552	[2	S49 and motion	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 20: 56 \end{aligned}$
553	0	Imtion adj detector with sleep	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 05 \end{aligned}$
554	52	Imotion adj detector with sleep adj mode	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 05 \end{aligned}$
55	10	S54 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 06 \end{aligned}$
556	$\sqrt{9857}$	(340/457,573.1,686.1,539.1,522,667).CCLS.	US-PGPUB; USPAT; USOCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
557	5	S56 and S54	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$
558	638	signal adj edge adj detector	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
559	10	signal adj edge adj detector same reduce adj error	US-GPQUB; USPAT; USOCR; IPRS; EPD; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
560	33	Signal adj edge adj detector same error	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\frac{2011 / 04 / 26}{31: 19}$

			IIPPRS; EPO; JPO; DERWENT; BM_TDB			
561	10	signal adj edge adj detector with error	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM_TDB	OR	OFF	$2011 / 04 / 26$
562	3	signal adj edge adj detector with error with count\$4	$\begin{aligned} & \begin{array}{l} \text { USS-PGPUB; } \\ \text { USPAT; } \\ \text { MSOCR; } \\ \text { MPRS; JP; } \\ \text { BERWENT; } \\ \text { IBM TDB } \end{array} \end{aligned}$	OR	OFF	$2011 / 04 / 26$
563]	signal adj edge adj detector with error with count\$4	\|US-PGPUB; USPAT; USOCR; IPRRS; JPO; IPERWENT; IIBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 22 \end{aligned}$
564	10	signal adj edge adj detector with error		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
565	34	signal adj edge adj detector and measur\$4 adj time	\|US-PGPUB; : USPAT; USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
566	5	signal adj edge adj detector same measur\$4 adj time	\|US-PGPUB; USPAT; USOCR; UPRS; UPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
568	86	edge adj detect\$4 with counter with !error\$1	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 24 \end{aligned}$
569	23	S68 and @rlad < "20060718"	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\sqrt{2011 / 04 / 26}$
S70	\$45	ledge adj detect\$4 with reduc\$4 near3	UUS-PGPUB,	OR	OFF	2011/04/26

		3error $\$ 1$				21:26
S71	3	S70 and @rlad < "20060718"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\sqrt{2011 / 04 / 26}$
S72	, 1	"247950".apn. and dominant adj axis	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\int_{2}^{2011 / 04 / 26}$
573	18	$\begin{aligned} & ((" 20060161377 ") \text { or ("200702597") or } \\ & (" 20070150136 \text { ") or ("6353449") or } \\ & \text { ("6771250")).PN. } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 40 \end{aligned}$
S74	3	("200700259716").PN.		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
S75	\%	("20070259716").PN.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 11: 57 \end{aligned}$
S76	\%	$\begin{aligned} & (" 20070259716 ") \text { or ("6353449") or } \\ & (" 20070150136 \text { ") or ("6771250")).PN. } \end{aligned}$	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 17: 37 \end{aligned}$
S77	,	"247950".apn. and (long adj average\$1 with idle)		OR	OFF	2011/04/27
S78	,	"247950".apn. and (long adj average\$1 with set\$4)	$\begin{aligned} & \text { US-PGPUB;\|: } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \end{aligned}$	OR	OFF	$\sqrt{2011 / 04 / 27}$

			IBM TDB			
579	1	"247950".apn. and (long adj average\$1 with idle adj sample)	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$23: 14$
580	1	"247950".apn. and (long adj average\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
581	3524	long adj average	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{array}{\|c\|} 2011 / 04 / 27 \\ 23: 18 \end{array}$
582	3524	"Iong average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
883	10	("20060161377") or ("20070259716") or $($ ("6353449") or ("20070150136") or $(" 6771250$ ")).PN.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$
S84	2	S83 and record\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2011 / 04 / 27}{23: 26}$
585	1	"247950".apn. and dominant	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
586	1	247950".apn. and idle	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
587	${ }^{1}$	247950".apn. and new adj dominant	$\begin{aligned} & \begin{array}{l} \boxed{U S S P G P B ;} ; \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRR; } \end{array} \end{aligned}$	OR	OFF	$\begin{array}{\|l} 2011 / 04 / 27 \\ 23: 43 \end{array}$

			IEPO; JPO; DERWENT; IBM TDB			
588	1	"20060161377".pn. and reterence	USS-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 47 \end{aligned}$
589	0	"20070259716".pn. and (idle sleep)	USS-PGPUB; USPAT; USPACR; UPRS; IEPO; JPO; MERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 54 \end{aligned}$
590		"20070259716".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 57 \end{aligned}$
591	1	"247950".apn. and idle with comput\$4	[US-PGPUB; USPAT; USOCR; IPPRS; IPDO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
592	1	"247950".apn. and idle		OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
593	0	"20070259716".pn. and ("0053" "0155"	USS-PGPUB; USPAT; USOCR; IPRRS; MPO; JPO; MERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
594	2	"20070259716".pn.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPR; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
595	2	"6353449".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 00 \end{aligned}$
596		"20070150136".pn.	:US-PGPUB;	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 03 \end{aligned}$

			UUSOCR; IFPRS; EPO; JPO; DERWENT; IBM TDB			
597	7354	((340/669) or (702/141) or ($345 / 325,156$)).CCLS.	UUS-PGPUB; USPAT; USOCR; FPRS; : EPO; JPO; :DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
598	3525	long adj average	\|US-PGPUB; USPAT; ISOCR; IPRRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
599	3	597 and S98	\|US-PGPUB; USPAT; ISOCR; IPRRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S100	8	$\begin{aligned} & \text { ("20070259716") or ("6353449") or } \\ & \hline \text { ("20070150136") or ("6771250")).PN. } \end{aligned}$		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S101	1	S97 and S100		OR	OFF	120
S102	3668	"long average"		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S103	28	$\sqrt{(" 5793291 "\|" 5949340 "\| " 5966070 " \mid} \mid$		OR	OFF	$\sqrt{2011 / 10 / 14}$
S104	38	340/573.1 and return adj signal with distance	\|US-PGPUB; USPAT; USOCR; IPRS; IEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$

S105	10	$\begin{aligned} & ((20060161377 \text { ") or ("20070259716") or } \\ & \hline(6353449 ") \text { or ("20070150136") or } \\ & \hline(" 6771250 \text { ")).PN. } \end{aligned}$	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB		OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S106	${ }^{2}$	S105 and record\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S107	7852	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$	$\begin{aligned} & \text { USS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; ; JPO; } \\ & \text { EPDR } \\ & \text { IBMENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	1
S108	$\sqrt{3668}$	long adj average	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRRS; } \\ \text { IPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM TDB } \end{array}=1 \end{aligned}$	OR	OFF	2011/10/14
S109	8	$\begin{aligned} & \text { ("20070259716") or ("6353449") or } \\ & \hline(20070150136 \text { ") or }(" 6771250 \text { " }) \text {).PN. } \end{aligned}$	USS-PGPUB; USPAT; UUSCR; IPRRS; IEPO; JPO; IDRWENT; IBM TDB,	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S110	6	$\begin{aligned} & \text { /("20030098792") or ("20030034887") or } \\ & \hline(6922147 ")) . P N . \end{aligned}$	US-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S111	3	S110 and (conserv\$6 sav\$4 power reduc\$4)		OR	OFF	2011/10/14
S112	23	S104 and @rlad < "20060718"	UUSPGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
5113		tire with inches with sensor with (outside)	$\begin{aligned} & \text { US-PGPBB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \end{aligned}$		OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$

			MDERWENT; IBM TDB			
S114]	tire with sensor with (outside) same inches		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S115	20	tire with sensor with (outside) same size	\|US-PGPUB; : USPAT; !USOCR; IPRRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S116	3	"447841".apn. and ("18" "20")		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S117	3	"447841".apn.	\| US-PGPUB; UUSAT; !USOCR; "PRRS; :EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S118	3	"447841".apn.	USS-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; MDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S119	1	S114 and ("18" "20")	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S120	3	tire adj size with sensor with (outside)	\|US-PGPUB; USPAT; USOCR; :PRRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S121	6	tire adj size same sensor with (outside inside)	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S123		tire with sensor with (outside) with (pressure temperature)	$\begin{aligned} & \begin{array}{l} \text { USPGPB; } \\ \text { USPAT; } \\ \text { USOCR; } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 54 \end{aligned}$

			IIPPRS; EPO; JPO; DERWENT; BM_TDB			
S124	86	S123 and @rlad < "20080604"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; BM_TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 55 \end{aligned}$
S125	8488	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$		OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S126	347	tire with sensor with (outside) with (pressure temperature)	\|US-PGPUB; USPAT; USOCR; IPRRS; UPD; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S127	3272	edge adj detect\$4 with counter		OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S128	39	340/573.1 and return adj signal with distance	$\begin{array}{\|l\|} \hline \text { USPGPPUB; } \\ \text { USPAT; } \\ \text { UPRS; ; } \\ \text { EPO; JPO; } \\ \text { IERWENT; } \\ \hline \text { BM TDB } \end{array}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S129	23	S128 and @rlad < "20060718"	\|US-PGPUB; : USAT; !USOCR; IPRRS; IEDO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S130	2	("7987070").PN.	$\begin{aligned} & \text { USGPGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPD; } \\ & \text { IPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 00 \end{aligned}$
S131	1	"247950".apn. and idle	$\begin{aligned} & \begin{array}{l} \text { USPGPB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { IPRS } \end{array} \\ & \hline \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 32 \end{aligned}$
S132	1208	(axis axes) with (idl\$4 sleep\$4) with accelerat\$4	$\begin{aligned} & \text { US-PGPBB; } \\ & \text { USPAT; } \\ & \text { UPOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$

5133		S132 and @rlad < "20081008"	$\begin{aligned} & \text { \|US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCRS; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S134	9346	accelerometer with motion	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \hline \text { PRSS } \end{aligned}$	OR	OFF	$19: 41$
S135		("20060161377").PN.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$12012 / 05 / 19$
S136		(axis axes) with idle with wak\$4 adj up	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$15: 40$
$S 137$		(axis axes) with wak\$4 adj up	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2012/06/16
S138	15	S137 and @rlad < "20081008"	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	1
S139		(three) adj axes with wak\$4 adj up	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2012 / 06 / 16}{15: 44}$
S140		(three) adj axes with idle	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2012 / 06 / 16 \\ & 15: 44 \end{aligned}$
$\mathrm{S} 141$		"247950".apn. and gravity	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	1
$S 142$		"247950".apn. and idle	$\begin{aligned} & \text { US-PGUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \end{aligned}$	OR	OFF	$12012 / 06 / 16$

			IEPO; JPO; DERWENT; IBM TDB						
S143	1	"247950".apn. and wak\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 00 \end{aligned}$			
S144	10685	(340/457,573.1,686.1,539.1,522,667).CCLS.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$			
S145	3855	long adj average	\|US-PGPUB;	USAT; MSOCR; IPRRS;	EPO; JPO; ; IERWENT; IBM TDB	OR	OFF	2012/06/16	
S146	88	edge adj detect\$4 with counter with error\$1	\|US-PGPUB;	USPAT;	UPOCR; FPRS;	EPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S147	11201	(340/457,573.1,686.1,539.1,522,667).CCLS.	\|US-PGPUB; :USPAT; USOCR; IPRS; IEPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 16: 13 \end{aligned}$			
S148	91	edge adj detect\$4 with counter with error\$1		OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 16: 13 \end{aligned}$			
S149	4082	long adj average		OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 16: 13 \end{aligned}$			

2/21/2013 5:41:31 PM

C:\Users\slu\Documents\ EAST Workspaces 12247950.wsp

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	Philippe Kahn, et al	Examiner:	Lu, Shirley
Appl. No.	12/247,950	Art Unit:	2681
Filed	October 8, 2008	Conf No:	8961
For	Method and System for Waking Up a Device Due to Motion	CERTIFICATE OF TRANSMISSION I hereby certify that this correspondence is being submitted electronically via EFS Web on the date shown below.	
Customer No.	08791	$\frac{\text { Judith Szepesi/ }}{\text { Judith A. Szepesi }}$	$\frac{\text { May } 28,2013}{\text { Date }}$

E-Filed via EFS Web

Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

AMENDMENT

Sir:

In response to the Office Action of February 26, 2013, applicants respectfully request the Examiner to enter the following amendments and consider the following remarks:

Amendments to the Claims are reflected in the listing of claims, which begins on page 2 of this paper.

Remarks/Arguments begin on page 6 of this paper.

Amendments to the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) A method comprising:
receiving motion data from a motion sensor in a device, the motion sensor sensing motion along three axes;
determining an idle sample value for a dominant axis of the device, the dominant axis defined as the axis with a largest effect from gravity among the three axes;
registering a motion of the device based on the motion data from the motion sensor; and
waking up the device when the motion of the device indicates a change in the dominant axis of the device, the dominant axis being indicating a change in the axis with the largest effect from gravity among the three axes.
2. (Previously Presented) The method of claim 1, wherein determining the idle sample value for the dominant axis comprises:
processing the motion data to establish an idle sample value; and
processing the idle sample value to establish the dominant axis.
3. (Previously Presented) The method of claim 1, wherein the motion sensor comprises an accelerometer.
4. (Previously Presented) The method of claim 2, wherein the idle sample value comprises an average of accelerations over a sample period along the dominant axis recorded when the device goes to idle mode after a period of inactivity.
5. (Previously Presented) The method of claim 2, further comprising determining the idle sample value for each of the other axes of the device.
6. (Previously Presented) The method of claim 1, wherein registering the motion of the device comprises:
processing the motion data to determine a current sample value along the dominant axis of the device.
7. (Previously Presented) The method of claim 2, further comprising comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value.
8. (Original) The method of claim 1, wherein the change in the dominant axis comprises a change in acceleration along the dominant axis.
9. (Original) The method of claim 1, wherein waking up the device further comprises configuring the device to return to a last active device state.
10. (Previously Presented) The method of claim 6, wherein the current sample value of the dominant axis of the device is an average of accelerations over a sample period.
11. (Original) The method of claim 6, further comprising determining the current sample value for each of the other axes of the device.

12. (Canceled)

13. (Previously Presented) The method of claim 6, wherein processing the motion data further comprises:
verifying whether the motion data includes one or more glitches; and
removing the one or more glitches in the motion data from the motion data before calculating the average.
14. (Original) The method of claim 6, further comprising determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value.
15. (Original) The method of claim 8, further comprising:
determining a new dominant axis based on the motion data received from the motion sensor;
computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis determined when the device goes to idle mode after a period of inactivity; and
comparing the difference against a threshold value to establish whether to wake the device up.

Claims 16-24. (Canceled)
25. (Previously Presented) A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes;
a motion sensor to register a motion of the mobile device; and
a power logic to activate the device when the motion indicates a change in the dominant axis of the device.
26. (Currently Amended) The mobile device of claim 25, further comprising:
a long average logic to calculate an create one or more average[s] of accelerations over a sample period as measured by the motion sensor.

27. (Canceled)

28. (Previously Presented) The mobile device of claim 26, further comprising:
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device.
29. (Currently Amended) The mobile device of claim 26, further comprising a glitch corrector logic to correct one or more glitches in the motion data before the one or more long averages are calculated.
30. (Previously Presented) The mobile device of claim 25, wherein the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes.
31. (Previously Presented) The mobile device of claim 25, further comprising a device state logic to restore the device to a last active state.
32. (Previously Presented) The mobile device of claim 31, wherein the device state logic allows user interaction to customize applications to be displayed when the device is woken up.
33. (Previously Presented) A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes;
a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and
a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity.
34. (Currently Amended) The system of claim 33, further comprising:
a long average logic to calculate create an average of accelerations over a sample period, for accelerations along the dominant axis; and
a computation logic to determine if the average of accelerations indicates the change in the dominant axis of the device.
35. (Previously Presented) The system of claim 33, further comprising:
a device state logic to restore the device to one of: a last active state, a preset customized state.

Remarks/Arguments

Applicants respectfully request consideration of the subject application as amended herein. This Amendment is submitted in response to the Office Action mailed February 26, 2013. Claims 1-11, 13-15, 25, 26, and 28-35 are rejected. In this Amendment, claims 1, 26, 29, and 34 have been amended. No claims have been canceled or added. Applicants reserve all rights with respect to the applicability of the Doctrine of Equivalents.

Examiner Interview

Applicants wish to thank the Examiner for her time in discussing the rejections. The Examiner suggested that if the term long average logic were defined identically to the language used in the Specification, the rejection under 35 USC 112, second paragraph, could be overcome. Applicants have amended the claims accordingly. The Examiner also noted that definitions from the Specification are not read into the claims, and thus suggested that Applicants should add definitions into the claim language, to overcome the references. No specific agreements on allowability were reached. If the Examiner has any specific suggestions on how the Applicants can clarify the scope of the claims and move this case to allowance, the Examiner is invited to call Judith Szepesi, at 408-720-8300.

Claim Rejections under 35 U.S.C. §112, second paragraph

Claims 26, 29, and 34 stand rejected under 35 U.S.C. §112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Applicants have amended claims 26 and 34 to specifically reference the element definition from the Specification, in particular the Specification at paragraph 20 states that "The long average logic 240 calculates an average of the acceleration data over the sample period." Claims 26 and 34 have been amended accordingly, to further clarify that long average logic is an element name, as defined in the Specification, and not a relative term.

Claim 29 has been amended to remove the term "long."

Accordingly, Applicants respectfully request the withdrawal of the rejection under 35 U.S.C. §112, second paragraph.

Claim Rejections under 35 U.S.C. §103(a)

Claims 1-8, 10-11, 14-15, 25-26, 28-30, and 33-34 stand rejected under 35
U.S.C. §103(a) as being unpatentable over U.S. Patent Publication No. 2006/0161377 to Rakkola, et al (hereinafter "Rakkola") in view of U.S. Publication No. 2007/0259716 to Mattice, et al (hereinafter "Mattice").

Rakkola discusses an energy-efficient acceleration measurement system. Rakkola's system includes an accelerometer, responsive to acceleration of the system, for providing an accelerometer output signal having a magnitude indicative of at least one component of the acceleration. A motion detector is responsive to the accelerometer output signal, and provides a processor interrupt signal, but only if the magnitude of acceleration reaches a threshold.

Rakkola notes that in the system described there is "no need to consider offsets on different channels when setting threshold levels, and threshold levels can also be set independently from device orientation and from the vector of gravitational force." (Rakkola, paragraph 19). Thus it is an important aspect of Rakkola that the threshold levels are independent of the vector of gravitational force, and further that reference levels are calculated for each axis.

Mattice discusses control of wager-based game using gesture recognition. Mattice notes that a tilt of a device may be detected by a change in gravitational acceleration, but does not teach or suggest utilizing gravity in determining whether to wake up a device. Although Mattice utilizes the term "dominant axis" Mattice references the "dominant axis of motion" which is the axis along which the user's motion is largest, and which is therefore augmented in analysis. (Mattice, paragraph 156).

Firstly, the combination of Rakkola and Mattice is inappropriate, because Rakkola specifically teaches away from utilizing gravitational force, adding the use of gravitational force from Mattice to the Rakkola reference is not appropriate.

The Examiner suggests that the motivation would be to suit the needs based on the characteristics of the system. However, this is incorrect. The system of Rakkola relies on the data from all three axes. Removing this aspect, which is called out by

Rakkola as being the advantage of the system would substantially alter the system. There is no motivation, either within the prior art cited or the knowledge in the art cited to make this modification to Rakkola, and thus render it less useful than as originally designed. Furthermore, the present invention is not an other advantage following naturally from the suggestion of the prior art, but is rather a substantial change to the prior art, which the prior art teaches away from. The MPEP 2143.01 notes that "the proposed modification §cannot render the prior art unsatisfactory for its intended purpose or change the principle of operation of a reference." Applicants respectfully submit that the suggested alteration of selecting a particular axis, and calculating averages only for that axis would substantially change the principle of operation of Rakkola. Therefore, Applicants respectfully submit that the Examiner's suggested combination is incorrect.

Furthermore, even if the combination were considered, the references in combination do not render the claims of the present invention obvious. The Examiner appears to suggest that a modification is based on other factors or criteria as desired by the user. Applicants respectfully submit that there is no such suggestion either in the prior art, or in knowledge in the art stated by the Examiner. Therefore, Applicants rely on the text of the references, and logical teaching and suggestion from those references. If the Examiner is asserting an alleged knowledge in the art, for relying a change in an identified dominant axis, for waking a device, Applicants respectfully request a source for this feature.

Claim 1 recites in part ""waking up the device when the motion of the device indicates a change in the dominant axis of the device, the dominant axis being the axis with the largest effect from gravity among the three axes." Applicants respectfully submit that the combination of Rakkola and Mattice does not teach or suggest this feature.

Rakkola does not utilize a dominant axis calculation at all, and therefore cannot utilize the change in the dominant axis for any action. Mattice discusses the use of a "dominant axis" but utilizes that term to refer to the "dominant axis of motion" along which the user's motion occurs. Mattice also does not teach or suggest utilizing a change in the dominant axis to wake the device, where the dominant axis is defined as the axis with the largest effect from gravity among the three axes. Therefore, since
neither reference teaches or suggests utilizing the dominant axis, experiencing the largest effect from gravity, to wake the device, the combination of references cannot teach or suggest this limitation. Therefore, claim 1, as amended, and the claims that depend on it, are not obvious over the combination of references.

Claim 25 recites:
A mobile device comprising:
a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes;
a motion sensor to register a motion of the mobile device; and a power logic to activate the device when the motion indicates a change in the dominant axis of the device.

As noted above, Rakkola does not identify a dominant axis, defined as the axis with the largest effect from gravity among the three axes. Mattice does not identify such an axis either, as it uses the term "dominant axis" to mean the axis experiencing the largest user motion. Therefore, the combination of references does not teach or suggest a power logic to activate the device when the motion indicates a change in the dominant axis of the device. Therefore, claim 25, and the claims that depend on it, are not obvious over the combination of Rakkola and Mattice.

Claim 33 recites:
A system to wake up a mobile device comprising:
a motion sensor to detect motion along three axes;
a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and
a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity.

As noted above, neither Rakkola nor Mattice use an axis experiencing the largest effect of gravity, in making any decisions. Rather, Rakkola uses data from all axes, and Mattice uses the axis experiencing the largest user movement. Therefore, neither Rakkola nor Mattice, alone or in combination teach or suggest a power logic to move the device from an inactive state to the active state upon detection of a change in the axis experiencing the largest effect of gravity. Therefore, claim 33 and the claims that depend on it are not obvious over Rakkola and Mattice.

Claims 9, 31, and 35 stand rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of U.S. Patent No. 6,353,449 to Gregg, et al (hereinafter "Gregg").

Gregg discusses various screen savers for computing devices. Gregg does not discuss utilizing an axis experiencing a greatest gravitational effect, or movements at all. Therefore, Gregg cannot remedy the shortcomings of Rakkola and Mattice discussed above. Therefore, for at least the same reasons advanced above with respect to their respective parent claims, claims 9, 31, and 35 are not obvious over Rakkola in view of Mattice, in view of Gregg.

Claim 13 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of U.S. Publication No. 2007/0150136 to Doll, et al (hereinafter "Doll").

Doll discusses a sensor self-test system for a motion sensor. However, Doll does not discuss waking up a device, much less waking up a device based on a change in a dominant axis. Therefore, Doll cannot remedy the shortcomings of Rakkola and Mattice discussed above.

Furthermore, the Examiner suggests that the self-test system of Doll teaches verifying whether the motion data includes identifying glitches and removing the glitches in the motion data before calculating the average. Applicants respectfully disagree. Doll's system is designed to verify proper operation of a motion sensor by injecting a test signal, and measuring the output of the sensor. Doll then sends an error message, if a fault is detected. (Doll, paragraph 7). However, firstly, the measurement of a test signal is not equivalent to a glitch. A glitch is an erroneous measurement in data, which does not reflect actual movement. Furthermore, there is no suggestion in Doll to remove erroneous data. Because Doll measures a test signal, there is no purpose in Doll in removing the one or more glitches in the motion data.

Claim 13 recites:
The method of claim 6 , wherein processing the motion data further comprises:
verifying whether the motion data includes one or more glitches; and removing the one or more glitches in the motion data from the motion data before calculating the average.

There is no teaching or suggestion in Rakkola, Mattice, or Doll to determine whether the motion data includes one or more glitches, and to remove those glitches prior to calculating the average. Therefore, claim 13 is not obvious over the combination of Rakkola, Mattice, and Doll. Furthermore, Applicants respectfully submit that claim 13 is not obvious over the combination of Rakkola, Mattice, and Doll for at least the same reasons as advanced above with respect to claim 1.

Claim 32 stands rejected under 35 U.S.C. §103(a) as being unpatentable over Rakkola in view of Mattice in view of Gregg in view of U.S. Patent No. $6,771,250$ to Oh.

Oh discusses an application program launcher, which may be used to launch applications from low power mode. While Oh discusses waking up a device, Oh does not discuss utilizing any motion data, much less using a change in the dominant axis. Therefore, Oh cannot remedy the shortcomings of Rakkola, Mattice, and Gregg discussed above.

Furthermore, the Examiner suggests that Oh discusses a device state logic enabling the user to customize applications to be displayed when the device is woken up. Applicants respectfully disagree. Oh discusses a launcher, that enables using the launcher, a user can select one of application programs registered in a menu list of a launcher program, and immediately execute it. (Oh, column 3, lines 21-25). However, Oh teaches away from customizing a launch screen by noting that "When hand-held computer 10 is in a power-off state or a sleep mode, the microcomputer wakes up handheld computer 10 to display menu list 100 only when the launching signal is inputted from launcher switch 40. ." (Oh, column 4, line 57-60). There is no suggestion in Oh to allow user interaction to customize applications to be displayed when the device is woken up.

Claim 32 recites in part "the device state logic allows user interaction to customize applications to be displayed when the device is woken up."

Applicants respectfully submit that there is no teaching in Rakkola, Mattice, Gregg, or Oh, alone or in combination of a device state logic that allows user interaction to customize applications to be displayed when the device is woken up. Therefore, claim 32 is not obvious over the references.

Furthermore, claim 32 is not obvious over the combination of Rakkola, Mattice, Gregg, and Oh for at least the same reasons advanced above with respect to claim 25.

Conclusion

Applicant respectfully submits that in view of the amendments and discussion set forth herein, the applicable rejections have been overcome. Accordingly, the present and amended claims should be found to be in condition for allowance.

If a telephone interview would expedite the prosecution of this application, the Examiner is invited to contact Judith A. Szepesi at (408) 720-8300.

If there are any additional charges/credits, please charge/credit our deposit account no. 02-2666.

Respectfully submitted,
BLAKELY, SOKOLOFF, TAYLOR \& ZAFMAN LLP

Dated: May 28, 2013
/Judith Szepesi/
Judith A. Szepesi
Reg. No. 39,393
Customer No. 08791
1279 Oakmead Parkway Sunnyvale, CA 94085
(408) 720-8300

Electronic Acknowledgement Receipt	
EFS ID:	15888912
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	8791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	29-MAY-2013
Filing Date:	08-OCT-2008
Time Stamp:	01:28:24
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted wid	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	$\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$	Pages (if appl.)
1		$\underset{\text { pdf }}{\text { 8689P057_AmResp_May2013. }}$	${ }^{119586}$	yes	12

	Multipart Description/PDF files in .zip description		
	Document Description	Start	End
	Amendment/Req. Reconsideration-After Non-Final Reject	1	1
	Claims	2	5
	Applicant Arguments/Remarks Made in an Amendment	6	12
Warnings:			
Information:			
Total Files Size (in bytes):		119586	
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.			
New Applications Under 35 U.S.C. 111			
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.			
National Stage of an International Application under 35 U.S.C. 371			
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.			
New International Application Filed with the USPTO as a Receiving Office			
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.			

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

United States Patent and Trademark Office

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. $12 / 247,950$	Applicant(s) KAHN ET AL	
	Examiner SHIRLEY LU	Art Unit 2681	AIA (First Inventor to File) Status No
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136 (a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).			
2a) \boxtimes This action is FINAL. 2b) \square This action is non-final. 3) \square An election was made by the applicant in response to a restriction requirement set forth during the interview on \qquad ; the restriction requirement and election have been incorporated into this action. 4) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.			
Disposition of Claims 5) \boxtimes Claim(s) 1-11,13-15,25-26 and 28 5a) Of the above claim(s) \qquad 6) Claim(s) \qquad is/are allowed. 7)区 Claim(s) \qquad 3-15,25,26 and 28 8) Claim(s) \qquad is/are objected to. 9) \square Claim(s) \qquad are subject to restrict * If any claims have been determined allowable, participating intellectual property office for the co	ding in the app n from consider cted. election require gible to benefit fro plication. For mor an inquiry to PPH	cution e see	way program at a
Application Papers 10) \square The specification is objected to by 11) The drawing(s) filed on \qquad is/a Applicant may not request that any Replacement drawing sheet(s) inclu	pted or b) \square \square rawing(s) be hel on is required if	Examin 37 CFR ected to	7 CFR 1.121(d).
Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim Certified copies: a) All b) \square Some * c) \square \square None $1 . \square$ Certified copies of the prion Certified copies of the prio $3 . \square$ Copies of the certified copi application from the Interna * See the attached detailed Office action Interim copies: a) \square All b) \square Some c) \square None	priority under 35 have been rec have been rec ity documents h (PCT Rule 17.2 he certified copie copies of the	-(d) or (f) on No . ed in this ts have	onal Stage
Attachment(s) 1) \square Notice of References Cited (PTO-892) 2) \square Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date \qquad .	3) 4)	(PTO-413) te. \qquad	

DETAILED ACTION

Response to Arguments

a. Applicant argues starting on page(s) 7, that the reference teaches away from utilizing gravitational force.

In response to applicant's argument that there is no teaching, suggestion, or motivation to combine the references, the examiner recognizes that obviousness may be established by combining or modifying the teachings of the prior art to produce the claimed invention where there is some teaching, suggestion, or motivation to do so found either in the references themselves or in the knowledge generally available to one of ordinary skill in the art. See In re Fine, 837 F.2d 1071, 5 USPQ2d 1596 (Fed. Cir. 1988), In re Jones, 958 F.2d 347, 21 USPQ2d 1941 (Fed. Cir. 1992), and KSR International Co. v. Teleflex, Inc., 550 U.S. 398, 82 USPQ2d 1385 (2007). In this case, the motivation would have been to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, collect data for each of the three axes, activate functions when specified conditions are detected, determine the axis with the greater amount of movement, adjust values according to other factors that should be taken into account, perform specific actions as a response to movement. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See In re Van Geuns, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). Please also see action below. In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See In re Keller, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); In re Merck \& Co., 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986). Please also see action below. In response to applicant's argument that the benefit of the function
would be different, and that it would substantially alter the functioning, the fact that applicant has recognized another advantage which would flow naturally from following the suggestion of the prior art cannot be the basis for patentability when the differences would otherwise be obvious. See Ex parte Obiaya, 227 USPQ 58, 60 (Bd. Pat. App. \& Inter. 1985).
b. Applicant argues starting on page(s) 10, that the prior art does not specifically disclose claim(s) 13.

In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., remove erroneous data) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See In re Van Geuns, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See In re Keller, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); In re Merck \& Co., 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986). Please also see action below.
c. Applicant argues starting on page(s) 11, that the prior art does not specifically disclose customizing a launch screen.

In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., customizing a launch screen) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See In re Van Geuns, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). Although the claims are
interpreted in light of the specification, limitations from the specification are not read into the claims. See In re Van Geuns, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). Please also see action below.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112 :
The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claim(s) 29 is/are rejected under 35 U.S.C. 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claim(s) 29 recite(s) the limitation "the one or more averages". There is insufficient antecedent basis for this limitation in the claim. Any dependent claims are rejected under similar reasons. Proper action is required.

Claim Rejections - 35 USC § 103
The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

1. Claim(s) 1-8, 10-11, 14-15, 25-26, 28-30, 33-34 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716).

As to claim(s) 1, Rakkola disclose(s):
A method comprising: receiving motion data from a motion sensor in a device, the motion sensor sensing motion along three axes; registering a motion of the device based on the motion data
from the motion sensor; and waking up the device when the motion of the device indicates a change in the dominant axis of the device ([0015-44]).

The above art/combination does not expressly disclose determining an idle sample value for a dominant axis of the device, the dominant axis defined as the axis with a largest effect from gravity among the three axes; the dominant axis being the axis with the largest effect from gravity among the three axes.

Rakkola disclose(s): calculating reference levels for each of the three axes; programming threshold levels for each axis independently; collecting data for each of the three axes; idle states; wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value; processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors; if motion detector receives significant data from accelerometer, activates an interrupt; movement detected, woken up, perform specific actions as a response to movement ([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, collect data for each of the three axes, activate functions when specified conditions are detected,

Rakkola disclose(s):
wherein determining the idle sample value for the dominant axis comprises: processing the motion data; and processing the idle sample value ([0015-44]).

Rakkola disclose(s): processing data to establish an idle sample value; observing the degree of activity by counting the number of times a threshold is exceeded, as measured using an accelerometer, in combination with the low power motion detector; adjusting the idle sample value to offset temperature, air pressure, humidity, and other factors([0015-44]).

Mattice discloses processing the idle sample value to establish the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54] see also claim(s) 1 and above claims).

As to claim(s) 3, Rakkola disclose(s):
the motion sensor comprises an accelerometer ([0015-44]).
As to claim(s) 4,
Rakkola disclose(s):
the idle sample value comprises an average of accelerations over a sample period along the dominant axis; when the device goes to idle mode after a period of inactivity ([0015-44]).

The above art/combination does not expressly disclose recorded.
Mattice discloses recorded spatial signatures, spatial signatures may be tracked, recorded, and/or analyzed by one or more motion detector devices; recording motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when the device is inactive, to track, record, and/or analyze the data, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 5, Rakkola disclose(s):
determining the idle sample value for each of the other axes of the device ([0015-44]).
As to claim(s) 6, Rakkola disclose(s):
registering the motion of the device comprises: processing the motion data to determine a current sample value along the dominant axis of the device ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 7, Rakkola disclose(s):
comparing a difference between a current sample value along the dominant axis determined based on the motion of the device and the idle sample value of the dominant axis against a threshold value ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 8,
The above art/combination does not expressly disclose the change in the dominant axis comprises a change in acceleration along the dominant axis.

Mattice discloses the change in the dominant axis comprises a change in acceleration along the dominant axis (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to determine whether the device is rest, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 10, Rakkola disclose(s):
the current sample value of the dominant axis of the device is an average of accelerations over a sample period ([0015-44]; see also claim(s) 1 and above claims).

As to claim(s) 11, Rakkola disclose(s):
determining the current sample value for each of the other axes of the device ([0015-44]; see also claim(s) 1 and above claim(s)).

As to claim(s) 14, Rakkola disclose(s):
determining that the device is to be woken up based on the difference between the current sample value and the idle sample value being greater than a threshold value ([0015-44]; see also claim(s) 1 and above claim(s)).

As to claim(s) 15,

Rakkola disclose(s): computing a difference between the current sample value along the new dominant axis and an idle sample value along the new dominant axis; comparing the difference against a threshold value to establish whether to wake the device up ([0015-44]).

The above art/combination does not expressly disclose determining a new dominant axis based on the motion data received from the motion sensor; when the device goes to idle mode after a period of inactivity.

Rakkola disclose(s): updating values automatically and periodically, as a programmable parameter; computing when the device goes to idle mode after a period of inactivity ([0015-44]).

Mattice discloses determining a new dominant axis based on the motion data received from the motion sensor (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to continue collecting data when a device is inactive, to determine whether the device is at rest, and to update values automatically and/or periodically, as a programmable parameter, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

As to claim(s) 25,

Rakkola disclose(s): A mobile device comprising: a motion sensor to register a motion of the mobile device; and a power logic to activate the device when the motion indicates a change in the dominant axis of the device ([0015-44]; see also claim 2).

The above art/combination does not expressly disclose a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data, the dominant axis defined as an axis with a largest effect from gravity among three axes.

Mattice discloses a dominant axis logic to determine an idle sample value for a dominant axis of the mobile device based on motion data (fig. 2; [0053]; [0155-65]; [0210-54]; see also claim 2).
the dominant axis defined as an axis with a largest effect from gravity among three axes (see also claim(s) 1 and above claims).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account, and to determine the axis with the greater amount of movement (see also claims 1, 2).

As to claim(s) 26,
Rakkola disclose(s): a long average logic to calculate an average of accelerations over a sample period; acceleration data along each of the axes ([0015-44]).

Rakkola disclose(s): to compute the one or more long averages of accelerations; logic to set a period over which motion data is collected; the number of samples summed to compute the one or more averages of accelerations is a programmable setting ([0015-44]; see also claim(s) 1 and above claim(s)).

As to claim(s) 28, Rakkola disclose(s):
a computation logic to determine if the averages of accelerations indicate a change in the dominant axis of the device ([0015-44]; see also claim(s) 1, 25; above claim(s)).

As to claim(s) 29, Rakkola disclose(s):
a glitch corrector logic to correct one or more glitches in the motion data before the one or more averages are calculated ([0015-44]; see also claim 13; above claim(s)).

As to claim(s) 30, Rakkola disclose(s):
the motion sensor logic comprises an accelerometer to detect acceleration along one or more axes ([0015-44]; see also claim(s) 1 and above claim(s)).

As to claim(s) 33,
A system to wake up a mobile device comprising: a motion sensor to detect motion along three axes; a dominant axis logic to compare an effect of gravity on the three axes, and to determine an axis of the device experiencing a largest effect of gravity; and a power logic to move the device from an inactive state to an active state upon detection of a change in the axis experiencing the largest effect of gravity (see claim(s) 1, 25; above claim(s)).

As to claim(s) 34,
A long average logic to calculate an average of accelerations over a sample period, for accelerations along the dominant axis; and a computation logic to determine of the average of
accelerations indicates the change in the dominant axis of the device (see claim(s) 1, 26, 28; above claim(s)).
2. Claim(s) 9, 31, 35 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449). As to claim(s) 9, 31, 35,

The above art/combination does not expressly disclose waking up the device further comprises configuring the device to return to a last active device state.

Gregg discloses waking up the device further comprises configuring the device to return to a last active device state ($[1,23-30]$; see also claim(s) 1 and above claim(s)).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to utilize a means of viewing and executing applications that were being utilized when the user left the device, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

3. Claim(s) 13 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Doll (20070150136).

As to claim(s) 13,
Rakkola disclose(s): processing the motion data further comprises; and removing the one or more glitches in the motion data from the motion data before calculating the long average ([0015-44]).

The above art/combination does not expressly disclose verifying whether the motion data includes one or more glitches.

Doll discloses verifying whether the motion data includes one or more glitches ([0007]; see also claim(s) 1 and above claim(s)).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to ensure that the system utilizes and processes valid information and data, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

4. Claim(s) 32 is/are rejected under 35 U.S.C. 103(a) as being unpatentable over Rakkola (20060161377) in view of Mattice (20070259716) in view of Gregg (6353449) in view of Oh (6771250).

As to claim(s) 32,
The above art/combination does not expressly disclose the device state logic allows user interaction to customize applications to be displayed when the device is woken up.

Oh discloses the device state logic allows user interaction to customize applications to be displayed when the device is woken up ([3, 13-25]; see also claim(s) 1 and above claim(s)).

It would have been obvious to one of ordinary skill in the art to modify the above art/combination to teach the claimed limitations, to suit the needs of a based on the characteristics of the system, such that the system is based on criteria desired by the user, and to
utilize a means of viewing and executing applications that were being utilized and/or as desired by a user, to collect data for each of the three axes, and to activate functions when specified conditions are detected, to determine the axis with the greater amount of movement, and to adjust the values according to other factors that should be taken into account.

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a). A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Shirley Lu whose telephone number is (571) 272-8546. The examiner can normally be reached on 8:30-5:00 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Daniel Wu can be reached on (571) 272-2964. The fax phone number for the organization where this application or proceeding is assigned is (571) 273-8300.

