10.1

10

IP Fragmentation and
Reassembly

Introduction

In this chapter we describe the IP fragmentation and reassembly processing that we
postponed in Chapter 8.

IP has an important capability of being able to fragment a packet when it is too
large to be transmitted by the selected hardware interface. The oversized packet is split
into two or more IP fragments, each of which is small enough to be transmitted on the
selected network. Fragments may be further split by routers farther along the path to
the final destination. Thus, at the destination host, an IP datagram can be contained in a
single IP packet or, if it was fragmented in transit, it can arrive in multiple IP packets.
Because individual fragments may take different paths to the destination host, only the
destination host has a chance to see all the fragments. Thus only the destination host
can reassemble the fragments into a complete datagram to be delivered to the appropri-
ate transport protocol.

Figure 8.5 shows that 0.3% (72,786/27,881,978) of the packets received were frag-
ments and 0.12% (260,484/(29,447,726 —796,084)) of the datagrams sent were frag-
mented. On world.std.com, 9.5% of the packets received were fragments. world
has more NFS activity, which is a common source of IP fragmentation.

Three fields in the IP header implement fragmentation and reassembly: the identifi-
cation field (ip_id), the flags field (the 3 high-order bits of ip_off), and the offset field
(the 13 low-order bits of ip_off). The flags field is composed of three 1-bit flags. Bit 0
is reserved and must be 0, bit 1 is the “don’t fragment” (DF) flag, and bit 2 is the “more
fragments” (MF) flag. In Net/3, the flag and offset fields are combined and accessed by
ip_off, as shown in Figure 10.1.

275

DELL EX.1095.300

276 IP Fragmentation and Reassembly Chapter 10

ip_off| 0 |DFMH fragment offset

111 13 bits
Figure 10.1 ip_of f controls fragmentation of an IP packet.

Net/3 accesses the DF and MF bits by masking ip_of f with IP_DF and IP_MF respec-
tively. An IP implementation must allow an application to request that the DF bit be set
in an outgoing datagram.

Net/3 does not provide application-level control over the DF bit when using UDP or TCP.

A process may construct and send its own IP headers with the raw IP interface (Chapter 32).
The DF bit may be set by the transport layers directly such as when TCP performs path MTU
discovery.

The remaining 13 bits of ip_off specify the fragment’s position within the original
datagram, measured in 8-byte units. Accordingly, every fragment except the last must
contain a multiple of 8 bytes of data so that the following fragment starts on an 8-byte
boundary. Figure 10.2 illustrates the relationship between the byte offset within the
original datagram and the fragment offset (low-order 13 bits of ip_off) in the frag-
ment’s IP header.

e maximum datagram =I
65514
. 0 78 15 16 23 24 65511 ¢
IP header
ip_off=0 MF=0
20 byt . 8bytes : 8byt 8 bytes - . 8Db E
ytes 1 ytes : ytes . ytes : - ytes bytes
IP header S
ip_off=0 MF=1
20 bytes 8 bytes
IP header
ip_off=1 MF=1
20 bytes 8 bytes
IP header
ip_off=2 MF=1
20 bytes 8 bytes
IP header
ip_off=8188 ME=1
20 bytes 8 bytes
IP header
ip_off=8189 MF=0
20 byt
yres by%es

Figure 10.2 Fragmentation of a 65535-byte datagram.

DELL EX.1095.301

Section 10.2) Code Introduction 277

10.2

Figure 10.2 shows a maximally sized IP datagram divided into 8190 fragments.
Each fragment contains 8 bytes except the last, which contains only 3 bytes. We also
show the MF bit set in all the fragments except the last. This is an unrealistic example,
but it illustrates several implementation issues.

The numbers above the original datagram are the byte offsets for the data portion of
the datagram. The fragment offset (ip_off) is computed from the start of the data por-
tion of the datagram. It is impossible for a fragment to include a byte beyond offset
65514 since the reassembled datagram would be larger than 65535 bytes—the maxi-
mum value of the ip_len field. This restricts the maximum value of ip_off to 8189
(8189 x 8 = 65512), which leaves room for 3 bytes in the last fragment. If IP options are
present, the offset must be smaller still.

Because an IP internet is connectionless, fragments from one datagram may be
interleaved with those from another at the destination. ip_id uniquely identifies the
fragments of a particular datagram. The source system sets ip_1id in each datagram to
a unique value for all datagrams using the same source (ip_src), destination
(ip_dst), and protocol (ip_p) values for the lifetime of the datagram on the internet.

To summarize, ip_id identifies the fragments of a particular datagram, ip_off
positions the fragment within the original datagram, and the MF bit marks every frag-
ment except the last.

Code Introduction

The reassembly data structures appear in a single header. Reassembly and fragmenta-
tion processing is found in two C files. The three files are listed in Figure 10.3.

File Description

netinet/ip_var.h reassembly data structures

netinet/ip_output.c | fragmentation code
netinet/ip_input.c reassembly code

Figure 10.3 Files discussed in this chapter.

Global Variables

Only one global variable, ipgq, is described in this chapter.

| Variable Type Description

‘ipq struct ipg * | reassembly list

Figure 10.4 Global variable introduced in this chapter.

DELL EX.1095.302

278 IP Fragmentation and Reassembly Chapter 10
Statistics
The statistics modified by the fragmentation and reassembly code are shown in Fig-
ure 10.5. They are a subset of the statistics included in the ipstat structure described
by Figure 8.4.
ipstat member Description
ips_cantfrag #datagrams not sent because fragmentation was
required but was prohibited by the DF bit
ips_odropped #output packets dropped because of a memory shortage
ips_ofragments | #fragments transmitted
ips_fragmented | #packets fragmented for output
Figure 10.5 Statistics collected in this chapter.
10.3 Fragmentation
We now return to ip_output and describe the fragmentation code. Recall from Fig-
ure 8.25 that if a packet fits within the MTU of the selected outgoing interface, it is trans-
mitted in a single link-level frame. Otherwise the packet must be fragmented and
transmitted in multiple frames. A packet may be a complete datagram or it may itself
be a fragment that was created by a previous system. We describe the fragmentation
code in three parts:
¢ determine fragment size (Figure 10.6),
¢ construct fragment list (Figure 10.7), and
¢ construct initial fragment and send fragments (Figure 10.8).
ip_output.
253 /* pouipULe
254 * Too large for interface; fragment if possible.
255 * Must be able to put at least 8 bytes per fragment.
256 */
257 if (ip->ip_off & IP_DF) {
258 error = EMSGSIZE;
259 ipstat.ips_cantfrag++;
260 goto bad;
261 }
262 len = (ifp->if_mtu - hlen) & ~7;
263 if (len < 8) {
264 error = EMSGSIZE;
265 goto bad;
266 } .
ip_output.c
Figure 10.6 ip_output function: determine fragment size.
253-261 The fragmentation algorithm is straightforward, but the implementation is compli-

cated by the manipulation of the mbuf structures and chains. If fragmentation is

DELL EX.1095.303

Section 10.3 Fragmentation 279

262-266

267-269

270-276

277-284

285-290

291-297

298

299-305

prohibited by the DF bit, ip_output discards the packet and returns EMSGSIZE. If the
datagram was generated on this host, a transport protocol passes the error back to the
process, but if the datagram is being forwarded, ip_forward generates an ICMP desti-
nation unreachable error with an indication that the packet could not be forwarded
without fragmentation (Figure 8.21).

Net/3 does not implement the path MTU discovery algorithms used to probe the
path to a destination and discover the largest transmission unit supported by all the
intervening networks. Sections 11.8 and 24.2 of Volume 1 describe path MTU discovery
for UDP and TCP.

len, the number of data bytes in each fragment, is computed as the MTU of the
interface less the size of the packet’'s header and then rounded down to an 8-byte
boundary by clearing the low-order 3 bits (& ~7). If the MTU is so small that each frag-
ment contains less than 8 bytes, ip_output returns EMSGSIZE.

Each new fragment contains an IP header, some of the options from the original
packet, and at most 1en data bytes.

The code in Figure 10.7, which is the start of a C compound statement, constructs
the list of fragments starting with the second fragment. The original packet is converted
into the initial fragment after the list is created (Figure 10.8).

The extra block allows mhlen, firstlen, and mnext to be declared closer to their
use in the function. These variables are in scope until the end of the block and hide any
similarly named variables outside the block.

Since the original mbuf chain becomes the first fragment, the for loop starts with
the offset of the second fragment: hlen + len. For each fragment ip_output takes the
following actions:

e Allocate a new packet mbuf and adjust its m_data pointer to leave room for a
16-byte link-layer header (max_linkhdr). If ip_output didn’t do this, the
network interface driver would have to allocate an additional mbuf to hold the
link header or move the data. Both are time-consuming tasks that are easily
avoided here.

e Copy the IP header and IP options from the original packet into the new packet.
The former is copied with a structure assignment. ip_optcopy copies only
those options that get copied into each fragment (Section 10.4).

o Set the offset field (ip_off) for the fragment including the MF bit. If MF is set
in the original packet, then MF is set in all the fragments. If MF is not set in the
original packet, then MF is set for every fragment except the last.

¢ Set the length of this fragment accounting for a shorter header (ip_optcopy
may not have copied all the options) and a shorter data area for the last frag-
ment. The length is stored in network byte order.

e Copy the data from the original packet into this fragment. m_copy allocates
additional mbufs if necessary. If m_copy fails, ENOBUFS is posted. Any mbufs
already allocated are discarded at sendorfree.

DELL EX.1095.304

280

IP Fragmentation and Reassembly

Chapter 10

Py : ip_output.c

268 int mhlen, firstlen = len;

269 struct mbuf **mnext = &m->m_nextpkt;

270 /*

271 * Loop through length of segment after first fragment,

272 * make new header and copy data of each part and link onto chain.

273 */

274 m0 = m;

275 mhlen = sizeof (struct ip);

276 for (off = hlen + len; off < {(u_short) ip->ip_len; off += len) {

277 MGETHDR (m, M_DONTWAIT, MT_HEADER) ;

278 if (m == 0) {

279 error = ENOBUFS;

280 ipstat.ips_odropped++;

281 goto sendorfree;

282 }

283 m->m_data += max_linkhdr;

284 mhip = mtod{m, struct ip *);

285 *mhip = *ip;

286 if (hlen > sizeof(struct ip))

287 mhlen = ip_optcopy (ip, mhip) + sizeof (struct ip);

288 mhip->ip_hl = mhlen >> 2;

289 }

290 m->m_len = mhlen;

291 mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & “IP_MF);

292 if (ip-»>ip_off & IP_MF)

293 mhip->ip_off |= IP_MF;

294 if {(off + len >= (u_short) ip->ip_len)

295 len = {(u_short) ip->ip_len - off;

296 else

297 mhip->ip_off |= IP_MF;

298 mhip->ip_len = htons((u_short) (len + mhlen));

299 m->m_next = m_copy(m0, off, len);

300 if (m->m_next == 0) {

301 (void) m_free(m);

302 error = ENOBUFS; /xR */

303 ipstat.ips_odropped++;

304 goto sendorfree;

305 }

306 m->m_pkthdr.len = mhlen + len;

307 m->m_pkthdr.rcvif = (struct ifnet *) 0;

308 mhip->ip_off = htons((u_short) mhip->ip_off);

309 mhip->ip_sum = 0;

310 mhip->ip_sum = in_cksum(m, mhlen);

311 *mnext = m; .

312 mnext = &m->m_nextpkt;

313 ipstat.ips_ofragments++;

314 } .
ip_output.c

Figure 10.7 ip_output function: construct fragment list.

DELL EX.1095.305

Section 10.3 Fragmentation = 281

306=314

315-325

326—338

e Adjust the mbuf packet header of the newly created fragment to have the correct
total length, clear the new fragment’s interface pointer, convert ip_off to net-
work byte order, compute the checksum for the new fragment, and link the frag-
ment to the previous fragment through m_nextpkt.

In Figure 10.8, ip_output constructs the initial fragment and then passes each
fragment to the interface layer.

3o T ip_output.c

316 * Update first fragment by trimming what’s been copied out

317 * and updating header, then send each fragment (in order).

318 */

319 m = m0;

320 m_adj (m, hlen + firstlen - (u_short) ip->ip_len);

321 m->m_pkthdr.len = hlen + firstlen;

322 ip->ip_len = htons((u_short) m->m_pkthdr.len);

323 ip->ip_off = htons((u_short) (ip->»ip_off | IP_MF));

324 ip->ip_sum = 0;

325 ip->ip_sum = in_cksum(m, hlen);

326 sendorfree:

327 for (m = m0; m; m = m0) {

328 m0 = m->m_nextpkt;

329 m->m_nextpkt = 0;

330 if (error == 0)

331 error = (*ifp->if_output) (ifp, m,

332 (struct sockaddr *) dst, ro->ro_rt);

333 else

334 n_freem(m) ;

335 }

336 if (error == 0)

337 ipstat.ips_fragmented++;

338 } .
ip_output.c

Figure 10.8 ip_output function: send fragments.

The original packet is converted into the first fragment by trimming the extra data
from its end, setting the MF bit, converting ip_len and ip_off to network byte order,
and computing the new checksum. All the IP options are retained in this fragment. At
the destination host, only the IP options from the first fragment of a datagram are
retained when the datagram is reassembled (Figure 10.28). Some options, such as
source routing, must be copied into each fragment even though the option is discarded
during reassembly.

At this point, ip_output has either a complete list of fragments or an error has
occurred and the partial list of fragments must be discarded. The for loop traverses
the list either sending or discarding fragments according to error. Any error encoun-
tered while sending fragments causes the remaining fragments to be discarded.

