
1 DISH 1015

SECOND EDITION

2

DATA COMPRESSION

Techniques and Applications
Hardware and Software Considerations

Second Edition

GILBERT HELD
4-Degree Consultthe,
Macon, Georgia, USA

and

THOMAS R. MARSHALL
(software author)

FENWIex LIBRARY
GEORGE MAFAIRE MASON UNIVERSITY

John Wiley & Sons
Chichester - New York - Brisbane - Toronto - Singapore

3

————
Copyright © 1983, 1987 by John Wiley & Sons Ltd.

All rights reserved.

No part of this book may be reproduced by any means,or
transmitted, or translated into a machine language without the
written permission of the publisher.

Library of Congress Cataloging-in-Publication Data:
Held, Gilbert, 1943-

Data compression.
Bibliography: p.
Includes index.

1. Data compression (Computer science) I. Marshall,
Thomas (Thomas R.) II. Title.
QA76.9.D33H44 1987 005.74'6 86-18942
ISBN 0 471 91280 8

British Library Cataloguing in Publication Data:
Held, Gilbert

Data compression: techniques and applications hardware
and software considerations. —

2nd ed.

1. Data compression (Computerscience)
I. Title IJ. Marshall, Thomas
005.74'6 QA76.9.D33

ISBN 0 471 91280 8

Typeset by Photo-Graphics, Honiton, Devon
Printed in Great Britain

4

CHAPTER ONE

Rationale and Utilization

In the chronology of computer development, large-scale information transfer
by remote computing and the development of massive information storage
and retrieval systems have witnessed a tremendous growth. Concurrent with
this growth, several problem areas have developed which can result in major,
but unnecessary, economic expenditures.

One problem is the so-called ‘run-away database’. Here the size of the
database used by an organization for its information storage and retrieval
programs becomes larger and larger, requiring additional disc drives for
online systems and reels of magnetic tapes for those systems that can be
processed in a batch environment.

Accompanying the growthin the size of databases has been a large increase
in the number of users and duration of usage by personnel at remote
locations. These factors result in tremendous amounts of data being trans-
ferred between computers and remote terminals. To provide transmission
facilities for the required data transfers, communications lines and auxiliary
devices, such as modemsand multiplexers, have been continuously upgraded
by many organizations to permit higher data-transfer capability.

Although the obvious solutions to these problems of data storage and
information transfer are to install additional storage devices and expand
existing communications facilities, to do so requires an additional increase
in an organization’s equipment and operating costs. One method that can
be employedto alleviate a portion of data, storage and information transfer
problems is through the representation of data by moreefficient codes. If
one examines an organization’s database or monitors a transmission line,
there is an excellent chance that the individual characters that both make

up the database and the transmission sequence could be encoded more
effectively. Two techniques that can result in a more effective encoded data
representation are logical and physical data compression.

1.1 LOGICAL COMPRESSION

Whena databaseis designed, one of the first steps of the analyst is to obtain
as much data reduction as possible. This data reduction results from the

1

5

2

elimination of redundant fields of information while representing the data
elements in the remaining fields with as few logical indicators as is feasible.

Although logical compression is data dependent and the method employed
can vary based upon the analyst’s foresight, the following two examples
will illustrate the ease of implementation and benefits of this compression
technique.

One simple example of logical data compression is the occupationalfield
on a personnel database. Suppose 30 alphanumeric positions are allocated
to this field. If the field is fixed, occupations such as the 10-character
occupational description ‘DISHWASHER’have20 blanks inserted into the
remainder of the field. Then, 30 million characters of storage would be
required for the occupational field of 1 million workers. Suppose at most
there were 32 768 distinct occupations. Instead of indicating the occupational
title, one could encode the equivalent 5-digit data code, eliminating 25
character positions per field. The size of the field could be reduced further
by allocating the binary value of 1 or more characters to the occupational
code. As an example, an 8-bit character could represent 28 — 1 or 255
distinct values or occupational codes. Linking two 8-bit characters through
appropriate software would provide 2'°—1 or 65 535 distinct codes. This
would reduce the field size from 30 to 2 characters, saving 28 million
characters of storage. If our counting begins at zero instead of a conventional
starting place of 1, an 8-bit character could represent 256 codes while a 16-
bit character could be employed to represent 65 536 distinct values.

A second example of logical compression is a date field. This type of
field frequently occurs in databases. Normally, the numeric equivalents
of the subfields representing day, month and year are used in place of
longhand notation. Thus, 01 04 81 would represent 1 April 1981. While
this logical compression results in 6 numeric characters of storage,
additional data reduction can result from storing the date as a binary value.
Since the day will never exceed 31, 5 bits would suffice to represent the date
field. Similarly, 4 bits could be used to represent the month value while 7
bits could represent 127 years, permitting a relative year ranging from 1900
to 2027.

Logical compression using numerical and binary representation is illus-
trated in Figure 1.1 for the preceding date field example. It is interesting to
note that employing binary representation reduces the date field to 16 binary
digits or two 8-bit concatenated characters of storage. As discussed, many
logical compression methods can be considered by an analyst during the
database design process. Each method mayresult in a distinct degree of data
storage reduction. Correspondingly, when logically compressed databases or
portions of such databases are transmitted between locations, transmission
time is reduced since fewer data characters are transmitted.

While logical compression can be an effective tool in minimizing the size
of a database, it only reduces transmission time when logically compressed
data is transmitted. Thus, the transmission of inquiry and response data

6

Longhand DAY MONTH YEAR

Example 1 APRIL 1981

Logical compression using numerical representation

Example 01 04 81

Logical compression using binary representation

Example 00001 0100 1010001

Figure 1.1 Logical compression methods. Logical com-
pression can result from alphanumeric, numeric or
binary representation of data in a shorthand notation

whichare typically encoded as separate anddistinct entities in the appropriate
bit representation of the code for each character is not normally affected.
Similarly, the occurrence of repeating patterns and groups of characters
which are normally contained in reports transmitted from computer systems
to terminal devices would not be affected. For such situations, a reduction

in data transmission time depends upon the physical compression of the data
as it is encountered.

1.2 PHYSICAL COMPRESSION

Physical compression can be viewed as the process of reducing the quantity
of data prior to it entering a transmission medium and the expansion of such
data into its original format upon receipt at a distant location. Although
both physical and logical compression can result in reduced transmission time,
distinct application differences exist between the two techniques. Logical
compression is normally used to represent databases moreefficiently and
does not consider the frequency of occurrence of characters or groups of
characters. Physical compression takes advantage of the fact that when data
is encoded as separate and distinct entities, the probabilities of occurrence
of characters and groups of characters differ. Since frequently occurring
characters are encoded into as many bits as those characters that only rarely
occur, data reduction becomes possible by encoding frequently occurring
characters into short bit codes while representing infrequently occurring
characters by longer bit codes. Like logical compression, many physical
compression techniques exist. Some techniques replace repeating strings of
characters by a special compression indicator character and a quantity count
character. Other techniques replace frequently occurring characters with a
short binary code while infrequently encountered characters are replaced by
longer binary codes. In Chapter 2, 10 distinct physical compression methods
are covered in detail. For the remainder of this book we will focus our

attention upon physical data compression.

7

1.3 COMPRESSION BENEFITS
’

When data compression is used to reduce storage requirements, overall
program execution time may be reduced. This is because the reduction in
storage will result in a reduction of disc-access attempts, while the encoding
and decoding required by the compression technique employed will result
in additional program instructions being executed. Since the execution time
of a group of program instructions is normally significantly less than the time
required to access and transfer data to a peripheral device, overall program
execution time may be reduced.

With respect to the transmission of data, compression provides the network
plannerwith several benefits in addition to the potential cost savings associ-
ated with sending less data over the switched telephone network where the
cost of the call is usually based upon its duration. First, compression can
reduce the probability of transmission errors occurring since fewer characters
are transmitted when data is compressed while the probability of an error
occurring remains constant. Second, since compression increases efficiency,
it may reduce or even eliminate extra workshifts. Finally, by converting text
that is represented by a conventional code such as standard ASCII into a
different code, compression algorithms may provide a level of security against
illicit monitoring.

For data communications, the transfer of compressed data over a medium
results in an increase in the effective rate of information transfer, even

though the actual data transfer rate expressedin bits per second remains the
same. Data compression can be implemented on most existing hardware by
software or through the use of a special hardware device that incorporates
one or more compression techniques.

In Figure 1.2, a basic data-compression block diagram is illustrated. Shown
as a black box, compression and decompression may occur within the user’s
processor to include personal computers, intelligent terminals or in a device
foreign to the processor, such as a specialized communications component.
Foremost among these components are data concentrators and statistical
multiplexers.

To examine in some detail a portion of the benefits that may result from
the employment of one or more compression techniques requires a review
of some fundamental compression terminology.

1.4 TERMINOLOGY

Asillustrated in Figure 1.2, an original data stream is operated upon accord-
ing to a particular algorithm to produce a compressed data stream. This
compression of the original data stream is sometimes referred to as an
encoding process with the result that the compressed data stream is also
called an encoded data stream. Reversing the process, the compressed data
stream is decompressed to reproduce the original data stream. Since this

8

Data

Original compression Compressed

data Data data
decompression

Figure 1.2 Basic data-compression block
diagram. An original data stream operated upon
according to one or more compression algorithms
results in the generation of a compressed data

stream

decompression processresults in the decoding of the compressed data stream,
the result is sometimes referred to as the decoded data stream. We will use

the term original data stream and decoded data stream synonymously, as
well as the terms compressed data stream and encoded data stream.

The degree of data reduction obtained as a result of the compression
process is known as the compression ratio. This ratio measures the quantity
of compressed data in comparison to the quantity of original data, such that
(Ruth and Krentzler, 1972):

. ; Length oforiginal data string
Compression ratio = ————_____—-—_____

Length of compressed data string

From the above equation, it is obvious that the higher the compression
ratio the more effective the compression technique employed. Another term
used when talking about compression is the figure of merit, where:

; .._Length of compressed datastring
Figure of ment===

Length oforiginal data string

The figure of merit is the reciprocal of the compression ratio and must
always be less than unity for the compression process to be effective. The
fraction of data reduction is one minus the figure of merit. Thus, a com-
pression technique that results in one character of compressed data for every
three characters in the original data stream would have a compression ratio
of 3, a figure of merit of 0.33 and the fraction of data reduction would be
0.66.

1.5 COMMUNICATIONS APPLICATIONS

To obtain an overview of some of the communications benefits available

through the incorporation of data compression, we can consider a typical
data communications application. As illustrated in the top portion of Figure
1.3, a remote batch terminal is connected to a central computer with trans-

9

No compression

 96 kbps transmission
rate

Remote batch
terminal

9.6 kbps information

transfer rate

Compression ratio 2

96 kbps transmission
rate

Computer
Modem

Remote batch
19.2 kbps information

transfer rate

Compression ratio 2

4.8 kbps transmission
rate

Computer Remote batch
terminal

 9.6 kbps information

transfer rate

Figure 1.3 Data compression affects the information transfer ratio (ITR), through the
use of data compression, the methodologyandstructure of one’s data communications

facility may be changed

mission occurring at a 9.6 kbps data rate. Let us assume that the data to be
transmitted has not been compressed. If through the programming of one
or more compressionalgorithmsortheinstallation of a hardware compression
device a compression ratio of 2 is obtained, several alternatives may be
available with respect to one’s data communications methodology. First, our
data transmission time is reduced since the effective information transfer
rate has increased to approximately 19.2 kbps as shownin the middle portion
of Figure 1.3. Ignoring communications software overhead, the data trans-
mission time is halved. Thus, one may now consider using the remote batch
terminal for other remote processing applications or perhaps an expensive
after-hours shift or portion of such a shift can be alleviated. In the lower
portion of Figure 1.3 anotheruser optionisillustrated. Here the transmission
rate may be reduced to 4800 bps. With a compression ratio of 2, this is
equivalent to an informationtransfer rate of 9600 bps. By lowering the data
transmission rate, more expensive 9600 bps modems may be replaced by
4800 bps modems and line conditioning which is normally required when
transmitting data at 9600 bps may be removed, resulting in an additional
cost reduction.

10

No compression

Compression

Legend:

[wm] Modem

Compression performing modem

Figure 1.4 Data compression on a multidrop line reduces the flow of data on the
line, permitting additional terminals to be serviced

A second type of communications application that can benefit from the
utilization of data compressionisillustrated in Figure 1.4. A typical multidrop
network is illustrated in the top portion of Figure 1.4, connecting terminals
at diverse geographical locations via a common leased line to a computer
site. Typically, the transmission activity of the terminals is the governing
factor that limits the multidrop line to a maximum numberof drops. In the
bottom portion of Figure 1.4, it 1s assumed that compression performing
modems were substituted for the conventional modemsused in the original
multidrop configuration. Since data compression on a multidrop line reduces
the flow of data on the line, its utilization will normally enable additional
drops to be added to the line prior to the occurrence of throughput delays
that affect the response time of the terminals attached to each drop. In this
particular example, it is assumed that the use of compression performing
modems permitted an increase in the numberof line drops from 4 to 6.

1.6 DATA COMPRESSION AND INFORMATION TRANSFER

Whendata is transmitted between terminals, a terminal and a computer or
two computers, several delay factors may be encountered which cumulatively
affect the information transfer rate. Data transmitted over a transmission

medium must be convertedinto an acceptable format for that medium. When
digital data is transmitted over analogue telephone lines, modems must be

10

11

8

employed to convert the digital pulses of the business machine into a modu-
lated signal acceptable for transmission on the analogue telephonecircuit.
The time between thefirst bit entering the modem andthefirst modulated
signal produced by the device is known as the modem’s internal delay time.
Since two such devices are required for a point-to-point circuit, the total
internal.delay timeencountered during a transmission sequence equals-twice
the modem’s internal delay time. Such times can range from a few to 10 or
more milliseconds (ms). The second delay encountered onacircuit is a
function of the distance between points and is known as the circuit or
propagation delay time. This is the time required for the signal to be
propagated or transferred down the line to the distant end. Propagation
delay time can be approximated by equating 1 millisecond for every 150
circuit miles and adding 12 milliseconds to the total.

Once data is received at the distant end it must be acted upon, resulting
in a processing delay which is a function of the computer or terminal
employed as well as the quantity of transmitted data which must be acted
upon. Processing delay time can range from a few milliseconds where a
simple error check is performed to determine if the transmitted data was
received correctly to many seconds where a search of a database must occur
in response to a transmitted query. Each time the direction of transmission
changes in a typical half duplex protocol, control signals at the associated
modem to computer and modem to terminal interface change. The time
required to switch control signals to change the direction of transmission is
known as line turnaround time and canresult in delays up to 250 or more
milliseconds, depending upon the transmission protocol employed. We can
denote the effect of data compression by examining the transmission protocol
commonly known as BISYNC communications and a few ofits derivations.

BISNYC communications

One of the most commonly employed transmission protocols is the Binary
Synchronous Communications (BISNYC) communications control structure.
This line control structure was introduced in 1966 by International Business
Machine Corporation andis used for transmission by many medium-speed
and high-speed devices to include terminal and computer systems. BISNYC
provides a set of rules which govern the synchronous transmission of binary-
coded data. While this protocol can be used with a variety of transmission
codes, it is limited to the half duplex transmission mode and requires the
acknowledgementof the receipt of every block of transmitted data. In an
evolutionary process, a number of synchronous protocols have been
developed to supplement orserve as a replacement to BISNYC, the most
prominent being the high level data link control (HDLC) protocol defined
by the International Standard Organization (ISO).

The key difference between BISYNC and HDLC protocols is that BISYNC
is a half duplex, character-oriented transmission control structure while

11

———

12

9

HDLCis a bit-oriented, full duplex transmission control structure. We can
investigate the efficiency of these basic transmission control structures and
the effect of data compression upon their information transfer efficiency. To
do so, an examination of some typical error control procedures is first
required.

Error control

The most commonly employed error-control procedure 1s known as auto-
matic request for repeat (ARQ). In this type of control procedure, upon
detection of an error a request is made by the receiving station to the sending
station to retransmit the message. Two types of ARQ procedures have been
developed: ‘stop and wait ARQ’ and ‘go back n ARQ’, which is sometimes
called continuous ARQ.

‘Stop and wait ARQ’is a simple type of error-control procedure. Here
the transmitting station stops at the end of each block and waits for a reply
from the receiving terminal pertaining to the block’s accuracy (ACK) or
error (NAK) prior to transmitting the next block. This type of error-control
procedureis illustrated in Figure 1.5. Here the time between transmitted
blocks is referred to as dead time which acts to reduce the effective data

rate on the circuit. When the transmission mode is half duplex, the circuit
must be turned around twice for each block transmitted, once to receive the

reply (ACK or NAK) and once again to resume transmitting. These line
turnarounds, as well as such factors as the propagation delay time, station
message processing time and the modem internal delay time, all contribute
to what is shown as the cumulative delay factors.

Whenthe ‘go back n ARO’ type of error control procedure is employed,
the dead time can be substantially reduced to the point where it may be

i

Dead timea

Transmit Block /+2 Block +1

—<—<—$—$<

ACK
i+

i |
+

ACK
}

Lo.
delay factors

Receive

Figure 1.5 Stop and wait ARQ.In this type of error control procedure, the receiver
transmits an acknowledgement after each block. This can result in a significant

amount of cumulative delay time between data blocks

12

13

10

Block Block Btock Block Biock
i+3 +1 it2 it é

Primary channel ——~-

ACK NAK ACK ACK ACK
£ i+ it2 é+1 é+3

~— Reverse channel

Figure 1.6 Go back N ARQ.Ina ‘go back n ARQ’ error-
control procedure, the transmitter continuously sends
messages until the receiver detects an error. The receiver
then transmits a negative acknowledgementon the reverse
channel and the transmitter retransmits the block received
in error. Some versions of this technique require blocks
sent before the error indication was encountered to be
retransmitted in addition to the block received in error

insignificant. One way to implementthis type of error control procedureis
by the utilization of a simultaneous reverse channel for acknowledgement
signalling as illustrated in Figure 1.6. In this type of operating mode, the
receiving station sends back the ACK or NAKresponse on the reverse
channel for each transmitted block. If the primary channel operates at a
muchhigher data rate than the reverse channel, many blocks may have been
received prior to the transmitting station receiving the NAK in response to
a block at the receiving station being found in error. The number of blocks
one may go back to request a transmission, v, is a function of the block size
and buffer area available in the business machines and terminals at the
transmitting and receiving stations, the ratio of the data transfer rates of the
primary and reverse channels and the processing time required to compute
the block check character and transmit an acknowledgement. Forthelatter,
this time is shown as small gaps between the ACK and NAKblocksin Figure
1.6.

Half duplex throughout model

When a message block is transmitted in the BISYNC control structure, a
number of control characters are contained in that block in addition to the
messagetext. If the variable C is assigned to represent the numberof control
characters per block and the variable D is used to represent the numberof
data characters, then the total block length is C + D. If the data transfer
rate expressed in bps is denoted as Tg and the numberof bits per character
is denoted as B., then the transmission time for one characteris equal to
B-/Tp which can be denoted as Tc. Since D + C characters are contained
in a message block, the time required to transmit the block will become
T-*(D + C). Once the block is received’, it must be acknowledged. To do

13

14

11

so, the receiving station is required to first compute a block check character
(BCC) and compareit with the transmitted BCC character appended to the
end of the transmitted block. Although the BCC character is computed as
the data is received, a comparison is performed after the entire block is
received and only then can an acknowledgement be transmitted. The time
to check the transmitted and computed BCC characters and form andtrans-
mit the acknowledgement is known asthe processing and acknowledgement
time (Tpa).

Whentransmission is half duplex, the line turnaround time (7) required
to reverse the transmission direction of the line must be added. Normally,
this time includes the request-to-send/clear-to-send (RTS/CTS) modem delay
time as well as each of the modems’ internal delay time. For the acknowl-
edgement to reach its destination, it must propagate downthe circuit and
this propagation delay time, denoted as T,,.must also be considered. If the
acknowledgement message contains A characters then, when transmitted on
the primary channel, A*B,/Tp seconds are required to send the acknowl-
edgement.

Once the original transmitting station receives the acknowledgementit
must determine if it is required to retransmit the previously sent message
block. This time is similar to the processing and acknowledgement time
previously discussed. To transmit either a new message block or repeat the
previously sent mesasge block, the line must be turned around again and
the message block will require time to propagate down the line to the
receiving station. Thus, the total time to transmit a message block and
receive an acknowledgement, denoted as 7, becomes:

Since efficiency is the data-transfer rate divided by the theoretical data-
transfer rate, the transmission control structure efficiency (E;cs) becomes:

Be" D*(1—PEvcs =es (1.2)
Here P is the probability that one or more bits in the block are in error,
causing a retransmission to occur.

Although the preceding is a measurement of the transmission control
structure efficiency, it does not consider the data code efficiency which is
the ratio of information bits to total bits per character. When the data code
efficiency is included, we obtain a measurement of the information transfer
efficiency. We can call this ratio the information transfer ratio (ITR) which
will provide us with a measurement of the protocol’s information transfer
efficiency. This results in:

eG

ITR =BicEves (1.3)
Be

14

15

ITR = Information transfer ratio

Bic = Information bits per character
Be = Total bits per character
D- = Data characters per message block
A = Characters in the acknowledgement message
C = Control characters per message block
Tp = Data transfer rate (bps)
Tc = Transmission time per character (B:/TR)
Tp, = Processing and acknowledgment time
T, = Line turnaround time

T, = Propagation delay time
Probability of one or more errors in block.ws

Il

From the preceding, the information transfer ratio provides us with a
measurement ofthe efficiency of the transmission control structure without
considering the effect of compression. When compression is considered we
obtain a new term which wewill denote as the effective information transfer

ratio (EITR).
When data is compressed, the original data stream will be reduced in

size prior to transmission, the actual reduction being dependent upon the
compression algorithms employed as well as the composition of the data
acted upon. In general, we can assume that the compression ratio considers
the numberof characters in the compressed data stream to include special
control characters required to indicate one or more compression algorithms.
This reasonable assumption simplifies the effect of considering data com-
pression when examining a particular protocol. As an example, consider a
160-character data block compressed into 78 data characters plus 2 com-
pression indicator characters. Here the compression ratio would be 160/
(78 + 2) or 2. The effect upon the previously developed equation to compute
the information transfer ratio would be to change D in the numeratorto the
non-compressed string length of 160 characters while D in the denominator
would be the actual 78 compressed data characters plus the two additional
special characters required to indicate data compression, resulting in a total
of 80 characters. If the total number of control characters framing the data
block is relatively small, the effective information transfer ratio can be
approximated by multiplying the information transfer ratio by the com-
pression ratio.

Computation examples

We will assume that our data transmission rate is 4800 bps and wewill
transmit information using a BISYNCtransmission controlstructure employ-
ing a ‘stop and wait ARQ’ error control procedure. Furthermore, let us
assume the following parameters:

15

16
en

13

A =A4characters per acknowledgement
Bic = 8 bits per character
Bo = 8 bits per character
D~~= 80 data characters per block
C = 10 control characters per block
Tgp = 4800 bps
Tc = 8/4800 = 0.00166 seconds (s) per character
Tea = 20 milliseconds = 0.02 s
T;, = 100 milliseconds = 0.10 s
i = 30 milliseconds = 0.03 s
P = 0.01

Then:

ITR = o80: -B.02) = 0.2861.
4800*[0.00166(80+ 10) +2*(0.02+0.03+0.1)+4*8/4800)]

Since the transfer rate of information in bits (TRIB) is equal to the product
of the data transfer rate and the information transfer ratio, we obtain:

TRIB = ITR*7T, = 0.2861*4800 = 1373 bps.

For the preceding example, approximately 28 per centof the data transfer
rate is effectively used.

Let us now examine the effect of doubling the text size to 160 characters
while the remaining parameters except P continue as before. Since the block
size has doubled, P approximately doubles, resulting in the ITR becoming:

TR = 8*160*(1—0.02)
~ 4800*[0.00166(160+ 10)+2*(0.02+0.03+0.1)+(4*8/4800)]
= 0.4339.

With an ITR of 0.4339 the TRIB now becomes:

TRIB = ITR*TR = 0.4339*4800 = 2083 bps.

Here, doubling the block size raises the percentage of the data transfer
rate effectively used to 43.39 per cent.

Compression effect

Suppose one or more data-compression algorithms are employed which result
in a compression ratio of 2. What effect would this have upon the effective
information transfer ratio?

The effective information transfer ratio (EITR) can be obtained by mod-
ifying equation (1.1) as follows:

16

17

Bic*D,*(1—-P)

Tr*[Tc*(D2+ C)+2*(Tpat+T+T,)+(A*BoSTp)I
EITR = (1.4)

D, = original data block size in characters prior to compression
= compressed data block size in characters to include special com-

pression indication characters.
>

|

If on the average 160 data characters are transmitted in a compressed
format of 80 characters we obtain:

EITR = 8*160*(1—0.01)
~ 4800*[0.00166(80+ 10) +2*(0.02+0.03+0.1)+(4*8/4800)]
= 0.5788.

As previously discussed, the effective information transfer ratio can be
approximated as follows:

EITR = ITR*CR. (1.5)

Substituting, we obtain:

EITR = 0.2861*2 = 0.5722.

Since the transfer rate of information in bits (TRIB) is the product of the
effective information transfer ratio and the operating data rate, we obtain:

TRIB = 0.5788*4800 = 2778 bps.

In Table 1.1, the reader will find a comparison of the variations in the
ITR, EITR and TRIB when non-compressed and compressed data are
transmitted for two different block sizes.

From Table 1.1, it is apparent that two methods can be employed to
increase one’s transmission efficiency. First, one may alter the protocol or
transmission control sequence by varying the size of the data blocks trans-
mitted. Alternatively, one can compress data prior to transmitting a block
of information. Both methods can result in more information passing over
a transmission line per unit time.

In Table 1.2, the reader will find a tabulation of the execution of a

computer program which calculated the ITR as the block size varied from
40 to 2480 characters in increments of 40. In examining this table one should
note that the maximum ITR of 0.6459 is obtained whenthe blocksize is 720

characters. This indicates that as the block size increases with a constant

error rate, a certain point is reached where the time to retransmit a long
block every so often negates the enlargement of the block size. For the

17

18

15

Table 1.1 Compression effect comparison
i

j Non-compressed data Compressed data
| Block size (characters) 80 160 80 160
| ITR (dimensionless) 0.2861 0.4339 N/A N/A
| EITR (dimensionless) N/A N/A 0.5788 0.8678

TRIB (bps) 1373 2083 2778 4165

Table 1.2 Information transfer ratio and block size.

Probability of block error = 0.01
|

ITR Block size ITR Block size

0.169 40 0.590 1280
0.286 80 0.534 1320
0.370 120 0.577 1360
0.433 160 0.570 1400
0.482 200 0.564 1440
0.519 240 0.556 1480
0.549 280 0.549 1520
0.572 320 0.542 1560
0.591 360 0.535 1600
0.606 400
0.617 440 0.527 1640
0.626 480 0.519 1680 |

0.633 520 0.512 1720
0.638 560 0.504 1760
0.642 600 0.495 1800
0.644 640 0.488 1840
0.645 680 0.480 1880
0.645 720 0.472 1920

0.464 1960
0.645 760 0.455 2000
0.643 800 0.447 2040
0.641 840 0.439 2080
0.639 880 0.430 2120
0.635 920 0.422 2160
0.632 960 0.413 2200
0.628 1060 0.404 2240
0.623 1040 0.396 2280
0.618 1080 0.337 2320
0.613 1120 0.378 2360
0.608 1160 0.370 2400
0.602 1200 0.361 2440
0.596 1240 0.352 2480i

19

16

parameters considered, the optimum block size is 720 characters. Only for
the ideal situation, where P = 0 would a continuous increase in block size
produce additional efficiencies.

In Figure 1.7 the ITR is plotted as a function of block size for the error-
free condition and 0.01 probability of error conditions. The 0.01 probability
of error condition per 40 character block was held constant by incrementing
the error rate in proportion to the increase in the block size. Since an error-
free line is not something a transmission engineer can reasonably expect, a
maximum block size will exist beyond which ourline efficiency will decrease.
At this point, only data compression will result in additional transmission
efficiencies. In addition, from a physical standpoint, the buffer area of some
devices may prohibit block sizes exceeding a certain number of characters.
Once again, data compression can become an effective mechanism for
increasing transmission efficiency while keeping data buffer requirements
within an acceptable level.

o9

08

O7

on

Informationtransferratio oO on

02

Ol

0 400 800 1200 1600 2000) 2400

Blocksize

Figure 1.7 ITR anderror rate

19

20

17

Return channel model

Consider a ‘stop and wait ARQ’ error control procedure where a return
channel is available for the transmission of acknowledgements. The use of
this return channel eliminates the necessity of line turnarounds; however,
transmission is still half duplex since an acknowledgementis only transmitted
after each received message block is processed.