Art Unit: 2681
Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).
/Shirley Lu/
Primary Examiner, Art Unit 2681

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	[11423	(340/457,573.1,686.1,539.1,522,667).CCLS.		OR	OFF	$\begin{aligned} & 2013 / 06 / 02 \\ & 02: 08 \end{aligned}$
L2	10	$\begin{aligned} & (\text { ("20060161377") or ("20070259716") or } \\ & (\text { " } 6353449 \text { ") or ("20070150136") or } \\ & \text { (} 6771250 \text { ").PN. } \end{aligned}$		OR	OFF	$\sqrt{2013 / 06 / 02}$
L3	/95	(axis axes) with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2013 / 06 / 02 \\ & 02: 08 \end{aligned}$
L4	, 226	(axis axes) with (idl\$4 sleep\$4) with accelerat\$4	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \hline P R S ~ \end{array}\right., \end{aligned}$	OR	OFF	$\begin{aligned} & 2013 / 06 / 02 \\ & 02: 08 \end{aligned}$
L5	95	(axis axes) with wak\$4 adj up	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { PPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2013 / 06 / 02 \\ & 02: 08 \end{aligned}$
L6	21	L3 and @rlad < "20081008"	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2013 / 06 / 02 \\ & 02: 08 \end{aligned}$
52	28		$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \hline \text { BM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$
53	/7	S2 and remote\$4	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 48 \end{aligned}$

			IEPO; JPO; DERWENT; IBM TDB			
54	2	S3 and distance\$1		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 49 \end{aligned}$
55]	"20040095252".pn. and distance\$1	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { PPRO; JPO; } \\ & \text { MERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 09: 50 \end{aligned}$
58	O	"20030222775".pn. and distance\$1	US-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DEEWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 14 \end{aligned}$
59	${ }^{2}$	"20030098792".pn.		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 16 \end{aligned}$
S10]	"20030098792".pn. and temperature	US-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S11	30	"20030098792".pn. and temperature\$1	US-PGPUB; USPAT; USCR; FPRS; EPO; JPO; DERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 40 \end{aligned}$
S12	1	"20030098792".pn. and motion		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 43 \end{aligned}$
S13	2	S2 and distance\$1		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 10: 46 \end{aligned}$
S14	[11	baby adj seat and distance same counter	$\begin{aligned} & \text { USPGPUB; } \\ & \text { USPAT; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 13 \end{aligned}$

			UUSOCR; IFPRS; EPO; JPO; DERWENT IBM TDB			
S15	19	baby adj seat and predetermined adj distance		OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 17 \end{aligned}$
S16	2	"20030122662".pn. and range	US-PGPUB; USPAT; USCR; FPRS; EPO; JPO; DERWENT;	OR	OFF	2010/05/03
S17	167	car adj seat and predetermined adj distance	USS-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 22 \end{aligned}$
S18	167	car adj seat and predetermined adj distance	US-PGPUB; USPAT; USCR; FPRS; EPO; JPO; DERWENT;	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 23 \end{aligned}$
S19	133	car adj seat and distance with signal\$1	US-PGPUB; USPAT; USCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$
S20	14	car adj seat and predetermined adj distance with signal\$1	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USCR; } \\ \text { PRRS; } \\ \text { EPOR JPO; } \\ \text { DRM TDT; } \end{array} \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 24 \end{aligned}$
521	0	"7797212".pn. and counter	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IIBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 26 \end{aligned}$
S22	12	car adj seat and distance with signal\$1 adj strength\$1	US-PGPUB: USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IIBM TDB	OR	OFF	$\begin{aligned} & 2010 / 05 / 03 \\ & 11: 27 \end{aligned}$

523	0	"1318".apn. and automatic\$4			OFF	$\sqrt{2010 / 05 / 13}$
S24	1	"131848".apn. and automatic\$4	$\begin{aligned} & \text { USS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { HPRS; } \\ & \text { EPDP; JPE; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2010 / 05 / 13 \\ & 20: 05 \end{aligned}$
525	13	"131848".apn.	US-PGPUB; USPAT; USCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\frac{2010 / 05 / 13}{20: 06}$
S26	11	"131848".apn. and automatic\$4		OR	OFF	2
527	12	lojack.as. and automatic\$4		OR	OFF	$\begin{aligned} & 2010 / 05 / 13 \\ & 20: 12 \end{aligned}$
528	${ }^{2}$	"7561102".pn.		OR	OFF	$2010 / 05 / 13$
529	2	"7536169".pn.		OR	OFF	2
530	[3940	counter with time with distance		OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 52 \end{aligned}$
531	$\sqrt{245}$	counter with measur\$4 near5 (time with distance)		OR	OFF	$\sqrt{2011 / 01 / 10}$

			MDERWENT; IBM TDB			
532	25	S31 and @rlad < "20060718"	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; ; JP; } \\ \text { EPERWENT; } \\ \text { BMM TDB } \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 01 / 10 \\ & 12: 54 \end{aligned}$
533	11598	"327"/\$.ccls. and rectifier	"US-PGPUB; UUSAT; UUSOCR; IPRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
S34	616	"327"/\$.ccls. and rectifier.ti.		OR	OFF	$\begin{aligned} & 2011 / 01 / 11 \\ & 22: 16 \end{aligned}$
S35	36	$340 / 573.1$ and return adj signal with distance	\| US-PGPUB; UUSAT; "USOCR; "PRRS; :EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 49 \end{aligned}$
536	21	S35 and @rlad < "20060718"	\|US-PGPUB; : USPAT; !USOCR; :IPRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 50 \end{aligned}$
537	2	"20030034887".pn. and return adj signal	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 17: 53 \end{aligned}$
538	2	"20030034887".pn.	\|US-PGPUB; USPAT; USOCR; IPRSS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
539	2	"20030034887".pn. and return adj signal	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 12 \end{aligned}$
S40	1	"20030034887".pn. and "10"	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 18 \end{aligned}$

			"FPRS; EPO; JPO; DERWENT; BM TDB			
S41	2	"20030034887".pn. and timer	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 38 \end{aligned}$
S42	0	"20030098792".pn. and "72"		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
S43	1	"20030098792".pn. and "27"	$\begin{array}{\|c\|} \hline \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PPRS; JPO; } \\ \text { IDERWENT; } \\ \text { IBM TDB } \end{array}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 46 \end{aligned}$
S44	0	"779712".apn. and low adj power		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S45	0	"779712".apn. and motion adj detector	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S46	0	"779712".apn. and motion		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
S47	3	"779712".apn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 18: 53 \end{aligned}$
548	2	"6922147".pn. and temperature		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 06 \end{aligned}$
S49		/("20030098792") or ("20030034887") or	\US-PGPUB;	OR	OFF	2011/04/26

		(${ }^{\text {("6922147")).PN. }}$				-19:31
S50	3	S49 and (conserv\$4 sav\$4 power reduc\$4)		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 19: 31 \end{aligned}$
S51	3	S49 and (conserv\$6 sav\$4 power reduc\$4)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\int_{19: 31}^{2011 / 04 / 26}$
S52	2	S49 and motion	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 20: 56 \end{aligned}$
553	0	3mtion adj detector with sleep		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 05 \end{aligned}$
S54	52	motion adj detector with sleep adj mode		OR	OFF	$\sqrt{2011 / 04 / 26}$
S55	10	S54 and @rlad < "20060718"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 06 \end{aligned}$
S56	9857	$(340 / 457,573.1,686.1,539.1,522,667) . \text { CCLS. }$		OR	OFF	$\sqrt{2011 / 04 / 26}$
S57	5	S56 and S54		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 15 \end{aligned}$

			IBM TDB			
558	638	signal adj edge adj detector	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
559	0	signal adj edge adj detector same reduce adj error	US-PGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
560	33	signal adj edge adj detector same error	US-PGPUB USPAT; USOCR; FPRS; EEPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
561	$\sqrt{10}$	signal adj edge adj detector with error	US-PGPUB; USPAT; USOCR; PPRS; EPO; JPO; DRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 19 \end{aligned}$
562	3	signal adj edge adj detector with error with count\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 21 \end{aligned}$
563	3	signal adj edge adj detector with error with count\$4	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 22 \end{aligned}$
564	$\sqrt{10}$	signal adj edge adj detector with error	USPGPUB USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
565	34	signal adj edge adj detector and measur\$4 adj time	US-PGPUB USPAT; UUSOCR; IFRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$
566	5	signal adj edge adj detector same measur\$4 adj time	$\begin{aligned} & \begin{array}{l} \text { USSPGPUB; } \\ \text { USPAT; } \\ \text { USPCR; } \\ \text { IPRS; } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 21: 23 \end{aligned}$

			EPO; JPO; DERWENT; IBM TDB			
568	86	edge adj detect\$4 with counter with lerror\$1	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	2
569	23	S68 and @rlad < "20060718"		OR	OFF	2
S70	45	edge adj detect\$4 with reduc\$4 near3 error\$1	UGSPGPUB; USPAT; MSOCR; IPPRS; IEPO; JPO; IERWENT; IBM TDB	OR	OFF	2
S71	7	S70 and @rlad < "20060718"	$\begin{aligned} & \begin{array}{\|l\|} \hline \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PPRS; } \\ \text { \|EPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM TDB } \end{array} \end{aligned}$	OR	OFF	2
S72	1	"247950".apn. and dominant adj axis		OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 03 \end{aligned}$
S73	18	("20060161377") or ("200702597") or ("20070150136") or ("6353449") or $($ " 671250 ")).PN.	US-PGPUB; UUSAT; USOCR; IPPRS; IEPO; JPO; IERWENT; IIBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 26 \\ & 22: 40 \end{aligned}$
S74	0	("200700259716").PN.	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { MSOCR; } \\ \text { FPRS; } \\ \text { EPO; JPO; } \\ \text { DERWENT; } \\ \text { IBM TDB } \end{array}, \end{aligned}$	OR	OFF	$11: 57$
S75	${ }^{2}$	("20070259716").PN.	\|USPGPUB; USPAT; USPOCR; IPPRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$12011 / 04 / 27$
S76	8	("20070259716") or ("6353449") or	US-PGPUB; USPAT;	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 17: 37 \end{aligned}$

			USOCR; FPRS; EPO; JPO; DERWENT IBM_TDB			
S77	1	"247950".apn. and (long adj average\$1 with idle)	USS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	
S78	1	"247950".apn. and (long adj average\$1 with	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$2011 / 04 / 27$
S79	1	"247950".apn. and (Iong adj average\$1 with idle adj sample)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 14 \end{aligned}$
580	1	"247950".apn. and (long adj average\$1)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 17 \end{aligned}$
581	3524	long adj average	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 18 \end{aligned}$
582	3524	"Iong average"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 19 \end{aligned}$
583	10	("20060161377") or ("20070259716") or ("6353449") or ("20070150136") or ("6771250")).PN.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$
S84	2	S83 and record\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 26 \end{aligned}$

585	1	"247950".apn. and dominant	IUS-PGPUB; USPAT; "USOCR; IPRRS; \|EPO; JPO; DERWENT; IBM_TDB		OFF	$2011 / 04 / 27$
586	1	"247950".apn. and idle		OR	OFF	$\sqrt{2011 / 04 / 27}$
587	1	"247950".apn. and new adj dominant	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 43 \end{aligned}$
S88	1	"20060161377".pn. and reference		OR	OFF	2
589	0	"20070259716".pn. and (idle sleep)		OR	OFF	$2011 / 04 / 27$
590	${ }^{2}$	20070259716".pn.	\|US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$2011 / 04 / 27$
S91	1	"247950".apn. and idle with comput\$4	\|US-PGPUB; USPAT; !USOCR; IPRRS; EPO; JPO; DDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 04 / 27 \\ & 23: 58 \end{aligned}$
592	1	"247950".apn. and idle		OR	OFF	2
593	0	"20070259716".pn. and ("0053" "0155"	$\begin{aligned} & \begin{array}{l} \text { US-PGPOB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { FPRS; } \\ \text { EPO; JPO; } \end{array}, \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$

			$\begin{aligned} & \text { DDERWENT; } \\ & \text { IBM_TDB } \end{aligned}$			
594	2	20070259716".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 13: 39 \end{aligned}$
595	2	"6353449".pn.	$\begin{aligned} & \text { MSS-PGPUB; } \\ & \text { MSPAT; } \\ & \text { MSOCR; } \\ & \text { IPRS; ; JPO; } \\ & \text { MDERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 00 \end{aligned}$
596	2	"20070150136".pn.		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 03 \end{aligned}$
597	7354	((340/669) or (702/141) or		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S98	/3525	long adj average	MUS-PGPUB; MUSAT; USOCR; IPRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\sqrt{2011 / 04 / 28}$
5	3	597 and 598		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S100	8	$\begin{aligned} & (\text { ("20070259716") or ("6353449") or } \\ & (\text { (20070150136") or ("6771250")).PN. } \end{aligned}$		OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
S101	11	S97 and S100	$\begin{aligned} & \text { MS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; JPO; } \\ & \text { BERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 04 / 28 \\ & 14: 15 \end{aligned}$
$\sqrt{5102}$	3668	"long average"	$\begin{aligned} & \begin{array}{l} \text { USSGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \end{array}, ~ \end{aligned}$	OR	OFF	$\xrightarrow[15: 56]{2011 / 10 / 14}$

			IFPRS; EPO; JPO; DERWENT IBM TDB			
S103	28		US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S104	38	340/573.1 and return adj signal with distance	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S105	10	$\begin{aligned} & \text { ("200606161377") or ("20070259716") or } \\ & \text { ("6353449") or ("20070150136") or } \\ & \text { ("6771250")).PN. } \end{aligned}$	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S106	${ }^{2}$	S105 and record\$4	US-PGPUB; USPAT; USOCR; IPRS; EPD; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S107	7852	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S108	3668	long adj average	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$15: 56$
S109	8	("20070259716") or ("6353449") or	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 56 \end{aligned}$
S110	\%	$\begin{aligned} & ((20030098792 ") \text { or ("20030034887") or } \\ & \hline(6922147 ")) . \mathrm{PN} \text {. } \end{aligned}$	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
S111] 3	S110 and (conserv\$6 sav\$4 power	US-PGPUB;	OR	OFF	2011/10/14

		: r reduc $\$ 4$	UUSPAT;?USOCR; FPRS; :EPO; JPO; :IBRWENT;			15:57
S112	23	S104 and @rlad < "20060718"		OR	OFF	$\begin{aligned} & 2011 / 10 / 14 \\ & 15: 57 \end{aligned}$
5113	1	(ire with inches with sensor with (outside)	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { FPRS; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S114	1	tire with sensor with (outside) same inches		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S115	320	tire with sensor with (outside) same size		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
5	, 3	"447841".apn. and ("18" "20")		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 48 \end{aligned}$
S117	, 3	"447841".apn.		OR	OFF	$\begin{aligned} & 2011 / 10 / 22 \\ & 18: 49 \end{aligned}$
S118	, 3	"447841".apn.		OR	OFF	2011/10/22
5119	! ${ }^{\text {! }}$	S114 and ("18" "20")	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \\ & \text { DERWENT; } \end{aligned}$	OR	OFF	2011/10/22

			IBM TDB			
S120	3	tire adj size with sensor with (outside)	US-PGPUB; USPAT; USOCR; FPRS; IEPO; JPO; ; DERWENT; IBM TDB	OR	OFF	18
S121	6	tire adj size same sensor with (outside inside)	US-PGPUB; UUSPAT; UUSOCR; "FPRS; IEPO; JPO; DDERWENT; IIBM TDB	OR	OFF	$1 \begin{aligned} & 2011 / 10 / 22 \\ & 18: 50 \end{aligned}$
S123	331	tire with sensor with (outside) with (pressure temperature)	USS-PGPUB; USPAT; USOCR; IFPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	18
S124	86	S123 and @rlad < "20080604"		OR	OFF	18
S125	8488	$\begin{aligned} & ((340 / 669) \text { or }(702 / 141) \text { or } \\ & (345 / 325,156)) . \text { CCLS. } \end{aligned}$	ZUS-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DDERWNT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S126	347	tire with sensor with (outside) with (pressure temperature)		OR	OFF	$12012 / 05 / 19$
S127	/3272	edge adj detect\$4 with counter		OR	OFF	18
S128	39	340/573.1 and return adj signal with distance	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$
S129	23	S128 and @rlad < "20060718"	$\begin{aligned} & \text { US-PGPBB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 18: 59 \end{aligned}$

			\#EPO; JPO; DERWENT; IBM TDB			
S130	2	("7987070").PN.	$\begin{aligned} & \text { USS-PGPUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { IPRS; JPO; } \\ & \text { EPERWENT; } \\ & \text { IBM TDB } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 00 \end{aligned}$
S131	1	"247950".apn. and idle	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PRS } \\ \hline \end{array} . \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 32 \end{aligned}$
S132	208	(axis axes) with (idl\$4 sleep\$4) with accelerat\$4	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S133	20	S132 and @rlad < "20081008"	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { USOCR; } \\ \text { PRS } \end{array} \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 39 \end{aligned}$
S134	$\sqrt{9346}$	accelerometer with motion	$\begin{aligned} & \text { USSPGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$
S135	2	("20060161377").PN.	UUS-PGPUB; USPAT; UUSCR; IFRS; IEPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 05 / 19 \\ & 19: 41 \end{aligned}$
$\sqrt{5136}$	0	(axis axes) with idle with wak\$4 adj up	USSPGPUB; USPAT; USOCR; IPRRS; IEPO; JPO; MERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 40 \end{aligned}$
S137	66	(axis axes) with wak\$4 adj up		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$
S138	15	S137 and @rlad < "20081008"		OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 41 \end{aligned}$
$\sqrt{5139}$		(three) adj axes with wak\$4 adj up	$\begin{aligned} & \text { USPRGUB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \\ & \text { EPRS; JPO; } \\ & \text { EPERWENT; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 44 \end{aligned}$

			IBM TDB			
S140	6	(three) adj axes with idle	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	12
S141	1	"247950".apn. and gravity	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2012 / 06 / 16 \\ & 15: 50 \end{aligned}$
S142	1	"247950".apn. and idle	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 15: 57 \end{aligned}$
S143	1	"247950".apn. and wak\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 00 \end{aligned}$
S144	10685	(340/457,573.1,686.1,539.1,522,667).CCLS.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S145	$\sqrt{3855}$	long adj average	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; IERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S146	88	edge adj detect\$4 with counter with error\$1	USPGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$1 \begin{aligned} & 2012 / 06 / 16 \\ & 16: 04 \end{aligned}$
S147	11201	(340/457,573.1,686.1,539.1,522,667).CCLS.	US-PGPUB; USPAT; USOCR; IPRS; EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 16: 13 \end{aligned}$
S148	91	edge adj detect\$4 with counter with error\$1	$\begin{aligned} & \text { US-PGPB; } \\ & \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 16: 13 \end{aligned}$

			IEPO; JPO; DERWENT; IBM TDB						
S149	4082	long adj average	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT; IIBM TDB	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 16: 13 \end{aligned}$			
S150	89	(axis axes) with wak\$4 adj up	\|US-PGPUB; :USPAT; :USOCR; IPRS; :EPO; JPO; DERWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 17: 36 \end{aligned}$			
S151	19	S150 and @rlad < "20081008"	\|US-PGPUB;	USAT;	SOCR; IPRS;	EPO; JPO; IDRWENT; IBM TDB	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 17: 36 \end{aligned}$
S152	19	S150 and @rlad < "20081008"	$\begin{aligned} & \begin{array}{l} \text { US-PGPUB; } \\ \text { USPAT; } \\ \text { UPSCR; } \\ \text { PPRS; JPO, } \\ \text { IPERWENT; } \\ \text { IBM TDB } \end{array}, \end{aligned}$	OR	OFF	$\sqrt{2013 / 02 / 21}$			
S153	1	"20040090333".pn. and exit\$4	$\begin{aligned} & \text { IUSPGPB; } \\ & \hline \text { USPAT; } \\ & \text { USOCR; } \end{aligned}$	OR	OFF	$\begin{aligned} & 2013 / 02 / 21 \\ & 18: 15 \end{aligned}$			

6/2/2013 2:11:05 AM
C:\Users\slu\Documents\EAST\Workspaces $\backslash 12247950$.wsp

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet	2	of	9

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{1}$		ment Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant
			$\mathrm{de}^{2}(\mathrm{ff}$ known)			Figures Appear
		us-	4,571,680	2/18/1986	Wu, Chyuan-Jong	
		us-	4,776,323	10/11/1998	Spector, Donald	
		us-	5,386,210	1/31/1995	Lee, Wade	
		us-	5,430,480	7/4/1995	Allen et al	
		us-	5,454,114	9/26/1995	Yach et al	
		us-	5,485,402	1/16/1996	Smith et al	
		us-	5,506,987	4/9/1996	Abramson et al	
		us-	5,737,439	4/7/1998	Lapsley et al	
		us-	5,771,001	6/23/1998	Cobb, Marion	
		us-	5,911,065	6/8/1999	Williams et al	
		us-	5,960,085	9/28/1999	de la Huerga	
		us-	6,061,456	9/5/2000	Andrea et al	
		us-	6,246,321	6/12/2001	Rechsteiner et al.	
		us-	6,396,883	5/28/2002	Yang, et al.	
		us-	6,408,330	6/18/2002	de la Huerga	
		us-	6,470,147	10/22/2002	Imada	
		us-	6,478,736	11/12/2002	Mault, James R	
		us-	6,529,144	3/4/2003	Nilsen et al	
		us-	6,595,929	7/22/2003	Stivoric et al	
		us-	6,607,493	8/19/2003	Song, O Shik	
		us-	6,628,898	9/30/2003	Endo, Takayuki	
		us-	6,634,992	10/21/2003	Ogawa, Kyotaka	
		us-	6,665,802	12/16/2003	Ober	
		us-	6,672,991	1/6/2004	O'Malley, Sean M	
		us-	6,685,480	2/3/2004	Nishimoto et al	
		us-	6,731,958	5/4/2004	Shirai	
		us-	6,788,980	9/7/2004	Johnson	
		us-	6,895,425	5/17/2005	Kadyk et al	
		us-	7,020,487	3/28/2006	Kimata	
		us-	7,027,087	4/11/2006	Nozaki et al	
		us-	7,028,547	4/18/2006	Shiratori et al	
		us-	7,042,509	5/9/2009	Onuki, Ichiro	

Examiner
Signature
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

(use as many sheets as necessary)			
Sheet	3	of	9

U.S. PATENT DOCUMENTS

Examiner
Signature
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known

Application Number	$12 / 247,950$
Filing Date	October 8, 2008
First Named Inventor:	Philippe Kahn
Art Unit	2681
Examiner Name	Lu, Shirley
Attorney Docket Number	8689 P 057

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{\text {² }}$		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code^{2} (If known)				
		us-	7,765,553	7/27/2010	Douceur et al	
		us-	7,788,059	8/31/2010	Kahn et al	
		us-	7,881,902	2/1/2011	Kahn et al	
		us-	7,889,085	2/15/2011	Downey et al	
		us-	7,892,080	2/22/2011	Dahl, Fredrik Andreas	
		us-	7,962,312	6/14/2011	Darley et al	
		us-	8,187,182	5/29/2012	Kahn et al	
		us-	2001/0047488	11/29/2001	Verplaetse et al	
		us-	2002/0006284	1/17/2002	Kim, Sung Bong	
		us-	2002/0027164	3/7/2002	Mault et al	
		us-	2002/0042830	4/11/2002	Bose et al	
		us-	2002/0044634	4/18/2002	Rooke et al	
		us-	2002/0054214	5/9/2002	Yoshikawa, Toshikazu	
		us-	2002/0122543	9/5/2002	Rowen, Chris E	
		us-	2002/0138017	9/26/2002	Bui et al	
		US-	2002/0142887	10/3/2002	O'Malley, Sean M	
		us-	2002/0150302	10/17/2002	McCarthy, et al	
		us-	2002/0173295	11/21/2002	Nykanen et al	
		us-	2002/0190947	12/19/2002	Feinstein	
		us-	2003/0033411	2/13/2003	Kavoori et al	
		Us-	2003/0093187	5/15/2003	Walker et al	
		us-	2003/0101260	5/29/2003	Dacier et al	
		us-	2003/0139908	7/24/2003	Wegerich et al.	
		us-	2003/0149526	8/7/2003	Zhou et al.	
		us-	2003/0151672	8/14/2003	Robins et al	
		us-	2003/0187683	10/2/2003	Kirchhoff et al	
		us-	2003/0208110	11/6/2003	Mault et al	
		us-	2003/0208113	11/6/2003	Mault et al	
		us-	2003/0227487	12/11/2003	Hugh, Harlan M.	
		us-	2003/0236625	12/25/2003	Brown et al	
		us-	2004/0017300	1/29/2004	Kotzin et al	
		us-	2004/0024846	2/5/2004	Randall et al	

Examiner
Signature
Date Considered
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

(use as many sheets as necessary)				
Sheet	5	of	9	

U.S. PATENT DOCUMENTS

Examiner Initials*	Cite No. ${ }^{\text {² }}$	Num	Cocument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		us-	2004/0043760	3/4/2004	Rosenfeld et al	
		us-	2004/0044493	5/4/2001	Coulthard	
		us-	2004/0047498	3/11/2004	Mulet-Parada, et al	
		us-	2004/0078219	4/22/2004	Kaylor et al	
		us-	2004/0078220	4/22/2004	Jackson	
		us-	2004/0081441	4/29/2004	Sato, Tatsuya, et al.	
		us-	2004/0106958	6/3/2004	Mathis, et al	
		us-	2004/0122294	6/24/2004	Hatlestad et al	
		us-	2004/0122295	6/24/2004	Hatlestad et al	
		us-	2004/0122296	6/24/2004	Hatlestad et al	
		us-	2004/0122297	6/24/2004	Stahmann et al	
		us-	2004/0122333	6/24/2004	Nissila, Seppo	
		us-	2004/0122484	6/24/2004	Hatlestad et al	
		us-	2004/0122485	6/24/2004	Stahmann et al	
		us-	2004/0122486	6/24/2004	Stahmann et al	
		us-	2004/0122487	6/24/2004	Hatlestad et al	
		us-	2004/0125073	7/1/2004	Potter et al	
		us-	2004/0130628	7/8/2004	Stavely, Donald J	
		us-	2004/0135898	7/15/2004	Zador	
		us-	2004/0146048	7/29/2004	Cotte	
		us-	2004/0148340	7/29/2004	Cotte	
		us-	2004/0148341	7/29/2004	Cotte	
		us-	2004/0148342	7/29/2004	Cotte	
		us-	2004/0148351	7/29/2004	Cotte	
		us-	2004/0176067	9/9/2004	Lakhani et al	
		us-	2004/0185821	9/23/2004	Yuasa, Tomokazu	
		us-	2004/0219910	11/4/2004	Beckers, Fabien	
		us-	2004/0242202	12/2/2004	Torvinen, Marko	
		us-	2004/0247030	12/9/2004	Wiethoff, Andre	
		us-	2004/0259494	12/23/2004	Mazar, Scott T.	
		us-	2005/0015768	1/20/2005	Moore, Mark Justin	
		us-	2005/0027567	2/3/2006	Taha	

Examiner
Signature
*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

If you need assistance in completing the form, call 1-800-PTO-9199 (1-800-786-9199) and select option 2.

Substitute for Form 1449/PTO					Complete if Known	
INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)					Application Number	12/247,950
					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	2681
					Examiner Name	Lu, Shirley
Sheet	6		of	9	Attorney Docket Number	8689P057
U.S. PATENT DOCUMENTS						
Examiner Initials*	Cite No. ${ }^{1}$		cument Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2}$ (ff known)				
		us-	2005/0038691	2/17/2005	Babu, Suresh	
		us-	2005/0048945	3/3/2005	Porter, Robert	
		US-	2005/0048955	3/3/2005	Ring, Steffen	
		us-	2005/0078197	4/14/2005	Gonzales, Patrick F	
		us-	2005/0079873	4/14/2005	Caspi et al.	
		us-	2005/0101841	5/12/2005	Kaylor et al	
		us-	2005/0102167	5/12/2005	Kapoor, Ashok K	
		US-	2005/0107944	5/19/2005	Hovestadt et al	
		us-	2005/0113649	5/26/2005	Bergantino, Paul V	
		us-	2005/0113650	5/26/2005	Pacione et al	
		us-	2005/0131736	6/16/2005	Nelson et al	
		us-	2005/0141522	6/30/2005	Kadar et al	
		us-	2005/0143106	6/30/2005	Chan et al	
		us-	2005/0146431	7/7/2005	Hastings et al	
		US-	2005/0157181	7/21/2005	Kawahara et al	
		us-	2005/0165719	7/28/2005	Greenspan et al	
		us-	2005/0168587	8/4/2005	Sato, et al.	
		Us-	2005/0182824	8/18/2005	Cotte	
		us-	2005/0183086	8/18/2005	Abe et al	
		us-	2005/0203430	9/15/2005	Williams, Lyndsay, et al.	
		us-	2005/0212751	9/29/2005	Marvit et al	
		US-	2005/0212752	9/29/2005	Marvit et al	
		Us-	2005/0212753	9/29/2005	Marvit et al	
		us-	2005/0212760	9/29/2005	Marvit et al	
		us-	2005/0216403	9/29/2005	Tam et al	
		us-	2005/0234676	10/20/2005	Shibayama, Hiroaki	
		us-	2005/0235058	10/20/2005	Rackus et al.	
		us-	2005/0243178	11/3/2005	McConica	
		us-	2005/0245988	11/3/2005	Miesel, Keith A.	
		us-	2005/0256414	11/17/2005	Kettunen et al	
		us-	2005/0258938	11/24/2005	Moulson, John L	
		us-	2005/0262237	11/24/2005	Fulton et al.	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

Substitute for Form 1449/PTO					Complete if Known	
					Application Number	12/247,950
STATEMENT BY APPLICANT (use as many sheets as necessary)					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	2681
					Examiner Name	Lu, Shirley
Sheet	7		of	9	Attorney Docket Number	8689P057
U.S. PATENT DOCUMENTS						
Examiner Initials*	Cite No.		cument Number	Publication Date MM-DD-YYYY	Name of Patentee orApplicant of Cited Document	Pages, Columns, Lines, Where Relevant
		Number-Kind $\operatorname{Code}^{2}(\mathrm{~F}$ know)				Passages or Relevant Figures Appear
		us-	2005/0281289	12/22/2005	Huang et al	
		us-	2006/0009243	1/12/2006	Dahan et al	
		Us-	2006/0017692	1/26/2006	Wehrenberg et al.	
		us-	2006/0029284	2/9/2006	Stewart	
		us-	2006/0080551	4/13/2009	Mantyjarvi et al	
		us-	2006/0090088	4/27/2006	Choi et al	
		us-	2006/0098097	5/11/2006	Wach et al	
		Us-	2006/0149516	7/6/2006	Bond et al	
		us-	2006/0154642	7/13/2006	Scannell, Robert F. Jr.	
		us-	2006/0161459	7/20/2006	Rosenfeld et al	
		us-	2006/0167647	7/27/2006	Krumm et al.	
		us-	2006/0167943	7/27/2006	Rosenberg	
		us-	2006/0172706	8/3/2006	Grififin et al	
		us-	2006/0174685	8/10/2006	Skvortsov et al	
		Us-	2006/0204214	9/14/2006	Shah et al	
		us-	2006/0249683	11/3/2006	Goldberg et al	
		us-	2006/0256082	11/16/2006	Cho et al	
		us-	2006/0257042	11/16/2006	Ofek, et al.	
		us-	2006/0289819	12/28/2006	Parsons, et al.	
		us-	2007/0004451	1/4/2007	C Anderson, Eric	
		us-	2007/0005988	1/4/2007	Zhengyou et al	
		Us-	2007/0017136	1/25/2007	Mosher et al	
		us-	2007/0024441	2/1/2007	Kahn et al.	
		us-	2007/0037605	2/15/2007	Logan et al	
		us-	2007/0040892	2/22/2007	Aoki et al	
		us-	2007/0050157	3/1/2007	Kahn et al.	
		us-	2007/0075127	4/5/2007	Rosenberg, Louis B.	
		us-	2007/0075965	4/5/2007	Huppi et al	
		us-	2007/0106991	5/10/2007	Yoo, Jun-Hyun	
		us-	2007/0143068	6/21/2007	Pasolini et al	
		us-	2007/0145680	6/28/2007	Rosenberg, Louis B	
		Us-	$2007 / 0156364$	7/5/2007	Rothkopf, Fletcher R	
Examiner					Date Consider	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

Substitute for Form 1449/PTOINFORMATION DISCLO					Complete if Known	
					Application Number	12/247,950
STATEMENT BY APPLICANT (use as many sheets as necessary)					Filing Date	October 8, 2008
					First Named Inventor:	Philippe Kahn
					Art Unit	2681
					Examiner Name	Lu, Shirley
Sheet	9		of	9	Attorney Docket Number	8689P057
U.S. PATENT DOCUMENTS						
Examiner Initials*	Cite No.		ocument Number	Publication Date MM-DD-YYYY	Name of Patentee orApplicant of Cited Document	Pages, Columns, Lines, Where Relevant
		Number-Kind $\operatorname{Code}^{2}(\mathrm{If}$ known)				Passages or Relevant Figures Appear
		Us-	2009/0099668	4/16/2009	Lehman et al	
		us.	2009/0124348	5/14/2009	Yoseloff et al	
		us-	2009/0128448	5/21/2009	Riechel, Patrick	
		us-	2009/0174782	7/9/2009	Kahn, et al	
		us-	2009/0215502	8/27/2009	Griffin Jr, Paul P	
		us-	2009/0274317	11/5/2009	Kahn et al	
		us-	2009/0296951	12/3/2009	De Haan, Indo	
		Us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us-				
		us.				
		us-				
		us-				
		us-				
		us-				
		us-				
		Us-				
		us-				
		us-				
		us-				
		us.				
		Us-				
		us-				
		us-				
		us-				
		us-				
		us-				
Signature					Date Considere	

*Examiner: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.
${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ Applicant is to place a check mark here if English Translation is attached.
This collection of information is required by 37 CFR 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SENT FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 223131450.

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Submission-Information Disclosure Stmt	1806	1	180	180
	Total in USD (\$)			180

Electronic Acknowledgement Receipt	
EFS ID:	16024881
Application Number:	12247950
International Application Number:	
Confirmation Number:	8961
Title of Invention:	Method and System for Waking Up a Device Due to Motion
First Named Inventor/Applicant Name:	Philippe Kahn
Customer Number:	8791
Filer:	Judith A. Szepesi
Filer Authorized By:	
Attorney Docket Number:	8689P057
Receipt Date:	12-JUN-2013
Filing Date:	08-OCT-2008
Time Stamp:	22:07:25
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes			
Payment Type	Deposit Account			
Payment was successfully received in RAM	$\$ 180$			
RAM confirmation Number	7877			
Deposit Account	022666			
Authorized User				
File Listing:				
Document Number	Focument Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip
Pages (if appl.)				

1	Foreign Reference	FOR_EP0833537.pdf	122519	no	9
			e36afa2b57ddd8d09a6fa8341d9d6ab80f1f d50b		
Warnings:					
Information:					
2	Foreign Reference	FOR_EP1104143.PDF	1779397	no	17
			29 d 35 c 3030524180 b 15 c 83677 c 3 c 77 d 02 ac 5 a 22 f		
Warnings:					
Information:					
3	Foreign Reference	FOR_JP2003014459.pdf	6163465	no	14
			69639 c 7 d 19 b 948612 db 0838 f 15446801 ad 5		
Warnings:					
Information:					
4	Foreign Reference	FOR_JP02005309691.pdf	1829707	no	10
Warnings:					
Information:					
5	Foreign Reference	FOR_JP2006118909.pdf	269538	no	16
Warnings:					
Information:					
6	Foreign Reference	FOR_JP2007093433.pdf	1430974	no	17
			ab5a7ecf5c809525d5d3929dff8ad9642a44 b539		
Warnings:					
Information:					
7	Foreign Reference	FOR_JP7020547.pdf	1025589	no	26
			4f58db227b34168f8c69eadeffd3c1672cbe Oac2		
Warnings:					
Information:					
8	Foreign Reference	FOR_WO0063874.pdf	1581721	no	40
			ba972226b8a454ef1eebaf9d 45 ab 3 de 1557 $361 a 7$		
Warnings:					
Information:					
9	Foreign Reference	FOR_WO02088926.pdf	7678649	no	194
			264615a1b9fe0432401659cb1f272216f17 b4b6		
Warnings:					
Information:					

10	Foreign Reference	FOR_W00188477.pdf	1685465	no	39
			6ba0f84135093e 15945e8a36406cf6d9dle 46234		
Warnings:					
Information:					
11	Foreign Reference	FOR_WO9922338.pdf	1460103	no	40
			$4 \mathrm{~b} 8 \mathrm{c} 6 \mathrm{e} 3 \mathrm{f} 50306 \mathrm{~b} 40 \mathrm{a} 768 \mathrm{fef286b002d5bf40}$ b 88 e		
Warnings:					
Information:					
12	Non Patent Literature	NPL_Ang.pdf	256838	no	6
			b27e476be8919621685a13b5dcch445ed6 c72996		
Warnings:					
Information:					
13	Non Patent Literature	NPL_Lee_DualProcessor.pdf	2720103	no	25
Warnings:					
Information:					
14	Non Patent Literature	NPL_Weinberg_Minimizing.pdf	138258	no	5
			$\begin{gathered} \text { f30f36becd5d78a0eb2472a87b57a0ab0fea } \\ \text { 0fe7 } \end{gathered}$		
Warnings:					
Information:					
15	Non Patent Literature	NPL_Zypad.pdf	1427300	no	2
Warnings:					
Information:					
16		8689P057_IDS_and_SB08.pdf	173764	yes	11
Multipart Description/PDF files in .zip description					
	Document Description		Start	End	
	Transmittal Letter		1	2	
	Information Disclosure Statement (IDS) Form (SB08)		3	11	
Warnings:					
Information:					
17	Fee Worksheet (SB06)	fee-info.pdf	30233	no	2
			b0261		

Warnings:
Information:
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Size (in bytes):
Post Card, as described in MPEP 503.
New Applications Under 35 U.S.C. 111

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
31.07.2002 Bulletin 2002/31
(21) Application number: 97116732.5
(22) Date of filing: 25.09.1997
(54) A mobile telephone apparatus with power saving

Energiesparendes mobiles Telefongerät
Téléphone mobile avec économie d'énergie
(84) Designated Contracting States:

DE FR GB
(30) Priority: 27.09.1996 JP 25610496
(43) Date of publication of application:
01.04.1998 Bulletin 1998/14
(73) Proprietor:MATSUSHITA ELECTRICINDUSTRIAL CO., LTD.
Kadoma-shi, Osaka (JP)
(72) Inventor: Sato, Yukio Yokohama (JP)
(74) Representative:

Pellmann, Hans-Bernd, Dipl.-Ing. et al
Patentanwaltsbüro
Tiedtke-Bühling-Kinne \& Partner
Bavariaring 4-6
80336 München (DE)
(56) References cited:

US-A- 4903319

- PATENT ABSTRACTS OF JAPAN vol. 095, no. 003, 28 April 1995 \& JP 06351058 A (SHARP CORP), 22 December 1994

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] This invention relates to a mobile telephone apparatus with power saving.
[0002] A mobile telephone apparatus with power saving is known. Such a mobile telephone apparatus effects intermittent receiving outside a service area to save a power consumption, because there is a possibility that the mobile telephone apparatus moves to inside of the service area.
[0003] Japanese patent application provisional publication No. 06311079 A discloses a prior art mobile telephone set with automatic power-off function. In this prior art mobile telephone set, there is a function which interrupts power of a power supply automatically when the mobile telephone set comes outside of a zone of the service network.
[0004] Further, document US-4 903319 discloses a battery-powered portable radio telephone for use in a mobile telephone network which receives signals from the network and judges from the received signal whether the radio telephone is inside or outside of the service area of the network. A battery saver is provided to periodically interrupt the battery power of the telephone when the latter is judged as being outside of the service area.
[0005] Moreover, document JP-06 351058 discloses a mobile communication device in which a measuring means measures the electric field level of the presently used base station and another measuring means measures the electric field level of each base station so that the base station providing the strongest signals can be determined. Further, there is a moving control part for the detection of a movement of the mobile communication device so that the power consumed by the location registration is saved if the device does not move.
[0006] The aim of the present invention is to provide an improved mobile telephone apparatus with power saving.
[0007] According to the present invention, a mobile telephone apparatus is provided, which comprises: a radio communication circuit having an antenna for receiving a radio wave signal and outputting a reception signal; a judging circuit responsive to the reception signal for judging whether the mobile telephone apparatus is inside or outside a service area of the radio wave signal; a detection circuit for detecting whether the mobile telephone apparatus is in a moving condition or a static condition; a power supply for supplying a power to the radio communication circuit; and a control circuit responsive to the judging circuit and the detection circuit for stopping supplying the power to the radio communication circuit when the mobile telephone apparatus is outside the service area and the mobile telephone apparatus is in the static condition.
[0008] The mobile telephone apparatus mentioned above, may further comprise: a clock circuit for measuring a first interval of stopping supplying the power to
the radio communication circuit, a second interval in the moving condition and displaying circuit for displaying the first interval and the second interval.
[0009] In the mobile telephone apparatus, the detec5 tion circuit comprises an accelerometer for detecting acceleration of the mobile telephone apparatus.
[0010] In the mobile telephone apparatus, the detection circuit comprises a vibration sensor for detecting a vibration of the mobile telephone apparatus.

Fig. 1 is a block diagram of a mobile telephone apparatus of a first embodiment;
Fig. 2 depicts a flow chart of the control program stored in the microprocessor 8; and
Fig. 3 is a partial block diagram of a modification; and
Fig. 4 is a block diagram of a mobile telephone apparatus of a second embodiment.
[0014] The same or corresponding elements or parts are designated with like references throughout the drawings.

<FIRST EMBODIMENT>

[0015] Fig. 1 is a block diagram of a mobile telephone apparatus of a first embodiment.
[0016] The mobile telephone apparatus of the first embodiment comprises a radio communication circuit 2 including an antenna for receiving a radio wave signal from a base station (not shown) and for transmitting a transmission signal, a service area judging circuit 6 for judging whether the mobile telephone apparatus is inside or outside the service area from the reception signal 24 , an acceleration sensor (accelerometer) 7 for detecting acceleration of the mobile telephone apparatus, a clock circuit (timer) 9 for generating a present time signal and a timer signal, a key pad 10 for generating an operation signal, a control circuit 8 (microprocessor) for controlling respective circuits of the mobile telephone apparatus in response to outputs of the radio communi-
cation circuit 2 , the service area judging circuit 6 , the acceleration sensor 7 , the clock circuit 9 , and the operation signal, a display circuit 3 for displaying information from the control circuit 8 , and a power supply for supplying first to third power PWR1 to PWR3 from a battery power from a battery 5 under control by the control circuit 8.
[0017] The first power PWR1 is supplied to the radio communication circuit 2 and the service area judging circuit 6 .
[0018] An operation will be described.
[0019] The radio communication circuit 2 receives the radio wave signal from a base station through the antenna 1 and transmits the transmission signal. The service area judging circuit 6 judges whether the mobile telephone apparatus is inside or outside the service area from the reception signal 24 . That is, if a control signal in the radio wave signal can be received correctly, the service area judging circuit 6 judges that the mobile telephone apparatus is inside the service area and if the control signal in the radio wave signal cannot be received correctly, the service area judging circuit 6 judges that the mobile telephone apparatus is outside the service area. The acceleration sensor 7 detects acceleration of the mobile telephone apparatus. When the acceleration sensor 7 shows an intermediate voltage in its dynamic range, the control circuit judges that the mobile telephone apparatus is in the static condition. When the voltage of the acceleration sensor 7 shows other voltages in its dynamic range, the control circuit judges that the mobile telephone apparatus is in the moving condition. The clock circuit 9 generates the present time signal and the timer signal for measuring an event in response to the control circuit 8 . The key pad 10 generates the operation signal such as a dial signal and includes an ON/OFF switch (not shown) and a HOOK switch (not shown). The control circuit 8 controls respective circuits in accordance with a control program mentioned later. The display circuit 3 displays information from the control circuit 8 . The power supply supplies first to third power PWR1 to PWR3 from a battery power from a battery 5 in a power-on condition. In a power save mode, the power supplying circuit 4 stops supplying the power PWR1 to the radio communication circuit 2 and to the service area judging circuit 6 .
[0020] Fig. 2 depicts a flow chart of the control program stored in the microprocessor (mpu) 8.
[0021] The microprocessor 8 judges whether the ON/ OFF switch is in the OFF or the ON condition in step s1. If the ON/OFF switch is in the ON condition, the microprocessor 8 judges whether the mobile telephone apparatus is inside or outside the service area from the reception signal in step $s 2$. If the mobile telephone apparatus is inside the service area, the microprocessor 8 operates the power supply circuit 4 to supply all of powers PWR1 to PWR3 in step s3. In the following step s4, the microprocessor 8 effects controlling of a standby operation (intermittent receiving) or a communication con-
dition. In the following step s11, the microprocessor 8 displays a moving condition interval from the timer signal which is derived from step s10 mentioned later. Then, the microprocessor 8 judges whether the ON/
OFF switch is in the OFF or the ON condition. If the ON/ OFF switch is in the ON condition, processing returns to step s2. If the ON/OFF switch is in the OFF condition, processing returns to step s1
[0022] In step s2, if the mobile telephone apparatus is outside the service area, the microprocessor 8 judges whether the mobile telephone apparatus is in the moving condition or the static condition in step s6. If the mobile telephone apparatus is in the moving condition processing proceeds to step s10 where the microproc5 essor 8 operates the clock circuit 9 to generate the timer signal indicative of the moving condition. Then, processing proceeds to step s3 to perform the standby or communication operation and the moving condition interval is displayed in step s11 as mentioned.
[0023] If the mobile telephone apparatus is in the static condition, the microprocessor 8 stops supplying the power PWR1 to the radio communication circuit 2 and to the service area judging circuit in step s7, calculates a total moving condition interval, and starts the timer to measure the power saving mode interval. In the following step $s 8$, the microprocessor 8 makes the microprocessor 8 itself and the acceleration sensor 7 in a sleep mode to reduce the power consumption, starts the timer in the clock circuit for generating the timer signal, and displays the total moving condition interval. The acceleration sensor 7 consumes a power less than 1 mA in the sleep mode.
[0024] In the following step s9, the microprocessor 8 displays an interval of stopping supplying power PWR1 from the timer signal and displays the present time from the clock circuit 9 . Then, processing returns to step s6. [0025] Fig. 3 is a partial block diagram of a modification. In this modification, a vibration sensor 7^{\prime} is used instead the acceleration sensor 7. The displaying in the sleep mode may be only effected in response to a command from the key pad 10 to further reduce the power consumption.

<SECOND EMBODIMENT>

 plies the vehicle speed signal to the control circuit 8 through the interface circuit 13. The interface circuit 13 comprises two sets of contacts, namely, one set for thevehicle speed sensor 11 and another for the ground line and effects interfacing when the mobile telephone apparatus is placed on a holder (not shown) provided to the vehicle. The holder has the contacts. Moreover, an infrared coupling using photo-diodes or a magnetic coupling can be used for the interfacing.
[0028] A mobile telephone apparatus is disclosed which comprises: a radio communication circuit having an antenna for receiving a radio wave signal and outputting a reception signal; a judging circuit responsive to the reception signal for judging whether the mobile telephone apparatus is inside or outside a service area; a detection circuit for detecting whether the mobile telephone apparatus is in a moving condition or a static condition; a power supply for supplying a power to the radio communication circuit; and a control circuit responsive to the judging circuit and the detection circuit for stopping supplying the power to the radio communication circuit when the mobile telephone apparatus is outside the service area and the mobile telephone apparatus is in the static condition. The detection circuit may comprise an acceleration sensor, a vibration sensor or a vehicle speed meter. The power consumption is further reduced by making the microprocessor and the acceleration sensor in a sleep mode. Intervals of the power saving mode can be displayed.

Claims

1. A mobile telephone apparatus comprising:
radio communication means (2) having an antenna for receiving a radio wave signal and outputting a reception signal;
judging means (6) responsive to said reception signal for judging whether said mobile telephone apparatus is inside or outside a service area of said radio wave signal;
a power supply (4) for supplying a power to said radio communication means;

characterized by

detection means (7) for detecting whether said mobile telephone apparatus is in a moving condition or a static condition; and
control means (8) responsive to said judging means and said detection means for stopping supplying said power to said radio communication means
when said mobile telephone apparatus is outside said service area and said mobile telephone apparatus is in said static condition.
2. The mobile telephone apparatus as claimed in claim 1, further comprising: a clock circuit (9) for measuring a first interval of stopping supplying said power to said radio communication means, a second interval in said moving condition and displaying
means (3) for displaying said first interval and said second interval.
3. The mobile telephone apparatus as claimed in claim 1 , wherein said detection means (7) comprises an accelerometer for detecting acceleration of said mobile telephone apparatus.
4. The mobile telephone apparatus as claimed in claim 1 , wherein said detection means (7) comprises a vibration sensor for detecting a vibration of said mobile telephone apparatus.
5. The mobile telephone apparatus as claimed in claim 1 , wherein said detection means (7) comprises receiving means (11) for receiving a vehicle speed signal indicative of a vehicle on which said mobile telephone apparatus is mounted, said detection means (7) detecting whether said mobile telephone apparatus is in said moving condition or said static condition from said vehicle speed signal.
6. The mobile telephone apparatus as claimed in claim 1, further comprising: a clock circuit (9) for measuring a first interval of stopping supplying said power to said radio communication means, a second Interval in said moving condition and displaying means (3) for displaying said first interval and said second interval, wherein said detection means (7) comprises receiving means (11) for receiving a vehicle speed signal indicative of a vehicle on which said mobile telephone apparatus is mounted.

