7/18/2019	ENEE 359A: Digital VLSI Design by E	8. Jacob			
http://www.ece.umd.edu/courses/enee359a.S2007/	Go	JUN	JUL	MAR	
10 captures		•	04		f 🔽
4 Jul 2008 - 8 Nov 2018		2007	2008	2016	About this capture
DEPARTMENT OF ELECTRICAL & COMPUTER ENGINE	ERING			CL/ si	ASS tes

ENEE 359A: Digital VLSI Circuits by B. Jacob

Spring 2007

Course Information:

Lecture:	Tue Thu 2:00 - 3:15, EGR-3114
Mailing List:	<u>enee359a-0101-spring07@coursemail.umd.edu</u>
Required Text:	<i>Digital Integrated Circuits: A Design Perspective, 2nd Ed.</i> , by Rabaey, Chandrakasan, and Nikolic
Recommended Texts:	Dally & Poulton: Digital Systems Engineering
	Johnson & Graham: High-Speed Digital Design
	Uyemura: Introduction to VLSI Circuits and Systems
	Baker, Li, & Boyce: CMOS: Circuit Design, Layout, and Simulation

Instructor Information:

 Professor:
 Bruce L. Jacob, Associate Professor, Electrical & Computer Engineering

 Office:
 1325 A.V. Williams Building

 Phone:
 (301) 405-0432

 Email:
 blj@ece.umd.edu

 Office Hours: Open door policy (for now ...)

TA:Elliott Cooper-BalisEmail:ecc17@umd.eduRecitations:Tue 3:30 - 4:30pm, ???

Course Handouts and General Information:

• Syllabus.pdf

М

- <u>A great Verilog tutorial on-line</u>, and <u>PDF of that same tutorial</u>.
- verilog-handbook.pdf. This is a concise overview of the Verilog programming language.
- <u>realize-verilog.pdf</u>. Gives a functional view of Verilog; i.e. if you want to build a processor model, this shows how. However, it confuses blocking/non-blocking assignments (calls "=" non-blocking and "<=" blocking). Otherwise, it is a decent overview.
- <u>scaling.gif</u>. A very interesting picture illustrating the degree to which VLSI designs have reduced in size since the Intel 4004.
- <u>2007-midterm-solutions.pdf</u>. Midterm exam, grade distribution, solutions.

https://web.archive.org/web/20080704133703/http://www.ece.umd.edu/courses/enee359a.S2007/

Find authenticated court documents without watermarks at docketalarm.com.

7/18/2019

ENEE 359A: Digital VLSI Design by B. Jacob

http://www.ece.u	md.edu/courses/enee359a.	S2007/	Go JUN JUL MAR
<u>10 captures</u> 4 Jul 2008 - 8 Nov 2018			 04 ► 2007 2008 2016 About this capture ✓
Weeks	ence359a-	Ch. I	Course overview in a nutshell
Weeks 2/3	enee359a-devices.pdf	Ch. 3.1-3.3.2, 5.1-5.3	Intro to (Verilog) design, P/N junctions, MOS transistors, CMOS inverter
Week 4	enee359a-CMOS.pdf	Ch. 6-6.2	Static CMOS Design
Week 5	<u>enee359a-</u> manufacturing.pdf		Cadence tools & manufacturing processes
Week 6	enee359a-sizing.pdf	Ch. 5.4-5.7	Transistor Sizing & Logical Effort
Week 7	enee359a-wires.pdf	Ch. 4	Interconnects (i.e., wires)
Week 8	Review and Midterm		
Week 9	SPRING BREAK		
Weeks 10/11	<u>enee359a-</u> <u>sequential.pdf</u>	Ch. 7	Sequential Circuits: Latches, Registers, Pipelines
Week 12	<u>enee359a-</u> <u>parasitics.pdf</u>	Ch. 9	Capacitive, Resistive, and Inductive Parasitics
Weeks 13/14	enee359a-timing.pdf	Ch. 10	System Timing: Synchronous, Asynchronous, etc.
Weeks 15	<u>enee359a-SRAM-</u> <u>i.pdf</u>	not really in book	Low-Power SRAM Circuits
Week 16	<u>enee359a-DRAM-</u> <u>i.pdf</u> <u>enee359a-DRAM-</u> <u>ii.pdf</u>	not really in book	DRAM Systems & Circuits pictures of cells

Assignments:

ID	Out	Due	Write-up	Homework Solution/Project Distribution
Project 1	01-Feb-2007	13-Feb-2007	<u>p1.pdf</u>	Project 1 Distribution
HW-1	15-Feb-2007	20-Feb-2007	<u>hw1.pdf</u>	
Project 2	20-Feb-2007	06-Mar-2007	<u>p2.pdf</u>	Project 2 Distribution
HW-2	20-Feb-2007	27-Feb-2007	<u>hw2.pdf</u>	
Project 3	01-Mar-2007	29-Mar-2007	<u>p3.pdf</u>	Project 3 Distribution
HW-3	09-Mar-2007	13-Mar-2007	<u>hw3.pdf</u>	
Project 4	12-Apr-2007	24-Apr-2007	<u>p4.pdf</u>	
HW-4	01-May-2007	10-May-2007	<u>hw4.pdf</u>	<u>DFF-sim.pdf</u>

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 1

ENEE 359a Digital VLSI Design

Transistor Sizing & Logical Effort

Prof. Bruce Jacob blj@ece.umd.edu

Credit where credit is due:

Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin & Vijay's CSE477 slides (PSU), Schmit & Strojwas's 18-322 slides (CMU), Dally's EE273 slides (Stanford), Wolf's slides for *Modern VLSI Design*, and/or Rabaey's slides (UCB).

Find authenticated court documents without watermarks at docketalarm.com.

ENEE 359a Lecture/s 9 Transistor Sizing

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 2

Overview

- Sizing of transistors to balance performance of single inverter
- More on RC time constant, first-order approximation of time delays
- Sizing in complex gates, examples
- Sizing of inverter chains for driving high capacitance loads (off-chip wires)

Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

