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Chapter 18

LOSSLESS

COMPRESSION

The need for effective data compression is evident in almost all applications where
storage and transmission of digital images are involved. For example, an 8.5 x 11 in
document scanned at 300 pixels/in with 1 bit/pixel generates 8.4 Mbits data, which
without compression requires about 15 min transmission time over a 9600 baudline.
A 35 mm film scanned at 12 micron resolution results in a digital imageof size 3656
pixels x 2664 lines. With 8 bits/pixel per color and three color channels, the storage
required per picture is approximately 233 Mbits. The storage capacity of a CD is
about 5 Gbits, which without compression can hold approximately 600 pages of a
document, or 21 color images scanned from 35 mm film. Several world standards
for image compression, such as ITU (formerly CCITT) Group 3 and 4 codes, and
ISO/IEC/CCITT JPEG, have recently been developed for efficient transmission
and storage of binary, gray-scale, and color images.

Compression of image data withoutsignificant degradation of the visual quality
is usually possible because images contain a high degree of 1) spatial redundancy, due
to correlation between neighboring pixels, ii) spectral redundancy, dueto correlation
among the color components, and iit) psychovisual redundancy, due to properties
of the human visual system. The higher the redundancy, the higher the achievable
compression. This chapter introduces the basics of image compression, and discusses
some lossless compression methods. It is not intended as a formal review of the
related concepts, but rather aims to provide the minimum information necessary to
follow the popularstill-image and video compression algorithms/standards, which
will be discussed in the subsequent chapters. Elements of an image compression
system as well as someinformation theoretic concepts are introduced in Section 18.1.
Section 18.2 discusses symbol]coding, and in particular entropy coding, which is an
integral part of lossless compression methods. Finally, three commonly used lossless
compression algorithms are presented in Section 18.3.

348
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18.1 Basics of Image Compression

In this section, we first present the elements of a general image compression system,
then summarize some results from the information theory which provide bounds on
the achievable compression ratios and bitrates.

18.1.1 Elements of an Image Compression System

In information theory, the process of data compression by redundancy reduction is
referred to as source encoding. Images contain two types of redundancy,statistical
(spatial) and pyschovisual. Statistical redundancy is present becausecertain spatial
patterns are more likely than others, whereas psychovisual redundancy originates
from the fact that the humaneye is insensitive to certain spatial frequencies. The
block diagram of a source encoder is shown in Figure 18.1. It is composed of the
following blocks:

Symbols

Binary

Input C bit
image stream  

Figure 18.1: Block diagram of an image compression system.

i) Transformer (T) applies a one-to-one transformation to the input image data.
The output of the transformer is an image representation which is more amenable
to efficient compression than the raw image data. Typical transformationsare linear
predictive mapping, which mapsthe pixel intensities onto a prediction error signal
by subtracting the predictible part of the pixel intensities; unitary mappings such as
the discrete cosine transform, which pack the energy of the signal to a small number
of coefficients; and multiresolution mappings, such as subband decompositions and
the wavelet transform.

ii) Quantizer (Q) generates a limited number of symbols that can be usedin the rep-
resention of the compressed image. Quantization is a many-to-one mapping which
is irreversible. It can be performed by scalar or vector quantizers. Scalar quantiza-
tion refers to element-by-element quantization of the data, whereas quantization of
a block of data at once is known as vector quantization.

iii) Coder (C) assigns a codeword,a binary bitstream, to each symbolat the output
of the quantizer. The coder may employ fixed-length or variable-length codes.
Variable-length coding (VLC), also known as entropy coding, assigns codewords in
such a way as to minimize the average length of the binary representation of the
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symbols. This is achieved by assigning shorter codewords to more probable symbols,
which is the fundamental principle of entropy coding.

Different image compression systems implement different combinations of these
choices. Image compression methods can be broadly classified as:
i) Lossless (noiseless) compression methods, which aim to minimize the bitrate
without any distortion in the image.
ii) Lossy compression methods, which air to obtain the best possible fidelity for a
given bitrate, or to minimize the bitrate to achieve a given fidelity measure.
The transformation and encoding blocks are lossless. However, quantizationis lossy,
Therefore, lossless methods, which only make use of the statistical redundancies, do
not employ a quantizer. In most practical cases a small degradation in the image
quality must be allowed to achieve the desired bitrate. Lossy compression methods
make use of both the statistical and psychovisual redundancies.

In the following, we first briefly review some results from the information theory
which gives bounds on the achievable bitrates in both lossless and lossy compres-
sion. In Section 18.2, we present techniques for symbol coding (the third box in
Figure 18.1). The discussion of the second box, the quantizer, is deferred until the
next chapter. Finally, some commonly used lossless image compression methodsare
presented in Section 18.3.

18.1.2 Information Theoretic Concepts

A source Y with an alphabet A is defined as a discrete random process (a sequence
of random variables X;,i=1,...) intheform Y = X1 Xo ..., where each random
variable X; takes a value from the alphabet A. In the following, we assume that
the alphabet contains a finite number (M) of symbols, i.e, A = {a1,d2,...,am}.
Here, we introduce two source models, a discrete memoryless source (DMS) and a
Markov-K source.

A DMSis such that successive symbols are statistically independent. It is
completely specified by the probabilities p(a;) = pi, 7 = 1,...,M such that
pit+...+pm = 1. In VLC, the optimum length of the binary code for a sym-
bol is equal to the information (in bits) that the symbol conveys. According to
information theory, the information content of a symbol is related to the extent
that the symbol is unpredictable or unexpected. If a symbol with low probability
occurs, a larger amount of information is transferred than in the occurence of a
more likely symbol. This quantitative concept of surprise is formally expressed by
the relation

I(a;) = log, (1/p(ai)), for asEA (18.1)

where I{a;) is the amountof information that the symbol a; with probability p(a:)
carries. The unit of information is bit when we use logarithm with base-2, Observe
that if p = 1, then J = 0 as expected, and as p — 0, I — oo. In practice,
the probability of occurrence of each symbolis estimated from the histogram of a
specific source, or a training set of sources.
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The entropy H(#’) of a DMS 4 with an alphabet A is defined as the average
information per symbol in the source, given by

d_ Pla) logs (1/p(a))
acA

— S$) pla) logp(a) (18.2)
actA

H(X)

The more skewed the probability distribution of the symbols, the smaller the entropy
of the source. The entropy is maximized for a flat distribution, that is, when all
symbols are equally likely. It follows that a source where some symbols are more |
likely than others has a smaller entropy than a source whereall symbols are equally
likely.

Example: Entropy of raw image data

Suppose an 8-bit image is taken as a realization of aDMS 4. The
symbols z are the gray levels of the pixels, and the alphabet A is the :
collection of all gray levels between 0 and 255. Then the entropy of the :
image is given by

255

H(X) =— > pla) logy pli)
i=0

where p(2) denotes the relative frequency of occurrence of the gray level
i in the image. Note that the entropy of an image consisting of a single
gray level (constant image)is zero.

Most realistic sources can be better modeled by Markov- random processes.

That is, the probability of occurence of a symbol depends on the values of A preced-
ing symbols. A Markov-K source can be specified by the conditional probabilities
p(X; = a;|X;-1,...,Xj-x), for all j, a; € A. The entropy of a Markov-/’ source
is defined as

A(X) = SXtyes XpACHINGHa) Xion) (18.3)
sk

where S* denotes all possible realizations of X;-1,...,X;-x, and

H(A |Xj-1, oc ., Aj-K) = S/ p(ai|Xj-1, 2 ..,Xj_-K) log p(a;|Xj-1, . ..,Xj-K)
acA

In the following, we present two fundamental theorems, the Lossless Coding The-
orem and the Source Coding Theorem, which are used to measure the performance
of lossless coding and lossy coding systems, respectively.
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352 CHAPTER 18. LOSSLESS COMPRESSION

Lossless Coding Theorem: [Shannon, 1948] The minimum bitrate that
can be achieved by lossless coding of a discrete memoryless source Xx is
given by

min{R} = H(A’) +. bits/symbol . (18.4)
where R is the transmission rate, H(4’) is the entropy of the source, and
¢ is a positive quantity that can be made arbitrarily close to zero.

The Lossless Coding Theorem establishes the lower boundfor the bitrate neces-
sary to achieve zero coding-decodingerror. In the case of a DMS, we can approach
this bound by encoding each symbol independently. For sources with memory, we
need to encode blocks of N source symbols at a time to comearbitrarily close to
the bound. For example, a Markov-M source should be encoded M symbols at a
time. In the next section, we introduce two coding techniques, Huffman coding and
arithmetic coding, that approach the entropy bound.

In lossy coding schemes, the achievable minimum. bitrate is a function of the
distortion that is allowed. This relationship between the bitrate and distortion is
given by the rate distortion function [Ber 71).

Source Coding Theorem: There exists a mapping from the source sym-
bols to codewords suchthat for a given distortion D, R(D) bits/symbol
are sufficient to enable source reconstruction with an average distortion
that is arbitrarily close to D. The actual rate R should obey

R> RD) (18.5)

for the fidelity level D. The function R(D)is called the rate-distortion
function. Note that R(0) = H(*).

Rate, R

F(X) 
0 Distortion, D Dmax

Figure 18.2: Rate distortion function,
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A typical rate-distortion function is depicted in Figure 18.2. The rate distortion
function can be computed analytically for simple source and distortion models.
Computer algorithms exist to compute R(D) when analytical methodsfail or are
unpractical [Ber 71]. In general, we are interested in designing a compression system
to achieve either the lowest bitrate for a given distortion or the lowest distortion at
a given bitrate. Note that the source coding theorem does not state how to design
algorithms to achieve these desired limits. Some well-knownlossy coding algorithms
are discussed in Chapters 19, 20, and 21.

18.2 Symbol Coding

Symbol coding is the process of assigning a bit string to individual symbols or to
a block of symbols comprising the source. The simplest schemeis to assign equal-
length codewords to individual symbols or a fixed-length block of symbols, which
is known asfixed-length coding. Because compression is generally achieved by as-
signing shorter-length codewords to more probable symbols, we next describe two
variable-length coding, also known as entropy coding, schemes. Thefirst, Huffman
coding, assigns variable-length codes to a fixed-length block of symbols, where the
block length can be one. In Huffman coding, the length of the codewords is propor-
tional to the information(in bits) of the respective symbols or block of symbols. The
latter, arithmetic coding, assigns variable-length codes to a variable-length block of
symbols.

18.2.1 Fixed-Length Coding

In fixed-length coding, we assign equal-length code words to each symbol in
the alphabet A regardless of their probabilities. If the alphabet has M different
symbols (or blocks of symbols), then the length of the code words is the smallest
integer greater than log, M. Two commonly used fixed-length coding schemesare
natural codes and Gray codes, which are shown in Table 18.1 for the case of a
four-symbol source. Notice that in Gray coding, the consecutive codewords differ in
only one bit position. This property of the Gray codes may provide an advantage in
error detection. We will see in Section 18.3 that Gray codes are also better suited
for run-length encoding of bit-planes.

Table 18.1: Fixed-length codes for a four-symbol alphabet.

Symbol Natural code Gray code

 

 

 
 
 

ay 00 00

aa 01 O1

ag 10 ll 
a4 11 

a
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It can easily be shown that fixed-length coding is optimal only when:

1) the number of symbols is equal to a power of 2, and
2) all the symbols are equiprobable.

Only then would the entropy of the source be equal to the average length of the
codewords, which is equal to the length of each codewordin the case of fixed-length
coding. For the example shown in Table 18.1, both the entropy of the source and the
average codeword length is 2, assuming all symbols are equally likely. Most often,
some symbols are more probable than others, whereit would be more advantageous
to use entropy coding. Actually, the goal of the transformation box in Figure 18.1
is to obtain a set of symbols with a skew probability distribution, to minimize the
entropy of the transformed source.

18.2.2 Huffman Coding

Huffman coding yields the optimal integer prefix codes given a source with a finite
number of symbols and their probabilities. In prefix codes, no codeword is a prefix
of another codeword. Such codes are uniquely decodable since a given binary string
can only be interpreted in one way. Huffman codes are optimalin the sense that no
other integer-length VLC can be found to yield a smaller average bitrate. In fact,
the average length of Huffman codes per codeword achieves the lower bound, the
entropy of the source, when the symbol probabilities are all powers of 2.

Huffman codes can be designed by following a very simple procedure. Let 4
denote a DMS with the alphabet A and the symbol probabilities p(a;), a; € A,
i=1,...,M. Obviously, if Mf = 2, we must have

e(a;)=0 and c(az)=1 (18.6)

where c(a;) denotes the codeword for the symbola;, i = 1,2. If A has more than
two symbols, the Huffman procedure requires a series of source reduction steps. In
each step, we find and merge the two symbols with the smallest probabilities, which
results in a new source with a reduced alphabet. The probability of the new symbol
in the reduced alphabet is the sum ofthe probabilities of the two “merged” symbols
from the previous alphabet. This procedureis continued until we reach a source
with only two symbols, for which the codeword assignmentis given by (18.6). Then
we work backwards towards the original source, each time splitting the codeword
of the “merged” symbol into two new codewords by appending it with a zero and
one, respectively. The following examples demonstrate this procedure.

Example: Symbol probabilities are powers of 2

Let the alphabet A consist of four symbols, shown in Table 18.2. The
probabilities and the information content of the symbols in the alphabet
are also listed in the table. Note that all symbol probabilities are powers
of 2, and consequently the symbols have integer information values.

10
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Table 18.2: An alphabet where the symbol probabilities are powers of 2.

Symbol Probability Information
1 bit

2 bits

3 bits

3 bits
 

The Huffman coding procedure is demonstrated for this alphabet in
Table 18.3. The reduced alphabet in Step 1 is obtained by merging
the symbols a3 and a, in the original alphabet which have the lowest
two probabilities. Likewise, the reduced alphabet in Step 2 is obtained
by merging the two symbols with the lowest probabilities after Step 1.
Since the reduced alphabet in Step 2 has only two symbols, we assign
the codes 0 and 1 to these symbols in arbitrary order. Next, we assign
codes to the reduced alphabet in Step 1. Werecall that the symbol 2
in Step 2 is obtained by merging the symbols 2 and 3 in Step 1. Thus,
we assign codes to symbols 2 and 3 in Step 1 by appendingthe code for
symbol 2 in Step 2 by a zero and onein arbitrary order. The appended
zero and one are shown by bold fonts in Table 18.3. Finally, the codes
for the original alphabet are obtained in a similar fashion.

Table 18.3: Illustration of alphabet reduction,

Original Alphabet|Reduced Alphabet|Reduced Alphabet
Step 1 Step 2

P

0.50 Q

0.25 10

 

    
0.125 110

0.125 111

This procedure can alternatively be described by the tree diagram shown
in Figure 18.3.

Observe that in this case, the average codewordlength is

R=0.5x1+0.25 x 240.125 x 340.125 x 3=1.75

and the entropy of the source is
H = —0.51n0.5 — 0.25 1n 0.25 — 0.125 In0.125 — 0.125 1n 0.125 = 1.75

which is consistent with the result that Huffman coding achieves the
entropy of the source when the symbol probabilities are powers of 2.

11
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a,iseeoege
=0.5

0

“2 p=0.25

 
a

4 p=0.125

Figure 18.3: Tree-diagram for Huffman coding.

Next, we present an example in which the symbol probabilities are not
powers of 2.

Ezample 2: Symbol probabilities are not powers of 2
The information content of each symbol is a real number, as shown in
Table 18.4, when the probabilities of the symbols are not powers of 2.

Table 18.4: An alphabet with arbitrary symbol probabilities.
Symbol Probability Information 

  

  
  
  

 
a1 0.40 1.32 bits
ao 0.25 2.00 bits
a3 0.15 2.73 bits
a4 0.15 2.73 bits

4.32 bits

Since the length of each codeword mustbe aninteger, it is not possible
to design codewords whose lengths are equal to the information of the
respective symbols in this case. Huffman code design for the alphabet

| in Table 18.4 is shown in Table 18.5. It can be easily seen that for this
example the average length of codewordsis 2.15, and entropy of the

| source is 2.07.
Notice that Huffman codes are uniquely decodable, with proper syn-

| chronization, because no codewordisaprefix of another. For example,
a received binary string

| 001101101110000...
can be decoded uniquely as

dg @, G2 Gy a2 QA, Gi G4 ..-
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Table 18.5: Huffman coding when probabilities are not powers of 2,

ee       

 
Huffman coding can also be used as a block coding scheme where we assign

codewords to combinations of L symbols from the original alphabet at a time. Of
course, this requires building a new block alphabet with all possible combinations
of the L symbols from the original alphabet and computing their respective prob-
abilities. Huffman codes for all possible combinations of the L symbols from the
original alphabet can be formed using the above design procedure with the new
block alphabet. Thus, Huffman codingis a block coding scheme, where we assign
variable-length codesto fixed-length (L) blocks of symbols. ‘The case L — 1 refers to
assigning an individual codeword to each symbol of the original alphabet, as shown
in the above two examples. It has been shown that for sources with memory, the
coding efficiency improves as L gets larger, although the design of Huffman codes
gets more complicated.

18.2.3. Arithmetic Coding

In arithmetic coding a one-to-one correspondence between the symbols of an alpha-
bet A and the codewords does notexist. Instead, arithmetic coding assigns a single
variable-length code to a source ¥, composed of N symbols, where N is variable.
The distinction between arithmetic coding and block Huffman coding is that in
arithmetic coding the length of the input sequence, i.e., the block of symbols for
which a single codeword is assigned, is variable. Thus, arithmetic coding assigns
variable-length codewordsto variable-length blocks of symbols. Because arithmetic
coding does not require assignment of integer-length codes to fixed-length blocks
of symbols, in theory it can achieve the lower bound established by the noiseless
coding theorem.

Arithmetic coding associates a given realization of VY, x = {v1,...,en}, with a
subinterval of (0,1) whose length equals the probability of the sequence p(x). The
encoder processes the input stream of symbols one by one, starting with N = 1,
where the length of the subinterval associated with the sequence gets smaller as
N increases. Bits are sequentially sent to the channel starting from the most sig-
nificant bit towards the least significant bit as they are determined according to
a procedure, which is presented in an algorithmic form in the following. At the
end of the transmission, the transmitted bitstream is a uniquely decodable code-

13
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word representing the source, which is a binary number pointing to the subinterval
associated with this sequence.

The Procedure
Consider an alphabet A that has M symbols aj, i= 1,..-,M, with the proba-

bilities p(ai) = Pi, such that pp +..-+pm = 1. The procedure starts with assigning
each individual symbol in the alphabet a subinterval, within 0 to 1, whose lengthis
equalto its probability. It is assumed that this assignment is known to the decoder.

1. If the first input symbol 21 = 4%, i = 1,...,M, then define the initial
subinterval as I, = [l,71) = [pi-1, Pi-1 + p;), where po = 0. Stn=1,L=h,
R=r,andd= mah.

2. Obtain the binary expansions of L and & as
oO oo

L= So un2~*, and R= Ss: vR2*
k=1 k=l

where u, and vz are 0 or 1.
Compare uw, and v;. If they are not the same, send nothing to the channel at

this time, and go to step 3.
If uy = v1, then send the binary symbol u;, and compare U2 and vo. If they are

not the same, go to step 3.
If ue. — v2, also send the binary symbol uz, and compare ug and vg, and so on,

until the next two corresponding binary symbols do not match, at which time go
to step 3.

3. Increment n, and read the next symbol. If the nth input symbol tn = Gi,
then subdivide the interval from the previous step as

In = Un» Tn) = [ln—1 + pi-id, ln-i t+ (pi-1 + pi)d).
Set D =l,, R= Pn, and d=— In, and go to step 2.

Note that the decoder may decode one binary symbolinto several source sym-
bols, or it may require several binary symbols before it can decode one or more
source symbols. The arithmetic coding procedure is illustrated by means of the
following example.

Example

Suppose we wish to determine an arithmetic code to represent a sequence
of symbols,

a9 a1 @3 ---

from the source shown in Table 18.2. Because we have four symbols
in the alphabet, the interval from 0 to 1 is initially subdivided into 4,
where the lengths of the subintervals are equal to 0.5, 0.25, 0.125 and
0.125, respectively. This is depicted in Figure 18.4.

14
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Symbol 4) 49 43 4
JNfeed

Decimal 0 70.5 0.75-, 0.875 1.0
Binary 0.0 we ON 0.11 0411 10

wt ara, ara, aya, ajay: ‘J

Decimal 0.5 0.625-. 0.6875 0.71875 0.75

Binary 01 0.101 ~°6,1011 0.10111 0.11
Pe 828 1AG 299782 998793829494

eeeeeeed

Decimal 0.5 0.5625 0.59375 0.609375 0.625

Binary 0.1 0.1001 0.10011 0.100111 0.101

Figure 18.4: Illustration of the concept of arithmetic coding.

Thefirst symboldefines the initial interval as J; = [0.5, 0.75), where the
binary representationsof theleft and right boundaries are L = 2-1 = 0.1
and R = 2-14 2-? = 0.11, respectively. According to step 2,
u,; = v, = 1; thus, 1 is sent to the channel. Noting that ug = 0
and vg = 1, we read the second symbol, a;. Step 3 indicates that
Ip = [0.5, 0.625), with D = 0.10 and R= 0.101. Now that ug = v2 = 0,
we send 0 to the channel. However, ug = 0 and vg = 1, so we read the
third symbol, a3. It can be easily seen that fg = [0.59375, 0.609375),
with £L = 0.10011 and R = 0.100111. Note that ug = v3 = 0,
ug = v4 = 1, and us = v5 = 1, but ug = 0 and vg = 1. At this stage, we
send 011 to the channel, and read the next symbol. A reserved symbol
usually signals the end of a sequence.

