
WWWMMWWI

United States Patent

 00000000
USOO7356680132

(12) (10) Patent N0.: US 7,356,680 B2
Svensson et a]. (45) Date of Patent: Apr. 8, 2008

(54) METHOD OF LOADING INFORMATION 6012142 A * 1/2000 Dokic et a1. 713/2
INTO A SLAVE PROCESSOR IN A 6.058,474 A 5/2000 Baltz et a1,

ggégkll‘i‘écifii‘r’é‘tfiiifihfii‘figéfi WW B1 8/2002 End-“6y
LOADER‘ ' ” “ 6,490,722 B1 12/2002 Barton et at.6,601,167 B1 7/2003 Gibson et al

(75) Inventors: Mats Svensson, Lund (SE); Peter 99634397 51 “3004 33/910131
Aulln, Mahno (SE); Nlclas Bauer, 6,691,216 B2 2/2004 Kelly et 01.
Malmo (SE); Michael Rosenberg,
Stidra Sandby ($13)

(73) Assignee: 'I‘elefonaktiebolagct L M Ericsson (Continued)
(publ). Stockholm (SE) . , , . ,,FOREIGN I’AIHN l l..)(.)(,.'.llMHN IS

(*) Notice: Subject to any disclaimer, the temi of'this , 2 _ . ,
patent is extended or adjusted under 35 {31> 1 i603” AZ 93004
U.SIC. 154(0) by 482 days.

21 A 1. N .:11/ 0.79
() pp 0 04 ' 8 (Continued)

(22) Filed: Jam 22» 2005 OTHER PUBLICATIONS

(65) Prior Publication Data PCT International Search Repott, mailed Aug. 8, 2006, in connec—

US 2006/0168435 A1 .1111 27 2006 tion with International Application No. PCT/EP2006/000351.

(51) Int (‘1 (Continued)
V I (906]: 9/00 (2006.01) Primary Examiner" ~Thomas Lee
(52) US. Cl. 713/1; 713/2; 713/100; Assistant Examiner ~Malcolm D Cribbs

709/208; 709/212; 709/213 (74) Attorney, Agcnl, or 157nm»-~~Potomuc Patent Group
(58) Field of Classification Search 713/1. PLLC

713/2, 100; 709/208, 212, 213 , 7 ‘

See application file for complete search history. (57) ABS FRACI

(56) References Cited

US. PATENT DOCUMENTS A conventional bootloadcr can conflict with the operating

system (OS) of a multi-processor system. An OS-friendly
bootloader and methods are described that integrate an OS
with a bootloader in any system in which a host processor
and a client processor have a communication mechanism
that requires the OS for the mechanism to work and the
client has two memory systems: one visible to both host and
client and one visible only to the client.

23 Claims, 2 Drawing Sheets

4,943,911 A 7/1990 Kopp et all.
5,068,780 A 11/1991 Bruckert ct 211.
5,155,833 A ”‘ 10/1992 Cullison et a1. 713/2
5,347,514 A * 9/1994 Davis et al. 370/429
5,652,886 A 7/1997 Tulpule et ‘1.
5,754,863 A * 5/1998 Renter 717/173
5,799,186 A 8/1998 Compton
5,835,784 A 11/1998 Gillespie et al.
5,944,820 A 8/1999 Beclitz.

1

102

ARM
________________J.___..__...

DSP

108

Non—Volatile

Memory
106 K100

Int. 1 DSP Dsp

Storei SARAM XRAM
Area ‘& DARAM

104 110

lNTEL 1210

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

US 7,356,680 82
Page 2

U.S. PATENT DOCUMENTS

6.760.785 Bl
6,810‘478 Bl

2002/0059560 A1’“
2002/0138156 A1
2003/0126424 A1
2004/0059906 A1
2004/0088697 A1
2004/0215952 A1

7/2004
10/2004
5/2002
9/2002
7/2003
3/2004
5/2.004

10/2004

Powdcrly ct a1.
Anand er al.

