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The next part of tcp_output, shown in Figure 26.26, starts with the code that is
executed when 1 en equals 0: there is no data in the segment TCP is sending.

317 } else { /* len -- 0 */
318 if (tp->t_flags & TF_ACKNOW)
319 tcpstat.tcps_sndacks++;
320 else if (flags & (TH_SYN I TH__FIN I TH_RST)
321 tcpstat.tcps_sndctrl++;
322 else if (SEQ_GT{tp->snd_up, tp->snd_una)}
323 tcpstat.tcps_sndur~++;

324 else
325 tcpstat.tcps_sndwinup++;

tcp_output.c

326 MGETHDR(m, M_DONTWAIT, MT_HEADER);
327 if (m -- NULL) {
328 error - ENOBUFS;
329 goto out;
330 }
331 m->m_data +- max_linkhdr;
332 m->m_len = hdrlen;
333 }
334 m->m pkthdr.rcvif = (struct ifnet *) 0;
335 ti - mtod(m, struct tcpiphdr *);
336 if (tp->t_template == 0)
337 panic("tcp_output");
338 bcopy((caddr_t) tp->t_template, (caddr_t) ti,

Figure 26.26

sizeof (struct tcpiphdr) ) ;

tcp_output.c

t ep_output function: update statistics and allocate mbuf for IP and TCP headers.

318--325

326-335

336--338

339--346

Update statistics

Various statistics are updated: TF_ACKNOW and a length of 0 means this is an ACK-
only segment. If any one of the flags SYN, FIN, or RST is set, this is a control segment.
If the urgent pointer exceeds snd_una, the segment is being sent to notify the other end
of the urgent pointer. If none of these conditions are true, this segment is a window
update.
Get mbuf for IP and TCP headers

An mbuf with a packet header is allocated to contain the IP and TCP headers.
Copy IP and TCP header templates into mbuf

The template of the IP and TCP headers is copied from t_template into the mbuf
by bcopy. This template was created by top_template.

Figure 26.27 shows the next part of tcp_output, which fills in some remaining
fields in the TCP header.
Decrement snd_nxt if FIN is being retransmitted

If TCP has already transmitted the FIN, the send sequence space appears as shown
in Figure 26.28.
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339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
36!
362
363

364

365
366
367
368
369

/*                                                                 tcp_output.c
* Fill in fields, remembering maximum advertised
* window for use in delaying messages about window sizes.
* If resending a FIN, be sure not to use a new sequence number.
*/

if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
tp >snd_nxt == tp->snd_max)
tp->snd_nxt- ;

* If we are doing retransmissions, then snd_nxt will
* not reflect the first unsent octet. For ACK only
* packets, we do not want the sequence nulmber of the
* retransmitted packet, we want the sequence number
* of the next unsent octet. So, if there is no data
* (and no SYN or FIN), use snd max instead of snd_nxt
* when filling in ti_seq. But if we are in persist
* state, snd_max might reflect one byte beyond the
* right edge of the window, so use snd_nxt in that
* case, since we know we aren’t doing a retransmission.
* (retransmit and persist are mutually exclusive...)
*/

if (len II (flags & (TH_SYH I TH_FIN)) I I tp->t_timer[TCPT_PERSIST])
ti->ti_seq : htonl(tp->snd nxt);

else
ti->ti_seq : htonl(tp->snd max);

ti->ti_ack : htonl(tp->rcv_nxt);

if (optlen) {
bcopy((caddr_t) opt, (caddr_t) (ti + i), optlen);
ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;

}
ti->ti_flags : flags;

Figure 26.27 tcp_output function: set ti_seg, ti_ack, and ti_flags.
tcp_output.c

3 4 5 6 7

sent and acknowledged

8 9 FIN

snd_una = 10 snd_nxt = II
snd_max : 11

Figure 26.28 Send sequence space after FIN has been transmitted.

Therefore, if the FIN flag is set, and if the TF_SENTFIN flag is set, and if snd_nxt

equals snd_raax, TCP knows the FIN is being retransmitted. We’ll see shortly (Fig-
ure 26.31) that when a FIN is sent, snd_nxt is incremented 1 one (since the FIN occu-
pies a sequence number), so this piece of code decrements snd_nxt by 1.

DELL EX.1095.902



878 TCP Output Chapter 26

347-363

364

365--368

369

370--375

376-377

378--379

381--383

Set sequence number field of segment
The sequence number field of the segment is normally set to snd_nxt, but is set to

snd_max if (1) there is no data to send (len equals 0), (2) neither the SYN flag nor the
FIN flag is set, and (3) the persist timer is not set.
Set acknowledgment field of segment

The acknowledgment field of the segment is always set to rcv_nxt, the next
expected receive sequence number.
Set header length if options present

If TCP options are present (optl÷n is greater than 0), the options are copied into
the TCP header and the 4-bit header length in the TCP header (t h_o f f in Figure 24.10)
is set to the fixed size of the TCP header (20 bytes) plus the length of the options,
divided by 4. This field is the number of 32-bit words in the TCP header, including
options.

The flags field in the TCP header is set from the variable flags.

The next part of code, shown in Figure 26.29, fills in more fields in the TCP header
and calculates the TCP checksum.

Don’t advertise less than one full-sized segment

Avoidance of the silly window syndrome is performed, this time in calculating the
window size that is advertised to the other end (t i_win). Recall that win was set at the
end of Figure 26.3 to the amount of space in the socket’s receive buffer. If win is less
than one-fourth of the receive buffer size (so_rcv. sb_hiwat) and less than one full-
sized segment, the advertised window will be 0. This is subject to the later test that pre-
vents the window from shrinking. In other words, when the amount of available space
reaches either one-fourth of the receive buffer size or one full-sized segment, the avail-
able space will be advertised.

Observe upper limit for advertised window on this connection
If win is larger than the maximum value for this connection, reduce it to its maxi-

mum value.

Do not shrink window

Recall from Figure 26.10 that rcv_adv minus rcv_nxt is the amount of space still
available to the sender that was previously advertised. If win is less than this value,
win is set to this value, because we must not shrink the window. This can happen when
the available space is less than one full-sized segment (hence win was set to 0 at the
beginning of this figure), but there is room in the receive buffer for some data. Fig-
ure 22.3 of Volume i shows an example of this scenario.
Set urgent offset

If the urgent pointer (snd up) is greater than snd_nxt, TCP is in urgent mode.
The urgent offset in the TCP header is set to the 16-bit offset of the urgent pointer from
the starting sequence number of the segment, and the URG flag bit is set. TCP sends the
urgent offset and the URG flag regardless of whether the referenced byte of urgent data
is contained in this segment or not.
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370
371
372
373
374
375
376
377
378
379
380

381
382
383
384
385
386
387
388
389
390
391

392
393
394
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396
397
398
399

/,                                                                    tcp_output.c

* Calculate receive window. Don’t shrink window,
* but avoid silly window syndrome.
*/

if (win < (long) (so->so_rcv.sb hiwat / 4) && win < (long) tp->t_maxseg)
win = 0;

if (win > (long) TCP_MAXWIN << tp->rcv_scale)
win = (long) TCP_MAXWIN << tp->rcv_scale;

if (win < (long) (tp->rcv_adv - tp->rcv_nxt))
win = (long) (tp->rcv_adv - tp->rcv_nxt);

ti->ti_win - htons((u_short) (win >> tp->rcv_scale));

if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
ti->ti_urp = htons((u_short) (tp->snd_up - tp->snd_nxt));
ti->ti_flags I: TH_URG;

else
/*

* If no urgent pointer to send, then we pull
* the urgent pointer to the left edge of the send window
* so that it doesn’t drift into the send window on sequence
* number wraparound.
*/

tp->snd_up = tp->snd_una;    /* drag it along */

* Put TCP length in extended header, and then
* checksum extended header and data.
*/

if (len + optlen)
ti->ti_len = htons((u_short) (sizeof(struct tcphdr) +

optlen + len));
ti->ti_sum = in_cksum(m, (int) (hdrlen + len));

Figure 26.29

tcp_output.c
tcp_output function: fill in more TCP header fields and calculate checksum.

Figure 26.30 shows an example of how the urgent offset is calculated, assuming the
process executes

send(fd, buf, 3, MSG_OOB);

and the send buffer is empty when this call to send takes place. This shows that Berke-
ley-derived systems consider the hrgent pointer to point to the first byte of data after the
out-of-band byte. Recall our discussion after Figure 24.10 where we distinguished
between the 32-bit urgent pointer in the data stream (snd_up), and the 16-bit urgent offset
in the TCP header (t i_urp).

There is a subtle bug here. The bug occurs when the send buffer is larger than 65535, regard-
less of whether the window scale option is in use or not. If the send buffer is greater than
65535 and is nearly full, and the process sends out-of-band data, the offset of the urgent
pointer from snd_nxt can exceed 65535. But the urgent pointer is a 16-bit unsigned value,
and if the calculated value exceeds 65535, the 16 high-order bits are discarded, delivering a
bogus urgent pointer to the other end. See Exercise 26.6 for a solution.
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Figure 26.30

send queue
-~so_snd. ~b_cc = 3"~

4    5    6]

snd_una snd_up = 7
snd_nxt set by

PRU_SEND00B

.-- urgent offset = 3
~set by tcp_output

Example of urgent pointer and urgent offset calculation.

384--391

392--399

400--405

406--417

418--419

420--428

If TCP is not in urgent mode, the urgent pointer is moved to the left edge of the
window (snd_una).

The TCP length is stored in the pseudo-header and the TCP checksum is calculated.
All the fields in the TCP header have been filled in, and when the IP and TCP header
template were copied from t_template (Figure 26.26), the fields in the IP header that
are used as the pseudo-header were initialized (as shown in Figure 23.19 for the UDP
checksum calculation).

The next part of tcp_output, shown in Figure 26.31, updates the sequence num-
ber if the SYN or FIN flags are set and initializes the retransmission timer.

Remember starting sequence number
If TCP is not in the persist state, the starting sequence number is saved in

s t art s eq. This is used later in Figure 26.31 if the segment is timed.
Increment snd_nxt

Since both the SYN and FIN flags take a sequence number, snd_nxt is incremented
if either is set. TCP also remembers that the FIN has been sent, by setting the flag
TF_SENTFIN. snd_nxt is then incremented by the number of bytes of data (fen),
which can be 0.

Update snd_max

If the new value of snd_nxt is larger than snd_max, this is not a retransmission.
The new value of snd_max is stored.

If a segment is not currently being timed for this connection (t_rtt equals 0), the
timer is started (t_rtt is set to 1) and the starting sequence number of the segment
being timed is saved in t_rtseq. This sequence number is used by top_input to
determine when the segment being timed is acknowledged, to update the RTT estima-
tors. The sample code we discussed in Section 25.10 looked like

if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
tcp_xmit_timer(tp, tp->t_rtt);
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4 o o /*
tcp_output.c

401 * In transmit state, time the transmission and arrange for
402 * the retransmit. In persist state, just set snd_max.
403 */
404 if (tp->t_force == 0 I I tp->t_timer[TCPT_PERSIST] := 0) {
405 tcp_seq startseq = tp->snd_nxt;

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

* Advance snd_nxt over sequence space of this segment.
*/

if {flags & (TH_SYN I TH_FIN)) {
if (flags & TH_SYN)

tp >snd_nxt++;
if (flags & TH_FIN) {

tp->snd_nxt++;
tp->t_flags I= TF_SENTFIN;

}
}
tp->snd_nxt +: len;
if (SEQ_GT(tp->snd_nxt, tp >snd max)) {

tp->snd_max = tp->snd_nxt;
/*

* Time this transmission if not a retransmission and
* not currently timing anything.
*/

if (tp->t_rtt == 0) {
tp->t_rtt = i;
tp->t_rtseq : sEartseq;
tcpstat.tcps_segstimed++;

}

* Set retransmit timer if not currently set,
* and not doing an ack or a keepalive probe.
* Initial value for retransmit timer is smoothed
* round-trip time + 2 * round-trip time variance.
* Initialize counter which is used for backoff
* of retransmit time.
./

if (tp->t_tim÷r[TCPT_REXMT] -- O &&
tp->snd nxt [= tp >~nd una) {
tp->t_timer[TCPT_REXMT] : tp >t_rxtcur;
if (tp->t_timer[TCPT_PERSIST]) {

tp->t_timer[TCPT_PERSIST] - 0;
tp->t_rxtshift = 0;

}
}

else if (SEQ GT(tp->snd nxt + len, tp->snd_max))
tp->snd_max : tp->snd_nxt + len;

Figure 26.31

tcp_output.c
function: fill in remaining fields in TCP header and calculate checksum.
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430--440

441--444

446--447

448--452

453--462

463 --464

467--470

Set retransmission timer

If the retransmission timer is not currently set, and if this segment contains data, the
retransmission timer is set to t_rxtcar. Recall that t_rx~cur is set by
c cp_xm±t_t ±re÷r, when an RTT measurement is made. This is an ACK-only segment
if snd_nxC equals snd_una (since len was added to snd_nxt earlier in this figure),
and the retransmission timer is set only for segments containing data.

If the persist timer is enabled, it is disabled. Either the retransmission timer or the
persist timer can be enabled at any time for a given connection, but not both.

Persist state

The connection is in the persist state since t_force is nonzero and the persist timer
is enabled. (This else clause is associated with the if at the beginning of the figure.)
snd_max is updated, if necessary. In the persist state, len will be one.

The final part of tcp_output, shown in Figure 26.32 completes the formation of
the outgoing segment and calls ip_outpu~ to send the datagram.

Add trace record for socket debugging
If the SO_DEBUG socket option is enabled, tcp_trace adds a record to TCP’s circu-

lar trace buffer. We describe this function in Section 27.10.
Set IP length, TTL, and TOS

The final three fields in the IP header that must be set by the transport layer are
stored: IP length, TTL, and TOS. These three fields are marked with an asterisk at the
bottom of Figure 23.19.

The comments XXx are because the latter two fields normally remain constant for a connection
and should be stored in the header template, instead of being assigned explicitly each time a
segment is sent. But these two fields cannot be stored in the IP header until after the TCP
checksum is calculated.

Pass datagram to IP
ip_output sends the datagram containing the TCP segment. The socket options

are logically ANDed with SO_DONTROUTE, which means that the only socket option
passed to ip_output is SO_DONTROUTE. The only other socket option examined by
ip_output is SO_BROADCAST, so this logical AND turns off the SO_BROADCAST bit, if
set. This means that a process cannot issue a connect to a broadcast address, even if it
sets the SO_BROADCAST socket option.

The error ENOBUFS is returned if the interface queue is full or if IP needs to obtain
an mbuf and can’t. The function tclo_quench puts the connection into slow start, by
setting the congestion window to one full-sized segment. Notice that tcp_output still
returns 0 (OK) in this case, instead of the error, even though the datagram was dis-
carded. This differs from udp_output (Figure 23020), which returned the error. The
difference is that UDP is unreliable, so the ENOBUFS error return is the only indication
to the process that the datagram was discarded. TCP, however, will time out (if the seg-
ment contains data) and retransmit the datagram, and it is hoped that there will be
space on the interface output queue or more available mbufs. If the TCP segment
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* Trace.
*/

if (so >so_options & SO_DEBUG)
tcp_trace(TA_OUTPUT, tp->t_state, tp, ti, 0);

tcp_output.c

* Fill in IP length and desired time to live and
* send to IP level. There should be a better way
* to handle ttl and tos; we could keep them in
* the template, but need a way to checksum without them.
*/

m->m~kthdr.len : hdrlen + len;
((struct ip *) ti) >ip_len - m->m_pkthdr.len;
((struct ip *) ti)->ip_ttl = tp->t_inpcb->inp_ip.ip_ttl; /* XXX */
((struct ip *) ti)->ip_tos : tp >t_inpcb->inp_ip.ip_tos; /* XXX */
error = ip_output(m, tp->t_inpcb >inp_options, &tp->t_inpcb->inp_route,

so->so_options & SO_DONTROUTE, 0);
if (error) {

Out:
if (error -- ENOBUFS) {

tcp_quench(tp->t_inpcb, 0);
return (0) ;

}
if ((error -= EHOSTUNREACH I I error := ENETDOWN)

&& TCPS_HAVERCVDSYN(tp->t_state)) {
tp->t_softerror - error;
return (0);

}
return (error);

}
tcpstat.tcps_sndtotal++;

* Data sent (as far as we can tell).
* If this advertises a larger window than any other segment,
* then remember the size of the advertised window.
* Any pending ACK has now been sent.
*/

if (win > 0 && SEQ_GT(tp >rcv_nxt + win, tp->rcv_adv))
tp->rcv_adv : tp->rcv_nxt + win;

tp->last_ack_sent : tp->rcv_nxt;
tp->t_flags &= -(TF_ACKNOW I TF_DELACK);

if (sendalot)
goto again;

return (0);

Figure 26.32 tcp_output function: call ip_output to send segment.
t̄cp_output.c
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471--475

479--486

487

488

489--490

doesn’t contain data, the other end will time out when the ACK isn’t received and will
retransmit the data whose ACK was discarded.

If a route can’t be located for the destination, and if the connection has received a
SYN, the error is recorded as a soft error for the connection.

When tcp_output is called by tcp_usrreq as part of a system call by a process
(Chapter 30, the PRU_CONNECT, PRU_SEND, PRU_SENDOOB, and PRU_SHUTDOWN
requests), the process receives the return value from tcp_output. Other functions that
call tcp_output, such as tcp_input and the fast and slow timeout functions, ignore
the return value (because these functions don’t return an error to a process).

Update rcv_adv and last_ack_sent

If the highest sequence number advertised in this segment (rcv_nxt plus win) is
larger than rcv_adv, the new value is saved. Recall that rcv_adv was used in Fig-
ure 26.9 to determine how much the window had opened since the last segment that
was sent, and in Figure 26.29 to make certain TCP was not shrinking the window.

The value of the acknowledgment field in the segment is saved in
last_ack_sent. This variable is used by tcp_input with the timestamp option
(Section 26.6).

Any pending ACK has been sent, so the TF_ACKNOW and TF_DELACK flags are
cleared.