Let’s now briefly look at how the decoder operates, which is illustrated
in Figure 18.5. The first bit restricts the interval to [0.5, 1). However,

Received Bit Interval Symbol
1 (0.5, 1) -
0 [0.5, 0.75) a2
0 (0.5, 0.609375) ay
1 (0.5625, 0.609375) -
i (0.59375, 0.609375) ag

Figure 18.5: The operation of the decoder.
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three symbols are within this range; thus, the first bit does not contain
sufficient information. After receiving the second bit, we have 10 which
points to the interval [0.5,0.75). All possible combinations of two sym-
bols pointing to this range start with a2. Hence, we can now decode
the first symbol as az. The information that becomes available after the
receipt of each bit is summarized in Figure 18.9.

In practice, two factors cause the performance of the arithmetic encoder to fall
short of the theoretical bound: the addition of an end-of-message indicator, and
the use of finite precision arithmetic. Practical implementations of the arithmetic
coder overcome the precision problem by a scaling and a roundingstrategy.

18.3. Lossless Compression Methods

Error-free coding is the only acceptable means of compression in some applications
for various reasons. For example, in the transmission or archival of medical im-
ages lossy compression is not allowed for legal reasons. Recalling the elements of
a compression system, lossless coding schemes do not employ a quantizer. They
consist of a transformation, which generates symbols whose probability distribution
is highly peaked, followed by an entropy coder. The transformation aims to mini-
mize the entropy of its output, so that significant compression becomes possible by
variable-length coding of the generated symbols.

In this section, we present three popular methods for lossless compression: 1)
Lossless predictive coding, where an integer predictive mapping is employed, fol-
lowed by entropy coding of the integer prediction errors. ii) Run-length coding of
bit-planes, where the image is decomposed into individual bit-planes (binary im-
ages), and the run-lengths of zeros and ones in these planes are entropy coded.
iii) Ziv-Lempel coding, which is a deterministic coding procedure, where the input
bit string is parsed into blocks of variable length to form a dictionary of blocks
(symbols), each of which is represented by a fixed-length codeword. The achiev-
able compression ratio using lossless coding methods ranges between 2:1 to 5:1,
depending on the characteristics of the input image.

18.3.1 Lossless Predictive Coding

The first step in lossless predictive coding is to form an integer-valued prediction
of the next pixel intensity to be encoded based on a set of previously encoded
neighboring pixels. Then the difference between the actual intensity of the pixel
and its prediction is entropy coded. Assuming each pixelis integer-valued, then the
prediction errors are also integer-valued, which facilitates lossless compression. The
block diagram of a simple predictor is shown in Figure 18.6, where the prediction
is taken as the intensity of the previous pixel encoded. Someother commonly used
integer predictors are shown in the following example.

16
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Previous

Sample

(a)

Sample Residual

 
ReconstructedResidual

Sample Previous.

Sample

(b)

Figure 18.6: Block diagram of a) an encoder, and b) a decoder using a simple
predictor.

Example: Integer prediction

In order for the decoder to be able to duplicate the prediction step, the
prediction operation must be based on already-encoded pixels. In 2-D,
such prediction models are called recursively computable. The support
of a recursively computable predictor is shown in Figure 18.7, where the
coefficients a, b, c, and d denote the intensities of the respective pixels.oe

Two simple predictors based on this model can be written as

# = int{(a+)/2} (18.7)

 
Figure 18.7: Prediction schemes.  
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# = int{(at+b+c+d)/4} (18.8)

where # denotes the predicted value for the pixel z. In both expressions,
the prediction is rounded to the nearest integer to ensure an integer
prediction error. We note that many other forms of prediction, such as
edge-adaptive prediction, also exist.

If the input image intensity z has a dynamic range of (0,255), then the prediction
error x — & has a theoretical dynamic range of (-255,255). The reader may have
noticed that the predictive mapping in fact results in an expansion of the dynamic
range of the signal to be encoded. However, inspection of the histogram (probability
density) of the prediction error shows that it is highly peaked about 0, as compared
to the histogram of the actual image intensities, as shown in Figure 18.8. Therefore,
the prediction error always has much smaller entropy than the original intensity
values, which implies that the prediction process removes a great deal of interpixel
(statistical) redundancy.

Relative frequency Relative frequency

—t- B

; ; 255 -25 0 | 255
Original image intensity Integer prediction error

a) b)

Figure 18.8: Histogramsof a) the original image intensity and b) integer prediction
error.

For lossless coding, every possible difference value in the range (-255,255) needs
to be taken as a different symbol. Binary codewords for these symbols can be
assigned by entropy coding, such as Huffman coding or arithmetic coding. However,
because it is usually very costly to assign a different codeword to 513 different
symbols, we usually assign a unique codeword to every difference value in the range
(-15,16). In addition, codewords are assigned to a shift up (SU) symbol and a
shift down (SD) symbol, which shifts a given difference value up or down by 32,
respectively. Using these codewords, every possible difference value can be uniquely
coded by using an appropriate number of SU or SD operators followed by a difference
code in the range (-15,16). For example, a difference value of 100 can be represented
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by cascading the codes for the symbols SD, SD, SD, and 4. This scheme results in a
slightly higher bitrate than does designing 513 different codes, but offers significant
reduction in complexity. The probabilities of each of these symbols are estimated
by analyzing a histogram of the prediction errors obtained from a training set of
images.

18.3.2 Run-Length Coding of Bit-Planes

Bit-plane decomposition refers to expressing a multilevel (monochromeor color)
image by a series of binary images, one for each bit used in the representation of
the pixel intensities. Let the gray levels of an m-bit gray-scale image be represented
as

Am—12"—! + dm—2277 +... +0124 + a9 2° (18.9)
 

where a;,i=0,...,m-—1 are either 0 or 1. The zeroth-order bit-plane is generated
by collecting the ap bits of each pixel, while the (m — 1)st-order bit-plane contains
the a@m—1 bits. For example, for the case of an 8-bit image, a pixel in the most
significant bit-plane is represented by a 1 if the corresponding pixel intensity is
equal to or greater than 128. Observe that a binary image can be represented by a
single bit-plane. Bit-plane decomposition is illustrated in Fig, 18.9.

8-bit gray level 
Mostsignificant

Figure 18.9: Bit-plane decomposition of an 8-bit image.

A disadvantage of the above bit-plane representation is that small changes in
gray level, such as variations due to noise, may cause edges in all bit planes. For
example, the binary representation for 127 is 01111111, and for 128, it is 10000000.
To reduce the effect of such small gray-level variations in the bit-planes, we may
choose to represent the pixel intensities by an m-bit Gray code where successive
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codewords differ only in one bit position. The m-bit Gray code gm_1...g29190 is
given by

9 = @ @ajyyi for 0<i<cm—-2

Jm-1 Gam-1 (18.10)

where @ denotes the exclusive OR. operation.
Aneffective approach to encodebit-planes is to employ run-length coding (RLC),

which is often used for binary image compression. RLC algorithms can beclassified
as 1-D RLC and 2-D RLC.In 1-D RLC, the length of each contiguous group of 0’s
or 1’s encountered in a left-to-right scan of a row of bit-plane is entropy coded. In
most implementations, the length of each run is limited by the numberof pixels in
a line. For unique decodability, we need to establish a convention to either specify
the first run of each row or assume that each row begins with a white run (i.e., the
first symbol in each row is 1), whose run length maybe zero. A different variable-
length code is designed for each possible value of runs. Because the statistics of
Q-runs and 1-runs are usually different, we design different codes for the white-
runs and black-runs. Once again, the statistics of these runs are estimated from a
training set of images. RLC has been adopted in the international standards for
fax transmission, such as ITU (formerly CCITT) Group 3 and Group 4 codes. A
more detailed discussion of 1-D and 2-D RLC is provided in Chapter 21.

18.3.3 Ziv-Lempel Coding

Ziv-Lempel coding is a block coding method which assigns fixed-length codes to
variable-size blocks of input symbols by meansof a table lookup using a dictionary
of variable-length blocks of symbols [Ziv 94]. The input sequence of symbols is
parsed into nonoverlapping blocks of variable length, whose length depends on the
size of the blocks in the present dictionary, while updating the dictionary of blocks
of symbols according to the following algorithm.

The length of the next block to be parsed, L, is defined to be equal to that
of the longest word that is already in the dictionary. The initial dictionary is set
equal to thelist of all symbols in the alphabet A = {a1,a2,...,ay}. Thus, initially
£ = 1. If the next parsed block, w, is already in the dictionary, the encoder sends
to the channel a fixed-length code for the index of this block. Before continuing
parsing, w is concatenated with the next input symbol and addedto the dictionary.
If w is not in the dictionary, then the encoder sends a fixed-length code for thefirst
L—1 symbols of w (which must be in the dictionary) and adds w to the dictionary.
This process is repeated until the entire input sequence is coded. The Ziv-Lempel
procedure is demonstrated by an example in the following.
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Example

We demonstrate the Ziv-Lempel coding procedure for the case of a bi-
nary alphabet, that is, an alphabet which contains only two symbols, 0
and 1. The initial dictionary in this case contains only two symbols,0
and 1, and L =1. Thefirst parsed symbol in the sequence to be coded
is 0, as shownin Table 18.6. Clearly, 0 is in the dictionary; therefore, its
code, 0, is transmitted. Then we check the next symbol, which is a 1,
and append the block 01 in the dictionary. Now that L = 2, we read the
next block of two symbols in the input sequence, which is 11. The block
11 is not in the dictionary, so it is added to the dictionary, and the code
for the first L — 1 symbols in this block, which is a 1, is transmitted.
The operation of the algorithm is illustrated in Table 18.6, which shows
a list of input symbols, the blocks that enter the dictionary, the index
that is coded by fixed-length coding, and the output of the coder.

Observe from Table 18.6 that Ziv-Lempel codes have the so-called “last-
first” property which states that the last symbol of the most recent word
added to the table is the first symbol of the next parsed block.

Table 18.6: An example for Ziv-Lempel coding.
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Ziv-Lempel codingis noiseless, does not require probabilities of the source sym-
bols to be knownor estimated, and is optimumin the limit of unbounded dictionary
size. In practice, one places a bound on the dictionary size. Once this size limit
is reached, the encoder can no longer add codewords and must simply use the ex-
isting dictionary. However, methods exist to adapt the dictionary to varying input
characteristics.

Ziv-Lempel coding has been succesfully used for compression of binary datafiles,
with a compression ratio of approximately 2.5:1. Indeed, it forms the basis of the
“compress” utility in UNIX and the “arc” program for the PC environment.

18.4 Exercises

1. Suppose we have a discrete memoryless source with the alphabet A and the
symbol probabilities p(a;) for a; € A specified by the following table:

[Symbol[ao[a[a[a[as[as

a) Find the entropy of this source.

 

 
  

  

b) Design a Huffman code for this source.

c) Find the average codewordlength.

d) How goodis this code?

2. Let X be a binary, Markov-2 source with the alphabet A = { 0, 1 }. The
source is modeled by the conditional probabilities

P(0|0,0) = 0.7 P(1|0,0) = 0.3
P(0|0,1) = 0.6 P(1|0,1) = 0.4
P(0|1,0) = 0.4 P(1{1, 0) = 0.6
P(0|1,1) = 0.3 P(1|1,1) = 0.7

a) Whatis the entropy of this source?

b) Design a block Huffman code for N = 3.

c) Whatis the average codeword length? What would be the average codeword
length if we design a scalar Huffman code?

3. Suppose we have an 8-bit gray-level image. How would you estimate the
entropy of this image:

a) Assuming that it is a discrete memoryless source?

b) Assuming that it is a Markov-1 source?

Which one do you guess will be smaller? Why?
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4. Assume that the histogram ofthe differential image shown in Figure 18.8 can

be modeled by a Laplacian distribution, given by

ple) = ae exp a ml
with o, = 15. Write an expression for the entropy of the differential image.
Estimate its value. What is the expected compression ratio (using lossless
differential encoding)?

  

5. How do you compare arithmetic coding with block Huffman coding?

6. Whatis the primary motivation of using the Gray codes in bit-plane encoding?
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Chapter 22

INTERFRAME

COMPRESSION

METHODS

Video compression is a key enabling technology for desktop digital video. With-
out compression, digital transmission of an NTSC color video, with 720 pixels x
480 lines, 8 bits/pixel per color, and 30 frames/sec, requires a transmission capac-
ity of 248 Mbps. Likewise, an HDTV color video, with 1920 pixels x 1080 lines,
8 bits/pixel per color, and 30 frames/sec, needs a channel capacity of 1.5 Gbps.
A super-35 format motion picture is usually digitized with 4096 pixels x 3112 lines
and 10 bits/pixel per color. At a rate of 24 frames/sec, one second of a color
movie requires approximately 9 Gbits (1.15 Gbytes) storage space. These data
tates suggest that a CD with a storage capacity of about 5 Gbits can hold, without
compression, approximately 20 sec of NTSC video, 3 sec of HDTV video, and one-
half second of a movie. A typical data transfer rate for a CD-ROM device is about
1.5 Mbps (although faster devices that can transfer up to 4 Mbpsare appearing in
the market). Then full-motion NTSC quality video can be played back from a CD
(1.2 Mbpsfor video and 0.3 Mbpsfor stereo audio) with 200:1 compression of the
video signal. At 200:1 compression, a single CD can hold 3400 sec or about one
hour of video. The HDTVsignal needs be broadcast over a 6 MHz channel which
can support about 20 Mbps. Asa result, a compression ratio of 75:1 is required for
broadcasting HDTVsignals. For transmission using fiber optic networksorsatellite
links, similar compression is needed to transmit multiple channels.

An elementary approach to video compression would be to employ any of the
still-frame compression techniques discussed in Chapters 18-21 on a frame by frame
basis. However, the compression that can be achieved by such an approach will be
limited because each frameis treated as an independent image. Interframe compres-
sion methods exploit the temporal redundancies due to similarity between neigh-
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boring frames, in addition to the spatial, spectral, and pyschovisual redundancies
to provide superior compression efficiency. Note, however, that some application
specific requirements, such as random access capability at all frames, may dictate
the use of intraframe compression rather than interframe methods in somecases. In
general, interframe compression methods take advantage of temporal redundancies
through i) 8-D waveform coding strategies, which are based on statistical signal
models, ii) motion-compensated (MC) coding strategies, which use elementary mo-
tion models,or i11) object /knowledge based coding strategies, which utilize more so-
phisticated scene models. Three-dimensional waveform coding strategy is discussed
in Section 22.1. Various motion-compensated compression schemes are presented
in Section 22.2. Note that all international video compression standards, covered
in Chapter 23, utilize the MCtransform coding strategy. Section 22.3 provides an
overview of model-based coding methods, which are studied in detail in Chapter 24.

22.1 Three-Dimensional Waveform Coding

The simplest way to extend still-frame image compression methods to interframe
video compression is to consider 3-D waveform coding schemes, which include 3-D
transform and 3-D subband coding. These methods exploit spatio-temporal redun-
dancies in a video source throughstatistical signal models.

22.1.1 3-D Transform Coding

Three-dimensional DCT codingis a straightforward extension of the 2-D DCT cod-
ing method, where the video is divided into M x N x J blocks (M, N, and J
denote the horizontal, vertical, and temporal dimensionsof the block, respectively).
The transform coefficients are then quantized subject to zonal coding or threshold
coding, and encoded similar to 2-D transform codingofstill-frame images. Since
the DCT coefficients are closely related to the frequency content of the blocks, for
temporally stationary blocks the DCT coefficients in the temporal direction will
be close to zero, and will be truncated in a threshold coding scheme. For most
blocks, the DCT coefficients will be packed towards the low spatial and temporal
frequency zone. The 3-D DCT coding scheme has the advantage that it does not
require a separate motion estimation step. However, it requires J frame stores both
in the transmitter and receiver. Therefore, J is typically chosen as 2 or 4, to allow
for practical hardware implementations. Observe that random access to video is
possible once for every J frames, as shown in Figure 22.1.

A related 3-D waveform coding approachis the hybrid transform/DPCM coding
method, which has been proposed to overcome the multiple frame-store requirement
[Roe 77, Nat 77]. This is an extension of the 2-D hybrid DCT/DPCM coding con-
cept proposed by Habibi [Hab 74] to 3-D, where a 2-D orthogonal transform is
performed on each spatial block within a given frame. A bank of parallel DPCM
coders, each tuned to the statistics of a specific DCT coefficient, is then applied to

25

 



26

 

22.1. THREE-DIMENSIONAL WAVEFORM CODING 421

Random access frames

 
t a ay a

Figure 22.1: Three-dimensional transform coding.

the transform coefficients in the temporal direction. Thus, the differences in the
respective DCT coefficients in the temporal direction are quantized and encoded,
which eliminates the need for multiple frame-stores. This scheme generally requires
adaptation of the DPCM quantizers to the temporalstatistics of the 2-D DCT co-
efficients for results comparable to that of the 3-D DCT coding [Roe 77]. Note that
neither 3-D DCT coding nor hybrid DCT/DPCMcoding has been widely used in
practical applications.

22.1.2 38-D Subband Coding

3-D subband coding, an extension of 2-D subband coding, has recently received
increased attention [Vet 92, Bos 92, Luo 94] motivated by the following considera-
tions: i) it is almost alwaysfree from blocking artifacts, which is a common problem
with 3-D DCT and MC/DCTcoding methods, especially at low bitrates, ii) unlike
MC compression methods, it does not require a separate motion estimation stage,
and ili) it is inherently scalable, both spatially and temporally. Scalability, which
refers to availability of digital video at various spatial and temporal resolutions
without having to decompress the entire bitstream, has become an important fac-
tor in recent years due to the growing need for storage and transmission of digital
video that is comformable with various format standards. For example, standard
TV and high-definition TV differ only in spatial resolution, whereas videophone
systems offer lower spatial and temporal resolution.

In 3-D subband coding, the video is decomposed into various properly subsam-
pled component video signals, ranging from a low spatial and temporal resolution
component to various higher-frequency detail signal components. These various
component video signals are encoded independently using algorithms adapted to
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the statistical and pyschovisual properties of the respective spatio-temporal fre-
quency bands. Compression is achieved by appropriate quantization of the variouscomponents and entropy coding of the quantized values. Higher-resolution video,
in both spatial and temporal coordinates, can be recovered by combining the de-
compressed low-resolution version with the decompressed detail components. Most.
31 subband decomposition schemes utilize 2- or 4-frame temporal blocks at a time
due to practical implementation considerations.

 
Figure 22.2: A typical 3-D subband decomposition.

An 11-band 3-D subband decomposition 1s illustrated in Figure 22.2. Typically,
the temporal decomposition is based on a simple 2-tap Haar filterbank [Luo 94],
which in the case of two frame blocks gives the average and the difference of the
two frames for the low-pass (LP) and high-pass (HP) temporal components, re-
spectively. This choice minimizes the number of frame-stores needed as well as thecomputational burden for the temporal decomposition. In the second stage, boththe low and high temporal subbands are decomposed into low and high horizontal
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subbands, respectively. In the next stage, each of these bands are decomposed into
low and high vertical subbands, as depicted in Figure 22.2. Subsequently, the low
(temporal)-low (horizontal)-low (vertical) bandis further decomposedinto four spa-
tial subbands to yield the 11-band decomposition. Note that longerfilters can be
applied for the spatial (horizontal and vertical) decompositions, since these filters
can be operated in parallel and do not affect the frame-store requirements. To this
effect, Luo et al. report using wavelet filterbanks for the spatial decompositions.

The resulting component video signals can be subsampled consistent with the
spatio-temporal frequency characteristics of each band, whichis illustrated in Fig-
ure 22.3. In this figure, the left- and right-hand side templates correspond to the
low- and high-temporal-frequency components, respectively. For example, the com-
ponent 1, which is subsampled by a factor of 2 in time and by a factor of 4 in
each spatial direction, represents a spatio-temporally blurred version of a 2-frame
block. As a result, a time-sequence composed of the component 1 for all 2 frame
blocks constitutes a low-resolution (both spatially and temporally) version of the
original video. Likewise, time sequences composed of the other components (e.g.,
2-11) constitute auxilary video signals containing high-frequency detail information
needed to reconstruct the original video from the low-resolution video. The reader
is referred to [Vet 92, Bos 92, Luo 94] for various approaches offered to compress
the individual componentsignals.

 
 

LP; HP ;

Figure 22.3: Representation of 3-D subband video.

The basic approach of 3-D DCT and subband coding is quite different from
that of motion-compensated (MC) coding, which is presented next. MC techniques
characterize the temporal correlation in a video by means of motion vectors rather
than through the respective transform coefficients.
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22.2 Motion-Compensated Waveform Coding

One of the earliest approaches in interframe image compression has been the so-
called conditional replenishment technique, which is based on segmenting each frame
into “changed” and “unchanged” regions with respect to the previous frame. Then
information about the addresses and intensities of the pixels in the changed region
would be transmitted using a bitrate that is matched to the channel rate. Intensities
in the changed region are encoded by means of a DPCM method. Since the amount
of changed information varies from frame to frame, the information to be trans-
mitted needs to be buffered, and the quantization schemeis regulated according to
the fullness of the buffer. A review of conditional replenishment algorithms can be
found in [Has 72]. Note that conditional replenishment is a motion-detection based
algorithm rather than a motion-compensated algorithm, since it does not require
explicit estimation of the motion vectors.

