
VISA - EXHIBIT 1016
Visa Inc. et al. v. Universal Secure Registry LLC

IPR2018-01350

from reviews of the first edition of

APPLIED CRYPTOGRAPHY

Protocols, Algorithms, and Source Code in C

I

“. . . the definitive text on the subject. . . .’

—-—Software Development Magazine: __- . _k,,,

“. . . good reading for anyone interested in cryptography.”
-3YTE ,.

“This book should be on the shelf of any computer professional

involved in the use or implementation of cryptography. ”

—IEEE Software if .. :9. :1; y“ “

“. . . dazzling . . . fascinating. . . . This book absolutely must be on your
bookshelf . . .”

—PC Techniques
I

’. . . comprehensive . . . an encyclopedic work . . .”

—The Cryptogram

“. . . a fantastic book on cryptography today. It belongs in the library of

anyone interested in cryptography or anyone who deals with informa-

tion security and cryptographic systems."

—Computers 69 Security

“An encyclopedic survey . . . could well have been subtitled ’The on of

Encrypting’ . . . a useful addition to the library of any active or would-be

security practitioner. "

—Cryptologio

“. . . encyclopedic . . . readable . . .well—inforrned . . . picks up where

Dorothy Denning’s classic Cryptography and Data Security left off a

dozen years ago. . . . This book would be a bargain at twice the price.”

—,-login:

“This is a marvelous resource—the best book on cryptography and its

application available today. ”

—Dorothy Denning

Georgetown University

“. . . Schneier’s book is an indispensable reference and resource. . . . I

recommend it highly. ”
—Martin Hellman

Stanford University

 SEC.‘
PROTOCOLS, AL .-:.'= -

- a URCE CODE IN C

John Wiley & Sons, Inc.
New York 0 Chichester 0 Brisbane 0 Toronto 0 Singapore

Publisher: Katherine Schowalter

Editor: Phil Sutherland

Assistant Editor: Allison Roarty

Managing Editor: Robert Aroncls

Text Design 81 Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as trademarks. In all

instances where Iohn Wiley 81 Sons, Inc. is aware of a claim, the product names appear in initial capital

or all capital letters. Readers, however, should contact the appropriate companies for more complete

information regarding trademarks and registration.

This text is printed on acid—free paper.

Copyright © 1996 by Bruce Schneier

Published by Iohn Wiley 3% Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in rendering legal,

accounting, or other professional service. If legal advice or other expert assistance is required, the services

of a competent professional person should be sought.

In no event will the publisher or author be liable for any consequential, incidental, or indirect damages

{including damages for loss of business profits, business interruption, loss of business information, and

the like} arising from the use or inability to use the protocols and algorithms in this book, even if the pub

lisher or author has been advised of the possibility of such damages.

Some of the protocols and algorithms in this book are protected by patents and copyrights. It is the

responsibility of the reader to obtain all necessary patent and copyright licenses before implementing in

software any protocol or algorithm in this book. This book does not contain an exhaustive list of all appli—

cable patents and copyrights.

Some of the protocols and algorithms in this book are regulated under the United States Department of

State International Traffic in Arms Regulations. It is the responsibility of the reader to obtain all neces-

sary export licenses before implementing in software for export any protocol or algorithm in this book.

Reproduction or translation of any part of this work beyond that permitted by section 107 or 108 of the

1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests

for permission or further information should be addressed to the Permissions Department, lohn Wiley 8:1.
Sons, Inc.

Library of Congress Cataloging-fn-Pubffcation Data:

Schneier, Bruce

Applied Cryptography Second Edition : protocols, algorithms, and source code in C

/ Bruce Sehneier.
p. cm.

Includes bibliographical references {p 675}.

ISBN 0-471-12845-7 {cloth : acid-free paper]. — ISBN

0-471-11709-9 [paper ; acid—free paper)