More data to send?
If the s÷ndalot flag is set, a jump is made back to the label aga±n (Figure 26.1).

This occurs if the send buffer contains more than one full-sized segment that can be sent
(Figure 26.3), or if a full-sized segment was being sent and TCP options were included
that reduced the amount of data in the segment (Figure 26.24).

26.8

59-72

73-88

tcp_template Function

The function tcp_newtcpcb (from the previous chapter) is called when the socket is
created, to allocate and partially initialize the TCP cont~ol block. When the first seg-
ment is sent or received on the socket (an active open is performed, the PRU_CONNECT
request, or a SYN arrives for a listening socket), tcp_ternplate creates a template of
the IP and TCP headers for the connection. This minimizes the amount of work
required by t cp_output when a segment is sent on the connection.

Figure 26.33 shows the tcp_teraplate function.

Allocate mbuf
The template of the IF and TCP headers is formed in an mbuf, and a pointer to the

mbuf is stored in the t_template member of the TCP control block. Since this func-
tion can be called at the software interrupt level, from tcp_itaput, the N_DONTWAIT
flag is specified.

Initialize header fields
All the fields in the IF and TCP headers are set to 0 except as follows: tier is set

to the IP protocol value for TCP (6); ti_l÷n is set to 20, the default length of the TCP
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73--88

59 struct tcpiphdr *
60 tcp_template(tp)
61 struct tcpcb *tp;
62 {
63 struct inpcb *inp = tp->t_inpcb;
64 struct mbuf *m;
65 struct tcpiphdr *n;

66 if ((n : tp->t_template) =: 0} {
67 m : m_get(H_DONTWAIT, MT_HEADER);
68 if (m := NULL)
69 return (0);
70 m->m_len = sizeof(struct tcpiphdr);
71 n = mtod(m, struct tcpiphdr *);
72 }
73 n->ti_next : n->ti_prev = 0;
74 n->ti:xl = 0;
75 n->ti~r : IPBROTO_TCP;
76 n->ti_len = htons(sizeof(struct tcpiphdr)
77 n->ti_src : inp->inp_laddr;
78 n->ti_dst : inp->inp_faddr;
79 n->ti_sport : inp->inp_iport;
80 n->ti_dport = inp->inp_fport;
81 n->ti_seq : 0;
82 n->ti_ack = 0;
83 n->ti_x2 = 0;
84 n->ti_off = 5;
85 n->ti_flags : 0;
86 n->ti_win = 0;
87 n->ti_sum = 0;
88 n->ti_urp : 0;
89 return (n);
9O }

sizeof(struct ip));

/* 5 32-bit words = 20 bytes */

Figure 26.33 tcp_template function: create template of IP and TCP headers.

tcp_subr.c

tcp_subr.c

header; and t i_o f f is set to 5, the number of 32-bit words in the 20-byte TCP header.
Also the source and destination IP addresses and TCP port numbers are copied from the
Internet PCB into the TCP header template.
Pseudo-header for TCP checksum computation

The initialization of many of the fields in the combined IP and TCP header simpli-
fies the computation of the TCP checksum, using the same pseudo-header technique as
discussed for UDP in Section 23.6. Examining the udpiphdr structure in Figure 23.19
shows why tcp_template initializes fields such as ti_next and ti_prev to 0.

26.9 tcp_respond Function

The function tcp_respond is a special-purpose function that also calls ip_output to
send IP datagrams, tcp_respond is called in two cases:
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104--110

1. by tcp_input to generate an RST segment, with or without an ACK, and

2. by tcp_¢im÷rs to send a keepalive probe.

Instead of going through all the logic of tcp_ouCput for these two cases, the special-
purpose function ¢cp_respond is called. We also note that the function ¢cp_drop
that we cover in the next chapter also generates RST segments by calling ¢cp_ouCput
Not all RST segments are generated by ¢cp_r÷spond.

Figure 26.34 shows the first half of tcp_respond.

104 void
105 tcp_respond(tp, ti, m, ack, seq, flags)
106 struct tcpcb *tp;
107 struct tcpiphdr *ti;
108 struct mbuf *m;
109 tcp_seq ack, seq;
ii0 int flags;
iii {
112 int tlen;
113 int win = 0;
114 struct route *to = 0;

tcp_subr.c

115
116
117
118
119
120
121
122
123
124
125
126
127

if

]
if

(tp] {
win = sbspace(&tp >t_inpcb->inp_socket->so_rdv);
ro = &tp->t_inpcb->inp_route;

(m =~ 0) { /* generate keepalive probe */
m : m_gethdr(M_DONTWAIT, MT_HEADER);
if (m == NULL)

return;
tlen = 0; /* no data is sent */
m->m_data +: max_linkhdr;
*mtod(m, struct tcpiphdr *) = *ti;
ti = mtod(m, struct tcpiphdr *);
flags : TH_ACK;

128 } else { /* generate RST segment */
129 m_freem(m->m next);
130 m->m_next : 0;
131 m->m_data = (caddr_t) ti;
132 m->m_len = sizeof(struct tcpiphdr);
133 tlen = 0;
134 #define xchg(a,b,type) { type t; t=a; a~b; b:t; }
135 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
136 xchg(ti->ti_dport, ti->ti_sport, u_short);
137 #under xchg
138 }

Figure 26.34 tcp_respond function: first half.

tcp_subr.c

Figure 26.35 shows the different arguments to tcp_respond for the three cases in
which it is called.
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g ~erate RST without ACK

g terate RST with ACK

g terate keepalive

tp ti

tp ti

tp ti

tp t_template

Arguments
m ack

m 0
t i_seq +

m
ti_len

NULL    rcv_nxt

seq

ti_ack

0

snd_una

flags

TH_RST

TH_RST
TH_ACK

0

Figure 26.35 Arguments to tcp_respond.

113--118

119--127

¢p is a pointer to the TCP control block (possibly a null pointer); ¢± is a pointer to an
IP/TCP header template; ra is a pointer to the mbuf containing the segment causing the
RST to be generated; and the last three arguments are the acknowledgment field,
sequence number field, and flags field of the segment being generated.

It is possible for tcp_input to generate an RST when a segment is received that
does not have an associated TCP control block. This happens, for example, when a seg-
ment is received that doesn’t reference an existing connection (e.g., a SYN for a port
without an associated listening server). In this case ¢p is null and the initial values for
win and ro are used. If tp is not null, the amount of space in the receive buffer will be
sent as the advertised window, and the pointer to the cached route is saved in ro for the
call to ip_output.

Send keepalive probe when keepalive timer expires

The argument ra is a pointer to the mbuf chain for the received segment. But a keep-
alive probe is sent in response to the keepalive timer expiring, not in response to a
received TCP segment. Therefore m is null and m_geChdr allocates a packet header
mbuf to contain the IP and TCP headers, t 1 en, the length of the TCP data, is set to 0,
since the keepalive probe doesn’t contain any data.

128--i38

Some older implementations based on 4.2BSD do not respond to these keepalive probes unless
the segment contains data. Net/3 can be configured to send 1 garbage byte of data in the
probe to elicit the response by defining the name TCP_COMPAT_42 when the kernel is com-
piled. This assigns 1, instead of 0, to tlen. The garbage byte causes no harm, because it is not
the expected byte (it is a byte that the receiver has previously received and acknowledged), so
it is thrown away by the receiver.

The assignment of * t i copies the TCP header template structure pointed to by t i
into the data portion of the mbuf. The pointer ¢ i is then set to point to the header tem-
plate in the mbuf.

Send RST segment in response to received segment
An RST segment is being sent by tcp_input in response to a received segment.

The mbuf containing the input segment is reused for the response. All the mbufs on the
chain are released by m_free except the first mbuf (the packet header), since the seg-
ment generated by tcp_resloond consists of only an IP header and a TCP header. The
source and destination IP address and port numbers are swapped in the IP and TCP
header.
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139--157

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 26.36 shows the final half of tcp_respond.

ti->ti_len = htons((u_short) (sizeof(struct tcphdr) + tlen));
tlen +- sizeof(struct tcpiphdr);
m >m_len : tlen;
m->m_pkthdr.len = tlen;
m->m_pkthdr.rcvif - (struct ifnet *) 0;
ti->ti_next = ti->ti_prev - 0;
ti->ti_xl = 0;
ti->ti_seq = htonl(seq);
ti->ti_ack = htonl(ack);
ti->ti_x2 : 0;
ti->ti_off : sizeof(struct tcphdr) >> 2;
ti->ti_flags = flags;
if (tp)

ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
else

ti->ti_win = htons((u_short) win);
ti->ti_urp : 0;
ti->ti_sum = 0;
ti->ti_sum : in_cksum(m, tlen);
({struct ip *) ti) >ip_len = tlen;
((struct ip *) ti)->ip_ttl = ip_defttl;
(void) ip_output(m, NULL, ro, 0, NULL);

Figure 26.36 tcp_respond function: second half.

tcp_subr.c

tcp_subr.c

The fields in the IP and TCP headers must be initialized for the TCP checksum com-
putation. These statements are similar to the way top_template initializes the
t_template field. The sequence number and acknowledgment fields are passed by
the caller as arguments. Finally ip_output sends the datagram.

26.10 Summary

This chapter has looked at the general-purpose function that generates most TCP seg-
ments (tcp_output) and the special-purpose function that generates RST segments
and keepalive probes (t,cp_respond).

Many factors determine whether TCP can send a segment or not: the flags in the
segment, the window advertised by the other end, the amount of data ready to send,
whether unacknowledged data already exists for the connection, and so on. Therefore
the logic of tcp_output determines whether a segment can be sent (the first half of the
function), and if so, what values to set all the TCP header fields to (the last half of the
function). If a segment is sent, the TCP control block variables for the send sequence
space must be updated.

One segment at a time is generated by tcp_output, and at the end of the function
a check is made of whether more data can still be sent. If so, the function loops around
and tries to send another segment. This looping continues until there is no more data to
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send, or until some other condition (e.g., the receiver’s advertised window) stops the
transmission.

A TCP segment can also contain options. The options supported by Net/3 specify
the maximum segment size, a window scale factor, and a pair of timestamps. The first
two can only appear with SYN segments, while the timestamp option (if supported by
both ends) normally appears in every segment. Since the window scale and timestamp
options are newer and optional, if the first end to send a SYN wants to use the option, it
sends the option with its SYN and uses the option only if the other end’s SYN also con-
tains the option.

Exercises

26.1

26.2

26.3

26.4

26.5

26.6

26.7

26.8

26.9

26.10

26.11

Slow start is resumed in Figure 26.1 when there is a pause in the sending of data, yet the
amount of idle time is calculated as the amount of time since the last segment was received
on the connection. Why doesn’t TCP calculate the idle time as the amount of time since
the last segment was sent on the connection?

With t?igure 26.6 we said that len is less than 0 if the FIN has been sent but not acknowl-
edged and not retransmitted. What happens if the FIN is retransmitted?

Net/3 always sends the window scale and timestamp options with an active open. Why
does the global variable ~cp do rfc1323 exist?

In Figure 25.28, which did not use the timestamp option, the RTT estimators are updated
eight times. If the timestamp option had been used in this example, how many times
would the RTT estimators have been updated?

In Figure 26.23 bcopy is called to store the received MSS in the variable rnss. Why not cast
the pointer to opt [ 21 into a pointer to an unsigned short and perform an assignment?

After Figure 26.29 we described a bug in the code, which can cause a bogus urgent offset to
be sent. Propose a solution. (Hint: What is the largest amount of TCP data that can be sent
in a segment?)

With Figure 26.32 we mentioned that an error of ElxJOBUFS is not returned to the process
because (1) if the discarded segment contained data, the retransrnission timer will expire
and the data will be retransmitted, or (2) if the discarded segment was an ACK-only seg-
ment, the other end will retransmit its data when it doesn’t receive the ACK. What if the
discarded segment contains an RST?

Explain the settings of the PSH flag in Figure 20.3 of Volume 1.

Why does Figure 26.36 use the value of ±p_d÷fe~l for the TTL, while Figure 26.32 uses
the value in the PCB?

Describe what happens with the mbuf allocated in Figure 26.25 when IP options are speci-
fied by the process for the TCP coimection. Implement a better solution.

tcp_output is a long function (about 500 lines, including comments), which can appear
to be inefficient. But lots of the code handles special cases. Assume the function is called
with a full-sized segment ready to be sent, and no special cases: no IP options and no spe-
cial flags such as SYN, FIN, or URG. About how many lines of C code are actually exe-
cuted? How many functions are called before the segment is passed to J,p_ou~pu~?
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26.12

26.13

In the example at the end of Section 26.3 in which the application did a write of 100 bytes
followed by a write of 50 bytes, would anything change if the application called
once for both buffers, instead of calling wr±~÷ twice? Does anything change with
if the two buffer lengths are 200 and 300, instead of 100 and 50?

The timestamp that is sent in the timestamp option is taken from the global tcp_now,
which is incremented every 500 ms. Modify TCP to use a higher resolution timestamp
value.
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TCP Functions

27.1 Introduction

This chapter presents numerous TCP functions that we need to cover before discussing
TCP input in the next two chapters:

tcp_dz-a±n is the protocol’s drain function, called when the kernel is out of
mbufs. It does nothing.

¯ t cp_drop aborts a connection by sending an RST.
¯ ~c~_c~_os÷ performs the normal TCP connection termination: send a FIN and

wait for the four-way exchange to complete. Section 18.2 of Volume 1 talks
about the four packets that are exchanged when a connection is closed.

¯ ~c~_mss processes a received MSS option and calculates the MSS to announce
when TCP sends an MSS option of its own.

¯ tcp_¢t~_±nput is called when an ICMP error is received in response to a TCP
segment, and it calls tcp_no~± fy to process the ICMP error. ~c~_cIuenct~ is a
special case function that handles ICMP source quench errors.

¯ The TCP_R~.ASS macro and the ~c~_reass function manipulate segments on
TCP’s reassembly queue for a given connection. This queue handles the receipt
of out-of-order segments, some of which might overlap.

¯ ¢¢p_t~ac÷ adds records to the kernel’s circular debug buffer for TCP (the
SO_DE~3UG socket option) that can be printed with the ¢ r~ (8) program.

891
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27.2 tcp_drain Function

The simplest of all the TCP functions is tcp_draJ_n. It is the protocol’s pr_dra±n
function, called by m_r÷cla±ra when the kernel runs out of mbufs. We saw in Fig-
ure 10.32 that ±p_drain discards all the fragments on its reassembly queue, and UDP
doesn’t define a drain function. Although TCP holds onto mbufs--segments that have
arrived out of order, but within the receive window for the socket--the Net/3 imple-
mentation of TCP does not discard these pending mbufs if the kernel runs out of space.
Instead, tcp_dra±n does nothing, on the assumption that a received (but out-of-order)
TCP segment is "more important" than an IP fragment.

27.3

202--213

214--216

21 7

tcp_drop Function

tcp_drop is called from numerous places to drop a connection by sending an RST and
to report an error to the process. This differs from closing a connection (the
tcp_disconnect function), which sends a FIN to the other end and follows the con-
nection termination steps in the state transition diagram.

Figure 27.1 shows the seven places where tcp_drop is called and the errno argu-
ment.

Function         errno                                   Description

tcp_input    ENOBUFS         SYN arrives on listening socket, but kernel out of mbufs for
t_template.

tcp_input ECONNREFUSED RST received in response to SYN.

tcp_input ECONNRESET RST received on existing connection.

tcp_timers ETIMEDOUT Retransmission timer has expired 13 times in a row with no ACK from
other end (Figure 25.25).

tcp_tiraers ETINEDOUT Connection-establishment timer has expired (Figure 25.15), or
keepalive timer has expired with no response to nine consecutive
probes (Figure 25.17)

tcp_usrreq ECONNABORTEDPRU ABORT request.
tcp_usrreq 0 Socket closed and SO_LINGER socket option set with linger time of 0.

Figure 27.1 Calls to tcp_drop and errno argument.

Figure 27.2 shows the tcp_drop function.
If TCP has received a SYN, the connection is synchronized and an RST must be sent

to the other end. This is done by setting the state to CLOSED and calling tc>_output.
In Figure 24.16 the value of t c p_ou t f 1 a gs for the CLOSED state includes the RST flag.

If the error is ETTMEDOUT but a soft error was received on the connection (e.g.,
EHOSTUNREACH), the soft error becomes the socket error, instead of the less specific
ETIMEDOUT.

tcp_close finishes closing the socket.
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202 struct tcpcb *
203 tcp_drop(tp, errno)
204 struct tcpcb *tp;
205 int errno;
206 {
207 struct socket *so - tp->t_inpcb->inp_socket;

208 if (TCPS_HAVERCVDSYN(tp->t_state)) {
209 tp->t_state = TCPS_CLOSED;
210 (void) tcp_output(tp);
211 tcpstat.tcps_drops++;
212 } else
213 tcpstat.tcps_conndrops++;
214 if (errno == ETIHEDOUT && tp->t_softerror)
215 errno = tp >t_softerror;
216 so >so_error : errno;
217 return (tcp_close(tp));
218 }

Figure 27.2 tcp_drop function.

tcp_subr.c

tcp_subr.c

27.4 tcp_close Function

tcp_close is normally called by tcp_input when the process has done a passive
close and the ACK is received in the LAST_ACK state, and by top_timers when the
2MSL timer expires and the socket moves from the TIME_WAIT to CLOSED state. It is
also called in other states, possibly after an error has occurred, as we saw in the previ-
ous section. It releases the memory occupied by the connection (the IP and TCP header
template, the TCP control block, the Internet PCB, and any out-of-order segments
remaining on the connection’s reassembly queue) and updates the route characteristics.

We describe this function in three parts, the first two dealing with the route charac-
teristics and the final part showing the release of resources.

Route Characteristics

Nine variables are maintained in the rt_metrics structure (Figure 18.26), six of which
are used by TCP. Eight of these can be examined and changed with the route(8) com-
mand (the ninth, rmx_pksent is never used): these variables are shown in Figure 27.3.