The conditional replenishment waslater extended to motion-compensated (MC)
DPCMbyencoding displaced framedifference values for those pixels in the changed
area with respect to the previous frame [Has 78]. MC-DPCMyields moreefficient
compression provided that we can accurately estimate the displacement vectors.
Most commonly used motion estimation methods in MC compressionfall into pixel
recursive algorithms or block-matching algorithms. Since these motion estimation
methods were covered in detail in Chapters 5-8, here we assume that the motion
vectors are known, and deal only with the encoding of the differential signal, also
knownas the temporal prediction error. We have already mentioned, instill-frame
image compression, that transform coding and vector quantization both provide
better compression efficiency compared with scalar DPCM. Thus, the next two
sections are devoted to transform coding and vector quantization of the temporal
prediction error.

22.2.1 MC Transform Coding

In MC transform coding, the temporal prediction error is 2-D transform coded by
segmenting the displaced frame difference into blocks, and encoding the DCT co-
efficients of each block as in 2-D DCT coding. The temporal prediction aims at
minimizing the temporal redundancy, while the DCT encoding makes use of the
spatial redundancy in the prediction error. MC transform coding algorithms fea-
ture several modes to incorporate both progressive and interlaced inputs. These
includeintrafield, intraframe, and interfield and interframe prediction with or with-
out motion compensation. In the two intra modes, the DCT blocks are formed by
actual pixel intensities from a single field or from an entire frame. In the inter-
field and interframe modes the prediction is based on the previous field or frame,
respectively. The MC transform coding is the basis of several world standards for
video compression that are summarized in Table 22.1, with the possible exception
of MPEG-4. The details of the MC transform coding will be covered in the next
chapter where we discuss these world standards.
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Table 22.1: World standards for video compression.

Standard Description

H.261 ITU (CCITT) Expert Group on Visual Telephony;
developed for ISDN applications at p x 64 kbps
(p = 1,2,...,30); standardized in December 1990.
Application: Videoconferencing and videophone using ISDN
ISO Moving Picture Expert Group;
PHASE 1: Storage andretrieval of digital video + audio
at about 1.5 Mbps; draft finalized in June 1992.

 

Application: Storage on CD-ROM and hard disk
PHASE 2: Storage and retrieval of digital video + audio
at, about 10-20 Mbps; tech. spec. frozen in Mar. 1993.
Application: Higher definition digital video including HDTV
PHASE4: Low-bitrate digital video + audio at below 64 kbps;
embeddedfunctionalities; just about to start.
Applications: Videophone; database queries

 
The basic MC transform coding scheme employs block-based motion estimation

and compensation. It has been argued that block motion models are not realistic
for most image sequences, since moving objects hardly ever manifest themselves
as rectangular blocks in the image plane. Recently, improved motion-compensation
schemes, where more than a single motion vector per block are used without increas-
ing the number of motion vectors to be transmitted, have been proposed [Orc 93]
to circumvent this problem.

22.2.2 MC Vector Quantization

In MC-VQ the prediction error signal is encoded by vector quantization. The choice
of using transform coding versus VQ for encoding the prediction error depends on
several factors, including encoder and decoder complexity, cost of encoder and de-
coder, target bitrate, and real-time operation requirement. In MC transform coding,
the complexity of the encoder and decoder is more or less symmetric, whereas in
MC-VQ the encoderis significantly more complex than the decoder. Although the
MC-VQ approachis capable of providing lower bitrates, a significant advantage the
MC transform coding scheme enjoysis the availability of special-purpose hardware
which enables encoding and decodingin real-time.

A typical MC-VQ schemepartitions pixels in the current frame into 4 x 4 or 8
x 8 blocks. First, a motion-detection test is applied to each block. The outcome of
the motion-detection test determines one of three options: do nothing if no motion
is detected, interframe VQ if motion is detected and the motion vector can be
estimated with sufficient accuracy, or intraframe VQ if motion is detected but cannot
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be estimated within an acceptable accuracy limit. In the interframe VQ mode, the
estimated motion vector, one for each block, and the displaced block difference are
transmitted. The motion vectors for each block are generally DPCM encoded. The
displaced block difference is VQ encoded using an interframe codebook. In the
intraframe mode, the actual pixel intensities are VQ encoded using an intraframe

codebook, The reader is referred to the literature for implementational details
[Che 92, Mer 93]. It is also possible to replenish the intraframe and interframe
codebooks at regular intervals to adapt the codebooks to the changing image and
prediction error statistics [Gol 86].

22.2.3 MC Subband Coding

In MC subband coding the frame prediction error, also called the residual, is de-
composed into 2-D subbands. Theresidual signal energy is typically unevenly dis-
tributed among the subbands which facilitates compression by simply truncating
some of the subbands. Schemes have been proposed: where the subbands are com-
pressed using VQ [Mer 93]. Woods and Naveen [Woo 89] proposed integrating sub-
band coding with hierarchical motion estimation. A motion-compensated subband
decomposition technique which employs VQ has also been proposed [Nic 93].

22.3 Model-Based Coding

Three-dimension’l and motion-compensated waveform coding provide satisfactory
results with CIF images at bitrates over 1.5 Mbps. However, the quality of images
that these techniques offer at very low bitrates, e.g. 10 kbps for videophone over
existing telephone networks, is deemed unacceptable. In particular, decompressed
images obtained by MC/DCT type methods generally suffer from blockingartifacts,
which originate from the assumed translational block-motion model. To thiseffect,
a variety of new motion-compensated coding schemes, generally known as model-
based or analysis-synthesis coders, which are based on morerealistic structural
motion models, have recently been proposed for very-low-bitrate applications. An
analysis-synthesis encoder can be characterized by the following steps:

e Image analysis: The frame to be encoded (present frame) is segmented into
individually moving objects using the knowledge of the previously coded frame(s).
Each object in the present frameis characterized by a set of shape (contour) and
motion parameters.

e Image synthesis: The present frame is synthesized based on the estimated
shape and motion parameters and the knowledge of the previously coded frame(s).
The difference between the actual and the synthesized frame provides a measureof
model compliance. Those regions where this difference is more than a threshold are
labeled as “model failure” regions.

e Coding: The shape, motion and color (for the model failure regions) parame-
ters are separately entropy encoded and transmitted.
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Table 22.2: Overview of source models.

[Method
MC/DCT Motion vectors andLael
Object-based Moving unknown Shape, motion, and color|pataDotjts|fenchmonngeiet
Knowledge-based|Moving known objects|Shape, motion, and color|Reowlcteoniana) of the known object

[Semantic__|_Facial expressions

 
 
 

 
 

Source Model

Translatory blocks
  

  
  
 

 
   

The image analysis and synthesis steps usually make extensive use of sophis-
ticated computer vision and computer graphics tools, such as 3-D motion and
structure estimation, contour modeling, and texture mapping [For 89]. Analysis-
synthesis coding includes object-based, knowledge-based, and semantic coding ap-
proaches, ‘Table 22.2 provides an overview of the source models used by various
motion-compensated coding schemes, including the MC/DCT andseveral analysis-
synthesis coding schemes. Note that MC/DCT coding, which forms the basis of
several international video compression standards such as H.261, MPEG1 and2,is
based on theoverly simplistic soure model of 2-D translatory blocks. Object-based,
knowledge-based, and semantic coding methods are introduced in the following.

22.3.1 Object-Based Coding

Object-based coding (OBC) methods are based on structural image models de-
rived from 3-D representation of a scene in terms of moving unknown (arbitrary)
objects. The unknown objects: can be treated as [Mus 89]: i) 2-D rigid or flexible
objects with 2-D motion, ii) 2-D rigid objects with 3-D motion (affine or perspective
mappings), or iii) 3-D rigid or flexible objects with 3-D motion.

Table 22.3: Expected bits per CIF frame (352 x 288) for different source models.
r, denotes bits/pixel for encoding the color information [Mus 93] (©1993 IEEE).

Sours Model

2-D rigid object
3-D motion 1300 15000 r,
2-D flexible object
2-D motion 1100 4000 r;
3-D rigid object
3-D motion 200 1640 4000 rs
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Efficiency of the source model can be measured by the data rate required for
encoding the model parameters. The average bitrates for these object models for
encoding a typical CIF format (386x288) frame are given in Table 22.3 [Mus 93].
It can be seen that the compression ratio increases as the complexity of the model
increases.

22.3.2 Knowledge-Based and Semantic Coding
Knowledge-based coding deals with cases where we have some @ priort informa-
tion about the content of the video, since dealing with unknown arbitrary objects
is, in general, quite difficult. For example, in videophone applications, head-and-
shoulders-type images are common. Knowledge-based coding of facial image se-
quences using model-based techniques requires a common 3-D flexible wireframe
modelof the speaker’s face to be present al both the receiver and transmitter sides.
3-D motion and structure estimation techniques are employed at the transmitter
to track the global motion of the wireframe model and the changes in its struc-
ture from frame to frame. The estimated motion and structure (depth) parameters
along with changing texture information are sent and used to synthesize the next
frame in the receiver side. The knowledge-based approach can be summarized by
the following source model and algorithm.

Source Model:
a

A moving known object which is characterized by
- A generic wireframe model to describe the shape of the object, e.g.,
the head and shoulders
- 3-D global motion parameters,€.g., to track the rotation and transla-
tion of the head from frame to frame
- 3D local motion (deformation) parameters, ©.g., to account for the
motion of the eyes, lips, etc. due to facial expressions
- Color parameters to describe the model failure areas

Algorithm:

1. Detection of the boundaries of the object in the initial frame.
2. Adaptation of the generic wireframe model to the particular object,
by proper scaling in the #1, 22, and «x3 directions.
3. Estimation of the 3-D global and local motion parameters, using 3-D
motion and structure estimation methods. ,
4. Synthesis of the next frame.
5. Determination of model failure areas.
6. Coding of motion and color parameters.

A detailed presentation of knowledge-based coding schemes can be found in
Chapter 24. While the knowledge-based scheme is generally successful in tracking
the global motionof the head, the estimation of the local motion of the eyes, lips, and
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so on due tofacial expressions is usually difficult. Errors in local motion estimation
generally result in several model failure regions. Semantic coding is a subset of
knowledge-based methods, which attempts to model the local motion in terms of
a set of facial action units. After compensating for the global motion, the encoder
estimates a combination of action units that best fits a given facial expression and
encodes their indices along with the global motion and shape parameters. Semantic
coding can then be summarized by the following source model and algorithm.

Source Model:

Facial expressions of a head, described by
- A wireframe model

- A limited set of action units

Coding Algorithm:

1. Detection of known object boundaries.
. Adaptation of the wireframe model.
. Estimation/compensation of the global motion.
. Estimation of action units (AUs).
. Synthesis of next frame.
. Determination of mode! failure areas.

. Coding of AUs, global motion, and color parameters.
IookWwbk

In knowledge-based and semantic coding, we can effectively decrease the bitrate
by conveying the information in a head-and-shoulders-type sequence in terms of a; ; fl
set of global motion and facial-action-unit parameters. Clearly, knowledge-based
coding poses a trade-off between compressionefficiency and the generality of the
compression algorithm.

22.4 Exercises

1. Discuss the relative advantages and disadvantages of 3-D waveform coding
versus motion-compensated coding methods.

2. It is well-known that the MC-DCT approach suffers from blocking artifacts,
especially at low bitrates. This is mainly due to insufficiency of the assumed
translational block motion model. There are, in general, two approaches to
address this problem: i) improving the motion model by using spatial trans-
formations (generalized block motion), and ii) 3-D subband coding. Evaluate
the relative merits and demerits of both approaches, especially in terms of
motion artifacts versus spatio-temporal blurring.

3. The generalized block motion model, coupled with a motion segmentation al-
gorithm, results in a 2-D object-based image compression scheme. Compare
2-D versus 3-D object-based methods for image compression. What advan-
tages do 3-D object-based methodsoffer over 2-D methods, if any?
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Chapter 23

VIDEO COMPRESSION
STANDARDS

Standardization of compressed digital video formats facilitates manipulation and
storage of full-motion video as a form of computer data, and its transmission over
existing and future computer networks, or over terrestrial broadcast channels. Envi-
stoned areas of application for digital video compression standardsincludeall-digital
TV,videoconferencing, videophone, video mail, multimedia stations, digital movies,
video games, other forms of entertainment, and education. In this chapter, we dis-
cuss the international video compression standards for videoconferencing (H.261),
multimedia (MPEG-1), and all-digital TV (MPEG-2) applications.

23.1 The H.261? Standard

ITU (CCITT) Recommendation H.261 is a video compression standard developed
to facilitate videoconferencing and videophoneservices over the integrated services
digital network (ISDN) at p x 64 kbps, p = 1,... , 80. For example, 64 kbps (p = 1)
may be appropriate for a low quality videophone service, where the video signal can
be transmitted at a rate of 48 kbps, and the remaining 16 kbpsis used for the audio
signal. Videoconferencing services generally require higher image quality, which
can be achieved with p > 6, i.e., at 384 kbps or higher. Note that the maximum
available bitrate over an ISDN channelis 1.92 Mbps(p = 30), whichis sufficeint to
obtain VHS-quality (or better) images.

ITU (CCITT) Recommendation H.261 has emerged as a result of studies per-
formed within the European Project COST (CoOperation in the field of Scientific
and Technical research) 211bis during the period 1983-1990. In 1985, the COST
21lbisvideoconference hardware subgroup developed an initial codec operating at
bit rates of n x 384 kbps, n = 1,...,5, which was adopted in 1987 as ITU (CCITT)
Recommendation H.120. Later, it became clear that a single standard can cover
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all ISDN rates, p x 64 kbps, p= 1,...,30. The specifications of such a codec were
completed in 1989, and the corresponding Recommendation H.261 was adopted by
ITU (CCITT) in 1990.

In addition to forming a basis for the later video compression standards such
as MPEG-1 and MPEG-2, the H.261 standard offers two important features: i)
It specifies a maximum coding delay of 150 msec. because it is mainly intended
for bidirectional video communication. It has been determined that delays exceed-
ing 150 msec. do not give the viewer the impression of direct visual feedback.
ii) It is amenable to low-cost VLSI implementation, which is rather important for
widespread commercialization of videophone and teleconferencing equipment. The
important aspects of the H.261 standard are summarized below. Further details
can be foundin [Lio 90, Lio 91, CCI 90}.

23.1.1 Input Image Formats

To permit a single recommendation for use in and between regions using 625- and
525-line TV standards, the H.261 input picture format is specified as the so-called
Common Intermediate Format (CIF). For lower-bitrate applications, a smaller for-
mat, QCIF, which is one-quarter of the CIF, has been adopted. The specifications
of the CIF and QCIF formats are listed in Table 23.1, where the numbers in the
parenthesis denote the modified specifications so that all four numbers are integer
multiples of 8. Note that, at 30 frames/s, the raw data rate for the CIF is 37.3
Mbps, and for QCIF it is 9.35 Mbps. Even with QCIF images at 10 frames/s, 48:1
compression is required for videophone services over a 64 kbps channel. CIF images
may be used when p > 6, that is, for videoconferencing applications. Methods for
conversion to and from’CIF/QCIF are not subject to recommendation.

Table 23.1: H.261 input image formats.

Numberof active pels/line
Lum (Y) 360 (352) 180 (176)
Chroma (U,V) 180 (176) 90 (88)
Numberof active lines/pic

 

Lum (Y) 288
Chroma (U,V) 144
Interlacing 1:1 :
‘Temporalrate 30, 15, 10, or 7.5|30, 15, 10 or 7.5
Aspect ratio 4:3 :
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23.1.2 Video Multiplex

The video multiplex defines a data structure so that a decoder can interpret the
received bit stream without any ambiguity. The video data is arranged in a hierar-
chical structure consisting of a picture layer, which is divided into several group-of-
blocks (GOB) layers. Each GOB layer in turn consists of macroblocks (MB), which
are made of blocks of pixels. Each layer has a header identifying a set of parameters
used by the encoder in generating the bitstream that follows.

A macroblock is the smallest unit of data for selecting a compression mode.
(The choices for the modes of compression are described below.) It consists of four
8 x8 (i.e., 16 pixels by 16 lines) of Y (luminance) and the spatially corresponding 8
x8 U and V (chrominance) blocks. Since the chrominance channels are subsampled
in both directions, there is only one U and one V block for every four luminance
blocks. The composition of a macroblock is shownin Figure 23.1.

x &:xX x .
| Oo }; Oo

x x xX xX

° °

x -® xX xX

(a) (b)

Figure 23.1: a) Positioning of luminance and chrominance pixels; b) the composition
of a macroblock. e

The GOBlayer is always composed of 33 macroblocks, arranged as a 3 x 11

| matrix, as depicted in Figure 23.2. Note that each MB has a header, which contains
a MB address and the compression mode, followed by the data for the blocks.

Finally, the picture layer consists of a picture header followed by the data for
GOBs. The picture header contains data such as the picture format (CIF or QCIF)

Table 23.2: The composition of the picture layer.

| Number of GOB|Number of MB|Total numberof
in a frame MBin a frame 

12 396 
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directions are larger than the corresponding Nyquist intervals, aliasing mayresult.
It is essential that no anti-alias filtering be used prior to samplingin order to achieve
superresolution, which follows from the discussion in Section 16.1.

17.1.2 Discrete-Discrete Model

Next, we relate a set of low-resolution observations, g,(n1, 2), to the desired high-
resolution frame(s) to be reconstructed, which are defined as

si(™m1, M2) = Se(#1, 2, t) |e, ep 1=Valm mo AP (17.8)
where V~,, is the sampling matrix of the high-resolution sampling grid.

Let’s assume that the high-resolution video s;(m1,m2) is sampled above the
Nyquist rate, so that the continuous intensity pattern is more or less constant within
each high-resolution pixel (cells depicted in Figure 17.4). Then, for any frame i
within the temporal span of the motion trajectory passing through (ni, n2,k), we
have, from (17.7) and (17.5),

ge(miym2) 2 si(ma,ma) ff (us, u2, 7521, 22,t)dundu (17.9)
where [z, zo t]? = Vilni no kl?, [uy we TI? = Valmi me i?, and
(uy, Ug) = c(7; #1, 2o,t). Next, we define

hig(ms,mainasne) = ff Aus, ua, 752,29, t)durdus (17.10)
to arrive at our discrete-input (high-resolution video), discrete-output (observed
low-resolution video) model, given by

ge (m1, n2) = > >— si(rm1, m2)hix (m1, m2; M1, N2) + VE (M1, M2) (17.11)
my Mme

where the support of the summation over the high-resolution grid (m1,mg) at a
particular low-resolution sample (71,2, &) is depicted in Figure 17.4. Thesize of
the support in Figure 17.4 depends ontherelative velocity of the scene with respect
to the camera, the size of the support of the low-resolution sensor PSF hg(#1, £2)
(depicted by the solid line, assuming no out-of-focus blur) with respect to the high
resolution grid, and whether there is any out-of-focus blur. Because therelative
positions of low- and high-resolution pixels in general vary from pixel to pixel, the
discrete sensor PSF is space-varying.

The model (17.11) establishes a relationship between any high-resolution framei
and observed low-resolution pixels from all frames k which can be connected to the
frame i by meansof a motion trajectory. That is, each low-resolution observed pixel
(m1, 72, k) can be expressed as a linear combination of several high-resolution pixels
from the frame 7, provided that (ni, 72,k) is connected to frame i by a motion
trajectory. Note that both the continuous-discrete and discrete-discrete models are
invalid in case of occlusion. We assume that occlusion regions can be detected
a priori using a proper motion estimation/segmentation algorithm.
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dbd becomes a block difference (bd). Various compression modes are
discussed in detail in the following.

3) Process each MB to generate a header followed by a data bitstream
that is consistent with the compression modechosen.

The motion estimation method, the criterion for the choice of a mode, and
whether to transmit a block or not are not subject to recommendation. They are
left as design parameters for a particular implementation. The choices that are
presented below are those that are used in the Reference Model 8 (RM8), which is
a particular implementation [RM8 89].

Compression Modes

Selecting a compression mode requires making several decisions, for each MB, in-
cluding: i) should a motion vector be transmitted, ii) inter vs. intra compres-
sion, and iii) should the quantizer stepsize be changed? All possible compres-
sion modes are listed in Table 23.3, where “Intra,” “Inter,” “Inter+MC,” and
“Inter+MC-+FIL” denote intraframe, interframe with zero motion vector, motion-
compensated interframe, and motion-compensated interframe with loop-filtering,
respectively. MQUANT standsfor the quantizer step size, and an “x” in this col-
umn indicates that a new value for MQUANT will be transmitted. MVD stands
for motion vector data, CBP for coded block pattern (a pattern numbersignifying
those blocks in the MB for which at least one transform coefficient is transmitted),
and TCOEFF for the transform coefficients that are encoded. Finally, VLC is the
variable-length code that identifies the compression mode in the MB header.