When the message blockis sent to the receiving station, both propagation
delay and processing delay are encountered. When the acknowledgementis
returned, one additional propagation delay and processing delay results. In
addition to these delays, one must also consider the time required to transmit
the acknowledgement message. If A denotes the length in characters of the
acknowledgement message and Ts is the reverse channel data rate in bps,
then the transmission time for the acknowledgement becomes (A*B,)/Ts.
The total delay time due to the propagation and processing as well as the
acknowledgement transmission time becomes:

A*Bo

Ts

2*(TpatT,) +

Thus, the information transfer ratio becomes:

B,c* D,(1—P)
TTR = FITA(Di4 0)+2" (Tent Ty) +A"BeITs| (1.6)

Let us examine the effect of this modified transmission procedure on the
previous example where data was packed 80characters per block. Let us
assume that a 75 bps reverse channelis available and our acknowledgement
message is comprised of four 8-bit characters. Then:

8*80*(1—0.01)
=4800[0.00166(80-+10)+2"(0.02+0.03)+4*875]ITR

Note that the ITR actually decreased. This was caused by the slowness of
the reverse channel where it took 0.4266 (4*8/75) seconds to transmit an
acknowledgement. In comparison, the two-line turnarounds that were elim-
inated only required 0.2 s when the acknowledgement wassent at 4800 bps
on the primary channel. This modified procedureis basically effectively when
the line turnaround time exceeds the transmission time of the acknowl-

edgement on the return channel. This situation normally occurs when the
primary data transfer rate is 2400 bps orless. If the data is compressed prior
to transmission and a compression ratio of 2 results in 160 data characters
transmitted as a block of 80 compressed characters, the EITR can be com-
puted as follows:

8*160*(1—0.01)
4800[0.00166(80+10)+2"(0.02+0.03)+4*875]>EITR =

20

21

18

In comparing the effect of compression, note that the transfer rate of
information in bits (TRIB) rises from 0.1953*4800 or 937 to 0.39*4800 or
1872 bits per second. Thus, a compression ratio of 2 can be expected to
approximately double throughout.

Full duplex model

A much greater throughoutefficiency with the ‘stop and wait ARQ’ error
control procedure can be obtained when a full duplex mode of transmission
is employed. Although this requires a four-wire private circuit, the modems
and line do not have to be reversed. This permits an acknowledgementto
be transmitted at the same data rate as the message block but in the reverse
direction without the line turnaround. Thus, the information transfer ratio
becomes:

Bi-*D;*(1—P)
ITR =——.SS.

Ta" [Te*(D2+C)+2*(Tpa+T,)]
(1.7)

Again, returning to the original 80-character block example, we obtain:

8*80*(1—0.01)
ITR =4800[0.00166"(80+10)+2°(0.02+0.03)]= 0.5293

When data compression results in a compression ratio of 2, we obtain:

8*160*(1—0.01)
EITR =7300[0.00166*(80+10)+2*(0.02+0.03)]~ 1.06

With an EITR greater than unity this means that the bits of information
per unit time (in compressed format) exceed the data transmission rate of
the equipment connected to the line. This illustrates the value of data
compression, permitting one to obtain very high effective data-transfer rates
without requiring additional communicationsfacilities.

A second variation of the full duplex modelresults if a ‘go back n ARQ’
error contro! procedure is employed.In this situation, only the block received
in error is retransmitted. Here, the information transfer ratio becomes:

ITR = Bic*D,*(1—P)~ oTa*{Tc*(D2+ OY ed

Again, substituting values from the original example we obtain:
— 8*80(1-0.01) |

ITR = 7g00[0.00166(80+10)] ~ °"°8°>

21

22

ee

ee

19

This is obviously the most efficient technique since the line turnaround
is eliminated and the processing and acknowledgement time (Tpa) and
propagation delay time (7,) in each direction are nullified due to sim-
ultaneous message block transmission and acknowledgementresponse.If we
consider the effect of a compression ratio of 2, the effective information
transfer ratio can be computed as follows:

— 8*160(1-0.01)
EITR = 7g00(0.00166(80+10)) 17°”

For this example, the TRIB becomes 1.767*4800 bps or 8482 bps. Here,
compression and protocol structure permit an effective information transfer
of 8482 bits/s on a 4800 bps data path. In effect, the selection of an appro-
priate protocol coupled with effective data compression algorithmscan result
in a very effective data transfer. This will result in data transfers normally
associated with wideband facilities occurring over conventional voice data-
transmission facilities.

22

23

CHAPTER TWO

Data-Compression Techniques

The tremendous growth in remote computing during the last decade has
focused the interest of communications personnel upon data compression
techniques. Originally brought to data-processing user attention during the
1960s as a mechanisms for increasing the capacity of mass storage devices,
compression is now being applied to the data communicationsfield. Here,
compression results in the transfer of data in shorter time periods than
if such data was transmitted without the employment of a compression
technique.

In this chapter, 10 distinct methods that can be employed to compress
data are covered. In addition, various combinations of techniques are dis-
cussed with emphasis placed upon their utilization and efficiency. Some of
the techniques covered in this chapter require a careful analysis of current
or projected data traffic to be effective. None of the techniques presented
requires more than a moderate level of difficulty in developing software to
conduct the encoding and decoding algorithms. Most of the techniques in
this chapter should be easy for end-users to implement and their implemen-
tation may result in a high degree of data reduction for a minimal amount
of effort.

By the application of one or more compression techniques, operational
efficiencies may be increased or transmission costs reduced. For the former,
data compression will permit an increase in information transferred over a
data link per unit time interval. Concerning the latter, reducing the amount
of data to be physically transferred may make the employment of a lower
speed data link permissible, resulting in a reduction in cost in comparison
with the expense of a data link operated at a higher data rate.

2.1 NULL SUPPRESSION

Null or blank suppression wasone of the earliest data-compression techniques
developed. Today, this simplistic technique is employed in the commonly
used IBM 3780 BISYNCtransmission protocol.

20

23

24

21

Technique overview

As the name implies, null suppression is a data-compression technique that
scans a data stream for repeated blanks or nulls. Upon encountering such a
sequence, the blank or null characters are replaced by a special ordered pair
of characters whose formatis illustrated in Figure 2.1. First, a compression
indicator character is employed to denote that null suppression has occurred.
The second character is used to indicate the quantity of null characters that
were encountered and replaced by the two-character sequence (Aronson,
1977; Ruth and Kreutzer, 1972).

A. Compression format

NULL.|COMPRESSION
INDICATOR

COUNT|CHARACTER

8 Data compression example

Original data stream XYZBBBEBORX

Compressed data stream XYZS_SQRX
where: Ss. = special compression indicator character

C. Date scan process

COUNT=0

GET CHARACTER

COUNT=
COUNT+1

aeCOMPRSSIONCHARACT!AND COUNT

OUTPUT
CHARACTER

Figure 2.1 Null suppression

24

25

22

When the two-character sequence is transmitted within a data stream, the
receiving device performs a search for the special character used to indicate
null suppression. Upon detection of that character, the receiver knowsthat
the next character contains the count of the number of nulls that were
compressed. From this information, the original data stream can be recon-
structed.

In the middle portion of Figure 2.1 is an example of the application of
null suppression upon a data stream. Here, the character S, indicates a
special compression-indicating character, denoting that null suppression has
transpired.

In the lower portion of Figure 2.1, a flow chart of the null suppression
scanning processis illustrated. If we assume an 8-bit format for data charac-
ters, then the character counter can store values for up to 255 sequentially
encountered nulls prior to overflowing if we start our numbering at 1, or
256 if our numbering commences by assuming a zero counter represents a
value of 1.

Limitations .

Since a 2-character compression sequence always results from the com-
pression of up to 255 sequentially encountered nulls, no savings are possible
unless 3 or more sequential nulls are found. Thus, a sequence of 2 nulls
should not be placed into the null suppression compressed format. This is
because no savings would result while the compression and decompression
process requires a portion of processor time. In addition, if one is employing
several data-compression techniques, we will see that 2 sequentially enco-
untered nulls can be effectively compressed by the Diatomic encoding
process. This compression technique results in a 100 per cent data reduction
for the 2 null sequence situation where the null suppression technique is
ineffective.

While null suppression is viewed as an elementary data-compression tech-
nique, it is very easy to implement andits payoff can be substantial. For a
number of computerinstallations that switched from the 2780 bisynchronous
transmission control sequence that does not compress data to the 3780
sequence that performs null suppression, throughput gains of between 30
and 50 per cent have been reported.

Technique variations

Two variations of null suppression can be used to compress portions of
documents containing predefined or variable indentations. In one situation,
it might be beneficial to reserve a group of characters from the characterset
to represent several predefined numbers of spacesor nulls. Thus, one charac-
ter might then represent the indentation in a letter of 5 spaces, while a

25

26

23

second character could be used to represent 20 spaces required totab over
to the beginning of a column within a document.

Since predefined indentations represent tab stop positions, a second vari-
ation of null suppression is obtained from the employmentof the tab charac-
ter. If tab stops are predefined, one only has to replace a sequence of spaces
or nulls by the tab character to signify that the next character begins in a
particular column on theline, and all columns between the last character
and the location where the next character begins are spaces or null characters.
To illustrate this concept, let us assume that a portion of the document we
wish to transmit is as follows:

Now is the time to examine the relationship of defence expenditures
upon the economy. For the years 1980 to 1984 our analysis shows:

Year Guns Butter

XXXX yyyy ZZZZ

Note that there are four distinct tab stop locations in this document—the
indentation of a paragraph and the three columnpositions. Thus, a tab stop
followed by the character ‘N’ could be used to position the beginning of the
paragraph into its appropriate location. Since the indentation occurs prior
to the first column position, to position the ‘Y’ in year would require two
tab stops to be issued. Similarly, the ‘G’ in guns would have to be preceded
by three tab stop characters and so on. As the numberof unique indentation
and column location positions increases in a document or between different
documents, the number of tab stop characters that may have to be issued
to represent a predefined location could result in the expansion of data
instead of its compression. To prevent such situations from occurring, as
well as to eliminate the requirementof having prior knowledge about inden-
tation and columnlocations, a variable tab stop procedure can be employed.
In using variable tab stops one simply substitutes a tab stop character and
the column position to tab to in place of the spacing between columns.
Returning to the previous example, if ‘year’ began in column 15 while ‘guns’
and ‘butter’ began in columns 30 and 45 respectively, the line column heading
labels could be replaced by the sequence Ts15 Year Ts30 Guns Ts45 Butter,
where Ts represents the tab stop character.

2.2 BIT MAPPING

This compression technique is effective when the data to be operated upon
consists of a high proportion of specific data types, such as numerics, or a
large proportion of a specific character, such as blanks. As the name implies,
a bit map is employedto indicate the presence or absence of data characters
or the fact that certain data characters have been operated upon previously
and must be operated upon again to return the data into its original format.

26

27

24

Encoding process

To examine the bit mapping technique andits applications, we will first see
how it can be employed to implement a version of null suppression. In the
left-hand portion of Figure 2.2, a portion of a data stream consisting of 3
data characters and 5 nullsis illustrated. Here, the 5 nulls represent 625 per
cent of the contentof the string and are spread throughout the data stream
in a random sequence. Since null suppression is only effective when 3 or
more sequential blanks are encountered, its use would only reduce the string
from 8 to 7 characters in length.

Through the use of a bit map appended in front of the string, we can
indicate the presence or absenceof nulls and thereby reduce the size of the
data string. In the lowerportion of Figure 2.2, the employment of a bit map
characteris illustrated where all nulls are dropped from the data string and
the bit which corresponds to the null position is set to zero while the bit
position in the map which corresponds to a non-null or data character is set
to one.

In comparing the compressed data string with the original data string, the
8 characters of data to include nulls have been reduced to 4 characters, 3
data characters andthe bit map character. This results in a compression ratio
of 2:1 for this particular application.

Hardware considerations

The bit map characterillustrated in Figure 2.2 denotes non-null data charac-
ter positions by location, from left to right. By reversing the bit map order,
the data element positions can be indicated from right to left. Figure 2.3
indicates the two different methods of forming the bit map to represent the
compressed data string. Using the bit map data elementpositioning technique

Data Null Null Data Null Null Null Data

Compressed data string

Bit map Data Dota Data
character|character 1| character 4|character 8

Figure 2.2 The bit mapping process. In a typical data stream, there is a high
probability that one or more characters are repeated. Using one character to serve
as a bit mapcan serve to eliminate the high frequency of occurrence of characters

from a data stream

Original data string

 -oo0o0-cCoO-

27

28

Representing data left to right

Bit map

Data element positions

Representing data right to left

Bit map 87654321

Data element positions

Figure 2.3 Bit map elementpositioning. Two
methods can be employed to represent the
compressed data string in the bit map—data

represented left to right and right to left

illustrated in the lower portion of Figure 2.3, the bit map characterresulting
from the original data stream as illustrated in Figure 2.2 would become
10001001. The instruction set of the hardware device under consideration

for peforming the bit map suppression technique will govern the method of
bit map element positioning to be employed. This can be easily explained
by first examining a flow chart of the functions that have to be performed
on the original data string in order to construct the bit map and the com-
pressed data string.

The bit map suppression processis illustrated functionally in Figure 2.4.
The software routine to compress data must first initialize the bit map
position counter (1), the bit map (2) and a character counter (3). After a
character is obtained (4), the character counter is compared with eight (5).
If a match occurs, eight incoming characters have been processed and we
can exit from the routine (10). If no match occurs, the character counteris
incremented (6) and the character under examination is compared with a
null character (7). If the character under examination is not a null, the bit
map position is set equal to a binary one (8). If the characteris a null, this
function (8) is bypassed. Next, the bit map position is either incremented or
decremented (9) so that the bit map is prepared to be set to a zero in the
following bit location if the next character examinedis a null. Finally, after
eight characters have been processed, the count equals eight (5) and the
routine exit branch is taken (10).

From a hardware standpoint, the method used to perform the functions
indicated in blocks (8) and (9) of Figure 2.4 depends upon the shift and logical
instructions available for programmerutilization. This interrelationship can
be viewed by denoting the effect on the bit map character as succeeding
data characters are examined. In Figure 2.5, the effect on the bit map and
‘mask’ as a progression of data characters is examinedisillustrated. Here,
the mask is simply a binary onethat is shifted through the 8-bit mappositions
and logically ‘OR’d’ with the bit map when the data character is not a null.

28

29

INITIALIZE BIT
MAP POSITION
COUNTER

(2)
INITIALIZE
BIT MAP

a INITIALIZE
CHARACTER
COUNTER

(4)
GET
CHARACTER

(5)

(6)

 INCREMENT
CHARACTER
COUNTER

(7)

(8) SET BIT MAP
POSITION EQUAL
TO 1

INCRENT OR
DECREMENTBIT
MAP POSITION

 (9)

Figure 2.4 Bit map suppression function flow chart

In examining the mask, we can note that a logical or arithmetic left shift
operation is required if we wish to position our bit map so that the right-
hand bit indicates the presence or absence of a null character in the first
element of the original data string. Thus, from a hardware viewpoint, the
shift instruction available will be a governing factor with respect to how the
bit map elements are positioned. Although most minicomputers andcertainly
all large computers have both left and right shift functions, a few mic-
roprocessors may havelimited shifting capability. Such capability should be
examined prior to attempting to implement this technique.

29

30

27

Data Initial Bit map* mask
character bit map Mask (or bit map if null)

00000000 00000001 00000001

Data

00000001 | 00000010 00000001
Null

00000001 00000100 | 00000101 |
Data

00000101 | 00001000 | 00001101
Data

00001101 00010000 00001101
Null

| 00001101 | 00100000 | | 00001101
Null

00001101 01000000 00001101 |
Null

00001101 | 10000000 10001101
Data

Figure 2.5 The bit map masking process. The mask character is a binary one shifted
throughall bit positions and logically OR’d with the bit map whenthe data character

is not a null

Suppression efficiency

In the previous example, the bit map character contained 8 bits. While the
example showeda 50 per cent reduction in characters from the original data
string to the compressed data string, consider what happens to the com-
pression efficiency when the percentage of nulls in the data string decreases.
Table 2.1 shows the compression ratio based upon the percentage of nulls
contained in the string for an 8-bit map. When there are no null characters,
the resultant data string increases in size by 1 character as a result of the
addition of the bit map character, producing a compression ratio of 0.888.
This meansthat for the worst case situation where there are no null characters

to be suppressed, an extra 12.5 percentage of data will result from the
employment of this compression technique.

Wecan develop a mathematical model of suppression efficiency as follows.
If p is the probability that any given characteris a null, the expected number
of nulls in a string of length S characters is Sp. Using null compressionthis
will be encoded as a string of length

30

31

28

Table 2.1 Compression efficiency and null percentage

Null Resultant Compression
percentage string size ratio

0.0 9 0.888
12.5 8 1.000

25.0 7 1.143

37.5 6 1.334

50.0 5 1.600

62.5 4 2.000
75.0 3 2.667

87.5 2 4.060

100.0 1 8.000

sea-p)+ 3]
and the compression ratio is then

ion)(oo
for large value of S.

Bit map variations

In the previous discussion of the bit map procedure, we have assumed that
either a null or another character appearing in large proportion to the
remainder of the data is to be suppressed. For some applications, there
is no particular character that is encountered more frequently than other
characters; however, in certain cases one may encounter a situation where
a specific type of data, such as numerics, frequently appears. One application
where such a situation could exist is the process control area where numeric
readings of various equipment are transmitted to a central site for processing
and control signals are returned to the devices based upon certain predefined
criteria. Depending upon the transmission code employed, certain economies
may be obtained by the use of the bit map technique. If the data to
be transmitted is in the extended binary-coded decimal interchange code
(EBCDIC), then the first four bit positions of each numeric character are
all ones. Thus, the bit map character could be employed to denote the
number of packed characters in the compressed string, each character con-
taining two digits with the leading four bit positions stripped. This technique
is illustrated in Figure 2.6 and is quite similar to the half-byte packing
technique that is covered later in this chapter.

31

32

29

Original data string Compressed data string

Figure 2.6 Half-digit suppression. In the half-digit suppression technique, the con-
tents of the bit map specify the numberofdigits that follow, packed two per character

Technique constraints

One key limitation of the bit map technique is that it is applicable to data
having fixed size units, such as characters, bytes or words. When used to
suppress a particular character, such as a null, the compression ratio of this
technique is directly proportional to the percentage of occurrence of that
character in the original data stream. Thus, if one character in a data string _
occurs 30 per cent of the time while the second most frequently encountered
character occurs, say, 25 per centof the time, this technique ignores the high
percentage of occurrence of the second character or any other characters. As
we shall see, a technique known as run-length encoding can be employed to
take advantage of the adjacent redundancy of occurrence of all characters
in a data stream.

2.3 RUN LENGTH

Run-length encodingis a data-compression methodthat will physically reduce
any type of repeating character sequence, once the sequence of characters
reaches a predefined level of occurrence. For the special situation where the
null character is the repeated character, run-length compression can be
viewed as a superset of null suppression (Rubin, 1976; Ruth and Kreutzer,
1972).

32

33

30

Operation

In a similar way to the methodused to effect null suppression, the employ-
ment of run-length encoding requires the use of a special character to denote
that this type of compression has occurred. This compression indicator
character is normally followed by one of the repeating characters which was
in the encounteredstring of repetitious characters. Finally, a count character
signifies the number of times the repeated character occurred in the
sequence.

Whencodes such as ASCII or EBCDIC are employed, a good choice for
the special character is one that will not occur in the data string. For each
of these codes there are numerous unassigned characters with uniquebit
representations that can be used. For situations where the character set
contains no unused character, such as in the BAUDOT5-level (bit) code,
this technique maystill be used by selecting a character that may not be
used twice in succession, such asa letter shift or figure shift, to indicate that
compression has occurred. The reader should refer to Appendix A (p. 00)
for additional information concerning the selection and utilization of com-
pression-indicating characters from different character codes.

Encoding process

The run-length compression process results in a string of repeated characters
being converted into a compressed data string as shown in Figure 2.7 (Aron-
son, 1977). With three characters required to denote compression, run-length
encoding is only effective when a data string contains a sequence of four or
more repeated data characters.

Data floweee

pete.
Figure 2.7 Run-length enco-
ding, general compression for-
mat. In run-length encoding, a
special character, repeated data
character and character count

character are required to indicate
the compression parameters

S, = Special character indicating
compression follows.

X = Any repeated data character.
C.=Character count. This

count is the number of

times the compressed
character is to be repeated

33

34

Table 2.2 Applying run-length encoding

Original data string Encoded data string

Gitteeee55,72 $8,.*655.72

meses S.-9

GunsbbbbbbbbbbButter GunsS,b10Butter

Three examples of the application of run-length encoding upon repeating

character sequencesare presented in Table 2.2. Note that S. represents the
special character used to indicate the occurrence of run-length encoding
while the symbol $ is used to indicate the presence of a blank character.

With the null suppression format requiring two characters, employing run-
length compression to suppress nulls always results in one additional charac-
ter generated in the compressed data stream. While this is not significant
whenlong strings of nulls are compressed, numerous short strings of nulls
could result in an excess quantity of compressed data. This suggests that one
should consider the use of a mixture of several algorithms to perform data
compression.

The major steps in the run-length encoding process are shown in Figure
2.8 through the use of a systemsflow chart. Initially, a character counter (1)
and character repetition counter (2) are set to zero. After a character in the
original data string is obtained (3), the character counter is incremented (4)
by one. The character count is then compared with one (5). In the first
cycle, this comparison always holds true and the character is then placed in
a buffer (temporary storage) area (6) for later processing if the original data
string is found to contain four or more repetitive data characters. For the
second and subsequent cycles, the character obtained from the original data
string (3) is compared with the character placed in storage (7). If the present
character is equal to the character in storage, compression may be possible
if four or more identical characters are encountered in sequence. Thus,
when the character equals the stored character, the repeat counter (8) is
incremented by one and another character is obtained from the original data
string (3). If the present character under examination does not equal the
character stored (7), the repeat counter is compared with four (9). If less
than four, no compression is worthwhile since three characters must be used
to encode compressed data. When the repeat counter is equal to or greater
than four (9), the compression format (10) can now beset.

Special considerations

In the basic encoding flow chart illustrated in Figure 2.8, it was assumed
that the repeat counter was capable of having an unlimited range of values.
In reality, the maximum value that the repeat counter can contain is a
function of the character code level employed. For an 8-level (8 bits per

34

35

CHARACTER
COUNT =0

REPEAT COUNT = O

(3)
GET
CHARACTER

(4)
CHARACTER COUNT=

aralls COUNT+

(5) STORECHARACTER

NO

(7) CHARACTER REPEAT COUNT
‘STORAGE = COUNT +1

NOT EQUAL

(9) REPEATCOUNTER
74

(10)
>=ed

SET COMPRESSION
FORMAT

Figure 2.8 Basic run-length encoding process

character) character code, a maximum between 255 and260 repetitive charac-
ters can be represented by the character counter. The exact value will depend
upon how the character counter is employed. In mostsituations, the actual
character counter value is used as the numberofrepetitive characters. In
this mode, the counter’s maximum value is 2*-1 or 255. Since the com-
pression formatillustrated in Figure 2.7 occurs only when4 or more repetitive
characters are encountered, the presence of a character count character in
itself implies that 4 or more repetitive characters exist. Thus, a character
counterof all bits zero can be used to indicate 4 repetitive characters while

_a character counter ofall bits set to 1 would then indicate 260 repetitive
characters. Once the method of employing the repeat counteris determined,

35

36

(1)
COMPRESSION
FLAG OFF

(2)
GET
CHARACTER

 (3) COMPRESSION

FLAG
 SET COMPRESSION

FLAG ON

(6)
GET REPEATED
DATA CHARACTER

(7)
GET CHARACTER
COUNT

(8)
SET DECOMPRESSION
FORMAT

Figure 2.9 Run-length decoding process

the flow chart in Figure 2.8 must be modified to add an additional repeat
counter comparison to test for the maximum value permitted to be stored
in the character counter.

Decoding

The functions necessary to decompress data compressed according to the
run-length encoding processare illustrated in Figure 2.9 in flow chart format.
At the beginning of the decompression procedure, a compression flag is
turned off (1) and a character is obtained from the compressed data string
(2). Next, if the compression flag is off (3), the character is compared with
the special run-length compression indicator character (4) to determine if
run-length compression has occurred. If the character is not the special
character, the next character is obtained (2). If the character is the run-

36

37

34

length compression indicator character, the compression flag is turned on
(5) and the next character is obtained (2). On the next pass, since the
compression flag is on (3), the following character obtained (6) is the
repeated data character while the next character (7) contains the character
count. Once these characters are obtained, the decompression format can
be initiated (8).

Utilization

The most popularutilization of run-length encoding is the subset known as
null suppression. This compression technique is primarily encountered in the
IBM 3780 BISYNC protocol. Space compression is a standard feature of
this protocol when the 3780 device is operating in the line mode with non-
transparent data. Here, each group of 2 or more consecutive space charac-
ters, up to 63, is replaced by an IGS character if the transmission codeis
EBCDICor a GS character if the code is ASCII. Either character is followed
by a space count character that defines the number of spaces removed. For
the situation where 64 or more consecutive space characters occur, an
additional IGS or GS character and space-count character are inserted.

On Honeywell systems, a version of run-length compressionis used in their
general remote terminal system (GRTS) software on front-end processors
communicating with remote terminals under the remote computer (RC)
protocol. In addition, the same type of compressionis used on the Honeywell
stand alone tape-to-tape system (SATTS) for the transmission of reels of
magnetic tape betweenlocations. In this version of run-length encoding, a
record is examined for a series of three or more occurrences of the same
data character. When such a situation occurs, the series is compressed and
a string of repeated characters is formed as illustrated in Figure 2.10.

i a

5

Figure 2.10 Honeywell version of run-
length encoding. Run-length encoding
as implemented on Honeywell systems
differs slightly from most other com-

puter manufacturers

X = Any repeated data character.
US = The ASCII character (0011111).
C, = A 6-bit binary count. The

BCDcharacter represented by
the binary count must be
translated to ASCII for trans-

mission to the communications

subsystem. This count is the
number of times the com-
pressed character is to be
repeated (maximum 63)

37

38

35

Efficiency

Run-length encodingefficiency depends upon the numberof repeated charac-
ter occurrences in the data to be compressed, the average repeated character
length and the technique employed to perform compression. In Table 2.3,
the reader will find a listing of the results of the execution of a computer
program written to compute the overall compression ratio based upon a
varied number of repeated character occurrences in a string of 1000 data
characters. Here, the numberof repeated character occurrences was varied
from 10 to 50 while the average repeated character length was varied from
4 to 10. It was assumed that three characters were used for the compressed
data format. The computed compression ratios listed in Table 2.3 ranged
from a low of 1.0101 to a high of 1.5384. Table 2.3 is a synthetic rep-
resentation due to the wide divergence of actual text. Since this table
covers most common compressible occurrences, it provides a handy tabular
reference for readers to determine the effect of run-length encoding.

Programming examples

To illustrate the programming required to implement run length encoding
and other compression techniques in this book we have developed several
BASIC language coding examples. Each of these small program segments
were written in the BASICA version of the BASIC programming language
which operates on the IBM PC and compatible computers. Although a
different programming language, such as assembler, Pascal or C, would be
more efficient, our utilization of BASICA was based upon its wide accept-
ance aS a programming language and the ability to use the language as a
learning tool for a maximum number of readers to follow. For optimum
usage of the programming examples presented in this book, we suggest that
one should either employ a BASIC compiler to speed up the execution of
the examples or rewrite each program segment using a more optimum
programming language.

In its internal operation, the IBM PC uses an 8-bit extended ASCII
character code. This extended character code results in the assignment of
distinct characters to ASCII values 128 through 255. Since every character
from ASCII value 0 through 255 is defined and can occur when transmitting
data from an IBM PC to another computer system, one might normally
employ the ASCII SO (shift out) and SI (shift in) characters in developing
a compression module designed to operate on ASCII data whenever there
is a probability of occurrence for each character in the characterset.

The SO character is used to shift out of the current ASCII characterset,

resulting in the ability of the user to redefine each character in the character
set. Similarly, the SI character is used to shift back into the defined ASCII
characterset.

_ By using the SO and SI characters in ASCII one obtains a set of either
128 or 256 new characters, depending upon whether oneis using a system

38

39

36

Table 2.3 Run-length encodingefficiency based upon original datastring
of 1000 characters
i

Number of

repeated character Average repeated Compression
occurrences character length tatio

10 4 1.010
10 5 1.020
10 6 1.031
10 7 1.042
10 8 1.053
10 9 1.064
10 10 1.075
20 4 1.020
20 5 1.042
20 6 1.064
20 7 1.087
20 8 J.111
20 9 1.136
20 10 1.163
30 4 1.031
30 5 1.064

30 6 1.099
30 7 1.136
30 8 1.176
30 9 1.220
30 10 1.266
40 4 1.042
40 5 1.087
40 6 1.136
40 7 1.190
40 8 1.250
40 9 1.316
40 10 1.384
50 4 1.053
50 5 4.111
50 6 1.176
50 7 1.250
50 8 1.333
50 9 1.429
50 10 1.538

that uses the 7-bit or an extended 8-bit ASCII code. This new character set

can then be used to represent compression indicating characters.
Figure 2.11 illustrates the utilization of ASCII SO and SI characters to

obtain a new character set where the ASCII value 082 (conventional ASCII
R) is used to denote run-length encoding. In this example, a string of six Xs
was assumedto be followed by a string of seven Ys. Since the ASCII value

39

40

37

data flow
>

YYYYYYYX XK XK K X Non-compressed

Figure 2.11 Using SO and SI characters. Using SO and SI provides a new set of
characters that can be used to indicate different compression techniques, in this

example, the ASCII value 082 is used to denote run-length encoding

 ASCII value Compressed Character

082 in a newly defined ASCII code will be used to indicate run-length
compression, one must first shift out (SO) to the new code, issue the
compression indicating character (R) and then shift back into (SI) the normal
ASCII code to transmit the character that was compressed (X) and the
quantity of X characters compressed (6). Due to: the requirementto shift
out of the character set to issue the compression indicating character and then
to shift back to the normal ASCII character set, two additional characters are

required to represent a run-length encodedstring. In addition to this tech-
nique requiring two extra characters, the use of a shift out code of 14 is used
to turn on the double width modesetting of most dot matrix printers while
the shift in code of 15 is used to turn on the compressed character mode
setting of such printers, making the graphic illustration of this technique
tedious at best.