Patentansprüche

1. Mobiles Telefongerät, umfassend:
eine Funkkommunikationseinrichtung (2) mit einer Antenne zum Empfangen eines Funkwellensignals und Ausgeben eines Empfangssignals;
eine auf das Empfangssignal ansprechende Beurteilungseinrichtung (6) zum Beurteilen, ob sich das mobile Telefongerät innerhalb oder auBerhalb eines Dienstbereichs des Funkwellensignals befindet; und
eine Leistungsversorgung (4) zum Zuführen von Leistung zu der Funkkommunikationseinrichtung,

gekennzeichnet durch

eine Erfassungseinrichtung (7) zum Erfassen, ob sich das mobile Telefongerät in einem Bewegungszustand oder in einem statischen Zustand befindet; und
eine Steuereinrichtung (8), die auf die Beurteilungseinrichtung und die Erfassungseinrichtung anspricht, um die Zufuhr der Leistung zu
der Funkkommunikationseinrichtung zu beenden, wenn sich das mobile Telefongerät außerhalb des Dienstbereichs befindet und sich das mobile Telefongerät in dem statischen Zustand befindet.
2. Mobiles Telefongerät nach Anspruch 1, ferner um fassend:
eine Zeitmesserschaltung (9) zum Messen eines ersten Intervalls des Beendens der Leistungszufuhr zu der Funkkommunikationseinrichtung, eines zweiten Intervalls in dem Bewegungszustand, und eine Anzeigeeinrichtung (3) zum Anzeigen des ersten Intervalls und des zweiten Intervalls.
3. Mobiles Telefongerät nach Anspruch 1, bei dem die Erfassungseinrichtung (7) einen Beschleunigungsmesser zum Erfassen einer Beschleunigung des mobilen Telefongeräts umfaßt.
4. Mobiles Telefongerät nach Anspruch 1, bei dem die Erfassungseinrichtung (7) einen Vibrationssensor zum Erfassen einer Vibration des mobilen Telefongeräts umfaßt.
5. Mobiles Telefongerät nach Anspruch 1 , bei dem die Erfassungseinrichtung (7) eine Empfangseinrichtung (11) zum Empfangen eines Fahrzeuggeschwindigkeitssignals umfaßt, das ein Fahrzeug anzeigt, in welchem das mobile Telefongerät eingebaut ist, wobei die Erfassungseinrichtung (7) aus dem Fahrzeuggeschwindigkeitssignal erfaßt, ob sich das mobile Telefongerät in dem Bewegungszustand oder in dem statischen Zustand befindet.
6. Mobiles Telefongerät nach Anspruch 1, ferner um fassend:
eine Zeitmesserschaltung (9) zum Messen eines ersten Intervalls des Beendens der Leistungszufuhr zu der Funkkommunikationseinrichtung, eines zweiten Intervalls in dem Bewegungszustand, und eine Anzeigeeinrichtung (3) zum Anzeigen des ersten Intervalls und des zweiten Intervalls, wobei die Erfassungseinrichtung (7) eine Empfangseinrichtung (11) zum Empfangen eines Fahrzeuggeschwindigkeitssignals umfaßt, das ein Fahrzeug anzeigt, in welchem das mobile Telefongerät eingebaut ist.

Revendications

1. Dispositif de téléphone mobile comprenant:
un moyen de communication radio (2) comportant une antenne destinée à recevoir un signal d'onde radio et à fournir en sortie un signal de réception,
un moyen d'évaluation (6) sensible audit signal de réception afin d'évaluer si ledit dispositif de téléphone mobile est à l'intérieur ou à l'extérieur d'une zone de service dudit signal d'onde radio,
une alimentation (4) destinée à fournir de l'alimentation audit moyen de communication radio,
caractérisé par
un moyen de détection (7) destiné à détecter si ledit dispositif de téléphone mobile est dans un état de déplacement ou un état statique, et un moyen de commande (8) sensible audit moyen d'évaluation et audit moyen de détection pour arrêter de fournir ladite alimentation audit moyen de communication radio lorsque ledit dispositif de téléphone mobile est à l'extérieur de ladite zone de service et que ledit dispositif de téléphone mobile est dans ledit état statique.
2. Dispositif de téléphone mobile selon la revendication 1, comprenant en outre : un circuit d'horloge (9) destiné à mesurer un premier intervalle d'arrêt de la fourniture de ladite alimentation audit moyen de
communication radio, un second intervalle dans ledit état de déplacement et un moyen d'affichage (3) destiné à afficher ledit premier intervalle et ledit second intervalle, dans lequel ledit moyen de détection (7) comprend un moyen de réception (11) destiné à recevoir un signal de vitesse de véhicule indicatif d'un véhicule sur lequel ledit dispositif de téléphone mobile est monté.

FIG. 2

FIG. 3

(19)

Europäisches Patentamt European Patent Office
Office européen des brevets

(12)

EUROPEAN PATENT APPLICATION
(43) Date of publication:
(51) int Cl. 7 : H04M 1/00, G01C 21/20
30.05.2001 Bulletin 2001/22
(21) Application number: 00309610.4
(22) Date of filing: 31.10 .2000
(84) Designated Contracting States: AT BECHCYDEDK ES FIFR GB GR IEIT LILU MC NL. PT SE
Designated Extension States:
AL LT LV MK RO SI
(30) Priority: 29.11 .1999 GB 9928182
(71) Applicant: NOKIA MOBfLE PHONES LTD. 02150 Espoo (FI)

- Liukkonen-Olmiala, Tea 90940 Jääl ($\mathbf{F l}$)
- Hynninen, Tiina 90500 Oulu (FI)
- Pirkola, Jani 58212 Liniöping (SE)
- Sippola, Leena 90500 Oulu (FH)
- Mäntyjärví, Jani 90230 Oulu (Fi)
- Mäntyla, Vesa-Matti Fin-90500 Oulu (FI)
(72) inventors:
- Kaartinen, Sanna
- Tuulari, Esa

Fin-90440 Kempele (FI)
00140 Helsinki (FI)

- Seppảnen, Tapio Fin-90550OUlu (FI)
92430 Paavola (FI)
- Lustila, Risto 96400 Rovaniemi (FI)
(74) Representative: Style, Kelda Camilla Karen et al Page White \& Farrer, 54 Doughty Street London WC1N 2LS (GB)
(54) Handheld devices
(57) A mobile communications device comprising: and trained signal processing means for processing an means for determining the orientation of said device; output of the determining means.

Description

Field of the Invention

[0001] The present invention relates to handheld devices and in particular, but not exclusively, to handheld devices such as mobile telephones or the like.

Background to the Invention

[0002] Wireless cellular telecommunication networks are known. The area covered by a telecommunications network is divided up into a number of cells. Each cell has a base transceiver station associated with it. The base transceiver station is arranged to send signals to and receive signals from mobile stations in the same cell as the respective base station. The signals sent between the mobile stations and the base station permit voice andior data communications to take place.
order to in order to prevent the unauthorised use of mobile stations by other people, password protection is used. In That password consists of a number.
[0004] One problem with the use of numbers is that it can be difficult for the user to remember the password. This is both inconverient and annoying to the user.
[0005] Alternative methods of preventing unauthorised use of a moble phone have been proposed which rely on finger print recognition. The phone can be set up so that it can only be activated if it correctly ideniffes the user's fingerprint. However, if fingerptint data is stolen, for example, from a central store, it is not possible for the user to alter his fingerprint. Accordingly, the unauthorised use of the moble phone may not be preventable.
[0006] One further probiem is that the password used by the user may be simple for an unauthorised person to guess and once the correct password has been guessed, the mobile teiephone can be used without the consent of its owner. People often use their bithdays of the name of a pet.
[0007] The optimal settings for a mobile telephone, such as its volume level and the fike may depend on whether the mobile talephone is slationery, the user is waking, cycling or in a caf. Currently, in order to achieve the optimal settings, the user has to change the settings as the environmental changes. This is inconvenient and often the user forgets to do this. The user may forget to change the settings before the user receives a call and the user then has to either alter the settings during the call or conduct the call with the less than optimal settings.

Summary of the Invention

[0009] According to one aspect of the present invention, there is provided a mobie communications device comprising means for determining the orientation of said device; and trained signal processing means for processing an output of the determining means.
[0010] According to a second aspect of the present invention, there is provided a mobile communications device comprising means for detecting movement of the device and traned signal processing means for processing an output of the detecting means.
According to a third aspect of the present invention, there is provided a hand held device comprising means for determining at least one of orientation and movement of the device; and processing means for recognising at least one predetermined orientation andior movement of said device.
[0014] The following preferred features of embodiments of the present invention can be used in conjunction with one or more of the above aspects.
[0012] Preferably, the trained signal processing means are arranged to recognise at least one predetermined movement. The trained signal processing means may be arranged to determine the orientation of the device. The trained signal processing means may be arranged to recognise at least one predetermined position.
[0013] The processing means may be arranged to recognise a sequence of movements. The trained signal processing means may be arranged to determine the cutrent mode of operation of the device. For example, depending on the orientation and/or movement of the device, it is possible to determine if the device is in a meeting mode, a games mode or the like.
[0014] Preferably, control means are provided to controf the device to provide an associated function when a predetermined orientation and/or movement is recognised. For example, the device may be usable ondy if a predetermined orientation and/or movement is recognised. in other words, passwords can be implemented using a predetermined orientation andior movement. The associated function may be a function of the user interface of the device. For example, where the device is a mobite telephone, a prodetermined orientation andior movement may be used to answer
a call, close connection, switch of an alarm or the like.
[0015] The means for detecting the movement of the device may comprise at least one accelerometer. The means for determining the orientation of the device may comprise at least one accelerometer. In preferfed embodiments of the present invention, at least one acceferometer is arranged to provide movement and orientation information. Pref-
erably, three acceterometers are provided which are arranged to provide information in respect of three orthogonal directions.
[0016] The trained signal processing means may comprise at least one neural network. The at least one neura: network may be used for recognising the orientation of the device. The at least one neural network may use a self organising mapping techrique.
[0017] The trained signal processing means may comprise at least one pattem recognition system, for example a hidden Markov model.
[0018] The predetermined orientation andior movement of the device may be pre-programmed or alternatively may be programmed into the device by the user or selected by the user.
[0019] Preferably, the device is a mooile telephone. It should be appreciated that in atternative embodiments of the invention, the device can be any other suitable device, such as a control device for a game or the like.
[0020] According to a fourth aspect of the present invention, there is provided a method for controlling a device comprising the steps of determining the orientation and/or movement of the device; using a trained signal processing method to process the resull of the determining step; and controling the device in response to the determined arienfation and/or movement of the device.

Brief Description of the Drawings

[0021] For a better understanding of the present invention and as to how the same may be carried into effect, reference will now be made by way of example to the accompanying drawings in which:-

Figure 1 shows a celfular telecommunications network with which embodiments of the present invention can be used;
Figure 2 shows a block diagram of a moblle telephone embodying the present invention;
Figure 3 shows a schematic view of an accelerometer used in the arrangement of Figure 2;
Figure 4 shows an example of signals which are output by the accelerometer in Figure 3; and
Figure 5 illusitates the function provided by the windowing circuitry of Figure 2.

Detailed Description of Embodiments of the Invention

[0022] Reference will first be made to Figure 1 which shows a wireless cellular telecommunications network 2. The area coveret by the network 2 is divided up into a plurality of celis 4 . Each of the celis 4 has associated with it a base transceiver station 6 . Each base transceiver station 6 is arranged to communicate with mobile stations 8 in the cell associated with that base transceiver station 6 .
[0023] The network shown in Figure 4 may use any suitable method of communication for communicating with the moble stations. In particular, one or more of the following methods may be used: Tme Division Multiple Access, Frequency Division Multiple Access, Spread Spectrum Methods such as Code Division Multiple Access of other suitable methods. In some embodiments of the present hinention, hybrids of two or more of these access methods may be used. [0024] Reference will now be made to Figure 2 which shows an embodiment of the present invention, arranged to be incorporated in a mobile telephone. The elements shown in Figure 2 are arranged to provide information as to the orientation of the moble telephone and its movement.
[0025] The arrangement shown in Figure 2 comprises three accelerometers 10, 12 and 14. The first accelerometer 10 is arranged to detect motion in the X difection. The second accelerometer 12 is arranged to detect motion in the Y direction. The third accelerometer 14 is arranged to detect motion in the Z direction. In other words, the three accelerometers 10, 12 and 14 are each artanged to detect motion in mutually perpendicular difections.
$10026]$ Reference is made to Figure 3, which shows a schematic example of one accelerometer which can be used with embodiments of the invention. The accelerometer comprises a mass 100 . The accelerometer shown in Figure 3 is arranged to detect motion in the cirections of arrow A. When there is no motion in the directions of arrow A and there are no external forces on the mass in the directions of arrow A, the mass will be in its rest position shown in Figure 3. However, when there is movement in the direction of arrow A, the mass will move about the rest position indicated by dotfer line B. it should be appreciated that if gravity provides a force in one of the directions of arrow A, the rest position will be above or below line B , depending on the orientation of the sensor.
[0027] Reference is made to Figure 4 which shows an output of the accelerometer shown in Figure 3. The sensor is initially oriented in such a way that there is a force on the mass 100 in one of the directions of arrow A due to gravity.

EP 1104143 A2

The part of the graph 102 represents the condition where the sensor is in one orientation such that it is affected by gravity in one of the directions of arrow A and there is movement in at least one of the directions of arrow A. The part of the graph referenced 104 shows the output of the accelerometer when the sensor is in the opposite orientation so that gravity still affects the sensor but in the other direction of arrow A. This can be because the phone has been furned upside down. There is also movement in at least one of the directions of atrow A. Thus, graph 102 can be said to be when gravity acts in the direction of arrow C whilst part of the graph referenced 104 is where gravity acts in the direction of arrow D.
[0028] As can be seen in Figure 4, the part of the graph referenced 102 provides a signal based about a centre point represented by line E whilst the part of the graph referenced 104 provides the signal centred about the line F. Lines E and 5 provide information about the position of the phone whilst the signats themselves provide informaton about the amount of movement. It should be appreciated that depending on the orientation of the phone, the signals can be centred about different lines which will be between lines E and F. This is because lines E and F represent the two extreme positions.
[0029] Each of the sensors shown in Figure 2 provides a signal of the type shown in Figure 4 but for the three orthogonal directions X, Y and Z. The signats thus provide information about the position of the phone in the X, Y and Z directions as well as information about movement of the phone in the X, Y and Z directions.
[0030] In preferred embodiments of the present invention, accelerometers such as the ADXL 202 made by Analog devices may be used. Any other type of accelerometer can be used which may use different techniques in order to sense gravity to provide position information and acceleration to provide movement information.
[0031] The output of the accelerometers 10 to 14 are input to an analog to digital converter 16 which converts the analog outputs of the accelerometers into digital signals. It should be appreciated that in alternative embodiments of the present invention, the accelerometers may provide digital outputs, in which case the analogue to digital converter can be omitted. In still further embodiments of the present invention, it may be possible to process the analog outputs of the accelerometer in their analog form and thus the need for the analog to digital converter can be avoided.
[0032] The operation of the accelerometers 10 to 12 will depend on the temperatufe of the environment in which the mobile telephone is located. The temperature sensor 24 thus measures the temperature inside the mobile station. The femperature sensor 24 may take any suitable format. The output of the temperature sensor 24 is connected to an analog to digital converter 26 . The output of the temperature sensor 24 is an analog signal which is converted by the analog to digital converter 26 to a digital signat.
[0033] The digital signal representing the temperature of the mobile phone is input to a calbration arrangement 22. This calibration unit 22 provides a correction output which is used to correct the digital signals representing the output of the accelerometers 10 to 14 . In this way, the influence of temperature on the accelerometers can be disregarded so that a more accurate evaluation of the movement and position of the mobile telephone can be made.
[0034] The calibration unit 22 can take any suitable format. For example, the calibration unit can take the form of a look up table, with the digital output of the analog to digital converter 26 providing an address to the look up table. Alternatively, the calibration unit may perform an algorithm which calculates the compensation required based on the output of the analog io digital converter 26. The calibration unit 22 can of course use a combination of an algorithm and a look up table.
[0035] The analog to digitat converter 16 connected to the accelerometers 10 to 14 provides two identical outputs. Each output contains a digital representation of each of the three outputs of the three acceleromefers 10 to 14.
[0036] One of the outputs is connected to a low pass filtering arrangement 18. The low pass fiter is arranged to remove frequency components above a given cut of frequency. For example, with the signal shown in Figure 4, the low pass filter 18 will remove the part of the signal above line E for the part of the signal referenced 102 and will remove the part of the signat above line F for the part of the signal referenced 104 . The function of the low pass filter 18 is effectively to allow the middle positions of each portion of the output from each sensof to be determined as this provides information as to the position of the mobile telephone. Altematively, a DC estimator can be used to provide orientation information.
[0037] In the example shown in Figure 4, lines E and F are straight lines. However, it shouid be appreciated that depending on the motion of the mobile telephone, the line about which the signals are centred may be curved or any other possible shape.
[0038] The output of the low pass fitter 18 is input to a position recognition systert 30 in a post processing layer 28. The position recognition system 30 includes an artificial neural network 32 . The neural neiwork 32 is trained to identify the position of the mobile telephone based on the fittered outputs which it receives from the low pass filter 18 for each of the three sensors. For example, one combination of values from the three accelerometers 10 to 14 will be provided when the mobile phone is lying flat on a table with its display uppermost. A different combination of outputs from the three acceleromelers will be provided when the mobile phone is in a vertical position and so on.
[0039] Any suitable type of arificial neural network ANN or pattern recognition unit can be used. By way of example, the artificial neural network 32 that can be used is the seff organising map proposed by Kohonen. Another example of

EP 1104143 A2

an ANN is a multi tayer perception neural network. This ANN is used for pattem recognition and feature extraction. In embodiments of the present invention, this ANA is able to extract information relating to the position of the mobile phone [0040] A self organising map SOM is a neural network which forms spatially organised feature maps from an N dimensional input signal in an unsupervised manner. In the embodiment of the present invention, N is equal to 3 with information being provided by each of the three sensors. The method used by the self organising map is similar to human sensory input mapping in the brain, which is then organised topographically. During training, weight sectors w_{f} (n) of the network are shifted closer to the input sectors X by

$$
w_{j}(n+1)=w_{j}(n)+k_{k}(n) n_{j \cdot f(x)}(n)\left(x-w_{j} ;(n)\right) .
$$

where $w_{j i}(n+1)$ is the updated weight vector, $k(n)$ the learning rate and $n_{f, 1(x)}(n)$ the neighbourhood function. The learning rate and the neighboumood function are changed as the training proceeds. After seif-organization the hand fabelled training data presented to the SOM again and labels are suggested for the winning neurons with their mmediate neighbours. All suggestions are collected for each neuron, after which majority voting is performed for final fabelling. 10041] The three dimensional sensor data is normalized prior to the ANN, that is the mean and variance are calculated and used for computing the normalization. A normalization block 31 can be implemented into the position recognition system 30. The normalisation block 31 receives the output of the low pass filter 18 and the output of the normalisation block is input to the ANN.
[0042] The artificial neural network unit 32 is arranged to provide two functions, feature extraction and classification. Feature extraction allows the neural network to process the information which it has received. The output is then classified so that it can be determined what has occurred. In one embodiment of the present invention, the neural network 32 is trained to identify the following positions:
the mobile phone is in an orientation with the display upwards, the moble phone is in an orientation with the display downwards, the mobile telephone has a typical in the pocket orientation,
the mobile phone is being held to the user's left ear,
the moblie phone is being held to the user's right ear
the moblie phone is in an orientation on its lef side,
the mobile phone is in an orientation on its right side,
the moblie phone is standing, and
the mobile phone is upside down.
[0043] It should of course be appreciated that embodiments of the present invention may be used to identify a larger range of orientations of the mobile station or indeed any orientation of the mobile station.
[0044] In one embodiment of the present invention, the self organising map used is a two dimensional hexagonal grid arranged to be seven neurons by seven neurons. The parameters of the self organisation map are shown in tabie 1 below.

Table 1	
Parameter Value/Argument Map lattice Hexagonal Initialization type Linear Size of the map 7×7 Initial and tinal leaming radiuses $[31]$ Initial learning rate 0.03 Learning rate Linear Neighbourhood function epanechrikov	

The signals from the accelerometers are sampled. In one embodiment they are sampled with a frequency of 90 Hz . The input to the low pass fliter 18 starts a sequence of vectors of the following form:

EP 1104143 A2

$$
P_{n}=\left[x_{n} y_{n} z_{n}\right]^{\top}
$$

where X_{n}, Y_{n} and Z_{n} ere acceleration signals in X, Y and Z directions at a discrete time N, In the low pass fiter 18 , each vector component is filtered and normalised separately. A low pass filtering is carried out using, in one embodiment of the present invention, a fourth order Butterworth flter of the type IRR. A 3-dB cut off frequency of 2.5 Hz was used in one preferred embodiment of the present invention. The variance of each component is nomalised to 1 and the mean to zero. The ptocessed components of each vector are recombined to a sequence of 3 dimensional feature vectors P_{n}. [0045] The feature vector P_{n}^{\prime} at time N is input to a 2 dimensional feature map of the artificial neural network 32 . This produces an index I_{n} representing the training data cluster in question. The resulting sequences of self organising map indices I_{n} is interpreted by the classifier which assigns a label to each index according to the training data. Each label suggests a specific gesture or position of the mobile telephone, for example display up etc. Finally, a majority voling is formed among the label sequence to recognise the gesture.
[0046] The position recognition system 30 provides two outputs. The first output provides position information on the phone which can be used as required. The second output is to a dynamic acceleration recognition system 35 which will be discussed in more detail hereinafter.
[0047] One example of an artificial neural network is a multi layer perception network (MLP). This has three input layer neurons, ten hiden layer neurons and six output layer neurons. The network can produce position data as number sequences of six numbers. Each number can represent a different one of the positions. For example:

* Display up: 001000
- Display down: 100000
- Device standing: 000100
- Bottom up: 010000
- Sideways to the left: 000001
- Sideways to the right: 000010
[0048] The output of the analog to digital converter 16 connected to the outputs of the accelerometers 10 to 14 is also connected to a high pass filter of AC estimator 20 . The high pass filter is arranged to remove the effects of, for example, gravity from the sighal. In the case of the signal shown in Figure 4, the high pass filter 20 is arranged so that the fitst part of the signal 102 and the second part of the signal 104 are centred about a common line having a zero or similar value. If the signal is such that the centre line curves, again, the signal wili be filtered such that the signal is centred about a straight horizontal line at the same zero or other reference point. This is because the signals are being used to identify information relating to the movement of the mobile telephone and not its position.
[0049] The output of the high pass fliter 20 is input to a windowing unit 32. The winoowing unit 32 receives three signals, an example of which is shown in Figure 5 . One signal represents the output of the X accelerometer 10, the second input represents the output of the Y accelerometer 12 and the third input represents the outplat of the Z accelerometer 14 . Each of the signals is centred about a zero level. The windowing unit 32 defines a window. The signals within a window are processed together in order to obtain the required information. As can be seen from Figure 5 , the first window shown, window A overlaps slightly with the next window, window B. It should be appreciated that all of the signals output by the high pass filter wili be divided into windows for processing. The filtering may use any form of DSP filters.
[0050] The output of the windowing unit 32 is comnected to the dynamic acceleration recognition system 35. One output of the windowing unit 32 is input to a first vector quantization unit 34. The vecfor quantization unit 34 quantizes the signals received in a given window into a plurallty of vectors each having an X, an Y and an Z value. The values are derived from the respective X, Y and Z signals. The quantized signals are output to a second pattern recognition system 36. This system is, in preferred embodiments of the present invention, a hidden Markov Model (HMM).
[0051] The windowing unit 32 afso provides an output to a fast Fourier transform unit 40 . This unit converts the received signals from the lime to the frequency domain. The output of the fast Fourier transform unit 40 is input to a frequency peak estimate unit 42. The frequency peak estimate unit 42 didentifies, for each of the X, Y and Z signals the highest frequency. The identified highest frequency for each of the X, Y and Z signais is output to a second vector quantization unif 38 . This quantizes the output of the frequency peak estimate unit 42 and outputs it to the HMM 36 . [0052] The fast Fourier transform unt 40 also outputs the X, Y and Z signals in the frequency domain to the second vector quantization unit 38 which also quantizes the three X, Y and Z signals and outputs them to the neural network 36 . [0053] Based on the information which the neural network receives from the first and second vector quantization units 38 and from the position recognition system 30 , the neural network 36 is able to identify how the mobite station is moving.
[0054] The hidden Markov model 36 is a stochastic process with an underlying process of transitions between hidden
states of the system and a process of emitting observable outputs. When the oftputs are discrete symbols, this is referred to as discrete HM M . The state transitions form a first order discrete Markov process with a transition probability distribution A and in an initial state distribution π. The observable process of emitting symbols can be presented as an observation symbol distribution 8 . Thus each $H M M \lambda$ can be represented as a tripiet- $\lambda=(A, B, \pi)$. In the embodiment of the present invention, Baum-Weich and Viterbi algorithms have been used for the training and recognition tasks. The loq+Viterbi form of the Viterbi algorithm has been used as this is economic with computational processing. Before training, the initialisation of the HMM parameters were carried out as follows:

1. The initial state probability for the first state was set to 1.
2. The transition probability distribution for each state was set uniformerly distributed; and
3. Any topologically allowable state transition from individual states was given probabilities of the fom $1 /($ amount of aliowabie state - transitions from state).
[0055] A HMM with a left right topology is used for modelling time series whose properties change sequentially over time. This model was used in one embodiment of the present invention. In one implementation, left-right HMM models with 7 states were used. It has been found that the number of states was not particularly critical and that there was little difference between choosing five or four states on the recognition ability of the system. Any other type of HMM may be used in alternative embodiments of the thvention.
[0056] A collection of the three dimensional acceleration data is performed with a 100 Hz sampling rate. As described previously, each signal from the X, Y and Z accelerometers 12 to 44 are separately filtered with the high pass filter 20. In particular, a fourth order low pass Butterworth filter with a 3 dB cut off frequency of 4 Hz is used. The signal was decimated at $1 / 6$ times the original rate.
10057] The HMM 36 detecis the usable signal, this is also referred to as gesture segmentation. For individual gestures, normalisation of each component to a zero mean and unit variants is performed.
[0058] The vector quantization units 34 effectivety act as a code book. Discrete code book indices correspond to the observable symbols and are input to the HMM both in the traning and test phase. The indices are computed by vector quantization in the first vector quantization unit 34 of the $3 D$ input vectors of the acceleration signals from the accelerometers. The code book used by the vector quantization units is constructed by uniformeriy quantizing the 3D feature space. The uniform quantization is advantageous because the acceleration trajectory in the feature space can pass through any point with equal probability within the region defined by the application. The maximum values of each acceleration component was searched in the measured training data in order to define the parallelogram of activity in the feature space. In one preferred embodiment of the present invention, the code book was of 5123 dimensional code words. The larger the size of the code book, the more accurate the recognition capability of the recognition system. Accordingly, the degree of recognition which is required will determine the size of the code book.
[0059] The vector quantization carried out by both of the vector quantization units is performed in a conventional way by selecting the code book entry containing the closest code word to the input vector in the Euclidean sense.
[0060] The HMM 36 can thus be trained to recognise certain gestures or movements of the phone. This will rely on a combination of information relating to the position of the modile telephone and the movement of the mobile phone. For example, using information on the position andor movement of the mobile station, it is possible to identify the following:
4. The user is holding the phone in front of him and watching the display. This can be while the user is moving or stationary.
5. The phone is lying on the table with its display downwards.
6. The phone is against the ear of a user with the user either stationary or moving.
7. The phone is in a pocket of a user with the user moving.
8. A ringing phone, which is in a sight hand side of a belt box with the display tumed towards the user is taken into the right hand and the number of the caller is checked by looking at the display. After this, the phone is returned to the beit holder.
9. A ringing phone, which is in a right hand side belt with display towards the user is taken into the right hand and the number of the caller is checked by the user viewing the display. Ater this, the user opens the tine by pressing the corresponding button on the user interface and brings the phone up to his right ear.
10. The phone catl ends, the phone is taken from the ear and the line is shut down by activating a button on the interface. Finally, the phone is put back into the belt box.
11. A ringing phone, which is on the desk with its display facing up is taken into the right hand and the number of the caller is checked by watching. Afler this, the phone is puif back on the desk in the same position.
12. A ringing phone, which is on the desk with its display facing upwaros is taken into the right hand and the number of the caller is checked by watching. After this, the user opens the line by pressing the corresponding button on
the interiace and moves the phone to the right ear.
13. The phone call ends, the phone is taken from the ear and the line is shut down by activating a button on the display. Finally, the phone is put back on the desk with its display up.
[0061] These are just some of the examples of different movements of the phone which can be identified by the ANN 32 and/or the HMM 36.
[0062] The information provided by the post processing layer 28 including the neural network and HMM can be used in a number of different ways. For example, information as so the movement of the user can be ascertained. For example, it is possible to identify whether the user is moving or stationary. If the user is moving, it is possible to identify the type of movement and thus to identify if the user is walking, running, cycling, or in a car or the like. It is then possible to automatically select the settings of the user so as to optimise the cuality with which the user is able to make and receive calls. For example, if the user is moving, it may be harder for the user to hear the ringing tone of the phone. Accordingly, the volume of the ringing tone may be automatically increased.
[0063] In one embodiment of the invention, information on the type of movement of the user may be sent to the base station which uses that information for determining the base station with which the mobile station is to communicate, when handoff should occur or the like.
[0064] In one embodiment of the present invention, the neural networks can be trained to recognise certain gestures and to control the phone accordingly. For example, instead of a number which is input to the user interface to provide password protection, a gesture can be used. For example, the gesture may consist of the user signing his name in the air or against a surface with the mobile phone. Alternatively, the gesture may comprise a set of movements.
[0065] Using the position and movement neurat networks, the HMM is able to identify when the user performs the password gesture and to allow the phone to be used when that gesture has been detected.
[0066] it should be appreciated that the neurai network is abie to identify the gesture from the movement of the phone and the position of the phone over a period of time. Typically, but not always, the gesture will span several windows.
[0067] Gestures can asso be used to achieve centain functions. For example, a series of gestures may be used to automatically answer the phone, for example, a phone could be shaken in a particular way for a predetermined number of times.
[0068] It is in fact possible to allow the user to controt virtually any aspect of the operation of the phone which can be usually controlled via the user interface using an associated gesture. The user can select his own gestures. He will need to train the neural network to recognise the gesture by repeating the gesture a number of times. The neural network will then learn to recognise that gesture and when that gesture is recognised causes the associated function to occur.
[0069] Gesture based passwards can be used by a group of users to share some data. In this case, information to train the neural network to recognise the gesture may be transmitted to the mobile station or mobile stations from base stations.
[0070] In an atemative application of this, the gesture password may be used to generate a game. For example, a user may transmit a ciphered file to the mobile phone of friend along with associated gesture password information. The friend may then try to get the right gesture in order to access the ciphered file. The mobile station can be programmed to provide audio or visual indicators as to whether or not there is a match and how similar the gestures are.
[0071] It should be appreciated that the gestures can be in two or three dimensions. The gestures can be in the air or against a surface. For example, the antenna of a phone could be used as a pen like member.
[0072] In one embodiment of the present invention, the user may move the phone, for example as a pen fo write messages in the air or against the surface. The information which is drawn or written by the user may be displayed on the display. In more sophisticated embodiments of the present invention, the letters which are written are recognised. In this way, a simple way to generate text messages is provided without having to use the keyboard which can be time consuming given that there are usually only a firmited number of keys.
[0073] The neural network can be trained so as to take into account the speed at which a gesture is formed and only to recognise that gesture if the timing is similar to that which has been prestored. However, in alternative embodiments of the present invention, the neural network can be trained so as to ignore cifferences in timing.
[0074] The password can be arranged to protect any suitable resource, such as access to the mobile telephone itself, access to the SIM card or access to a file.
[0075] Embodiments of the present invention are applicabie not only to mobile telephones but any other suitable hand held device. These hand heid devices may be provided with accelerometers such as discussed hereinbefore.
[0076] One example of an atternative device is one which includes an integrated alarm clock. Thai might be switched off by a shaking type of gesture. It should be appreciated that some mobite telephones may incorporate an alarm clock. [0077] Embodiments of the invention may be used with devices such as Tamogochi toys where the users has to provide a feedback in response to certain stimuli. The gestures can provide the feedback with different gestures being
used tor different feedback responses.
[0078] Gestures can be carried out in order to permit data to be logged in an automatic diary, reminder system or context aware applications.
[0079] It should be appreciated that in certan embodiments of the present invention, the gestures used by the user can be changed either for variefy ot for security purposes.
[0080] it should be appreciated that the neural networks provide a degree of tolerance for the matching of the performed gesture and the known gesture. In some embodiments of the present invention, the degree of telerance which is allowable can be adjusted by the user.
[0081] in preferfed embodiments of the present invention, the mobile telephone or similar device will be sold with at least part trained neural networks. However, in alternative embodiments, the user may do some or alf of the training. The training can be done at the device itself. The training can also be done as follows:

* The device logs the sensor data during a gesture.
- The data is sent to a network server which carries out the required training.
- The server sends the ANN soutce code to the device. In this way, a new gesture can be recognised. This can be quicker than training in device itself.
[0082] Gesture recognition can be used in order to control dialing functions of a mobile phone. It is also possible to use gesture recognition in order to play games with moblie telephones or any other such devices. The information from the accelerometers can be used to control the interface of the mobile phone in a number of ways. Games can be played by titting the mobile station and detecting that movement and position. Dialing can be achieved by for example shaking. Certain positions of the phone can cause certain modes to incur and so on.
[0083] In the embodiment described hereinbefore, discrete HMM is used. If continuous HMM is used, effective quantization would nof be required.
[0084] Embodiments of the present invention can be used to provide an automatic antitheft alarm system. For example, if the device is used wifh the incorrect gesture or is moved when it should be stationary, an alarm can be set. [0085] In another embodiment of the present invention, the device is a hand heid device which acts as a control device, for example for a game of the like. The control device may be wired or wireless. The device can therefore act as a joystick or the like.
[0086] it should be appreciated that any alternative neural nework to the artificial neural network or HMM network described in the embodiment of the present invention can be used in embodiments of the present invention. Multiple parallel recognition systems (ANNs and/or HMMs) can be used depending on the operating state of the device.
[0087] In an alternative embodiment of the invention, the device or mobile telephone may have different modes. Those modes may for example be meeting mode, games mode or any other different modes. The gestures, orientations or movements which are detected in the different modes may result in different functions in different modes. Of course some gestures, movements or positions may have no significance in some modes. The neural networks may be trained to determine the mode from the position and/or movement of the device. For example, in a meeting mode, the mobile telephone may be stationary and lying on a horizontal surface with its display mode upwards.

Claims

1. A mobile communications device comprising: means for determining the orientation of said device; and trained signal processing means for processing an output of the determining means.
2. A mobite communications device comprising: means for detecting movement of the device and trained signal processing means for processing an output of the detecting means.
3. A device as claimed in datm 2 , wherein said trained signal processing means are arranged to recognise at least one predetermined movement.
4. A device as claimed in clam 2, wherein said trained signal processing means are arranged to dekermine the orientation of the device.
5. A device as claimed in ciaim 1, wherein said trained signal processing means are arranged to recognise at least one predetermined position.
6. A hand held device comprising:

EP 1104143 A2

means for determining at least one of orientation and movement of the device; and processing means for recognising at least one predetermined orfentation and/or movement of said device.
7. A device as clamed in claim 6 , wherein said processing means comprises trained signal processing means.
8. A device as claimed in claim 2, wherein said processing means are arranged to recognise a sequence of movements.
9. A device as claimed in claim 1, wherein said trained signal processing means is arranged to determine the current mode of operation of said device.
10. A device as clamed in claim 3, wherein control means ate provided to control the device to provide an associated function when a predetermined orientation andior movement is fecognised.
11. A device as claimed in claim 10 , wherein said device is usabie only if a predetermined orientation and/or movement is recognised.
12. A device as ciaimed in claim 10, wherein said associated function is a function of a user interface of said device.
13. A device as claimed in claim 2 , wherein said means for detecting the movement of the device comprises at least one accelerometer.
14. A device as claimed in claim 1, wherein said means for determining the orientation of the device comprises at least one accelerometer
15. A device as claimed in claim 13, wherein three accelerometers are provided which are arranged to provide information in respect of three orthogonal directions.
16. A device as claimed in claim 1 , wherein said trained signal processing means comprises at least one neural network.
17. A device as claimed in claim 16, wherein said trained signal processing means comprises at least one neural network is provided for recognising the orientation of said device.
18. A device as claimed in claim 17, wherein the at least one neural network uses a self organising mapping technique.
19. A device as claimed in clam 3 , wherein said trained signal processing means comprises at least one pattern recognition system.
20. A device as chamed in claim 19, wherein the at least one petlern recognition system uses a hidden Markov model.
21. A device as claimed in claim 1 , wherein the device is a mobile teiephone.
22. A device as claimed in claim 3, wherein the predetermined orientation andor movement of the device is preprogrammed
23. A device as claimed in ctaim 3, wherein the device is arranged to recognise the predetermined orientation andior movement of the device which is selected by the user.
24. A method for controlling a device comprising the steps of:
determining the orientation and/or movement of the device;
using a trained signal processing method to process the restit of the determining step; and controling the device in response to the determined ofientation andion movement of the device.
25. A method as claimed in claim 24, wherein in the processing step, at least one predetermined orientation and/or movement of the device is recognised.
26. A method as claimed in claim 25, wherein in the control step, an associated function is provided when a predetermined orientation andior movement is recognised.
27. A method as clamed in claim 24, wherein said trained signal processing method uses at least one neural network.
28. A method as claimed in claim 24, wherein said trained signal processing method uses at least one pattern recognition systern.
29. A mobile communications device comprising means for determining the orientation of the device.
30. A mobile communications device comprising means for detecting movement of the device.

FIG. 1

FIG. 4

EP 1104143 A2

FIG. 3

EIG. 5
(19)
 Europalisches Patentamt
European Patent Office
Office europeen des brevets

(11)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 01.09.2004 Bulletin 2004/36
(43) Date of publication A2: 30.05.2001 Bulletin 2001/22
(21) Application number: 00309610.4
(22) Date of filing: 31.10 .2000
(84) Designated Contracting States: AT BE CH CY DE DK ES FIFR GB GRIEITLILU MC NL PT SE Designated Extension States:
AL LT LV MK RO SI
(30) Priority: 29.11.1999 GB 9928182
(71) Applicant: Nokia Corporation 02150 Espoo (FI)
(72) Inventors:

- Kaartinen, Sanna 00140 Helsinki (FI)
- Kinnunent Timo 92430 Paavola (FI)
- Lustila, Risto 96400 Rovaniemi (Fi)
- Salomäki, Lauri 96100 Rovaniemi (FI)
* Liukkonen-Olmiala, Tea 90940 Jäall (FI)
- Hynninen, Tlina 90500 Oulu (FI)
- Pirkola, Jani 58212 Linköping (SE)
- Slppola, Leena 90500 Oulu (F1)
- Mäntyjarni, Jani 90230 Oulu (F1)
- Mäntyla, Vesa-Matti Fin-90500 Oulu (FI)
- Tuulari, Esa Fin-90440 Kempele (FI)
- Seppänen, Tapio Fin-90550Oulu (FI)
(74) Representative: Style, Kelda Camilla Karen et al Page White \& Farrer,
54 Doughty Street London WC1N 2LS (GB)
(54) Handheld devices
(57) A mobile communications device comprising: means for determining the orientation of sald device; and trained signal processing means for processing an output of the determining means.

European Patent
Office

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

This annex lists the patent family thembers relating so the paterd documents cited in the above-mentioned Europeen search report. The members are as contamed in the European Patent Office EDP fite on
The Esropan Patent Otfica is in no way sable for these partioulars witich are meraly given for the purpose of information
09-07-2004


```
Inventor(s): TAKIGUCHI KIYOAKI; OKUBO HITOSHI 土 (TAKIGUCHI KIYOAKI, ;
        OKUBO HITOSHI)
Applicant(s): SONY CORP }\pm\mathrm{ (SONY CORP)
Classification: - international:G01C17/04; G01C17/30; G01C17/32; G01C22/00;
    (IPC1-7): G01C17/04; G01C17/30; G01C17/32;
    G01C22/00
    - cooperative:
Application JP2001020276320010703
number:
Priority JP2001020276320010703
number(s):
```

Absiract of $\sqrt{3} 200304485(A)$

PGOELETO OE SOLVE Toprowe an azmuth detecter, an ammoth detecter method and the the capable of pertoming a precse aximuth dexection wh a simple smume GOUTTON in as aumuth dexector senso 10 , womben mbmaton A, showng an ameth or nolination by an poted code shown by a wo dimensond baroode, mark apt wemen the sutsee of a aphere 22 to be infuenoed by geomagetism, anc it is reas by optoa cose reading vars e6t and 20 , wherby the azmuth of a watier is dsteeted.
Funher, such an azmuth deteoton sensor to can be provided on a wakng detector, ad the wathng dexector colects components of low frequency band fansmited within the body in waking by a morophone and petome a deection of walkng on the bass of the to estinate the fengt of step of the waller, and it further debecs the change of drecton of the
 waiker by detecting the ammen by the azimuth devecton sensor 10.

