
INTEL 1219

US 20090307478A1

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2009/0307478 A1
 Gehrmann (43) Pub. Date: Dec. 10, 2009

(54) PLATFORM BOOT WITH BRIDGE SUPPORT (30) Foreign Application Priority Data

(76) Inventor: Christian Gehrmann, Lund (SE) Dec. 21, 2006 (EP) 063880694Publication Classification

Correspondence Address: (51) Int. Cl-
ERICSSON INC. G06F 9/445 (2006.01)

6300 LEGACY DRIVE, M/S EVR 1-C-11 G061” 15/177 (200601)
PLANO, TX 75024 (Us) (52) U-S- Cl: .. 713/2

(57) ABSTRACT

(21) APP1~ N05 12/2813960 A method for booting a processing device, the processing
device comprising a first and a second processing unit, the

(22) PCT Filed: Feb. 19, 2007 method comprising: detecting by the first processing unit,
whether at least one boot configuration parameter is acces-
sible from a non-volatile storage medium of the processing

(86) PCT N05 PCT/EP07/01394 device, the at least one configuration parameter being indica-
tive of a boot interface; if said at least one configuration

§371 (00): parameter is available, forwarding at least a part of the
(2): (4) Date: Jan. 13, 2009 detected at least one configuration parameter by the first

processing unit to the second processing unit; otherwise

Related US. Application Data detecting by at least one of the first and second processing
units Whether a boot interface is available to the processing

(60) Provisional application No. 60/743,444, filed on Mar. device; booting at least the second processing unit from the
9, 2006. indicated or detected boot interface.

1 83. 1 63

120

170 165 . 102
173 101 113 174

1 Access system.I /
-|TCM c1 .ITCM

Me

2

_ ‘
, ‘

GAcc V

m 1
03 Mem SMemGPR °°

——-——-—

' 162 1 21
m 199

SW" 106

UICC 105 180
4 161

168 16 -
167 182

150

INTEL 1219

Patent Application Publication Dec. 10, 2009 Sheet 1 0f 8 US 2009/0307478 A1

163

110 163 184
112 120

170 165 102

173 101 113 174

Application

1 Access system.I /

ITCM 103 61 ITCM

CPU‘ DTCM - CPU DTCM
.

Mem
con

-1 " ‘DSP »I ,

"“6 m - 'C3 Mem SMem

L 1

———-

162

1_g 199 2‘
SIM/ OTP 106105 .

anc 161 18064

168 1 167 182
150 ‘

Fig. 1

Patent Application Publication Dec. 10, 2009 Sheet 2 0f 8 US 2009/0307478 A1

163

112 184
165 120102

113 174

Application

Access system.1.l ITC M

;:"I am-

DMA
GAcc '7

GSM/ '

_G-PRS—C3 -lon Mem SMem .Con Con I
—-1_62

121100L199 .

SIMI -: — 106105
UICC 180

161

6167 182 150

299 250

[Xudio

251

FLASH

\—23O

Patent Application Publication Dec. 10, 2009 Sheet 3 0f 8 US 2009/0307478 A1

Patent Application Publication Dec. 10, 2009 Sheet 4 0f 8 US 2009/0307478 A1

1 Access CPU

[EE:]\+\—340 110 «/l] A/f‘l

l

5 28 402
: Hardware 7
i initialisations
l

l 403

i 5

1 Ga

5

i Detect Service (pin)|
l

E 7al

E yes Service mode?

5 9 no

E = ridge confi- yes 1 1

; Detect connected detected? Switch to
1 external Interface _ ..
. . bndge
; and swrtch to “0 interface
f detected interface 12 14

i Detect connected

2 external interface
} and switch to

i detected interface 1 6
/—- 18

.: xternal CP 17
I

i

i 20a Service mode? 20b
Service mode

. start req.
21 a 21 b

yes (normal mode) yes (normal mode)

erReq from erReq from
>ost Timeout? ost Timeout?

:22b|

Service mode

start res. . I '
§ Fig. 452 ® 22b

Patent Application Publication Dec. 10, 2009 Sheet 5 0f 8 US 2009/0307478 A1

Check security 35

config.
Ignore security

config.

0 23 —\—— ‘>

_____________24K_
25

26

27

29

Flashless yes

bndge?

Invoke security
routines

33

Read hardware

security config. 34 34

36

37\

Switch to bridge 38
interface

V

39 40

Invoke security 41
routines

Read hardware

security config. 42

Check security 44
confi-. 45

46/
Continue with boot

from the detected

interface

47
 Fig. 4b

Patent Application Publication Dec. 10, 2009 Sheet 6 0f 8 US 2009/0307478 A1

: 1 120 Application CPU 231 External CPU
Reset 2b 1

402

Hardware

03

Initiaiisations

4

Detect possible

hardware bridge

configuration

4

Detect Flash Root table and

read config parameters

Configuration

5

Detect Service (pin)

7b

, yes

yes 'ridge con Io
detected?

14
Service mode

1.6 .
I onfiguratlon ack

17
Service mode

20b

Service mode start req.

22b

Service mode start res.

Fig. 4c 9 0

13

Detect service

I
I

II

II
I

II
|

I

II
I
|

II

6b 5
i
I
I

I
I

II
I

I
I
I

lb

Patent Application Publication Dec. 10, 2009 Sheet 7 0f 8 US 2009/0307478 A1

23 Configuration .3

[— 24 Configuration ack E

“ ‘gg'Eaafigfiré‘tidfih‘c'iii"""""""""fl""""""""""
Service mode ack.

26 Start req.

27 Start res. 30

Invoke security routines

32

Read Security config. from
Flash

34 Security config.

37 Result

39 Start req.

40

Start res.

43

 Read security config.

parameters from non-

volatile memory

/— 44 Security config.
/—' 46 Result

43 Continue with boot from the

_____1_______-___.______.____.____-———.__.....—__-_--—___.__-_____-______---_______.--______._.____
i

detected interface or memory
Fig. 4d

US 2009/0307478 A1Dec. 10, 2009 Sheet 8 of 8Patent Application Publication

23 1

1

-I-

1::::::::i::::::f:

30 ’

32

D!

39

40

ES44

46

48

120

l
II
l
l
l
l____..-.1,-_-_- __

X

26

/: 23

27

35

.—

31

33

36

47

.
......

US 2009/0307478 A1

PLATFORM BOOT WITH BRIDGE SUPPORT

TECHNICAL FIELD

[0001] The invention relates to the booting of processing
devices comprising a first and a second processing unit.

