
INTEL 1014

(12) United States Patent

US007203829B2

(10) Patent N0.: US 7,203,829 B2

 Lim (45) Date of Patent: Apr. 10, 2007

(54) APPARATUS AND METHOD FOR (52) US. Cl. 713/2; 713/1; 713/100;
INITIALIZING COPROCESSOR FOR USE IN 717/168

SYSTEM COMPRISED 0F MAIN (58) Field of Classification Search None
PROCESSOR AND COPROCESSOR See application file for complete search history.

(75) Inventor: Chae-Whan Lim, Daegu (KR) (56) References Cited
U.S. PATENT DOCUMENTS

(73) Assignee: Samsung Electronics Co., Ltd.,
Suwon—si (KR)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 326 days.

(21) Appl. N0.: 10/864,459

(22) Filed: Jun. 10, 2004

(65) Prior Publication Data

US 2004/0255111 A1 Dec. 16, 2004

(30) Foreign Application Priority Data

Jun. 13, 2003 (KR) 10-2003 -0038386

(51) Int. Cl.
G06F 9/22 (2006.01)
G06F 9/44 (2006.01)
G06F 15/1 77 (2006.01)

START

POWER 0N7 “
YES

INITIALIZE COPROCESSOR USING
BOOT PROGRAM OF INTERNAL ROM

COMMUNICATE WITH MAIN PROCESSOR
USING LOADER PROGRAM OF INTERNAL ROM

REQUEST TINY FLASH FILE SYSTEM
TRANSMISSION FROM MAIN PROCESSOR 357

INY FLASH FILE SYSTE
RECEIVED?

YES

STORE RECEIVED TINY FLASH
FILE SYSTEM IN INTERNAL RAM 36‘

MOVE/STORE PROGRAM CODE STORED IN
SECOND FLASH MEMORY OF COPROCESSOR

USING TINY FLASH FILE SYSTEM IN INTERNAL RAM

COMMAND COPROCESSOR'S PC To JUMP TO
ENTRANCE POINT OF LOADED CODE AREA

OPERATE COPROCESSOR

6,253,233 B1* 6/2001 Hayashi 711/147
6,330,658 B1* 12/2001 Evoy et a1. 712/31

 6,400,717 B1* 6/2002 Von Ahnen et al. 714/36
6,604,189 B1 * 8/2003 Zemlyak et a1. 711/148

2002/0170051 A1* 11/2002 Watanabe et al. 717/168

* cited by examiner

Primary Examinerilames K. Trujillo
(74) Attorney, Agent, or FirmiRoylance, Abrams, Berdo &
Goodman, L.L.P.

(57) ABSTRACT

An apparatus and method for initializing a coprocessor for
use in system comprised of a main processor and coproces-
sor. The apparatus can be provided with fewer required
memory components, such as a NOR flash memory, by
enabling a coprocessor to perform a booting function upon
receiving a control signal from the main processor.

20 Claims, 12 Drawing Sheets

353

355

363

369

INTEL 1014

U.S. Patent Apr. 10, 2007 Sheet 1 0f 12 US 7,203,829 B2

100 200

MAIN FIRST FLASH
PROCESSOR COPROCESSOR MEMORY 210

FIRST FLASH 110 SECOND FLASH 220
MEMORY MEMORY

SECOND FLASH

‘TIE.

“ 130 PERIPHERALDEVICES

. l I

PERIPHERAL 140
DEVICES

(PRIOR ART)

U.S. Patent Apr. 10, 2007 Sheet 2 0f 12 US 7,203,829 B2

1 00 200

MAIN

PROCESSOR -

COPROCESSOR

FIRST FLASH

MEMORY

220
SECOND FLASH

MEMORY

230

OTHER
SECOND FLASH

PERIPHERAL 240
MEMORY DEVICES

130

 OTHER
PERIPHERAL

DEVICES i
140

FIG.2

US 7,203,829 B2Sheet 3 of 12Apr. 10, 2007U.S. Patent

ovmommomm

$038.0.J<¢wzaammEEO52¢>¢ozmz..:2:028%

03cm—om—o:

m.UEmmOSmo4<¢mIgEm¢meHO

53m>¢ozm20:2:028mmE02921min.EmmimovEEécom

afifié03

U.S. Patent Apr. 10, 2007 Sheet 4 0f 12 US 7,203,829 B2

START

POWER ON? “
YES

INITIALIZE COPROCESSOR USING

BOOT PROGRAM OF INTERNAL ROM

MOVE/STORE PROGRAM CODE STORED ‘

IN SECOND FLASH MEMORY OF '

COPROCESSOR USING TINY FLASH FILE

SYSTEM OF INTERNAL ROM IN INTERNAL RAM

w
YES

COMMAND COPROCESSOR'S PC TO JUMP TO

ENTRANCE POINT OF LOADED CODE AREA . 319

OPERATE COPROCESSOR I 321

FIGA

U.S. Patent Apr. 10, 2007 Sheet 5 0f 12 US 7,203,829 B2

POWER ON?I
YES

INITIALIZE COPROCESSOR USING

BOOT PROGRAM OF INTERNAL ROM 353

COMMUNICATE WITH MAIN PROCESSOR

USING LOADER PROGRAM OF INTERNAL ROM

REQUEST TINY FLASH FILE SYSTEM

TRANSMISSION FROM MAIN PROCESSOR

TINY FLASH FILE SYSTEM
RECEIVED?

YES

STORE RECEIVED TINY FLASH

FILE SYSTEM IN INTERNAL RAM 361

II

MOVE/STORE PROGRAM CODE STORED IN

SECOND FLASH MEMORY OF COPROCESSOR

USING TINY FLASH FILE SYSTEM IN INTERNAL RAM

¢
YES

COMMAND COPROCESSOR'S PC TO JUMP TO '

ENTRANCE POINT OF LOADED CODE AREA '

FIGS

OPERATE COPROCESSOR 369

US 7,203,829 B2Sheet 6 of 12Apr. 10, 2007U.S. Patent

ca08omm

mmUSwoimmigmmmmmIHO

32¢>¢ogm2.:93960%

o:om.om_

QUEmmOSwo._<mm:._n=mmmEEO_2<¢E0292:9);5m20¢
oom

E032:2:028mm

E
mom

 @33903

U.S. Patent Apr. 10, 2007 Sheet 7 0f 12 US 7,203,829 B2

POWER ON? “

INITIALIZE COPROCESSOR USING

BOOT PROGRAM OF INTERNAL ROM

MOVE/STORE PROGRAM CODE STORED IN SECOND

FLASH MEMORY OF COPROCESSOR USING TINY FLASH

FILE SYSTEM OF INTERNAL ROM IN EXTERNAL RAM

w

YES

COMMAND COPROCESSOR'S PC TO JUMP TO

ENTRANCE POINT OF LOADED CODE AREA 4‘ 9

OPERATE COPROCESSOR ; 421

FIG.7

U.S. Patent Apr. 10, 2007 Sheet 8 of 12

START

POWER ON?I
YES

INITIALIZE COPROCESSOR USING

BOOT PROGRAM OF INTERNAL ROM

COMMUNICATE WITH MAIN PROCESSOR USING

LOADER PROGRAM OF INTERNAL ROM

REQUEST TINY FLASH FILE SYSTEM

TRANSMISSION FROM MAIN PROCESSOR

TINY FLASH FILE SYSTEM
RECEIVED?