Based upon the preceding information, it was determined that for the
examples presented in this book, the use of a single character in the ASCII
character set would sufficiently serve as a compression flag in addition to
actually saving two characters in representing the compression of data based
upon the use of run-length encoding.

Compression program

Figure 2.12 contains the listing of a BASIC program thatillustrates the
coding required to perform run-length compression.

To facilitate referencing BASIC programs used to illustrate the coding
required to compress and decompress data, a simple naming convention has
been used throughout this book. Each program filename ends with either
the letter C or D, with the former used to denote a program that compresses
or encodes data, while the latter references a program that decompresses or
decodes data. Thus, the program labeled RUNLENC.BASin Figure 2.12
illustrates the coding required to compress or encode data using run-length
compression. The extension .BAS to the program nameindicates that the
file is a BASIC language program. Similarly, any data files referenced will
have a filename that is a descriptor of the compression technique that will
be applied against thefile while its extension will be .DAT. Thus, a reference

40

41

38

10

2O

30

40

50

60

FO
Bo

90

100

105

116

120

130

140

iso

1450

1706
180

190
200

216

220

230

240

250

260

2/70

280

290)

200

310

a2

320

340

S50
355

3460

36S

370

380

390

400

410

4?0

430

440

450

REM RUNLENC.BAS PROGRAM
DIM O# (132

WIDTH 80:CLS

*OREREKERAEMAIN ROUTINE RXR KRAR EKER ERE EERE TED
** THIS ROUTINE READS RECORDS FROM AN ASCII #

** FILE INTO A STRING CALLED X*# WHICH IS ¥

** THEN PASSED TO SUBROUTINES FOR COMPRESSION

"KERMA

PRINT "ENTER ASCII FILENAME. EG, RUNLEN. DAT"
INPUT F#: OPEN FS FOR INPUT AS #2

OPEN "RUNLENC.DAT" FOR OUTPUT AS #3

PRINT "PATIENCE — INPUT PROCESSING"
IF EQFi2) THEN GOTO 39000

LINE INPUT #2, X%
N= LEN(X#)

GOSUE 180

GOSUB 700

GOTO 120

"22 eXRUN LENGTH ENCODING SUBROUTINES #44 45%%

** THIS ROUTINE PROCESSES RECORDS FROM xX#

7x AND COMPRESSES DUT REPETITIVE CHARACTERS

"x USING Of AS THE QUTFUT BUFFER. ¥

"HERMAN ERAKERE AR AERAR AKA ARATERE AK EREREREEEEE

K=1:J=1 "RESET INDICES

FOR I= 1 TO WN "STEP THRU RECORD

AS$= MIDS(x$,1,1) "EXTRACT A CHAR
IF AS= MIDS(X$,1+1,1) THEN 330 *SAME AS NEXT?
IF B23 THEN 260 * COMPRESS

IF R= THEN 420 *DON’ T COMPRESS

0% (J) =AS "STUFF IN QUTPUT BUFFER
J=J+1 *BUMP BUFFER INDEX

NEXT I *GO BACK FOR MORE

RETURN *END OF STRING

Bt=At *SAVE REPEATED CHAR

K=K+1 *BUMF COUNT

GOTO 310 *KEEP LOOKING

HEMMERRAENERA A AE ERE RAREEEEEEAKS
"INSERT COMPRESSIGN NOTATION IN OUTPUT BUFFER

“EKER KER EERE AEE EEE SARE ESATAEAR E REE KKEEEES
0% (J) =CHRS (125) *SET FLAG FOR RUN-LENGTH

O€ (J+1)=BS “INSERT REPEATED CHAR
0% (.J+2) =CHRS (K} “INSERT COUNT
J=J+S:iK=1 *RESET INDEX
GOTO 310

OS (J) =BS "STUFF 1ST REPEAT CHAR
04% (J41)=Hs “STUFF 2ND REPEAT CHAR
J=J+2:k=1 *RESET INDEX
GOTO 310

Figure 2.12 RUNLENC.BASprogram listing

A1

42

39

$00 *Se9SxTALLY THE COMPRESSION COUNT & WRITE DUETSteres910 7% DISPLAY BEFORE & AFTER RESULTS GF COMPRESSION9270 7k AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD :
FRO 7 KERR EER REK ERE RK EERE ERK ERRAKERKARE KEK

931 N1=N1+4+N *TALLY INPUT CHAR COUNT
932 T=N-J+1 *NMET DIFFERENCE IN BUFFERS

936 Ti=T1i4+T "SAVE COUNT FOR SUMMARY

940 FOR I= 1 TO J-1

950 PRINT #3, O8(I);
940 NEXT 1

965 PRINT #3, ""
970 RETURN

9000 CLOSE: OPEN F# FOR INFUT AS #2

9010 PRINT "FILE ";F%;" BEFORE COMPRESSION: "
9020 LINE INPUT #2, X%
9050 IF EOF (2) THEN 9040

9040 PRINT X$

9050 GOTO 9a20

9050 PRINT X$:0FEN "RUNLENC.DAT" FOR INPUT AS #3

9070 PRINT "FILE "3F%;" AFTER COMPRESSION: "
GO80 LINE INPUT #35,0%
9090 IF EOF(3) THEN 9999
9100 PRINT O%

9110 GOTO 9080

9998 PRINT O$:PRINT Ti;" TOTAL CHARACTERS ELIMINATED FROM ":
9999 PRINT Nis"OR "3; INT ((T1/N1) ¥100) 3 "%": CLOSE: END

Figure 2.12 (continued)

to the file RUNLEN.DATreferences a data file that will be compressed by
a run-length compression program.

In the RUNLENC.BASprogram, the ASCII value of 125 (right brace)
was used as the compression indicating character, which was then followed
by the ASCII character being compressed andits repetitious count in decimal
notation. Thus, any string in excess of three repeating characters would be
subject to compression.

Several statements in the program listing contained in Figure 2.12 warrant
discussion for those readers unfamiliar with the IBM PC BASICAversion

of the BASIC programming language. The LINE INPUT statementin line
130 results in an entire line from a sequential file being read and assigned
to the string variable X$. In line 140, the length of the string that represents
one line in the data file is determined. The length of the string is then used
in the FOR-NEXT loop bounded bylines 240 through 310 to process the
string for repeating characters. The MID$ functions in lines 250 and 260
extract the Ith and I+1 characters from the string and compare these charac-
ters to one another. When they are equal, the repeated character is saved
(line 330) and the count of repeating characters is incremented (line 340).
Whenthe repeating string of characters is broken, line 260 is FALSE and a
comparison of the repeating count occurs (lines 270 and 280). When the
count exceeds three (line 270) data is compressed by the coding contained

42

43

40

in line 360 through 400. If the count equals three there is no advantage to
be gained from run-length compression and the routine bounded by lines
420 through 450 simply adds the input characters to the output buffer. When
the Ith and I+1 characters are not equal, the Ith character in the input
buffer is simply placed in the outputbuffer (line 290). Lines 900 through
9999 are not actually part of the run-length encoding process and are only
includedto facilitate file operations and comparison of the input and output
buffers to obtain a measurementof the efficiency of this technique when
applied to a data file containing a variety of repeating data strings.

Figure 2.13 illustrates a sample execution of the RUNLENC.BASprogram
using an ASCII file named RUNLENC.DATas input to the program. Note
that RUNLENC.BASwas purposely written to first list the contents of the
file prior to its compression whichisillustrated in lines 1 to 8 at the top of
Figure 2.13. Next, the programlists thefile after its contents were compressed
based upon the application of run-length encoding to the data contained in
the file.

It should be noted that string decimal values ranging below ASCII 32 were
purposely omitted from inclusion in the test file since they would cause
unwanted carriage returns, line feeds and other non-printable characters to
be displayed, which would makeanillustration of this compression technique
difficult to comprehend. They would, however, be quite appropriate in
normal string compression and decompression applications.

ENTER ASCII FILENAME. EG, RUNLEN. DAT
? RUNLEN. DAT

PATIENCE — INPUT PROCESSING

FILE RUNLEN.DAT BEFORE COMPRESSION:

BEGINS SSSA SEA SA AEE EATER E AEEEREEES
RRRRRRRRRRRRRRRRRRRRRARRRRRRRRRAK

FEEEEEEEEEEEEEEEEEEEEEEEEFEEEEEEEEE
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

AAABAARAARAAAARAARAARARARAARAARAAAAARA

TITTTFTTTTTTETTTTTTTTTTTTTTTTTTTTTTTTT

(OOOO28KEND

ILE RUNLEN. DAT AFTER COMPRESSION:
BEGIN} #4

*R!

7E"

PH

FES

FAX

+ TR

}*XEND

261 TOTAL CHARACTERS ELIMINATED FROM 309 OR 84 %

ONPOPAReTONoO&oyboee
arw

Figure 2.13 Sample execution of RUNLENC.BAS

43

44

4]

Modifications to consider

The ASCII 125 character was used as a compression indicating character
due to its representation as a right brace on most printers. Normally, if one’s
source data does not include characters beyond ASCII 127, then a character
in the extended ASCII character set, such as ASCII 129 or another beyond
ASCII 127, should be used to represent the occurrence of run-length
encoding. For the preceding example, ASCII 129 was purposely excluded
becauseits display on a monitor as the character ii will be printed on some
printers as the £ (pound) character, while other printers simply ignore
characters beyond ASCII 127. To correctly print characters beyond ASCII
127 using an IBM PCrequires oneto have a printer capable of printing the
extended ASCII character set. In addition, a special disk operating system
(DOS) program called GRAFTABLwhich is available under DOS 3.0 and
higher versions of the operating system must be loaded into the computer
prior to printing data. Due to this, the ASCII 125 character was used for
illustrative purposes as the compression indicating character.

If a character beyond ASCII 127 is used to indicate the occurrence of
compression and that character naturally occurs in one’s data a false indi-
cation of compression will result. To prevent a receiving device from mis-
interpreting the character as an indication that run-length compression
occurred, the program can be modified to send two such characters whenever
a compression indicating character occurs naturally in a data stream. Then,
at the receiving device the decompression program wouldfirst examine each
character for the occurrence of a compression indicating character, however,
when encountered it would not immediately signify run-length encoding had
occurred. The program would then examine the next character to ascertain
if that character is also a compression indicating character.If it is, this would
serve as an indicator that one compression indicating character occurred
naturally in the data, resulting in the removal of the second compression
indicating character by the receiver.

Decompression

In Figure 2.14, the reader will find the program listing of RUNLEND.BAS,
which is the program developed to decompress data previously compressed
by the RUNLENC.BASprogram. Toas great an extent as possible, program
variables and coding modules have been kept the same between compression
and decompression programs presented in this book to facilitate their util-
ization and explanation.

Similar to the previously examined compression program, this program
processes data on a line by line basis. The LINE INPUT ‘statementin line
130 reads a line of data from the file used for input. Next, in line 140 the
length of the line is determined.

44

45

4?

ia
20
20

40

a)

50

70

80

9o

100

105

1160

120

120

140

150

160

170

1He

190

200

210

220

20

2A

250

240

290

300

316

a2Q

355

340

365

370

580

290

400

410

420

a0)

440

4350

REM RUNLEND. BAS PROGRAF

DIM O8(1s2

WIDTH 80:CLS

"RRR KEMAIN ROUTINE RK KRES RAKE KER EAE RE EEK

** THIS ROUTINE READS RECORDS FROM AN ASCII &

"“*k FILE INTO A STRING CALLED X# WHICH IS x

** THEN PASSED TO DECOMPRESSION SUBROUTINE x

RRRHKRAK AR ARK EKER ERA KEKE ESE

PRINT "ENTER ASCII FILENAME. EG, RUNLENC.DAT"
INPUT F&: OPEN FS FOR INPUT AS #2

OPEN “RUNLEND. DAT" FOR OUTPUT AS #3

PRINT "FATIENCE — INPUT PROCESSING"
IF EOF¢2} THEN GOTG Food

LINE INPUT #2, Xt
N= LEN(X)

GOSUB 150

GOSUB 2OO

GOTO 126

“40K AXRUN LENGTH DECODING SUBROUTINEXX#4%%x

** THIS ROUTINE PROCESSES RECORDS FROM X& #

** AND DECOMPRESSES RUN-ENCOBDED CHARACTERS *

** USING OF AS THE OUTPUT BUFFER. x

* ROKK KKK RRA ERE ERAE REE KERR ERE EERE EKE

k=1l:eJ=1 *RESET INDICES
FOR I= 1 TON "STEP THRU RECORD

AG= MIDS(X#,1,1} "EXTRACT A CHAR
IF At= CHRS(t25) THEN 350 * COMPRESSION FLAG?

OF (G3=A "STUFF IN OUTPUT BUFFER

J=J+1 "RUMP BUFFER INDEX

NEXT I *GO BACK FOR MORE

RETURN *END OF STRING

*KRAEKEREE KERR ERR KAKA ERK AKER ARE REARREAR REE RE

*DECODE COMPRESSION NOTATIGN TO GUTPUT BUFFER

REMAKE ERREREARR KARE AE KE RARER EKER ERK ERR EEREREE

ES= MIDS(X$,1+2,1) *GET REPEAT COUNT
AS= MIDS(XS$,1+1, 1) *GET REPEAT CHAR
R= ASCIES) "SET UP INDEX

FOR L= J TO J+k "SET OUTPUT LOOP

O$(Ld= At *STUFF REPEAT CHAR
NEXT L *KEEP GOING

J= Lb *BUMP OUTPUT INDEX

I= I+2 *BUMP INFUT INDEX

GOTO 250 * DONE

Figure 2.14 RUNLEND.BASprogram listing

The subroutine bounded by lines 180 and 320 is then invoked. In this
subroutine the string representing one line from the inputfile is examined
on a character by character basis, using the MID$ function in line 250 to
extract one character at a time from the string. In line 260, each extracted
character is compared to the character value of 125 which is the right brace
character to determine if a compression indicating character occurred.If so,
a branch to line 360 occurs where the repeated count and the repeated

45

46

43

900 7TALLY THE DECOMPRESSION COUNT & WRITE BUFFER®*X**
910 7* DISPLAY BEFORE & AFTER RESULTS OF DECOMPRESSION %
920 ** AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD *
930 EOIO OOOOIGSIOIOISIOOICI GOR ICOOIEOGGIG
931i Ni=N1i+N >TALLY INPUT CHAR COUNT
932 T=N-J+1 "NET DIFFERENCE IN BUFFERS
936 T1=T1-T *SAVE COUNT FOR SUMMARY
940 FOR I= 1 TO J-1
950 PRINT #3, O%8(1)5
966 NEXT 1

965 PRINT #3, ""
970 RETURN

good CLOSE: OPEN F& FOR INPUT AS #2
9010 PRINT "FILE "3F%;" BEFORE DECOMPRESSION: "
90270 LINE INPUT #2, X%
9030 IF EOF (2) THEN 7060
9O40 PRINT xX

9050 GOTO F026
9060 PRINT X#:0PEN "BYTED.DAT" FOR INPUT AS #3
9070 PRINT "FILE "3f%;" AFTER DECOMPRESSION: "
9080 LINE INFUT #5,0%
9090 IF EOQF(S) THEN 9998
9100 PRINT OF

9110 GOTO 27080
9999 PRINT O$:PRINT Tis" TOTAL CHARACTERS INSERTED”
9999 CLOSE:END

Figure 2.14 (continued)

character are extracted from the string in lines 370 and 380. Next, an index
is obtained based upon the numerical value of K$, using the ASC function
in line 390. This is followed by the FOR-NEXTloop boundedbylines 400
to 420, which place the repeated character in the output buffer the required
numberof times to match the count character. Then the J and I indexes are
increased and the program branches backto line 250.

If a compression indicating character did not occurin the data, line 290
is executed. This line causes the character extracted from the string to be
placed directly into the output buffer. Next, the J index is incremented by
1 in line 300 and the boundary of the original FOR-NEXTloop checks to
determine if the end of the loop was reachedin line 310.

The statements from line 900 to the end of the program were included to
tally the decompression count and display the before and after results of the
program. Thus, this part of the program was includedforillustrative purposes
only.

Figure 2.15 contains a sample execution of the RUNLEND.BASprogram.
The reader will note that the data file RUNLENC.DATwas used as input
to the program. This data file was created by the execution of the
RUNLENC.BASprogram and the top eight numbered lines in Figure 2.15
correspond to the lower eight numbered lines in Figure 2.13. Since the
decompression program returns the compressed data to its original format,

46

47

44

ENTER ASCII FILENAME. EG, RUNLENC. DAT
2? RUNLENC. DAT

PATIENCE —- INPUT PROCESSING

FILE RUNLENC.DAT BEFORE- DECOMPRESSION:
BEGIN? &#

*R!

3E"

+H

FES

FAL

+ Tk

+ *ZEND

ILE RUNLENC.DAT AFTER DECOMPRESSION:

BEGINARESEAEAAREAAAEE ARES ARERREE AER ETT

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

EEFFEEFFEEFEEFEFEEFEFEEEEEEEEEEEEEEEE

PPPFPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

EEEEFEEEFEEFEFEEEEEEEFFFEEEFEEEEEEEEEEEEE

AAABAARAARAABRAARARARAARRAARAARAAAAARAAAA

TETTTVETTETTTTTTTTTTTTTrtrrttrrrrttTttTy

ESERCLARAR AAAAERAATUL A ALEREEZEND
276 TOTAL CHARACTERS INSERTED

Ok

Figure 2.15 Sample execution of RUNLEND.BASprogram

OwrtbouyeNONODOewhe
the eight numberedlines at the bottom of Figure 2.15 are exactly the same
as the eight numberedlines at the top of Figure 2.13.

2.4 HALF-BYTE PACKING

This data-compression technique can be viewed as a derivative of the bit
mapping process. It can be successfully used under several data structure
conditions; however, unlike the bit mapping technique, it will never result
in a compression ratio of less than unity.

Asoriginally developed, half-byte packing takes advantage of the structure
of certain characters in a character set. This teéchniqte is effective when a
portion of the bit pattern used to represent those characters becomesrepeti-
tive. As an exampleofthis type of situation, consider the EBCDICcharacter
set where the first four bit positions used to represent numerics are all set
to binary ones as illustrated in Table 2.4.

If a non-compressed data string contains eight level EBCDIC coded
characters, then run-length encoding does not permit compression of a
sequence of digits that does not repeat by character. Since thefirst fourbits,
however, do repeat, compression can be accomplished if one can pack two

47

48

45

Table 2.4 EBCDIC numeric representation.
When an 8-bit byte is used to contain numeric
values coded in the EBCDICcharacter set, the

first 4 bit positions are alwaysset to all 1s

<A Ding

Bit structure Numeric character art i
get

1111 0000 0 (tr oro
1111 0001 1 one =
1111 0010 2 oe
1111 0011 3 a
1111 0100 4 \\o0
1111 0101 5 1104
1111 0110 6 ane
1111 0111 7 a
1111 1000 8
1111 1001 9a

numerics into one character. In a similar way to run-length encoding, a
special character is required to indicate that half-byte packinghas occurred.
Again, like run-length encoding, this character should be selected from one
of the unassigned characters in the characterset. ira

When data characters do not have a repetitive bit structure, half-byte
packing can still be successfully employed under certain predefined
conditions. One example would be to predefine the occurrence of the dollar
sign, all 10 numerics, the comma, asterisk and decimal point characters in
succession as suitable for compression by half-byte packing. In Table 2.5,
the bit structure of ASCII data characters commonly used for financial
representations is listed. If the occurrence of a string consisting of any
numeric digit as well as a comma,decimal point, dollar sign and asterisk is
predefined as suitable for half-byte packing, then the occurrence of such
strings as ‘$123,456.78’ ‘123,456’ or ‘$****123,456.78’ can be compressed.

Encoding format and technique efficiency

To compressdata into half bytes, several encoding formats can be considered.
Each format provides a certain level of efficiency based upon the sequence
of characters encountered in the original data string. One typical formatis
illustrated in Figure 2.16: Using this format, up to 15 sequential numeric or
predefined data characters in a string occurring sequentially can be
compressed. The limit of 15 characters results from the use of a 4-bit, half-
byte counter to denote the numberof characters compressed.If, instead of
a half-byte counter, a full byte is used to indicate the half-byte packing
count, up to 28 (or 255) numerics can be packed or 256 if the counterstarts
at zero to indicate 1 packed character. Since an extra half byte is required
to increase the counter capacity, only when the average numberof characters

48

49

46

Table 2.5 ASCII financial character re-

presentation. In this data representation, the par-
ity bit was ignored. If a parity bit exists, it can
be stripped along with thefirst three bits shown
prior to the packing of the last four bits into half

bytes

Bit structure Character

011 0000

011 0001

011 0010

011 0011

011 0100

011 0101

011 0110

011 0111

011 1000

011 1001

Om~TIANPWNeE©
010 0100

010 1100

010 1110

010 1010

»
oe

in sequence is expected to exceed 15 should the full-byte counter be
employed. Alternatively, one can use both a half-byte and a full-byte com-
pression format and switch between the two depending upon the numberof
characters susceptible to half-byte packing that are encountered.

To examine the efficiency of half-byte packing, let us first explore the
binary pattern of a sample data stream and the resulting compressed data
stream. In Figure 2.17, the numeric sequencein the top part of the illustration
consists of seven 8-bit characters or 56 bits. Through the use of the half-byte
packing technique employing a half-byte (4-bit) counter, the resultant num-
ber of bits in the compressed data string is reduced to 40. In this example,
the original data stream has been reduced by 28 per cent ((56 — 40)/56) for
7 sequential numerics. It should be noted that 40 bits would also be required
to represent 6 sequentially encountered characters susceptible to half-byte
packing if transmission is on a character by character basis. Thus, any even
number of sequentially encountered characters suitable for packing with a
half-byte counter requires the transmission of 4 additional null bits when
data is transferred on a character-by-character basis.

In Table 2.6, the original numeric data stream and its compressed format
are compared when a 4-bit counter is used. Here, the number of continuous
numerics was varied from 1 to 15. Since the numberof bits in the original

49

50

47

Half- byte counter

Figure 2.16 Half byte encoding format

S = Special character indicating half-byte encoding.
Hegc = Half-byte counter. Four bits are used to denote

the number of numerics that have been packed.
Number = 15.

FgC = Full-byte counter. Number = 255,
N, to Nos5= Up to 255 numerics packed 2 per 8-bit character

data stream is less than or equal to the numberof bits in the compressed
data stream, until the number of continuous numerics exceeds 4, half-byte
packing should not occur until 5 or more sequential numerics or predefined
characters are encountered in a data stream.

Original data string

Numeric AN NN J A AN us ABinary ZN Zs, /\. a JN, /\, J,

—S\\h)
XXXXXXXX a olGoodSereO8eywelSee0000 COOO OOO1 1001 OO10 OO10QeSpecial com Seven——=.tne~~numerics
character
indicates
numeric

compression

Figure 2.17 Half-byte encoding example. For 8-level character transmission, a mul-
tiple of 8 bits of compressed data is transferred. Thus, a half-byte counter with an

even number of packed characters will require 4 trailing null bits

50

51

48

Table 2.6 Half-byte compression efficiency using a four-bit counter

Number of

sequential
compressible Non-compressed Compressed Bit reduction

characters bits bits per cent

1 8 16 N/A
2 16 24 N/A
3 24 24 N/A
4 32 32 0.00

5 40 32 20.00
6 48 40 16.66
7 56 40 28.00

8 64 48 25.00
9 72 48 33,33

10 80 56 30.00

11 88 56 36.36

12 96 64 33.33

33 104 64 38.46
14 112 72 35.71

15 120 72 40.00

The preceding can be represented mathematically as follows. For a
sequence of S compressible characters, S = 4, the number of bits in the
uncompressedstring is 8S. The numberof bits in the compressed string is

S#|12+4 S)
giving a compression ratio of

i. wl St \7?fea}

Encoding process

A half-byte packing procedure for compressing numeric characters is illus-
trated in flow-chart format in Figure 2.18. After the numeric character
counter is initialized to zero (1), a character is obtained from the original
data string. If the character is numeric (3), the counter is incremented by
one (4) and the next character in the original data string is examined (2). If
the character comparison (3) shows that the character is not numeric, the
counter is compared with four (5). If the counter is less than or equal to
four, as previously discussed there is nothing to be gained by compression

51

52

49

COUNTER =?

GET
CHARACTER

(2)

COUNTER =
{3)

COUNTER + 1

(5)

NO

COUNTER
4

> 4

SET COMPRESSION
FORMAT

Figure 2.18 Half-byte packing process for numerics

(6)

and the counter is reinitialized to zero (1). If the counter is greater than
four (5), this means that our string of sequential numerics has ended with a
sufficient number of such characters that half-byte compression is effective.
At this point in time, we can set the compression format (6). Although the
counter in Figure 2.18 does not have a limit, if a half-byte counter is
employed, the maximum number of characters that can be packed is 15.
Thus, another counter comparison would be required between symbols (5)
and (6).

If we desire to compress sequentially encountered strings of predefined
characters to include the dollar sign, comma, period, etc., we would test for
those characters in place of testing for numerics.

Buffer considerations

Whena full character or multiple characters are used as a counter, buffer
memorylimitations must be considered in determining the maximum number
of sequential characters that can be compressed, 2 to a byte. In Figure 2.19,
half-byte packing buffer considerations are illustrated. As the original data

52

53

50

A Double buffering

Buffer for original data string

Buffer for compressed data string

NN NIN, {Counter} S,

& Single buffering

Counter

Figure 2.19 Half-byte encoding buffer considerations. Although single buffering
requires additional processing, it eliminates the necessity of maintaining a separate

buffer for compressed data. S, = Special character indicating half-byte encoding

stream is examined, sequential characters suitable for packing 2 per byte are
placed into a buffer as illustrated in the top portion of that figure. When

“the counter exceeds 4 and the next character it not suitable for packing, the
data in the first buffer can be operated upon. Onehalf of each characteris
then transferred to its proper location in the compressed data string buffer
as illustrated in the lower portion of Figure 2.19. Since the special character
used to indicate half-byte compression and a count character can be preplaced
in the contiguous compressed data string buffer, this technique of double
buffering is suitable if one wishes to employ a direct memory access (DMA)
feature of the computer or microprocessor used for compression. Through
the use of the DMA,data transfers can be effected independently of program
control and data blocks are transferable on a word basis (bit parallel) to and
from portions of main memory andperipheral devices. Thus, once the buffer
in the lower portion of Figure 2.19 is completed, it can be set up for
transmission through the use of a DMAtransfer while the computer clears
the original data string buffer and continues processing the incoming data
stream. For an example of buffer size, consider the use of an 8-bit counter.
In this situation, the buffer for the original data stream would have to be
set up to hold up to 256 characters while the buffer for the compressed data
stream would have to hold up to 130 characters, 256 compressed characters

53

54

51

acked 2 per byte, a character count and the special character used to
indicate half-byte packing.

Although double buffering is illustrated in the top part of Figure 2.19 for
half-byte packing, single buffering can also be used. This is shown in the
lower part of that illustration. In this situation, sequential characters suitable
for packing are first placed into a buffer and once a non-compressible
character is encountered in the original data stream and the counter exceeds
4, the data elements in the buffer are manipulated as shown.In contrast to
double buffering, this technique requires much more processing; however,
it eliminates the necessity of having a separate buffer for compressed data.
To determine total buffer requirements, the interrelationship of all data
buffers must be examinedasillustrated in Figure 2.20. In this example, the
data to be operated upon is first read into a data-stream buffer where
several different types of processing may be performed, depending upon the
processing power and memory area availability of the computer being
utilized. This data-stream buffer can be as small as 1 character or as large
as a data block used for transmission. The buffer can be examined for
compressible characters in several ways. First, a search can be made for any
character suitable for half-byte packing; if none are encountered, the data-
stream buffer can be directly transferred to the output data-stream buffer.
Another methodis to examine the data-stream buffer character by character.
Non-compressible characters can then be sent to the output data-stream
buffer while compressible characters are transferred to the original data
buffer. If less than 5 compressible characters are in the original data buffer

Data stream
buffer

Original data
buffer

Input Data source

 Compressible

character

Compressed data
buffer

Output Oata result

Non- compressible
character

Output data
stream buffer

Figure 2.20 Data buffer relationships. To determine total buffer requirements, the
interrelationship of all data buffers must be examined

54

55

52

when a non-compressible character is encountered in the data-stream buffer,
the contents of the original data buffer are transferred to the output data.
stream buffer. If there are 5 or more characters in the original data buffer
when a non-compressible character is encountered in the data-stream buffer,
the compression operation causes the contents of the original data buffer to
be transferred in compressed format to the compressed data buffer. Finally,
the contents of the compressed data buffer are transferred to an appropriate
location in the output data-stream buffer.

Decoding

Decoding data compressed asccording to the half-byte packing techniqueis
a relatively simple procedure. The decoding routine searches for the special
character that is used to indicate that half-byte packing has occurred. Once
that character is encountered, the next character or the following half byte
will contain the count of the number of packed characters that follows. The
special compression indicator character itself can be used to inform the
decoding software whether a full- or a half-byte counter is employed.
Through the use of the buffering techniques previously discussed, the packed
characters can be unpacked and theoriginal data stream reconstructed.

Encoding application

Since strings of non-repeating numerics are not compressible by run-length
encoding, the use of half-byte packing can be very advantageous when data
files contain many numerical sequences. If predefined characters to include

ne dollar sign, comma, decimal point and asterisk are added to the numerics,
half--byte packing becomes a very appropriate technique for compressing
financial data.