BACKGROUND

[0002] One example of a processing device comprising a
first and a second processing unit includes a mobile platform,
i.e. a chipset/integrated circuit for use in a plurality of differ-
ent mobile communications devices. A mobile platform can
be used in several different hardware configurations includ-
ing e.g. a mobile phone architecture using two central pro-
cessing units (CPUs). In such a two-CPU mobile phone archi-
tecture typically one of the CPUs is used as an access CPU
that handles the communication/real-time constrained tasks,
and the other CPU is used as an application CPU that handles
the phone application tasks. It is a cost advantage to include
both the application and the access CPU on the same base-
band digital application specific integrated circuit (ASIC).
However, in order to allow the platform to be used together
with more powerful application systems, it is generally desir-
able to be able to use the platform together with an external
CPU and application system instead of the application CPU
of the platform. For example, an electronic device including
the platform may be connected to another data processing
system such as a computer via a suitable interface, e.g. via a
universal serial bus (USB). Such a configuration in which an
external CPU is used instead of the internal application CPU
of the platform is also called a bridge configuration. In this
case, there is no direct use of the internal application CPU.
[0003] According to a first aspect, It is thus desirable to
provide an initialization or boot process for the processing
device that facilitates both situations ii an eflicient and cost-

effective way.
[0004] European patent application 3P 1 486 869 discloses
a boot process for initializing a co-processor of a system
including a main processor and a co-processor. Even though
this process avoids the need for a NOR flash memory to be
associated with the coprocessor it still requires two or more
flash memories connected to the respective processors.
[0005] According to another aspect, the booting of a pro-
cessing device such as a mobile platform for normal operation
typically requires that certain basic or platform software, e.g.
an operating system and/or firmware, and possibly certain
configuration parameters have been installed on the process-
ing device, e. g. during manufacturing of the device or a sub-
sequent configuration. This installation is typically per-
formed by loading the software onto the processing device,
e.g. into a non-volatile memory such as a flash memory of the
device. To this end the processing device can typically be
operated in a special mode of operation, referred to as soft-
ware flashing mode or service mode, in which the processing
device is adapted to load software over an external interface
so that the device can be configured for normal use. The
process of loading the basic software and configuration
parameters will also be referred to as external load.
[0006] In some mobile platforms external load is indicated
by a service pin that is connected to the access CPU. The
service pin can for example be trigged when the user enters a
specific keyboard combination. Once the service mode is
detected, the platform loads the software to be executed from
an external interface, instead from the internal non-volatile

Dec. 10, 2009

memory, e.g. flash memory. However, according to the sec-
ond aspect, it remains a problem to provide a boot process that
facilitates operation in a service mode irrespective of the
hardware configuration.

SUMMARY

[0007] According to the first aspect, disclosed is a method
for booting a processing device, the processing device com-
prising a first and a second processing unit, the method com-
prising:

[0008] detecting by the first processing unit, whether at
least one boot configuration parameter is accessible
from a non-volatile storage medium of the processing
device, the at least one configuration parameter being
indicative of a boot interface;

[0009] if said at least one configuration parameter is
available, forwarding at least a part of the detected at
least one configuration parameter by the first processing
unit to the second processing unit; otherwise detecting
by at least one of the first and second processing units
whether a boot interface is available to the processing
device;

[0010] booting at least the second processing unit from
the indicated or detected boot interface.

[0011] Consequently, the above boot process may be per-
formed independently ofwhether the processing device boots
in a normal configuration, i.e. using both its processing units
or in a bridge configuration in which only one of the process-
ing units is used, thereby providing a general-purpose start-up
or boot procedure for the multi-processor device.
[0012] In particular, embodiments of the boot process
described herein do not require the presence of a flash
memory, and may thus be used in processing devices operated
in different hardware configurations.
[0013] Furthermore, embodiments of the boot process
described herein do not require a pure hardware-implicit
bridge configuration, i.e. an entirely hardware-based detec-
tion of a bridge configuration based on which interfaces are
connected, since bridge interfaces such as USB may also be
used also for other non-bridge purposes.
[0014] For a manufacturer of a mobile platform it is an
interesting advantage to be able to produce a general purpose
platform including a single boot program that can boot irre-
spective of the specific hardware and software configuration
it may be chosen to be operated in. For example, it is an
advantage of the boot process described herein that it allows
provision of a low cost mobile platform for use in smart
phones or in modem products such as USB plugs etc., where
the platform is bootable even without any large non-volatile
memory like a flash memory.
[0015] The detected or indicated boot interface may be an
internal interface, i.e. an interface to another module/unit
included in the processing device, or an external interface, i.e.
an interface for connecting to an external device. Examples of
an internal interface include an interface to a non-volatile

memory included in the processing device. Accordingly, the
external CPU is external to the chip/chipset/integrated circuit
board of the mobile platform. The external CPU may be a
CPU in the same processing device, e.g. a CPU on a separate
integrated circuit board, or it may be a CPU of a separate
device different from the processing device that includes the
mobile platform.
[0016] In one embodiment detecting whether one or more
boot configuration parameters are accessible from a non-

US 2009/0307478 A1

volatile storage medium of the processing device includes
detecting whether the processing device includes a non-vola-
tile memory for storing configuration parameters, and if the
processing device includes a non-volatile memory for storing
configuration parameters, detecting whether the detected
non-volatile memory has stored thereon a data file including
the one or more configuration parameters. Examples of con-
figuration parameters may include security parameters such
as software version information, a customer ID, platform
hardware configuration parameters, such as a bridge/non-
bridge flag, a bridge interface identification, and/or the like.

[0017] Since the boot polling order of the boot procedure
initially attempts to find bridge configuration information in
the non-volatile platform storage when such memory is avail-
able and the platform is suitably customized, the boot proce-
dure described herein works particularly efficiently in con-
figurations with non-volatile storage on the mobile platform
system. This is advantageous, since such configurations are
typically used for mass market products with stringent start-
up performance requirements. Nevertheless, since in the
absence of stored bridge configuration information, the pro-
cess polls possible external interfaces to detect whether any
bridge configuration information is available from any of
these interfaces, the boot process can also be performed in
other “flash-less” configurations.
[0018] In one embodiment booting at least the second pro-
cessing unit from the indicated or detected boot interface
includes receiving boot software from the identified or
detected boot interface, i.e. software for performing at least a
part of the boot process. When receiving the boot software
further comprises performing a security check of the boot
software by at least one of the first and second processing
units before execution of the received boot software, an
increased security is provided against attempts to boot the
system with unauthorised software or by an unauthorised
user. For example, the security check may include a verifica-
tion of the authenticity and/or the integrity of the boot soft-
ware and/or the authenticity and/or authorisation of the pro-
vider ofthe boot software, or the like. The security check may
include a cryptographic verification process, e.g. a private
and/or public key based cryptographic verification process.

[0019] In one embodiment, performing the security check
is performed by one of the first and second processing units
functioning as a security root for software verification during
booting. In one embodiment, the method comprises reading,
by the processing unit functioning as a security root security
information, wherein the security information is stored pro-
tected, e.g. cryptographically protected, in a non-volatile stor-
age medium of the system. Consequently, the most security
sensitive functions are confined to one ofthe processing units,
thereby further reducing the risk of malicious attacks.