Additionally, the -lock modifier can be used with the route command to set the
corresponding RTV_xxx bit in the rmx_loeks member (Figure 20.13). Setting the
RTV_XXX bit tells the kernel not to update that metric.

When a TCP socket is closed, tcp_close updates three of the routing metrics--the
smoothed RTT estimator, the smoothed mean deviation estimator, and the slow start
threshold--but only if enough data was transferred on the connection to yield mean-
ingful statistics and the variable is not locked.

Figure 27.4 shows the first part of tcp_close.

DELL EX.1095.918



894 TCP Functions Chapter 27

rt_metrics
member

rmx_expire
rmx_hopcount

rmx mtu
rmx_recvpipe
rmx_rtt
rmx_rttvar
rmx_sendpipe
rmx_ssthresh

saved by used by
tcp_close? tcp_mss?

route(8)
modifier

-expire
-hopcount
mtu
recvpipe
rtt

-rttvar
-sendpipe
-ssthresh

Figure 27.3 Members of the rt_metrics structure used by TCP.

234--248

250

251--264

265--273

Check if enough data sent to update statistics
The default send buffer size is 8192 bytes (sb hiwat), so the first test is whether

131,072 bytes (16 full buffers) have been transferred across the connection. The initial
send sequence number is compared to the maximum sequence number sent on the con-
nection. Additionally, the socket must have a cached route and that route cannot be the
default route. (See Exercise 19.2.)

Notice there is a small chance for an error in the first test, because of sequence number wrap, if
the amount of data transferred is within N x 232 and N x 232 + 131072, for any N greater than 1.
But few connections (today) transfer 4 gigabytes of data.

Despite the prevalence of default routes in the Internet, this information is still useful to main-
tain in the routing table. If a host continually exchanges data with another host (or network),
even if a default route can be used, a host-specific or network-specific route can be entered into
the routing table with the route command just to maintain this information across connec-
tions. (See Exercise 19.2.) This information is lost when the system is rebooted.

The administrator can lock any of the variables from Figure 27.3, preventing them
from being updated by the kernel, so before modifying each variable this lock must be
checked.

Update RTT
t_srtt is stored as ticks x 8 (Figure 25.19) and rmx_rtt is stored as microseconds.

So t_srtt is multiplied by 1,000,000 (RTM_RTTUNIT) and then divided by 2
(ticks/second) times 8. If a value for rmx_rtt already exists, the new value is one-half
the old value plus one-half the new value. Otherwise the new value is stored in
rmx_r t t.
Update mean deviation

The same algorithm is applied to the mean deviation estimator. It too is stored as
microseconds, requiring a conversion from the t_rt tvar units of ticks x 4.
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tcp_subnc
225 struct tcpcb *
226 tcp_close(tp)
227 struct tcpcb *tp;
228 {
229 struct tcpiphdr *t;
230 struct inpcb *inp : tp->t_inpcb;
231 struct socket *so : inp->inp_socket;
232 struct mbuf *m;
233 struct rtentry *rt;

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

25O
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

* If we sent enough data to get some meaningful characteristics,
* save them in the routing entry. ’Enough’ is arbitrarily
* defined as the sendpipesize (default 8K) * 16. This would
* give us 16 rtt samples assuming we only get one sample per
* window (the usual case on a long haul net). 16 samples is
* enough for the srtt filter to converge to within 5% of the correct
* value; fewer samples and we could save a very bogus rtt.

* Don’t update the default route’s characteristics and don’t
* update anything that the user "locked".
*/

if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
(rt = inp->inp_route.ro_rt) &&

((struct sockaddr_in *) rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
u_long i;

if ((rt->rt_rmx.rmx locks & RTV_RTT) :: 0) {
i : tp->t_srtt *

(RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
if (rt->rt_rmx.rmx_rtt && i)

/*
¯ filter this update to half the old & half
¯ the new values, converting scale.
¯ See route.h and tcp_var.h for a
¯ description of the scaling constants.
*/

rt->rt_rmx.rmx_rtt =
(rt->rt_rmx.rmx_rtt + i) / 2;

else
rt->rt_rmx.rmx rtt = i;

]
if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {

i = tp->t_rttvar *
(RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));

if (rt->rt_rmx.rmx_rttvar && i)
rt->rt_rmx.rmx_rttvar

(rt->rt_rmx.rmx_rttvar + i) / 2;
else

rt->rt_rmx.rmx_rttvar = i;
}

Figure 27.4 t cp_c 1 o s e function: update RTF and mean deviation.

tcp_subr.c
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274-283

284-290

291--297

Figure 27.5 shows the next part of top_close, which updates the slow start thresh-
old for the route.

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

* update the pipelimit (ssthresh) if it has been updated
* already or if a pipesize was specified & the threshhold
* got below half the pipesize. I.e., wait for bad news
* before we start updating, then update on both good
* and ba~ news.
*/

if ((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
{i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh I 1
i < (rt->rt_rmx.rmx_sendpipe / 2)) {
/*

* convert the limit from user data bytes to
* packets then to packet data bytes.
*/

i : (i + tp >t_maxseg / 2) / tp->t_maxseg;
if (i < 2)

i : 2;
i *- (u_long) (tp->t_maxseg + sizeof(struct tcpiphdr));
if (rt->rt_rmx.rmx_ssthresh)

rt->rt_rmx.rmx_ssthresh :
(rt->rt_rmx.rmx_ssthresh + i) / 2;

else
rt->rt_rmx.rm×_ssthresh = i;

Figure 27.5 tcp_close function: update slow start threshold.

tcp_subr.c

tcp_subr.c

The slow start threshold is updated only if (1) it has been updated already
(rmx_ssthresh is nonzero) or (2) rmx_sendpipe is specified by the administrator
and the new value of snd_ssthresh is less than one-half the value of rmx_sendpipe.
As the comment in the code indicates, TCP does not update the value of
rmx_ssthresh until it is forced to because of packet loss; from that point on it consid-
ers itself free to adjust the value either up or down.

The variable snd_ssthresh is maintained in bytes. The first conversion divides
this variable by the MSS (t_ma×seg), yielding the number of segments. The addition
of one-half t_maxseg rounds the integer result. The lower bound on this result is two
segments.

The size of the IP and TCP headers (40) is added to the MSS and multipled by the
number of segments. This value updates rmx_ssthresh, using the same filtering as in
Figure 27.4 (one-half the old plus one-half the new).

Resource Release

The final part of tcp_clos÷, shown in Figure 27.6, releases the memory resources held
by the socket.
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tcp subnc
299       /* free the reassembly queue, if any */                                     -
300 t = tp->seg_next;
301 while (t != (struct tcpiphdr *) tp) {
302 t = (struct tcpiphdr *) t->ti_next;
303 m = REASS_~BUF((struct tcpiphdr *) t->ti_prev) ;
304 remque(t->ti_prev);
305 m_freem(m);
306 )
307 if (tp->t_template)
308 (void) m_free(dtom(tp->t_template));
309 free(tp, ~_PCB);
310 inp->inp_ppcb = 0;
311 soisdisconnected(so);
312 /* clobber input pcb cache if we’re closing the cached connection */
313 if (inp := tcp_last_inpcb)
314 tcp_last_inpcb = &tcb;
315 in_pcbdetach(inp);
316 tcpstat.tcps_closed++;
317 return ((struct tcpcb *) 0);
318 }

tcp_subr.c
Figure 27.6 tcp_close function: release connection resources.

Release any mbufs on reassembly queue
299-306 If any segments are left on the connection’s reassembly queue, they are discarded.

This queue is for segments that arrive out of order but within the receive window. They
are held in a reassembly queue until the required "’earlier" segments are received, at
which time they are reassembled and passed to the application in the correct order. We
discuss this in more detail in Section 27.9.

307--311

312--318

Release header template and TCP control block
The template of the IP and TCP headers is released by re_free and the TCP control

block is released by free. soisdiseonnected marks the socket as disconnected.

Release PCB
If the Internet PCB for this socket is the one currently cached by TCP, the cache is

marked as empty by setting tcp_last_inpcb to the head of TCP’s PCB list. The PCB
is then detached, which releases the memory used by the PCB.

27.5 tc~, ross Function

The tcp_mss function is called from two other functions:

1. from tep_output, when a SYN segment is being sent, to include an MSS
option, and

2. from tcp_input, when an MSS option is received in a SYN segment.
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1391 1417

The tcp_mss function checks for a cached route to the destination and calculates the
MSS to use for this connection.

Figure 27.7 shows the first part of tcp_mss, which acquires a route to the destina-
tion if one is not already held by the PCB.

1391 int
1392 tcp_mss(tp, offer)
1393 struct tcpcb *tp;
1394 u_int    offer;
1395 {
1396 struct route *ro;
1397 struct rtentry *rt;
1398 struct ifnet *ifp;
1399 int      rtt, mss;
1400 u_long bufsize;
1401 struct inpcb *inp;
1402 struct socket *so;
1403 extern int tcp_mssdflt;

tcp_input.c

1404
1405

inp = tp->t_inpcb;
ro = &inp->inp_route;

1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1428
1419

if ((rt = ro >ro_rt) - (struct rtentry *) 0)
/* No route yet, so try to acquire one */
if (inp->inp_faddr.s_addr !- INADDR_ANY) {

ro->ro_dst.sa_family - AF_INET;
ro->ro_dst.sa_len - sizeof(ro->ro_dst) ;
((struct sockaddr_in *) &ro->ro_dst) >sin_addr :

inp->inp_faddr;
rtalloc(ro);

}
if ((rt = ro->ro_rt) == (struct rtentry *) 0)

return (tcp_mssdflt);
}
ifp : rt->rt_ifp;
so - inp->inp_socket;

Figure 27.7 tcp_ms s function: acquire a route if one is not held by the PCB.

tcp_input.c

Acquire a route if necessary

If the socket does not have a cached route, rtalloc acquires one. The interface
pointer associated with the outgoing route is saved in i fp. Knowing the outgoing
interface is important, since its associated MTU can affect the MSS announced by TCP.
If a route is not acquired, the default of 512 (tc~o_mssdflt) is returned immediately.

The next part of tcp_mss, shown in Figure 27.8, checks whether the route has met-
rics associated with it; if so, the variables t_rttmin, t_srtt, and t_rttvar can be
initialized from the metrics.
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1420 /*
tcp_input.c

1421 * While we’re here, check if there’s an initial rtt
1422 * or rttvar. Convert from the route table units
1423 * to scaled multiples of the slow timeout timer.
1424 */
1425 if (tp->t_srtt -- 0 && (rtt - rt >rt_rmx.rmx_rtt)) {
1426 /*
1427 * XXX the lock bit for RTT indicates that the value
1428 * is also a minimum value; this is subject to time.
1429 */
1430 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1431 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1432 tp->t_srtt = rtt /

1433
1434
1435
1436
1437
1438
1439

1440
1441
1442
1443

(RTM_RTTUNIT /    (PR_SLOWHZ    * TCP_RTT_SCALE));

if (rt->rt_rmx.rmx_rttvar)
tp->t_rttvar - rt->rt_rmx.rmx_rttvar /

(RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
else

/* default variation is +- 1 rtt */
tp->t_rttvar -

tp >t_$rtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;

TCPT_RAMGESET(tp->t_rxtcur,
((tp->t_srtt >> 2) + tp->t_rttvar) >> i,
tp->t_rttmin, TCPTV_REXHTMAX);

Figure 27.8 t cp_mss function: check if the route has an associated RTT metric.

tcp_input.c

1420 1432

1433--1439

Initialize smoothed RTT estimator

If there are no RTT measurements yet for the connection (t_srtt is 0) and
rrax_rtt is nonzero, the latter initializes the smoothed RTT estimator t_srtt. If the
RTV_RTT bit in the routing metric lock flag is set, it indicates that rrax_rtt should also
be used to initialize the minimum RTT for this connection (t_rttra±n). We saw that
tcp_newtcpcb initializes t_rttmin to 2 ticks.

rmx_rtt (in units of microseconds) is converted to t_srtt (in units of ticks x 8).
This is the reverse of the conversion done in Figure 27.4. Notice that t_rttmin is set to
one-eighth the value of t_srtt, since the former is not divided by the scale factor
TCP_RTT_SCALE.

Initialize smoothed mean deviation estimator
If the stored value of rmx_rttvar is nonzero, it is converted from units of

microseconds into ticks x 4 and stored in t_rttvar. But if the value is 0, t_rt~var is
set to t_rtt, that is, the variation is set to the mean. This defaults the variation to + 1
RTT. Since the units of the former are ticks x 4 and the units of the latter are ticks x 8,
the value of t_srt t is converted accordingly.
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1440--1442

1444 1450

1451--1457

Calculate initial RTO
The current RTO is calculated and stored in t_r×tcur, using the unscaled equa-

tion

RTO = srtt + 2 x rttvar

A multipler of 2, instead of 4, is used to calculate the first RTO. This is the same equa-
tion that was used in Figure 25.21. Substituting the scaling relationships we get

t_srtt      t_rttvar
RTO =       + 2 x

8 4
t_srtt

4
+ t_rttvar

which is the second argument to TCPT_RANGESET.

The next part of t cp_mss, shown in Figure 27.9, calculates the MSSo

1444
1445
1446
1447
1448
1449
1450

1451
1452
1453
1454
1455
1456
1457

1458
1459
1460

#if

* if there’s an mtu associated with the route, use it
*/

if (rt->rt_rmx.rmx_mtu)
mss - rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);

else {
mss = ifp->if_mtu - sizeof(struct tcpiphdr);

(~CLBYTES & (MCLBYTES - i)) := 0
if (mss > MCLBYTES)

mss &- ~(MCLBYTES - i);
#else

#endif

if (mss > MCLBYTES)
mss = mss / MCLBYTES * MCLBYTES;

if [in_localaddr(inp->inp_faddr))
mss = min(mss, tcp_mssdflt);

Figure 27.9 tcp ross function: calculate MSS.

tcp_input.c

tcp_input.c

Use MSS from routing table MTU
If the MTU is set in the routing table, ross is set to that value. Otherwise mss starts

at the value of the outgoing interface MTU minus 40 (the default size of the IP and TCP
headers). For an Ethernet, ms s would start at 1460.
Round MSS down to multiple of MCLBYTES

The goal of these lines of code is to reduce the value of ms s to the next-lower multi-
ple of the mbuf cluster size, if ross exceeds MCLBYTES. If the value of MCLBYTES (typi-
cally 1024 or 2048) logically ANDed with the value minus 1 equals 0, then NCLBYTES is
a power of 2. For example, 1024 (0x4 0 0) logically ANDed with 1023 (0x3 f f) is 0.
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1458--1459

1461--1472

1473--1483

The value of mss is reduced to the next-lower multiple of MCLBYTES by clearing the
appropriate number of low-order bits: if the cluster size is 1024, logically ANDing mss
with the one’s complement of 1023 (0x f f f f f c 0 0) clears the low-order 10 bits. For an
Ethernet, this reduces ms s from 1460 to 1024. If the cluster size is 2048, logically AND-
ing ms s with the one’s complement of 2047 (0x f f f f 8 0 0 0) clears the low-order 11 bits.
For a token ring with an MTU of 4464, this reduces the value of ross from 4424 to 4096.
If MCLBYTES is not a power of 2, the rounding down to the next-lower multiple of
MCLBYTES is done with an integer division followed by a multiplication.

Check if destination local or nonlocal

If the foreign IP address is not local (in_localaddr returns 0), and if mss is
greater than 512 (tcp_mssdflt), it is set to 512.

Whether an IP address is "local" or not depends on the value of the global
subnetsarelocal, which is initialized from the symbol SUBNETSARELOCAL when the ker-
nel is compiled. The default value is I, meaning that an IP address with the same network ID
as one of the host’s interfaces is considered local. If the value is 0, an IP address must have the
same network ID and the same subnet ID as one of the host’s interfaces to be considered local.

This minimization for nonlocal hosts is an attempt to avoid fragmentation across wide-area
networks. It is a historical artifact from the ARPANET when the MTU across most WAN links
was 1006. As discussed in Section 11.7 of Volume 1, most WANs today support an MTU of
1500 or greater. See also the discussion of the path MTU discovery feature (RFC 1191 [Mogul
and Deering 1990]), in Section 24.2 of Volume 1. Net/3 does not support path MTU discovery.

The final part of tcp_mss is shown in Figure 27.10.

Other end’s MSS is upper bound
The argument o f f e r is nonzero when this function is called from t c p_input, and

its value is the MSS advertised by the other end. If the value of ross is greater than the
value advertised by the other end, it is set to the value of offer. For example, if the
function calculates an mss of 1024 but the advertised value from the other end is 512,
ross must be set to 512. Conversely, if ross is calculated as 536 (say the outgoing MTU is
576) and the other end advertises an MSS of 1460, TCP will use 536. TCP can always
use a value less than the advertised MSS, but it can’t exceed the advertised value. The
argument offer is 0 when this function is called by tcp_output to send an MSS
option. The value of ross is also lower-bounded by 32.

