
INTEL 1102

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Intel Corporation
Petitioner

V.

Qualcomm Incorporated

Patent Owner of US. Patent No. 8,83 8,949

Claims 1 0- l 7

Trial No. IPR201 8-01335

DECLARATION OF BILL LIN, PH.D.

ON BEHALF OF PETITIONER

INTEL l 102

II.

III.

IV.

VI.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

TABLE OF CONTENTS

BACKGROUND ... 1

MATERIALS CONSIDERED ..4

LEGAL PRINCIPLES ... 5

A. Claim Construction ... 5

B. Anticipation ... 6

C. Obviousness ... 7

D. Means-Plus-Function Claims .. 9

SUMMARY OF OPINIONS ... 10

BRIEF DESCRIPTION OF THE TECHNOLOGY 10

A. Multi-Processor Systems ... 10

1. Processor-To-Processor Communications 10

2. Processor Software Code .. 14

3. Characteristics of Memory.. 15

B. Storing, Loading, and Executing Processor Software
Code ... 16

1. Storing the Processor Software Code in Memory 16

2. Loading and Executing Multi-Segmented Software

Images ... 17

3. Sharing Memory in Multi-Processor Systems 19

C. Boot Loading ... 20

OVERVIEW OF THE ’949 PATENT .. 22

A. Alleged Problem of the Prior Art .. 22

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

B. Purported Solution of the ’949 Patent ... 23

C. Prosecution History of the ’949 Patent ... 29

VII. LEVEL OF ORDINARY SKILL IN THE ART ... 33

VIII. CLAIM CONSTRUCTION .. 33

A. “image header” (claims 10 and 16) ... 34

B. “means for receiving at a secondary processor, from a

primary processor Via an inter-chip communication bus,

an image header for an executable software image for the

secondary processor that is stored in memory coupled to

the primary processor” (claim 16) ... 35

1. Function .. 35

2. Structure .. 36

C. “means for processing, by the secondary processor, the

image header to determine at least one location within

system memory to which the secondary processor is

coupled to store each data segment” (claim 16) 36

1. Function .. 36

2. Structure .. 37

D. “means for receiving at the secondary processor, from the

primary processor Via the inter-chip communication bus,

each data segment” (claim 16) .. 37

1. Function .. 37

2. Structure .. 38

E. “means for scatter loading, by the secondary processor,

each data segment directly to the determined at least one

location within the system memory, and each data

segment being scatter loaded based at least in part on the

processed image header” (claim 16) ... 38

-ii-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

1. Function .. 38

2. Structure .. 39

IX. OVERVIEW OF PRINCIPAL PRIOR ART REFERENCES 40

A. Svensson (EX-l 1 10) .. 40

B. Bauer (EX-1 109) .. 43

C. Kim (Ex-1111) (Including English Translation (EX-

1 1 12)) .. 47

D. Zhao (Ex-1113) ... 50

X. SPECIFIC GROUNDS FOR CHALLENGE .. 52

A. Ground 1: Claims 10-15 Are Rendered Obvious By The

Combination Of Bauer, Svensson, And Kim 52

1. Reference to “Bauer and Svensson Combined” 52

2. Claim 10 .. 54

3. Claim 11 .. 80

4. Claim 12 .. 83

5. Claim 13 .. 86

6. Claim 14 .. 88

7. Claim 15 .. 89

B. Ground 2: Claims 16 And 17 Are Rendered Obvious By

The Combination Of Bauer, Svensson, Kim, And Zhao 90

1. Reference to “Bauer and Svensson Combined” 90

2. Claim 16 .. 90

3 . Claim 1 7 .. 1 00

XI. AVAILABILITY FOR CROSS-EXAMINATION 166

-iii-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

XII. RIGHT TO SUPPLEMENT .. 167

X111. JURAT ... 167

-iv-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

I, Bill Lin, Ph.D. declare as follows:

I. BACKGROUND

1. I am currently Professor and Vice Chair of Electrical and Computer

Engineering at the University of California, San Diego (UCSD). I am also Adjunct

Professor of Computer Science and Engineering at UCSD.

2. My Curriculum Vitae, which states my qualifications more fully, is

attached as Appendix A. A list of all cases in which I have testified as an expert at

trial or by deposition in the last four years is also included in Appendix A.

3. I received a Bachelor’s of Science degree in 1985, a Master’s of

Science degree in 1988, and a Ph.D. in 1991, all in Electrical Engineering and

Computer Sciences from the University of California, Berkeley.

4. I joined UCSD in 1997, and I have been a tenured professor since

1999. My teaching and research has focused on computer architecture and

computer network problems, including the design of multiprocessor and multi-core

processor architectures, multiprocessor and multi-core processor interconnection

buses and networks, network processors, systems-on-chips, and data networks. I

regularly teach a senior-level design course on the design of advanced processors,

and I have taught graduate courses in hardware/software co-design and advanced

special topics in computer architecture.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

5. At UCSD, I am a Principal Investigator in the UCSD Center for

Networked Systems (CNS). CNS brings together researchers to work on a range

of challenges in the design of future networked systems. My contribution to CNS

has been expertise in the design of computer architecture solutions for packet

processing and computer networking. I am also a Principal Investigator in the

UCSD Center for Wireless Communications (CWC). CWC brings together

researchers to work on a range of challenges in the design of future wireless

communications systems. My contribution to CWC has been expertise in the

design of multi-core processor architectures for wireless communications and

mobile computing.

6. Prior to joining UCSD, I was the Head of the Systems and

Communications Group at IMEC in Leuven, Belgium, where I led a team of

researchers who worked on a range of computer design problems, including

hardware/software co-design, processor interfaces, multiprocessor and multi-core

processor design methodologies, and specialized processors for wireless

communications and computer networking.

7. During my career, I have received or worked on research efforts that

received millions of dollars in research funding from both government agencies

and industry, including funding for research in multi-core processor design,

Inter Partes

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

compensation is not dependent on and in no way affects the substance of my

statements in this Declaration.

11. I have no financial interest in the Petitioner. I similarly have no

financial interest in the ’949 patent, and have had no contact with the named

inventors of the ’949 patent.

II. MATERIALS CONSIDERED

12. I have reviewed the specification, claims, and file history of the ’949

patent. I understand that the ’949 patent claims priority to U.S. Provisional

Application No. 61/324,035, filed April 14, 2010, U.S. Provisional Application

No. 61/316,369, filed March 22, 2010, U.S. Provisional Application No.

61/324,122, filed April 14, 2010, and U.S. Provisional Application No.

61/325,519, filed April 19, 2010.

13. I have also reviewed the following references, all of which I

understand to be prior art to the ’949 patent:

o U.S. Patent Application Publication No. US2006/0288019A1 to

Bauer et a1. (“Bauer”) (Ex-1109)

o U.S. Patent No. 7,356,680 to Svensson et a1. (“Svensson”) (EX-

1110).

inter partes

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

(hereinafter “BRI standard”). I also have been informed that IPRs may soon be

reviewed under what is known as “the Phillips standard.”

17. I have been informed that the BRI standard refers to the broadest

reasonable interpretation that a person of ordinary skill in the art would give to a

claim term in light of the specification.

18. I have been informed that under the Phillips standard, claim terms are

generally given their plain and ordinary meaning as understood by a person of

ordinary skill in the art at the time of the invention, with the claim term read not

only in the context of the particular claim in which the disputed term appears, but

also in the context of the entire patent, including the specification.

19. I have been informed that the patentee can serve as his or her own

lexicographer. As such, if a claim term is provided with a specific definition in the

specification, that claim term should be interpreted in light of the particular

definition provided by the patentee.

B. Anticipation

20. I have been informed and understand that a patent claim is invalid if it

is “anticipated” by prior art. For the claim to be invalid because it is anticipated,

all of its requirements must have existed in a single device or method that predates

the claimed invention, or must have been described in a single publication or

patent that predates the claimed invention. A patent claim may be “anticipated” if

-6-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

each element of that claim is present either explicitly, implicitly, or inherently in a

single prior art reference. I have also been informed that, to be an inherent

disclosure, the prior art reference must necessarily disclose the limitation, and the

fact that the reference might possibly practice or contain a claimed limitation is

insufficient to establish that the reference inherently teaches the limitation.

C. Obviousness

21. I have been informed and understand that a patent claim is invalid if

the claimed invention would have been obvious to a person of ordinary skill in the

art at the time the application was filed. This means that, even if all of the

requirements of a claim are not found in a single prior art reference, the claim is

not patentable if the differences between the subject matter in the prior art and the

subject matter in the claim would have been obvious to a person of ordinary skill in

the art at the time the application was filed.

22. I have been informed and understand that a determination of whether

a claim would have been obvious should be based upon several factors, including,

among others:

0 the level of ordinary skill in the art at the time the application

was filed;

0 the scope and content of the prior art; and

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

0 what differences, if any, existed between the claimed invention

and the prior art.

23. I have been informed and understand that the teachings of two or

more references may be combined in the same way as disclosed in the claims, if

such a combination would have been obvious to one having ordinary skill in the

art. In determining whether a combination based on either a single reference or

multiple references would have been obvious, it is appropriate to consider, among

other factors:

0 whether the teachings of the prior art references disclose known

concepts combined in familiar ways, which, when combined,

would yield predictable results;

0 whether a person of ordinary skill in the art could implement a

predictable variation, and would see the benefit of doing so;

0 whether the claimed elements represent one of a limited number

of known design choices, and would have a reasonable

expectation of success by those skilled in the art;

0 whether a person of ordinary skill would have recognized a

reason to combine known elements in the manner described in

the claim;

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

0 whether there is some teaching or suggestion in the prior art to

make the modification or combination of elements claimed in

the patent; and

0 whether the innovation applies a known technique that had been

used to improve a similar device or method in a similar way.

24. I understand that one of ordinary skill in the art has ordinary

creativity, and is not an automaton.

25. I understand that in considering obviousness, it is important not to

determine obviousness using the benefit of hindsight derived from the patent being

considered.

26. I have been informed and understand that a single reference alone can

render a patent claim obvious, if any differences between that reference and the

claims would have been obvious to a person of ordinary skill in the art at the time

of the alleged invention—that is, if the person of ordinary skill could readily adapt

the reference to meet the claims of the patent, by applying known concepts to

achieve expected results in the adaptation of the reference.

D. Means-Plus-Function Claims

27. I have been informed and understand that for means-plus-function

limitations, a prior art reference or combination of references must disclose the

identical function in the claim limitation and must disclose a structure that

-9-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

performs the function that is either identical to or the equivalent of the structure in

the specification of the challenged patent that performs the claimed function. I

understand that a structure is equivalent if it performs the identical function in

substantially the same way to achieve substantially the same result as the claim

limitation at issue.

IV. SUMMARY OF OPINIONS

28. It is my opinion that every limitation of claims 10-17 of the ’949

patent is disclosed by the prior art, and that claims 10-17 are rendered obvious by

the prior art cited in this declaration.

V. BRIEF DESCRIPTION OF THE TECHNOLOGY

A. Multi—Processor Systems

1. Processor-To-Processor Communications

29. The ’949 patent generally relates to communications between

processors. Processors are common components in electrical devices that perform

various functions to make the devices operate. Electrical devices may have

multiple processors to handle different responsibilities. For example, a mobile

telephone may include a “baseband” processor—which the ’949 patent calls a

“modem” processor—and an “application” processor. Ex-l 101, 1:41-44.

30. The baseband/modem processor typically performs tasks relating to

the transmission and reception of data to/from other devices over a network such as

-10-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

a wireless communication network. For example, Figure 5 of the ’949 patent

shows a mobile telephone 520 communicating with base stations 540 in a wireless

communication system 500.

500

_L

540 550 'EE— ’ I 540
_ C _‘L

1 .

FIG. 5

Ex-1101, Fig.5.

31. The baseband/modem processor in the mobile telephone 520 is

responsible for sending data to and receiving data from base stations 540. The

base stations 540 facilitate communication between the mobile telephone 520 and

other devices, such as a portable computer 530, in the wireless communication

system 500. EX-1101, 11:25-39, Fig. 5.

-11-

e.g.,

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

32. The application processor typically runs applications and other

computer programs on the mobile telephone—e.g., email applications, Video chat,

text messaging, phone applications, GPS applications, etc.

33. The baseband/modem and application processors need to

communicate with each other. For example, when a user of a mobile telephone

composes an email or text message using an application running on the application

processor, the application processor must send the message to the

baseband/modem processor so that the baseband/modem processor can transmit the

message to the base station. Similarly, when a mobile telephone receives data

from the base station, the baseband/modem processor receives the data and then

transfers it to the application processor so that the user can View the data in an

email or other application.

34. The baseband/modem and application processors typically

communicate with each other by sending pieces of data over a “bus.” A bus,

sometimes referred to as an “interface,” is typically a set of wires over which

processors send electrical signals to each other. For example, Figure 2 of the ’949

patent shows two processors (Application Processor 204 and Modem Processor

210) connected by Inter-Chip Communication Bus 234.

-12-

See, e.g., see also

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Communication Device

2
{212 r 08

Modern Processor Volatile Memory Application Processor Volatile Memory
. Modem

File S/stem AP Run-Time

ermr 3mm Dana228 236 230 224

210i f
Modem Processor Application Processor

Boot ROM

62;? inter-ChipCommunication Bus
234

Non-Volatile Memory

”0"“ Modern File
Emcu'lable Executable SystemImage image218 214

FIG. 2

Ex—l 101, Fig. 2.

35. Many different types of buses were known prior to the alleged

invention of the ’949 patent. To enable compatibility between processors of

different manufacturers, buses usually operate according to one of a number of

well-known standards. Standardized buses that were commonly used in mobile

telephones and other multi-processor devices include High Speed Synchronous

Interface (HSI), Universal Serial Bus (USB), USB High Speed Inter-Chip (HSIC),

Mobile Industry Processor Interface (MIPI), Secure Digital Input/Output (SDIO),

Universal Asynchronous Receiver-Transmitter (UART), Serial Peripheral Interface

(SP1) and Inter-Integrated Ciruit (12C). See, e.g., EX-l 101, 5:35-43; see also EX-

-13-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

1113, 1132, Fig. 5 (disclosing interfaces such as “one or more universal serial bus

(USB) interfaces, micro-USB interfaces, universal asynchronous receiver-

transmitter (UART) interfaces, general purpose input/output (GPIO) interfaces,

control/status lines, control/data lines, shared memory, and so fort ”).

2. Processor Software Code

36. A processor operates by executing software code that instructs the

processor to perform specific operations. There are different types of software

code for performing different types of operations. For example, when a processor

is initially powered up, it typically executes “boot code” that instructs the

processor to perform certain initialization operations. Such initialization

operations may include determining what other devices may be connected to the

processor and where such other devices may be located. For example, the boot

code may instruct the processor to determine addresses associated with hardware

peripherals, such as a keypad, a visual display, and memory.

37. After the processor executes its boot code, it typically executes

“program code” that instructs the processor to perform various operations that the

processor has been designated to perform. For example, in the case of the above-

described baseband/modem processor, the program code may instruct the

baseband/modem processor to transfer received data to the application processor so

that a user can view the data in an email or other application. In the case of the

-14-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

above-described application processor, the program code may instruct the

application processor to send a message to the baseband/modem processor so that

the baseband/modem processor can transmit the message to the base station.

3. Characteristics of Memory

38. To be executed, software code must be stored in memory that is

accessible to the processor. The processor reads the code from the memory and

then executes the code. There are basically two types of memory—non-volatile

memory and volatile memory. Non-volatile (or persistent) memory is designed to

store code and other data regardless of whether power is being applied to the

memory. In contrast, volatile memory can only store code and other data when

power is being applied to the memory. That is, once power is removed from

volatile memory, all code and other data previously stored in the memory will be

lost.

39. Examples of non-volatile memory include electrically erasable

programmable read-only memory (EEPROM) and flash memory. These types of

non-volatile memory, as well as others, have characteristics that make them

suitable for long-term persistent storage. For example, non-volatile memory can

store code and other data for long periods of time after they have been initially

programmed regardless of whether power is being applied to the memory.

-15-

e.g.,

e.g.,

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

However, non-volatile memory typically costs more, provides lower performance

(e.g., operates slower), and requires more space than volatile memory.

40. Examples of volatile memory include random access memory (RAM),

dynamic RAM (DRAM) and static RAM (SRAM). These types of volatile

memory, as well as others, have characteristics that make them suitable for short-

term storage. For example, code and other data can be quickly stored and retrieved

from volatile memory, thereby increasing system performance. But any code or

other data stored in volatile memory is lost after power is removed from the

memory, so using volatile memory for long-term storage is typically not feasible in

devices that may lose power (e.g., mobile telephones).

41. A data buffer is typically used as a temporary storage area that allows

data to be moved from one location to another. The data buffer is often some

portion of volatile memory.

B. Storing, Loading, and Executing Processor Software Code

1. Storing the Processor Software Code in Memory

42. Software code is typically stored, at least initially, in non-volatile

memory. The code is often later transferred from non-volatile memory to volatile

memory, which is typically faster (and can be less expensive) than non-volatile

memory. It is common for system designers to have processors use a type of

volatile memory as a work space where the processor can execute software and

-16-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

perform other processing functions. When coupled to a processor, engineers will

often refer to this type of volatile memory coupled to the processor as “system

memory.”

43. Software code is typically packaged and stored in memory as a

software file or program called an “executable image” or “executable software

image.” The ’949 patent makes clear that executable software images were known

in the prior art, including “multi-segmented” images that included (1) one or more

headers, tables, or other structures that contain information about the overall image

and/or its underlying data, and (2) one or more segments containing code or other

data used by the image, which the patent refers to as “data segments.”1 Ex-l 101,

2:14-16, 4:34-42.

2. Loading and Executing Multi-Segmented Software Images

44. Before a processor can execute a multi-segmented software image, the

processor usually must load the image into its system memory, from where it is

then executed. Most multi-segmented executable software images are designed to

be loaded in multiple steps. In the first step, the processor reads information in the

one or more headers, tables, and/or other structures of the software image. That

1 References to “data” include code and/or data, and references to “data segment”

include segments containing code and/or data.

-17-

e.g.,

i.e.,

i.e.,

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

information might identify the type of image (e.g., an image format such as

Executable and Linking Format (ELF)), the size of the image, the number and size

of any data segments in the image, the storage locations of the data segments, and

the locations in system memory where the data segments are to be loaded for

execution. In one or more other steps, the processor uses that information to load

the data segments into memory and execute the image.

45. When transferred into memory, the data segments of a software image

can be stored either in contiguous (i.e., continuous) memory locations or spread

across non-contiguous (i.e., non-continuous) memory locations. “Scatter loading”

is a well-known loading process in which one or more portions of a software image

are loaded (or “scattered”) into memory. When there are multiple portions of a

software image, the portions are loaded across either contiguous or non-contiguous

locations in memory. Given this aspect of scatter loading, a mapping mechanism

is typically needed to allow a processor (or other component loading the code or

other data) to know the destination locations where the various parts of the image

are to be stored in memory. Many prior art executable software image formats

(such as ELF) were designed for scatter loading—by including information in the

image about where segments of the image should be loaded in memory for later

execution.

-18-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

3. Sharing Memory in Multi—Processor Systems

46. In order to reduce costs and space requirements in a multi-processor

system, such as a mobile telephone having a baseband/modem processor and an

application processor, program code for both processors may be stored in a single

non-volatile memory. For example, the application processor may have direct

access to non-volatile memory that stores program code for both the application

processor and the baseband/modem processor. The application processor may also

have direct access to volatile memory for storing its program code after power up.

47. The baseband/modem processor, on the other hand, may have direct

access to only volatile memory and not non-volatile memory. Upon power up,

therefore, the application processor may have to transfer program code from non-

volatile memory to volatile memory so that the baseband/modem processor can use

it. The application processor can transfer the baseband/modem processor’s

program code from the non-volatile memory connected to the application

processor to the baseband/modem processor, which may then store the program

code in the volatile memory connected to the baseband/modem processor.

48. The transfer of the program code is typically performed by

transferring segments of code or other data over a bus, where it is then loaded into

memory. A large software image may be split into smaller data segments to

facilitate its transfer. Each segment of data is typically transferred with a header.

-19-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Each segment of data is typically received by a processor and stored in memory

temporarily while the processor reads the information in the header to determine

where the data payload should be later stored in the same or different memory.

Thereafter, the processor stores the data at the destination address in memory.

C. Boot Loading

49. When a computing device is first powered on, one or more processors

in the device typically load and execute software (sometimes called “boot code” or

“boot software”) to enable the processor(s) to begin to operate. Because a

processor must execute its boot code each time it powers up, the boot code is often

stored in a non-volatile memory that is coupled to the processor. In this

arrangement, during boot up, the boot code is typically loaded and executed from

system memory that is coupled to the processor.

50. In a multi-processor system, each processor can store its own boot

code, as the ’949 patent acknowledges is prior art. Ex-1101, 1:3 8-44 (“Processors

may require some software code, commonly referred to as boot code, to be

executed for [booting] up. In a multi-processor system, each processor may

require respective boot code for booting up. As an example, in a smartphone

device that includes an application processor and a modem processor, each of the

processors may have respective boot code for booting up.”), 1:51-56 (“For

instance, a processor’s boot code may be stored to the processor’s respective non-

-20-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

volatile memory (e.g., Flash memory, read-only memory (ROM), etc.), and upon

power-up the boot code software is loaded for execution by the processor from its

respective non-volatile memory.”).

51. The boot-up of a processor often occurs in multiple stages. As the

first step, a primitive “boot loader” function usually loads and then executes a

relatively small amount of boot code stored in a local boot ROM that the processor

can access easily. This first stage enables the processor to begin performing basic

functions. In one or more later stages, the processor then typically loads additional

boot code (usually stored in a different, larger non-volatile memory), which

enables the processor to perform more sophisticated functions. .

52. As the ’949 patent acknowledges, in the prior art, it was known that

boot code for a processor could be stored in a non-volatile memory coupled to a

different processor (especially for the later-stage boot code, which was often too

large to store in ROM). EX-l 101, 229-13 (“In this type of system, the software

(e.g., boot image) is downloaded from the first processor to the other processor(s)

(e.g., to volatile memory of the other processor(s)), and thereafter the receiving

processor(s) boots with the downloaded image.”).

-21-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

VI. OVERVIEW OF THE ’949 PATENT

53. The application that issued as the ’949 patent (Ex-1101) was filed on

Mar. 21, 2011. The ’949 patent claims priority to four provisional applications, the

earliest of which was filed on Mar. 22, 2010.2

54. The ’949 patent is directed to scatter loading an executable software

image from a memory connected to a primary processor to a memory connected to

a secondary processor. EX-l 101, 1:24-33.

