
INTEL 1209

US 20060288019A1

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2006/0288019 A1
 Bauer et al. (43) Pub. Date: Dec. 21, 2006

(54) FLEXIBLE DATA FILE FORMAT Publication Classification

(76) Inventors: Niclas Bauer, Malmo (SE); Peter (51) Int. Cl.
Anlin, Malmo (SE); Michael G06F 7/00 (2006.01)
Rosenberg, Sodra Sandby (SE); Mats (52) US. Cl. .. 707/100
Svensson, Lund (SE)

Correspondence Address: (57) ABSTRACT
POTOMAC PATENT GROUP PLLC

P 0 BOX 270 ’ A data format includes a header, section information, and
FIRE-DERICKSBURG VA 22404 (US) one or more sections. Each section includes binary data that

’ is encoded independently of other sections, and the header

(21) Appl. No.: 11/250 652 and section information contains information about the
3 sizes, load addresses, and encoding, e.g., encryption and/or

(22) Filed: Oct. 14, 2005 compression, of the sections. The header and section infor-
mation are arranged in an image having this format such that

Related US. Application Data they are readable before the sections are processed. For
example, the sections can be located in sequence after the

(60) Provisional application No. 60/685,581, filed on May header and the section information, in an order determined
27, 2005. by their load addresses.

Header Section Section Data / 102 Information 104 106
100

INTEL 1209

Patent Application Publication Dec. 21, 2006 Sheet 1 of 2 US 2006/0288019 A1

I Header Section Section DataFIG“ 1A / 102 Information 104 106
100

FIG. 1 B Size [32 bits] Number of sections
102/' 102-1 [16 bits] 102-2

Section 1 Length Extra 1 [16 bits] Section 2 Length Extra 2 [16 bits]

[16 bits] 108-1 112-1 [16 bits] 108—2 112-2 Load Address 1 [32 bits] Load Address 2 [32 bits]
110-1 110-2

10 - 104-2
FIG. 1C 4 1

ARM cpu Non-Volatile 200

202 Memory /
ARM

DSP

DSP

DSP CPU XRAM

204 210

 Int. I DSP

Store: SARAM
Area l&DARAM

208

FIG. 2

Patent Application Publication Dec. 21, 2006 Sheet 2 0f 2

FIG. 3

Identify
sections

302

Encode

each

section

304

Form

section

info

308

Order header,

section

sections

information, and

310

US 2006/0288019 A1

US 2006/0288019 A1

FLEXIBLE DATA FILE FORMAT

[0001] This application claims the benefit of the filing date
of U.S. Provisional Patent Application No. 60/685,581,
which was filed on May 27, 2005, and which is incorporated
here by reference.

BACKGROUND

[0002] This application relates to digital data files and
more particularly to formats of such data files.

[0003] Various formats for object code and executable
files for digital computers are currently available. The most
widespread formats are the Common Object File Format
(COFF) and the Executable and Linking Format (ELF).
Both of these formats have been used for many years and in
different variations in the WINDOWS and UNIX/Linux

environments. For instance, Microsoft Corp. uses a variation
of COFF called “PE COFF” (Portable Executable COFF) in
its operating systems.

[0004] Both the COFF and the ELF are based on sections,
which is to say that a COFF or ELF file is structured as a
header, section information, and data organized in sections
that specify different types of information. A “text” section,
for instance, contains program code.

[0005] U.S. Patent Application Publication No. US 2005/
0114391 by Corcoran et al. discloses a self-descriptive
binary data structure called a microcode reconstruct and
boot (MRB) image. The location of an individual data set
may be identified by a data structure descriptor, which may
be an advantage over ELF and COFF and other formats
configured to include only a single executable. The format
supports having multiple “modules” in a file, where a
module is an executable piece of software or hardware
modeled with a hardware description language. The format
does not have sections that can contain any type of data, e.g.,
executable, binary, textual, etc., and coding sections is not
described.

[0006] U.S. Pat. No. 6,694,393 to Sutter, Jr., describes a
program file or other type of information file for use in an
embedded processor system that is partially compressed in
a host device and transferred to a non-volatile memory of the
embedded system. A non-compressed header is used with
memory sections that are compressed, although individual-
ized compression of the sections is not described.