1. Computer security. 2. Telecomrnunieation—Security measures.

3. Cryptography. I. Title.
QA76.9.A25835 1996
005.8 '2—dc20 95—12398

CIP

Printed in the United States of America

10 9 8 7 6 5 4 3 2 l

F—A

Contents in Brief

Foreword by Whitfield Diffie
Preface

About the Author

1 Foundations

Part I Cryptographic Protocols

Protocol Building Blocks
Basic Protocols

Intermediate Protocols

Advanced Protocols

Esoteric Protocols

GED-POOH
Part II Cryptographic Techniques

Key Length

Key Management

Algorithm Types and Modes

Using Algorithms
C3\OOO‘\I

Part III Cryptographic Algorithms

11 Mathematical Background

12 Data Encryption Standard (DES)

13 Other Block Ciphers

14 Still Other Block Ciphers

15 Combining Block Ciphers

16 Pseudo-Random—Sequence Generators and Stream Ciphers

17 Other Stream Ciphers and Real Random—Sequence Generators

18 One-Way Hash Functions

19 Public—Key Algorithms

20 Public-Key Digital Signature Algorithms
21 Identification Schemes

22 Key-Exchange Algorithms

23 Special Algorithms for Protocols

Part IV The Real World

24 Example Implementations
25 Politics

Afterword by Matt Blaze

Part V Source Code

References

Contents

Foreword by Whitfield Diffie XV

Preface XIX
HOW TO READ THIS BOOK XX

ACKNOWLEDGMENTS xxii

About the Author XXifl

1 FOUNDATIONS 1

1.1 TERMINOLOGY 1

1.2 STEGANOGRAPHY 9

1.3 SUBSTITUTION CIPHERS AND TRANSPOSITION CIPI—IERS 10

1.4 SIMPLE XOR 13

1.5 ONE-TIME PADS 15

1.6 COMPUTER ALGORITHMS 17

1.7 LARGE NUMBERS 17

PART! CRYPTOGRAPHIC PROTOCOLS

2 PROTOCOL BUILDING BLOCKS 21

2.1 INTRODUCTION TO PROTOCOLS 21

2.2 COMMUNICATIONS USING SYMMETRIC CRYPTOGRAPHY 28

2.3 ONE-WAY FUNCTIONS 29

2.4 ONE—WAY HASH FUNCTIONS 30

2.5 COMMUNICATIONS USING PUBLIC-KEY CRYPTOGRAPI-IY 31

2.6 DIGITAL SIGNATURES 34

2.7 DIGITAL SIGNATURES WITH ENCRYPTION 41

2.8 RANDOM AND PSEUDO-RANDOM-SEOUENCE GENERATION 44

kh—contents

3 BASIC PROTOCOLS 47

3.1 KEY EXCHANGE 47

3.2 AUTHENTICATION 52

3.3 AUTHENTICATION AND KEY EXCHANGE 56

3.4 FORMAL ANALYSIS OF AUTHENTICATION AND KEY-EXCHANGE PROTOCOLS 65

3.5 MULTIPLE-KEY PUBLIC-KEY CRYPTOGRAPHY 68

3.6 SECRET SPLITTING 70

3.7 SECRET SHARING 71

3.8 CRYFTOGRAPHIC PROTECTION OF DATABASES 73

4 INTERMEDIATE PROTOCOLS 75

4.1 TIMESTAMPING SERVICES 75

4.2 SUBLIMINAL CHANNEL 79

4.3 UNDENIABLE DIGITAL SIGNATURES 81

4.4 DESIGNATED CONFIRMER SIGNATURES 82

4.5 PROXY SIGNATURES 83

4.6 GROUP SIGNATURES 84

4.7 FAIL- STOP DIGITAL SIGNATURES 85

4.8 COMPUTING WITH ENCRYPTED DATA 85

4.9 BIT COMMITMENT 86

4.10 FAIR COIN FLIPS 89

4.11 MENTAL POKER 92

4.12 ONE-WAY ACCUMULATORS 95

4.13 ALL-OR-NOTHING DISCLOSURE OF SECRETS 96

4.14 KEY ESCROW 97

5 ADVANCED PROTOCOLS 101

5.1 ZERO-KNOWLEDGE PROOFS 101

5.2 ZERO-KNOWLEDGE PROOFS OF IDENTITY 109

5.3 BLIND SIGNATURES 112

5.4 IDENTITY-BASED PUBLIC—KEY CRYPTOGRAPHY 1 15

5.5 OBLIVIOUS TRANSFER 116

5.6 OELIVIOUS SIGNATURES 117

5.7 SIMULTANEOUS CONTRACT SIGNING 118

5.8 DIGITAL CERTIFIED MAIL 122

5.9 SIMULTANEOUS EXCHANGE OF SECRETS 123

6 ESOTERIC PROTOCOLS 125

6.1 SECURE ELECTIONS 125

6.2 SECURE MULTIPARTY COMPUTATION 134

6.3 ANONYMOUS MESSAGE BROADCAST 137

6.4 DIGITAL CASH 139

PART " CRYPTOGRAPHIC TECHNIQUES

7 KEY LENGTH 151

7.1 SYMMETRIC KEY LENGTH 151

7.2 PUBLIC-KEY KEY LENGTH 158

7.3 COMPARING SYMMETRIC AND PUBLIC-KEY KEY LENGTH 165

7.4 BIRTHDAY ATTACKS AGAINST ONE-WAY HASH FUNCTIONS 165

7.5 HOW LONG SHOULD A KEY BE? 166

7.6 CAVEAT EMPTOR 168

8 KEY MANAGEMENT 169

8.1 GENERATING KEYS 170

8.2 NONLINEAR KEYSPACES 175

8.3 TRANSPERRING KEYS 176

8.4 VERIFYING KEYS 178

8.5 USING KEYS 179

8.6 UPDATING KEYS 180

8.7 STORING KEYS 180

8.8 BACKUP KEYS 181

8.9 COMPROMISED KEYS 182

8.10 LIFETIME OP KEYS 183

8.11 DESTROYING KEYS 184

8.12 PUBLIC-KEY KEY MANAGEMENT 185

9 ALGORITHM TYPES AND MODES 189

9.1 ELECTRONIC CODEBOOK MODE 189

9.2 BLOCK REPLAY 191

9.3 CIPHER BLOCK CHAINING MODE 193

9.4 STREAM CIPHERS 197

9.5 SELE-SYNCHRONIZING STREAM CIPHERS 198

9.6 CIPHER—FEEDBACK MODE 200

9.7 SYNCHRONOUS STREAM CIPHERS 202

9.8 OUTPUT-FEEDBACK MODE 203

9.9 COUNTER MODE 205

9.10 OTHER BLOCK-CIPHER MODES 206

9.11 CHOOSING A CIPHER MODE 208

9.12 INTERLEAVING 210

9.13 BLOCK CIPHERS VERSUS STREAM CIPHERS 210

10 USING ALGORITHMS 213

10.1 CHOOSING AN ALGORITHM 214

10.2 PUBLIC-KEY CRYPTOGRAPHY VERSUS SYMMETRIC CRYPTOGRAPHY 216

10.3 ENCRYPTING COMMUNICATIONS CHANNELS 216

10.4 ENCRYPTING DATA FOR STORAGE 220

10.5 HARDWARE ENCRYPTION VERSUS SOETWARE ENCRYPTION 223

: : : Contents

10.6 COMPRESSION, ENCODING, AND ENCRYPTION 226

10.7 DETECTING ENCRYPTION 226

10.8 HIDING CIPHERTEXT IN CIPHERTEXT 227

10.9 DESTROYING INFORMATION 228

PART "I CRYPTOGRAPHIC ALGORITHMS

1 1 MATHEMATICAL BACKGROUND 233

11.1 INFORMATION THEORY 233

11.2 COMPLEXITY THEORY 237

11.3 NUMBER THEORY 242

11.4 FACTORINO 255

11.5 PRIME NUMBER GENERATION 258

11.6 DISCRETE LOGARITHMS IN A FINITE FIELD 261

12 DATA ENCRYPTION STANDARD (DES) 265
12.1 BACKGROUND 265

12.2 DESCRIPTION OF DES 270

12.3 SECURITY OF DES 278

12.4 DIFFERENTIAL AND LINEAR CRYPTANALYSIS 285

12.5 THE REAL DESIGN CRITERIA 293

12.6 DES VARIANTS 294

12.7 HOW SECURE Is DES TODAY? 300

13 OTHER BLOCK CIPHERS 303

13.1 LUCIPER 303

13.2 MADRYGA 304

13.3 NEWDES 306

13.4 FEAL 308

13.5 REDOC 311

13.6 LOKI 314

13.7 KHUEU AND KHAPRE 316

13.8 RC2 318

13.9 IDEA 319

13.10 MMB 325

13.11 CA-1.1 327

13.12 SKIPIACK 328

14 STILL OTHER BLOCK CIPHERS 331

14.1 GOST 331

14.2 CAST 334

14.3 BLOWFISH 336

14.4 SAFER 339

14.5 3-WAY 341

con tents A

14.6 CRAB 342

14.7 SXALS/MBAL 344
14.8 RC5 344

14.9 OTHER BLOCK ALGORITHMS 346

14.10 THEORY OF BLOCK CIPHER DESIGN 346

14.11 USING ONE-WAY HASH FUNCTIONS 351

14.12 CHOOSING A BLOCK ALGORITHM 354

15 COMBINING BLOCK CIPHERS 357

15.1 DOUBLE ENCRYPTION 35 7

15.2 TRIPLE ENCRYPTION 358

15.3 DOUBLING THE BLOCK LENGTH 363

15.4 OTHER MULTIPLE ENCRYPTION SCHEMES 363

15.5 CDMF KEY SHORTENING 366

15.6 WHITENING 366

15.7 CASCADING MULTIPLE BLOCK ALGORITHMS 367

15.8 COMBINING MULTIPLE BLOCK ALGORITHMS 368

16 PSEUDO-RANDOM-SEQUENCE

GENERATORS AND STREAM CIPHERS 369

16.1 LINEAR CONGRUENTIAL GENERATORS 369

16.2 LINEAR FEEDBACK SHIET REGISTERS 3 72

16.3 DESIGN AND ANALYSIS OF STREAM CIPHERS 379

16.4 STREAM CIPHERS USING LFSRS 381

16.5 A5 389

16.6 HUGHES XPD/KPD 389

16.7 NANOTEQ 390

16.8 RAMBUTAN 390

16.9 ADDITIVE GENERATORS 390

16.10 GTPPORD 392

16.11 ALGORITHM M 393

16.12 PKZIP 394

17 OTHER STREAM CIPHERS AND REAL

RANDOM-SEQUENCE GENERATORS 397

17.1 RC4 397

17.2 SEAL 398

17.3 WAKE 400

17.4 FEEDBACK WITH CARRY SHIFT REGISTERS 402

17.5 STREAM CIPHERS USING FCSRS 405

17.6 NONLINEAR-FEEDBACK SHIFT REGISTERS 412

17.7 OTHER STREAM CIPHERS 413

17.8 SYSTEM-THEORETIC APPROACH TO STREAM-CIPHER DESIGN 415

17.9 COMPLEXITY-THEMATIC APPROACH TO STREAM-CIEHER DESIGN 416

17.10 OTHER APPROACHES TO STREAM-CIPHER DESIGN 418

km—contents

17.11 CASCADING MULTIPLE STREAM CIPHERS 419

17.12 CHOOSING A STREAM CIPHER 420

17.18 GENERATING MULTIPLE STREAMS FROM A

SINGLE PSEUDO-RANDOM-SEQUENCE GENERATOR 420

17.14 REAL RANDOM-SEQUENCE GENERATORS 421

18 ONE-WAY HASH FUNCTIONS 4.29

18.1 BACKGROUND 429

18.2 SNEFRU 431

18.3 N—HASH 432

18.4 MD4 435

18.5 MDS 436

18.6 MD2 441

18.7 SECURE HASH ALGORITHM [SHA] 441
18.8 RIPE-MD 445

18.9 HAVAL 445

18.10 OTHER ONE-WAY HASH FUNCTIONS 446

18.11 ONE-WAY HASH FUNCTIONS USING SYMMETRIC BLOCK ALGORITHMS 446

18.12 USING PUBLIC-KEY ALGORITHMS 455

18.18 CHOOSING A ONE-WAY HASH FUNCTION 455

18.14 MESSAGE AUTHENTICATION CODES 455

19 PUBLIC-KEY ALGORITHMS 461

19.1 BACKGROUND 461

19.2 KNAPSACK ALGORITHMS 462

19.3 RSA 466

19.4 POHLIG-HELLMAN 474

19.5 RAEIN 475

19.6 ELGAMAL 476

19.7 McELIECE 479

19.8 ELLIPTIC CURVE CRYPTOSYSTEMS 480

19.9 LUC 481

19.10 FINITE AUTOMATION PUBLIC-KEY CRYPTOSYSTEMS 482

20 PUBLIC-KEY DIGITAL SIGNATURE ALGORITHMS 483

20.1 DIGITAL SIGNATURE ALGORITHM (DSA) 483
20.2 DSA VARIANTS 494

20.3 GOST DIGITAL SIGNATURE ALGORITHM 495

20.4 DISCRETE LOGARITHM SIGNATURE SCHEMES 496

20.5 ONG-SCHNORR-SHAMIR 498

20.6 ESIGN 499

20.7 CELLULAR AUTOMATA 500

20.8 OTHER PUBLIC-KEY ALGORITHMS 500

21 IDENTIFICATION SCHEMES 503

21.1 FEIGE-FIAT-SHAMIR 503

21.2 GUILLOU-QUISQUATER 508

21.3 SCHNORR 510

21.4 CONVERTING IDENTIFICATION SCHEMES TO SIGNATURE SCHEMES 512

22 KEY-EXCHANGE ALGORITHMS 513

22.1 DIFFIE-HELLMAN 513

22.2 STATION-TO-STATION PROTOCOL 516

22.3 SHAMIR’S THREE-PASS PROTOCOL 516

22.4 COMSET 51 7

22.5 ENCRYPTED KEY EXCHANGE 518

22.6 FORTIFIED KEY NEGOTIATION 522

22.7 CONFERENCE KEY DISTRIBUTION AND SECRET BROADCASTING 523

23 SPECIAL ALGORITHMS FOR PROTOCOLS 527

23.1 MULTIPLE-KEY PUBLIC-KEY CRYPTOGRAPHY 527

23.2 SECRET-SHARING ALGORITHMS 528

23.3 SUBLIMINAL CHANNEL 531

23.4 UNDENIAELE DIGITAL SIGNATURES 536

23.5 DESIGNATED CONFIRMER SIGNATURES 539

23.6 COMPUTING WITH ENCRYPTED DATA 540

23.7 FAIR COIN FLIPS 541

23.8 ONE-WAY ACCUMULATORS 543

23.9 ALL-OR-NOTHING DISCLOSURE OF SECRETS 543

23.10 PAIR AND FAILSAFE CRYPTOSYSTEMS 546

23.11 ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE 548

23.12 BLIND SIGNATURES 549

23.13 OBLIVIOUS TRANSFER 550

23.14 SECURE MULTIPARTY COMPUTATION 551

23.15 PROBABILISTIC ENCRYPTION 552

23.16 QUANTUM CRYPTOGRAPHY 554

PART IV THE REAL WORLD

24 EXAMPLE IMPLEMENTATIONS 561

24.1 IBM SECRET-KEY MANAGEMENT PROTOCOL 561

24.2 MITRENET 562

24.3 ISBN 563

24.4 STU-III 565

24.5 KERBEROS 566

24.6 KRYPTOKNIGHT 571

24.7 SESAME 572

24.8 IBM COMMON CRYPTOGRAPHIC ARCHITECTURE 573

24.9 ISO AUTHENTICATION FRAMEWORK 574

24.10 PRIVACY-ENHANCED MAIL (PEM) 577

24.11 MESSAGE SECURITY PROTOCOL (MSP) 584

A contents

24.12 PRETTY GOOD PRIVACY [PCP] 584
24.13 SMART CARDS 587

24.14 PUBLIC-KEY CRYPTOCRAPHY STANDARDS [PKCS] 588
24.15 UNIVERSAL ELECTRONIC PAYMENT SYSTEM (UEPSI 589
24.16 CLIPPER 591