A. Alleged Problem of the Prior Art

55. According to the ’949 patent, however, prior art systems and methods

for transferring software code between processors were inefficient. In particular,

the ’949 patent states that when retrieving an image for a modem processor from a

non-volatile memory coupled to the application processor, prior art devices

required copying the entire software image into one part of system memory

coupled to the modem processor, and then copying the image into another part of

system memory when loading it for execution:

[T]raditional loading processes require an intermediate step where the

binary multi-segmented image is buffered (e.g., transferred into the

2 For purposes of this declaration, I treat Mar. 22, 2010 as the effective filing date,

but do not take any position regarding whether the ’949 patent is fully enabled by

any of its provisional applications.

-22-

see also id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

system memory) and then later scattered into target locations (e.g., by

a boot loader). Aspects of the present disclosure provide techniques

that alleviate the intermediate step of buffering required in traditional

loading processes.

Ex-1101, 7:20-26.

56. The ’949 patent describes this double copy (or “extra memory copy”)

approach as inefficient. Ex-1101, 7:27-30 (“Thus, aspects of the present disclosure

avoid extra memory copy operations, thereby improving performance (e.g.,

reducing the time required to boot secondary processors in a multi-processor

system).”); see also id., 2: 1-54, 9:42-56, 11:11-24. However, this alleged problem

was well-known in the prior art.

B. Purported Solution of the ’949 Patent

57. The ’949 patent does not claim to invent a new type of processor, a

new type of processor architecture, a new type of executable software image

format, or a new type of image header or data segment. The patent also does not

claim to invent the well-known idea of scatter loading executable software images

into system memory, including based on information contained in an image header.

All those things were well known in the prior art.

58. Indeed, the ’949 patent admits that many claimed features of the

patent are in the prior art, including:

-23-

e.g.,

e.g.,

id.

id.

i.e.

e.g.,

id.

id.

e.g.,

id.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

multi-processor systems in which a first processor uses non-volatile

memory to store a software image (e.g., boot code) for a second

processor, and where the software image is downloaded from the first

processor to the second processor (e.g., to a volatile memory at the

second processor) (Ex-1101, 2: 1-13);

that a software image would often comprise a header and multiple

segments of code (id, 2:14-16);

that a transfer of a software image from a first (“primary”) processor to a

second (“secondary”) processor may occur Via a temporary buffer (also

referred to as an intermediate buffer) (id, 2:17-37);

that a software image could be scattered (i.e., scatter loaded) from a

temporary buffer into the memory (e.g., volatile memory) of a secondary

processor (id. , 2:3 5-4 1);

that the primary processor and its non-volatile memory may be

implemented on a different chip from that of the secondary processor

(id., 2:42-45); and

that each processor can have a non-volatile memory (e.g., flash memory,

ROM) that store executable images and file systems, including the

processor’s boot code such that upon power-up, the boot code is loaded

from memory for execution by that processor (id. , 1248-56).

-24-

separately

all without first copying the entire image into the

secondary processor’s system memory

e.g.,

e.g.,

e.g.,

Id.,

i.e.

e.g. Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Zero Copy Transport Flow
PREMARY PROCESSOR SECONDARY PROCESSOR

. . t'lart‘lwarc Transport 309 1‘
Hardware Imnspott Mechanism 305

Mechanism (i. ,‘ USB System(Lo. USE-”105” Controller) Memory /
308 [Physical DalstuPipe

m tac. Hb-USB Lame) Image
anut Data 110 ‘, Fania] Data HeaderScumcnt

Data

Segment 1
Data

Segment 2

System Mcmory I
Data

begmcnt .1 am
Segment 3

Image
Header Segment 4‘ (still

tm nst‘crring)
Nonrrvoimilc

Memory

mugs
Header

Segment I
Data

Segment 2
.0111

C *gmcnl 3
Data

Segment 4
Data

Segment 5

301

F16, 3

Ex-1101, Fig. 3.

61. The primary processor 301 comprises a non-volatile memory 306

storing a software image 303 for the secondary processor 302. EX-l 101, 7:60-

8:18, Fig. 3. The software image 303 may be a multi-segment image that includes

an image header and at least one data segment. Id., 822-5, Fig. 3. The primary

processor 301 also comprises a system (i.e., volatile) memory 307 and a hardware

transport mechanism 308 (e.g., a USB host). Id., 8:11-26, Fig. 3.

-26-

i.e.

e.g.,

Id.,

i.e.

Id.,

Id.

i.e. Id.,

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

62. The secondary processor 302 comprises a system (i.e., volatile)

memory 305 and a hardware transport mechanism 309 (e.g., a USB controller).

Ex-1101, 8:9-30, Fig. 3. The hardware transport mechanism 309 includes a scatter

loader controller 304 for controlling the scatter loading of software image data

segments received from the primary processor 301 into the system memory 305 of

the secondary processor 302. Id., 8:60-62, 9:21-27, Fig. 3.

63. The ’949 patent describes the scatter loading process in two stages. In

the first stage, the image header of the software image 303 is transferred from the

primary processor 301 to the secondary processor 302. EX-l 101, 829-12, Fig. 3.

The image header of the software image 303 includes information that is used to

determine where each data segment is to be loaded in the system (i.e., volatile)

memory 305 of the secondary processor 302. Id., 8:18-21, Fig. 3. This

information generally includes a list of addresses indicating where each data

segment is to be loaded. Id., 8:57-60, Fig. 3.

64. The first stage of the scatter loading process begins by the secondary

processor 302 requesting the image header from the primary processor 301 in

accordance with a boot loader program running on the secondary processor 302.

Ex-1101, 8:40-43, Fig. 3. Once requested, the primary processor 301 transfers the

image header from the non-volatile memory 306 to the primary processor’s system

(i.e., volatile) memory 307. Id., 8:14-18, Fig. 3.

-27-

i.e.

Id.

Id.,

Id.

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

65. Within the primary processor 301 , the image header is transferred

from the system (lie. , volatile) memory 307 to the hardware transport mechanism

308. EX-l 101, 8:24-26, Fig. 3. The image header is then transferred from the

hardware transport mechanism 308, over the inter-chip communication bus 310, to

the hardware transport mechanism 309 of the secondary processor 302. Id., 8:9-

35, Fig. 3.

66. In the second stage of the scatter loading process, the boot loader

program running on the secondary processor 302 programs the scatter loader

controller 304 with the information included in the image header. EX-l 101, 8:63-

67, Fig. 3. As discussed above, this information is used to determine where each

data segment is to be loaded in the secondary processor’s system memory 305, as

well as the size of each data segment and its location within the primary processor

301. Thus, once programmed, the scatter loader controller 304 may transfer to the

system memory each data segment. Id., 9:13-37, Fig. 3. With scatter loading, the

data segments may be placed into consecutive or non-consecutive locations within

the system memory. Id., 9: 12-15, 9:21-41. The primary processor 301 may

transfer each data segment to the secondary processor 302 over the inter-chip

communication bus 310. Id., 8:26-30, Fig. 3.

67. Once received at the secondary processor 302, each data segment is

temporarily stored not in system memory but in a hardware buffer 309. EX-l 101,

-28-

i.e.

i.e. Id.,

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

9:50-54, Fig. 3. Thereafter, the scatter loader controller 304 may load each data

segment directly into the system (i.e., volatile) memory 305 of the secondary

processor 302 at the location determined from the information included in the

image header and previously programmed into the scatter loader controller 304.

Ex-1101, 9:21-37, Fig. 3. Thus, during the above-described scatter loading

process, each data segment is transferred from the primary processor 301 to the

secondary processor 302, and is not temporarily stored in the secondary

processor’s system (i.e., volatile) memory 305. Id., 9:42-56.

C. Prosecution History of the ’949 Patent

68. The ’949 patent was filed on Mar. 21, 2011 with twenty-four claims,

including six independent claims. During prosecution, the Applicants amended

several independent claims to incorporate the contents of cancelled claim 4, in

addition to other features, to overcome the cited prior art.

69. Initially, the Examiner rejected all original claims of the ’949 patent

under 35 U.S.C. § 102(b) as being anticipated by PCT Publication No. WO

2006/077068 to Svensson et al. (“Svensson PCT”).3 Ex-1104, 2-5. The Examiner

found that Svensson PCT discloses:

3 Svensson PCT claims priority to Svensson. Svensson PCT at cover (Ex-1103);

Svensson at cover (Ex-11 10).

-29-

client processor 104

DSPXRAM 110 An intermediate

storage area is defined within the memory 108

The slave copies the contents of the

intermediate storage area to appropriate locations in its slave-private

memory (Step 220), thereby implementing its actual loading, see page 7,

last line - page 8, line 2

host processor102 non-

volatile memory 106

The arrows in FIG. 1 indicate access paths, e.g., busses

and DMA paths

Fig. 3, it is clear that the executable software image

comprises an image header and at least one segment

Id. see also

Id.

Id.

i.e.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

 ARM

DSP
,_

Int. : DSP DSP
Store. SARAM DSP CPU H XRAM
Area !,&DARAM i.

108 104 110

FIG. 1

70. In response, the Applicants did not contest that Svensson PCT

anticipated the original claims. Instead, the Applicants amended claim 1 to require

that (1) the claimed “hardware buffer” must receive “an image header and at least

one data segment” of an executable software image, “the image header and each

data segment being received separately”; and (2) the claimed “scatter loader

controller” is configured “to load the image header; and to scatter load each

received data segment, based at least in part on the loaded image header.” EX-

1105, 2-9. Similar amendments were made to independent claims 11, 17, 19, 21,

and 23. Id., 4-7. In connection with these amendments, the Applicants admitted

that “Svensson [PCT] arguably discloses that the software includes a header and a

data segment.” Id., 8.

71. In an attempt to distinguish Svensson PCT, the Applicants argued that

Svensson PCT “fails to disclose that the image header and each data segment are

received separately” (i.e., the requirement added by amendment). EX-1105, 9. The

-31-

each data segment directly

Id.

separately

directly

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

PCT—present new art and a new combination that the Examiner never had a

chance to consider.

VII. LEVEL OF ORDINARY SKILL IN THE ART

74. A person of ordinary skill in the art of the ’949 patent would have had

a Master’s degree in Electrical Engineering, Computer Engineering or Computer

Science plus at least two years of experience in mobile device architecture and

multi-processor systems, or a Bachelor’s degree in one of those fields plus at least

four years of experience in mobile device architecture and multi-processor

systems. I understand that in the Related ITC Case, the CALJ held this to be the

level of ordinary skill in the art. Ex-l 107, 11-13.

VIII. CLAIM CONSTRUCTION

75. I have applied the “broadest reasonable interpretation” standard for

the claim terms of the challenged claims. However, based on my reading of

the ’949 patent’s specification and the ordinary meanings of the claim terms, the

prior art teaches each claim limitation under any reasonable interpretation of the

claim terms. My analysis is, therefore, not dependent on application of the

“broadest reasonable interpretation” standard.

76. I understand that the Petitioner has set forth its proposed construction

of a term of the ’949 patent and its support for the construction. Those are copied

below. I also understand that the remaining terms of the claims described below

-33-

Phillips

See

Id.

Phillips

e.g.,

e.g., e.g.,

Phillips

Phillips

Phillips

Phillips

e.g.,

e.g., e.g.,

Phillips

Phillips

Phillips

Id.

Id.

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

IX. OVERVIEW OF PRINCIPAL PRIOR ART REFERENCES

A. Svensson (Ex-1110)

88. Svensson is generally directed to an “OS-friendly bootloader.” EX-

1110, Abstract. In particular, Svensson discloses a technique for loading code

and/or data from memory associated with a host processor to memory associated

with a client processor in a multi-processor system. Id., 2:24-27.

89. Figure 1 of Svensson below shows a multi-processor system 100. EX-

1110, 3:49-50, Fig. 1.

Non Volatile
Memory

108 «10°

FIG. 1

Multi-processor system 100 has an advanced RISC machine (ARM) device and a

digital signal processor (DSP) device. Id., 3:54-58, Fig. 1. The ARM device

includes a host processor (ARM CPU) 102 that is coupled to a non-volatile

memory 106 and t0 the DSP device. Id., 3:49-63, 423-5, Fig. 1. The DSP device

includes a client processor (DSP CPU) 104, a system memory (DSP external RAM

(XRAM)) 110, and an internal volatile memory (single-access RAM (SARAM) or

dual-access RAM (DARAM)) 108 that can have an intermediate storage area (Int.

-40-

Id.

Id.

Id

Id

see also id.

Id.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Store Area). Id., 3264-423, Fig. 1. The multi-processor system includes access

paths, such as buses and DMA paths, that connect the CPUs and memories. Id.,

4:3-5, Fig. 1. The host processor 102 can directly access the non-volatile memory

106 and the shared volatile memory 108 (including the intermediate storage area)

at the client, but not the system memory 110 at the client processor 104. Id., 4:5-8,

Fig. 1. The client processor 104, on the other hand, can directly access the shared

volatile memory 108 as well as the system memory 110, but not the non-volatile

memory 106 coupled to the host. Id.

90. Svensson discloses that the host processor 102 loads the code and/or

data from the non-volatile memory 106 to the intermediate storage area in the

shared volatile memory 108 at the client, and the client processor 104 then copies

the code and/or data to end destinations in the system memory 110. Ex-1110,

1:11-15, 226-20, 4:9-14, 4:22-26, 6:12-15, Fig. 1; see also id., 4:15-6:11, Fig. 2.

Svensson describes the intermediate storage area as “a block of [reserved] memory

in the slave’s heap of memory that is located in the memory visible to the host,

such as ‘internal memory 108’” and is “used for intermediate storage of

information (code and/or data) to be transferred to the slave-private memory, i.e.,

the memory that is invisible to the host, such as ‘external’ XRAM 110.” Id., 5:21-

36, Fig. 1.

-41-

Id

Id.

Id

Id.

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

91. Figure 3 of Svensson below shows how the code and/or data can be

transferred from the host processor into the intermediate storage area using one or

more transfer blocks. Id., 6: 12-23, Fig. 3.

Tmnsier Block

FIG. 3

Each transfer block includes a header that indicates the length (Length) of the

block and a destination address (Dest. Addr.) indicating where the block is to be

loaded in the system memory 110. Id. As shown by the dashed lines in Figure 3,

several such blocks may be concatenated in the intermediate storage area. Id.,

6:23-25, Fig. 3. Svensson further discloses that the size of the code and/or data can

be larger than the intermediate storage area. Id., 6:26-28, 6:37-43.

92. Svensson discloses that the client receives code and/or data in one or

more transfer blocks from the host processor 102. EX-l 1 10, 6:12-25, 6260-722, Fig.

1. For each transfer block, the client processor 104 first reads the header, which

includes the destination address for the data block. Id., 5 265-67, 6:15-23, Fig. 2.

The client processor then uses the destination address to load the data block into

-42-

Id.

Id.,

Id. see also id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

the system memory 110. Id. Svensson discloses that the client processor 104 can

have a communication mechanism such as a DMA unit “to perform the actual

transfers of information between memories.” Id., 6:48-58, 6260-722, 7:52-60.

B. Bauer (EX-1 109)

93. Bauer is closely interrelated with Svensson. Bauer has the same four

inventors and the same assignee as Svensson, and was filed only four months after

Svensson. EX-l 109, cover; EX-l 1 10, cover.

94. Bauer describes a new file format that is an improvement upon the file

format described in Svensson. Instead of using a separate block header to store a

destination address for each block of an image, the file format in Bauer has that

information collected in one place as section information. EX-1109, 111127, 32-34,

43, Figs. 1A-1C. Bauer describes the benefit of this approach: “[t]his simplifies

optimization in a number of circumstances, for instance, if sections are to be

loaded into memory” and “makes memory loading efficient as there is no need to

search through an image for section headers when loading.” Id. , 1143; see also id. ,

1116 (“Greater efficiency in loading data can reduce response times in such systems,

and space-efficient storage saves valuable memory”), 127. This section

information is near the beginning of the image—after the header but before all the

data sections of an image—so that the section information can be retrieved

-43-

Id.

See cf.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

separately before the data sections are read and processed. Id., Abstract, W28-30,

47, Figs. lA-lC.

95. Bauer teaches that this new file format can be used in the same multi-

processor system described in Svensson. Bauer shows and describes the same

system as Svensson and even cites to Svensson as an example of a program loader

for loading an image with this file format in that same multi-processor system.

96. In particular, Bauer discloses the same circuit architecture as

Svensson—Bauer and Svensson disclose loading different image file formats from

an ARM device to a DSP device’s system memory in the same multi-processor

system. See EX-l 109, Fig. 2, W35, 36; cf EX-l l 10, Fig. l, 3:49-4:8.

Bauer, Fig. 2

-44-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Non-Volatile
Memory

108 «10°

Svensson, Fig. 1

97. Bauer, in its detailed description of the specification, cites to Svensson

as one example of a program loader that can use the invention described in Bauer:

There are many possible applications of this format and its

individually coded sections. ...Object code and data can also be stored

in this file format, with a program loader reading the stored

information and processing stored sections accordingly. One example

of such a program loader is described in U.S. patent application Ser.

No. 11/040,798 filed on Jan. 22, 2005, by M. Svensson et al. for

“Operating-System-Friendly Bootloader.”

EX-1109,1l31.

98. Figures lA-lC of Bauer below show the file format of the binary data

image 100:

-45-

Id.

Id.

e.g., Id.

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Header Section Section Data

100

Size [32 bits] Number of sections
FIG’ 1B 102” 102—1 [16 bits] 102-2

Section 1 Length Extra 1 [16 bits] Section 2 Length Extra 2 [16 bits]
[16 bits] 108-1 [16 bits] 108-2 112-2

Load Address 1 [32 bits] Load Address 2 [32 bits]

110-1 110-2
FIG. 1C 104-1 104-2

EX-l 109, Figs. 1A-1C.

99. As shown in Figure 1A, the file format includes a header 102, section

information 104, and section data 106. EX-1109, 1132, Fig. 1A. As shown in

Figure 1B, the header 102 indicates the size 102-1 and number of sections 102-2 in

the section data 106. Id., 1133, Fig. 1B. As shown in Figure 1C, the section

information 104 indicates the length 108 and load (or destination) address 110 of

each section in the section data 106. Id., 1134, Fig. 1C. Each data section has its

own load address in the section information and can be arranged in the image in

any suitable order (e.g., in order of load address or in an arbitrary order). Id., 1137.

The section data 106 includes one or more sections containing object code and data

for the image. Id., 111132-34, Figs. 1A-1C.

-46-

Id.

Id

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

100. Bauer discloses that the file format shown in Figures 1A-1C can be

stored in any of the memories of multi-processor system 200, including the non-

volatile memory 206 at the host, the shared volatile memory 208 that has an

intermediate storage area (Int. Store Area), and the system memory 210. EX-l 109,

1135 (“The memory 206 may be a ROM, a flash memory, or other type of non-

volatile memory device, within which an image in the format depicted in FIGS.

1A-1C can be stored.”), 1136 (“. . .between the CPUs and the memories, any one or

more of which may store an image in the format depicted in FIGS. 1A-1C.”), Fig.

2. Bauer also discloses that the client processor can have an operating system

memory manager for “load[ing] and unload[ing] sections of memory” or a DMA

unit for “DMA transfer[s].” Id., W31, 38.

C. Kim (EX-11 11) (Including English Translation (EX-1112))

101. Kim discloses a multi-processor system in which a secondary

processor receives program block header information separately from a primary

processor before receiving a corresponding program block from the primary

processor during a loading procedure. EX-1112, 5212-625. Figure 1 of Kim below

shows a primary processor (system management processor 11) that is coupled to a

plurality of secondary processors (main processors 13, switching subsystem

processors 14, device processors 15), as well as to a non-volatile memory (hard

disk drive 17). Id., 4:7-14, Fig. 1.

-47-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

FIG. I

17 n/

mummsx r—_—I I“; —:L'WI11am;a""§,.,g“.§.‘§,‘§‘lr mm" mm
mmm1.L:\

: /13

' [mm m n

DATAimJ DATA DATA'_n£v1ca 1 mm; 2 mm; n

16

102. Figure 3 of Kim below shows a “conventional loading method” for

loading a program stored in the non-volatile memory to one of the plurality of

secondary processors. EX-l l 12, 529-627, Fig. 3.

-48-

program block header information

Id.

program block corresponding to

actual program content Id.

received separately

Id.

Id.

Id.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

100

z“/
I

v m
Yrs-waive!

120

Mammy Host PM Rank» PM
we 102 106

Keypad
110

0.59." 106 Immune

1'0 Imeflace
1“

AN Dumas
116

Pow
SupplyHE

FIG. '5

105. Radio processor 104 “may be implemented as a communications

processor using any suitable processor or logic device, such as a modem processor

or baseband processor.” Id., 1144. Interfaces 106 can include “one or more

universal serial bus (USB) interfaces, micro-USB interfaces, universal

asynchronous receiver-transmitter (UART) interfaces, general purpose input/output

(GPIO) interfaces, control/status lines, control/data lines, shared memory, and so

forth.” Id., 1132, Fig. 5.

-51-

See

See cf.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

X. SPECIFIC GROUNDS FOR CHALLENGE

106. In the following sections I describe in detail how the prior art renders

obvious each and every limitation of claims 10-17 of the ’949 patent.

A. Ground 1: Claims 10-15 Are Rendered Obvious By The

Combination Of Bauer, Svensson, And Kim

1. Reference to “Bauer and Svensson Combined”

107. Bauer is so closely interrelated with Svensson that, for ease of

reference, the declaration uses “Bauer and Svensson combined” to illustrate what

Bauer alone, or Bauer in combination with Svensson, teaches to a person of

ordinary skill in the art.

108. Bauer has the same four inventors and the same assignee as Svensson,

and was filed only four months after Svensson. EX-l 109, cover; EX-l 1 10, cover.

Bauer describes a file format where section information containing destination

addresses for each data section in an image is collected in one place and precedes

all the data sections, and explicitly describes that format as an improvement over

using multiple, separate block headers as described in Svensson. EX-l 109, 111127,

32-34, 43, Figs. 1A-1C. See Section IX.B;

109. Bauer teaches that its file format can be used in the same multi-

processor system as Svensson. Indeed, they have the exact same figures of that

system. See EX-1109, Fig. 2 (below), W35, 36; cf EX-l 1 10, Fig. 1 (below), 3:49-

4:8.