DELL EX.1095.306

282 IP Fragmentation and Reassembly Chapter 10

104

395—-422

ip_optcopy Function

During fragmentation, ip_optcopy (Figure 10.9) copies the options from the incoming
packet (if the packet is being forwarded) or from the original datagram (if the datagram
is locally generated) into the outgoing fragments.

PP Y— ip_output.c

396 ip_optcopy {ip, jp)

397 struct ip *ip, *jp;

398 {

399 u_char *cp, *dp;

400 int opt, optlen, cnt;

401 ¢p = (u_char *) (ip + 1);

402 dp = (u_char *) (jp + 1);

403 cnt = (ip->ip_hl << 2) - sizeof (struct ip);

404 for (; cnt > 0; cnt -= optlen, cp += optlen) {

405 opt = cp(0];

406 if (opt == IPOPT_EOL)

407 break;

408 if (opt == IPOPT_NOP) {

409 /* Preserve for IP mcast tunnel’s LSRR alignment. */

410 *dp++ = IPOPT_NOP;

411 optlen = 1;

412 continue;

413 } else

414 optlen = cp[IPOPT_OLEN] ;

415 /* bogus lengths should have been caught by ip_dooptions */

416 if (optlen > cnt)

417 optlen = cnt;

418 if (IPOPT_COPIED(opt))

419 becopy ((caddr_t) cp, (caddr_t) dp, (unsigned) optlen);

420 dp += optlen;

421 }

422 }

423 for (optlen = dp - (u_char *) (Jp + 1); optlen & 0x3; optlen++)

424 *dp++ = IPOPT_EOL;

425 return (optlen);

426 } X
ip_output.c

Figure 10.9 ip_optcopy function

The arguments to ip_optcopy are: ip, a pointer to the IP header of the outgoing
packet; and jp, a pointer to the IP header of the newly created fragment. ip_optcopy
initializes cp and dp to point to the first option byte in each packet and advances cp
and dp as it processes each option. The first for loop copies a single option during
each iteration stopping when it encounters an EOL option or when it has examined all
the options. NOP options are copied to preserve any alignment constraints in the sub-
sequent options.

The Net/2 release discarded NOP options.

DELL EX.1095.307

Section 10.5 Reassembly 283

423426

10.5

271-279

280-286

If IPOPT_COPIED indicates that the copied bit is on, ip_optcopy copies the option
to the new fragment. Figure 9.5 shows which options have the copied bit set. If an
option length is too large, it is truncated; ip_dooptions should have already discov-
ered this type of error.

The second for loop pads the option list out to a 4-byte boundary. This is required,
since the packet’s header length (ip_hlen) is measured in 4-byte units. It also ensures
that the transport header that follows is aligned on a 4-byte boundary. This improves
performance since many transport protocols are designed so that 32-bit header fields are
aligned on 32-bit boundaries if the transport header starts on a 32-bit boundary. This
arrangement increases performance on CPUs that have difficulty accessing unaligned
32-bit words.

Figure 10.10 illustrates the operation of ip_optcopy.

IP header timestamp option LSRR option

20 bytes 12bytes .- 11 bytes

IP header LSRR option end-of-list
option

20 bytes 11 bytes 1

Figure 10.10 Not all options are copied during fragmentation.

In Figure 10.10 we see that ip_optcopy does not copy the timestamp option (its
copied bit is 0) but does copy the LSRR option (its copied bit is 1). ip_optcopy has also
added a single EOL option to pad the new options to a 4-byte boundary.

Reassembly

Now that we have described the fragmentation of a datagram (or of a fragment), we
return to ipintr and the reassembly process. In Figure 8.15 we omitted the reassembly
code from ipintr and postponed its discussion. ipintr can pass only entire data-
grams up to the transport layer for processing. Fragments that are received by ipintr
are passed to ip_reass, which attempts to reassemble fragments into complete data-
grams. The code from ipintr is shown in Figure 10.11.

Recall that ip_of £ contains the DF bit, the MF bit, and the fragment offset. The DF
bit is masked out and if either the MF bit or fragment offset is nonzero, the packet is a
fragment that must be reassembled. If both are zero, the packet is a complete datagram,
the reassembly code is skipped and the else clause at the end of Figure 10.11 is exe-
cuted, which excludes the header length from the total datagram length.

m_pullup moves data in an external cluster into the data area of the mbuf. Recall
that the SLIP interface (Section 5.3) may return an entire IP packet in an external cluster
if it does not fit in a single mbuf. Also m_devget can return the entire packet in a clus-
ter (Section 2.6). Before the mtod macros will work (Section 2.6), m_pullup must move
the IP header from the cluster into the data area of an mbuf.

DELL EX.1095.308

284 IP Fragmentation and Reassembly

Chapter 10

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

299
300
301
302
303
304
305
306
307
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322

ours:
/*
* If offset or IP_MF are set, must reassemble.
* Otherwise, nothing need be done.
* (We could look in the reassembly queue to see
* if the packet was previously fragmented,
* but it’s not worth the time; just let them time out.)
*/
if (ip->ip_off & “IP_DF) {
if {(m->m_flags & M_EXT) | /* XXX */
if ((m = m_pullup(m, sizeof(struct ip))) == 0) {
ipstat.ips_toosmall++;
goto next;
}
ip = mtod(m, struct ip *);
}
/*
* Look for queue of fragments
* of this datagram.
*/
for (fp = ipg.next; fp != &ipqg; fp = fp->next)
if (ip-»ip_id == fp->ipg id &&
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
ip->ip_dst.s_addr == fp->ipg dst.s_addr &&
ip->ip_p == fp->ipg p)
goto found;
fo = 0;
found:
/*

* Adjust ip_len to not reflect header,
* get ip_mff if more fragments are expected,
* convert offset of this to bytes.
*/
ip->ip_len -= hlen;
((struct ipasfrag *) ip)->ipf mff &= ~1;
if (ip->ip_off & IP_MF)
((struct ipasfrag *) ip)->ipf_mff |= 1;
ip->ip_off <<= 3;

/*
* Tf datagram marked as having more fragments
* or if this is not the first fragment,
* attempt reassembly; if it succeeds, proceed.
*/
if (((struct ipasfrag *) ip)->ipf_mff & 1 || ip->ip_off)
ipstat.ips_fragments++;
ip = ip_reass{(struct ipasfrag *) ip, fp);
if (ip == 0)
goto next;
ipstat.ips_reassembled++;
m = dtom(ip);
} else if (fp)
ip_freef (fp);

{

ip_input.c

DELL EX.1095.309

Section 10.5 Reassembly 285

323 } else
324 ip->ip_len -= hlen;

ip_input.c

Figure 10.11 ipintr function: fragment processing.

287-297 Net/3 keeps incomplete datagrams on the global doubly linked list, ipg. The name
is somewhat confusing since the data structure isn't a queue. That is, insertions and
deletions can occur anywhere in the list, not just at the ends. We’ll use the term list to
emphasize this fact.

ipintr performs a linear search of the list to locate the appropriate datagram for
the current fragment. Remember that fragments are uniquely identified by the 4-tuple:
{ip_id, ip_src, ip_dst, ip_p}. Each entry in ipq is a list of fragments and fp points
to the appropriate list if ipintr finds a match.

Net/3 uses linear searches to access many of its data structures. While simple, this method can
become a bottleneck in hosts supporting large numbers of network connections.

298-303 At found, the packet is modified by ipintr to facilitate reassembly:

304 e ipintr changes ip_len to exclude the standard IP header and any options.
We must keep this in mind to avoid confusion with the standard interpretation
of ip_len, which includes the standard header, options, and data. ip_len is
also changed if the reassembly code is skipped because this is not a fragment.

305-307 e ipintr copies the MF flag into the low-order bit of ipf_mff, which overlays
ip_tos (&= "1 clears the low-order bit only). Notice that ip must be cast to a
pointer to an ipasfrag structure before ipf mff is a valid member. Sec-
tion 10.6 and Figure 10.14 describe the ipasfrag structure.

Although RFC 1122 requires the IP layer to provide a mechanism that enables the transport
layer to set ip_tos for every outgoing datagram, it only recommends that the IP layer pass
ip_tos values to the transport layer at the destination host. Since the low-order bit of the
TOS field must always be 0, it is available to hold the MF bit while ip_off (where the MF bit
is normally found) is used by the reassembly algorithm.
ip_off can now be accessed as a 16-bit offset instead of 3 flag bits and a 13-bit
offset.

308 e ip_ off is multiplied by 8 to convert from 8-byte to 1-byte units.

ipf_mff and ip_off determine if ipintr should attempt reassembly. Fig-
ure 10.12 describes the different cases and the corresponding actions. Remember that
fp points to the list of fragments the system has previously received for the datagram.
Most of the work is done by ip_reass.

309-322 If ip_reass is able to assemble a complete datagram by combining the current
fragment with previously received fragments, it returns a pointer to the reassembled
datagram. If reassembly is not possible, ip_reass saves the fragment and ipintr
jumps to next to process the next packet (Figure 8.12).

323-324 This else branch is taken when a complete datagram arrives and ip_hlen is mod-
ified as described earlier. This is the normal flow, since most received datagrams are not
fragments.

DELL EX.1095.310

286 IP Fragmentation and Reassembly Chapter 10
ip_off ipf_mff fp Description Action
0 false null complete datagram no assembly required
0 false nonnull | complete datagram discard the previous fragments
any true null fragment of new datagram initialize new fragment list
with this fragment
any true nonnull | fragment of incomplete datagram insert into existing fragment
list, attempt reassembly
nonzero | false null tail fragment of new datagram initialize new fragment list
nonzero | false nonnull | tail fragment of incomplete datagram | insert into existing fragment
list, attempt reassembly
Figure 10.12 IP fragment processing in ipintr and ip_reass.
If a complete datagram is available after reassembly processing, it is passed up to
the appropriate transport protocol by ipintr (Figure 8.15):
(*inetsw(ip_protox[ip->ip_pl].pr_input) (m, hlen) ;
10.6 ip_reass Function
ipintr passes ip_reass a fragment to be processed, and a pointer to the matching
reassembly header from ipa. ip_reass attempts to assemble and return a complete
datagram or links the fragment into the datagram’s reassembly list for reassembly when
the remaining fragments arrive. The head of each reassembly list is an ipqg structure,
show in Figure 10.13.
- ip_varh
52 struct ipq {
53 struct ipg *next, *prev; /* to other reass headers */
54 u_char ipg ttl; /* time for reass q to live */
55 u_char ipg_p; /* protocol of this fragment */
56 u_short ipqg_id; /* sequence id for reassembly */
57 struct ipasfrag *ipg next, *ipg prev;
58 /* to ip headers of fragments */
59 struct in_addr ipq_src, ipq dst;
60 }; .
ip_var.h
Figure 10.13 ipq structure.
52-60 The four fields required to identify a datagram’s fragments, ip_id, ip_p, ip_src,

and ip_dst, are kept in the ipq structure at the head of each reassembly list. Net/3
constructs the list of datagrams with next and prev and the list of fragments with
ipg_next and ipg_prev.

The IP header of incoming IP packets is converted to an ipasfrag structure (Fig-
ure 10.14) before it is placed on a reassembly list.

DELL EX.1095.311

Section 10.6 ip_reass Function 287

66—86

- ip_varh
66 struct ipasfrag {
67 #if BYTE_ORDER == LITTLE_ENDIAN
68 u_char 1ip_hl:4,
69 ip_v:4;
70 #endif
71 #if BYTE_ORDER == BIG_ENDIAN
72 u_char ip_wv:4,
73 ip_hl:4;
74 #endif
75 u_char ipf_mff; /* XXX overlays ip_tos: use low bit
76 * to avoid destroying tos;
77 * copied from (ip_off&IP_MF) */
78 short ip_len;
79 u_short ip_id;
80 short ip_off;
81 u_char ip_ttl;
82 u_char 1ip_p;
83 u_short ip_sum;
84 struct ipasfrag *ipf_next; /* next fragment */
85 struct ipasfrag *ipf_prev; /* previous fragment */
86 1};

ip_varh

Figure 10.14 ipasfrag structure.

ip_reass collects fragments for a particular datagram on a circular doubly linked
list joined by the ipf_next and ipf_prev members. These pointers overlay the
source and destination addresses in the IP header. The ipf_mff member overlays
ip_tos from the ip structure. The other members are the same.

Figure 10.15 illustrates the relationship between the fragment header list (ipg) and
the fragments (ipasfrag).

Down the left side of Figure 10.15 is the list of reassembly headers. The first node in
the list is the global ipq structure, ipa. It never has a fragment list associated with it.
The ipq list is a doubly linked list used to support fast insertions and deletions. The
next and prev pointers reference the next or previous ipq structure, which we have
shown by terminating the arrows at the corners of the structures.

Each ipq structure is the head node of a circular doubly linked list of ipasfrag
structures. Incoming fragments are placed on these fragment lists ordered by their frag-
ment offset. We've highlighted the pointers for these lists in Figure 10.15.

Figure 10.15 still does not show all the complexity of the reassembly structures. The
reassembly code is difficult to follow because it relies so heavily on casting pointers to
three different structures on the underlying mbuf. We've seen this technique already,
for example, when an ip structure overlays the data portion of an mbuf.

Figure 10.16 illustrates the relationship between an mbuf, an ipg structure, an
ipasfrag structure, and an ip structure.