Programming examples

Two different examples of half-byte encoding of data will be presented in
this section. Thefirst set of programming examplesutilizes only the digits 0
to 9 for the encoding of data, following the classical approach of half-byte
packing of numeric data. The second set of programming examples extends
the numberof characters that can be packed two per byte by including such
characters as the comma, decimal point, asterisk and dollar sign as previously
discussed in this section.

Encoding

The BASIC program BYTEC.BASis listed in Figure 2.21. This program
contains the coding required to perform simple half-byte encoding ofstrings
containing 5 or more digits in sequence. The ASCII 126 character was

55

56

10

20

3a

40

50

40

7O

ao

76

100

105

110

120

130

140

150

146

170
180

190

200

210

215

220

2350

240

250

2&0

270

280

2asS

290

300

310

329

330

240

345
350

340

27G

SAO
390

400
416

420

430

435

440

45G

440

470

430

REM BYTEC. BAS PROGRAM
DIM OF (1232)

WIDTH 80:CLS

*MXEAEEEEEAMAIN ROUTINES EER EERE SERRE EEK ERES

** THIS ROUTINE READS RECORDS FROM AN ASCII *

"Kk FILE INTO A STRING CALLED X# WHICH IS x

*x THEN PASSED TO SUBROUTINES FOR COMPRESSION

*KKERERMAAT EREEAEEETERETEETE

PRINT "ENTER ASCII FILENAME. EG, BYTE.DAT"
INPUT FS: OPEN FS FOR INPUT AS #2

OPEN "BYTEC.DAT" FOR OUTPUT AS #2

PRINT “PATIENCE —- INPUT PROCESSING"
IF EOF (2) THEN GOTO 97000

LINE INPUT #2, XS
N= LEN(X#)

GOSUB 180

GOSUB 900

GOTO 120

*SSXXSHALF-BYTE ENCODING SUBROUTINE SKSKEKEEX

** THIS ROUTINE PROCESSES RECORDS FROM X$~

** AND ENCODES NUMERIC STRINGS OF DATA INTOX%

"xk HALF-BYTE OR 4 BIT REPRESENTATION USING x

"¥ DOUBLE BUFFERING WITH O* AS OUTPUT BUFF.*

COORREE ED

K=t:d=1 "RESET INDICES

FOR I=1 TO N STEP 2? "STEP THRU RECORD

IF (MIDS(X$,1,1)<"0O") OR (MIDS(X$,1,1)2"9") THEN 290
IF (MIDS(X#,1+1,1)<"0") OR (MID#(X$,14+1,1)3"9") THEN 290
KaK+2 *BOTH NUMERIC-BUMP COUNT
NEXT 1 "GO BACK FOR MORE

RETURN "END OF STRING

IF K + 4 THEN GOSUB 350 ENOUGH TO ENCODE

IF K > 1 THEN GOSUB 440 * DON? T ENCODE

O8(J) = MID#{x$,1,1) OUTPUT 1ST CHAR.
OF(3+1) = MIDS(X$, 141, 1) *OUTPUT 2ND CHAR.
J=J+2:K=1 *BUMP OUTPUT-RESET COUNT
GOTO 280 "AND GO FOR MORE

* 440% SUBROUTINE TOG PERFORM HALF-BYTE ENCODING *£8%%

O# (J) =CHRS (124) *FLAG FOR HALF-BYTE ENCODE

O% (J+1)=CHRS$ (k-1) * INSERT LENGTH OF STRING

J=J+2 > BUMP OUTPUT INDEX

FOR L=I-K+i TOK STEP 2 "ENCODE 2? BYTES INTO 1

X= VAL{(MID$(X%,L+1,1)): Y=VAL (MID$(X$,L,1))
O% (J) =CHRS (X+ (YK10)) *STUFF BYTE IN OUTPUT

J=J3+1 > BUMP OUTPUT INDEX

NEXT Lb "GO BACK FOR MORE

K=1: RETURN RESET COUNT AND RETURN

7 400kK4s GUBROUTINE FOR STRING NOT WORTH ENCODING *xxxx

FOR L=I-K+i TOK *PICKUP SHORT STRING

O% (J) =MID$ (X#,L, 1) "STUFF IN OUTPUT BUFFER
J=J+1 "BUMP OUTPUT INDEX

NEXT L *G0 BACK FOR MORE

K=1: RETURN *RESET COUNT AND RETURN

Figure 2.21 BYTEC.BASprogram listing

56

57

54

900 *X**keeTALLY THE COMPRESSION COUNT & WRITE BUFFERXX&X#4%
FiO ** DISPLAY BEFORE & AFTER RESULTS OF COMPRESSION x

920 7x AND SHOW FHE NET RESULTS O&TAINED BY EACH METHOD

PAO 7 EXAMEE KARE RA RK ERA KER AREA ERK ERE RK KER ER EKER REE RE

931 Ni=Ni+N *TALLY INPUT CHAR COUNT

932 T=N-J+1 *NET DIFFERENCE IN BUFFERS

926 T1i=Titt "SAVE COUNT FOR SUMMARY
940 FOR I=! TO J-1

950 PRINT #2, O8¢(T)3
950 NEXT I

965 PRINT #3, ""
970 RETURN

1000 PRINT

1020 RETURN

9000 CLOSE: OPEN Fs FOR INPUT AS #2

7010 PRINT “FILE “"3F%;" BEFORE COMPRESSION: "
9020 LINE INPUT #2, X%%
9030 IF EQF(2) THEN 9040

9040 PRINT X#

9050 GOTO 9020

9060 FRINT X#:0OFEN "BYTEC. DAT" FOR INPUT AS #5

9070 PRINT "FILE "sF%:" AFTER COMPRESSION: "
9080 LINE INPUT #3,0%
[090 IF EOF (3) THEN 9998

9100 PRINT OF

9110 GOTO 7080

7998 PRINT Of:PRINT T1:3" TOTAL CHARACTERS ELIMINATED FROM ";
2999 PRINT Nis "GR “sINTCC(TL/N1) 4100) 5"4":CLOSE:END

Figure 2.21 (continued)

used in this programming example to indicate the occurrence of half-byte
encoding.

Referencing the listing contained in Figure 2.21, the array 0$ is the output
buffer into which each line input from an ASCIIfile is placed afterit is first
analysed and compressed according to the half-byte encoding scheme,if so
compressible. Each line from the file is read in line 130 and its length
determinedin line 140. Next, a branch to the subroutine starting at line 180
occurs. This subroutine steps through the record obtained from thefile in
increments of 2 character positions in line 240. The record is examined in
increments of 2 character positions since the statements in lines 250 and 260
compare character | and character I+1 to the range between and including
the digits 0 and 9. If either the Ith or Ith+1 character is in that range a
branch to line 290 occurs.

To extend half-byte encoding to the characters $, . and * one could include
them in the comparisons occurring in lines 250 and 260. This would be both
tedious and slow, due to the time required to execute a group of MID
functions joined together by many OR operators. A more elegant and
speedier solution could be obtained by the creation of a one-dimensional
array containing the characters to be encoded by half-byte compression. As
an example, the following BASIC statements would initialize the array

57

58

35

HBYTE,so each of its 14 elements would contain one of the characters that

would be suitable for half-byte compression.

DIM HBYTE(14)
FOR I=1 TO 14

READ HBYTE(I)
NEXT I

DATA “$"<56.50"1,827 ,3”,
DATA “4”,*5",6" 67" 68” <<”

An interesting and practical assignment for the reader prior to examining
the second version of this program presented in this section would be the
modification of the half-byte encoding subroutine to include the compression
of strings containing the characters $, . and * as well as the 10 numerics.

Returning to the listing illustrated in Figure 2.21, if the Ith or Ith+1
character is not a digit the counter is incremented by two in line 270 and
the subroutine continues processing the line of input obtained from thefile.

Whenthe Ith or Ith + 1 character in the string is a numeric, a branch to
line 290 in the program will occur. At this location, a comparison occurs to |
determine if there are enough numeric characters in sequence to encode.
When K is greater than four a branch to line 350 occurs. At this program
location, the subroutine actually performs the half-byte encoding of the data.
In line 350 the ASCII character represented by the value 126 is placed into
the Jth element of the array 0$. This character is used as the compression
indicating character and will be displayed as a tilde (~). In line 360, the
length of the string is placed into the next element of the 0$ array and the
output index is thén incremented by 2 in line 370. Lines 380 to 420 perform
the actual encoding of two bytes of non-compressed data into their half-byte
representation and join two half bytes into a single byte.

Prior to examining the technique employedin line 400, let us first examine
a conventional method to pack two numeric bytes into one byte in BASIC.
In line 390, the VAL function is used to obtain the numeric part of the L
and L+1 characters contained in the X$ string. Thus, X represents one
numeric character while Y represents the second numeric character. Suppose
X was 6 and Y was 9. Their byte composition would appear as follows:

000 011d «s«X
Y0000 100

Packing two numeric into one byte can be accomplished by multiplying
one character by 16 to shift it four bit positions to the left and either addit
or ANDit with the second character. Assuming Y is multiplied by 16,9 x 16
is 144 and its bit composition becomes:

1001 000d Y = 144

6

9

58

59

56

Then, adding X andYresults in a value of 150, whose byte compositionis;

1001 0110 X + Y packed = 150

A second method to accomplish the stuffing of the two numerics into one
byte was usedin line 400 of the program listing contained in Figure 2,21. In
this method, the numeric value of Y was first multiplied by 10 and then
added to the numeric value of X. Then, the character representing the
numeric value of the addition of X to Y multiplied by 10 is placed into the
O$ array as a single byte. Returning to the previous example where X was
6 and Y was 9, multiplying 9 by 10 and adding 6 results in the packing of
the character that has an ASCII code of 96 into the appropriate element in
the 0$ array. Thus, if this half-byte encoding routine encounters the numerical
sequence of 6 followed by a 9 and there is a sufficient run of numerics to
pack those two characters together they would be displayed as an apostrophe
(’), Since that character is represented by an ASCII 96. In this technique the
ASCII codes from 00 to 99 can be employed to directly represent the 100
possible combinations of two digits.

To determine the original data one can divide the received ASCII code
by 10 to obtain one numeric and use the remainderof the division process
for the second numeric. Unfortunately, this technique is not applicable if
the additional characters previously discussed are included in the string of
characters defined as susceptible to half-byte encoding.

Againreturning to the program listing contained in Figure 2.21, note that
wheneverthe count of characters suitable for half-byte encodingis less than
5 or a non-numeric character is encountered a branch to the subroutine

located at line 440 occurs. This subroutine simply takes the character from
its appropriate position in the X$ string and places it in its appropriate
position in the output buffer.

The last subroutine in this program wasincluded to print a comparison of
each line read from the file used for input and the half-byte encoded version
of the line. In addition, the subroutine creates a file containing compressed
data that will be used as an inputfile to test the decompression routine that
will be discussed next. Starting at line 900, this subroutine also counts the
characters’ input and output and computes and prints the percentage of
characters eliminated as a result of half-byte encoding.

Figure 2.22 illustrates the execution of the BYTEC.BAShalf-byte enco-
ding program, showing the original lines of data contained in the inputfile
followed by its resulting compressed data. The reader should note that for
clarity of illustration the input data was structured to insure that certain
numeric pairs of characters were excluded. This was done to eliminate, as
an example, two encoded half-bytes representing an ASCII 31 character or
below, since such characters are non-printable and would not be appropriate
for illustrative purposes.

59

60

57

ENTER ASCII FILENAME. EG. BYTE.DAT
2? BYTE. DAT

PATIENCE — INPUT PROCESSING

FILE BYTE.DAT BEFORE COMPRESSION:
? 44345678997654333456799876545554567898749

* 98557257894558629657398577526457497S56B729

*$434445464749495051 525354555465758596010

ILE BYTE.DAT AFTER COMPRESSION:
*+~84+—-CYWAt! —CYWAt ! -CY6D

7 (bHHOY—2:> *9° UM4091 1820

*$'$+ —. /O1P34546789: 5 12
54 TOTAL CHARACTERS ELIMINATED FROM 132 OR 40 %

CelPoeOT)edbo
Cc hoa

Figure 2.22 Sample execution of BYTEC.BAS program

Decompression

The program BYTED.BASlisted in Figure 2.23 was written to decode or
decompress data previously compressed by the BYTEC.BAS program.

Since the BYTEC.BASprogram used the ASCII 126 character as a half-
byte compression indicator, the BYTED.BASprogram waswritten to search
for the occurrence of this character. After a line of data is obtained from a

file in line 130 of the program, the length of the line is determined in line
140. Then the subroutine at line 180 is invoked to scan the line character by
character, looking for the occurrence of an ASCII 126. The FOR-NEXT
loop bounded by-lines 240 through 320 accomplishes this, extracting a
character from the string through the use of the MID$ function in line 250
and then comparing the extracted character to ASCII 126 in line 260.

If the extracted character does not equal ASCII 126, the character is
simply placed into the output buffer in line 290, the index is incremented by
1 in line 300 and the processing of the data in the loop continues. If the
character is equal to ASCII 126, a branch toline 360 occurs and the decoding
of the compressed data commences. First the repeat count which is the next
characterin the string is obtained in line 370. This character is then converted
into a numeric value in line 390 since it will control the loop index for
decompressing the following characters in the string that were previously
encoded two per byte. This decoding is controlled by the FOR-NEXT loop
bounded by lines 400 through 460. First the numeric value of the byte
following the repeat count is obtained the first time line 410 is executed. In
line 420, the value obtained in the preceding line is multipled by .1, which,
in effect, functions as a right shift. By taking the integer of the multiplication
of the byte’s numeric value by .1 we obtain a numeric between 0 and 9. This
numeric represents the value of Y when X and Y were previously encoded
in the BYTEC.BASprogram by multiplying Y by 10 and adding the value
of X to the result. Since we are working with characters based upon their
ASCII values, 48 is added to the value of Y in line 430 to obtain the

60

61

58

1a
20
3G

40

So

60

7O

8o

70

100

105

110

1270

130

140

150

160

iyo

ign

196

20D

21a

220

220

240

250

2oo

296

300

310

320

S55

260

365)
470

380

=F0

400

410

420

430

440

450

4555
440

473

480

490

REM BYTED. BAS PROGRAM
DIM OF (132)

WIDTH 80:CLS

* XEERKKESSEMAIN ROUTINE SHAKER ERE REMAKE R ERE EY

*x THIS ROUTINE READS RECORDS FROM AN ASCII &

*% FILE INTO A STRING CALLED X%$ WHICH I5 x

% THEN PASSED TO DECOMPRESSION SUBROUTINE x

7 COEIOEEEEEKERAEERARER

FRINT "ENTER ASCII FILENAME. EG, BYTEC.DAT"
INPUT F%: OPEN F# FOR INFUT AS #2

OPEN “BYTED.DAT” FOR OUTPUT AS #3

PRINT “PATIENCE — INPUT PROCESSING"

IF EOF (2) THEN GOTO 7000

LINE INPUT #2, X¢
N= LEN(xX#)

GOSUBR 180

GOSUB 900

GOTO i265

“*AERXSHALF BYTE DECODING SUBROUTINE SESE R aE

** THIS ROUTINE PROCESSES RECORDS FROM XS Xx

** AND DECOMPRESSES BYTE-ENCODED CHARACTERS*

** USING OF AS THE OUTPUT BUFFER. x

*KEKEKKEEE EEA AKER ER ERATERETET EERE TE

E=lid=1 *RESET INDICES
FOR I= 1T0N “STEP THRU RECORD

AS= MIDS(X$,1,1) *7EXTRACT & CHAR
IF A%$= CHRS(125) THEN 360 *COMPRESSION FLAG?

O05 (J) =AS *STUFF IN OUTPUT BUFFER
J=J+1 *BUMP BUFFER INDEX

NEXT I _ *GO BACK FOR MORE

RETURN *END OF STRING

"MERE KAKK RRR KKK AERA EKER ARERR EAA REA EREKARE

*DECODE COMPRESSION NOTATION TO OUTPUT BUFFER

"HRA KAKA KERR ERA ERK EKAREEMA MAREE KARE KEE

ES= MIDS(X$, I+1,1) *GET REPEAT COUNT
M= I+2 "SETUP INPUT INDEX

E= ASC (ES) *SET UP LOOP INDEX

FOR L= J FQ J+kK-1 STEP 2 "SET OUTPUT LOOP

X= ASC(MIDt(xX$,M,1)) *6ET ONE BYTE
Y= INT(xXk 11) "SHIFT RIGHT

OF (L)= CHR (¥+48) *DECODE TENS POS
Z= INT(X-C¥R 10)) *SUBTRACT TENS POS

OF(L+1)= CHR (Z+48) *DECODE UNITS FOS

M= M+1 *BUMP INPUT INDEX

NEXT L *KEEP GOING

J= Lt+i *RESET OUTFUT INDEX

I= M *RESET INPUT INDEX
GOTO 250 * DONE

Figure 2.23 BYTED.BASprogram listing

appropriate ASCII value of the digit. This value is then an ASCII character
between 0 and 9 that represents the 10s position of the previously encoded
data. In line 440, the value of Y multiplied by 10 is subtracted from the

61

62

59

ENTER ASCII FILENGME. EG, BYTEC. DAT
° BYTEC. DAT

PATIENCE — INPUT PROCESSING

FILE BYTEC.DAT BEFORE DECOMPRESSION:
1 7 4+°&+—-CYWA+! -CYWA+! -CY4D

2 *—™ (bh¥H9Y—-&> "9" UM4991 182d

ZS 7$°$+,—. /01234546789::19
FILE BYTEC.DAT AFTER DECOMPRESSION:
1 *443456799976543233456789976543523456789540
2 *—-99357257994538629657298577526457497256500
3 *$43444546474949505152535455565758594959

54 TOTAL CHARACTERS INSERTED
Ok

Figure 2.24 Sample execution of BYTED.BAS program

value of X to obtain the numeric value representing the unit’s position in
the packed data. Similar to line 430, line 450 adds 48 to the value of Z to
obtain the appropriate ASCII character code that represents the decoded
digit.

Figure 2.24 illustrates the execution of the BYTED.BASprogram,using
the file BYTEC.DATas input to the program. Since the half-byte com-
pression program, BYTEC.BAS,previously createdthis file it should be of
no surprise that lines 1 to 3 at the top of Figure 2.24 are equal to lines 1
through 3 of Figure 2.22, while lines 1 to 3 at the bottom of Figure 2.24 are
equal to lines 1 to 3 at the top of Figure 2.22.

Extended half-byte encoding

A second example of half-byte encoding results from the inclusion of
additional characters beyond the 10 numerics into half bytes when such
characters occur sequentially. In Figure 2.25, the readerwill find the program
listing of the PACKC.BASprogram that was developed to compress a string
containing numerics and/or the dollar sign ($), comma(,), decimal point(.)
and asterisk (*).

Compression program

Similar to the previously described BYTEC.BASprogram, a line of inputis
obtained fromafile in line 130, the length ofthe line is determined in line
140 and a branch to the half-byte encoding subroutine occurs in line 150 of
the program.

The subroutine bounded by lines 180 and 550 processes the line of input
and encodes sequences of numerics and the special characters previously
mentioned into half bytes. The FOR-NEXT loop bounded bylines 240 and
280 searches through the character positions in the string X$ that represents
a line of input data. In line 242, the C(I) array flag is reset while lines 243

62

63

10 REM PACKC.BAS PROGRAM
26 DIM OF (172) ,Ci152)
30 WIDTH 80:CLS5
4a
oo
60

70
80

"XE KRESEMAIN ROUTINES SKS SESEKS REESE EET ED
°* THIS ROUTINE READS RECORDS FROM AN ASCII *
** FILE INTO A STRING CALLED X# WHICH IS x
** THEN PASSED TO SUBROUTINES FOR COMPRESSION
"AR ORK AREER ERA ALAAEEEETATE EEE EARTE

90 PRINT "ENTER ASCII FILENAME. EG, PACK. DAT"
100
105
110

120
1320

140
130

150
170

199
196

200
210
215

220
220
240
242

245
244

245
248
200

252
254

2a

2585
260

262
263

264
265
268

270
280

285
290

300
310
320

320
340
200
3o2
oot
360

INPUT F%: OPEN F% FOR INPUT AS #2
OPEN “PACKC.DAT" FOR GUTPUT AS #3
PRINT "PATIENCE — INPUT PROCESSING"
IF EOF¢2) THEN GOTO 9a0G0

LINE INPUT #2, X%
N= LEN(X#)
GOSUB 180
GOSUE 900

GOTO 120

**42*HALF-BYTE ENCODING SUBROUTINESS44a2450%
** THIS ROUTINE PROCESSES RECORDS FROM x# x
** AND ENCODES MIXED STRINGS OF DATA INTOs
** HALF-BYTE OR 4 BIT REPRESENTATION USING *
& DOUBLE BUFFERING WITH Of 4S OUTPUT BUFF.
7 REAR EREAEA AEE KAA AANA EERE AERA RESET EE ET
E=1:J=1 *RESET INDICES
FOR I=1 TON STEP 2 "STEP THRU RECORD
C¢is=O:0(1+1)=0 *RESET ENCODE FLAGS
AS= MIDS(X$,1,1) *GET 1ST BYTE
ES= MID®(X#, 1+1,1) *GET 2ND BYTE
IF At= "S$" THEN CC1)= 1 *SET 18ST ENCODE FLAG2
IF A$= "," THEN ClI)= 2
IF At= "." THEN CCId= 3
IF AS= "RK" THEN C(I)= 4
IF AS< "O" OR AS> "9" T
C(Io= 5

IF BS= "$" THEN CCI+id= 1
IF B= "," THEN CCI+t)= 2
IF BS= "." THEN C(I+1)= 3
IF BS= "5" THEN C(I+1)= 4

IF BS< "O" OR BS> "9" THEN 268 “SKIP GTHERS

HEN 258 *SKIP OTHERS

CiiI+1)= 5

IF Cél)= 0 OR C(1+1)= O THEN 290 *NOT CANDIDATE
K=K+2 "BOTH NUMERIC—BUMP COUNT
NEXT I *GO BACK FOR MORE
RETURN "END OF STRING
IF K > 4 THEN GOSUB 350 “ENOUGH TO ENCODE
IF K > 1 THEN GOSUB 500 *DON’? T ENCODE
O#(J) = MID®(x#,1,1) *OUTPUT iST CHAR.
OF(J+1) = MIDS(XS,I+1,1) *OUTPUT 2ND CHAR.
J=J+2:K=1 “BUMP OQUTPUT-RESET COUNT
GOTO 290 "AND GO FOR MORE
GaSe ICUSft29) *FLAG FOR BYTE PACKINGae LHF: 711110000MASK? oe 700001111
DS (J+1) =CHRS (K-1) "INSERT LENGTH OF STRING

Figure 2.25 PACKC.BASprogram usting

63

"SET 2ND ENCODE FLAG

64

396

298
4oo

410
420

440
ASG

460
470
4ga

500
510

520
5z0
540

550
700
710

720
920
931
Pa2

936
2740

950
760
945

970

J=J+2 *BUMP OUTPUT INDEX
FOR L=I-kK+1 TO K STEP 2 *SETUP ENCODE LOOP

ON C(L) GOTO 376, 378,380,382,584 “uSE FLAG TO ENCODE
X=GHAO: GOTO 288 7106100000

X=SHBO:GOTO 388 710110000
X=RHCO:GOTO 388 *119600000
X=2HDO:GOTO 298 711010000

X=VAL (MIDS (XS,L,1)) *GET NUM VALUE OF BYTE 1
X=XW16 "SHIFT 4 BITS LEFT
X=X AND MASE1 "MASE LOWER HALF-BYTE

ON C(L+1) GOTO 394,296,298,400,410 *USE ENCODE FLAG
Y=RHA: GOTO 420 *00001010

Y=SHB:GOTO 420 *90001011
Y=2HC: GOTO 420 *O0001100
Y=SHD: 60TO 420 *G0001101
Y=VAL (MIDS (X#,L+1,1)) *GET NUM VALUE OF BYTE 2
Y=VY AND MASK2 *MASK UPPER HALF-BYTE
Z= X OR ¥ "OR THE TWO TOGETHER
OF (JJ= CHRS (7) “OUTPUT BYTE TO BUFFER
J=J+1 *BUMP OUTPUT INDEX
NEXT L *GO BACK FOR HORE
Kk=1: RETURN *RESET COUNT AND RETURN
"**e4%e SUBROUTINE FOR STRING NOT WORTH ENCODING *x%%%
FOR L=1-k+1 TO kK *PICKUP SHORT STRING
O%(J)=MIDS(X#,L,1} “STUFF IN GUTFUT BUFFER
J=J+1 *BUMP OUTPUT INDEX
NEXT L *GO BACK FOR MORE
K=1: RETURN *RESET COUNT AND RETURN
"See EXTALLY THE COMPRESSION COUNT & WRITE BUFFERS444%%
“* DISPLAY BEFORE & AFTER RESULTS OF COMPRESSION *
AND SHOW THE NET RESULTS ORTAINED BY EACH METHOD
"]IGICSIGIOOIOIGGR GIOCUIIKEREOE
N1I=N1+N "TALLY INPUT CHAR COUNT
T=N-J+1 "NET DIFFERENCE IN BUFFERS
T1=T1i+T *SAVE COUNT FOR SUMMARY
FOR I=1 TQ J-1 *QUTPUT FILE LOOP
PRINT #3, O8(5); *BUFFER CHAR STRING
NEXT I

PRINT #3, "" *NOW WRITE TO FILE
RETURN * DONE

9000 CLOSE: OPEN F% FOR INPUT AS #2

7010 PRINT "FILE "3;F%;" BEFORE COMPRESSION: "
7020 LINE INPUT #2, X%
7030 IF EOF (2) THEN GOTO 9060
F040 PRINT X#
7050 GOTO 9020

7060 PRINT X$: OPEN "PACKC.DAT" FOR INPUT AS #5
7070 PRINT "FILE °3F%;" AFTER COMPRESSION: "
7090 LINE INPUT #3,0%
7090 IF EDF (3) THEN 9999
9100 PRINT OF
9110 GOTO 7080

9998 PRINT O€:PRINT Ti3;" TOTAL CHARACTERS ELIMINATED FROM fe
9999 PRINT Nis"OR "s INT CCTI/N1) 8100) 2"%":CLOSE:END

Figure 2.25 (continued)

64

65

62

and 244 extract two bytes from the string. The C(I) array flag is then set to
a value between 1 and 4 if the first byte of the string (A$) is one of the
special characters. If A$ is a digit between 0 and 9 the C(I) array flagig
then set to 5 in line 256. Otherwise, the C(I) array flag remains set to zero
and a branchto line 258 occurs where the second byte represented by B$is
processed. Next, lines 258 to 266 process the second byte, assigning the
C(I+1) flag a value between 1 and 5 depending upon whether one of four
special characters or a numeric is encountered. If either C(I) or C(I+1)
equal zero and four or more bytes containing numerics or special characters
have been encountered in sequence there is enough to encode and a branch
to the subroutine starting at line 350 occurs. If either C(I) or C(I+1) equals
zero and between one and three bytes were encountered a branch to the
subroutine beginning at line 500 occurs. This subroutine simply takes the
encountered characters from the input string and places them into their
appropriate positions in the output buffer.

Whentwobytes are extracted from the input string and no previous bytes
were numeric or special characters C(1) and C(I+1) are zero and line 268
causes a branch to line 290 to occur. Since K is zero, lines 310 to 330 are

then executed, resulting in the two bytes just extracted from the input string
being placed into their appropriate position in the output buffer.

Lines 350 to 480 contain the coding for generating the compression indi-
cating character which is ASCII 129 and then packing the characters eligible
for half-byte compression into half bytes. Lines 352 and 354 enable two mask
flags that will enable upper or lowerhalf-bytes to be generated by ANDing
the numerical value of a byte by the mask flag. Line 360 inserts the length
of the string into the output buffer while line 372 examines the C flag and
encodes the byte (lines 376 to 382) based upon the type of special character
in the byte. If the byte is numeric, line 384 is executed. Here, the numeric
value of the byte is extracted. In line 386, it is multiplied by 16 which is
equivalent to a shift 4-bit positions to the left while line 388 ANDsthe value
of the newly formed characterflag or shifted byte by the first mask. Similarly,
lines 390 to 420 perform the same operation on the second byte by first
examining the secondCflag. Finally, line 440 adds the two half bytes into
one byte by the use of the OR operator and the newly formed character
that now represents two characters is placed into the output buffer. Like the
other programs previously discussed, lines 900 to 9999 keep track of the
compression count and generatea file named PACKC.DATwhich represents
the compressed data contained in the file PACK.DAT. Later the extended
half-byte decompression program called PACKD.BAS will use the
PACKC.DATfile as input to perform extended half-byte decompression.

Figure 2.26 illustrates the execution of the PACKC.BASprogram using a
three line data file whose contents are listed at the top of the figure. Since
the packing of somehalf bytes resulted in the generation of a full byte whose
ASCII code was below 31 and therefore unprintable, the first two lines of
compressed data may appear odd dueto the effect these characters have on
the. printer used by the author.

65

66

ENTER ASCII FILENAME. EG, FACE.DAT
? PACK. DAT

PATIENCE — INPUT PROCESSING
FILE PACKE.DAT HEFORE COMPRESSION:
1 °+$43, 456, 789. 87%*694923456789876543334567898790
2 ?-$9825$72.57689. 459386, 296, 575. 85775264574973567909
3 °$492444546474849505 | 52535455956575859798790
FILE PACK.DAT AFTER COMPRESSION:

I *4, 85 Ekx§ eC3Eg eCsEg aD

2 *—Ordrte —Z8k) kWiwRdWIsVaoo

3 *$$CDEFGHIPORSTUVWAYoo

61 TOTAL CHARACTERS ELIMINATED FROM 146 OR 41 4%
Ok

Figure 2.26 Sample execution of the PACKC.BAS program

Decompression program

Figure 2.27 contains the program listing of the PACKD.BASprogram that
was developed to decompress data compressed by the PACKC.BASpro-
gram.