[0020] In one embodiment the method comprises perform-
ing, by the first processing unit, a sequence of protocol inter-
actions of a predetermined boot sequence, where only a sub-
set of the protocol interactions is conditioned on said
detection whether the one or more configuration parameters
are available. Examples of protocol interactions include the
exchange of messages, requests, responses, etc., with the
second processing unit and/or a storage medium and/or exter-
nal interfaces. In one embodiment the subset includes less

than 5 interactions. Accordingly, when the boot process is
constructed such that in the different configurations the
respective sequences of interactions only differ from each
other in one or a few interactions, a compact boot software

Dec. 10, 2009

may be provided that is applicable irrespective of the hard-
ware configuration. Hence, the boot processes, even though
generic, does not require large amounts of memory in the
device, and is cost-effective to maintain and install.

[0021] According to the second aspect, disclosed is a
method for booting a processing device, the processing
device comprising a first and a second processing unit, the
processing device being selectably bootable in one ofa stand-
alone configuration and a bridge configuration; wherein, in
the stand-alone configuration, the first and the second pro-
cessing units are initialised to be operational, and wherein, in
the bridge configuration, only the second processing unit is
initialised to be operational and initialised to be in operational
connection with an external processing unit via a communi-
cations interface; the method comprising:

[0022] detecting whether the processing device is to be
booted in the stand-alone or in the bridge configuration;

[0023] if the processing device is to be booted in the
bridge configuration, receiving a boot mode indication
from the external processing unit via the communica-
tions interface, the boot mode indication being indica-
tive ofwhether the processing device is to be booted in a
service mode, in which the processing device is config-
ured to load software from the external processing unit
into a non-volatile memory of the processing device;

[0024] responsive to the received boot mode indication
booting the processing device in said service mode.

[0025] Hence, it is an advantage of embodiments of the
boot process described herein that it allows booting a plat-
form device both for normal operation and in a service mode,
irrespective ofwhether the device is operated in a stand-alone
configuration or in a bridge configuration.
[0026] For example, in a mobile platform USB bridge solu-
tion, i.e. a mobile platform that uses USB as communications
interface between the mobile platform access CPU and an
external CPU system, the boot process described herein
allows the external system to indicate whether to boot the
platform in a service boot mode or a normal boot mode,
without requiring a service pin or other hardware configura-
tion, since an USB connection typically would not provide a
connection of the service pin to the external system. Embodi-
ments of the boot process described herein thus provide a
generic boot procedure also for “flashless” bridge configura-
tions and configurations without service pin service indica-
tion. Nevertheless embodiments of the process may facilitate
that the service mode may be indicated by a hardware con-
figuration such as a by setting a pin connected to one of the
CPUs or by a protocol interaction with an external system.
[0027] It is a further advantage of the boot process
described herein that it provides a generic boot process that
can work efficiently, e. g. without unnecessary start-up delays,
even for non-bridge and/or flash configurations.
[0028] In one embodiment, the method further comprises
receiving, if the processing device is to be booted in the
stand-alone mode, a boot mode indication via a user-interface
of the processing device, the boot mode indication being
indicative of whether the processing device is to be booted in
the service mode. Consequently, the boot process also allows
for an indication of a service mode by a user via a user
interface of the device. For example, this indication may be
provided by a service pin of one of the processing units.
[0029] In some embodiments, the processing device is a
communications device for providing at least one commum-
cations service, wherein the first processing unit is an appli-

US 2009/0307478 A1

cation central processing unit adapted to execute at least one
application software component for providing functionality
different from the communications service, and wherein the
second processing unit is a communications central process-
ing unit adapted to control the communications service. For
example, the processing device may be a platform circuit for
one or more mobile communications products, wherein the at
least one communications service includes a cellular tele-

communications service. Nevertheless, it will be appreciated
that the method may also be applied to other types ofprocess-
ing devices.
[003 0] In one embodiment, each of the first and second
processing units includes a corresponding read-only-memory
having stored thereon boot code for controlling at least a part
of the booting of the corresponding processing unit. Hence,
the boot procedure is controlled at least in part by ROM-based
code on both processing units. In addition to the boot code
stored in the ROM, the boot process is controlled at least in
part by boot software stored in writable memory ofthe device
or loaded from an external system via a bridge interface.
Hence, at least a part of the boot software may be altered,
thereby facilitating maintenance of the device.
[0031] When the method comprises communicating boot
information between the first and second processing units by
means of a predetermined boot protocol, an efficient boot
procedure for a multi-CPU architecture, e.g. a 2-CPU archi-
tecture is provided.
[0032] It is noted that the features ofthe methods described
above and in the following may be implemented in software
and carried out on a data processing device or other process-
ing means caused by the execution of program code means
such as computer-executable instructions. Here and in the
following, the term processing means comprises any circuit
and/or device suitably adapted to perform the above func-
tions. In particular, the above term comprises general- or
special-purpose programmable microprocessors, Digital Sig-
nal Processors (DSP), Application Specific Integrated Cir-
cuits (ASIC), Programmable Logic Arrays (PLA), Field Pro-
grammable Gate Arrays (FPGA), special purpose electronic
circuits, etc., or a combination thereof.

[0033] For example, the program code means may be
loaded in a memory, such as a RAM (Random Access
Memory), from a storage medium, such as a read-only
memory (ROM) or other non-volatile memory, such as flash
memory, or from another device via a suitable data interface,
the described features may be implemented by hardwired
circuitry instead of software or in combination with software.
[0034] The present invention relates to different aspects
including the method described above and in the following,
corresponding devices, and computer programs, each yield-
ing one or more of the benefits and advantages described in
connection with the above-mentioned methods, and each
having one or more embodiments corresponding to the
embodiments described in connection with the above-men-
tioned methods.