楽舞20603－14459
（20003－14459A）

（57）【要約
 とのでる方位検山表置，方位旗出方法等を䭪供するこ と安目的ど ${ }^{\text {G }}$ 。

 ビット等によって示むれる光尝コートによって，步值や

1

 ド読敢り部む，

子方住裕出雃睘。

出装䍚。

 フォンど，

呂を，

徒であって，
『を境勾敢むスデッグと，

裇出方法。

手段と。

摶した方位喚めま段し，

10
（0001）

 する。
［0002］

值か索位に基ついて検はするのて斿る。
（0003）

 は，ジャイロせンサー等を解い，磁窓センサーか傾をを
 どれでじ，お位を検出するために職筑せンサーがなでな

（0004）

 バーコードッ，文支列や数子列等わら学る記号等があ

Page 573 of 1488

3

偵きま检れすることもできる。また，ケーシングとす位

 シングに加えるとともなをる。これにより，液体と方立

 るだけ○振動か入力されていま゙，歩数がカウントをもると

 コ又ト化を初いていた。

 4

天（㭙開2000－193520号公報）

 トルパターンに受換し，そのク゚ターンを触析ずるどとに

広うこともも難しかった。

 100121

5

了。

上大きく談定されている。そして，このケーシング23

 ことを园的としている。

 3）．
〔0018】とのようと鹳成かせンサ本体20\＆，光学

窓位が生じることになる。そして，光学コード読取り部

 43
 を，た㶈えていま。

OHz以上）
 ロクォン40わら出力される信号は，ローバスクィカタ 41以よって，洪められた周波数，例えば200Hz以

析新43であ，浚められた周被数以下の成分の㷌步につ いて解新を在なう。

呂。
（0022）贾飞，解新暗43で，マイクロクオン40

 タトリパターンであるスペクトログラムが得られる。

 ことにより，歩行検出を行なりすくる玉。

 し，人広を仁導して，国50スペクトログラムで表でれ

浔い部分ほど周波数誩度が但い。
【0026】また，図6は，同一の我行者が，様々な步
 の（a）ね，もの場で足路䃍したもき，（b）は浑点き，

 （b），（c），（ 0 ）Cは，（
 （e）

 ける衝繋に虑じ高い周波数芇域にもエネルギースベク

云。
〔0027）とこうて，图50スペントロダラムからわ

 50 すもので，この処理ては，このスペクトロダラれねそう

 たりの歩数を求かる。またてのをき，图5に示したよう

 データはデータベース4 \＆に予め格約されていることと

刖广禺。
10029］とれたねまず，マイクロクオン40おらの
 から，ロ‥パスフィルタ41になって所定買波数以上の
得る（ステップ 201 ）をして，解植部 43 にて，こ
 （t，f）K愛換守る スデップ 202 ）。続いて筧数式

大きなれば，跲行者ロスデータス：status（t）を

 が，新に起因しない謫号，つまり図5に示したような

 なり場会，杽行者のステータスを変更しない。このよう
 テータスstatas（t）を制定し，庶前ロスデータス
状態」に変化した場合には，着地回歎を1回内ウントす

 あたりか歩数るを得るとをができ，さらに，単位時聞を歩数らで除学すれば，歩行園期を得るととができるくス テッブS207）。

 する退理を示す。との場会，データベース44に，予
國8に示すように，解材部43では，龱70ステッグS

 ターンWについて，データバーース44袗照し，このデ

 ターンW，手歩类の特钽べターンW，…等とのバター－

 ンWとの差分dを求める（ステップS 302）。をし

 S304）．

类階の閧係をクロットしたもので，全体として，これら

 するには，区100ステップS4016元すようと，歩
 に設定をそた踩行者の身長に基すき，步行モ゙ルMを用
下に示すような関㬋式によって袁される。
 $m+C$

数衫より期期信でるる。
10034］そして，位置推定部54kて，こ0ように

特鼠2003－14459

12

 らに，予めデーター゙ース44に格歒をれたデ…グルある

 る（スデッブS604）てして，デーグードース44に格納

 （ステッグS606）

Page 578 of 1488

13

 セン时 1 0 宿体か」型化にも賣㓓字るととができる。

 より，球体22がクーシング23に投触しないように突

良い。このとき，液体24Aの比霊を球22おりす大

 に，思学コード読取り部26vで読み取った光学のード

 703）。そして，これら水平方向成分•恶㯰方向成分

 （ステッヅST04）

詩，加速度が加りると球体22が偵くので，これを検出
 －ド読取り部26H，26Vでも学コードの読設取りを連続的に行ない，コントローラ300）光学コード检世部

 802～5803）続いて，これら永平方届成分，垂

 ルタ（图前無し）等によってワィルタリンダする スデッ

列部には方するのてある（マデップS806）。これ以外

 るどとが可能である。

［0045］

図て新佥。

镸から得たスペクトログラムの列である。
夕卜ログラムを系す図である。

ある。

図である。
 －－分布園なぁる。
 ず『である。

＊Z。
关。

【符点の談明】

 シンが，24，24A…液体，26H，26V…学马

段，住貼検化手段）
（図1）

［奍2］
（a）

（b）

（图3）
（图10］
［罗12］

【畋4］

［区？

［图9］

［图13］

（图15）

［园1］

［国14］
［图16】

Current Open Docket

Ptinted 2022013910 AM
Chent Name: DP Technolyges, Inc.
Client \& Matter No: : 8689P0443P
Serial Number: 2010-500316
Patent Number:
Status: Pendng

Bocket Athorney (s):
Allomey Supervisory: YAS (SV)

	vity Mame		Actricy Comaments
43/13	Imstuctions to Agent	Date Due	
4913	Amendment and Response w Final Office Action	Final Office Action Response Duc in 1 wk	Deadins to file response to the Rinal OA is $4 / 17 / 13$, extendable (mil)
$4 / 10 / 13$	Amendment and Response to Final Offec Achon	Final Offee Action Response Dee	Deadline to dile response to he Tinal OA is 411713 , exendable (mi)
$417 / 13$	Amendment and Resnonse to Final Ofice Action	Find Office Action Response Due	Deadine to he response to the Fina DA is 41713 , extendable (mi)

PAT-NO: JP02005309691A
DOCUMENT-IDENTTEIER: TP 2005-30969\} A
TITEE: EJECTRONIC BEDOMETER
PUBNDATE:November 4, 2005
INVENTOR-WFORMATION:
NAME COUNTRY
TSUT, TOMOMARUN/A
TNT-CL (PC): G06M007/00, G01C022/00

Abstract

: PROBLEM TO BE SOL VED: To perfom much more accurate measurement of the number of steps even when any walking signal enough for detection is not obtained.

SOLUTION: A signal detected by an acceleration detecting part 101 having an acceleration sensor 100 is compared with a moving average value calculated by a walking cycle calculating part 108 by a walking cycle comparing part 106 after a hixed noise is removed by a fiter part 105 of a counting part 102, and each signal in a predetemined cyclic range is counted by a number of step count part 107 as the number of steps for one step. A signal in a range similar to the n times of a predeternined cycle among signals beyond a predetemined oyche range is judged as the number of steps for n steps by a beyond-specification number of step processing part 109 , and counted as the number of steps for n steps by a number of step count part 107 . The number of steps counted by the number of step count part 107 is displayed at a display part 103.

COPYRIGHT: (C)2006,JPO\&NCMP

（67）［要包］

 ［缶訳圆］图1

〔請求項1】

 て，

（請求行2〕

 （請求頂3）

数部。
\｛講求顕4\}

类数言。
〔諹求頂ら〕

（莦求㙼6）

［皘求項7］

〔效解分野）
$〔 0001 〕$
計に気する。

［0002］
攺数する電子跈数計が開発をれていな。
［0003］

（0004）

（0005）

［0006］

 ずきととができる。

$\{0007\}$

$[0008]$

（0009）

$\{0010$ ）

 という䦎題がある。

$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$
行まるようにするととを課題もしている。

10012）

（0013）

（0014）

〔0015〕

 （0016．

（0017）
 て成るよらに横成してもむが。
（0018）
 もおも。
［0019］
 ［発朋の効果］
10020 1
計渭を在すことが可能になる。

［0021）

（0022）

［0023）

$\{0024\}$

［0025］

 $\{0026\}$

$\{0027\}$

 て行う。

［0028］

（0029）

［0030）
動倠変説明す。
（0031）

率始する。
（0032）

【0033）

呂。
［0034］

 デップ S 2 02）。
〔00351

 $\{00361$

［0037］

［0038）

［0030］

［0040］

相を呂。
（10041）

 テップ206）。
（0042）

（0043）

100442

 ている。
（0045）

 に学尚。
$\{0046$ \}
压力センサ等を傎用してもよい。
「床業上の䘞用同能珄〕
$[0047]$

〔図面0）億单な誰明〕
（0048）

 ［筞覀の鋶明】
（0049）
100•••渋行をン甘

103•••表示手段としての表秘部
104•••㯖作手段をしてのスイッジ
105••・フォル妾部

1 1 1 •••蕉龩居期部檍部

〔罗11

（図2）

（图3）

［国4］

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2006-118909
(43)Date of publication of application : 11.05.2006
(51)Int.Cl.

G01C	$22 / 00$	(2006.01)
G06W	$7 / 00$	(2006.01)

(21)Application number : 2004-305201
(71)Applicant: MATSUSHITA ELECTRIC WORKS LTD
(22)Date of filing :
20.10.2004
(72)Inventor: KIDERA KAZUNORI

(54) WALKING METER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a walking meter capable of calculating an accurate walking distance and walking speed, and capable of detecting walking.
SOLUTION: This walking meter has an acceleration sensor for detecting an acceleration of a pedestrian, a computing part for computing an acceleration data output from the acceleration sensor to output a computed result, a storage part for storing the acceleration data and the computed result, and a display part for displaying the computed result, and calculates a walking pitch, a length of step, and the walking speed of the pedestrian by the computing part, using a period and an amplitude drawn form the acceleration data, to be displayed on the display part.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]
[Claim 1]
It has an acceleration sensor which detects a pedestrian's acceleration, operation part which calculates acceleration data outputted from the aforementioned acceleration sensor, and outputs the result of an operation, a storage part which memorizes acceleration data and the result of an operation, and a display part which displays the result of an operation,
A walk meter characterized by what a walk pitch, and a pedestrian's step and walking speed are computed in operation part, and is displayed on a display part using a cycle and amplitude which were drawn from the aforementioned acceleration data.
[Claim 2]
The walk meter according to claim 1, wherein the aforementioned acceleration sensor detects acceleration more than a 2 -way, computes a cycle from large data of variation of acceleration and computes amplitude in operation part from data of an absolute value of acceleration.
[Claim 3]
It has a database section which stores relation between a cycle and amplitude, and a step as a database, The walk meter according to claim 1 or 2 computing a step from a cycle and amplitude which were computed in operation part, and a database.
[Claim 4]
The walk meter according to any one of claims 1 to 3 which has the communications department which considers data communications as a walking machine when creating the aforementioned database using a walking machine which measures a step previously when a pedestrian walks in imitation, and is characterized by things.
[Claim 5]
The walk meter according to any one of claims 1 to 4 which a cut off frequency is provided with not less than $10-\mathrm{Hz}$ the low pass filter which is 100 Hz or less between the aforementioned acceleration sensor and the aforementioned operation part, and is characterized by things.

[Claim 6]

The walk meter according to any one of claims 1 to 5 computing a cycle by carrying out discrete Fourier series conversion for acceleration data for every predetermined time in operation part.
[Claim 7]
The walk meter according to any one of claims 1 to 5 computing a cycle and amplitude by calculating a moving average of acceleration data in operation part.
[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]
[0032]
[Drawing 17It is the block which shows the composition of the walk meter of Embodiment 1.
[Drawing 2]It is an output wave of an acceleration sensor same as the above.
[Drawing 31It is the block which shows the composition of the walk meter of Embodiment 2.
[Drawing 4]It is a perspective view showing a measurement state same as the above.
[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]
[Field of the Invention]
[0001]
The present invention is attached to a pedestrian and relates to the walk meter which measures and displays a walk pitch, and a step and walking speed.
[Background of the Invention]
[0002]
By detecting vibration in case a pedestrian walks from the former, the number of steps is measured and the walk meter which computes walking distance and walking speed is used by multiplying by the step previously input into this. However, in this kind of walk meter, since the number of steps may have counted by vibration other than a walk and the still more nearly actual step was not measured, exact walking distance or walking speed were not necessarily able to be computed.
[0003]
As a walking detecting method which improved this, the detection $* * * *$ thing is disclosed by JP,2002-197437,A with the microphone in vibration which a pedestrian emits. The walk meter which detects the vibration at the time of a walk is disclosed by $\mathrm{JP}, \mathrm{H} 9-152355$, A with the acceleration sensor.
[Patent document 1] JP,2002-197437,A
[Patent document 2] JP,H9-152355,A
[Description of the Invention]
[Problem to be solved by the invention]
[0004]
However, in the walking detecting method of a Patent document 1 , since the microphone is used, there is a possibility that it may be affected by the influence of an external sound. In the walking detecting method of the Patent document 2, it is asking for the step with the correspondence table from the measured acceleration. For this reason, the case where he walked slowly with a quick case and long step could not necessarily be distinguished with a short step, and exact walking distance or walking speed might be unable to be obtained depending on the walking condition.
[0005]
There is the present invention in providing the walk meter which can compute and display exact walking distance and walking speed in real time, even if it was made in view of the aforementioned point and change and the walk pitch of a step change.
[Means for solving problem]
[0006]
In order to attain the above-mentioned purpose, the walk meter of the present invention, The acceleration sensor which detects a pedestrian's acceleration, and the operation part which calculates the acceleration data outputted from the aforementioned acceleration sensor, and outputs the result of an operation, It is characterized by what it has a storage part which memorizes acceleration data and the result of an
operation, and a display part which displays the result of an operation, and a walk pitch, and a pedestrian's step and walking speed are computed in operation part using the cycle and amplitude which were drawn from the aforementioned acceleration data, and is displayed on a display part.
[Effect of the Invention]
[0007]
Since the walk meter of the present invention is computing a walk pitch, and a pedestrian's step and walking speed in operation part using the cycle and amplitude which were drawn from acceleration data, it can compute exact walking distance and walking speed, without being influenced by the walking condition. [Best Mode of Carrying Out the Invention]
[0008]
(Embodiment 1)
The composition and operation of Embodiment 1 of the present invention of a walk meter are described based on Fig. 1 and Fig.2.As shown in the block diagram of this walk a total of one Fig.1, the three acceleration sensors $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c , The low pass filters 3a, 3b, and 3c (LPF:Low Pass Filter) from which the noise component of the output of each acceleration sensor is removed, The operation part 4 which calculates the acceleration sensor $2 a, 2 b$, and the acceleration data from $2 c$, the storage part 5 which memorizes data required for an operation etc., the display part 6 which displays the result of an operation, and the input part 7 which inputs a pedestrian's basic information are provided.
[0009]
First, the acceleration sensor 2a, 2b, and 2c arrange the direction which detects acceleration so that it may become an axis (X, Y, Z-axis) which intersects perpendicularly, respectively. The low pass filters 3a, $3 b$, and $3 c$ which remove a noise have the respectively same characteristic, and a cut off frequency sets to $10 \mathrm{~Hz}-100 \mathrm{~Hz}$, removes the noise component by the shock by intense motion of a human body, etc. from acceleration data, and they are transmitting it to the operation part 4. Next, in the operation part 4, the acceleration data measured to the fixed time (every [for example,] 50 ms) of the level which can analyze the locus of a walk of people is sampled, and this is memorized to the storage part 5 . And a step and a walk pitch are calculated by the operation part 4 based on the memorized acceleration data. [0010]
An example of an acceleration data output wave is shown in Fig.2. Vertical axes are the acceleration sensor 2a, 2b, and output voltage (unit: V) outputted from 2c, and a horizontal axis is time. Here, also while the human body is walking, various motions are carried out during one-step operation of one step. While the human body is walking, in order that the acceleration sensor $2 \mathrm{a}, 2 \mathrm{~b}$, and 2 c may incline in the various directions or may move, output voltage changes to various values. However, there is periodicity in the method of this change. Therefore, as shown in Fig. 2, by the whole motion of one step, the motion is repeated periodically one step. That is, the periodicity of the acceleration sensor $2 a, 2 b$, and the output voltage outputted from 2 c corresponds to one step of a motion on a human body, and the cycle of the output voltage of an acceleration sensor expresses the walk pitch (number of steps for 1 second) of the human body. The amplitude of the output voltage of an acceleration sensor is equivalent to the size of a motion of a human body. Therefore, when a pedestrian's walking condition changes from a certain state (walking condition A) to other states (walking condition B), the cycle of output voltage changes from the cycle A to the cycle B, and amplitude changes from the amplitude A to the amplitude B. Thus, while asking for a walk pitch from the cycle of the acceleration sensor $2 a, 2 b$, and the output voltage outputted from 2 c , it can ask for a step from amplitude. And the speed of a walk is computed by multiplying by the walk pitch and a step.
[0011]
Below, the procedure of the operation of a specific walk pitch is described. First, the walk pitch fp (unit: Hz) is computed from the cycle of change of the acceleration sensor $2 \mathrm{a}, 2 \mathrm{~b}$, and the output voltage of 2 c . Here, in order to make influence of a noise small, the moving average of the measured output voltage is computed by the operation part 4. the data number which computes an average takes a part for half [about] minute [of the fastest walk pitch assumed] time, by computing a moving average, removes the
influence of a noise and improves the accuracy of frequency measurement．For example，it samples，and when the fastest walk pitch assumed every 50 ms is 300 ms ，the average of the data for 150 ms of the half，i．e．， $150 \mathrm{~ms} / 50 \mathrm{~ms}=3$ piece data，is taken for every time，respectively，and the storage part 5 is made to memorize the data．Next，this output voltage is converted to frequency by carrying out discrete Fourier series conversion for every fixed time by choosing the output voltage outputted from the acceleration sensor with the largest（it is got blocked and amplitude is large）variation among the acceleration sensor $2 \mathrm{a}, 2 \mathrm{~b}$ ，and the output voltage outputted from 2 c ．And it asks for the walk pitch fp by asking for the frequency of the peak in this frequency conversion．
［0012］
Next，it describes about the procedure of calculation of a step．It cannot ask for a step directly from acceleration data．Then，the database showing the relation between acceleration data and a step is built as a database section inside the storage part 5 ，and a step is computed using this database．Table 1 is a data table showing the relation between a pedestrian＇s height and sex，and the average step Wa corresponding to this，Table 2 is a data table showing a pedestrian＇s age and a relation with the age factor A ，and Table 3 is an example of the data table showing the relation between a pedestrian＇s attachment part and part factor B ．The data table showing the relation between the data table showing a pedestrian＇s attachment part and a relation with the walk pitch factor P other than the data table of Tables 1－3 and the operation value Vs （after－mentioned）of a pedestrian＇s mean amplitude Va and the amplitude of the measured output voltage is needed．These data tables are memorized inside the storage part 5 as a database section．
［0013］
［Table 1］

身長（cm）		150	152	154	156	158	160	162	164	166	168	170	172	174	176	178	180	182
平均歩幅	男	43.5	44	44.5	45	45.5	46	46.5	47	47.5	48	48.5	49	49.5	50	50.5	51	51.5
Wa （cm）	女	39	39.5	40	40.5	41	41.5	42	42.5	43	43.5	44	44.5	45	45.5	46	46.5	47

［0014］
［Table 2］

年齢	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85
年齢フアクタタA	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0.95	0.95	0.9	0.9	0.9	0.85	0.8	0.75	0.7	0.65

［0015］
［Table 3］

取り付け部位	腰前	腰横	手首	足首
部位ファクタ B	0.9	1	3	4

[0016]
First, before measurement, the information on the attachment part of a pedestrian's height, sex, age, and a walk meter is input from the input part 7, and a basic step is set up.
[0017]
$\mathrm{Wb}=\mathrm{WaxA} \mathrm{AB} \times \mathrm{P}$
There is an average step data table for every height for every sex in the storage part 5 , and it asks for a standard step (WaxA) by applying the age factor A which shows change of the average step by age to the step Wa.
[0018]
Next, it describes about amplitude data. a ratio with the operation value Vs of the amplitude of the acceleration data which there is an average amplitude data table for every height for every sex in a database section, and was measured with the mean amplitude $\mathrm{Va}--\mathrm{Vs} / \mathrm{Va}$ is computed. this ratio -- it asks for the step W by attaching with $\mathrm{Vs} / \mathrm{Va}$ and multiplying by the factor P and standard step by factor B and a walk pitch by a part. The step W is computed by the following formulas.
[0019]
$\mathrm{W}=\mathrm{WbxVs} / \mathrm{Va}=\mathrm{WaxAxBxPxVs} / \mathrm{Va}$
It attaches here, and since amplitude changes a lot the side of the waist, before the waist, or, for example by places, such as an arm, part factor B is the part to which walk 1 [a total of] is attached, and a thing which corrects this. In order [into which a motion of the body roughly divides the walk pitch factor P by the time of a walk and a run] to change, amplitude changes a lot. In order to correct this change, it considers that it will run if a pitch becomes early to some extent, and P is made small and corrected. [0020]
Below, it describes about the arithmetic method of the operation value $V s$ of the amplitude of the output voltage of an acceleration sensor. The operation of amplitude takes the moving average of each acceleration sensor, in order to remove the influence of a noise like measurement of a walk pitch. In order to ask for the vector sum of acceleration furthermore, when what squared the amplitude of output voltage, respectively, and took the sum, and also took the square root is set to Vs , Vs is denoted by the following formulas. V_{x}, V_{y}, and $V z$ show here the amplitude value which took the moving average of each acceleration sensor output.
[0021]
[Mathematical formula 1]

$$
\mathrm{Vs}=\sqrt{\mathrm{Vx}^{2}+\mathrm{Vy}^{2}+\mathrm{Vz}^{2}}
$$

[0022]
by multiplying the step W by the walk pitch fp which carried out such and was boiled and for which it asked, the speed V is found ($\mathrm{V}=\mathrm{W} \times f \mathrm{p}$) and this result is displayed on the display part 6.
[0023]
The operation part which the walk meter of the present invention calculates the acceleration sensor which detects a pedestrian's acceleration, and the acceleration data outputted from the aforementioned acceleration sensor, and outputs the result of an operation, The storage part which memorizes acceleration data and the result of an operation, and the display part which displays the result of an operation, Since it $* * * *$, a walk pitch, and a pedestrian's step and walking speed are computed in operation part using the cycle and amplitude which were drawn from the aforementioned acceleration data and it displays on a display part, even if change and the walk pitch of a step change, walking distance and a travel speed can be displayed on real time.
[0024]

Since the aforementioned acceleration sensor detects the acceleration more than a 2-way, and computes a cycle from the large data of the variation of acceleration and amplitude is computed in operation part from the data of the absolute value of acceleration, Even when it has influence of a noise on the sensor of one direction, right acceleration data can be measured and the accuracy of measurement can be improved. [0025]
Since a step is computed from the cycle and amplitude which have a database section which stores the relation between a cycle and amplitude, and a step as a database, and were computed in operation part, and a database, Even when a walk meter and its attachment part change, it becomes possible to correct this and to ask for a step with sufficient accuracy.
[0026]
In addition, a cut off frequency is provided with not less than $10-\mathrm{Hz}$ the low pass filter which is 100 Hz or less between the aforementioned acceleration sensor and the aforementioned operation part, and since, the influence of the noise produced by vibration at the time of a walk is removable.
[0027]
In addition, since a cycle and amplitude are computed by carrying out discrete Fourier series conversion for acceleration data for every predetermined time in operation part, a cycle and amplitude are computable with sufficient accuracy from acceleration data.
[0028]
Since a cycle and amplitude are computed by uniting and calculating the moving average of acceleration data in operation part, it can ask for walking distance or a travel speed with sufficient accuracy from acceleration data.
[0029]
(Embodiment 2)
The composition and operation of Embodiment 2 of the present invention of a walk meter are described based on Fig. 3 and Fig.4.Fig. 3 is walk a total of one block diagram of this embodiment, and the communications department 9 and the correction part 8 are added to the walk meter of Embodiment 1. As shown in the perspective view of Fig. 4 , the walking machine 11 has composition which the pedestrian 10 walks with this predetermined speed, when it has the belt part 12 in which the pedestrian 10 appears and this belt part 12 moves at a predetermined speed. The walking machine 11 has a communication function between [a total of one] walks, and can change the speed of the belt part 12 now by the instructions from walk 1 [a total of]. It has walk a total of one correction mode, and goes into correction mode by the instructions from the input part 7. And this information lets the communications department 9 pass from the correction part 8, and is transmited to the walking machine 11. In this case, the walking machine 11 can be moved at various speed fixed time, and can calculate a step and the walk pitch factor B from the operation value Vs of the amplitude of a walk pitch and output voltage.
[0030]
For example, if it goes into correction mode, the correction part 8 will perform control which increases the movement speed of the belt part 12 of the walking machine 11 at a time by $1 \mathrm{~km} / \mathrm{h}$ from $3 \mathrm{~km} / \mathrm{h}$ to 10 km / h. And the operation value Vs of the amplitude of the walk pitch corresponding to each speed and output voltage is calculated. It counts backward and asks for a step by the first $3-\mathrm{km} / \mathrm{h}$ walk, and after that, it counts backward and asks for the walk pitch factor B in each walk pitch at the rate of others, and the database section of the storage part 5 memorizes these results.
[0031]
When creating the aforementioned database using the walking machine which measures a step previously when a pedestrian walks in imitation, have the communications department which considers data communications as a walking machine, and since, Since the step for every pedestrian is surveyed in various walk pitches, speed can be found still more precisely.
[Brief Description of the Drawings]
[0032]
[Drawing 1] He is Brock who shows the composition of the walk meter of Embodiment 1.
[Drawing 2]It is an output wave of an acceleration sensor same as the above.
[Drawing 3]It is the block which shows the composition of the walk meter of Embodiment 2.
[Drawing 4]lt is a perspective view showing a measurement state same as the above.
[Explanations of letters or numerals]
[0033]
1 Walk meter
2 a-c acceleration sensor
3 a-c LPF (low pass filter)
4 Operation part
5 Storage part
6 Display part
7 Input part
8 Correction part
9 Communications department
10 Pedestrian
11 Walking machine
11 Belt part
[Translation done.]

```
* NOTICES *
```

JPO and INPIT are not responsible for any damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention]
[0007]
Since the walk meter of the present invention is computing a walk pitch, and a pedestrian's step and walking speed in operation part using the cycle and amplitude which were drawn from acceleration data, it can compute exact walking distance and walking speed, without being influenced by the walking condition.
[Translation done.]

```
* NOTICES *
```


JPO and INPIT are not responsible for any damages caused by the use of this translation.

1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

MEANS

[Means for solving problem]
[0006]
In order to attain the above-mentioned purpose, the walk meter of the present invention, The acceleration sensor which detects a pedestrian's acceleration, and the operation part which calculates the acceleration data outputted from the aforementioned acceleration sensor, and outputs the result of an operation, It is characterized by what it has a storage part which memorizes acceleration data and the result of an operation, and a display part which displays the result of an operation, and a walk pitch, and a pedestrian's step and walking speed are computed in operation part using the cycle and amplitude which were drawn from the aforementioned acceleration data, and is displayed on a display part.
[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

PRIOR ART

[Background of the Invention]
[0002]
By detecting vibration in case a pedestrian walks from the former, the number of steps is measured and the walk meter which computes walking distance and walking speed is used by multiplying by the step previously input into this. However, in this kind of walk meter, since the number of steps may have counted by vibration other than a walk and the still more nearly actual step was not measured, exact walking distance or walking speed were not necessarily able to be computed.
[0003]
As a walking detecting method which improved this, the detection $* * * *$ thing is disclosed by JP,2002-197437,A with the microphone in vibration which a pedestrian emits. The walk meter which detects the vibration at the time of a walk is disclosed by JP,H9-152355,A with the acceleration sensor.
[Patent document 1] JP,2002-197437,A
[Patent document 2] JP,H9-152355,A
[Translation done.]

```
* NOTICES *
```

JPO and INPIT are not responsible for any damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

TECHNICAL FIELD

[Field of the Invention]
[0001]
The present invention is attached to a pedestrian and relates to the walk meter which measures and displays a walk pitch, and a step and walking speed.
[Translation done.]

```
* NOTICES *
```


JPO and INPIT are not responsible for any damages caused by the use of this translation.

1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

TECHNICAL PROBLEM

[Problem to be solved by the invention] [0004]
However, in the walking detecting method of a Patent document 1 , since the microphone is used, there is a possibility that it may be affected by the influence of an external sound. In the walking detecting method of the Patent document 2, it is asking for the step with the correspondence table from the measured acceleration. For this reason, the case where he walked slowly with a quick case and long step could not necessarily be distinguished with a short step, and exact walking distance or walking speed might be unable to be obtained depending on the walking condition. [0005]
There is the present invention in providing the walk meter which can compute and display exact walking distance and walking speed in real time, even if it was made in view of the aforementioned point and change and the walk pitch of a step change.
[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1$]$

[Drawing 2$]$

[Drawing 3]

[Drawing 4]

[Translation done.]

No decuments vealiadesor tis	previty rumber.
	Emperenet
OETECTOR FOR MOMON OF PEDESTRAM	
Inventor(s):	UNUMA MUNETOSHI; OTSU FUMITAKA; SATO SHINOBU; HIGUCHI TAKESHI; INOUE HIDEKI + (UNUMA MUNETOSHI, ; OTSU FUMITAKA, ; SATO SHINŌBU, ; HIGUCHI TAKESHI, ; INOUE HIDEKI)
Applicant(s):	HITACHI LTD; HITACHI ADVANCED SYST KK \pm (HITACHI LTD, ; HITACHI ADVANCED SYST:KK)
Classification:	$\begin{aligned} & \text { - international:A61B5/11; G01C21/00; G01C22/00; G08G1/13; } \\ & \text { G09B29/00; G09B29/10 } \\ & \text { - cooperative: } \text { G01C22/006; A61B2560/0242; A61B5/11; A61B5/1112 } \end{aligned}$
Application number:	JP20050284426 20050929
Priority number(s):	JP20050284426 20050929
Also published as:	$E P 1770370(A 2) E P 1770370(A 3) E P 1770370(B 1)$ US2007072158(A1) US7811203(B2)

Abshact of $10200708383(A)$

PROBLEMTO EE SOLVED To whe the Followng problems there are no devioss capable of conecty recognizing waking motion accompanyme vertica motion; moreover though in the walkne mothor xcompanyro warba mobon, wang is pentomed with a stide diferent fom that in wakng on a leve there are no devios for detectng that ; SOLUTHN A sencor for cevectin a change mheghtan a
 device for detecting waking motom on a
 consideration. By the use of this device, recontion of walkeg motion acompanying vencal movenent becomes possible threover, acourate strde detection becomes possble, and higher accuray postion detection beconoe possible. Moreover, where on the geograby a pecestrian is can be ostmated by companing the wather motion wht

［特話請求の範筩】

［読求項1］

【倳求頊2】

［讀求项き！

［読求䜖4\}

\｛語求溑5\}

－詿求項6】

置
［語求垍7］

〔溒求墰〕

［詣求项9）

［溒求項10〕

（発明の詳繶な晩明

［0001］

［背景枝铺］
（0002）

［0008］

［0004］

Page 613 of 1488

6．2004年1月
［発明か胃示！

［0005）

100061

［0007］

［0008］

 によりり認戟青度が可上ぜきる。
［発㫜か旗置！
100099

［0010］

Page 614 of 1488

$[0011]$

［0012］

 れる。
［0013）

擬察至。
100141

［0015］

 ［0016］

（0017）

 なる。
100181

Page 615 of 1488

10019］

龍であるのく階段を下つていると詊定きれている。
100201

［0021］

100221

 ［0023］

 でるようななる。
［0024］
 るようになる。
［0025］

Page 616 of 1488

 100261

10027

 きかに下記のような发䃥を行り。
 Hक
（2）これより步楅は

用宣空）

 U跳く）
［0028］

Page 617 of 1488

 をるようになる。
100291

 ［0030］

［0031］

Page 618 of 1488

 なる。

100321

 が外ある。 ［0033］

向上していることがあかる。
［0034

Page 619 of 1488

あない。
100351

［0036］

（0037）

［00381

［0039］

Page 620 of 1488

[0040]

[0041)

[0042]

10043)

[0044]

[0045)

[0046]

(0047)

(0048)

100491

[0050]

Page 621 of 1488

```
知可能になる。
```



```
[0051)
```



```
(区3) 5颣テーッ゙リ。
|欧4\実祭の判定列。
```



```
{符号か㜔榪}
0052]
```


［図1］

㖁 1

［図2］

［困］
（ब）

［汶5］
［0 5

［图4］

W8

［ $\mathbb{X} 7$ ］

［艾9］

（G8）

（図10

［因11］

（图13）

［⿴囗大 12 ！

48
（圊14
原 14

［因15］

（16）

```
(51)nt.Cl.
    A6]P 5/11 (000.00)
(2)発明者 又接 文隆
```



```
    システム事素新わ
(72)斝明者 驻蒌 恐
```



```
    &ズ隹
(72)発明者 権口 壮
```



```
    A不内
(72)犖明者 茾与 覀澎
```



```
F夕...台参考) 20032 1m2 4C11
    2FO24 AB44 AB16 Ab07 ACOL BMO8 BAMl BA15
    2F120 ABO2 BB03 BB05 BB10 BB21 BB22 EB25 BB35 BB54 BB66
```



```
        m%%
    4003 val2 veon vc20
    gh180 AA21 BBO4 bro5 CC12 FmO4 mo5 FFOT FF13 FF22 FF27
        FFS3 FFiO
```


Espacenet

Bibliographic data: JP 7020547 (A)

CAMERA-SHAKE CORAECTMG DEYSE

Publication date:	1995-01-24
Inventor(s):	NISHIDA TORU
Applicant(s):	RICOH KK +
Classification:	G01H17/00; G01P15/00; G01P7/00; G02B27/64; G03B17/00; international: G03B5/00; (IPC1-7): G01H17/O0; G01P15/00; G01P7/00; G02B27/64;G03B17/00; G03B5 $/ 00$ - european:
Application number:	JP19930183499 19930630
Priority number (s):	JP19930183499 19930630

Absfrect of 3p70205a7 (A)
PuRPOSE-To atain camera-shate conector: sutable tor the o3mera staking propertes of a whde area sub as ones by photugrapherts own and ones different by tise weight batance of a camera. CONSTMUTON A : amerashake data trom ai cocemation sensor its detecting acceleration and the movement of an mace which cause camse-shaking and a COO 14 wha a firs memory choul 13 and 3 second memony circuit 17 and computes a ooemient satisfying prescrbed rekation. A variable seterthy processon
 the diterence between both camera-snake wata is minimized, based on the coefficient. Camera-shake contection data for segating the camera- simating on a bm surace 5 is comphed by a camera-shake arthneeto oncony 21 and a camera-shabe corection arthmetic circuit ce, based on the input variable and the data stored in the firse merroy chout 13. All acturar 2 S whes a comera shate morroting lens 4 so as to negete the cemere-making, tased on the Damera-shake conrection data

（54）【発明の名称】カメラの手ぶれれ補正菨直
（57）【要䄪】
【目的】摄影者调有のぶれ特性，カメラの重量バラン スによって異なるふれ特性など広範囲のふれれ振動の態様 に適応した手ふれ補正を実現する。
【構成】学習プロセッサ18は，手ぶれに起因する加速度および像移動を検出する加速度センサ 11 a および CCD14からのぶれデータを，第1のメモり回路13 および第2のメモり回路 17 を介して受けて所定の関係 を満たす係数を演算する。変数選択つ゚ロセッサ19は，上記倸数を基に上記両ふれデータ間の䛊差成分が最小に なる入力変数を選択する。この大力変数と第1のメモリ回路13に記憶されたデータを基にして，ふれ演算回路 21，ぶれ補正演算回路22によりフィルム面5上のぶ れを打ち消すふれ補正データを演算する。アクチュエー タ23は，このふれ補正データに基き，手ぶれを打ち消 すようにぶれ補正レンズ4を駆動する。

【特許請求の範囲】
【請求項1】少なくとも撮影者の手ぶれに起因する加速度または角速度を検知するぶれセンサと，
被写体像またな被写体像に相応する像を受けで画像情報信号に変換して少なくとも撮影者の手ぶれに起因する像移動を検出して像データを得る光センサと，
上記ぶれせンサの出力をサンプリングして得たぶれデー夕を時系列的に記憶する第1の記憶手段と，
上記光センサの出力をサンプリングして得た像データを時系列的に記憶する第2の記憶手段と，
上記第1の記憶手段に記憶された時采列ふれデータと上記第2の記憶手段に記憶された時系列データとからこれ らの関係を満たす係数を複数時点で演算する学習手段 と，
この学習手段で得られる複数の係数を演算して複数の入力変数を求め，求められた複数の大力変数のうちの，上記第1の記憶手段に記憶された時系列ぶれデータと上記第2の記憶手段に記憶された時系列データとの誤差成分 が最小になるものを選択する変数選択手段と，
上記第1の記憶手段に記憶されたデータと上記変数選択手段で選択された入力変数に基づいてぶれ速度データま たしむぶれ量データを演算するぶれ演算手段と，
このぶれ演算手段で求められたぶれ速度データまたぼぶ れ量データをフィルム面上のぶれを打ち消すように補正 するぶれ補正データに変換するぶれ補正演算手段と，
このぶれ補正演算手段で得られたぶれ補正データに基づ いてぶれ補正部材を駆動するぶれ補正駆動手段と，
を具備することを特徴とする力メラの手ぶれ補正装置。
【請求項2】少なくとも撮影者の手ぶれに起因字る加速度または角速度を検知するぶれセンサと，
被写体像まださ被写体像に相応する像を受けて画像情報信号に変換して少なくとも撮影者の手がれに起因する像移動を検出する光センサと，
上記ぶれセンサの出力を時系列的に記憶する記憶手段 と，
この記憶手段に記憶された時系列データと上記光センサ の出力データからこれらの関係を満たす結合係数を複数時点で演算する学習手段と，
上記記憶手段に記憶されたデータと上記学習手段で求め られた結合係数に基づいてぶれ速度データまたはぶれ量 データを演算するぶれ演算手段を，
このぶれ演算手段で求められたふれ速度データまたはぶ れ量データをフィルム面上のぶれを打ち消すように補正 するふれ補正データに変換するぶれ補正演算手段と，
上記ぶれ補正演算手段で得られたぶれ補正データに基づ いてぶれ補正部村を駆動するぶれ補正駆動手段と，
を具備することを特徵とする力メラの手ぶれ補正装置。
【請求項3】少なくとも撮影者の手ぶれに起因する加速度または角速度を検知するぶれセンサと，
被写体像まだは被写体像に相応する像を受けて画像情報

信号に変㒜して少なくとす撮影者の手ぶれに起因方る像移動を検出する光センサと，上記ぶれセンサの出力を時系列的に記憶する記憶手段 と，
この記憶手段に記憶きれたデータと上記光センサの出力 データからこれらの関係を満たす結合保数を複数時点で演算しこの演算により得られた結合係数を略対数的に変換した学習データとする学習手段と，
上記記憶手段に記憶きれたデータと上記学習手段で求め られた学習データに基づいてぶれ速度データまたはぶれ量データを演算するぶれ演算手段と，
このぶれ演算手段で求められたぶれ速度データまたはぶ れ量データをフィルム面上のぶれを打ち消すように補正 するぶれ補正データに変換するがれ補正演算手段と，
このぶれ補正演算手段で得られたふれ補正データに基づ
いてぶれ補正部材を駆動するぶれ補正駆動手段と，
を具備することを特㟟とするカメラの手ぶれ補正装置。
【請求項4】少なくとも撮影者の手ぶれに起因する加速度まだは角速度を検知するぶれセンサと，
被写体像または被写体像に相応する像を受けて画像情報信号に変換して少なくとむ撮影者の手ぶれに起因守る像移動を検出して像データを得る光センサと，
上記ぶれセンサのぶれデータを時系列的に記憶する第1 の記憶手段と，
上記光センサの像データを時系列的に記憶する第2の記憶手段と，
上記第1の記憶手段に記憶された時系列ぶれデータと上記第2の記憶手段に記憶された時系列データとからこれ らの関係を満たす係数を複数時点で演算する学習手段 と，
この学習手段で得られる複数の係数を演算して複数の大力変数を求め，求められた複数の入力変数のうちの，上記第1の記憶手段に記憶された時系列ぶれデータと上記第2の記憶手段に記憶きれた時系列データとの誤差成分 が最小になるものを選択する変数選択手段と，
上記第1の記憶手段に記憶されたデータと上記変数選択手段で選択きれた大力変数に基づいてぶれ速度データま たはぶれ量データを演算するぶれ演算手段と，
上記ぶれ演算手段で求められたぶれ速度データまたはぶ れ量データを撮影レンズ光学系の焦点距離データに応じ てフィルム面上のぶれを打ち消すように補正するぶれ補正データに変換するぶれ補正演算手段と，
上記ぶれ補正演算手段で得られたぶれ補正データに基づ いてぶれ補正部材を駆動なるぶれ補正駆動手段と，
を具備することを特徴とするカメラの手ぶれ補正装置。
【請求項5】少なくとも撮影者の手ぶれに起因する加速度またほ角速度を検知するぶれセンサと，
被写体像きたは被写体像に相応する像を受けて画像情報信号に変換して少なくとも撮影者の手ぶれに起因する像移動を検出する光センサと，

上記ふれセンサの出力を時系列的に記憶なる記憶手段 と，
この記憶手段に記憶された時系列データと上記光センササ の出力データとから両データの結合保数を複数時点で演算する学習手段と，
上記記憶手段に記憶されたデータと上記学習手段で求め られた結合係数に基づいてふれ速度データまたはふれ量 データを演算するぶん演算手段と，
このぶ演算手段で求められたふれ速度データまたはぶ れ量データを撮影レンズ光学系の焦点距離データ応じて フィルム面上のぶれを打ち消すように補正するふれれ補正 データに変換するぶれ補正演算手段を，
上記ぶれ補正演算手段で得られたぶれ補正データに基づ いてぶれ補正部材を駆動するぶれ補正駆動手段と，
を具備することを特徴とする力メラの手ふれ補正装置。
【請求項6】少なくとも撮影者の手ぶれに起因する加速度または角速度を検知するぶれセンサと，
被写体像またりま被写体像に相応する像を受けて画像情報信号に変換して少なくとも撮影者の手ぶれに起因する像移動を検出する光センサと，
上記ぶれセンサの出力を時系列的に記憶する記憶手段 と，
この記憶手段に記憶きれたデータと上記光センサの出力
データとから兩データの結合係数を複数時点で演算して
得られる結合係数を略対数的に変換した学習データとす る学習手段と，
上記記憶手段に記憶されたデータと上記学習手段で求め られた学習データに基づいてぶれ速度データまたはぶれ量データを演算するぶれ演算手段と，
このぶれ演算手段で求められたぶれ速度データまだきぶ れ量データを撮影レンズ光学系の焦点距離データに応じ
てフィルム面上のぶれを打ち消すように補正するための ぶれ補正データに変換して演算するぶれ補正演算手段 と，
このぶれ補正演算手段で得られたぶれ補正データに基づ いてぶれ補正部材を駆動するぶれ補正駆動手段と，
を具備することを特徴とする力メラの手ぶれ補正装置。
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は，カメラの手ぶれ補正装置に関し，より詳細には，撮影者が撮影を行う際に，力 メラ本体に生じる手ぶれを検出し，この手ぶれを打ち消 すように制御できる力メラの手ぶれ補正装置に関するも のである。
【0002】
【従来の技術】近年，カメラの自動化が著しく進み，撮影行うに際して基本的なことは，その殆どが自動化され るような䞶勢であり，露出の自動化は勿論のことピント合かせを自動化することも広く行かれている。
【0003】また，その一環としてカメラ本体に生じる

手ぶれを検出し，この手ぶれを打ち消すように制御する ことも提案されている。この一例として，特開平3－3 7633 号公報に開示きれているカメラ0手ふれ補正装置がある。
【0004】即ち，この手ぶれ補正装置は，カメラ本体 に角速度計を設け，この角速度計によって手ぶれ振動を検出し，この検出結果に基づいてフィルム面上での像位置の移動量を演算し，この演算結果に基づいて手ぶれを打ち消すための駆勭を行うものであるが，この手ぶれの打消の駆動量を，撮影レンズ光学系の鏡筒をボイスコイ ルモータで駆動することによって行っている。これによ って，撮影者の手ぶれに起因する像ぶれを打ち消した撮影を行うようにしている。
【0005】しかしながら，この従来技術は，通常の撮影で生じる手ぶれ成分の 1 Hz ないし 12 Hz の周波数 の成分を重点的に抽出しているので，この帯域の手ぶれ については有効に肔制できるもの○，いるゆるりアルタ イム的な制御であるので時間平均的な制御に対応きせる ことが難しい。
【0006】そこで，特開昭63－8628号公報に開示されている力メラ振動検出装置においてい，時間平均的な制御で得られる速度信号を所定時間に亘る移動時間平均値として連続的に算出する移動平均算出手段を設 け，この移動平均算出手段の出力を用いて力メラの手ぶ れ補正を行なうようにしている。
【0007】これによって，実際のカメラに生じている手ふれ振動状態あるいなその他の取扱いに由来した状態 に対応させて，高精度制御のために必要とされる，検出回路全体の有するフィルタ特性上の位相誤差の難の解消 や対象外信号の除去を都合よく調整することができる。
【0008】
【発明が解決しようとする課題】従来の力メラの手ぶれ補正装置においては，カメラ本体に生じる手ぶれを，カ メラ本体に取りつけられた加速度センサにより検出し， これによって得られるデータに基づいて像ぶれ補正量を演算によって求め，この像ぶれ補正量だけぶれ補正部材 （補正プリズム等）を駆動して像ぶれの生じない鮮明な写真を得るようにしているので，一応の手ぶれ補正が行 えるものの，手ぶれの検出を行う䂲様としては現実的で ない面がある。
【0009】即ち，手ふれ補正のための従来の手ぶれ検出む，撮影者によって異なる力メラ保持の姢様，撮影者 によって異なる手ぶれ振動の振動数及び振幅，あるい は，カメラ本体に装着きれる交換レンズの重量バランス については何ら考虑されておらず，特別の前提条件の無 い状龍で行われているのが現状である。従って，手ぶれ補正の対象とする条件がかなり広い範囲に亘っているの で，正確な手ぶれ補正が行えないという問題がある。
【0010】また，この問題は，近年特に著しく発達し ているズームレンズの高倍率化のために手ぶれ補正の精