Similar in construction to the PACKC.BAS program, PACKD.BAS
obtains a line of data fromafile in line 130, determines the length of the
line in line 140 and then branches to the subroutine starting at line 180 to
perform the required decoding. The FOR-NEXTloop boundedbylines 240
and 320 extracts one character at a time from the input string, searching for
ASCII 129 which is the compression indicating character used to denote the
occurrence of extended half-byte compression.

When the compression flag is encountered in line 260, a branch to line
330 occurs which is the beginning of the routine that decompresses the
compressed data. Afterinitializing the masks in lines 330 and 335 the length
of the string is obtained in line 340 while the FOR-NEXT loop bounded by
lines 350 and 498 break up each byte into the original two characters that
were previously compressed. First line 370 takes a byte and ANDsit with
the first mask and divides by 16 which is equivalent to a right shift of 4 bit
positions. In line 375, the character is tested to determineif it’s numeric. If
so, a branch to line 430 occurs where 48 is added to the character to obtain
its appropriate ASCII value. If the character is not numeric, lines 380 to 410
test to determine what special character the character represents by exam-
ining its code value and then based uponits code value the character is reset
to its original value. Next, lines 440 to 490 perform the same operation on
the second half byte in the received character.

Program execution

Figure 2.28 illustrates the execution of the PACKD.BAS program using
PACKC:DATas the input data file to decompress. The reader will note

66

67

10
20

39

40

50

50

7a

80

90

100

105

110

120

130

140

150

160

170

180

190

200

210

220
230

240

250

260

290

300

310

320

322

324

326

330

33a

340

S45

350

362

370

375

380

390

400

410

415

430

440

445

450

460

470

480

485

490

4953

493

499

REM PACKD.BAS PROGRAM
DIM 0% (1352)

WIDTH 80:CLS

*PESTERTAEEEMAIN ROUTINE SESS ERE SEAR TARAS

** THIS ROUTINE READS RECORDS FROM AN ASCII &
** FILE INTO A STRING CALLED X% WHICH IS x

7* THEN PASSED TO DECOMPRESSION SUBROUTINE #*

* EKEREAEAEETETATARATE ETE

PRINT "ENTER ASCII FILENAME. EG, PACKE.DAT"
INPUT F%: OPEN F% FOR INPUT AS #2

OPEN "PACKD. DAT" FOR GQUTPUT AS #5

PRINT “PATIENCE — INPUT PROCESSING"

IF EOF(2) THEN GOTO 9000

LINE INPUT #2, X#
N= LENiX#)

GOSUB 160

GOSUB 700

6OTO 120

*SESRRHALF BYTE DECODING SUBROUTINE SES 2eae8

"a" THIS ROUTINE PROCESSES RECORDS FROM X& 8
7% AND DECOMPRESSES BYTE-ENCODED CHARACTERS

** USING OF AS THE OUTPUT BUFFER. x

* MESA CA RETREAT EAE TEER EAAEAE

J=1 *RESET INDEX

FOR I= 1 TON *STEP THRU RECORD

AS= MIDS(X$,1,1) *EXTRACT A CHAR

IF AS= CHR#(129) THEN 330 * COMPRESSION FLAG?
O¢ (J) =AS "STUFF IN OUTPUT BUFFER

J=J+1 *BUMP BUFFER INDEX

NEXT I *GO BACK FOR MORE

RETURN 7END OF STRING

> EXETER ETAT AERA KERALA TERA ERASEERATE ERATE

*DECODE COMPRESSION NOTATION TO OUTPUT BUFFER x
"SEEKERAATAKERA KEKE RARER AEE RAE TARR

MASK1= &HFO 711110000

MASK2= &HF 700001111

K= ASC (MIDS(X$,1I+1,1)) *GET STRING LENGTH
M= I+tkK/2) *SET END OF STRING

FOR L=I+2 TO M *SETUP LOOP TO DECODE

Z= ASC(MIDS(X$,L,1)) *GET BYTE
= (Z AND MASK1)/16 "MASK LOWER HALF-BYTE

IF X< 10 THEN 430 “ITS NUMERIC

IF X= 10 THEN Of(J)= "S" * SPECIAL

IF X= 11 THEN Of¢J)= "," * SPECIAL
IF X= 12 THEN O8(J)= ".”" * SPECIAL

IF X= 13 THEN O(J)= "#" "SPECTAL

GOTO 440 *SKIP IF SPECIAL

O# (J) = CHRS(X+48) *OUTPUT iST NUMERIC

Y= Z AND MASK2 "MASK UPPER HALF—-BYTE

IF ¥< 10 THEN 490 7ITS NUMERIC

IF Y= 10 THEN O$¢(d+1)= "S$" *SPECIAL

IF Y= 11 THEN O&8(J+1)= "," *SPECIAL

IF Y= 12 THEN O%(J+1)= "." *SPECIAL
IF Y= 13 THEN O$(3+1)= "&" *SPECIAL

GOTO 495 *SKIP IF SPECIAL

O€(J+1)= CHRS(Y+48) 7OQUTPUT 2ND NUMERIC

J= J+2 *BUMP OUTPUT BY TWO

NEXT LiI= ™ *CONTINUE, BUMP INPUT INDEX
GOTO 310 *60 BACK FOR MORE

Figure 2.27 PACKD.BASprogram listing

67

68

900
710

920
BO

G31

G32

936

740

950

960

945

970

700

Fol

902?

FOR

FO4

905

F705

907

908

909

710

Git

65

> ¥44QXTALLY THE DECOMPRESSION COUNT & WRITE BUFFERX#%*
7% DISPLAY BEFORE & AFTER RESULTS OF DECOMPRESSION &*

>¥ AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD +*#
OKOOOOEEEAESEEEEEEE

Ni=Ni+N *TALLY INPUT CHAR COUNT

T=N-J+1 *NET DIFFERENCE IN BUFFERS

Ti=Ti-T *SAVE COUNT FOR SUMMARY
FOR I= 1 TO J-1

PRINT #5, O8(I);
NEXT I

PRINT #3, ""
RETURN

© CLOSE: OPEN FS FOR INPUT AS #2

O PRINT "FILE "3F%;" BEFORE DECOMPRESSION: ”
O LINE INPUT #2, X%%
Oo IF EQF¢(2) THEN 9060
O PRINT X%

a GOTO 90290

O PRINT X#:QPEN "FACKD. DAT" FOR INPUT AS #3

0 PRINT "FILE "3F%;" AFTER DECOMPRESSION: "
© LINE INPUT #3,0%
O IF EOF (3) THEN 7998

O PRINT OF

Oo GOTO 7080

9999S FRINT O¢:PRINT T13" TOTAL CHARACTERS INSERTED"
9999 CLOSE: END

Figure 2.27 (continued)

ENTER ASCII. FILENAME. EG, FPACKC. DAT
2? PACEKC. DAT

PATIENCE — INPUT PROCESSING

FILE PACKC.DAT BEFORE DECOMPRESSION:

1 "+, 73 Ekxf eCskg eC3Eq 2

2 *—-Orir+z —Z8k) kWeiwRdWIsVao

3 *$$¢CDEFGHIPQ@RSTUVWXYooD

FILE PACKC.DAT AFTER DECOMPRESSION:

1 °4+$45, 456, 799. 97% 65433245678987659433345678790
2 *-$9935672.57999,. 45$386, 296, 573.8577526457497235609
3 °$42444546474894950515255545556575857900

55 TOTAL CHARACTERS INSERTED
Ok

Figure 2.28 Sample execution of the PACKD.BASprogram

that the first three lines in Figure 2.27 are identical to the last three lines of
Figure 2.26 while the last three lines of Figure 2.28 that represents the
decompressed data are identical to the top three lines of Figure 2.26. Again,
this is no surprise since the decompression program simply reconstructs the
compressed datainto its original form. The reader should also note that the
61 characters denoted as eliminated by half-byte compression in Figure 2.26

68

69

 66

do not take into account the additional compression characters required tg
indicate each occurrence of half-byte encoding. If this was done, then a tota]
of 55 characters would have been eliminated which matches the 55 characte;
insertion count in Figure 2.28.

2.5 DIATOMIC ENCODING

Asthe name implies, diatomic encoding is a data-compression process where-
by a pair of characters is replaced by a special character. The bit structure
of the special character represents the encoded pair of characters and, thus,
permits a 50 per cent data reduction or a 2:1 compressionratio.

Since the numberof special characters that can be employed to represent
different types of compressionis limited, the theoreticalpotential of obtaining
50 per cent data reduction by substituting 1 character for every pair of
characters cannot be obtained. To maximize one’s potential compression
requires a prior understanding of one’s data composition. Once one knows
the expected frequency of occurrence of pairs of characters, then the most
commonly encountered pairs can be selected as candidates for diatomic
encoding. The actual numberof pairs selected will depend upon the number
of special characters available to represent those pairs of frequently occurring
characters.

Operation

A block diagram representation of the diatomic encoding process will be
found in the top portion of Figure 2.29. In the lower portion of that
illustration is a flowchart denoting the major processes required to encode
data diatomically. Note that the flowchart assumes that a continuous input
data stream occurs. In actuality, the input and output buffers would be of
finite length. Since the output buffer will always be less than or equal to the
character size of the input buffer, one may be able to assign a pointer which
will be incremented through the input buffer. Upon reaching the end of that
buffer, the contents of the output buffer will be transmitted while the input
buffer will be refilled with additional non-compressed data.

Pair frequency of occurrence

The major problem in the implementation of diatomic encodingis in deter-
mining what pairs should be represented by special characters. To perform
diatomic encoding and obtain a meaningful compression ratio requires the
the assignment of special characters to represent the most frequently occur-
ring pairs of characters one will encounter in the original data steam. This
means one must have some prior knowledge concerning the type of data to
be operated upon so that one can base the assignment of special characters
in a meaningful manner (Snyderman and Hunt, 1970).

69

70

A. Diotomic encoding process

Character|Choracter =>

& Diotomie encoding flow chart

 OGTAIN PAIR OF

PLACE FIRST
CHARACTER IN
OUTPUT BUFFER

::B

 i|SUBSTITUTION
CHARACTERIN
OUTPUT BUFFER

SHIFT SECOND
CHARACTER INTO
FIRST POSITION

GET NEXT
CHARACTER

Figure 2.29 The diatomic encoding process

To assist readers in selecting the appropriate character pairs to replace
with special characters, several tables of pair combinations are presented in
this section. In Table 2.7, the reader will find a table containingthefirst 25
most frequently encountered pairs of characters in a 12 198 character English
language text (Aronson, 1977). This table, prepared by Jewell, denotes the
rank, pair combination, number of occurrences of the pair and the occur-
rences per thousand data characters (Jewell, 1976).

Since many users of data transmission will transfer program files in addition
to textual data, an analysis of the paired character composition of BASIC,
COBOL and FORTRANprograms is presented. The analysis of these
programs was obtained by the execution of the DATANALYSIS program
written by 4-Degree Consulting located in Macon, Georgia. This program
performs a compression susceptibility analysis upon data files and the paired
character analysislisted in Tables 2.8 to 2.11 is but one of several compression

70

71

68

Table 2.7 Jewell character combination pairing

Occurrences

Rank Combination Occurrences per thousand

1 E__ 328 26.89

2 _T 292 23.94

3 TH 249 20.41

4 _A 244 20.00

5 S__ 217 17.79

6 RE 200 16.40

7 IN 197 16.15

8 HE 183 45.00

9 ER 171 14.02

10 __I 156 12.79

11 __O 153 12.54

12 N__ 152 12.46

13 ES 148 12.13

14__B 141 11.56

; 15 ON 140 11.48
16 TT 137 41.23

17 TI 137 11.23

18 AN 133 10.90

19 D__ 133 10.90

20 AT 119 9.76

21 TE 114 9.35

22 a© 113 9.26
23 _§ 113 9.26

24 OR 112 9.18
25 R_ 109 8.94

Note:—represents a space character

algorithms analysed by that software package. The listing of the software
statements in the DATANALYSIS program will be found in Appendix B
(p. 162).Its use will facilitate the selection of one or more compression
algorithms based upon an analysis of the susceptibility of one’s anticipated
or actual data traffic to several compression algorithms.

Table 2.8 shows the paired character compression analysis results based
upon an examination of a 9322 character BASIC program.In general, most
BASIC language programs contain a high proportion of input messages and
prompts as well as output headings. This structure makes the paired character
consistency form a modified English text paired character consistency. Nor-
mally, the degree of deviation from normal English textual data pairs results
from the ratio of computation statements to input/output statements in the
program. In Table 2.8, note that °__P’ ‘NT’ and ‘RI’ are the most commonly
encountered pairs. All three pairs come from PRINT statements in the
program with the pair ‘___P’ resulting from a programmerusing a space to
precede each PRINT statement. Similarly, the BASIC language statement

71

72

69

Table 2.8 Paired character compression analysis, basic data file of 9322 characters
| Pair/count Pair/count Pair/count Pair/count Pair/count Pair/count
; _P13 NT 13 RI 13 _T 12 =| 11 | 8
: O__ 7 HE 7 ___B 6 __§ 6 T_ 5 N& 5

__A 5 F__ 5 __E 4 AB 4 BU 4 EX 4

_L 4 IN 4 10 4 NI 4 __N 4 _U 4
TO 4 TS 4 __F 3 R__ 3 S__ 3 ND 3

E__ 3 __R 3 OF 3 UR 3 OU 3 _C 3

SE 3 ET 3 __O 3 _D 2 NP 2 NS 2

EL 2 AC 2 ON 2 IR 2 OT 2 IT 2

LI 2 RO 2 LL 2 AT 2 NG 2 UT 2
IM 1 AL 1 AN 1 __K 1 BO 1 IU 1

LA 1 LD 1 BR 1 M__ 1 LO 1 LU 1

MB 1 CK 1 NE 1 CO 1 CT 1 NO 1

, DO 1 ED 1 __xX1 NU 1 EN 1 OL 1
' EQ 1 ER 1 Os 1 ES 1 Y__ 1 PP 1

PS 1 PT 1 __Y¥ 1 GH 1 __G 1 So 1

SS 1 ST 1 TA 1 TE J TH 1 TI 1
HI 1 HT 1 TU 1 UG 1 UI 1 UL 1

UN 1 IA 1 VA 1 xx 1 YE 1 YI 1

ZE 1 oR 0 ROR 0 sek 0 OR 0 eK 0

Total combinations found: 288

Note:—represents a space character

of the form ‘IF X:Y THEN’can be denoted by the frequently encountered
pairs ‘___I’, ‘F___’ and ‘HE’.

In Table 2.9, the results of a similar analysis of a 20 465 character FOR-
TRANprogram is presented while Table 2.10 denotes the pairs encountered
when a 54417 character COBOL program wasanalysed. In the FORTRAN
program analysis, common pairs result from such frequently used statements
as ‘FORMAT’, ‘WRITE’ and ‘READ’. Similarly, commonpairs encountered
in the COBOL program are normally a result of the ‘PICTUREIS’state-
ment. Finally, Table 2.11 shows the results of an analysis of the merger of
the individual BASIC, FORTRAN and COBOLprogramsinto oneentity.
Here, the 230 paired characters represent 16 266 total combinations. Since
the file contained a total of 84 204 data characters, diatomic compression of
the 230 most frequently encountered pairs would result in a 19.3 per cent
(16 266/84 204) data reduction. Note that the 12 most frequently encountered
pairs represent a potential data reduction of 4388 characters or approximately
25 per cent of the theoretical reduction obtainable by diatomically encoding
the 230 most frequently encountered pairs. From this, it is apparent that
diatomic encoding can be effectively used in conjunction with other com-
pression techniques by selecting only a portion of the most frequently
expected pairs of characters for representation by special compression indi-
cator characters.

72 |

73

70

Table 2.9 Paired character compression analysis, FORTRANdata file of 20 465
characters

Pair/count Pair/count Pair/count Pair/count Pair/count Pair/count

_I 167 _F 116 TE 106 UT 105 OR 99 OU 99
RI 96 _W887 MA 86 _C &6 IN 86 TP 81
IR 69 HA 66 __§ 61 Oo ~=-60 ER 60 Cc. 657
IT 5] HE 48 EN 46 RA 44 _D #2 EW 42
AL 40 RE 39 SI 38 IX 38 ON 37 —_T 36
HS 35 HD 34 TO 34 SU 33 _R 32 T 31
IM 30 __B 30 TA 30 HB 30 HF 30 HN 30

HJ 28 L— 27 IO 26 —G 26 EQ 25 NY 29
—O 25 UB 25 TY 25 LE 24 —_E 24 —P 23
AN 23 — 23 NW 23 ND 22 CO 22 SE 22
A 22 Ys 21 AT 21 R=. 20 S__ 20 IS 20
RO 20 IC 20 NC 20 PR 20 ED 19 TR 18
G 18 UR 18 ES 18 OT 17 ET 16 NG 16

LI 13 —_J 13 FI 12 PF 12 GO 12 —_K 12
OW 12 ST 12 —_M il IL 11 SS 11 LA 11
Al 11 EP 11 NS 11 DA 11 EA 10 EC 10
TS 10 TY 10 FO 10 UE 10 Fs. 10 UN 10

Total combinations found: 4370

Note: ___represents a space character

Communications hardware implementation

The use of a diatomic data-compression technique was implemented by
Infotron Systems in combination with several other compression algorithms
on their TL780 statistical multiplexer.

In a conventional time division multiplexer, data from each input channel
is assigned to a slot on the high-speed multiplexed outputline, regardless of
whether or not the bandwidth is used. Since each input line is assigned a
corresponding time slot, implementing compression on the high speed link
will not increase any individualline efficiency. If compression is implemented
on the low-speed line side, normally referenced as the channelside orlevel,
the efficiency of only each low-speed compressedlink will be increased, since
each link is reserved a fixed slot on the high-speed side. This is illustrated
in the upper portion of Figure 2.30.

In a statistical multiplexer, the bandwidth for a particular channel on the
high-speed link is used only when the channelis transmitting data or control
signals. Therefore, compression of one or more low-speed links permits the

73

74

71

Table 2.10 Paired character compression analysis, COBOL program containing 54 417

characters

Pair/count Pair/count Pair/count Pair/count Pair/count Pair/count

__P 542 _F 391] IC 342 AL 316 IN 309 RE 297
E_—s- 286 VV 251 __XK 243 —_W 239 LE 235 R235
__T 231 IL 229 UE 229 TE 221 PG 212 __O 211
NT 204 M190 AR 186 RO 186 O_=182 UT 178
CN 164 _C164 CT 156 LN 153 RI 152 __M 15]
CH 149 _L148 OV i144 cI 141 FO 139 TY 137
—_B 136 OR 129 —_S 129 —__I. 122 _A {18 TO 110
ER 109 G 108 NG 106 RM 102 EF 101 CE 97
AD 91 == 91 VA 90 PA 88 ES 87 AC 84
NC 84 TO 8 Fs 79 AN 79 TA 67 DV 66
FI 63 S__ 61 WR 60 TI 59 ST 57 _—E 55
YY ~=-54 PU 52 —_R50 BU 49 QU 48 OM 46
ON 44 OT 43 AT 43 OF 42 CO 40 RK 40

—_Z 33 —_G 33 ME 32 IV 30 RP 30 EN 30
ND 29 —_U 28 BE 27 OP 27 L__ 25 HW 24
EL 24 TP 23 SE 23 CA 22 —H 22 —D 22
TH 22 DD 21 TR 20 ET 20 VE 20 VI 20
EC 20 YI 20 _N 19 GS 19 IT 19 Cc »=19
GE 18 WA 18 UA 18 SH 18 —_K 17 IM 17

LI 14 IO 14 _Q 14 UR 14 DI 13 FL 13

Total combinations found: 12 509

Note: ___represents a space character

statistical multiplexer to utilize less of the bandwidth of the high-speedline
for the low-speed link being compressed. The compression of the low-speed
link at the channel side will then result in a lower, high-speed line rate or
permit more low-speed channels to be added since compression reduces
the total number of data characters transmitted over the high-speed line.
Conversely, if compression is performed at the high-speed line level, the
number of characters transmitted on that link will be reduced. This will

permit a lower composite high-speed operating data rate or permit additional
low-speed channels to be added. While some vendors have elected to com-
press the high-speed link, Infotron uses a diatomic encoding process com-
bined with additional data-compression techniques on their low-speed chan-
nel adapters to perform compression at the channel level. This technique
permits the user to select which channels, if any, should be compressed.

In the Infotron technique, statistical multiplexer compression occurs
through the use of multiple-space codes, repeated character codes, common
character pair codes (diatomic encoding) and packed decimal codes (half-

74

75

72

Table 2.11 Paired character compression analysis, combined 84 204 character file

Pair/count Pair/count Pair/count Pair/count Pair/count Pair/count

—_P 578 \—F 510 IN 399 IC 362 AL=357 RE 336
Es 331 TE 328 —W 326 I 297 UT 285 —T 279
RI 261 LE 259 R— 258 —_V 255 —C 253 —_X 252
O__ 249 NY 242 IL 240 UE 239 —O 239 OR 231
AR 215 PG 212 RO 208 —_S 196 M_— 194 CT=:185
—B 172 ER 170 CN 164 CH=163 —_M 162 —T1 i159
LN 153 FO 149 TO 148 TY=147 —_A 145 OV 144
CI 141 OU 135 G 126 — 125 NG 124 TW 118
CE 107 ES 106 RM 105 TP 104 NC 104 AN 103

EF 102 AC 101 PA 98 TA 98 MA 94 Fs 94
AD 91 VA 91 TI 89 —R 85 S— 84 —_E 83
ON 83 EN 77 HA 77 C_ 76 Y._ +76 FI 75
IT 72 IR 71 ST 70 DV 66 PU 66 AT 66

—D_ 66 Co 63 OT 62 HE 62 RA 61 —_G 60

WR 60 QU 56 ND 54 OF 34 BU 54 OM 33
L— 32 —N 31 DW 49 SE 48 IM 48 [0 44
IV 43 SI 41 NE 41 EQ 41 RK 40 NW 40
ET 39 IX 38 TH 38 TR 38 ME 38 HD 37

AS 37 LS 36 HR 36 UB 35 HS 35 CD 35
—U 35 ED 35 _Z 34 SU. 33 HO 33 HP 32
HY 32 UR 32 IA 31 IS 31 HI 31 OP 31

HF 30 HB 30 HN 30 PR 30 HC 30 RP 30

_K 30 EC 30 LI 29 HV 29 HH 29 BE 29

Total combinations found: 16 266

Note: __ represents a space character

byte encoding). In addition, since data must be queued at the channellevel
to compressit, it becomes necessary to transmit control signals through the
data path of the high-speed link to preserve the time relationship between
data and control signals. The addition of these signals reduces the overall
compression efficiency. Since each channel adapter on the multiplexer
requires a buffer area and a microprocessor to effect compression, com-
pression of a large number of low-speed channels becomes more expensive
from a hardware standpoint than compressing data at the high-speed line
level where only one buffer area and a single microprocessor are required.

The Infotron channel adapter that performs compression only operates on
asynchronous ASCII coded data. To obtain a sufficient number of special
compression indication codes, the parity bit in the normal 8-bit ASCII code
is stripped for transmission. This results in 128 character codes that can be
used to represent and indicate compressed information. The stripping of
parity by the microprocessor within the multiplexer has no effect on errors
since the multiplexer employs an HDLC-like frame transmission on the high-
speed link level to include generating a cyclic redundancy check of trans-
mitted frames.

75

76

 Low- speed
links

BA

High - speedlink

Low - speed
links

Be

Statistical
multiplexer

High- speed link

Figure 2.30 Multiplexing and compression. If compression occurs on one or more
low-speedlinks, the effective information transfer ratio of those individual links will
increase when a conventional TDM is employed. Whenstatistical multiplexers are
employed, data may be compressed at the individual channellevel or overall at the

high-speed line level

In the Infotron system, codes are assigned to represent groups of 2 to 7
consecutive spaces for various multiple-space compression code schemes.
These codes are most effective when transmitted data has been formatted

in columns separated by groups of spaces or for textural information that
contains paragraph indentations and margin justification through the use of
spaces.

To represent repeated characters, 16 codes were assigned to represent
groups of 3 to 18 consecutive identical characters. This code is followed by
the character to be repeated, in a similar way to run-length encoding, and
results in a 2-byte code. To represent common character pairs, 48 codes
have been assigned. The characters pairs used by Infotron are listed in Table
2.12. With the exception of the decimal point space and carriage return line

Table 2.12 Common character pair codes
compressed by Infotron: both upper and

lower case

S__ —_T IN TE AN
T_ —_A ED ER TI

E__ __N AT RE ON

R__ __O ES TH CRLF

DW —__I SE HE

Note: __ represents a space character. CRLF
denotes carriage return followed by line feed

76

77

74

feed pairs, all other pairs include both upper and lower case characters.
Lastly, 16 codes are assigned to specify when 4 to 19 characters are in

packed decimal (half-byte) format. Here, characters are represented by 4-
bit codes packed 2 per 8-bit byte. In addition to numerics, the dollar sign,
period, comma, per cent and diagonal sign and space are stripped of the
leading 4 bits if they occur in the string and are included in the packed
format.

Although the effectiveness of the compression technique employed obvi-
ously depends upon the data to which the technique is applied, using multiple
techniques increases the possibility of being able to use one technique
effectively upon a portion of the data stream. During channel adapter
compression tests, a compression ratio of up to 1.8 was noted by Infotron,
indicating that only 55 per cent of the input data stream was actually
transmitted.

Programming examples

The BASIC program PAIRC.BASlisted in Figure 2.31 was developed to
perform diatomic compression based upon the Jewell character combination

10 REM PAIRC. BAS PROGRAM
20 DIM Off132)

40 WIDTH 80:CLS

40 TAKER ARMAIN ROUTINE SEE RE ERK AE ERR ER EEE K
sO 7X THIS ROUTINE READS RECORDS FROM AN ASCII &

60 ** FILE INTO A STRING CALLED X# WHICH IS x
70 °* THEN PASSED TO SUBROUTINES FOR COMPRESSION

BO SIOIOC ORRSERRREEEEE

70 PRINT “ENTER ASCII FILENAME. EG, PAIR.DAT"
100 INPUT F%: GPEN F& FOR INPUT AS #2

105 GPEN "PAIRC.DAT" FOR OUTPUT AS #5

110 PRINT “PATIENCE — INPUT PROCESSING"

115 GOSUB 400 *PAUSE TO SET UP TABLE
1706 IF EQF‘2) THEN GOTO 99000

i30 LINE INPUT #2, X&
140 N= LEN(X#)
130 GOSUB 186

140 GOSUBR 3700
170 GOTO 120

180 ****x**eDI ATOMIC COMPRESSION SUBROUTINES kX 4 XxX
190 *%* THIS ROUTINE PROCESSES RECORDS FROM X# +*
200 *% AND COMPRESSES OUT COMMON FAIRS ¥
210 ** USING Of AS FHE GUTFUT BUFFER. x
220 TRAEAERA EAREEAERKEE EKER EK
230 [=1 *RESET INDICES
“40 FOR J= 1 TO N-1I *STEP THRU RECORD
250 AS= MIDH(X#, J, 2) "EXTRACT A PAIR

Figure 2.31 PAIRC.BASprogramlisting

77

78

75

260 FOR K = 1 TO 25 “SETUP PAIR TABLE LOOP

270 IF At=P$ CK) THEN GOSUB 250 °’1S5 INPUT PAIR IN TABLE?
290 NEXT E "NO — TRY NEXT

290 IF M = 1 !HEN 310 °IF MATCH FLAG SET?

300 OF(1) = MIDS(AS, 1,1) *NO-STUFF 1ST CHAR IN BUFFER
Big I=I+14 "BUMP INPUT STRING INDEX

a20 M=G "RESET MATCH FLAG

320 NEXT J 7GO BACK FOR MORE

340 RETURN * DONE

250 M=1 "SET PAIR MATCH FLAG

SSS 7ERRATAEEEEEREEEE
360 7 INSERT COMPRESSION NOTATION IN OUTPUT BUFFER

S65 VY = kK + 224 "INDEX OUT TO SUBSTITUTE CHAR

B70 OF¢€1) =CHRS(V) "INSERT PAIR SUBSTITUTION

280 J=J+1 "FORCE INPUT SHIFT 2 OVER PAIR

S90 K = 25 "FORCE END OF PAIR SEARCH

295 RETURN "GG BACK FOR MORE

400 DIM P$(25) *JEWELL CHAR. COMBINATION FAIRS

410 DATA "E "," T",7TH," A", "S ",RE,IN,HE,ER," I"," O","N ",ES,
420 DATA " B",ON,"T ",TI,AN,"D ",AT, TE,” C"," S",OR,"R "™
25 FOR I = 1 TO 25 >SETUP PAIR TABLE

430 READ Z% *GET COMMON FAIR

440 PH(I) = 7%: NEXT I “AND STUFF INTO PAIR TABLE
450 RETURN *DONE — TABLE COMPLETE

900 "¥4EXTALLY THE COMPRESSION COUNT & WRITE BUFFERS&S%44%%
910 *x DISPLAY BEFORE & AFTER RESULTS OF COMPRESSION x

920 °% AND SHOW THE NET RESULTS GRTAINED BY EACH METHOD ¥*

G30 PRR RR ERRKAAREARKEEEE EK

931 N1i=N1+N "TALLY INPUT CHAR COUNT

32 T=N-I+1 *NET DIFFERENCE IN BUFFERS

936 T1=T1+T *SAVE COUNT FOR SUMMARY

940 FOR I=1 TO J-1

950 PRINT #3, O8(1);
960 NEXT I

9455 PRINT #3, ""
9709 RETURN

1000 PRINT

1010 PRINT "**RUN-LENGTH ENCODING SAVED "373" CHARACTERS"
1020 RETURN

7000 CLOSE: OPEN FS FOR INPUT AS #2

9010 PRINT "FILE "3F%3" BEFORE COMPRESSION: "
97020 LINE INPUT #2, X%%
9030 IF EOF(2) THEN 9040

7040 PRINT X#
9030 GOTA Fa2o

9060 FRINT X$:0PEN "PAIRC.DAT" FOR INPUT AS #

9070 PRINT "FILE ";F%;" AFTER COMPRESSION: ™
9080 LINE INPUT #3,0%
9090 IF EOF(S) THEN 9978

7100 PRINT OF

9110 GOTO FO08Oo

7998 PRINT O®8:PRINT Tis" TOTAL CHARACTERS ELIMINATED FROM ";
9999 PRINT Nis"OR "SINTC(T1/N1)*#100) 5 "4%":CLOS5SE>5END

ted

Figure 2.31 (continued)

78

79

76

pairing previously listed in Table 2.7. Although this example of diatomic
compression was programmed to use the Jewell character combination
pairing, it is easily modified to compress data based upon the use of other
character pairs that may more appropriately reflect the reader’s data,

Similar to other compression routines previously presented in this chapter,
the diatomic compression program was developed using subroutines linked
together to providedistinct code modules that can be easily analysed by the
reader. After the datafile is opened in line 100, the subroutine commencing
at line 400 is invoked. This subroutine initializes the P$ array elements to
the Jewell character combination pairing, resulting in 25 character pairs
assigned to the array P$. The reader can change the data pairs contained in
lines 410 and 420 of the subroutine, however, if the numberof data pairs is
changed from 25, the appropriate indices in the program must be changed
to reflect the actual numberof pairs. In addition, the dimension size of the
P$ array must be changed to reflect the new numberofpairs to be used in
the diatomic compression routine. Thus, lines 400 and 425 would require
modification in the subroutine previously discussed when a newset of charac-
ter pairs are entered in lines 410 and 420 whose sum differs from 25.