[0007] It will be understood that an embedded system is
hardware and software that form a component of a larger
system and that are expected to function substantially with-
out human intervention. An example of an embedded system
is a microcomputer and software stored in a read-only
memory (ROM) that starts running the stored program when
it is turned on and does not stop until it is turned off.

[0008] International Publication No. WO 2004/029837 by
Holthe describes encapsulating multimedia content data,
multimedia content description data, and program instruc-
tion code into an aggregated data representation comprising
a hierarchical logical structure. Information about the mul-
timedia content and description data and program instruction
code is stored in a main header in the logical structure.
Compression of content is supported in the sense that the
format can contain, for example, a PNG-format picture and

Dec. 21, 2006

program code for reading it. The container format uses XML
as notation. The format is hierarchical, supporting blocks in
blocks, etc.

[0009] U.S. Pat. No. 5,548,759 to Lipe describes combin-
ing multiple files into a single file having an executable
format to operate a hardware or software device. A header
includes a resources table that identifies the location of
non-executable files and executable files in a resources

section. The format is simply a container format for orga-
nizing files, and one that does not support coding of files.

[0010] Software development methods are known for
linking object code into executable programs, compiling
object modules for storage in object module format for
linking or combining with other object modules stored in
library files to create executable programs.

[0011] Also known are program downloading methods for
use in data processing systems, integrating non-program
information and program information into an executable file
that is used by a host processor to download the program to
a selected co-processor.

[0012] Also known are methods for compressing and
recovering binary execution files; image loading program
storage media for loaders of operating systems, which load
and map executable images into memory based on file
formats of images; and executable file protection and execu-
tion methods involving incorporating protection descriptors
into protected executable files and providing to interpreters
for unprotecting and executing protected files.

[0013] The current de facto standards for object code and
executable files have emerged from and matured on oper-
ating systems for server and desktop computers. Being de
facto standards, the formats have found their way into
embedded systems as well, but these formats have properties
that make them inefficient in embedded environments. For

example, the sections are not ordered by their memory
location, which may lead to inefficient loading of code and
data in some environments. In addition, object code often
contains repetitive data, which results in redundancy and
inefficient use of storage space.

[0014] Aspects of the use of object file formats in embed-
ded processor systems, including versions of COFF, are
described in Minda Zhang, “Analysis of Object File Formats
For Embedded Systems”, June 1995, published at http://
www.intel.com/design/intarch/papers/esc_file.pdf.

[0015] An embedded computer environment has many
features that are not present in a desktop- or server-computer
environment. For example, it is usually important that the
sizes of binary images are kept low, as an embedded system
usually has limited storage capacity. Thus, binary files
should contain as little overhead as possible. It is also
important that object code and data can be loaded efficiently,
as processing power may be limited, especially in an embed-
ded system. A lot of software today is sent across wireless
communication links (e.g., wireless local area networks
(WLANs), mobile telephony networks, etc.), and it is impor-
tant that software can be sent in a secure manner. If a binary
file format supports encryption, a higher level of safety can
be achieved.

SUMMARY

[0016] The new format for binary data described in this
application is particularly useful in embedded systems as

US 2006/0288019 A1

well as in other computer environments where efficiency is
important. Greater efficiency in loading data can reduce
response times in such systems, and space-efficient storage
saves valuable memory.

[0017] In one aspect of this invention, there is provided a
data image arranged in a format that includes at least one
section, a header, and section information. The header
contains a first information element that indicates a total size
of the at least one section and a second information element
that indicates a number of the sections. The section infor-

mation includes a respective entry for each section, each
entry including a third information element that indicates a
length of the respective section and a fourth information
element that indicates a load address of the respective
section. The at least one section includes data that is encoded

independently of the header, section information, and other
sections. The header and the section information is arranged
in the image such that the header and section information are
readable before the at least one section.

[0018] In another aspect of this invention, there is pro-
vided a computer-readable medium containing a data image
for loading into a memory in a processor system. The data
image is arranged in a format that includes at least one
section, a header, and section information. The header
contains a first information element that indicates a total size
of the at least one section and a second information element
that indicates a number of the sections. The section infor-

mation includes a respective entry for each section, each
entry including a third information element that indicates a
length of the respective section and a fourth information
element that indicates a load address of the respective
section. The at least one section includes data that is encoded

independently of the header, section information, and other
sections. The header and the section information are

arranged in the image such that the header and section
information are readable before the at least one section.