度向上が要求きれていることに応じ得ないという問題に つながっている。
【 O 0 1 1 】本発明は，上述の事情に鑑みてなされたも ので，その目的とするところは，実際の手ふれ振動の特性，即ち，撮影者の癖やカメラ本体に装着された交換し ンズの重量バランス等に対応した広い範囲の手ぶれ振動 の態様に適応できるカメラの手ふれ補正装置を提供する ことにある。
【0012】
【課題を解決する手段】本発明か請求項1に係る力メラ の手ふれ補正装置は，上述の目的を達成するために，少 なくとも撮影者の手ぶれに起因する加速度または角速度 を検知するぶれセンサと，被写体像または被写体像に相応する像を受けて画像情報信号に変換して少なくとも撮影者の手ふれに起因する像移動を検出して像データを得 る光センサと，上記ぶれセンサの出力をサンプリングし て得たぶれデータを時系列的に記憶まる第1の記憶手段 と，上記光センサの出力をサンプリングして得た像デー夕を時系列的に記憶する第2の記憶手段と，上記第1の記憶手段に記憶された時系列ぶれデーダと上記第2の記憶手段に記憶された時系列データとからこれらの関係を満たす係数を複数時点で演算する学習手段と，この学習手段で得られる複数の係数を演算して複数の入力変数を求め，求められた複数の入力変数のうちの，上記第 1 の記憶手段に記憶された時采列ぶれごータと上記第2の記憶手段に記憶された時系列データとの䛊差成分が最小に なるものを選択する変数選択手段と，上記第1の記憶手段に記憶きれたデータと上記変数選択手段で選択された入力変数に基づいてぶれ速度データまたしぶれ量データ を演算するぶれ演算手段と，このぶれ演算手段で求めら れたふれ速度データまたはぶれ量データをフィルム面上 のぶれを打ち消すように補正するぶれ䋠正データに変換 するふれ補正演算手段と，このぶれ補正演算手段で得ら れたぶれ補正データに基づいてふれ補正部材を駆動する ふれ補正駆動手段と，を具備することを特䔇とするもの である。
【0013】また，上記の目的を達成するために，本発明の請求項2に係る力メラの手ぶれ補正装置な，請求項 1 におけるぶれセンサと光センサとふれ補正演算手段と ぶれ補正駆動手段とを具備すると共に，少なくとも撮影者の手ぶれに起因する加速度まだ角速度を検知するぶ れセンサと，被写体像または被写体像に相応する像を受 けて画像情報信号に変換して少なくとも撮影者の手ぶれ に起因する像移動を検出する光センサと，上記ふれセン サの出力を時系列的に記憶する記憶手段と，この記憶手段に記憶きれた時系列データと上記光センサの出力デー タからこれらの関係を満たす結合係数を複数時点で演算 する学習手段と，上記記憶手段に記憶されたデータと上記学習手段で求められた結合係数に基づいてふれ速度デ ータまたはぶれ量データを演算するふれ演算手段と，こ

のぶれ演算手段で求められたぶれ速度データまたはぶれ量データをフィルム面上のごれを打ち消すように補正す るふれ補正データに変換するぶれ補正演算手段と，上記 ふれ補正演算手段で得られたぶれ補正データに基づいて ぶれ補正部材を駆動するぶれ補正駆動手段と，を具備す ることを特徴とするものである。
【 0 0 1 4 】 きらに，上記の目的を達成するために，本発明の請求項ろに係るカメラの手ぶれ補正装置は，請求項1におけるふれセンサと光センサとぶれ補正演算手段 とぶれ補正駆動手段と記憶手段とを具備すると共に，少 なくとも撮影者の手ふれに起因する加速度または角速度 を検知するぶれセンサと，被写体像または被写体像に相応する像を受けて画像情報信号に変換して少なくとも撮影者の手ぶれに起因する像移動を検出する光センサと，上記ふれセンサの出力を洔系列的に記憶する記憶手段 と，この記憶手段に記憶されたデータと上記光センサの出力データからこれらの関係を満だ結合係数を複数時点で演算しこの演算により得られた結合係数を略対数的 に変換した学習データとする学習手段と，上記記憶手段 に記憶されたデータと上記学習手段で求められた学習デ ータに基づいてぶれ速度データまたはぶれ量データを演算するぶれ演算手段と，このぶれ演算手段で求められた ぶれ速度データまたはふれ量データをフィルム面上のぶ れを打ち消すように補正するぶれ補正データに変換する ぶれ荗正演算手段と，このぶれ博正演算手段で得られた ぶれ補正データに基づいてぶれ補正部材を駆動するぶれ補正駆動手段と，を具備することを特徴とするものです る。
【0015】また，本発明の請求項4，5，6のそれぞ れにおけるカメラの手ぶれ補正装置ほ，請求項1，2， 30それそれにおける構成のうちのふれ補正演算回路を上記ぶれ演算手段で求められたぶれ速度データまたはまが れ量データを撮影レンズ光学系の焦点距嗃データに応じ てフィルム面上のぶれを打ち消すように補正するふれ補正データに変換するぶれ補正演算手段とするように構成 したことを特徴とするものである。
【0016】
【作用】上記のように構成きれたカメラの手ふれ補正装置は，少なくとも撮影者の手ぶれに起因する加速度また は角速度をぶれセンサで検知し，被写体像または被写体像に相応する像を受けて画像情報信号に変換して少なく とも撮影者の手ふれに起因する像移動を光センサで検出 して像データを求める。
【0017】上記ふれセンサで得られたぶれデータを第 1 の記憶手段に時系列的に記憶し，上記光センサで得ら れた像データを第2の記憶手段に時系列的に記憶し，上記第1の記憶手段に記憶された時系列ふれこデータと上記第2の記憶手段に記憶された時系列データとからこれら の関係を満たす係数を複数時点で学習手段で演算する。
【 0 0 1 8】この学習手段で得られる複数の俰数を演算

して複数の入力変数を求め，求められた複数の入力変数 のうらの，上記第1の記憶手段に記憶された時系列ぶれ データと上記第2の記憶手段に記憶きれた時系列データ との誤差成分が最小になるものを選択手段で選択する。【0019】上記第1の記憶手段に記憶されたデータと上記選択手段で選択された入力変数に基づいてぶれ速度 データまたはふれ量データをぶれ演算手段で演算し，上記ぶれ演算手段で求められたぶれ速度データまたはぶれ量データをフィルム面上のぶれを打ち消すように補正す るためのぶれて補正データへの変換をぶれ補正演算手段で演算する。
【0020】このぶれ補正演算手段で得られたぶれ補正 データに基づいてぶれ補正駆動手段がぶれ補正部村を駆動することによって，撮影者の癖や力メラ本体に装着ぎ れる交換レンズの重量等に対応した広い範囲の手ぶれ振動の態様に適応できる手ぶれ補正をすることができる。【0021】また，上記請求項2のように構成された力 メラの手ぶれ補正装置は，ぶれセンサと光センサとぶれ補正演算手段とぶれ補正駆動手段とを有し，上記ぶれセ ンサの出力を時系列的に記憶手段で記憶し，上記記憶手段に記憶された時系列データと上記光センサの出力デー タとから両データの結合俰数を複数時点で学習手段で演算する。
【0022】上記記憶手段に記憶されたデータと上記学習手段で求められた結合係数に基づいてぶれ速度データ またはぶれ量データをぶれ演算手段で演算することによ つて，撮影者の癖や力メラ本体に装着される交換レンズ の重量等に対応した広い範囲の手ぶれ振動か態様に適応 できる手ぶれ補正を実現している。
【0023】きらに，本発明か請求項3に倸るカメラの手ぶれ補正装置は，請求項1 Oように構成されたぶれセ ンサと光センサとぶれて補正演算手段とぶれて補正駆動手段 と記憶手段とを有し，上記記憶手段に記憶されたデータ と上記光センサの出力データとから両データの結合係数 を複数時点で演算する。得られた結合係数を略対数的に変換した学習データを学習手段で求め，上記記憶手段に記憶されたデータと上記学習手段で求められた学習デー多に基づいてぶれ速度データまたなふれ量データをぶれ演算手段で演算することによって，撮影者の癖やカメラ本体に装着される交換しンズの重量等に対応した広い範囲の手ぶれ振動の態様に適応できる手ぶれ補正を実現し ている。
【0024】
【実施例】以下，本発明の実施例について詳細に説明す る。先ず，第1実施例を図1ないし図12を用いて説明 する。この実施例は，撮影光学系を構成する撮影レンズ に，自動合焦機能を有するズームレンズを用いたカメラ に，請求項1の発明を適用したものである。
【0025】全体構成の概略を示す図 1 において，撮影光学系1は，フォーカスレンズ2とズームレンズ3とぶ

れ補正レンズ4で棤成され，その光軸○上にフィルム5 が位置されている。
【0026】また，フォーカスレンズ2を光軸○の方向 に駆動することによって合焦状態にすることができ，ズ ームレンズ3を光軖○の方向に駆動することによって焦点距離が変更でき，ぶれ補正レンズ4を光軸○に直交し た方向もしくは光䧿 O に対して傾斜する方向に駆動する ことによってフィルム50面に生じる手ぶれを打方消す ことができるようになっている。
【0027】このような撮影光学系1には，像検出光学系6が設けられ，この像検出光学系6は，被写体像また は被写体像に相応する像を受けて画像情報信号に変換し て少なくとも撮影者の手ぶれに起因する像移動を検出す る光センサ（後述するCCD14）に像を導くものであ る。
【0028】この具体例としては，フォーカスレンズ
2，ズームレンズ3，ぶれ補正レンズ4で形成される撮影光学系の光束の一部をハーフミラー等で分岐して光セ ンサへの導入光学系を構成したり，撮影光学系とは全く の別個に光センサへの導入光学系を構成したり，ファイ ンダ光学系の光東の一部をハーフミラー等で分岐して光 センサへの導入光学系を構成することができる。
【0029】撮影光学系1が設けられたカメラ本体には加速度センサ 11 が固定され，カメラ本体に生じる手ぶ れに起因する加速度を検知することができるようになの ている。
【0030】この加速度センサ11には，サンプリング回路12分接祮され，その出力端には第1の記憶手段と しての第1 10メモリ回路13は，上記加速度センサのぶれデータ を時系列的に記憶するための第1の記憶手段である。一方，像検出光学系6によって形成される導入光は，CC D 14に導かっそるように棤成されている。
【0031】このCCD140出力端は，サンプリング回路15とピーク検出回路 16 を順次に介して第2のメ モり回路17に接続されている。この第2のメモリ回路 17は，CCD14で得られる像データを時系列的に記憶するための第2の記憶手段である。
【0032】この第1のメモリ回路13と第2のメモリ回路170々れそれから時系列的に得られるデータは，学習プロセッサ18に供給されるようになっている。こ の学習プロセッサ18は，第1のメモリ回路13に記憶 きれた時系列ぶれデータと第2のメモり回路17に記憶 きれた時系列データとから，これらの関係を満たす係数 （詳細は後述する）を複数時点で演算する学習手段で亦 る。
【0033】この学習プロセッサ18には，自身で得ら れる複数の倸数を演算して複数の入力変数を求め，求め られた複数の入力変数のうちの最適なものを選択守る変数選択手段としての変数選択プロセッサ19が接続され

ている。
【0034】以上の第1のメモり回路13，第2のメモ リ回路 17 ，学習プロセッサ 18 ，変数選択プロセッサ 19 等や復述するふれ演算回路210それぞれは，CP U20によって総合的に制御され，所定の演算プログラ ムが実行できるようにされている。
【0035】第1のメモり回路13から時系列的に出力 されるデータは，上述の変数選択プロセッサ19で選択 きれた入力変数のデータと共にぶれ演算回路21に供給 されるように構成されている。このふれ演算回路21 は，第1のメモリ回路13に記憶されたデータと変数選択プロセッサ19で巽択された大力変数に基づいてぶれ速度データまたはぶれ量データを演算するぶれ演算手段 である。
【0036】このふれ演算回路21の次段にな，ふれ補正演算回路22が接続されている。このふれ補正演算回路22は，ぶれ演算回路21で求められたぶれ速度デー夕またはぶれ量データを撮影レンズ光学系の焦点距離デ ータに応じてフィルム面5上のぶれを打ち消すように補正するふれ補正データに変換して演算するますである。 このふれ補正演算回路22の出力端には，ぶれ補正レン ズ4を駆動してフィルム面上の像ぶれを打ち消すように駆動するアクチュエータ23が接続されている。
【0037】さて，CPU20には，自身の制御の基に適正露光を与えることが出来るようにされた周知の測光回路24が接続されている。また，CPU20には，レ リーズスイッチ25が接続されている。
【0038】このレリーズスイッチ25は，シャッタレ リーズ釦の押迏みに連動して半押しでオンされる第1レ リーズスイッチと，さらに鎁を押込むことによってオシ きれる第2レリーズスイッチとの2つのスイッチで構成 きれている。
【0039】きらに，CPU20には，ズームスイッチ 26 が接続されている。このズームスイッチ26は，撮影光学采1 る形成するズームレンズ3の焦点距離を広角側に駆動させるための広角スイッチと望遠側に駆動きせ るための望遠スイッチとの2つのスイッチで構成きれて いる。
【0040】また，CPU20には，騃動回路27を介 して給送モータ28が接続され，フィルムを給送出来る ように構成されている。さらに，CPU20には，周知 のAF回路29が接続され，その出力端に被写体距離デ ータが得られるように粠成され，この被写体距墑データ は，AF回路29の次段に接続きれたAFデータ変換回路30によって合焦駆動量データに変換されるように構成されている。
【0041】上述のズームスイッチ26によって指定さ れるズーミングの方向がC P U 2 Oによって識別きれて出力きれる駆動デー多は，ズーム駆動回路31を介して ズームモータ32に供給され，このズームモータ32で

ズームレンズ3を所定の方向に駆動できるように棤成き れている。
【0042】このときにズームレンズ3の焦点距離デー夕は，ズーム位置検出回路33によって検出されてズー ム駆動回路31に入力されると共にAFデー夕変換回路 $30 に も$ 人力きれるように接続されている。
【0043】上述のAFデータ変換回路30で得られる合焦駆動量データは，次段のフォーカス駆動回路34を介してフォーカスモータ35に供給され，フォーカスモ ータ35によって撮影光学系1を形成するフォーカスレ ンズ2が合焦駆動されるように構成されている。
【0044】このときにフォーカス駆動きれた量を検出 するフォトインタラプタ36が設けられていて，このフ ォトインタラプタ36のデータガフォーカス駆動回路3 4に出力されるようになっている。
【0045】上述の第1のメモリ回路13と第2のメモ リ回路170内部は，図2に示されるように構成されて いる。即ち，第1のメモり回路13は，メモリ1，メモ リ2，…入メモリNでなる複数（N個）のメモリを直列的に形成して構成され，最初のメモリ1にサンプリング回路12からの出力であるぶれデータDが供給され，所定の周期でもって順々に次段のメモリにシフトとされ，第1のメモり回路13全体を見た場合には，第1のメモ リ回路13から時系列的なデータが学習ブロセッサ18 とぶん演算回路21の両方にデータ出力されることにな る。
【0046】また，第2のメモリ回路17も，メモリ 1，メモリ2，…・メモリNでなる複数（N個）のメモ りを直列的に形成して構成され，最初のメモり1にピー ク検出回路 16 からの出力である光データCが供給さ れ，所定の周期でもって順々に次段のメモリにシフトと され，第2のメモり回路17全体を見た場合には，第2 のメモり回路17から時系列的なデータが学習プロセッ サ18にデータス力をれることになる。
【0047】以上のように構成されたカメラの手ぶ補正装置における動作を図3ないし図12を用いて說明す る。図3に示すステップサ 1（以下，「ステップ\＃」を「\＃」と省略して記載する）でメインスイッチがオンき れると回路各部に電源供祫がなされ，初期設定が行われ て待機状態にされる。
【0048】そして，\＃2においてレリーズスイッチ2 5を形成する2つのスイッチのうちの第1レリーズスイ ッチがオンされたか否か，即ちカメラ本体に設けられた レリーズ釦が半押しされたか否かがCPU20で判断さ れ，NOの場合には待機状態がてのまま継続し，YES の場合には\＃3に移行して測光回路24による測光とA F 回路29による測距が開始される。
【0049】この測光と測距の動作は，周知の手段でも つて行まれ，本発明の要旨には直接に関係しないのでそ の詳細を省略するが，その概要は，次の通りである。即

ち，\＃3で行われた測光と測距の適正露光データと合焦駆動データが記憶され，後述する\＃21でレリーズスイ ッチ25を形成する2つのスイッチのうちの第2レリー ボスイッチがオンされたとをに露光動作が開始されると共に合焦䮝䡃潤始され，しかる後に通正露光が与えら れると共に合焦状態にされることになるのである。
【0050】さて，\＃3で則光と測距が上述のように実行されると共に，撮影光学系1を形成するズームレンズ 3における焦点距離データZpがズーム位置検出回路3 3で愌出されて格納ざれ，この焦点距離データZpがA Fデータ変換回路30に入力されると共にズーム駆動回路31にも入力される。
【0051】そして，このような井3が実行された後に移行する\＃4は，jを0に初期セットし，次の\＃5でi をのに初期セットするものである。このnは，第1のメ モり回路13における複数のメモりの数Nに対応したア ドレスを意味し，この実施列ではNとなっている。【0052】また，jほ，第10メモリ回路13におけ る複数のメモリの数ののそれでれの出力データのうちの 2つのデータを組み合わせたもののペア数にないてい る。次の\＃4で上述のjが0にセットされれ5でiがn （この例では $\mathrm{n}=12$ ）にセットされ\＃ 6 に移行する。【0053】この\＃6から\＃9は，ぶれデータDと光デ ータCを時系列的に並べ変えるステップであり，\＃ 11加ら\＃15は，加速度センサ11で検出きれたふれぞー タをサンプリング回路12でサンプリングしたぶれデー タDと，CCD14に生じる光出力をサンプリング回路 15 でサンプリングした出力をピーク検出回路 16 でピ ーク検出した光データCとを時系列的に並へ変えるスデ

$$
Y_{k}=a_{0}+\left(a_{1} \cdot x_{i}\right)+\left(a_{2} \cdot x_{j}\right)+\left(a_{3} \cdot x_{i}^{2}\right)
$$

$$
+\left(a_{4} \cdot x_{j}{ }^{2}\right)+\left(a_{5} \cdot x_{i} \cdot x_{j}\right.
$$

〔0057］そして， N 固の入力変数 $\mathrm{x}_{\mathrm{i}} \quad(\mathrm{i}=1$ ，
とし， x_{i} と x_{j} の天れぞれを入力変数とし，出力変数 を Y_{k} とし，係数を a_{0}～ a_{5} とする。

$$
\mathrm{C}(\mathrm{t})=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2} \cdots \mathrm{x}_{\mathrm{preN}}\right)
$$

という非線形の関係がある。
【00581この実施例の場合には，入力変数 x_{i} が，加速度センサ11から出力ざれるぶれデータDに置き換 えられ，出力変数C（t）は，CCD14への入射像の面の移動量（フィルム5における像面の移動量に等侕な もの）データである光データCに置き換えられる。【O059】去た，入力変数 x_{i} の個数preNは，一定 の学習期間 tしを定めたときにその中に含まれる個数で ある。そして，N個の入力変数 $\mathrm{x}_{\mathrm{i}}(\mathrm{i}=1,2,3$ •

$$
\begin{aligned}
\varepsilon & =\left\{C(t)-Y_{k}\right)^{2} \\
& =\left[C(t)-\left\{a_{0}+\left(a_{1} \cdot x_{1}\right)+\left(a_{2} \cdot x_{j}\right)+\left(a_{3} \cdot x_{i}{ }^{2}\right)\right.\right. \\
& \left.+\left(a_{4} \cdot x_{j}^{2}\right)+\left(a_{5} \cdot x_{i} \cdot x_{j}\right)\right\}^{2} \quad \cdots \cdots \cdot+\text { 式 } 3
\end{aligned}
$$

この式3より学習期間の時点0からtL までの間の2乗誤差とは，次の式4により求められる。

【0061】
【数1】

$$
\begin{aligned}
\varepsilon & =\sum_{\mathrm{t}-0}^{\mathrm{t} \text { Learn }}\left[\left\{\mathrm{C}(\mathrm{t})-\left\{\mathrm{a}_{0}+\left(\mathrm{a}_{1} \cdot \mathrm{x}_{\mathrm{i}}\right)+\left(\mathrm{a}_{2} \cdot \mathrm{x}_{\mathrm{j}}\right)\right.\right.\right. \\
& \left.\left.+\left(\mathrm{a}_{3} \cdot \mathrm{x}_{\mathrm{i}}{ }^{2}\right)+\left(\mathrm{a}_{4} \cdot \mathrm{x}_{\mathrm{j}}{ }^{2}\right)+\left(\mathrm{a}_{5} \cdot \mathrm{x}_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{j}}\right)\right\}\right]^{2}
\end{aligned}
$$

\qquad

ここで，学習期間 t_{L} は， 1 回当たりの学習時間より充分に長いものにする。
【0062】この式4においては，出力変数C（t）と入力変数 x_{i} ， x_{j} が既知となっていて，係数 a_{0} ， a

り，最終的には㥒数 $\mathrm{a}_{0} \sim \mathrm{a}_{5}$ を求めるのであるから，式4を說差とを0として係数 a_{0}～ a_{5} で偏微分する と，次の式5ないし式 10 のような6つの式が得られ る。
$1, a_{2}, a_{3}, a_{4}, a_{5}$ と2乗誤差 ε が未知数であ 【0063】

$$
\begin{aligned}
& \partial \varepsilon_{\mathrm{k}} / \hat{\sigma} \mathrm{a}_{0}=2 \cdot \Sigma\left[\mathrm{C}(\mathrm{t})-\left\{\mathrm{a}_{0}+\left(\mathrm{a}_{1} \cdot \mathrm{x}_{\mathrm{i}}\right)+\left(\mathrm{a}_{2} \cdot \mathrm{x}_{\mathrm{j}}\right)\right.\right. \\
& +\left(a_{3} \cdot x_{i}{ }^{2}\right)+\left(a_{4} \cdot x_{j}{ }^{2}\right) \\
& \left.\left.+\left(a_{5} \cdot x_{i} \cdot x_{j}\right)\right\}\right]=0 \\
& \partial \varepsilon_{\mathrm{k}}<\partial \mathrm{a}_{1}=2 \cdot \Sigma\left[\mathrm{C}(\mathrm{t})-\left\{\mathrm{a}_{0}+\left(\mathrm{a}_{1} \cdot \mathrm{x}_{\mathrm{i}}\right)+\left(\mathrm{a}_{2} \cdot \mathrm{x}_{\mathrm{j}}\right)\right.\right. \\
& +\left(a_{3} \cdot x_{i}^{2}\right)+\left(a_{4} \cdot x_{j}{ }^{2}\right) \\
& \left.+\left(a_{5} \cdot x_{i} \cdot x_{j}\right) ;\right] x_{i}=0 \quad \cdots \cdots \cdots \cdots \cdot{ }^{\text {(}} 6 \\
& \partial \varepsilon_{\mathrm{k}} / \partial \mathrm{a}_{2}=2 \cdot \sum\left[\mathrm{C}(\mathrm{t})-\left\{\mathrm{a}_{0}+\left(\mathrm{a}_{1} \cdot \mathrm{x}_{\mathrm{i}}\right)+\left(\mathrm{a}_{2} \cdot \mathrm{x}_{\mathrm{j}}\right)\right.\right. \\
& +\left(a_{3} \cdot x_{i}{ }^{2}\right)+\left(a_{4} \cdot x_{j}{ }^{2}\right) \\
& \left.+\left(a_{5} \cdot x_{i} \cdot x_{j}\right) ;\right] x_{j}=0 \quad \cdots \cdots \cdots \cdots \cdot{ }^{-} 7 \\
& \partial \varepsilon_{\mathrm{k}} / \partial \mathrm{a}_{3}=2 \cdot \Sigma\left[\mathrm{C}(\mathrm{t})-\left\{\mathrm{a}_{0}+\left(\mathrm{a}_{1} \cdot \mathrm{x}_{\mathrm{i}}\right)+\left(\mathrm{a}_{2} \cdot \mathrm{x}_{\mathrm{j}}\right)\right.\right. \\
& +\left(a_{3} \cdot x_{i}^{2}\right)+\left(a_{4} \cdot x_{j}{ }^{2}\right) \\
& \left.+\left(a_{5} \cdot x_{i} \cdot x_{j}\right) ;\right] x_{i}{ }^{2}=0 \quad \cdots \cdots \cdots \cdots \cdot{ }^{2} 8 \\
& \partial \varepsilon_{\mathrm{k}} / \partial \mathrm{a}_{4}=2 \cdot \Sigma\left[\mathrm{C}(\mathrm{t})-\left\{\mathrm{a}_{0}+\left(\mathrm{a}_{1} \cdot \mathrm{x}_{\mathrm{i}}\right)+\left(\mathrm{a}_{2} \cdot \mathrm{x}_{\mathrm{j}}\right)\right.\right. \\
& +\left(a_{3} \cdot x_{i}{ }^{2}\right)+\left(a_{4} \cdot x_{j}{ }^{2}\right) \\
& \left.+\left(a_{5} \cdot x_{i} \cdot x_{j}\right) ;\right] x_{j}{ }^{2}=0 \quad \cdots \cdots \cdots \cdot \vec{y} 9 \\
& \partial \varepsilon_{\mathrm{k}} / \partial \mathrm{a}_{5}=2 \cdot \Sigma\left[\mathrm{C}(\mathrm{t})-\left\{\mathrm{a}_{0}+\left(\mathrm{a}_{1} \cdot \mathrm{x}_{\mathrm{i}}\right)+\left(\mathrm{a}_{2} \cdot \mathrm{x}_{\mathrm{j}}\right)\right.\right. \\
& +\left(a_{3} \cdot x_{i}{ }^{2}\right)+\left(a_{4} \cdot x_{j}{ }^{2}\right) \\
& \left.+\left(a_{5} \cdot x_{i} \cdot x_{j}\right) ;\right] x_{i} \cdot x_{j}=0 \\
& \text { 式 } 10
\end{aligned}
$$

この式ちないし式 10 は，連立 1 次方程式となっている 5 を求めることになる。これは次の式 1 1のような構造 ので，周知のガウス・ヨルダン法等を用いて解くことに 式になる。 より係数 $a_{0} \sim a_{5}$ を求めることができる。これによ 【0064】
り，学習期間 $0 \sim \mathrm{t}_{\text {LEARN }}$ におうける最適な係数 $\mathrm{a}_{0} \sim \mathrm{a}$ 【数2】

$$
\begin{align*}
\widehat{y}= & a_{0}+\left(a_{1} \cdot x_{i}\right)+\left(a_{2} \cdot x_{j}\right)+\left(a_{3} \cdot x_{i}^{2}\right) \\
& +\left(a_{4} \cdot x_{j}^{2}\right)+\left(a_{5} \cdot x_{i} \cdot x_{j}\right)
\end{align*}
$$

この式11において係数 $\mathrm{a}_{0} \sim \mathrm{a}_{5}$ は，既知であるので
入力変数 $\mathrm{x}_{\mathrm{i}}, ~ \mathrm{x}_{\mathrm{j}}$ としてがれデータロと光データC
を代大することによって2乗䛊差をを求めることが出来
るのである。
【0065】このようにして各入力変数 x_{i} ， x_{j} ごと
に求められた2乗誤差とは，CPU20の制御の基に格
納きれて学習演算が完了して，次の井20に移行する。
【0066】このようなモデル化された構造式にぶれデ
ータDと光データCを代大して変位

Zyと $\widehat{Z y}$ をグラフ化した一例を，岡 9 に示す。

 \＃2 0は，第1のメモリ回路 13 に記憶きれた時系列ぶ れデータと第2のメモリ回路17に記憶された時系列デ ータとの䛊差成分が最小になるものを選択するものであ り，具体的には，\＃19以前のステップで行われた学習演算によって既に求められてい为複数の2乗誤差 ε にお いて，複数の入力変数 x_{i} ， x_{j} に対して最も誤差が小 さくなる組み合わせを必要な数だけ選択するのである。【0067】例之ば，上述のNが 4 とした場合には，大力変数 x_{i} と入力変数 x_{j} の組み合わせは，（ x_{1} ， x 2）$\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)\left(\mathrm{x}_{1}, \mathrm{x}_{4}\right)\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)(\mathrm{x}$ 2， $\left.\mathrm{x}_{4}\right)\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right)$ のように6通りの組み合わせ となる。
【0068】なぁ，一般には，入力変数がN個あると， その組み合わせは
N （ $\mathrm{N}-1$ ）$/ 2$ 個
の組み合わせとなる。このようにして，学習期間中の諆差を小ざくするような入力変数の組み合わせと係数から所定の構造式を得たときに次の\＃21に移行する。
【0069】\＃21で第2レリーズスイッチがオンきれ たか否かが判定され，NOの場合には，前述の\＃5 まで戻きれ，\＃5 から \＃20までが再度に亘って実行きれ学習が行われて最適な係数が選択されるという一連のルー チンが実行される。
【0070】この一連のルーチンは，\＃21がYESに なるまで繰り返し行われる。言い換えれば，最初に演算 きれる構造式から上述の式1を得た後に，それ以降の式 を得るという演算を繰り返す。これを必要な回数だけ繰 り返して最も最適な構造式を得るのである。
【0071】さて，第2レリーズスイッチがオンされる と\＃21をYESに分岐し，次の\＃22で予測ぶれ量B pre が演算される。この予測演算の関数は，ルーチン\＃ 21まで繰り返されて得た最適な構造式を利用するもの である。
【0072】この場合，最適な構造式は，複数の入力変数 x_{i} ， x_{j} に対して最も誤差が小さくなる組み合せか ら成立するものである。ゆえに複数の入力変数に実際の値（この場合加速度，角速度）を代入することにより，将来のぶれ量を予測することができる。
【0073】この予測演算式は，
$B_{\text {pre }}=a_{20}+a_{21} \cdot Z_{i}+a_{22} \cdot Z_{j}+a_{23} \cdot Z_{i}{ }^{2}$
$+a_{24} \cdot Z_{j}{ }^{2}+a_{25} \cdot Z_{i} \cdot Z_{j}$
ここで
$Z_{i}=a_{110}+a_{111} \cdot X_{i}+a_{112} \cdot X_{j}+a_{113} \cdot X_{i}^{2}$
$+a_{114} \cdot X_{j}{ }^{2}+a_{115} \cdot X_{i} \cdot X_{j}$
$Z_{j}=a_{120}+a_{121} \cdot X_{h}+a_{122} \cdot X_{1}+a_{123} \cdot X_{h}$ ${ }^{2}+\mathrm{a}_{124} \cdot \mathrm{X}_{1}{ }^{2}+\mathrm{a}_{125} \cdot \mathrm{X}_{\mathrm{h}} \cdot \mathrm{X}_{1}$ となる。
【0074】以下簡略的に，
$\mathrm{B}_{\mathrm{pre}}=\mathrm{f}\left\{\mathrm{D}\left(\mathrm{X}_{\mathrm{i}}, \cdots \cdots, \mathrm{x}_{\mathrm{h}}\right)\right\}$
と表現する。
【0075】このD（ x_{i} ，•••• x_{h} ）は，変数選択プロセッサにより選択された最適な変数であり，x $\mathrm{i} \sim \mathrm{x}_{\mathrm{h}}$ までの最適な変数に相当する第 1 メモりの情報 から得られたデータである。
【0076】この\＃22で予測がれ量 $\mathrm{B}_{\mathrm{pre}}$ が演算され ると\＃23でアクチェエータ23によってぶ補正レン ズ4が駆動開始され，次の\＃24でシャッタが開き始め

られる。
【0077】このようにぶれ補正レンズ4の駆動の予則 は，その一例を図10に示すようにぶれデータロに基づ く出力が変動した場合に図11に示すようにその変位Z yが図11に示すようになる。また，この予湘に基づい て，実際に駆動されるぶれ補正レンズ4の変位ZyとZ yをグラフ化した一例を図12に示す。
【0078】上述の\＃24の次は，図面作成上で生じた中継点を介して図4に示す\＃ 25 に移行する。この\＃ $25 は, ~$ 測光回路 24 で得られた適正なシャッ夕秒時 S』から，所定の時間Itだけ減算するもので，この時間 It は，サンプリング回路12とサンプリング回路15等の処理時間に基づいて定められている。
【0079】そして，\＃26でシャッタ秒時 $\mathrm{S}_{s}<000$判定かなきれ，NOである場合にな，次の\＃27から\＃ 32までが上述と同様に行なわれ，ぶれデータDを時系列的に並べ変えて第1のメモリ回路13に時系列的なデ ータとして格納するステップが実行される。
【0080】この\＃320次に\＃33が実行きれ，ぶれ量の予測が上述の 22 と同様にして行われ，その演算結果に基づいて\＃34でアクチュエータ23によってぶれ補正レンズ 4 が駆動開始され，\＃ 25 に戻され，\＃ 25 でシャッタ秒時 S_{s} の減算が行なわれ，\＃26がNOの場合には再度\＃27から开34が実行される。言い換え れば，シャッタが開いている間には常に手ふれ補正の予測駆動が行なわれるということである。
【0081】そして，\＃26でYESの場合，即ち，シ ャッタ開時間が適正なシャッタ秒時 S_{s} の時間を経過し たときには，\＃35に移行してシャッタ閉の確認がきれ た後に，\＃36でぶれ補正レンズ4を所定の初期位置ま で戻すようにアクチュエータ23が逆駆動され，\＃37 でアクチュエータ23が停止きれ，\＃38でフィルム給送が行なすれ，一連の手ぶれ補正制御が完了して次回の撮影に備えられることになる。
【0082】したがって，本実施例においては，学習が ロセッサ18によって，ぶれデータDと光データCとか らこれらの関係を満たす係数を複数時点で演算し，この学習プロセッサ18で得られた複数の係数を演算して複数の入力変数を求め，求められた複数の入力変数のうち の，ぶれデータDと光データCの時系列データの鿁差成分が最小になるものを変数選択プロセッサ19で選択し ているので，撮影者の癖やカメラ本体に装着される交換 レンズの重量等に対応した広い範囲の手がれ振動の態様 に適心できる手ぶれ補正装置を提供することができる。 しかも，手ぶれ補正は，シャッタが開いている間にも繰 り返し行なわれているので，急旗な手ぶれに対しても充分に対応できる利点もある。
【0083】次に本笔明の第2実施例を図13ないし図 19を用いて說明する。この実施例む，撮影光学系を構成する撮影レンズに，自動合焦機能を有するズームレン

ズを用いたカメラに，請求項2の発明を適用したもので ある。
【0084】全体構成の概略を示す図13は，前述説明 した第1実施例の全体構成（図1参照）とかなりの部分 が同様であるために，説明の重複化を避けるために図1 3中の構成部村のうち，図1と同様のものに該 1 に付 した符号と同一符号を付すにとどめ，異なる部分のみに ついて説明する。
【0085】この加速度センサ11の後段に接続ざれた サンプリング回路 12 の出力端には，入モリ回路 41 が接続きれている。このメモリ回路41は，加速度センサ 11 の出力を時系列的に記憶する記憶手段であり，この メモリ回路41からの時系列的な出力は，学習プロセッ サ43に供給されると共にぶれ演算回路42にも供給さ れるようになっている。
【0086】この学習プロセッサ43は，メモり回路4 1 に記憶されたぶれデータDとしての時系列データとC CD14からの光データCとから両データの結合係数を複数時点で演算する学習手段となっている。
【0087】また，交れ演算回路42は，メモり回路4 1に記憶されたデータと学習プロセッサ43で⿺⿻一⿰冫⿰亅⿱丿丶丶⿱⿰㇒一丶⿰工凡心からち た結合係数に基づいてふれ速度データまたはふれ量デー夕を演算するぶれ演算手段である。
【0088】上述のメモリ回路 4 1 の内部は，図14に示されるように構成されている。即ち，メモリ回路41 は， $1, ~ 2, ~ \cdots \cdots 12$ でなる複数のメモリを直列的に形成して構成きれ，最初のメモリ1にサンプリング回路1 2からの出力であるぶれデータDが供給され，所定の周期でもつて順々に次段のメモリにシフトされ，メモリ回路41全体を見た場合には，メモリ回路41から時系列的なデータが学習プロセッサ43とふれ演算回路 42 の両方にデータ出力されることになる。
【0089】以上のように構成されたカメラの手ぶれ補正装置における動作を図13ないし図19を用いて説明 する。図15に示すステップ\＃41でメインスイッチが オンきれると回路各部に電源供給がなされ，初期設定が行かれて待機状態にされる。
【0090】そして，\＃42においてレリーズスイッチ 25を形成する2つのスイッチのうちの第1レリーズス イッチがオンきれたか否か，即ちカメラ本体に設けられ たレリーズ釦が半押しされたか否かがC P U 20 で判断 きれ，NOの場合には，待機状態がてのまま継続し，Y ESO場合にな，\＃43に移行して測光回路24による測光とAF回路29による測距が開始される。
【0091】\＃43で測光と測距が実行されると共に，撮影光学系1を形成するズームレンズ3における焦点距敲データZpがズーム位置検出回路33て検出きれて格納され，この焦点距㒀データZ Z がAFデータ変換回路 30に大力きれると共にズーム駆動回路31にも入力さ れる。

【0092】そして，次の\＃44で適正シャッタ秒時S s の演算とレンズの繰出しが行われる。尚，このような測光と澌距の動作は，前述実施例と同様にして周知の手段でもつて行われることになる。
【0093】そして，このような井44旌実行された後 に移行する\＃45は，jを0に初期セットし，次の\＃4 6でjをのに初期セットするものである。このnは，メ モり回路41における複数のメモリの数の12に対応し たアドレスを意味している。また，jは，メモリ回路4 1 における複数のメモリの数ののそれぞれの出力データ のうちの2つのデータを組み合わせたもののペア数にな っている。
【0094】従って，\＃45で上述のjが0にセットさ れ，\＃46でiがn（n＝12）にセットざれ，次の\＃ 47に移行することになる。この井47から\＃53は， ふれデータDを時系列的に並べ変えるステップであり， \＃54 から \＃5 5は，CCD 14に生じる光出力をサン プリング回路15でサンプリングした出力をピーク検出回路16でピーク検出した光データCを時采列的に並バ変えるステッブである。
【0095】さて，このようにして得られるぶれデータ Dと光デー夕Cの処理は，\＃56でレリーズスイッチ2 5の第2レリーズスイッチがONされたが否かが判定き九，NOの場合には\＃46に戻されて\＃46加ら井55 が再度実行きれ，これらは井56がYESとなるまで行 われることになる。\＃56がYESになったときには，次の井57に移行して学柏演算が行なわれる。
【0096】この学習演算む，基本的な原理としては， ニューラルネットワークの理論を用いたものである。次 に，ニューラルネットワークを入力層と中間層と出力㬝 の3つの階層で形成されたモデルを用いて説明する。
【00971図17に示すようにニューロンユニット1 1，12，1303つのユニットで大力層が構成きれ， それぞれの入力には，入力 x_{1} と x_{2} と x_{3} の 1 采統づ つが入力されている。
【0098】末た，ニューロンユニット21，22の2 つユニットで中間層が構成され，このニューロンユニッ ト21の天力には，3つのニューロンユニット11，1 2，13のをれそれの出力がシナブス211，212， 213を介して入力きれ，ニューロンエニット22の入力には，3つのニューロンユニット11，12，130 それぞれの出力がシナプス221，222，223を介 して入力されている。
【0099】きらに，ニューロンユニット31で出力層 が構成され，このニューロンユニット31の大力には， 2つのニューロンユニット21，22のそれそれの出力 がシナブス311，312を介して入力されている。
【0100】そして，6つのニューロンコニット11， 12，21，22，31のたれそれの出力 y_{11} ， y_{12} ， $\mathrm{y}_{13}, \mathrm{y}_{21}, \mathrm{y}_{22}, \mathrm{y}_{31}$ は，一般式で表すと式12のよ

うになる。
【数3】
【0101】

$$
y_{i j}=f\left[\sum_{j=1}^{n}\left\{W_{i j} \cdot y(i-1) k\right]\right.
$$

．．．．．．．．．．．．式 12

ここで， $\mathrm{W}_{\mathrm{i} j \text { 灶，シナプスの結合係数であり，} \mathrm{f}[\mathrm{C}] \text { る。 }}$
は，シグモイド関数であり，6つ0ニューロンユニット【0102】また，このf［ ］は，通常のニューラル
11，12，13，21，22，31の出力関数であ $f(x)=1 /\left(1+e^{-x}\right)$

ネットワークにおいては，
－．．．．．．．．．．．．式 13
で表される。上述の入力 $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ と出力 y_{11} ，【0103】入力層（第1層）
$y_{12}, y_{13}, y_{21}, y_{22}, y_{31}$ の関倸を次に示す。

$$
\mathrm{x}_{1}=\mathrm{y}_{11}
$$

$$
\text { -•式 } 14
$$

$$
\mathrm{x}_{2}=\mathrm{y}_{12} \quad \cdots \cdots \cdots \cdots \cdot \text { 式 } 15
$$

$$
\mathrm{x}_{3}=\mathrm{y}_{13} \quad \text {............式 } 16
$$

【0104】中間層（第2層）

$$
u_{21}=\left(W_{211} \cdot y_{11}\right)+\left(W_{212} \cdot y_{12}\right)+\left(W_{213} \cdot y_{13}\right) \cdots \cdots \text { 式 } 17
$$

【0105】

$$
\mathrm{y}_{21}=\mathrm{f} \quad\left(\mathrm{u}_{21}\right)
$$

$$
=1 /\left(1+e^{-u_{21}}\right) \quad \cdots \cdots \text { 式 } 18
$$

$【 0106 】$
【数5】

$$
\mathrm{y}_{22}=\mathrm{f}\left(\mathrm{u}_{22}\right)
$$

$$
=1 /\left(1+\mathrm{e}^{-\mathrm{u}_{22}}\right) \quad \quad \cdots \cdots \text { 式20 }
$$

出力層（第3層）

$$
u_{31}=\left(W_{311} \cdot y_{21}\right)+\left(W_{312} \cdot y_{22}\right)
$$

【0107】
【数6】

$$
\begin{align*}
{ }^{y_{31}} & =\mathrm{f} \quad\left(\mathrm{u}_{31}\right) \\
& =1 /\left(1+\mathrm{e}^{\left.-\mathrm{u}_{31}\right)}\right.
\end{align*}
$$

ここで，ニューラルネットワークは，学習演算を複数回 に亘って繰り返し行い，最終的には最も誤差が小さくな

ーション法によって算出でき，この具体的な算出方法に ついて說明する。
【0108】 る，理想的には誤差が 0 となるような結合倸数に収束ざ ${ }_{2}, x_{3}$ から演算されるデータ $\widehat{y_{31}}$

```
は, 実際の出力値である \ \ & とは異なるものになってL
ている量，即ち䛊差Iは，
```

まう。これは，加速度センサ11の出力データとCCD
【0109】 140 出力データというように，基データの形態が異な

【数7】 るということに起因している。そこで，これらの異ない

$$
I=\sum_{i}\left(y_{31}-\widehat{y_{31}}\right)^{2}
$$

となり，この䛊差IがOになるようにすれば良い。この
ある。ここで，先ず，
ために結合係数を学習の度毎に修正して行き誤差Iをで
きるだけ小さくする方法がバッタプロバダーション法で
【数8】

$$
\begin{align*}
\widehat{\mathrm{y}_{31}} & =\mathrm{f}\left[\widehat{\mathrm{u}_{31}}\right] \\
& =\mathrm{f}\left[\mathrm{~W}_{311} \cdot \widehat{\mathrm{y}_{21}}+\mathrm{W}_{312} \cdot \widehat{\mathrm{y}_{22}}\right]
\end{align*}
$$

【 01111 】
【数9】

$$
\begin{aligned}
\widehat{\mathrm{y}_{21}} & =\mathrm{f}\left[\widehat{\mathrm{u}_{21}}\right] \\
& =\mathrm{f}\left[\mathrm{~W}_{211} \cdot \mathrm{x}_{1}+\mathrm{W}_{212} \cdot \mathrm{x}_{2}+\mathrm{W}_{213} \cdot \mathrm{x}_{3}\right] \quad \ldots \ldots \ldots . . \text { 式2 } 5
\end{aligned}
$$