After a line of datais readin line 130, its length is determinedin line 140,
The subroutine invoked in line 150 processes the line of data read from the
file commencing in line 230. After the indices are reset in line 230, the FOR-
NEXT loop bounded by lines 240 to 330 steps throughthe record, extracting
pairs of data in line 250. The inner FOR-NEXTloop bounded bylines 260
and 280 comparesthe pair extracted from the record in line 250 to the pairs
contained in the pair table previously set up by the subroutine in line 400.
The reader should note that the outer limit of 25 in line 260 should also be

changedif the numberofpairs used in the program changesfrom that value.
If a pair of characters extracted from the record matchesa pair in the pair

table, the subroutine in line 350 is invoked. Line 350 uses the variable M to
denote that a match occurred. In line 365, the variable V is set to the sum
of the variable K plus 224. Here the value of K is the position in the pair
table where the pair extracted from the record matched a predetermined
pair, The reason 224 was added to this value was for clarity of display of
the results of this compression routine. That is, italics are printed from
ASCIL 225 upward on many printers -including one printer used by the
author. Thus, the pair ‘E space’ is represented by anitalic ‘a’ when printed,
and so on.

The pair substitution character is inserted into the appropriate element of
the 0$ array as indicated in line 370. Note that J is incremented by 1 in line
380 to force a shift over the current position in the input record. Next, line
390 sets K to 25 to terminate the pair comparison in the FOR-NEXTloop
bounded by lines 260 and 280, from which the compression routine was
called and to which it returns upon execution of line 395.

Since the variable M was set to 1 to indicate a pair match occurred, the
termination of the FOR K loopcauses the execution of line 290 to result in

79

80

77
ENTER ASCIT FILENAME. EG, PAIR. DAT
9 PAIR. DAT
PATIENCE — INPUT PROCESSING
FILE PAIR. DAT BEFORE COMPRESSION:
1 TO BE OR NOT TO BE THAT [5 THE QUESTION
2 THE RAIN IN SPAIN FALLS MAINLY IN THE PLAIN
FILE PAIR.DAT AFTER COMPRESSION:
~roné- NO+TONAd RenBOUe==
ore RATR@SPAT FALLoMATLYSon@PLAT

3006C«X TOTAL CHARACTERS ELIMINATED FROM 71 OR 32 4%
Ok

ENTER ASCII FILENAME. EG, PAIR. DAT
? PAIR. DAT
PATIENCE — INPUT PROCESSING
FILE FPAIR.DAT BEFORE COMPRESSION:
1 TO BE OR NOT TO BE THAT I5 THE QUESTION
2 THE RAIN IN SPAIN FALLS MAINLY IN THE PLAIN
FILE PAIR. DAT AFTER COMPRESSION:
irOne: NOATONATI RonmBOUGs=
2rg RATR@aSPAr FALL@MATLYtongPLaAt

29 TOTAL CHARACTERS ELIMINATED FROM 84 OR SS Xx
Ok

Figure 2.32 Sample execution of PAIRC.BAS program as displayed on a monitor

a branch to line 310. Here the index used for the 0$ array is increased by
one and the match flag is reset to zero prior to the loop terminating.

Figure 2.32 illustrates how the execution of the diatomic compression
routine will appear on one’s monitor while Figure 2.33 illustrates the screen
image after it has been ‘dumped’ to a printer that outputs ASCII values
from 225 upward as italics. Thus, some readers may prefer to use the
execution illustrated in Figure 2.33 to compare the compression characters
in italics with respect to the original data and the Jewell character com-
bination pairs used in the program. Since an italic lower case ‘a’ represents
the first combination pair while an italic ‘b’ represents the second pair and

ENTER ASCII FILENAME. EG, FAIR. DAT
? PAIR. DAT

FATIENCE - INPUT PROCESSING

FILE PAIR.DAT BEFORE COMPRESSION:
i TO BE OR NOT TO BE THAT IS THE QUESTION
2 THE RAIN IN SPAIN FALLS MAINLY IN THE PLAIN
FILE PAIR.DAT AFTER COMPRESSION:

1bOeay NOgTOoacuyecaGUmrp
Zhh RAg JISPAg FALLeMAgLY jJ caPLAg

30 TOTAL CHARACTERS ELIMINATED FROM 91 OR 32%

Figure 2.33 Sample execution of PAIRC.BAS program when printed using a printer
that displays characters greater than ASCII 224 asitalics

80

81

78

so on, it should be easier to use the second example of the PAIRC.BAs
program execution for readers who wish to follow the logical flow of the
program in detail.

Decompression

The program listing of PAIRD.BASis listed in Figure 2.34, As indicated by
the naming conventions used in this book, this program performs decom.
pression upon previously compressed pairs of characters.

From an examination of the program codinglisted in Figure 2.34, the
reader will note that the construction of the code modules for decompression
closely resemble the previously examined compression program. Although
our programming goal was to do this to facilitate a comparison between
programs, due to the relationship between compression and decompression
such modular coding relationships will normally be the rule and not the
exception.

After opening files for input and output, the subroutine beginningat line
900 is invoked by line 115 of the program. This subroutine simply builds the
P$ table that will contain the Jewell character combination pairs that the
program will search for. In line 130, the familiar LINE INPUTstatementis
used to obtain a record from the inputfile. Next, line 140 is employed to
determine the length of the record while line 150 invokes the subroutine
beginning at line 180 which performs the actual decompression of data.

The FOR-NEXTloop boundedby lines 240 and 310 searches through the
record previously extracted from the inputfile on a character by character

10 REM PAIRD.BAS FROGRAM
20 DIM O8 (137)
30 WIDTH 8O:CLS

40 * EEEAKERAMAIN ROUTINESESSEERASERE MAREK ERE EES
sO ** THIS ROUTINE READS RECORDS FROM AN ASCII x
60 *4 FILE INTO A STRING CALLED X# WHICH IS x
7 *% THEN PASSED TO DECOMPRESSION SUBROUTINE x
BO * SRA KAMER AAA ERE RARER AEE E EEREEE
90 PRINT “ENTER ASCII FILENAME. EG, PAIRC. DAT"
100 INFUT F%: OPEN F% FOR INPUT AS #2
105 OFEN "PAIRD.DAT" FOR OUTPUT AS #3
110 PRINT "PATIENCE — INPUT PROCESSING"
115 GOSUB 500

20 IF EOF(2?) THEN GOTO 9000
130 LINE INPUT #2, X%
140 N= LEN(X#)

150 GOSUB 1980

160 GOSUE 900

i770 GOTO 120

Figure 2.34 PAIRD.BASprogramlisting

81

82

180

190

200

216

220

230
240

Po

2450

290

20G

aid

320

355

360

aOo

3/0

380

a9

400

405

410

aO0

oi

o20

mao}

o40

aa)

340

Foo
710
920

920

9a1

Gae

Fad
940

gad

940

965

970

79

* xxx XDTATOMIC DECODING SUBROUTINES 42k aux

7* THIS ROUTINE PROCESSES RECORDS FROM XS &
** AND DECOMPRESSES PAIR-ENCODED CHARACTERS*#

** USING Of AS THE OUTPUT BUFFER. x

7EXERTELEN

K=12d=1:V=6 “RESET INDICES
FOR I= 1 TON *STEF THRU RECORD

At= MIDS(X$,1,1) "EXTRACT A CHAR
IF AS> CHR#(224) THEN 360 “COMPRESSED PAIR?

O% (4) =AS "STUFF IN OUTPUT BUFFER

J=J+1 "RUMP BUFFER INDEX

NEXT i *60 BACK FOR MORE

RETURN "END OF STRING

7 EEKKAK KAA KAK ERE RAE RARER ARERR KAKAEERE REE ENE

*DECGDE COMPRESSION NGTATION FG OUTPUT BUFFER

KKKKEARAAK KER AER ADR KAREEEREER ERE EEE
K= ASC (AS) *GET ORDINAL EQUIV.

K= K-224 *SUBTRACT FOR INDEX
OS(J)= PSE) "STUFF PAIR IN BUFFER

J= d+1 *BUMP OUTPUT INDEX

V= V+1 "SUM VARIABLE COUNT

GOTO 310 * DONE

DIM P#(25) *JEWELL CHAR. COMBINATION PAIRS

DATA "E "," T",TH," A", "S ",RE,IN,HE,ER," I"," O","N ",ES,
DATA " B",ON,"T ",TI,AN,"D ",AT, TE,” C"," S",OR,"R "
FOR I = 1 TO 25 *SET UP PAIR TABLE

READ 7% 7GET COMMON PAIR

P#(I) = Z%: NEXT I “AND STUFF INTO PAIR TABLE

RETURN *DONE —- TABLE COMPLETE

7 ¥X4e2KTALLY THE DECOMPRESSION COUNT & WRITE BUFFERX&XX
7x DISPLAY BEFORE & AFTER RESULTS OF DECOMPRESSION x
"x AND SHOW THE NET RESULTS GBETAINED BY EACH METHOD #

>EKERERE TAKARA MERA AEA AA REE ERATKEES
Ni=Ni+N *TALLY INPUT CHAR COUNT
TH=N-J+1+V *NET DIFFERENCE IN BUFFERS
Ti=T1-T "SAVE COUNT FOR SUMMARY
FOR I= 1 TO J-1

PRINT #3, O8(1);
NEXT I

PRINT #3, "™
RETURN

9000 CLOSE: OPEN F® FOR INPUT AS #2

9010 PRINT "FILE "3;F%;" BEFORE DECOMPRESSTON: ”
9020 LINE INPUT #2, X%%
9030 IF EOF (2) THEN 70460
9040 PRINT X%

FO50

7060

GOTO 7020

PRINT X#:OPEN "PAIRD.DAT” FOR INPUT AS #3

9070 FRINT "FILE "3F%;" AFTER DECOMPRESSION: "
7080 LINE INPUT #3,0%
9090 IF EOF (3) THEN 97998

7100 PRINT OF
9110 GOTO 7080 7

9998 PRINT O$:FPRINT ABS{T1)3" TOTAL CHARACTERS INSERTED"
7999 CLOSE: END

Figure 2.34 (continued)

82

83

80

ENTER ASCII FILENAME. EG, FPAIRC. DAT
7 PAIRC. DAT

FATIENCE —- INPUT PROCESSING

FILE PAIRC.DAT BEFORE DECOMPRESSION:

1rOnk- NOATONATA tereGues=

SP RAarseSPAr FALL oMATLYConePLAar
FILE FAIRC.DAT AFTER DECOMPRESSION:

i TO BE OR NOT TO BE THAT IS THE QUESTION

< THE RAIN IN SPAIN FALLS MAINLY IN FHE PLAIN

29 TOTAL EHARACTERS INSERTED

Ok

Figure 2.35 Sample execution of PAIRD.BAS program

basis. This is accomplished by the use of the MID$ function in line 250. If
the character extracted from the record exceeds a value of 224, it 1s assumed

that diatomic or paired compression has occurred. This assumption is based
upon the selection of each character beyond ASCII 224 to represent a pair
of characters in this coding example. If the character extracted from the
record equals or is less than ASCII 224, that character does not represent a
previously compressed pair of characters. Thus, line 290 simply places the
extracted character into its appropriate position in the output buffer.

When an ASCII character greater than 224 is encountered, the branch to
line 360 in the program results in the actual decompression of a previously
compressed pair of characters. In line 370, the numerical value of the
character that actually represents a pair of characters is obtained. Next, line
380 subtracts 224 from the numerical value of the character to obtain the

appropriate index in the paired table (P$(25)). Line 390 places the pair of
characters that was previously represented by one character into the output
buffer while lines 400 and 405 increment the index position in the output
buffer and the variable V which is only employed to compute the difference
in size between the input and output buffers and is not required for decom-
pression.

Figure 2.35 illustrates the execution of the PAIRD.BASprogram asit
would appear on our monitor using the data file PAIRC.DAT as input.
PAIRC.DAT was created by the PAIRC.BAS program. Thus, it is of no
surprise that the two compressed lines of data at the top of Figure 2.35
match lines 1 and 2 in the lower part of Figure 2.32, while lines 1 and 2 at
the bottom of Figure 2.35 match those lines at the top of Figure 2.32.

2.6 PATTERN SUBSTITUTION

This compression technique is basically a sophisticated form of diatomic
encoding. Here, a special character code is substituted for a predefined
character pattern. The employmentof the pattern substitution compression
technique can be highly advantageous when one is transmitting program
listings and other types of data files containing known repeating patterns.

83

84

81

The advantage offered by pattern substitution is best understood by exam-
ining a higher-level language such as FORTRAN. In any FORTRAN
program,a very high probability exists that one or more types of statements
will be encountered containing common key words such as ‘READ *, “‘WRI-
TE’ and ‘FORMAT’, amongothers. Instead of transmitting the characters
of these key words on a character by character basis each time they appear,
one of the unassigned characters from the employed character set can be
substituted. When pattern substitution is applied to language text, common
key wordsor phrasescan similarly be replaced. For English text transmission,
such commonly encountered wordsas ‘and’, ‘the’, ‘that’ and ‘this’ would be
among the first candidates for substitution.

The pattern table

To employ pattern substitution, a pattern table is required. This table con-
tains a set of list arguments and a set of function values. Each function value
is a special compression indicator character which represents the compressed
value of a particular argument (Aronson, 1977). Figure 2.36 shows an
example of the use of a pattern table. Although each list argument was of
similar length, this table can be expanded to include many additional entries
of various character length. Strings of 4, 5, 6 and more blanks, for example,
could be assigned values represented by different special characters as well
as patterns of alphanumeric data.

Encoding process

To obtain the compressed data stream, the source data must be broken down
into distinct search arguments, initially equal to the smallest sized argument
in the pattern table. The search argument is matched with those list argu-

NOW IS THE TIME FOR ALL GOOD MEN

Pattern table

List arguments Function values

THE Se,
FOR Sc

ALL S.
Compressed data streem

NOWIS S,, TIMES., S., GOOD MEN

Figure 2.36 Pattern table utilization. Upon a portion of the original data stream
matching the list argument, the appropriate function value is substituted. In the
above example, special compression indicator characters S,, to S.3 are substituted

for the words ‘the’, ‘for’ and ‘all’ as they are encountered

84

85

82

ments of equal character width. If a match is obtained, the function value
associated with the list argument then replaces that portion of the original
data stream and results in data compression. If no match is obtained, the
width of the search argumentis increased to the width of the next largerlist
argument or series of list arguments and the process is repeated. If after
increasing the width of the search argumentto the largest width ofthelist
argument no matchresults, the first character of the original data string is
passed to the compressed data string and the process is repeated, starting
with the second character from the original data stream.

A second method of performing pattern substitution results from the use
of blanks as delimiters. The binary or octal value of the characters between
blanks can be generated and compared with the binary or octal values in
the list argument portion of the pattern table. This process simplifies the
searching of a long argumentlist and minimizes the processing time required
to encode patterns.

Patterns in programming languages

Dueto the utilization of keywords or reserved words in most programming
languages, pattern substitution is often a very effective compression tech-
nique for storing or transmitting program files. Since the number of keywords
or reserved words in a programming language can be as high as several
hundred, a 2-byte sequence can be employed to represent each keyword
pattern substitution. Here, the first byte or character would be used to
indicate pattern substitution has occurred, while the following character
would denote the actual pattern that was substituted for the keyword or
reserved word. To illustrate this concept in additional detail, let us assume
that the version of BASIC we are working with is limited to eight keywords.
Table 2,13 lists these keywords and their equivalent function values contained
in the pattern table that could be constructed.

For clarity of explanation the dollar sign ($) was employed as the com-
pression indicating character in Table 2.13, although obviously any character

Table 2.13 BASIC language pattern table

Keywords Function values

END $1
GOTO $2
IF $3
INPUT $4
LET $5
PRINT $6
REM $7
THEN $8

85

86

——.

83

BASIC program Compressed program
100 REM COMMISSION CALCULATION 1L00S7COMMISSION CALCULATION

110 PRINT “ENTER SALE PRICE” 110$6*ENTER SALE PRICE”

120 INPUT W 120$4W

130 PRINT “ENTER NUMBER SOLD” 13086“ENTER NUMBER SOLD”

140 INPUT N 14084N

150 LET C=WsNx.0875 150$5C=W:N-«.0875

160 PRINT “COMMISSION=”";C 160$6“COMMISSION=";C
170 PRINT “ANOTHER CALCULATION-Y/N”—17036“ANOTHER CALCULATION-Y/N”

180 INPUT A$ 180$4A$$

190 IF A$ o “¥” THEN 210 190$3A$$.¥"$8210

200 GOTO 110 200$2116

210 END 210$1

Figure 2.37 Compressing a BASIC program

in the character set could be used. Preferably, one should select a character
whichis seldom or, better yet, never used. Since there is always the possibility
that the character could occur in a BASIC program, one can replace each
occurrence of the pattern compression indicating character by duplicating
that character when it is encountered. Then, the decompression routine
would disgard the second occurrence of a pattern compression indicating
character followed byitself. The compression of a short BASIC program is
illustrated in Figure 2.37 based upon the employmentof pattern substitution,
which in actuality is the replacement of BASIC keywords. Note that the
pattern table contained in Table 2.13 was used for the compression process.
Since most BASIC languages require keywords to be delimited by spaces,
we have assumed that the keywords entered in Table 2.13 contained leading
andtrailing blanks, enabling the functional value substituted for the keyword
to be a more effective substitution. Using this method of substitution, 25
spaces as well as 26 other characters are eliminated from the program while
2 characters are added. The additional characters are due to the replacement
of the natural occurrence of the $ character in the program by the special
sequence $$ in lines 180 and 190.

Although the overall data reduction, which in this example was approxi-
mately 20 per cent, may not appearsignificant, it should be noted that the
actual effort involved to compress data using pattern substitution may not
be significantly demanding. To increase the data reduction resulting from
compression usually requires the application of several compression tech-
niques to one’s data. In this particular example, one mightfirst preprocess
programmingfiles through the utilization of pattern substitution compression.
Then one could statistically encode the resulting compressed data. Since the
statistical encoding process results in the replacementof frequently occurring
characters by short bit sequences, statistically encoding data where keywords

86

87

84

were previously replaced by short patterns is more effective than the stat-
istical encoding of the original data. As an example, a 5-bit sequence might
be required to represent the keyword PRINT, however, a short bit sequence
would be required to representthe character sequence $6 that wassubstituted
for the keyword. The reader is referred to Section 2.9 for additional
information concerning statistical encoding.

2.7 RELATIVE ENCODING

Relative encoding is a compression technique that is not normally applicable
to the transmission of conventional data files. This type of compression is
effectively employed when there are sequences of runs in the original data
stream that vary only slightly from each other or the run sequences can be
broken into patterns relative to each other. An example of the formeris
telemetry data while the bit patterns of digital facsimile machines represent
a version of the latter.

Telemetry compression

In telemetry data generation, a sensing device is used to record measurements
at predefined intervals. These measurements are then transmitted to a central
location for additional processing. One example of telemetry signals is the
numerous space probes which transmit temperature readings, colour spec-
trum analysis and other data, either upon commandfrom earth stations or
at predefined time intervals. Normally, telemetry signals contain a sequence
of numeric fields consisting of subsequences or runs of numerics that vary
only slightly from each otherasillustrated in the top portion of Figure 2.38.

Prior to actual data transmission, compression occurs to reduce the total
amount of data necessary to represent the recorded measurements. Each
measurement other than the first is coded with the relative difference
between it and the preceding measurement,as long as the absolute value of
the incrementis less than some predetermined value. This is shown in the
lower portion of Figure 2.38. If the increment should exceed this value, a
special characteris inserted to denote that the particular valueat that location
is not available or the special character could be followed by the measurement
that is out of the boundary range for the relative encoding process. This

fi

Original telemetry measurements

46 46 46.1 46.1 46.1 46 46 46 46.1 46.1 46.1 46.2

Relative encoding

40 100-100 1060 .1

Figure 2.38 Relative encoding process. Telemetry signals often consist of a sequence
of numerics that vary only slightly from each other during a certain time interval

87

88

85

limits wide fluctuations and is one disadvantage associated with the utilization
of this technique. Another disadvantage is that if data values consistently
vary both within and outside the relative encoding boundary range and a
combination of a special character and actual value is transmitted, this will
cause an expansion instead of a compression of the data stream.

Additional techniques may be employed to obtain a higher degree of
compression depending upon the original telemetry measurements and the
resultant data due to the relative encoding process. In the top portion of
Figure 2.38, the original telemetry measurements illustrated consist of 38
characters to include numerics and decimal points. As a result of the relative
encoding process, the number of numerics and decimal point characters has
been reducedto 18. By the incorporation of a second compression technique,
the number of characters used to represent the relative encoding process
may be further reduced. One method that could be used is the half-byte
packing process where each numeric digit is stripped ofits first 4 bits and
packed2 per character. If we use a 4-bit representation for the decimal point
and minus sign, half-byte packing will result in the transmission of nine 8-
bit bytes of data. Thus, while the relative encoding process resulted in a
2.24 (38/17) compression ratio, recompressing the relative encoding results
employing the half-byte packing technique approximately doubles the com-
pression ratio to 4,223 (38/9).

While the half-byte packing process wasillustrated as the combining or
second compression technique, other techniques may be employed with
results dependent upon the variability of the original telemetry measure-
ments. If the original telemetry measurementsindicated a stable 46 for the
time interval sampled, the relative encoding process would result in a long
string of zeros after the value indicator of 46. Forthis situation, run-length
encoding would be more effective as the second compression technique.

Digital facsimile

Several relative encoding techniques can be employed to compress digital
facsimile data. Prior to discussing these techniques, a review of the elements
of facsimile technology is warranted.

Facsimile systems use the basic concept of scanning—normally on a line-
by-line basis—to create a stream of information concerning the lightness or
darkness of the small area being scanned at any given point in time. The
resulting stream of information is then transmitted and used to drive an
image-reproducing device at a facsimile receiver where the original infor-
mation is reproduced. In general, the operation of a facsimile device is quite
similar to the technology employedin television, where 525 lines on the US
domestic television system are used to reproduce images. For facsimile
systems, the clarity depends uponthefineness of the scan. Normally, approxi-
mately 100 scan lines per inch are required to successfully reproduce a page
of typewritten material. Thus, a normal 8i X 11 sheet of paper, scanned

88

89

86

longitudinally, would require approximately 850 scan lines. Each scan line
in turn consists of approximately 1730 picture elements (pixels, or pels),
resulting in approximately 1 million bits for an 83 x 11 sheet of paper. To
transmit this data at 4800 bps without compression, 209 s or approximately
3.5 min are required.

For facsimile systems, the degree of compression theoretically obtainable
is normally very large for the typical facsimile message. As an example,
consider a typewritten memorandum containing 500 characters. In con-
ventional data transmission, each character can be represented and trans-
mitted by 8 bits. Thus, the entire message could be transmitted, ignoring
control characters, by 500 x 8 or 4000 bits of information. If transmitted at
4800 bps, the total transmission time would be less than 1 s. In comparison,
the same message sent by conventional facsimile requires the transmission
of almost 1 million bits and takes about 33 min without data compression, a
difference of approximately 270 to 1 between conventional facsimile code
and character transmission.

Facsimile techniques

One of the earliest facsimile compression techniques was run-length
encoding. Here, the transmission of the digital line scan is replaced by the
transmission of a quantity count of each of the successive runs of black or
white scannedpels.

Since the vast majority of documents to be scanned contains a much higher
quantity of white pels than black ones, transmitting the difference between
scans maysignificantly reduce the quantity of data to be transmitted. In this
method of compression, one complete scan is held in a memory area of the
device and compared with the subsequent scan. Transmitting only changes
relative to the preceding scan results in the relative compression process.
Oncethe differences between thefirst and second scans are transmitted, the

first scan is removed from memoryandreplaced by the second scan. Next,
a third scan is compared with the second scan now located in memory. A
flow chart showing the required steps for this type of relative encoding
processis illustrated in Figure 2.39.

In Figure 2.40, a portion of the relative changes resulting from the com-
parison of two scan lines is shown. Several methods can be used to denote
the relative changes between the Nth and (N + 1)th scan lines. One method
is to denote the position of the change by whatis normallycalled a positional
identification. Here, the position of each relative change is denoted with
respect to the first pel of the line. If there are many consecutive changes,
the transmission of each individual position could require more data bits
than the transmission of the original line prior to comparison with the
preceding line. To take advantage of successive relative changes between
scanned lines, the position indicator can be followed by a quantity count
which contains the numberof successive relative changes. Thisis illustrated

89

90

SCAN LINE
PLACE IN MERORY

TRANSMIT LINE

€>
NO

SCAN LINE N+1

COMPARE RELATIVE
DIFFERENCE WITH LINE N

TRANSMIT DIFFERENCE

REPLACE LINE N IN
MEMORY BY LINE N+1

Figure 2.39 Facsimile relative encoding process

in Figure 2.41 where the“table at the top of the figure tabulatestheinitial
position of the relative change between line scans and the numberof suc-
ceeding relative changes, while the transmission sequence is indicated at

| the lower portion of that figure. Under the Consultative Committee for
International Telephone and Telegraph (CCITT)digital facsimile standards,
there are 1728 picture elements or points to be read by the scanner along

{ the width of a document 215 mm wide. Due to the large numberof positions,
the transmission of positional information can rapidly increase in duration,
especially when a number of relative changes occur at the far end of the
scan line. One method used to alleviate this ‘end of the line’ increase is by
the use of displacement notation. As with positional notation, the relative
changes between scanlines are first computed. Then, instead of transmitting
all of the initial positions of the relative changes and the numberof successive

N-th scan line .

-doO0000011217000110.

(N + 1) th scan line

-O000g007T 12210012100.

Relative change

Figure 2.40 Relative change. To denote the relative changes between scan lines
several methods can be employed to include identification by position and

displacement

EFSS ' { I 1 1
ms

! I 1
a

|
ra

I I } t

90

91

Initial position of Numberof successive
 relative change relative changes

40 6

80 20

175 4

350 31

480 8

930 14

1250 16

1310 5

1340 4

Transmitted data

(40[6[eo|20[irs[4[350[31|aso||990|14|1250|16|1310|5|1340|

Figure 2.41 Transmitting positional information. Using the positional relative
process, the initial position of each relative change is followed by the number of

successive relative changes

changes asillustrated in Figure 2.41, only the first initial position is trans-
mitted. Thereafter, the displacement betweenrelative changesis transmitted.
This displacement method can include the transmission of successive relative
change information andis illustrated in Figure 2.42. This figure is based
upon the data provided in the tabular portion of Figure 2.41. In comparing
the illustrated positional and displacement methods, the positional method
requires 41 numeric characters while the displacement method can be
accomplished by the use of 35 such characters. If numerics are packed 2 per
byte, then the displacement technique will result in 140 bits being required
to represent the 1728 points in the example while the positional method
would require 164 bits.

Displacements

PE
Initial

position

Figure 2.42 Transmitting displacement information. Anotherrelative encoding tech-
nique results in the transmission of displacement information

91

92

89
2.8 FORMS MODE OPERATION

Forms mode operation is a method of compression that can be employed
when data is to be communicated to and from a CRTdisplay in a predefined
series of formats. When operated in the forms mode, the display can be
used for a fill in the blank type of operation. In this mode of operation,
two basic types of data are displayed—protected information and variable
information. Fixed or protected information corresponds to the preprinted
information of a data field in a standard printed form such as name, address,
social security number and similar types of information. Such information
when the operation is in the forms mode is not cleared when the screen is
erased, is not transmitted to the central processor and is not alterable by
accidental keyboard entries. Each fixed field is one-half of a field pair, the
other half being the corresponding variable field. Thus, in the forms mode
the fixed field can be viewed as the question while the information entered
into the corresponding variable field can be considered as the answer.