24.17 CAPSTONE 593

24.18 ATSIT MODEL 3600 TELEPHONE SECURITY DEVICE [TSD] 594

25 POLITICS 597

25.1 NATIONAL SECURITY AGENCY (NBA) 597

25.2 NATIONAL COMPUTER SECURITY CENTER (NCSC) 599

25.3 NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) 600
25.4 RSA DATA SECURITY, INC. 603

25.5 PUBLIC KEY PARTNERS 604

25.6 INTERNATIONAL ASSOCIATION FOR CRYPTOGRAPHIC RESEARCH (LACR) 605
25.7 RACE INTEGRITY PRIMITIVES EVALUATION (RIPE) 605
25.8 CONDITIONAL ACCESS FOR EUROPE (CAPE) 606
25.9 ISO/IEC 9979 607

25.10 PROFESSIONAL, CIVIL LIBERTIES, AND INDUSTRY GROUPS 608
25.11 SCI.CRYPT 608

25.12 CYPHERPUNKS 609

25.13 PATENTS 609

25.14 US. EXPORT RULES 610

25.15 FOREIGN IMPORT AND EXPORT OF CRYPTOCRAPHY 617

25.16 LEGAL ISSUES 618

Afterword by Matt Blaze 619

PART V SOURCE CODE

Source Code 623

References 679

 A

CHAPTER 2

Protocol Building Blocks

2.1 INTRODUCTION TO PROTOCOLS

The whole point of cryptography is to solve problems. (Actually, that’s the whole

point of computers—something many people tend to forget.) Cryptography solves

problems that involve secrecy, authentication, integrity, and dishonest people. You

can learn all about cryptographic algorithms and techniques, but these are academic

unless they can solve a problem. This is why we are going to look at protocols first.

A protocol is a series of steps, involving two or more parties, designed to accom-

plish a task. This is an important definition. A ”series of steps” means that the pro-

tocol has a sequence, from start to finish. Every step must be executed in turn, and

no step can be taken before the previous step is finished. “Involving two or more

parties” means that at least two people are required to complete the protocol; one

person alone does not make a protocol. A person alone can perform a series of steps

to accomplish a task [like baking a cake), but this is not a protocol. [Someone else

must eat the cake to make it a protocol.) Finally, ”designed to accomplish a task”

means that the protocol must achieve something. Something that looks like a pro-

tocol but does not accomplish a task is not a protocol—it’s a waste of time.
Protocols have other characteristics as well:

A Everyone involved in the protocol must know the protocol and all of

the steps to follow in advance.

— Everyone involved in the protocol must agree to follow it.

— The protocol must be unambiguous,» each step must be well defined

and there must be no chance of a misunderstanding.

— The protocol must be complete, there must be a specified action for

every possible situation.

 : :: : CHAPTERZ Protocol Building Blocks

The protocols in this book are organized as a series of steps. Execution of the pro-

tocol proceeds linearly through the steps, unless there are instructions to branch to

another step. Each step involves at least one of two things: coniputations by one or

more of the parties, or messages sent among the parties.

A cryptographic protocol is a protocol that uses cryptography. The parties can be

friends and trust each other implicitly or they can be adversaries and not trust one

another to give the correct time of day. A cryptographic protocol involves some

cryptographic algorithm, but generally the goal of the protocol is something beyond

simple secrecy. The parties participating in the protocol might want to share parts

of their secrets to compute a value, jointly generate a random sequence, convince

one another of their identity, or simultaneously sign a contract. The Whole point of

using cryptography in a protocol is to prevent or detect eavesdropping and cheating.

If you have never seen these protocols before, they will radically change your ideas

of what mutually distrustful parties can accomplish over a computer network. In

general, this can be stated as:

— It should not be possible to do more or learn more than what is spec-

ified in the protocol.

This is a lot harder than it looks. In the next few chapters I discuss a lot of proto-

cols. In some of them it is possible for one of the participants to cheat the other. In

others, it is possible for an eavesdropper to subvert the protocol or learn secret infor-

mation. Some protocols fail because the designers weren’t thorough enough in their

requirements definitions. Others fail because their designers weren’t thorough

enough in their analysis. Like algorithms, it is much easier to prove insecurity than

it is to prove security.

The Purpose of Protocols

In daily life. there are informal protocols for almost everything: ordering goods

over the telephone, playing poker, voting in an election. No one thinks much about

these protocols; they have evolved over time, everyone knows how to use them, and

they work reasonably well.

These days, more and more human interaction takes place over computer net-

works instead of face-to—face. Computers need formal protocols to do the same

things that peOple do without thinking. If you moved from one state to another and

found a voting booth that looked completely different from the ones you were used

to, you could easily adapt. Computers are not nearly so flexible.

Many face-to-face protocols rely on people’s presence to ensure fairness and secu~

rity. Would you send a stranger a pile of cash to buy groceries for you? Would you

play poker with someone if you couldn’t see him shuffle and deal? Would you mail

the government your secret ballot without some assurance of anonymity?

It is naive to assume that people on computer networks are honest. It is naive to

assume that the managers of computer networks are honest. It is even naive to

assume that the designers of computer networks are honest. Most are, but the dis-

 2.1 Introduction to Protocols A

honest few can do a lot of damage. By formalizing protocols, we can examine ways

in which dishonest parties can subvert them. Then we can develop protocols that
are immune to that subversion.

In addition to formalizing behavior, protocols abstract the process of accomplish-

ing a task from the mechanism by which the task is accomplished. A communica-

tions protocol is the same Whether implemented on PCs or VAXs. We can examine

the protocol without getting bogged down in the implementation details. When we

are convinced we have a good protocol, we can implement it in everything from

computers to telephones to intelligent muffin toasters.

The Players

To help demonstrate protocols, I have enlisted the aid of several people (see Table

2.1). Alice and Bob are the first two. They will perform all general two-person pro—

tocols. As a rule, Alice will initiate all protocols and Bob will respond. If the proto-

col requires a third or fourth person, Carol and Dave will perform those roles. Other

actors will play specialized supporting roles ,- they will be introduced later.

Arbitrated Protocols

An arbitrator is a disinterested third party trusted to complete a protocol [see Fig

ure 2.121). Disinterested means that the arbitrator has no vested interest in the pro-

tocol and no particular allegiance to any of the parties involved. Trusted means that

all people involved in the protocol accept what he says as true, what he does as cor-

rect, and that he will complete his part of the protocol. Arbitrators can help com—

plete protocols between two mutually distrustful parties.

In the real world, lawyers are often used as arbitrators. For example, Alice is sell:

ing a car to Bob, a stranger. Bob wants to pay by check, but Alice has no way of

knowing if the check is good. Alice wants the check to clear before she turns the

title over to Bob. Bob, who doesn’t trust Alice any more than she trusts him, doesn’t

want to hand over a check Without receiving a title.

TABLE 2.1

Dramatis Personae

Alice First participant in all the protocols

Bob Second participant in all the protocols

Carol Participant in the three and four~party protocols

Dave Participant in the four-party protocols

Eve Eavesdropper

Mallory Malicious active attacker
Trent Trusted arbitrator

Walter Warden; he’ll be guarding Alice and Bob in some protocols

Peggy Prover
Victor Verifier

A CHAPTER 2 Protocol Building Blocks

Alice
Alice Bob Trent

l (C) Self-enforcing protocol
Figure 2.1 Types of protocols

Enter a lawyer trusted by both. With his help, Alice and Bob can use the following

protocol to ensure that neither cheats the other:

[1) Alice gives the title to the lawyer.

[2) Bob gives the check to Alice.

[3) Alice deposits the check.

[4) After waiting a specified time period for the check to clear, the lawyer

gives the title to Bob. If the check does not clear within the specified time

period, Alice shows proof of this to the lawyer and the lawyer returns the
title to Alice.

In this protocol, Alice trusts the lawyer not to give Bob the title unless the check

has cleared, and to give it back to her if the check does not clear. Bob trusts the

lawyer to hold the title until the check clears, and to give it to him once it does. The

lawyer doesn’t care if the check clears. He will do his part of the protocol in either
case, because he will be paid in either case.

2.1 _Introduction to Protocols : :: :

In the example, the lawyer is playing the part of an escrow agent. Lawyers also act
as arbitrators for wills and sometimes for contract negotiations. The various stock

exchanges act as arbitrators between buyers and sellers.
Bankers also arbitrate protocols. Bob can use a certified check to buy a car from

Alice:

[1) Bob writes a check and gives it to the bank.

[2) After putting enough of Bob’s money on hold to cover the check, the bank

certifies the check and gives it back to Bob.

(3) Alice gives the title to Bob and Bob gives the certified check to Alice.

(4) Alice deposits the check.