[0035] In particular, according to one aspect, a processing
device comprising a first and a second processing unit is
suitably configured to perform the steps of the method
described above and in the following.
[0036] For the purpose ofthe present description, the terms
processing device and electronic device comprise any por-
table radio communications equipment and other handheld or
portable devices and/or components such as integrated circuit
boards thereof. The term portable radio communications

Dec. 10, 2009

equipment includes all equipment such as mobile telephones,
pagers, communicators, i.e. electronic organisers, smart
phones, personal digital assistants (PDAs), handheld comput-
ers, media players, such as mp3 players, digital cameras or
other recording devices, embedded devices in the automotive
industry, medical devices, or the like.
[0037] According to another aspect, a computer program
product comprises computer-executable instructions adapted
to cause, when executed on a processing device comprising a
first and a second processing unit, the processing device to
perform the method described above and in the following. In
some embodiments, the computer program product is embod-
ied as a computer-readable medium, such as a read-only-
memory or a re-writable non-volatile memory, having stored
thereon the computer-executable instructions.
[0038] For the purpose of the present description, the terms
storage means/device and computer-readable medium are
intended to comprise any suitable storage medium, device or
circuit, e.g. a read-only-memory (ROM), a random access
memory (RAM), a flash memory, an Erasable Programmable
Read-Only Memory (EPROM), volatile or non-volatile
memory, an optical storage device, a magnetic storage device,
a diskette, a CD, a hard disk, or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] The above and other aspects will be apparent and
elucidated from the embodiments described in the following
with reference to the drawing in which:
[0040] FIG. 1 shows a schematic block diagram ofa mobile
platform including two CPUs.
[0041] FIG. 2 shows a schematic block diagram ofa mobile
platform including two CPUs in a bridge configuration.
[0042] FIG. 3 shows a schematic block diagram ofa mobile
platform including two CPUs in a non-bridge configuration.
[0043] FIGS. 4a-e show a flow diagram ofan example ofa
boot process for a mobile platform.

DETAILED DESCRIPTION

[0044] FIG. 1 shows a schematic block diagram ofa mobile
platform system including two CPUs.
[0045] The mobile platform system, generally designated
100, includes two subsystems: an access subsystem 101 and
an application subsystem 102. The access subsystem includes
an access CPU 110 while the application subsystem 102
includes an application CPU 120. For example, the mobile
platform system 100 may be an integrated circuit/chipset for
use in a mobile terminal or other communications equipment.
The 2-CPU architecture of the mobile platform system 100
thus facilitates a functional split between the access sub-
system and the application subsystem. For example, the
access subsystem 101 may be configured to handle one or
more standardised communications protocols and/or other
functionality that require real-time control in which meeting
deadlines in a timely fashion is important. The application
subsystem 102 on the other hand may be configured to handle
end—user functionality and/or other functionality not requir—
ing real-time control.
[0046] Various interfaces may be part of the application
subsystem and the access subsystem, respectively. For
example, the application interface may provide one or more
interfaces such as, a display interface 121, a camera interface
122, an audio (e.g. microphone and/or loudspeaker) interface
199, and/or further interfaces (not explicitly shown) such as a

US 2009/0307478 A1

keyboard interface, a smart card interface, a memory stick
interface, and/or the like. The application subsystem is further
shown to include a graphics accelerator 181.
[0047] Similarly, the access subsystem 101 may include
communications circuitry 112, e.g. GSM a GSM/GPRS mod-
ule 161, a GSM cipher block 162, a GPRS cipher block 163,
a WCDMA module 164, and a WCDMA cipher block 165, a
digital signal processor (DSP) 166, and/or the like, and pro-
vide one or more further communications interfaces 182,
such as an infrared data association (IrDA) interface, an uni-
versal serial bus (USB) interface, a Bluetooth interface, a
universal asynchronous receiver/transmitter (UART) inter-
face, a serial peripheral interface (SPI), an inter-integrated
circuit interface (IZC), and/or the like. The access subsystem
further include a One-Time-Programmable memory (OTP)
167, e. g. for storing a chip-unique identifier and/or other
parameters. The access subsystem may further provide an
interface 168 to a Universal Integrated Circuit Card (UICC),
such as a SIM card, a USIM card, or the like.

[0048] The access subsystem may further include security
modules, such as a platform integrity module 169 for provid-
ing platform code and data integrity checks, a crypto accel-
erator block 170 for providing eflicient computation of cryp-
tographic values, such as key generation, message
authentication, etc., a random number generator 171 for use
in e.g. key generation, and/or the like.

[0049] Each of the access subsystem 101 and the applica-
tion subsystem 102 includes a ROM 103 and 104, respec-
tively, each including corresponding boot code 105 and 106,
respectively. The boot code in the respective ROMs is adapted
to perform at least an initial part of the boot process, e. g. the
boot process until the boot software from the internal memory
or the external system is loaded. Furthermore, the boot code
stored in ROM 103 of the access subsystem 101 provides the
platform security root functionality. In a mobile terminal with
an access subsystem and an application subsystem where the
application subsystem may be disabled when configured in a
bridge configuration, it is an advantage that the access sub-
system functions as a security root, since the access sub-
system is always available regardless of the chosen configu-
ration.

[0050] Each of the access subsystem 101 and the applica-
tion subsystem 102 further includes Instruction and Data
Tightly Coupled Memories (ITCM/DTCM) 173 and 174,
respectively. The ITCM is on-chip memory into which an
initial part ofthe boot code is loaded. Furthermore, each ofthe
access subsystem 101 and the application subsystem 102 is
shown with a service pin 183 and 184, respectively. In each
subsystem, the respective components are interconnected via
at least one suitable bus 185 and 186, respectively, e.g. a high
speed bus or a high speed bus and a peripheral bus, and/or the
like. The access subsystem and the application subsystem
communicate with each other via a suitable interface 113,
such as a communications interface between the access and

application CPU, e.g. a serial link, one or more shared memo-
ries, and/or the like.

[0051] The mobile platform system 100 may include one or
more memory controllers for controlling access to one or
more internal memories. In the example ofFIG. 1, the mobile
platform includes a memory controller 105 for controlling a
common random access memory (RAM) 150 shared by the
access and application subsystems. Hence, the memory con-
troller 105 functions as memory arbiter which is configured
by the access subsystem. For example, the memory controller

Dec. 10, 2009

may be configured such that respective memory regions are
access-protected from the application system, i.e. the control-
ler can prevent access from the application system to certain
memory regions that belong to the access system. Altema-
tively or additionally, the platform system may include sepa-
rate RAMs for the respective subsystems. Similarly, the
mobile platform includes a static memory controller 106 for
controlling one or more non-volatile memories, e.g. a flash
memory such as NAND flash memory and/or a NOR flash
memory, and a corresponding static memory controller 106,
in FIG. 1 shown connected to the application subsystem. For
example, during operation ofthe mobile platform system in a
stand-alone configuration, software for the access subsystem
101 and the application subsystem 102 may be loaded from a
flash memory connected to static memory controller 106 to
the RAM 150. For the purpose of the present description, it
will be assumed that the memory/memories is/are accessed
from the application CPU. However, as will be discussed
below, the boot procedure described herein is also applicable
for a mobile platform system that does not include non—
volatile memory. The application subsystem of FIG. 1 is
further shown to include a further memory controller 180.

[0052] The access subsystem and the application sub-
system may be implemented on the same chip or as separate
chip sets interconnected via a suitable interface. While the
access and application CPUs are always present, in some
configurations a further, external CPU may be connected to
the system as described herein. It will further be understood
that alternative implementations of a mobile platform system
may include additional and/or alternative components.
Examples of such mobile platform systems are disclosed in
international patent application WO 2005/041601.