An example of forms mode data entry is illustrated in Figure 2.43. Here,
the blank spaces indicate the additional positions available for data entry
into the variable fields.

In using the forms mode of operation, the operator denotes the form he
or she wishes to complete and that form is transmitted from the computer
to the terminaldisplay or is locally generated from terminal memory or from

Screen

mane ast)—[Heo||]

NAME (FIRST) s{t}ufelee|| |_|

AGENCY CODE sfeje}7| 1}|| |_|
Forms mode transrussion

HELD 7 GILBERT H 66671

q is horizontal tab character

Figure 2.43 Forms mode data entry

92

93

90

a peripheral device attached to the terminal. Fixed fields are preceded by
an ‘FS’ (start fixed field) character while variable fields are preceded by a
‘GS’ (begin variable field) character and a parameter character. The par-
ameter character is used to define the allowable operations within the vari-
able field such as numeric only, alphabetic only, alphanumeric, inhibit trans-
mission and so on. The exact sequence of the GS and FScharacters as well
as the bit configuration of the parameter character to define allowable
operations depends upon the terminals program. When in forms mode,
certain keyboard operations are usually changed from those of the normal
mode of operation. As an example, the TAB key on most displays permits
the operator to move the cursor (positioning data entry marker) to thefirst
character position of the next sequential variable field, permitting rapid
skipping-overof variable fields for which no data is to be entered (Peterson,
Bitner and Howard, 1978).

Transmission

The transmission of data in the forms mode is normally performed on a
screen basis. When the operator depresses the TRANSMIT key, only the
data previously entered into the variablefields is transmitted, withall trailing
blanks eliminated.

Here, transmission can occur online to the computer or it can be to one
of the peripheral units of the terminal. In the case of the latter, a large
number of terminal screens may be batched onto a peripheral device such
as a cassette or floppy disc for transmission to the computer at one time.
Using this combination of forms mode encoding and off-line storage for
transmission by batching screens of information, computer system resources
in the form of computerports and line requirements can be reduced or used
more effectively. By reducing the amount of transmission time required to
send batched screen information, a reduction in the number of computer
ports required to support remote terminals may be possible. Concerning
more effective line utilization, consider the situation where 10 terminals
operate in a poll and select environment connected via a common modem
sharing unit and modem to a central computerasillustrated in Figure 2.44.
In the configurationillustrated, all terminals except the terminal transmitting
or receiving data are locked out for the duration of the transmission.
Normally, blocks of data up to the screen size, 1920 (80 x 24) characters or
less, are transmitted. At 4800 bps, the transmission of a 1920 8-bit character
block to completely fill a screen would require 3.2 s. If 10 terminals were
connected to the modem sharing unit with a round robin polling sequence
and each operator transmitted or received a full screen of data, it would
take 32 seconds, ignoring transmission overhead, until the first terminal
operator could again transmit or receive information. Thus, reducing the
number of characters transmitted and received through the employment of
forms mode encoding can be used to decrease the response time of existing

93

94

Polled
terminal

Computer

Polled
terminal

Figure 2.44 Forms mode encoding increases line service. Forms mode encoding
reduces the poll and select time required per terminal, permitting more terminals to
be connected on a shared line or an increase in throughput to existing terminals

sharing the line

terminals or to permit additional terminals to be clustered without increasing
overall response times.

Returning to the example in Figure 2.43, the ‘HT’ (horizontal tab) charac-
ter is normally used as a variable field separator, resulting in the transmitted
message indicated in the lower portion of that illustration. If a maximum of
8 characters can be entered into each of the 3 variable fields shown in Figure
2.43, a maximum of 26 characters (24 data and 2 horizontal tab characters)
will be transmitted to the comptuer for each form completed. This method
of forms mode data entry should be contrasted with conventional time-
sharing as shown in Figure 2.45. Here, the message ‘ENTER NAME
(LAST), NAME (FIRST), AGENCY CODE’ serves as a variable field
indicator, denoting to the terminal operator the data to be entered. The
carriage return (C/R) characteracts as a line termination character; however,
if data was entered incorrectly, such as alphabetic characters in an all-
numeric field, data must first be sent to the computer for processing to
determine that such an error has occurred. In such cases, the computer
would transmit an error message to the terminal operator who would then
hopefully retype the entire line correctly and retransmit the data. In contrast,
using an intelligent terminal and forms mode operation the data entry
operation can be preprocessed and such errors corrected prior to trans-
mission.

In comparison with the operator depressing the transmit key on the display
and having the forms mode method of operation transmit and clear the
variable fields so new data can be entered, conventional time-sharing requires
the program to prompt the operator to determine if more data is to be
entered. The ‘MORE?’ and ‘YES’ (C/R)’ sequence in Figure 2.45 add
additional characters beyond the repeated message used as a variable field
indicator. In comparing the sample forms mode data entry with the con-
ventional time-sharing data entry example, 18 characters are required for
the former while 65 characters, excluding line feed and carriage return
characters, are required for the latter.

94

95

92

ENTER NAME(LAST), NAME(FIRST), AGENCY CODE

HELD, GILBERT, 6671

MORE?

ENTER NAME(LAST), NAME(FIRST), AGENCY CODE

Figure 2.45 Conventional time-sharing data entry. In conventional timesharing, the
prompt messages requesting data as well as the user responses are transmitted

2.9 STATISTICAL ENCODING

One commonelement of the eight previously discussed data compression
techniques is that they all operate upon characters codes ofa fixed bit size.
In comparison with those compression methodsstatistical encoding takes
advantage ofthe probabilities of occurrenceofsingle characters and groups of
characters, so that short codes can be used to represent frequently occurring
characters or groups of characters while longer codes are used to represent
less frequently encountered characters and groups of characters. The stat-
istical encoding process can be used to obtain aminimization of the average
code length of the encoded data, in a mannersimilar to that in which Morse
selected the dot and dash representations of characters so that a single dot
was usedto represent the letter E, which is the most frequently encountered
character in the English language, while longer strings of dots and dashes
were used to represent characters that appear less frequently. Included in
the class of statistical compression methodsis the Huffman coding technique.
Prior to discussingstatistical encoding techniquesin detail, a review of some
basic information theory concepts is warranted. These concepts will provide
an understanding of how redundancycan bestatistically reduced.

Information theory

Fora system capableof transmitting at n discrete levels at A secondintervals,
the number of different signal combinations in T seconds is n7. Since
information is proportional to the length of time of transmission, we can
take the logarithm of 27”, to obtain the information transmitted in T seconds
being proportional to (7/A) log n.

The proportionality factor will depend uponthe base of the logarithm used,
the most commonchoice being the base 2. This results in the information unit
H becoming

T

H= x logon.

95

96

93

The unit of information defined in the preceding manneris knownas the
bit or binary digit. For the transmission of data over a 20 second period
using 2 discrete levels (0 and 1) at 1 second intervals, the information content
becomes:

20

H= ly log, 2 = 20 bits.

The capacity, of a given system is defined as the maximum amount of
information per second that a system can transmit and can be expressed in
bits per second. Thus, the capacity of the preceding example becomes:

aaioe n= 16e52 = 1 bit/s.CTX 1

The relative frequency of occurrence of any one combination or eventis
defined as the probability of occurrence, denoted symbolically as P, where

; r
_ numberof times an event occurs

Peeeea
total numberofpossibilities

If n possible events are specified to be the n possible signal levels, then
P = 1/n for events that are equally likely to occur. The information contained
by the appearance of any one event in one time interval (H,) becomes:

Hf, = logan = —log, P bits/interval

where P represents 1/n. During t periods of time, consisting of periods \ s
long, we should have ¢ times as much information, or

H = tH,= — t logsP bits int periods.

Since the number of periods, t, equals the total time, T, divided by the
numberof intervals, \, the information available in T seconds becomes:

T T

H= “y log.P = i log, n bits in T's.

With the preceding serving as a foundation, we can consider the case
where different events or signal levels do not have equal probabilities of
occurrence. Let us assumejust two levels are to be transmitted, 0 or 1, the

96

97

94

first with probability P and the second with probability Q, where P + Q =
1. Then:

__ numberof times 0 occurs
total numberof possibilities

__ numberoftimes 1 occurs
total numberofpossibilities

Q

The information content of a long message consisting of many 0s and 1s
is thus dependent upon P*log, P + Q*log,Q whichis the information in bits
per occurrence of a 0 or 1 times the relative frequency of occurrence of the
bit value. We can let the frequency of occurrence of each possible signal
level or signal be denoted by P;, where P, + P2 + ... + P, = 1. Then each
interval carries — log,P; bits of information. In ¢ periods of time, i will appear
on the average ¢*P; times. By summing the information in bits contributed
on the average by each symbol appearing t*P; times overthe ¢ intervals, we
obtain:

H=-—-t* Ss P; log, P; bits in ¢ periods.
i=1

For the interval 7, we then obtain:

T Fl

H=—-+* S\ Plog, P; bits in Ts.i=1

For a message with n possible symbolsorlevels with probability of occurrence
P,; to P,, the average information per single symbolinterval ofXis:

Haye = — Ss P; log, P; bits/symbolinterval.
i=1

The above equation represents the mathematical definition of entropy, a
term used in information theory to denote the average number of bits
required to represent each symbol of a source alphabet.

Based upon the preceding, it becomes possible to compute the redundancy
contained in information. Since the unit of information is log.n for a system
capable of transmitting at n discrete levels, its redundancy becomes

R = logo — Have

Then, when there is zero redundancy:

Faye = i0gon

97

98

Table 2.14 Coin toss representing four-symbol alphabet

Coin toss Alphabet Outcome Representative
outcome symbol probability code

TT xX 0.25 00
TH X2 0.25 01
HT X3 0.25 10
HH Xy 0.25 11

Entropy examples

Wecan experiment with the well-known coin tossing model in order to
expand upon the concept of entropy. The two sides of a coin, heads (H)
and tails (T), correspond to members X, and X, from an alphabet X
containing two symbols. If we toss two coins and encodetheresults so that
T = 0 and H = 1, the coin toss result probabilities correspond to a four-
symbol alphabet as tabulated in Table 2.14. The entropy or average number
of bits required to represent each possible outcome or symbol from ourfour-
symbol alphabet becomes:

4

Haye = — >, P;logs P; = —4 X 0.25 log, 0.25 = 2.
i=1

For the coin toss experiment results listed in Table 2.14, two binary symbols
were required to encode each alphabetic symbol. If for some reason the coin
toss was fixed such that only tails (T) occurs, the only symbol required in
our alphabet would be X,. Under this condition, we would never have to
do any coin tossing to determine the outcome since the result is always
known in advance. The entropy of this one-symbolalphabet can be computed
as follows:

Haye = -> P, log, P, -> log, 1 = 0.
In this case, since the outcome is known in advance the symbol provides no
information; hence, its entropy is zero.

Wecan again fix the coin toss experiment; however, this time we will fix
it so the probability of tails (T) occurring is increased to 0.75, leaving a 0.25
probability of heads occurring. Under these circumstances, the tabular results
of the coin toss outcomes representing a four-symbol alphabet would be as

98

99

Table 2.15 Fixed coin-toss representing four-symbol alphabet. Prob-

ability of head = 0.25; probability of tail = 0.75

Coin toss Alphabet Outcome Representative
outcome symbol probability code

TT Xx 0.5626 00
TH X2 0.1875 01
HT X3 0.1875 10
HH xy 0.0625 il

listed in Table 2.15. Although the representative code, numberof coin toss
outcomes and alphabet symbols have remained the same, the outcome
probabilities have changed. Thus, the probability of two tails is now 0.75
times 0.75 or 0.5625 and so on. The entropy of this four-symbol alphabetis
now:

N

4

Hayg= — >, P; log, P; = 0.5625 log, 0.5625 + 0.1875 log, 0.1875
i=1

+ 0.1875 logs 0.1875+0.0625 log, 0.0625 = 1.62 bits per symbol.

Based upon the preceding, let us compute the redundancy in the fixed
coin-toss experiment. Since a two-symboleventresults in four discrete levels

R = logon = Have = logo4 — 1.68 = 2 — 1.68 = 0.38

In comparison with the first coin-toss experiment, the average numberof
bits required to represent a symbol from the four-symbol alphabet has been
reduced by 0.38. This indicates that using another type of coding schemeto
represent the four-symbol alphabet could result in an approximate 20 per
cent reduction from the two bits per symbol previously used to represent
the four-symbol alphabet. To obtain this reduction, we must assign short
codes to the most frequently occurring symbols of the alphabet and longer
codes to the less frequently encountered symbols. This method will result in
a long string of data symbols having, on the average, fewer bits per symbol
and is the foundation for what is known as Huffman coding. (Dishon, 1977;
Moilanen, 1978).

Huffman coding

Huffman coding is a statistical data-compression technique whose employ-
ment will reduce the average code length used to represent the symbols of
an alphabet. The alphabet can be the English language alphabet or a type
of data-coded alphabet such as the ASCII or EBCDIC charactersets.

99

100

97

The Huffman code is an optimum code since it results in the shortest
average code length ofall statistical encoding techniques. In addition, Huff-
man codes have a prefix property which means that no short code groupis
duplicated as the beginning of a longer group. This means that if one
character is represented by the bit combination 100, then 10001 cannot be
the code for anotherletter since in scanning the bit stream from left to right
the decoding algorithm would interpret the 5 bits as the 100 bit configuration
character followed by a 01 bit configuration character.

The Huffman code can be developed through the utilization of a tree
structure as illustrated in Figure 2.46. Here, the symbols arefirst listed in
descending order of frequency of occurrence. The groups with the smallest
frequencies (X3 and X,) are combined into a node with a joint probability
of occurrence of 0.25. Next, that node is merged with the next lowest
probability of occurrence symbol or pair of symbols. In this illustration, the
pair X3X, is merged with X, to produce a node whosejoint probability is
0.4375. Finally, the node representing the probabilities of occurrence of
X2,X%3 and X, is merged with X,, resulting in a node whose probability of
occurrence is unity. This master node represeents the probability of occur-
rence of all four characters in the character set. By assigning binary Os and
1s to every segment emanating from each node, one can derive the Huffman
code for each character. The code is obtained by tracing from the 1.0
probability node to each character symbol, noting the 1s and Os encountered.

The average number of bits per symbol can be calculated by multiplying
the Huffman code lengths by their probability of occurrence. Thus, the code
uses:

1*0.5625 + 2*0.1875 + 3*0.1875 + 3*0.0625

Character Probability Code

X, 5625

X2 1875

X3 1875
Xx, 0625

Figure 2.46 Huffman code development employing a tree structure. Huffman codes
can be developed by employing a tree structure. The Huffman code resulting from
this construction method is derived by tracing from the 1.0 probability node to each

source character (symbol), noting 1s and Os encountered

100

101

98

or 1.63 bits per symbol. Note that the Huffman code result of 1.63 bits per
symbol closely approaches the entropy of 1.62 bits per symbol (Dishon,
1977; Moilanen, 1978).

A key property of the Huffman code is that it can be instantaneously
decoded as the codedbits in the compressed data stream are encountered.
An example of the instantaneous decoding property is illustrated in Figure
2.47. Here, the compressed data stream can be decoded immediately by
readingleft to right without waiting for the end of the block of data to occur.

The substitution of a numberofbits representing a particular data character
or group of characters is a fairly simple process when the number of sub-
stitutions is limited. As the numberofsubstitutions increases, the complexity
of the substitution process increases. In Figures 2.48 and 2.49, the devel-
opment of a Huffman code for the English alphabetis illustrated. The tree
structure used to develop the code shownin figure 2.48 is produced as
follows:

A. The character set is arranged in a column on the left in order of
decreasing frequency of occurrence with the frequency placed in a
column next to each character.

B. Commencing at the bottom of the table, lines are drawn horizontally
from each character frequency. The lines with the two lowest fre-
quencies of occurrence are merged andtheir associated frequencies are
added to obtain a composite frequency. This composite frequency is
entered on a single new line and reflects the combined frequency of
the previously paired characters.

C. The process of combining the two lowest frequency lines into a single
line containing combined frequencies is continued until all the lines
have been merged.

After the tree has been developed, the Huffman code for each character can
be assigned by placing a 0 bit to one side of each nodal point and a 1 bit to

Encoded message 0 10 0 | 111 10 110 0

| |

|
|
|
|

|
|
|
|
|

Figure 2.47 Instantaneous decoding property. One of the key properties of the
Huffman technique is the fact that encoded data can be instantly decoded

101

102

C 03

C.Ccé6

] = 0.11

M03 nS
F 02 0420

P02 0.040

Y 02
0.070

B OW 0.030

7 = 0.115

v 010

J -.005 0010 0.045
K—.005 0.02

x 005 0.010
Q 0025 0.005

2 ~=.0025

Figure 2.48 Developing a tree structure for the alphabet

the other path emanating from that point towardsthe left-hand symbol. The
assignmentof 0 and1bits is arbitrary. The appropriate bit sequence assigned
to each data character is then determined by tracing the route from the
master nodal point where the probability of all character frequencies of
occurrence is unity back to the starting node for the appropriate character,
noting the bits assigned to the path. The assignmentof bits to the paths and

102

103

100

000 E

0010 T

0011 A

0100 0

0101 N

0110 R

O11 I

10000 H

10001 S

10010 D

10011 L

10100 Cc

10101 U

10110 M

10111 F

11000 P

11001 Y

11010 B

11011 W

11100 G

11101 Vv

411100 J

111101 K

111110 *X

11111109

1117111 2

09

08

08

07

O65

065

06

06

04

035

.O3

03

03

02

02

02

O15

1015

O15

.010

005

005

005

0025

0025

=|O

=o-1O-]|oO

AB
0

17 1

J > 0

13 {

12 0

O75 {

O6 0

05 '

O40 0

030 1

O10

0

005
1

0,30

0

58

28 1

O

4195 1.0
0

1

305

0

1 1

420

070

O

115«|1

025
0

045|1
oO

o2 |1

010
1

Figure 2.49 Assigning the Huffman code

the resulting Huffman coded values for the English alphabet are illustrated
in Figure 2.49.

The numberof bits required to encode a letter using the Huffman tech-
nique can be determined from the following formula:

b = f (— log2P)

103

104

P= probability of occurrence of the letter

f(x) = the closest integer greater than or equalto x.

Since the probability of E is 0.13 and — log, 0.13 is 2.94, then the integer
greater than or equal to 2.94 is 3. Thus, 3 bits are required to encode the
letter E (Peterson, Bitner and Howard, 1978).

Information requirements

To develop a Huffman code whose average code length will approach its
entropy requires the frequency distribution of the characters or symbols to
be encoded to be known in advance. Since the frequency distribution of a
data stream is proportional to the end use of the stream, this factor can
result in a preselected frequency distribution used to develop a Huffman
code resulting in a code far from optimum during certain data transmission
sequences. As an example, the frequency distribution of English text, such
as that resulting from a data file used for computerized typesetting, may be
quite different from the data file containing the results of a FORTRAN
program compilation. In the first instance, the distribution of characters
should follow the distribution of normal English, with E the most frequently
occurring character while Z is one of the least frequently characters. For
the FORTRANcompilation, special characters such as parenthesis, + for
addition, ~ for subtraction, * for multiplication and/for division have a high
degree of occurrence not normally encountered in English text.

To compensate for frequency distribution differences, several encoding
schemes can be considered. First, the analysis of mixed data files can be
conducted employing the computer program listed in Appendix B (p. 00).
This will enable one to ascertain the appropriate relationship between the
frequency of occurrence of characters of different types of data.

A second methodto consider is an adaptive Huffman encoding technique.
Such a technique mightfirst require a frequency analysis of a large block of
data which would then be encoded based uponthat distribution. Prior to
the transmission of the encoded data, a table of the symbols and Huffman
codes developed for each symbol must be transmitted to enable the encoded
data to be successfully decoded. With a little imagination, one can visualize
that frequently changing data streams would result in numerous tables as
well as encoded data being transmitted. These tables can be considered as
overhead, resulting in the compression frequency decreasing as the numberof
data-stream frequency distributions change per unit time. Another problem
encountered with some adaptive Huffman coding techniques is determining
the size of the data stream to sample and the sample intervals. The larger
the sample, the greater the processing requirement becomes. If the datais
to be transmitted, a buffer area is required to place the sample into while

104

105

102

the frequency analysis is conducted. Concerning the sample interval, if three
FORTRANjobs are followed by an English text job, all of equal size, T,
sampling at T,7 + 2 and T + 4 would result in the English text job being
excluded from the sample. Since a remote batch terminal operator submits
jobs and pulls system output, he or she knows aheadof time the type of job
that will be transmitted to or received from the computer. For this type of
operating situation, predefined frequency distributions can be selected by
the operator and conveyed to the opposite end of the transmission link by
the transmission of a special code.

To eliminate the previously described problems resulting from the gen-
eration of frequency tables, one can construct a truly adaptive or self-
adapting Huffman encoding technique. This technique builds frequency
tables at both ends of a transmission link as data transmission occurs and

adaptively adjusts those tables during transmission. The reader is referred
to-Section 2.10 which discusses this technique in detail.

A third method of compensating for frequency distribution differences is
by the use of a plain text code, which is used to indicate that the character
following it should be reproduced exactly as received. This permits characters
that rarely occur in the source data to be excluded from the encoding process
and results in the development of one type of modified Huffman code. Here,
one could group all characters of low frequency of occurrence into one
probability of occurrence and assign a Huffman code to represent that
summed probability. This would be the plain text code and would indicate
that the next 8 bits represent an actual non-encoded data character. Without
the use of a plain text code, large strings of, say, 20 or more bits might
result in the representation of low frequency of occurrence characters. If the
plain text code were 4 bits in length, then a maximum of 12 bits would be
required to represent any low frequency of occurrence character. The pre-
emption of a 4-bit code to signify that the next 8 bits are the plain text
representation of an 8-bit character meansthat somerelatively high frequency
of occurrence character which would have had a 4-bit code as its Huffman

representation will be represented by some longer code. Thus, although
there will be no very long codes present, the mean number of bits per
character will increase when a plain text code is employed.

Modified Huffman codes

The representation of characters and symbols by an appropriate Huffman
code is excellent in theory if one desires to have the average numberofbits
per symbol approach entropy. In practice, however, a numberofdifficulties
can arise when Huffman coding is applied to certain applications, most
particularly in the area of facsimile transmission.

When applying Huffman coding to facsimile transmission, each facsimile
line can be viewed as consisting of a series of black or white ‘runs’, each
run consisting of a series of similar picture elements. If the type of thefirst

105

106

103

run is known, then the type of all successive runs will be known, as black
and white runs must alternate. The probability of occurrence of each run of
a given length of pels can be calculated and short code words can be used
to represent runs that have a high frequency of occurrence while longer code
wordscan be used to represent runs that have a low probability of occurrence.
In a way similar to the changing of data processing jobs, statistics for the
run-length probabilities associated with line scans change onaline-to-line
and document-to-document basis. Thus, an optimum or near optimum code
for a particular line or document may be far from optimum for a different
line or document. A second major problem is the fact that the creation of
the Huffman code on a real-time basis requires a large degree of processing
power, normally in excess of the capabilities of facsimile machines where
the cost of the scanner, transmitter/receiver, central logic and power supply
results in a machine rental under a few hundred dollars per month to remain
competitive. To reduce somereal-time processing requirements,a table look-
up approach can be employed. Since CCITT standards require 1728 pels per
line, the use of a table look-up technique would require storage for 1728
variable length locations for each facsimile machine, each location containing
a binary code word corresponding to a particular run length. The implemen-
tation problems associated with applying the full Huffman coding technique
to facsimile applications resulted in the development of one modified Huff-
man coding scheme moresuitable to the hardware cost constraints of the
competitive facsimile marketplace.

In the development of a modified Huffman coding scheme for facsimile
applications, a change was made which, while only rarely permitting the
average symbol length to approach entropy, does permit significant com-
pression while minimizing hardware and processing requirements. Here, the
probability of occurrencesof different run lengths of picture elements (pels)
was calculated for all lengths of white and black runs based upon statistics
obtained from the analysis of a group of 11 documents recommendedby the
CCITT as being typical. To reduce table look-up storage requirements, the
Huffman code set was truncated by the creation of a base 64 representation
of each run length and the utilization of two code tables to reduce the overall
table size in comparison with the table size that would be required if only
one table were used (McCullough, 1977).

Based upon the run-length probabilities of 11 typical documents, code
tables were developed for run lengths ranging from 1 to 63 pels. Since the
probability of occurrence of white runs differs from the frequency of occur-
rence of black runs, a table must be developed for both runs. This dual table
set is listed in Table 2.16 for run lengths ranging from 0 to 63 pels. The code
in this table set represent the least significant digit (LSD) of the code word
and are often referred to as the termination code. In order to permit the
encoding of runs in excess of 63 pels, a second set of code tables must be
employed to handle runs ranging in size from 64 pels to the maximum line
scan length of 1728 pels. These codesare listed in Table 2.17. These represent

106

107

104

Table 2.16 Least significant digit codes for the modified Huffman process

Base 64

White run representa- Black run
length Code word tion length Code word

0 00110101 0 0 0000110111
1 000111 1 1 010
2 0111 2 2 11
3 1000 3 3 10
4 1011 4 4 O11
5 1100 5 5 0011
6 1110 6 6 0010
7 1111 7 7 00011
8 10011 8 8 000101
9 10100 9 9 000100

\10 00111 a 10 0000100
11 01000 b 11 0000101
12 001000 c 12 0000111
13 000011 d 13 00000100
14 110100 e 14 00000111
15 110101 f 15 000011000

16 101010 g 16 0000010111
17 101011 h 17 0000011000
18 0100111 i 18 0000001000

19 0001100 j 19 00001100111
20 0001000 k 20 00001101000
21 0010111 1 21 00001101100
22 0000011 m 22 00000110111
23 0060100 n 23 00000101000
24 0101000 oO 24 00000010114

25 0101011 Pp 25 00000011000
26 0010011 q 26 000011001010
27 0100100 r 27 000011001011
28 0011000 S 28 000011001100
29 00000010 t 29 000011001101

30 00000011 u 30 000001101000
31 00011010 Vv 31 000001101001
32 00011011 Ww 32 000001101010
33 00010010 x 33 000001101011

34 00010011 y 34 000011010010
35 00010100 Zz 35 000011010011
36 00010101 A 36 000011010100
37 00010110 B 37 000011010101
38 00010111 Cc 38 000011010110
39 00101000 D 39 000011010111
40 00101001 E 40 000001101100
41 00101010 F 41 000001101101
42 00101011 G 42 000011011010
43 00101100 H 43 000011011011
44 00101101 I 44 000001010100
45 00000100 J 45 000001010101
46 00000101 K 46 000001010110

107

108

105

Table 2.16 (continued)
nnSEEEEEIDEInnEISEESSSESE

Base 64

White run representa- Black run
length Code word tion length Code word

47 00001010 L 47 000001010111
48 00001011 M 48 000001100100
49 01010010 N 49 000001100101
50 01010011 O 50 000001010010
51 01010100 P 51 000001010011
52 01010101 Q 52 000000100100
53 00100100 R 53 000000110111
54 00100101 S 54 000000111000
55 01011000 T 55 000000100111

56, 01011001 U 56 000000101000
57 01011010 Vv 57 000001011000
58 01011011 WwW 58 000001011001
59 01001010 x 59 000000101011
60 01001011 Y 60 000000101100
61 00110010 Z 61 000001011010
62 00110011 * 62 000001100110
63 00110100 # 63 000001100111

the most significant digit of the code word and are known as the master
code.

Whena run of 63pelsorless is encountered, the appropriate type of LSD
code set is accessed to obtain a single base 64 code word. To encode a run
of 64 pels or more, two base 64 code words must be used. First, the most
significant digit code word is obtained from the MSD code table such that
N*64, 1 < N € 27, does not exceed the run length. Next, the difference
between the run length and N*64 is obtained and theleast significant digit
is accessed from the appropriate LSD code table. Figure 2.50 shows an
example of the table look-up operations for a sample sequence of black and
white runs of various pel sizes. In the upper portion ofthis illustration, the
relationship betweenaseries of original video data and its representation in
the modified Huffman code is tabulated.

To employ the modified Huffman coding scheme successfully, some rules
must be developed and followedto alleviate a numberof deficiencies inherent
from employingastatistical encoding technique. In such techniques, code
words do not contain any inherent positional information which is necessary
for synchronization. This can be compensated for by making it a rule that
the first run of each line must be a white run, even if it results in a run

length of zero. Thereafter, runs must alternate between black runs and white

108

109

106

Table 2.17 Most significant digit codes for the modified Huffman process

Base 64

White run representati Black run
length Code word on length Code word

64 11011 64 0000001111

128 10010 128 000011001000
192 010111 192 000011001001

256 0110111

320 00110110

384 00110111
448 01100100

512 01100101

576 01101000

640 01100111
704 011001100

768 011001101

832 011010010

836 011010011

960 011010100
1024 011010101

1088 011010110

1152 011010111

1216 011011000

1280 011011001

1344 011011010

1408 011011011

1472 010011000

1536 010011001

1600 010011010

256 000001011011

320 000000110011

384 000000110011
448 000000110101

512 0000001101100

576 0000001101101

640 0000001001010

704 0000001001011

768 0000001001100

832 0000001001101

836 0000001110010

960 0000001110011

1024 0000001110100
1088 0000001110101

1152 9000001110110

1216 0000001110111

1280 0000001010010

1344 0000001010011

1408 0000001010100

1472 0000001010101

1536 0000001011010

1600 0000001011011

1664 011000 1664 0000001100100

1728 010011011 1728 0000001100101
EOL 0000000000 EOL 00000000001

AOondon3SweaeoeDanrrOBTAMPWN
runs. To denote the beginning and-end of each scan line, a unique line
delineation code, sometimes called an end-of-line code (EOL), can be
employed. Once eachline is encoded,fill bits of Os may be employed as pad
bits prior to transmitting the EOL for timing purposes. The endresult of
the incorporation of these rules permits a line format to be defined as shown
in Figure 2.51. Through the incorporation of the modified Huffman coding
technique, the transmission time of a typical business document has been
reduced to under 60 at.a transmission rate of 4800 bps.