If the value of ross has decreased from the default set by tcp_newtcpcb in the
variable t_maxseg (512), or if TCP is processing a received MSS option (offer is
nonzero), the following steps occur. First, if the value of rmx_sendpipe has been
stored for the route, its value will be used as the send buffer high-water mark (Fig-
ure 16.4). If the buffer size is less than ross, the smaller value is used. This should never
happen unless the application explicitly sets the send buffer size to a small value, or the
administrator sets rmx_sendpipe to a small value, since the high-water mark of the
send buffer defaults to 8192, larger than most values for the MSS.
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/.
tcp_input.c

1461
14~62
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

* The current mss, t_maxseg, was initialized to the default value
* of 512 (tcp_mssdflt) by tcp_newtcpcb().
* If we compute a smaller value, reduce the current mss.
* If we compute a larger value, return it for use in sending
* a max seg size option, but don’t store it for use
* unless we received an offer at least that large from peer.
* However, do not accept offers under 32 bytes.
./

if (offer)
mss = min(mss, offer);

mss = max(mss, 32);             /* sanity */
if (mss < tp->t_maxseg II offer != 0) {

* If there’s a pipesize, change the socket buffer
* to that size. Make the socket buffers an integral
* number of mss units; if the mss is larger than
* the socket buffer, decrease the mss.
*/

if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
bufsize = so->so_snd.sb_hiwat;

if (bufsize < mss)
mss : bufsize;

else {
bufsize = roundup{bufsize, mss};
if (bufsize > sb_max)

bufsize = sb_max;
(void) sbreserve(&so->so_snd, bufsize);

}
tp->t__maxseg : mss;

if ((bufsize = rt->rt,rmx.rmx_recvpipe) =: 0)
bufsize = so->so_rcv.sb_hiwat;

if (bufsize > mss) {
bufsize = roundup(bufsize, mss);
if (bufsize > sb_max)

bufsize = sb_max;
(void) sbreserve(&so->so_rcv, bufsize);

}
}
tp->snd_cwnd : mss;
if (rt->rt_rmx.rmx_ssthresh) {

/*
* There’s some sort of gateway or interface
* buffer limit on the path. Use this to set
* the slow start threshhold, but set the
* threshold to no less than 2*mss.
*/

tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);

]
return (mss);

Figure 27.10 tcp_mss function: complete processing.

tcp_input.c
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1484--1489

.1490

1491--1499

1500 1509

1510

Round buffer sizes to multiple of MSS

The send buffer size is rounded up to the next integral multiple of the MSS,
bounded by the value of sb_max (262,144 on Net/3, which is 256 x 1024). The socket’s
high-water mark is set by sbreserve. For example, the default high-water mark is
8192, but for a local TCP connection on an Ethernet with a cluster size of 2048 (i.e., an
MSS of 1460) this code increases the high-water mark to 8760 (which is 6 x 1460). But
for a nonlocal connection with an MSS of 512, the high-water mark is left at 8192.

The value of t_maxseg is set, either because it decreased from the default (512) or
because an MSS option was received from the other end.

The same logic just applied to the send buffer is also applied to the receive buffer.

Initialize congestion window and slow start threshold

The value of the congestion window, snd_cwnd, is set to one segment. If the
~-mx_ssthresh value in the routing table is nonzero, the slow start threshold
(snd_ssthresh) is set to that value, but the value must not be less than two segments.

The value of ms s is returned by the function, t cp_input ignores this value in Fig-
ure 28.10 (since it received an MSS from the other end), but tcp_output sends this
value as the announced MSS in Figure 26.23.

Example

Let’s go through an example of a TCP connection establishment and the operation of
t cp_ms s, since it can be called twice: once when the SYN is sent and once when a SYN
is received with an MSS option.

The socket is created and tcp_newtcpcb sets t_maxseg to 512.
The process calls connect, and tcp_output calls tcp_mss with an offer
argument of 0, to include an MSS option with the SYN. Assuming a local desti-
nation, an Ethernet LAN, and an mbuf cluster size of 2048, mss is set to 1460 by
the code in Figure 27.9. Since offer is 0, Figure 27.10 leaves the value as 1460
and this is the function’s return value. The buffer sizes aren’t modified, since
1460 is larger than the default (512) and a value hasn’t been received from the
other end yet. tcp_output sends an MSS option announcing a value of 1460.
The other end replies with its SYN, announcing an MSS of 1024. tcp_input
calls tcp_mss with an offer argument of 1024. The logic in Figure 27.9 still
yields a value of 1460 for mss, but the call to rain at the beginning of.Fig-
ure 27.10 reduces this to 1024. Since the value of offer is nonzero, the buffer
sizes are rounded up to the next integral multiple of 1024 (i.e., they’re left at
8192). t_maxseg is set to 1024.

It might appear that the logic of tcp_mss is flawed: TCP announces an MSS of 1460 but
receives an MSS of 1024 from the other end. While TCP is restricted to sending 1024-byte seg-
ments, the other end is free to send 1460-byte segments. We might think that the send buffer
should be a multiple of 1024, but the receive buffer should be a multiple of 1460. Yet the code
in Figure 27.10 sets both buffer sizes based on the received MSS. The reasoning is that even if
TCP announces an MSS of 1460, since it receives an MSS of 1024 from the other end, the other
end probably won’t send 1460-byte segments, but will restrict itself to 1024-byte segments.
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27.6 tcp_ctlinput Function

365--366

Recall from Figure 22.32 that t cp_ct 1 input processes five types of ICMP errors: desti-
nation unreachable, parameter problem, source quench, time exceeded, and redirects.
All redirects are passed to both TCP and UDP. For the other four errors,
t cp_c t 1 ± nput is called only if a TCP segment caused the error.

tcp_ctlinput is shown in Figure 27.11. It is similar to udp_ctlinput, shown in
Figure 23.30.

355 void

356 tcp_ctlinput(cmd, sa, ip)

357 int      cmd;

358 struct sockaddr *sa;
359 struct ip *ip;

360 {

361 struct tcphdr *th;

362 extern struct in_addr zeroin_addr;

363 extern u_char inetctlerrmap[];

364 void (*notify) (struct inpcb *, int) : tcp_notify;

tcp_subr.c

365
366
367
368
369
370
371
372
373
374
375
376

if (cmd == PRC_QUENCH)
notify : tcp_quench;

else if (!PRC IS REDIRECT(cmd) &&
((unsigned) cmd > PRC_NCMDS I I inetctlerrmap[cmd] == 0))

return;
if (ip) {

th - (struct tcphdr *) ((caddr_t) ip + (ip->ip_hl << 2));
in_pcbnotify(&tcb, sa, th->th_d.port, ip->ip_src, th->th_sport,

cmd, notify);
} else

in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);

tcp_subr.c

Figure 27.11 tcp_ctlinput function.

The only difference in the logic from udp_ctlinput is how an ICMP source
quench error is handled. UDP ignores these errors since the PRC_QUENCH entry of
inetctlerrmap is 0. TCP explicitly checks for this error, changing the not i fy func-
tion from its default of t cp_not i fy to t cp_quench.

27.7 tcp_not i fy Function
t cp_not i fy is called by t cp_c t 1 input to handle destination unreachable, parameter
problem, time exceeded, and redirect errors. This function is more complicated than its
UDP counterpart, since TCP must intelligently handle soft errors for an established con-
nection. Figure 27.12 shows the top_not i fy function.
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tcp_subr.c
328 void
329 tcp_notify(inp, error)
330 struct inpcb *inp;
331 int error;
332 {
333 struct tcpcb *tp = (struct tcpcb *) inp->inp_ppcb;
334 struct socket *so = inp->inp_socket;

328-345

346--353

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
35O
351
352
353
354

* Ignore some errors if we are hooked up.
* If connection hasn’t completed, has retransmitted several times,
* and receives a second error, give up now. This is better
* than waiting a long time to establish a connection that
* can never complete.
*/

if (tp->t_state =- TCPS_ESTABLISHED &&
(error := EHOSTUNREACH II error -= ENETUNREACH
error == EHOSTDOWN)) {

return;
} else if (tp >t_state < TCPS_ESTABLISHED && tp >t_rxtshift > 3 &&

tp->t_softerror)
so->so_error - error;

else
tp->t_softerror = error;

wakeup((caddr_t) & so->so_timeo) ;
sorwakeup (so} ;
sowwakeup(so) ;

tcp_subr.c
Figure 27.12 tcp_notify function.

If the connection is ESTABLISHED, the errors EHOSTUNREACH, ENETUNREACH, and
EHOSTDOWN are ignored.

This handling of these three errors is new with 4.4BSD. Net/2 and earlier releases recorded
these errors in the connection’s soft error variable (t_softerror), and the error was reported
to the process should the connection eventually fail. Recall that t cp_xmit_t imer resets this
variable to 0 when an ACK is received for a segment that hasn’t been retransmitted.

If the connection is not yet established, TCP has retransmitted the current segment
four or more times, and an error has already been recorded in t_softerror, the cur-
rent error is recorded in the socket’s so_error variable. By setting this socket variable,
the socket becomes readable and writable if the process calls select. Otherwise the
current error is just saved in t_softerror. We saw that tcp_drop sets the socket
error to this saved value if the connection is subsequently dropped because of a time-
out. Any processes waiting to receive or send on the socket are then awakened to
receive the error.
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27.8 tcp_quench Function

tclD_quench, which is shown in Figure 27.13, is called by tcp_ctlinput when a
source quench is received for the connection, and by tcp_output (Figure 26.32) when
ip_output returns ENOBUFS.

387
388
389

381 void
382 tcp_quench(inp, errno)
383 struct inpcb *inp;
384 int errno;
385 {
386 struct tcpcb *tp = intotcpcb(inp);

if
tp->snd_cwnd = tp->t_maxseg;

Figure 27.13 tcp_quench function.

tcp_subr.c

tcp_subr.c

The congestion window is set to one segment, causing slow start to take over. The
slow start threshold is not changed (as it is when tcp_timers handles a retransmis-
sion timeout), so the window will open up exponentially until snd_ssthresh is
reached, or congestion occurs.

27.9 TCP_~ASS Macro and tcp_reass Function

TCP segments can arrive out of order, and it is TCP’s responsibility to place the misor-
dered segments into the correct order for presentation to the process. For example, if a
receiver advertises a window of 4096 with byte number 0 as the next expected byte, and
receives a segment with bytes 0-1023 (an in-order segment) followed by a segment with
bytes 2048-3071, this second segment is out of order. TCP does not discard the out-of-
order segment if it is within the receive window. Instead it places the segment on the
reassembly list for the connection, waiting for the missing segment to arrive (with bytes
1024-2047), at which time it can acknowledge bytes 1024-3071 and pass these 2048
bytes to the process. In this section we examine the code that manipulates the TCP
reassembly queue, before discussing tcp_input in the next two Chapters.

If we assume that a single mbuf contains the IP header, TCP header, and 4 bytes of
TCP data (recall the left half of Figure 2.14) we would have the arrangement shown in
Figure 27.14. We also assume the data bytes are sequence numbers 7, 8, 9,
and 10.

The il3ovly and tcDhdr structures form the tclDiphdr structure, which we
showed in Figure 24.12. We showed a picture of the tcphdr structure in Figure 24.10.
In Figure 27.14 we show only the variables used in the reassembly: ti_next, ti_prev,
ti_len, ti_sport, ti_dport, and ti_seq. The first two are pointers that form a
doubly linked list of all the out-of-order segments for a given connection. The head of
this list is the TCP control block for the connection: the seg_next and seg_prev mem-
bers, which are the first two members of the structure. The ti_next and ti_prev

DELL EX.1095.931



Section27.9 TCP_REASS Macro and tcp_reass Function    907

ti--

mbuf { }
m_next
m_nextpkt
m_len

-m_data
re_type
m_flags
m_pkt hdr. len

m_pkt hdr. rcvi f

16 bytes
(unused)

t i_next
t i_prev

ti_sport I ti_dpor t

ti_seq

J I

40 bytes
(unused)

NULL
NULL
44

MT_DA TA

M_PKTHDR
44

(20 bytes)

7 ~ tcphdr{ }

J(20 bytes)

4 bytes of data

Figure 27.14 Example mbuf with IP and TCP headers and 4 bytes of data.

pointers overlay the first 8 bytes of the IP header, which aren’t needed once the data-
gram reaches TCP. ti_len is the length of the TCP data, and is calculated and stored
by TCP before verifying the TCP checksum.

TCP_REASS Macro

54--63

When data is received by t cp_input, the macro TCP_REASS, shown in Figure 27.15, is
invoked to place the data onto the connection’s reassembly queue. This macro is called
from only one place: see Figure 29.22.

tp is a pointer to the TCP control block for the connection and ti is a pointer to the
tcpiphdr structure for the received segment. If the following three conditions are all
true:

1. this segment is in-order (the sequence number t i_s eq equals the next expected
sequence number for the connection, rcv_nxt), and
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53 #define
54 if
55

57
58
59
6O
61
62
63
64
65
66

68

TCP_REASS(tp, ti, m, so, flags) { \
((ti)->ti_seq -- (tp)->rcv_nxt && \

(tp)->seg_next =_ (struct tcpiphdr *) (tp)
(tp)->t_state -- TCPS_ESTABLISHED) { \

tp->t_flags I- TF_DELACK; \
{tp) >rcv_nxt +- (ti)->ti_len; \
flags = (ti)->ti_flags & TH_FIN; \
tcpstat.tcps_rcvpack++; \
tcpstat.tcps_rcvbyte += (ti) >ti_len; \
sbappend(&(so)->so_rcv, (m)); \
sorwakeup(so) ; \

else { \
(flags) : tcp_reass((tp), (ti), (in)); \
tp->t_flags I= TF_ACKNOW; \

\

&& \

Figure 27.15 TCP_REASS macro: add data to reassembly queue for connection.

tcp_input.c

tcp_input.c

64--67

2. the reassembly queue for the connection is empty (seg_next points to itself,
not some mbuf), and

3. the connection is ESTABLISHED,

the following steps take place: a delayed ACK is scheduled, rcv_nxt is updated with
the amount of data in the segment, the flags argument is set to TH_FIN if the FIN flag
is set in the TCP header of the segment, two statistics are updated., the data is appended
to the socket’s receive buffer, and any receiving processes waiting for the socket are
awakened.

The reason all three conditions must be true is that, first, if the data is out of order, it
must be placed onto the connection’s reassembly queue and the "preceding" segments
must be received before anything can be passed to the process. Second, even if the data
is in order, if there is out-of-order data already on the reassembly queue, there’s a
chance that the new segment might fill a hole, allowing the received segment and one or
more segments on the queue to all be passed to the process. Third, it is OK for data to
arrive with a SYN segment that establishes a connection, but that data cannot be passed
to the process until the connection is ESTABLISHED--any such data is just added to the
reassembly queue when it arrives.

If these three conditions are not all true, the TCP_REASS macro calls the function
tcp_reass to add the segment to the reassembly queue. Since the segment is either
out of order, or the segment might fill a hole from previously received out-of-order seg-
ments, an immediate ACK is scheduled. One important feature of TCP is that a receiver
should generate an immediate ACK when an out-of-order segment is received. This
aids the fast retransmit algorithm (Section 29.4).

Before looking at the code for the tcp_reass function, we need to explain what’s
done with the two port numbers in the TCP header in Figure 27.14, t i_sport and
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ti_dport. Once the TCP control block is located and tcp_reass is called, these two
port numbers are no longer needed. Therefore, when a TCP segment is placed on a
reassembly queue, the address of the corresponding mbuf is stored over these two port
numbers. In Figure 27.14 this isn’t needed, because the IP and TCP headers are in the
data portion of the mbuf, so the dtom macro works. But recalling our discussion of
m_pullup in Section 2.6, if the IP and TCP headers are in a duster (as in Figure 2.16,
which is the normal case for a full-sized TCP segment), the dtom macro doesn’t work.
We mentioned in that section that TCP stores its own back pointer from the TCP header
to the mbuf, and that back pointer is stored over the two TCP port numbers.

Figure 27.16 shows an example of this technique with two out-of-order segments for
a connection, each segment stored in an mbuf clusten The head of the doubly linked list
of out-of-order segments is the seg_next member of the control block for this connec-
tion. To simplify the figure we don’t show the seg_prev pointer and the ti_next
pointer of the last segment on the list.

The next expected sequence number is i (rcv_nxt) but we assume that segment
was lost. The next two segments have been received, containing bytes 1461-4380, but
they are out of order. The segments were placed into clusters by m_devget, as shown
in Figure 2.16.

The first 32 bits of the TCP header contain a back pointer to the corresponding
mbuf. This back pointer is used in the tcp_reass function, shown next.

tcp_reass Function

69 83

84-90

Figure 27.17 shows the first part of the tcp_reass function. The arguments are: tp, a
pointer to the TCP control block for the received segment; t i, a pointer to the IP and
TCP headers of the received segment; and m, a pointer to the mbuf chain for the
received segment. As mentioned earlier, t i can point into the data area of the mbuf
pointed to by m, or t i can point into a cluster.

We’ll see that tcp_input calls tcp_reass with a null ti pointer when a SYN is
acknowledged (Figures 28.20 and 29.2). This means the connection is now established,
and any data that might have arrived with the SYN (which tcp_reass had to queue
earlier) can now be passed to the application. Data that arrives with a SYN cannot be
passed to the process until the connection is established. The label present is in Fig-
ure 27.23.

Go through the list of segments for this connection, starting at seg_next, to find
the first one with a sequence number that is greater than the received sequence number
(ti_seq). Note that the i f statement is the entire body of the for loop.

Figure 27.18 shows an example with two out-of-order segments already on the
queue when a new segment arrives. We show the pointer q pointing to the next seg-
ment on the list, the one with bytes 10-15. In this figure we also show the two pointers
ti_next and ti_prev, the starting sequence number (ti_seq), the length (ti_len),
and the sequence numbers of the data bytes. With the small segments we show, each
segment is probably in a single mbuf, as in Figure 27.14.
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mbuf{}
m_next
m_nextpkt
m_len
m_data
m_type
m_flags
m_pkthdr.len
m_pkthdr.rcvif
m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

(unused)

2048-byte
cluster

t i_next
ti_prev

I I ti-len

back pointer
ti_seq

1460 bytes
of data

548 bytes
(unused)

NULL

NULL

1500

MT DATA
M_~KTHDR
1M_EXT
1500

NULL
2048

1460

1461

mbuf { }
--~ m_next

m_nextpkt
m_len

~--.m_data
m_type
m_flags

m_pkthdr.len
m_~kthdr.rcvif

/~.m_ext.ext_buf
m_ext.ext_free
m_ext.ext_size

(unused)

2048-byte
cluster

t i_next

1460 bytes
of data

548 bytes
(unused)

NULL
NULL
1500

MT DATA
M_PKTHDR

M_EXT
1500

VULL
2048

ipovly(}
(20 bytes)

tcphdr{}
(20 bytes)

Figure 27.16 Two out-of-order TCP segments stored in mbuf clusters.
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tcp input.c
69 int                                                                                     -
70 tcp_reass(tp, ti, m)
71 struct tcpcb *tp;
72 struct tcpiphdr *ti;
73 struct mbuf *m;
74 {
75 struct tcpiphdr *q;
76 struct socket *so - tp->t_inpcb->inp_socket;
77 int flags;

78 /*
79 * Call with ti==0 after become established to
80 * force pre-ESTABLISHED data up to user socket.
81 */
82 if (ti == 0)
83 goto present;

84
85
86
87
88
89
90

* Find a segment that begins after this one does.
*/

for (q : tp->seg_next; q !: (struct tcpiphdr *) tp;
q = (struct tcpiphdr *) q->ti_next)

if (SEQ_GT(q->ti_seq, ti->ti_seq))
break;

Figure 27.17 tcp_reass function: first part.

tcp_input.c

~ I~ ti_len:5
8 ~_1 "~ previous

ti_next [ ti_prev 41516 7 [ )segment

~ i
.d on list

13,
ti_seq = 10

Figure 27.18 Example of TCP reassembly queue with overlapping segments.
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91--107

108--112

116

91
92
93
94
95
96
97
98
99

I00
i01
102
103
104
105
106
107
108
109
ii0
iii
112
113
114
115
116

The next part of tcp_reass is shown in Figure 27.19.