[0019] In yet another aspect of this invention, there is
provided a method of converting a binary image into a
converted image having a format. The method includes the
steps of identifying at least one section in the binary image;
coding each identified section according to a respective
coding scheme; forming a header that indicates a total size
of the at least one section and a number of the sections;
forming section information having information about
respective lengths, coding schemes, and load addresses of
the identified sections; and arranging the header, section
information, and identified sections in the converted image.
The header and section information are arranged such that
they are readable in the converted image before the sections,
and the sections are arranged according to the section
information.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The features, objects, and advantages of this inven-
tion will be understood by reading this description in con-
junction with the drawings, in which:

[0021] FIG. 1A is a diagram of a data image having a
format in accordance with aspects of this invention;

[0022] FIG. 1B is a diagram of a header of the data image
of FIG. 1A;

[0023] FIG. 1C is a diagram of section information of the
data image of FIG. 1A;

Dec. 21, 2006

[0024]
and

[0025] FIG. 3 is a flow chart of a method of forming a data
image in accordance with aspects of this invention.

FIG. 2 is a block diagram of a processor system;

DETAILED DESCRIPTION

[0026] As described above, the binary data format
described in this application is useful in processor systems,
such as embedded systems, in which efficiency is important.
Greater efficiency when loading software can lower
response times in embedded systems and other computer
systems, and space-efficient storage saves valuable memory.

[0027] The format described here includes a header, sec-
tion information, and one or more sections. The section
information contains the information for all sections, which
is more advantageous than having each section include its
own information, i.e., the information is concentrated rather
than distributed across the sections. Furthermore, the section
information contains information about the encoding of the
sections.

[0028] Each section includes binary data that is encoded
independently of other sections, and the header and section
information contains information about the sizes, load
addresses, and encoding, e.g., encryption and/or compres-
sion, of the sections. The header and section information are
arranged in an image having this format such that they are
readable before the sections are processed. For example, the
sections can be located in sequence after the header and the
section information, in an order determined by their load
addresses.

[0029] Other arrangements are possible, of course. It is
important only that the header and section information can
be read before the rest of an image. The locations of the
header and section information can be anywhere in the
image, provided it is possible to access the header and
section information before the rest of the image. Thus, the
location of the header must be predetermined, or at least
known to the software reading the image, so that the
software “knows” where to look for the header. The location

of the section information may also be “known” to the
software, or the header can indicate the location.

[0030] Thus, it will be appreciated that the format
described here, in contrast to prior data formats, supports
individual coding of sections, where a section can contain
any type of data, such as executable, binary, text, etc.
Information about the sections is located in a header and

section information at, for example, the beginning of the
image, and so the information about the sections can be
retrieved before the sections are read. Moreover, the format
is a representation of a group of sections, coded indepen-
dently and having minimal overhead, that is traversed
sequentially in reading the image. Images in this format can
be optimized in different aspects, depending on the coding
scheme or schemes applied in the sections.

[0031] There are many possible applications of this format
and its individually coded sections. For example, an oper-
ating system memory manager can load and unload sections
of memory according to images in this format. It can also be
used as a file format in which executable files are stored, and
linkers and program loaders can be readily adapted to
support (read, write, and interpret) the format. Object code

US 2006/0288019 A1

and data can also be stored in this file format, with a program
loader reading the stored information and processing stored
sections accordingly. One example of such a program loader
is described in US. patent application Ser. No. 11/040,798
filed on Jan. 22, 2005, by M. Svensson et al. for “Operating-
System-Friendly Bootloader”.

[0032] FIG. 1A depicts a binary data image 100 in this file
format, including a header 102, section information 104, and
section data 106. The section data 106 includes the data of

the one or more sections included in the image 100.

[0033] As depicted in FIG. 1B, the header 102 contains a
size information element 102-1 that indicates the total size

of the sections 106 (in bytes, for example). The size element
102-1 may advantageously be a 32-bit unsigned integer, for
example, and such an element is suitable for images having
section data up to a total of four gigabytes (GB) in size. The
header 102 also contains a number-of-sections information

element 102-2, which may advantageously be a 16-bit
unsigned integer, for example. It will be understood that
other forms of these information elements can be used

instead of the examples set forth here.