Phillips 717/124
Wong et a1.
l-loran7y et al.
Park 61 211.
Schwartz et al.

Oguma

FOREIGN PATENT DOCUMENTS

WO 01/27753 AZ 4/2001

OTHER PUBLICATIONS

PCT Written Opinion, mailed Aug. 8, 2006, in connection with
International Application No. PC"1‘/1;'P2006/0035 1.
llydc, 1., “How to Make Pentium Pros Cooperate", BYTE,
McGraw-Hill, Inc. St. Peterborough, US, vol‘ 213 N01 4‘ Apr. 1996.
pp. 1770178. XP000586039.
Winderwcedle, 13. c1 £11., ”I'MS3ZOVC5470/S471 Bootloadcr Appli~
cation Report”. Texas Instruments. Dallas. TX. SPRA376. Jun.
2002‘
“OMAPS910 Dual-Core Processor DSP Subsystems Reference
Guide", Texas Instruments. Dallas. TX, SPRU672, Oct 2003.

"‘ cited by examiner

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

US. Patent Apr. 8, 2008 Sheet 1 0f 2 US 7,356,680 B2

Non~Volatile

Memory

106 102

ARM CPU

ARM

DSP

SP

DSP CPU ngM

104 110

Int. : DSP
Store ; SARAM

Area '& DARAM

108

FIG. 1

Dest, Addr.

Header //

Transfer Block -

Intermediate

Storage
Area

FIG. 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

U.S. Patent Apr. 8,2008 Sheet 2 0f 2 US 7,356,680 BZ

Reset and Hold

Slave Processor

Push Info to

Slave Processor

Push

Complete?

Yes

Boot Slave

Processor

Start 08 in

Slave Processor

Reserve lntermed.

2 Storage Area

Send Message to

4 Host Processor

Push Info to ISA

Send Message to
Slave Processor

8 Complete?

Copy ISA to

Release Blocks;

Load Complete

226

FIG. 2

"Invisible" Memory

Send Message to
Host Processor

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

US 7,356,680 82
1

METHOD OF LOADING INFORMATION
INTO A SLAVE PROCESSOR IN A

MULTI-PROCESSOR SYSTEM USING AN
OPERATING-8Y8TEM—FRIENDI.Y BOOT

LOADER

BACKGROUND

This invention relates to initialization of electronic sys-

tems having multiple programmable processors.
The process of starting, or booting up, an electronic

system having a programmable processor connected to one
or more memory devices for storing program instructions, or
code, and data is not as simple as it might seem at first
glance. An important part of the reason for this is the need
for the processor to begin operation in a well-defined state.

The traditional ways of loading program code and data to
a bare system are either by “pushing” the code and data into
the system’s random-access memory (RAM) directly or by
using a bootloader. The bootloader, which is sometimes
called a boot loader or a bootstrap loader, is a set of
instructions (i.e., program code, sometimes called “boot
code”) that can be either “pushed” into the system’s RAM
or loaded into the RAM from a non—volatile memory, such

as read-only memory (ROM). In its execution by the pro—
cessor, the bootloader then “drags” in the rest of the code
and data and starts the system.

Examples of prior mechanisms for starting processor
systems, including bootloaders, are US. Pat. No. 5,652,886
to Tulpule et al. and U.5. Pat. No. 6,490,722 to Barton et al.
and U.S. Patent Application Publication No. US 2002/
0138156 Al to Wong et al. Barton et al., for example.
describes a two—stage bootloadcr in which the second stage
finds, verifies, and loads the operating system. In Wong et
at, a multiprocessor system uses a master processor coupled
to a ROM to transfer boot code to slave processors, with

memory controllers in the slave processors denying memory
access requests until the boot code has been transferred to
their RAMs.