The significance of the reduction becomes apparent when one considers
that the resolution of 1780 pels per line and 96 horizontal lines per inch results
in a total of 1 410 048 pels for an 83 X 11document. Without compression, a

109

110

107
—————————Ooo

Modified Huffman code

Modified Huffman code base 2 representation
Original video data base 64 representation MSD LSO

5 black peis 5 (black) NA 0011
17 white pels h (white) NA 101011
32 black pels w (black) NA 000001101010
32 white pels w (white) NA 00011011

728 biack pels b¢ (black) 0000001001011 O0000010111
1728 white pels re (white) 010011011 00110101

64 black pels 1@ (black) 0000001111 0000110111
55 white pels T (white) NA 01011000

1028 white pels ge {white} 011010101 o1t1
5 black 17 white

4+—- _—

———_|on 101011... rn COCOGCOOOCOCOCNCO....o aigiid
a WS aa —____ _—

modem =< >" a
Original
video data

‘ Look-up tables Look-up tables from
for black runs for white runs scanner

Figure 2.50 Encoding using the modified Huffman code. By a sequence of tabular
references for black and white runs the modified Huffman code is constructed

[+175-4+-55-r651-|
Original video data 00°"0011111007°0011777111

Symbolic representation|EOL h{white) S(block) T (white) p” (black) FillEOL Next line

Encoded line OCO00000001101011001101011000000000 10 11011000001010011000000000001
Bit representation

Total Bits prior to compression 1728

Total bits after compression 52
(notincluding fuil data)

Comoression ratio for this line 33:1

Figure 2.51 Rules define line format. To denote the beginning and endof each scan
line an end-of-line code (EOL) is employed.

transmission time of approximately 5 minutes would be required for the data
without considering the transmission of the end-of-line codes.

Shannon-Fano coding

Similar to Huffman coding, Shannon—Fanocodingresults in a variable length
code that is instantly decodable. Prior to developing the code for each
character in your character set, you must determine the probability of

110

111

108

occurrence of each character. Then, arrange your character set in descending
order based upon the probability of occurrence of each character.

Once your character set is arranged in descending order of its probability
of occurrence, the set must be divided into two equal or almost equal subsets
based upon the probability of occurrence of the characters in each subset.
The first digit in one subset is assigned a binary zero value while a binary
one is assignedasthe first digit in the second subset. This process of forming
subsets is repeated until the character set is completely subdivided. Then, a
suffix bit is added to each character in a two-character subset as required to
distinguish one character’s binary composition from the other character in
the subset.

To obtain an understanding of the Shannon—Fano coding procedure, let
us assume our character set contains seven characters whose probabilities of
occurrence are indicated in Table 2.18.

By arranging the characters in the character set in descending order based
upon their probability of occurrence, we can begin to form our subsets. In
our subset construction process, we will group the characters into each subset
so that the probability of occurrence of the characters in each subset is equal
or as nearly equal as possible. Then we will assign binary ones to one subset
and binary zeros to the other subset and continue to repeat the process until
all possible subsets are constructed. Figure 2.52 illustrates this process.

Note that after the initial coding process is completed, the subsets rep-
resented by the character pairs X.,X3; and X4,X5 are not unique. Thus, a
binary 1 and 0 must be added to the pairs in each subset. Doing so results
in the completion of the variable length coding process in which each
character is represented by a unique bit combination that is instantaneously
decodable. The completed code for each character in our character set is
illustrated in Figure 2.53.

Efficiency comparison

To compare the efficiency of the Shannon-Fano coding process to the
previously covered Huffman coding technique, let us develop the Huffman

Table 2.18 Character set probability of occurrence

Character Probability of occurrence

Xy 0.10
X> 0.05
> 0.20
Xy 0.15
Xs 0.15
Xe 0.25

111

112

,

109

Character Probability Code

Xe 0.25 l

Xy 0.20 |

Xy 0.15 o |

Xs 0.15 0 3

x, 0.10 0 0 1

X 0.10 0 oOo oO

X 0.05 0 oOo 90

Figure 2.52 Initial Shannon—Fano coding process

Character Probability Code

Xe 0.25 11

Xy 0.20 1 0

X, 0.15 0 411

Xs 0.15 0 10

Xx, 0.10 0 0 1
X, 0.10 0 o O48
X2 0.05 0 0 0 0

Figure 2.53 Completed Shannon—Fano coding process

code for the character set whose probability of occurrence was previously
listed in Table 2.18. Figure 2.54 (top) illustrates the construction of the
Huffman code for the 7-character character set listed in Table 2.18. The

lower portion of that illustration shows the assignment of binary 1s and 0s
to each path memberand the resulting Huffman code for each character
when the binary digits in each path are recorded beginning at the unity or
apex point in the codingtree.

Table 2.19 compares the codes generated by the Shannon—Fano coding
procedure to the Huffman coding procedure for the 7-character character
set used for each coding example. The average code length generated by
each coding procedure can be computed by using the formula:

For the Shannon—Fano code, the average code length is:

h=2x 0.254+2x0.20+3 x 0.15 +3 x 0.15 +3 x 0.10 + 4 x 0.10
+ 4x 0.05 = 2.7 bits

For the Huffman code, the average code length is:

X= 2 X 0.25 + 3 X 0.75 = 2.75 bits

112

113

110

Character Probability

Xs, 0.25

X3 0.20

Xy4 0.15

Xs 0.15

X, 0.10

Xy 0.10

Xa 0.05

Character Code

Xs, 00

Xy 010

X4 011 —]

Xs 100

X 110

X2 111

Figure 2:54 Huffman code construction

Table 2.19 Coding comparison —

Character Probability Shannon-Fano code Huffman code

Xe 0.25 11 00
X3 0.20 10 010
Xy 0.15 011 011
Xs 0.15 010 100
Xy 0.10 001 101
Xz 0.10 0001 110
Xy 0.05 0000 111

Although the Shannon—Fano code is moreefficient since its average code
length is less than that of the Huffman code, the reader should note that it
is not necessarily always moreefficient. The previousillustrations were based
upon one group of assigned probabilities of occurence to a 7-character
character set. To illustrate how efficiencies between the two codes can

change, let us assume that the probabilities of occurrence of the characters
in the character set are now represented by the data listed in Table 2.20.

113

114

111

Table 2.20 Revised character set

Character Probability of occurrence

xX, 0.0625
Xo 0.0625
x3 0.1250
Xy 0.1250
Xs 0.0625
Xe 0.5000
X; 0.0625

The top portion of Figure 2.55illustrates the Shannon—Fano coding process
while the lowerportion ofthatillustration shows the Huffman coding process.
Note that based upon the revisions in the probability of occurrence of the
characters in the character set, the average code length for each coding
techniqueis the same. Thatis, the average code length for the Shannon—Fano
coding process is:

= 1x 0.5 +3 x 0.125 + 3 x 0.125 + 4 x (4 X 0.0625) = 2.25 bits

which is exactly the same code length obtained from the Huffman coding
process.

A, Shannon-Fano coding

Xe 0.50 11

X; 0.125 011

Xy 0.125 01.0
Xs 0.0625 00 11
Xy 0.0625 00 10
X; 0.0625 00 01
X, 0.0625 00 O00

B. Huffman coding

1 X, 0.500

0.41 Xs 0,125

010 =X,~~0.125

0011 =X, (0.0625

0010 X, 0.0625

0001 =X, 0.0625

0000 0.0625

Figure 2.55 Recoding the new characterset

114

115

112

Now let us assumethat the probability of occurrence of each character in
the characterset is again altered. Suppose the new probabilities of occurrence
are as indicated in Table 2.21.

The top portion of Figure 2.56illustrates the Shannon-Fano coding process
for the revised character set while the lower portin shows the Huffman
coding process.

Now let us compute the average code length for each coding process. For
the Shannon-Fano code, its average code length is:

N=2x044+2x*01+3*014+3x*01+3x01+4x01+4-x

0.1 = 2.7 bits

Table 2.21 New character set probabilities

Character Probability of occurrence

xX 0.10
Xp 0.10
Xs 0,10
X4 0.10
Xs 0.40
Xe 0.10
X; 0.10

A. Shannon-Fano coding

X 040 1 1

X, 010 1 0
X O10 0 1 1

X, 010 0 1 O

X, 010 0 0 1
X,; 010 0 0 0 1
X, 010 0 0 0 O

B. Huffman coding

00 Xe

010 xX

01 Xp

100 x

101 My

110 Xs

111 Xy

Figure 2.56 Recoding the revised character set

115

116

113

For the Huffman code, its average code length is:
h=2x 0443 X 0.6 = 2.6 bits

Thus, in this instance the Huffman code results in a more efficient bit
representation of the character set than the Shannon—Fano coding method.

In general, as the probabilities of each character in the character set
approach probabilities that are negative powers of 2 both codes will have
their average code length approach entropy. Thatis, if all the probabilities
of the characters in the character set were negative powers of 2 the average
code length would equal entropy and the efficiency of each code would be
100 per cent. If the probabilities of occurrence of the elements in a set have
a large variance, the Shannon-Fano code will be more efficient while the
Huffman code becomes more efficient as the variance in probabilities
decreases between elements in the set.

2.10 ADAPTIVE COMPRESSION

Theexamples_ofcompression_techniques previously..covered.in.thischapter
werebasedupontheassumption.of. prior knowledge ofthe data to be_.
compressed.Usingthisprior knowledge. permits usto predefine compression
indicatingcharacters.and the character sequences whichcan then be sub-
stituted for strings of data containing. predefined. redundancy. In. addition,
we can construct a fixed compression table..that-will enable the statistical
encoding of data to occur based upon the expected frequency of occurrence
of the data. Run length and diatomic encoding..are-examples-ofcharacter
sequence and character substitution where some prior. knowledge or expec-
tationof the composition of the data resulted in the definition of a single
character or short sequence of characters to replace longer sequences of
characters. Huffman and modified Huffman encoding are examplesof data
compression techniques that would employafixed compression table whose
construction is based upon prior knowledge-.or assumed. knowledge ofthe
data.

The fixed compression table

Figure 2.57 illustrates the general format of a fixed compression table. In
actuality, this table can be two separate tables, with a relationship established
between the elements in each table or the table can consist of paired entries.
Each characterin the original data stream is compared to the entries in the
‘data to compress’ part of the compression table. When the character to be
encoded matchesan entry in the ‘data to compress’ portion of the table, the
code that represents the character is extracted from the compression table.
Thus, the process required to replace each character withits statistical code
is reduced to a table look-up operation.

116

117

114

data to compress
Figure 2.57 Fixed compression table format

Data to compress Resulting code

Figure 2.58 Resulting fixed compress table

To illustrate the utilization of a fixed compression table, let us assume
that as a result of an analysis of a 4-character character set (X,,X,X, and
X,4) we determined that the probability of occurrence of each character was
0.5625, 0.1875, 0.1875 and 0.0625 respectively. The Huffman code previously
developed in Figure 2.46 for this character set results in the assignment of
0, 10, 110 and 111 to characters X, to X,. Thus, based upon prior knowledge
of the data we can develop the Huffman code for the character set which
then enables us to construct the fixed compression table for this character
set. This table is illustrated in Figure 2.58.

The probability of occurrence of the characters in the character set must
be determined prior to constructing a fixed compression table.

The use of a fixed compression table requires each characterin the original
data string to be compared to the ‘data to compress’ entries in the table.
When a match occurs, the coded entry then replaces the character in the
original data string. Thus, the sequence of characters

XoX4X1X2X2

would be replaced by the Huffman code for each character, which would
result in the binary sequence:

1011101010

Efficiency

What happensto the efficiency of the predefined Huffman code when the
probability of occurrence of the characters in the character set differs from

117

118

115

the prior or expected knowledge of their frequency of occurrence? Since
short codes are employed to represent frequently occurring characters while
longer codes represent characters that occur less frequently, the predefined
Huffman codes variance from entropy increases as the data varies from its
prior or expected frequency of occurrence. One technique that can be used
to maintain the efficiency of the resulting code obtained by compressing data
statistically is the use of an adaptive or dynamic compression scheme, which
is the main topic of this section.

Adaptive compression

When adaptive compression is performed, the data to be compressed is
analysed in order to generate appropriate changes into a variable com-
pression table.

Similar-to the use of a fixed compression table, each character in the
original data stream is first compared to the entries in the ‘data to compress’
portion of the compression table. When a match occurs, the corresponding
entry in the ‘resulting code’ portion of the table is extracted and represents
the statistically encoded character.

employment of a count field in the compression table. This field is con-
tinuously updated and serves as a mechanism for the resequencing of the
entries.in the table. The updating of the field occurs after a character in the
original data stream is matched with an entry in the ‘data to compress’
portion of the compression table and the ‘resulting code’isextracted from
the table. Then, a comparisonof the entries in the count fieldoccurs. Based
upon. the results of the comparison, the character and its count value may
be repositioned in the compression table. This technique ensures that when-
ever the composition of the data changes, the compression table changesin
tandem, resulting in a variable compression table that provides the most
efficient statistical compression possible. Figure 2.59 illustrates how a variable
compression table.can_ be resequenced based upon the composition of the
data being transmitted.

Figure 2.59, part-A, illustrates the initial composition of the variable
compression table. Although this table wasinitially establishedbased upon
the frequency of occurrence of the characters in the character sét, since the
table is self-adjusting, we do not have to concern ourselves with the size of
the sample used to initialize the entries into the table.

In Figure 2.59, part B, we assumed that the character X, was encountered.
Since the binary code 10 is assigned to X, (Figure 2.59, part A), that bit
string is transmitted, the count for X, is incremented by one and the variable
compression table is resequenced. Similarly, at the receiver the bit sequence
10 is received, which is decompressed into the character X,. The receiver
then increments the count for X, in its compression table and its table is
also resequenced.

118

119

116

A.Initial table Data transmitted

0

10

110

111

B. X, encountered 10

Xe 0
xX, 10
Xs 110
My 111

C. X4 encountered 111

X,2 1 0
1 10

0 116

0

D, X, encountered 0

Data to compress Count Resulting code

Xa 2 0

X, 1 10
Xy 0 110
X3 0 111

Figure 2.59 The variable compression table

Count

In Figure 2.59, part C, we have assumed that the character X, is the next

character encountered in the data to be compressed. Based uponthe table
then in use (Figure 2.59, part B), this character is encodedasthe binarystring
111. Next, the count of the frequency of occurrence of X, is incremented and
the variable compression table is resequenced.

Figure 2.59, part D, assumes that the next character encountered in the
original data string is Xz. Since the table illustrated in Figure 2.59, part C,

119

120

117

was then in use, X, is encodedas the single bit 0. Then the count for X,is
incremented by one; however, since X, was at the top of the compression
table, the table is not resequenced.

Asillustrated in Figure’ 2.59, adaptive compression dynamically changes
the order of the entries in the compression table in tandem with the changes
in the frequency of occurrence of the characters in the character set. Thus,
this method of implementing a statistical compression technique should
always be moreefficient than the utilization of fixed compression.

Coded example

Figure 2.60 contains the ADAPTC.BASprogramlisting. ThisBASIClan-
guage program was developed to illustrate many of the programmingcon-
cepts involved..in..adaptive..compression.(For.simplicity- ofillustration-only
four_characters—E;T;I-and.O—are,considered to be_inthe characterset

Suitable-for-adaptive.compression, Allother. charactersencountered.in the
‘data_stringsthe.programwill operate upon will be passed‘as-is’ to the output
buffer.

In_line 115,.the program,branches to the subroutine.commencing.at line
400 which. initializes. the.character-table_P§$(I).to the characters E, T, I and
O. Similar.to-the other coding examples presented in this chapter, line 130
obtains a.line-of up -to.132characters from a data-file.while line 140 obtains
the length of the line.

The subroutine commencing..at line 180.processes the records read from
the data-file. To illustrate the-operation. of adaptive compression, when the
characters E, T, I and_O are encountered theywill be replaced by the
characters #, $, % and &. Forsimplicity, the.resulting Huffman.table_will
be displayed- on-a-line-by-line--basis.instead of.on an individual character
basis while the code changes in the adaptive compression table will similarly
occur on a line by line basis.

In ‘line 230, the subroutine commencing at line 2120 is invoked. This
subroutine prints the current values of the compression table. Next, lines
240 to 280 examine the extracted record from the data file on a line-by-line
basis, comparing each character in the record to any of the characters in our
compressible four-character character set (E, T, I, O). If a match occurs,
the subroutine commencing at line 350 is invoked. Otherwise, the program
simply places the character extracted from the input record into the output
buffer.

The subroutine commencing at line 350 sets the character match flag to
one and then adds 34 to the value of K in line 365. This action sets the

ASCII value of V to either the #, $, % or & character which is used in this
example to illustrate the substitution of a Huffman code for an appropriate
character in the four-character character set we are using. Next, line 370
inserts the substituted character into the output buffer and the count is then
incrementedin line 380.

120

121

118

19 REM ADAPTC. BAS PROGRAM

20 DIM 04%(152)
=O WIDTH 80:CL5S
40

a0
40

7O

80

*EUREEESESEMAIN ROUTINE SESERRRERE TERRE TAAEE

** THIS ROUTINE READS RECORDS FROM AN ASCII &

** FILE INTO A STRING CALLED X# WHICH IS x

> THEN PASSED TO SUBROUTINES FOR COMPRESSION

* EMRE KEAE KARA KALA RE AKERAERA EES ARATE

90 PRINT "ENTER ASCII FILENAME. EG. ADAPT.DAT"
100

105

4110

112

115

120

130
140

150
140

170
190

190

200
216

220

230
235

240
2u0

260

270

280
290

300

310

320
330
340

350
SoS

360

360
370
3B0
390
395
$00

410

420
430
440

450

INPUT F%: OPEN F% FOR ENPUT AS #2

OPEN “ADAPTE. DAT" FOR OUTPUT AS #35
PRINT "PATIENCE — INPUT PROCESSING"

PRINT "SUBSTITUTION BASED ON ENTRY IN TABLE: 1=# 2=%$ 3=-% 4=&"
GOSUBR 400 *PAUSE TO SET UP TABLE
IF EQF(2) THEN GOTO F000

LINE INPUT #2, X#
N= LEN{X#)

GOSUB 180

GOSUB 900
GOTO 120

* #203ADAPTIVE COMPRESSION SUBROUTINES 444453
7 THIS ROUTINE PROCESSES RECORDS FROM X# +*
7x AND COMPRESSES WITH HUFFMAN CODES x
*¥ USING Of AS THE OUTPUT BUFFER. x
> SUKEAERAAAEA AERA KEE SA AER ER ERATE ATER TEES
GOSUB 7120 "PRINT HUFFMAN TABLE USED
I=1 *RESET INDICES
FOR J= 1 TON ?"STEP THRU RECORD
At= MIDS (X$,J,1) *EXTRACT A CHARACTER
FOR Kk = 1 T0 4 > SETUP HUFFMAN LOOP
IF A$=FS(K) THEN GOSUB 350 71S INPUT CHAR IN TABLE?
NEXT EK *NO — TRY NEXT
IF M = 1 THEN 310 7S MATCH FLAG SET?
O#(1) = MID#(A$,1,1) 7NO-STUFF CHAR IN BUFFER
I=I+1 *BUMF INPUT STRING INDEX
M=a "RESET MATCH FLAG
NEXT J 7GO BACK FOR MORE
RETURN * DONE
M=1 “ =SET CHAR MATCH FLAG
2AERARAREEEE CREE E AER EEE AREEREAE EERE AEE TEE
"INSERT COMPRESSION NOTATION IN OUTPUT BUFFER
V=kK + 34 > INDEX OUT TO SUBSTITUTE CHAR
0% (1) =CHR#(V) > INGERT SUBSTITUTION
PiK)= Pte) + 1 *BUMP COUNT OF OCCURANCE
K = 4 *>FORCE END OF SEARCH
RETURN "GO BACK FOR MORE
DIM P#(4) > COMMON HUFFMAN CANDIDATES

DATA E,T.1,0
FOR I = 1704 *SETUP CHARACTER TABLE
READ 7% "GET CHARACTER
PS(I) = Z#: NEXT I *AND STUFF INTO TABLE
RETURN *DONE — TABLE COMPLETE

Figure 2.60 ADAPTC.BASprogram listing

121

122

119

900 *484TALLY THE COMPRESSION COUNT & WRITE BUFFERS4&&4*4%
910 ** DISPLAY BEFORE & AFTER RESULTS OF COMPRESSION x
920 ** AND SHOW THE NET RESULTS QGBTAINED BY EACH METHOD *

SSO 7ERERAEEEEEK
934 N1=N1+N "TALLY INPUT CHAR COUNT

932 T=N-I+1 *>NET DIFFERENCE IN BUFFERS
936 T1=T14+T SAVE COUNT FOR SUMMARY
940 FOR 1=1 TO J-1

950 PRINT #3, O(1)s
960 NEXT I

945 PRINT #3, ""
946 GOSUB 2000 "RESEQUENCE HUFFMAN TABLE
970 RETURN

2000 7 4a0k*RESEQUENCE & PRINT TABLE FOR ADAPTIVE COMPRESSIONS4&4Xx
2010 FOR J=1 Ta 3 7SETUP 1ST LOOP
2020 FOR K=d+1 TO 4 “SETUP 2ND LOOP

2030 IF P(J) >= P(K) THEN 2100 71S CURRENT ENTRY GREATER?
2040 TEMP= PJ) *"NO-SAVE IN TEMP

2050 TEMP$= P# (J) 7AND SAVE CHAR

2060 P(J)= FCK) “PICKUP GREATER COUNT
2070 P$(J)= PS(K) *AND ASSOC CHAR
2080 P(K)= TEMP *SWAP LESSER COUNT

2090 P#(K)= TEMPS 7AND ASSOC CHAR
2100 NEXT K *FINISH 2ND LOOP
2110 NEXT J *FINISH 1ST LOOP
2115 RETURN *DONE-TABLE RESEQUENCED
2120 L= L + 1 >REMEMBER LINE NO.
2130 PRINT "HUFFMAN TABLE USED FOR LINE";L3": "3
2140 FOR I=1 TO 4 ?SETUP PRINT TABLE LOOP

2150 PRINT P$(1);:PRINT PCI); °*PRINT CHAR AND COUNT
2160 NEXT i
2175 PRINT

2180 RETURN *DONE-TABLE PRINTED
9000 CLOSE: OPEN F% FOR INPUT AS #2

9010 PRINT "FILE ";F%;" BEFORE SUBSTITUTION: ”
9020 LINE INPUT #2, X%%
9030 IF EQF(2) THEN 7060
9040 PRINT X%#
7050 GOTO 9020

9060 FRINT X$:0PEN "ADAFTC. DAT" FOR INPUT AS #3

9070 PRINT "FILE "s3F%3" AFTER SUBSTITUTION: ™
9080 LINE INPUT #2,0%
7090 IF EQF(3) THEN 7998
F100 PRINT OF

F110
9999
9999

GOTO Faao
FRINT O%
CLOSE: END

Figure 2.60 (continued)

When the matchflag is set, line 290 causes a branch to line 310, where
the input string index is incremented by one, after which the match flag is
reset to zero in line 320. If the match flag was not set, line 300 simply
extracts one character from its appropriate position in the input record and
places it into the output buffer.

122

123

120

Each time prior to a line of input being processed in this program, the
subroutine call contained in line 230 will be invoked. This subroutine simply
prints out the current status of the adaptive ‘Huffman’ compression table to
include the character order and the frequency of occurrence of each charac-
ter. Although this program wasconstructedto facilitate the visual observation
of the changes in an adaptive compression table on a line-by-line basis, in
developing an actual adaptive compression routine the tables would be
subject to change on an individual character basis.

The actual resequencing of the adaptive compression table occursin lines
2000 to 2115 of the program. This subroutine module sorts the characters in
the adaptive compression table based upon their frequency of occurrence.

Figure 2.61 illustrates the sample execution of the ADAPTC.BAS
program, with the status of the compression table displayed for each line of
data in the file to be processed. In addition, the program displays the
contentsof thefile prior to and after the substitution of characters from the
previously defined 4-character character set. As an exampleof the operation
of the program note that prior to line 1 being processed all entries in the
compression table have a count of zero and the order ofthe entries is E, T,
I and O.

The first line in the datafile contains the string BEGIN, followed by many
asterisks. Since the characters E and I will be replaced by the ‘Huffman’
codes # and %, after line 1 is processed the count for E and I should be
one, while the adaptive compression table should be resequenced to account
for the new frequency of occurrence. Examining the Huffman table used for

ENTER ASCII FILENAME. EG, ADAPT. DAT
? ADAPT. DAT

FATIENCE — INPUT PROCESSING

SUBSTITUTION BASED ON ENTRY I

HUFFMAN TABLE USED FOR LINE 1

HUFFMAN TABLE USED FOR LINE 2

HUFFMAN TABLE USED FOR LINE 3
4

a

oeoffofoe
HUFFMAN TABLE USED FOR LINE
HUFFMAN TABLE USED FOR LINE
FILE ADAPT.DAT BEFORE SUBSTITUTION:

BEGINASKEMESRERAERA TAREE RRA TERE TRAE TES

OVATION OVATION FOR THE MUSICIAN
ENCORE ENCORE FOR THE ACTOR

ooouGdncovo TITIIITI TIITTT EEEE|
AONE EEREERESEEEEETES END

ILE ADAPT.DAT AFTER SUBSTITUTION:
BHGANESRERERERERE RAE AAA AAA RAR ATE KAAS

EVAZSEN EVAXSEN FER “HH MUSSCSAN

LNCSRE ENCSRE FSR “AHE ACZLER

HURHHRHEHH ELELEGER AMAALL SSS

KREME KRA RAREREERE EERE EATER AEE REND

WAdoe
o -"3 bam he

AwaTOSoe
Figure 2.61 Sample execution of ADAPTC.BASprogram

123

124

121
Table 2.22 Adaptive compression table change

Initial table

Character sequence ETI O
Code substitution #$ HE

After line 1 processed

Character sequence EI TO
Code substitution #$ HE

line two in Figure 2.61, the reader will note that the count of E and I are
set to 1, while the order of the characters in the table has been rearranged
to take into consideration their new frequency of occurrence.

Examining line two in the ADAPT.DATdata file, the reader will note
that OVATION contains four characters that can be substituted by the
adaptive ‘Huffman’ code. Since the character O did not changeits place in
the compression table, the ‘Huffman’ code of & is substituted for that
character. Next, the T in OVATION, which would have initially been
replaced by the ‘Huffman’ code of $, is replaced by the ‘Huffman’ code of
% since the adaptive table entries changed, which caused the ‘Huffman’
code substitutions to change. Table 2.22 summarizes the changes in the
adaptive compression table prior to and after the first line of data in the
input file is processed. As an exercise, the reader may wish to follow the
code substitutions for the 4-character character set for the remaining lines
in the ADAPT.DATfile that are processed by the ADAPTC.BASprogram.

124

125

DATA COMPRESSION %

BTCCHTR Neieree ea:|7: 1eca
and Software Considerations
Second Edition

Gilbert Held

BTTeigerom OETULLALePL LE{1O TEP GL2°10|ereya
and

Thomas R. Marshall

(software author)

Are you spending more time and moneyondata storage and Ny
transmission than you need to? About 95 per centofall data Ny
transmission consists of blanks, strings of spaces, numeric and b
alphabetic repetitions, not only buzzing through the airways but Ny
also embedded in a large numberof databases.In this book the a
author shows howto increasethe efficiency and cut the cost of data
transmission and storage throughthe application of practical data com-
pression routines.

Written as a no-nonsense,practical guide for implementing data compres-
sion, the techniques given in this book will prove invaluable whether your
organization is large or small, whether you use a mainframe or microcomputer,
and whether you are an end user or an equipment designer.

Also included are IBM PC programsand routines to compress and decom-
press data and to analyse the susceptibility of data to compression. The
programsare now available on disk for those who prefer to save keying time
and the introduction of errors. To obtain a copy of the disk please see the order
form in the book.

Contents

Chapter One Rationale and Utilization
Logical Compression, Physical Compression, Compression Benefits,
Terminology, Communications Applications, Data Compression and
faicolaaats{elamir- lala

Chapter Two Data-Compression Techniques
Null Suppression, Bit Mapping, Run Length, Half-Byte Packing, Diatomic
Encoding,Pattern Substitution, Relative Encoding, Forms Mode Operation,
Statistical Encoding, Adaptive Compression

Chapter Three System Considerations and Data Analysis
System Considerations, Data Analysis

Chapter Four Software-Linkage Considerations
Compression Routine Placement, Timing Considerations

Chapter Five Using Compression-Performing Devices
Asynchronous Data Compressors, Multifunctional Compression Devices

Appendices
Data Codes and Compression-
lerteReuritalyWe TRANS ISBN O-4?1-41ed0-6
Program Descriptions and Listings, ime inat dt , ,
SHRINK Program Descriptions and
ESare i

References

Further Reading
Index

JOHN WILEY & SONS

Chichester . New York - Brisbane - Toronto - Singapore

9 "780471"912804