This protocol works because Alice trusts the banker’s certification. Alice trusts
the bank to hold Bob’s money for her, and not to use it to finance shaky real estate

operations in mosquito-infested countries.
A notary public is another arbitrator. When Bob receives a notarized document

from Alice, he is convinced that Alice signed the document voluntarily and with her

own hand. The notary can, if necessary, stand up in court and attest to that fact.
The concept of an arbitrator is as old as society. There have always been people—

rulers, priests, and so on—who have the authority to act fairly. Arbitrators have a
certain social role and position in our society; betraying the public trust would jeop-

ardize that. Lawyers who play games with escrow accounts face almost-certain dis-
barment, for example. This picture of trust doesn’t always exist in the real world,
but it’s the ideal.

This ideal can translate to the computer world, but there are several problems

with computer arbitrators:

—— It is easier to find and trust a neutral third party if you know who the

party is and can see his face. Two parties suspicious of each other are
also likely to be suspicious of a faceless arbitrator somewhere else on
the network.

— The computer network must bear the cost of maintaining an arbitra-
tor. We all know what lawyers charge; who wants to bear that kind of
network overhead?

A There is a delay inherent in any arbitrated protocol.

— The arbitrator must deal with every transaction; he is a bottleneck in

large-scale implementations of any protocol. Increasing the number
of arbitrators in the implementation can mitigate this problem, but
that increases the cost.

— Since everyone on the network must trust the arbitrator, he repre-
sents a vulnerable point for anyone trying to subvert the network.

A CHAPTER 2 Protocol Building Blocks

Even so, arbitrators still have a role to play. In protocols using a trusted arbitrator,
the part will be played by Trent.

Adjudicated Protocols

Because of the high cost of hiring arbitrators, arbitrated protocols can be subdi-

vided into two lower-level subprotocols. One is a nonarbitrated subprotocol, exe-
cuted every time parties want to complete the protocol. The other is an arbitrated

subprotocol, executed only in exceptional circumstances—when there is a dispute.
This special type of arbitrator is called an adjudicator (see Figure 2.1b].

An adjudicator is also a disinterested and trusted third party. Unlike an arbitrator,

he is not directly involved in every protocol. The adjudicator is called in only to
determine Whether a protocol was performed fairly.

judges are professional adjudicators. Unlike a notary public, a judge is brought in
only if there is a dispute. Alice and Bob can enter into a contract without a judge. A
judge never sees the contract until one of them hauls the other into court.

This contract-signing protocol can be formalized in this way:
Nonarbitrated subprotocol [executed every time}:

[1] Alice and Bob negotiate the terms of the contract.

(2] Alice signs the contract.

(3) Bob signs the contract.

Adjudicated subprotocol (executed only in case of a dispute):

[4) Alice and Bob appear before a judge.

[5] Alice presents her evidence.

(6) Bob presents his evidence.

(7) The judge rules on the evidence.

The difference between an adjudicator and an arbitrator (as used in this book) is
that the adjudicator is not always necessary. In a dispute, a judge is called in to adju-
dicate. If there is no dispute, using a judge is unnecessary.

There are adjudicated computer protocols. These protocols rely on the parties to
be honest,- but if someone suspects cheating, a body of data exists so that a trusted

third party could determine if someone cheated. In a good adjudicated protocol, the
adjudicator could also determine the cheater’s identity. Instead of preventing cheat-
ing, adjudicated protocols detect cheating. The inevitability of detection acts as a
preventive and discourages cheating.

Self-Enforcing Protocols

A self-enforcing protocol is the best type of protocol. The protocol itself guaran-
tees fairness (see Figure 2.1c). No arbitrator is required to complete the protocol. No
adjudicator is required to resolve disputes. The protocol is constructed so that there

2.1 Introduction to Protocols

cannot be any disputes. If one of the parties tries to cheat, the other party immedi-

ately detects the cheating and the protocol stops. Whatever the cheating party

hoped would happen by cheating, doesn’t happen.
In the best of all possible worlds, every protocol would be self-enforcing. Unfor~

tunately, there is not a self-enforcing protocol for every situation.

Attacks against Protocols

Cryptographic attacks can be directed against the cryptographic algorithms used

in protocols, against the cryptographic techniques used to implement the algo—

rithms and protocols, or against the protocols themselves. Since this section of the
book discusses protocols, I will assume that the cryptographic algorithms and tech—

niques are secure. I will only examine attacks against the protocols.
People can try various ways to attack a protocol. Someone not involved in the pro-

tocol can eavesdrop on some or all of the protocol. This is called a passive attack,
because the attacker does not affect the protocol. All he can do is observe the proto-

col and attempt to gain information. This kind of attack corresponds to a ciphertext-

only attack, as discussed in Section 1.1. Since passive attacks are difficult to detect,
protocols try to prevent passive attacks rather than detect them. In these protocols,
the part of the eavesdropper will be played by Eve.

Alternatively, an attacker could try to alter the protocol to his own advantage. He

could pretend to be someone else, introduce new messages in the protocol, delete
existing messages, substitute one message for another, replay old messages, inter—

rupt a communications channel, or alter stored information in a computer. These
are called active attacks, because they require active intervention. The form of these

attacks depends on the network.

Passive attackers try to gain information about the parties involved in the protocol.

They collect messages passing among various parties and attempt to cryptanalyze
them. Active attacks, on the other hand, can have much more diverse objectives. The

attacker could be interested in obtaining information, degrading system performance,

corrupting existing information, or gaining unauthorized access to resources.

Active attacks are much more serious, especially in protocols in which the differ-

ent parties don’t necessarily trust one another. The attacker does not have to be a
complete outsider. He could be a legitimate system user. He could be the system
administrator. There could even be many active attackers working together. Here,

the part of the malicious active attacker will be played by Mallory.

It is also possible that the attacker could be one of the parties involved in the pro-

tocol. He may lie during the protocol or not follow the protocol at all. This type of
attacker is called a cheater. Passive cheaters follow the protocol, but try to obtain

more information than the protocol intends them to. Active cheaters disrupt the

protocol in progress in an attempt to cheat.

It is very difficult to maintain a protocol’s security if most of the parties involved
are active cheaters, but sometimes it is possible for legitimate parties to detect that

active cheating is going on. Certainly, protocols should be secure against passive

cheating.

A CHAPTER 2 Protocol Building Blocks

2.2 COMMUNICATIONS USING SYMMETRIC CRYPTOGRAPHY

How do two parties communicate securely? They encrypt their communications, of

course. The complete protocol is more complicated than that. Let’s look at what

must happen for Alice to send an encrypted message to Bob.

(1) Alice and Bob agree on a cryptosystem.

(2} Alice and Bob agree 011 a key.

(3) Alice takes her plainteXt message and encrypts it using the encryption

algorithm and the key. This creates a ciphertext message.

(4) Alice sends the ciphertext message to Bob.

(5] Bob decrypts the ciphertext message with the same algorithm and key and
reads it.

What can Eve, sitting between Alice and Bob, learn from listening in On this pro-

tocoliI If all she hears is the transmission in step [4], she must try to cryptanalyze the

ciphertext. This passive attack is a cipherteXt-only attack; we have algorithms that

are resistant (as far as we know) to whatever computing power Eve could realisti—

cally bring to bear on the problem.

Eve isn’t stupid, though. She also wants to listen in on steps {1) and [2). Then, she

would know the algorithm and the key—just as well as Bob. When the message

comes across the communications channel in step (4), all she has to do is decrypt it
herself.

A good cryptosystem is one in which all the security is inherent in knowledge

of the key and none is inherent in knowledge of the algorithm. This is why key

management is so important in cryptography. With a symmetric algorithm, Alice

and Bob can perform step (1} in public, but they must perform step [2] in secret.

The key must remain secret before, during, and after the protocol—as long as the

message must remain secret—otherwise the message will no longer be secure.

[Publicskey cryptography solves this problem another way, and will be discussed

in Section 2.5.)

Mallory, an active attacker, could do a few other things. He could attempt to

break the communications path in step (4}, ensuring that Alice could not talk to Bob

at all. Mallory could also intercept Alice’s messages and substitute his own. If he

knew the key (by intercepting the communication in step [2], or by breaking the

cryptosystem), he could encrypt his own message and send it to Bob in place of the

intercepted message. Bob would have no way of knowing that the message had not

come from Alice. If Mallory didn’t know the key, he could only create a replacement

message that would decrypt to gibberish. Bob, thinking the message came from

Alice, might conclude that either the network or Alice had some serious problems.

What about Alice? What can she do to disrupt the protocol? She can give a copy of

the key to Eve. Now Eve can read whatever Bob says. She can reprint his words in

The New York Times. Although serious, this is not a problem with the protocol.

There is nothing to stop Alice from giving Eye a copy of the plaintext at any point

during the protocol. Of course, Bob could also do anything that Alice could. This

protocol assumes that Alice and Bob trust each other.
In summary, symmetric cryptosystems have the following problems:

— Keys must be distributed in secret. They are as valuable as all the

messages they encrypt, since knowledge of the key gives knowledge

of all the messages. For encryption systems that span the world, this

can be a daunting task. Often couriers hand-carry keys to their desti-
nations.

— If a key is compromised (stolen, guessed, extorted, bribed, etc), then

Eve can decrypt all message traffic encrypted with that key. She can

also pretend to be one of the parties and produce false messages to

fool the other party.

— Assuming a separate key is used for each pair of users in a network,

the total number of keys increases rapidly as the number of users

increases. A network of n users requires n(n — 1)/2 keys. For example,

10 users require 45 different keys to talk with one another and 100

users require 4950 keys. This problem can be minimized by keeping

the number of users small, but that is not always possible.

2.3 ONE-WAY FUNCTIONS

The notion of a one-way function is central to public-key cryptography. While not

protocols in themselves, one-way functions are a fundamental building block for

most of the protocols discussed in this book.