[0034] Each section in the section data 106 has a respec-
tive “section information” entry in the section information
104, and two such section information entries 104-1, 104-2
are depicted in FIG. 1C. The lengths of the respective
sections, in bytes for example, are indicated by length
information elements 108-1, 108-2, which may advanta-
geously be 16-bit unsigned integers, for example. The load
addresses of the sections are indicated by address informa-
tion elements 110-1, 110-2, which may advantageously be
32—bit unsigned integers, for example. If desired, additional
information related to a section can be indicated by extra
information elements 112-1, 112-2, which may advanta-
geously be 16 bits in length. It will be understood that other
forms of these information elements can be used instead of

the examples set forth here.

[0035] FIG. 2 depicts a multi-processor system 200 that
includes a host processor 202 and a client processor 204 and
that can advantageously use a binary image 100 having the
format depicted in FIGS. 1A, 1B, 1C. It will be appreciated
that although FIG. 2 shows one client processor 204, more
can be provided, and it will further be appreciated that
although FIG. 2 shows a multi-proccssor system, even only
a single processor 202 can be provided. Moreover, the
processor(s) may be any programmable electronic proces-
sor(s). In the example depicted in FIG. 2, the processor 202
is shown as the central processing unit (CPU) of an
advanced RISC machine (ARM), and the processor 204 is
shown as the CPU of a digital signal processor (DSP)
device. The dashed line in FIG. 2 depicts the hardware
boundary between the host and slave devices, in this
example, the ARM and the DSP, and also a non-volatile
memory 206. The memory 206 may be a ROM, a flash
memory, or other type of non-volatile memory device,
within which an image in the format depicted in FIGS.
1A-1C can be stored.

[0036] Most commercially available DSP devices include
on-chip memories, and as indicated in FIG. 2, the DSP
includes “internal” single-access RAM (SARAM) and dual-
access RAM (DARAM) 208, as well as an “external” RAM
(XRAM) 210. An intermediate storage area, indicated by the
dashed line, may be defined within the memory 208. The

Dec. 21, 2006

arrows in FIG. 2 indicate access paths, e.g., busses and
direct memory access (DMA) paths, between the CPUs and
the memories, any one or more of which may store an image
in the format depicted in FIGS. 1A-1C. The ARM host CPU
202 can access the non-volatile memory 206 and the
SARAM and DARAM 208 of the DSP, but not the DSP’s
XRAM 210, and the DSP slave CPU 204 can access all of
the RAMs 208, 210.

[0037] As depicted in FIG. 1A, the section information
entry or entries 104 precede the data 106 of the section(s) in
the image 100. The section data 106 is advantageously
arranged in the image in a sequence, and it is preferable that
the section data 106 as well as the section information

entries 104 are arranged in order of the section load
addresses 110, starting with the lowest address. It will be
understood, however, that other orders are suitable, e.g.,
starting with the highest address, and that in general it is not
necessary to order the section by their load addresses. The
sections may be in an arbitrary order. As each section has a
respective load address, the sections can appear in any order
(e.g., by size, coding type, or whatever is suitable). It is
currently believed, however, that the most efficient solution
from a loading point of view is probably arranging the
sections by load address in either descending or ascending
order.

[0038] Having all section information entries 104 col-
lected together in the image 100 advantageously simplifies
system navigation through the image, and having all section
data arranged in a sequence makes it possible to optimize
loading of the sections. For instance, it is simple to split or
concatenate sections when they are adjacent in memory. The
ability to split sections can be useful, for instance, when a
DMA transfer is to be set up. As there is always a small
overhead when setting up a DMA transfer, a DMA unit can
be used in an efficient way by arranging the size of the data
to be transferred to be equal or close to the block sizes used
by the DMA unit. As sections can be located sequentially in
an image 100, it is simple to split a section into several
suitable pieces before downloading it.

[0039] The extra information elements 112 in the section
information 104 can be used in a variety of ways, for
example to convey information about each section’s coding,
such as compression and/or encryption. It will be understood
that compressing one or more sections makes the size of the
image 100 smaller, and storage space can thus be saved.
Encrypting one or more sections enables a higher level of
security to be achieved, for instance, during download of a
binary image 100 to a system.