In order to select the best compression mode, at each MB, the variance of the
original macroblock, the macroblock difference (bd), and the displaced macroblock
difference (dbd) with th@best motion vector estimate are comparedas follows:

Table 23.3: H.261 compression modes [CCI 90].

Prediction MQUANT MVD CBP TCOEFF VLC
Intra x 0001

Intra x x 0000 001

Inter x x 1

Inter x x x 0000 1

Inter+MC x 0000 0000 1

Inter+MC x x x 00060 0001

Inter+MC x x x x 0000 0000 01

Inter+MC+FIL x 001

Inter+MC-+FIL x x X 01

Inter+MC+FIL x x 0000 01

 A1
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a) If the variance of dbd is smaller than bd as determined by a threshold, then the
“Inter+MC” modeis selected, and the motion vector MVD needsto be transmitted
as side information. The difference of the motion vector between the present and
previous macroblocks is VLC coded for transmission. Observe from Table 23.3
that the transmission of the prediction error characterized by the DCT coefficients
TCOEFFis optional.

b) Otherwise, a motion vector will not be transmitted, and a decision needs to be
made between the “Inter” and “Intra” modes. If the original MB has a smaller
variance, then the “Intra” modeis selected, where the DCT of each 8 x 8 block
of the original picture elements are computed; otherwise, the “Inter” mode (with
zero displacement vector) is selected. In both “Inter” and “Inter+MC” blocks the
respective difference blocks (also called as the prediction error) are DCT encoded.
The reader is referred to [CCI 90] for an exact specification of the various decision
functions.

For MC blocks, the prediction error can be chosen to be’modified by a 2-D
spatial filter for each 8 x 8 block before the transformation by choosing the “In-
ter+MC+FIL” mode. Thefilter is separable, obtained by cascading two identical
1-D FIR filters. The coefficients of the 1-Dfilter are given by 1/4, 1/2, 1/4 except
at the block boundaries should one of the taps fall outside the block, where they
are modified as 0, 1, 0.

Thresholding

A variable thresholding is applied before quantization to increase the number of
zero coefficients. The accuracy of the coefficients is 12 bits with dynamic range
in [-2048,2047]. The flowchart of tle variable thresholding algorithm is shown in
Figure 23.3. In the flowchart, “g” refers to the quantizer step size, € is current
value of the threshold, and “coef” is the value of the DCT coefficient. The variable
thresholding scheme is demonstrated below by meansof an example.

Quantization

The coefficient values after variable thresholding are quantized using a uniform
quantizer. Within a macroblock the same quantizeris used for all coefficients except
for the intra DC coefficient. The same quantizer is used for both luminance and
chrominance coding. The intra DC coefficientis linearly quantized with a stepsize
of 8 and no dead zone. Other coefficients are also linearly quantized, but with a
central dead-zone about zero and with a stepsize MQUANTofan even value in the
range 2 to 62 (31 stepsizes are allowed). This stepsize is controlled by the buffer
state. To prevent overflow/underflow,a clipping of the image pixel values to within
the range [0,255] is performed in both the encoder and decoder loops.
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b= C+1 = Smax

Coef =0

 
Figure 23.3: Flowchart of the thresholding algorithm [RM8 89].

Example: (with permission of PTT Research Labs., The Netherlands.)
An example of the variable thresholding and quantization is shown in
Table 23.4 with g = 32. In this example, the threshold is incremented
starting from 32 to 38, at which point the coefficient 40 is more than
the value of the variable threshold, Thus, the threshold is reset to 32.

Table 23.4: An example to demonstrate variable thresholding [RM8 89].
Coefficients 50 «0 0 () 33 634) «COO 40 33 34 10 32
Threshold € 8232 33 34 35 36 37 38 32 32 32 33
New Coefficiept 50 0 0 0 0 90 Q 40 383 34 0 0O
Quantized value 48 0 0 0 QO 9Q 0 48 48 48 0 9Q
——-.W

Coding

In order to increase the coding efficiency, the quantized coefficients are zigzag
scanned, and events are defined which are then entropy coded. The events
are defined as a combination of a run length of zero coefficients preceding a
nonzero coefficient, and the level (value) of the nonzero coefficient, that is,
EVENT = (RUN,LEVEL). This is illustrated by an example [RMB889]

Example: (with permission of PTT Research Labs., The Netherlands.)
For the block of transformcoefficients shown in Figure 23.4, the events
that represent this block, following a zigzag scan, are
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Figure 23.4: Illustration of the events [RM8 89].

(0,3) (1,2) (7,1) EOB

For 8 x 8 blocks, we have 0 < RUN < 64, and the dynamic range of the
nonzero coefficients, LEVEL, is [-128g, 127g], where g is the quantizer step size.
These events are VLC coded. The VLC tables are specified in [CCI 90].

Rate/Buffer Control

Several parameters can b@ varied to control the rate of generation of coded video
data. They are: i) processing prior to source coder, ii) the quantizer (step size), iii)
block significance criterion, and iv) temporal subsampling (performed by discarding
complete pictures). The proportions of such measuresin the overall control strategy
are not subject to recommendation.

In most implementations the quantizer step size is adjusted based on a measure
of buffer fullness to obtain the desired bitrate. The buffer size is chosen not to
exceed the maximum allowable coding delay (150 msec.) which also imposesa limit
on the maximumbit count that can be generated by a single frame. Furthermore,
the block significance criterion, which is employed to decide whether to transmit
any data for a block, can be varied according to the desired bitrate.

Forced updating is used to control the accumulation of errors due to mismatch of
the inverse DCT implementation at the encoder and decoder. The allowable bounds
on the accuracy of the IDCTis specified in the standard. Forced updating refers to
use of intra mode for a macroblock at least once every 132 times it is transmitted.
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23.2 The MPEG-1 Standard

MPEG-1 is an ISO standard that has been developed for storage of CIF format
video and its associated audio at about 1.5 Mbps on various digital storage media
such as CD-ROM, DAT, Winchester disks, and optical drives, with the primary
application perceived as interactive multimedia systems. The MPEG-1 algorithm
is similar to that of H.261 with some additional features. The quality of MPEG-1

compressed/decompressed CIF video at about 1.2 Mbps(video rate) has been found
to be similar (or superior) to that of VHS recorded analog video.

MPEGcommittee started its activities in 1988. Definition of the video algorithm

(Simulation Model 1) was completed by September 1990. MPEG-1 was formally
approved as an international standard by late 1992. Work is currently in progress to
finalize the second phase algorithm, MPEG-2, for data rates up to 20 Mbpsfor high-
definition video and associated audio. Efforts are also just underway for MPEG-4,
which is concerned with very-low-bitrate compression (8-32 kbps) for videophone
applications.

23.2.1 Features

MPEG-1 is a generic standard in that it standardizes a syntaz for the representation
of the encoded bitstream and a method of decoding. The syntax supports oper-
ations such as motion estimation, motion-compensated prediction, discrete cosine
transformation (DCT), quantization, and variable-length coding. Unlike JPEG,
MPEG-1 does not define specific algorithms needed to produce a valid data stream;
instead, substantial flexibility is allowed in designing the encoder. Similar to H.261,
MPEG-1 does not standardize a motion estimation algorithm or a criterion for se-
lecting the compres#ion mode. In addition, a number of parameters defining the
coded bitstream and decoders are contained in the bitstream itself. This allows the

algorithm to be used with pictures of a variety of sizes and aspect ratios and on
channels or devices operating at a wide range of bitrates.

MPEG-1 also offers the following application-specific features: 1) Random access
is essential in any video storage application. It suggests that any frame should be
decodable in a limited amount of time. In MPEG-1, this is achieved by allowing
independent access points (I-frames) to the bitstream. ii) Fast forward/reverse
search refers to scanning the compressed bit stream and to display only selected
frames to obtain fast forward or reverse search. Reverse playback might also be
necessary for some interactive applications. iii) Reasonable coding/decoding delay
of about 1 sec to give the impressionof interactivity in unidirectional video access.
Recall that the coding delay in H.261 has been strictly limited to 150 msec to
maintain bidirectional interactivity [Gal 92].

45



46

93.2. THE MPEG-1 STANDARD

23.2.2 Input Video Format

MPEG-1 considers progressive (noninterlaced) video only. In order to reach the
target bitrate of 1.5 Mbps, the input video is usually first converted into the MPEG
standard input format (SIF). The (Y,Cr,Cb) color space has been adopted, as in
CCIR, Recommendation 601. In the MPEG-1 SIF, the luminance channel is 352
pixels x 240 lines and 30 frames /s. Luma and chroma components are represented
by 8 bits/pixel, and the chroma components are subsampled by 2 in both the
horizontal and vertical directions. The respective locations of the luma and chroma
pixels are the same as in the H.261 standard.

While many video parameters, such as the picture size and temporalrate, can be
specified in the syntax, and therefore are arbitrary, the following set of constrained
parameters are specified to aid hardware implementations:

Maximum numberofpixels/line: 720
Maximum numberof lines/picture: 576
Maximum numberofpictures/sec: 30
Maximum number of macroblocks/picture: 396
Maximum number of macroblocks/sec: 9900
Maximumbitrate: 1.86 Mbps
Maximum decoder buffer size: 376,832 bits.

Note, however, that the constrained parameterset does not suggest that a 720 pixels
x 576 lines x 30 pictures/s video can be compressed artifact-free at 1.86 Mbps.
For example, a CCIR 601 format video, 720 pixels x 488 lines x 30 pictures/sec, is
usually downsampled to SIF before compression, which trades compression artifacts
to spatial blurring in order to reach the target bitrate of 1.5 Mbps.

23.2.3 Data Structuye and Compression Modes
Similar to H.261, the MPEG-1 bitstream also follows a hierarchical data structure,
consisting of the following six layers, that enables the decoder to interpret the data
unambiguously.

1) Sequences are formed by several group of pictures.
2) Group of pictures (GOP) are made up of pictures.
3) Pictures consist of slices. There are four picture types indicating the respective

modes of compression: I-pictures, P-pictures, B-pictures, and D-pictures.
[-pictures are intra-frame DCT encoded using a JPEG-like algorithm. They

serve as randomaccess points to the sequence. There are two types of interframe
encoded pictures, P- and B-pictures. In these pictures the motion-compensated
prediction errors are DCT encoded. Only forward prediction is used in the P-
pictures, which are always encoded relative to the preceding I- or P-pictures. The
prediction of the B-pictures can be forward, backward, or bidirectional relative to
other L or P-pictures. D-pictures contain only the DC component of each block,
and serve for browsing purposes at very low bitrates. The numberof I, P, and B
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frames in a GOP are application-dependent, e.g., dependent on access time and
bitrate requirements. The composition of a GOPis illustrated by an example.

Example

A GOPis shown in Figure 23.5 which is composed of nine pictures. Note
that the first frame of each GOP is always an I-picture. In MPEG, the
order in which the pictures are processed is not necessarily the same as
their time sequential order. The pictures in Figure 23.5 can be encoded
in one of the following orders:

0,4, 1, 2, 3, 8, 5, 6,7
or

0, 1, 4, 2, 3, 8, 5, 6,7

since the prediction for P- and B-pictures should be based on pictures
that are already transmitted.

A
is sx
i ; *
! ‘. | ‘.
| 1 | I
| i | !
| ' 1 l
1 | i |
I | 1 I
N i ‘ !
sy So

‘J ‘I
0 1 2 3 4 5 6 7 8

-—________ Groupofpictures ————|
a

Figure 23.5: Group of pictures in MPEG-1.

4) Slices are made up of macroblocks. They are introduced mainly for error
recovery.

5) The composition of macroblocks (MB) are the same as in the H.261 stan-
dard. Some compression parameters can be varied on a MBbasis. The MBtypes
depending on the choice of these parameters are listed in Table 23.5. We will take
a closer look at each of these MB types in the following when wediscuss the video
compression algorithm.

6) Blocks are 8 x 8 pixel arrays. They are the smallest DCT unit.
Headers are defined for sequences, GOPs, pictures, slices, and MBs to uniquely

specify the data that follows. For an extensive discussion of the MPEG-1 standard,
the readeris referred to [ISO 91].
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Table 23.5: Macroblock types in MPEG-1,

I-pictures
Intra

Intra-A

P-pictures
Intra

Intra-A

Inter-D

Inter-DA

Inter-F

Inter-FD

Inter-FDA

Skipped

B-pictures
Intra

Intra-A

Inter-F

Inter-FD

Inter-FDA

Inter-B

Inter-BD

Inter-BDA

Inter-I

Inter-1D

Inter-IDA

Skipped

23.2.4 Intraframe Compression Mode

The pixel intensity values are DCT encoded in a mannersimilar to JPEG and the
intra mode of H.261. Compression is achieved by a combination of quantization
and run-length coding of the zero coefficients.

Quantization

Assuming 8-bit input images, the DC coefficient can take values in the range
[0,2040], and the AC coefficients are in the range [-1024,1023]. These coefficients
are quantized with a uniform quantizer. The quantized coefficient is obtained by
dividing the DCT coefficient value @y the quantization step size and then rounding
the result to the nearest integer. The quantizer step size varies by the frequency, ac-

Table 23.6: MPEG default intra quantization matrix.

8 16 19

16 16 22

19 22 26

22. 22 26

22 26 27

26 27 «29

26 27 29

27 29 30

22 26

24 27

27-29

27 =29

29 32

32 35

34 38

38 46

48

27 29 34

29 34 37

34 34 38

34 37 40

35 40 48

40 48 58

46 56 69

56 69 838



49

 
444 CHAPTER 23. VIDEO COMPRESSION STANDARDS

cording to psycho-visual characteristics, and is specified by the quantezation matriz.
The MPEG default intra quantization matrix is shown in Table 23.6. According to
this matrix, the DC coefficient is represented by 8 bits since its weight is 8. The
AC coefficients can be represented with less than 8 bits using weights larger than 8.

MPEGallows for spatially-adaptive quantization by introducing a quantizer
scale parameter MQUANTin the syntax. As a result, there are two types of MBs
in the Lpictures: “Intra” MBs are coded with the current quantization matrix.
In “Intra-A” MBs, the quantization matrix is scaled by MQUANT, which is
transmitted in the header. Note that MQUANT can be varied on a MB basis
to control the bitrate or for subjective quantization. Human visual system mod-
els suggest that MBs containing busy, textured areas can be quantized relatively
coarsely. One of the primary differences between MPEG intra mode and JPEGis
the provision of adaptive quantization in MPEG. It has been claimed that MPEG
intra mode provides 30% better compression compared with JPEG due to adaptive
quantization.

Coding

Redundancy among the quantized DC coefficients is reduced via DPCM. Theresult-
ing signal is VLC coded with 8 bits. The fixed DC Huffman table has a logarithmic
amplitude category structure borrowed from JPEG. Quantized AC coefficients are
zigzag scanned and converted into[run, level] pairs as in JPEG and H.261. A single
Huffman-like code table is used for all blocks, independent of the color component
to which they belong. There is no provision for downloading custom tables. Only
those pairs which are highly probable are VLC coded. The rest of them are coded
with an escape symbolfollowed by a fixed-length code to avoid extremely long code-
words. The codebook is a superset of that of H.261, which is completely different
from that of JPEG.

23.2.5 Interframe Compression Modes

In interframe compression odes, a temporalprediction is formed, and the resulting
prediction error is DCT encoded. There are two types of temporal prediction modes
allowed in MPEG-1: forward prediction (P-pictures) and bidirectional prediction
(B-pictures).

P-Pictures

P-pictures allow motion-compensated forward predictive coding with reference to
a previous I- or P-picture. The temporal prediction process is illustrated in Fig-
ure 23.6, where the prediction for a MBbis given by

a

b=é (23.2)

and & denotes the MB corresponding to b in the “reconstructed” previous frame.
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Macroblock ;

 
 

 
 

Frame k

k-1

Figure 23.6: MPEG-1 forward prediction. °

The mode of compression for each MBis selected by the encoder from thelist
of allowable modes for a P-picture shown in Table 23.5. “Intra” and “Intra-A”
MBsin P-pictures are coded independently of any reference data just like MBs in
the I-pictures. MBsclassified as “Inter” are interframe coded, and the temporal
prediction may use motion compensation (MC) and/or adaptive quantization. The
subscript “D” indicates that the DCT of the prediction error will be coded, “F”
indicates that forward MC is ON, and “A” indicates adaptive quantization (a new
value of MQUANTis also transmitted). That is, ifa MB is labeled “Inter-F” then
the motion-compensated prediction b is satisfactory, so we need to transmit just
the motion vector d for that MB, “Inter-FD” denotes that we need to transmit a
motion vector and the DCTcoefficients of the prediction error, and “Inter-FDA”
indicates that in addition to a motion vector and the DCT coefficients, a new
value of MQUANTisalso being transmitted for that MB. A macroblock may be
“Skipped”if the block at the same position in the previous frame (without MC)
is good enough, indicating a stationary area.

B-Pictures

B-pictures is a key feature of MPEG-1, which allows MC interpolative coding, also
known as bidirectional prediction. The temporal prediction for the B-pictures is
given by

na

b= ae + a2C2 1, a= 0, 0.5, 1 a, +ag= ] (23.3)

where = denotes “reconstructed” values. Then a, = 1 and a2 = 0 yields forward
prediction, a; = 0 and ay = 0 gives backward prediction, and a; = aq = 0.5
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corresponds to bidirectional prediction. This is illustrated in Figure 23.7. Note
that in the bidirectional prediction mode, two displacement vectors d; and dz and
the corresponding prediction error b —b need to be encoded for each macroblock b.

Macroblock

 
Figure 23.7: MPEG-1 bi-directional prediction.

The concept of bidirectional prediction or interpolative coding can be considered
as a temporal multiresolution technique, where wefirst encode only the I- and P-
pictures (typically 1/3 of all frames). Then the remaining framescan be interpolated
from the reconstructed I and P frames, and the resulting interpolation error is DCT
encoded. The use of B-pictures provides several advantages:

e They allow effective handling of problems associated with covered/uncovered
background. If an object is going to be covered in the next frame,it can still
be predicted from the previous frameor vice versa.

e MC averaging over two frames may provide better SNR compared to predic-

tion from just one frame.
e Since B-pictures are not used in predicting any future pictures, they can be

encoded with fewer bits without causing error propagation.

The trade-offs associated with using B-pictures are:

e Two frame-stores are needed at the encoder and decoder, since at least two
reference (P and/or I) frames should be decodedfirst.

e If too many B-pictures are used, then i) the distance between the two reference
frames increases, resulting in lesser temporal correlation between them, and
hence more bits are required to encode the reference frames, and ii) we have
longer coding delay.
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The mode of compression for each MB in a B-picture is selected indepen-
dently from the list of allowable modes shown in Table 23.5. Again, “Intra” and
“Intra-A” MBs are coded independently of any reference frame. MBsclassified as
“Inter” have the following options: “D” indicates that the DCT of the prediction
error will be coded, “F” indicates forward prediction with motion compensation,
“B” indicates backward prediction with motion compensation, “I” indicates inter-
polated prediction with motion compensation, and “A” indicates adaptive quanti-
zation. A macroblock may be “Skipped”if the block from the previous frameis
good enough as is; that is, no information needs to be sent.

Quantization and Coding

In the interframe mode, the inputs to the DCTare in the range [-255,255]; thus,all
DCTcoefficients have the dynamic range [-2048,2047]. The quantization matrix is
such that the effective quantization is relatively coarser compared to those used for
I-pictures. All quantized DCT coefficients, including the DC coefficient, are zigzag
scanned to form [run, level] pairs, which are then coded using VLC. Displacement
vectors are DPCM encoded with respect to the motion vectors of the previous
blocks. VLC tables are specified for the type of MB, the differential motion vector,
and the MC prediction error. Different Huffman tables are defined for encoding the
macroblock types for P- and B-pictures, whereas the tables for motion vectors and
the DCT coefficients are the same for both picture types.

23.2.6 MPEG-1 Encoder and Decoder

An MPEG-1 encoderincludes modules for motion estimation, selection of compres-
sion mode (MTYPE)per MB, setting the value of MQUANT,motion-compensated
prediction, quantizer and dequantizer, DCT and IDCT, variable-length coding
(VLC), a multiplexer, a buffer, and a buffer regulator. The dequantizer and the
IDCTare needed in the encoder because the predictions are based on reconstructed
data. The IDCT module at the encoder should match within a prespecified toler-
ance the IDCT module at the decoder to agoid propogation of errors in the pre-
diction process. This tolerance is specified in IEEE Standard 1180-1990 for 64-bit
floating-point IDCT implementations.

The relative number of I-, P- or B-pictures in a GOP is application-dependent.
The standard specifies that one out of every 132 pictures must be an I-picture to
avoid error propagation due to IDCT mismatch between the encoder and decoder.
The use of B-pictures is optional. Neither the motion estimation algorithm nor the
criterion to select MYTPE and MQUANTare part of the standard. In general,
motion estimation is performed using the luminance data only. A single displace-
ment vector is estimated for each MB. One-half (0.5) pixel accuracy is allowed for
motion estimates. The maximum length of the vectors that may be represented
can be changed on a picture-by-picture basis to allow maximum flexibility. Motion
vectors that refer to pixels outside the picture are not allowed.
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In summary, a typical MPEG encoder performs the following steps:

1. Decide on the labeling of I-, P- and B-pictures in a GOP.

2. Estimate a motion vector for each MB in the P- and B-pictures.

3. Determine the compression mode MTYPE for each MB from Table 23.5.

4. Set the quantization scale, MQUANT,if adaptive quantization is selected.

An MPEG-1 decoder reverses the operations of the encoder. The incoming bit
stream (with a standard syntax) is demultiplexed into DCT coefficients and side
information such as MTYPE, motion vectors, MQUANT, and so on. The decoder
employs two frame-stores, since two reference frames are used to decode the B-
pictures.