YES

STORE RECEIVED TINY

FLASH FILE SYSTEM IN EXTERNAL RAM 461

-P4>A 0'!(.110'1 \I(II00

MOVE/STORE PROGRAM CODE STORED lN SECOND

FLASH MEMORY OF COPROCESSOR USING

TINY FLASH FILE SYSTEM IN EXTERNAL RAM

465

w
YES

COMMAND COPROCESSOR'S PC TO JUMP TO ‘

ENTRANCE POINT OF LOADED CODE AREA

OPERATE COPROCESSOR ' 469

US 7,203,829 B2

FIGS

US 7,203,829 B2Sheet 9 of 12Apr. 10, 2007U.S. Patent

3mommomm

803%..4<¢mzaawmEEO32¢‘->mozm2;:2:960%

QUEmmoSmooi._<¢m_Im_mmE$1.5
 cm:2<¢o3>¢O§m§1mg“.0200mm0:E952:95;5x:

 WOFWEEIBFo?

U.S. Patent Apr. 10, 2007 Sheet 10 of 12

START

POWER ON? “
YES

COPROCESSOR'S STANDBY MODE &

COPROCESSOR'S INTERNAL RAM INITIALIZED

BY MAIN PROCESSORS INTERNAL RAM 5‘3

RECEIVE BOOT AND TINY FLASH FILE

SYSTEM CODE FILES OF MAIN PROCESSOR'S

INTERNAL ROM, & MOVE/STORE RECEIVED
CODE FILES IN COPROCESSOR'S INTERNAL RAM

¢
YES

COMMAND COPROCESSOR TO JUMP

TO ENTRANCE POINT OF BOOT AND 519
TINY FLASH FILE SYSTEM CODE AREA

INITIALIZE COPROCESSOR 521

LOAD PROGRAM CODE STORED IN SECOND

FLASH MEMORY OF COPROCESSOR IN

INTERNAL RAM USING TINY FLASH FILE SYSTEM

w
YES

COMMAND COPROCESSOR'S PC TO JUMP TO

ENTRANCE POINT OF LOADED CODE AREA 527

OPERATE COPROCESSOR 529

US 7,203,829 B2

FIG.1O

US 7,203,829 B2Sheet 11 0f 12Apr. 10, 2007U.S. Patent

ovm0mmomm

.80.50EEEEEmmIHO52¢$052:2:028%

91cm:09o:

HH.05$053EmmImEmm.mmIHO

52¢E952Im<._u_ozooww>¢O_>_m_2Im<._u_Emmi

oom

 333mg03

U.S. Patent Apr. 10, 2007 Sheet 12 0f 12 US 7,203,829 B2

START

POWER ON? “
YES

COPROCESSOR'S STANDBY MODE &

COPROCESSOR'S EXTERNAL RAM INITIALIZED 613
BY MAIN PROCESSOR'S INTERNAL RAM

RECEIVE BOOT AND TINY FLASH FILE

SYSTEM CODE FILES OF MAIN PROCESSOR'S

INTERNAL ROM, & MOVE/STORE RECEIVED
CODE FILES IN COPROCESSOR'S EXTERNAL RAM

¢
YES

COMMAND COPROCESSOR TO JUMP

TO ENTRANCE POINT OF BOOT AND 619
TINY FLASH FILE SYSTEM CODE AREA

INITIALIZE COPROCESSOR . 621

LOAD PROGRAM CODE STORED IN SECOND

FLASH MEMORY OF COPROCESSOR IN

EXTERNAL RAM USING TINY FLASH FILE SYSTEM

YES

COMMAND COPROCESSOR'S PC TO JUMP TO

ENTRANCE POINT OF LOADED CODE AREA

OPERATE COPROCESSOR 629 FIG' 1 2

US 7,203,829 B2

1
APPARATUS AND METHOD FOR

INITIALIZING COPROCESSOR FOR USE IN
SYSTEM COMPRISED OF MAIN

PROCESSOR AND COPROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit under 35 U.S.C. §
119(a) of Korean Patent Application No. 2003-38386
entitled “APPARATUS AND METHOD FOR INITIALIZ-
ING COPROCESSOR FOR USE IN SYSTEM COM-
PRISED OF MAIN PROCESSOR AND COPROCES-

SOR”, filed in the Korean Intellectual Property Oflice on
Jun. 13, 2003, the entire contents of which are incorporated
herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an apparatus and method
for booting a controller. More particularly, the present
invention relates to an apparatus and method for booting a
coprocessor for use in a system comprised of a main
processor and a coprocessor.

2. Description of the Related Art
Typically, in a system comprised of a main processor and

a coprocessor, the main processor controls overall opera-
tions of the system, and the coprocessor controls a specific
function upon receiving a control signal from the main
processor. The aforementioned system has been widely used
in mobile terminals having current hybrid functions. For
example, in the case of a mobile terminal provided for
processing current video signals, a main processor controls
overall operations of a communication or mobile terminal,
and a coprocessor performs the processing of video signals
upon receiving a control signal from the main processor. The
aforementioned mobile terminal can be provided with any
number of devices, such as a mobile terminal for a cam-
corder, a PDA (Personal Digital Assistant), a VOD (Video
On Demand) phone, and similar devices.

A representative example of the aforementioned system,
including the main processor and the coprocessor, is shown
in FIG. 1. The following detailed description will hereinafter
be described with reference to FIG. 1 in which, the example
of the aforementioned system is provided as a mobile
terminal.

Referring to FIG. 1, the main processor 100 controls
communication and overall operations of the mobile termi-
nal. A first flash memory 110 is comprised of a NOR flash
memory for storing boot and loader programs and main
operation programs of the main processor 100. A second
flash memory 120 is comprised of a NAND flash memory
for storing large amounts of nonvolatile data, for example,
content data, font data, bitmap data, phonebook data, and
similar data.

The second flash memory 120 has a limited number of
correction times associated with the same area, such that
encounters with an unexpected error in a specified area
results in an outcome wherein data cannot be recorded or

stored any further in the second flash memory 120. There-
fore, a flash file system is adapted to access data of the flash
memory (i.e., 110 and 120). RAM (Random Access
Memory) 130 can be adapted to function as a work memory
for use in the main processor 100. Other peripheral devices
140 are comprised of devices operated by a control signal
generated from the main processor 100. In this case, the

10

15

20

25

30

35

40

45

50

55

60

65

2

peripheral devices 140 can be keypads, displays, RF (Radio
Frequency) units, communication units, and similar devices.