[0040] The extra information elements 112 in the section
information 104 can also be used in connection with digital
signatures and watermarks. This can be an important appli-
cation in terms of software security. Using one or more of
the elements 112, a linker or post-linker tool can derive a
signature/watermark for each section in an image, and a
loader can read the signature/watermark and compare it to a
section in question. In this way, the extra information
elements enable the integrity of one or more sections of an
image to be verified, i.e., that the image has not been patched
or altered.

[0041] Decoding (e.g., decompression and/or decryption)
of a section or sections requires some processing time to be
expended when an image 100 is loaded into a system’s

US 2006/0288019 A1

memory. On the other hand, section encoding has many
benefits, including for example more efficient memory usage
and better security. These factors can thus be traded-off
when building an image, and each section can be optimized
for security/space/load-time, depending on the configuration
and properties of a particular system.

[0042] The ability to individually encode sections pro-
vides many possibilities for optimization. Each section can
be encoded independently using an arbitrary encoding
scheme (compression, encryption, or whatever is preferred).
It is possible to apply several encoding steps on a section
(e.g., compression followed by encryption). This can be
important, as different sections may have different proper-
ties, e.g., some sections may contain data that is suitable to
compress and other sections may contain data that is sensi-
tive and must be protected.

[0043] Having information about the sections collected in
the header 102 and section information 104 simplifies opti-
mization in a number of circumstances, for instance, if
sections are to be loaded into memory. The block 104 lists
all sections, preferably in order of memory location, and this
makes memory loading efficient as there is no need to search
through an image for section headers when loading.

[0044] The sequential location of sections in the image
enables further optimizations to be done. For example,
sections can be loaded in a burst when their memory
locations are adjacent, and so it can be advantageous to
arrange the processing system accordingly.

[0045] The format described here also supports streaming.
All navigation information in an object file 100 is given in
the header 102 and section information 104, which simpli-
fies the configuration of a streaming session. All information
about a file of the format can be given during the capability
exchange phase, before the streaming session is started.

[0046] As described above, the format described here has
many applications. For example, the format can be used as
a file format for object code and/or data. Files having the
format may be created directly by a linker. It is also believed
that it is possible to convert COFF/ELF binary files and files
in other formats to the above-described format using com-
mercially available conversion tools. It is expected that the
conversion tool would be executed as a post-link step in the
build process, and the conversion tool could also combine
several input files into one file having the above-described
format.

[0047] Converting a binary image, e.g., an image in
COFF/ELF format, into an image having the format
described in this application can be carried out in a number
of ways, for example by a suitable post-linker conversion
tool. An exemplary method is illustrated by the flow chart in
FIG. 3, and includes a step of identifying all of the sections
of the image to be converted (step 302). Each identified
section is individually coded according to a specified coding
scheme (step 304). A header having the information
described above is formed (step 306), and section informa-
tion having information about the respective lengths, encod-
ings, and load addresses of the identified sections is formed
(step 308). In step 310, the identified sections are arranged
in the image according to the section information, e.g., in
increasing order of load address, etc., and the header and
section information are arranged in the converted image
such that they are readable in the converted image before the
sections.

Dec. 21, 2006

[0048] As described above, the binary image to be con-
verted may include a plurality of sections, and the sections
are arranged in the converted image in a sequence after the
header and the section information. For example, the sec-
tions can be arranged in an order determined by their
respective load addresses. Coding an identified section can
include encrypting the identified section, and the informa-
tion about the encrypted section in the section information
can further include an information element that describes the

encryption.

[0049] The invention described here can be considered to
be embodied entirely within any form of computer-readable
storage medium having stored therein an appropriate set of
data for use by or in connection with an instruction-execu-
tion system, apparatus, or device, such as a computer-based
system, processor-containing system, or other system that
can fetch data from a medium and execute or otherwise

process the data. As used here, a “computer-readable
medium” can be any means that can contain, store, com-
municate, propagate, or transport the data for use by or in
connection with the instruction-execution system, apparatus,
or device. The computer-readable medium can be, for
example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, device, or propagation medium. More specific
examples (a non-exhaustive list) of the computer-readable
medium include an electrical connection having one or more
wires, a portable computer diskette, a RAM, a ROM, an
erasable programmable read-only memory (EPROM or
Flash memory), and an optical fiber.

[0050] It is emphasized that the terms “comprises” and
“comprising”, when used in this application, specify the
presence of stated features, integers, steps, or components
and do not preclude the presence or addition of one or more
other features, integers, steps, components, or groups
thereof.