We conclude this section by summarizing the main differences between the H.261
and MPEG-1 standards in Table 23.7.

Table 23.7: Comparison of H.261 and MPEG-1 Standards

H.261 MPEG-1

Sequential access

One basic frame rate _| Flexible frame rate
CIF and QCIF imagesonly|Flexible imagesize
I and P frames only I, P and B frames
MCover 1 frame MCover 1 or more frames

 

 

1 pixel MV accuracy 1/2 pixel MV accuracy
121 filter in the loop Nofilter
Variable threshold + Quantization matrix
uniform quantization
No GOFstructure GOFstructure

GOBstructure Slice structure

   
23.3 The MPEG-2 Standard

The quality of MPEG-1 compressed video at 1.2 Mbps has been found unacceptable
for most entertainment applications. Subjective tests indicate that CCIR 601 video
can be compressed with excellent quality at 4-6 Mbps. MPEG-2 is intended as a
compatible extension of MPEG-1 to serve a wide range of applications at various
bitrates (2-20 Mbps) andresolutions. Main features of the MPEG-2 syntax are: i) it
allows for interlaced inputs, higher-definition inputs, and alternative subsampling of
the chroma channels, ii) it offers a scalable bitstream, andiii) it provides improved
quantization and coding options.

53

 



54

 
23.8. THE MPEG-2 STANDARD 449

Considering the practical difficulties with the implementation of the full syntax
on a single chip, subsets of the full syntax have been specified underfive “profiles,”
simple profile, main profile, SNR scalable profile, spatially scalable profile, and high
profile. Furthermore, a number of “levels” have been introduced within these pro-
files to impose constraints on someof the video parameters [ISO 93]. It is important
to note that the MPEG-2 standard has not yet been finalized. The syntax of the
Main Profile was frozen in March 1993. However, work in other profiles is still
ongoing. It is likely that the all-digital HDTV compression algorithm will conform
with one of the profiles in MPEG-2.

In the following we discuss the MB structure in MPEG-2, how MPEG-2 han-
dles interlaced video, the concepts related to scalability, and some extensions for
encoding of higher-definition video along with a brief overview of the profiles and
levels.

23.3.1 MPEG-2 Macroblocks

A macroblock (MB)refers to four 8 x 8 luminance blocks and the spatially associ-
ated chroma blocks. MPEG-2 allows for three chroma subsampling formats, 4:2:0
(same as MPEG-1), 4:2:2 (chroma subsampledin the horizontal direction only), and
4:4:4 (no chroma subsampling). The spatial locations of luma and chroma pixels
for the 4:2:0 and 4:2:2 formats are depicted in Figure 23.8. Therefore, in MPEG-2
a MB maycontain 6 (4 luma, 1 Cr, and 1 Cb), 8 (4 luma, 2 Cr, and 2 Cb), or 12
(4 luma, 4 Cr, and 4 Cb) 8 x 8 blocks.

xXX OxOx
xx

xXX xXxXxX BYa)Gi& xXxXxXXK OB)R)OY& xxxXX
(a) (b)

>< Luminance pixels

O Chrominance pixels

Figure 23.8: Chrominance subsampling options: a) 4:2:0 format; b) 4:2:2 format.
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23.3.2 Coding Interlaced Video

MPEG-2 accepts both progressive and interlaced inputs. If the inputis interlaced,
the output of the encoder consists of a sequence offields that are separated by
the field period. There are two options in coding interlaced video: i) every field
can be encoded independently (field pictures), or ii) two fields may be encoded
together as a composite frame (frame pictures). It is possible to switch between
frame pictures and field pictures on a frame-to-frame basis. Frame encoding is
preferred for relatively still images; field encoding maygive better results when there
is significant motion. In order to deal with interlaced inputs effectively, MPEG-2
supports:

e two new picture formats: frame-picture and field-picture,
e field/frame DCT option per MBfor frame pictures, and
e new MC prediction modesfor interlaced video,

which are described in the following.

New Picture Types for Interlaced Video

Interlaced video is composed of a sequence of even and oddfields separated by a
field period. MPEG-2 defines two new picture types for interlaced video. They are:

i) Frame pictures, which are obtained by interleaving lines of even and oddfields
to form composite frames. Frame pictures can beI-, P-, or B-type. An MB of the
luminance framepicture is depicted in Figure 23.9.

. [| Oddfield

= Evenfield

Figure 23.9: The luminance component of a MBof a framepicture.

ii) Field pictures are simply the even and oddfields treated as separate pictures.
Each field picture can be J-, P- or B-type. 
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Picture types in MPEG2

get
Progressive video Interlaced video

Frame Picture Frame Picture Field Picture

I, P, or B type I,P,orBtype I, P, or B type

Figure 23.10: Summary of picture types in MPEG-2.

A summaryofall picture types is shown in Figure 23.10. Clearly, in progressive
video all pictures are frame pictures. A group of pictures can be composed of an
arbitrary mixtureof field and frame pictures. Field pictures always appear in pairs
(called the top field and bottom field) which together constitute a frame. If the
top field is a P- (B-) picture, then the bottom field must also be a P- (B-) picture.
If the top field is an I-picture, then the bottom field can be an I- or a P-picture.
A pair of field pictures are encoded in the order in which they should appearat the
output. An example of a GOPfor an interlaced video is shown in Figure 23.11.

I B

Figure 23.11: A GOPfor an interlaced Yideo.

Field/Frame DCT Option for Frame Pictures

MPEG-2?allowsa field- or frame-DCT option for each MB in a framepicture. This
allows computing DCT onafield-by-field basis for specific parts of a framepicture.
For example, field-DCT may be chosen for macroblocks containing high motion,
whereas frame-DCT may be appropriate for macroblocks with little or no motion
but containing high spatial activity. The internal organization of a MB for frame
(on the left) and field (on the right) DCT is shown in Figure 23.12. Note that in
4:2:0 sampling, only frame DCT can be used for the chroma blocks to avoid 8 x 4
IDCT.
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(a) (b)

Figure 23.12; DCT options for interlaced frame pictures: a) Frame DCT and
b) field DCT.

MC Prediction Modes for Interlaced Video

There are two main types of predictions: simple field and simple frame prediction.
In simple field prediction, each field is predicted independently using data from one
or more previously decoded fields. Simple frame prediction forms a prediction for
an entire frame based on one or more previously decoded frames. Within a field
picture only field predictions can be used, However, in a frame picture either field
or frame prediction may be employed on an MB-by-MBbasis. Selection of the best
prediction mode depends on presence/absence of motion in an MB, since in the
presence of motion, frame prediction suffers from strong motion artifacts, while in
the absence of motion, field prediction does not utilize all available information.

There are also two other prediction modes: 16 x 8 MC raode and dual-prime
mode. 16 x 8 MC modeis only used in field pictures, where two motion vectors
are used per MB, one for the upper and the other for the lower 16 x 8 region,
which belong to the top and bottom fields, respectively. In the case of bidirectional
prediction, four motion vectors will be needed. In dual-prime mode, one motion
vector and a small differential vector are encoded. In the case of field pictures,
two motion vectors are derived from this information and used to form predictions
from two reference fields, which are averaged to form the final prediction [ISO 93].
Dual-prime modeis used only for P-pictures.

23.3.3 Scalable Extensions

Scalability refers to ability to decode only a certain part of the bit-stream to obtain
video at the desired resolution. It is assumed that decoders with different complex-
ities can decode and display video at different spatio-temporal resolutions from the
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same bitstream. The minimum decodable subset of the bitstream is called the base
layer. All other layers are enhancement layers, which improve the resolution of the
base layer video. MPEG-2 syntax allows for two or three layers of video. There are
different forms of scalability:

Spatial (pizel resolution) scalability provides the ability to decode video at dif-
ferent spatial resolutions without first decoding the entire frame and decimatingit.
The base layer is a low spatial resolution version of the video. Enhancementlayers
contain successively higher-frequency information. MPEG-2 employs a pyramidal
coding approach. The baselayer video is obtained by decimatingthe original input
video. The enhancement layer is the difference of the actual input video and the
interpolated version of the base-layer video.

SNR. scalability offers decodability using different quantizer step sizes for the
DCT coefficients. The base-layer video is obtained by using a coarse quantization
of the DCT coefficients. It is at the same spatio-temporal resolution with the input
video. The enhancement layer simply refers to the difference of the base layer and
the original input video. ‘

Temporal scalability refers to decodability at different frame rates without first
decoding every single frame. Hybrid scalability refers to some combination of the
above. An important advantageof scalability is that it provides higherresilience to
transmission errors as the base-layer video is usually transmitted with better error
correction capabilities.

23.3.4 Other Improvements

MPEG-2 also features some extensions in the quantization and coding steps for
improved imagequality in exchange toslightly higher bitrate. In particular, it allows
for i) a new scanning scheme(alternate scan) in addition to the zigzag scanning
of the DCT coefficients, ii) finer quantization of the DCT coefficients, iii) finer
adjustment of the quantizer scale factor, and iv) a separate VLCtable for the DCT
coefficients for the intra macroblocks, which are explained in the following.

Alternate Scan

In additionto the zigzag scanning, MPEG-2 allows for an optional scanning pattern,
called the “alternate scan.” The alternate scan pattern, whichis saidto fit interlaced
video better, is depicted in Figure 23.13.

Finer Quantization of the DCT Coefficients

In intra macroblocks, the quantization weight for the DC coefficient can be 8, 4, 2
or 1. That is, 11 bits (full) resolution is allowed for the DC coefficient. Recall that
this weight is fixed to 8 in MPEG-1. AC coefficients are quantized in the range
[-2048,2047], as opposed to [-256,255] in MPEG-1. In non-intra macroblocks, all
coefficients are quantized into the range [-2048,2047]. This range was [-256,255] in
MPEG-1.
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Figure 23.13: Alternate scan.-

Finer Adjustment of MQUANT

In addition to a set of MQUANTvalues that are integers between 1 and 31, MPEG-
2 allows for an optionalset of 31 values that include real numbers ranging from 0.5
to 56. These values are listed in Table 23.8.

Table 23.8: Optional set of MQUANTvalues.

 
23.3.5 Overview of Profiles and Levels

MPEG-2 full syntax covers a wide range of features and free parameters. The five
MPEG-2 profiles define subsets of the syntax while the four levels impose constraints
on the values of the free parameters for the purpose of practical hardware imple-
mentations. The parameter constraints imposed by thefour levels are summarized
in Table 23.9.
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Table 23.9: Parameter constraints according to levels.

Max. Pixels|Max. Lines|Max. Frames/s
Low 288

Main 576

 

High-1440 1152
High 1152
 

The Simple profile does not allow use of B-pictures and only support the Main
level. The maximum bitrate for the Simple profile is 15 Mbps. The Main profile
supportsall four levels with upper bounds on the bitrates equal to 4, 15, 60, and 80
Mbpsfor the Low, Main, High-1440 and Highlevels, respectively. The Main profile
does not include any scalability. The SNR Scalable profile supports Low and Main
levels with maximum bitrates 4 (3) and 15 (10) Mbps, respectively. The numbersin
parentheses indicate the maximum bitrate for the base layer. The Spatially Scalable
profile supports only High-1440 level with a maximumbitrate of 60 (15) Mbps. The
High profile includes Main, High-1440 and High levels with maximum bitrates of
20 (4), 80 (20), and 100 (25) Mbps, respectively.

23.4 Software and Hardware Implementations

There are several software and hardware implementations of the H.261 and
MPEG algorithms. The Portable Video Research Group (PVRG) at Stan-
ford University has public-domain source codes for both H.261 and MPEG
standards, called PVRG-P64 and PVRG-MPEG, respectively. They can be
obtained through anonymous ftp from “havefun.stanford.edu” - IP address
[36.2.0.35] - (/pub/p64/P64v1.2.tar.Z) and (/pub/mpeg/MPEGv1.2.tar.Z). Other
public-domain software includes the INRIA H.261 codec, which can be obtained
from “avahi.inriafr” (/pub/h261.tar.Z), and the Berkeley Plateas: Research Group
MPEG encoder, which can be obtained from “toe.cs.berkeley.edu” - JP address
[128.382.149.117] - (/pub/multimedia/mpeg/mpeg-2.0.tar.Z).

Single- or multichip implementations of the video compression standards are
available from many vendors, including

e C-Cube: CL-450, single-chip MPEG-1, SIF rates. CL-950, MPEG-2,
CL-4000, single-chip, can code MPEG-1, H.261, and JPEG,

e SGS-Thomson: STi-3400, single-chip MPEG-1, SIF rates. STi-3500, the first
MPEG-2 chip on the market,

e Motorola: MCD250, single-chip MPEG-1, SIF rates, and
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e GEC Plassey: Chip sets for the H.261 algorithm.

For more complete listings, the reader is referred to MPEG-FAQ, available from
“phade@cs.tu-berlin.de,” and to Compression-FAQ (part 3), available by ftp from
“rtfm.mit.edu” (/pub/usenet /news.answers/compression-faq/part[1-3].
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Chapter 24

MODEL-BASED CODING

Due to growing interest in very-low-bitrate digital video (about 10 kbps), signifi-
cant research effort has recently been focused on new compression methods based
on structural models, known as model-based analysis-synthesis coding. Scientists
becameinterested in model-based coding because the quality of digital video pro-
vided by hybrid waveform encoders, such as the CCITT Rec. H.261 encoder, has
been deemed unacceptable at these very low bitrates. The general principles of
model-based coding, including general object-based, knowledge-based, and semantic
coding, were presented in Chapter 22. These techniques employ structural models
ranging from general purpose 2-D or 3-D object models [Mus 89, Die 93, Ost 93] to
application-specific wireframe models [Aiz 89, Li 98, Boz 94]. In the following, we
elaborate on general 2-D/3-D object-based coding in Section 24.1, and knowledge-
based and semantic coding in Section 24.2.

24.1 General Object-Based Methods

A major deficiency of the MC/DCT compressionis that it is based on a 2-D trans-
latory block-motion model. This model is not adequate for a precise description of
most motion fields, because it does#not include rotation and zooming, and bound-
aries of moving objects hardly ever coincide with those of the rectangular blocks.
Object-based methods aim to develop morerealistic 2-D motion field models by
considering affine, perspective, and bilinear spatial transformations and/or segmen-
tation of the scene into individually moving objects. Typically, a frameis partitioned
into an “unchangedregion,” an “uncovered background,” and a number of moving
objects which are either model-compliant (MC) or model-failure (MF) objects, as
depicted in Figure 24.1. Segmentation is an integral part of these schemes, because
different regions require different model parameters. We can classify object-based
models as: i) piecewise planar or arbitrary 3-D surfaces with 3-D motion, ii) 2-D
flexible models with 2-D translational motion, andiii) spatial transformations with
triangular/rectangular patches, which are described in the following.
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Figure 24.1: Segmentation of a frame into objects.

24.1.1 2-D/3-D Rigid Objects with 3-D Motion

In this approach, a 3-2 model of a moving scene is estimated, which is consistent
with a given sequence of frames. A realistic 2-D motion field model can then
be obtained by projecting the resulting 3-D motion into the image plane. Two
approaches are commonly used to represent 3-D surfaces: 1) approximation by a
piecewise planar model, also known asthe case of 2-D rigid objects with 3-D motion
[Hot 90, Die 93], and ii) estimation of a global surface model under a smoothness
constraint, which leads to the so-called 3-D object with 3-D motion models [Mus89,
Ost 90, Ost 93, Mor 91, Koc 93]. Here, we provide a brief overview of the former
approach.

We have seen in Chapter 9 that the orthographic and perspective projections
of arbitrary 3-D motion of a rigid planar patch into the image plane yield the 6-
parameter affine and the 8-parameter perspective models, respectively. It follows
that, using the 2-D rigid obj&ct with 3-D motion approach, the 2-D motion field
can be represented by a piecewise affine or a piecewise perspective field, where the
boundaries of the patches and the respective model parameters can be estimated
by a simultaneous motion estimation and segmentation algorithm (see Chapter 11).
Then the parameter set for each independently moving object (motion parame-
ters) together with the segmentation mask denoting the boundaries of each object
in the image plane (shape parameters) constitute a complete description of the
frame-to-frame pixel correspondences, which provide an MC-prediction of the next
frame. Because of motion estimation/segmentation errors and problemsrelated to
uncovered background, the frame prediction error or the synthesis error (color pa-
rameters) also needs to be transmitted to improve upon image quality in the model
failure regions. 
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An object-oriented analysis-synthesis encoder implements the following steps:

1. Analysis: Perform simultaneous motion parameter estimation and segmenta-
tion, between frame k and the reconstructed frame &— 1, to find the best mo-
tion and shape parameters. Two specific algorithms that have been reported
with successful results are those of Hotter et al. [Hot 90] and Diehl [Die 93}.
They can be summarized using the flowchart shown in Figure 24.2, where the
frame is initially segmented into a changed and an unchanged region. Each
contiguous changed segment is assumed as an independent moving object, and
a set of mapping parameters, such as a 6-parameter affine or an 8-parameter
perspective mapping, is estimated for each moving object. The present frame
(frame k) can then be synthesized from the previously reconstructed frame
k —1 using these parameters. Those objects, where the synthesis error is

Frame k

 
  

 
 
 
 

 
 

Initial segmentation
by change detection

Mapping parameter
estimation

Image synthesis

 

 
Update

segmentation mask

Transmit segmentation & mapping
parameters

Figure 24.2: Flowchart of the mapping-parameter-based method.
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above a threshold T, are classified as model-failure (MF) objects, which are
then subdivided into more objects. The process is repeated until a predefined
performance measureis satisfied.

2. Synthesis: Given the segmentation field and the motion parameters for each
region, synthesize the present frame from the previous reconstructed frame.
Compute the synthesis error, which specifies the color parameters.

3. Coding: In the case of the 8-parameter model, the parameters (ai,..., ag)
are first normalized by a factor A’, except for a3 and ag which describe the
horizontal and vertical translation of the object. The factor K is coded by 4
bits. The normalization aims at making the accuracy of the motion description
independent of the spatial extent of the objects. The normalized parameters
(a, a2, a4, a5, @7, ag) are coded with 6 bits each. The parameters ag and ag are
quantized with quarter pixel accuracy, and coded with 7 bits each. Clearly,
the amount of motion information to be transmitted depends on the number
of independently moving objects. There exist several approaches for encoding
the segmentation mask (shape) and the frame prediction error (color), which
are described in [Mus 89, Die 93, Sch 93].

The difficulty with this approach is in the simultaneous estimation of the model
parameters and scene segmentation, which is computationally demanding.

24.1.2 2-D Flexible Objects with 2-D Motion

Here, the source model is a flexible 2-D object with translational motion. This
model, which forms the basis of the COST 211ter simulation model, has been pro-
posed because it does not require complex motion estimation schemes, and hence
leads to practical codec realizations. The main idea is to segment the current frame
into three regions: 1) unchanged or stationary areas, 11) moving areas, where each
pixel corresponds to a pixel from the previous frame, andiii) uncovered background
for which no corresponding pixel exists in the previous frame. Motion estimation
is performed using a hierarchical block matching algorithm on a sparse grid of pix-
els within the moving region. A dense motion field is then computed via bilinear
interpolation of the estimated motion vectors. Model-compliant (MC) moving ob-
jects are encoded by the respective 2-D motion vectors and their shape parameters.
Shape and color information is entoded and transmitted for model-failure (MF)
moving areas and the uncovered background.

The resulting algorithm, called the object-based analysis-synthesis coder
(OBASC), whose flowchart is shown in Figure 24.3, can be summarized as follows:

1. Compute the Change Detection Mask (use 3 x 3 averaging, thresholding,
5 x 5 medianfiltering, and/or morphological operations to eliminate small
changed/unchanged regions) The change detection mask is a binary mask
that marks the changed and unchanged regions of the current picture with
respect to the previous reconstructed picture.
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Frame k

  
 
 

 Change detection

2-D motion estimation

Image synthesis

Color parameters
for MFregions

Transmit motion, shape,
and color parameters

 
Figure 24.3: Flowchart of the 2-D translatory flexible model method.

2. Estimate motion vectors for those pixels within the changed region using

three-level hierarchical block matching (HBM). The parameters used in HBM
is tabulated in [Ger 94].

3. Compute the ternary UMB mask that marks unchanged areas, moving areas,
and the uncovered background in the current picture. In order to distinguish
moving pixels from the uncovered background,for each pel in the CHANGED
region, we invert its motion vector. If the pel pointed to by the inverse of the
motion vector is not in the CHANGEDregion, it is said to belong to the
UNCOVEREDbackground.
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4, Approximate the shape of moving regions using the combined polygon/spline
approximation method.

5. Synthesize moving regions in the present picture using motion and shape
information. All analysis is performed on the luma component only, but
synthesis must be performed for both luma and chroma components.

6. Determine Model Failure (MF) Regions.

7. Code pel data in MF and uncovered backgroundregions. Several methodsfor
coding of pel (color) data have been discussed in [Sch 93].