-52-

See

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Bauer, Fig. 2

Non-Volatile

Memory
1%

 DSP
XRAM

110

104

Svensson, Fig. 1

110. In addition, Bauer explicitly cites to Svensson as an example for

loading an image with Bauer’s file format in that same multi-processor system.

Ex-1109, 1131. See Section IX.B;

111. For these same reasons, as explained in more detail below, it would

have been obvious to a person of ordinary skill in the art to combine Svensson with

Bauer.

112. Although it is readily apparent that the file format of Bauer can be

used in the multiprocessor system of Svensson, Bauer does not describe the

-53-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

multiprocessor system with the same level of detail as Svensson. Because of that,

this declaration refers to “Bauer and Svensson combined,” but is clear in

identifying the relevant disclosures from each reference in its citations.

2. Claim 10

113. Claim 10 is rendered obvious by Bauer and Svensson combined;

however, to the extent the Patent Owner contends that Bauer and Svensson

combined does not teach that different parts of an executable software image are

received separately (claim [10b]), this claim is rendered obvious by the

combination of Bauer, Svensson, and Kim.

a. [10a] “A method comprising: receiving at a secondary

processor, from a primary processor via an inter-chip

communication bus, an image header for an

executable software image for the secondary

processor that is stored in memory coupled to the

primary processor, the executable software image

comprising the image header and at least one data

segment;”

114. Bauer and Svensson combined renders obvious this limitation. More

particularly, Bauer and Svensson combined discloses most of this limitation,

except that it does not explicitly disclose a header that meets the claimed “image

header.” However, Bauer and Svensson combined renders obvious the claimed

“image header.”

(i) “a primary processor,” “memory coupled to the

primary processor,” “a secondary processor,”

“an inter-chip communication bus”

-54-

primary processor

memory

secondary processor bus

see also

communication

bus

See e.g.,

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

118. To the extent that the Patent Owner argues that Bauer and Svensson

combined does not disclose processors located on different chips, then this feature

is rendered obvious by Bauer and Svensson combined. In light of Bauer and

Svensson’s combined teaching that the primary and secondary processors are

devices separated by a hardware boundary and that the secondary processor is a

commercially available DSP device having on-chip memories, it would be obvious

to a person of ordinary skill in the art to provide the primary and secondary

processors on different chips. A person of ordinary skill in the art would be very

familiar with multi-processor systems comprising processors on separate chips.

See e.g., EX-l 1 13, W32, 34, 44, Fig. 3. Indeed, the ’949 patent admits that systems

in which the primary and secondary processors were on the same or different chips

were well known. Ex-1101, 2:42-45.

119. A person of ordinary skill in the art would have considered different

ways to construct the two processors in Bauer and Svensson combined. Such a

person would have understood that there are a finite number of ways to do so—on

the same chip or on different chips. The person of ordinary skill in the art would

have found that this simply involves the combination of prior art elements

(processor chips and standard methods of packing those chips in devices)

according to known methods to achieve a predictable result with a reasonable

expectation of success. Such a person would have understood that this approach

-57-

see also

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

would have been obvious to try, would have been one of a small number of finite

ways that provides greater efficiency, and would have involved a simple

substitution of one known feature for another.

120. Accordingly, a person of ordinary skill in the art would understand

that because Bauer and Svensson combined discloses, or alternatively renders

obvious, a communication bus that couples two processors located on separate

chips, that communication bus is an “inter-chip” communication bus.

(ii) “an executable software image” having a

header and at least one data segment

121. Bauer and Svensson combined discloses an “executable software

image.”13 For example, Bauer discloses a “data image” that can include “[o]bject

code and data,” and can be in the form of an “executable file.” Ex-1109, 111130-32;

see also Ex-l 1 10, 1:11-15, 2:11-15, 6:19-23. A person of ordinary skill in the art

would understand from Bauer’s teaching that (1) object code and/or data is in the

form of software, (2) a data image that includes object code and/or data is a

“software image,” and further (3) the data image in the form of an executable file

is an “executable software image.”

13 The ’949 patent admits that an executable software image having a header and

multiple segments of code is prior art. Ex-1101, 1:37-41, 2:14-16.

-58-

Id.

Id.

Id.

Id.

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

122. Bauer and Svensson combined teaches that the executable software

image can have a header, section information, and at least one data segment (one

or more data sections). EX-1109, 111127, 31-36, 43, Figs. 1A-1C. In particular,

Figures 1A-1C of Bauer below show the file format of a data image 100:

Header Section Section Data

FIG‘ 1A /. 102 1 Information 104 106
100

Size [32 bits] Number of sections
F'G' “3 102” nab-us:

Section 2 Length Extra 2 [16 bits]
[16 bits] 108—2 112-2

Load Address 2 [32 bits]
110-1 110-2

104-1 104-2

Section 1 Length Extra 1 [16 bits]
[16 bits] 108-1

Load Address 1 [32 bits]

FIG. 1C

Ex-1109, Figs. 1A-1C. The file format includes a header 102, section information

104, and section data 106. M, 1132, Fig. 1A. The header 102 indicates the size

102-1 and number of sections 102-2 in the section data 106. Id., 1133, Fig. 1B. The

section information 104 indicates the length 108 and load address 110 of each

section in the section data 106. M, 1134, Fig. 1C. The load addresses are the

destination addresses in the system memory (DSP XRAM) where the sections are

to be transferred. Id., 111132, 34. The section data 106 includes one or more

sections containing object code and data for the image. Id., 111132-34, Figs. lA-lC.

-59-

id.

entire

image

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

storage area in the memory 108 with code and data that the slave further copies to

end destinations in the slave-private memory 110.”), Figs. 1, 3.

(iv) “[a] method comprising: receiving” at a

secondary processor, from a primary processor

via an inter-chip communication bus, a header

for an executable software image

125. Bauer and Svensson combined discloses a method for receiving at a

secondary processor (DSP device), from a primary processor (ARM device) via an

inter-chip communication bus (buses and/or DMA paths), a header for an

executable software image.15

126. For example, Svensson discloses that the primary processor (ARM

device) loads an image (code and/or data) via the bus (buses and/or DMA paths) to

a hardware buffer (intermediate storage area) at the secondary processor (DSP

device) one part at a time, and the secondary processor transfers each part of the

image to its system memory (DSP XRAM) one at a time. Ex-1110, 4: 1-3, 4:9-10,

4:22-26, 5:21-37, 5:53-6:15, Fig. 1 (below).

15 The ’949 patent admits that a secondary processor that can receive from a

primary processor a header for an executable software image, where the processors

are on separate chips, is prior art. Ex-1101, 1:45-48, 223-16, 2:42-45.

-61-

Id

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Non-Volatile

1%

p--_____

104

FIG. 1

127. Figure 3 of Svensson below shows how the image can be transferred

from the primary processor into the hardware buffer at the secondary processor

using one or more transfer blocks. EX-l l 10, 6: 15-23, Fig. 3.

Des! Addt. {Xx

Header

TWerBlodt

FIG. 3

Each transfer block includes a header that indicates the length (Length) of the

block and a destination address (Dest. Addr.) indicating where the block is to be

loaded in the system memory (DSP XRAM). Id.

128. For each transfer block, the secondary processor first reads the header,

which includes the destination address for the data block. EX-l l 10, 5:65-67, 6: 15-

23, Fig. 2. The secondary processor then uses the destination address to load the

-62-

Id

Id.,

see

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

data block from the hardware buffer into the system memory. Id. Svensson

discloses that the secondary processor can have a communication mechanism such

as a DMA unit “to perform the actual transfers of information between memories.”

Id., 6:48-7:2, 7:52-60.

129. A person of ordinary skill in the art would have found it obvious, and

would have been motivated, to transfer an image from a primary processor to a

secondary processor’s system memory using a hardware buffer (intermediate

storage area), as described in Svensson, using Bauer’s file format (as described in

section X.A.2.a.ii) rather than Svensson’s file format, based on Bauer’s express

teachings. Bauer teaches that its file format is an improvement upon the file

format described in Svensson, and can be used in the same multi-processor system

as Svensson. EX-l 109, 111127, 31, 43. Unlike in Svensson in which an image

consists of multiple data segments (blocks) where each data segment has its own

header to store a destination address for that data segment, Bauer teaches an image

that consists of multiple data segments (sections) where there is one header and

one section information (which stores the destination addresses) that describe all

the data segments. Bauer describes the benefit of this approach: “[t]his simplifies

optimization in a number of circumstances, for instance, if sections are to be

loaded into memory” and “makes memory loading efficient as there is no need to

search through an image for section headers when loading.” EX-l 109, 1143; see

-63-

also id.

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

also id., 1116 (“Greater efficiency in loading data can reduce response times in such

systems, and space-efficient storage saves valuable memory.”), 1127.

130. Bauer does not explicitly describe the loading process from the

primary processor to the secondary processor in much detail, particularly the role

of the hardware buffer in the loading process. However, Bauer expressly cites to

Svensson as one example of a program loader that can load data using the

invention described in Bauer. Ex-1109, 1B 1. A person of ordinary skill in the art

would understand this to mean that Bauer can load its file format using a similar

program loader (and loading process) as that disclosed in Svensson. That is, in

Bauer’s multi-processor system 200 (shown in Figure 2), the primary processor

(ARM device) can load the data image 100 (shown in Figures 1A-1C) to the

hardware buffer (intermediate storage area) in the shared volatile memory 208 at

the secondary processor (DSP device), and the secondary processor can then

transfer the data image 100 to end destinations in the system memory (DSP

XRAM) 210 based on the destination addresses stored in the section information.

Id., Figs. 1A-1C, 2.

131. For these reasons, including as described in section X.A.1, the person

of ordinary skill in the art would have looked to the teachings of Bauer and

Svensson combined. The person of ordinary skill in the art would have found that

loading Bauer’s file format in the same multi-processor system disclosed in Bauer

-64-

see also

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

and Svensson—but described in more detail in Svensson—would have been

obvious to try, would have involved a simple substitution of one known feature

(Svensson’s file format) for another (Bauer’s file format), and would have had a

reasonable expectation of success.

(v) Bauer and Svensson combined renders obvious

the “image header”

132. As I explained in Section VIII.A, an “image header” means “a header

associated with the entire image that specifies where the data segments are to be

placed in the system memory.” Bauer’s file format does not meet the claimed

“image header”—in Bauer, the header (header 102) is associated with the entire

image, but it does not specify where the data segments (sections) are to be placed

in the system memory (DSP XRAM). Instead, Bauer teaches that the section

information 104, rather than the header 102, specifies the destination addresses.

Ex-1109, 1132-34, Figs. 1A-1C; see also section X.A.2.a.ii.

133. A person of ordinary skill in the art would have found it obvious to

modify Bauer and Svensson combined to provide, in the header rather than in the

separate section information or elsewhere, the destination addresses specifying

where the data segments are to be placed in the system memory. The resulting

modification would be an “image header” that is associated with the entire image

-65-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

and that further specifies where the data segments are to be placed in the system

memory.

134. A person of ordinary skill in the art would have been motivated to

look to the teachings of Bauer and Svensson combined for the reasons described in

sections X.A.1 and X.A.2.a.iv. The person of ordinary skill in the art who was

familiar with Bauer was indeed aware of Svensson, and would have looked to the

teachings of both to understand how different file formats can be loaded in the

same multi-processor system. Ex-1109, 1131, Fig. 2; Ex-1110, 6: 12-25, Fig. 1. The

person of ordinary skill in the art would have also contemplated other types of file

formats that result in greater efficiency in loading data, reduced response times,

and space-efficient storage. Ex-1109, 1116, 27, 43. With the change in file format

from having one header per data segment (block) as disclosed in Svensson, to

having one header and one section information for multiple data segments

(sections) as disclosed in Bauer, the person of ordinary skill in the art would have

considered different portions of the executable software image in which to place

the destination addresses for the data segments. In fact, Bauer expressly

contemplates that “[0]ther arrangements” of this same file information are possible.

Ex-1109, 1129.

135. Bauer and Svensson combined teaches putting the destination

addresses before all the code and data of an image. For example, Bauer discloses

-66-

after

i.e.,

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

that “the sections can be located in sequence after the header and the section

information.” Ex—1109, 1128. A person of ordinary skill in the art would therefore

understand there to be a finite number of locations in an image where these

destination addresses can be stored. There are two possible locations—the

destination addresses could be stored in the very beginning of the image (i.e., in the

header) or in a location separate from the header but before the start of the code

and data (such as the separate section information of Bauer).

136. A person of ordinary skill in the art would find that storing the

destination addresses in the header rather than in a different location would have

been obvious to try because of the limited number of locations to put the

destination addresses. The person of ordinary skill in the art would have found this

to involve a simple substitution of one known feature (a header and a separate

section information that includes the destination addresses) for another (a header

that includes the destination addresses). The person of ordinary skill in the art

would have had a reasonable expectation that modifying Bauer’s file format to put

the destination addresses in the header rather than in the section information would

have worked as a file format that would be loaded in a similar manner in the same

multi-processor system as taught by Bauer and Svensson combined.

137. For the foregoing reasons, Bauer and Svensson combined renders

obvious a method comprising receiving at a secondary processor, from a primary

-67-

readable before

processed

retrieved before read see also id.

separately

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

and it was this claim feature that led the Examiner to allow the application. Bauer,

which was not before the Patent Office, teaches this feature.

(ii) Obviousness in View of the Combination of

Bauer, Svensson, and Kim

143. To the extent the Patent Owner contends that Bauer and Svensson

combined does not teach this claim feature, Kim, which was also not before the

Patent Office, expressly teaches this feature. Kim discloses a multi-processor

system for the transfer of data files in which program header information is

transmitted separately from, and prior to, the associated data. For example,

Figure 1 of Kim below shows a multi-processor system that includes a primary

processor (system management processor 11) coupled to multiple secondary

processors (main processors 13, switching subsystem processors 14, device

processors 15). Ex-1112, 4:7-12, Fig. 1.

-70-

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

17 n g—-——— “"

/ l ! ll l SYSI'BI 12 mm mmnmsx IW — manna mm
mm; mm mm mm" mm.

_. ‘ 12"

“WWII

[Tm um um

16 mm. mm. comm.
_ nevrcn 1 mu: 2 ounce n

16'

The primary processor is coupled to a non-volatile memory (hard disk drive 17)

that stores the program blocks that need to be loaded to a secondary processor. Id.,

4:13-14, Fig. 1.

144. Figure 3 of Kim below shows a conventional loading method for

loading a program stored in the non-volatile memory to one of the plurality of

secondary processors. EX-l 1 12, 529-625, Fig. 3.

-71-

program block header information

Id.

program block corresponding to actual program

content Id.

Id.

received separately

Cf.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

requirements for the secondary processor. By receiving and processing the header

and section information in Bauer first, and then receiving and processing the data

segments separately, the secondary processor can use the same memory locations

for both tasks, avoiding the need for two sets of memory locations.

149. A reduced memory requirement is important in the context of Bauer

and Svensson combined because the intermediate storage area is of limited size.

Bauer and Svensson combined discloses that the image can be larger than the

intermediate storage area, and further discloses that Bauer’s file format can support

data “up to a total of four gigabytes (GB) in size.” Ex-1109, W33, 38; Ex-l 1 10,

6:26-28, 6:3 7-43. A person of ordinary skill in the art would understand from this

combination that in order to support such a large image in an intermediate storage

area of limited size, the image would require many data segments (sections). All

of the data segments would not fit in the secondary processor’s hardware buffer at

the same time, and thus would require that the data segments be separately

transferred. The person of ordinary skill in the art would further understand that

the section information in Bauer would need the same number of section

information entries as the number of data segments to provide information

including the destination address for each data segment. The person of ordinary

skill in the art would understand that the section information, to store all this

information, would be of sufficient size such that it would need to be transferred to

-74-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

the secondary processor’s hardware buffer separately from the data segments—in

other words, the section information and data segments would not all fit in the

hardware buffer at the same time. Bauer specifically cites the importance of using

memory efficiently, which Kim provides. EX-1109, 111116, 27, 43.

150. A person of ordinary skill in the art would have understood that there

are a finite number of ways to receive a file format—to receive the header and

section information in Bauer (or the modified image header of Bauer) and data

segments together or separately (as suggested by Bauer and Svensson combined,

and also taught by Kim). Such a person would have understood that Kim’s

approach would have been obvious to try because it provides greater efficiency in

loading data, reduced response times, and space-efficient storage, and would have

involved a simple substitution of one known feature for another. The person of

ordinary skill in the art also would have had a reasonable expectation that Kim’s

method would have worked in the multi-processor system of Bauer and Svensson

combined as Kim’s method is an implementation of the requirement of Bauer and

Svensson combined that the header and section information containing the

destination addresses in Bauer should be retrieved before the data sections of an

image are read and processed. EX-1109, Abstract, 111128-30, 47.

c. [10c] “processing, by the secondary processor, the

image header to determine at least one location within

-75-

see also

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

system memory to which the secondary processor is

coupled to store each data segment;”

151. Bauer and Svensson combined, as modified above to include

destination addresses in an image header, renders obvious this limitation. 16

152. Bauer and Svensson combined discloses a system memory (DSP

XRAM) to which the secondary processor (DSP device) is coupled. EX-1109,

111135-36, Fig. 2 (below); see also EX-1110, 3249-8, Fig. 1.

 Non-Volatile 20°
Memory

206

DSP CPU

204

 DSF’

XRAM
210

Int. . 059

Store: SARAM
Area '&DARAM

208

FIG. 2

153. As described in connection with claim [10a], Bauer and Svensson

combined teaches that the modified image header of Bauer contains the destination

addresses in the system memory (DSP XRAM) where the data segments (sections)

are to be transferred. EX-1109, 111132, 34, Fig. 1C. Accordingly, the destination

16 The ’949 patent admits that “some processing,” by the secondary processor, of a

received packet having a header “is required for that data to be stored where it

needs to go (e.g., within the secondary processor’s volatile memory)” Ex-l 101,

2:14-22, 2:45-54.

-76-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

addresses specify “at least one location within system memory to which the

secondary processor is coupled to store each data segment.”

154. Bauer and Svensson further teaches that the secondary processor

“processes” the modified image header of Bauer. For example, Bauer and

Svensson combined discloses that the secondary processor transfers the image,

which includes the header and section information containing destination addresses

in Bauer, from the hardware buffer to its system memory—different parts of the

image are loaded to the hardware buffer, and then to the system memory, one part

at a time. EX-1109, 1136 (describing how the image containing a header and section

information can be stored in the system memory), Figs. 1A-1C; Ex-l 1 10, 5:21-28,

5:65-67, 6: 12-15 (describing how the contents of the intermediate storage area,

which contains part of an image that can be the header, are loaded to the system

memory one part at a time), Figs. 1, 2 (step 220), 3.

155. In addition, Bauer and Svensson combined teaches that it is important

that the header and section information containing the destination addresses in

Bauer should be “retrieved” before the data segments (sections) are read and

processed. EX-1109, Abstract; 111128-30, 1147. A person of ordinary skill in the art

would understand that the secondary processor would have to load the header and

section information in Bauer from the hardware buffer to the system memory in

order to read the destination addresses for later loading of the data segments, as

-77-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

well as to free up space in the hardware buffer for the data segments. The person

of ordinary skill in the art would understand this to mean that the secondary

processor is configured to “process” the header and section information in Bauer

(or modified image header of Bauer).

156. Accordingly, Bauer and Svensson combined renders obvious

processing, by the secondary processor, the image header to determine at least one

location within system memory to which the secondary processor is coupled to

store each data segment.

d. [10d] “receiving at the secondary processor, from the

primary processor via the inter-chip communication

bus, each data segment; and”

157. Bauer and Svensson combined discloses this limitation.17 As

described in connection with claim limitations [10a]-[10b], Bauer and Svensson

combined discloses receiving at the secondary processor (DSP device), from the

primary processor (ARM device) via the inter-chip communication bus (buses

and/or DMA paths), each data segment (section).

e. [10e] “scatter loading, by the secondary processor,

each data segment [directly] to the determined at least

17 The ’949 patent admits that a secondary processor that can receive from a

primary processor each segment of code in an image, where the processors are on

separate chips, is prior art. EX-l 101, 1:45-48, 223-22, 2:42-45.

-78-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

one location within the system memory, and each data

segment being scatter loaded based at least in part on

the processed image header.”

158. Bauer and Svensson combined, as modified above to include

destination addresses in an image header, renders obvious this limitation.18

159. In Bauer and Svensson combined, with the modified image header of

Bauer, the secondary processor (DSP device) loads the data segments (sections)

that separately follow the image header, which it receives from the primary

processor (ARM device) in the hardware buffer (intermediate storage area),

directly to the system memory (DSP XRAM) using the destination addresses from

the modified image header. For example, Bauer and Svensson combined discloses

that the image transferred from the hardware buffer to the system memory also

includes the data segments (sections). EX-l 109, 1136 (describing how the image

containing the data section having one or more sections can be stored in the system

memory), Figs. 1A-1C; Ex-1110, 5:21-28, 5:65-67, 6: 12-15 (describing how the

contents of the intermediate storage area, which contains part of an image having

code and/or data, are loaded to the system memory one part at a time), Figs. 2

(steps 214-226, esp. step 220), 3.

18 The ’949 patent admits that scatter loading is prior art. EX-l 101, 2:35-41.

-79-

e.g.,

Cf.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

160. In addition, Bauer discloses that each data segment (section) (1) has

its own load (or destination) address in the section information specifying where

the data segment is to be placed in the system memory and (2) can be arranged in

the image in any suitable order (e.g., “in order of the section load addresses” or in

“an arbitrary order”). EX-l 109, 1137. A person of ordinary skill in the art would

understand from this disclosure that Bauer teaches that the data segments can be

loaded in contiguous or non-contiguous locations of the system memory, and thus

the data segments are “scatter loaded.” Cf EX-l 101, 9:12-15 (With scatter

loading, “the image segments are not necessarily placed into consecutive locations

within the secondary processor’s system memory 305. Instead, the segments may

be spread out in different locations of the memory.”), 9:21-41. Accordingly, a

person of ordinary skill in the art would find that Bauer and Svensson combined

renders obvious scatter loading, by the secondary processor, each data segment

[directly] to the determined at least one location within the system memory, and

each data segment being scatter loaded based at least in part on the processed

image header.

3. Claim 11: “The method of claim 10 further comprising

booting the secondary processor using the executable

software image.”

161. Claim 11 is rendered obvious by the combination of Bauer, Svensson,

and Kim. As I explained above, this combination renders obvious the method of

-80-

Id.