DELL EX.1095.312

288 IP Fragmentation and Reassembly Chapter 10

ipq{}
ipq: next —
— prev
to end head of reassembly list;
of list no fragments are ever
ipg_next linked to this structure
ipg prev
fragment lists, ordered by fragment offset
ipg(} ipasfrag{} ipasfrag{}
next
- prev received
fragments
________________________________ for one
C ipg_next I » ipf_next ipf_next datagram
C— ipg prev [ipf_prev - ipf_prev
ipa{} ipasfrag{}
next —
[brev to start received
of list fragments
______________________ for one
ipg next ipf_next —: datagram
— ipg prev ipf_prev ﬁ-t

m_datal] L

ipg{}| next prev

ipg next

ipasfrag{} vl jtf len | id | off [tlfp

ip{} [v| [cos len | id | off [elp | sum | ip_src ip_dst

1

Figure 10.16 An area of memory can be accessed through multiple structures.

DELL EX.1095.313

Section 10.6 ip_reass Function 289

A lot of information is contained within Figure 10.16:

e All the structures are located within the data area of an mbuf.

* The ipq list consists of ipg structures joined by next and prev. Within the
structure, the four fields that uniquely identify an IP datagram are saved
(shaded in Figure 10.16).

e FEach ipgq structure is treated as an ipasfrag structure when accessed as the
head of a linked list of fragments. The fragments are joined by ipf_next and
ipf_prev, which overlay the ipg structures’ ipg_next and ipg prev mem-
bers.

* Each ipasfrag structure overlays the ip structure from the incoming frag-
ment. The data that arrived with the fragment follows the structure in the mbuf.
The members that have a different meaning in the ipasfrag structure than
they do in the ip structure are shaded.

Figure 10.15 showed the physical connections between the reassembly structures
and Figure 10.16 illustrated the overlay technique used by ip_reass. In Figure 10.17
we show the reassembly structures from a logical point of view: this figure shows the
reassembly of three datagrams and the relationship between the ipq list and the
ipasfrag structures.

fp
ipg{}

ipg:

ipasfrag{} n ipasfrag{} l
544 MF 815|816 1031|

ipasfrag(}

ipasfrag{} ﬂ ipasfrag{} l
72 wr 543[54 MF 815

Figure 10.17 Reassembly of three IP datagrams.

The head of each reassembly list contains the id, protocol, source, and destination
address of the original datagram. Only the ip_id field is shown in the figure. Each
fragment list is ordered by the offset field, the fragment is labeled with MF if the MF bit
is set, and missing fragments appear as shaded boxes. The numbers within each frag-
ment show the starting and ending byte offset for the fragment relative to the data
portion of the original datagram, not to the IP header of the original datagram.

The example is constructed to show three UDP datagrams with no IP options and
-1024 bytes of data each. The total length of each datagram is 1052 (20 + 8 + 1024) bytes,

DELL EX.1095.314

290 IP Fragmentation and Reassembly Chapter 10
which is well within the 1500-byte MTU of an Ethernet. The datagrams encounter a
SLIP link on the way to the destination, and the router at that link fragments the data-
grams to fit within a typical 296-byte SLIP MTU. Each datagram arrives as four frag-
ments. The first fragment contain a standard 20-byte IP header, the 8-byte UDP header,
and 264 bytes of data. The second and third fragments contain a 20-byte IP header and
272 bytes of data. The last fragment has a 20-byte header and 216 bytes of data
(1032 =272 x 3+ 216).
In Figure 10.17, datagram 5 is missing a single fragment containing bytes 272
through 543. Datagram 6 is missing the first fragment, bytes 0 through 271, and the end
of the datagram starting at offset 816. Datagram 7 is missing the first three fragments,
bytes 0 through 815.
Figure 10.18 lists ip_reass. Remember that ipintr calls ip_reass when an IP
fragment has arrived for this host, and after any options have been processed.
ip_input.c

337 /* p-np

338 * Take incoming datagram fragment and try to

339 * reassemble it into whole datagram. If a chain for

340 * reassembly of this datagram already exists, then it

341 * is given as fp; otherwise have to make a chain.

342 */

343 struct ip *

344 ip_reass(ip, fp)

345 struct ipasfrag *ip;

346 struct ipg *fp;

347 {

348 struct mbuf *m = dtom(ip);

349 struct ipasfrag *q;

350 struct mbuf *t;

351 int hlen = ip->ip_hl << 2;

352 int i, next;

353 /*

354 * Presence of header sizes in mbufs

355 * would confuse code below.

356 */

357 m->m_data += hlen;

358 m->m_len -= hlen;

/* reassembly code */

465 dropfrag: .

466 ipstat.ips_fragdropped++;

467 m_freem(m) ;

468 return (0);

469) L
ip_input.c

Figure 10.18 ip_reass function: datagram reassembly.
343-358 When ip_reass is called, ip points to the fragment and fp either points to the

matching ipg structure or'is null.

DELL EX.1095.315

Section 10.6 ip_reass Function 291

465469

359-366

Since reassembly involves only the data portion of each fragment, ip_reass
adjusts m_data and m_len from the mbuf containing the fragment to exclude the IP
header in each fragment.

When an error occurs during reassembly, the function jumps to dropfrag, which
increments ips_fragdropped, discards the fragment, and returns a null pointer.

Dropping fragments usually incurs a serious performance penalty at the transport
layer since the entire datagram must be retransmitted. TCP is careful to avoid fragmen-
tation, but a UDP application must take steps to avoid fragmentation on its own. [Kent
and Mogul 19871 explain why fragmentation should be avoided.

All TP implementations must to be able to reassemble a datagram of up to 576 bytes.
There is no general way to determine the size of the largest datagram that can be
reassembled by a remote host. We'll see in Section 27.5 that TCP has a mechanism to
determine the size of the maximum datagram that can be processed by the remote host.
UDP has no such mechanism, so many UDP-based protocols (e.g., RIP, TFTT, BOOTP,
SNMP, and DNS) are designed around the 576-byte limit.

We'll show the reassembly code in seven parts, starting with Figure 10.19.

359 e ip_input.c

360 * If first fragment to arrive, create a reassembly queue.

361 */

362 if (fp == 0) {

363 if ((t = m_get (M_DONTWAIT, MT_FTABLE)) == NULL)

364 goto dropfrag;

365 fp = mtod(t, struct ipg *);

366 insque (fp, &ipq);

367 fp->ipg ttl = TPFRAGTTL;

368 fp->ipg p = ip->ip_p;

369 fp->ipg_id = ip->ip_id;

370 fp->ipg _next = fp->ipg prev = (struct ipasfrag *) fp;

371 fp->ipg_src = ((struct ip *) ip)->ip_src;

372 fp->ipg dst = ((struct ip *) ip)->ip_dst;

373 g = (struct ipasfrag *) fp;

374 goto insert;

375 } o
ip_input.c

Figure 10.19 ip_reass function: create reassembly list.

Create reassembly list

When fp is null, ip_reass creates a reassembly list with the first fragment of the
new datagram. It allocates an mbuf to hold the head of the new list (an ipg structure),
and calls insque to insert the structure in the list of reassembly lists.

Figure 10.20 lists the functions that manipulate the datagram and fragment lists.

The functions insque and remque are defined in machdep.c for the 386 version of Net/3.
Each machine has its own machdep. ¢ file in which customized versions of kernel functions
are defined, typically to improve performance. This file also contains architecture-dependent
functions such as the interrupt handler support, cpu and device configuration, and memory
management functions.

DELL EX.1095.316

292 IP Fragmentation and Reassembly Chapter 10
Function Description
insque | Insertnode just after prev.
void insque(void *node, void *prev);
remgue | Remove node from list.
void remque(void *node);
ip_eng Insert fragment p just after fragment prev.
void ip_eng(struct ipasfrag *p, struct ipasfrag *prev);
ip_deqg Remove fragment p.
void ip_deq(struct ipasfrag *p);
Figure 10.20 Queueing functions used by ip_reass.
insque and remque exist primarily to maintain the kernel’s run queue. Net/3 can use them
for the datagram reassembly list because both lists have next and previous pointers as the first
two members of their respective node structures. These functions work for any similarly struc-
tured list, although the compiler may issue some warnings. This is yet another example of
accessing memory through two different structures.
In all the kernel structures the next pointer always precedes the previous pointer (Figure 10.14,
for example). This is because the insque and remque functions were first implemented on
the VAX using the insque and remque hardware instructions, which require this ordering of
the forward and backward pointers.
The fragment lists are not joined with the first two members of the ipasfrag structures (Fig-
ure 10.14) so Net/3 calls ip_deg and ip_eng instead of insque and remgue.
Reassembly timeout
367 The time-to-live field (ipg_ttl) is required by RFC 1122 and limits the time Net/3

waits for fragments to complete a datagram. It is different from the TTL field in the IP
header, which limits the amount of time a packet circulates in the internet. The IP
header TTL field is reused as the reassembly timeout since the header TTL is not needed
once the fragment arrives at its final destination.

In Net/3, the initial value of the reassembly timeout is 60 (IPFRAGTTL). Since
ipg_ttl is decremented every time the kernel calls 1p_slowtimo and the kernel calls
ip_slowtimo every 500 ms, the system discards an IP reassembly list if it hasn’t
assembled a complete IP datagram within 30 seconds of receiving any one of the data-
gram’s fragments. The reassembly timer starts ticking on the first call to ip_slowtimo
after the list is created.

RFC 1122 recommends that the reassembly time be between 60 and 120 seconds and
that an ICMP time exceeded error be sent to the source host if the timer expires and the
first fragment of the datagram has been received. The header and options of the other
fragments are always discarded after reassembly and an ICMP error must contain the
first 64 bits of the erroneous datagram (or less if the datagram was shorter than 8 bytes).
So, if the kernel hasn’t received fragment 0, it can’t send an ICMP message.

DELL EX.1095.317

Section 10.6 ip_reass Function 293

368-375

376—-381

Net/3’s timer is a bit too short and Net/3 neglects to send the ICMP message when a fragment
is discarded. The requirement to return the first 64 bits of the datagram ensures that the first
portion of the transport header is included, which allows the error message to be returned to
the application that generated it. Note that TC and UDP purposely put their port numbers in
the first 8 bytes of their headers for this reason.

Datagram identifiers

ip_reass saves ip_p, ip_1id, ip_src, and ip_dst in the ipg structure allocated
for this datagram, points the ipg_next and ipg_prev pointers to the ipg structure
(i.e., it constructs a circular list with one node), points g at this structure, and jumps to
insert (Figure 10.25) where it inserts the first fragment, ip, into the new reassembly
list.

The next part of ip_reass, shown in Figure 10.21, is executed when fp is not null
and locates the correct position in the existing list for the new fragment.

76 > ip_input.c

377 * Find a fragment which begins after this one does.

378 */

379 for (q = fp->ipg next; q != (struct ipasfrag *) fp; q = g->ipf_next)

380 if (g->ip_off > ip->ip_off)

381 break; L
ip_input.c

Figure 10.21 ip_reass function: find position in reassembly list.

Since fp is not null, the for loop searches the datagram’s fragment list to locate a
fragment with an offset greater than ip_off.

The byte ranges contained within fragments may overlap at the destination. This
can happen when a transport-layer protocol retransmits a datagram that gets sent along
a route different from the one followed by the original datagram. The fragmentation
pattern may also be different resulting in overlaps at the destination. The transport
protocol must be able to force IP to use the original ID field in order for the datagram to
be recognized as a retransmission at the destination.

Net/3 does not provide a mechanism for a transport protocol to ensure that IP ID fields are
reused on a retransmitted datagram. ip_output always assigns a new value by incrementing
the global integer ip_id when preparing a new datagram (Figure 8.22). Nevertheless, a
Net/3 system could receive overlapping fragments from a system that lets the transport layer
retransmit IP datagrams with the same ID field.

Figure 10.22 illustrates the different ways in which the fragment may overlap with
existing fragments. The fragments are numbered according to the order in which they
arrive at the destination host. The reassembled fragment is shown at the bottom of Fig-
ure 10.22 The shaded areas of the fragments are the duplicate bytes that are discarded.

In the following discussion, an earlier fragment is a fragment that previously arrived
at the host.

DELL EX.1095.318

294

IP Fragmentation and Reassembly Chapter 10

fragment 1 fragment 2 fragment 3 fragment 4

| —
] || |

fragment 5 : fragment 7 fragment 6:
1 | 5 [2] 7 ‘ 4

|= reassembled datagram >

Figure 10.22 The byte range of fragments may overlap at the destination.

The code in Figure 10.23 trims or discards incoming fragments.

382-396 ip_reass discards bytes that overlap the end of an earlier fragment by trimming

the new fragment (the front of fragment 5 in Figure 10.22) or discarding the new frag-
ment (fragment 6) if all its bytes arrived in an earlier fragment (fragment 4).

The code in Figure 10.24 trims or discards existing fragments.

397-412 If the current fragment partially overlaps the front of an earlier fragment, the dupli-

cate data is trimmed from the earlier fragment (the front of fragment 2 in Figure 10.22).
Any earlier fragments that are completely overlapped by the arriving fragment are dis-
carded (fragment 3).

In Figure 10.25, the incoming fragment is inserted into the reassembly list.

413426 After trimming, ip_enq inserts the fragment into the list and the list is scanned to

determine if all the fragments have arrived. If any fragment is missing, or the last frag-
ment in the list has ipf_mff set, ip_reass returns 0 and waits for more fragments.

When the current fragment completes a datagram, the entire list is converted to an
mbuf chain by the code shown in Figure 10.26.

427-440 If all the fragments for the datagram have been received, the while loop recon-

structs the datagram from the fragments with m_cat.

Figure 10.27 shows the relationships between mbufs and the ipq structure for a
datagram composed of three fragments.