8. Code motion and shape parameters for Model Compliance (MC) regions. The
sparse motion field is encoded using DPCM. The 2x; and zr2 components of
the motion vectors are predicted separately using three-point spatial predic-
tors whose coefficients are encoded using 6 bits each. The prediction error
is usually run-length encoded [Hot 90]. The effectiveness of 2-D object-based
coding methods depends strongly on howefficiently and accurately the shape
(segmentation) information can be encoded. Several contour coding methods,
including Fourier descriptors and polygon approximations, have been tested
[Hot 90]. A combination of polygon approximation and spline-based repre-
sentation of contours has been found to be most effective. In this approach
the vertices of the polygon approximation are used to fit a spline to represent
the segment boundary. The spline approximation is constrained to be within
a prespecified distance from the actual boundary. The vertices of the polygon
approximation are coded by MC-temporal DPCM. Thatis, first the vertices
from the previous frame are translated by the estimated motion vectors. The
MC-predicted vertices are tested for whether to accept or reject them. Addi-
tional vertices may need be inserted to account for the flexible nature of the
object model. The positions of the newly inserted vertices are encoded by
relative addressing.

9. Buffer regulation ensures smooth operation of the encoder at a fixed bitrate.

24.1.3 Affine Transformations with Triangular Meshes

Because of the computational complexity of simultaneous mapping parameter
estimation and segmentation, and shape analysis algorithms, simpler motion-
compensation schemesusing spatial transformations based on a predetermined par-
tition of the image plane into triangular or rectangular patches have recently been
proposed [Nak 94]. These methods, although based on patches with a predeter-
mined shape, provide results that are superior to those of block-based MC/DCT
approach, because the spatial transformations accomodate rotation and scaling in
addition to translation, and the implicit continuity of the motion field alleviates
blocking artifacts even at very low bitrates.
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Texture mapping

 
Frame k-J Frame k

Figure 24.4: Motion compensation using triangular patches.

Nakaya and Harashima [Nak 94] propose using affine, bilinear, or perspective
transformations, along with some new motion estimation algorithms, for improved
motion compensation. In the case of the affine transformation, the present frame
is segmented into triangular patches, because the affine transform hassix free pa-
rameters which can uniquely be related to the (#1, #2) coordinates of the vertices
of a triangular patch. Note that both the bilinear and perspective transforms have
eight free parameters which can be related to the vertices of a quadrilateral patch.
Assuming continuity of the motion field across the patches, it is sufficient to esti-
mate the motion vectors at the vertices of the patches in frame k, called the grid
points. Then texture within warped triangles in frame k — 1, whose boundariesare
determined by the estimated motion vectors, is mapped into the respective triangles
in frame k, as depicted in Fig, 24.4.

An encoder using affine motion compensation (AFMC) implementsthe following
steps:

1. Partition the present frame into triangular patches.

2. Estimate the motion vectors at the grid points in frame k. At the first stage,
a rough estimate of the motion vectors can be obtained by using a stan-
dard block matching algorithm with rectangular blocks centered at the grid
points. These estimates are then refined by the hexagonal search, which is a
connectivity-preserving search procedure [Nak 94].

3. Determine the affine mapping parametersfor each triangle given the displace-
ment vectors at its vertices. Synthesize the present frame by mapping the
color information from the previous reconstructed frame onto the correspond-
ing patches in the present frame. Compute the synthesis error.

4, Encode both the motion vectors at the grid points and the synthesis error.
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Note that no shape information needs to be transmitted in this approach. The
numberof grid points and the bit allocation for the transmission of synthesis error
(color information) vary with the available bitrate. For example, at very low bitrates
(under 10 kbps) no color information is usually transmitted. Segmentation of the
current frame with adaptive patch boundaries that coincide with the boundaries
of the moving objects (which would necessitate transmission of additional shape
information) is left as a future research topic.

24.2 Knowledge-Based and Semantic Methods

Estimation of 3-D motion and structure of an unknown 3-D object from two frames
(the case of 2-D/3-D rigid objects with 3-D motion)is a difficult problem, in that it
requires high computational complexity, and the solution is very sensitive to noise.
On the other hand, methods based on the simpler 2-D models, that is, the 2-D
flexible model with translational motion and the affine.transform using triangular
patches, make certain assumptions that may not be satisfied. For example, in
the former case motion may not be entirely translational, and in the latter, some
triangles may cover two different objects. Knowledge-based 3-D modeling offers a
compromise. It is applicable to cases where we have a priori information about
the content of the scene in the form of a wireframe model, which is a mesh model
composed of a set of triangular planar patches that are connected. However, the
solution is considerably simpler than the case of unknown 3-D objects.

In knowledge-based coding, it is assumed that generic wireframe models have
been designed off-line for certain objects of interest, which are available at both the
transmitter (encoder) and the receiver (decoder). The encoder selects a suitable
wireframe model for a particular scene, which is then scaled according to the size of
the object in the reference frame. The motion of the object can then be described
by the displacement of the vertices of the wireframe model. The objects can be
modeled as moving 3-D rigid objects, where the global motion of all vertices on the
same object can be characterized by a single set of six rigid motion parameters,
or moving 3-D flexible objects (flexibly connected rigid components), where the
wireframe model undergoes local motion deformations. Local motion deformations
can be described by a set of motion parameters for each individual patch, where
the vertices may move semi-independently under the geometrical constraints of a
connected mesh model [Boz 94]. Alternatively, in the case of facial images, they
can Be described by semantic modeling techniques [Cho 94].

One of the main applications of model-based coding has been videophone, where
scenes are generally restricted to head-and-shoulder types. In designing a wireframe
model, the first step is to obtain the depth map of the speaker’s head and shoul-
ders, usually by scanning the speaker using collimated laser light. Once the depth
mapis obtained, the 3-D wireframe modelis obtained through a triangularization
procedure where small triangles are used in high-curvature areas and larger ones
at low-curvature areas. The wireframe model is stored in the computer as a set
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of linked arrays. One set of arrays lists the X,, X2, X3 coordinates of each vertex
and another set gives the addresses of the vertices forming each triangle. There are
several wireframe models used by different research groups. An extended version of
the CANDIDE model [Ryd 87]’is shown in Figure 24.5.

 
Figure 24.5: Wireframe model of a typical head-and-shoulder scene [Wel 91].

In the following, we first discuss the basic principles of the knowledge-based
approach. Then wepresent two specific algorithms, the MBASICalgorithm [Aiz 93],
and a more sophisticated adaptive scaling and tracking algorithm [Boz 94].

24.2.1 General Principles

A block diagram of the 3-D knowledge-based coding scheme is shown in Figure 24.6.
The encoder ig composed of four main components: 1) image analysis module, which
includes scaling of the 3-D wireframe model, global and local motion estimation, ii)
image synthesis module, which includes texture mapping, iii) model update, which
is updating of the coordinates of the wireframe model and the texture information,
and iv) parameter coding. Someof these steps are described below.

1. Wireframe model fitting

The accuracy of tracking the motion of the wireframe model from frame to
frame strongly depends on how well the wireframe model matches the actual
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Encoder Decoder

Imageanalysis
Wireframefitting
Global motionestimation Encoded|Parameter decoding
Local motion estimation parameters Updated wireframe parameters

Image synthesis Global motion parameters
Texture mapping Local motion parameters

Texture parameters
Model update

Wireframe update Image synthesis
Texture update

Parameter coding

3-D wireframe model

Figure 24.6: Block diagram of knowledge-based coding.

speaker in the scene. Since the size and shape of the head and the position
of the eyes, mouth, and nose vary from person to person, it is necessary to
modify the 3-D wireframe model to fit the actual speaker. Thus, the first step
in 3-D knowledge-based codingofa facial image sequence is to adapt a generic
wireframe model to the actual speaker.

Initial studies on 3-D model-based coding have scaled the wireframe model
by fitting the orthographic projection of the wireframe model to a frontal
view of the actual speaker by means of affine transformations and a set of
manually selected feature points [Aiz 89, Aiz 93, Kan 91]. The four feature
points used by Aizawaet al. [Aiz 89, Aiz 93], tip of the chin, temples, and a
point midway between the left and right eyebrows, are shown in Figure 24.7.
The points (2,24) in frame k that correspond to the selected feature points
(1,2) on the orthographic projection of the wireframe model are marked
interactively. The parameters of an affine transform, x, = az, + bag+
and x = dz, +ex2+/f, are then estimated using a least squares procedure
to obtain the best fit at the selected feature points. This transformation
is subsequently applied to the coordinates of all vertices for scaling. The
depth at each vertex is modified according to the scaling factor ,/(a? + e?)/2.
In an attempt to automatic scaling, Huang et al. [Hua 91] propose using
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A

Figure 24.7: Feature points to be used in scaling the wireframe.

spatial and temporal gradients of the image to estimate the maximum height
and width of the actual face and scale the wireframe model accordingly.

An alternative approach is to use snakes orellipses to model the boundary
of the face. Recently, Reinders et al, [Rei 92] consider automated global
and local modification of the 2-D projection of the wireframe modelin the
x, and x» directions. They segment the image into background, face, eyes,
and mouth, and approximate the contours of the face, eyes, and mouth with
ellipses. Then local transformations are performed using elastic matching
techniques. Waite and Welsh use snakes to find the boundary of the head,
which is claimed to be a robust method [Wel 90]. However,all of the above
methods have applied an approximatescaling in the z-direction (depth) since
they are based on a single frame.

2. Motion Analysis

The facial motion can be analyzed into two components, the global motion
of the hea& and the local motion due to facial expressions, such as motion
of the mouth, eyebrows, and eyes. The global motion of the head can be
characterized by the six rigid motion parameters. These parameters can be
estimated using point correspondenceoroptical flow based approaches, which
were discussed in Chapters 9-12. The MBASIC andthe flexible-wireframe-
model based approaches that are presented in the next two subsections are
representative of the respective approaches. These methodsalso provide depth
estimates at the selected feature points, which may be used for improved
scaling of the depth parameters of the generic wireframe model.
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A popular approach to characterize local motion is to describe it in terms
of the so-called facial action units (AUs) [Aiz 93, Cho 94] which are based
on the Facial Action Coding system (FACS) [Ekm 77]. FACS describes fa-
cial expressions in terms of AUs that are related to movement of single
muscles or clusters of muscles. According to FACS, a human facial ex-
pression can be divided into approximately 44 basic AUs, and all facial ex-
pressions can be synthesized by an appropriate combination of these AUs.
Several algorithms have been proposed to analyze local motion using AUs
[For 89, Kan 91, Aiz 93, Li 93, Cho 94]. Among these Forchheimer [For 89]
used a least squares estimation procedureto find the best combination of AUs
to fit the residual motion vectorfield (the displacement field after compensat-
ing for the global motion). That is, the vector a of AU parameters is estimated
from

Ad=Aa

where Ad denotes the residual displacement vector field, and A is the matrix
of displacement vectors for each AU. Recently, Li et al. [Li 93] proposed a
methodto recover both the local and global motion parameters simultaneously
from the spatio-temporal derivatives of the image using a similar principle.

 
Figure 24.8: Demonstration of facial expression synthesis using AUs.

Facial action units are demonstrated in Figure 24.8 using a frame of
the sequence “Miss America.” The picture illustrates the synthesis of
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the AUs 2, 17, and 46, corresponding to “outer brow raiser,” “chin raiser,”
and “blinking.” Deformablecontour models have also been used to track the
nonrigid motionof facial features [Ter 90]. Huang et al. [Hua 91] used splines
to track features, such as eyes, eyebrows, nose andthe lips.

. Synthesis

Synthesis of facial images involves transformation of the wireframe model
according to a particular set of global and local motion parameters followed
by texture mapping. Texture mappingis a widely studied topic in computer
graphics to obtain realistic images [Yau 88, Aiz 93]. It refers to mapping a
properly warped version of the texture observed in the first frame onto the
surface of the deformed wireframe model.

Texture mapping under orthographic projection can be described as follows:
i) collapse the initial wireframe model onto the image plane (by meansof or-
thographic projection) to obtain a collection of triangles,
ii) map the ebserved texture in the first frame into the respective triangles,
iii) rotatate and translate the initial wireframe model according to the given
global and local motion parameters, and then collapse again to obtain a set
of deformed triangles for the next frame, and
iv) map the texture within each triangle in the first frame into the correspond-
ing triangle by means of appropriate decimation or interpolation.

Texture mapping is illustrated in Figure 24.9, where Figure 24.9.a shows one
of the collapsed triangles in the initial frame. Figure 24.9.b depicts the cor-
responding triangle with its appropriately warped texture. Texture warping
can be accomplished with orthographic or perspective projection techniques.

 
(a)

Figure 24.9: Texture mapping: a) before and b) after processing.
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3-D knowledge-based coding schemes have been shown to yield higher compres-
sion ratios when applied to typical videophone scenes than do waveform coding
and/or 2-D object-based coding, since 3-D models provide a more compact descrip-
tion of the scene for these special class of images. Clearly, knowledge-based schemes
offer a compromise between generality and higher compression ratio. Practical im-
plementations of object-based schemes usually feature a fall-back mode, such as
DCT frame coding, to cope with frame-to-frame accumulation of image analysis
and synthesis errors or sudden scene changes.

24.2.2 MBASIC Algorithm

The MBASIC algorithm is a simple knowledge-based coding scheme that is based
on the source model of a known wireframe model (up to a scaling factor) subject
to 3-D rigid motion (to model the global motion of the head). Facial action unit
analysis has been used to modelthe local motion deformations. The algorithm can
be summarized through the following steps [Aiz 89]:

e Scale the wireframe model. First, an edge detection is performed to find the
boundaries of the face. Certain extreme points on the edge map, such as the
corners of the two ears, the middle of the chin, and the forehead, are then
detected to compute the maximum horizontal and vertical distances. The x1
and 22 scaling factors are then calculated to match the respective distances
on the generic wireframe model to these values. The scaling factor in the X3
direction is approximated by the mean of the x; and 29 scaling factors

e Determine N matching point pairs. Mark seven to ten characteristic points
on the rigid parts of the face, such as tip of the nose, around the eye brows,
etc., on the initial frame. Find the best matching points in the next frame
using block matching or another technique.

e Estimate the global 3-D motion and structure parameters. The two-step iter-
ation process described in Chapter 9 is used to estimate the 3-D motion and
structure parameters. That is, we initialize the unknown depth parameters
using the values obtained from the scaled wireframe model. Next, we esti-
mate the 3-D motion parameters given the depth parameters from (9.10), and
estimate the depth parameters from (9.11) using the 3-D motion parameters
estimated in the previous step, iteratively.

e Estimate action units. After compensating for the global motion of the head,
the AUs that best fit the residual motion field can be estimated.

Since scaling of the wireframe model in the X3 (depth) direction is approximate
(because it is based on a single frame), there is an inevitable mismatch of the
initial depth (X3) parameters of the wireframe model and the actual speaker in the
image sequence. The two-step motion estimation procedure has been found to be
sensitive to these errors if it exceeds 10%. To overcome this problem, an improved
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iterative algorithm (see Section 9.2.2) can be employed for 3-D motion and structure
parameter estimation in the above procedure.

24.2.3 Estimation Using a Flexible Wireframe Model

Manyexisting methods consider fitting (scaling) a generic wireframe to the actual
speaker using only theinitial frame of the sequence [Aiz 89, Rei 92]. Thus, thescal-
ing in the z-direction (depth) is necessarily approximate. Furthermore, although the
utility of photometric cues in 3-D motion and structure estimation are well known

[Ver 89, Pea 90, Pen 91, Dri 92], photometric information has not commonly been
used in the context of motion estimation in knowledge-based coding. In this section,
we introduce a recent formulation where the 3-D global and local motion estimation
and the adaptation of the wireframe model are considered simultaneously within
an optical-flow-based framework, including the photometric effects of motion. The
adaptation of the wireframe model serves two purposes that cannot be separated:
to reduce the misfit of the wireframe model to the speaker in frame f: — 1, and to
account for the local motion from frame & — 1 to frame k without using any a priori
information about the AUs.

The source model is a flexible wireframe model whose local structure is charac-

terized by the normal vectors of the patches which are related to the coordinates of
the nodes. Geometrical constraints that describe the propagation of the movement
of the nodes are introduced, which are then efficiently utilized to reduce the number
of independent structure parameters. A stochastic relaxation algorithm has been
used to determine optimum global motion estimates and the parameters describing
the structure of the wireframe model. The simultaneous estimation formulation is

motivated by the fact that estimation of the global and local motion and adaptation
of the wireframe model, including the depth values, are mutually related; thus, a
combined optimization approach is necessary to obtain the best results. Because an
optical-flow-based criterion function is used, computation of the synthesis error is
not necessary from iteration to iteration, and thus, results in an efficient implemen-
tation. The synthesis error at the conclusion of the iterations is used to validate
the estimated parameters, and to decide whether a texture update is necessary.

In the following we summarize the estimation of the illuminant direction, the
formulation of the simultaneous motion estimation and wireframe adaptation prob-
lem including the photometric effects of motion, and the algorithm for the proposed
simultaneous estimation, including an efficient method to update the nodes of the
wireframe model.

Estimation of the Illuminant Direction

Photometric effects refer to the change in shading due to 3-D motion of the object.
For example, in the case of rotational motion, because the surface normals change,
the shading of the objects varies even if the external illumination remains constant.
Recently, Pentland [Pen 91] showed that the changes in image intensity because of

 

 



77

 

 

 
472 CHAPTER 24. MODEL-BASED CODING

photometric effects can dominate intensity changes due to the geometric effects of
motion (changes in projected surface geometry due to 3-D motion). Similar discus-
sions can be found in [Ver 89, Pea 90, Dri 92]. Here webriefly discussestimation of
the illuminant direction with the aim of incorporating photometric effects into the
above optical-flow-based formulation.

Recall from Section 2.3 that the imageintensity s.(x1, £2,t) can be expressed as

$-(1,%2,t) = pN(t)-L (24.1)

where L = (11, L2, £3) is the unit vector in the mean illuminant direction and N
is the unit surface normal of the scene at position (X1, X2, X3(X1, X2)) given by

N(t) = (—p,-9, 1)/(p? +? +)? (24.2)

and p = cas and ¢ = one are the partial derivatives of depth X3(21, 22) with
respect to the image coordinates x, and x2, respectively.

Note that the illuminant direction L can also be expressed in termsoftilt and
slant angles as

L = (11, L2, Ls) = (cos7sino, sin sin o, cosa) (24.3)

where 7, the tilt angle of the illuminant, is the angle between L and the 4; — Xz
plane, and a, the slant angle, is the angle between L and the positive 3 axis. In
order to incorporate the photometric effects of motion into 3-D knowledge-based
coding, the illuminant direction L must be knownor estimated from the available
frames.

A method to estimate the tilt and slant angles of the illuminant, based on
approximating the 3-D surface by spherical patches, was proposed by Zheng etal.
[Zhe 91]. They estimate the tilt angle as

E{iy//L? + 37 = arctan MUIVE+1 (24.4)
E{L/y/L? + £3}

where E{.} denotes expectation over the spatial variables (which is approximated
by 4 x 4 local averaging), and L; and Lo are the 2; and r_ components of the local
estimate of the tilt of the illuminant, respectively, computed as

61, 6211 6291
i 61» 6219 d&ao

| Ly | = (B' B)-sB' ; , and B=La ;

bIn ézin 62aN

Here, 61;,i=1,...,N is the difference in image intensity along a particular direc-
tion (6x1;,6%2;), and N is the numberof directions (typically N = 8 for each 4 x 4
window).
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The slant angle o can be uniquely estimated from

ELD _ peas

since f3(o) (defined in [Zhe 91]) is a monotonically decreasing function of o, where
E{T} and E{I?} are the expected values of the imageintensities and the square
of the image intensities, respectively, estimated from the image area where the
wireframe modelisfitted.

Finally, the surface albedo can be estimated from

= EAD filo) + VETPY fi)
fia) + filo)

where f(a) and fo(c) are seventh-order polynomials in cos o as defined in [Zhe 91].

(24.6)

Incorporation of the Photometric Effects into the OFE

Since we represent the 3-D structure of a head-and-shoulders scene by a wireframe
model and the surface of the wireframe model is composed of planar patches, the
variation in the intensity of a pixel due to photometric effects of motion will be
related to a change in the normal vector of the patch to which this pixel belongs.