One—way functions are relatively easy to compute, but significantly harder to

reverse. That is, given X it is easy to compute fix), but given fix] it is hard to compute

X. In this context, “hard” is defined as something like: It would take millions of

years to compute X from fix], even if all the computers in the world were assigned to

the problem.

Breaking a plate is a good example of a one-way function. It is easy to smash a

plate into a thousand tiny pieces. However, it’s not easy to put all of those tiny

pieces back together into a plate.

This sounds good, but it’s a lot of smoke and mirrors. If we are being strictly math-

ematical, we have no proof that one-way functions exist, nor any real evidence that

they can be constructed [230,530,600,661]. Even so, many functions look and smell

one~way2 We can compute them efficiently and, as of yet, know of no easy way to

reverse them. For example, in a finite field X2 is easy to compute, but it”2 is much

harder. For the rest of this section, I’m going to pretend that there are one-way func-
tions. I’ll talk more about this in Section 11.2.

So, what good are one-way functions? We can’t use them for encryption as is. A

message encrypted with the one-way function isn’t useful; no one could decrypt it.

(Exercise: Write a message on a plate, smash the plate into tiny bits, and then give

the bits to a friend. Ask your friend to read the message. Observe how impressed

 CHAPTERZ Protocol Building Blocks

he is with the one-way function] For public-key cryptography, we need something
else [although there are cryptographic applications for one-way functions—sec
Section 3.2].

A trapdoor one-way function is a special type of one-way function, one with a

secret trapdoor. It is easy to compute in one direction and hard to compute in the
other direction. But, if you know the secret, you can easily compute the function in
the other direction. That is, it is easy to compute flx] given X, and hard to compute
X given flX]. However, there is some secret information, y, such that given flX] and y
it is easy to compute X.

Taking a watch apart is a good example of a trap-door one-way function. It is easy

to disassemble a watch into hundreds of minuscule pieces. It is very difficult to put
those tiny pieces back together into a working watch. However, with the secret

information—the assembly instructions of the watch—it is much easier to put the
watch back together.

2.4 ONE-WAY HASH FUNCTIONS

A one-way hash function has many names: compression function, contraction func-

tion, message digest, fingerprint, cryptographic checksum, message integrity check
[MIC], and manipulation detection code (MDC). Whatever you call it, it is central to

modern cryptography. One-way hash functions are another building block for many
protocols.

Hash functions have been used in computer science for a long time. A hash func—

tion is a function, mathematical or otherwise, that takes a variable-length input
string (called a pre-image] and converts it to a fixed-length (generally smaller] output
string (called a hash value]. A simple hash function would be a function that takes

pro-image and returns a byte consisting of the XOR of all the input bytes.
The point here is to fingerprint the pre-image: to produce a value that indicates

whether a candidate pre-image is likely to be the same as the real pre-image.
Because hash functions are typically many-to-one, we cannot use them to deter-

mine with certainty that the two strings are equal, but we can use them to get a rea—
sonable assurance of accuracy.

A one-way hash function is a hash function that works in one direction: It is easy
to compute a hash value from pre-image, but it is hard to generate a pre«image that

hashes to a particular value. The hash function previously mentioned is not one-

Way: Given a particular byte value, it is trivial to generate a string of bytes whose

XOR is that value. You can’t do that with a one-way hash function. A good one-way

hash function is also collision-free: It is hard to generate two pre-images with the
same hash value.

The hash function is public; there’s no secrecy to the process. The security of a
one-way hash function is its one~wayness The output is not dependent on the input
in any discernible way. A single bit change in the pre—image changes, on the average,
half of the bits in the hash value. Given a hash value, it is computationally unfeasi-
ble to find a pre~image that hashes to that value.

2.5 Communications Using Public-Key Cryptography : : :

Think of it as a way of fingerprinting files. If you want to verify that someone has

a particular file [that you also have), but you don’t want him to send it to you, then
ask him for the hash value. If he sends you the correct hash value, then it is almost

certain that he has that file. This is particularly useful in financial transactions,

where you don’t want a withdrawal of $100 to turn into a Withdrawal of $1000
somewhere in the network. Normally, you would use a one-way hash function

without a key, so that anyone can verify the hash. If you want only the recipient to

be able to verify the hash, then read the next section.

Message Authentication Codes

A message authentication code (MAC), also known as a data authentication code

(DAC), is a one-way hash function with the addition of a secret key [see Section
18.14). The hash value is a function of both the pre-image and the key. The theory
is exactly the same as hash functions, except only someone with the key can verify
the hash value. You can create a MAC out of a hash function or a block encryption

algorithm; there are also dedicated MACS.

2.5 COMMUNICATIONS USING PUBLIC-KEY CRYPTOGRAPHY

Think of a symmetric algorithm as a safe. The key is the combination. Someone

with the combination can open the safe, put a document inside, and close it again.

Someone else with the combination can open the safe and take the document out.

Anyone Without the combination is forced to learn safecracking.
In 1976, Whitfield Diffie and Martin Hellman changed that paradigm of cryptog-

raphy forever [496]. [The NSA has claimed knowledge of the concept as early as
1966, but has offered no proof.) They described public-key cryptography. They used

two different keys—one public and the other private. It is computationally hard to

deduce the private key from the public key. Anyone with the public key can encrypt
a message but not decrypt it. Only the person with the private key can decrypt the

message. It is as if someone turned the cryptographic safe into a mailbox. Putting

mail in the mailbox is analogous to encrypting with the public key; anyone can do

it. Just open the slot and drop it in. Getting mail out of a mailbox is analogous to

decrypting with the private key. Generally it’s hard; you need welding torches.

However, if you have the secret (the physical key to the mailbox], it’s easy to get
mail out of a mailbox.

Mathematically, the process is based on the trap—door one—way functions previ—

ously discussed. Encryption is the easy direction. Instructions for encryption are the
public key; anyone can encrypt a message. Decryption is the hard direction. It’s

made hard enough that people with Cray computers and thousands [even millions]

of years couldn’t decrypt the message Without the secret. The secret, or trapdoor, is

the private key. With that secret, decryption is as easy as encryption.

This is how Alice can send a message to Bob using public-key cryptography:

(1) Alice and Bob agree on a public-key cryptosystem.

: : : CHAPTER 2 Protocol Building Blocks

[2) Bob sends Alice his public key.

[8) Alice encrypts her message using Bob’s public key and sends it to Bob.

[4) Bob decrypts Alice’s message using his private key.

Notice how public-key cryptography solves the key-management problem with

symmetric cryptosystems. Before, Alice and Bob had to agree on a key in secret.
Alice could choose one at random, but she still had to get it to Bob. She could hand

it to him sometime beforehand, but that requires foresight. She could send it to him

by secure courier, but that takes time. Public-key cryptography makes it easy. With

no prior arrangements, Alice can send a secure message to Bob. Eve, listening in on

the entire exchange, has Bob’s public key and a message encrypted in that key, but
cannot recover either Bob’s private key or the message.

More commonly, a network of users agrees on a public-key cryptosystem. Every

user has his or her own public key and private key, and the public keys are all pub-
lished in a database somewhere. Now the protocol is even easier:

[1) Alice gets Bob’s public key from the database.

[2] Alice encrypts her message using Bob’s public key and sends it to Bob.

(3] Bob then decrypts Alice’s message using his private key.

In the first protocol, Bob had to send Alice his public key before she could send
him a message. The second protocol is more like traditional mail. Bob is not

involved in the protocol until he wants to read his message.

Hybrid Cryptosystems

The first public-key algorithms became public at the same time that DES was

being discussed as a proposed standard. This resulted in some partisan politics in the
cryptographic community. As Diffie described it [494]:

The excitement public key cryptosystems provoked in the popular and scientific

press was not matched by corresponding acceptance in the cryptographic estab-

lishment, however. In the same year that public key cryptography was discovered,

the National Security Agency [NSA], proposed a conventional cryptographic sys-

tem, designed by International Business Machines (IBM), as a federal Data

Encryption Standard (DESI. Marty Hellman and I criticized the proposal on the

ground that its key was too small, but manufacturers were gearing up to support

the proposed standard and our criticism was seen by many as an attempt to dis-

rupt the standardsamaking process to the advantage of our own work. Public key

cryptography in its turn was attacked, in sales literature [1125] and technical

papers [849,1159] alike, more as though it were a competing product than a recent

research discovery. This, however, did not deter the NSA from claiming its share

of the credit. Its director, in the words of the Encyclopedia Britannica [1461],

pointed out that ”two—key cryptography had been discovered at the agency a

decade earlier, ” although no evidence for this claim was ever offered publicly.

2.5 Communications Using Public-Key Cryptography : :: :

In the real world, public—key algorithms are not a substitute for symmetric algo-
rithms. They are not used to encrypt messages; they are used to encrypt keys. There
are two reasons for this:

1. Public-key algorithms are slow. Symmetric algorithms are generally at
least 1000 times faster than public-key algorithms. Yes, computers are get-
ting faster and faster, and in 15 years computers will be able to do public-
key cryptography at speeds comparable to symmetric cryptography today.
But bandwidth requirements are also increasing, and there will always be

the need to encrypt data faster than public-key cryptography can manage.

2. Public-key cryptosystems are vulnerable to chosen-plaintext attacks. If C

: HP), when P is one plaintext out of a set of n possible plaintexts, then a

cryptanalyst only has to encrypt all 11 possible plaintexts and compare the
results with C (remember, the encryption key is public). He won’t be able
to recover the decryption key this way, but he will be able to determine P.