As indicated by Barton et al. and Wong et al., for example,
starting up a multi—processor system, which can be generally
considered as having a master or host processor, i.c., the
system that orders the boot, and one or more slave or client
processors, i.e., the system to be booted, is even more
complicated than starting up a single-processor system.

Advantages of the “push” method are that it requires no
code to execute in the slave during boot and that the only

synchronization required is to hold the slave in a reset state
and release it when loading is finished. Nevertheless, the
“push” method works only when the memory or memories
of the slave are visible to the host. This visibility can be

implemented in several ways. For example, a memory may
be visible on the address and data busses ofboth the host and

the slave processors or direct memory access (DMA) trans-
fers may be allowed from the host’s memory or memories to
the slave‘s memory or memories.

When the slavc’s memory to be loaded is invisible to the
host, the “push” method cannot be used. In that situation.
some form ot‘bootloading must be used. As noted above, the
bootloader technique requires either that boot code can be
pushed onto the slave (which in this case is not possible) or
that the slave can load code from a non-volatile memory.
The bootloader then initiates a transfer of code from the host
to the slave and finishes loading the memory.

Mold-processor systems in which some or all ol‘ a slave’s
memory is not visible to a host are possible. in such systems,
it can be advantageous to take advantage ofwell—established

l O

15

30

40

5!)

‘Jr '1:

60

65

2

software frameworks for loading and inter~processor com—
munication, which render traditional bootloaders undesir—
able. Moreover, a bootloader can conllict with the operating

system, which can be said to want to have control over the
entire system and all ol‘ the memory.

Among the problems faced when integrating a bootloader
with an operating system (OS) are ensuring that code that is
not yet loaded is not executed, efliciently loading code to a
memory or memories invisible to the host, and synchroniz—
ing with the host the loading and booting of the slavc(s).
Moreover, it is necessary to determine which portions of the
system must be loaded to memories visible to both host and
slave processors and how the binary image to be loaded
should be arranged for the bootloader to work together with
the OS. Another issue that can be important is the integration
of the hootloader and the 08, as an already established
framework for communication between host and slave then

can be used during loading. Such a framework typically
would include one or more primitives for communication
that rely on OS—features.

SUMMARY

This invention provides, in one aspect, a method of
loading program code into a slave processor in a multi—
processor system that includes a master processor and the
slave processor. The method includes the steps of resetting
the slave processor and holding the slave processor in a reset
state; pushing information into a first memory that is acces—
sible by the master and slave processors; booting the slave
processor; starting an operating system in the slave proces-
sor, including blocking scheduling of processes having
program code located in a second memory that is accessible
by the slave processor and inaccessible by the master
processor; reserving an intermediate storage area in the first
memory; sending to the master processor information about
a location and size of the intermediate storage area reserved;
based on the sent information, loading the intermediate

storage area with information to be loaded into the second
memory; sending a first message to the slave processor that
indicates the intermediate storage area has been loaded and
whether loading is finished or more inlbrmation is to be
loaded; copying information in the intermediate storage area
to the second memory; and sending a second message to the
master processor that indicates that information in the inter~
mediate storage area has been copied.

in another aspect of the invention, a multiprocessor
system includes a host processor, at least one client proces-
sor, a first random-access memory accessible by the host and
client processors. a second random-access memory acces—
sible by the client processor and not accessible by the host
processor, and a bootloader. The first memory includes an
intermediate storage area, and the bootloader includes a host
part and a client part. The host part is loadable into the first
random—access memory and has a first stage and a second
stage. The first stage resets and holds the client processor in
a reset stat‘ and pushes information into the first random-
access memory. The second stage is initiated by the client
part, loads the intermediate storage area with information to
be loaded to the second random—access memory, and sends

to the client part a first message indicating the intermediate
storage area is loaded, The client part is loadable into the
first random-access memory, starts an operating system

including an idle process and initially blocking scheduling
of all processes having program code located in the second
random-access memory, copies information loaded into the
intermediate storage area to the second random-access

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