Assuming that the mean illuminantdirection L = (L1, Le, Lg) remains constant,
we can represent the change in intensity due to photometric effects of motion, based
on the photometric model (2.32), as

ds_(@1, 29 t) dN—_————_ = pL - — 24.7dt pat (24.7)
Then, substituting Equations (24.7) and (2.33) into the optical flow equation (5.5),
and expressing 2-D velocities in terms of the 3-D motion parameters, we include
the photometric effects into the optical-flow-based formulation as [Boz 94]

OS. O8¢Os.
Q —Q —(-9 QX =Be, | 322 2X%3+Vi)+ Any | gf, + 2,X3 4+ Vo) + Ah

  

(—p',-q', 1)" _ (=P, —4 De
VPig+l VePreti

The term on the right-handside of Equation (24.8) may besignificant, especially if
the change in the surface normal has components either toward or away from the
illuminant direction [Pen 91]. =

pL - (24.8)

Structure of the Wireframe Model

Next, we introduce geometrical constraints about the structure of the wireframe
model and discuss formulation of the simultaneous estimation problem. The wire-
frame model is composed of triangular patches which are characterized by the
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(X1, X2,.X3) coordinates of their respective vertices. Given the (X1,X2,X3) co-

ordinates of the vertices of a patch, we can Write the equation of the plane contain-ing this patch. Let pO = (xO, xO x®), Pi? = (XO)xx) and pi) =
(x6), xO), x) denote the vertices of the ith patch, and P@ = (xX, XO), x)
be any point on this patch. Then,

POP. (PY POx POPM) = 9

gives the equation of the plane containing Po, pi) and pe) where PwPO,
pipe) and POpO are the vectors from the former point to the latter, respec-
tively, We can express this equation in the form

XQ? = piX{? + aX}?+ ci (24.9)
where

pp xXB = XB KG — XM) ~ KD— YVR — X00)
(xf? — XPPyy — x) — (x= xSPyx — xf?)

op = 882 = NOTE = X17) = OT = GOS = XP)
(XT2) — XTP)(Xby) — X47) — (XP =PVCS — X42)

and

— x0 4 xoMe Xr(Xap ~ Xan) - (X$)-Uae— X3”)
(xt? — Xf)— xf?) - ae xPx—xO

xo Nae me xf)xi? = xi) = (Xixt) _ xXa = x)
Ox=A) — a9) — OG) — Madd — x0)

Using Equation (24.9), the X3 coordinate of any point on the ith patch can be
expressed in terms of the parameters p;, g;, and c; and the X, and X» coordinates
of the point. Then, we can eliminate X3 from Equation (24.8) by substituting (24.9)
into (24.8) with x) = xi), x = a, where the patch index i is determined for
each (a1, £2) according to the orthographic projection.

It is important to note that the parameters p,;, 9;, and c; of each planar patch of
the wireframe are not completely independent of each other. Each triangular patch
is either surrounded by two (if it is on the boundary of the wireframe) or three
other triangles. The requirement that the neighboring patches must intersect at a
straight line imposes a constraint on the structure parameters of these patches in
the form . 7

pin\) + gas? +c = Pj zit) + qa") + Cj (24.10)
where p;, q;, and c; denote the parameters of the jth patch, and (2?) x!) denote
the coordinates of a point that lie at the intersection of the 7th and jth patches.
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Problem Statement

The 3-D global motion parameters 21, Q2, 23, Vi, Vo, and the structure parameters
Pi, Vi; Cz, can be simultaneously estimated by minimizing the sum squareerror in
the optical flow equation (24.8) over all pixels in a frame, given by

E=S>e? (21,22) (24.11)
t (21,"2)€it* patch

 

where

e€;(@1,£2) = = (Q32_ — Qe(pitit Gre+c;)+ Vi)
+5%2(Ope + O1(piti + Gie2 + cx) + V2) + oe

—p(L1, L2, Ls):ee.ater(aeeeery eee ed) /
with respect to 21, Q2, 23, Vi, V2, pi, Gi, c¢, and 7 = 1,..., numberof patches,
subject to the geometrical constraints given by (24.10). It is assumed that the values
of p and (Ly, L2, L3) are estimated a priori. The constraints, Equation (24.10), not
only enable us to preserve the structure of the wireframe during the adaptation, but
also facilitate reducing the number of independent unknowns in the optimization
process, as described in the following.

The Algorithm

The criterion function E, defined by Equation (24.11), can be minimized using
a stochastic relaxation algorithm (see Chapter 8) to find the global optima of
Q1, Q2, Q3, Vi, Ve, pi, a, ci. Each iteration consists of perturbing the state
of the system in some random fashion in a manner consistent with the constraint
equations (24.10). The constraints are enforced as follows: At each iteration cycle,
we visit all patches of the wireframe model in sequential order. If, at the present
iteration cycle, none of the neighboring patches of patch 7 has yet been visited (e.g.,
the initial patch), then p;, q;, cj are all independently perturbed. If only one of the
neighboring patches, say patch j, has been visited (p;, q;, cj have already been up-
dated), then two of the parameters, say p; and q;, are independent and perturbed.
The dependent variable c; is computed from Equation (24.10) as

*

— pal? + qa”? + ¢j - pratt? — qv”? (24.12)

where (x{F?, ri) is one of the nodes common to both patches 7 and 7 that is either
in the boundary or has already been updated in the present iteration cycle. If two
of the neighboring patches, say patches j and k, have already been visited, i.e., the
variables p;,qj,c; and pr, dx, cp have been updated, then only one variable, say p;,
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is independent and perturbed. In this case, c; can be found from Equation (24.12),
and gq; can be evaluated as

(ik) (ik) Gk)
_ prety + gjyty + ce — PM

2

where (xi*? ay?) ‘5 one of the nodes commion to both patches i and & that, is either
in the boundary or has already been updated in the present iteration cycle.

The perturbation of the structure parameters p;, qj, and c; for each patch @ re-
sults in a change in the coordinates of the nodes of the updated wireframe. The new

)

coordinates ( xi”), xin x”) of the node n can be computed given the updated
structure parameters of three patches that intersect at node n. Let the patches2,
j, and k intersect at node n. Then the relations

peXi”) + gX2) += py Xi+ iX3” +6;
pix) + qi XS? + c¢ = PEXL? + anX3" + ce (24.14)

specify X(n) and x), Therefore,
n -1

xi | ae Pj — Pk | | Cy — Ci | (24.15)x) Gi-y Gr % —¢j + Ck

The new X{” can be computed from Equation (24.9) given X(n) xf and the
Pi, qi, cz for any patch passing through that node. It is this updating of the
coordinates of the nodes that allows the adaptation of the wireframe model to
lower the misfit error and accommodate the presence of local motion, such as the
motion of the eyes and the mouth.

The proposed algorithm can be summarized as follows:

1. Estimate the illumination direction using Equations (24.4) and (24.5), and
the surface albedo using Equation (24.6).

2. Initialize the coordinates x6,x,x), of all nodes n, using an approx-
imately scaled initial wireframe model. Determine the initial values of pi, qi,
and ¢; for all patches. Set the iteration counter m = 0.

3. Determine the initial motion estimates using Equation (9.10) based on a set
of selected feature correspondences and their depth values obtained from the
wireframe model.

4. Compute the value of the cost function FE given by (24.11).

ad. If BE < e, stop.

Else, set m= m+ 1, and
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Perturb the motion parameters 2 = [Q; Q2 Q3 Vi V2]? as

A™ — AD 4 aA, (24.16)

where the components of A are zero-mean Gaussian with the variance
o™ = FE; and the structure parameters p,;, q;, and cj through the procedure:

Define count_i as the number of neighboring patches to patch i
whose structure parameters have been perturbed. Set count_i=0,
for all patches 1.

Perturb p_1, q_i, c_i as

py) — pin? +a™Ay
af™ — gr) t+a™Ay
of— ofD4 aA, (24.17)

(m), . . . . (m)
where A; = N,(0,07 '), i.e., zero mean Gaussian with variance ao?’ , wheret

(m)

=>(e,y)epatch 567 (2,9).

increment count_j, for all j denoting neighbors of patch 1.
for( i=2 to number of patches)

{

if(count_i==1) {

Perturb p_i and q_i.
Increment count_m, for all m denoting neighbors of patch i.
Compute c_i using Equation 24.12, where x_ij and y_ij are
the coordinates of a fixed or a precomputed node on
the line of intersection between patches i and j. }

if(count_i==2) {

Perturb p_i.
Increment count_m, for all m denoting neighbors of patch i.
Compute c_i using Equation 24.12 and q_i using Equation 24.13,
where (x_ij,y_ij) and (x_ik,y_ik) denote coordinates of
a fixed or a precomputed node on the line of intersection
between patches i,j and i,k respectively. }

If p_i, q_i, and c_i for at least three patches intersecting
at a node are updated, then update the coordinates of the node
by using Equation 24.15.
}

6. Go to (4).
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The synthesis error, which may be due to (i) misfit of the wireframe, (ii) error
in global motion estimation, (iii) error in local motion estimation, and (iv) the
photometric effects of the motion, can also be coded and transmitted to improve
upon imagequality.

24.3. Examples

We have implementedsix algorithms using the first and fourth frames of the Miss
America sequence (at the frame rate 10 frames/s): a scaled-down version of the
H.261 algorithm, the OBASC algorithm (Section 24.1.2), two variations of the
AFMCalgorithm (Section 24.1.3), the global motion compensation part of the
MBASICalgorithm, andthe flexible 3-D wireframe model-basedalgorithm.

Thefirst two algorithms are executed on QCIF frames (176 pixels x 144 lines).
The specific implementation of the H.261 coder that we used is the PVRG-P64
coder with the target bitrate of 16 kbps. The reconstructed fourth frame is shown
in Figure 24.10. In the OBASCalgorithm, the size of the modelfailure region, hence
the amountof color information that needs to be transmitted, is adjusted to meet
the sametarget bitrate. Figure 24.11 (a) and (b) show the modelfailure region and
the reconstructed fourth frame using the OBASC algorithm. Visual comparison of
the images confirm that the PVRG-P64reconstructed image suffers from annoying
blocking artifacts. The PSNR values are shown in Table 24.1.

The latter four algorithms are executed on CIF format images. The recon-
structed images are then converted into QCIF format to compare their PSNR with
those of thefirst two algorithms. Note that Table 24.1 reports the PSNR for these
images in both QCIF and CIF formats. In all cases, model-failure regions are en-
coded using a DCT based approach with a target bitrate of 16 kbps. In the 3-D
model-based algorithms, we have used the extended CANDIDE wireframe, depicted
in Figure 24.5, with 169 nodes. The 2-D triangular mesh model that is used in the
AFMChasbeen generated by computing the orthographic projection of CANDIDE
into the image plane. The wireframe has been fitted to the first frame by a least
squares scaling procedure using 10 preselected control points. Figure 24.12 (a) de-
picts the wireframe modeloverlayed onto the original fourth frame. Two alternative
approaches have been tried with the AFMC method: 1) motion vectors at the nodes
of the 2-D meshare estimated using the Lucas-Kanade (LK) method,which are then
used to computeaffine motion parameters (AFMC-LK method), and ii) a hexagonal
search procedure starting with the LK motion estimatesis employed (AFMC-Hex
method). The PSNR for both are shown in Table 24.1. The reconstructed fourth
frame using the AFMC-Hex methodis depicted in Figure 24.12 (b).

Among the 3-D model-based methods, we have implemented the global-motion
compensation module of the MBASICalgorithm (Global-3D) and the method based
on the 3-D flexible wireframe model (Flexible-3D). The fourth frame after global
motion compensation by the five global motion parameters (3 rotation and 2 transla-
tion) is depicted in Figure 24.13 (a). Finally, the result obtained by the Flexible-3D
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method which provides both global and local motion compensation is shown in Fig-
ure 24.13 (b). We conclude by noting that the 2-D model-based implementations
are more general and robust [Tek 95]. Methods based on the 3-D object models
may provide more compact motion representations, with possibly lower accuracy.
Note however that, the method based on the flexible 3-D wireframe modelfacilitates
incorporation of photometric effects, which may sometimesprove significant.

Table 24.1: Comparison of model-based motion-compensation results.

Method PSNR (dB)
QCIF|CIF

Frame Difference|33.01|31.24

PVRG-64 34.84

OBASC

AFMC-LK

AFMC-Hex

Global-3D

 

 

Flexible-3D

 

 
Figure 24.10: A scaled-down implementation of the H.261 algorithm.
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(b)

Figure 24.11: Flexible 2-D object based method: a) the model-failure region and b)
the decoded the third frame of Miss America. (Courtesy Francoise Aurtenechea)
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-_ i 7 — 
(b)

Figure 24.12: 2-D object-based coding using deformable mesh models: a) an irreg-
ular mesh fitted to the first frame of Miss America and b) the decoded third frame.
(Courtesy Yucel Altunbasak)
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Figure 24.13: Decoded third frame of Miss America using 3-D object-based coding:
a) global motion compensation using the two-step iteration (part of the MBASIC
algorithm) and (b) global and local motion compensation using a flexible wireframe
model. (Courtesy Gozde Bozdagi)
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Chapter 25

DIGITAL VIDEO

SYSTEMS

Developments in broadcasting, computers, communication technologies such as the
emergence of better image compression algorithms, optical-fiber networks, faster
computers, dedicated hardware, and digital recording promise a variety of digital
video and image communication products in the very near future. Driving the re-
search and developmentin thefield of digital video are the consumer and commercial
applications (ordered according to the bitrate requirement), such as

e Digital TV, including HDTV
@ 20 Mbps over 6 Mhz taboo channels

e Multimedia, desktop video
@ 1.5 Mbps CD-ROMor hard disk storage

e Videoconferencing
@ 384 kbps using p x 64 kbps ISDN channels

e Videophone and mobile image communications
@ 10-25 kbps

Other applications include surveillance imaging for military or law enforcement,
intelligent vehicle highway systems, harbor traffic control, cine medical imaging,
aviation and flight control simulation, and motion picture production. In the fol-
lowing, we overview someof these applications in the order in which international
compression standards have become/are becoming available for them. In particular,
we discuss video communication over ISDN (Integrated Services Digital Network)
lines, multimedia in PC and workstation platforms, digital video broadcasting, and
low-bitrate applications, in Sections 25.1 through 25.4, respectively.
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25.1 Videoconferencing

Videoconferencing using digital techniques has been in existence for some time.
Generally speaking, it refers to interactive distance conferencing using ISDN ser-
vices with clear sound and sharp full-motion video. Each videoconferencing site
employs a codec that converts analog video signals to digital and compresses them
for transmission. At the receiver, digital signals are converted back to analog for
display.

Early systems required special videoconference rooms with high-cost equipment
and T1 links that operate at 1.544 Mbps. These systems were quite expensive for
everyday use; for example, a typical Tl system would cost $120,000, and the cost
of a T1 link would be about $750/hour. Advances in video compression and the
adoption of the CCITT H.261 ‘standard helped the emergence of several newer and
better videoconferencing systems which cost about $30,000 to $40,000. The newer
systems operate over ISDNlines at p x 64 kbps, ranging from 64 kbps up to 2 Mbps.
A typical numberfor p is 6, putting the bandwidth at 384 kbps. Lower-bandwidth
systems that operate at 64 kbps (56 kbps for video and 8 kbps for audio), known
as desktop ISDN videophones [Ald 93], are also available. In comparison, the cost
of a 128 kbps line is about $35/hour. Some examples of existing videoconferencing
equipmentare listed in Table 25.1.

Table 25.1: Available videoconferencing products

Vendor Codec Speed Max Frame Comp. Alg.
BT North Videocodec 56 and 30 per sec H.261
America VC2200 112 kbps

GPT Video

Systems

Compres.
Labs.

NEC

America

Videocodec

VC2100

System 261
Twin chan.

System 261
Universal

Rembrandt

IL/VP
VisualLink

5000 M20

VisualLink

5000 Mi5 

PictureTel

Corp.
Video

Telecom

System 4000

56 kbps to
2048 kbps
56 and

112 kbps
56 kbps to
2048 kbps
56 kbps to
2048 kbps
56 kbps to
384 kbps
56 kbps to
2048 kbps
56 kbps to
768 kbps

30 per sec

30 per sec H.261, CTX
CTX Plus 

30 per sec

10 per sec
mono 

56 kbps to
768 kbps

92

15 per sec

H.261, NEC

proprietary

H.261, 5G3

8G2/HVQ
H.261, Blue
Chip
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Besides videoconferencing and desktop videophone, video communication using
an ISDNbasicrate interface (BRI), operating at a total of 128 kbps, may be used
for such applications as distance learning and access to multimedia information
services. In distance learning, an instructor teaches students who are at remote
locations. The students can interact with the instructor, by direct talking or shar-
ing a whiteboard [Ald 93]. Multimedia information services include image-based
electronic library systems and shopping-catalogs that can be browsed from home.

25.2 Interactive Video and Multimedia

Multimedia can meandifferent things to different people. Here it refers to the ability
to provide full-motion interactive digital video in the personal computer (PC) or
desktop workstation environment. Multimedia also involves text, graphics, sound,
and still-images, which have long existed in the PC or workstation environment.
The main components of a multimedia system are:

e data capture tools, such as video recorders and digitizers,

e data editors and authoring tools, for animation, audio and video editing, user-
interface development, etc., and

e database storage and retrieval tools, for searching large databases, archiving,
and backup.

The difficulty with full-motion video has been in the large data rates required.
Multimedia workstations use CD-ROMsand hard disks for video storage at about
1.5 Mbps, which require approximately 30:1 compression of standard TV resolution
images. The latest developments in image compression makethis possible in real
time. Two of the earliest initiatives in this area have been Intel’s digital video
interactive (DVI) technology, and compact disc-interactive (CD-I), jointly funded
by NV Philips and Sony.

DVItechnology is a general-purpose hardware for providing full-motion video
in the PC environment, and uses CD-ROM for the storage medium. The design
goal is to provide multimedia functionality at a cost suitable for desktop comput-
ers. It is based on two custom VLSI chips: the 82750PB pixel processor and the
82750DB display processor. The pixel processor mainly performs compression and
decompression of images along with functions like YUV-RGB conversion,bilinear
interpolation, and so on. It is able to decompress 640 x 480 JPEG encoded im-
ages in less than one second. The display processor retrieves decompressed images
from memory, converts them to the format needed for display, and produces timing
and controlsignals to drive various displays. Popular formats such as NTSC, PAL,
VGA, and SVGAare supported. This chip set is compatible with 16 or 32 bit mi-
croprocessors operating at 6 MHzorhigherclock speed, and utilizes 16 Mbyte video
RAM (VRAM). The chip-set is programmable; that is, the compression algorithms
can be modified according to the application.
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The Compact Disc-Interactive (CD-I) system is a CD-based interactive au-
dio/video special-purpose computer. It is based on Motorola’s 680X0 processor,
and the CD-RTOS, an operating system developed for the CD-I environment. Its
original design was capable of providing full-motion video only on part of the screen.
However, full-screen, full-motion video has become available with an add-in module
[Mee 92]. This module reproduces video from an encoded bitstream with a frame
rate of 24 Hz, 25 Hz, or 30 Hz. The frame rate converter transforms this video
to 50 Hz or 60 Hz. Finally, the YUV representation of the encoded bitstream is
converted into RGB for display. It includes a number of multimedia capabilities,
such as a CD file manager for audio, a user communication manager of the video
system, and a motion picture file manager. CD-I players currently exist that can
be connected to standard TV sets to play back movies that are recorded on CDs.
A full-length feature movie usually requires two CDs.

Recently, almost every computer and workstation manufacturer, including Ap-
ple, IBM, SUN, and Silicon Graphics, have added full-motion video capabilities.
However, no industry-wide standards have been established yet. Recall that the
MPEG-1 video compression standard addresses video compression for multimedia
stations, but not full compatibility between various multimedia products. As com-
puters and communication equipment movecloser towards “grand unification,” the
line between multimedia systems and videoconferencing and videophone products
is getting more and moreblurred; that is, most multimedia systems can now be
interfaced with LAN (Local Area Networks), WAN (Wide Area Networks), ISDN,
or ATM (Asynchronous Transfer Mode) networks for interactive desktop videocon-
ferencing. At present several companies are introducing plug-in cards and software
for videoconferencing over LAN, WAN, and ATM networks. A nice feature of these
products is that they provide multiplatform support, so that people using different
workstations and personal computers maystill share a whiteboard, text tools, and
full-motion video.

With the newer generation of higher-speed CD-ROMsandfaster processors en-
tering the market every day, multimedia remains an active and exciting field. An
emerging technology in interactive multimedia is effective human/machine inter-
action. Stereo vision, talker verification, speech synthesis, tactile interaction, and
integration of multiple sensor modalities are active research areas to expand the
present capabilities for hiaman/machineinteraction.

25.3 Digital Television

TV is arguably the most commonly used image communication system in the world
today. However, present TV transmission standards are based on technology that
is more than 40 years old. As a result, there has been widespread interest in the
consumer electronics industry to develop more advanced TV systems that benefit
from recent technological advances. The major advanced TV research programs in
the world are tabulated in Table 25.2.
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Table 25.2: Major programs for HDTV research.
ooo

Japan NHK
Europe EUREKA 95
U.S.A. Grand Alliance

(AT&T, General Instrument, Mass. Inst. Tech., Philips N. A.
David Sarnoff Res. Cen., Thomson Cons. El., Zenith)

Development efforts pioneered by the Japanese in late the 70s and early 80s
resulted in hybrid advanced TV systems, with digital processing at the transmitter
and receiver but using analog transmission. Later, in the early 90s, studies in the
U.S. proved the feasibility of the all-digital TV approach, which was believed to be
unrealistic not too long ago. All-digital TV will not only offer better image quality,
easy conversion between multiple standards, and more channels within the same
bandwidth (thanks to advances in digital data compression technology), but more
important, it will unite computers with TV sets and telecommunication services
with cable TV services in a revolutionary fashion. In the following, we provide
an overview of the developments around the world that led to the advent of all-
digital T'V.

25.3.1 Digital Studio Standards

Although the present TV transmission standards are analog (see Chapter 1), dig-
ital TV signals find routine use in TV studios for image processing and digital
storage. Digital techniques are commonly used for such tasks as program editing,
generating special effects, and standards conversion. Digital storage is preferred at
the production level, because consumer-quality video storage devices, such as VHS
recorders, introduce degradations that are objectionable in the production studio
environment.