The darkest areas in the figure mark the data portions of a packet and the lighter
shaded areas mark the unused portions of the mbufs. We show three fragments each
contained in a chain of two mbufs; a packet header, and a cluster. The m_data pointer
in the first mbuf of each fragment points to the packet data, not the packet header.
Therefore, the mbuf chain constructed by m_cat includes only the data portion of the
fragments.

This is the typical scenario when a fragment contains more than 208 bytes of data
(Section 2.6). The “frag” portion of the mbufs is the IP header from the fragment. The
m_data pointer of the first mbuf in each chain points beyond “opts” because of the
code in Figure 10.18.

Figure 10.28 shows the reassembled datagram using the mbufs from all the frag-
ments. Notice that the IP header and options from fragments 2 and 3 are not included
in the reassembled datagram.

DELL EX.1095.319

Section 10.6

ip_reass Function 295

382 x p_tnpu t.c

383 * If there is a preceding fragment, it may provide some of

384 * our data already. If so, drop the data from the incoming

385 * fragment. If it provides all of our data, drop us.

386 */

387 if {(g-»ipf_prev != (struct ipasfrag *) fp) {

388 i = g->ipf_prev->ip_off + g->ipf_prev->ip_len - ip->ip_off;

389 if (1 > 0) {

390 if (i »>= ip-»>ip_len)

391 goto dropfrag;

392 m_adj (dtom(ip), 1i);

393 ip-»ip_off += 1i;

394 ip-»ip_len -= i;

395 }

396 1 o
ip_input.c

Figure 10.23 ip_reass function: trim incoming packet.

397 e p_input.c

398 * While we overlap succeeding fragments trim them or,

399 * if they are completely covered, degueue them.

400 */

401 while (g != (struct ipasfrag *) fp && ip->ip_off + ip->ip_len > g->ip_off)

402 i = (ip->ip_off + ip->ip_len) - g->ip_off;

403 if (i < g->ip_len) {

404 g->ip_len -= 1i;

405 g->ip_off += i;

406 m_adj (dtom(qg), 1i);

407 break;

408 }

409 g = g->ipf_next;

410 m_freem(dtom(g->ipf_prev));

411 ip_deqg(g->ipf_prev);

412 } L
tp_input.c

Figure 10.24 ip_reass function: trim existing packets.

413 insert: p-tmput.c

414 /*

415 * Stick new fragment in its place;

416 * check for complete reassembly.

417 */

418 ip_enq(ip, qg->ipf_prev);

419 next = 0;

420 for (g = fp->ipg next; q != (struct ipasfrag *) fp; g = g->ipf_next) {

421 if (g-»>ip_off != next)

422 return (0);

423 next += g->ip_len;

424 }

425 if (g->ipf_prev->ipf_mff & 1)

426 return (0): L.
ip_input.c

Figure 10.25 ip_reass function: insert packet.

DELL EX.1095.320

296 IP Fragmentation and Reassembly

Chapter 10

ip_input.c
427 /* p-np
428 * Reassembly is complete; concatenate fragments.
429 */
430 g = fp->ipg next;
431 m = dtom(q) ;
432 t = m->m_next;
433 m->m_next = 0;
434 m_cat(m, t);
435 g = g->ipf_next;
436 while (g != (struct ipasfrag *) fp) {
437 t = dtom(q);
438 q = g->ipf_next;
439 m_cat (m, t);
440 } L
ip_input.c
Figure 10.26 ip_reass function: reassemble datagram.
ipg{}
~
? cluster
n_next I Fragment 1
el ‘mbuf hd1 ext
|
buf hdy frag | opts
I J
Ll
m_data
~
cluster
oDt /—>‘ I Fragment 2
K/ buf hd
|
mbuf hdy frag | opts
] J
L_l
m_data
~
cluster
m_next [Fragment 3
i Lmbuf hd:
[
mbuf hdy frag | opts

L“f
\ m_data

Figure 10.27 m_cat reassembles the fragments within mbufs.

DELL EX.1095.321

Section 10.6 ip_reass Function 297

(_" hdr
f—> hdr | frag
I

cluster

hdr frag cluster
hdr ext
m ——» hdr cluster
ip
-
IP header and

options from fragment 1

Figure 10.28 The reassembled datagram.

The header of the first fragment is still being used as an ipasfrag structure. It is
restored to a valid IP datagram header by the code shown in Figure 10.29.

el o ip_tnput.c

442 * Create header for new ip packet by

443 * modifying header of first packet;

444 * dequeue and discard fragment reassembly header.

445 * Make header visible.

446 */

447 ip = fp->ipg_next;

448 ip->ip_len = next;

449 ip->ipf_mff &= ~1;

450 ((struct ip *) ip)->ip_src = fp->ipg_src;

451 ({struct ip *) ip)->ip_dst = fp->ipg dst;

452 remque (£p) ;

453 (void) m_free(dtom(fp));

454 m = dtom(ip);

455 m->m_len += (ip->ip_hl << 2);

456 rn->m_data -= (ip->ip_hl << 2);

457 /* some debugging cruft by sklower, below, will go away soon */

458 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */

459 int plen = 0;

460 for (t = m; m; m = m->m_next)

461 plen += m->m_len;

462 t->m_pkthdr.len = plen;

463 }

464 return ((struct ip *) ip); L
ip_input.c

Figure 10.29 ip_reass function: datagram reassembly.

DELL EX.1095.322

298 IP Fragmentation and Reassembly Chapter 10

441-456

457—464

10.7

515534

470—486

Reconstruct datagram header

ip_reass points ip to the first fragment in the list and changes the ipasfrag
structure back to an ip structure by restoring the length of the datagram to ip. len, the
source address to ip_src, the destination address to ip_dst; and by clearing the low-
order bit in ipf_mff. (Recall from Figure 10.14 that ipf_mff in the ipasfrag struc-
ture overlays ipf_tos in the ip structure.)

ip_reass removes the entire packet from the reassembly list with remque, dis-
cards the ipq structure that was the head of the list, and adjusts m_len and m_data in
the first mbuf to include the previously hidden IP header and options from the first
fragment.

Compute packet length

The code here is always executed, since the first mbuf for the datagram is always a
packet header. The for loop computes the number of data bytes in the mbuf chain and
saves the value in m_pkthdr. len.

The purpose of the copied bit in the option type field should be clear now. Since the
only options retained at the destination are those that appear in the first fragment, only
options that control processing of the packet as it travels toward its destination are
copied. Options that collect information while in transit are not copied, since the infor-
mation collected is discarded at the destination when the packet is reassembled.

ip_slowtimo Function

As shown in Section 7.4, each protocol in Net/3 may specify a function to be called
every 500 ms. For IP, that function is ip_slowtimo, shown in Figure 10.30, which
times out the fragments on the reassembly list.

ip_slowtimo traverses the list of partial datagrams and decrements the reassem-
bly TTL field. ip_freef is called if the field drops to 0 to discard the fragments associ-
ated with the datagram. ip_slowtimo runs at splnet to prevent the lists from being
modified by incoming packets.

ip_freef is shown in Figure 10.31.
ip_freef removes and releases every fragment on the list pointed to by fp and
then releases the list itself.

ip_drain Function

538-545

In Figure 7.14 we showed that IP defines ip_drain as the function to be called when
the kernel needs additional memory. This usually occurs during mbuf allocation, which
we described with (Figure 2.13). ip_drain is shown in Figure 10.32.

The simplest way for IP to release memory is to discard all the IP fragments on the
reassembly list. For IP fragments that belong to a TCP segment, TCP eventually retrans-
mits the data. IP fragments that belong to a UDP datagram are lost and UDP-based
protocols must handle this at the application layer.

DELL EX.1095.323

Section 10.7 ip_slowtimo Function 299

=15 void ip_input.c

516 ip_slowtimo(void)

517 {

518 struct ipg *fp;

519 int s = splnet();

520 fp = ipg.next;

521 if (fp == 0) {

522 splx(s);

523 return;

524 }

525 while (fp != &ipq) {

526 --fp->ipg _ttl;

527 fp = fp->next;

528 if (fp->prev->ipg_ttl == 0) {

529 ipstat.ips_fragtimeout++;

530 ip_freef (fp->prev) ;

531 }

532 }

533 splx(s);

534 } L
ip_input.c

Figure 10.30 ip_slowtimo function.

172 voia 1p_input.c

475 ip_freef (fp)

476 struct ipqg *fp;

477 {

478 struct ipasfrag *q, *p;

479 for (g = fp->ipg next; g != (struct ipasfrag *) fp; g = p) {

480 p = g->ipf_next;

481 ip_deq(q) ;

482 m_freem(dtom(q)) ;

483 }

484 remque (fp) ;

485 (void) m_free(dtom(fp));

486 } .

- p_tnput.c

Figure 10.31 ip_freef function.

538 void p-input.c

539 ip_drain()

540 {

541 while (ipg.next != &ipqg) {

542 ipstat.ips_fragdropped++;

543 ip_freef (ipg.next) ;

544 }

545 } L.
ip_input.c

Figure 10.32 ip_drain function.

DELL EX.1095.324

300

IP Fragmentation and Reassembly Chapter 10

10.8

Summary

In this chapter we showed how ip_output splits an outgoing datagram into fragments
if it is too large to be transmitted on the selected network. Since fragments may them-
selves be fragmented as they travel toward their final destination and may take multiple
paths, only the destination host can reassemble the original datagram.

ip_reass accepts incoming fragments and attempts to reassemble datagrams. If it
is successful, the datagram is passed back to ipintr and then to the appropriate trans-
port protocol. Every IP implementation must reassemble datagrams of up to 576 bytes.
The only limit for Net/3 is the number of mbufs that are available. ip_slowtimo dis-
cards incomplete datagrams when all their fragments haven’t been received within a
reasonable amount of time.

Exercises

10.1 Modify ip_slowtimo to send an ICMP time exceeded message when it discards an
incomplete datagram (Figure 11.1). .

10.2 The recorded route in a fragmented datagram may be different in each fragment. When a
datagram is reassembled at the destination host, which return route is available to the
transport protocols?

10.3 Draw a picture showing the mbufs involved in the ipq structure and its associated frag-
ment list for the fragment with an ID of 7 in Figure 10.17.

10.4 [Auerbach 19941 suggests that after fragmenting a datagram, the last fragment should be
sent first. If the receiving system gets that last fragment first, it can use the offset to allo-
cate an appropriately sized reassembly buffer for the datagram. Modify ip_output to
send the last fragment first.

[Auerbach 1994] notes that some commercial TCP/IP implementations have been known to
crash if they receive the last fragment first.

10.5 Use the statistics in Figure 8.5 to answer the following questions. What is the average
number of fragments per reassembled datagram? What is the average number of frag-
ments created when an outgoing datagram is fragmented?

10.6 What happens to a packet when the reserved bit in ip_of f is set?

DELL EX.1095.325

111

I

ICMP: Internet Control
Message Protocol

Introduction

ICMP communicates error and administrative messages between IP systems and is an
integral and required part of any IP implementation. The specification for ICMP
appears in RFC 792 [Postel 1981b]. RFC 950 [Mogul and Postel 1985] and RFC 1256
[Deering 1991a] define additional ICMP message types. RFC 1122 [Braden 1989a] also
provides important details on ICMP.

ICMP has its own transport protocol number (1) allowing ICMP messages to be car-
ried within an IP datagram. Application programs can send and receive ICMP mes-
sages directly through the raw IP interface discussed in Chapter 32.

We can divide the ICMP messages into two classes: errors and queries. Query mes-
sages are defined in pairs: a request and its reply. ICMP error messages always include
the IP header (and options) along with at least the first 8 bytes of the data from the ini-
tial fragment of the IP datagram that caused the error. The standard assumes that the 8
bytes includes any demultiplexing information from the transport protocol header of
the original packet, which allows a transport protocol to deliver an ICMP error to the
correct process. ‘

TCP and UDP port numbers appear within the first 8 bytes of their respective headers.

Figure 11.1 shows all the currently defined ICMP messages. The messages above
the double line are ICMP requests and replies; those below the double line are ICMP

€rrors.