【0112】
【数10】

$$
\begin{aligned}
& \widehat{y_{22}}=\mathrm{f}\left[\widehat{\mathrm{u}_{22}}\right] \\
& =\mathrm{f}\left[\mathrm{~W}_{221} \cdot \mathrm{x}_{1}+\mathrm{W}_{222} \cdot \mathrm{x}_{2}+\mathrm{W}_{223} \cdot \mathrm{x}_{3}\right] \\
& \text {............式2 } 6 \\
& \text { となる。ここで, f[…] は, シグモイド関数である。【0113】 } \\
& \text { そして, これらの式23~式26の俱差Iを, 各結合係【数11】 } \\
& \text { 数で偏䳪分すると, 次のようになる。 } \\
& \frac{\partial \mathrm{I}}{\partial \mathrm{~W}_{311}}=\frac{\partial}{\partial \mathrm{W}_{311}}\left(\mathrm{y}_{31}-\widehat{\mathrm{y}_{31}}\right)^{2} \\
& =2\left\{\mathrm{y}_{31}-\mathrm{f}\left(\mathrm{~W}_{311} \cdot \widehat{\mathrm{y}_{21}}+\mathrm{W}_{312} \cdot \widehat{\mathrm{y}_{22}}\right)\right\} \\
& \cdot\left\{-\frac{\partial}{\partial W_{311}} \mathrm{f}\left(\mathrm{~W}_{311} \cdot \widehat{\mathrm{y}_{21}}+\mathrm{W}_{312} \cdot \widehat{\mathrm{y}_{22}}\right)\right\} \cdot \widehat{\mathrm{y}_{21}} \\
& =-\alpha\left\{\mathrm{y}_{31}-\mathrm{f}\left(\mathrm{~W}_{311} \cdot \widehat{\mathrm{y}_{21}}+\mathrm{W}_{312} \cdot \widehat{\mathrm{y}_{22}}\right)\right\} \\
& \cdot\left\{-\frac{\partial}{\partial W_{311}} \mathrm{f}\left(\mathrm{~W}_{311} \cdot \widehat{\mathrm{y}}_{21}+\mathrm{W}_{312} \cdot \widehat{\mathrm{y}_{22}}\right)\right\} \cdot \widehat{\mathrm{y}}_{21} \\
& =-\alpha\left(\mathrm{y}_{31}-\widehat{\mathrm{y}_{31}}\right) \cdot-\frac{\partial}{\partial \mathrm{W}_{312}} \cdot \widehat{\mathrm{y}_{31}} \cdot \widehat{\mathrm{y}_{21}} \cdots \cdots \cdots \cdot \text { 式 } 27 \\
& \alpha \text { は, 係数 }
\end{aligned}
$$

【0114】 $\frac{\partial \mathrm{I}}{\partial \mathrm{W}_{312}}=-\alpha\left(\mathrm{y}_{31}-\widehat{\mathrm{y}_{31}}\right) \cdot \frac{\partial \text { 【数12】 }}{\partial \mathrm{W}_{312}} \cdot \widehat{\mathrm{y}_{31}} \cdot \widehat{\mathrm{y}_{22}} \quad \cdots \cdots \cdots \cdots \cdot$ 式 28

$$
\begin{aligned}
& \frac{\partial \mathrm{I}}{\partial \mathrm{~W}_{211}}= \frac{\partial}{\partial \mathrm{W}_{211}}\left(\mathrm{y}_{31}-\widehat{\mathrm{y}_{31}}\right)^{2} \\
&= 2 \cdot\left(\mathrm{y}_{31}-\widehat{\mathrm{y}_{31}}\right) \\
& \cdot \frac{\partial}{\partial \mathrm{W}_{211}}\left\{-\mathrm{f}\left(\mathrm{~W}_{311} \cdot \widehat{\mathrm{y}_{21}}+\mathrm{W}_{312} \cdot \widehat{\mathrm{y}_{22}}\right)\right\} \\
&= 2 \cdot(\mathrm{y} 31-\widehat{\mathrm{y} 31}) \cdot \frac{\partial}{\partial \mathrm{W}_{211}}\left\{-\mathrm{f}\left[\mathrm { W } _ { 3 1 1 } \cdot \mathrm { f } \left(\mathrm{~W}_{211}\right.\right.\right. \\
&\left.\left.\left.\cdot \mathrm{x}_{1}+\mathrm{W}_{212} \cdot \mathrm{x}_{2}+\mathrm{W}_{213} \cdot \mathrm{x}_{3}\right)+\mathrm{W}_{312} \cdot \widehat{\mathrm{y}_{22}}\right]\right\} \\
&=\text { こで, } \mathrm{y}=\mathrm{f}(\mathrm{u}), \mathrm{u}=\mathrm{g}(\mathrm{x}) \text { のとき }
\end{aligned}
$$

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{x}}=\frac{\partial \mathrm{y}}{\partial \mathrm{u}} \cdot \frac{\partial \mathrm{u}}{\partial \mathrm{x}} \quad \text { である。 }
$$

$$
\frac{\partial \mathrm{I}}{\partial \mathrm{~W}_{211}}=-\alpha\left(\mathrm{y}_{31}-\widehat{\mathrm{y}}_{31}\right) \cdot \frac{\partial}{\partial \widehat{\mathrm{y}_{21}}}\left\{\mathrm { f } \left(\mathrm{~W}_{311} \cdot \widehat{\mathrm{y}}_{21}\right.\right.
$$

$$
+\mathrm{W}_{312} \cdot \widehat{\left.\left.\mathrm{y}_{22}\right)\right\}} \cdot \frac{\partial}{\partial \mathrm{W}_{211}} \widehat{\mathrm{y}_{21}}
$$

$$
=-\alpha\left(\mathrm{y}_{31}-\widehat{\mathrm{y}_{31}}\right) \cdot \frac{\partial}{\partial \widehat{\mathrm{y}_{21}}} \widehat{\mathrm{y}_{31}} \cdot \frac{\partial}{\partial \mathrm{w}_{211}} \widehat{\mathrm{y}_{21}} \cdot \mathrm{x}_{1}
$$

式29
【0116】
【数14】

$$
\frac{\partial \mathrm{I}}{\partial \mathrm{~W}_{212}}=-\alpha\left(\mathrm{y}_{31}-\widehat{\mathrm{y}_{31}}\right) \cdot \frac{\partial}{\partial \widehat{\mathrm{y}_{21}}} \widehat{\mathrm{y}_{31}} \cdot \frac{\partial}{\partial \mathrm{~W}_{212}} \widehat{\mathrm{y}_{21}} \cdot \mathrm{x}_{2}
$$

【0117】

〔0118】
【数16】

$$
\frac{\partial \mathrm{I}}{\partial \mathrm{~W}_{221}}=-\alpha\left(\mathrm{y}_{31}-\widehat{\mathrm{y}_{31}}\right) \cdot \frac{\partial}{\partial \widehat{\mathrm{y}_{22}}} \widehat{\mathrm{y}_{31}} \cdot \frac{\partial}{\partial \mathrm{~W}_{221}} \widehat{\mathrm{y}_{22}} \cdot \mathrm{x}_{1}
$$

【0119】
【数17】

【O120】
【数18】

ここで，
【数19】
【0121】

$$
\widehat{y}=\mathrm{f}(\widehat{\mathrm{u}})
$$

fは，シグモイド関数であり，以下のようになる。
【数20】
【0122】

$$
\widehat{y}=f(\hat{u})=\frac{1}{1+e^{-\hat{u}}}
$$

【0123】
【数21】
$\frac{\partial \widehat{y}}{\partial \widehat{u}}=\frac{e^{-\widehat{u}}}{\left(1+e^{-\widehat{u}}\right)^{2}}$

以上のように誤差Iを各結合係数で偏例分して行き，こ の偏微分した値を更新して行くことにより正しい結合係数へ近つけて行くことができる。結合係数が正しい値で あれば誤差 I が 0 となり結合係数の更新すなされない。 このようにして学習演算が完了するとつぎの\＃58に移行し，ぶれ量の予測演算が行かれる。
【0124】この学習が完了したということ恃，結合係数が最適となり，入力層のス力 x_{i} と出力層の出力 y_{3}

$$
\mathrm{B}_{\mathrm{pre}}=\mathrm{f}\left\{\mathrm{D}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)\right\}
$$

．．．．．．．．．．．．式 37
が最適化きれたことになる。つまり，大力 x_{i} と出力 y 3は，ニューラルネットワークにより線形化され，複数 の入力 x_{i} に実際の値（この場合加速度まだき角速度） を代人することにより将来のぶれ量を予測することがで きる。この予測演算は，ぶれ量 $\mathrm{B}_{\text {pre }}$ は，（式12）， （式13）で示されるようになる。【0125】これを簡略的に記述すると， $B_{p r e}=f\left\{D\left(x_{1}, x_{2},\right.\right.$. －式38
として行なわれる。このD（ $\mathrm{x}_{1}, \mathrm{x}_{2}$ ，$\cdot \cdots, \mathrm{x}$ n）は，ニューラルネットワーク第1層目の入力変数と なるものであり，ぶれ演算する時に第1のメモリに格納 されている情報を読み込んで，ぶれ演算をするものであ る。なお，D（ x_{1} ， $\mathrm{x}_{2} \cdots \cdots \mathrm{x}_{\mathrm{n}}$ ）は，時采列的 に与えられるデータである。
【0126】この\＃58で予測ぶれ量 $\mathrm{B}_{\mathrm{pre}}$ 加演算され ると \＃5 9でアクチュエータ23によってぶれ補正レン ズ4が駆動開始され，次の\＃60でシャッタが開き始め られる。この井60の次は，図面作成上で生じた中継点 を介して図16に示す\＃61に移行する。
【0127】この\＃61は，\＃44で求められた適正な シャッタ秒時 S_{s} から，所定の時間Itたけ減算するも ので，この時間Itは，サンプリング回路 12 とサンプ

リング回路15等の処理時間に基づいて定められてい る。
【0128】をして，\＃62でシャッタ秒時 $\mathrm{S}_{s}<0$ の判定がなきれ，NOである場合には，次の\＃ 63 から井 68までが上述と同様に行なっれ，ぶれデータロを時采列的に並べ変えてメモリ回路 4 1 内部の各义モりに時系列的なデータとして格納するステップガ実行される。こ の\＃ 680 次に\＃ 69 が実行され光データCのサンプリ ングと卉70でそのピーク検出が行なわれる。
【0129】そして，つぎの\＃71で上述同様にして学習演算が再び行なわれ，その結果に基づいて，上述同様 にして\＃72でぶれ量の予測が行なわれる。その演算結果に基づいて\＃73でアクチュエータ23によってふれ補正レンズ4か駆動開始され，\＃61に戻され，\＃61

でシャッタ秒時 S_{s} の減算が行なわれ，\＃62がNOの場合には再度\＃ 63 から \＃7 3 が実行される。言い換え れば，シャッタが開いている間には，常に手ぶれ補正の予測駆動が行なかれるということである。
【0130】そして，\＃6 2 でYESの場合，即ち，シ ャッタ開時間が適正なシャッタ秒時 $\mathrm{S}_{\text {s }}$ の時間を経過し たときには，\＃7 4 に移行してシャッタ閉の確認がきれ た後に，\＃75でぶれ補正レンズ4が所定の初期位置ま で戻されるようにアクチェエータ23が逆駆動され，\＃ 76でアクチェエータ23が停止され\＃77でフィルム給送が行なわれ，一連の手ぶれ補正制御が完了して次回 の撮影に備えられることになる。
【0131】従って，本実施例においては，学習プロセ ッサ43として，ニューラルネットワークを用いている ので，学習演算を複数回に亘って繰り返し行い，最終的 にな最も䛊差が小さくなる，理想的には誤差が 0 となる ような結合係数に収束されるように学習演算が行なかれ るので極めて精度の高いぶれ補正制御を行なうことが出来る。しかも，手ぶれ補正は，シャッタが開いている間 にも繰り返し行なわれているので急激な手ふれに対して も充分に対応できる利点むある。
【0132】なお，本発明は，上述の2つの実施例に限定されることなく，本発明の要旨を逸脱しない範囲内で種々の変形実施をすることが出来ることは勿論である。例えば，本発明におけるぶれデータDの取り出し周期 は，図18に示すように，等間隔の時間スクールごとに データとして取り出したり，図20に示すように，対数的な時間スケールごとにデータとして取り出したりして もよい。対数的なスケールにした場合には，所要の演算 に要守る時間を短絔をせることが出来る。
【0133】また，第2実施例における学習演算におけ るニューラルネットワークは，学習演算を複数回に亘つ て繰り返し行い，最終的には最も誤差が小さくなる，理想的には誤差が 0 となるような結合係数に収束きれるよ うに学習演算を行うものであり，3入力型のものであっ たが，本発明は，これには限定されず国19に示すよう に，n入力型のものにすればより精度の高いぶれ補正を行なうことができる。この入力数を幾つにするかの選択 は，電気回路の規模の制限や撮影レンズの焦点距離や力 メラ本体の全体重量等の諸々の条件に応じて自由に選択 することが出来る。
【0134】さらに，加速度センサ11の出力電圧は，通常はミリV単位で出力されるので，この出力電圧範囲 のフルスケールを12ビットもしくは24ビット等の規格化をしても良い。また，光データCの出力も同様にし て12ビットもしくね24ビット等の規格化をしても良 い。
【0135】加速度センサ11の形態は，半導体型のも のであってもその他の形式のものであっても良く，その大きさや消費電力等の条件によって自由に選択すること

ができることは勿論である。
【0136】また，第1のメモり回路13，第2のメモ リ回路 17 ，メモリ回路 41 を構成するメモリの数は実施例のような 12 のみならず全くの任意に選択できるこ とも勿論である。
【0137】さらに，ぶれ補正レンズ4の具体例は，ガ ラスプリズムを揺動きせたり，液体プリズムの屈折を局部的に変化きせたりしたり，液に浸したミラーの光軸を局部的に変化させる等のいずれであっても，もしくは他 の形式の光学部材であっても良いことは勿論である。
【0138】
【発明か効果】以上の説明で明らかなように本発明によ れば，手ぶれ補正を行なうに際して，手ぶれ検出したデ一夕を学習機能を有する演算手段でもって学習演算した結果に基づいて，手ぶれ補正の駆動を行なっているの で，カメラ本体を扱う撮影者の癖や力メラ本体に装着き れる交換レンズの重量等に対応させることができ，極め て広い範囲の手ぶれ振動の態様に適応し得る力メラの手 ぶれ補正装置を提供することができるのである。【図面の簡単な説明】
【図1】本発明の第1実施例の回路搆成を示すブロック図である。
【図2】図1中に示される第1および第2のメモリ回路 の詳細を示すブロック図である。
【図3】本発明の第1実施例の動作を示すフローチャー トである。
【図4】本発明の第1実施例の動作を示すフローチャー トである。
【図5】光データの変化状態の一例を示す特性図であ る。
【図6】光データの基準点からの移動状態の一例を示す特性葍である。
【図7】ぶれデータ出力の具体例を示す実測図である。
【図8】ぶれデータ出力に基づく変位の具体例を示す実測図である。
【図9】学習演算を行なったぶれデータ出力に基づく変位の具体例を示す実測図である。
【図10】ぶれデータ予測出力の具体例を示す実測図で ある。
【図11】学習演算を行なのたぶれデータ予測出力に基 づく変位の具体例を示す実測図である。
【図12】学習演算を行なのたぶれデータ予測出力に基 づく変位の具体例を示す実測図である。
【図13】本発明の第2実施例の回路構成を示すブロッ夕図である。
【図14】図13中に示されるメモリ回路の詳細を示す ブロック図である。
【図15】本発明の第2実施例の動作を示すクローチヤ ートである。
【図16】本発明の第2実施例の動作を示すフローチヤ

ートである。
【図17】ニューラルネットワークの原理を説明するた めの原理図である。
【図18】ふれぞータの取り出し周期の一例を示す線図 である。
【図19】ニューラルネットワークの具体例を説明する ための原理図である。
【図20】ふれデータの取り出し周期の他の例を示す線図である。
【符号の説明】
1 撮影光学系
2 フォーカスレンズ
3 ズームレンズ
4 ぶれ補正レンズ
5 フィルム
6 像検出光学系
11 加速度センサ（ぶれセンサ）
12 サンプリング回路
13 第1のメモリ回路（第1の記憶手段）
14 CCD （光センサ）
15 サンプリング回路
16 ピーク検出回路
17 第2のメモリ回路（第2の記憶手段）

【图5】

【図10】

18 学習プロセッサ（学習手段）
19 変数選択プロセッサ
20 CPU
21 ふえ演算回路
22 ぶれ補正演算回路（ぶれ補正演算手段）
23 アクチェエータ
24 測光回路
25 レリーズスイッチ
26 ズームスイッチ
27 駆動回路
28 給送回路
29 AF回路
30 AFデータ変換回路
31 ズーム駆動回路
32 ズームモータ
33 ズーム位置検出回路
34 フォーカス駆動回路
35 フォーカスモータ
36 フォトインタラプタ
41 メモリ回路（記憶手段）
42 ぶれ演算回路
43 学習プロセッサ

【図6】

［図7】

【図1】

Page 645 of 1488

【図2】

［図18】

【図20】

【図3】

【図4】

【図8】

【図9】

〔図11】

【図12】

【図14】

［図19］

【図13】

Page 650 of 1488

【図15】

【図16】

【図17】


```
フロントページの続き
```

（51）Int．C1．${ }^{6}$	識別記号	疔内整理番号	F I	技術表示簓所
G03B		7513－2K		

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : G09G 5/00	(11) International Publication Number: WO 00/63874 (43) International Publication Date: $26 \text { October } 2000 \text { (26.10.00) }$
(21) International Application Number: PCT/US00/10579 (22) International Filing Date: 20 April 2000 (20.04.00) (30) Priority Data: 60/130,191 20 April 1999 (20.04.99) US (71)(72) Applicant and Inventor: STRINGER, John, Warren [US/US]; 290 Alhambra Street, Unit 15, San Francisco, CA 94123 (US). (74) Agents: KOFFS, Steven, E. et al.; Duane, Morris \& Heckscher LLP, One Liberty Place, Philadelphia, PA 19103-7396 (US).	(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published With international search report.

(54) Title: HUMAN GESTURAL INPUT DEVICE WITH MOTION AND PRESSURE

(57) Abstract

A hand-held computer input pointing device (100) has at least one motion detector (314), the at least one motion detector being capable of detecting motion in at least three dimensions. At least one pressure sensor (316) is capable of sensing pressure quantitatively. The input device is operable within a hand of a user to transmit signals from the motion detector and the pressure sensor, without contacting a base, work surface or pad. The pointing device may, for example, be used to control a computer (701) executing a program to display a movable virtual puppet (710).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Lavvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

HUMAN GESTURAL INPUT DEVICE WITH MOTION AND PRESSURE

FIELD OF THE INVENTION

The present invention relates the field of input devices for computers.

DESCRIPTION OF THE RELATED ART

Computer input pointing devices are well known. A typical computer input pointing device contains at least two sensors for sensing motion in at least two directions, such as x and y (forward-backward and left-right). The pointing device also has at least one actuator for causing the pointing device to transmit a command signal (typically referred to as a "click") to a computer."

The most common pointing device for a desktop computer or workstation is a mouse. The mouse may have a ball on its underside. Motion of the ball causes rotation of one or more of a plurality of rotation sensors adjacent to the ball. The number of rotations determine the magnitude of the motion in the x or y direction. The most common mouse type includes two buttons for sending commands known as "left-click" and "right-click. Other types of mice include optical sensors that count markings on a specially marked mouse pad to determine an amount of movement.

Another common pointing device used primarily for computer games is a joystick. The joystick has a lever that is tilted in a forward-backward or left-right direction, each of which is sensed independently. A button is typically provided on the end of the lever for transmitting a command signal. Some joysticks also allow rotation of the lever, which is also sensed.

A variety of altemative pointing devices have been developed. Alternative pointing devices are typically used on laptop computers. An early pointing device used on laptop computers is the track ball. The track ball functions like an upside-down mouse. Instead of moving the device, the ball is rotated directly.

Many laptop computers include a miniature joystick that is positioned on the home row of the keyboard. Another common pointing device in laptop computers is a touch pad. The touch pad is a rectangular device that is sensitive to touch. Left and right sliding motion of a finger on the touch pad is detected. The touch pad also senses when it is struck, and produces a "click" signal.

WO 00/63874

Although conventional pointing devices are suitable for locating a point on an $\mathrm{x}-\mathrm{y}$ grid, and transmitting a simple single-valued command signal, conventional pointing devices leave much to be desired for controlling application programs that require more complex inputs.

SUMMARY OF THE INVENTION

One aspect of the present invention is a hand-held computer input pointing device, comprising at least one motion detector. The at least one motion detector is capable of detecting motion in at least three dimensions. At least one pressure sensor is capable of sensing pressure quantitatively. The input device is operable within a hand of a user to transmit signals from the motion detector and the pressure sensor, without contacting a base, work surface or pad.

Another aspect of the invention is a method for operating a computer having an output device, comprising the steps of: receiving a plurality of signals from a computer input pointing device, the signals representing quantifiable pressure and motion in at least three dimensions; and outputting a video, audio or tactile output signal to the output device, the output signal having at least two characteristics that are capable of being varied separately from each other.

Still another aspect of the invention is a method for operating a computer input pointing device, comprising the steps of: moving the pointing device; transmitting at least three motion signals from the pointing device to a computer, the motion signals including signals representing translations in one or more dimension, or rotations in one or more dimensions, or a combination of translations and rotations; squeezing at least one portion of the pointing device; and transmitting quantifiable pressure signals from the pointing device to the computer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an isometric view of an exemplary squeezable pointing device according to the present invention.

FIG. 2 is an exploded view of the pointing device of FIG. 1.
FIG. 3A is an enlarged view of the origami sensor of FIG. 2.
FIG. 3B is a plan view of the sensor of FIG. 3A, prior to folding.
FIG. 4A is a plan view of a tetrahedral origami sensor in a flattened state.
FIG. 4B is an isometric view of the sensor of FIG. 4A, folded.

FIG. 5 A is a plan view of an alternative cubic origami sensor in a flattened state.
FIG. 5B is an isometric view of the sensor of FIG. 5A, folded.
FIG. 6 is an isometric view of a tetrahedral edge sensor.
FIG. 7 is an elevation view of a computer system including the pointing device of FIG. 1.
FIG. 8 is a diagram of a range of motion tree for an application program executed on the computer shown in FIG. 7.

FIG. 9 shows the software layers for the application executed on the computer shown in FIG. 7.

FIG. 10 is a flow chart of a method for operating the virtual puppet of FIG. 7.
FIGS. 11-13 are block diagrams of the software layer structure shown in FIG. 9.
FIG. 14 is a flow chart of a method for operating the pointing device of FIG. 2.

DETAILED DESCRIPTION

FIG. 1 shows an exemplary computer input pointing device 100 according to the present invention. Pointing device 100 is capable of detecting motion and providing a quantifiable measure of squeeze pressure. The input device 100 is operable in a hand of a user, without contacting a base, work surface, or pad. Thus, the input device 100 is "free floating," in that it may be operated in any position without regard to the presence of a base, work surface, or pad. Pointing device 100 has a squeezable, deformable elastomeric cover 102. Inside the cover 102, the pointing device 100 has an internal motion detector that may measure acceleration in x, y and z planes, or measure pitch, yaw and roll. Squeezing the package increases pressure that translates into a pressure signal that is sent by the pointing device 100 to the computer (shown in FIG. 7) along with the motion data.

FIG. 2 is an exploded view of the computer input pointing device 100 , with the squeezable elastomeric covering 102 partially removed. The squeezable covering 102 may be formed from natural or synthetic rubber or a variety of polymeric materials, which may be cut or injection molded. Cover 102 has an internal cavity 104 for containing sensors. An optional sensor enclosure 106 may be provided inside of cover 102. The sensor enclosure 106 may be sealed to protect the sensors from dust and moisture, allowing use of an unsealed cover 102. The deformable cover 102 , with or without the sensor enclosure 106, allows the sensor to move freely, and compresses internal sensor. In one embodiment, the squeezable cover is made from a "SQEESH ${ }^{\text {TMM }}$ " ball by the Toysmith Company of Kent, WA USA. "SQEESH ${ }^{\text {TM }}$ " balls are available in a variety of shapes and surface types, including smooth spherical, spherical with craters, and star shaped. A variety of shapes may be used to provide users with the grip of their choice or
hints as to what object that the device controls.
Pointing device 100 has at least one motion detector 108, which is capable of detecting motion in at least three dimensions. Pointing device 100 also includes at least one pressure sensor capable of sensing pressure quantitatively. In the example, the pressure sensing capability is also provided by the sensor 108 , which is described in greater detail below. The at least one motion detector may, for example, include an accelerometer or a piezoelectric device.

As best seen in FIG. 3A, the exemplary piezoelectric device 108 includes at least three piezoelectric strips 301-303 or flaps oriented in three orthogonal directions. More specifically, the exemplary device 108 is a single film sensor having three strips 301-303 folded origami style, as shown in FIG. 3A, to form a piezo thin film with six sensors.

FIG. 3B is a view of the device 108 with six sensors 314,316 . The device is formed on a substrate 300 and is shown laid flat before the origami folds along dashed lines 312 . Optional weight W1-W3 may be attached to the end or center of each flap 301-303, respectively. Preferably, each of the three piezoelectric strips 301-303 has at least two sections, including a weighted section 314 and an unweighted section 316; so as to discriminate motion load from pressure load.

The piezo film substrate 300 is plastic and allows two strips of piezo material to measure bend of the substrate by the relative tension between two strips. One piezo sensor 316 is provided for pressure discrimination. The pressure on the deformable covering 102 bends the material of the piezo pressure sensor 316 , producing a measurable voltage. Another piezo sensor 314 for motion discrimination has a weight W1-W3 placed at the middle or end of the sensor. If each of the three piezoelectric strips 314 has a respective weight; moving the pointing device 100 induces an inertial force. The weight W1-W3 moves against the material of the motion sensor 314, causing it to bend at a different rate than pressure sensor 316 .

Cuts 318 on the exemplary piezo film substrate 300 allow each sensor flap 314,316 to bend separately. The dotted lines 312 show folds where the flat sensor strip 300 is origami folded in 90 degree bends. The folded origami flaps 301-303 are affixed to a support assembly 320 (shown in FIG. 3A). The support assembly 320 holds the origami flaps 301-303 in place. The leads L from thin film sensor are connected to optional internal multiplexing circuitry 110 that connects the sensor circuitry to an external lead 112.

Referring again to FIG. 1, the sensors output data representing four parameters (three motion and one pressure). Preferably, a multiplexer 110 receives output signals from the motion detector and the pressure sensor 108, and outputs a multiplexed signal for transmission to a computer (shown in FIG. 7). The output of the multiplexer is connected to a lead 112. The lead

112 extends through a channel 103 in the elastomeric covering 102. The opposite end of the lead 112 has a suitable connector 114 attached to it, which may be a 0.32 -centimeter ($1 / 8$ inch) miniplug, a Universal Serial Bus (USB) connector, a serial (RS-232) port, an "ETHERNET ${ }^{\text {TMM }}$ port, a MIDI port for connection to a musical instrument, a PDA port, a cellular phone port or other suitable connector.

In a system having a plurality of similar pointing devices 100, a hub capable of accepting inputs from multiple input devices may be provided to interface the plurality of pointing devices 100 to a single computer. For example, if there are multiple pointing devices having USB connectors, a USB hub 116 (connected to lead 118 and USB connector 120) may be used to connect the pointing devices to a single computer. Alternatively, the pointing device may omit the multiplexer, and output four analog signals from four respective output terminals. The pointing device 100 may have a wireless transmitter for communicating with the computer.

The lead 112 from the sensing package either connects one data line (carrying time or frequency multiplexed data), or multiple data lines each carrying a respective sensor's output. The connector (such as $1 / 8^{\prime \prime}$ miniplug) 114 optionally connects directly to the computer (FIG. 7) through a microphone input eliminating the need for a hub. The pointing device 100 may use the audio software driver or communicate through the optional hub 116 for controlling multiple puppets (as described below). The connector 114 may connect to a different computer port such as a USB or serial port, eliminating the need for a hub. Although FIG. 2 shows a two-input version, the system may include any number of inputs.

Any of the sensor types described herein may be used with clock shifting to the next lead. An additional clock cycle may be provided for subsequent processing of an optional unique identification number (described below). The sensors provide an analog signal that may be modulated with a single carrier frequency, or the signal from each lead may be modulated with a respectively different carrier frequency.

An optional analog to digital converter (ADC) may be provided for each of the analog sensor leads. In this case, a clock shift to the next lead sends a digital packet. For example, with eight bits per lead, which for 6 sensors yields six bytes per sample cycle.

An optional identifier (ID) circuit may be provided. The ID circuit may be a register or a read only memory (ROM) device, EEPROM, or the like. The unique identifier may be hard encoded at the factory (e.g., using a ROM), or the identifier may be downloaded from a computer into a flash EEPROM in the pointing device 100. As explained below with reference to FIG. 7, by providing a unique identifier for each pointing device unit 100, more than one unit may be
used at the same time. The device identifier can function like an encryption key, to protect the user's preferences or to securely identify the user.

The output of the ID circuit and the output from one of the sensors are output to the multiplexing circuitry 110 . The analog input may be time-domain multiplexed with the ID waveform. Alternatively, if the analog sensor signals are converted to digital form before transmission to the multiplexer, a digital input packet may be combined with $I D$ information to form a larger packet including both. The pointing device 100 may contain additional identifier circuitry to add a port identifier number separate from the pointing device identifier number.

The analog waveform may have a separate carrier frequency or may be time domain multiplexed or interleaved with each sample, either on a bit, byte, or packet basis. Altematively, if a digital packet format is used, the sensor data and ID information may be added to a multiplexing packet to form a larger packet including both types of data.

The pointing device 100 may obtain power from the computer (FIG. 7), from an internal battery, or by drawing power directly from the energy created by the sensor from the piezoelectric effect.

ALTERNATIVE SENSORS

The piezoelectric device may be an origami sensor having cut coils, and may have either a cubic or tetrahedral shape. Preferably, the cut coils on each face of the motion detector are attached to a single weight at a center of the motion detector. Optionally, each cut coil on each face of the motion detector has its own weight attached.

FIGS. 5A and 5B show a sensor system 500 including origami cutouts, which may be used in place of the sensor 108 shown in FIG. 2. A thin sensor film 500 having six faces 501506 is folded to form a cube (although a tetrahedron, shown in FIGS. 4A and 4B, or other threedimensional shapes may be used in alternative embodiments). A spiral pattern 511-516 is cut into each face of thin sensor film 501-506, respectively. Each coil can be pressed towards the center (e.g., C1, C3 and C6) and attached to a weight that is suspended at the center of the folded shape.

When the pointing device is moved, the weight applies forces to each of the coils eliciting a voltage. For the cube 500, each face 501-506 has a corresponding opposite face measuring force with an inverse effect on voltage.

For the tetrahedron shown in FIGS. 4A and 4B, each side faces three other sides, measuring an inverse effect on their faces.

Additional circuitry (not shown) may be included in the exemplary sensor configuration. An analog sample and hold is provided for each of the analog sensor leads. For the exemplary origami sensor of FIGS. 2, 3A and 3B, the leads are:

1. A free - for pressure discrimination
2. A weighted - for motion discrimination
3. B free - pressure
4. B weighted - motion
5. C free - pressure
6. C weighted -motion

For a tetrahedral sensor (FIGS. 4A and 4B), the leads are:

1. A tension
2. B tension
3. C tension
4. D tension

For a cubic sensor (FIGS. 5A and 5B), the leads are:

1. A0 tension
2. A1 tension
3. B0 tension
4. B2 tension
5. C 0 tension
6. C 1 tension

FIG. 6 shows a tetrahedral edge sensor 600. Sensor 600 has six edges to detect pressure directly from a squeeze of the deformable elastomeric material of cover 102. Optionally, sensor 600 may have weighted edges 602 to detect motion through inertial force whenever the pointing device 100 is moved. The weights 610 increase the momentum of the sensors 602 , so that the deformation of the sensors is exaggerated. Alternatively, weights may be placed at each node 608.

Sensor 600 is used in conjunction with an application driver that can discriminate pressure from motion. The driver can discriminate pitch, yaw, and roll. A plurality of signal leads 604 are provided, one for each edge of the tetrahedron 600 . The outputs 604 of the sensor either connect to multiplexing/conversion circuitry 110 or lead out to separate analog lines.
There is an input lead from each edge of tetrahedron. Optionally each connecting node 608 broadcasts a wireless signal of its state without requiring any lead wire. As shown in FIG. 6 by
dotted lines 606, non-sensing leads connect each node 608 to another edge 602 . The non-sensing leads 606 either follow a sensing edge 602 to another node 608 or may run directly to another node 608 . The connecting nodes 608 for leads 606 and sensing edges 602 may simply be vertices for an origami tetrahedron or connecting nodes for self supporting edge sensors.

In one embodiment, a sensor similar to that used in the "GYROPOINT ${ }^{\mathrm{TM}}$ " mouse may be used.

In another embodiment, a sensor such as the "ACH-04-08-05" accelerometer/shock sensor from Measurement Specialties, Inc. of Valley Forge PA may be used. The ACH-04-08-05 sensor has three piezoelectric sensing elements oriented to measure acceleration in x, y and z linear axes, and uses very low power. Alternatively, an "ACH-04-08-01" sensor by Measurement Specialties, Inc. may be used to measure linear acceleration in the x and y directions and rotation about the z axis.

In addition to the motion detection capability, pointing device 100 also includes a pressure sensing capability. An internal pressure sensor is included, which may be, for example, a thin film piezo sensor that detects a bending of a strip or a sensor such as the "MTC Express ${ }^{\text {TM }}$ " from Tactex Controls Inc. of Cerritos, CA. This control surface is pressure sensitive, and also senses multiple points of contact, using a fiber optic-based, pressure sensitive, Smart Fabric called "KINOTEX ${ }^{\text {TM }}$." This fabric is constructed of cellular urethane or silicone sandwiched between protective membranes. The fabric has an embedded fiber optic array that generates an optical signal when the material is touched, or when force is applied. The coordinates and area of the pressure, and its magnitude can be determined from the received signals. The material can generate a pressure profile of the shape of a hand touching it.

As noted above, the pointing device 100 may include a circuit that outputs a unique identifier for each pointing device. There are many applications for this feature. For example, the feature allows the pointing device 100 to serve a user identification and/or authentication function. A user could carry around his or her pointing device with a unique identifier output signal, and connect it to any desired computer having an Internet connection. The application program could request a remote server to download previously established software preferences or upload the user's current software preferences. This enables a person to \log on at any computer connected to the Intemet, access his or her software (e.g., virtual puppet and stage application), or download web bookmarks. Alternatively, the user could use the pointing device 100 as a key to access copy protected software, functioning like a parallel port dongle. Thus, the use of a pointing device 100 with a built-in unique identifier enhances the user's mobility and access to services.

Further, the pointing device may be used for authentication at any computer to which it is connected. For example, because the unit uniquely identifies itself, the unit can be used in a way that allows it to bind to each individual user. For example, the unique identifier may be used in combination with a password, IP address or a user signature. For example, the user may sign his or her name using the pointing device to control movement of a virtual writing implement. The user's handwriting may be recognized using a conventional handwriting recognition algorithm, such as any of those described in U.S. Patents $5768423,5757959,5710916,5649023$ or 5553284 , all of which are expressly incorporated by reference herein in their entireties. The combination of the unique device identifier and the user signature provides reliable authentication.

Further still, the unique identifier may be used to make the user's preferences more portable. For example, the identifier may be associated with the design (i.e., shape, color, and the like) of the cover 102. The identifier for the pointing device may also be associated with different shapes and colors of cursors. The cursor that appears on the screen may have the same shape or color as the cover 102 of the input device 100 , which is associated with a known identifier. For example, a blue spherical pointing device may be associated with a round, blue cursor, a puppet shaped pointing device may be associated with a puppet shaped cursor, an alien-shaped pointing device may be associated with an alien-shaped cursor, and so on.

Alternatively, the input device packaging may be completely different from the shape and color of the computer cursor, or puppet object. If the puppet application program is stored in a server that is accessible via the Internet, or other local area network (LAN) or wide area network (WAN) or wireless services such as CDMA, the user may select from any of a plurality of different puppets from a gallery. This is one of the user preferences that may follow her around from client computer to client computer.

VIRTUAL PUPPET SYSTEM

FIG. 7 shows a computer system 700 according to another aspect of the invention. The computer system 700 includes a computer 701 having a processor 702 , a memory 706 , a display 708, and an input port 712.

At least one computer input pointing device 100 , as described above with reference to FIG. 2 , is coupled to the input port 712 of the computer 701. The pointing device 100 has at least one motion detector 108, capable of detecting motion in at least three dimensions, and at least one pressure sensor capable of sensing pressure quantitatively. A multiplexer 110 receives output signals
from the motion detector 108 and the pressure sensor, and outputs a signal for transmission to the computer 701. Alternatively, the lead from each sensor may output an analog signal.

The computer 701 further comprises a storage device 704 , which may be a hard disk drive, a high capacity removable disk drive (e.g., "ZIP" drive by Iomega Corporation), a read only memory (ROM), CD-ROM drive, a digital versatile disk (DVD) ROM drive, or the like. Either the memory 706 or the storage device 704 has stored therein computer program code for causing the computer to show an object 710 on the display 708. The object has a plurality of portions 710a-710d that are selectively movable in response to motion or squeezing of the pointing device 100 . The exemplary object is an animated character 710 controlled by input parameters from the pointing device. Such an animated character is referred to herein as a "virtual puppet". The virtual puppet has a plurality of independently movable body parts 710a-710d. Although the example only shows movable arms and legs, any part of the virtual puppet 710 may be movable.

According to another aspect of the invention, a method is provided for controlling a computer. The method includes the steps of: receiving a plurality of signals from a computer input pointing device 100 , the signals representing quantifiable pressure and motion in at least three dimensions; and outputting a video, audio or tactile output signal to the output device 100 , the output signal having at least two characteristics that are capable of being varied separately from each other.

FIG. 10 shows an exemplary method for operating the computer 701. The method includes the steps of:

- receiving a plurality of signals from a computer input pointing device 100 , the signals representing quantifiable pressure and motion in at least three dimensions;
- displaying a virtual puppet 710 on the display 708 , the virtual puppet having at least two portions 710a-710d that are capable of being moved separately from each other; and
- showing movement of the portions $710 \mathrm{a}-710 \mathrm{~d}$ of the virtual puppet 710 in response to the pressure and motion signals.
At step 1010, the animated character 710, figure or other object is displayed on the display 708. At step 1020, when the user squeezes pointing device 100, steps 1030-1050 are executed. At step 1030, the driver module 904 updates the idealized pressure value Pi and translates Pi into the normalized pressure value P . At step 1040, the application program processes the normalized pressure P into an animated figure action. At step 1050, the application updates the animated figure according to the action, and displays the result on the display 708.

At step 1060, when the user moves the pointing device 100 , steps 1070-1080 are executed. At step 1070, the driver module 904 of the software updates the idealized motion
vector Mxi, Myi, Mzi and translates the vector into a normalized motion vector $\mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$. At step 1080, the application program processes the motion vector $\mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$ into animated figure motion, and outputs the moving figure to the display 708.

An exemplary method for operating the pointing device 100 comprises the steps of:

1. moving the pointing device 100 ;
2. transmitting at least three motion signals from the pointing device 100 to a computer 701, the motion signals including signals representing translations in one or more dimension, or rotations in one or more dimensions, or a combination of translations and rotations;
3. squeezing at least one portion of the pointing device 100; and
4. transmitting quantifiable pressure signals from the pointing device 100 to the computer 701.

Preferably, all parameters measured by the sensors 108 in the pointing device 100 are mapped to motions of the virtual puppet 710 , such as mouth moving open and closed, the motions of limbs, or the expression of emotional intensity. The pressure measurement is particularly suitable for use in providing quantitative inputs to the computer to create results having continuously variable intensity. Thus, a light squeeze may result in a small kick, whereas a hard squeeze results in a high kick.

The example of FIG. 7 includes a hub 116 and at least a second computer input pointing device 100 capable of sensing motion in at least three dimensions and a pressure sensor. Both the first and second computer input pointing devices 100 are connected to the hub 116 , which in tum is connected the input port of the computer 701. Each of the first and second computer input pointing devices 100 controls a respective virtual puppet 710 and 711.

As shown in FIG. 8, the computer program code includes a range of motion tree 800 for the virtual puppet 710. The range of motion tree 800 restricts a range of possible motion of the virtual puppet 710 about a current position of the virtual puppet. Preferably, the computer program code includes a respective unique range of motion tree for each of a plurality of users.

The exemplary range of motion tree 800 covers head, left and right shoulder, left and right elbow, left and right wrist, and left and right grip. The tree limits the range of motion from each node. For example, the nodes may be delimited as follows:

1. Head Hxyz
2. Shoulder Sxyz
3. Elbow Exyz
4. Wrist Wxyz
5. Grip Gxyz

The limits may be expressed in rectangular coordinates, such as ($\mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0$), ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$). Alternatively, the limits may be expressed as delta ranges. For some objects, it may be more convenient to express the limits in polar coordinates, which have a 1:1 mapping to rectangular coordinates.

The range of motion tree 800 can express a hierarchy of motions. For example, in the case of the head, the range of motion may be express as:
(Hx0, Hx1), (Hy0, Hyl), (Hz0,Hz1) => H*
where H^{*} denotes range of motion
For the shoulder , the range of motion may be express as:

$$
(S x 0, S x 1),(S y 0, S y 1),(S z 0, S z 1) \Rightarrow S^{*}
$$

One of ordinary skill can readily see that similar ranges of motion can be specified for elbow, wrist, and grip

All motion then extends the range of the tree
H^{*}. S *.E*. ${ }^{*}$. G^{*}
State information restricts the range of possible motion about the last position of puppet. The state information is mapped to a user model, and further restricts possible ranges of motion. For example,

Hxyz:H* => (Hx00,Hx 11), (Hy00 Hy11), (Hz00,Hz11)
A user model adds probabilities for motion at each node of the tree. For example, the user model may identify whether the user moves her shoulders or shakes her wrists. In an exemplary user model for "User n", the probabilities may be expressed as:

Un: (x0,x0), (y0,yl), (z0,z1)
As an alternative to the tree search, the probabilities of motion may be mapped to a voxel space. The probabilities could be precompiled with user probabilities, where three-dimensional motion space is broken up into small cubes, analogous to three-dimensional pixels. Each voxel point can be ascribed a probability, and each voxel can contains a range of motion probability. Voxels may also include application restrictions on the range of motion probability.

Another task for the software is identifying the orientation of the pointing device, to allow use of the orientation as a parameter. In one embodiment, conformation of curves is used as a process of matching the signal curve over time from the three-dimensional sensor space to three-
dimensional application space. This is analogous to a three-dimensional jigsaw puzzle or Chinese wood block puzzle, in which a piece may be rotated in any of three dimensions. Using voxel space, it is possible to constrain the orientation of the sensor motion curve to only possible ranges from the "range of motion tree" 800 to only allow possible ranges from the application space. It is further possible to find a most likely orientation of sensor motion curve based on probabilities of each motion represented as likelihood coefficients for each voxel point.

Orientation can be determined by software. The exemplary software uses conformation mapping of curves of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ (and optionally P) to the range of motions of either the left or right hand. Mapping could emanate from an explicit model or from trainable classifiers, such as neural nets. An application may request the user to orient the pointing device 100 by holding the device in his or her left or right hand and selecting items on the display 708.

The user either controls an object on the display 708, or navigates in space, where the user acts as the object, with a point of view that shifts. In either case, the range of object motion may be less than the range of motion of the pointing device 100 . Thus, the software maps the actual gesture of the input device to the best fitting object motion.

A simple example is controlling a cartoon character that merely has a range of motion of stage-left and stage-right. Here, the range of motion of the puppet is constrained to two dimensions. There are several phases of control that should be considered to gauge its affect in the virtual worid. For example: whether the pointing device is operated as a left-handed device or a right-handed device; whether the line 112 is sticking up or down; the current model or user range of motions; the current state of pressure; and the current desired range of controlled object motion. Controlled objects on the display 708 generally have a limited destination range.

As an alternative to the range of motion tree 800, one can require manual orientation of the pointing device 100. For exampie, the application can show a picture of the pointing device 100 with the lead 112 pointing down to the floor. One hemisphere of the squeezable, deformable cover may have special markings that faces away from the display 708. This technique eliminates the need for conformation of curves, since the orientation is $1: 1$, puppet to application.

FIG. 9 is a block diagram showing the virtual puppet modules and their connections to each other and the underlying software layer. The user module 900 contains the states of:

1. grasp - The user is picking up device.
2. orient - The user is matching device orientation to application and screen feedback
3. Squeeze - The user is pressing in on squishy covering
4. Move - The user is moving device
5. Release - The user is putting down the device
6. state - The module reports user state to other modules

A sensor module 902 has processes A, B, C, D corresponding to each sensor output, whether analog or digital.