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

claim 10. Bauer and Svensson combined discloses the further requirement of

claim 11.19

162. Bauer and Svensson combined renders obvious that the executable

software image loaded to the system memory (DSP XRAM) of the secondary

processor (DSP device) can be used to boot the secondary processor. For example,

Svensson describes the need for a bootloader solution to load “boot code” to the

system memory (DSP XRAM) because the primary processor (ARM device)

cannot access the system memory. Ex-l l 10, 4:9-14. In addition, Figure 2 of

Svensson shown below teaches how its “OS-friendly bootloader” is used to

provide that solution—to load boot code to the system memory. Id., 4:20-6:11,

Fig. 2.

19 The ’949 patent admits that booting the secondary processor using the

executable software image is prior art. Ex-l 101, 2: 1-13.

-81-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

 Reset and Hold
Slave Processor

202

Push Info to

204 Slave Processor

Push

Complete?

Yes

20-

Boot Slave
Processor

208 FIG. 2

 Start OS in

21 Slave Processor

Reserve lntermed.

Storage Area

Send Message to
Host Processor

Push Info to ISA

Send Message to
Slave Processor

Copy ISA to
"Invisible" Memory

Send Message to
Host Processor

 212

214

216

218
224

Yes

Release Blocks;
Load Complete

220

 222

163. Initially, in the first stage of the OS-friendly bootloader (steps 202-

210 of Fig. 2), a bootloader is pushed to the shared volatile memory (DSP SARAM

& DARAM) to initiate the boot of the secondary processor (step 208) so that, in

the second stage (steps 212-226), the secondary processor can assist with loading

“boot code” into system memory to complete the boot. EX-l l 10, 4:20-6:11. This

-82-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

two-stage booting process is consistent not only with the ’949 patent (Ex-1101,

5:20-55, claim 6) but also other prior art (Ex-1110, 1:20-27).

164. Because Bauer expressly teaches to use the program loader described

by Svensson for loading an executable software image having Bauer’s file format

(Ex-1109, 1131), and in addition to the reasons given in connection with claim

[10a], it would have been obvious to a person of ordinary skill in the art to

combine Svensson with Bauer to use a bootloader to load “boot code” for the

secondary processor (DSP device) in the form of an executable software image

having Bauer’s file format with a modified image header. Svensson further

teaches executing code loaded into system memory (DSP XRAM). Ex-1010, 6:6-

11, 8: 12-16. A person of ordinary skill in the art would have understood that the

loaded “boot code” would execute as part of the booting process of the secondary

processor.

165. Bauer and Svensson combined therefore renders obvious a method of

booting a secondary processor using an executable software image.

4. Claim 12: “The method of claim 10 further comprising

loading the executable software image directly from a

hardware buffer to the system memory of the secondary

processor Without copying data between the system memory
locations.”

166. Claim 12 is rendered obvious by the combination of Bauer, Svensson,

and Kim. As I explained above, this combination renders obvious the method of

-83-

see also

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

claim 10. Bauer and Svensson combined discloses the further requirement of

claim 12.

167. As described in connection with claim limitations [10b]—[10e], Bauer

and Svensson combined discloses that the secondary processor loads the

executable software image that it receives at its hardware buffer (intermediate

storage area) one part at a time directly to its system memory (DSP XRAM) one

part at a time—first it loads the modified image header of Bauer and then it scatter

loads the data segments (sections).

168. Bauer and Svensson combined also discloses that the hardware buffer

(intermediate storage area), which is part of a shared volatile memory (DSP

SARAM & DARAM memory), is separate from the system memory (DSP

XRAM). EX-l 109, 111135-36, Fig. 2 (below); see also EX-1110, 3149-8, Fig. 1.

 Non-Volatile 20°
Memory

206

 DSP CPU
204

 DSP
XRAM

210
Int. . 059

Store: SARAM
Area '&DARAM

208

FIG. 2

169. In Bauer and Svensson combined, the disclosure of an intermediate

storage area that is separate from the system memory (DSP XRAM) is the same

alleged inventive feature of the ’949 patent. The ’949 patent makes a distinction

-84-

id.

See, e.g.,

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

between prior art systems that used a “temporary buffer” that was part of the

system memory (Ex-1101, 2:23-41), and the alleged invention that uses a

“hardware buffer” separate from the system memory (id., 2:58-61, 7:20-26, Fig. 3).

The intermediate storage area in Bauer and Svensson combined is such a separate

hardware buffer.

170. A person of ordinary skill in the art would understand from Bauer and

Svensson combined that the executable software image is therefore loaded directly

without copying data between system memory locations on the secondary

processor. See, e.g., Ex-1109, W31, 36, Fig. 2; Ex-1110, 4: 1-3, 5:21-28, 5:65-67,

6: 12-15, Figs. 1, 3. The person of ordinary skill in the art would find no teaching

or suggestion in Bauer and Svensson combined that the executable software image,

before it is loaded from the hardware buffer to its final destination in the system

memory, is copied to another location in the system memory. In fact, Bauer

teaches away from this double copy (or “extra memory copy”) approach as it

teaches the importance of greater efficiency in loading data, reduced response

times, and space-efficient storage. Ex-1109, 111116, 27, 43.

171. Thus, Bauer and Svensson combined discloses loading the executable

software image directly from a hardware buffer to the system memory of the

secondary processor without copying data between the system memory locations.

-85-

before

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

5. Claim 13: “The method of claim 10 in which the processing

occurs prior to the loading.”

172. Claim 13 is rendered obvious by the combination of Bauer, Svensson,

and Kim. As I explained above, this combination renders obvious the method of

claim 10, and renders obvious the further requirement of claim 13.

173. As described in connection with claim [lOc], Bauer and Svensson

combined renders obvious a method in which a secondary processor (DSP device)

processes the modified image header of Bauer to determine locations (based on the

destination addresses) within a system memory (DSP XRAM) to store each data

segment (data section). As described in connection with claim [10b], the

combination of Bauer, Svensson, and Kim, renders obvious the image header and

each data segment (data section) being received separately.

174. A person of ordinary skill in the art would have found it obvious that

the secondary processor would process the image header before loading the at least

one data segment. As described in connection with claim [10b]: (1) Bauer and

Svensson combined emphasizes that the header and section information containing

the destination addresses in Bauer should be “retrieved” before the data segments

(sections) are read and processed; and (2) the combination of Bauer, Svensson, and

Kim renders obvious that the modified image header of Bauer and each data

-86-

before

See

before

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

segment are received separately, with the image header being received before the

data segments.

175. A person of ordinary skill in the art would have found it obvious from

this combination that when the secondary processor receives the image header—

which contains the destination addresses for where to store the data segments in the

system memory—separately from and before the data segments, that the secondary

processor would process the image header before receiving the data segments to

determine the destination address for each data segment. The person of ordinary

skill in the art would understand that this would allow, for example, the secondary

processor to build a look-up table of the destination addresses of the data

associated with the image header, before the data segments are received.

176. A person of ordinary skill in the art would have been motivated to

process the image header before receiving the data segments because, upon

receiving each data segment, the secondary processor would then more efficiently

and quickly load each data segment from the hardware buffer to the system

memory, as taught by Bauer. See claim limitations [10b] and [10e]. The person of

ordinary skill in the art also would have understood that the most logical and

efficient way is to process the image header before receiving the data segments.

The person of ordinary skill in the art would have understood that this approach

would have been obvious to try, would have been one of a small number of finite

-87-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

ways that results in greater efficiency in loading data, reduced response times, and

space-efficient storage, and would have involved a simple substitution of one

known feature for another. A person of ordinary skill in the art also would have

had a reasonable expectation of success given that the components involved in the

system disclosed by these references, and the manner in which they operate, were

well known.

6. Claim 14: “The method of claim 10 in which the primary

and secondary processors are located on different chips.”

177. Claim 14 is rendered obvious by the combination of Bauer, Svensson,

and Kim. As I explained above, this combination renders obvious the method of

claim 10. As described in connection with claim [10a], Bauer and Svensson

combined discloses the further requirement of claim 14 that the primary processor

(ARM device) and secondary processor (DSP device) are located on different

chips.20

20 The ’949 patent admits that systems in which the primary and secondary

processors are on different chips is prior art. Ex-1101, 1:45-48, 2:42-45.

-88-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

7. Claim 15: “The method of claim 10 further comprising

performing the receiving, processing, and loading, in at

least one of a mobile phone a computer, a handheld

personal communication systems (PCS), a portable data
unit....”

178. Claim 15 is rendered obvious by the combination of Bauer, Svensson,

and Kim. As I explained above, this combination renders obvious the method of

claim 10. Bauer and Svensson combined discloses the further limitation of claim

15 that requires the multi-processor system to perform the receiving, processing,

and loading in at least “a mobile phone. . .a computer, a hand-held personal

communication systems (PCS) unit, a portable data unit.”21

179. Bauer and Svensson combined teaches the integration of its multi-

processor system in a device—which would make that device a “computer”—such

as a mobile phone, PCS unit, and portable data unit. For example, Bauer explicitly

teaches that the application of its technology “is particularly useful in embedded

systems as well as in other computer environments,” and “in embedded systems

and other computer systems” (“a computer”). Ex-1109, 1H6, 26. Bauer also

teaches that in an embedded computer environment, “[a] lot of software today is

sent across wireless communication links (e.g., wireless local area networks

21 The ‘949 patent also admits that the use of a multi-processor system in a

computer such as a smartphone device is prior art. Ex-1101, 1:39-44.

-89-

mobile telephony networks

mobile communication

devices mobile telephone.

e.g., e.g.,

e.g.,

apparatus secondary

processor primary processor

inter-chip communication bus

universal asynchronous receiver-transmitter

(UART) interfaces

Id.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

art would have found it to be a simple known alternative to select an inter-chip

communication bus from amongst the standardized inter-chip communication

buses that were known in the prior art, such as those taught in Zhao. The use of

standardized inter-chip communication buses would have been obvious to a person

of ordinary skill in the art as it simply involves the combination of prior art

elements (chips and standardized inter-chip communication buses) according to

known methods to achieve a predictable result with a reasonable expectation of

success.

b. [16b] “the image header and each data segment being

received separately”

187. As described in connection with claim [10b], Bauer and Svensson

combined, as modified above to include destination addresses in an image header,

renders obvious this limitation; however, to the extent the Patent Owner contends

that Bauer and Svensson combined does not teach this separate receipt, Kim

expressly teaches this feature, and therefore the combination of Bauer, Svensson,

and Kim renders obvious this limitation. A person of ordinary skill in the art

would have been motivated to combine Bauer, Svensson, and Kim for the reasons

described in connection with claim [10b]. A person of ordinary skill in the art

would have also been motivated to combine Bauer, Svensson, Zhao, and Kim for

the reasons described in connection with claim [16a].

-94-

See

e.g.,

modem processor chip

modem processor Id.

see also

e.g., e.g.,

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

discussion in connection with claim 15. The person of ordinary skill in the art

would have understood that the primary processor (ARM device) could function as

the application processor and the secondary processor (DSP device) could function

as the modem processor to allow for the transfer of data over a mobile network,

including allowing a user to make and receive calls, as taught by Bauer and

Svensson combined. EX-1109, 1115; EX-l 1 10, 7:61-63, 8:26-29. Such a person

would have understood that this would have been obvious to try and would have

involved a simple substitution of one known feature for another.

192. The combination of Bauer, Svensson, and Zhao therefore render

obvious a modem processor (secondary processor) coupled to a system memory for

processing the image header to determine at least one location within system

memory to which the secondary processor is coupled to store each data segment.

d. [16d] “means for receiving at the secondary

processor, from the primary processor via the inter-

chip communication bus, each data segment, and”

193. The combination of Bauer, Svensson, and Zhao discloses this

limitation. As discussed in section VIII.B.3, (1) the function performed by this

claim element is “receiving at the secondary processor, from the primary processor

via the inter-chip communication bus, each data segment”; and (2) the

corresponding structure for performing this function is “a secondary processor

(e.g., 110, 210, 302) connected to a primary processor (e.g., 104, 204, 301) via an

-97-

e.g.,

apparatus secondary

processor primary processor

inter-chip communication bus

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

each data segment being scatter loaded based at least in part on the processed

image header”; and (2) the corresponding structure for performing this function is

“modem processor coupled to a system memory, and equivalents thereof.”

196. As described in connection with claim [10e], Bauer and Svensson

combined renders obvious the corresponding function; however, the combination

does not expressly disclose all of the corresponding structure—it discloses a

processor (DSP device) coupled to a system memory (DSP XRAM), but does not

expressly describe it as a “modem” processor. The “modem” processor is

explicitly taught by Zhao as described in connection with claim [16c]. A person of

ordinary skill in the art would have been motivated to combine Bauer, Svensson,

and Zhao for the reasons described in connection with claim [16c].

197. A person of ordinary skill in the art would have also been motivated

to combine Bauer, Svensson, Kim, and Zhao for the reasons described in

connection with claim limitations [10a] (describing the combination of Bauer and

Svensson), [10b] (describing the combination of Bauer, Svensson, and Kim), and

[16a] and [16c] (describing the combination of Bauer, Svensson, and Zhao).

-99-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

3. Claim 17: “The apparatus of claim 16 integrated into at

least one of a mobile phone a computer, a hand-held

personal communication systems (PCS) unit, a portable
data unit....”

198. Claim 17 is rendered obvious by the combination of Bauer, Svensson,

Kim, and Zhao. As I explained above, this combination renders obvious the

apparatus of claim 16. As described in connection with claim 15, Bauer and

Svensson combined discloses the further requirement of claim 17 that the

apparatus of claim 16 is integrated into at least “a mobile phone. . .a computer, a

hand-held personal communication systems (PCS) unit, a portable data unit.”

199. The chart below provides a summary of the disclosure of the

references in this ground discussed above and presented in the form of a claim

chart.

Bauer + Svensson + Kim

[10a] A method comprising:

receiving at a secondary

processor, from a primary

processor via an inter-chip

communication bus, an

image header for an

executable software image

for the secondary processor

that is stored in memory

coupled to the primary

processor, the executable

software image comprising

the image header and at

least one data segment,

Bauer

Bauer (Ex-1109) at 1111 (“Also known are program

downloading methods for use in data processing systems,

integrating non-program information and program information

into an executable file that is used by a host processor to

download the program to a selected co-processor.”)

Bauer (Ex-1109) at 1116 (“Greater efficiency in loading data

can reduce response times in such systems, and space-efficient

storage saves valuable memory.”)

Bauer (Ex-1109) at 1118 (“In another aspect of this invention,

there is provided a computer-readable medium containing a

data image for loading into a memory in a processor system”)

Bauer Ex-1109 at 2|7 “The format described here includes a

-100-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

header, section information, and one or more sections. The

section information contains the information for all sections,

which is more advantageous than having each section include

its own information, i.e., the information is concentrated rather

than distributed across the sections. Furthermore, the section

information contains information about the encoding of the

sections”)

Bauer (Ex-1109) at 1128 (“Each section includes binary data

that is encoded independently of other sections, and the header

and section information contains information about the sizes,

load addresses, and encoding, e.g., encryption and/or

compression, of the sections. The header and section

information are arranged in an image having this format such

that they are readable before the sections are processed. For

example, the sections can be located in sequence after the

header and the section information, in an order determined by

their load addresses”)

Bauer (Ex-1109) at 1129 (“Other arrangements are possible, of

course. It is important only that the header and section

information can be read before the rest of an image. The
locations of the header and section information can be

anywhere in the image, provided it is possible to access the

header and section information before the rest of the image.”)

Bauer (Ex-1109) at 1130 (“Thus, it will be appreciated that the

format described here, in contrast to prior data formats,

supports individual coding of sections, where a section can

contain any type of data, such as executable, binary, text, etc.”)

Bauer (Ex-1109) at 1131 (“There are many possible applications

of this format and its individually coded sections. For example,

an operating system memory manager can load and unload

sections of memory according to images in this format. It can
also be used as a file format in which executable files are

stored, and linkers and program loaders can be readily adapted

to support (read, write, and interpret) the format. Object code

and data can also be stored in this file format, with a program

loader reading the stored information and processing stored

sections accordingly. One example of such a program loader is

described in U.S. patent application Ser. No. 11/040,798 filed

on Jan. 22, 2005, by M. Svensson et al. for "Operating-System-

Friendly Bootloader".”)

Bauer Ex-1109 at 132 . ' ' data ima;

-lOl-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

100 in this file format, including a header 102, section

information 104, and section data 106. The section data 106
includes the data of the one or more sections included in the

image 100.”)

Bauer (Ex-1109), Figures 1A-C:

Header Section Section Data

FIG“ 1A / 102] Information 104 106 i100

Size [32 bits] Number of sections
102-1 [16 bits] 102-2

Section 1 Length Extra 1 [16 bits] Section 2 Length Extra 2 [16 bits]
[16 bits] 108-1 112-1 [16 bits] 108—2 112-2

Load Address 1 [32 bits] Load Address 2 [32 bits]
110-1 110-2

— /‘
104-2

FIG. 1C

Bauer (Ex-1109) at 1B3 (“As depicted in FIG. 1B, the header
102 contains a size information element 102-1 that indicates

the total size of the sections 106 (in bytes, for example). . ..The
header 102 also contains a number-of—sections information

element 102-2,...Itwi11 be understood that other forms of these

information elements can be used instead of the examples set

forth here.”)

Bauer (Ex-1109) at 1B4 (“Each section in the section data 106

has a respective "section information" entry in the section

information 104, and two such section information entries 104-

1, 104-2 are depicted in FIG. 1C. . ..The load addresses of the

sections are indicated by address information elements 110-1,

110-2,. . .It will be understood that other forms of these

information elements can be used instead of the examples set

forth here.”)

Bauer (Ex-1109) at 1]35 (“FIG. 2 depicts a multi-processor

system 200 that includes a host processor 202 and a client

processor 204 and that can advantageously use a binary image

100 having the format depicted in FIGS. 1A, 1B, 1C. It will be
a reciated that althou h FIG. 2 shows one client rocessor

The dashed line in
FIG. 2 depicts the hardware boundary between the host and
slave devices, in this example, the ARM and the DSP, and
also a non-volatile memory

Most commercially available DSP
devices include on-chip memories

The
arrows in FIG. 2 indicate access paths, e.g., busses and direct
memory access (DMA) paths, between the CPUs and the
memories, any one or more of which may store an image in
the format depicted in FIGS. 1A-1C.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

optimize loading of the sections. For instance, it is simple to

split or concatenate sections when they are adjacent in

memory. The ability to split sections can be useful, for

instance, when a DMA transfer is to be set up. As there is

always a small overhead when setting up a DMA transfer, a

DMA unit can be used in an efficient way by arranging the size

of the data to be transferred to be equal or close to the block

sizes used by the DMA unit. As sections can be located

sequentially in an image 100, it is simple to split a section into

several suitable pieces before downloading it.”)

Bauer (Ex-1109) at 1143 (“Having information about the
sections collected in the header 102 and section information

104 simplifies optimization in a number of circumstances, for

instance, if sections are to be loaded into memory. The block

104 lists all sections, preferably in order of memory location,

and this makes memory loading efficient as there is no need to

search through an image for section headers when loading”)

m

Svensson (EX-1110) at 1:11-15 (“The process of starting, or

booting up, an electronic system having a programmable

processor connected to one or more memory devices for

storing program instructions, or code, and data is not as simple

as it might seem at first glance.”)

Svensson (Ex-1110) at 2: 1 1-15 (“Moreover, it is necessary to

determine which portions of the system must be loaded to

memories Visible to both host and slave processors and how the

binary image to be loaded should be arranged for the

bootloader to work together with the OS.”)

Svensson (EX-1110) at 3:49-4:8 (“FIG. 1 depicts such a multi-

processor system 100 that includes a host processor 102 and a

client processor 104. It will be appreciated that although FIG. 1

shows one client processor 104, more can be provided. It will

also be appreciated that the host and client processors may be

any programmable electronic processors. In the example

depicted in FIG. 1, the processor 102 is shown as the central

processing unit (CPU) of an advanced RISC machine (ARM),

and the processor 104 is shown as the CPU of a digital signal

processor (DSP) device. The dashed line in FIG. 1 depicts the

hardware boundary between the host and slave devices, in this

example, the ARM and the DSP, and also a non-volatile

106 ma be a ROM, a flash

—104—

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

memory, or other type of non-volatile memory device.

Most commercially available DSP devices include on-chip

memories, and as indicated in FIG. 1, the DSP includes

“internal” single-access RAM (SARAM) and dual-access

RAM (DARAM) 108, as well as an “external” RAM (XRAM)

110. An intermediate storage area, indicated by the dashed line,

is defined within the memory 108 as described in more detail

below. The arrows in FIG. 1 indicate access paths, e.g., busses

and DMA paths, between the CPUs and the memories. The

ARM host CPU 102 can access the non-volatile memory 106

and the SARAM and DARAM 108 of the DSP, but not the

DSP's XRAM 110, and the DSP slave CPU 104 can access all

ofthe RAMs 108, 110. ”)

Svensson (Ex-1110), Figure 1:

Non-Volatile

Memory
ARM CPU

l
l
l

I
l
l
l

.L

Int. I DSP DSP
Store: SARAM DSP CPU
Area '&DARAM

104 110

FIG. 1

Svensson (EX-1110) at 49-14 (“The SARAM and DARAM

108 can be loaded from the non-volatile memory 106 by the

trivial "push" method. When code needs to be loaded to the

XRAM 110 during boot, however, a bootloader solution is

required because the XRAM 110 is invisible to, i.e., not

accessible by, the CPU 102 and so boot code cannot be pushed

to the XRAM 110.”)

Svensson (Ex-1110) at 4:22-26 (“The first stage resets and

holds the slave 104 in the reset state (Step 202) and pushes

information (program instructions and/or data) (Step 204) in

the usual way from the non-volatile memory 106 into the

commonly visible memories 108.”)

Svensson (Ex-1110), Figure 2:

-105-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Reset and Hold

202 Slave Processor

Push Info to

204 Slave Processor

Push

Complete?

 20 -
Yes

Boot Slave
Processor

208 FIG. 2

Start OS in
Slave Processor

21 0

Reserve lntermed.