301

DELL EX.1095.326

302 ICMP: Internet Control Message Protocol Chapter 11
type and code Description PRC_
ICMP_ECHO echo request

ICMP_ECHOREPLY

echo reply

ICMP_TSTAMP
ICMP_TSTAMPREPLY

timestamp request
timestamp reply

ICMP_MASKREQ
ICMP_MASKREPLY

address mask request
address mask reply

ICMP_IREQ
ICMP_IREQREPLY

information request (obsolete)
information reply (obsolete)

ICMP_ROUTERADVERT
ICMP_ROUTERSOLICIT

router advertisement
router solicitation

ICMP_REDIRECT
ICMP_REDIRECT _NET
ICMP_REDIRECT_HOST
ICMP_REDIRECT _TOSNET
ICMP_REDIRECT_TOSHOST
other

better route available
better route available for network
better route available for host

better route available for TOS and network

better route available for TOS and host
unrecognized code

PRC_REDIRECT_HOST
PRC_REDIRECT_HOST
PRC_REDIRECT_HOST
PRC_REDIRECT_HOST

ICMP_UNREACH
ICMP_UNREACH_NET
ICMP_UNREACH_HOST
ICMP_UNREACH_PROTOCOL
ICMP_UNREACH_PORT
ICMP _UNREACH_SRCFAIL
ICMP_UNREACH_NEEDFRAG
ICMP_UNREACH_NET_UNKNOWN
ICMP_UNREACH_HOST _UNKNOWN
ICMP_UNREACH_ISOLATED
TICMP_UNREACH_NET PROHIB

ICMP_UNREACH_HOST_PROHIB

ICMP_UNREACH_TOSNET
ICMP_UNREACH_TOSHOST
13

14
15
other

destination unreachable
network unreachable
host unreachable
protocol unavailable at destination
port inactive at destination
source route failed
fragmentation needed and DF bit set
destination network unknown
destination host unknown
source host isolated

communication with destination network

administratively prohibited
communication with destination host
administratively prohibited
network unreachable for type of service
host unreachable for type of service
communication administratively
prohibited by filtering
host precedence violation
precedence cutoff in effect
unrecognized code

PRC_UNREACH_NET
PRC_UNREACH_HOST
PRC_UNREACH_PROTOCOL
PRC_UNREACH_PORT
PRC_UNREACH_SRCFAIL
PRC_MSGSIZE
PRC_UNREACH_NET
PRC_UNREACH_HOST
PRC_UNREACH_HOST
PRC_UNRFACH_NET

PRC_UNREACH_HOST

PRC_UNREACH_NET
PRC_UNREACH_HOST

ICMP_TIMXCEED
ICMP_TIMXCEED TINTRANS
ICMP_TIMXCEED_REASS

time exceeded
IP time-to-live expired in transit
reassembly time-to-live expired

PRC_TIMXCEED_INTRANS
PRC_TIMXCEED_REASS

other unrecognized code
ICMP_PARAMPROB problem with IP header
0 unspecified header error PRC_PARAMPROB
ICMP_PARAMPROB_OPTABSENT required option missing PRC_PARAMPROB
other byte offset of invalid byte
ICMP_SOURCEQUENCH request to slow transmission PRC_QUENCH
other unrecognized type

Figure 11.1 ICMP message types and codes.

DELL EX.1095.327

Section 11.1 Introduction 303
type and code icmp_input 19)9) ¢ TCP errno

ICMP_ECHO icmp_reflect

ICMP_ECHOREPLY rip_input

ICMP_TSTAMP icmp_reflect

ICMP_TSTAMPREPLY rip_input

ICMP_MASKREQ icmp_reflect

ICMP_MASKREPLY rip_input

TCMP_IREQ rip_input

TCMP_IREQREPLY rip_input

ICMP_ROUTERADVERT rip_input

ICMP_ROUTERSOLICIT rip_input

ICMP_REDIRECT
ICMP_REDIRECT_NET pfctlinput in_rtchange | in_rtchange
ICMP_REDIRECT _HOST pfctlinput in_rtchange | in_rtchange
ICMP_REDIRECT_TOSNET pfctlinput in_rtchange | in_rtchange
ICMP_REDIRECT_TOSHOST pfctlinput in_rtchange | in_rtchange
other rip_input

ICMP_UNREACH
ICMP_UNREACH_NET pr_ctlinput udp_notify tep_notify EHOSTUNREACH
ICMP_UNREACH_HOST pr_ctlinput udp_notify tep_notify EHOSTUNREACH
ICMP_UNREACH_PROTOCOL pr_ctlinput udp_notify tep_notify ECONNREFUSED
ICMP_UNREACH_PORT pr_ctlinput udp_notify tep_notify ECONNREFUSED
ICMP_UNREACH_SRCFAIL pr_ctlinput udp_notify tep_notify FHOSTUNREACH
ICMP_UNREACH_NEEDFRAG pr_ctlinput udp_notify tecp_notify EMSGSIZE
TCMP_UNREACH_NET_UNKNOWN pr_ctlinput udp_notify tecp_notify EHOSTUNREACH
TICMP_UNREACH_HOST_UNKNOWN | pr_ctlinput udp_notify tcp_notify EHOSTUNREACH
ICMP_UNREACH_TSOLATED pr_ctlinput udp_notify tep_notify EHOSTUNREACH
ICMP_UNREACH_NET_ PROHIB pr_ctlinput udp_notify tecp_notify EHOSTUNREACH
ICMP_UNREACH _HOST PROHIB pr_ctlinput udp_notify tcp_notify EHOSTUNREACH
ICMP_UNREACH_ _TOSNET pr_ctlinput udp_notify tep_notify EHOSTUNREACH
ICMP_UNREACH_TOSHOST pr_ctlinput udp_notify tcp_notify EHOSTUNREACH
13 rip_input
14 rip_input
15 rip_input
other rip_input

ICMP_TIMXCEED
ICMP_TIMXCEED INTRANS pr_ctlinput udp_notify tecp_notify
ICMP_TIMXCEED_REASS pr_ctlinput udp_notify tep_notify
other rip_input

ICMP__PARAMPROB
0 pr_ctlinput udp_notify tcp_notify ENOPROTOOPT
ICMP_PARAMPROB_OPTABSENT pr_ctlinput udp_notify tep_notify ENOPROTOOPT
other rip_input

ICMP_SOURCEQUENCH pr_ctlinput udp_notify tcp_guench

other rip_input

Figure 11.2 ICMP message types and codes (continued).

DELL EX.1095.328

304 ICMP: Internet Control Message Protocol Chapter 11

Figures 11.1 and 11.2 contain a lot of information:

The PRC_ column shows the mapping between the ICMP messages and the
protocol-independent error codes processed by Net/3 (Section 11.6). This col-
umn is blank for requests and replies, since no error is generated in that case. If
this column is blank for an ICMP error, the code is not recognized by Net/3 and
the error message is silently discarded.

Figure 11.3 shows where we discuss each of the functions listed in Figure 11.2.

Function Description Reference
icmp_reflect | generate reply to ICMP request Section 11.12
in_rtchange update IP routing tables Figure 22.34
pfctlinput report error to all protocols Section 7.7
pr_ctlinput report error to the protocol associated with the socket | Section 7.4
rip_input process unrecognized ICMP messages Section 32.5
tcp_notify ignore or report error to process Figure 27.12
tcp_quench slow down the output Figure 27.13
udp_notify report error to process Figure 23.31

Figure 11.3 Functions called during ICMP input processing.

The icmp_input column shows the function called by icmp_input for each
ICMP message.

The UDP column shows the functions that process ICMP messages for UDP
sockets.

The TCP column shows the functions that process ICMP messages for TCP sock-
ets. Note that ICMP source quench errors are handled by tcp_guench, not
tcp_notify.

If the errno column is blank, the kernel does not report the ICMP message to
the process.

The last line in the tables shows that unrecognized ICMP messages are delivered
to the raw IP protocol where they may be received by processes that have
arranged to receive ICMP messages.

In Net/3, ICMP is implemented as a transport-layer protocol above IP and does not
generate errors or requests; it formats and sends these messages on behalf of the other
protocols. ICMP passes incoming errors and replies to the appropriate transport proto-

DELL EX.1095.329

Section 11.2 Code Introduction 305

col or to processes that are waiting for ICMP messages. On the other hand, ICMP
responds to most incoming ICMP requests with an appropriate ICMP reply. Figure 11.4
summarizes this information.

ICMP Incoming Outgoing
message type
request kernel responds with reply generated by a process
reply passed to raw IP generated by kernel
error passed to transport protocols and raw IP | generated by IP or transport protocols
unknown passed to raw IP generated by a process

Figure 11.4 ICMP message processing.

11.2 Code Introduction

The two files listed in Figure 11.5 contain the ICMP data structures, statistics, and pro-
cessing code described in this chapter.

File Description

netinet/ip_icmp.h | ICMP structure definitions

netinet/ip_icmp.c | ICMP processing

Figure 11.5 Files discussed in this chapter.

Global Variables

The global variables shown in Figure 11.6 are introduced in this chapter.

Variable Type Description
icmpmaskrepl | int enables the return of ICMP address mask replies
icmpstat struct icmpstat | ICMP statistics (Figure 11.7)

Figure 11.6 Global variables introduced in this chapter.

DELL EX.1095.330

306 ICMP: Internet Control Message Protocol Chapter 11

Statistics

Statistics are collected by the members of the icmpstat structure shown in Figure 11.7.

. - Used by
icmpstat member Description SNMP
icps_oldicmp #errors discarded because datagram was an ICMP message .
icps_oldshort #errors discarded because IP datagram was too short .
icps_badcode #ICMP messages discarded because of an invalid code .
icps_badlen #ICMP messages discarded because of an invalid ICMP body .
icps_checksum #ICMP messages discarded because of a bad ICMP checksum .
icps_tooshort #ICMP messages discarded because of a short ICMP header .
icps_outhist (] array of output counters; one for each ICMP type .
icps_inhist[] array of input counters; one for each ICMP type .
icps_error #of calls to icmp_error (excluding redirects)

icps_reflect #ICMP messages reflected by the kernel

Figure 11.7 Statistics collected in this chapter.

We'll see where these counters are incremented as we proceed through the code.
Figure 11.8 shows some sample output of these statistics, from the netstat -s

command.
netstat -s output icmpstat member

84124 calls to icmp_error icps_error

0 errors not generated ’‘cuz old message was icmp | icps_oldicmp

Output histogram: icps_outhist[)
echo reply: 11770 ICMP_ECHOREPLY
destination unreachable: 84118 ICMP_UNREACH
time exceeded: 6 ICMP_TIMXCEED

6 messages with bad code fields icps_badcode

0 messages < minimum length icps_badlen

0 bad checksums icps_checksum

143 messages with bad length icps_tooshort

Input histogram: icps_inhist[]
echo reply: 793 ICMP_ECHOREPLY
destination unreachable: 305869 ICMP_UNREACH
source guench: 621 ICMP_SOURCEQUENCH
routing redirect: 103 ICMP_REDIRECT
echo: 11770 ICMP_ECHO
time exceeded: 25296 ICMP_TIMXCEED

11770 message responses generated icps_reflect

Figure 11.8 Sample ICMP statistics.
SNMP Variables

Figure 11.9 shows the relationship between the variables in the SNMP ICMP group and
the statistics collected by Net/3.

DELL EX.1095.331

Section 11.2 Code Introduction 307

SNMP variable icmpstat member Description
icmpInMsgs see text #ICMP messages received)
icmpInErrors icps_badcode + #ICMP messages discarded because of an error

icps_badlen +
icps_checksum +
icps_tooshort

icmpInDestUnreachs
icmpInTimeExcds
icmpInParmProbs
icmpInSrcQuenchs
icmpInRedirects
icmpInEchos icps_inhist[] counter #ICMP messages received for each type
icmpInEchoReps
icmpInTinestamps
icmpInTimestampReps
icmpInAddrMasks
icmpInAddrMaskReps
icmpOutMsgs see text #ICMP messages sent

icmpOutErrors icps_oldicmp + #ICMP errors not sent because of an error
icps_oldshort

icmpOutDestUnreachs
icmpOutTimeExcds
icmpOut ParmProbs
icmpOutSrcQuenchs
icmpOutRedirects
icmpOutEchos icps_outhist[] counter | #ICMP messages sent for each type
icmpOutEchoReps
icmpOutTimestamps
icmpOutTimestampReps
icmpOutAddrMasks
icmpOutAddrMaskReps

Figure 11.9 Simple SNMP variables in ICMP group.

icmpInMsgs is the sum of the counts in the icps_inhist array and
icmpInErrors, and icmpOutMsgs is the sum of the counts in the icps_outhist
array and icmpOutErrors.

DELL EX.1095.332

308

ICMP: Internet Control Message Protocol

Chapter 11

11.3

icmp Structure

Net/3 accesses an ICMP message through the icmp structure shown in Figure 11.10.

42 struct icmp {
u_char icmp_typ

43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

u_char

e;

icmp_code;

u_short icmp_cksum;
union {
u_char ih_pptr;
struct in_addr ih_gwaddr;

struct ih_id
n_short
n_short

} ih_idseq;

int ih v

seq {
icd_id;
icd_seq;

oid;

/‘k
/*
/*

/*

ip_icmp.h

type of message, see below */
type sub code */
ones complement cksum of struct */

ICMP_PARAMPROB */

/* ICMP_REDIRECT */

/* ICMP_UNREACH_NEEDFRAG -- Path MTU Discovery {(RFC1191) */
struct ih_pmtu {

n_short

ipm_void;

n_short ipm_nextmtu;

} ih_pmtu;

} dicmp_hun;

#define
#define
#define
#define
#define
#tdefine
#define

icmp_pptr
icmp_gwaddr
icmp_id
icmp_seq
icmp_void
icmp_pmvoid
icmp_nextmtu

union {

struct id_ts
n_time
n_time
n_time

} id_ts;

struct id_ip
struct i

icmp_hun.
icmp_hun.
icmp_hun.
icmp_hun.
icmp_hun.
icmp_hun.

ih_pptr
ih_gwaddr
ih_idseq.icd_id

ih_idseq.icd_seq

ih_void

ih_pmtu.ipm_void

icmp_hun.ih_pmtu.ipm_nextmtu

{

its_otime;
its_rtime;
its_ttime;

{
p idi_ip;

/* options and then 64

Y id_ip;
u_long id_m
char id_d.

} icmp_dun;

#define
#define
#define
#define
#define
#define
}i

icmp_otime
icmp_rtime
icmp_ttime
icmp_ip
icmp_mask
icmp_data

ask;
ata(l];

icmp_dun.
icmp_dun
icmp_dun.
icmp_dun.
icmp_dun.
icmp_dun.

id_ts.
.id_ts.
id_ts.

id_ip

bits of data */

itg_otime
its_rtime
its_ttime
.idi_ip

id_mask
id_data

Figure 11.10

ip_icmp.h

icmp structure.