Upon receiving a control signal from the main processor
100, the coprocessor 200 assumes direction of a specific
function, and processes the specific function. An additional
first flash memory 210 is comprised of a NOR flash memory
for storing boot and loader programs and main operation
programs of the coprocessor 200. An additional second flash
memory 220 is comprised of a NAND flash memory for
storing large amounts of nonvolatile data, for example,
content data associated with functions of the coprocessor
200. RAM 230 can be adapted as a work memory of the
coprocessor 200. Other peripheral devices 240 are com-
prised of devices operated by a control signal generated
from the coprocessor 200. In this case, if the mobile terminal
is a camcorder, the peripheral devices 240 can be devices
such as multimedia codecs, cameras, displays (e.g., LCDs),
and similar devices. Content data stored in the second flash

memory 220 can then include video-processed and similar
data. If the mobile terminal is a PDA terminal, substantially
all the applications, other than a communication function,
can be provided by the peripheral devices 240.

The first flash memories 110 and 210 each can be pro-
vided as a NOR flash memory. The second flash memories
120 and 220 can be provided as a NAND flash memory.

As stated above, the main processor 100 and the copro-
cessor 200 each include a memory unit comprised of NOR
and NAND flash memories and RAMs. Therefore, the main
processor 100 and the coprocessor 200 must each include
the aforementioned memories, resulting in increased hard-
ware installation space and increased production cost.
Therefore, it is preferable for either one of the NOR and
NAND flash memories to be removed.

The NOR flash memory is very expensive, and where it
is configured in the form of a stable configuration, it can
store boot and loader programs and flash file systems. The
NAND flash memory has advantages in that it is relatively
cheaper than the NOR flash memory, and has excellent
capacity which is higher than that of the NOR flash memory.
However, the NAND flash memory has a relatively-high
probability of creating bad sectors in the memory, in which
the memory stores content data for use in a corresponding
device. Therefore, when storing the boot and loader pro-
grams and flash filter systems in the NAND flash memory,
it is impossible to perform operations of an overall system
if unexpected bad sectors occur in a specific area for storing
the programs.

Accordingly, a need exists for an improved system for
stably accessing the boot and loader programs and the flash
file systems in devices wherein the costly NOR flash
memory is removed.

SUMMARY OF THE INVENTION

Therefore, the embodiments of the present invention have
been made in view of the above problems, and it is an object
of the present invention to provide an apparatus and method
for removing a relatively high-priced NOR flash memory
from a coprocessor, in a system comprised of a main
processor and the coprocessor, and enabling the coprocessor
to perform a booting function upon receiving a control
signal from the main processor.

It is another object of the present invention to provide an
apparatus and method for enabling a coprocessor having no
NOR flash memory to perform a booting frmction using
boot/loader programs stored in an internal ROM and a tiny

US 7,203,829 B2

3

flash file system, in a system comprised of a main processor
and the coprocessor including a ROM and a RAM.

It is yet another object of the present invention to provide
an apparatus and method for enabling a coprocessor having
no NOR flash memory to perform a booting function using
boot/loader programs stored in an internal ROM and a tiny
flash file system stored in a NOR or NAND flash memory of
a main processor, in a system comprised of the main
processor and the coprocessor including a ROM and a RAM.

It is yet another object of the present invention to provide
an apparatus and method for enabling a coprocessor having
no NOR flash memory to perform a booting function using
boot/loader programs stored in an internal ROM and a tiny
flash file system in a system comprised of a main processor
and the coprocessor including only ROM.

It is yet another object of the present invention to provide
an apparatus and method for enabling a coprocessor having
no NOR flash memory to perform a booting function using
boot/loader programs stored in an internal ROM and a tiny
flash file system stored in a NOR or NAND flash memory of
a main processor, in a system comprised of the main
processor and the coprocessor including only ROM.

It is yet another object of the present invention to provide
an apparatus and method for enabling a coprocessor having
no NOR flash memory to perform a booting function using
boot/loader programs and a tiny flash file system that are all
stored in a NOR or NAND flash memory of a main proces-
sor, in a system comprised of the main processor and the
coprocessor and having no internal ROM.

It is yet another object of the present invention to provide
an apparatus and method for enabling a coprocessor having
no NOR flash memory to perform a booting function using
boot/loader programs and a tiny flash file system, that are all
stored in a NOR or NAND flash memory of a main proces-
sor, in a system comprised of the main processor and the
coprocessor and having no internal ROM and RAM.

In accordance with the embodiments of the present inven-
tion, the above and other objects can be accomplished by
providing an apparatus including a main device and an
auxiliary device, comprising in part, the following compo-
nents.

The main device can include a main processor, including
a ROM (Read Only Memory) and a RAM (Random Access
Memory), for controlling overall operations of the main
device, a first flash memory for storing principal programs
of the main device, a second flash memory for storing
content data of the main device, and a RAM acting as a work
memory of the main device.

The auxiliary device can include a second flash memory
for storing principal programs and content data of the
auxiliary device, an external RAM acting as a work memory
of the auxiliary device, and a coprocessor for including a
ROM and a RAM which store boot, loader, and tiny flash file
system code files. The coprocessor is further provided for
booting the auxiliary device using a boot program stored in
the internal ROM when it is initially powered on by the main
processor. The coprocessor is still further provided for
controlling a loader program to load principal programs
stored in the second flash memory by operating the tiny flash
file system, and for controlling the operations of the auxil-
iary device.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and other advan-
tages of the present invention will be more clearly under-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

stood from the following detailed description taken in con-
junction with the accompanying drawings, in which:

FIG. 1 is a block diagram illustrating a conventional
system comprised of a main processor and a coprocessor;

FIG. 2 is a block diagram illustrating a system comprised
of a main processor and a coprocessor in accordance with an
embodiment of the present invention;

FIG. 3 is a block diagram illustrating a system comprised
of a main processor and a coprocessor in accordance with a
first exemplary embodiment of the present invention;

FIG. 4 is a flow chart illustrating a booting procedure for
use in a coprocessor when an internal ROM of the copro-
cessor of FIG. 3 includes a boot program and a tiny flash file
system in accordance with the first embodiment of the
present invention;

FIG. 5 is a flow chart illustrating a booting procedure for
use in a coprocessor when an internal ROM of the copro-
cessor includes boot and loader programs and the other
internal ROM of the main processor includes a tiny flash file
system in accordance with the first embodiment of the
present invention;

FIG. 6 is a block diagram illustrating a system comprised
of a main processor and a coprocessor in accordance with a
second exemplary embodiment of the present invention;

FIG. 7 is a flow chart illustrating a booting procedure for
use in a coprocessor when an internal ROM of the copro-
cessor of FIG. 6 includes a boot program and a tiny flash file
system in accordance with the second embodiment of the
present invention;