In the following, we first summarize the existing analog TV standards. The
corresponding CCIR, 601 standards for digitization of the respective signals (also
known as digital studio standards) are listed in Table 29.3.

e NTSC (National Television Systems Committee) - Accepted for B&W in
1941, and extended to color in 1954
Used in the USA, Canada, Japan, and Latin America
2:1 interlace, 4:3 aspect ratio
525 lines/frame, 29.97 frames/sec (262.5 lines/field, 59.94 fields/sec)
Perceptually 340 lines/frame, 420 resolvable pels/line (Kell factor)
Analog transmission over 6 MHz channel
There are 68 channels assigned in the US: 54-88 MHz(ch 2 to 6), 174-216 MHz
(ch 7 to 13), 470-806 MHz (ch14 to 69). However, less than 20 channels are
used in a locality to prevent interference.
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Table 25.3: CCIR 601 standards,

 

Format Sampling Field rate  Interlace/ Active Active
Frequency Aspect lines/frame pixels/frame
(¥/U,V)

NTSC 13.5/6.75 60 2:1/4:3 488 720
PAL/ 13.5/6.75 50 2:1/4:3 576 720
SECAM

e PAL (Phase Alternation Line) - Accepted in 1967 for color broadcast
Used in most of Europe, and Australia
625 lines/frame, 2:1 interlace, 50 fields/sec, 4:3 aspect ratio
Analog transmission over 8 MHzchannel.

e SECAM (Systeme Electronique Color Avec Memoire) --Accepted in 1967 for
color broadcast, used in France, Russia, and Eastern Europe
625 lines/frame, 2:1 interlace, 50 fields/sec, 4:3 aspect ratio
Analog transmission over 8 MHz channel.

Note that these standards are incompatible with each other, and conversion from
one to another requires digital techniques.

25.3.2 Hybrid Advanced TV Systems

There were several proposals, before the adventof all-digital TV, that offered various
degrees of improvements on the quality of present TV systems. We refer to them
as “hybrid advanced TV (ATV) systems.” ATV systems generally feature better
spatial and/or temporal resolution, wider screens, improved color rendition, and
CD-quality stereo sound. They fall under two broad categories: compatible ATV
systems and incompatible ATV systems.

1) Compatible system proposals may be summarizedas follows:

e IDTV (improved definition TV) systems which use digital processing at the re-
ceiver for picture quality improvement using existing analog TV transmission
standards. Picture quality may be improved through: i) spatial and temporal
resolution enhancement by nonlinear interpolation to recover super-Nyquist
frequencies, including motion-compensated deinterlacing and frame rate con-
version, ii) luminance-chrominance separation to eliminate cross-luminance
and cross-chrominance artifacts due to imperfect Y/C separation in conven-
tional NTSC demodulators, and iii) ghost elimination to reduce time-delayed,
attenuated, and distorted versions of the TV signal.

e EQTV (extended-quality TV) systems which require transmission of an aug-
mentation signal. They include systems that feature 16:9 aspect ratio by
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means of transmitting an augmentation signal at another frequency band.
Conventional receivers that do not receive this augmentation signal can dis-
play ordinary-quality TV signals.
Barly efforts in Europe have been ‘n the direction of EQTV system devel-
opment. PAL-plus and D2-MAC are two examples of EQTYV systems which
require transmission of augmentation signals. ‘They have 16:9 aspect ratio,
and are compatible with PAL and MAC (Multiplexed Analog Components),
respectively. Note that MAC is a 625/50/2:1 analog satellite transmission
standard developed by the British around 1970.

2) Incompatible systems are generally known as HDTV (high-definition TV).
CCIR. 801, adopted in 1990, defines HDTV as follows: “A high definition TV

system is a system designed to allow viewing at about three times picture height
such that the transmission system is virtually or nearly transparent to the level
of detail that would have been perceived in the origin al scene by a viewer with
average visual acuity.” HDTV systems feature a video signal that has about twice
the current resolution in both the horizontal and vertical directions, a wider aspect
ratio of 16:9, separate luminance and chrominancesignals, and CD-quality sound.
Initial HDTV proposals, developed first in Japan and later in Europe, were hybrid
(mixed analog/digital) systems, which use digital signal/image processing at the
transmitter and receiver, but transmission was by analog means. We elaborate on
these systems below.

ATV in Japan

Studies towards an advanced TV system were started in the 1970s in Japan at the
NHK Laboratories. NHK applied to CCIR,a world standards organization,in 1974
for the standardization of an analog HDTV format, called the MUSE (MUItiple
sub-Nyquist Sampling Encoding). CCIR Study Group 11 worked from 1974 to
1986 to achieve a single world standard for production and international exchange
of HDTVsignals with no apparent success.

The MUSE system is based on a motion adaptive subsampling strategy to reduce
the transmission bandwidth requirement by a factor of 3:1. The HDTV signal is
defined by the following parameters:

1125 lines/frame, 60 fields/sec, 2:1 interlace, 16:9 aspect
8,1 MHz DBStransmission
Sampling rates: Y at 48.6 MHz and C at 16.2 MHz

It is primarily intended for broadcasting over 24 MHz direct broadcast satellite
(DBS) channels, and is not compatible with other transmission standards. The
basic idea of the MUSE system is motion-ad aptive subsampling. Thatis, if motionIs
detected at a certain region, spatial lowpass filtering is applied before subsampling.
On the other hand, in still-image areas, subsampling is applied without any low-
pass filtering. There is no motion estimation or motion compensation involved
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in the MUSE system. Majorelectronic manufacturers in Japan have participated
in the project and builded mixed analog/digital HDTV receivers. First broadcast
using the MUSE system wasrealized on Nov. 25, 1991. At present, there are daily
HDTVbroadcasts via DBS in Japan.

ATV in Europe

European efforts for HDTV research have been organized under the EUREKA-95
project, which resulted in HD-MAC, an analog HDTV standard for DBS trans-
mission developed around 1988. While the Japanese advocated an incompatible
HDTV approach, HD-MAC has emerged as a MAC-compatible standard with 1250
lines/frame, 50 fields/sec, 2:1 interlace, and 16:9 aspect ratio.

HD-MAC achieves reduction of bandwidth from 54 MHz to 10.125 MHz by
advanced motion-compensated subsampling. Motion information is transmitted
digitally to assist the decoding process. The first HD-MAC broadcast was made
from the 1992 Winter Olympics in France to selected test centers in Europe via
DBS. The HD-MAC system has already been abondoned in Europe in favor of
all-digital systems currently under development in the U.S.A.

25.3.3 All-Digital TV

All-digital TV refers to digital representation and processing of the signal as well
as its digital transmission. The nature of the digital broadcast removes the syn-
chronicity and real-time requirements of the analog TV, and offers manydifferent
options. A digital TV standard will unify the computer/workstation and TV indus-
tries in the future; hence, the introduction of the term “telecomputer.” Although a
standard for all-digital HDTV has not yet been formally approved, there is steady
progress toward the adoption of a standard by the FCC before the end of 1995, and
there are already some companies offering digital TV services conforming with the
present standards using DBS broadcasting. Digital TV broadcast media include:

e Terrestial broadcast

e Direct broadcast satellite

@ Cable and broadband ISDN distribution

In the U.S., the Federal Communications Commission (FCC) has ruled that the
existing 6 MHz taboo-channels will be used for terrestrial broadcast. For digital
terrestrial transmission, a 6 MHz channel can support about 20 Mbps data rate
with sophisticated digital vestigial sideband modulation. Considering the param-
eters of a typical HDTV system, we still need about 545:20 = 28:1 compression
to achieve this bitrate. Direct broadcast satellite (DBS) transmission is widely
used in Japan and Europe as an analog transmission medium. In the U.S., some
companies have already started providing digital TV transmission (at the NTSC
resolution) using DBS. Cable distribution systems are heavily employed in the U.S.
at present. Each cable channelis allotted 6 MHz, and typically 30 to 50 channels
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are available. All adjacent channels can be used. Some cable networks offer limited
two-way communication capability where upstream data transmission is allowed.
With digital transmission and effective compression, cable companies may offer
approximately 150 channels using the presently available bandwidth. ‘The broad-
band ISDN (B-ISDN) offers a unified network capable of providing voice, data,
video, LAN, and MANservices [Spe 91]. The H4 access provides approximately
135 Mbps. Asynchronous transfer mode (ATM) is being considered for standard-
ization as the multiplexing and switching vehicle of various services. DBS, cable,
and B-ISDNservices offer the possibility of more advanced video services, such as
video-on-demand [Spe 95]. In the following, we summarize the all-digital HDTV
and TV efforts in the U.S.A.

U.S. Grand Alliance

In the U.S.A. efforts to establish a terrestrial HDTV broadcast standard were ini-

tiated by the FCC in 1987. At the time, it was generally believed that more than
6 MHzwasrequired to broadcast analog HDTV, and nobody thought that a dig-
ital HDTV broadcast would fit within a 6 MHz channel until 1990. In 1998, after

only 6 years, it was decided that the HDTV standard in the U.S. will be an all-
digital simulcast system. Simulcasting requires every existing TV broadcaster to
have a second 6 Mz channel for digital HDTV broadcast. The NTSC source with
4.2 MHz bandwidth will continue to be transmitted through the usual existing 6
MHz channels until the year 2008.

Whenthe tests began at the Advanced TV Test Center (ATTC) in Alexandria,
Virginia in 1991, there were six proposals: one NTSC-compatible system, one analog
simulcast system, and four digital systems. Early in 1993, all but the four digital
system proposals were eliminated. The remaining proposals were:

1) American TV Alliance - General Instruments and MIT

System: DigiCipher
1050 lines/frame, 29.97 frames/sec, 2:1 interlace
Horizontal scan rate: 31.469 kHz

Sampling frequency: 53.65 MHz
Active pixels: 1408 x 960 luma, 352 x 480 chroma
Video Comp.: MC 82 x 16, Field/Frame DCT
RF Modulation: 32/16 QAM

2) Zenith and ATT
System: Digital Spectrum Compatible (DSC-HDTV)
787.5 lines/frame, 59.94 frames/sec, progressive (1:1)
Horizontal scan rate: 47.203 kHz

Sampling frequency: 75.3 MHz
Active pixels: 1280 x 720 luma, 640 x 360 (chroma)
Video Comp.: MC 32 x 16, 8 x 8 leaky pred., DCT, VQ
RF Modulation: 2/4 level VSB
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3) Advanced TV Research Consortium - Thomson ConsumerElectronics, Philips
Consumer Electronics, NBC, David Sarnoff Res. Center, and Compression Labs.

System: AD-HDTV
1050 lines/frame, 29.97 frames/sec, 2:1 interlace
Horizontal scan rate: 31.469 kHz

Sampling frequency: 54 MHz
Active pixels: 1440 x 960 luma, 720 x 480 chroma
Video comp.: MPEG++ (MC-DCT)
RF modulation: 32/16 SS-QAM

4) American TV Alliance - MIT and General Instruments
System: CC-Digicipher
787.5 lines/frame, 59.94 frames/sec, progressive (1:1)
Horizontal scan rate: 47.203 kHz

Sampling frequency: 75.3 MHz
Active pixels: 1280 x 720 luma, 640 x 360 chroma
Video comp.: MC 16 x 16, 8 x 8 DCT
RF modulation: 32/16 QAM

The following excerpt from Newslog, [EEE Spectrum, April 1993, summarizes
the recommendation of the FCC special panel. “On February 11, 1993, a special
FCC panel said there were flaws in all five of the systems. It is recommended that
the FCC’s Advisory Committee on Advanced Television hold a new round of testing
after the four groups with all-digital systems fixed their problems. Officials from
the four groups said they had begun talking about merging their systems into one-
an idea that the FCC has been promoting.” In May 1993, the four groups agreed to
form a “Grand Alliance” to merge their systems into a single system incorporating
the best features of each.

In October 1993, the Grand Alliance announced i) that the video compression
algorithm will be MPEG-2, main profile, high level, ii) that the MPEG-2 trans-
port mechanism will be used, iii) that the Dolby AC-3 audio system will be used,
and iv) that three modulation techniques, 4-level VSB, 6-level VSB, and 32 QAM
(quadrature amplitude modulation), will be tested to complete the specification. In
order to facilitate interoperability of broadcasting, computer multimedia, computer
graphics, industrial imaging, and the National Information Infrastructure multi-
ple scanning formats have been adopted which resembles the open-architecture TV
concept [Bov 91]. In an open-architecture video representation, the numberoflines
in the display depends on the display hardware, and is not coupled to the number
of lines employed by the production equipment. The scanning formats supported
by the Grand Alliance proposal include progressive and interlaced scanning, at two
spatial resolutions 720 lines x 1280 pixels and 1080 lines x 1920 pixels. In ad-
dition to 60 Hz and 30 Hz framerates, a 24 Hz film modeis included with both
progressive and interlaced scanning for motion-picture source material. ‘The Grand
Alliance scanning formats are summarized in Table 25.4. All formats support 16:9
aspect ratio with square pixels.
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Table 25.4: Grand Alliance HDTV formats.

Spatial resolution
720 x 1280 Progressive 60, 30, 24
1080 x 1920 Interlaced 30

1080 x 1920 Progressive 30, 24

  
  

 

Because there exist multiple scanning formats, transconversion may be required
at the transmitter and/or at the receiver. A transconverter at the decoder output
performs the necessary format conversion if the display scanning parameters differ
from those of the received signal. The decoder accepts both 1080-line interlaced
and 720-line progressive formats, and supports bidirectional prediction with motion
estimation parameters up to +127 horizontal and +31 vertical, fully compliant with
MPEG-2 requirements. Field tests of the proposed all-digital HDTV standard is
currently underway.

Digital DBS TV

Digital transmission of TV signals at today’s TV resolution is already becoming
available through DBSservices using 18 in antennas and digital decoders. These
services use MPEG-2 compression starting with RGB source material to provide im-
ages sharper than NTSC pictures. Hughes Communications and the United States
Satellite Broadcasting Company have just announced digital DBS services, called
DIRECTV?™and USSB?™, respectively. At the moment, these services are avail-
able only in selected test markets. However, they are expected to becomeavailable
nationally soon.

Interactive Networks and Video-on-Demand

The available cable TV networks today offer one-way traffic with a fixed set. of
channels. New high-bandwidth network architectures and protocols, such as fiber
optic networks with ATM switching, are needed to provide users with a variety of
interactive services, Video-server computers will be integral components of these
interactive services to offer customized programming and video-on-demand[Lin 95]
[Spe 95]. With the adoption of digital signal formats and transmission standards,
video storage is also expected to be dominated by digital technologies, such as
CD-ROMsand VTRS[Eto 92].
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25.4 Low-Bitrate Video and Videophone

Low-bitrate video (LBV) generally refers to applications that require less than
64 kbps. There are many applications of low-bitrate coding, including:

e Videophone: Videophone service on PSTN (Public Switched Telephone Net-
work), mobile, and LANs. Real-time encoder and decoder with easy imple-
mentation.

e Mobile multimedia communication such as cellular videophones and otherper-
sonal communication systems.

e Remote sensing: One way communication of audio-visual information from a
remote location, for example, surveillance, security, intelligent vehicle highway
systems (IVHS), harbor traffic management.

e Electronic newspaper: Multimedia news service on PSTN, radio channels, and
Smart cards.

e Multimedia videoter: Videotex is currently a multimedia database environ-
ment but lacks capability for full-motion video.

e Multimedia electronic mail

These applications require huge compression factors which generally cannot be met
satisfactorily with the existing compression standards. Typical compression ratios
to reach 10 kbps starting from several video formats are shown in Table 25.5.

Table 25.5: Compression requirements to reach 10 kbps

Frames/s|CCIR 601|CIF QCIF[ane|(720x576)|(352x288)|(176x144)
75 4979:1

10 6637:1

9952:1

19904:1 
 

Videophoneis at the low end of the videoconferencing market, where low cost
and operation over the existing subscriber network become extremely important.
A basic setup requires at least one desktop monitor to view the video signals, a
camera for capturing the video signal, and an audio connection. Due to high cost
and long timeframe associated with wide range deploymentof a fiber/coaxial-based
local subscriber network, the target bitrate for videophone products has been set
below 28.8 kbps (using the V.34 modemsoverthe existing PSTN). Although, there
are no established video compression standards at such low bitrates, a few represen-
tative products have already appeared in the market [Ear 93]. These systems use
variations of the MC-DCT coding scheme, which are similar to the H.261 standard;
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Table 25.6: Available videophone products

Product Data Rate Compression Algorithm
AT&T Videophone 2500 16.8/ MC DCT

19.2kbps 10 frames/s (max)
British Telecom/Marconi 9.6/ H.261 like
Relate 2000 Videophone 14.4kbps _7.5 (3.75) frames/s
COMTECH Labs. 9.6 kbps MC DCT

 

  STU-3 Secure Videophone QCIF resolution
Sharevision 14.4 kbps MC DCT

 

that is, using the macroblock concept, DCT, motion estimation/compensation, and
run-length and VLC coding. Some examples of early videophones are listed in
Table 25.6.

Recognizing the increasing demandfor low bitrate applications, especially mo-
bile video communications, efforts for standardization in low bitrate coding have
been initiated in 1993 by the ISO/MPEG-4 Ad-Hoc Group and ITU-T/LBC (Ex-
pert Group on Low Bitrate Coding). Because of the urgent need to provide a
commonplatform of communication between various products by different vendors
(using the available technology) and the need for fundamentally different technolo-
gies to provide improved performance and embeddedfunctionality, the work has
been divided into two phases: a near-term solution and a far-term solution. The
near-term solution has very recently resulted in the ITU Draft Recommendation
H.263. The far-term solution refers to a fundamentally new standard expected to
be completed by November 1988. This task will be handled by ISO/MPEG-4,with
liaison to the ITU.

25.4.1 The ITU Recommendation H.263

The ITU/LBC group has drafted the near-term H.324 specifications, that include
audio/video coding, multiplexing, error control, and overall system integration tar-
geted at videophone applications on PSTN and mobile channels. The ITU Draft
Recommendation H.263 (frozen in March 1995) specifies the video coding algorithm,
which is an “H.261” like (MC-DCT) algorithm, at about 22 kbps (out of 28.8 kbps
overall).

The major differences between the H.263 and H.261 standards are:

e Motion estimation with one-half-pixel accuracy, which eliminates the need for
loop filtering.

e Overlapped motion compensation to obtain a denser motion field at the ex-
pense of more computation.
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e Adaptive switching between motion estimation at macroblock (16 x 16) and
block (8 x 8) levels.

e Support for sub-QCIF bitstreams.

It has been claimed that the Test Model 5 (TMN5) provides 3-4 dB higher PSNR
than the H.261 algorithm at below 64 kbps. It can be used as a milestone to assess
the performanceof future low-bitrate coding algorithms and standards.

25.4.2 The ISO MPEG-4 Requirements

The MPEG-4 Ad-hoc group was organized in September 1993 with the mission of
developing a fundamentally new generic video coding standard at rates below 64
kbps. In November 1994, this mission has been modified as “to provide an audio-
visual coding standard allowingfor interactivity, high compression, and/or universal
accessibility, with high degree of flexibility and extensibility” [Zha 95].

The new MPEG4vision includes eight functionalities that are not supported by
the existing standards. They are:

e Content-based manipulation and bitstream editing

e Content-based multimedia data access tools

Content-based scalability

® Coding of multiple concurrent data streams

Hybrid natural and synthetic data coding

e Improved codingefficiency

e Improved temporal access at very low bitrates

e Robustness in error-prone environments

MPEG-4 intends to cover a wide range of applications, including “virtual” con-
ference and classroom; interactive mobile videophone; content-based multimedia
database query, searching, indexing, and retrieval; interactive home shopping; wire-
less monitoring; and so on. At present MPEG-4 structure consists of four elements:
syntax, tools, algorithms, and profiles. The syntax is an extensible language that
allows selection, description, and downloading of tools, algorithms, and profiles.
A tool is a specific method. An algorithm is a collection of tools that implement
one or more functionalities. A profile is one or more algorithms to cover a specific
class of applications. Interested parties can submit proposals for potential tools,
algorithms, and profiles. Deadline for submissions of proposals is October 1995.
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The rapid developmentof products and services offering full-motion digital
video suggeststhat, in the coming decade, digital video will greatly impact
the computer, telecommunications, and imaging industries. To help readers

, ride the waveof the future, this timely volume provides, forthe first time, /
' comprehensive coverage of the principles of digital video processing,

including leading algorithmsfor various applications, in a highly accessible
tutorial style.

is organized into six comprehensive sections covering:

Representation of digital video including modeling of video image
formation and spatio-temporal sampling.
Two-dimensional motion estimation.

Three-dimensional motion estimation and segmentation.
- Videofiltering.
: Still-image compression.

Video compression.

The author carefully develops detailed treatment of the mathematical prin-
ciples behind representation of digital video as a form of computer data
and processing of this data for 2-D and 3-D motion estimation, digital video
standards conversion, frame-rate conversion, de-interlacing, noisefiltering,
resolution enhancement, and motion-based segmentation. In addition,
Tekalp covers the fundamentals of image and video compression, and the
emerging world standardsfor various image and video communication
applications, including high-definition TV, multimedia, video-conferencing,
videophone, and mobile image communications.
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