A chosen-plaintext attack can be particularly effective if there are relatively few
possible encrypted messages. For example, if P were a dollar amount less than

$1,000,000, this attack would work; the cryptanalyst tries all million possible dollar
amounts. (Probabilistic encryption solves the problem; see Section 23.15.] Even if P
is not as well-defined, this attack can be very effective. Simply knowing that a
ciphertext does not correspond to a particular plaintext can be useful information.

Symmetric cryptosystems are not vulnerable to this attack because a cryptanalyst
cannot perform trial encryptions with an unknown key.

In most practical implementations public-key cryptography is used to secure and

distribute session keys; those session keys are used with symmetric algorithms to

secure message traffic [879]. This is sometimes called a hybrid cryptosystem.

[1] Bob sends Alice his public key.

[2] Alice generates a random session key, K, encrypts it using Bob’s public key,
and sends it to Bob.

Elel

{3) Bob decrypts Alice’s message using his private key to recover the session
key.

DleBlKll : K

[4] Both of them encrypt their communications using the same session key.

Using public-key cryptography for key distribution solves a very important key-

management problem. With symmetric cryptography, the data encryption key sits
around until it is used. If Eve ever gets her hands on it, she can decrypt messages
encrypted with it. With the previous protocol, the session key is created when it is
needed to encrypt communications and destroyed when it is no longer needed. This
drastically reduces the risk of compromising the session key. Of course, the private

A CHAPTER 2 Protocol Building Blocks

key is vulnerable to compromise, but it is at less risk because it is only used once per

communication to encrypt a session key. This is further discussed in Section 3.1.

Merkle’s Puzzles

Ralph Merkle invented the first construction of public—key cryptography. In 1974

he registered for a course in computer security at the University of California,

Berkeley, taught by Lance Hoffman. His term paper topic, submitted early in the

term, addressed the problem of ”Secure Communication over Insecure Channels”

[1064]. Hoffman could not understand Merkle’s proposal and eventually Merkle

dropped the course. He continued to work on the problem, despite continuing fail-
ure to make his results understood.

Merkle’s technique was based on “puzzles" that were easier to solve for the

sender and receiver than for an eavesdropper. Here’s how Alice sends an encrypted

message to Bob without first having to exchange a key with him.

[1] Bob generates 21”, or about a million, messages of the form: ”This is puzzle

number X. This is the secret key number y,“ where X is a random number

and y is a random secret key. Both X and y are different for each message.

Using a symmetric algorithm, he encrypts each message with a different

20-bit key and sends them all to Alice.

(2] Alice chooses one message at random and performs a brute—force attack to

recover the plaintext. This is a large, but not impossible, amount of work.

[3) Alice encrypts her secret message with the key she recovered and some

symmetric algorithm, and sends it to Bob along with X.

(4] Bob knows which secret key 3/ he encrypts in message X, so he can decrypt

the message.

Eve can break this system, but she has to do far more work than either Alice or

Bob. To recover the message in step (3), she has to perform a brute-force attack

against each of Bob’s 220 messages in step (1); this attack has a complexity of 240. The

X values won’t help Eve either; they were assigned randomly in step (1). In general,

Eve has to expend approximately the square of the effort that Alice expends.

This 13 to n2 advantage is small by cryptographic standards, but in some circum-

stances it may be enough. If Alice and Bob can try ten thousand keys per second, it

will take them a minute each to perform their steps and another minute to com-

municate the puzzles from Bob to Alice on a 1.544 MB link. If Eve had comparable

computing facilities, it would take her about a year to break the system. Other algo-
rithms are even harder to break.

2.6 DIGITAL SIGNATURES

Handwritten signatures have long been used as proof of authorship of, or at least

agreement with, the contents of a document. What is it about a signature that is so

compelling [1392]?

2. 6 Digital Signatures : : :

1, The signature is authentic. The signature convinces the document’s recip~

ient that the signer deliberately signed the document.

2. The signature is unforgeable. The signature is proof that the signer, and no

one else, deliberately signed the document.

3. The signature is not reusable. The signature is part of the document; an

unscrupulous person cannot move the signature to a different document.

4. The signed document is unalterable. After the document is signed, it can-
not be altered.

5. The signature cannot be repudiated. The signature and the document are

physical things. The signer cannot later claim that he or she didn’t sign it.

In reality, none of these statements about signatures is completely true. Signa-

tures can be forged, signatures can be lifted from one piece of paper and moved to
another, and documents can be altered after signing. However, we are willing to

live with these problems because of the difficulty in cheating and the risk of

detection.

We would like to do this sort of thing on computers, but there are problems. First,

computer files are trivial to copy. Even if a person’s signature were difficult to forge
(a graphical image of a written signature, for example], it would be easy to cut and

paste a valid signature from one document to another document. The mere presence
of such a signature means nothing. Second, computer files are easy to modify after

they are signed, without leaving any evidence of modification.

Signing Documents with Symmetric Cryptosystems and an Arbitrator

Alice wants to sign a digital message and send it to Bob. With the help of Trent

and a symmetric cryptosystem, she can.

Trent is a powerful, trusted arbitrator. He can communicate with both Alice and

Bob [and everyone else who may want to sign a digital document). He shares a secret

key, KA, with Alice, and a different secret key, K3, With Bob. These keys have been

established long before the protocol begins and can be reused multiple times for

multiple signings.

(1) Alice encrypts her message to Bob with K, and sends it to Trent.

(2) Trent decrypts the message with Kg.

[3] Trent takes the decrypted message and a statement that he has received

this message from Alice, and encrypts the whole bundle with K3.

[4} Trent sends the encrypted bundle to Bob.

[5) Bob decrypts the bundle with K3. He can now read both the message and
Trent’s certification that Alice sent it.

How does Trent know that the message is from Alice and not from some

imposter? He infers it from the message’s encryption. Since only he and Alice share

their secret key, only Alice could encrypt a message using it.

A CHAPTER 2 Protocol Building Blocks

Is this as good as a paper signature? Let’s look at the characteristics we want:

1. This signature is authentic. Trent is a trusted arbitrator and Trent knows

that the message came from Alice. Trent’s certification serves as proof to
Bob.

2. This signature is unforgeable. Only Alice [and Trent, but everyone trusts
him] knows Kg, so only Alice could have sent Trent a message encrypted
with KA. If someone tried to impersonate Alice, Trent would have imme-

diately realized this in step (2) and would not certify its authenticity.

3. This signature is not reusable. If Bob tried to take Trent’s certification and

attach it to another message, Alice would cry foul. An arbitrator [it could

be Trent or it could be a completely different arbitrator with access to the

same information) would ask Bob to produce both the message and Alice’s

encrypted message. The arbitrator would then encrypt the message with

K,4 and see that it did not match the encrypted message that Bob gave him.

Bob, of course, could not produce an encrypted message that matches
because he does not know K3.

4. The signed document is unalterable. Were Bob to try to alter the document

after receipt, Trent could prove foul play in exactly the same manner just
described.

5. The signature cannot be repudiated. Even if Alice later claims that she

never sent the message, Trent’s certification says otherwise. Remember,

Trent is trusted by everyone,- What he says is true.

If Bob wants to show Carol a document signed by Alice, he can’t reveal his secret

key to her. He has to go through Trent again:

(1) Bob takes the message and Trent’s statement that the message came from
Alice, encrypts them with KB, and sends them back to Trent.

[2] Trent decrypts the bundle with KB.

[3] Trent checks his database and confirms that the original message came
from Alice.

{4) Trent re-encrypts the bundle with the secret key he shares with Carol, KC,
and sends it to Carol.

(5) Carol decrypts the bundle with Kc. She can now read both the message and
Trent’s certification that Alice sent it.

These protocols work, but they’re time-consuming for Trent. He must spend his
days decrypting and encrypting messages, acting as the intermediary between every

pair of people who want to send signed documents to one another. He must keep a
database of messages [although this can be avoided by sending the recipient a copy

of the sender’s encrypted message}. He is a bottleneck in any communications sys-
tem, even if he’s a mindless software program.

 2.6 Digital Signatures A

Harder still is creating and maintaining someone like Trent, someone that every-

one on the network trusts. Trent has to be infallible; if he makes even one mistake in

a million signatures, no one is going to trust him. Trent has to be completely secure.

If his database of secret keys ever got out or if someone managed to modify his pro-

gramming. everyone’s signatures would be completely useless. False documents pur-
ported to be signed years ago could appear. Chaos would result. Governments would

collapse. Anarchy would reign. This might work in theory, but it doesn’t work very

well in practice.

Digital Signature Trees

Ralph Merkle proposed a digital signature scheme based on secret-key cryptogra—

phy, producing an infinite number of one-time signatures using a tree structure

[1067,1068]. The basic idea of this scheme is to place the root of the tree in some

public file, thereby authenticating it. The root signs one message and authenticates
its sub-nodes in the tree. Each of these nodes signs one message and authenticates

its sub~nodes, and so on.

Signing Documents with Public-Key Cryptography

There are public-key algorithms that can be used for digital signatures. In some

algorithmsfiRSA is an example (see Section 19.31—either the public key or the pri—

vate key can be used for encryption. Encrypt a document using your private key, and

you have a secure digital signature. In other cases—DSA is an example [see Section

20.1)7there is a separate algorithm for digital signatures that cannot be used for

encryption. This idea was first invented by Diffie and Hellman [496] and further

expanded and elaborated on in other texts [12811328,1024,1283,426]. See [1099] for

a good survey of the field.

The basic protocol is simple:

[1] Alice encrypts the document with her private key, thereby signing the doc-
ument.

[2] Alice sends the signed document to Bob.

[3) Bob decrypts the document with Alice’s public key, thereby verifying the

signature.

This protocol is far better than the previous one. Trent is not needed to either sign

or verify signatures. [He is needed to certify that Alice’s public key is indeed her

public key.) The parties do not even need Trent to resolve disputes: If Bob cannot

perform step (3), then he knows the signature is not valid.