[0053] As will be described in greater detail below, the boot
code is either loaded from an external interface, i.e. in the
bridge or service mode case, or from flash memory included
in the platform system, e.g. flash memory attached to e.g.
interface 106 or 180 in FIG. 1. Irrespectively of whether the
boot code is loaded from an external or an internal interface,
the initial boot code to be loaded is stored on the ITCMs ofthe

respective CPUs.

[0054] FIG. 2 shows a schematic block diagram of the
mobile platform 100 described in connection with FIG. 1 in a
bridge configuration. The mobile platform system 100 is
shown connected to an external system 230, including an
external CPU 231, via one of the interfaces 182 of the plat-
form system, e.g. via a USB interface. The external system
230 in FIG. 2 is further shown to include a graphics accelera-
tor module 280 providing a camera interface 222 and a dis-
play interface 221, as well as a memory controller 205 for
controlling access to a RAM 250 and a flash memory 251. The
external system of FIG. 2 further includes an audio interface
299. The external system 230 may also be used to boot the
mobile platform in service mode so as to perform an external
load. It will be appreciated that the external system may
include alternative and/or additional components.

[0055] In the system of FIG. 2, the mobile platform itself
does not include a flash memory and may thus be referred to
as a flash-less bridge configuration in which the mobile plat-
form system is booted via the bridge interface 182. In the
configuration of FIG. 2, the application CPU 120 may be
disabled during the boot process as described herein, since
during normal operation and after completion of the boot
process, the external CPU 231 performs the flmctions of the
application system.

US 2009/0307478 A1

[0056] FIG. 3 shows a schematic block diagram of the
mobile platform of FIG. 1 when configured in a non-bridge
configuration. The mobile platform 100 is identical to the
platform shown in FIG. 1, but includes an additional RAM
350 and a flash memory 351. The flash memory 351 may thus
include boot configuration information and/or security con-
figuration information for use by the mobile platform during
the boot process. When the contents of the flash memory are
integrity protected, the security of the system is increased. In
some embodiments, all the memories included in or con-
nected to the mobile platform system (such as the RAM 150,
the RAM 350, the flash memory 351, the ITCM/DTCM 173
and 174) are integrity protected.
[0057] In the following an embodiment ofa boot procedure
for a mobile platform system as described above will be
described in greater detail with reference to FIGS. 4a-e. In
one embodiment of the boot procedure which is applicable
irrespective of the hardware configuration, the access CPU
determines from which interface or memory to read the boot
software and the application CPU determines or receives
information from the access CPU whether to read the boot

software from an interface or internal memory. For the pur-
pose of the present description, it will be assumed that if the
mobile platform includes a non-volatile memory this memory
is accessible by the access CPU, thus providing a particularly
low-complex solution. However, it will be appreciated that
the method may be modified so as to cover implementations
where the non-volatile memory is accessible via the applica-
tion CPU.

[0058] FIGS. 4a-e show a flow diagram ofan example ofa
boot process for a mobile platform.
[0059] The embodiment of a boot process for a 2-CPU
mobile platform system shown in FIG. 4 involves at least the
access CPU 110 and the application CPU 120 of the mobile
platform. The boot process may further involve an external
CPU 231 when the mobile platform system is booted in a
bridge configuration or another external computational entity
340, such as a PC, functioning as a service device when the
mobile platform system is booted in service mode.
[0060] In particular, FIGS. 411-!) show the steps performed
by the access CPU 110 and the PC 340, while FIGS. 4c-d
show the steps performed by the application CPU 120 and the
external CPU 231, and FIG. 46 shows an overview over the
entire boot process. Horizontal lines indicate messages/sig-
nals communicated between the access CPU 110, the appli-
cation CPU 120, the external CPU 231, and the service device
340, respectively.
[0061] The access and application CPUs 101 and 102
reside on the mobile platform, while the external CPU 231 is
comprised in an external system, e.g. an external device, and
external chip set, or the like, and connected to the platform
system in a bridge configuration. When the platform system is
not booted in a bridge configuration, the external CPU 231 is
not present and mobile platform system does not receive any
message from the external CPU. In case of a non-bridge
configuration and when the mobile platform system is booted
in a so—called “service mode”, the mobile platform system
loads the boot software from another external entity 340, e.g.
a PC. When the system is not booted in service mode, but e.g.
in a normal operation mode, the service device 340 is not
present.

[0062] The boot process of FIG. 4 is initiated by a reset
signal 1 received by the access CPU 110 and the application
CPU 120, causing the access CPU at step 2a and the applica-

Dec. 10, 2009

tion CPU at step 2b to perform a platform reset, including
power on, an initial synchronisation as indicated by synchro-
nisation, and/or the like. If the mobile platform system is
booted in a bridge configuration, the reset signal 1 may come
from the external system 23 1 that typically will boot first. The
trigger signal 1 may be forwarded to trigger further systems.
Furthermore, the access CPU at step 2a and the application
CPU at step 2b perform an initialization of hardware blocks
and a potential initialisation and checking ofthe internal CPU
communication with a handshake as indicated by horizontal
lines 402 and 403.

[0063] In some implementations the application CPU 120
may be configured to detect any bridge interface using hard-
ware settings. For example, the application CPU may check
the signals on some external pins. The signals may be con-
figured to allow the application CPU to read configuration
information. If this is the case, the application CPU detects
the bridge interface at step 3. Alternatively, the access CPU
may perform this detection (this option is not shown in FIG.
4).
[0064] In step 4, the application CPU 120 detects whether
bridge configuration information is available on non-volatile
storage connected to the application CPU 120. For example,
in a configuration where the mobile platform system includes
a flash memory, such configuration information may be
stored in a configuration file of the flash memory.

[0065] If the application CPU 120 has detected a bridge
interface in step 3 or found bridge information in step 4, the
application CPU forwards the relevant information to the
access CPU 110 via message 5. However, as mentioned
above, in some configurations the mobile platform system
may not include a non-volatile memory, or the memory may
not include configuration information. In this case the appli-
cation CPU will not be able to obtain this information in step
4, and it may inform the access CPU via message 5 accord-
ingly, thus causing the access CPU to initiate an interface
polling sequence as described below.
[0066] In steps 6a and 6b, the access CPU 110 and the
application CPU 120 each read the service PIN status, i.e.
detect whether a service pin connected to the respective CPUs
is set. In steps 7a and 7b, the access CPU 110 and the appli-
cation CPU 120, respectively, determine the mode of opera-
tion (service/non service), and proceed accordingly. If the
service pin indicates service mode, the access CPU continues
at step 8, while the application CPU awaits a message/signal
from the access CPU. Otherwise, i.e. if service mode is not
detected, the access CPU proceeds at step 9 and the applica-
tion CPU proceeds at step 10.
[0067] In step 8, i.e. if service mode was detected at step 6a,
the access CPU 110 checks whether any of the potential
external service mode boot interfaces (USB, UART, etc.) are
connected to an external system 340. For example, the access
CPU may check all its applicable interfaces in a predeter-
mined polling order. If any interface is connected, this inter-
face is selected. The entity connected to the interface may be
an external CPU 231, i.e. the mobile platform system may be
booted in a bridge configuration in service mode, or the entity
connected to the detected interface may be a different com-
putational entity 340. Accordingly, the access CPU proceeds
at step 18 and determines whether it is the external CPU that
is connected to the service interface.