* If there
* our data
* segment.
*/

if ((struct
int

is a preceding segment, it may provide some of
already. If so, drop the data from the incoming

If it provides all of our data, drop us.

tcpiphdr *) q->ti_prev != (struct tcpiphdr *) tp)
i;

q : (struct tcpiphdr *) q->ti_prev;
/* conversion to int (in i) handles seq wraparound */
i = q >ti_seq + q->ti_len - ti->ti_seq;
if (i > 0) {

if (i >- ti->ti_len) {
tcpstat.tcps_rcvduppack++;
tcpstat.tcps_rcvdupbyte += ti->ti_len;
m_freem(m);
return (0);

}
m_adj(m, i);
ti->ti_len = i;
ti->ti_seq += i;

(struct tcpiphdr *) (q->ti_next);

tcpstat.tcps_rcvoopack++;
tcpstat.tcps_rcvoobyte += ti->ti_len;
REASS_MBUF(ti) = m;            /* XXX *~

Figure 27.19 tcp_reass function: second part.

tcp_input.c

tcp_input.c

If there is a segment before the one pointed to by q, that segment may overlap the
new segment. The pointer q is moved to the previous segment on the list (the one with
bytes 4-8 in Figure 27.18) and the number of bytes of overlap is calculated and stored
in i:

i : q->ti_seq + q->ti_len - ti->ti_seq;
= 4 + 5 - 7
= 2

If i is greater than 0, there is overlap, as we have in our example. If the number of bytes
of overlap in the previous segment on the list (i) is greater than or equal to the size of
the new segment, then all the data bytes in the new segment are already contained in
the previous segment on the list. In this case the duplicate segment is discarded.

If there is only partial overlap (as there is in Figure 27.18), m_adj discards i bytes of
data from the beginning of the new segment. The sequence number and length of the
new segment are updated accordingl]< q is moved to the next segment on the list. Fig-
ure 27.20 shows our example at this point.

The address of the mbuf m is stored in the TCP header, over the source and destina-
tion TCP ports. We mentioned earlier in this section that this provides a back pointer
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~ ~
- ’~ -]previous

ti_next I ti_prev i J 5 I 6 I 7
, _))segmenton list

t i_seq = 4
l,~t i_le n : -21

q~ ti seq=9
--    ~m ti_len = 6

~

~ti--~ext I ti~rev 10111~12113114J1 ~~
t i_seq : 10

Figure 27.20 Update of Figure 27.18 after bytes 7 and 8 have been removed from new segment.

117--135

136 139

from the TCP header to the mbuf, in case the TCP header is stored in a cluster, meaning
that the macro dtom won’t work. The macro REASS_MBUF is

#define REASS_MBUF(ti) (*(struct mbuf **)&((ti) >ti_t) )

t i_t is the t cphdr structure (Figure 24.12) and the first two members of the structure
are the two 16-bit port numbers. The comment x×x in Figure 27.19 is because this hack
assumes that a pointer fits in the 32 bits occupied by the two port numbers.

The third part of t cp_rea s s is shown in Figure 27.21. It removes any overlap from
the next segment in the queue.

If there is another segment on the list, the number of bytes of overlap between the
new segment and that segment is calculated in i o In our example we have

i : 9 + 2 - i0
= 1

since byte number 10 overlaps the two segments.
Depending on the value of i, one of three conditions exists:

If i is less than or equal to 0, there is no overlap.

If i is less than the number of bytes in the next segment (q->ti_len), there is
partial overlap and m_adj removes the first i bytes from the next segment on
the list.

If i is greater than or equal to the number of bytes in the next segment, there is
complete overlap and that next segment on the list is deleted.

The new segment is inserted into the reassembly list for this connection by insque.
Figure 27.22 shows the state of our example at this point.
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117
118
119

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139

* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/

while (q !: (struct tcpiphdr *) tp) {
int       i = (ti->ti_seq + ti->ti_leN) - q->ti_seq;
if (i <= 0)

break;
if (i < q->ti_len)

q->ti_seq += i;
q->ti_len : i;
m_adj(REASS_MBUF(q), i);
break;

}
q = (struct tcpiphdr *) q->ti_next;
m = REASS_HBUF((struct tcpiphdr *) q >ti_prev};
remque(q->ti~rev);
m_freem(m);

* Stick new segment in its place.
*/

insque(ti, q->ti~rev);

Figure 27.21 tcp_reass function: tlJrd part.

tcp_input.c

tcp_input.c

ti_next

I_ ti_len = 5 ~
~ -4 ) 5 ) 6 [ 7 I 8- hprevi°us

t i_prev ~ segment

~ .d on list

t i_seq = 4
I~ti len=2

new segment

ti_len

q~ ti_next I ti_prev -111 12 I 13 ( 14 I 15_~

ti_seq = 11

Figure 27.22 Update of Figure 27.20 after removal of all overlapping bytes.

Figure 27.23 shows the final part of tcp_reass. It passes the data to the process, if
possible.
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tcp_input.c
140 present:
141 /*
142 * Present data to user, advancing
143 * completed sequence space.
144
145 if
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165 }

145--146

147--149

150--151

rcv_nxt through

(TCPS_HAVERCVDSYN(tp->t_state) -: 0)
return (0);

ti - tp->seg_next;
if (ti =- (struct tcpiphdr *) tp I I ti >ti_seq [= tp->rcv_nxt)

return (0) ;
if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)

return (0);
do {

tp >rcv_nxt += ti->ti_len;
flags = ti->ti_flags & TH_FIN;
remque(ti);
m - REASS_MBUF(ti);
ti - (struct tcpiphdr *) ti >ti_next;
if (so->so_state & SS_CANTRCV}4ORE)

m_freem(m);
else

sbappend(&so->so_rcv, m);
} while (ti != (struct tcpiphdr *) tp && ti->ti_seq -= tp->rcv_nxt) ;
sorwakeup(so);
return (flags);

tcp_input.c

Figure 27.23 tcp_reass function: fourth part.

If the connection has not received a SYN (i.e., it is in the LISTEN or SYN_SENT
state), data cannot be passed to the process and the function returns. When this func-
tion is called by TCP_REASS, the return value of 0 is stored in the flags argument to
the macro. This can have the side effect of clearing the FIN flag. We’ll see that this side
effect is a possibility when TCP_REASS is invoked in Figure 29.22, and the received seg-
ment contains a SYN, FIN, and data (not a typical segment, but valid).

t i starts at the first segment on the list. If the list is empty, or if the starting
sequence number of the first segment on the list (t i->t i_seq) does not equal the next
receive sequence number (rcv_nxt), the function returns a value of 0. If the second
condition is true, there is still a hole in the received data starting with the next expected
sequence number. For instance, in our example (Figure 27.22), if the segment with bytes
4-8 is the first on the list but rcv_nxt equals 2, bytes 2 and 3 are still missing, so bytes
4-15 cannot be passed to the process. The return of 0 turns o.ff the FIN flag (if set),
because one or more data segments are still missing, so a received FIN cannot be pro-
cessed yet.

If the state is SYN_RCVD and the length of the segment is nonzero, the function
returns a value of 0. If both of these conditions are true, the socket is a listening socket
that has received in-order data with the SYN. The data is left on the connection’s queue,
waiting for the three-way handshake to complete.
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152--1 64 This loop starts with the first segment on the list (which is known to be in order)
and appends it to the socket’s receive buffer, rcv_nx¢ is incremented by the number of
bytes in the segment. The loop stops when the list is empty or when the sequence num-
ber of the next segment on the list is out of order (i.e., there is a hole in the sequence
space). When the loop terminates, the flags variable (which becomes the return value
of the function) is 0 or TH_FIN, depending on whether the final segment placed in the
socket’s receive buffer has the FIN flag set or not.

After all the mbufs have been placed onto the socket’s receive buffer, sorwak÷up
wakes any process waiting for data to be received on the socket.

27.10

35--43

tcp_trace Function

In tcp_output, before sending a segment to IP for output, we saw the following call to
tcp_trac÷ in Figure 26.32:

if (so >so_options & SO_DEBUG)
tcp_trace(TA_OUTPUT, tp->t_state, tp, ti, 0);

This call adds a record to a circular buffer in the kernel that can be examined with the
trpt(8) program. Additionally, if the kernel is compiled with TCPDVBUG defined, and
if the variable tcpconsdebug is nonzero, information is output on the system console.

Any process can set the SO_DEBUG socket option for a TCP socket, causing the information to
be stored in the kernel’s circular buffer. But trpt must read the kernel memory (/d÷v/kmera)
to fetch this information, and this often requires special privileges.

The SO_DEBUG socket option can be set for any type of socket (e.g., UDP or raw IP), but TCP is
the only protocol that looks at the option.

The information saved by the kernel is a tcp_d÷bug structure, shown in Fig-
ure 27.24.

tcp_debug.h
35 struct tcp_debug {
36 n_time td_time; /* iptime(): ms since midnight, UTC */
37 short td_act; /* TA_xxx value (Figure 27.25) */
38 short td_ostate; /* old state */
39 caddr_t td_tcb; /* addr of TCP connection block */
40 struct tcpiphdr td_ti; /* IP and TCP headers */
41 short td_req; /* PRU xxx value for TA_USER */
42 struct tcpcb td_cb; /* TCP connection block */
43 };

53 #define TCP_NDEBUG i00
54 struct tcp_debug tcp_debug[TCP_NDEBUG];
55 int tcp_debx;

tcp_debug.h
Figure 27.24 tcp_debug structure.

This is a large structure (196 bytes), since it contains two other structures: the
tcpiphdr structure with the IP and TCP headers; and the tcpcb structure, the entire
TCP control block. Since the entire TCP control block is saved, any variable in the
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53--55

48--133

control block can be printed by trpt. Also, if trpt doesn’t print the variable we’re
interested in, we can modify the source code (it is available with the Net/3 release) to
print whatever information we would like from the control block. The RTT variables in
Figure 25.28 were obtained using this technique.

We also show the declaration of the array tcp_debug, which is used as the circular
buffer. The index into the array (tcp_debx) is initialized to 0. This array occupies
almost 20,000 bytes.

There are only four calls to top_trace in the kernel. Each call stores a different
value in the td_aet member of the structure, as shown in Figure 27.25.

td_a¢ t Description Reference

TA DROP from tcp_input, when input segment is dropped Figure 29.27
TA_INPUT after input processing complete, before call to tcp_outputFigure 29.26
TA_OUTPUT before calling ip_output to send segment Figure 26.32
TA_USER from tcp_usrreq, after processing PRU_xxx request Figure 30.1

Figure 27.25 td_act values and corresponding call to tcp_trace.

Figure 27.27 shows the main body of the tcp_trace function. We omit the code
that outputs directly to the console.

ostate is the old state of the connection, when the function was called. By saving
this value and the new state of the connection (which is in the control block) we can see
the state transition that occurred. In Figure 27.25, TA_OUTPUT doesn’t change the state
of the connection, but the other three calls can change the state.

Sample Output

Figure 27.26 shows the first four lines of tcpdump output corresponding to the three-
way handshake and the first data segment from the example in Section 25.12. (Appen-
dix A of Volume i provides additional details on the tcpdump output format.)

1 0.0 bsdi.1025 > vangogh.discard: S 202880.01:20288001(0)
win 4096 <mss 512>

2 0.362719 0.3627) vangogh.discard > bsdi.1025: S 3202722817:3202722817(0)
ack 20288002 win 8192
<mss 512>

3 0.364316 0.0016) bsdi.1025 > vangogh.discard:    ack i win 4096

4 0.415859 0.0515) bsd±.1025 > vangogh.discard: . 1:513(512) ack 1 win 4096

Figure 27.26 tcpdump output from example in Figure 25.28.

Figure 27.28 shows the corresponding output from trpt.

This output contains a few changes from the normal trpt output. The 32-bit decimal
sequence numbers are printed as unsigned values (trpt incorrectly prints them as signed
numbers). Some values printed by trpt in hexadecimal have been output in decimal. The
values from t_rtt through t_rxtcur were added to trpt by the authors, for Figure 25.28.
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48 void
49 tcp_trace(act, ostate, tp, ti, req)
50 short    act, ostate;
51 struct tcpcb *tp;
52 struct tcpiphdr *ti;
53 int req;
54 {
55 tcp_seq seq, ack;
56 int len, flags;
57 struct tcp_debug *td = &tcp_debug[tcp_debx++];

58
59

60
61
62
63
64
65
66
67
68
69
70
71
72

if (tcp_debx == TCP_NDEBUG
tcp_debx = 0; /* circle back to start */

td->td_time = iptime();
td->td_act = act;
td->td_ostate = ostate;
td->td_tcb = (caddr_t) tp;
if (tp)

td->td_cb = *tp;           /* structure assignment */
else

bzero((caddr_t) & td->td_cb, sizeof(*tp));
if (ti)

td->td_ti = *ti;           /* structure assignment */
else

bzero((caddr_t) & td->td_ti, sizeof(*ti));
td->td_req = req;

73 #ifdef TCPDEBUG
74 if (tcpconsdebug == 0)
75 return;

tcp_debug.c

132 #endif
133 }

Figure 27.27 tcp_trace function: save information in kernel’s circular buffer.

tcp_debug.c

At time 953738 the SYN is sent. Notice that only the lower 6 digits of the millisec-
ond time are output--it would take 8 digits to represent i minute before midnight. The
ending sequence number that is output is wrong (20288005). Four bytes are sent with
the SYN, but these are the MSS option, not data. The retransmit timer is 6 seconds
(REXMT).and the keepalive timer is 75 seconds (KEEP). These timer values are in 500-ms
ticks. The value of i for t_rtt means this segment is being timed for an RTT measure-
ment.

This SYN segment is sent in response to the process calling connect. One millisec-
ond later the trace record for this system call is added to the kernel’s buffer. Even
though the call to connect generates the SYN segment, since the call to tcp_trace
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953738

953739

954103

954103

954153

SYN_SENT: output 20288001:20288005(4) @0 (win-4096)

<SYN> -> SYN_SENT
rcv_nxt 0, rcv wnd 0
snd_una 20288001, snd nxt 20288002, snd_max 20288002
snd wll 0, snd_wl2 0, snd wnd 0
REXMT=I2 (t_rxtshift-0), KEEP=IS0
t_rtt:l, t_srtt=0, t_rttvar-24, t_rxtcur=12

CLOSED: user CONNECT -> SYN_SENT
rcv_nxt 0, rcv_wnd 0
snd_una 20288001, snd_nxt 20288002, snd max 20288002
snd wll 0, snd_wl2 0, snd_wnd 0
REXMT-12 (t_rxtshift-0), KEEP=I50
t_rtt:l, t_srtt-0, t_rttvar-24, t_rxtcur-12

SYN_SENT: input 3202722817:3202722817(0) @20288002 (win=8192)
<SYN,ACK> > ESTABLISHED
rcv_nxt 3202722818, rcv_wnd 4096
snd_una 20288002, snd_nxt 20288002, snd_max 20288002
snd wll 3202722818, snd w12 20288002, snd wnd 8192
KEEP=I4400
t_rtt:0, t_srtt:16, t_rttvar-4, t_rxtcur:6

ESTABLISHED: output 20288002:20288002(0) @3202722818 win:4096)
<ACK> -> ESTABLISHED
rcv_nxt 3202722818, rcv wnd 4096
snd_una 20288002, snd_nxt 20288002, snd max 20288002
snd_wll 3202722818, snd_wl2 20288002, snd wnd 8192
KEEP:I4400
t_rtt:0, t_srtt:16, t_rttvar=4, t_rxtcur:6

ESTABLISHED: Output 20288002:20288514(512) @3202722818 (win=4096)
<ACK> -> ESTABLISHED
rcv_nxt 3202722818, rcv_wnd 4096
snd_una 20288002, snd_nxt 20288514, snd_max 20288514
snd wll 3202722818, snd_wl2 20288002, snd wnd 8192
REXMT-6 (t_rxtshift=0), KEEP-14400
t_rtt=l, t_srtt-16, t_rttv&r-4, t_rxtcur=6

Figure 27.28 trpt output from example in Figure 25.28.

appears after processing the PRU_CONNECT request, the two trace records appear back-
ward in the buffer. Also, when the process called connect, the connection state was
CLOSED, and it changes to SYN_SENT. Nothing else changes from the first trace
record to this one.

The third trace record, at time 954103, occurs 365 ms after the first. (tcpdump
shows a 362.7 ms difference.) This is how the values in the column "actual delta (ms)"
in Figure 25.28 were computed. The connection state changes from SYN_SENT to
ESTABLISHED when the segment with a SYN and an ACK is received. The RTT esti-
mators are updated because the segment being timed was acknowledged.

The fourth trace record is the third segment of the three-way handshake: the ACK
of the other end’s SYN. Since this segment contains no data, it is not timed (rtt is 0).
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After the ACK has been sent at time 954103, the connect system call returns to the
process, which then calls wr±~e to send data. This generates TCP output, shown in
trace record 5 at time 954153, 50 ms after the three-way handshake is complete. 512
bytes of data are sent, starting with sequence number 20288002. The retransmission
timer is set to 3 seconds and the segment is timed.