DELL EX.1095.333

Section 11.4 ICMP protosw Structure 309

42-45 icmp_type identifies the particular message, and icmp_code further specifies the
message (the first column of Figure 11.1). icmp_cksum is computed with the same
algorithm as the IP header checksum and protects the entire ICMP message (not just the
header as with IP).
46-79 The unions icmp_hun (header union) and icmp_dun (data union) access the vari-
ous ICMP messages according to icmp_type and icmp_code. Every ICMP message
uses icmp_hun; only some utilize icmp_dun. Unused fields must be set to 0.

As we have seen with other nested structures (e.g., mbuf, le_softc, and
ether_arp) the #def ine macros simplify access to structure members.

Figure 11.11 shows the overall structure of an ICMP message and reiterates that an
ICMP message is encapsulated within an IP datagram. We show the specific structure

of each message when we encounter it in the code.

80-86

l|< ICMP message

contents depends on

cksum
type and code

‘ type | code ‘

-
ST T ; $ ’L—I
IP header : $ $ |

v 1P datagram A—ll

2 bytes

7r_—“

Figure 11.11 An ICMP message (icmp_ omitted).

11.4 ICMP protosw Structure

The protosw structure in inetsw[4] (Figure 7.13) describes ICMP and supports both
kernel and process access to the protocol. We show this structure in Figure 11.12.
Within the kernel, incoming ICMP messages are processed by icmp_input. Outgoing
ICMP messages generated by processes are handled by rip_output. The three func-
tions beginning with rip_ are described in Chapter 32.

pr_ctlinput
pr_ctloutput
pr_usrreq

0
rip_ctloutput
rip_usrreq

Member inetsw([4) Description
pr_type SOCK_RAW ICMP provides raw packet services
pr_domain &inetdomain ICMP is part of the Internet domain
pr_protocol IPPROTO_ICMP (1) appears in the ip_p field of the IP header
pr_flags PR_ATOMIC|PR_ADDR | socket layer flags, not used by ICMP
pr_input icmp_input receives ICMP messages from the IP layer
pr_output rip_output sends ICMP messages to the IP layer

not used by ICMP
respond to administrative requests from a process
respond to communication requests from a process

pr_init 0 not used by ICMP
pr_fasttimo 0 not used by ICMP
pr_slowtimo 0 not used by ICMP
pr_drain 0 not used by ICMP
pr_sysctl 0 not used by ICMP

Figure 11.12

ICMP inetsw entry.

DELL EX.1095.334

310 ICMP: Internet Control Message Protocol Chapter 11

11.5 Input Processing: icmp_input Function

Recall that ipintr demultiplexes datagrams based on the transport protocol number,
ip_p, in the IP header. For ICMP messages, ip_p is 1, and through ip_protox, it
selects inetsw(4].

ip_protox(]: inetswl]:
0 3 0
1 4 1
2
3
4 ICMP
5
6
255 3

Figure 11.13 An ip_p value of 1 selects inetsw[4].

The IP layer calls icmp_input indirectly through the pr_input function of
inetsw[4] when an ICMP message arrives (Figure 10.11).

We'll see in icmp_input that each ICMP message may be processed up to three
times: by icmp_input, by the transport protocol associated with the IP packet within
an ICMP error message, and by a process that registers interest in receiving ICMP mes-
sages. Figure 11.14 shows the overall organization of ICMP input processing.

Applications
Y

rip_input

transport
protocols

ICMP errors

ICMP errors, replies,
and unknown messages

ICMP ["ICMP output |
replies ! processing)

icmp_input

K
ICMP (Figure 11.29)
messages

Figure 11.14 ICMP input processing.

We discuss icmp_input in five sections: (1) verification of the received message,
(2) ICMP error messages, (3) ICMP requests messages, (4) ICMP redirect messages, (5)
ICMP reply messages. Figure 11.15 shows the first portion of the icmp_input
function.

DELL EX.1095.335

|

Section 11.5

Input Processing: icmp_input Function 311

131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171
172
173
174
175

ip_icmp.c
static struct sockaddr_in icmpsrc = { sizeof (struct sockaddr_in), AF_INET };
static struct sockaddr_in icmpdst = { sizeof (struct sockaddr_in), AF_INET };
static struct sockaddr_in icmpgw = { sizeof (struct sockaddr_in), AF_INET };
struct sockaddr_in icmpmask = { 8, 0 };

void
icmp_input (m, hlen)
struct mbuf *m;
int hlen;
{
struct icmp *icp;
struct ip *ip = mtod{m, struct ip *);

int icmplen = ip->ip_len;

int i;

struct in_ifaddr *ia;

void (*ctlfunc) (int, struct sockaddr *, struct ip *);
int code;

extern u_char ip_protox[];

/*
* Locate icmp structure in mbuf, and check
* that not corrupted and of at least minimum length.
*/
if (icmplen < ICMP_MINLEN) {
icmpstat.icps_tooshort++;
goto freeit;

1 = hlen + min(icmplen, ICMP_ADVLENMIN) ;
if (m->m_len < 1 && (m = m_pullup(m, i)
icmpstat.icps_tooshort++;
return;

It

It
o
-~

}

ip = mtod(m, struct ip *);

m->m_len -= hlen;

m->m_data += hlen;

icp = mtod(m, struct icmp *);

if (in_cksum(m, icmplen)) {
icmpstat.icps_checksum++;
goto freeit;

}

m->m_len += hlen;

m->m_data -= hlen;

if (icp->icmp_type > ICMP_MAXTYPE)
goto raw;
icmpstat.icps_inhist [icp->icmp_typel ++;
code = icp->icmp_code;
switch (icp->icmp_type) {

/* ICMP message processing */

DELL EX.1095.336

312 ICMP: Internet Control Message Protocol Chapter 11
317 default:
318 break;
319 }
320 raw:
321 rip_input (m) ;
322 return;
323 freeit:
324 m_freem(m) ;
325) .
ip_icmp.c
Figure 11.15 icmp_input function.
Static structures
131-134 These four structures are statically allocated to avoid the delays of dynamic alloca-
tion every time icmp_input is called and to minimize the size of the stack since
icmp_input is called at interrupt time when the stack size is limited. icmp_input
uses these structures as temporary variables.
The naming of icmpsrc is misleading since icmp_input uses it as a temporary
sockaddr_in variable and it never contains a source address. In the Net/2 version of
icmp_input, the source address of the message was copied to icmpsrc at the end of the
function before the message was delivered to the raw IP mechanism by the raw_input func-
tion. Net/3 calls rip_input, which expects only a pointer to the packet instead of
raw_input. Despite this change, icmpsrc retains its name from Net/2.
Validate message
135-139 icmp_input expects a pointer to the datagram containing the received ICMP mes-
sage (m) and the length of the datagram’s IP header in bytes (hlen). Figure 11.16 lists
several constants that simplify the detection of invalid ICMP messages in icmp_input.
Constant/Macro Value Description
ICMP_MINLEN 8 minimum size of an ICMP message
ICMP_TSLEN 20 size of ICMP timestamp messages
ICMP_MASKLEN 12 size of ICMP address mask messages
ICMP_ADVLENMIN 36 minimum size of an ICMP error (advise) message
(IP + ICMP + BADIP =20+ 8+ 8 = 36)
ICMP_ADVLEN (p) | 36+ optsize | size of an ICMP error message including optsize bytes of IP
options from the invalid packet p.
Figure 11.16 Constants referenced by ICMP to validate messages.
140-160 icmp_input pulls the size of the ICMP message from ip_len and stores it in

icmplen. Remember from Chapter 8 that ipintr excludes the length of the header
from ip_len. If the message is too short to be a valid ICMP message, icps_tooshort
is incremented and the message discarded. If the ICMP header and the IP header are
not contiguous in the first mbuf, m_pullup ensures that the ICMP header and the IP
header of any enclosed IP packet are in a single mbuf.

DELL EX.1095.337

Section 11.6 Error Processing 313

161-170

171-175

317-325

11.6

Verify checksum

icmp_input hides the IP header in the mbuf and verifies the ICMP checksum with
in_cksum. If the message is damaged, icps_checksum is incremented and the mes-
sage discarded.

Verify type

If the message type (icmp_type) is out of the recognized range, icmp_input
jumps around the switch to raw (Section 11.9). If it is in the recognized range,
iemp_input duplicates icmp_code and the switch processes the message according
to icmp_type.

After the processing within the ICMP switch statement, icmp_input sends ICMP
messages to rip_input where they are distributed to processes that are prepared to
receive ICMP messages. The only messages that are not passed to rip_input are dam-
aged messages (length or checksum errors) and ICMP request messages, which are han-
dled exclusively by the kernel. In both cases, icmp_input returns immediately,
skipping the code at raw.

Raw ICMP input

icmp_input passes the incoming message to rip_input, which distributes it to
listening processes based on the protocol and the source and destination addresses
within the message (Chapter 32).

The raw IP mechanism allows a process to send and to receive ICMP messages
directly, which is desirable for several reasons:

* New ICMP messages can be handled by a process without having to modify the
kernel (e.g., router advertisement, Figure 11.28).

e Utilities for sending ICMP requests and processing the replies can be imple-
mented as a process instead of as a kernel module (ping and traceroute).

* A process can augment the kernel processing of a message. This is common with
the ICMP redirect messages that are passed to a routing daemon after the kernel
has updated its routing tables.

Error Processing

We first consider the ICMP error messages. A host receives these messages when a
datagram that it sent cannot successfully be delivered to its destination. The intended
destination host or an intermediate router generates the error message and returns it to
the originating system. Figure 11.17 illustrates the format of the various ICMP error
messages.

DELL EX.1095.338

314

JCMP: Internet Control Message Protocol

Chapter 11

unreachable

time exceeded |type| len | cksum void ip

e (must be 0) (IP header from bad packet)
source quench
4 bytes

need pmvoid ip

fragmentation type| len | cksum | istbe0) | PEXEIEY (IP header from bad packet)
2 bytes 2 bytes

parameter ip

problem type| len | cksum - |pptr (must be 0) (IP header from bad packet)
1 1 2 bytes 1 3 bytes 8 bytes
o4 Y Y/

Figure 11.17 ICMP error messages (icmp_ omitted).

The code in Figure 11.18 is from the switch shown in Figure 11.15.

ip_icmp.c

176 case ICMP_UNREACH:

177 switch (code) {

178 case ICMP_UNREACH_NET:

179 case ICMP_UNREACH_ HOST:

180 case ICMP_UNREACH_PROTOCOL:
181 case ICMP_UNREACH*PQRT:

182 case ICMP_UNREACH_SRCFAIL:
183 code += PRC_UNREACH_NET;
184 break;

185 case ICMP_UNREACH_NEEDFRAG:
186 code = PRC_MSGSIZE;

187 break;

188 case ICMP_UNREACH_NET_ UNKNOWN :
189 case ICMP_UNREACH_NET_PROHIB:
190 case ICMP_UNREACH_TOSNET:

191 code = PRC_UNREACH_NET;
192 break;

193 case ICMP_UNREACH_HOST_UNKNOWN :
194 case ICMP_UNREACH_ISOLATED:
195 case ICMP_UNREACH_HOST_PROHIB:
196 case ICMP_UNREACH_TOSHOST:
197 code = PRC_UNREACH_HOST;
198 break;

199 default:

200 goto badcode;

201 }

202 goto deliver;

203 case ICMP_TIMXCEED:

204 if (code > 1)

205 goto badcode;

206 code += PRC_TIMXCEED_INTRANS;
207 goto deliver;

DELL EX.1095.339

Section 11.6 Error Processing 315

176-216

217225

226~231

232~234

208 case ICMP_PARAMPROB:

209 if (code > 1)

210 goto badcode;

211 code = PRC_PARAMPROB;

212 goto deliver;

213 case ICMP_SOURCEQUENCH:

214 if (code)

215 goto badcode;

216 code = PRC_QUENCH;

217 deliver:

218 /*

219 * Problem with datagram; advise higher level routines.
220 */

221 if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN(icp) |
222 icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) {
223 icmpstat.icps_badlen++;

224 goto freeit;

225 }

226 NTOHS (icp->icmp_ip.ip_len);

227 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;

228 if (ctlfunc = inetswlip_protox[icp->icmp_ip.ip_p)).pr_ctlinput)
229 (*ctlfunc) (code, (struct sockaddr *) &icmpsrc,

230 &icp->icmp_ip) ;

231 break;

232 badcode:

233 icmpstat.icps_badcode++;

234 break;

ip_icmp.c

Figure 11.18 icmp_input function: error messages.

The processing of ICMP errors is minimal since responsibility for responding to
ICMP errors lies primarily with the transport protocols. icmp_input maps
icmp_type and icmp_code to a set of protocol-independent error codes represented
by the PRC_ constants. There is an implied ordering of the PRC__ constants that matches
the ICMP code values. This explains why code is incremented by a PRC_ constant.

If the type and code are recognized, icmp_input jumps to deliver. If the type
and code are not recognized, icmp_input jumps to badcode.

If the message length is incorrect for the error being reported, icps_badlen is
incremented and the message discarded. Net/3 always discards invalid ICMP mes-
sages, without generating an ICMP error about the invalid message. This prevent an
infinite sequence of error messages from forming between two faulty implementations.

icmp_input calls the pr_ctlinput function of the transport protocol that created
the original IP datagram by demultiplexing the incoming packets to the correct transport
protocol based on ip_p from the original datagram. pr_ctlinput (if it is defined for
the protocol) is passed the error code (code), the destination of the original IP datagram
(icmpsrc), and a pointer to the invalid datagram (icmp_ip). We discuss these errors
with Figures 23.31 and 27.12.

icps_badcode is incremented and control breaks out of the switch statement.