[0068] In step 9 the access CPU 110 determines whether
the access CPU 110 has received bridge configuration infor-
mation in step 5, i.e. information as to whether a bridge

US 2009/0307478 A1

configuration applies and on which interface. If the access
CPU has received information indicating a bridge interface,
the access CPU continues at step 11 and switches to the
detected bridge interface. Otherwise, the access CPU contin-
ues at step 12 and checks whether an external CPU is con-
nected to one of the applicable external bridge boot interfaces
of the access CPU (e.g. USB, UART, MSL, SPI, and/or the
like). If an external CPU is connected to any ofthe interfaces,
the access CPU selects the detected interface; otherwise the
boot interface is determined to be an internal interface to a

non-volatile memory of the mobile platform system. The
access CPU sends a request 14 for operation mode informa-
tion (e.g. service/normal) to the external CPU. If the access
code does not detect any connected interface at step 12 the
sequence is false and it goes for reset.
[0069] Similarly, the application CPU determines in step
10 whether a bridge configuration was detected in step 3 or
step 4. If a bridge configuration was detected, the application
CPU awaits a configuration acknowledgement message 16
from the access CPU; otherwise, the application CPU awaits
a message 25 from the access CPU as described below.
[0070] In case of a bridge configuration where an external
CPU 231 is present, the external CPU 231 detects in step 13
whether the mobile platform system is to be booted in service
mode. For example, the external CPU may receive a user
command/input and initiate a boot of the mobile terminal
platform in service mode in response to the user command/
input.
[0071] Upon receipt of the request 14 for service mode
information from the access CPU, the external CPU deter-
mines that the access CPU is ready for exchanging data. The
external CPU then sends service/normal mode information
15 to the access CPU. If the access CPU fails to receive this

information, the access CPU determines that an unknown
configuration applies and aborts the boot process.
[0072] If the bridge configuration was detected by the
application CPU, the access CPU sends, upon receipt of the
service/normal mode information 15, a configuration
acknowledgement 16 to the application CPU confirming the
service mode detection. In response to the configuration
acknowledgement 16, the application CPU sends a request 17
for service mode status to the access CPU.

[0073] After exchanging messages 14 and 15 and, if appli-
cable, messages 16 and 17, the access CPU continues at step
19.

[0074] At step 18, the access CPU determines whether the
service interface detected in step 8 is the same as the bridge
interface, i.e. whether the connected external interface
detected in step 8 is connected to the external CPU in a bridge
configuration. If this is the case, the access CPU proceeds by
sending a service mode request 20b to the external CPU 231;
otherwise the access CPU sends a service mode request to the
service device 340. It will be appreciated that the distinction
between the requests 20a and 20b in FIG. 4 is mainly for
diagram consistency reasons, as the access CPU merely sends
the service mode request to the service interface that was
detected in step 8.
[0075] At step 19, the access CPU determines whether the
mode indication 15 from the external CPU indicates opera-
tion in service mode. If this is the case, the access CPU
continues by sending a service mode request 20b to the exter-
nal CPU 231 as described above; otherwise, if a bridge con-
figuration was detected, the access CPU sends a bridge con-
figuration message 23 to the external CPU; otherwise, the

Dec. 10, 2009

access CPU directly sends a configuration acknowledgement
message 25 to the application CPU.
[0076] Hence, the access CPU sends the service mode start
request 20a or 20b, respectively, to the respective external
system, i.e. the service device 340 or the external CPU 231
when in bridge configuration. The service mode start request
is a request for preparing the system for boot over the external
interface. For the purpose ofthe example shown in FIG. 4, the
service mode in bridge configuration is thus assumed to be
performed via the bridge interface and not over any of the
other possible interfaces ofthe access subsystem. However, it
will be appreciated that the boot sequence may readily be
extended to cover also the latter case, e.g. by performing step
8 at this stage, i.e. after the detection of the bridge interface.

[0077] In steps 21a and 21b, respectively, the access CPU
determines whether a cable or other connection was detected

on any of the interfaces or whether a time-out occurred. If no
cable was detected or if a time-out occurred, the access CPU
aborts the service mode process and proceeds in normal mode
instead, i.e. by sending the bridge configuration message 23
to the external CPU.

[0078] Otherwise, the external system, i.e. the service 340
or the external CPU 231 as the case may be, acknowledges the
service mode start request via messages 2211 or 2219, respec-
tively. Upon receipt ofthis acknowledgment, the access CPU
continues by sending message 23 to the external CPU or
message 25 to the application CPU, depending on whether a
bridge configuration was detected or not.

[0079] If a bridge configuration has been detected, the
access CPU 110 sends a bridge configuration message 23 to
the external CPU 231. The message 23 may also include
information on whether a fallback to normal mode was done

or not, e.g. in step 21a, b, respectively.

[0080] Upon receipt of the bridge configuration message
23, the external CPU 231 returns an acknowledgment 24
together with configuration information from the external
CPU, such as flashless or flash configuration information,

[0081] Subsequently, the access CPU sends a message 25 to
the application CPU 120: If service mode request 17 was
received by the access CPU, i.e. ifa bridge configuration was
detected, the message 25 includes a response with service
mode information. In this case, the message 25 may include
the service mode information that the access CPU received

from the external CPU in message 15. If no bridge configu—
ration was detected, the message 25 includes a configuration
acknowledgement message to the application CPU instead.

[0082] In response to message 25, the application CPU 120
returns message 26 so as to signal that the application CPU is
ready to start the security checks and then the software boot
loading process.

[0083] In response to message 26, the access CPU
acknowledges in message 27 the ready to start.

[0084] The following steps of the boot sequence depend on
whether the boot process is performed with non-volatile
memory on the mobile platform system. Accordingly, in step
28 the external CPU 231 determines whether the external

CPU 231 is configured for a boot with non-volatile storage on
the mobile platform system. If this is the case the external
CPU continues the boot process of its own system indepen-
dently from the mobile platform system from this point until
both systems are up and running. Otherwise the external CPU
231 awaits a message 39 from the access CPU indicating that
the access CPU is ready for performing security checks.