A driver module 904 translates sensor values to application values. The driver module 904 may use a trainable classifier, such as a neural network, where each sensor output has correlating inputs to the drivers idealized $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{P}$. The driver module 904 correlates user states to range of sensor input. The states, "grasp," "orient," "squeeze," "move," and "release" each have a characteristic effect on each of the sensors.

For instance, "grasp" may have a pressure curve, as the user grabs and picks up the puppet. As another example, "squeeze" may have a longer continuous pressure curve when compared to grasp. Each instance of state may have separate set of coefficients for a trainable classifier.

The software correlates the application state to the domain of sensor output, to reduce the set of possible outcomes. For instance, a two-dimensional stage for cartoon characters may be limited to "stage left" and "stage right". The program updates the user module state from the application state and application position.

The application module 906 accepts X, Y, Z, and P data from the driver module 904 , and reports the application $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{P}$ state to the driver module as state information. Optionally, the application module 906 reports user state information to pass from the driver module 904 to the user module 900.

A mouse module 908 is a special program for emulating a mouse. The mouse module 908 uses a special application module for the report state. Mouse module 908 translates X, Y movement of the pointing device 100 to mouse X, Y motion, and translates Z and P parameters of the pointing device 100 to mouse Left, Right, and double click.

FIGS. 11-13 show the transformations that are performed by various exemplary software modules, depending on the specific types of sensors 902 included in the pointing device 100.

FIG. 11 covers the example described above, in which the motion detector measures x, y, and z accelerations, and pressure is also measured. The sensors 902 include motion sensors 1100 and pressure sensor 1110. A program Sm 1120 translates the raw output of sensor 1100 to an idealized motion vector, Mxi, Myi, Mzi, 1140 that is provided to the driver 904 . A second translator Tm 1160 translates the idealized motion to an application motion vector $\mathbf{M x}, \mathrm{My}, \mathrm{Mz} 1180$, which is provided to the application 906. A program Sp 1130 translates the raw output of sensor 1110 to an idealized
pressure $\mathrm{Pi}, 1150$ that is provided to the driver 904 . A second translator Tp 1170 translates the idealized pressure Pi to an application pressure P 1190, which is provided to the application 906.

FIG. 12 covers a second example, in which an origami detector measures x, y, and z accelerations, and pressure. The sensors 902' include unweighted sensors 1200 and weighted sensors 1210. A program Sm 1220 discriminates between unweighted and weighted sensors to produce an idealized motion vector, Mxi, Myi, Mzi, 1240 that is provided to the driver 904'. A second translator Tm 1260 translates the idealized motion to an application motion vector $\mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$ 1280, which is provided to the application 906'. A program Sp 1230 discriminates between unweighted and weighted sensors to produce an idealized pressure $\mathrm{Pi}, 1250$ that is provided to the driver 904'. A second translator Tp 1270 translates the idealized pressure Pi to an application pressure P 1290, which is provided to the application 906 .

FIG. 13 covers a third example, in which a tetrahedral detector measures x, y, and z accelerations; x, y and z rotations; and pressure. The sensors $902^{\prime \prime}$ include tetrahedral sensor 1300 . A program Sm 1310 translates the output of sensor 1300 to an idealized motion vector, Mxi, Myi, Mzi, 1340 that is provided to the driver 904". A second translator Tm 1370 translates the idealized motion to an application motion vector $\mathrm{Mx}, \mathrm{My}, \mathrm{Mz} 1371$, which is provided to the application 906"'. A third translator Sr 1320 translates the sensor information to an idealized rotation vector Rxi , Ryi, Rzi. A fourth translator Tr 1380 translates the idealized rotation Rxi, Ryi, Rzi to an application rotation $\mathrm{Rx}, \mathrm{Ry}, \mathrm{Rz}$ 1350, which is provided to the application 906". A fifth translator Sp 1330 translates the output of sensor 1300 to an idealized pressure $\mathrm{Pi}, 1360$ that is provided to the driver 904 ''. A sixth translator Tp 1390 translates the idealized pressure Pi to an application pressure P 1391, which is provided to the application $906^{\prime \prime}$.

FIG. 14 is a flow chart diagram of an exemplary method for operating the pointing device 100.

At step 1419, the system waits for the user to take an action, i.e., a motion or a squeeze. The system returns to the wait state 1419 after each action, and can transition from the wait state 1419 to any of the states, "grasp" 1420 , "orient" 1432 , "squeeze" 1437 , "move" 1442 or "release" 1447.

At step 1420, the user grasps the device. At step 1421 the sensor 902 registers the motion. At step 1422, the driver module 904 wakes up in "grasp mode".

At step 1423 , if this is the first session for the pointing device 100 , then step 1424 is executed, and the device is calibrated. Control is transferred to step 1425. At step 1425, if this is the first time the user is using the pointing device 100 , then at step 1426 , the user registers himself or herself. An association is thus formed between the user and the particular pointing device, making
use of the (optional) unique identifier chip in the pointing device 100 . Control is transferred to step 1427. At step 1427, if a login is required, then step 1428 is executed. At step 1428, the user logs in, either by using the keyboard, or by a unique motion with the pointing device 100 (such as writing the user's signature). Control is transferred to step 1429.

At step 1429, the system checks whether there are user-specific coefficients available on the system for translating this specific user's style of motion, rotation and pressure from raw sensor data to idealized measurement data. If data are available, then step 1430 is executed. At step 1430, the default coefficients are replaced by the previously determined user-specific coefficients. Control is transferred to step 1431. At step 1431, the user login is translated to rotation and orientation coefficients. The system returns to the wait state 1419

At step 1432, the user orients the device. At step 1433, a rotation calibration is initiated by asking the user to orient the device in one or more predetermined positions. At step 1434, a stream of data points are recorded. At step 1435, conforming X, Y and Z rotations are constructed. At step 1436, a determination is made whether sufficient data have been collected to conform the rotation measurements to the actual rotations. If not, then control is returned to step 1433. Otherwise, the system returns to the wait state 1419 .

At step 1437, the user squeezes the pointing device 100. At step 1438, the driver module 904 updates the idealized pressure Pi , and translates the same to the normalized pressure P . At step 1439, the pressure is provided to the application, which processes the pressure. At step 1440 , if the application is finished with processing the squeeze operation, then control returns to step 1419 (the wait state). If not, then step 1441 is executed, to determine whether driver module 904 detects a lull or pause in the squeezing. If there is a pause, then control is transferred to step 1419 (wait state). Otherwise, step 1438 is executed again.

At step 1442 , the user moves the pointing device 100 . At step 1443 , the driver module 904 updates the idealized motion vector Mxi, Myi, Mzi, and translates the same into the normalized motion vector Mx, My, Mz. At step 1444, the application program processes the normalized motion vector Mx, My, Mz. At step 1445 , if the application is done with processing the movement of the pointing device 100, then control transfers to step 1419 (wait state). Otherwise, step 1446 is executed, to determine whether the driver detects a lull in the motion. If there is a pause, then control is transferred to step 1419 (wait state). Otherwise, step 1443 is executed again.

At step 1447 , the user releases the pointing device 100. At step 1448 , the driver module 904 enters a sleep state. At step 1449, the application is notified that the pointing device has
entered the sleep state.
Listed below is a set of pseudo-code that may be used to construct a software system suitable for handling input signals from the exemplary pointing device 100.

Definition of Terms

A, B, C, D, E, F, G sensor strip oriented along a sensing plane
$\mathrm{Au}, \mathrm{Bu}, \ldots$ unweighted portion of sensor
$\mathrm{Aw}, \mathrm{Bw}, \ldots$ weighted portion of sensor
Mxi, Myi, Mzi idealized (un-normalized) $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ value
$\mathrm{Mx}, \mathrm{My}, \mathrm{Mz}, \mathrm{Mp}$ normalized $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ values used by application
$\mathrm{Ox}, \mathrm{Oy}, \mathrm{Oz}$ orientation vector to translate idealized to normalized $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ values
Pi idealized pressure value
P normalized pressure value
$\mathrm{Sm} \quad$ translate sensor outputs to idealized motion
$\mathrm{Sr} \quad$ translate sensor outputs to idealized rotational motion
$\mathrm{Sp} \quad$ translate sensor outputs to idealize pressure

Tm translate idealized motion to application motion
Tp translate idealized pressure to application pressure
Tr translate idealized rotational motion to application rotational motion

Accelerometer ABC with pressure D

Sm: A maps to Mxi
B maps to Mzi
C maps to Mzi
$\mathrm{Sp}: \quad \mathrm{D}$ maps to Pi

Tm: (Mxi, Myi, Mzi) rotationally maps to (Mx, My, Mz)
Tp: Pi maps to P

Origami sensor with ABC flaps with each flap having
an un-weighted (u)
and weighted (w) section
$\mathrm{Sp}: \quad(\mathrm{Au}, \mathrm{Bu}, \mathrm{Cu})$ maps to (Pi)
Sm: (Aw, Bw, Cw, Pi) maps to (Mxi, Myi, Mzi)
Tm: (Mxi, Myi, Mzi) rotationally maps to (Mx, My, Mz)
Tp : Pi maps to P

Tetrahedral sensor $A B C D E F$ with six strips
Sp : (ABCDEF) maps to Pi

Sm: (ABCDEF, Rxi, Ryi, Rzi) maps to Mxi
(ABCDEF, Rxi, Ryi, Rzi) maps to Myi
(ABCDEF, Rxi, Ryi, Rzi) maps to Mzi

Sr: (ABCDEF, Mxi, Myi, Mzi) maps to Rxi
(ABCDEF, Mxi, Myi, Mzi) maps to Ryi
(ABCDEF, Mxi, Myi, Mzi) maps to Rzi

Tm: (Mxi, Myi, Mzi) rotationally maps to (Mx, My, Mz)
Tr : ($\mathrm{Rxi}, \mathrm{Ryi}, \mathrm{Rzi}$) rotationally maps to ($\mathrm{Rx}, \mathrm{Ry}, \mathrm{Rz}$)
$\mathrm{Tp}: \quad \mathrm{Pi}$ maps to P

Calibration

ask user to center device
user moves device and
wait for activity and the lull or press
ask user to trace shape on XY axis
user moves device
while software collects $A B C D$ points
translate ABCD data points to Ox, Oy sensor coefficients
ask user to move in and out on Z axis user moves device in and out while software collects $A B C D$ points
translate $A B C D$ points to Oz sensor coefficients

Registration

after calibration
ask user to create login signature
determine cultural orientation
left-right vs. right-left, etc.
accept user's input
while software collects ABCD points
translate input to $\mathrm{Ox}, \mathrm{Oy}, \mathrm{Oz}$ over time

Login

ask user to reproduce login signature
set orientation based upon cultural
left-right vs. right-left context replaces manual orientation to draw shape on $\mathrm{X}-\mathrm{Y}$ axis

Orientation
if manual orientation
ask user to move input device to center of area with cord facing direction (floor) and front face facing direction set $\mathrm{Ox}, \mathrm{Oy}, \mathrm{Oz}$ to $(0,0,0)$
else
while waiting for input device to stop

> or pressure state to signal squeeze state save last few Mxi, Myi, Mzi states

Although the exemplary application program described above is a virtual puppet program, there are many uses for a pointing device 100 according to the present invention. For example, the output of the pointing device may be mapped to the parameters of a visual synthesizer, such as the shifting of a color palette, the drawing or motion of an object. Alternatively, the output of device 100 may be mapped to parameters of a sound synthesizer, such as pitch, timbre, amplitude, or placement in three-dimensional sonic space.

Although the exemplary virtual puppet application is configured so that one pointing device 100 controls a single virtual puppet 710 , the software can be configured to operate more than one virtual puppet (or other object) using a single input pointing device 100 . For example, assuming that the pointing device includes sensors for measuring x, y, and z accelerations and pressure P, the first puppet 710 may be controlled by the x and y accelerations, and the second puppet 711 may be controlled by z and P. The first and second objects need not be identical objects, or even objects of the same type.

For example, the first object may be a virtual puppet, and the second object may be the background scenery or sound. By x and y movements, the puppet 710 is controlled, and by z and P, the user can vary the background from day to night, or from silence to the sound of thunder.

To use two input devices 100, software applications can us the Mouse API for selecting or navigating or use a Driver API. For example, the driver for Digitizer (or Graphics) tablets may allow more than one pen to be used at the same time. Emulating a mouse can be accomplished by installing a driver and going beyond a mouse can be accomplished by modifying the application program. One can also overlay other input devices, such as a graphics tablet, with yet another driver.

Further, the output signals from the exemplary pointing device 100 may be mapped to those of conventional input devices in an emulation mode. For example, the outputs may be mapped to the x and y positions of a conventional mouse and the left or right click signals from depressing the mouse buttons. Mapping the x, y and z (or x, y and P) parameters into x and y parameters only may require the computer to determine the orientation of the pointing device 100 , such as moving on a predominantly $x-y$ plane, a $y-z$ plane, or the $z-x$ plane, or combinations of all three. Alternatively, individual user profiles may be used to determine the current orientation.

Although the exemplary use for two pointing devices is to control two different virtual puppets, a second pointing device may be used to expand the number of parameters for an
application. For example, in an audiovisual application, one pointing device 100 may control various aspects of the video signal, while another pointing device may be used to control the audio signals.

Although the exemplary pointing device is sensitive to motion and pressure, additional sensors may also be included. For example, a microphone may be incorporated into the pointing device, for operation of voice activated software, or for storage of sounds.

Although the exemplary embodiment described above has the virtual puppet application program running locally in the computer 701, the application program may be executed in other processors located remotely, either as a sole process or in parallel with other instances of the application program on other processors. The local computer can communicate with other computers via a telecommunication network, which may be a LAN, WAN, Internet, or wireless protocols.

The present invention may be embodied in the form of computer-implemented processes and apparatus for practicing those processes. The present invention may also be embodied in the form of computer program code embodied in tangible media, such as floppy diskettes, read only memories (ROMs), CD-ROMs, hard drives, " $Z \mathrm{ZP}^{\mathrm{TM} "}$ drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. The present invention may also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over the electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. When implemented on a general-purpose processor, the computer program code segments configure the processor to create specific logic circuits.

Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claim should be construed broadly, to include other variants and embodiments of the invention that may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.

What is claimed is:

1. A hand-held computer input pointing device, comprising:
at least one motion detector, the at least one motion detector being capable of detecting motion in at least three dimensions; and
at least one pressure sensor capable of sensing pressure quantitatively,
wherein the input device is operable within a hand of a user to transmit signals from the motion detector and the pressure sensor, without contacting a base, work surface or pad.
2. The pointing device of claim 1, wherein the at least one motion detector includes at least one of the group consisting of an accelerometer and a piezoelectric device.
3. The pointing device of claim 2, wherein the at least one motion detector includes at least three piezoelectric strips oriented in three orthogonal directions.
4. The pointing device of claim 3, wherein each of the three piezoelectric strips has a respective weight thereon to translate motion to a voltage.
5. The pointing device of claim 3, wherein the piezoelectric device is an origami sensor having cut coils, the origami sensor having either a cubic or tetrahedral shape.
6. The pointing device of claim 1, wherein the motion sensor includes a tetrahedral shaped device having six edge sensors.
7. The pointing device of claim 1, wherein the motion detector and pressure sensor are contained within a squeezable housing.
8. The pointing device of claim 7, wherein the housing is an elastomeric ball.
9. The pointing device of claim 1, wherein the motion sensor is capable of sensing pitch, yaw and roll.
10. The pointing device of claim 1, wherein the motion sensor is capable of sensing x acceleration, y -acceleration and z -acceleration.
11. The pointing device of claim 1 , further comprising a memory device that stores and outputs an identifier that is unique to the computer input pointing device.
12. A computer system comprising:
a computer having a processor, a memory, an output device, and an input port; and a hand-held computer input pointing device coupled to the input port of the computer, the pointing device comprising:
at least one motion detector, the at least one motion detector being capable of detecting motion in at least three dimensions; and
at least one pressure sensor capable of sensing pressure quantitatively,
wherein the input device is operable within a hand of a user to transmit signals from the motion detector and the pressure sensor, without contacting a base, work surface or pad.
13. The computer system of claim 12, wherein:
the output device is a display;
the computer further comprises a storage device, and
one of the group consisting of the memory and the storage device has stored therein computer program code for causing the computer to show an object on the display, the object having a plurality of portions that are selectively movable in response to motion or squeezing of the pointing device.
14. The computer system of claim 13 , wherein the object is an animated character controlled by input parameters.
15. The computer system of claim 14 , further comprising a hub and at least a second computer input pointing device capable of sensing motion in at least three dimensions and a pressure sensor, the first and second computer input pointing devices being connected to the USB hub, wherein each of the first and second computer input pointing devices controls a respectite animated character.
16. The computer system of claim 14 , wherein the computer program code includes a range of motion tree for the animated character, the range of motion tree restricts a range of possible motion of the animated character about a current position of the animated character.
17. The computer system of claim 16, wherein the computer program code includes a
respective unique range of motion tree for each of a plurality of users.
18. The computer system of claim 16, wherein the computer program code includes a module for using output signals from the computer input pointing device to emulate output signals from a mouse.
19. The pointing dcvice of claim 4, wherein each of the three piezoelectric strips has at least two sections, including a weighted section and an unweighted section.
20. The pointing device of claim 5 , wherein the cut coils on each face of the motion detector are attached to a single weight at a center of the motion detector.
21. The pointing device of claim 1, further comprising a multiplexer that receives output signals from the motion detector and the pressure sensor, for outputting a multiplexed signal for transmission to a computer, wherein the motion detector, pressure sensor and multiplexer are contained within a squeezable housing.
22. The pointing device of claim 7, wherein the squeezable housing has at least one tactile feature to provide a tactile cue for orienting the pointing device.
23. The pointing device of claim 7, wherein the squeezable housing has at least one visible feature to provide a visual cue for orienting the pointing device.
24. A method for operating a computer having an output device, comprising the steps of: receiving a plurality of signals from a computer input pointing device, the signals representing quantifiable pressure and motion in at least three dimensions; and outputting a video, audio or tactile output signal to the output device, the output signal having at least two characteristics that are capable of being varied separately from each other.
25. The method of claim 24, wherein:
the output device is a display;
the step of outputting includes displaying an animated character on the display, and moving at least two portions the animated character separately from each other.
26. A method for operating a computer input pointing device, comprising the steps of: moving the pointing device;
transmitting at least three motion signals from the pointing device to a computer, the motion signals including signals representing translations in one or more dimension, or rotations in one or more dimensions, or a combination of translations and rotations; squeezing at least one portion of the pointing device; and transmitting quantifiable pressure signals from the pointing device to the computer.
27. The method of claim 26, further comprising the steps of:
speaking into a microphone contained within the pointing device; and transmitting an audio signal from the microphone to the computer.

FIG. 2

FIG. 3A

FIG. 3B

FIG. 4A

FIG. 5A

FIG. 4B

FIG. 5B

FIG. 6

Page 687 of 1488

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

INTERNATIONAL SEARCH REPORT

In_...national application No. PCT/US00/10579

A. CL. .ESIFICATI IIC(7) : G09G 5/00 US CL : 345/156	

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 345/156, 157, 158, 161, 163; 364/709.11; 273/148

Documentation searched oher than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
	US 5,703,623 A (HALL et al) 30 December 1997, col. 5, lines $14-$ 38, col.6, lines 44-58, col. 9, lines 20-37.		$\begin{aligned} & 1-4,6-14,16-19, \\ & 21-27 \\ & \hdashline--15,---1 \end{aligned}$
$\begin{gathered} \mathrm{Y} \\ \hdashline \mathrm{~A} \end{gathered}$	US 5,757,360 A (NITTA et al) 26 May 1998, col. 5, line 64-col. 6, line 54, col. 7, lines 30-52.		$\begin{aligned} & 1-4,6-14,16-19 \\ & 21-27 \\ & 5,-15,-20 \end{aligned}$
\square Further documents are listed in the continuation of Box c. \square See patent family annex.			
Date of the actual completion of the international search 18 JUNE 2000		Date of mailing of the international search report 11 JUL 2000	
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks ${ }^{\text {Box }}$ Washington, D.C. 20231 Facsimile No. (703) 305-3230		Authorized officer sRilakshm кumar fagoniajeogan Telephone No (703) 306-5575	

Form PCT/ISA/210 (second sheet) (July 1998) *
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 7 November 2002 (07.11 .2002)

PCT

(10) International Publication Number WO 02/088926 A1
(51) International Patent Classification ${ }^{7}$: G06F 3/14, 17/30
(21) International Application Number: PCT/AU02/00530
(22) International Filing Date: 30 April 2002 (30.04.2002)
(25) Filing Language:

English
(26) Publication Language:

English
(30) Priority Data:

PR 4646
30 April 2001 (30.04.2001)
Au
(71) Applicant (for all designated States except US): THE COMMONWEALTH OF AUSTRALIA [AU/AU]; Anzac Park, Canberra, ACT 2600 (AU).
(72) Inventors; and
(75) Inventors/Applicants (for US only): ANDERSON, Mark, Stephen [AU/AU]; Defence Science \& Technology Organisation, Commercial Road, Edinburgh, S.A. 5111 (AU). ENGELHARDT, Dean, Crawford [AU/AU];

Defence Science and Technology Organisation, Commercial Road, Edinburgh, S.A. 5111 (AU). MARRIOTT, Damian, Andrew [AU/AU]; Defence Science and Technology organisation, Commercial Road, Edinburgh, S.A. 5111 (AU). RANDHAWA, Suneel, Singh [AU/AU]; Defence Science and Technology Organisation, Commercial Road, Edinburgh, S.A. 5111 (AU).
(74) Agent: MADDERNS; Level 1, 64 Hindmarsh Square, Adelaide, S.A. 5000 (AU).
(81) Designated States (national): AE, AG, AL, AM, AT, AU, $\mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BR}, \mathrm{BY}, \mathrm{BZ}, \mathrm{CA}, \mathrm{CH}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}$, $\mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DZ}, \mathrm{EC}, \mathrm{EE}, \mathrm{ES}, \mathrm{FI}, \mathrm{GB}, \mathrm{GD}, \mathrm{GE}, \mathrm{GH}$, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
(54) Title: AN EVENT HANDLING SYSTEM

Shapes Vector Functional Architecture

(57) Abstract: An event handling system to schedule and translate semantic deductions from Intelligent Agents and scnsors into events capable of being made observable by a Recepient system such as monitor that provides a particular view of virtual objects and events is desclosed. The event handling system also encapsulates the system's notion of time. In fact, a human observer can schift the system along the temporal axis (up to the present) in order to replay events, or undertake analyses as a result of speeded-up or slowed-down notions of system time. The event handling system receives events from Clients/Sources via connections through the event handling system Input Portals, and uses Shared Memory as its form of inter process communication with the Monitors. The event handling system makes events available for a recipient observation sub-system to read and provide their particular view. There can be many Clients and Recipient systems connected to the event handling system at the same time.

WO 02/088926 A1 |||

GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- with international search report

AN EVENT HANDLING SYSTEM

Part 1 SHAPES VECTOR

1 Shapes Vector Introduction

Shapes Vector is the name given by the inventors to a particular collection of highly versatile but independent systems that can be used to make real world systems observable by a human operator. By providing an observation system the human may be able to detect using one or more of their senses anomalies and the like in the real world system. More particularly, the invention/s disclosed herein are in the field of information observation and management.

To assist the reader, a particular combination of these elements is described in an example. The example is in the field of computer network intrusion detection, network security management and event surveillance in computer networks. It will however be apparent to those skilled in the art that the elements herein described can exist and operate separately and in different fields and combinations to that used in the example.

The different system elements developed by the inventors are the result of the use of several unusual paradigms that while separately make a their contribution also act synergistically to enhance the overall performance and utility of the arrangement they form part of.

An embodiment in the computer network field is used to illustrate an observation paradigm that works with a collection of elements, to provide a near real-time way for observing information infrastructures and data movement. The user (human observer) is provided sophisticated controls and interaction mechanisms that will make it easier for them to detect computer network intrusion and critical security
management events in real time as well as allow them to better analyse past events. The user may be computer assisted as will be noted where appropriate. However, as stated previously each of the elements of the system disclosed herein are also capable of being used independently of the other. It is possible for each of them to be used in different combinations, alone or in conjunction with other elements as well as being the precursor for elements not yet created to suit a particular environment or application.

Whilst the Shapes Vector embodiment provided is primarily meant to aid computer intrusion detection, the system and or components of it, can be arranged to suit a variety of other applications, e.g data and knowledge mining, command and control, and macro logistics.

Shapes Vector is a development in which a number of key technologies have been created that include:

- a high-performance multi-layer observation facility presenting the user with a semantically dense depiction of the network under consideration. To cater to the individual observational capacities and preferences of user analysts, the specifics of the depiction are highly user-customable and allow use of more than just the users visual and mental skill;
- a framework for "intelligent agents"; artificial intelligent software entities which are tasked with co-operatively processing voluminous raw factual observations. The agents can generate a semantically higher-level picture of the network, which incorporates security relevant knowledge explicitly or implicitly contained within the raw input (however, such agents can be used to process other types of knowledge); - special user interface hardware designed especially to support Defensive Information Operations in which several user analysts operate in real-time collaboration (TeamBased Defensive Information Operations).
- an inferencing strategy which can coexist with traditional deductive mechanisms.

This inferencing strategy can introduce certainty measures for related concepts.

The subject matter of this disclosure is complicated and it is both a hindrance and a necessity to present particular elements of the Shapes Vector system in the same document.

However, it will be apparent to those skilled in the art that each element that makes up the Shapes Vector system is capable of independent existence and operation in different environments.

To reflect to some degree the independence of the elements disclosed, this specification is comprised of different parts that each have their own paragraph numbering but page numbering is consistent with their being included in a single document.

Part 1
Shapes Vector Introduction
Part 2
Shapes Vector Master Architecture and Intelligent Agent Architecture
Part 3
Data View Specification
Part 4
Geo View Specification
Part 5
Tardis (Event Handler) Specification

A detailed index of the various parts and sections is provided on the last pages of the specification to assist random access to the information provided herein or to make cross-referencing simpler.

Part 1 is an overview of the Shapes Vector embodiment that describes a particular environment and discloses in a general way some of the elements that make up the total system. Parts 2, 3, 4 and 5 disclose fundamental aspects of the Intelligent Agent Architecture, Data View, Geo View and the Tardis (Event Handler) specification respectively, terms that will be more familiar once the specification is read and understood.

This patent specification introduces the Shapes Vector system by firstly describing in Sections 1 and 2 of Part 1, the details of its top-level architecture. Included are details of the hardware and software components present in a system presently under construction. Section 3 of Part 1, gives an overview of the first set of observation (some times referred to as visualisation) paradigms, which have been incorporated into the system. Two different views of computer/telecommunications networks are described in this section, both presenting a three-dimensional "cyberspace" but with vastly different approaches to the types of entities modelled in the space and how they are positioned (and dynamically repositioned). Some preliminary comments are offered as to the effectiveness of one of these views, "Geo View", for network defence. "Geo View" is another of those terms that will be better understood after a reading of the document.

A description of the intelligent agent architecture follows in Section 4 of Part 1, including an overview of the multi-layered Shapes Vector Knowledge Architecture (SVKA) plus details of the inferencing strategies. The knowledge processing approach is very general, and is applicable to a wide variety of problems. Sections 5 and 6 of Part 1 describe special techniques employed within the Tardis (Event Handling)
system to assist a user analyst to observe the time-varying behaviour of a network. Two principal mechanisms are detailed, Synthetic Strobes and Selective Zoom, along with some hypotheses as to how such mechanisms might be extended to offer even greater flexibility. Section 7 of Part 1 of the patent specification details a comparative analysis of related research and a set of conclusions summarising the broad thrusts of the Shapes Vector system.

More detailed disclosures of these elements of the invention are provided in Parts 2, 3, 4 and 5.

In reading this specification, it should be noted that while some issues are dealt with in detail, the specification is also used to disclose as many of the paradigms and strategies employed as possible, rather than discussing any one paradigm in depth. In an attempt to provide an example of how these paradigms and strategies are used, several new mechanisms for dealing with information in a real-time environment are described in the context of the information security field but in no way are the examples meant to limit the application of the mechanisms revealed.

Observation is a term used in this specification to embody the ability of a human to observe by experience through a variety of their senses. The senses most used by a human user include sight, hearing and touch. In the embodiment and system developed thus far all of those senses have been catered for. However, the term observe is not used in any limiting way. It may become possible for a human's other senses to be used to advantage not only in the scenario of computer system security but others within the realm of the imagination of the designer using the principles and ideas disclosed herein. A human could possibly usefully use their other senses of smell, taste and balance in particular future applications.

In this specification the term clients is used to refer to a source of events based on real and virtual objects operating in the real world and the term monitors is used to refer to one or more recipient systems that make the events observable to a human user.

The following discussion will provide background information relating to the described embodiment of the invention or existing paradigms and strategies and when it does so it is intended purely to facilitate a better understanding of the invention/s disclosed herein. However, it should be appreciated that any discussion of background information is not an acknowledgment or admission that any of that material was published, known or part of the common general knowledge as at the filing date of the application.

2 Architectural Components

2.1 Primary Functional Architecture

At the coarsest level, the Shapes Vector system can be considered to be composed of a series of "macro-objects," shown in Figure 1. These modules interact with one another in various ways: the lines in the figure indicate which objects interact with others. The functions performed by each of these macro-objects and the purpose and meaning of the various inter-object interactions are described in the parts and sections that follow.
2.1.1 Configuration Interface and I/O Sub-system

The Configuration Interface and I/O macro-objects collectively encapsulate all functionality, involving interaction with the user of the Shapes Vector system. They in turn interact with the Display, Tardis (Event Management) and Intelligent Agent macro-objects to carry out the user's request. In addition to being the point of user interaction with the system, this user-interface macro-object also provides the ability
to customise this interaction. Refer to Figure 1, which displays the Functional Architecture of Shapes Vector. A user can interactively specify key parameters, which govern the visual and other environments generated by Shapes Vector and the modes of interaction with those environments. Such configurations can be stored and retrieved across sessions allowing for personal customisation.

Individual users can set up multiple configurations for different roles for which they might wish to use the system. Extensive undo/redo capabilities are provided in order to assist with the investigation of desired configurations.

The observation of the Shapes Vector world is user-customable by direct interaction with a structure called the "Master Table" (see Section 3). In this table the user can in one example, associate visual attributes, such as shape, colour and texture, with classes of objects and their security-relevant attributes.

A user interacts with the Shapes Vector system via any number of input and output devices, which may be configured according to each individual user's preferences. The input devices may be configured at a device-specific level, for example by setting the acceleration of a trackball, and at a functional level, by way of further example, by assigning a trackball to steer a visual navigation through a 3-dimensional virtual world representative of a computer network. The Appendix to Part 1 describes the typical user interface hardware presented to a Shapes Vector user.

2.1.2 Sensors

Sensors can take many forms. They can be logical or physical. A typical example would be an Ethernet packet sniffer set to tap raw packets on a network. In another example, the sensor can be the output of a PC located at a remote part of a network, which undertakes pre-processing before sending its readings of itself or the network back to the main Shapes Vector system components. Other examples are Software or

Hardware to capture packets in a digital communication network, to examine the internal or operating state of a computer or to analyse audit records created by a computer of network device. Sensors transmit their data into the level one portion of the Intelligent Agent Gestalt (this term will also have more meaning after further reading of the specification) for further processing. Some of the processing involved could entail massaging of data for Knowledge Base storage, or perhaps simple logical deductions (first order logic facts).

2.1.3 Intelligent Agent Architecture

2.1.3.1 Knowledge Base

The Knowledge object is essentially a knowledge base containing facts about the overall domain of discourse relevant to Shapes Vector. The knowledge is represented in terms of context-free Entities and Relationships, allowing for its efficient storage in a relational database. Entities constitute not only physical devices such as computers and printers, but also logical objects such as files and directories. Each entity possesses a set of security-relevant attributes, which are stored within the knowledge base. For each stored observation of an entity attribute, there is accompanying meta-data that includes the time of discovery, which agent or sensor discovered it and an expiry time for the data. The current knowledge base models several types of inter-entity relationships, including physical connectivity, physical or logical containment, bindings between processors and processes, roles of processes in client-server communications, origin and destination of packet entities, and so on.

2.1.3.2 Intelligent Agents and Ontologies

The Intelligent Agent macro-object encapsulates the artificial intelligence aspects of the Shapes Vector system. It specifically incorporates a (potentially very large) family of intelligent agent, software entities imbued with expert knowledge in some
particular domain of discourse over which they may make deductions. Agents within the Shapes Vector systems are arranged into a series of "abstraction layers" or "logical levels" with each agent existing at only one such layer. Agents operate by accepting knowledge of a particular abstraction, possibly from several sources in lower layers, and generating new knowledge of a higher level of abstraction through a deductive process. An agent that resides at layer n of the Shapes Vector Knowledge Architecture must receive its input knowledge in the form of assertions in a knowledge representation known as the "Level n Shapes Vector ontology". Any deductive product from such an agent is expressed in terms of the (more abstract) "Level n+1 Shapes Vector ontology".

Entities in the Intelligent Agent macro-object can be broken into categories: datadriven entities and goal-driven entities. The former group is characterised by a processing model wherein all possible combinations of input facts are considered with an eye towards generating the maximum set of outputs. A common method employed being forward chaining. Goal-driven entities adhere to a different execution model: given a desirable output, combinations of inputs are considered until that output is indicated, or all combinations are exhausted.

Intelligent Agents and the goals and functionality of the Shapes Vector Knowledge Architecture are covered in more depth in Section 4 of this part of the specification and in Part 2 of the specification.

2.1.4 The Tardis

The Tardis is a real-time event management system. Its task is to schedule and translate the semantic deductions from Intelligent Agents and sensors into events capable of being visualised by the display module or sub-system. The Tardis also encapsulates the Shapes Vector system's notion of time. In fact, the operator can shift
the system along the temporal axis (up to the present) in order to replay events, or undertake analyses as a result of speeded-up or slowed-down notions of system time.

2.1.5 Monitor

Monitor preferably renders three-dimensional (3D) views of objects and their interactions in real-time. As can be seen, there are a number of basic views defined all of which can be navigated. Each different view is based on a fundamental visualisation paradigm. For example, Geo View is based on location of virtual objects within a space-time definition, whereas Data View's location of virtual objects within its space is based on the data interaction.

Several reusable modules make up the composition of each view. These include elements such as data structures identifying the shapes, textures, and visual relationships permitted for each class of object, as well as common rendering methods for representing the view's Universe.

The paradigms for some of the views are discussed in more detail in later sections. It will be appreciated that the visualisation paradigms are in fact specific embodiments of the observational requirement of the system, wherein a human user can use one or more of their senses to receive information, that could include aural and haptic interaction.

2.2 The Hardware

In a preferred embodiment of this invention, the hardware architecture of the Shapes Vector system consists of a primary server equipped with a powerful computational engine and high-performance 3D graphics capabilities, a database server, a dedicated 100BaseT Ethernet network, one PC with specialised 3D audio hardware, and one PC
with user input devices attached. A preferred configuration is shown schematically in Figure 2.

The preferred observational environment of the Shapes Vector world can be rendered in 3D stereo to provide aural information and preferably viewed using Crystal Eyes ${ }^{\text {TM }}$ shutter glasses synchronised to the display to provide purely visual information. Crystal Eyes ${ }^{\text {TM }}$ was chosen for visualisation, as this product allows the user to be immersed in a 3D world on a large screen while still permitting real world interaction with fellow team-members and the undertaking of associated tasks, e.g. writing with a pencil and pad, that are features not available with head-mounted displays.

In addition to 3D graphics capabilities, there is a sound rendering board, which is used to generate multi-channel real-time 3D audio. Both the 3D graphics and sound rendering board make use of head tracking information in producing their output. The graphics renderer makes use of tracking information to alter the perspective of the displayed world so that the user experiences the effect of moving around a fixed virtual world. The sound renderer makes use of head movement tracking information to alter the sound-scape so that the user also experiences the effect of moving around in a fixed world with relevant sounds. That is, where a particular sound source will be perceived to be coming from the same fixed place irrespective of the users head movement. The perception of direction in 3D sound is enhanced by the ability to turn one's head and listen. For instance, it is often difficult to determine whether a sound is coming from in front or behind without twisting one's head slightly and listening to determine in which ear a sound is received first or loudest. These perceptive abilities are second nature to humans and utilisation of them is a useful enhancement of the information presentation capabilities of Shapes Vector.

A joystick and rudder pedals preferably provide the primary means of navigation in the 3D world. User input to the system is to be provided primarily through the touch
screen and via voice recognition software running on a PC. Haptic actuators are realisable using audio components to provide a feeling of say roughness as the user navigates over a portion of the virtual world. Many other actuators are possible depending on the degree of feedback and altering required by the user.

The initial prototype of Shapes Vector had the user input/output devices connected to a workstation or PC with software connecting the remote peripherals with the User Interface proper. The layout of the Shapes Vector workstation (ie, the physical arrangement of the user interface hardware) will vary depending upon the operational role and the requirements of individual users, as described in the Appendix to Part 1 of the specifcation.

2.3 System Software

In the embodiment described herein Shapes Vector is implemented as a distributed system with individual software components that communicate between each other via TCP/IP sockets. A simple custom protocol exists for encoding inter-process communication. To limit performance degradation due to complex operating system interaction, the system processes are used only for relatively long-lived elements of control (e.g. the knowledge base server, or an intelligent agent). Shorter-lived control is implemented through threads.

Figure 3 indicates where the primary software modules will be running in the initial system as well as a schematic of the hardware modules they are associated with. While most of the implementation of the Shapes Vector system has been customcoded, the system does make use of a number of different software technologies to supply service functionality. Intelligent Agents make extensive use of NASA's CLIPS system as a forward chaining engine, and also use Quintus Prolog ${ }^{\mathrm{TM}}$ to implement backward chaining elements. Additionally, the knowledge base and its associated
servers are preferably implemented using the Oracle ${ }^{T M}$ relational database management system.

The graphics engine of the Display macro-object is preferably built upon an in-house C++ implementation of the Java 3D API and utilises OpenGL ${ }^{\text {TM }}$ for the low-level rendering. The User Interface elements are built using Sun Visual Workshop ${ }^{\text {TM }}$ to produce X Windows Motif ${ }^{\text {TM }}$ GUI elements.

3 The "Classical" Visualisation Paradigm

The classical visualisation paradigm refers to methods that are derived from mechanisms such as geographic layout, and relatively static rules for objects. While some may not regard what is described here as entirely "classical", it serves to distinguish some of the visualisation methods from the relatively more "bizarre" and therefore potentially more interesting visualisation paradigms described in this specification.

Using by way of example information security as the environment to be modelled and observed the fundamental basis of the classical visualisation paradigm is to associate a security-relevant attribute with a visual entity or a visual property of an entity, eg. shape, colour, or texture.

A Shapes Vector hypothesis is that any visualisation paradigm is not only "sensitive" to its application, ie. some paradigms are better suited to specific classes of application, but that the implementation of the paradigm is sensitive to the specific user. It is thus claimed that not only should a visualisation system be customable to take into account the type of application, but also it must have highly customable features to take into account individual requirements and idiosyncrasies of the observer. That is, the customisability of the system is very fine-grained.

In fine grained customable systems, it is important that journal records and roll-back facilities are available in the certain knowledge that users will make so many changes that they will "lose" their way and not be sure how to return to a visual setting they find more optimal than the one they are currently employing.

In an embodiment, users can associate attributes to shapes, colour, texture, etc. via manipulation of a master table, which describes all visual entities (with securityrelevant attributes) the system is able to monitor. This table contains user-customable definitions for shapes, colours, and textures employed in the visualisation of the entity. For example, the security attribute "read enable" can be associated with different colours, transparencies or textures. Part of the essence of Shapes Vector involves utilising the visualisation process as a method for users to divine (via inductive inference) patterns in the "security cyberspace". These patterns have an attached semantic. Typically, we expect users to note anomalies from the myriad system activities that represent authorised use of the system. Given these anomalies, the user will be able to examine them more closely via visualisation, or bring into play a set of Intelligent Agents to aid an in depth analysis by undertaking deductive inference.

Not withstanding the above, there is also a semantic gap between what an Intelligent Agent can deduce and what a user can discern using their senses. The approach in this embodiment is based on the hypothesis that in most cases the observational interface element will be employed for highlighting macro matters, while the agents will focus on micro matters. These micro deductions can be fed to the visualisation engine so that a user can observe potential overall state changes in a system, thereby permitting a user to oversee and correlate events in very large networks.

3.1 Geo View

Geo View is perhaps the most classical of the visualisation paradigms. Its basis is a two dimensional plane located in three-dimensional space. The plane represents the traditional geographic plane: location in the virtual plane represents the physical location of objects. Figure 4 is a depiction of a small network where the primary points of interest involve a set of computers and the data that is flowing between them. The sizes, shape, and texture of objects all carry an associated semantic. The double pyramid shapes with a third pyramid embedded at the top are representative of computers with network interfaces. Also quite visible is the packet flow between the computers in the star network. Although not explained here, to the trained eye the start of a telnet session, some web traffic, as well as X Windows elements is also represented.

The Shapes Vector system permits a user to select classes of objects and render them above the plane. In fact it is possible to render different classes of objects at different levels above or below the geographic base plane. This rendering tactic allows a user to focus on objects of interest without losing them in the context of the overall system. This "selective zoom" facility is described further in Section 5.2 of this part.

Figure 5 depicts a scene inside a machine object. In this view, two processors each with several processes are depicted. In an animated view of this scene the amount of processing power each of the processes is consuming is represented by their rate of rotation. Again, the size, texture, and specific aspects of their shape can and are used to depict various semantics.

The transparent cube depicts a readable directory in which is contained a number of files of various types.

In addition to the visualisation of various objects, the human observer can attach sounds and possibly haptic characteristics to objects. In particular, the system is capable of compiling a "sound signature" for an object (e.g. a process) and plays the resulting sound through speakers or headphones. This facility is quite powerful when detecting event changes that may have security significance. Indeed, in a concept demonstrator, a change in the code space of a process causes a distinct change in its sound. This alerts the user when listening to a process (e.g. printer daemon) with a well-known characteristic sound that something is not quite right. By inspecting the process visually, further confirmation can be forthcoming by noting that its characteristic appearance, e.g. colour, has changed. The use of haptic attributes can also be advantageous in certain circumstances.

One of the major issues that arise out of Geo View other than the basic geographic location of nodes, is the structural relationship of objects contained in a node. For example, how does one depict the structural relationship of files? Figure 5 gives some indication of a preferred view in a directory containing files and possibly further directories is rendered in a particular way. In a system such as UNIX, there is an wellunderstood tree structure inherent in its file system. In other operating systems, the structure is not so precise. In the description so far, Geo View still lacks a level of structural integrity, but it must be realised that any further structure, which is imposed, may invalidate the use of the view for various applications or specific user requirements.

Shapes Vector avoids some of the problems posed above by providing a further level of customisation by permitting a user to specify the structural relationship between classes of objects from a predetermined list (e.g. tree, ring). A run-time parser has been constructed to ensure that any structural specification must satisfy certain constraints, which guarantee that "nonsensical", or circular relationships, which are impossible to display, are not introduced.

1. Geo View is a three-dimensional virtual universe in which a real-world or virtual object may be represented by one or more virtual objects whose visual attributes are derived from attributes of the real-world object via a flexible user-specifiable mapping (called herein a "Master Table"). The placement of virtual objects typically having a shape within the universe is governed by the absolute or relative geographical location of the real-world object, and also by a flexible set of user-specified layout rules. Layout rules permit the specification of a structured layout for groups of shapes whose real-world objects and virtual objects have some commonality. The list of structures includes, but is not limited to linear, grids, star, ring and graph.
2. Changes to the visual attributes of shapes (e.g., size or height above a plane) may be made dynamically by a user (human observer). Such changes may be applied to all shapes in the universe or to those which match user-specified criteria. This facility is termed herein "Selective Zoom".
3. The user may configure Audio cues (sounds and/or voices) to denote the attributes of represented objects (through a Master-Table configuration), or to denote the occurrence of a real-world event. Such cues may be associated with a point in three-dimensional space (i.e., positional sound), or they may be ambient.
4. The representation of real-world objects with rapidly time-changing attributes may be simplified by the use of Synthetic Strobes, flexible user-specified filters which shift changes in the visual attributes of a shape from one time-domain to another. Synthetic Strobes may be applied across the entire universe or selectively according to a flexible user-specification. Such strobes may also be used to shift slow changes in the attributes of a shape into a faster domain (e.g., so that a human may perceive patterns in very slowly altering real-world objects).
5. A user may select shapes within a Geo View universe (either interactively or by a flexible user-specified condition) and choose to have the corresponding set of
shapes in another view (e.g., a Data View or a different Geo View) highlighted in a visual manner. The specification of the condition defining correspondence of shapes between universes may be made in a flexible user-defined fashion.