Storage Area
212

Send Message to
Host Processor

214

Push Info to ISA
216

Send Message to
Slave Processor

Copy ISA to

218
Complete?

224

220 "Invisible" Memory Yes
Release Blocks;

Load Complete
Send Message to

222 Host Processor 226

Svensson (Ex-1110) at 5:21-37 (“The idle process reserves a

block of memory in the slave's heap of memory that is located

in the memory Visible to the host, such as “intemal” memory

108 (Step 212). As described in more detail below, this

reserved block of memory is used for intermediate storage of

information (code and/or data) to be transferred to the slave-

private memory, i.e., the memory that is invisible to the host,

such as “extemal” XRAM 110. The slave's idle process

advantaeousl uses the established communication

-lO6-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

mechanisms to send to the host (Step 214) information about

the address and size or length of the intermediate storage area

reserved in the previous step. After sending the information,

which may be contained in one or more suitable messages, the

slave blocks, awaiting a message from the host. While

“blocked”, the slave does not conduct any further loading

activities until it receives the host's response”)

Svensson (EX-1110) at 5:53-6:25 (“The host now sends a

message to the slave (Step 218) that indicates the intermediate

storage area has been loaded and whether loading is finished or

more code and/or data is available. This is the message the

slave is waiting for. The host in turn now blocks, awaiting a

message from the slave. The slave copies the contents of the

intermediate storage area to appropriate locations in its slave-

private memory (Step 220), thereby implementing its actual

loading. The slave then sends a message to the host (Step 222)

that indicates that the slave has copied the contents of the

intermediate storage area.

If there is more code and/or data to load (Step 224), this cycle

of copying and messaging (Steps 216-224) can be repeated as

many times as required. When the loading is finished, i.e.,

when no more information needs to be copied to the slave, the

slave releases the blocking ofprocesses that were blocked

earlier, thereby allowing scheduling of code in its slave-private

memory (Step 226). Loading is now complete.

As described above, the host fills the intermediate storage area

in the memory 108 with code and data that the slave further

copies to end destinations in the slave-private memory 110.

Perhaps the simplest way of doing this is to precede all code

and data in the intermediate storage area with a tag that

contains the destination address and length of the block to be

loaded. FIG. 3 depicts one example of such an organization of

the intermediate storage area. A block of code and/or data to be

transferred into the intermediate storage area includes a header

that indicates the length of the block and where it is to be

loaded in the slave memory, i.e., the destination address. As

indicated by the dashed lines in FIG. 3, several such blocks

may be concatenated in the intermediate storage area”)

Svensson (EX-1 1 10), Figure 3:

-lO7-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Dest, Addr.

Header

Transfer Block
Intermediate

Storage
Area

FIG. 3

Svensson (Ex-1110) at 6248-59 (“The artisan will understand

the benefit of this splitting and concatenation of information
into transfer blocks. Some kind of communication mechanism

is required to perform the actual transfers of information

between memories, and whatever the mechanism used, fewer

large transfers are typically preferable to more small transfers.

A kept-full intermediate storage area can make the most

efficient use of the available bandwidth by advantageously

minimizing overhead on the communications channel. Each

message requires some amount of administration and

administrative information, and so fewer messages means less
overhead.

Svensson (Ex-1110) at 6:60-7:2 (“A good example of the

benefit of block splitting and concatenation effect is DMA as

the communication mechanism. DMA typically requires some

setup overhead (i.e., it takes some time to set up), but then

DMA is very efficient once it has been started because

transfers can be carried out in minimal CPU cycles. In order to

gain the greatest benefit from the use of DMA, the largest

DMA transfer permitted by the hardware should be done every

time. Thus, it is currently believed to be advantageous to set

the size of the intermediate storage area to the maximum DMA

block size.”)

Svensson (Ex-1110) at 7:52-60 (“From this description, it will
be understood that OS mechanisms are available to the slave

part of the OS-friendly bootloader that is executed by the slave

processor and that the slave can reuse existing OS-dependent

code required for communication. Moreover, the OS-friendly

bootloader uses loading resources (e.g., DMA) efficiently, with

the host part automatically deciding when to switch from a first

stage, or push mode, to a second stage, or bootloader mode.”)

-lO8-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Zhao

Zhao (Ex-1113) at 1132 (“As shown in the embodiment of FIG.

3, mobile computing device 100 may comprise a dual

processor architecture including a host processor 102 and a

radio processor 104 (e.g., a base band processor). The host

processor 102 and the radio processor 104 may be arranged to

communicate with each other using interfaces 106 such as one

or more universal serial bus (USB) interfaces, micro-USB

interfaces, universal asynchronous receiver-transmitter

(UART) interfaces, general purpose input/output (GPIO)

interfaces, control/status lines, controUdata lines, shared

memory, and so forth.”)

Zhao (Ex-1113) at 1133 (“Although embodiments of the dual

processor architecture may be described as comprising the host

processor 102 and the radio processor 104 for purposes of

illustration, it is worthy to note that the dual processor

architecture of the mobile computing device 100 may comprise

additional processors, may be implemented as a dual- or multi-

core chip with both host processor 102 and radio processor 104

on a single chip, etc.”)

Zhao Ex-1113 , Fi ure 3:

-109-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

FIG. '5

Zhao (Ex-1113) at 1134 (“In various embodiments, the host

processor 102 may be implemented as a host central processing

unit (CPU) using any suitable processor or logic device, such

as a general purpose processor. The host processor 102 may

comprise, or be implemented as, a chip multiprocessor (CMP),

dedicated processor, embedded processor, media processor,

input/output (I/O) processor, co-processor, a field

programmable gate array (FPGA), a programmable logic

device (PLD), or other processing device in alternative

embodiments. In an exemplary embodiment, host processor

102 is an OMAP2, such as an OMAP2431 processor,

manufactured by Texas Instruments, Inc.”)

Zhao (Ex-1113) at 1144 (“As mentioned above, the radio

processor 104 may perform voice and/or data communication

operations for the mobile computing device 100. For example,

the radio processor 104 may be arranged to communicate voice

information and/or data information over one or more assigned

frequency bands of a Wireless communication channel. In

various embodiments, the radio processor 104 may be

implemented as a communications processor using any suitable

rocessor or 10 ic device, such as a modem rocessor or

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

baseband processor. Although some embodiments may be

described with the radio processor 104 implemented as a

modem processor or baseband processor by way of example, it

may be appreciated that the embodiments are not limited in this

context. For example, the radio processor 104 may comprise,

or be implemented as, a digital signal processor (DSP), media

access control (MAC) processor, or any other type of

communications processor in accordance with the described

embodiments. Radio processor 104 may be any of a plurality of

modems manufactured by Qualcomm, Inc.”)

’

949 patent

’949 patent (Ex-1101) at 1:37-41 (“Processors execute

software code to perform operations. Processors may require

some software code, commonly referred to as boot code, to be

executed for hooting up. In a multi-processor system, each

processor may require respective boot code for booting up.”)

’949 patent (Ex-1101) at 1:41-44 (“As an example, in a

smartphone device that includes an application processor and a

modem processor, each of the processors may have respective

boot code for booting up. “)

’949 patent (Ex-1101) at 1:45-51 (“A problem exists on a

significant number of devices (such as smart phones) that

incorporate multiple processors (e.g., a standalone application

processor chip integrated with a separate modem processor

chip). A flash/non—volatile memory component may be used

for each of the processors, because each processor has non-

volatile memory (e.g., persistent storage) of executable images

and file systems”)

’949 patent (Ex-1101) at 23-13 (“For example, suppose a first

processor in a multi-processor system is responsible for storing

to its non-volatile memory boot code for one or more other

processors in the system; wherein upon power-up the first

processor is tasked with loading the respective boot code to the

other processor(s), as opposed to such boot code residing in

non-volatile memory of the other processor(s). In this type of

system, the software (e.g., boot image) is downloaded from the

first processor to the other processor(s) (e.g., to volatile

memory of the other processor(s)), and thereafter the receiving

processor(s) boots with the downloaded image.:)

o atent Ex-l 101 at 2:14-16 “Often, the software ima;

-lll-

See[10b] the image header and

each data segment being

received separately;

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

to be loaded is a binary multi-segmented image. For instance,

the software image may include a header followed by multiple

segments of code.”)

’949 patent (Ex-1101) at 2:42-45 (“The primary processor and

its non-volatile memory that stores the boot image for a

secondary processor may be implemented on a different chip

than a chip on which the secondary processor is

implemented”)

See claim limitation [10a].

Bauer

Bauer (Ex-1109) at Abstract (“A data format includes a header,

section information, and one or more sections. Each section

includes binary data that is encoded independently of other

sections, and the header and section information contains

information about the sizes, load addresses, and encoding, e.g.,

encryption and/or compression, of the sections. The header and

section information are arranged in an image having this

format such that they are readable before the sections are

processed. For example, the sections can be located in

sequence after the header and the section information, in an

order determined by their load addresses”)

Bauer (Ex-1109) at 1116 (“The new format for binary data

described in this application is particularly useful in embedded

systems as well as in other computer environments where

efficiency is important. Greater efficiency in loading data can

reduce response times in such systems, and space-efficient

storage saves valuable memory.”)

Bauer (Ex-1109) at 1127 (“The format described here includes a

header, section information, and one or more sections. The

section information contains the information for all sections,

which is more advantageous than having each section include

its own information, i.e., the information is concentrated rather

than distributed across the sections. Furthermore, the section

information contains information about the encoding of the

sections”)

Bauer (Ex-1109) at 1128 (“The header and section information

are arranged in an image having this format such that they are

readable before the sections are processed”)

-112-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Bauer (Ex-1109) at 1129 (“Other arrangements are possible, of

course. It is important only that the header and section

information can be read before the rest of an image. The
locations of the header and section information can be

anywhere in the image, provided it is possible to access the

header and section information before the rest of the image”)

Bauer (Ex-1109) at 1130 (“Information about the sections is

located in a header and section information at, for example, the

beginning of the image, and so the information about the

sections can be retrieved before the sections are read”)

Bauer (Ex-1109) at 1133 (“As depicted in FIG. 1B, the header
102 contains a size information element 102-l that indicates

the total size of the sections 106 (in bytes, for example). The

size element 102-1 may advantageously be a 32-bit unsigned

integer, for example, and such an element is suitable for images

having section data up to a total of four gigabytes (GB) in size.
The header 102 also contains a number-of-sections information

element 102-2, which may advantageously be a 16-bit

unsigned integer, for example. It will be understood that other
forms of these information elements can be used instead of the

examples set forth here.”)

Bauer (Ex-1109), Figures 1A-C:

Header Section Section Data

FIG' 1A / 102 Information 104 106
100

Size [32 bits] Number of sections
FIG‘ 1B 102” 102-1 [16 bits] 102-2

Section 1 Length Extra 1 [16 bits] Section 2 Length Extra 2 [16 bits]
[16 bits] 108-1 112—1 [16 bits] 108-2 112-2

Load Address 1 [32 bits] Load Address 2 [32 bits]
1 1 0-1 1 1 0-2

7“?

FIG. 1C

Bauer (Ex-1109) at 1138 (“Having all section information

entries 104 collected together in the image 100 advantageously

simplifies system navigation through the image, and having all

section data arraned in a seouence makes it oossible to

-113-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

optimize loading of the sections. For instance, it is simple to

split or concatenate sections when they are adjacent in

memory. The ability to split sections can be useful, for

instance, when a DMA transfer is to be set up. As there is

always a small overhead when setting up a DMA transfer, a

DMA unit can be used in an efficient way by arranging the size

of the data to be transferred to be equal or close to the block

sizes used by the DMA unit. As sections can be located

sequentially in an image 100, it is simple to split a section into

several suitable pieces before downloading it.”)

Bauer (Ex-1109) at 1143 (“Having information about the
sections collected in the header 102 and section information

104 simplifies optimization in a number of circumstances, for

instance, if sections are to be loaded into memory. The block

104 lists all sections, preferably in order of memory location,

and this makes memory loading efficient as there is no need to

search through an image for section headers when loading”)

Bauer (Ex-1109) at 1147 (“Converting a binary image, e.g., an

image in COFF/ELF format, into an image having the format

described in this application can be carried out in a number of

ways, for example by a suitable post-linker conversion tool.”)

m

Svensson (EX-1110) at 5:28-36 (“The slave's idle process

advantageously uses the established communication

mechanisms to send to the host (Step 214) information about

the address and size or length of the intermediate storage area

reserved in the previous step. After sending the information,

which may be contained in one or more suitable messages, the

slave blocks, awaiting a message from the host. While

"blocked", the slave does not conduct any further loading

activities until it receives the host's response”)

Svensson (EX-1 1 10), Figure 2:

—114—

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Reset and Hold
Slave Processor

Push Info to
Slave Processor

Push

Complete?

 202

204

20

Yes

Boot Slave
Processor

208 FIG. 2

 Start OS in
Slave Processor

21

Reserve Intermed.

Storage Area

Send Message to
Host Processor

Push Info to ISA

Send Message to
Slave Processor

Copy ISA to
"Invisible" Memory

Send Message to
Host Processor

212

214

216

21

224
Yes

Release Blocks;

Load Complete

220

 222

Svensson (Ex-1110) at 5:53-59 (“On receipt of the slave's

information, the second stage of the host bootloader fills the

intermediate storage area with information (code and/or data)

to be loaded into the slave's invisible memory (Step 216). Code

and data is pushed to the intermediate storage area in the usual

way because this area is memory that both processors can

access, but the push is activated through the OS

communication mechanisms”)

Svensson (Ex-1110) at 5:60-6:3 (“The host now sends a

messae to the slave Steo 218 that indicates the intermediate

-115-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

storage area has been loaded and whether loading is finished or

more code and/or data is available. This is the message the

slave is waiting for. The host in turn now blocks, awaiting a

message from the slave. The slave copies the contents of the

intermediate storage area to appropriate locations in its slave-

private memory (Step 220), thereby implementing its actual

loading. The slave then sends a message to the host (Step 222)

that indicates that the slave has copied the contents of the

intermediate storage area.”)

Svensson (EX-1110) at 6:4-11 (“If there is more code and/or

data to load (Step 224), this cycle of copying and messaging

(Steps 216-224) can be repeated as many times as required.

When the loading is finished, i.e., when no more information

needs to be copied to the slave, the slave releases the blocking

of processes that were blocked earlier, thereby allowing

scheduling of code in its slave-private memory (Step 226).

Loading is now complete”)

Svensson (EX-1110) at 6: 12-25 (“As described above, the host

fills the intermediate storage area in the memory 108 with code

and data that the slave further copies to end destinations in the

slave-private memory 110. Perhaps the simplest way of doing

this is to precede all code and data in the intermediate storage

area with a tag that contains the destination address and length

of the block to be loaded. FIG. 3 depicts one example of such

an organization of the intermediate storage area. A block of

code and/or data to be transferred into the intermediate storage

area includes a header that indicates the length of the block and

where it is to be loaded in the slave memory, i.e., the

destination address. As indicated by the dashed lines in FIG. 3,

several such blocks may be concatenated in the intermediate

storage area”)

Svensson (EX-1110) at 6:26-33 (“The information (code and

data) to be loaded can be arranged in many ways in the

intermediate storage area and memories. Often the information

is arranged as blocks of consecutive information that are to be

loaded to different addresses, and thus an arbitrarily chosen

size of the intermediate storage area may not match the sizes of

all such blocks”)

Svensson (EX-1110) at 6:37-43 (“This also means that a block

should be split if it is larger than the remaining part of the

intermediate storage area, and one part transferred to the

intermediate storae area with the remaining art transferred in

-ll6-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

the next block. Moreover, if a block is several times larger than

the intermediate storage area, it may have to be split more than
once.”

Svensson (Ex-1110) at 6:67-7:2 (“Thus, it is currently believed

to be advantageous to set the size of the intermediate storage

area to the maximum DMA block size.”)

Kim

Kim (Ex-1112) at 4:7-12 (“FIG. 1 shows a loading system

configuration of a conventional exchanger. As shown in FIG.

1, the loading system configuration of the conventional

exchanger includes a system management processor 11, a hard

disk drive 17, a plurality of port management assemblies 12, a

plurality of main processors 13, a plurality of SSPs 14, a

plurality of device processors 15, and a plurality of data control

devices”)

Kim (Ex-1112), Figure 1:

FIG. I

Imn msx7IHIm_ “If”I I..2.“mm1"news mum-r “mung mm" b
-117-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Kim (Ex-1112) at 4:13-14 (“Only the system management

processor 11 is directly connected to the hard disk drive 17,

which stores blocks needed to be loaded”)

Kim (Ex-1112) at 529-11 (“FIG. 3 is a flowchart showing a

loading procedure of each of a system startup loader and a

booter in a conventional exchange system. The loading

procedure will be described in detail below with reference to

FIG. 3.”)

Kim (Ex-1112), Figure 3:

FIG. 3

(SYSTW STARTU'P\WWW _,/

Kim (Ex-1112) at 5212-625 (“A booter in a device transmits a

loading startup notification message to the system startup

loader in the system management processor (S300). When the

loading startup notification message is received (S301), the

system startup loader transmits a response message responding

to the loading startuo notification to the booter that has

-ll8-

See

a fourth information element that indicates a load
address of the respective section

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

section information is arranged in the image such that the
header and section information are readable before the at least

one section.”)

Bauer (Ex-1109) at 1127 (“The format described here includes a

header, section information, and one or more sections. The

section information contains the information for all sections,

which is more advantageous than having each section include

its own information, i.e., the information is concentrated rather

than distributed across the sections. Furthermore, the section

information contains information about the encoding of the

sections”)

Bauer (Ex-1109) at 1128 (“Each section includes binary data

that is encoded independently of other sections, and the header

and section information contains information about the sizes,

load addresses, and encoding, e.g., encryption and/or

compression, of the sections. The header and section

information are arranged in an image having this format such

that they are readable before the sections are processed. For

example, the sections can be located in sequence after the

header and the section information, in an order determined by

their load addresses”)

Bauer (Ex-1109) at 1129 (“Other arrangements are possible, of

course. It is important only that the header and section

information can be read before the rest of an image. The
locations of the header and section information can be

anywhere in the image, provided it is possible to access the

header and section information before the rest of the image.

Thus, the location of the header must be predetermined, or at

least known to the software reading the image, so that the
software "knows" where to look for the header. The location of

the section information may also be "known" to the software,

or the header can indicate the location”)

Bauer (Ex-1109) at 1130 (“Thus, it will be appreciated that the

format described here, in contrast to prior data formats,

supports individual coding of sections, where a section can

contain any type of data, such as executable, binary, text, etc.
Information about the sections is located in a header and

section information at, for example, the beginning of the

image, and so the information about the sections can be

retrieved before the sections are read. Moreover, the format is a

representation of a group of sections, coded independently and

having minimal overhead, that is traversed seuentiall in

-120-

an operating system memory manager can load and unload
sections of memory according to images in this format

One example of such a program loader
is described in U.S. patent application Ser. No. 11/040,798
filed on Jan. 22, 2005, by M. Svensson et al. for "Operating-
System-Friendly Bootloader

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

element lO2-2,. . .It will be understood that other forms of these

information elements can be used instead of the examples set

forth here.”)

Bauer (Ex-1109) at 1134 (“Each section in the section data 106

has a respective "section information" entry in the section

information 104, and two such section information entries 104-

1, 104-2 are depicted in FIG. 1C....The load addresses of the

sections are indicated by address information elements 110-1,

110-2,. . .It will be understood that other forms of these

information elements can be used instead of the examples set

forth here.”)

Bauer (Ex-1109) at 1135 (“FIG. 2 depicts a multi-processor

system 200 that includes a host processor 202 and a client

processor 204 and that can advantageously use a binary image

100 having the format depicted in FIGS. 1A, 1B, 1C. It will be

appreciated that although FIG. 2 shows one client processor

204, more can be provided, and it will further be appreciated

that although FIG. 2 shows a multi-processor system, even

only a single processor 202 can be provided. Moreover, the

processor(s) may be any programmable electronic processor(s).

In the example depicted in FIG. 2, the processor 202 is shown

as the central processing unit (CPU) of an advanced RISC

machine (ARM), and the processor 204 is shown as the CPU of

a digital signal processor (DSP) device. The dashed line in

FIG. 2 depicts the hardware boundary between the host and

slave devices, in this example, the ARM and the DSP, and also

a non-volatile memory 206. The memory 206 may be a ROM,

a flash memory, or other type of non-volatile memory device,

within which an image in the format depicted in FIGS. lA-lC

can be stored”)

Bauer (Ex-1109) at 1136 (“Most commercially available DSP

devices include on-chip memories, and as indicated in FIG. 2,

the DSP includes "internal" single-access RAM (SARAM) and

dual-access RAM (DARAM) 208, as well as an "external"

RAM (XRAM) 210. An intermediate storage area, indicated by

the dashed line, may be defined within the memory 208. The

arrows in FIG. 2 indicate access paths, e.g., busses and direct

memory access (DMA) paths, between the CPUs and the

memories, any one or more of which may store an image in the

format depicted in FIGS. 1A-1C. The ARM host CPU 202 can

access the non-volatile memory 206 and the SARAM and

DARAM 208 of the DSP, but not the DSP's XRAM 210, and

the DSP slave CPU 204 can access all of the RAMs 208, 210.”

-l22-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Bauer (Ex-1109), Figure 2:

Int ' DSP

Stone: SARAM
Area '&DARAM

208

FIG. 2

Bauer (Ex-1109) at 1137 (“As depicted in FIG. 1A, the section

information entry or entries 104 precede the data 106 of the

section(s) in the image 100. The section data 106 is

advantageously arranged in the image in a sequence, and it is

preferable that the section data 106 as well as the section

information entries 104 are arranged in order of the section

load addresses 110, starting with the lowest address. It will be

understood, however, that other orders are suitable, e.g.,

starting with the highest address, and that in general it is not

necessary to order the section by their load addresses. The

sections may be in an arbitrary order. As each section has a

respective load address, the sections can appear in any order

(e.g., by size, coding type, or whatever is suitable). It is

currently believed, however, that the most efficient solution

from a loading point of view is probably arranging the sections

by load address in either descending or ascending order.”)

Bauer (Ex-1109) at 1138 (“Having all section information

entries 104 collected together in the image 100 advantageously

simplifies system navigation through the image, and having all

section data arranged in a sequence makes it possible to

optimize loading of the sections. For instance, it is simple to

split or concatenate sections when they are adjacent in

memory. The ability to split sections can be usefill, for

instance, when a DMA transfer is to be setup. As there is

always a small overhead when setting up a DMA transfer, a

DMA unit can be used in an efficient way by arranging the size

of the data to be transferred to be equal or close to the block

sizes used by the DMA unit. As sections can be located

seouentiall in an imae 100, it is simle to s olit a section into

-123-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

several suitable pieces before downloading it.”)