This output is caused by an application wr±te. Although we don’t show any more
trace records, the next four are from PRU_SEI~D requests. The first PRU_SEND request
generates the output of the first 512-byte segment that we show, but the other three do
not cause output, since the connection has just started and is in slow start. Four trace
records are generated because the system used for this example uses a TCP send buffer
of 4096 and a cluster size of 1024. Once the send buffer is full, the process is put to
sleep.

27.11 Summary

This chapter has covered a wide range of TCP functions that we’ll encounter in the fol-
lowing chapters.

TCP connections can be aborted by sending an RST or they can be closed down
gracefully, by sending a FIN and waiting for the four-way exchange of segments to
complete.

Eight variables are stored in each routing table entry, three of which are updated
when a connection is closed and six of which can be used later when a new connection
is established. This lets the kernel keep track of certain variables, such as the RTT esti-
mators and the slow start threshold, between successive connections to the same desti-
nation. The system administrator can also set and lock some of these variables, such as
the MTU, receive pipe size, and send pipe size, that affect TCP connections to that desti-
nation.

TCP is tolerant of received ICMP errors--none cause Net/3 to terminate an estab-
lished connection. This handling of ICMP errors by Net/3 differs from earlier Berkeley
releases.

Received TCP segments can arrive out of order and can contain duplicate data, and
TCP must handle these anomalies. We saw that a reassembly queue is maintained for
each connection, and this holds the out-of-order segments along with segments that
arrive before they can be passed to the application.

Finally we looked at the type of information saved by the kernel when the
$O_DE~3UG socket option is enabled for a TCP socket. This trace information can be a
useful diagnostic tool in addition to programs such as ~ clodump.
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Exercises

27.1

27.2

27.3

Why is the errno value 0 for the last row in Figure 27.1?

What is the maximum value that can be stored in rrax_rt ~?

To save the route information in Figure 27.3 for a given host, we enter a route into the rout-
ing table by hand for this destination. We then run the FTP client to send data to this host,
making certain we send enough data, as described with Figure 27.4. But after terminating
the FTP client we look at the routing table, and all the values for this host are still O.
What’s happening?
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28

TCP Input

28.1 Introduction

TCP input processing is the largest piece of code that we examine in this text. The func-
tion tcp_±npu~ is about 1100 lines of code. The processing of incoming segments is
not complicated, just long and detailed. Many implementations, including the one in
Net/3, closely follow the input event processing steps in RFC 793, which spell out in
detail how to respond to the various input segments, based on the current state of the
connection.

The ~cp_±npu~ function is called by ±~±n~r (through the ~z-_±nput function in
the protocol switch table) when a datagram is received with a protocol field of TCP.
~ c~_± npu¢ executes at the software interrupt level.

The function is so long that we divide its discussion into two chapters. Figure 28.1
outlines the processing steps in ¢¢p_±n~u~.. This chapter discusses the steps through
RST processing, and the next chapter starts with ACK processing.

The first few steps are typical: validate the input segment (checksum, length, etc.)
and locate the PCB for this connection. Given the length of the remainder of the func-
tion, however, an attempt is made to bypass all this logic with an algorithm called header
prediction (Section 28.4). This algorithm is based on the assumption that segments are
not typically lost or reordered, hence for a given connection TCP can often guess what
the next received segment will be. If the header prediction algorithm works, notice that
the function returns. This is the fast path through

The slow path through the function ends up at the label c~octa~a, which tests a few
flags and calls ~cp_ouCpu~ if a segment should be sent in response to the received seg-
ment.

923
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void
tcp_input ()
{

checksum TCP header and data;

f i ndpcb :
locate PCB for segment;
if (not found)

goto dropwithreset;

reset idle time to 0 and keepalive timer to 2 hours;

process options if not LISTEN state;

if (packet matched by header prediction) {
completely process received segment;
return;

}

switch (tp->t_state) {
case TCPS_LISTEN:

if SYN flag set, accept new connection request;
goto trimthenstep6;

case TCPS SYN SENT:
if ACK of our SYN, connection completed;

trimthenstep6:
trim any data not within window;
goto step6;

process RFC 1323 timestamp;

check if some data bytes are within the receive window;

trim data segment to fit within window;

if (RST flag set) {
process depending on state;
goto drop;

} /* Chapter 28 finishes here */

if (ACK flag set) { /* Chapter 29 starts here */
if (SYN_RCVD state)

passive open or simultaneous open complete;
if (duplicate ACK)

fast recovery algorithm;
update RTT estimators if segment timed;
open congestion window;
remove ACKed data from send buffer;
change state if in FIN_WAIT_I, CLOSING, or LAST_ACK state;

}

step6:
update window information;

process URG flag;
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doda t a :
process data in segment, add to reassembly queue;

if (FIN flag is set)
process depending on state;

if (SO_DEBUG socket option)
tcp trace (TA INPUT) ;

if (need output ! ! ACK now)
tcp output () ;

return;

dropafteraok:
tcp output ()
return;

dropwithreset:
tcp respond ()
return;

drop :

to generate ACK;

to generate RST;

if (SO_DEBUG socket option)
tcp_trace (TA DROP) ;

return;

Figure 28.1 Summary of TCP input processing steps.

There are also three labels at the end of the function that are jumped to when errors
occur: dropaft÷rack, dropw±thres÷~, and drop. The term drop means to drop the
segment being processed, not drop the connection, but when an RST is sent by
dro~wi t hr÷ s ÷ ~ it normally causes the connection to be dropped.

The only other branching in the function occurs when a valid SYN is received in
either the LISTEN or SYN_SENT states, at the swJ_~ch following header prediction.
When the code at ~irad~÷ns~÷p6 finishes, it jumps to sCel~6, which continues the
normal flow.

28.2

170--204

Preliminary Processing

Figure 28.2 shows the declarations and the initial processing of the received TCP seg-
ment.

Get IP and TCP headers in first mbuf
The argument iphlen is the length of the IP header, including possible IP options.

If the length is greater than 20 bytes, options are present, and ip_stripol~tions dis-
cards the options. TCP ignores all IP options other than a source route, which is saved
specially by IP (Section 9.6) and fetched later by TCP in Figure 28.7. If the number of
bytes in the first mbuf in the chain is less than the size of the combined IP/TCP header
(40 bytes), m_loul lup moves the first 40 bytes into the first mbuf.
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170 void                                                                       tcp_input.c

171 tcp_input(m, iphlen)
172 struct mbuf *m;
173 int iphlen;
174 {
175 struct tcpiphdr *ti;
176 struct inpcb *inp;
177 caddr_t optp = NULL;
178 int optlen;
179 int len, tlen, off;
180 struct tcpcb *tp - 0;
181 int tiflags;
182 struct socket *so;
183 int       todrop, acked, ourfinisacked, needoutput = 0;
184 short    ostate;
185 struct in_addr laddr;
186 int dropsocket = 0;
187 int iss = 0;
188 u_long tiwin, ts_val, ts_ecr;
189 int ts_present - 0;

~05--21 7

218--228

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

tcpstat.tcps_rcvtotal++;
/*

* Get IP and TCP header together in first mbuf.
* Note: IP leaves IP header in first mbuf.
*/

ti - mtod(m, struct tcpiphdr *);
if (iphlen > sizeof(struct ip))

ip_stripoptions(m, (struct mbuf *) 0);
if (m->m len < sizeof(struct tcpiphdr)) {

if ((m = m_pullup(m, sizeof(struct tcpiphdr))) =- 0)
tcpstat.tcps_rcvshort++;
return;

}
ti = mtod(m, struct tcpiphdr *);

}

Figure 28.2 tcp_input function: declarations and preliminary processing.

tcp_input.c

The next piece of code, shown in Figure 28.3, verifies the TCP checksum and offset
field.

Verify TOP checksum

t 1 en is the TCP length, the number of bytes following the IP header. Recall that IP
has already subtracted the IP header length from ip_len. The variable len is then set
to the length of the IP datagram, the number of bytes to be checksummed, including the
pseudo-header. The fields in the pseudo-header are set, as required for the checksum
calculation, as shown in Figure 23.19.

Verify TCP offset field
The TCP offset field, t i_of f, is the number of 32-bit words in the TCP header,

including any TCP options. It is multiplied by 4 (to become the byte offset of the first
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205 /*
206 * Checksum extended TCP header and data.
207 */
208 tlen = ((struct ip *) ti)->ip_len;
209 len - sizeof(struct ip) + tlen;
210 ti->ti_next = ti->ti_prev = 0;
211 ti->ti_xl = 0;
212 ti->ti_len - (u_short) tlen;
213 HTONS(ti->ti_len);
214 if (ti->ti_sum = in_cksum(m, len)) {
215 tcpstat.tcps_rcvbadsum++;
216 goto drop;
217 }
218 /*
219 * Check that TCP offset makes sense,
220 * pull out TCP options and adjust length.
221 */
222 off = ti->ti_off << 2;
223 if (off < sizeof(struct tcphdr) II off >
224 tcpstat.tcps_rcvbadoff++;
225 goto drop;
226 }
227 tlen -: off;

228 ti->ti_len : tlen;

xxx

tlen) {

Figure 28.3 tcp_input function: verify TCP checksum and offset field.

tcp_input.c

tcp_input.c

230--236

data byte in the TCP segment) and checked for sanity. It must be greater than or equal
to the size of the standard TCP header (20) and less than or equal to the TCP length.

The byte offset of the first data byte is subtracted from the TCP length, leaving t 1 en
with the number of bytes of data in the segment (possibly 0). This value is stored back
into the TCP header, in the variable ti_len, and will be used throughout the function.

Figure 28.4 shows the next part of processing: handling of certain TCP options.
Get headers plus option into first mbuf

If the byte offset of the first data byte is greater than 20, TCP options are present.
m__pul lup is called, if necessary, to place the standard IP header, standard TCP header,
and any TCP options in the first mbuf in the chain. Since the maximum size of these
three pieces is 80 bytes (20 + 20 + 40), they all fit into the first packet header mbuf on the
chain.

Since the only way m_pullup can fail here is when fewer than 20 plus off bytes are in the IP
datagram, and since the TCP checksum has already been verified, we expect this call to
m_pu 1 l up never to fail. Unfortunately the counter t cps_rcvshort is also shared by the call
to m._pullup in Figure 28.2, so looking at the counter doesn’t tell us which call failed. Never-
theless, Figure 24.5 shows that after receiving almost 9 million TCP segments, this counter is 0.
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237--255

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

if (off > sizeof(struct tcphdr)) {
if (m->m_len < sizeof(struct ip) + off) {

if [(m - m_pullup(m, sizeof(struct ip) + off)) :: 0)
tcpstat.tcps_rcvshort++;
return;

}
ti - mtod(m, struct tcpiphdr *);

}
optlen - off - sizeof(struct tcphdr);
optp : mtod{m, caddr_t} + sizeof(struct tcpiphdr);
/*

* Do quick retrieval of timestamp options ("options
* prediction?"). If timestamp is the only option and it
* formatted as recommended in RFC 1323 Appendix A, we
* quickly get the values now and not bother calling
* tcp_dooptions(), etc.
*/

if ((optlen == TCPOLEN_TSTA]vlP_APPA I 1
(optlen > TCPOLEN_TSTAMP_APPA &&
optp[TCPOLEN TSTAMP_APPA] :: TCPOPT_EOL)) &&

*(u_long *) optp =: htonI(TCPOPT_TSTAMP_HDR) &&
(ti->ti_flags & TH_SYN) == 0) {
ts_present = i;
ts_val = ntohl(*{u_long *) (optp + 4));
ts_ecr = ntohl(*(u_long *) (optp + 8));
optp = NULL;           /* we’ve parsed the options */

}

Figure 28.4 tcp_input function: handle certain TCP options.

tcp_input.c

tcp_input.c

Process timestamp option quickly
opt 1 en is the number of bytes of options, and optp is a pointer to the first option

byte. If the following three conditions are all true, only the timestamp option is present
and it is in the desired format:

1. (a) The TCP option length equals 12 (TCPOLEN_TSTAMP_APPA), or (b) the TCP
option length is greater than 12 and optp [ 12 ] equals the end-of-option byte.

2. The first 4 bytes of options equals 0x0101080a (TCPOPT_TSTAMP_HDR, which
we described in Section 26.6).

3. The SYN flag is not set (i.e., this segment is for an established connection, hence
if a timestamp option is present, we know both sides have agreed to use the
option).

If all three conditions are true, ts_present is set to 1; the two timestamp values are
fetched and stored in t s_val and t s_ecr; and optp is set to null, since all the options
have been parsed. The benefit in recognizing the timestamp option this way is to avoid
calling the general option processing function t cp_doopt ions later in the code. The
general option processing function is OK for the other options that appear only with the
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SYN segment that creates a connection (the MSS and window scale options), but when
the timestamp option is being used, it will appear with almost every segment on an
established connection, so the faster it can be recognized, the better.

The next piece of code, shown in Figure 28.5, locates the Internet PCB for the seg-
ment.

257 tiflags : ti->ti_flags;

258 /*
259 * Convert TCP protocol specific fields to host format.
260 */
261 NTOHL(ti->ti_seq);
262 NTOHL(ti->ti_ack);
263 NTOHS(ti->ti_win);
264 NTOHS(ti->ti_urp);

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

tcp_input.c

* Locate pcb
*/

findpcb:
inp
if

for segment.

- tcp_last_inpcb;
(iNp >inp_iport !: ti->ti_dport I I
inp->iNp_fport != ti->ti_sport I I
inp->inp_faddr.s_addr != ti->ti_src.s_addr I I
inp->inp_laddr.s_addr !- ti->ti_dst.s_addr) {
inp - in_pcblookup(&tcb, ti >ti_src, ti->ti_sport,

ti->ti_dst, ti->ti_dport, IHPLOOKUP_WILDCARD) ;
if (inp)

tcp_last_inpcb = inp;
++tcpstat.tcps_pcbcachemiss;

tcp_input.c
Figure 28.8 tcp_input function: locate Internet PCB for segment.

257 264

265--279

Save input flags and convert fields to host byte order
The received flags (SYN, FIN, etc.) are saved in the local variable tiflags, since

they are referenced throughout the code. Two 16-bit values and the two 32-bit values in
the TCP header are converted from network byte order to host byte order. The two
16-bit port numbers are left in network byte order, since the port numbers in the Inter-
net PCB are in that order.

Locate Internet PCB

TCP maintains a one-behind cache (tcp_last_inpcb) containing the address of
the PCB for the last received TCP segment. This is the same technique used by UDP.
The comparison of the four elements in the socket pair is in the same order as done by
udp_input. If the cache entry does not match, in_pcblookup is called, and the cache
is set to the new PCB entry.

TCP does not have the same problem that we encountered with UDP: wildcard
entries in the cache causing a high miss rate. The only time a TCP socket has a wildcard
entry is for a server listening for connection requests. Once a connection is made, all
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four entries in the socket pair contain nonwildcard values. In Figure 24.5 we see a cache
hit rate of almost 80%.

Figure 28.6 shows the next piece of code.

280 /*
281 * If the state is CLOSED (i.e., TCB does not exist) then
282 * all data in the incoming segment is discarded.
283 * If the TCB exists but is in CLOSED state, it is embryonic,
284 * but should either do a listen or a connect soon.
285 */
286 if (inp -= 0)
287 goto dropwithreset;
288 tp - intotcpcb(inp);
289 if (tp -- 0)
290 goto dropwithreset;
291 if (tp->t_state -- TCPS_CLOSED)
292 goto drop;

293
294
295
296
297

/* Unscale the window into a 32-bit value. */
if ((tiflags & TH_SYN) :- 0)

tiwin - ti->ti_win << tp->snd_scale;
else

tiwin = ti->ti_win;

Figure 28.6 t cp_input function: check if segment should be dropped.

tcp_input.c

tcp_input.c

280--287

288 290

291--292

293 297

Drop segment and generate RST
If the PCB was not found, the input segment is dropped and an RST is sent as a

reply. This is how TCP handles SYNs that arrive for a server that doesn’t exist, for
example. Recall that UDP sends an ICMP port unreachable in this case.

If the PCB exists but a corresponding TCP control block does not exist, the socket is
probably being closed (tcp_c!ose releases the TCP control block first, and then
releases the PCB), so the input segment is dropped and an RST is sent as a reply.

Silently drop segment

If the TCP control block exists, but the connection state is CLOSED, the socket has
been created and a local address and local port may have been assigned, but neither
connect nor listen has been called. The segment is dropped but nothing is sent as a
reply. This scenario can happen if a client catches a server between the server’s call to
b±nd and z ± sten. By silently dropping the segment and not replying with an RST, the
client’s connection request should time out, causing the client to retransmit the SYN.

Unscale advertised window

If window scaling is to take place for this connection, both ends must specify their
send scale factor using the window scale option when the connection is established. If
the segment contains a SYN, the window scale factor has not been established yet, so
t iwin is copied from the value in the TCP header. Otherwise the 16-bit value in the
header is left shifted by the send scale factor into a 32-bit value.
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300--303

304--319

The next piece of code, shown in Figure 28.7, does some preliminary processing if
the socket debug option is enabled or if the socket is listening for incoming connection
requests.

298
299
30O
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

328
329
330
331
332
333

so : inp->inp_socket;
if (so >so_options & (SO_DEBUG ] SO_ACCEPTCONN)) {

if (so >so_options & SO_DEBUG)
ostate : tp->t_state;
tcp_saveti : *ti;

}
if (so->so_options & SO ACCEPTCONN) {

so - soNewconn(so, 0);
if (so == 0)

goto drop;
/*

* This is ugly, but ....