FIG. 8 is a flow chart illustrating a booting procedure for
use in a coprocessor when an internal ROM of the copro-
cessor includes boot and loader programs and the other
internal ROM of the main processor includes a tiny flash file
system in accordance with the second embodiment of the
present invention;

FIG. 9 is a block diagram illustrating a system comprised
of a main processor and a coprocessor in accordance with a
third exemplary embodiment of the present invention;

FIG. 10 is a flow chart illustrating a booting procedure for
use in a coprocessor when an internal ROM of the main
processor of FIG. 9 includes a boot program and a tiny flash
file system in accordance with the third embodiment of the
present invention;

FIG. 11 is a block diagram illustrating a system comprised
of a main processor and a coprocessor in accordance with a
fourth exemplary embodiment of the present invention; and

FIG. 12 is a flow chart illustrating a booting procedure for
use in a coprocessor when an internal ROM of the main
processor of FIG. 11 includes a boot program and a tiny flash
file system in accordance with the third embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

The embodiments of the present invention will be
described in detail with reference to the annexed drawings.
In the drawings, the same or similar elements are denoted by
the same reference numerals even though they are depicted
in different drawings. In the following description, a detailed
description of known functions and configurations incorpo-
rated herein will be omitted when it may make the subject
matter of the present invention unclear.

Prior to describing the present invention, it should be
noted that the following terms will hereinafter be used in the
detailed description of the embodiments of the present
invention.

US 7,203,829 B2

5

The coprocessor is comprised of a processor for operating
application programs or specific functions requiring a high
speed, for example, a GUI (Graphic User Interface), a
multimedia codec, and similar devices.

be main processor is comprised of a processor for
controlling overall operations of a system. For example,in
the case of a mobile terminal, an MSM chip may be adapted
as the main processor.

The boot module is comprised of a software module for
initializing operations of a controller to enter a main soft-
ware routine.

The loader module is comprised of a software module for
initializing a number of necessary modules after performing
a booting function, and moving the remaining main software
coce parts to a specific memory area capable of operating a
controller.

The boot-loader module is comprised of a software mod-
ule wherein the boot module and the loader module are

integrated in one module.
The flash file system is comprised of a software module

for writing data on a NAND flash memory or reading data

from the NAND flash memory without generating errors.
he tiny flash file system is comprised of a minimum

sofware module for reading data from the NAND flash
me nory without generating errors.

It should be noted that the aforementioned flash file

system and the tiny flash file system can be separately
adapted to the present invention. Specifically, the tiny flash
file system is comprised of a flash file system having a
minimum data read function that is capable of guaranteeing
integrity of data stored in the NAND flash memory. The
flash file system is comprised of a file system for overcom-
ing a variety of problems, for example, a problem of
generating bad sectors of the NAND flash memory, and an
aging problem generated when a specific position is repeat-
edly used such that further corrections (i.e., higher than a
predetermined number of correction times) are made
unavailable. In doing so, the flash file system can be used for
stably writing or reading data on/from a memory. The tiny
flash file system can be used where a memory is an equiva-
len to a NAND flash memory A detailed description of the
NOR flash memory is described1n greater detail below.

he first flash memory is comprised of a NOR flash
me nory.

The second flash memory is comprised of a NAND flash
me nory.

The embodiments of the present invention remove a flash
me nory for storing initialization information of a coproces-
sor from a system, the system including a main processor
anc the coprocessor, and stores initialization information of
the coprocessor in either another memory of the coproces-
sor, or a memory of the main processor, such that the system
initialization is established. The memory can be either one of
a ROM, a RAM, first and second flash memories, and
similar devices. The initialization information can be either

one of a boot program module, a loader program, a boot
loader program, and a tiny flash file system of the copro-cessor.

In the implementation of the aforementioned configura-
tions, a main device for use in the embodiments of the
present invention can include a main processor for operating
overall operations of the main device, a first flash memory
for storing the principal programs of the main processor, and
a second flash memory for storing content data of the main
processor. An auxiliary device for use in the embodiments of
the present invention can include a coprocessor for control-
ling overall operations of the auxiliary device, and a second

5

10

15

20

25

30

35

40

45

50

55

60

65

6

flash memory for storing the principal programs and content
data of the auxiliary device. Initialization information of the
auxiliary device, for example, a boot program, a loader
program, a boot-loader program, and tiny flash file systems,
can be stored in an internal ROM of the coprocessor, an
internal ROM of the main processor, the first flash memory
or the second flash memory. A detailed description of the
aforementioned initialization information is described in

greater detail below with reference to the following pre-
ferred embodiments.

The aforementioned initialization information, for
example, a boot program, a loader program, a boot-loader
program, and a tiny flash file system, can be stored in the
coprocessor’s ROM, the main processor’s ROM and/or the
main processor’s flash memory. The flash memory of the
main processor can be comprised of NOR and NAND flash
memories. The boot program, the loader program, the boot-
loader program, and the tiny flash file systems are comprised
of programs operated in the coprocessor.

In accordance with the system initialization operations for
use in the system, which is comprised of the main device and
the auxiliary device, a system booting operation can be
performed by a boot program stored in the main processor’s
memory or the coprocessor’s internal ROM, and the prin-
cipal programs stored in the second flash memory of the
coprocessor are loaded by the tiny flash file system, such that
operations of the auxiliary device can be performed.

FIG. 2 is a block diagram illustrating a system comprised
of a main processor and a coprocessor in accordance with an
embodiment of the present invention. Specifically, FIG. 2 is
a block diagram of a system for removing a first flash
memory from the coprocessor 200.

Referring to FIG. 2, the remaining block diagram con-
figurations, from which the first flash memory is removed
from the coprocessor 200, are equal to those of FIG. 1. In
this case, the first flash memory 110, the second flash
memory 120, external RAM 130, and other peripheral
devices 140 are driven by a control signal received from the
main processor 100. The first flash memory 110 is comprised
of a memory for storing a boot module, a loader module, a
flash file system, and other execution program modules of
the main processor 100. The second flash memory 120 is
comprised of a memory for storing nonvolatile data gener-
ated by a control signal of the main processor 100, for
example, content data, font data, bit data, phonebook data,
and similar data. The main processor 100 performs its
initialization operation using individual software modules
stored in the first flash memory 110 when it is initially
powered on, and provides the coprocessor 200 with a
power-supply voltage such that it is able to initialize the
coprocessor 200.

In this case, the first flash memory is removed from the
coprocessor 200. This first flash memory removed from the
coprocessor 200 is comprised of a memory for storing a boot
module, a loader module, a flash file system, and other
coprocessors’ program modules. Therefore, the embodiment
of the present invention shown in FIG. 2 distributes the boot
module, the loader module, and a tiny flash file system
needed to read the data of the NAND flash memory from
among the flash file system, and stores the above distributed
parts in another memory. Further, upon receiving a control
signal from the main processor 100, the embodiment of the
present invention initializes the coprocessor 200, and loads/
operates the remaining program modules, including a flash
file system, using a tiny flash file system.