DELL EX.1095.340

316 ICMP: Internet Control Message Protocol Chapter 11
Constant Description
PRC_HOSTDEAD host appears to be down
PRC_ITFDOWN network interface shut down
PRC_MSGSIZE invalid message size
PRC_PARAMPROB header incorrect
PRC_QUENCH someone said to slow down
PRC_QUENCHZ2 congestion bit says slow down
PRC_REDIRECT HOST host routing redirect
PRC_REDIRECT _NET network routing redirect
PRC_REDIRECT TOSHOST | redirect for TOS and host
PRC_REDIRECT _TOSNET | redirect for TOS and network
PRC_ROUTEDEAD select new route if possible
PRC_TIMXCEED_INTRANS | packet lifetime expired in transit
PRC_TIMXCEED REASS fragment lifetime expired during reassembly
PRC_UNREACH_HOST no route available to host
PRC_UNREACH_NET no route available to network
PRC_UNREACH_PORT destination says port is not active
PRC_UNREACH_PROTOCOL | destination says protocol is not available
PRC_UNREACH _SRCFATL source route failed
Figure 11.19 The protocol-independent error codes.
While the PRC_ constants are ostensibly protocol independent, they are primarily based on the
Internet protocols. This results in some loss of specificity when a protocol outside the Internet
domain maps its errors to the PRC_ constants.
11.7 Request Processing

Net/3 responds to properly formatted ICMP request messages but passes invalid ICMP
request messages to rip_input. We show in Chapter 32 how ICMP request messages
may be generated by an application process.

Most ICMP request messages received by Net/3 generate a reply message, except
the router advertisement message. To avoid allocation of a new mbuf for the reply,
icmp_input converts the mbuf containing the incoming request to the reply and
returns it to the sender. We discuss each request separately.

Echo Query: ICMP_ECHO and ICMP_ECHOREPLY

For all its simplicity, an ICMP echo request and reply is arguably the single most power-
ful diagnostic tool available to a network administrator. Sending an ICMP echo request
is called pinging a host, a reference to the ping program that most systems provide for
manually sending ICMP echo requests. Chapter 7 of Volume 1 discusses ping in detail.

The program ping is named after sonar pings used to locate objects by listening for the echo

generated as the ping is reflected by the other objects. Volume 1 incorrectly described the
name as standing for Packet InterNet Groper.

DELL EX.1095.341

Section 11.7 Request Processing 317

235-237

277282

Figure 11.20 shows the structure of an ICMP echo and reply message.

0 78 15 16 31
icmp_type icmp_code icmp_cksum
TCHP_ECHO 0 checksum
ICMP_ECHOREPLY
8 bytes
icmp_id icmp_seq
identifier sequence number
icmp_datall

/ optional data

Figure 11.20 ICMP echo request and reply.

icmp_code is always 0. icmp_id and icmp_seq are set by the sender of the
request and returned without modification in the reply. The source system can match
requests and replies with these fields. Any data that arrives in icmp_data is also
reflected. Figure 11.21 shows the ICMP echo processing and also the common code in
icmp_input that implements the reflection of ICMP requests.

ip_icmp.c

235 case ICMP_ECHO:

236 icp->icmp_type = ICMP_ECHOREPLY;

237 goto reflect;

/* other ICMP request processing */

277 reflect:

278 ip->ip_len += hlen; /* since ip_input deducts this */

279 icmpstat.icps_reflect++;

280 icmpstat:icps_outhist[icp->icmp_typel++:

281 icmp_reflect (m);

282 return; L.
ip_icmp.c

Figure 11.21 icmp_input function: echo request and reply.

icmp_input converts an echo request into an echo reply by changing icmp_type
to TCMP_ECHOREPLY and jumping to reflect to send the reply.

After constructing the reply for each ICMP request, icmp__input executes the code
at reflect. The correct datagram length is restored, the number of requests and the
type of ICMP messages are counted in icps_reflect and icps_outhist(], and
icmp_reflect (Section 11.12) sends the reply back to the requestor.

DELL EX.1095.342

318 ICMP: Internet Control Message Protocol Chapter 11

Timestamp Query: ICMP_TSTAMP and ICMP_TSTAMPREPLY

238-246

The ICMP timestamp message is illustrated in Figure 11.22.

0 78 15 16 31
icmp_type . .
TCMP_TSTAMP icmp_code icmp_cksum
0 checksum
ICMP_TSTAMPREPLY
icmp_id icmp_seq
identifier sequence number
icmp_otime
P 20 bytes

32-bit originate timestamp

icmp_rtime
32-bit receive timestamp

icmp_ttime
32-bit transmit timestamp

Figure 11.22 ICMP timestamp request and reply.

icmp_code is always 0. icmp_id and icmp_seq serve the same purpose as those
in the ICMP echo messages. The sender of the request sets icmp_otime (the time the
request originated); icmp_rtime (the time the request was received) and icmp_ttime
(the time the reply was transmitted) are set by the sender of the reply. All times are in
milliseconds since midnight UTC; the high-order bit is set if the time value is recorded
in nonstandard units, as with the IP timestamp option.

Figure 11.23 shows the code that implements the timestamp messages.

ip_icmp.c

238 case ICMP_TSTAMP:

239 if (icmplen < ICMP_TSLEN) {

240 icmpstat.icps_badlen++;

241 break;

242 }

243 icp->icmp_type = ICMP_TSTAMPREPLY;

244 icp->icmp_rtime = iptime();

245 icp->icmp_ttime = icp->icmp_rtime; /* bogus, do later! */

246 goto reflect; L.
ip_icmp.c

Figure 11.23 icmp_input function: timestamp request and reply.

icmp_input responds to an ICMP timestamp request by changing icmp_type to
ICMP_TSTAMPREPLY, recording the current time in icmp_rtime and icmp_ttime,
and jumping to reflect to send the reply.

It is difficult to set icmp_rtime and icmp_ttime accurately. When the system
executes this code, the message may have already waited on the IP input queue to be
processed and icmp_rtime is set too late. Likewise, the datagram still requires

DELL EX.1095.343

Section 11.7 Request Processing 319

processing and may be delayed in the transmit queue of the network interface so
icmp_ttime is set too early here. To set the timestamps closer to the true receive and
transmit times would require modifying the interface drivers for every network to
understand ICMP messages (Exercise 11.8).

Address Mask Query: ICMP_MASKREQ and ICMP_MASKREPLY

The ICMP address mask request and reply are illustrated in Figure 11.24.

0 78 15 16 31
icmp_type R -
TCMP_MASKREQ icmp_code icmp_cksum
0 checksum
ICMP_MASKREQREPLY
'icmp‘_'id Lemp_sed 12 bytes
identifier sequence number

icmp_mask
32-bit subnet mask

Figure 11.24 ICMP address request and reply.

RFC 950 [Mogul and Postel 1985] added the address mask messages to the original
ICMP specification. They enable a system to discover the subnet mask in use on a net-
work.

RFC 1122 forbids sending mask replies unless a system has been explicitly config-
ured as an authoritative agent for address masks. This prevents a system from sharing
an incorrect address mask with every system that sends a request. Without administra-
tive authority to respond, a system should ignore address mask requests.

If the global integer icmpmaskrepl is nonzero, Net/3 responds to address mask
requests. The default value is 0 and can be changed by icmp_ sysctl through the
sysct1(8) program (Section 11.14).

In Net/2 systems there was no mechanism to control the reply to address mask requests. Asa
result, it is very important to configure Net/2 interfaces with the correct address mask; the
information is shared with any system on the network that sends an address mask request.

The address mask message processing is shown in Figure 11.25.

247-256 If the system is not configured to respond to mask requests, or if the request is too
short, this code breaks out of the switch and passes the message to rip_input (Fig-
ure 11.15).

Net/3 fails to increment icps_badlen here. It does increment icps_badlen for all other
ICMP length errors.

Select subnet mask

257-267 If the request was sent to 0.0.0.0 or 255.255.255.255, the source address is saved in
icmpdst where it is used by ifaof_ifpforaddr to locate the in_ifaddr structure

DELL EX.1095.344

320 ICMP: Internet Control Message Protocol Chapter 11

269-270

271-276

ip_icmp.c

247 case ICMP_MASKREQ:

248 #define satosin(sa) ((struct sockaddr_in *) (sa))

249 if (icmpmaskrepl == 0)

250 break;

251 /*

252 * We are not able to respond with all ones broadcast

253 * unless we receive it over a point-to-point interface.

254 */

255 if (icmplen < ICMP_MASKLEN)

256 break;

257 switch (ip->ip_dst.s_addr) {

258 case INADDR_BROADCAST:

259 case INADDR_ANY:

260 icrmpdst.sin_addr = ip->ip_src;

261 break;

262 default:

263 icmpdst.sin_addr = ip->ip_dst;

264 }

265 ia = (struct in_ifaddr *) ifaof_ifpforaddr(

266 (struct sockaddr *) &icmpdst, m->m_pkthdr.rcvif);

267 if (ia == 0)

268 break;

269 icp->icmp_type = ICMP_MASKREPLY;

270 icp->icmp_mask = ia->ia_sockmask.sin_addr.s_addr;

271 if (ip->ip_src.s_addr == 0) {

272 if (ia->ia_ifp->if_flags & IFF_BROADCAST)

273 ip->ip_src = satosin(&ia->ia_broadaddr)->sin_addr;

274 else if (ia->ia_ifp->if_flags & IFF_POINTOPOINT)

275 ip->ip_src = satosin(&ia->ia_dstaddr)->sin_addr;

276 } L
ip_icmp.c

Figure 11.25 icmp_input function: address mask request and reply.

on the same network as the source address. If the source address is 0.0.0.0 or
255.255.255.255, i faof_ifpforaddr returns a pointer to the first IP address associated
with the receiving interface.

The default case (for unicast or directed broadcasts) saves the destination address
for ifaof_ifpforaddr.

Convert to reply

The request is converted into a reply by changing icmp_type and by copying the
selected subnet mask, ia_sockmask, into icmp_mask.
Select destination address

If the source address of the request is all Os (“this host on this net,” which can be
used only as a source address during bootstrap, RFC 1122), then the source does not
know its own address and Net/3 must broadcast the reply so the source system can
receive the message. In this case, the destination for the reply is ia_broadaddr or
ia_dstaddr if the receiving interface is on a broadcast or point-to-point network,

DELL EX.1095.345

Section 11.8 Redirect Processing 321

respectively. icmp_input puts the destination address for the reply in ip_src since
the code at reflect (Figure 11.21) reverses the source and destination addresses. The
addresses of a unicast request remain unchanged.

Information Query: ICMP_IREQ and ICMP_IREQREPLY

Router

11.8

The ICMP information messages are obsolete. They were intended to allow a host to
discover the number of an attached IP network by broadcasting a request with 0s in the
network portion of the source and destination address fields. A host responding to the
request would return a message with the appropriate network numbers filled in. Some
other method was required for a host to discover the host portion of the address.

RFC 1122 recommends that a host not implement the ICMP information messages
because RARP (RFC 903 [Finlayson et al. 1984]), and BOOTP (RFC 951 [Croft and
Gilmore 1985]) are better suited for discovering addresses. A new protocol, the
Dynamic Host Configuration Protocol (DHCP), described in RFC 1541 [Droms 1993],
will probably replace and augment the capabilities of BOOTP. It is currently a proposed
standard.

Net/2 did respond to ICMP information request messages, but Net/3 passes them on to
rip_input. .

Discovery: ICMP_ROUTERADVERT and ICMP_ROUTERSOLICIT
RFC 1256 defines the ICMP router discovery messages. The Net/3 kernel does not pro-
cess these messages directly but instead passes them, by rip_input, to a user-level

daemon, which sends and responds to the messages.
Section 9.6 of Volume 1 discusses the design and operation of these messages.

Redirect Processing

Figure 11.26 shows the format of ICMP redirect messages.

0 78 15 16 31
icmp_type icmp_code icmp_cksum
ICMP_REDIRECT 0-3 checksum
8 bytes
icmp_gwaddr
IP address of preferred router
icmp_ip
/ IP header (including options) and at least first 8 bytes of original IP datagram data {

Figure 11.26 ICMP redirect message.

DELL EX.1095.346

322 ICMP: Internet Control Message Protocol Chapter 11

283-290

291-300

The last case to discuss in icmp_input is ICMP_REDIRECT. As discussed in Sec-
tion 8.5, a redirect message arrives when a packet is sent to the wrong router. The
router forwards the packet to the correct router and sends back a ICMP redirect mes-
sage, which the system incorporates into its routing tables.

Figure 11.27 shows the code executed by icmp_input to process redirect messages.

ip_icmp.c

283 case ICMP_REDIRECT:

284 if (code > 3)

285 goto badcode;

286 if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN (icp) ||

287 icp->icmp_ip.ip_hl < (sizeof (struct ip) >> 2)) {

288 icmpstat.icps_badlen++;

289 break;

290 }

291 /*

292 * Short circuit routing redirects to force

293 * immediate change in the kernel’s routing

294 * tables. The message is also handed to anyone

295 * listening on a raw socket (e.g. the routing

296 * daemon for use in updating its tables).