* Hark socket as temporary nntil we’re
* committed to keeping it. The code at
* ’drop’ and ’dropwithreset’ check the
* flag dropsocket to see if the temporary
* socket created here should be discarded.
* We mark the socket as discardable until
* we’re committed to it below in TCPS_LISTEN.
*/

dropsocket++;
inp : (struct inpcb *) so->so~cb;
inp->inp_laddr - ti >ti_dst;
inp->inp_iport = ti->ti_dport;

#if BSD>=43

#endif
inp >inp_options : ip_srcroute();

tp = intotcpcb(inp);
tp >t_state = TCPS_LISTEN;

tcp_input.c

/* Compute proper scaling value from buffer space */
while (tp->request r scale < TCP_NAX_WINSHIFT &&

TCP_MAXWIN << tp >request r scale < so->so_rcv.sb_hiwat)
tp->request r scale++;

tcp_input.c

Figure 28.7 t cp_input function: handle debug option and listening sockets.

Save connection state and IP/TCP headers if socket debug option enabled
If the SO_DEBUG socket option is enabled the current connection state is saved

(o s t at e) as well as the IP and TCP headers (t cp_s aver ±). These become arguments
to tcp_trace when it is called at the end of the function (Figure 29.26).
Create new socket if segment arrives for listening socket

When a segment arrives for a listening socket (SO_ACCEPTCONN is enabled by
listen), a new socket is created by sonewconn. This issues the protocol’s
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320--326

327

328--331

PRU_ATTACH request (Figure 30.2), which allocates an Internet PCB and a TCP control
block. But more processing is needed before TCP commits to accept the connection
request (such as the fundamental question of whether the segment contains a SYN or
not), so the flag dropsocket is set, to cause the code at the labels drop and
dropwithreset to discard the new socket if an error is encountered. If the received
segment is OK, dropsocket is set back to 0 in Figure 28.17.

inp and tp point to the new socket that has been created. The local address and
local port are copied from the destination address and destination port of the IP and
TCP headers. If the input datagram contained a source route, it was saved by
save_rte. TCP calls ip_srcroute to fetch that source route, saving a pointer to the
mbuf containing the source route option in inp_options. This option is passed to
ip_output by tcp_output, and the reverse route is used for datagrams sent on this
connection.

The state of the new socket is set to LISTEN. If the received segment contains a
SYN, the code in Figure 28.16 completes the connection request.

Compute window scale factor
The window scale factor that will be requested is calculated from the size of the

receive buffer. 65535 (TCP_MAXWIN) is left shifted until the result exceeds the size of the
receive buffer, or until the maximum window scale factor is encountered (14,
TCP_MAX_WINSHIFT). Notice that the requested window scale factor is chosen based
on the size of the listening socket’s receive buffer. This means the process must set the
SO_RCVBUF socket option before listening for incoming connection requests or it inher-
its the default value in tcp_recvspace.

The maximum scale factor is 14, and 65535 x 214 is 1,073,725,440. This is far greater than the
maximum size of the receive buffer (262,144 in Net/3), so the loop should always terminate
with a scale factor much less than 14. See Exercises 28.1 and 28.2.

Figure 28.8 shows the next part of TCP input processing.

334 /*
335 * Segment received on connection.
336 * Reset idle time and keepalive timer.
337 */
338 tp->t_idle - 0;
339 tp->t_timer[TCPT_KEEP] : tcp_keepidle;

340 /*
341 * Process options if not in LISTEN state,
342 * else do it below (after getting remote address).
343 */
344 if (optp && tp->t_state != TCPS_LISTEN)
345 tcp_dooptions(tp, optp, optlen, ti,
346 &ts_present, &ts_val, &ts_ecr);

tcp_input.c

Figure 28.8

tcp_input.c

tcp_input function: reset idle time and keepalive timer, process options.
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334--339

340--346

Reset idle time and keepalive timer
t~idle is set to 0 since a segment has been received on the connection. The keep-

alive timer is also reset to 2 hours.

Process TCP options if not in LISTEN state
If options are present in the TCP header, and if the connection state is not LISTEN,

tcp_dooptions processes the options. Recall that if only a timestamp option appears
for an established connection, and that option is in the format recommended by Appen-
dix A of RFC 1323, it was already processed in Figure 28.4 and optp was set to a null
pointer. If the socket is in the LISTEN state, tcp_dooptions is called in Figure 28.17
after the peer’s address has been recorded in the PCB, because processing the MSS
option requires knowledge of the route that will be used to this peer.

28.3 tcp_dooptions Function

This function processes the five TCP options supported by Net/3 (Section 26.4): the
EOL, NOP, MSS, window scale, and timestamp options. Figure 28.9 shows the first part
of this function.

1213 void
1214 tcp_dooptions(tp, cp, cnt,
1215 struct tcpcb *tp;
1216 u_char *cp;
1217 int      cnt;
1218 struct tcpiphdr *ti;
1219 int     *ts_present;
1220 u_long *ts_val, *ts_ecr;
1221 {
1222 u_short mss;
1223 int opt, optlen;

ti, ts_present, ts_val, ts_ecr)

tcp_input.c

1224 for (; cnt > 0; cnt -= optlen,
1225 opt = cp[0];
1226 if (opt == TCPOPT_EOL)
1227 break;
1228 if (opt == TCPOPT_NOP)
1229 optlen = i;
1230 else {
1231 optlen = cp[l];
1232 if (optlen <= 0)
1233 break;
1234 }
1235 switch (opt)

cp += optlen) {

1236 default:
1237 continue;

Figure 28.9 tcp_dooptions function: handle EOL and NOP options.

tcp_input.c
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1213--1229

1230--1234

Fetch option type and length

The options are scanned and an EOL (end-of-options) terminates the processing,
causing the function to return. The length of a NOP is set to 1, since this option is not
followed by a length byte (Figure 26.16). The NOP will be ignored via the default in
the switch statement.

All other options have a length byte that is stored in opt i en.
Any new options that are not understood by this implementation of TCP are also

ignored. This occurs because:

Any new options defined in the future will have an option length (NOP and
EOL are the only two without a length), and the for loop skips optlen bytes
each time around the loop.

2. The default in the switch statement ignores unknown options.

1238--1246

1247--1254

1255--1273

The final part of tcp_dooptions, shown in Figure 28.10, handles the MSS, win-
dow scale, and timestamp options.

MSS option
If the length is not 4 (TCPOLEN_MAXSEG), or the segment does not have the SYN

flag set, the option is ignored. Otherwise the 2 MSS bytes are copied into a local vari-
able, converted to host byte order, and processed by tcp_mss. This has the side effect
of setting the variable t_maxseg in the control block, the maximum number of bytes
that can be sent in a segment to the other end.
Window scale option

If the length is not 3 (TCPOLEN WINDOW), or the segment does not have the SYN
flag set, the option is ignored. Net/3 remembers that it received a window scale
request, and the scale factor is saved in requested s scale. Since only i byte is ref-
erenced by cp [ 2 ], there can’t be alignment problems. When the ESTABLISHED state is
entered, if both ends requested window scaling, it is enabled.

Timestamp option
If the length is not 10 (TCPOLEN_TIMESTAMP), the segment is ignored. Otherwise

the flag pointed to by ts~resent is set to 1, and the two timestamps are saved in the
variables pointed to by t s_va 1 and t s_e c r. If the received segment contains the SYN
flag, Net/3 remembers that a timestamp request was received, ts_recent is set to the
received timestamp and ts_recent_age is set to tcp_now, the counter of the number
of 500-ms clock ticks since the system was initialized.

28.4 Header Prediction

We now continue with the code in t cp_input, from where we left off in Figure 28.8.
Header prediction was put into the 4.3BSD Reno release by Van Jacobson. The only

description of the algorithm, other than the source code we’re about to examine, is in
[Jacobson 1990b], which is a copy of three slides showing the code.
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1238
1239
1240
1241
1242
1243
1244
1245
1246

1247
1248
1249
1250
1251
1252
1253
1254

1255
1256
1257
1258
1259
1260
1261
1262

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

case TCPOPT_MAXSEG:
if (optlen != TCPOLEN_HAXSEG)

continue;
if ([(ti->ti_flags & TH_SYN))

continue;
bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
NTOHS(mss);
(void) tcp_mss(tp, mss); /* sets t_maxseg */
break;

tcp_input.c

case TCPOPT_WINDOW:
if (optlen !: TCPOLEN_WINDOW)

continue;
if (! (ti >ti_flags & TH_SYN))

continue;
tp->t_flags I: TF_RCVD_SCALE;
tp->requested_s_scale - min(cp[2], TCP_HAX WINSHIFT) ;
break;

case TCPOPT_TIMESTAMP:
if (optlen [= TCPOLEN_TIMESTAMP)

continue;
*ts_present : i;
bcopy((char *) cp + 2, (char *) ts_val, sizeof(*ts_val));
NTOHL(*ts_val);
bcopy((char *) cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
NTOHL(*ts_ecr);

* A timestamp received in a SYN makes
* it ok to send timestamp requests and replies.
*/

if (ti->ti_flags & TH_SYN) {
tp >t_flags I- TF_RCVD_TSTMP;
tp->ts_rec~nt = *ts_~al;
tp->ts_recent_age = tcp_now;

}
break;

Figure 28.10

tcp_input.c
t cp_doopt ±ons function: process MSS, window scale, and timestamp options.

Header prediction helps unidirectional data transfer by handling the two common
cases.

If TCP is sending data, the next expected segment for this connection is an ACK
for outstanding data.

If TCP is receiving data, the next expected segment for this connection is the
next in-sequence data segment.
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In both cases a small set of tests determines if the next expected segment has been
received, and if so, it is handled in-line, faster than the general processing that follows
later in this chapter and the next.

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

[Partridge 1993] shows an even faster version of TCP header prediction from a research imple-
mentation developed by Van Jacobson.

Figure 28.11 shows the first part of header prediction.

* Header prediction: check for the two common cases
* of a uni-directional data ×fer. If the packet has
* no control flags, is in-sequence, the window didn’t
* change and we’re not retransmitting, it’s a
* candidate. If the length is zero and the ack moved
* forward, we’re the sender side of the xfer. Just
* free the data acked & wake any higher-level process
* that was blocked waiting for space. If the length
* is non-zero and the ack didn’t move, we’re the
* receiver side. If we’re getting packets in order
* (the reassembly queue is empty), add the data to
* the socket buffer and note that we need a delayed ack.
*/

if (tp->t_state =: TCPS_ESTABLISHED &&
(tiflags & (TH_SYN I TH_FIN I TH_RST I TH_URG I TH_ACK))

(!ts_present I I TSTMP_GEQ(ts_val, tp->ts_recent)) &&
ti->ti_seq := tp->rcv nxt &&
tiwin && tiwin -- tp >snd_wnd &&
tp->snd nxt :: tp->snd max) {

tcp_input.c

:= TH_ACK &&

367
368
369
370
371
372
373
374,
375

* If last ACK falls within this segment’s sequence numbers,
* record the timestamp.
*/

if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_aqk_sent) &&
SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti >ti_len)) {
tp >ts_recent_age - tcp_now;
tp >ts_recent : ts_val;

}

Figure 28.11 t cp_input function: header prediction, first part.

tcp_input.c

347--366

Check if segment is the next expected
The following six conditions must all be true for the segment to be the next expected

data segment or the next expected ACK:

The connection state must be ESTABLISHED.

The following four control flags must not be on: SYN, FIN, RST, or URG. The
ACK flag must be on. In other words, of the six TCP control flags, the ACK flag
must be set, the four just listed must be cleared, and it doesn’t matter whether
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367--375

376--379

o

PSH is set or cleared. (Normally in the ESTABLISHED state the ACK flag is
always on unless the RST flag is on.)

If the segment contains a timestamp option, the timestamp value from the other
end (t s_va!) must be greater than or equal to the previous timestamp received
for this connection (¢s_r÷cent). This is basically the PAWS test, which we
describe in detail in Section 28.7. If ts_val is less than Cs_recent, this seg-
ment is out of order because it was sent before the most previous segment
received on this connection. Since the other end always sends its timestamp
clock (the global variable top_now in Net/3) as its timestamp value, the
received timestamps of in-order segments always form a monotonic increasing
sequence.

The timestamp need not increase with every in-order segment. Indeed, on a
Net/3 system that increments the timestamp clock (echo_now) every 500 ms,
multiple segments are often sent on a connection before that clock is incre-
mentedo Think of the timestamp and sequence number as forming a 64-bit
value, with the sequence number in the low-order 32 bits and the timestamp in
the high-order 32 bits. This 64-bit value always increases by at least I for every
in-order segment (taking into account the modulo arithmetic).

The starting sequence number of the segment (ti_seq) must equal the next
expected receive sequence number (rcv_nxt). If this test is false, then the
received segment is either a retransmission or a segment beyond the one
expected.

The window advertised by the segment (tiwin) must be nonzero, and must
equal the current send window (snd_wnd). This means the window has not
changed.

The next sequence number to send (sr~d_nxt) must equal the highest sequence
number sent (snd max). This means the last segment sent by TCP was not a
retransmission.

Update is_recent from received timestamp
If a timestamp option is present and if its value passes the test described with Fig-

ure 26.18, the received timestamp (ts_val) is saved in ts_recent. Also, the current
time (tcp_now) is recorded in t s_recent_age.

Recall our discussion with Figure 26.18 on how this test for a valid timestamp is flawed, and
the correct test presented in Figure 26.20. In this header prediction code the TSTMP_GEQ test in
Figure 26.20 is redundant, since it was already done as step 3 of the i f test at the beginning of
Figure 28.11.

The next part of the header prediction code, shown in Figure 28.12, is for the sender
of unidirectional data: process an ACK for outstanding data.
Test for pure ACK

If the following four conditions are all true, this segment is a pure ACK.
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376
377
378
379
380
381
382
383
384
385
386
387
388

389
390
391
392
393
394

395
396
397
398
399
400
401
402
403
404
405
406
407

408
409
410
411
412
413

if (ti->ti_len == 0) {
if (SEQ_GT(ti->ti_ack, tp->snd una) &&

SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
tp->snd_cwnd >= tp->snd_wnd) {
/*

* this is a pure ack for outstanding data.
*/

++tcpstat.tcps_predack;
if (ts_present)

tcp_xmit_timer(tp, tcp now - ts_ecr + i);
else if (tp->t_rtt &&

SEQ_GT(ti->ti_ack, tp->t_rtseq))
tcp_xmit_timer(tp, tp->t_rtt);

acked = ti->ti_ack - tp->snd una;
tcpstat.tcps_rcvackpack++;
tcpstat.tcps_rcvackbyte += acked;
sbdrop(&so->so_snd, acked);
tp->snd_una = ti-~ti_ack;
m_freem(m);

* If all outstanding data is acked, stop
* retransmit timer, otherwise restart timer
* using current (possibly backed-off value.
* If process is waiting for space,
* wakeup/selwakeup/signal. If data
* is ready to send, let tcp_output
* decide between more output or persist.
*/

if (tp->snd_una == tp->snd_max)
tp->t_timer[TCPT_REXMT] = 0;

else if (tp->t_timer[TCPT_PERSIST] :: 0)
tp->t_timer[TCPT_REXHT] = tp->t_rxtcur;

if (so->so_snd.sb_flags & SB_NOTIFY)
sowwakeup(so);

if (so->so_snd.sb_cc)
(void) tcp_output(tp);

return;

Figure 28.12 tcp_input function: header prediction, sender processing.

tcp_input.c

.’tcp_input.c

o

The segment contains no data (t ±_len is 0).

The acknowledgment field in the segment (t ±_aek) is greater than the largest
unacknowledged sequence number (snd_una). Since this test is "greater than"
and not "greater than or equal to," it is true only if some positive amount of
data is acknowledged by the ACK.

The acknowledgment field in the segment (t i_ack) is less than or equal to the
maximum sequence number sent (snd_max).

DELL EX.1095.963



Section 28.4 Header Prediction    939

4. The congestion window (snd_cwnd is greater than or equal to the current send
window (snd_wnd). This test is true only if the window is fully open, that is~
the connection is not in the middle of slow start or congestion avoidance.

384 388

389--394

395-407

408--409

Update RTT estimators

If the segment contains a timestamp option, or if a segment was being timed and
the acknowledgment field is greater than the starting sequence number being timed,
t cp_xmit_t imer updates the RTT estimators.
Delete acknowledged bytes from send buffer

acked is the number of bytes acknowledged by the segment, sbdrop deletes those
bytes from the send buffer. The largest unacknowledged sequence number (snd_una)
is set to the acknowledgment field and the received mbuf chain is released. (Since the
length is 0, there should be just a single mbuf containing the headers.)

Stop retransmit timer

If the received segment acknowledges all outstanding data (snd_una equals
snd max), the retransmission timer is turned off. Otherwise, if the persist timer is off,
the retransmit timer is restarted using t_rxt cur as the timeout.

Recall that when tcp_output sends a segment, it sets the retransmit timer only if
the timer is not currently enabled. If two segments are sent one right after the other, the
timer is set when the first is sent, but not touched when the second is sent. But if an
ACK is received only for the first segment, the retransmit timer must be restarted, in
case the second was lost.
Awaken waiting processes

If a process must be awakened when the send buffer is modified, sowwakeup is
called. From Figure 16.5, SB_NOTIF¥ is true if a process is waiting for space in the buff-
er, if a process is selecting on the buffer, or if a process wants the SIGIO signal for
this socket.
Generate more output

If there is data in the send buffer, tcp_output is called because the sender’s win-
dow has moved to the right, snd_una was just incremented and snd_wnd did not
change, so in Figure 24.17 the entire window has shifted to the right.

414--416

The next part of header prediction, shown in Figure 28.13, is the receiver processing
when the segment is the next in-sequence data segment.
Test for next in-sequence data segment

If the following four conditions are all true, this segment is the next expected data
segment for the connection, and there is room in the socket buffer for the data.

1. The amount of data in the segment (ti_len) is greater than 0. This is the else
portion of the i f at the beginning of Figure 28.12.