A user may also specify structural arrangements to be used by Geo View in its layout functions. For example, "located-in", "in-between", and "attached-to" are some of the operators available. These allow a flexible layout of shapes and objects preserving user required properties without requiring specific coordinates being supplied for all objects.

3.2 Data View

A problem with Geo View is that important events can be missed if heavily interacting objects or important events are geographically dispersed and not sufficiently noticeable. In Section 5 of this part, we discuss mechanisms that can be utilised to avoid this problem in some circumstances. However, in this section we describe a preferred view that is also intended to address parts of this problem. Parts 3 and 4 of the specification provides a more detailed account of this approach.

Geo View has its roots in depicting actions and events that have physical devices and their location as an overriding theme. Of coursc logical entities are shown, but again they have a geographic theme. Data View, as its name suggests, is intended to provide a view where the basic paradigm is simply one of data driven events (eg. byte transfer) rather than geographic location. Heavily interacting objects, eg. producers and consumers of data, can be depicted as being located "close together". Unlike Geo View, where the location of an object tends to be relatively static during its lifetime (copying of files is simply a special case of bringing a new object into existence) interaction and data transfer between objects in Data View may be more dynamic. Thus, the location of objects is expected to be more dynamic. Therefore, rules are preferred so as to define the layout of objects not only from the perspective of whether interaction occurred, but also the amount of interaction, and the rate of interaction.

It is intended in a preferred embodiment to utilise Newtonian celestial mechanics and model interaction as forces on the interaction of objects as fundamental rules for the data view layout.

Each object has a mass that is based on its "size" (size is user defined eg. the size of a file or code in a process). User defined interaction between objects causes the equivalent of an electric charge to build. This charge is attractive, whereas "gravity" resulting from mass is repulsive. The build-up of charge tends to negate the force of gravity thereby causing objects to move closer together until some form of equilibrium is reached. Of course we need to adjust the basic Coulomb and Newton's laws in order for the forces to balance appropriately. To do so, we are lead to set axiomatically several calibration points. That is, we must decide axiomatically some equilibrium points; e.g. two objects of identical mass are in equilibrium X units apart with Y bytes per second flowing between them. Without these calibration points, the distance and motion of the objects may not provide optimal viewing. Further to this requirement, it can be inferred that the force formulae must be open to tinkering on a per user basis in order to permit each user to highlight specific interactions based on higher semantics related to the user's security mission. A further rule, which is preferred in this embodiment, is the rate of "decay" of charge on an object. Otherwise, interacting objects will simply move closer and closer together over time. This may be appropriate for some types of visual depiction for a user, but not for others. For example, retained charge is useful for a user to examine accumulative interaction over a time slice, but charge decay is a useful rule when examining interaction rates over a given time period.

The interaction mechanism described herein serves to indicate the basis for interaction between objects and their location in space to provide visual depiction of objects and their clusters for examination by a user in order to arrive at inductive hypotheses.

Figure 6 shows how Data View might visualise a collection of data-oriented objects (eg. files and/or servers) which interact with one another to varying degrees. Despite using proximity to show whether an object is interacting with another, further visual mechanisms are needed for the user to be able to analyse the type of data interaction, and the current state of affairs of interaction within a specified time slice. Hence we still need visual markers which directly link one object to another, for example an open socket connection between two processes, which actually has data in transit. These objects could initially be very far apart due to previous low interaction status. However, since they are now interacting a specific connection marker may be needed to highlight this fact. Given the type of interaction, the force formulae may be adjusted so as to provide a stronger effect of interaction. However, this mechanism is restricted to classes of objects and the interaction type, whereas the user may be particularly interested in interaction between two particular object instances. Hence a visual marker link would be more appropriate. Yet, one can imagine the complexity of a view if all markers are shown simultaneously. Hence actual connection lines, their size, shape, colour, motion and location, may be switched on and off via a set of defined criteria.

As for Geo View, Data View in its preferred embodiment, will come with its own Master Table describing shapes and textures for various attributes, as well as an input mechanism to describe relationships between objects based on a series of interaction possibilities. The objects presented in Data View may in some cases be quite different from those found in Geo View, while in other cases they will be similar or identical. Clearly the defining difference lies in the fact that Data View's Master Table will focus less on physical entities and more closely on logical entities and data driven events.

Thus the preferred main features of Data View are as follows:

1. A set of one or more two-dimensional virtual universes in which a real-world object may be represented by one or more shapes whose visual attributes are derived from attributes of the real-world object via a flexible user-specifiable mapping (called a "Master Table"). In one embodiment each universe is represented as a disc in a plane. The placement of a shape within a universe is governed by degree of interaction between the represented object and other objects represented in
that universe. As an alternative, the view may be constructed as a set of one or more three-dimensional virtual universes with similar properties.
2. Interaction between a pair of real-world objects causes the pair of shapes that represent them to be mutually attracted. The magnitude of this force is mathematically derived from the level of interaction. Real world Objects which interact are furthermore mutually repelled by a "gravitational force", the magnitude of which is derived from attributes of the real-world objects in a flexible user-specified manner. In one embodiment all forces are computed as vectors in the plane of the universe. The velocity of a shape in the universe is proportional to the vector sum of the forces applied to the shape (i.e., in this embodiment there is no concept of acceleration).
3. Shapes within a universe may be tagged with what is termed herein a "flavor" if their real-world object's attributes match a flexible user-specified condition associated with that flavor. A pair of shapes may only attract or repel one another if they share one or more flavors.
4. Each shape within a universe maintains an explicit list of other shapes it "interacts" with. A pair of shapes may only attract or repel one another if each is in the interaction set of the other.
5. Each shape within a universe may have a "radius of influence" associated with it, a user-specified region of the universe surrounding the shape. A shape may only exert a force onto another shape if the latter is within the radius of influence of the former. The radius of influence of a shape may be displayed
visually. The selection of which shapes in the universe have radii of influence, and which of those radii should be displayed, may be either universal or by means of a flexible user-specified condition.
6. Each shape within a universe may optionally be visually linked to one or more shapes in a different universe by a "Marker" which represents a relationship between the real-world objects represented by the shapes. The selection of which shapes in which universes should be so linked is by means of a flexible user-specified condition.
7. Changes to the visual attributes of shapes (e.g., size or height above a plane) may be made dynamically by a user. Such changes may be applied to all shapes in the universe or to those which match user-specified criteria. This facility is termed "Selective Zoom".
8. The user may configure Audio cues (sounds and/or voices) to denote the attributes of represented objects, or to denote the occurrence of a real-world event. Such cues may be associated with a point in three-dimensional space, or they may be ambient.
9. The representation of real-world objects with rapidly time-changing attributes may be simplified by the use of Synthetic Strobes, flexible user-specified filters which shift changes in the visual attributes of a shape from one time-domain to another. Synthetic Strobes may be applied across the entire universe or selectively according to a flexible user-specification. Such strobes may also be used to shift slow changes in the attributes of a shape into a faster domain (e.g., so that a human may perceive patterns in very slowly altering real-world objects).
10. A user may select shapes within a Data View universe (either interactively or by a flexible user-specified condition) and choose to have the corresponding set of shapes in another view (e.g., a Geo View or a different Data View) highlighted in a visual manner. The specification of the condition defining
correspondence of shapes between universes may be made in a flexible userdefined fashion.

4 Intelligent Agents

Shapes Vector can utilise large numbers of Intelligent Agents (IA's), with different domains of discourse. These agents make inferences and pass knowledge to one another in order to arrive at a set of deductions that permit a user to make higher level hypotheses.

4.1 Agent Architecture

In order to achieve knowledge transfer between agents which is both consistent and sound, ontology becomes imperative. The task of constructing a comprehensive ontology capable of expressing all of the various types of shapes is non-trivial. The principal complication comes from the fact that the structural elements of the ontology must be capable of covering a range of knowledge ranging from the very concrete, through layers of abstraction and ultimately to very high-level meta-knowledge. The design of a suite of ontological structures to cover such a broad semantic range is problematic: it is unlikely to produce a tidy set of universal rules, and far more prone to produce a complex family of inter-related concepts with ad hoc exceptions. More likely, due to the total domain of discourse being so broad, ontology produced in this manner will be extremely context sensitive, leading to many possibilities for introducing ambiguities and contradictions.

To simplify the problem of knowledge representation to a point where it becomes tractable, the Shapes Vector system chooses to define a semantic layering of its knowledge-based elements. Figure 7 shows the basic structure of this knowledge architecture and thus the primary architecture of the set of Intelligent Agent's (AI's). At the very bottom of the hierarchy are factual elements, relatively concrete
observations about the real world (global knowledge base). Factual element can draw upon by the next layer of knowledge elements: the simple intelligent agents. The communication of factual knowledge to these simple knowledge-based entities is by means of a simple ontology of facts (called the Level 1 Shapes Vector ontology). It is worthwhile noting that the knowledge domain defined by this ontology is quite rigidly limited to incorporate only a universe of facts -- no higher-level concepts or meta-concepts are expressible in this ontology. This simplified knowledge domain is uniform enough that a reasonably clean set of ontological primitives can provide a concise description. Also, an agent may not communicate with any "peers" in its own layer. It must communicate with a higher agent employing higher abstraction layer ontology. These higher agents may of course then communicate with a "lower agent". This rule further removes the chance of ambiguity and ontology complexities by forcing consistent domain restricted Ontologies.

An immediate and highly desirable consequence of placing these constraints on the knowledge base is that it becomes possible to represent knowledge as context free relations. Hence the use of relational database technology in storage and management of knowledge becomes possible. Thus, for simple selection and filtering procedures on the knowledge base we can utilise well known commercial mechanisms which have been optimised over a number years rather than having to build a custom knowledge processor inside each intelligent agent. Note that we are not suggesting that knowledge processing and retrieval is not required in an IA, but rather that by specifying certain requirements in a relational calculus (SQL preferably), the database engine assists us by undertaking a filtering process when presenting a view for processing by the IA. Hence the IA can potentially reap considerable benefits by only having to process the (considerably smaller) subset of the knowledge base which is relevant to the IA. This approach becomes even more appealing when we consider that the implementation of choice for Intelligent Agents is typically a logic language such as Prolog. Such environments may incur significant processing delays due to the
heavy stack based nature of processing on modern Von Neumann architectures. However, by undertaking early filtering processes using optimised relational engines and a simple knowledge structure, we can minimise the total amount of data that is input into potentially time-consuming tree and stack based computational models.

The placement of intelligent agents within the various layers of the knowledge hierarchy is decided based upon the abstractions embodied within the agent and the knowledge transforms provided by the agent. Two criteria are considered in determining whether a placement at layer n is appropriate:

- would the agent be context sensitive in the level n ontology? If so, it should be split into two or more agents.
- does the agent perform data fusion from one or more entities at level n? If so, it must be promoted to at least level $n+1$ (to adhere to the requirement of no "horizontal" interaction)

Further discussion on intelligent agents and ontological issues can be found elsewhere in the specification.

4.2 Inferencing Strategies

The fundamental inferencing strategy underlying Shapes Vector is to leave inductive inferencing as the province of the (human) user and deductive inferencing as typically the province of the IA's. It is expected that a user of the system will examine deductive inferences generated by a set of IA's, coupled with visualisation, in order to arrive at an inductive hypothesis. This separation of duties markedly simplifies the implementation strategies of the agents themselves. Nevertheless, we propose further aspects that may produce a very powerful inferencing system.

4.2.1 Traditional

Rule based agents can employ either forward chaining or backward chaining, depending on the role they are required to fulfil. For example, some agents continuously comb their views of the knowledge base in attempts to form current, up to date, deductions that are as "high level" as possible. These agents employ forward chaining and typically inhabit the lower layers of the agent architecture. Forward chaining agents also may have data stream inputs from low level "sensors". Based on these and other inputs, as well as a set of input priorities, these agents work to generate warnings when certain security-significant deductions become true. Another set of agents within the Shapes Vector system will be backward chaining (goal driven) agents. These typically form part of the "User Avatar Set": a collection of knowledge elements which attempt to either prove or disprove user queries.

4.2.2 Vectors

While the traditional approach to inferencing is sufficient for simple IA's which deal principally in the domain of concrete fact, it is less suitable for agents (typically from higher layers) which must deal with uncertain and/or incomplete information. Typically, such agents operate in a more continuous knowledge domain than that underlying rule-based deductive inferencing, and as such are not easily expressed in either a purely traditional forward or backward chaining paradigm. For these higher level agents, we instead make use in this embodiment of an alternative inferencing strategy based upon notions of vector algebra in a multi-dimensional semantic space. This alternative strategy is employed in conjunction with more conventional backward chaining techniques. The use of each of the paradigms is dependent on the agent, and the domain of discourse.

Our vector-based approach to inferencing revolves around constructing an abstract space in which relevant facts and deductions may be represented by geometrical
analogues (such as points and vectors), with the proper algebraic relationships holding true. In general, the construction of such a space for a large knowledge domain is extremely difficult. For Shapes Vector, we adopt a simplifying strategy of constructing several distinct deductive spaces, each limited to the (relatively small) domain of discourse of a single intelligent agent. The approach is empirical and is only feasible if each agent is restricted to a very small domain of knowledge so that construction of its space is not overly complex.

The definition of the deductive space for an IA is a methodical and analytical process undertaken during the design of the agent itself. It involves a consideration of the set of semantic concepts ("nouns") which are relevant to the agent, and across which the agent's deductions operate. Typically this concept set will contain elements of the agent's layer ontology as well as nouns which are meaningful only within the agent itself. Once the agent's concept set has been discovered, we can identify within it a subset of 'base nouns' -- concepts which cannot be defined in terms of other members of the set (This identification is undertaken with reference to a semi-formal 'connotation spectrum' (a comparative metric for ontological concepts).

Such nouns have two important properties:

- each is semantically orthogonal to every other base noun, and
- every member of the concept set which is not a base noun can be described as a combination of two or more base nouns.

Collectively, an IA's set of n base nouns defines an n-dimensional semantic space (in which each base noun describes an axis). Deductions relevant to the agent constitute points within this space; the volume bounded by spatial points for the full set of agent deductions represents the sub-space of possible outputs from that agent. A rich set of broad-reaching deductions leads to a large volume of the space being covered by the
agent, while a limited deduction set results in a very narrow agent of more limited utility (but easier to construct). Our present approach to populating the deductive space is purely empirical, driven by human expert knowledge. The onus is thus upon the designer of the IA to generate a set of deductions, which (ideally) populate the space in a uniform manner. In reality, the set of deductions which inhabit the space can get become quite non-uniform ("clumpy") given this empirical approach. Hence rigorous constraint on the domain covered by an agent is entirely appropriate. Of course this strategy requires an appropriate mechanism at a higher abstract layer. However, the population of a higher layer agent can utilise the agents below them in a behavioural manner thereby treating them as sub-spaces.

Once an agent's deductive space has been constructed and populated with deductions (points), it may be used to draw inferences from observed facts. This is achieved by representing all available and relevant facts as vectors in the multi-dimensional semantic space and considering how these vectors are located with respect to deduction points or volumes. A set of fact vectors, when added using vector algebra may precisely reach a deduction point in the space. In that situation, a deductive inference is implied. Alternatively, even in the situation where no vectors or combinations of vectors precisely inhabits a deduction point, more uncertain reasoning can be performed using mechanisms such as distance metrics. For example, it may be implied that a vector, which is "close enough" to a deduction point, is a weak indicator of that deduction. Furthermore, in the face of partial data, vector techniques may be used to hone in on inferences by identifying facts (vectors), currently not asserted, which would allow for some significant deduction to be drawn. Such a situation may indicate that the system should perhaps direct extra resources towards discovering the existence (or otherwise) of a key fact.

The actual inferencing mechanism to be used within higher-level Shapes Vector agents is slightly more flexible than the scheme we have described above. Rather than
simply tying facts to vectors defined in terms of the IA's base nouns, we instead define an independent but spatially continuous 'fact space'. Figure 8 demonstrates the concept: a deductive space has been defined in terms of a set of base nouns relevant to the IA. Occupying the same spatial region is a fact space, whose axes are derived from the agent's layer ontology. Facts are defined as vectors in this second space: that is, they are entities fixed with respect to the fact axes. However, since the fact space and deduction space overlap, these fact vectors also occupy a location with respect to the base noun axes. It is this location which we use to make deductive inferences based upon fact vectors. Thus, in the figure, the existence of a fact vector (arrow) close to one of the deductions (dots) may allow for assertion of that deduction with a particular certainty value (a function of exactly how close the vector is to the deduction point). Note that, since the axes of the fact space are independent of the axes of the deductive space, it is possible for the former to vary (shift, rotate and/or translate, perhaps independently) with respect to the latter. If such a variation occurs, fact vectors (fixed with regard to the fact axes) will have different end-points in deduction-space.
Therefore, after such a relative change in axes, a different set of deductions may be inferred with different confidence ratings. This mechanism of semantic relativity may potentially be a powerful tool for performing deductive inferencing in a dynamically changing environment.

An interesting aspect of our approach to vector-based deductive inference is that it is based fundamentally upon ontological concepts, which can in turn be expressed as English nouns. This has the effect that the deductions made by an agent will resemble simple sentences in a very small dialect of pseudo-English. This language may be a useful medium for a human to interact with the agent in a relatively natural fashion.

While the inferencing strategy described above has some unorthodox elements in its approach to time-varying probabilistic reasoning for security applications, there are
more conventional methods which may be used within Shapes Vector IA's in the instance that the method falls short of its expected deductive potential.

As described above, the vector-based deductive engine is able to make weak assertions of a deduction with an associated certainty value (based on distances in nDimensional space). This value can be interpreted in a variety of ways to achieve different flavours of deductive logic. For example, the certainty value could potentially be interpreted as a probability of the assertion holding true, derived from a consideration of the current context and encoded world knowledge. Such an interpretation delivers a true probabilistic reasoning system. Alternatively, we could potentially consider a more rudimentary interpretation wherein we consider assertions with a certainty above a particular threshold (e.g. 0.5) to be "possible" within a given context. Under these circumstances, the system would deliver a possiblistic form of reasoning. Numerous other interpretations are also possible.

Frame based systems offer one well understood (although inherently limited) alternative paradigm. Indeed, it is expected that some IA's will be frame based in any case (obtained off the shelf and equipped with an ontological interface to permit knowledge transfer with the knowledge base).

Other agents based on neural nets, Bayesian, or statistical profiling may also inhabit the Agent macro-object.

4.3 Other Applications

The IA architecture lends itself to other applications. For example, it is not uncommon for Defence organisations and institutions to maintain many databases in just as many formats. It is very difficult for analysts to peruse these databases in order to gain some required insight. There has been much effort aimed at considering how particular
databases may be structured in order for analysts to achieve their objectives. The problem has proved to be difficult. One of the major hurdles is that extracting the analysts' needs and codifying them to structure the data leads to different requirements not only between analysts, but also different requirements depending on their current focus. One of the consequences is that in order to structure the data correctly, it must be context sensitive, which a relational database is not equipped to handle.

Shapes Vector can overcome many of the extant difficulties by permitting knowledge and deduction rules to be installed into an IA. This IA, equipped with a flexible user interface and strictly defined query language, can then parse the data in a database in order to arrive at a conclusion. The knowledge rules and analyst-centric processing are encoded in the IA, not in the structure of the database itself, which can remain flat and context free. The Shapes Vector system allows incremental adjustment of the IA without having to re-format and restructure a database either through enhancement of the IA, or through an additional IA with relevant domain knowledge. Either the IA makes the conclusion, or it can provide an analyst with a powerful tool to arrive at low level deductions that can be used to arrive at the desired conclusion.

5 Synthetic Stroboscopes and Selective Zoom

In this section, we discuss two mechanisms for overcoming difficulties in bringing important events to the fore in a highly cluttered visual environment: Synthetic Strobes and Selective Zoom.

5.1 Synthetic Strobes

One of the major difficulties with depicting data visually in a real-time system is determining how to handle broad temporal domains. Since the human is being used
to provide inductive inference at the macro level, much data which needs to be represented visually may not be possible to show due to temporal breadth. For example, there may be a pattern in a fast packet stream, yet if we were to be able to see the pattern in the packet stream, other events which may also represent a significant pattern may be happening much more slowly (e.g. slowly revolving sphere). Yet the perception of both patterns simultaneously may be necessary in order to make an inductive hypothesis.

A scientist at MIT during World War Two invented a solution to this type of dilemma. By the use of a device (now well known in discos and dance studios) called a stroboscope, Edgerton was able to visualise patterns taking place in one temporal domain in another. One of the most striking and relatively recent examples was the visualisation of individual water droplets in an apparent stream produced by a rapid impellor pump. The stream looked continuous, but viewed under the strobe, each water droplet became distinctly apparent.

We can use the same concept of strobes, ie. synthetic strobes, to bring out multi temporal periodic behaviour in the Shapes Vector visualisation process. With a synthetic strobe, we can visualise packet flow behaviour more precisely, while still retaining a view of periodic behaviour that may be occurring much more slowly elsewhere.

Since we have potentially many different events and objects within our view, it becomes necessary to extend the original strobe concept so that many different types of strobes can be applied simultaneously. Unlike the employment of photonic based strobes, which can interfere with each other, we are able to implement strobes based on:

- Whole field of view
- Per object instance
- Per object class
- Per object attribute

In addition, multiple strobes can be applied where each has complex periodic behaviour or special overrides depending on specific conditions. The latter can also be seen from the oscilloscope perspective where a Cathode Ray Oscilloscope is triggered by an event in order to capture the periodic behaviour. Naturally, with a synthetic strobe, quite complex conditions can be specified as the trigger event.

Just as in the days of oscilloscopes, it is important to be able to have variable control over the triggering rate of a strobe. Accordingly, control of the strobes is implemented via a set of rheostats.

5.2 Selective Zoom

In order to see a pattern, it is sometimes necessary to zoom out from a vista in order to gain a very high level view of activity in a network. While this can be quite useful, it is intuitive that important events for certain classes of object will fail to be noticed due to wide dispersal across the vista. If a class of objects typically have a large Representation compared to others, then zooming out to see a pattern across a large vista is appropriate. However, if the class of objects in question is small, then zooming out causes them to be less noticeable when compared to much larger objects.

Selective Zoom overcomes this difficulty and others of a similar ilk by providing two mechanisms. The first mechanism allows a user to change quickly the relative sizes of objects in relation to others. This permits a user to zoom out in order to see a large vista while still retaining a discernible view of specific objects. The second mechanism permits movement and projection of objects onto planes "above" or "below" the primary grids used to layout a view.

As can be seen in the following paragraphs, selective zoom provides a generalised translation and rotation mechanism in three-dimensional Cartesian space.

While the above two mechanisms can surely find utility, selective zoom also provides a more sophisticated "winnowing" facility. This facility caters to a typical phenomenon in the way humans "sift" through data sets until they arrive at a suitable subset for analysis. In the case of focusing on a particular set of objects in order to undertake some inductive or deductive analysis, a human may quickly select a broad class of objects for initial analysis from the overall view despite a priori knowing that the selection may not be optimal. The user typically then undertakes either a refinement (selecting a further subset) or putting the data aside as a reference while reforming the selection criteria for selection. After applying the new criteria, the user may then use the reference for refinement, intersection, or union with previous criteria depending on what they see.

Via selective zoom (perhaps raised above the main view plane), a user can perform a selective zoom on a zoomed subset. This procedure can be undertaken re-cursively, all the while making subsets from the previous relative zoom. The effect can be made like a "staircasing" of views. Figure 9 (segments two and three) depicts the use of selective zoom where subsets of nodes have been placed above the main view plane. Note the set of nodes to the left were produced by a previous use of the zoom. This set need not be a subset of the current staircase.

Indeed the set to the left can be used to form rapidly a new selection criterion. The effects can be described by simple set theory. As implied above a user may also select any of the zoomed sets and translate them to another part of the field of view. These sets can also then be used again to form unions and intersections with other zoomed views or subsets of views that are generated from the main view.

Segment one of Figure 9 depicts the same view from above. Note the schematic style.

VDI has produced a visualisation toolkit in which a particular application depicts a set of machine nodes. By clicking on a representation of a node, it is "raised" from the map and so are the nodes to which it is connected. This may be interpreted as a simple form of one aspect of selective zoom. However, it is unclear whether this VDI application is capable of the range of features forming a generalised selective zoom. For example, the capability to implement set translation in three dimensional Cartesian space, along with union and intersection for rapid reselection and manipulation of arbitrary view sets, as well as relative size adjustment based on class, instance, or object attribute properties.

6 TemporaI Hierarchies

Temporal hierarchies refer to three perceived issues: synthetic strobes along both directions of the temporal axis; user information overload, and dealing with data streams with Intelligent Agents. We discuss each in turn.

6.1 Strobes Revisited

In Section 5 we introduced the notion of a synthetic strobe which can be used to shunt rapid periodic behaviour along a "temporal axis" so that the behaviour becomes discernible to the human eye. This shunting was necessary since many patterns of behaviour occur far too rapidly (e.g. characteristics of packet flow and their contents). However, a limitation of synthetic strobes as described is that they shunt or map patterns in only one direction along the temporal axis. More precisely, rapid behaviour is shunted into a "slower" domain. Yet some behaviour of security significance may require a view which spans a relatively long time. Hence it was hypothesised that strobes must be able to not only show up rapid behaviour, but also show slow behaviour. To do this, Shapes Vector must be able to store events, and then
be able to map a strobe over them in order to display the possible pattern. Essentially, it is preferable to be able to map behaviour, which can occur along a broad front of the temporal axis into a much smaller domain, which is perceptible to Humans. As an aside, it is a well known technique to see patterns of motion in the cosmos by strobing and playing at high speed various observations, e.g. star field movement to ascertain the celestial poles. However, what we propose here, apart from the relative novelty of taking this concept into cyberspace, is the additional unusual mechanism of complex trigger events in order to perceive the "small" events, which carry so much import over "long" time periods. We can assign triggers and functions on a scale not really envisaged even in terms of cosmological playback mechanisms.

Elsewhere, we discuss many other issues related to synthetic strobes. For example, the mechanisms for setting complex trigger conditions via "trigger boxes", the need for "synthetic time", its relation to real time, and generated strobe effects.

6.2 User Information Overload

Another reason for using strobes, even if the pattern is already within the temporal perception domain of the user, is that they can highlight potentially important behaviour from all the "clutter". Visualisation itself is a mechanism whereby certain trends and macro events can be perceived from an information rich data set. However, if related or semantically similar events mix together, and a particular small event is to be correlated with another, then some form of highlighting is needed to distinguish it in the visual environment. Without this sort of mechanism, the user may suffer data overload. Synthetic strobes designed to trigger on specific events, and which only affect particular classes of objects, are surmised to provide one mechanism to overcome this expected problem.

6.3 Data Streams and IA's

One of the fundamental problems facing the use of IA's in the Shapes Vector system is the changing status of propositions. More precisely, under temporal shifts, all "facts" are predicates rather than propositions. This issue is further complicated when we consider that typical implementations of IA's do not handle temporal data streams. We address this problem by providing each IA with a "time aperture" over which it is currently processing. A user or a higher level agent can set the value of this aperture. Any output from an IA is only relevant to its time aperture setting (Figure 10). The aperture mechanism allows the avoidance of issues such as contradictions in facts over time, as well providing a finite data set in what is really a data stream. In fact, the mechanism being implemented in our system permits multiple, non-intersecting apertures to be defined for data input.

With time apertures, we can "stutter" or "sweep" along the temporal domain in order to analyse long streams of data. Clearly, there are a number of issues, which still must be dealt with. Chief amongst these is the fact that an aperture may be set which does not, or rather partially, covers the data set whereby a critical deduction must be made. Accordingly, strategies such as aperture change and multiple apertures along the temporal domain must be implemented in order to raise confidence that the relevant data is input in order to arrive at the relevant deduction.

While we are aware that we can implement apertures in order to supply us with useful deductions for a number of circumstances, it is still an open question as to how to achieve a set of sweep strategies for a very broad class of deductions where confidence is high that we obtain what we are scanning for. One area, which comes to mind, is the natural "tension" between desired aperture settings. For example, an aperture setting of 180 degrees (ie., the whole fact space) is desirable as this considers all data possible in the stream form the beginning of the epoch of capture to the end of time, or rather the last data captured. However, this setting is impractical from an implementation point of view, as well as introducing contradictions in the deductive
process. On the other hand, a very small aperture is desirable in that implementation is easy along with fast processing, but can result in critical packets not being included in the processing scan.

7 Other Visualisation Efforts

Various techniques of visualisation have over the years been applied to the analysis of different domains of abstract data, with varying success. Several such attempts bear similarities to portions of the Shapes Vector system, either in the techniques employed or the broad aims and philosophies guiding those techniques. In this section we briefly describe the most significant of these related visualisation efforts, concentrating on the specific domains of security visualisation, network visualisation and communications-related data mining.

The following discussion providing some background to the invention is intended to facilitate a better understanding of the invention. However, it should be appreciated that the discussion is not an acknowledgment or admission that any of the material referred to was published, known or part of the common general knowledge in any relevant country as at the priority date of the application.

7.1 NetPARS

A proposal from NRaD and the NRL, the Network Propagation Assessment and Recovery System (NetPARS) is an effort to assist decision making in defensive information warfare. It aims to supply such support by means of rigorously tracking data quality within a system and estimating how degradations in quality propagate between data. Such a protocol would, it is claimed, be capable of providing intrusion detection services, assessment of security state and assist in recovery following an attack.

The proposed system architecture incorporates a set of mapping agents (responsible for keeping track of inter-relationships between data), sensor elements (capable of detecting intrusions and other reductions in data quality) and recovery elements. When a sensor detects the compromise of one or more data item, the system computes (via a forward propagating expert system) the extent to which this loss in quality is propagated to other data. This information is presented to the user to assist in the defence and/or containment of the compromise.

Ultimately it is envisaged that NetPARS will also incorporate a second knowledge engine. This takes a reported reduction in data quality and, by backward propagation, determines the tree of data items which could conceivably have been the initial cause of that reduction. This fault tree is a principal input to the process of recovery.

Although only sketchy details of the NetPARS proposal are available at present, the system would appear to have some superficial similarities to Shapes Vector. Both make use of forward and backward propagation of knowledge through a set of rules (although the function of backward propagation is quite different in the two systems). Also, both NetPARS and Shapes Vector incorporate agents, which are tasked with intrusion detection as an aid towards a human response. However, whereas the Shapes Vector architecture incorporates a broad range of such agents, it seems that the intrusion detection functionality of NetPARS is currently limited to a single class of attack (storage spoofing).

Beyond these superficial resemblances the two systems have little in common. NetPARS appears to place less importance upon visualisation technology, while in Shapes Vector this is an easily realisable feature where several novel visualisation techniques have been proposed. The NRaD/NRL proposal appears to focus heavily on a tight domain of data and its inter-relationship, while the Shapes Vector system aims to model a much larger concept space with a comprehensive ontology. Ontology
can be made relevant to a great variety of application areas. Computer security as discussed in this specification is but one example. Shapes Vector also includes a potentially very powerful temporal control mechanism as well as intelligent agent architecture with user semantic bindings.

7.2 Security Visualisation

Eagle Netwatch is a commercial software package written by Raptor Systems Inc., which offers system administrators a visual representation of the security of their (firewall protected) network. The network is displayed by the tool as an interconnected set of coloured solids positioned in a three-dimensional virtual world. By replaying audit trails collected on the firewall this display is animated to illustrate particular gateway events which pertain to the system's security. During the playback of this security "movie," the user can rotate the virtual world to more clearly observe the activities of particular network elements. The tool also offers other visualisations of audit logs, most notably two-dimensional plots of gateway statistics against time.

The basic concept underlying Eagle Netwatch -- that by observing events in a visual representation of the network a (human user) may notice patterns signifying security events -- is similar to the Shapes Vector philosophy as described in Section 3. However, at the time of writing this information the Netwatch tool lacks much of the sophistication of the Shapes Vector environment including the capacity for real-time visualisation, the presence of intelligent deductive agents, the possibility of remote discovery and visual mechanisms for recognising temporal patterns.

7.3 Network Visualisation

AT\&T Bell have constructed a set of prototype tools, collectively called SeeNet which provide tools for the visualisations of telecommunications traffic. The system displays the traffic between two locations by drawing a line on a two-dimensional
geographical map. Line width and colour convey aspects of that traffic (e.g., volume). In visualising traffic on an international scale, the resulting map is typically wrapped around a sphere to give the impression of the globe. By observing trends in the visualised traffic, key performance bottlenecks in real-world telecommunications services (including the Internet) have been identified. Also by investigating observed "hot spots" in these representations, AT\&T have been able to identify fraudulent use of their facilities.

A similar visualisation approach has been adopted by British Telecom in a prototype system for observing the parameters of their communications network. An outline map of Britain is overlaid with a representation of the BT network with a "skyscraper" projecting upwards from each switching node. The height of the skyscraper denotes the value of the metric being visualised (e.g., traffic or number of faults). The user can navigate freely through the resulting 3D environment. A second visualisation attempt undertaken by British Telecom considers a different three-dimensional visualisation of the communication network as an aid for network architects. A similar approach has been adopted by IBM's Zurich Research Laboratories in their construction of a tool for visualising a computer network's backbone within a full three-dimensional virtual (VRML) world. The goal of this latter system is to ease the task of administering such network backbones.

While Shapes Vector can render similar scenes via its Geo View methods, there is little else in common because of the existence of Data View, Selective View and Strobe when used as part of the visual element. The agent architecture and other elements further distinguish the Shapes Vector system.

7.4 Data Mining

The mining and visualisation of large data sets for the purpose of extracting semantic details is a technique that is applied to many application domains. Several recent
efforts have considered such approaches for deriving visual metrics for web-server performance and also for conveying the inter-relatedness of a set of HTML
documents. Research undertaken by the NCSA considers the first of these types of data mining in an immersive virtual reality environment called Avatar. The basic approach adopted in their performance measurement work is to construct a virtual world of "scattercubes", regions of space in which three of the many measured metrics are plotted against one another. The world contains enough scattercubes that every set of three metrics is compared in at least one. Users can browse this virtual world using either head-mounted displays or a virtual reality theatre, walking within a single cube and flying over the whole aggregation of cubes. More recently this same system has also been used for visualising the performance of massively parallel programs.

Other data-mining work has considered the derivation of semantics related to the interconnections of WWW-based information. The WAVE environment from the University of Arkansas aims to provide a 3D visualisation of a set of documents grouped according to conceptual analysis. Work at AT\&T Bell considers plots of webpage access patterns which group pages according to their place in a web site's document hierarchy.

These efforts can be rendered with Shapes Vector's Data View display. The Avtar effort does not, however, share the Shapes Vector system's ability to effectively provide a semantic link between such data-oriented displays and geographic (or more abstract) views of the entities under consideration, nor represent the force paradigm's represented in Data View.

7.5 Parentage and Autograph

Parentage and its successor Autograph are visualisation tools constructed by the NSA for assisting analysts in the task of locating patterns and trends in data relating to
operating communications networks. The tools act as post-processors to the collected data, analysing the interactions between senders and receivers of communications events. Based on this analysis the tools produce a representation of the network as a graph, with nodes describing the communications participants and the edges denoting properties of the aggregated communication observed between participants. The user of the system may choose which of a pre-defined palette of graph layouts should be used to render the graph to the screen. The scalability of the provided layouts is limited and, as a means of supporting large data-sets, the tool allows for the grouping of nodes into clusters which are represented as single nodes within the rendered graph. Additionally, facilities exist for the displayed graph to be animated to reflect temporal aspects of the collected data.

While the aims of the Parentage and Autograph systems have some intersection with the visual sub-systems of Shapes Vector, the systems differ in a number of important regards. Firstly, the NSA software is not designed for real-time analysis options. Secondly, the displays generated by Parentage and Autograph are not intended to provide strong user customisation facilities: the user may choose a layout from the provided palette, but beyond this no control of the rendered graph is available. Contrast this with the Shapes Vector approach which stipulates that each of the views of the security domain must be extremely customable to cater to the different abilities of users to locate patterns in the visual field (see Section 3).

It is interesting to note that this last point has been observed in practical use of Parentage and Autograph: while the provided visual palette allows some analysts to easily spot significant features, other users working with the same tools find it more difficult to locate notable items.

Appendix Part 1- Custom Control Environments for Shapes Vector

As described in the body of this section of the specification, the Shapes Vector system is a tool based upon the fundamental assertion that a user can visually absorb a large body of security-relevant data, and react. For such a capability and for a response to be effective, the Shapes Vector user must have access to a broad range of hardware peripherals, each offering a different style of interaction with the system. Section 2.2 of this part, describes the types of peripherals, which are present within the current system.

The exact physical configuration of peripherals presented to a user of the Shapes Vector system will depend upon the needs of the 'role' that user is playing within the (collaborative) information operation. It is considered that there are two types of operational roles: strategic/planning and tactical. Peripheral configurations catering to the specific interactive needs of users operating in each of these modes are outlined below.

A. 1 Strategic Environment

Since the principal functions of a strategic Shapes Vector user focus primarily on non-real-time manipulation of data, there is little demand for speedy forms of interaction such as that afforded by joysticks and spaceballs. Instead, the core interactions available within this environment must be extremely precise: we envisage the use of conventional modes such as keyboard entry of requests or commands coupled with the gesture selection of items from menus (e.g. by mouse). Thus we would expect that a strategic Shapes Vector station might consist of a configuration similar to the traditional workstation: e.g., a desk with screen, Keyboard and mouse atop.

A. 2 Tactical Environment

In the course of a Shapes Vector information operation, one or more of the operations team will be operating in a tactical mode. In such a mode, real-time data is being
continually presented to the user and speedy (real-time) feedback to the system is of critical importance. Such interactions must primarily be made through highbandwidth stream-based peripherals such as joysticks and dials. The complexity of the virtual environment presented by Shapes Vector suggests that a high number of different real-time interactions may be possible or desirable.

To provide a capacity for quickly switching between these possible functions, we choose to present the user with a large number of peripherals, each of which is responsible for a single assigned interaction. Since some system interactions are more naturally represented by joysticks (e.g. flying through the virtual cyberspace) while others are more intuitively made using a dial (e.g. synthetic strobe frequency) and so on, we must also provide a degree of variety in the peripheral set offered to the user.

The technical issues involved in providing a large heterogeneous peripheral set in a traditional desktop environment are prohibitive. To this end a preferred design for a custom tactical control environment has been developed. The user environment depicted in Figure 11 achieves the goal of integrating a large number of disparate input peripherals into a dense configuration such that a user may very quickly shift and apply attention from one device to another.

The following input devices are incorporated into a preferred Shapes Vector Tactical Control Station depicted in Fig. 11:

- two joysticks
- rudder pedals (not visible in the figure)
- two dial/switch panels
- keyboard (intended for the rare cases where slow but precise interaction is necessary)
- trackball

The principal display for the tactical user is a large projected screen area located some distance in front of the control station. However, a small LCD screen is also provided for displaying localised output (e.g. the commands typed on the keyboard).

PART 2 SHAPES VECTOR MASTER ARCHITECTURE

1. Introduction

The fundamental aspects of the Intelligent Agent Architecture (IAA) for the Shapes Vector system are discussed in this Part of the specification. Several unusual features of this architecture include a hierarchy of context free agents with no peer communication, a specific method for constructing ontologies which permits structured emergent behaviour for agents fusing knowledge, and the ability to undertake a semantic inferencing mechanism which can be related to human interfacing.

1.1 Shapes Vector Master Architecture

The master architecture diagram (Figure 1) shows six main sub-systems to Shapes Vector:

- Sensor system. This sub-system comprises sensors that collect data. A typical example would be an Ethernet packet sniffer. Sensors may be local or remote and the communication path from the sensor and the rest of the system can take many forms ranging from a UNIX socket, through to a wireless network data link.
- The Intelligent Agent Architecture (Gestalt). This sub-system, described extensively in this paper, is responsible for processing sensor data and making intelligent deductions based on that input.
- The Tardis. This sub-system is a real time manager of events and a global semantic mapper. It also houses the synthetic clock mechanism that is discused in a later Part of this specification. The Tardis is capable of taking deductions from the Agent Gestalt and mapping them to an event with a specific semantic ready for visualisation.
- The Visuals. This sub-system actually comprises a number of "view" modules that can be regarded as sub-systems in their own right. Each view is built from common components, but visualises events input to it from the Tardis according to a fundamental display paradigm. For example, Geoview displays events and objects based on a geographic location paradigm (wherein it is possible to layout objects according to a space coordinate system. Multiple interpretations of the layout are possible. A typical use though is to layout computers and other physical objects according to their physical location.), whereas DataView lays out objects based on the level of interaction (forces) between them.
- The I/O system. This sub-system provides extensive faculties for users to navigate through the various views and interact with visualised objects.
- The Configuration system. This sub-system offers extensive features for customising the operation of all of the various sub-systems.

Essentially, the system operates by recording data from the sensors, inputting it into the Agent Gestalt, where deductions are made, passing the results into the Tardis, which then schedules them for display by the visualisation sub-system.

1.2 Precis of this part of the specification.

Portions of the information contained in the following sections will be a repeat of earlier sections of the specification. This is necessary due to the very large amount of information contained in this document and the need to refresh the readers memory of the information in the more detailed context of this part. Section 2 of this part discusses the fundamentals of the agent architecture, which includes a discourse on
the basic inferencing strategies for Shapes Vector agents. These inferencing strategies, described in Section 3 of this part are based on epistemic principles for agents with a "low level of abstraction" to a semantic vector based scheme for reasoning under uncertainty. Of interest is the method utilised to link an agent's semantics with the semantics of interaction with a user. This link is achieved by adjusting and formalising a highly restricted subset of English.

In Section 4 of this part the basic rules of constructing an agent are described and of how they must inhabit the architectural framework. The architectural framework does not preclude the introduction of "foreign" agents as long as an interface wrapper is supplied to permit it to transfer its knowledge and deduction via the relevant ontological interfaces.

Section 5 of this part discusses the temporal aspects of intelligent agents. Section 6 of this part reveals some implications for the development of higher abstraction levels for agents when considering the fusing of data from lower abstraction level agents. The ontological basis for the first of these higher levels -- levels 2 -- are detailed in Section 7 of this part.

Section 8 of this part gives a brief overview of the requirement for intelligent interfaces with which a user may interact with the various elements of an agent Gestalt. Section 9 of this part provides some general comments on the architecture, while Section 10 of this part contrasts the system with the high-level work of Bass.

2. The Agent Architecture

Shapes Vector is intended to house large numbers of Intelligent Agents (IA's), with different domains of discourse. These agents make inferences and pass knowledge to
one another in order to arrive at a set of deductions that permit a user to make higher level hypotheses.

2.1 Agent Architecture

Abstract

The Shapes Vector system makes use of a multi-layer multi-agent knowledge processing architecture. Rather than attempting to bridge the entire semantic gap between base facts and high-level security states with a single software entity, this gap is divided into a number of abstraction layers. That is, we begin by considering the problem of mapping between base facts and a marginally more abstract view of the network. Once this (relatively easy) problem has been addressed, we move on to considering another layer of deductive processing from this marginally more abstract domain, to a yet more abstract domain. Eventually, within the upper strata of this layered architecture, the high-level concepts necessary to the visualisation of the network can be reasoned about in a straightforward and context-free fashion.

The resulting Shapes Vector Knowledge Architecture (SVKA) is depicted in Figure 7. The layered horizontal boxes within the figure represent the various layers of knowledge elements. At the very bottom of the figure lies the store of all observed base facts (represented as a shaded box). Above this lies a deductive layer (termed "Level 1" of the Knowledge Architecture) which provides the first level of translation from base fact to slightly more abstract concepts.

In order to achieve knowledge transfer between agents which is both consistent and sound, an ontology (ie. a formal knowledge representation) becomes imperative. Due to our approach of constructing our knowledge processing sub-system as a set of abstraction layers, we must consider knowledge exchange at a number of different levels of abstraction. To construct a single ontology capable of expressing all forms of knowledge present within the system is problematic due to the breadth of abstraction. Attempting such ontology it is unlikely to produce a tidy set of universal rules, and

[^0]: 1.JFSKW/ajx

 Enclosure

[^1]: Form PCT/ISA/2 10 (first sheet) (July 2009)

[^2]: 6/ 16/ 2012 4:07:00 PM
 C:\Users\slu\Documents EAST\Workspaces $\backslash 12247950$.wsp