In accordance with a first exemplary embodiment of the
present invention which is capable ofremoving the first flash

US 7,203,829 B2

7

memory from the coprocessor 200, the coprocessor 200 can
perform its booting operation under the following two cases,
i.e., a first case in which the coprocessor 200 includes
internal ROM and RAM and the internal ROM includes a

boot module, a loader module, and a tiny flash file system,
and a second case in which the internal ROM includes only
boot and loader modules and a tiny flash file system of the
coprocessor 200 is included in either the first flash memory
110 or the second flash memory 120.

In accordance with a second exemplary embodiment of
the present invention, the coprocessor 200 can perform its
booting operation under the following two cases, i.e., a first
case in which the coprocessor 200 includes an internal ROM
and the internal ROM includes a boot module, a loader
module, and a tiny flash file system, and a second case in
which the internal ROM includes only boot and loader
modules and a tiny flash file system of the coprocessor 200
is included in either the first flash memory 110 or the second
flash memory 120.

In accordance with the first exemplary embodiment of the
present invention, a RAM is included in the coprocessor, and
a tiny flash file system is stored in the internal RAM of the
coprocessor. In accordance with the second exemplary
embodiment of the present invention, a RAM is not included
in the coprocessor, but is stored in an external RAM of the
coprocessor.

In accordance with a third exemplary embodiment of the
present invention, the coprocessor 200 can perform its
booting operation in the case where it includes only a RAM,
and wherein either the first flash memory 110 or the second
flash memory 120 of the main processor 100 includes a boot
module, a loader module, and a tiny flash file system of the
coprocessor 200.

In accordance with a fourth exemplary embodiment of the
present invention, the coprocessor 200 can perform its
booting operation in the case where it does not include a
RAM and a ROM, and wherein either the first flash memory
110 or the second flash memory 120 of the main processor
100 includes a boot module, a loader module, and a tiny
flash file system of the coprocessor 200.

FIG. 3 is a block diagram illustrating an overall system
associated with the aforementioned case in which the ROM

203 and the RAM 205 are included in the coprocessor 200
in a system comprised of the main processor 100 and the
coprocessor 200.

Referring to FIG. 3, the coprocessor 200 includes the
ROM 203 and the RAM 205. The internal ROM 203 stores

a boot module, a loader module, and a tiny flash file system
of the coprocessor 200, as denoted by ‘boot+loader+tiny
flash file system’. Also, the boot module and the loader
module are stored in the internal ROM 203, as denoted by
‘boot+loader’. The tiny flash file system of the coprocessor
200 is stored in either the first flash memory 110 or the
second flash memory 120 of the main processor 100.

FIG. 4 is a flow chart illustrating an initialization proce-
dure of the coprocessor 200 in the case where the ROM 203
and the RAM 205 are included in the coprocessor 200, and
the internal ROM 203 stores a boot module, a loader
module, and a tiny flash file system of the coprocessor 200.
FIG. 5 is a flow chart illustrating an initialization procedure
of the coprocessor 200 in the case where the ROM 203 and
the RAM 205 are included in the coprocessor 200, the
internal ROM 203 stores the boot and loader modules, and
the tiny flash file system of the coprocessor 200 is stored in
either the first flash memory 110 or the second flash memory
120.

10

15

20

25

30

35

40

45

50

55

60

65

8

Referring to FIG. 4, if the coprocessor 200 is powered on
when the main processor 100 is initialized, it detects the
powered-on state at step 311, and gains access to the boot
module stored in the internal ROM 203 such that the

coprocessor 200 is initialized at step 313. A loader module
of the coprocessor 200, which is provided for storing the
loader module in the second flash memory 220, reads a
program code of the coprocessor 200 using a tiny flash file
system of the internal ROM 203, and the read program data
is stored in the internal RAM 205 at step 315.

The aforementioned operations are repeated until a code
that is capable ofperforming basic operations is stored in the
internal RAM 205. After completing the aforementioned
operations, the coprocessor 200 detects this operation
completion state at step 317, and a program counter (PC) of
the coprocessor 200 jumps to an entrance point of a loaded
code area at step 319. The coprocessor 200 then performs
main operations at step 321.

Referring to FIG. 5, if the coprocessor 200 is powered on
when the main processor 100 is initialized, the coprocessor
200 detects the powered-on state at step 351, and gains
access to the boot module stored in the internal ROM 203

such that the coprocessor 200 is initialized at step 353. The
internal ROM 205 accesses the loader module, and starts
communication with the main processor 100 according to a
prescribed communication specification at step 355. When
starting communication with the main processor 100, the
loader module of the coprocessor 200 requests a transmis-
sion message of the tiny flash file system from the main
processor 100 at step 357.

The main processor 100, having received the transmission
message of the tiny flash file system, then reads code data of
the tiny flash file system of the coprocessor 200 from either
the first flash memory 110 or the second flash memory 120
by means of the flash file system of the main processor 100.
The main processor 100 then transmits the read code data to
the loader module of the coprocessor 200 according to a
prescribed communication specification.

The coprocessor 200 detects the reception of the tiny flash
file system transferred from the main processor 100 at step
359, and stores the received tiny flash file system code data
in the internal RAM 205 at step 361. The loader module of
the coprocessor 200, which is provided for storing the loader
module in the second flash memory 220, reads a program
code of the coprocessor 200 using the tiny flash file system
stored in the internal RAM 205. The read program data is
then stored in the internal RAM 205 at step 363.

The aforementioned operations are repeated until all of
the code for performing basic operations and principal
programs is moved to and stored in the internal RAM 205.
After completing the aforementioned operations, the copro-
cessor 200 detects this operation completion state at step
365, and a program counter (PC) of the coprocessor 200
jumps to an entrance point of a loaded code area at step 367.
The coprocessor 200 then performs main operations at step
369.

FIG. 6 is a block diagram illustrating an overall system
comprised of the main processor 100 and the coprocessor
200 and associated with a specific case in which the ROM
203 is included in the coprocessor 200 and the RAM is not
included in the coprocessor 200.

Referring to FIG. 6, the coprocessor 200 includes only the
ROM 203, wherein the ROM 203 can also be referred to as
an internal ROM. The internal ROM 203 stores a boot

module, a loader module, and a tiny flash file system of the
coprocessor 200, as denoted by ‘boot+loader+tiny flash file
system’. Also, the boot module and the loader module are

US 7,203,829 B2

9

stored in the internal ROM 203, as denoted by ‘boot+
loader’. The tiny flash file system of the coprocessor 200 is
stored in either the first flash memory 110 or the second flash
memory 120 of the main processor 100.

