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METHOD OF LOADING INFORMATION
INTO A SLAVE PROCESSOR IN A

MULTI-PROCESSOR SYSTEM USING AN
OPERATING-8Y8TEM—FRIENDI.Y BOOT

LOADER

BACKGROUND

This invention relates to initialization of electronic sys-

tems having multiple programmable processors.
The process of starting, or booting up, an electronic

system having a programmable processor connected to one
or more memory devices for storing program instructions, or
code, and data is not as simple as it might seem at first
glance. An important part of the reason for this is the need
for the processor to begin operation in a well-defined state.

The traditional ways of loading program code and data to
a bare system are either by “pushing” the code and data into
the system’s random-access memory (RAM) directly or by
using a bootloader. The bootloader, which is sometimes
called a boot loader or a bootstrap loader, is a set of
instructions (i.e., program code, sometimes called “boot
code”) that can be either “pushed” into the system’s RAM
or loaded into the RAM from a non—volatile memory, such

as read-only memory (ROM). In its execution by the pro—
cessor, the bootloader then “drags” in the rest of the code
and data and starts the system.

Examples of prior mechanisms for starting processor
systems, including bootloaders, are US. Pat. No. 5,652,886
to Tulpule et al. and U.5. Pat. No. 6,490,722 to Barton et al.
and U.S. Patent Application Publication No. US 2002/
0138156 Al to Wong et al. Barton et al., for example.
describes a two—stage bootloadcr in which the second stage
finds, verifies, and loads the operating system. In Wong et
at, a multiprocessor system uses a master processor coupled
to a ROM to transfer boot code to slave processors, with

memory controllers in the slave processors denying memory
access requests until the boot code has been transferred to
their RAMs.

As indicated by Barton et al. and Wong et al., for example,
starting up a multi—processor system, which can be generally
considered as having a master or host processor, i.c., the
system that orders the boot, and one or more slave or client
processors, i.e., the system to be booted, is even more
complicated than starting up a single-processor system.

Advantages of the “push” method are that it requires no
code to execute in the slave during boot and that the only

synchronization required is to hold the slave in a reset state
and release it when loading is finished. Nevertheless, the
“push” method works only when the memory or memories
of the slave are visible to the host. This visibility can be

implemented in several ways. For example, a memory may
be visible on the address and data busses ofboth the host and

the slave processors or direct memory access (DMA) trans-
fers may be allowed from the host’s memory or memories to
the slave‘s memory or memories.

When the slavc’s memory to be loaded is invisible to the
host, the “push” method cannot be used. In that situation.
some form ot‘bootloading must be used. As noted above, the
bootloader technique requires either that boot code can be
pushed onto the slave (which in this case is not possible) or
that the slave can load code from a non-volatile memory.
The bootloader then initiates a transfer of code from the host
to the slave and finishes loading the memory.

Mold-processor systems in which some or all ol‘ a slave’s
memory is not visible to a host are possible. in such systems,
it can be advantageous to take advantage ofwell—established
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software frameworks for loading and inter~processor com—
munication, which render traditional bootloaders undesir—
able. Moreover, a bootloader can conllict with the operating

system, which can be said to want to have control over the
entire system and all ol‘ the memory.

Among the problems faced when integrating a bootloader
with an operating system (OS) are ensuring that code that is
not yet loaded is not executed, efliciently loading code to a
memory or memories invisible to the host, and synchroniz—
ing with the host the loading and booting of the slavc(s).
Moreover, it is necessary to determine which portions of the
system must be loaded to memories visible to both host and
slave processors and how the binary image to be loaded
should be arranged for the bootloader to work together with
the OS. Another issue that can be important is the integration
of the hootloader and the 08, as an already established
framework for communication between host and slave then

can be used during loading. Such a framework typically
would include one or more primitives for communication
that rely on OS—features.

SUMMARY

This invention provides, in one aspect, a method of
loading program code into a slave processor in a multi—
processor system that includes a master processor and the
slave processor. The method includes the steps of resetting
the slave processor and holding the slave processor in a reset
state; pushing information into a first memory that is acces—
sible by the master and slave processors; booting the slave
processor; starting an operating system in the slave proces-
sor, including blocking scheduling of processes having
program code located in a second memory that is accessible
by the slave processor and inaccessible by the master
processor; reserving an intermediate storage area in the first
memory; sending to the master processor information about
a location and size of the intermediate storage area reserved;
based on the sent information, loading the intermediate

storage area with information to be loaded into the second
memory; sending a first message to the slave processor that
indicates the intermediate storage area has been loaded and
whether loading is finished or more inlbrmation is to be
loaded; copying information in the intermediate storage area
to the second memory; and sending a second message to the
master processor that indicates that information in the inter~
mediate storage area has been copied.

in another aspect of the invention, a multiprocessor
system includes a host processor, at least one client proces-
sor, a first random-access memory accessible by the host and
client processors. a second random-access memory acces—
sible by the client processor and not accessible by the host
processor, and a bootloader. The first memory includes an
intermediate storage area, and the bootloader includes a host
part and a client part. The host part is loadable into the first
random—access memory and has a first stage and a second
stage. The first stage resets and holds the client processor in
a reset stat‘ and pushes information into the first random-
access memory. The second stage is initiated by the client
part, loads the intermediate storage area with information to
be loaded to the second random—access memory, and sends

to the client part a first message indicating the intermediate
storage area is loaded, The client part is loadable into the
first random-access memory, starts an operating system

including an idle process and initially blocking scheduling
of all processes having program code located in the second
random-access memory, copies information loaded into the
intermediate storage area to the second random-access
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