[0051] The invention may be embodied in many different
forms, not all of which are described above, and all such
forms are contemplated to be within the scope of the
invention. The particular embodiments described above are
merely illustrative and should not be considered restrictive
in any way. The scope of the invention is determined by the
following claims, and all variations and equivalents that fall
within the range of the claims are intended to be embraced
therein.

What is claimed is:

1. A data image arranged in a format, comprising:

at least one section;

a header, wherein the header contains a first information
element that indicates a total size of the at least one
section and a second information element that indicates

a number of the sections; and

section information, including a respective entry for each
section, each entry including a third information ele-
ment that indicates a length of the respective section
and a fourth information element that indicates a load

address of the respective section;

wherein the at least one section includes data that is

encoded independently of the header, section informa-
tion, and other sections; and the header and the section

US 2006/0288019 A1

information is arranged in the image such that the
header and section information are readable before the
at least one section.

2. The data image of claim 1, wherein the first information
element indicates the total size in bytes and is a 32-bit
unsigned integer, and the second information element is a
l6-bit unsigned integer.

3. The data image of claim 1, wherein the third informa-
tion element is a l6-bit unsigned integer and the fourth
information element is a 32-bit unsigned integer.

4. The data image of claim 1, wherein at least one entry
of the section information further includes an extra infor-
mation element.

5. The data image of claim 4, wherein the extra informa-
tion element indicates a coding of the respective section.

6. The data image of claim 1, wherein the data image
includes a plurality of sections.

7. The data image of claim 6, wherein the sections are
arranged in a sequence after the header and the section
information.

8. The data image of claim 7, wherein the sections are
arranged in an order determined by their respective load
addresses.

9. The data image of claim 6, wherein the data of at least
one section is encrypted.

10. The data image of claim 9, wherein the entry for the
at least one section further includes an extra information

element that describes the encryption.
11. A computer-readable medium containing a data image

for loading into a memory in a processor system, wherein
the data image is arranged in a format that includes:

at least one section;

a header, wherein the header contains a first information
element that indicates a total size of the at least one
section and a second information element that indicates

a number of the sections; and

section information, including a respective entry for each
section, each entry including a third information ele-
ment that indicates a length of the respective section
and a fourth information element that indicates a load

address of the respective section;
wherein the at least one section includes data that is

encoded independently of the header, section inforrna—
tion, and other sections; and the header and the section
information is arranged in the image such that the
header and section information are readable before the
at least one section.

12. The computer readable medium of claim 11, wherein
the data image is arranged in a format in which the first
information element indicates the total size in bytes and is a
32-bit unsigned integer, and the second information element
is a l6-bit unsigned integer.

Dec. 21, 2006

13. The computer readable medium of claim 11, wherein
the data image is arranged in a format in which the third
information element is a l6-bit unsigned integer and the
fourth information element is a 32-bit unsigned integer.

14. The computer readable medium of claim 11, wherein
the data image is arranged in a format in which at least one
entry of the section information further includes an extra
information element.

15. The computer readable medium of claim 11, wherein
the data image includes a plurality of sections.

16. The computer readable medium of claim 15, wherein
the sections are arranged in a sequence after the header and
the section information.

17. The computer readable medium of claim 16, wherein
the sections are arranged in an order determined by their
respective load addresses.

18. The computer readable medium of claim 15, wherein
the data of at least one section is encrypted.

19. A method of converting a binary image into a con-
verted image having a format, comprising the steps of:

identifying at least one section in the binary image;

coding each identified section according to a respective
coding scheme;

forming a header that indicates a total size of the at least
one section and a number of the sections;

forming section information having information about
respective lengths, coding schemes, and load addresses
of the identified sections; and

arranging the header, section information, and identified
sections in the converted image, wherein the header
and section information are arranged such that they are
readable in the converted image before the sections,
and the sections are arranged according to the section
information.

20. The method of claim 19, wherein the binary image
includes a plurality of sections, and the sections are arranged
in the converted image in a sequence after the header and the
section information.

21. The method of claim 20, wherein the sections are
arranged in an order determined by their respective load
addresses.

22. The method of claim 19, wherein coding an identified
section includes encrypting the identified section.

23. The method of claim 22, wherein information about
the encrypted section in the section information further
includes an information element that describes the encryp-
tion.