FIG. 7 is a flow chart illustrating an initialization proce-
dure of the coprocessor 200 in the case where only the ROM
203 is included in the coprocessor 200 and the internal ROM
203 stores a boot module, a loader module, and a tiny flash
file system of the coprocessor 200. FIG. 8 is a flow chart
illustrating an initialization procedure of the coprocessor
200 in the case where only the ROM 203 is included in the
coprocessor 200, the internal ROM 203 stores boot and
loader modules, and the tiny flash file system of the copro-
cessor 200 is stored in either the first flash memory 110 or
the second flash memory 120.

Referring to FIG. 7, if the coprocessor 200 is powered on
when the main processor 100 is initialized, it detects the
powered-on state at step 411, and gains access to the boot
module stored in the internal ROM 203 such that the

coprocessor 200 is initialized at step 413. A loader module
of the coprocessor 200, which is provided for storing the
loader module in the second flash memory 220, reads a
program code of the coprocessor 200 using a tiny flash file
system of the internal ROM 203, and the read program data
is stored in the external RAM 230 at step 415. The afore-
mentioned operations are repeated until a code that is
capable of performing basic operations is stored in the
external RAM 230. After completing the aforementioned
operations, the coprocessor 200 detects this operation
completion state at step 417, and a program counter (PC) of
the coprocessor 200 jumps to an entrance point of a loaded
code area at step 419. The coprocessor 200 then performs
main operations at step 421.

Referring to FIG. 8, if the coprocessor 200 is powered on
when the main processor 100 is initialized, the coprocessor
200 detects the powered-on state at step 451, and gains
access to the boot module stored in the internal ROM 203

such that the coprocessor 200 is initialized at step 453. The
internal ROM 203 accesses the loader module, and starts
communication with the main processor 100 according to a
prescribed commlmication specification at step 455. When
starting communication with the main processor 100, the
loader module of the coprocessor 200 requests a transmis-
sion message of the tiny flash file system from the main
processor 100 at step 457.

The main processor 100, having received the transmission
message of the tiny flash file system, then reads code data of
the tiny flash file system of the coprocessor 200 from either
the first flash memory 110 or the second flash memory 120
by means of the flash file system of the main processor 100.
The main processor 100 then transmits the read code data to
the loader module of the coprocessor 200 according to a
prescribed communication specification.

The loader program of the coprocessor 200 detects the
reception of the tiny flash file system which is transferred
from the main processor 100 at step 459, and stores the
received tiny flash file system code data in the external RAM
230 at step 461. The loader module of the coprocessor 200,
which is provided for storing the loader module in the
second flash memory 220, reads a program code of the
coprocessor 200 using the tiny flash file system stored in the
external RAM 230, and the read program data is stored in the
internal RAM 205 at step 463.

The aforementioned operations are repeated until all of
the code for performing basic operations and principal
programs are moved to and stored in the external RAM 230.
After completing the aforementioned operations, the copro-

10

15

20

25

30

35

40

45

50

55

60

65

10

cessor 200 detects this operation completion state at step
465, and a program counter (PC) of the coprocessor 200
jumps to an entrance point of a loaded code area at step 467.
The coprocessor 200 then performs main operations at step
469.

FIG. 9 is a block diagram illustrating an overall system
comprised of the main processor 100 and the coprocessor
200, which is associated with a specific case in which the
internal ROM is not included in the coprocessor 200, and
wherein only the RAM 205 is included in the coprocessor
200 in the system.

Referring to FIG. 9, the coprocessor 200 includes only the
RAM 205, and does not include the ROM. In this embodi-
ment, either the first flash memory 110 or the second flash
memory 120 of the main processor 100 stores a boot
module, a loader module, and a tiny flash file system of the
coprocessor 200, as denoted by ‘boot+loader+tiny flash file
system’. Therefore, the coprocessor 200 receives boot and
loader modules, and a tiny flash file system from either the
first flash memory 110 or the second flash memory 120 of
the main processor 100. The coprocessor 200 then moves the
received data to the internal RAM 205 for storage in the
internal RAM 205. Therefore, the coprocessor 200 is booted
using the boot and loader modules, and the tiny flash file
system stored in the internal RAM 205. The coprocessor 200
can then load the principal program codes stored in the
second flash memory 220 using the same.

FIG. 10 is a flow chart illustrating an initialization pro-
cedure for use in the coprocessor 200 in the system of FIG.
9.

Referring to FIG. 10, if the coprocessor 200 is powered on
when the main processor 100 is initialized, the coprocessor
200 detects this powered-on state at step 511, and is initial-
ized to control the internal RAM 205 to be accessed by the
main processor 100, while simultaneously remaining in a
lock state at step 513. The main processor 100 reads code
files of the boot module, the loader module, and the tiny
flash file system from either the first flash memory 110 or the
second flash memory 120, and moves the read code files to
the internal RAM 205 of the coprocessor 200 for storage in
the RAM 205. Therefore, the internal RAM 205 of the
coprocessor 200 stores the boot, loader, and tiny flash file
system code files transferred from the main processor 100 at
step 513. By repeating the aforementioned operations, the
boot, loader, and tiny flash file system code files of the
coprocessor 200 are stored in the internal RAM 205.

After completing the transmission of the boot, loader, and
tiny flash file system code files of the coprocessor 200 to
either the first flash memory 110 or the second flash memory
120, the main processor 100 then resets the coprocessor 200.
In this case, the main processor 100 can reset the coproces-
sor using a variety of methods, including for example, a
method for recording a specific value in a specific register
contained in the coprocessor 200, and a method for applying
a signal to a reset terminal exposed to the outside of the
coprocessor 200.

Upon receiving the reset signal at step 517, the coproces-
sor 200 is reset. In this case, the internal RAM 205 of the
coprocessor 200 stores the boot module, the loader module,
and the tiny flash file system code file of the coprocessor
200. Therefore, the coprocessor 200 is reset, and its PC
(Program Counter) jumps to the entrance points of the boot,
loader, and tiny flash file system code areas at step 519, such
that the coprocessor 200 can perform its booting function at
step 521. The coprocessor 200 then enters a specific state in
which the loader can drive a loading process using the tiny
flash file system. The coprocessor 200 then loads a main

US 7,203,829 B2

11

program stored in the second flash memory 220 using the
tiny flash file system stored in the internal RAM 205 at step
523, and repeats the operation for loading the principal
programs stored in the second flash memory 220. After
finishing loading of the principal programs, the coprocessor
200 detects the loading completion state at step 525, auto-
matically moves the program counter (PC) to a main pro-
gram at step 527, and then performs operations of the
principal programs at step 529.

FIG. 11 is a block diagram illustrating an overall system
associated with a specific case in which the coprocessor
includes only the external RAM 230, excluding the internal
ROM and RAM, and wherein either the first flash memory
110 or the second flash memory 120 stores the boot, loader,
and tiny flash file system, as denoted by ‘boot+loader+tiny
flash file system’.