This protocol also satisfies the characteristics we’re looking for:

l. The signature is authentic,- when Bob verifies the message with Alice’s

public key, he knows that she signed it.

2. The signature is unforgeable; only Alice knows her private key.

3. The signature is not reusable,- the signature is a function of the document

and cannot be transferred to any other document.

A CHAPTER 2 Protocol Building Blocks

4. The signed document is unalterable; if there is any alteration to the docu-

ment, the signature can no longer be verified with Alice’s public key.

5. The signature cannot be repudiated. Bob doesn’t need Alice’s help to verify
her signature.

Signing Documents and Timestamps

Actually, Bob can cheat Alice in certain circumstances. He can reuse the docu-

ment and signature together. This is no problem if Alice signed a contract [what’s

another copy of the same contract, more or less?], but it can be very exciting if Alice
signed a digital check.

Let’s say Alice sends Bob a signed digital check for $100. Bob takes the check to

the bank, which verifies the signature and moves the money from one account to

the other. Bob, who is an unscrupulous character, saves a copy of the digital check.

The following week, he again takes it to the bank (or maybe to a different bank]. The
bank verifies the signature and moves the money from one account to the other. If

Alice never balances her checkbook, Bob can keep this up for years.

Consequently, digital signatures often include timestamps. The date and time of

the signature are attached to the message and signed along with the rest of the mes-

sage. The bank stores this timestamp in a database. Now, when Bob tries to cash

Alice’s check a second time, the bank checks the timestamp against its database.

Since the bank already cashed a check from Alice with the same timestamp, the
bank calls the police. Bob then spends 15 years in Leavenworth prison reading up on
cryptographic protocols.

Signing Documents with Public-Key Cryptography

and One-Way Hash Functions

In practical implementations, public-key algorithms are often too inefficient to

sign long documents. To save time, digital signature protocols are often imple-
mented with one-way hash functions [432,433]. Instead of signing a document,

Alice signs the hash of the document. In this protocol, both the one-way hash func—
tion and the digital signature algorithm are agreed upon beforehand.

(1) Alice produces a one-way hash of a document.

(2) Alice encrypts the hash with her private key, thereby signing the docu-
ment.

[3) Alice sends the document and the signed hash to Bob.

{4] Bob produces a one-way hash of the document that Alice sent. He then,

using the digital signature algorithm, decrypts the signed hash with Alice’s

public key. If the signed hash matches the hash he generated, the signature
is valid.

Speed increases drastically and, since the chances of two different documents hav-

ing the same 160-bit hash are only one in 2150, anyone can safely equate a signature
of the hash with a signature of the document. If a non-one-way hash function were

2.6 Digital Signatures A

used, it would be an easy matter to create multiple documents that hashed to the

same value, so that anyone signing a particular document would be duped into sign-

ing a multitude of documents.
This protocol has other benefits. First, the signature can be kept separate from the

document. Second, the recipient’s storage requirements for the document and sig—
nature are much smaller. An archival system can use this type of protocol to verify

the existence of documents without storing their contents. The central database

could just store the hashes of files. It doesn’t have to see the files at all,- users submit
their hashes to the database, and the database timestamps the submissions and

stores them. If there is any disagreement in the future about who created a docu-
ment and when, the database could resolve it by finding the hash in its files. This

system has vast implications concerning privacy: Alice could copyright a document
but still keep the document secret. Only if she wished to prove her copyright would

she have to make the document public. (See Section 4.1).

Algorithms and Terminology

There are many digital signature algorithms. All of them are public-key algo—
rithms with secret information to sign documents and public information to verify

signatures. Sometimes the signing process is called encrypting with a private key
and the verification process is called decrypting with a public key. This is mislead-

ing and is only true for one algorithm, RSA. And different algorithms have different

implementations. For example, one-way hash functions and timestamps sometimes
add extra steps to the process of signing and verifying. Many algorithms can be used

for digital signatures, but not for encryption.

In general, I will refer to the signing and verifying processes without any details of

the algorithms involved. Signing a message with private key K is:

SKlMl

and verifying a signature with the corresponding public key is:

Vle)

The bit string attached to the document when signed [in the previous example,

the one-way hash of the document encrypted with the private key) will be called the

digital signature, or just the signature. The entire protocol, by which the receiver of
a message is convinced of the identity of the sender and the integrity of the message,
is called authentication. Further details on these protocols are in Section 3.2.

Multiple Signatures

How could Alice and Bob sign the same digital document? Without one-way hash

functions, there are two options. One is that Alice and Bob sign separate copies of

the document itself. The resultant message would be over twice the size of the orig-

inal document. The second is that Alice signs the document first and then Bob signs

Alice’s signature. This works, but it is impossible to verify Alice’s signature without

also verifying Bob’s.

A CHAPTER 2 Protocol Building Blocks

With one-way hash functions, multiple signatures are easy:

[1) Alice signs the hash of the document.

[2} Bob signs the hash of the document.

[3] Bob sends his signature to Alice.

(4] Alice sends the document, her signature, and Bob’s signature to Carol.

[5) Carol verifies both Alice’s signature and Bob’s signature.

Alice and Bob can do steps [1) and (2) either in parallel or in series. In step [5],
Carol can verify one signature Without having to verify the other.

Nonrepudiation and Digital Signatures

Alice can cheat with digital signatures and there’s nothing that can be done about

it. She can sign a document and then later claim that she did not. First, she signs the
document normally. Then, she anonymously publishes her private key, conve-

niently loses it in a public place, or just pretends to do either one. Alice then claims

that her signature has been compromised and that others are using it, pretending to
be her. She disavows signing the document and any others that she signed using that
private key. This is called repudiation.

Timestarnps can limit the effects of this kind of cheating, but Alice can always

claim that her key was compromised earlier. If Alice times things well, she can sign

a document and then successfully claim that she didn’t. This is why there is so
much talk about private keys buried in tamper-resistant modules—so that Alice
can’t get at hers and abuse it.

Although nothing can be done about this possible abuse, one can take steps to
guarantee that old signatures are not invalidated by actions taken in disputing new

ones. [For example, Alice could ”lose” her key to keep from paying Bob for the junk
car he sold her yesterday and, in the process, invalidate her bank account.) The solu-

tion is for the receiver of a signed document to have it timestamped [453].
The general protocol is given in [2.8]:

(1) Alice signs a message.

(2) Alice generates a header containing some identifying information. She

concatenates the header with the signed message, signs that, and sends it
to Trent.

[3) Trent verifies the outside signature and confirms the identifying informa-
tion. He adds a timestamp to Alice’s signed message and the identifying
information. Then he signs it all and sends it to both Alice and Bob.

[4] Bob verifies Trent’s signature, the identifying information, and Alice’s sig-
nature.

(5) Alice verifies the message Trent sent to Bob. If she did not originate the
message, she speaks up quickly.

 2. 7 Digital Signatures with Encryption

Another scheme uses Trent after the fact [209]. After receiving a signed message,

Bob can send a copy to Trent for verification. Trent can attest to the validity of

Alice’s signature.

Applications of Digital Signatures

One of the earliest proposed applications of digital signatures was to facilitate the

verification of nuclear test ban treaties [1454,1467]. The United States and the Soviet

Union (anyone remember the Soviet Union?) permitted each other to put seis-
mometers on the other’s soil to monitor nuclear tests. The problem was that each

country needed to assure itself that the host nation was not tampering with the data
from the monitoring nation’s seismometers. Simultaneously, the host nation needed

to assure itself that the monitor was sending only the specific information needed

for monitoring.

Conventional authentication techniques can solve the first problem, but only digs

ital signatures can solve both problems. The host nation can read, but not alter, data
from the seismometer, and the monitoring nation knows that the data has not been

tampered with.

2.7 DIGITAL SIGNATURES WITH ENCRYPTION

By combining digital signatures with public-key cryptography, we develop a protocol
that combines the security of encryption with the authenticity of digital signatures.

Think of a letter from your mother: The signature provides proof of authorship and

the envelope provides privacy.

(1} Alice signs the message with her private key.

SAM)

(2) Alice encrypts the signed message with Bob’s public key and sends it to Bob.

EBlsalMll

[3) Bob decrypts the message with his private key.

DBlEBlSAle : SalMl

[4) Bob verifies with Alice’s public key and recovers the message.

ValsalMll = M

Signing before encrypting seems natural. When Alice writes a letter, she signs it

and then puts it in an envelope. If she put the letter in the envelope unsigned and

then signed the envelope, then Bob might worry if the letter hadn’t been covertly

replaced. If Bob showed to Carol Alice’s letter and envelope, Carol might accuse Bob

of lying about which letter arrived in which envelope.

In electronic correspondence as well, signing before encrypting is a prudent prac-

tice [48]. Not Only is it more secure—an adversary can’t remove a signature from an

encrypted message and add his own—but there are legal considerations: If the text

A CHAPTER 2 Protocol Building Blocks

to be signed is not visible to the signer when he affixes his signature, then the sig-
nature may have little legal force [1312). And there are some cryptanalytic attacks

against this technique with RSA signatures [see Section 19.3).

There’s no reason Alice has to use the same public~key/private-key key pair for

encrypting and signing. She can have two key pairs: one for encryption and the other

for signatures. Separation has its advantages: she can surrender her encryption key
to the police without compromising her signature, one key can be escrowed (see

Section 4.13) without affecting the other, and the keys can have different sizes and

can expire at different times.

Of course, timestamps should be used with this protocol to prevent reuse of mes-

sages. Timestamps can also protect against other potential pitfalls, such as the one
described below.