Bauer (Ex-1109) at 1147 (“Converting a binary image, e.g., an

image in COFF/ELF format, into an image having the format

described in this application can be carried out in a number of

ways, for example by a suitable post-linker conversion tool. An

exemplary method is illustrated by the flow chart in FIG. 3,

and includes a step of identifying all of the sections of the

image to be converted (step 302). Each identified section is

individually coded according to a specified coding scheme

(step 304). A header having the information described above is

formed (step 306), and section information having information

about the respective lengths, encodings, and load addresses of

the identified sections is formed (step 308). In step 310, the

identified sections are arranged in the image according to the

section information, e.g., in increasing order of load address,

etc., and the header and section information are arranged in the

converted image such that they are readable in the converted

image before the sections”)

m

Svensson (Ex-1110) at 3:49-4:8 (“FIG. 1 depicts such a multi-

processor system 100 that includes a host processor 102 and a

client processor 104. It will be appreciated that although FIG. 1

shows one client processor 104, more can be provided. It will

also be appreciated that the host and client processors may be

any programmable electronic processors. In the example

depicted in FIG. 1, the processor 102 is shown as the central

processing unit (CPU) of an advanced RISC machine (ARM),

and the processor 104 is shown as the CPU of a digital signal

processor (DSP) device. The dashed line in FIG. 1 depicts the

hardware boundary between the host and slave devices, in this

example, the ARM and the DSP, and also a non-volatile

memory 106. The memory 106 may be a ROM, a flash

memory, or other type of non-volatile memory device.

Most commercially available DSP devices include on-chip

memories, and as indicated in FIG. 1, the DSP includes

“internal” single-access RAM (SARAM) and dual-access

RAM (DARAM) 108, as well as an “external” RAM (XRAM)

110. An intermediate storage area, indicated by the dashed line,

is defined within the memory 108 as described in more detail

below. The arrows in FIG. 1 indicate access paths, e.g., busses

and DMA paths, between the CPUs and the memories. The
ARM host CPU 102 can access the non-volatile memo 106

—124—

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

and the SARAM and DARAM 108 of the DSP, but not the

DSP's XRAM 110, and the DSP slave CPU 104 can access all

ofthe RAMs 108, 110.”)

Svensson (Ex-1110), Figure 1:

Non-Volatile
Memory

|
I
I

l
I
I
I

J.

DSP

110

FIG. 1

Svensson (Ex-1110) at 5:21-28 (“The idle process reserves a

block of memory in the slave's heap of memory that is located

in the memory visible to the host, such as "internal" memory

108 (Step 212). As described in more detail below, this

reserved block of memory is used for intermediate storage of

information (code and/or data) to be transferred to the slave-

private memory, i.e., the memory that is invisible to the host,

such as "extemal" XRAM 110.”)

Svensson (Ex-1110), Figure 2:

-l25-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Reset and Hold
Slave Processor

Push Info to
Slave Processor

Push

Complete?

202

204

20

Yes

Boot Slave
Processor

208 FIG. 2

 Start OS in
Slave Processor

21

Reserve Intermed.

Storage Area

Send Message to
Host Processor

Push Info to ISA

Send Message to
Slave Processor

Copy ISA to
"Invisible" Memory

Send Message to
Host Processor

212

214

216

21
224

Yes

Release Blocks;

Load Complete

220

 222

Svensson (Ex-1110) at 5:65-67 (“The slave copies the contents

of the intermediate storage area to appropriate locations in its

slave-private memory (Step 220), thereby implementing its

actual loading”)

Svensson (Ex-1110) at 6: 12-25 (“As described above, the host

fills the intermediate storage area in the memory 108 with code

and data that the slave further copies to end destinations in the

slave-private memory 110. Perhaps the simplest way of doing

this is to precede all code and data in the intermediate storage

area with a ta1 that contains the destination address and lenth

-126-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, PhD.

of the block to be loaded. FIG. 3 depicts one example of such

an organization of the intermediate storage area. A block of

code and/or data to be transferred into the intermediate storage

area includes a header that indicates the length of the block and

where it is to be loaded in the slave memory, i.e., the

destination address. As indicated by the dashed lines in FIG. 3,

several such blocks may be concatenated in the intermediate

storage area”)

Svensson (Ex-1110), Figure 3:

Length

Dest. Addr.

Header

Transfer Block

Intermediate
Storage

Area

FIG. 3

Svensson (Ex-1110) at 6:26-48 (“The information (code and

data) to be loaded can be arranged in many ways in the

intermediate storage area and memories. Often the information

is arranged as blocks of consecutive information that are to be

loaded to different addresses, and thus an arbitrarily chosen

size of the intermediate storage area may not match the sizes of

all such blocks. Still, it should be understood that the system

will operate more efficiently when the intermediate storage

area is always filled. This means that if the blocks to be loaded

are smaller than this area, a transfer of several (smaller) blocks
should be done at the same time. This also means that a block

should be split if it is larger than the remaining part of the

intermediate storage area, and one part transferred to the

intermediate storage area with the remaining part transferred in

the next block. Moreover, if a block is several times larger than

the intermediate storage area, it may have to be split more than

once. All of this splitting and concatenation is done in the host

part of the OS-friendly bootloader in ways that are well known

to computer scientists”)

Svensson (Ex-1110) at 6249-59 (“The artisan will understand

the benefit of this splitting and concatenation of information
into transfer blocks. Some kind of communication mechanism

-127-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

is required to perform the actual transfers of information

between memories, and whatever the mechanism used, fewer

large transfers are typically preferable to more small transfers.

A kept-full intermediate storage area can make the most

efficient use of the available bandwidth by advantageously

minimizing overhead on the communications channel. Each

message requires some amount of administration and

administrative information, and so fewer messages means less

overhead”)

Svensson (Ex-1110) at 6:60-7:2 (“A good example of the

benefit of block splitting and concatenation effect is DMA as

the communication mechanism. DMA typically requires some

setup overhead (i.e., it takes some time to set up), but then

DMA is very efficient once it has been started because

transfers can be carried out in minimal CPU cycles. In order to

gain the greatest benefit from the use of DMA, the largest

DMA transfer permitted by the hardware should be done every

time. Thus, it is currently believed to be advantageous to set

the size of the intermediate storage area to the maximum DMA
block size.

Svensson (Ex-1110) at 7:52-60 (“From this description, it will
be understood that OS mechanisms are available to the slave

part of the OS-friendly bootloader that is executed by the slave

processor and that the slave can reuse existing OS-dependent

code required for communication. Moreover, the OS-friendly

bootloader uses loading resources (e.g., DMA) efficiently, with

the host part automatically deciding when to switch from a first

stage, or push mode, to a second stage, or bootloader mode.”)

’949 patent

’949 patent (Ex-1101) at 2:14-22 (“Often, the software image

to be loaded is a binary multi-segmented image. For instance,

the software image may include a header followed by multiple

segments of code. When software images are loaded, from an

external device (e.g., from another processor) onto a target

device (e.g., a target processor) there may be an intermediate

step where the binary multi-segmented image is transferred

into the system memory and then later transferred into target

locations by the boot loader”)

’949 patent (Ex-1101) at 2:45-54 (“Thus, in order to transfer

the data from the primary processor's non-volatile memory to
rocessor e. o rocessor'so')

-128-

See

See

[10d] receiving at the

secondary processor, from

the primary processor via

the inter-chip

communication bus, each

data segment; and
US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

volatile memory), a packet-based communication may be

employed, wherein a packet header is included in each packet

communicated to the secondary processor. The packets are

stored in an intermediate buffer, and some processing of the

received packets is then required for that data to be stored

where it needs to go (e.g., within the secondary processor's

volatile memory).”)

See claim limitation [10a] regarding the feature “receiving

via the inter-chip communication bus.”

See claim limitation [10b].

Bauer

Bauer (Ex-1109) at 1111 (“Also known are program

downloading methods for use in data processing systems,

integrating non-program information and program information

into an executable file that is used by a host processor to

download the program to a selected co-processor.”)

Bauer (Ex-1109) at 1118 (“In another aspect of this invention,

there is provided a computer-readable medium containing a

data image for loading into a memory in a processor system.”)

Bauer (Ex-1109) at 1132 (“FIG. 1A depicts a binary data image

100 in this file format, including a header 102, section

information 104, and section data 106. The section data 106
includes the data of the one or more sections included in the

image 100.”)

Bauer (Ex-1109), Figures 1A-C:

-129-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Header Section Section Data

FIG' 1A /, 102 Information 104 106
100

Size [32 bits] Number of sections
FIG” 1B 102/ 102-1 [16 bits] 102-2

Section 1 Length Extra 1 [16 bits] Section 2 Length Extra 2 [16 bits]
[16 bits] 108-1 112-1 [16 bits] 108—2 112-2

Load Address 1 [32 bits] Load Address 2 [32 bits]
110-1 110-2

fiff
104-1 104-2

FIG. 1C

Bauer (Ex-1109) at 1133 (“As depicted in FIG. 1B, the header
102 contains a size information element 102-1 that indicates

the total size of the sections 106 (in bytes, for example). . ..The
header 102 also contains a number-of—sections information

element 102-2,. . .It will be understood that other forms of these

information elements can be used instead of the examples set

forth here.”)

Bauer (Ex-1109) at 1134 (“Each section in the section data 106

has a respective "section information" entry in the section

information 104, and two such section information entries 104-

1, 104-2 are depicted in FIG. 1C. . ..The load addresses of the

sections are indicated by address information elements 110-1,

110-2,. . .It will be understood that other forms of these

information elements can be used instead of the examples set

forth here.”)

Bauer (Ex-1109) at 1135 (“FIG. 2 depicts a multi-processor

system 200 that includes a host processor 202 and a client

processor 204 and that can advantageously use a binary image

100 having the format depicted in FIGS. 1A, 1B, 1C. It will be

appreciated that although FIG. 2 shows one client processor

204, more can be provided, and it will further be appreciated

that although FIG. 2 shows a multi-processor system, even

only a single processor 202 can be provided. Moreover, the

processor(s) may be any programmable electronic processor(s).

In the example depicted in FIG. 2, the processor 202 is shown

as the central processing unit (CPU) of an advanced RISC

machine ARM , and the rocessor 204 is shown as the CPU of

-130-

The dashed line in
FIG. 2 depicts the hardware boundary between the host and
slave devices, in this example, the ARM and the DSP, and
also a non-volatile memory

Most commercially available DSP
devices include on-chip memories

The
arrows in FIG. 2 indicate access paths, e.g., busses and direct
memory access (DMA) paths, between the CPUs and the
memories, any one or more of which may store an image in
the format depicted in FIGS. 1A-1C.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

DSP devices include on-chip memories, and as indicated in

FIG. 1, the DSP includes "intemal" single-access RAM

(SARAM) and dual-access RAM (DARAM) 108, as well as an

"extemal" RAM (XRAM) 110. An intermediate storage area,

indicated by the dashed line, is defined within the memory 108
as described in more detail below. The arrows in FIG. 1

indicate access paths, e.g., busses and DMA paths, between the

CPUs and the memories”)

Svensson (Ex-1110), Figure 1:

Non-Volatile

ARM CPU Memory

Int. I DSP Dsp
Store} SARAM DSP CPU
Area |310mm

‘04 110

FIG. 1

Svensson (Ex-1110) at 49-10 (“The SARAM and DARAM

108 can be loaded from the non-volatile memory 106 by the

trivial "push" method.”)

Svensson (Ex-1110) at 4:22-26 (“The first stage resets and

holds the slave 104 in the reset state (Step 202) and pushes

information (program instructions and/or data) (Step 204) in

the usual way from the non-volatile memory 106 into the

commonly visible memories 108.”)

Svensson (Ex-1110) at 5:21-23 (“The idle process reserves a

block of memory in the slave's heap of memory that is located

in the memory visible to the host, such as "intemal" memory

108 (Step 212). As described in more detail below, this

reserved block of memory is used for intermediate storage of

information (code and/or data) to be transferred to the slave-

private memory, i.e., the memory that is invisible to the host,

such as "extemal" XRAM 110.”)

Svensson (Ex-1110) at 6: 12-23 (“As described above, the host

fills the intermediate storage area in the memory 108 with code

and data that the slave further copies to end destinations in the

slave-private memory 110. Perhaps the simplest way of doing

this is to orecede all code and data in the intermediate storae

-l32-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

area with a tag that contains the destination address and length

of the block to be loaded. FIG. 3 depicts one example of such

an organization of the intermediate storage area. A block of

code and/or data to be transferred into the intermediate storage

area includes a header that indicates the length of the block and

where it is to be loaded in the slave memory, i.e., the

destination address.”)

Svensson (Ex-1110), Figure 3:

Length

Dest. Addr.

Header

Transfer Block

Intermediate

Storage
Area

FIG. 3

’949 patent

’949 patent (Ex-1101) at 1:45-48 (“A problem exists on a

significant number of devices (such as smart phones) that

incorporate multiple processors (e.g., a standalone application

processor chip integrated with a separate modem processor

chip).”)

’949 patent (Ex-1101) at 23-13 (“In some multi-processor

systems, software may be required to be loaded to one

processor from another processor. For example, suppose a first

processor in a multi-processor system is responsible for storing

to its non-volatile memory boot code for one or more other

processors in the system; wherein upon power-up the first

processor is tasked with loading the respective boot code to the

other processor(s), as opposed to such boot code residing in

non-volatile memory of the other processor(s). In this type of

system, the software (e.g., boot image) is downloaded from the

first processor to the other processor(s) (e.g., to volatile

memory of the other processor(s)), and thereafter the receiving

processor(s) boots with the downloaded image.”)

’949 patent (Ex-1101) at 2:14-22 (“Often, the software image

to be loaded is a bina multi-semented imae. For instance,

-133-

a fourth information element that indicates a load
address of the respective section

an operating system memory manager can load
and unload sections of memory according to images in this
format

One example of such a program
loader is described in U.S. patent application Ser. No.
11/040,798 filed on Jan. 22, 2005, by M. Svensson et al. for
"Operating-System-Friendly Bootloader

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

information 104, and section data 106. The section data 106
includes the data of the one or more sections included in the

image 100.”)

Bauer (Ex-1109), Figures lA-C:

Header Section Section Data

FIG‘ 1A / 102 Information 104 106
100

Size [32 bits] Number of sections
FIG' 1B 102/ 102-1 [16 bits] 102-2

Section 1 Length Extra 1 [16 bits] Section 2 Length Extra 2 [16 bits]
[16 bits] 108-1 112-1 [16 bits] 108—2 112-2

Load Address 1 [32 bits] Load Address 2 [32 bits]
110-1 110-2

tiff
104-2

FIG. 1C

Bauer (Ex-1109) at 1133 (“As depicted in FIG. 1B, the header
102 contains a size information element 102-1 that indicates

the total size of the sections 106 (in bytes, for example). . ..The
header 102 also contains a number-of—sections information

element 102-2,. . .It will be understood that other forms of these

information elements can be used instead of the examples set

forth here.”)

Bauer (Ex-1109) at 1134 (“Each section in the section data 106

has a respective "section information" entry in the section

information 104, and two such section information entries 104-

1, 104-2 are depicted in FIG. 1C. . ..The load addresses of the

sections are indicated by address information elements 110-1,

110-2,. . .It will be understood that other forms of these

information elements can be used instead of the examples set

forth here.”)

Bauer (Ex-1109) at 1136 (“Most commercially available DSP

devices include on-chip memories, and as indicated in FIG. 2,

the DSP includes "internal" single-access RAM (SARAM) and

dual-access RAM (DARAM) 208, as well as an "external"

RAM (XRAM) 210. An intermediate storage area, indicated by

the dashed line, may be defined within the memory 208. The
arrows in FIG. 2 indicate access

-l35-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

memory access (DMA) paths, between the CPUs and the

memories, any one or more of which may store an image in the

format depicted in FIGS. 1A-1C. The ARM host CPU 202 can

access the non-volatile memory 206 and the SARAM and

DARAM 208 of the DSP, but not the DSP's XRAM 210, and

the DSP slave CPU 204 can access all of the RAMs 208, 210.”)

Bauer (Ex-1109), Figure 2:

Int ' DSP

Stone: SARAM
Area '&DARAM

205

FIG. 2

Bauer (Ex-1109) at 1137 (“As depicted in FIG. 1A, the section

information entry or entries 104 precede the data 106 of the

section(s) in the image 100. The section data 106 is

advantageously arranged in the image in a sequence, and it is

preferable that the section data 106 as well as the section

information entries 104 are arranged in order of the section

load addresses 110, starting with the lowest address. It will be

understood, however, that other orders are suitable, e.g.,

starting with the highest address, and that in general it is not

necessary to order the section by their load addresses. The

sections may be in an arbitrary order. As each section has a

respective load address, the sections can appear in any order

(e.g., by size, coding type, or whatever is suitable). It is

currently believed, however, that the most efficient solution

from a loading point of view is probably arranging the sections

by load address in either descending or ascending order.”)

Bauer (Ex-1109) at 1138 (“Having all section information

entries 104 collected together in the image 100 advantageously

simplifies system navigation through the image, and having all

section data arranged in a sequence makes it possible to

optimize loading of the sections. For instance, it is simple to

split or concatenate sections when they are adjacent in

. The abilit to s-lit sections can be useful, for

-136-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

instance, when a DMA transfer is to be setup. As there is

always a small overhead when setting up a DMA transfer, a

DMA unit can be used in an efficient way by arranging the size

of the data to be transferred to be equal or close to the block

sizes used by the DMA unit. As sections can be located

sequentially in an image 100, it is simple to split a section into

several suitable pieces before downloading it.”)

w

Svensson (Ex-1110) at 3:64-4:8 (“Most commercially available

DSP devices include on-chip memories, and as indicated in

FIG. 1, the DSP includes "intemal" single-access RAM

(SARAM) and dual-access RAM (DARAM) 108, as well as an

"extemal" RAM (XRAM) 110. An intermediate storage area,

indicated by the dashed line, is defined within the memory 108
as described in more detail below. The arrows in FIG. 1

indicate access paths, e.g., busses and DMA paths, between the
CPUs and the memories. The ARM host CPU 102 can access

the non-volatile memory 106 and the SARAM and DARAM

108 of the DSP, but not the DSP's XRAM 110, and the DSP

slave CPU 104 can access all of the RAMs 108, 110.”)

Svensson (Ex-1110), Figure 1:

Non-Volatile

I
l
l

l
l
I
l

J.

110

FIG. 1

Svensson (Ex-1110) at 5:21-28 (“The idle process reserves a

block of memory in the slave's heap of memory that is located

in the memory visible to the host, such as "intemal" memory

108 (Step 212). As described in more detail below, this

reserved block of memory is used for intermediate storage of

information (code and/or data) to be transferred to the slave-

private memory, i.e., the memory that is invisible to the host,

such as "extemal" XRAM 110.”)

Svensson Ex-1110 ,Fi

- 137 -

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Reset and Hold
Slave Processor

Push Info to
Slave Processor

Push

Complete?

Yes

Boot Slave
Processor

Start OS in
Slave Processor

Reserve Intermed.

Storage Area

Send Message to
Host Processor

Push Info to ISA

Send Message to
Slave Processor

Copy ISA to
"Invisible" Memory

Send Message to
Host Processor

Release Blocks;
Load Complete

Svensson (Ex-1110) at 5:65-67 (“The slave copies the contents

of the intermediate storage area to appropriate locations in its

slave-private memory (Step 220), thereby implementing its

actual loading”)

Svensson (Ex-1110) at 6: 12-25 (“As described above, the host

fills the intermediate storage area in the memory 108 with code

and data that the slave further copies to end destinations in the

slave-private memory 110. Perhaps the simplest way of doing

this is to orecede all code and data in the intermediate storae

-138-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

area with a tag that contains the destination address and length

of the block to be loaded. FIG. 3 depicts one example of such

an organization of the intermediate storage area. A block of

code and/or data to be transferred into the intermediate storage

area includes a header that indicates the length of the block and

where it is to be loaded in the slave memory, i.e., the

destination address. As indicated by the dashed lines in FIG. 3,

several such blocks may be concatenated in the intermediate

storage area”)

Svensson (Ex-1110), Figure 3:

Length

Dest. Addr.

Header

Transfer Block

Intermediate

Storage
Area

FIG. 3

Svensson (Ex-1110) at 6:26-48 (“The information (code and

data) to be loaded can be arranged in many ways in the

intermediate storage area and memories. Often the information

is arranged as blocks of consecutive information that are to be

loaded to different addresses, and thus an arbitrarily chosen

size of the intermediate storage area may not match the sizes of

all such blocks. Still, it should be understood that the system

will operate more efficiently when the intermediate storage

area is always filled. This means that if the blocks to be loaded

are smaller than this area, a transfer of several (smaller) blocks
should be done at the same time. This also means that a block

should be split if it is larger than the remaining part of the

intermediate storage area, and one part transferred to the

intermediate storage area with the remaining part transferred in

the next block. Moreover, if a block is several times larger than

the intermediate storage area, it may have to be split more than

once. All of this splitting and concatenation is done in the host

part of the OS-friendly bootloader in ways that are well known

to computer scientists”)

Svensson (Ex-1110) at 6249-59 (“The artisan will understand
the benefit of this s oolittin and concatenation of information

-139-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

into transfer blocks. Some kind of communication mechanism

is required to perform the actual transfers of information

between memories, and whatever the mechanism used, fewer

large transfers are typically preferable to more small transfers.

A kept-full intermediate storage area can make the most

efficient use of the available bandwidth by advantageously

minimizing overhead on the communications channel. Each

message requires some amount of administration and

administrative information, and so fewer messages means less

overhead”)

Svensson (Ex-1110) at 6:60-7:2 (“A good example of the

benefit of block splitting and concatenation effect is DMA as

the communication mechanism. DMA typically requires some

setup overhead (i.e., it takes some time to set up), but then

DMA is very efficient once it has been started because

transfers can be carried out in minimal CPU cycles. In order to

gain the greatest benefit from the use of DMA, the largest

DMA transfer permitted by the hardware should be done every

time. Thus, it is currently believed to be advantageous to set

the size of the intermediate storage area to the maximum DMA
block size.

Svensson (Ex-1110) at 7:52-60 (“From this description, it will
be understood that OS mechanisms are available to the slave

part of the OS-friendly bootloader that is executed by the slave

processor and that the slave can reuse existing OS-dependent

code required for communication. Moreover, the OS-friendly

bootloader uses loading resources (e.g., DMA) efficiently, with

the host part automatically deciding when to switch from a first

stage, or push mode, to a second stage, or bootloader mode.”)

’949 patent (Ex-1101) at 2:35-41 (“Thus, where an

intermediate buffer is used, the data being downloaded from a

primary processor to a secondary processor is copied into the

intermediate buffer. In this way, the buffer is used to receive

part of the image data from the primary processor, and from the

buffer the image data may be scattered into the memory (e.g.,

volatile memory) of the secondary processor.”)