Referring to FIG. 11, the coprocessor 200 includes only
the external RAM 230, and does not include the internal
ROM and RAM. In this embodiment, either the first flash
memory 110 or the second flash memory 120 of the main
processor 100 stores a boot module, a loader module, and a
tiny flash file system of the coprocessor 200, as denoted by
‘boot+loader+tiny flash file system’. The coprocessor 200
moves the boot, loader, and tiny flash file system stored in
the main processor 100 to the external RAM 230 for storage
in the external RAM 230. Thereafter, the coprocessor 200 is
booted using the boot, loader, and tiny flash file system
stored in the external RAM 230, and can load the principal
program codes stored in the second flash memory 220 using
the same.

FIG. 12 is a flow chart illustrating an initialization pro-
cedure for use in the coprocessor 200 in the system of FIG.
10.

Referring to FIG. 12, if the coprocessor 200 is powered on
when the main processor 100 is initialized, it detects this
powered-on state at step 611 and is initialized to control the
external RAM 230 to be accessed by the main processor 100
while simultaneously remaining in a lock state at step 613.
The main processor 100 reads code files of the boot module,
the loader module, and the tiny flash file system from either
the first flash memory 110 or the second flash memory 120,
and moves the read code files to the external RAM 230 of

the coprocessor 200 for storage in the external RAM 230.
Therefore, the external RAM 230 of the coprocessor 200
stores the boot, loader, and tiny flash file system code files
transferred from the main processor 100 at step 613. By
repeating the aforementioned operations, the boot, loader,
and tiny flash file system code files of the coprocessor 200
are stored in the external RAM 230.

After finishing the transmission of the boot, loader, and
tiny flash file system code files of the coprocessor 200 to
either the first flash memory 110 or the second flash memory
120, the main processor 100 resets the coprocessor 200. In
this case, the main processor 100 can reset the coprocessor
using a variety of methods, including for example, a method
for recording a specific value in a specific register contained
in the coprocessor 200, and a method for applying a signal
to a reset terminal exposed to the outside of the coprocessor
200.

Upon receiving the reset signal at step 617, the coproces-
sor 200 is reset. In this case, the external RAM 230 of the
coprocessor 200 stores the boot, loader, and tiny flash file
system code files of the coprocessor 200. Therefore, the
coprocessor 200 is reset, and its PC (Program Counter)
jumps to the entrance points of the boot, loader, and tiny
flash file system code areas at step 619. The coprocessor 200
can then perform its booting function at step 621, and enters

10

15

20

25

30

35

40

45

50

55

60

65

12

a specific state in which the tiny flash file system can be
operated. Thereafter, the coprocessor 200 loads a main
program stored in the second flash memory 220 using the
tiny flash file system stored in the external RAM 230 at step
623, and repeats the operation for loading the principal
programs stored in the second flash memory 220. After
finishing loading of the principal programs, the coprocessor
200 detects the loading completion state at step 625, auto-
matically moves the program counter (PC) to a main pro-
gram at step 627, and performs operations of the principal
programs at step 629.

As apparent from the above description, the present
invention can remove a NOR flash memory of a coprocessor
from the system comprised in part, of a main processor and
the coprocessor, resulting in the implementation of small-
sized and low-priced system. Also, the present invention can
store programs stored in the NOR flash memory of the
coprocessor in an internal ROM of the coprocessor, an
internal ROM of the main processor, and/or a first flash
memory, and/or a second flash memory, and move the above
programs to a memory of the coprocessor for storage in the
memory of the coprocessor, such that the coprocessor can be
normally operated.

Although the embodiments of the present invention have
been disclosed for illustrative purposes, those skilled in the
art will appreciate that various modifications, additions and
substitutions are possible, without departing from the scope
and spirit of the invention as disclosed in the accompanying
claims.

What is claimed is:

1. An apparatus including a main device and an auxiliary
device, comprising:

the main device including:
a main processor including a ROM (Read Only

Memory) and a RAM (Random Access Memory),
and controlling overall operations of the main
device;

a first flash memory for storing principal programs of
the main device;

a second flash memory for storing content data of the
main device;

a RAM provided as a work memory of the main device,
and

the auxiliary device including:
a flash memory for storing principal programs and

content data of the auxiliary device;
an external RAM provided as a work memory of the

auxiliary device; and
a coprocessor including at least one of a ROM and a

RAM which store at least one of a boot, loader, and
tiny flash file system code file for booting the aux-
iliary device using a boot program stored in the
internal ROM of the coprocessor when the copro-
cessor is initially powered on by the main processor,
the coprocessor controlling a loader program stored
in the internal ROM of the coprocessor to load
principal programs stored in the flash memory of the
auxiliary device by operating the tiny flash file
system, and the coprocessor further controlling
operations of the auxiliary device.

2. The apparatus according to claim 1, wherein:
the first flash memory of the main device is comprised of

a NOR flash memory; and
the second flash memory of the main device and the flash

memory of the auxiliary device are each comprised of
a NAND flash memory.

US 7,203,829 B2

13

3. The apparatus according to claim 1, wherein the tiny
flash file system is comprised of a flash file system capable
of reading data stored in a NAND flash memory without
generating any errors.

4. An apparatus including a main device and an auxiliary
device, comprising:

the main device including:
a main processor for initializing the main device when

the main processor is powered on, for transmitting a
tiny flash file system to the auxiliary device, and for
controlling overall operations of the main device;

a plurality of flash memories including a first flash
memory for storing principal programs of the main
device, and a second flash memory for storing con-
tent data of the main device, wherein at least one of
the first flash memory and the second flash memory
store the tiny flash file system ofthe auxiliary device;

a RAM provided as a work memory of the main device,
and

the auxiliary device including:
a flash memory for storing principal programs and

content data of the auxiliary device;
a RAM provided as a work memory of the auxiliary

device; and
a coprocessor including at least one of an internal ROM

and RAM which store at least one of a boot and

loader code file, the coprocessor performing a boot-
ing function using a boot program stored in the
internal ROM of the coprocessor when the copro-
cessor is initially powered on by the main processor,
the coprocessor further loading the tiny flash file
system transmitted from the main device in the
internal RAM using a loader program stored in the
internal ROM of the coprocessor, the coprocessor
further controlling the loader program to load prin-
cipal programs stored in the flash memory of the
auxiliary device in the internal RAM of the copro-
cessor using the loaded tiny flash file system, and the
coprocessor further controlling operations of the
auxiliary device.

5. The apparatus according to claim 4, wherein the first
flash memory of the main device is comprised of a NOR
flash memory, and the second flash memory of the main
device and the flash memory of the auxiliary device are each
comprised of a NAND flash memory.

6. The apparatus according to claim 5, wherein the
coprocessor loads at least one of a boot, a loader, and a tiny
flash file system in an external RAM when the coprocessor
does not include the internal RAM such that the coprocessor
is initialized.