Resending the Message as a Receipt

Consider an implementation of this protocol, with the additional feature of con—

firmation messages. Whenever Bob receives a message, he returns it as a confirma—
tion of receipt.

(1) Alice signs a message with her private key, encrypts it with Bob’s public
key, and sends it to Bob.

EBlSAlMll

)2) Bob decrypts the message with his private key and verifies the signature
with Alice’s public key, thereby verifying that Alice signed the message
and recovering the message.

VAlDBlEBlSAlMllll = M

[3) Bob signs the message with his private key, encrypts it with Alice’s public
key, and sends it back to Alice.

EAlSBlMll

(4) Alice decrypts the message with her private key and verifies the signature

with Bob’s public key. If the resultant message is the same one she sent to

Bob, she knows that Bob received the message accurately.

If the same algorithm is used for both encryption and digital-signature verification
there is a possible attack [506]. In these cases, the digital signature operation is the

inverse of the encryption operation: VX : EX and 8X = DX.

Assume that Mallory is a legitimate system user with his own public and private

key. Now, let's watch as he reads Bob’s mail. First, he records Alice’s message to Bob
in step (1). Then, at some later time, he sends that message to Bob, claiming that it

came from him (Mallory). Bob thinks that it is a legitimate message from Mallory,
so he decrypts the message with his private key and then tries to verify Mallory’s
signature by decrypting it with Mallory’s public key. The resultant message, which
is pure gibberish, is:

EMlDBl‘EBlDAlMllll = BMlDAlMll

2. 7 Digital Signatures with Encryption A

Even so, Bob goes on with the protocol and sends Mallory a receipt:

EMlDBlfimlDAlMllil

Now, all Mallory has to do is decrypt the message with his private key, encrypt it
with Bob’s public key, decrypt it again with his private key, and encrypt it with

Alice’s public key. Voila! Mallory has M.
It is not unreasonable to imagine that Bob may automatically send Mallory a

receipt. This protocol may be embedded in his communications software, for exam-
ple, and send receipts automatically. It is this willingness to acknowledge the receipt
of gibberish that creates the insecurity. If Bob checked the message for comprehensi-
bility before sending a receipt, he could avoid this security problem.

There are enhancements to this attack that allow Mallory to send Bob a different

message from the one he eavesdropped on. Never sign arbitrary messages from other
people or decrypt arbitrary messages and give the results to other people.

Failing the Resend Attack

The attack just described works because the encrypting operation is the same as

the signature—verifying operation and the decryption operation is the same as the
signature operation. A secure protocol would use even a slightly different operation
for encryption and digital signatures. Using different keys for each operation solves
the problem, as does using different algorithms for each operation; as do time-
stamps, which make the incoming message and the outgoing message different; as
do digital signatures with one-way hash functions [see Section 2.6].

In general, then, the following protocol is secure as the public-key algorithm used:

(1) Alice signs a message.

(2) Alice encrypts the message and signature with Bob’s public key [using a
different encryption algorithm than for the signature) and sends it to Bob.

[3] Bob decrypts the message with his private key.

(4) Bob verifies Alice’s signature.

Attacks against Public—Key Cryptography

In all these public-key cryptography protocols, I glossed over how Alice gets Bob’s
public key. Section 3.1 discusses this in detail, but it is worth mentioning here.

The easiest way to get someone’s public key is from a secure database some-
where. The database has to be public, so that anyone can get anyone else’s public

key. The database also has to be protected from write-access by anyone except
Trent; otherwise Mallory could substitute any public key for Bob’s. After he did
that, Bob couldn’t read messages addressed to him, but Mallory could.

Even if the public keys are stored in a secure database, Mallory could still substi-
tute one for another during transmission. To prevent this, Trent can sign each pub-

lic key with his own private key. Trent, when used in this manner, is often known
as a Key Certification Authority or Key Distribution Center {KDC}. In practical
implementations, the KDC signs a compound message consisting of the user’s

A CHAPTER 2 Protocol Building Blocks

name, his public key, and any other important information about the user. This

signed compound message is stored in the KDC’s database. When Alice gets Bob’s

key, she verifies the KDC’S signature to assure herself of the key’s validity.
In the final analysis, this is not making things impossible for Mallory, only more

difficult. Alice still has the KDC’s public key stored somewhere. Mallory would
have to substitute his own public key for that key, corrupt the database, and substi-

tute his own keys for the valid keys (all signed with his private key as if he were the
KDC], and then he’s in business. But, even paper-based signatures can be forged if
Mallory goes to enough trouble. Key exchange will be discussed in minute detail in
Section 8.1.

2.8 RANDOM AND PSEUDo-RANDOM-SEQUENCE GENERATION

Why even bother with random-number generation in a book on cryptography?
There’s already a random-number generator built into most every compiler, a mere
function call away. Why not use that? Unfortunately, those randomunumber gener-
ators are almost definitely not secure enough for cryptography, and probably not
even very random. Most of them are embarrassingly bad.

Random-number generators are not random because they don’t have to be. Most

simple applications, like computer games, need so few random numbers that they
hardly notice. However, cryptography is extremely sensitive to the properties of
random-number generators. Use a poor random-number generator and you start get-
ting weird correlations and strange results [1231, 123 8]. If you are depending on your
random—number generator for security, weird correlations and strange results are
the last things you want.

The problem is that a random-number generator doesn’t produce a random
sequence. It probably doesn’t produce anything that looks even remotely like a ran—
dom sequence. Of course, it is impossible to produce something truly random on a
computer. Donald Knuth quotes Iohn von Neumann as saying: ”Anyone who con-
siders arithmetical methods of producing random digits is, of course, in a state of sin”

[863]. Computers are deterministic beasts: Stuff goes in one end, completely pre-
dictable operations occur inside, and different stuff comes out the other end. Put the

same stuff in on two separate occasions and the same stuff comes out both times. Put

the same stuff into two identical computers, and the same stuff comes out of both of

them. A computer can only be in a finite number of states [a large finite number, but
a finite number nonetheless], and the stuff that comes out will always be a deter—
ministic function of the stuff that went in and the computer’s current state. That

means that any random—number generator on a computer [at least, on a finite-state

machine) is, by definition, periodic. Anything that is periodic is, by definition, pre-
dictable. And if something is predictable, it can’t be random. A true random-number

generator requires some random input; a computer can’t provide that.

Pseudo-Random Sequences

The best a computer can produce is a pseudo-random-sequence generator. What’s
that? Many people have taken a stab at defining this formally, but I’ll hand-wave

here. A pseudo-random sequence is one that looks random. The sequence’s period

2.8 Random and Pseudo-Random—Sequence GenerationA

should be long enough so that a finite sequence of reasonable length—that is, one
that is actually used—is not periodic. If you need a billion random bits, don’t choose

a sequence generator that repeats after only sixteen thousand bits. These relatively
short nonperiodie subsequences should be as indistinguishable as possible from
random sequences. For example, they should have about the same number of ones
and zeros, about half the runs (sequences of the same bit] should be of length one,

one quarter of length two, one eighth of length three, and so on. They should not be
compressible. The distribution of run lengths for zeros and ones should be the same
[643,863,99,1357]. These properties can be empirically measured and then com-
pared to statistical expectations using a chi-square test.

For our purposes, a sequence generator is pseudo-random if it has this property:

1. It looks random. This means that it passes all the statistical tests of Ian-

domness that we can find. [Start with the ones in [863].)

A lot of effort has gone into producing good pseudo-random sequences on com-

puter. Discussions of generators abound in the academic literature, along with vari-
ous tests of randomness. All of these generators are periodic [there’s no escaping

that); but with potential periods of 2256 bits and higher, they can be used for the

largest applications.

The problem is still those weird correlations and strange results. Every pseudo-

random-sequence generator is going to produce them if you use them in a certain

way. And that’s what a cryptanalyst will use to attack the system.

Cryptographicafly Secure Pseudo-Random Sequences

Cryptographic applications demand much more of a pseudo—random-sequence

generator than do most other applications. Cryptographic randomness doesn’t mean
just statistical randomness, although that’s part of it. For a sequence to be crypto-

graphically secure pseudo-random, it must also have this property:

2. It is unpredictable. It must be computationally infeasible to predict what

the next random bit will be, given complete knowledge of the algorithm or

hardware generating the sequence and all of the previous bits in the stream.

Cryptographically secure pseudo-random sequences should not be compress-
ible . . . unless you know the key. The key is generally the seed used to set the initial

state of the generator.

Like any cryptographic algorithm, cryptographically secure pseudo-random—

sequence generators are subject to attack. Just as it is possible to break an encryption

algorithm, it is possible to break a cryptographically secure pseudo-random-sequence

generator. Making generators resistant to attack is what cryptography is all about.

Real Random Sequences

Now we’re drifting into the domain of philosophers. Is there such a thing as ran—

domness? What is a random sequence? How do you know if a sequence is random? Is
“101110100" more random than “101010101“? Quantum mechanics tells us that

A CHAPTER 2 Protocol Building Blocks

there is honest-to-goodness randomness in the real world. But can we preserve that
randomness in the deterministic world of computer chips and finite~state machines?

Philosophy aside, from our point of View a sequence generator is real random if it
has this additional third property:

3. It cannot be reliably reproduced. If you run the sequence generator twice

with the exact same input (at least as exact as humanly possible), you will

get two completely unrelated random sequences.

The output of a generator satisfying these three properties will be good enough for

a one-time pad, key generation, and any other cryptographic applications that
require a truly random sequence generator. The difficulty is in determining whether
a sequence is really random. If I repeatedly encrypt a string with DES and a given

key, I will get a nice, random-looking output; you won’t be able to tell that it’s non—

random unless you rent time on the NSA’s DES cracker.