297 */

298 icmpgw.sin_addr = ip->ip_src;

299 icmpdst.sin_addr = icp->icmp_gwaddr;

300 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;

301 rtredirect { (struct sockaddr *) &icmpsrc,

302 (struct sockaddr *) &icmpdst,

303 (struct sockaddr *) 0, RTF_GATEWAY | RTF_HOST,

304 (struct sockaddr *) &icmpgw, (struct rtentry **) 0);

305 pfctlinput (PRC_REDIRECT_HOST, (struct sockaddr *) &icmpsrc);

306 break; L.
p_icmp.c

Figure 11.27 icmp_input function: redirect messages.
Validate
icmp_input jumps to badcode (Figure 11.18, line 232) if the redirect message

includes an unrecognized ICMP code, and drops out of the switch if the message has an
invalid length or if the enclosed IP packet has an invalid header length. Figure 11.16
showed that 36 (ICMP_ADVLENMIN) is the minimum size of an ICMP error message,
and TCMP_ADVLEN (icp) is the minimum size of an ICMP error message including any
IP options that may be in the packet pointed to by icp.

icmp_input assigns to the static structures icmpgw, icmpdst, and icmpsrc, the
source address of the redirect message (the gateway that sent the message), the recom-
mended router for the original packet (the first-hop destination), and the final destina-
tion of the original packet. :

Here, icmpsrc does not contain a source address—it is a convenient location for holding the
destination address instead of declaring another sockaddr structure.

DELL EX.1095.347

Section 11.9 Reply Processing 323

301-306

11.9

307-322

Update routes

Net/3 follows REC 1122 recommendations and treats a network redirect and a host
redirect identically. The redirect information is passed to rtredirect, which updates
the routing tables. The redirected destination (saved in icmpsrc) is passed to
pfetlinput, which informs all the protocol domains about the redirect (Section 7.7).
This gives the protocols an opportunity to invalidate any route caches to the destina-
tion.

According to RFC 1122, network redirects should be treated as host redirects since they may
provide incorrect routing information when the destination network is subnetted. In fact,
RFC 1009 requires routers not to send network redirects when the network is subnetted.
Unfortunately, many routers violate this requirement. Net/3 never sends network redirects.

ICMP redirect messages are a fundamental part of the IP routing architecture.
While classified as an error message, redirect messages appear during normal opera-
tions on any network with more than a single router. Chapter 18 covers IP routing
issues in more detail.

Reply Processing

The kernel does not process any of the ICMP reply messages. ICMP requests are gener-
ated by processes, never by the kernel, so the kernel passes any replies that it receives to
processes waiting for ICMP messages. In addition, the ICMP router discovery messages
are passed to rip_input.

ip_icmp.c

307 /*

308 * No kernel processing for the following;

309 * just fall through to send to raw listener.

310 */

311 case ICMP_ECHOREPLY:

312 case ICMP_ROUTERADVERT:

313 case ICMP_ROUTERSOLICIT:

314 case ICMP_TSTAMPREPLY:

315 case ICMP_IREQREPLY:

316 case ICMP_MASKREPLY:

317 default:

318 break;

319 }

320 raw:

321 rip_input (m) ;

322 return; L
ip_icmp.c

Figure 11.28 icmp_input function: reply messages.

No actions are required by the kernel for ICMP reply messages, so execution contin-
ues after the switch statement at raw (Figure 11.15). Note that the default case for
the switch statement (unrecognized ICMP messages) also passes control to the code at
raw.

DELL EX.1095.348

324 ICMP: Internet Control Message Protocol Chapter 11

11.10 Output Processing
Oufgoing ICMP messages are generated in several ways. We saw in Chapter 8 that IP
calls icmp_error to generate and send ICMP error messages. ICMP reply messages

are sent by icmp_reflect, and it is possible for a process to generate ICMP messages
through the raw ICMP protocol. Figure 11.29 shows how these functions relate to ICMP

output processing.
Application
Y
ICMP

IP and transport ICMP errors
protocols

| ICMP input 7JCMP replies
t processing)

(Figure 11.15)

Figure 11.29 ICMP output processing.

11.11 icmp_error Function

The icmp_error function constructs an ICMP error message at the request of IP or the
transport protocols and passes it to icmp_reflect, where it is returned to the source
of the invalid datagram. The function is shown in three parts:

¢ validate the message (Figure 11.30),
e construct the header (Figure 11.32), and
e include the original datagram (Figure 11.33).

46-57 The arguments are: n, a pointer to an mbuf chain containing the invalid datagram;
type and code, the ICMP error type and code values; dest, the next-hop router
address included in ICMP redirect messages; and destifp, a pointer to the outgoing
interface for the original IP packet. mtod converts the mbuf pointer n to oip, a pointer
to the ip structure in the mbuf. The length in bytes of the original IP packet is kept in
oiplen.

5875 All ICMP errors except redirect messages are counted in icps_error. Net/3 does
not consider redirect messages as errors and icps_error is not an SNMP variable.

DELL EX.1095.349

Section 11.11 icmp_error Function 325

16 void p_icmp.c

47 icmp_error{n, type, code, dest, destifp)

48 struct mbuf *n;

49 int type, code;

50 n_long dest;

51 struct ifnet *destifp;

52 {

53 struct ip *oip = mtod(n, struct ip *), *nip;

54 unsigned oiplen = oip->ip_hl << 2;

55 struct icmp *icp;

56 struct mbuf *m;

57 unsigned icmplen;

58 if (type != ICMP_REDIRECT)

59 icmpstat.icps_error++;

60 /*

61 * Don’t send error if not the first fragment of message.

62 * Don’'t error if the old packet protocol was ICMP

63 * error message, only known informational types.

64 */

65 if (oip->ip_off & " (IP_MF | IP_DF))

66 goto freeit;

67 if (oip->ip_p == IPPROTO_ICMP && type != ICMP_REDIRECT &&

68 n->m_len >= oiplen + ICMP_MINLEN &&

69 I TCMP_INFOTYPE (((struct icmp *) ((caddr_t) oip + oiplen))->icmp_type)) {

70 icmpstat.icps_oldicmp++;

71 goto freeit;

72 }

73 /* Don’t send error in response to a multicast or broadcast packet */

74 if (n->m_flags & (M_BCAST | M_MCAST))

75 goto freeit; L
p_tcmp.c

Figure 11.30 icmp_error function: validation

icmp_error discards the invalid datagram, oip, and does not send an error
message if:

¢ some bits of ip_off, except those represented by IP_MF and IP_DF, are
nonzero (Exercise 11.10). This indicates that oip is not the first fragment of a
datagram and that ICMP must not generate error messages for trailing frag-
ments of a datagram.

¢ the invalid datagram is itself an ICMP error message. ICMP_INFOTYPE returns
true if icmp_type is an ICMP request or response type and false if it is an error
type. This rule avoids creating an infinite sequence of errors about errors.

Net/3 does not consider ICMP redirect messages errors, although RFC 1122 does.

¢ the datagram arrived as a link-layer broadcast or multicast (indicated by the
M_BCAST and M_MCAST flags).

DELL EX.1095.350

326 ICMP: Internet Control Message Protocol Chapter 11
ICMP error messages must not be sent in two other circumstances:
¢ The datagram was sent to an IP broadcast or IP multicast address.
¢ The datagram’s source address is not a unicast IP address (i.e., the source
address is a 0 address, a loopback address, a broadcast address, a multicast
address, or a class E address)

Net/3 fails to check for the first case. The second case is addressed by the
icmp_reflect function (Section 11.12).

Interestingly, the Deering multicast extensions to Net/2 do discard datagrams of the first type.
Since the Net/3 multicast code was derived from the Deering multicast extensions, it appears
the test was removed.

These restrictions attempt to prevent a single broadcast datagram with an error
from triggering ICMP error messages from every host on the network. These broadcast
storms can disrupt communication on a network for an extended period of time as all
the hosts attempt to send an error message simultaneously.

These rules apply to ICMP error messages but not to ICMP replies. As RFCs 1122
and 1127 discuss, responding to broadcast requests is allowed but neither recommended
nor discouraged. Net/3 responds only to broadcast requests with a unicast source
address, since ip_output will drop ICMP messages returned to a broadcast address
(Figure 11.39).

Figure 11.31 illustrates the construction of an ICMP error message.

oip W
. 3 T
datagram with 1P header IP options first Data
error 8 bytes|
0 F——\ oiplén———b’ AN AN
7/ N 7 N N\ N
7/ N 7 N N N
7 N Ve N N N
e N 7/ N N N
/7 v N N N
7 7N N N N
7/ 7/ N N A N
ICMP error ICMP . first
message IP header header IP header IP options 8 bytes
J F—«invaﬁd datagram‘ﬁ
icp
Figure 11.31 The construction of an ICMP error message.

The code in Figure 11.32 builds the error message.

76-106 icmp_error constructs the ICMP message header in the following way:

* m_gethdr allocates a new packet header mbuf. MH_ALIGN positions the mbuf’s
data pointer so that the ICMP header, the IP header (and options) of the invalid
datagram, and up to 8 bytes of the invalid datagram’s data are located at the end
of the mbulf.

DELL EX.1095.351

Section 11.11

icmp_error Function 327

76 x p_icmp.c
77 * First, formulate icmp message
78 */
79 m = m_gethdr (M_DONTWAIT, MT_HEADER) ;
80 if (m == NULL)
81 goto freeit;
82 icmplen = oiplen + min(8, oip->ip_len):;
83 m->m_len = icmplen + ICMP_MINLEN;
84 MH_ALIGN (m, m->m_len);
85 icp = mtod(m, struct icmp *);
86 if ((u_int) type > ICMP_MAXTYPE)
87 panic("icmp_error");
88 icmpstat.icps_outhist[typel++;
89 icp->icmp_type = type;
90 if (type == ICMP_REDIRECT)
91 lcp->icmp_gwaddr.s_addr = dest;
92 else {
93 icp->icmp_void = 0;
94 /*
95 * The following assignments assume an overlay with the
96 * zeroed icmp_void field.
97 */
98 if (type == ICMP_PARAMPROB) {
99 icp->icmp_pptr = code;
100 code = 0;
101 } else if (type == ICMP_UNREACH &&
102 code == ICMP_UNREACH_NEEDFRAG && destifp) {
103 icp->icmp_nextmtu = htons{(destifp->if_mtu);
104 }
105 }
106 icp->icmp_code = code; L
ip_icmp.c

Figure 11.32 icmp_error function: message header construction.

* icmp_type, icmp_code, icmp_gwaddr (for redirects), icmp_pptr (for param-
eter problems), and icmp_nextmtu (for the fragmentation required message) are
initialized. The icmp_nextmtu field implements the extension to the fragmenta-
tion required message described in RFC 1191. Section 24.2 of Volume 1 describes
the path MTU discovery algorithm, which relies on this message.

Once the ICMP header has been constructed, a portion of the original datagram

must be attached to the header, as shown in Figure 11.33.

107-125

The IP header, options, and data (a total of icmplen bytes) are copied from the

invalid datagram into the ICMP error message. Also, the header length is added back
into the invalid datagram’s ip_len.

In udp_usrreq, UDP also adds the header length back into the invalid datagram’s ip_len.
The result is an ICMP message with an incorrect datagram length in the IP header of the
invalid packet. The authors found that many systems based on Net/2 code have this bug.
Net/1 systems do not have this problem.

DELL EX.1095.352

328 ICMP: Internet Control Message Protocol : Chapter 11

126-129

11.12

- - - - - ip_icmp.c
107 bcopy ((caddr_t) oip, (caddr_t) & icp->icmp_ip, icmplen);
108 nip = &icp->icmp_ip;
109 nip->ip_len = htons{{u_short) (nip->ip_len + oiplen));
110 /*
111 * Now, copy old ip header (without options)
112 * in front of icmp message.
113 */
114 if (m->m_data - sizeof (struct ip) < m->m_pktdat)
115 panic("icmp len");
116 m->m_data -= sizeof (struct ip);
117 m->m_len += sizeof (struct ip);
118 m->m_pkthdr.len = m->m_len;
119 m->m_pkthdr.rcvif = n->m_pkthdr.rcvif;
120 nip = mtod(m, struct ip *);
121 bcopy ({(caddr_t) oip, (caddr_t) nip, sizeof (struct ip));
122 nip->ip_len = m->m_len;
123 nip->ip_hl = sizeof (struct ip) >> 2;
124 nip->ip_p = IPPROTO_ICMP;
125 nip->ip_tos = 0;
126 icmp_reflect (m);
127 freeit:
128 m_freem(n) ;
129 1} L
ip_icmp.c

Figure 11.33 icmp_error function: including the original datagram.

Since MH_ALIGN located the ICMP message at the end of the mbuf, there should be
enough room to prepend an IP header at the front. The IP header (excluding options) is
copied from the invalid datagram to the front of the ICMP message.

The Net/2 release included a bug in this portion of the code: the last bcopy in the function
moved oiplen bytes, which includes the options from the invalid datagram. Only the stan-
dard header without options should be copied.

The IP header is completed by restoring the correct datagram length (ip_len),
header length (ip_h1), and protocol (ip_p), and clearing the TOS field (ip_tos).

RFCs 792 and 1122 recommend that the TOS field be set to 0 for ICMP messages.

The completed message is passed to icmp_reflect, where it is sent back to the
source host. The invalid datagram is discarded.

icmp_reflect Function

icmp_reflect sends ICMP replies and errors back to the source of the request or back
to the source of the invalid datagram. It is important to remember that icmp_reflect
reverses the source and destination addresses in the datagram before sending it. The
rules regarding source and destination addresses of ICMP messages are complex. Fig-
ure 11.34 summarizes the actions of several functions in this area.

DELL EX.1095.353

Section 11.12 icmp_reflect Function 329

329-345

346-371

Function Summary

icmp_input Replace an all-0s source address in address mask requests
with the broadcast or destination address of the
receiving interface.

icmp_error Discard error messages caused by datagrams sent as link-
level broadcasts or multicasts. Should discard (but
does not) messages caused by datagrams sent to IP
broadcast or multicast addresses.

icmp_reflect | Discard messages instead of returning them to a multicast or
experimental address.

Convert nonunicast destinations to the address of the
receiving interface, which makes the destination
ad