US 2009/0307478 A1

[0085] Similarly, in step 29, the access CPU determines
whether a bridge interface has been detected (in step 12) but
no non-volatile storage on the platform has been found, e.g. in
the case ofa flashless bridge configuration or in the case ofan
uncustomized flash. If this is the case, the access CPU
switches to the bridge interface in step 38.
[0086] Otherwise the access CPU proceeds at step 31,
where the access CPU 110 invokes a number of security
checking routines. In one embodiment, the security checking
routines include a check of the platform security configura-
tion and a check of the software loading.
[0087] At subsequent step 33, the access CPU reads secu-
rity hardware settings, if applicable, i.e. if such security hard-
ware settings are present as part of a given implementation of
the mobile terminal platform. Examples of such security
hardware settings include One-Time-Programmable
Memory, e-fuse registers etc. These settings may be used to
verify security configuration and software to be loaded.
[0088] Similarly, in response to the ready signal 24, the
application CPU 120 invokes in step 30 a corresponding
number of security checking routines. In one embodiment,
the security checking routines include a check ofthe platform
security configuration and a check of the software loading.
[0089] In step 32, the application CPU reads security con-
figuration parameters from the non-volatile storage medium.
Ifno memory or parameters are detected, the application CPU
saves this state information in a suitable internal memory
such as a RAM.

[0090] The application sends the security configuration
information 34 obtained at step 32 to the access CPU. If the
application CPU has not found any configuration, the appli-
cation CPU informs the access CPU about this fact.

[0091] If there is no non-volatile memory on the platform
(as determined in step 29), the access CPU may simply dis-
regard the security configuration information received from
the application CPU, as indicated by step 35.
[0092] In step 36, the access CPU checks the received secu-
rity configuration information. For example the check may
include an integrity check of the received security configura-
tion. After successful completion of the security check, the
access CPU returns an acknowledgment 37 of the receipt of
the security configuration information to the application
CPU, and the access CPU proceeds at step 47.
[0093] In step 47, the access CPU continues with the boot
process from the detected (internal or external) interface. The
boot process may include the downloading ofsoftware via the
detected interface, the security (e.g. integrity) checking ofthe
downloaded software, and execution of the software.

[0094] As described above, ifthe access CPU in step 29 has
determined that a bridge interface has been detected (in step
12) but no non-volatile storage on the platform has been
found, e.g. in the case of a flashless bridge configuration or in
the case ofan uncustomized flash, the access CPU switches to
the detected bridge interface in step 38.
[0095] Subsequently, the access CPU sends a signal 39 to
the external CPU 231 via the bridge interface indicating that
it is ready to start the security checks and then the software
boot loading process.
[0096] The external CPU 231 returns an acknowledgement
40 of the ready to start signal 39.
[0097] In subsequent step 41, the access CPU invokes the
security checking routines, e.g. platform security configura-
tion checking and software load checking. In step 42, the
access CPU reads security hardware settings, if applicable,

Dec. 10, 2009

i.e. if such security hardware settings are present as part of a
given implementation of the mobile terminal platform.
Examples of such security hardware settings include One-
Time-Programmable Memory, e-fuse registers etc. These set-
tings may be used to verify security configuration and soft-
ware to be loaded.

[0098] In step 43, the external CPU 231 reads security
configuration parameters from a non-volatile storage medium
connected to the external CPU. If no memory or parameters
are detected, the external CPU saves this state information in
a suitable internal memory such as a RAM.
[0099] Subsequently, the external CPU sends the security
configuration parameters 44 obtained at step 43 to the access
CPU. If no configuration has been found, the external CPU
informs the access CPU about this fact.

[0100] In step 45, the access CPU checks the received secu-
rity configuration information 44, e. g. including integrity
checking and/or the like of the received information. Subse-
quently, the access CPU returns an acknowledgement 46 of
the receipt of the security configuration information to the
external CPU.

[0101] Subsequently, the access CPU continues at step 47
with the boot process as described above.
[0102] Similarly, in step 48 the application CPU continues
with the boot from the detected interface or memory. For
example, at this stage, if no flash configuration has been
found, the application CPU may wait for the next message
from the access CPU. On the other hand, if a flash configu-
ration has been found, the application CPU may continue to
boot from the flash memory. Ifa bridge configuration applies,
the application CPU continues the boot over the internal
interface and the first code to be executed will typically shut
down the application system, as the application is typically
not needed in the bridge configuration where the external
CPU plays the role of the application CPU.
[0103] In summary, described above is an embodiment ofa
boot procedure for a two-CPU architecture controlled by
ROM-based code on both CPU systems. The first CPU
(which may be an application CPU of a mobile platform
system) acts as a master CPU in the boot process and the boot
process includes three main steps:

[0104] The first CPU detects possible boot configuration
parameters (hardware and software) on a dedicated con-
figuration file stored in non-volatile memory and propa-
gates this information to the second CPU (which may be
an access CPU of a mobile platform system.)

[0105] Ifboot configuration was found, the second CPU
uses this information to boot from the correct boot inter-

face. If no information was found by the first CPU, the
second CPU searches for a connected boot interface.

[0106] Finally, the boot is continued by loading boot
software from the detected boot interface and the boot

software is security checked by one of the CPUs before
the boot software is allowed to be executed. The security
check may be based on security checking configuration
information stored protected in and read at boot time
from a non—volatile memory, e.g. the memory that also
contains the boot configuration information.

[0107] Hence, the above boot process accounts for the dif-
ferent possible boot scenarios including non-bridge configu-
rations, bridge configurations, service mode (i.e. for software
flashing), and normal operation mode, by means of a boot
interface detection procedure, e.g. as described in connection
with FIG. 4. However, it will be appreciated that the boot

US 2009/0307478 A1

sequence of FIG. 4 can be modified, e.g. by modifying the
order of detection and/or the division of tasks between the

access and the application CPU. Furthermore, the boot pro-
cess may also be applied to an architecture with additional
CPUs.

[0108] In the above embodiment, the application CPU
functions as a master during the initial boot process, since the
application CPU generally is the CPU that has access to the
memory where configuration parameters may be found.
However, it will be appreciated that in alternative embodi-
ments, the access CPU may function as a master. Further-
more, in some embodiments, the access CPU may have
access to the memory including configuration parameters, if
any.

[0109] Accordingly, although some embodiments have
been described and shown in detail, the invention is not
restricted to them, but may also be embodied in other ways
within the scope ofthe subject matter defined in the following
claims. In particular, the boot process described herein has
mainly been described in the context of a mobile platform
system including an access CPU and an application CPU. It
will be appreciated, however, that the boot process may also
be applied to other systems, e.g. a 2-CPU mobile platform
system with a different functional split between the two
CPUs, or a multi-CPU processing system used for other
applications than mobile communications systems.
[0110] The method, product means, and device described
herein can be implemented by means ofhardware comprising
several distinct elements, and by means of a suitably pro-
grammed microprocessor. In the device claims enumerating
several means, several of these means can be embodied by
one and the same item of hardware, e.g. a suitably pro-
grammed microprocessor, one or more digital signal proces-
sor, or the like. The mere fact that certain measures are recited
in mutually different dependent claims or described in differ-
ent embodiments does not indicate that a combination of

these measures cannot be used to advantage.
[0111] It should be emphasized that the term “comprises/
comprising” when used in this specification is taken to
specify the presence of stated features, integers, steps or
components but does not preclude the presence or addition of
one or more other features, integers, steps, components or
groups thereof.