7. An apparatus including a main device and an auxiliary
device, comprising:

the main device including:
a main processor including internal ROM and RAM

which store boot and loader programs of the auxil-
iary device, the main processor initializing the main
device when the main processor is powered on, the
main processor further transmitting the boot and
loader programs, and a tiny flash file system to the
auxiliary device, and the main processor further
controlling overall operations of the main device;

flash memories including a first flash memory for
storing principal programs of the main device, and a
second flash memory for storing content data of the
main device, wherein at least one of the first flash
memory and the second flash memory store the tiny
flash file system of the auxiliary device;

5

10

15

20

25

30

35

40

45

50

55

60

65

14

a RAM provided as a work memory of the main device,
and

the auxiliary device including:
a flash memory for storing principal programs and

content data of the auxiliary device;
an external RAM provided as a work memory of the

auxiliary device; and
a coprocessor for entering a standby mode when the

coprocessor is initially powered on by the main
processor, the coprocessor receiving the boot and
loader programs and the tiny flash file system from
the main processor, the coprocessor further being
reset by a reset signal generated from the main
processor, the coprocessor further performing a
booting function using the received boot program,
the coprocessor further controlling the loader pro-
gram to load principal programs stored in the flash
memory of the auxiliary device using the received
tiny flash file system, and the coprocessor further
controlling operations of the auxiliary device.

8. The apparatus according to claim 7, wherein the first
flash memory of the main device is comprised of a NOR
flash memory, and the second flash memory of the main
device and the flash memory of the auxiliary device are each
comprised of a NAND flash memory.

9. The apparatus according to claim 8, wherein the
coprocessor loads the boot and loader programs and the tiny
flash file system transmitted from the main processor in the
internal RAM, and performs a coprocessor initialization
operation.

10. A method for initializing an auxiliary device in a
system including a main device and the auxiliary device, the
main device including a main processor for controlling
overall operations of the main device, a first flash memory
for storing principal programs of the main device and a
second flash memory for storing content data of the main
device, and the auxiliary device including a coprocessor for
including an internal ROM for storing a boot module, loader
module, and tiny flash file system, and for controlling
overall operations of the auxiliary device, and a flash
memory for storing principal programs and content data of
the auxiliary device, the method comprising the steps of:

a) performing a booting operation using a boot program
stored in the intemal ROM when the coprocessor is
initially powered on by the main processor;

b) loading the principal programs stored in the second
flash memory using the loader program and adapting
the tiny flash file system stored in the internal ROM;
and

c) controlling the overall operations of the auxiliary
device using the loaded principal programs.

11. The method according to claim 10, wherein the
performing, loading and controlling steps are provided by
the coprocessor.

12. The method according to claim 10, wherein the first
flash memory of the main device is comprised of a NOR
flash memory, and the second flash memory of the main
device and the flash memory of the auxiliary device are each
comprised of a NAND flash memory.

13. The method according to claim 10, wherein:
the boot module is comprised of a software module for

initializing operations of the coprocessor, and for shifl-
ing to a main software routine,

the loader module is comprised of a software module for
loading data from the flash memory to a specific area of
at least one of an internal RAM and an external RAM

using the tiny flash file system, or for loading data to a

US 7,203,829 B2

15

specific area of at least one of the internal RAM or the
external RAM while communicating with the main
processor; and

the tiny flash file system is comprised of a minimum
software module capable of reading data from the flash
memory without generating any errors.

14. A method for initializing an auxiliary device in a
system including a main device and the auxiliary device, the
main device including a main processor for including an
internal ROM and for controlling overall operations of the
main device, a first flash memory for storing principal
programs of the main device, a second flash memory for
storing content data of the main device, and a tiny flash file
system stored in the internal ROM, the first flash memory, or
the second flash memory, and the auxiliary device including
a coprocessor for including an internal ROM for storing a
boot module, loader module, and tiny flash file system and
for controlling overall operations of the auxiliary device,
and a flash memory for storing principal programs and
content data of the auxiliary device, the method comprising
the steps of:

a) performing a booting operation using a boot program
stored in the internal ROM of the coprocessor when the
coprocessor is initially powered on by the main pro-
cessor;

b) loading a tiny flash file system stored in the internal
ROM, the first flash memory, or the second flash
memory of the main processor using a loader program
stored in the internal ROM of the coprocessor;

c) loading the principal programs stored in the flash
memory of the auxiliary device using the loading
program and the loaded tiny flash file system; and

d) controlling operations of the auxiliary device using the
loaded principal programs.

15. The method according to claim 14, wherein the
performing, loading and controlling steps are provided by
the coprocessor.

16. The method according to claim 14, wherein the first
flash memory of the main device is comprised of a NOR
flash memory, and the second flash memory of the main
device and the flash memory of the auxiliary device are each
comprised of a NAND flash memory.

17. The method according to claim 14, wherein:
the boot module is comprised of a software module for

initializing operations of the coprocessor, and for shift-
ing to a main software routine;

the loader module is comprised of a software module for
initializing at least one module after being booted, for
accessing the flash memory using the tiny flash file
system while communicating with the main processor,
and for moving the remaining main software code parts
to a specific memory area where the coprocessor can be
operated; and

5

10

15

20

25

30

35

40

45

50

16

the tiny flash file system is comprised of a minimum
software module capable of reading data from the flash
memory without generating any errors.

18. A method for initializing an auxiliary device in a
system including a main device and an auxiliary device, the
main device including a main processor for including an
internal ROM and for controlling overall operations of the
main device, a first flash memory for storing principal
programs of the main device, and a second flash memory for
storing content data of the main device, in which a boot
module, loader module, and tiny flash file system code files
of the auxiliary device are stored in the internal ROM, the
first flash memory, or the second flash memory, and the
auxiliary device including a coprocessor for controlling
overall operations of the auxiliary device, and a flash
memory for storing principal programs and content data of
the auxiliary device, the method comprising the steps of:

a) entering a standby mode using the coprocessor when
the coprocessor is initially powered on by the main
processor;

b) transmitting the auxiliary device’s boot module, loader
module, and tiny flash file system stored in the internal
ROM, the first flash memory, or the second flash
memory to the coprocessor using the main processor,
and storing the transmitted data in the coprocessor;

c) generating a reset signal when the main processor
finishes transmitting the boot module, loader module,
and tiny flash file system of the auxiliary device, and
performing a booting function by the coprocessor using
the a received boot program upon receipt of the reset
signal;

d) loading the principal programs stored in the flash
memory of the auxiliary device using the a loader
program and the received tiny flash file system, using
the coprocessor; and

e) controlling the operations of the auxiliary device using
the loaded principal programs, using the coprocessor.

19. The method according to claim 18, wherein the first
flash memory of the main device is comprised of a NOR
flash memory, and the second flash memory of the main
device and the flash memory of the auxiliary device are each
comprised of a NAND flash memory.

20. The method according to claim 19, wherein:

the boot module is comprised of a software module for
initializing operations of the coprocessor, and for shift-
ing to a main software routine; and

the tiny flash file system is comprised of a minimum
software module capable of reading data from the flash
memory without generating any errors.