’949 patent

’949 patent (Ex-1101) at 9:12-15 (“As shown in FIG. 3, the

image segments are not necessarily placed into consecutive

locations within the secondary processor's system memory 305.

Instead, the sements ma be Soread out in different locations

—140-

See

See

US. Patent No. 8,838,949

Declaration of Bill Lin, PhD.

of the memory.”)

’949 patent (Ex-1101) at 9:21-41 (“The image header is loaded

from the primary processor 301 to scatter loader controller 304

of secondary processor 302. That image header provides

information as to where the data segments are to be located in

the system memory 305. The scatter loader controller 304

accordingly transfers the image segments directly into their

respective target locations in the secondary processor's system

memory 305. That is, once the secondary processor's CPU

processes the image header in its memory 305 and programs

the scatter loader controller 304, the scatter loader controller

304 knows exactly where the image segments need to go

within the secondary processor's system memory 305, and thus

the hardware scatter loader controller 304 is then programmed

accordingly to transfer the data segments directly into their

target destinations. In the example of FIG. 3, the scatter loader

controller 304 receives the image segments and scatters them

to different locations in the system memory 305. In one aspect,

the executable software image is loaded into the system

memory of the secondary processor without an entire

executable software image being stored in the hardware buffer

of the secondary processor”)

Bauer + Svensson + Kim

11. The method of claim 10

further comprising booting

the secondary processor

using the executable

software image. See claim 10.

See claim limitation [10a].

Bauer

Bauer (Ex-1109) at 1112 (“Also known are methods for

compressing and recovering binary execution files; image

loading program storage media for loaders of operating

systems, which load and map executable images into memory

based on file formats of images; and executable file protection

and execution methods involving incorporating protection

descriptors into protected executable files and providing to

interpreters for unprotecting and executing protected files.”)

Bauer (Ex-1109) at 1131 (“For example, an operating system

memory manager can load and unload sections of memory

according to images in this format. It can also be used as a file

format in which executable files are stored, and linkers and

ro ram loaders can be readil ada ted to su oort read, write,

—141—

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

and interpret) the format. Object code and data can also be

stored in this file format, with a program loader reading the

stored information and processing stored sections

accordingly”)

m

Svensson (EX-1110) at 1:17-27 (“The traditional ways of

loading program code and data to a bare system are either by

"pushing" the code and data into the system's random-access

memory (RAM) directly or by using a bootloader. The

bootloader, which is sometimes called a boot loader or a

bootstrap loader, is a set of instructions (i.e., program code,

sometimes called "boot code") that can be either "pushed" into

the system's RAM or loaded into the RAM from a non-volatile

memory, such as read-only memory (ROM). In its execution

by the processor, the bootloader then "drags" in the rest of the

code and data and starts the system”)

Svensson (EX-1110) at 4:9-14 (“The SARAM and DARAM

108 can be loaded from the non-volatile memory 106 by the

trivial "push" method. When code needs to be loaded to the

XRAM 110 during boot, however, a bootloader solution is

required because the XRAM 110 is invisible to, i.e., not

accessible by, the CPU 102 and so boot code cannot be pushed

to the XRAM 110.”)

Svensson (EX-1110) at 4:20-37 (“The host part of the OS-

friendly bootloader may be considered as including two stages

or modes of operation. The first stage resets and holds the slave

104 in the reset state (Step 202) and pushes information

(program instructions and/or data) (Step 204) in the usual way

from the non-volatile memory 106 into the commonly visible

memories 108. The information pushed into these memories is

mainly the bootloader, the OS, and any necessary start-up code

for the OS. It should be appreciated that an application or

applications or parts thereof may also be pushed into these

memories at start-up and may start executing during the

loading of the "external" memory 110. When this "push" is

finished (Step 206), the slave 104 is allowed to boot (Step 208)

and to start up the OS (e.g., it is released from the reset state)

and its normal communication mechanisms (Step 210). The

host part then awaits a message from the slave, which initiates

operation of its second stage as described in more detail

below.”)

—142—

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Svensson (Ex-1110) at 4:3 8-52 (“The slave part of the OS-

friendly bootloader that is loaded ("pushed" by the host part's

first stage) into the commonly visible memories 108 starts the

operating system, carrying out the following operations (Step

210). First, interrupt handlers are created. The code for the

interrupt handlers must be located in the memory that is

already loaded because an interrupt may occur at any time.

Second, data structures (e.g., process control blocks and stacks)

of common processes, i.e., processes that run in both the host

and the slave, are created. It should be understood that since

these common processes have not yet executed, their code may

be loaded at a later time and may very well be located in

"external" memory visible only to the slave, e.g., XRAM 110.

Third, the system idle process is created. The code for the idle

process must be located in the memory that is already loaded

because the idle process is the process selected to run by the

OS if there is nothing useful to do. Fourth, the scheduling of at

least all processes residing in, i.e., having program code or data

located in, the "external" memory 110 is blocked. Execution of

processes residing in the "internal" memory can thus

advantageously start or continue in parallel with the loading of

the "external" memory as noted above. It is also possible to

stop scheduling all processes except the idle process, but this is

not necessary. Making this blocking the last thing done before
the OS scheduler switches on ensures that the code in these

processes will not run when the scheduler releases. Finally, the

OS scheduler is released, which allows the OS to start

executing code and scheduling processes. It will be understood

that since at least all extemal-memory-process scheduling was

blocked, all that the OS can now do is schedule interrupts and

the idle process”)

Svensson (Ex-1110) at 53-20 (“At this point, the slave 104 is

partly up and running. The slave part of the OS-friendly

bootloader has been loaded, and the slave's idle process is

executing. The slave's OS can schedule and execute code in

response to interrupts and can schedule the idle process and

any unblocked processes having code residing in internal

memory. OS mechanisms for which all code and data accesses

are in memory that has already been loaded (SARAM and

DARAM 108, in this example) are available, including the
usual communication mechanisms. These OS communication

mechanisms, being high-level abstractions of DMA, shared

memory, and structured registers, are more capable than simple

semaphores and enable the host processor to communicate
efficientl with a

—143-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

started, which is to say a processor that is executing mainly

only the OS, interrupt services, and processes residing in

"internal" RAM.”)

Svensson (Ex-1110) at 5:21-37 (“The idle process reserves a

block of memory in the slave's heap of memory that is located

in the memory visible to the host, such as "internal" memory

108 (Step 212). As described in more detail below, this

reserved block of memory is used for intermediate storage of

information (code and/or data) to be transferred to the slave-

private memory, i.e., the memory that is invisible to the host,

such as "external" XRAM 110. The slave's idle process

advantageously uses the established communication

mechanisms to send to the host (Step 214) information about

the address and size or length of the intermediate storage area

reserved in the previous step. After sending the information,

which may be contained in one or more suitable messages, the

slave blocks, awaiting a message from the host. While

"blocked", the slave does not conduct any further loading

activities until it receives the host's response”)

Svensson (Ex-1110) at 5:38-52 (“It will be understood that

whether the slave's OS acts on an interrupt at this stage

depends on the nature of the interrupt. Since many OS

mechanisms (like those used to communicate with the host, for

example) rely on interrupts, and it cannot be known in advance

when an interrupt will occur, all interrupt code must have been

loaded into "internal" memory. In that respect, interrupts are

served during the second stage of the bootloading.

Nevertheless, if an interrupt is to trigger a chain of events such

as processes starting to do some data processing and the code

or data for those processes are located or will be located in

"external" memory, the interrupt is blocked and the interrupt

service puts the request in the "in-queue" of that process so that

the request will be served after booting has finished and that

process can execute”)

Svensson (Ex-1110) at 5:53-59 (“On receipt of the slave's

information, the second stage of the host bootloader fills the

intermediate storage area with information (code and/or data)

to be loaded into the slave's invisible memory (Step 216). Code

and data is pushed to the intermediate storage area in the usual

way because this area is memory that both processors can

access, but the push is activated through the OS

communication mechanisms”)

—144—

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Svensson (EX-1110) at 5:60-6:3 (“The host now sends a

message to the slave (Step 218) that indicates the intermediate

storage area has been loaded and whether loading is finished or

more code and/or data is available. This is the message the

slave is waiting for. The host in turn now blocks, awaiting a

message from the slave. The slave copies the contents of the

intermediate storage area to appropriate locations in its slave-

private memory (Step 220), thereby implementing its actual

loading. The slave then sends a message to the host (Step 222)

that indicates that the slave has copied the contents of the

intermediate storage area.”)

Svensson (EX-1110) at 6:4-1 1 (“If there is more code and/or

data to load (Step 224), this cycle of copying and messaging

(Steps 216-224) can be repeated as many times as required.

When the loading is finished, i.e., when no more information

needs to be copied to the slave, the slave releases the blocking

of processes that were blocked earlier, thereby allowing

scheduling of code in its slave-private memory (Step 226).

Loading is now complete.”)

Svensson (EX-1110) at 6:6-11 (“When the loading is finished,

i.e., when no more information needs to be copied to the slave,

the slave releases the blocking of processes that were blocked

earlier, thereby allowing scheduling of code in its slave-private

memory (Step 226). Loading is now complete.”)

Svensson (EX-1110) at 8: 12-16 (“The slave is booted before all

code is loaded, but code that is linked to host-inaccessible

memory is not run until it is loaded with the help of code that is

linked to the slave processors host-accessible memory.”)

’949 patent

’949 patent (Ex-1101) at 2:1-13 (“In some multi-processor

systems, software may be required to be loaded to one

processor from another processor. For example, suppose a first

processor in a multi-processor system is responsible for storing

to its non-volatile memory boot code for one or more other

processors in the system; wherein upon power-up the first

processor is tasked with loading the respective boot code to the

other processor(s), as opposed to such boot code residing in

non-volatile memory of the other processor(s). In this type of

system, the software (e.g., boot image) is downloaded from the

first processor to the other processor(s) (e.g., to volatile

memo of the other orocessor s , and thereafter the receiving

—145-

See

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

processor(s) boots with the downloaded image.”)

’949 patent (Ex-1101) at 5:20-55 (“Upon system power-up, the

modem processor 110 executes its primary boot loader (PBL)

from the hardware boot ROM 126 (small read-only on-chip

memory). The modem PBL may be adapted to download the

modem executables 120 from the application processor 104.

That is, the modem executable image 120 (initially stored in

the primary non-volatile memory 106) is requested by the

modem processor 1 10 from the application processor 104. The

application processor 104 retrieves the modem executable

image 120 and provides it to the modem processor 110 via an

inter-processor communication bus 134 (e.g., inter-chip

communication bus). The modem processor 110 stores the

modem executable image 132 directly into the modem

processor RAM (Random Access Memory) 112 to the final

destination without copying the data into a temporary buffer in

the modem processor RAM 1 12. The inter-processor

communication bus 134 may be, for example, a HSIC bus

(USB-based High Speed Inter-Chip), an HSI bus (MIPI High

Speed Synchronous Interface), a SDIO bus (Secure Digital I/O

interface), a UART bus (Universal Asynchronous

Receiver/Transmitter), an SPI bus (Serial Peripheral Interface),

an 12C bus (Inter-Integrated Circuit), or any other hardware

interface suitable for inter-chip communication available on

both the modem processor 110 and the application processor

104.”)

’949 patent (Ex-1101) at claim 6 (“6. The multi-processor

system of claim 1, in which the secondary processor further

comprises a non-volatile memory storing a boot loader that

initiates transfer of the executable software image for the

secondary processor.”)

Bauer + Svensson + Kim

12. The method of claim 10

further comprising loading
the executable software

image directly from a
hardware buffer to the

system memory of the

secondary processor without

copying data between

system memory locations.

 See claim 10.

See claim limitations [10b]-[10e].

Bauer

Bauer (Ex-1109) at 1116 (“The new format for binary data

described in this application is particularly useful in embedded

systems as well as in other computer environments where

efficiency is important. Greater efficiency in loading data can

reduce res-onse times in such s stems, and sace-efficient

-146-

The ARM host CPU 202 can
access the non-volatile memory 206 and the SARAM and
DARAM 208 of the DSP, but not the DSP's XRAM 210, and
the DSP slave CPU 204 can access all of the RAMs 208,

210.”)

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

210. ”)

Bauer (Ex-1109), Figure 2:

Int. ' DSP

Store: SARAM
Area '&DARAM

FIG. 2

Bauer (Ex-1109) at 1137 (“As depicted in FIG. 1A, the section

information entry or entries 104 precede the data 106 of the

section(s) in the image 100. The section data 106 is

advantageously arranged in the image in a sequence, and it is

preferable that the section data 106 as well as the section

information entries 104 are arranged in order of the section

load addresses 110, starting with the lowest address. It will be

understood, however, that other orders are suitable, e.g.,

starting with the highest address, and that in general it is not

necessary to order the section by their load addresses. The

sections may be in an arbitrary order. As each section has a

respective load address, the sections can appear in any order

(e.g., by size, coding type, or whatever is suitable). It is

currently believed, however, that the most efficient solution

from a loading point of view is probably arranging the sections

by load address in either descending or ascending order.”)

Bauer (Ex-1109), Figures lA-C:

-148-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Header Section Section Data

FIG' 1A /, 102 Information 104 106
100

Size [32 bits] Number of sections
FIG” 1B 102/ 102-1 [16 bits] 102-2

Section 1 Length Extra 1 [16 bits] Section 2 Length Extra 2 [16 bits]
[16 bits] 108-1 112-1 [16 bits] 108—2 112-2

Load Address 1 [32 bits] Load Address 2 [32 bits]
110-1 110-2

fiff
104-1 104-2

FIG. 1C

Bauer (Ex-1109) at 1143 (“Having information about the
sections collected in the header 102 and section information

104 simplifies optimization in a number of circumstances, for

instance, if sections are to be loaded into memory. The block

104 lists all sections, preferably in order of memory location,

and this makes memory loading efficient as there is no need to

search through an image for section headers when loading”)

m

Svensson (Ex-1110) at 3:49-63 (“FIG. 1 depicts such a multi-

processor system 100 that includes a host processor 102 and a

client processor 104. It will be appreciated that although FIG. 1

shows one client processor 104, more can be provided. It will

also be appreciated that the host and client processors may be

any programmable electronic processors. In the example

depicted in FIG. 1, the processor 102 is shown as the central

processing unit (CPU) of an advanced RISC machine (ARM),

and the processor 104 is shown as the CPU of a digital signal

processor (DSP) device. The dashed line in FIG. 1 depicts the

hardware boundary between the host and slave devices, in this

example, the ARM and the DSP, and also a non-volatile

memory 106. The memory 106 may be a ROM, a flash

memory, or other type of non-volatile memory device”)

Svensson (Ex-1110) at 3:64-4:3 (“Most commercially available

DSP devices include on-chip memories, and as indicated in

FIG. 1, the DSP includes "internal" single-access RAM

(SARAM) and dual-access RAM (DARAM) 108, as well as an

"external" RAM XRAM 110. An intermediate storae area,

—149-

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

indicated by the dashed line, is defined within the memory 108

as described in more detail below”)

Svensson (Ex-1110) at 4:3-8 (“The arrows in FIG. 1 indicate

access paths, e.g., busses and DMA paths, between the CPUs
and the memories. The ARM host CPU 102 can access the

non-volatile memory 106 and the SARAM and DARAM 108

of the DSP, but not the DSP's XRAM 110, and the DSP slave

CPU 104 can access all of the RAMs 108, 110.”)

Svensson (Ex-1110), Figure 1:

Non-Volatile
Memory

I
I
I

I
I
I
I
J.

DSP

110

FIG. 1

Svensson (Ex-1110) at 5:21-28 (“The idle process reserves a

block of memory in the slave's heap of memory that is located

in the memory visible to the host, such as "internal" memory

108 (Step 212). As described in more detail below, this

reserved block of memory is used for intermediate storage of

information (code and/or data) to be transferred to the slave-

private memory, i.e., the memory that is invisible to the host,

such as "external" XRAM 110.”)

Svensson (Ex-1110) at 5:65-67 (“The slave copies the contents

of the intermediate storage area to appropriate locations in its

slave-private memory (Step 220), thereby implementing its

actual loading.”)

Svensson (Ex-1110) at 6: 12-23 (“As described above, the host

fills the intermediate storage area in the memory 108 with code

and data that the slave further copies to end destinations in the

slave-private memory 110. Perhaps the simplest way of doing

this is to precede all code and data in the intermediate storage

area with a tag that contains the destination address and length

of the block to be loaded. FIG. 3 depicts one example of such

an organization of the intermediate storage area. A block of

code and/or data to be transferred into the intermediate storae

-150-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

area includes a header that indicates the length of the block and

where it is to be loaded in the slave memory, i.e., the

destination address”)

Svensson (Ex-1110), Figure 3:

Transfer Block

Intermediate

Storage
Area

FIG. 3

’949 patent

’949 patent (Ex-1101) at 2:23-34 (“In a system in Which the

software image is loaded onto a target "secondary" processor

from a first "primary" processor, one way of performing such

loading is to allocate a temporary buffer into which each packet

is received, and each packet would have an associated packet

header information along with the payload. The payload in this

case would be the actual image data. From the temporary

buffer, some of the processing may be done over the payload,

and then the payload would get copied over to the final

destination. The temporary buffer would be some place in

system memory, such as in internal random-access-memory

(RAM) or double data rate (DDR) memory, for example.

’949 patent (Ex-1101) at 2:35-41 (“Thus, where an

intermediate buffer is used, the data being downloaded from a

primary processor to a secondary processor is copied into the

intermediate buffer. In this way, the buffer is used to receive

part of the image data from the primary processor, and from the

buffer the image data may be scattered into the memory (e.g.,

volatile memory) of the secondary processor.”)

’949 patent (Ex-1101) at 2:5 8-61 (“A multi-processor system is

offered. The system includes a secondary processor having a

system memory and a hardware buffer for receiving at a least a

portion of an executable software image.”)

-151-

See

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

’949 patent (Ex-1101) at 7:20-26 (“As mentioned above,

traditional loading processes require an intermediate step

where the binary multi-segmented image is buffered (e.g.,

transferred into the system memory) and then later scattered

into target locations (e.g., by a boot loader). Aspects of the

present disclosure provide techniques that alleviate the

intermediate step of buffering required in traditional loading

processes.”

’949 patent (Ex-1101), Figure 3:

Zero Copy Transport Flow
PRl\’1:’\RY PROCESSOR SECONDARY PROCESSOR

, Hardware Transport 30"Hardware Transport Mcch- Sm
Mechanism (in. B System.(Re USB Host) Controllcr) Memory /

308 Physical Data Pipe

m (1.0. HS-USB Cable) hmgc
Partial Data ["0 , Pam-Al Data HeaderSwmcnt " "‘ bcnrrcnt

505

Data
Segment 1

Data

I Segment 2307

System Memory ‘2’
Data

Segment 4 _ am
Segment 3

[Huge
Header Segment 4(still

transferring)
Non-Ivolatilc

Memory

Segment 5

FIG. 3

13. The method of claim 10

in which the rocessin;

Bauer + Svensson + Kim

See claim 10.

-152-

See

See

The dashed line in
FIG. 2 depicts the hardware boundary between the host and
slave devices, in this example, the ARM and the DSP, and
also a non-volatile memory 206.

Most commercially available DSP
devices include on-chip memories

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

RAM (XRAM) 210. An intermediate storage area, indicated by

the dashed line, may be defined within the memory 208. The

arrows in FIG. 2 indicate access paths, e.g., busses and direct

memory access (DMA) paths, between the CPUs and the

memories, any one or more of which may store an image in the

format depicted in FIGS. 1A-1C. The ARM host CPU 202 can

access the non-volatile memory 206 and the SARAM and

DARAM 208 of the DSP, but not the DSP's XRAM 210, and

the DSP slave CPU 204 can access all of the RAMs 208, 210.”)

m

Svensson (Ex-1110) at 3:54-63 (“In the example depicted in

FIG. 1, the processor 102 is shown as the central processing

unit (CPU) of an advanced RISC machine (ARM), and the

processor 104 is shown as the CPU of a digital signal processor

(DSP) device. The dashed line in FIG. 1 depicts the hardware

boundary between the host and slave devices, in this example,

the ARM and the DSP, and also a non-volatile memory 106.

The memory 106 may be a ROM, a flash memory, or other

type of non-volatile memory device.”)

Svensson (Ex-1110), Figure 1:

Non~VoIatiie
Memory

I
I
|

I
I
I
I

J.

FIG. 1

Svensson (Ex-1110) at 3:64-4:1 (“Most commercially available

DSP devices include on-chip memories, and as indicated in

FIG. 1, the DSP includes "intemal" single-access RAM

(SARAM) and dual-access RAM (DARAM) 108, as well as an

"extemal" RAM (XRAM) 110.”)

Zhao

Zhao (Ex-1113) at 1133 (“Although embodiments of the dual

processor architecture may be described as comprising the host
rocessor 102 and the radio orocessor 104 for o noses of

—154—

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

illustration, it is worthy to note that the dual processor

architecture of the mobile computing device 100 may comprise

additional processors, may be implemented as a dual- or multi-

core chip with both host processor 102 and radio processor 104

on a single chip, etc.”)

Zhao (Ex-1113), Figure 3:

FIG. '5

Zhao (Ex-1113) at 11150 (“Host processor 102 and radio

processor 104 each contain a universal serial bus controller,

which may be on-chip or a separate integrated circuit

associated with the respective processor. The host USB

controller is coupled to host processor 102 and is configured to

provide USB communication over a universal serial bus (USB)

with radio processor 104. The radio USB controller is coupled

to radio processor 104 and is configured to [provide] USB

communication over the USB with host processor 102.”)

’949 patent

’949 patent (Ex-1101) at 1:45-48 (“A problem exists on a
si nificant number of devices such as smart

-155-

See

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

incorporate multiple processors (e.g., a standalone application

processor chip integrated with a separate modem processor

chip).”)

’949 patent (Ex-1101) at 2:42-45 (“The primary processor and

its non-volatile memory that stores the boot image for a

secondary processor may be implemented on a different chip

than a chip on which the secondary processor is

implemented”)

Bauer + Svensson + Kim

15. The method of claim 10

further comprising

performing the receiving,

processing, and loading, in
at least one of a mobile

phone, a set top box, a

music player, a video player,

an entertainment unit, a

navigation device, a

computer, a hand-held

personal communication

systems (PCS) unit, a

portable data unit, and a
fixed location data unit.

See claim 10.