What is claimed is:

1-20. (canceled)
21. A method for booting a processing device having at

least a first and a second processing unit, the method com-
prising the steps of:

detecting by the first processing unit, whether at least one
boot configuration parameter is accessible from a non-
volatile storage medium of the processing device, the at
least one configuration parameter being indicative of a
boot interface;

if said at least one configuration parameter is available,
forwarding at least a part of the detected at least one
configuration parameter by the first processing unit to
the second processing unit, otherwise detecting by at
least one ofthe first and second processing units whether
a boot interface is available to the processing device; and

booting at least the second processing unit from the indi-
cated or detected boot interface.

22. The method of claim 21, wherein the step of detecting
whether one or more boot configuration parameters are acces-
sible from a non-volatile storage medium of the processing

Dec. 10, 2009

device further comprises the step of detecting whether the
processing device includes a non-volatile memory for storing
configuration parameters, and if the processing device
includes a non-volatile memory for storing configuration
parameters, detecting whether the detected non-volatile
memory has stored thereon a data file including the one or
more configuration parameters.

23. The method according to claim 21, wherein the step of
booting at least the second processing unit from the indicated
or detectedboot interface further comprises the step ofreceiv-
ing boot software from the identified or detected boot inter-
face.

24. The method according to claim 23, wherein the step of
receiving the boot software further comprises the step of
performing a security check of the boot software by at least
one of the first and second processing units before execution
of the received boot software.

25. The method according to claim 24, wherein the step of
performing the security check is performed by one ofthe first
and second processing units functioning as a security root for
software verification during booting.

26. The method according to claim 25, further comprising
the step of reading by the processing unit functioning as a
security root security information wherein the security infor-
mation is stored protected in a non-volatile storage medium of
the processing.

27. The method according to claim 21, further comprising
the step ofperforming, by the first processing unit, a sequence
of protocol interactions of a predetermined boot sequence,
where only a subset ofthe protocol interactions is conditioned
on said detection whether the one or more configuration
parameters are available.

28. The method according to claim 27, wherein the subset
includes less than 5 interactions.

29. The method according to claim 21, wherein the pro-
cessing device is selectably bootable in one of a stand-alone
configuration and a bridge configuration; wherein in the
stand-alone configuration the first and the second processing
units are initialized to be operational, and wherein in the
bridge configuration only the second processing unit is ini-
tialized to be operational and initialized to be in operational
connection with an external processing unit; the method fur-
ther comprising the steps of:

detecting whether the processing device is to be booted in
the standalone or in the bridge configuration;

if the processing device is to be booted in the bridge con-
figuration, receiving a boot mode indication from the
external processing unit, the boot mode indication being
indicative of whether the processing device is to be
booted in a service mode, in which the processing device
is configured to load software from the external process-
ing unit into a nonvolatile memory of the processing
device; and

responsive to the received boot mode indication booting
the processing device in said service mode.

30. A method for booting a processing device having a first
and a second processing unit, the processing device being
selectably bootable in one of a stand-alone configuration and
a bridge configuration; wherein, in the stand-alone configu-
ration, the first and the second processing units are initialized
to be operational, and wherein, in the bridge configuration,
only the second processing unit is initialised to be operational
and initialized to be in operational connection with an exter-

US 2009/0307478 A1

nal processing unit Via a communications interface, the
method comprising the steps of:

detecting whether the processing device is to be booted in
the standalone or in the bridge configuration;

if the processing device is to be booted in the bridge con-
figuration, receiving a boot mode indication from the
external processing unit Via the communications inter-
face, the boot mode indication being indicative of
whether the processing device is to be booted in a service
mode, in which the processing device is configured to
load software from the external processing unit into a
non-volatile memory of the processing device; and

responsive to the received boot mode indication booting
the processing device in said serVice mode.

31. The method according to claim 30, further comprising
the step of receiving, if the processing device is to be booted
in the stand-alone mode, a boot mode indication Via a user-
interface of the processing device, the boot mode indication
being indicative of whether the processing device is to be
booted in the service mode.

32. The method according to claim 30, wherein the pro-
cessing device is a communications device for providing at
least one communications service, wherein the first process-
ing unit is an application central processing unit adapted to
execute at least one application software component for pro-
viding functionality different from the communications ser-
vice, and wherein the second processing unit is a communi-
cations central processing unit adapted to control the
communications serVice.

33. The method according to claim 30, wherein the pro-
cessing device is a platform circuit for one or more mobile
communications products.

34. 14. The method according to claim 30, wherein each of
the first and second processing units includes a corresponding
read-only-memory having stored thereon boot code for con-
trolling booting of the corresponding processing unit.

35. The method according to claim 30, wherein the non-
volatile memory is a flash memory.

36. The method according to claim 30, further comprising
the step ofcommunicating boot information between the first
and second processing units by means of a predetermined
boot protocol.

Dec. 10, 2009

37. The method according to claim 36, wherein communi-
cating boot information includes performing a security veri-
fication of the communicated boot information.

38. A processing device, comprising:
at least a first and a second processing unit, the processing

device configured to detect by the first processing unit,
whether at least one boot configuration parameter is
accessible from a non-volatile storage medium of the
processing device, the at least one configuration param-
eter being indicative of a boot interface;

if said at least one configuration parameter is available,
forward at least a part of the detected at least one con-
figuration parameter by the first processing unit to the
second processing unit, otherwise detect by at least one
of the first and second processing units whether a boot
interface is available to the processing device; and

boot at least the second processing unit from the indicated
or detected boot interface.

39. A computer program product comprising computer-
executable program code embodied on a computer readable
medium and adapted to cause a processing device having a
first and a second processing unit to detect by the first pro-
cessing unit, whether at least one boot configuration param-
eter is accessible from a non-volatile storage medium of the
processing device, the at least one configuration parameter
being indicative ofa boot interface;

if said at least one configuration parameter is available,
forward at least a part of the detected at least one con-
figuration parameter by the first processing unit to the
second processing unit, otherwise detect by at least one
of the first and second processing units whether a boot
interface is available to the processing device; and

boot at least the second processing unit from the indicated
or detected boot interface when the program code means
are executed by the processing device.

40. A computer program product according to claim 39,
wherein the computer program product is embodied as a
read-only-memory having stored thereon the executable pro-
gram code means.