Bauer

Bauer (Ex-1109) at 1115 (“A lot of software today is sent across

wireless communication links (e.g., wireless local area

networks (WLANs), mobile telephony networks, etc.), and it is

important that software can be sent in a secure manner.”)

Bauer (Ex-1109) at 1116 (“Greater efficiency in loading data

can reduce response times in such systems, and space-efficient

storage saves valuable memory.”)

Bauer (Ex-1109) at 1126 (“As described above, the binary data

format described in this application is useful in processor

systems, such as embedded systems, in which efficiency is

important. Greater efficiency when loading software can lower

response times in embedded systems and other computer

systems, and space-efficient storage saves valuable memory.”)

m

Svensson (Ex-1110) at 7:61-67 (“It is expected that this

invention can be implemented in a wide variety of

environments, including for example mobile communication

devices. Newer ones of such devices can employ the OS-

friendly bootloader described here to boot their DSPs, which

may be provided to handle multimedia tasks, in cooperation

with their main-processor software systems.”)

Svensson (Ex-1110) at 8:26-32 (“This capability can be

important in many devices and many use cases. In a mobile

telephone, for example, such use cases include making a call,

receiving a call, compressing/decompressing speech, playing

music files, etc. With the OS-friendl bootloader described

-156-

See

See

The dashed line in
FIG. 2 depicts the hardware boundary between the host and
slave devices, in this example, the ARM and the DSP, and
also a non-volatile memory

Most commercially available DSP
devices include on-chip memories

The

arrows in FIG. 2 indicate access paths, e.g., busses and direct
memory access (DMA) paths, between the CPUs and the
memories, any one or more of which may store an image in
the format depicted in FIGS. 1A-1C.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

(UART) interfaces, general purpose input/output (GPIO)

interfaces, control/status lines, controUdata lines, shared

memory, and so forth”)

Zhao (Ex-1113), Figure 3:

FIG. '5

Zhao (Ex-1113) at 1133 (“Although embodiments of the dual

processor architecture may be described as comprising the host

processor 102 and the radio processor 104 for purposes of

illustration, it is worthy to note that the dual processor

architecture of the mobile computing device 100 may comprise

additional processors, may be implemented as a dual- or multi-

core chip with both host processor 102 and radio processor 104

on a single chip, etc.”)

Zhao (Ex-1113) at 1134 (“In various embodiments, the host

processor 102 may be implemented as a host central processing

unit (CPU) using any suitable processor or logic device, such

as a general purpose processor. The host processor 102 may

comprise, or be implemented as, a chip multiprocessor (CMP),

dedicated processor, embedded processor, media processor,

' rocessor, a field

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

programmable gate array (FPGA), a programmable logic

device (PLD), or other processing device in alternative

embodiments. In an exemplary embodiment, host processor

102 is an OMAP2, such as an OMAP2431 processor,

manufactured by Texas Instruments, Inc.”)

Zhao (Ex-1113) at 1144 (“As mentioned above, the radio

processor 104 may perform voice and/or data communication

operations for the mobile computing device 100. For example,

the radio processor 104 may be arranged to communicate voice

information and/or data information over one or more assigned

frequency bands of a wireless communication channel. In

various embodiments, the radio processor 104 may be

implemented as a communications processor using any suitable

processor or logic device, such as a modem processor or

baseband processor. Although some embodiments may be

described with the radio processor 104 implemented as a

modem processor or baseband processor by way of example, it

may be appreciated that the embodiments are not limited in this

context. For example, the radio processor 104 may comprise,

or be implemented as, a digital signal processor (DSP), media

access control (MAC) processor, or any other type of

communications processor in accordance with the described

embodiments. Radio processor 104 may be any of a plurality of

modems manufactured by Qualcomm, Inc.”)

Zhao (Ex-1113) at 1152 (“Each processor is provided with the

ability to wake the other when communication between the two

is needed (e.g., via UART, USB or shared memory).”)

Zhao (Ex-1113) at 1160 (“Referring now to FIG. 5, another

exemplary system and method for limiting power consumption

will be described. FIG. 5 is a schematic diagram illustrating

communication lines between a plurality of processors,

according to an exemplary embodiment. As can be seen, a

plurality of digital serial ports and control signals 500 of radio

processor 104 are coupled to host processor 102. Analog audio

signals 502 are coupled to audio CODEC 504 for routing to

microphones, speakers, or host processor 102. In one

exemplary embodiment, UARTl 506 may be used for

multiplexed control and data. UART2 508 may be used for

debug information during development. In an alternative

embodiment, UARTl 506 may be used for command and

diagnostics information and UART2 508 may be used for data

calls.”)

-l60-

See

See

See

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Zhao (Ex-1113), Figure 5:

UART]

UARTZ

ON/OFF
IRESET

RESET_OUT lRESET_OUT

HOST_WAKE HOST_WAKE
HOST_STAT HOST_STAT

RADIO_WAKE . RAD]O_WAKE

go’L
/

Analog Audio

FIG-5

Zhao (Ex-1113) at 1]150 (“Host processor 102 and radio

processor 104 each contain a universal serial bus controller,

which may be on-chip or a separate integrated circuit

associated with the respective processor. The host USB

controller is coupled to host processor 102 and is configured to

provide USB communication over a universal serial bus (USB)

with radio processor 104. The radio USB controller is coupled

to radio processor 104 and is configured to [provide] USB

communication over the USB with host processor 102.”)

’

949 patent

’949 patent (Ex-1101) at 2:42-45 (“The primary processor and

its non-volatile memory that stores the boot image for a

secondary processor may be implemented on a different chip

than a chip on which the secondary processor is

implemented”)

[16b] the image header and See claim limitation [10b].

each data segment being

received separately; See claim limitation [16a].

160 means for orocessin, See claim limitation 10a and 100 .

-l6l-

See
by the secondary processor,

the image header to
determine at least one

location within system

memory to which the

secondary processor is

coupled to store each data

segment;

U.S. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

See claim 15.

Bauer

Bauer (Ex-1109) at 1115 (“An embedded computer environment

has many features that are not present in a desktop- or server-

computer environment. For example, it is usually important

that the sizes of binary images are kept low, as an embedded

system usually has limited storage capacity. Thus, binary files

should contain as little overhead as possible. It is also

important that object code and data can be loaded efficiently,

as processing power may be limited, especially in an embedded

system. A lot of software today is sent across wireless

communication links (e.g., wireless local area networks

(WLANs), mobile telephony networks, etc.), and it is important

that software can be sent in a secure manner. If a binary file

format supports encryption, a higher level of safety can be

achieved”)

m

Svensson (Ex-1110) at 7:61-63 (“It is expected that this

invention can be implemented in a wide variety of

environments, including for example mobile communication

devices.”)

Svensson (Ex-1110) at 8:26-29 (“This capability can be

important in many devices and many use cases. In a mobile

telephone, for example, such use cases include making a call,

receiving a call, compressing/decompressing speech, playing

music files, etc.”)

Zhao

Zhao (Ex-1113) at 1126 (“Referring first to FIG. 1, a mobile

computing device 100 is shown. Device 100 is a smart phone,

which is a combination mobile telephone and handheld

computer having personal digital assistant fimctionality. The

teachings herein can be applied to other mobile computing

devices (e.g., a laptop computer) or other electronic devices

(e.g., a desktop personal computer, home or car audio system,

etc.). Personal digital assistant functionality can comprise one

or more of personal information management, database

functions, word processing, spreadsheets, voice memo
recordin etc. and is confi ured to s chronize oersonal-7

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

information from one or more applications with a computer

(e.g., desktop, laptop, server, etc.). Device 100 is further

configured to receive and operate additional applications

provided to device 100 after manufacture, e.g., via wired or

wireless download, SecureDigital card, etc.”)

Zhao (Ex-1113) at 1132 (“As shown in the embodiment of FIG.

3, mobile computing device 100 may comprise a dual

processor architecture including a host processor 102 and a

radio processor 104 (e.g., a base band processor). The host

processor 102 and the radio processor 104 may be arranged to

communicate with each other using interfaces 106 such as one

or more universal serial bus (USB) interfaces, micro-USB

interfaces, universal asynchronous receiver-transmitter

(UART) interfaces, general purpose input/output (GPIO)

interfaces, control/status lines, controUdata lines, shared

memory, and so forth.”)

Zhao (Ex-1113) at 1144 (“As mentioned above, the radio

processor 104 may perform voice and/or data communication

operations for the mobile computing device 100. For example,

the radio processor 104 may be arranged to communicate voice

information and/or data information over one or more assigned

frequency bands of a wireless communication channel. In

various embodiments, the radio processor 104 may be

implemented as a communications processor using any suitable

processor or logic device, such as a modem processor or

baseband processor. Although some embodiments may be

described with the radio processor 104 implemented as a

modem processor or baseband processor by way of example, it

may be appreciated that the embodiments are not limited in this

context. For example, the radio processor 104 may comprise,

or be implemented as, a digital signal processor (DSP), media

access control (MAC) processor, or any other type of

communications processor in accordance with the described

embodiments. Radio processor 104 may be any of a plurality of

modems manufactured by Qualcomm, Inc.”)

Zhao (Ex-1113), Figure 3:

-l63-

See

See

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

FM
SavvyH!

’

949 patent

’949 patent (Ex-1101) at 1:45-48 (“A problem exists on a

significant number of devices (such as smart phones) that

incorporate multiple processors (e.g., a standalone application

processor chip integrated with a separate modem processor

chip).”)

[16d] means for receiving at See claim limitation [10d].

the secondary processor,

from the primary processor See claim limitation [16a] regarding the feature “means for

via the inter-chip receiving via the inter-chip communication bus”.

communication bus, each

data segment; and Bauer

Bauer (Ex-1109) at 1135 (“FIG. 2 depicts a multi-processor

system 200 that includes a host processor 202 and a client

processor 204 and that can advantageously use a binary image

100 having the format depicted in FIGS. 1A, 1B, 1C. It will be

appreciated that although FIG. 2 shows one client processor

204, more can be provided, and it will further be appreciated

that althou h FIG. 2 shows a multi- orocessor s stem, even

-164-

The dashed line in
FIG. 2 depicts the hardware boundary between the host and
slave devices, in this example, the ARM and the DSP, and
also a non-volatile memory

Most commercially available DSP
devices include on-chip memories

The
arrows in FIG. 2 indicate access paths, e.g., busses and direct
memory access (DMA) paths, between the CPUs and the
memories, any one or more of which may store an image in
the format depicted in FIGS. 1A-1C.

See

See

See

See

determined at least one

location within the system

memory, and each data

segment being scatter

loaded based at least in part

on the processed image
header.

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

Bauer + Svensson + Kim + Zhao

17. The apparatus of claim

16 integrated into at least

one of a mobile phone, a set

top box, a music player, a

video player, an

entertainment unit, a

navigation device, a

computer, a hand-held

personal communication

system (PCS) unit, a

portable data unit, and a
fixed location data unit.

 See claim 16.

See claim 15.
XI. AVAILABILITY FOR CROSS-EMMINATION

200. In signing this declaration, I recognize that the declaration will be

filed as evidence in a contested case before the Patent Trial and Appeal Board of

the United States Patent and Trademark Office. I also recognize that I may be

subject to cross-examination in the case and that cross-examination will take place

Within the United States. If cross-examination is required of me, I will appear for

cross-examination within the United States during the time allotted for cross-

examination.

-l66-

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

XII. RIGHT TO SUPPLEMENT

201. I reserve the right to supplement my opinions in the future to respond

to any arguments that the Patent Owner raises and to take into account new

information as it becomes available to me.

XIII. JURAT

202. I declare that all statements made herein of my own knowledge are

true and that all statements made on information and belief are believed to be true;

and further that these statements were made with the full knowledge that willful

false statements and the like so made are punishable by fine or imprisonment, or

both, under Section 1101 of Title 18 of the United States code.

-167-

168

Dated: 7/2/Kg) ,/
A“

//

US. Patent No. 8,838,949

Declaration of Bill Lin, Ph.D.

g———

Bill Lin, Ph.D.

168

169

APPENDIX A

169

BILL LIN
Curriculum Vitae
Tel: 858.531.2441

Email: billmbox@gmail.com

EDUCATION

Ph.D, Electrical Engineering and Computer Sciences
University of California, Berkeley, May 1991
Masters of Science, Electrical Engineering and Computer Sciences
University of California, Berkeley, May 1988
Bachelor of Science, Electrical Engineering and Computer Sciences
University of California, Berkeley, May 1985

PROFESSIONAL EXPERIENCE

1/1997 – present University of California, San Diego

Professor, Electrical and Computer Engineering
 Adjunct Professor, Computer Science and Engineering

2/1992 – 12/1996 IMEC, Leuven, Belgium

Group Head, Systems Control and Communications Group

AREAS OF EXPERTISE

All aspects of computer architecture and computer network problems, including the design of
heterogeneous multicore processors, systems-on-chips, data networks, wireless communications
and mobile computing systems, and multimedia and graphics systems.

PROFESSIONAL ACTIVITIES

Served or serving as Editor on 3 ACM or IEEE journals, as General Chair on 4 ACM or
IEEE conferences, on the Organizing or Steering Committees for 5 ACM or IEEE
conferences, and on the Technical Program Committees of 44 ACM or IEEE
conferences.

SELECTED PROFESSIONAL ACTIVITIES

Associate Editor, ACM Transactions on Design Automation and Electronics Systems
(TODAES), 2010-2015
Editorial Board, International Journal of Embedded Systems, 2003-present
General Chair, ACM/IEEE Symposium on Networks-on-Chips (NOCS), 2009
General Chair, ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), 2010
Chair of Steering Committee, ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2012-2017
Guest Editor, IEEE Transactions on Network and Service Management (TNSM), 2012-2013
General Co-Chair, ACM SIGMETRICS, 2015

PUBLICATIONS

Published over 170 journal articles and conference papers in top-tier venues and publications.

170

PATENTS

Mitigating Low-Rate Denial-of-Service Attacks in Packet-Switched Networks. United States
Patent 8,443,444. Issued in May 14, 2013.
Systems and Methods for Proactive Surge Protection. United States Patent 7,860,004. Issued in
December 28, 2010.
Method and Apparatus for Scan Block Caching. United States Patent 7,672,005. Issued in March
2, 2010.
Design Environment and a Design Method for Hardware/Software Co-Design. United States
Patent 5,870,588. Issued in February 9, 1999.
System and Method for Generating a Hazard-Free Asynchronous Circuit. United States Patent
5,748,487. Issued in May 5, 1998.

171

EXPERT WITNESS HISTORY

I have served as an expert witness on 21 cases (most cases involved multiple patents in suit), of which I
wrote expert reports or declarations for 14 cases, analyzed source code in 10 cases, was deposed 11 times,
and testified at trial 2 times. The specific cases and services provided are as follows:

1. Vizio, Inc. v. LG Electronics, Inc. and LG Electronics USA Inc., Civil Action No. 09-cv-1481-
BEL

Expert witness on behalf of Vizio, Inc.
Law firm: Jones Day.
Services provided: Provided expert report, analyzed source code.
Technologies: Digital TV.

2. Vizio Inc. v. LG Electronics, Inc. and LG Electronics USA Inc., In the Matter of CERTAIN
FLAT PANEL DIGITAL TELEVISIONS AND COMPONENTS THEREOF, U.S.
International Trade Commission Inv. No. 337-TA-733

Expert witness on behalf of Vizio, Inc.
Law firm: Jones Day.
Services provided: Provided expert report, analyzed source code.
Technologies: Digital TV.

3. Vizio Inc. v. Coby Electronics Corp., Curtis International Ltd., E&S International Enterprises,
Inc., MStar Semiconductor, Inc., ON Corp US, Inc., Renesas Electronics Corporation, Japan,
Renesas Electronics America, Inc., Sceptre, Inc., and Westinghouse Digital, LLC, In the Matter of
CERTAIN DIGITAL TELEVISIONS AND COMPONENTS THEREOF, U.S. International
Trade Commission Inv. No. 337-TA-789

Expert witness on behalf of Vizio, Inc.
Law firm: Jones Day.
Services provided: Provided expert reports, was deposed, analyzed source code.
Technologies: Digital TV.

4. Linex Technologies Inc. v. Hewlett-Packard Company, Apple Inc., Aruba Networks, Inc., Meru
Networks, and Ruckus Wireless, In the Matter of CERTAIN WIRELESS COMMUNICATION
DEVICES AND SYSTEMS, COMPONENTS THEREOF, AND PRODUCTS
CONTAINING SAME, U.S. International Trade Commission Inv. No. 337-TA-775

Expert witness on behalf of Hewlett-Packard Company, Apple Inc., Aruba Networks,
Inc., Meru Networks, and Ruckus Wireless
Law firms: Covington & Burling, K&L Gates, Morrison & Foerster, Lewis Roca &
Rothgerber.
Services provided: Provided expert reports, was deposed, analyzed source code.
Technologies: WiFi networks.

5. MOSAID Technologies, Inc. v. Dell, Inc., Qualcomm Atheros, Inc., et al., Case No. 2:11-cv-

00179-TJW
Expert witness on behalf of Qualcomm Atheros, Inc.
Law Firm: McDermott Will & Emory.
Services provided: Provided expert analysis.
Technologies: WiFi networks.

6. Hitachi Consumer Electronics Co. Ltd., et al. v. Top Victory Electronics (Taiwan) Co. Ltd., et al.,

Civil Action No. 2:10-cv-260-JRG.
Expert witness on behalf of Vizio, Inc.
Law Firm: Akin Gump Strauss Hauer & Feld
Services provided: Provided expert reports, analyzed source code.
Technologies: Digital TV.

172

7. United States International Trade Commission (USITC) Investigation Number: 337-TA-853 and
Technology Properties Limited, LLC v. Kyocera Corporation and Kyocera Communciations, Inc.
in the Northern District of California, Case No. 3:12-cv-03860-JSC

Expert witness on behalf of Kyocera Corporation and Kyocera Communciations.
Law firm: Morrison & Foerster.
Services provided: Provided expert analysis.
Technologies: Cell phones, microprocessors.

8. Netgear, Inc. v. Ruckus Wireless, Inc., Case No. 1:10-cv-00999-SLR / D. Del.

Expert witness on behalf of Ruckus Wireless, Inc.
Law firms: Lewis Roca & Rothgerber, Orrick.
Services provided: Provided expert report, analyzed source code, was deposed, and
testified at trial.
Technologies: WiFi networks.

9. Sonics, Inc. v. Arteris, Inc., Case No. 11 CV-05311 SBA, and Arteris S.A.S. v. Sonics, Inc., Case
No. C 12-00434 (WHA)

Expert witness on behalf of Arteris, Inc. and Arteris S.A.S.
Law firm: DLA Piper.
Services provided: Retained as an expert.
Technologies: Systems-on-Chips (SoCs).

10. Linex Technologies Inc. v. Hewlett-Packard Company, Apple Inc., Aruba Networks, Inc., Meru
Networks, and Ruckus Wireless, U.S. District Court, Northern District of California, C 13-00159
CW

Expert witness on behalf of Hewlett-Packard Company, Apple Inc., Aruba Networks,
Inc., Meru Networks, and Ruckus Wireless
Law firms: Covington & Burling, Milbank, K&L Gates, Morrison & Foerster, Lewis
Roca & Rothgerber.
Services provided: Provided expert reports, analyzed source code.
Technologies: WiFi networks.

11. Frontier Communications Corp. v. Google, C.A. No. 10-545 (D. Del)
Expert witness on behalf of Frontier Communications Corp.
Law firm: Steese, Evans & Frankel
Services provided: Provided expert analysis, wrote declarations, analyzed source code.
Technologies: Voice over IP.

12. U.S. Ethernet Innovations LLC v. Acer, Inc. et al., Case No. 10-cv-3724 (N.D. Cal.)

Expert witness on behalf of Qualcomm Atheros, Inc., Sigma Designs, Inc., and AT&T
Services, Inc.
Law firms: Reed Smith LLP, Pillsbury Winthrop Shaw Pittman LLP, and Vinson &
Elkins LLP.
Services provided: Provided expert reports, was deposed, analyzed source code.
Technologies: Intelligent network interfaces, data center networks.

13. Inter Partes Review of a U.S. Patent.

Expert witness on behalf of Netgear, Inc. and Belkin International, Inc.
Law firm: Reed Smith LLP.
Services provided: Provided declaration for IPR petition.
Technologies: Wireless networks.

14. Inter Partes Review of U.S. Patents.
Expert witness on behalf of Arista Networks.
Law firm: Fish & Richardson.
Services provided: Provided declarations for IPR petitions, deposed 3 times.
Technologies: Network routers, data center networks.

173

15. Invalidity Expert Witness.

Expert witness on behalf of Intel Corp.
Law firm: Wilmer Cutler Pickering Hale and Dorr LLP.
Services provided: Provided expert analysis.
Technologies: WiFi networks, bluetooth networks.

16. Parthenon Unified Memory Architecture LLC v. HTC Corporation et al., Case No. 2:14-CV-690-
JRG-RSP (E. D. Texas).

Expert witness on behalf of HTC Corporation and HTC America, Inc.
Law firm: Sidley Austin LLP.
Services provided: Retained as an expert.
Technologies: Memory architectures.

17. System Architecture Information Technology dba SAI Technology, Inc. v. Qualcomm Inc.
Expert witness on behalf of Qualcomm Inc.
Law firm: McDermott Will & Emory.
Services provided: Retained as an expert, analyzed source code, was deposed, and
testified at trial.
Technologies: WiFi networks.

18. Invalidity Expert Witness.
Expert witness on behalf of Sandvine Corp.
Law firm: Erise IP.
Services provided: Provided declarations.
Technologies: Network monitoring and measurements.

19. Inter Partes Review of U.S. Patents.
Expert witness on behalf of Intel Corp., Cavium Inc., and Dell Inc.
Law firms: Weil, Gotshal & Manges LLP, Duane Morris LLP, Alston & Bird LLP.
Services provided: Provided declarations for IPR petitions, deposed 2 times.
Technologies: Intelligent network interfaces, data center networks.

20. Expert Witness.
Law firm: Covington & Burling.
Services provided: Retained as an expert.
Technologies: WiFi networks.

21. Qualcomm Inc. v. Apple Inc., Inv. No. 337-TA-1065 (ITC), and Civ. Action No. 3:17-cv-01375-
JAH-MDD (S.D. Cal.)

Expert witness on behalf of Apple Inc. and Intel Corp.
Law firm: Wilmer Cutler Pickering Hale and Dorr LLP.
Services provided: Provided expert reports/declarations, was deposed.
Technologies: Wireless systems, computer architecture.

174