2. The acknowledgment field (ti_ack) equals the largest unacknowledged
sequence number. This means no data is acknowledged by this segment.
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414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

tcp_input.c
} else if (ti->ti_ack == tp >snd_una &&

tp->seg_next -= (struct tcpiphdr *) tp &&
ti->ti_len <- sbspace(&so->so_rcv)) {

/*
* this is a pure, in-sequence data packet
* with nothing on the reassembly queue and
* we have enough buffer space to take it.
*/

++tcpstat.tcps_preddat;
tp->rcv_nxt +: ti->ti_len;
tcpstat.tcps_rcvpack++;
tcpstat.tcps_rcvbyte +- ti->ti_len;
/*

* Drop TCP, IP headers and TCP options then add data
* to socket buffer.
*/

m >m_data +- sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
m >m_len -= sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
sbappend(&so->so_rcv, m);
sorwakeup(so);
tp->t_flags I: TF_DELACK;
return;

}

tcp_input.c

Figure 28.13 tcp_input function: header prediction, receiver processing.

3. The reassembly list of out-of-order segments for the connection is empty
(seg_next equals tp).

4. There is room in the receive buffer for the data in the segment.

423 435

Complete processing of received data
The next expected receive sequence number (r<v_nxt) is incremented by the num-

ber of bytes of data. The IP header, TCP header, and any TCP options are dropped from
the mbuf, and the mbuf chain is appended to the socket’s receive buffer. The receiving
process is awakened by sorwak÷uto. Notice that this code avoids calling the
TCP_REASS macro, since the tests performed by that macro have already been per-
formed by the header prediction tests. The delayed-ACK flag is set and the input pro-
cessing is complete.

Statistics

How useful is header prediction? A few simple unidirectional transfers were run across
a LAN (between bsdi and svr4,.in both directions) and across a WAN (between
vangogh, cs.berkeley, edu and ftp.uu.net in both directions). The netstat
output (Figure 24.5) shows the two header prediction counters.
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On the LAN, with no packet loss but a few duplicate ACKs, header prediction
worked between 97 and 100% of the time. Across the WAN, however, the header pre-
diction percentages dropped slightly to between 83 and 99%.

Realize that header prediction works on a per-connection basis, regardless how
much additional TCP traffic is being received by the host, while the PCB cache works on
a per-host basis. Even though lots of TCP traffic can cause PCB cache misses, if packets
are not lost on a given connection, header prediction still works on that connection.

28.5

438 442

443--455

TCP Input: Slow Path Processing

We continue with the code that’s executed if header prediction fails, the slow path
through tcp_inlvut. Figure 28.14 shows the next piece of code, which prepares the
received segment for input processing.

438
439
440
441
442

443
444
445
446
447
448
449
450

tcp input.c
/.                                                                                                                      --

* Drop TCP, IP headers and TCP options.
*/

m->m_data += sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
m->m_len -= sizeof(struct tcpiphdr) + off    sizeof(struct tcphdr);

* Calculate amount of space in receive window,
* and then do TCP input processing.
* Receive window is amount of space in rcv queue,
* but not less than advertised window.
*/
{

int win;

451 win - sbspace(&so->so_rcv);
452 if (win < 0)
453 win - 0;
454 tp->rcv wild _ max(win, (int)
455 }

(tp->rcv_adv    tp->rcv_nxt));

Figure 28.14 tcp_input function: drop IP and TCP headers.

tcp_input.c

Drop IP and TCP headers, including TCP options

The data pointer and length of the first mbuf in the chain are updated to skip over
the IP header, TCP header, and any TCP options. Since o f f is the number of bytes in
the TCP header, including options, the size of the normal TCP header (20) must be sub-
tracted from the expression.

Calculate receive window

win is set to the number of bytes available in the socket’s receive buffer, rcv_adv
minus rcv_nxt is the current advertised window. The receive window is the maxi-
mum of these two values. The max is taken to ensure that the value is not less than the
currently advertised window. Also, if the process has taken data out of the socket
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receive buffer since the window was last advertised, w±n could exceed the advertised
window, so TCP accepts up to w±n bytes of data (even though the other end should not
be sending more than the advertised window).

This value is calculated now, since the code later in this function must determine
how much of the received data (if any) fits within the advertised window. Any received
data outside the advertised window is dropped: data to the left of the window is dupli-
cate data that has already been received and acknowledged, and data to the right
should not be sent by the other end.

28.6 Initiation of Passive Open, Completion of Active Open

If the state is LISTEN or SYN_SENT, the code shown in this section is executed. The
expected segment in these two states is a SYN, and we’ll see that any other received seg-
ment is dropped.

Initiation of Passive Open

Figure 28.15 shows the processing when the connection is in the LISTEN state. In this
code the variables tp and ±np refer to the new socket that was created in Figure 28.7,
not the server’s listening socket.

456 switch (tp->t_state) {
tcp_input.c

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

case

* If the state is LISTEN then ignore segment if it contains an RST.
* If the segment contains an ACK then it is bad and send an RST.
* If it does not contain a SYN then it is not interesting; drop it.
* Don’t bother responding if the destination was a broadcast.
* Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
* tp->iss, and send a segment:
* <SEQ:ISS><ACK=RCV NXT><CTL:SYN,ACK>
* Also initialize tp->snd_nxt to tp->iss+l and tp->snd_una to tp->iss.
* Fill in remote peer address fields if not previously specified.
* Enter SYN_RECEIVED state, and process any other fields of this
* segment in this state.
*/
TCPS_LISTEN:{

struct mbuf *am;
struct sockaddr_in *sin;

473
474
475
476
477
478

if (tiflags & TH_RST)
goto drop;

if (tiflags & TH ACK)
goto dropwithreset;

if ((tiflags & TH_SYN) == 0)
goto drop;

Figure 28.15 tcp_input function: check if SYN received for listening socket.

tcp_input.c
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4 7.]--4 7 8

479--486

Drop if RST, ACK, or no SYN

If the received segment contains the RST flag, it is dropped. If it contains an ACK, it
is dropped and an RST is sent as the reply. (The initial SYN to open a connection is one
of the few segments that does not contain an ACK.) If the SYN flag is not set, the seg-
ment is dropped. The remaining code for this case handles the reception of a SYN for
a connection in the LISTEN state. The new state will be SYN_RCVD.

479
48O
481
482
483
484
485
486

487
488
489
490
491
492
493
494
495
496

497
498
499
5O0
501
5O2
503
5O4
505

Figure 28.16 shows the next piece of code for this case.

/,                                                            tcp_input.c
* RFCII22 4.2.3.10, p. 104: discard bcast/mcast SYN
* in_broadcast() should never return true on a received
* packet with M_BCAST not set.
*/

if (m >m_flags & (M_BCAST I M_MCAST) I I
IN_MULTICAST(ti->ti_dst.s_addr))
goto drop;

am - m_get(M_DONTWAIT, MT_SONAME); /* XXX */
if (am :: NULL)

goto drop;
am->m_len : sizeof(struct sockaddr_in);
sin = mtod(am, struct sockaddr_in *);
sin->sin_family : AF_INET;
sin->sin_len = sizeof(*sin);
sin >sin_addr = ti->ti_src;
sin->sin~ort : ti->ti_sport;
bzero((caddr_t) sin->sin_zero, sizeof(sin->sin_zero));

laddr = inp->inp_laddr;
if (inp->inp_laddr.s_addr :: INADDR_ANY)

inp->inp_laddr - ti->ti_dst;
if (in_pcbconnect(inp, am)) {

inp->imp_laddr = laddr;
(void) m_free(am);
goto drop;

}
{void) m_free(am);

Figure 28.16 tcp_input function: process SYN for listening socket.

tcp_input.c

Drop if broadcast or multicast

If the packet was sent to a broadcast or multicast address, it is dropped. TCP is
defined only for unicast applications. Recall that the M_BCAST and M__MCAST flags were
set by ether_input, based on the destination hardware address of the frame. The
IN_MULTICAST macro tests whether the IP address is a class D address.

The corrwnent reference to in broadcast is because the Net/1 code (which did not support
multicasting) called that function here, to check whether the destination IP address was a
broadcast address. The setting of the M_BCAST and M_MCAST flags by ether_input, based
on the destination hardware address, was introduced with Net/2.
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487--496

497--499

500-505

506--511

512--514

This Net/3 code tests only whether the destination hardware address is a broadcast address,
and does not call ±n_broadcast to test whether the destination IP address is a broadcast
address, on the assumption that a packet should never be received with a destination IP
address that is a broadcast address unless the packet was sent to the hardware broadcast
address. This assumption is made to avoid calling ±n_broadcast Nevertheless, if a Net/3
system receives a SYN destined for a broadcast IP address but a unicast hardware address, that
segment will be processed by the code in l~igure 28.16.

The destination address argument to IN_~ULTICAST needs to be converted to host byte order.

Get mbuf for client’s IP address and port
An mbuf is allocated to hold a sockaddr_±n structure, and the structure is filled in

with the client’s IP address and port number. The IP address is copied from the source
address in the IP header and the port number is copied from the source port number in
the TCP header. This structure is used shortly to connect the server’s PCB to the client,
and then the mbuf is released.

The xxx comment is probably because of the cost associated with obtaining an mbuf just for
the call to in_Dcbconnect that follows. But this is the slow processing path for TCP input.
Figure~24.5 shows that less than 2% of all received segments execute this code.

Set local address in PCB
laddr is the local address bound to the socket. If the server bound the wildcard

address to the socket (the normal scenario), the destination address from the IP header
becomes the local address in the PCB. Note that the destination address from the IP
header is used, regardless of which local interface the datagram was received on.

Notice that laddr cannot be the wildcard address, because in Figure 28.7 it is explicitly set to
the destination IP address from the received datagram.

Connect PCB to peer
in_pcbconnect connects the server’s PCB to the client. This fills in the foreign

address and foreign process in the PCB. The mbuf is then released.

The next piece of code, shown in Figure 28.17 completes the processing for this
case.

Allocate and initialize IP and TCP header template
A template of the IP and TCP headers is created by top_template. The call to

sonewconn in Figure 28.7 allocated the PCB and TCP control block for the new connec-
tion, but not the header template.
Process any TCP options

If TCP options are present, they are processed by t cp_doopt ions. The call to this
function in Figure 28.8 was done only if the connection was not in the LISTEN state.
This function is called now for a listening socket, after the foreign address is set in the
PCB, since the foreign address is used by the tep_mss function: to get a route to the
peer, and to check if the peer is "local" or "foreign" (with regard to the peer’s network
ID and subnet ID, used to select the MSS).
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5O6
507
5O8
5O9
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

tp->t_template - tcp_template(tp);
if (tp->t_template == 0) {

tp - tcp_drop(tp, ENOBUFS);
dropsocket = 0; /* socket is already gone */
goto drop;

}
if

tcp_dooptions(tp, optp, optlen, ti,
&ts_present, &ts_val, &ts_ecr);

if (iss)
tp->iss - iss;

else
tp->iss = tcp_iss;

tcp_iss +- TCP_ISSINCR / 2;
tp->irs = ti >ti_seq;
tcp_sendseqinit(tp);
tcp_rcvseqinit(tp) ;
tp->t_flags I: TF_ACKNOW;
tp->t_state - TCPS_SYN_RECEIVED;
tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
dropsocket = 0; /* committed to socket */
tcpstat.tcps_accepts++;
goto trimthenstep6;

}
tcp_input.c

Figure 28.17 tcp_±nput function: complete processing of SYN received in LISTEN state.

tcp_input.c

515 519

Initialize ISS

The initial send sequence number is normally copied from the global tcp_iss,
which is then incremented by 64,000 (TCP_ISSINCR divided by 2). If the local variable
iss is nonzero, however, its value is used instead of tcp_iss to initialize the send
sequence number for the connection.

The local i s s variable is used for the following scenario.

¯ A server is started on port 27 on the host with an IP address of 128.1.2.3.
¯ A client on host 192.3.4.5 establishes a connection with this server. The client’s

ephemeral port is 3000. The socket pair on the server is {128.1.2.3, 27, 192.3.4.5,
3000}.

¯ The server actively closes the connection, putting this socket pair into the
TIME WAIT state. While the connection is in this state, the last receive sequence
number is remembered in the TCP control block. Assume its value is 100,000.

¯ Before this connection leaves the TIME_WAIT state, a new SYN is received from
the same port on the same client host (192.3.4.5, port 3000), which locates the
PCB corresponding to the connection in the TIME_WAIT state, not the PCB for
the listening server. Assume the sequence number of this new SYN is 200,000.
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520-522

523-525

526-528

¯ Since this connection does not correspond to a listening socket in the LISTEN
state, the code we just looked at is not executed. Instead, the code in Fig-
ure 28.29 is executed, and we’ll see that it contains the following logic: if the
sequence number of the new SYN (200,000) is greater than the last sequence
number received from this client (100,000), then (1) the local variable ±ss is set
to 100,000 plus 128,000, (2) the connection in the TIME_WAIT state is completely
closed (its PCB and TCP control block are deleted), and (3) a jump is made to
findpcb (Figure 28.5).

¯ This time the server’s listening PCB will be located (assuming the listening
server is still running), causing the code in this section to be executed. The local
variable J_ss (now 228,000) is used in Figure 28.17 to initialize ecp_±ss for the
new connection.

This logic, which is allowed by RFC 1122, lets the same client and server reuse the same
socket pair as long as the server does the active close. This also explains why the global
variable tcp_iss is incremented by 64,000 each time any process issues a connect
(Figure 30.4): to ensure that if a single client reopens the same connection with the same
server repeatedly, a larger ISS is used each time, even if no data was transferred on the
previous connection, and even if the 500-ms timer (which increments t c~_± s s) has not
expired since the last connection.

Initialize sequence number variables in control block
In Figure 28.17, the initial receive sequence number (±rs) is copied from the

sequence number in the SYN segment. The following two macros initialize the appro-
priate variables in the TCP control block:

#define tcp_rcvseqinit (tp) \
(tlo)->rcv_adv = (tp)->rcv_nxt = (tp)->irs + i

#define tcp_sendseqinit(tp) \
(tp)->snd_una = (tp)->snd_nxt = (tp}->snd_max = (tp)->snd_up : \

(tp)->iss

The addition of i in the first macro is because the SYN occupies a sequence number.

ACK the SYN and change state
The TF_ACKNOW flag is set since the ACK of a SYN is not delayed. The connection

state becomes SYN_RCVD, and the connection-establishment timer is set to 75 seconds
(TCPTV_KE~.P_INIT). Since the TF_ACKNOW flag is set, at the bottom of this function
tcp_outpue will be called. Looking at Figure 24.16 we see that tcp_oueflags will
cause a segment with the SYN and ACK flags to be sent.

TCP is now committed to the new socket created in Figure 28.7, so the dropsockee
flag is cleared. The code at er±rath÷nseep6 is jumped to, to complete processing of
the SYN segment. Remember that a SYN segment can contain data, although the data
cannot be passed to the application until the colmection enters the ESTABLISHED state.
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Completion of Active Open

Figure 28.18 shows the first part of processing when the connection is in the SYN_SENT
state. TCP is expecting to receive a SYN.

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
55O
551
552
553

tcp_input.c

* If the state is SYN_SENT:
* if seg contains an ACK, but not for our SYN, drop the input.
* if seg contains an RST, then drop the connection.
* if seg does not contain SYN, then drop it.
* Otherwise this is an acceptable SYN segment
* initialize tp->rcv_nxt and tp >irs
* if seg contains ack then advance tp->snd_una
* if SYN has been acked change to ESTABLISHED else SYN_RCVD state
* arrange for segment to be acked (eventually)
* continue processing rest of data/controls, beginning with URG
*/

case TCPS_SYN_SENT:
if ((tiflags & TH ACK) &&

(SEQ_LEQ(ti->ti_ack, tp->iss) I I
SEQ_GT(ti->ti_ack, tp->snd max)))

goto dropwithreset;
if (tiflags & TH_RST) {

if (tiflags & TH_ACK)
tp - tcp_drop(tp, ECONNREFUSED);

goto drop;

if ((tiflags & TH_SYN) :: 0)
goto drop;

Figure 28.18 t cp_input function: check if SYN in response to active open.

tcp_input.c

53 0-546

Verify received ACK
When TCP sends a SYN in response to an active open by a process, we’ll see in Fig-

ure 30.4 that the connection’s ±ss is copied from the global tc~o_±ss and the macro
tcp_sendseq±n±t (shown at the end of the previous section) is executed. Assuming
the ISS is 365, Figure 28.19 shows the send sequence variables after the SYN is sent by
tcp_output.

SYN 366 367 ...

snd_una = 365 snd_nxt : 366
snd_up : 365 snd_max : 366

Figure 28.19 Send variables after SYN is sent with sequence number 365.
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547--551

552--553

554--558

559

560--562

563--564

tcp_sendseqinit sets all four of these variables to 365, then Figure 26.31 incre-
ments two of them to 366 when the SYN segment is output. Therefore, if the received
segment in Figure 28.18 contains an ACK, and if the acknowledgment field is less than
or equal to ±ss (365) or greater than snd_raax (366), the ACK is invalid, causing the
segment to be dropped and an RST sent in reply. Notice that the received segment for a
connection in the SYN_SENT state need not contain an ACK. It can contain only a SYN,
which is called a simultaneous open (Figure 24.15), and is described shortly.
Process and drop RST segment

If the received segment contains an RST, it is dropped. But the ACK flag was
checked first because receipt of an acceptable ACK (which was just verified) and an RST
in response to a SYN is how the other end tells TCP that its connection request was
refused. Normally this is caused by the server process not being started on the other
host. In this case tcp_drop sets the socket’s so_error variable, causing an error to be
returned to the process that called connect.

Verify SYN flag set
If the SYN flag is not set in the received segment, it is dropped.

The remainder of this case handles the receipt of a SYN (with an optional ACK) in
response to TCP’s SYN. The next part of tcp_input, shown in Figure 28.20, continues
processing the SYN.
Process ACK

If the received segment contains an ACK, snd_una is set to the acknowledgment
field. In Figure 28.19, snd_una becomes 366, since 366 is the only acceptable value for
the acknowledgment field. If snd_nxt is less than snd__una (which shouldn’t happen,
given Figure 28.19), snd_nxt is set to snd_una.

Turn off retransmission timer
The retransmission timer is turned off.

This is a bug. This timer should be turned off only if the ACK flag is set, since the receipt of a
SYN without an ACK is a simultaneous open, and doesn’t mean the other end received TCP’s
SYN.

Initialize receive sequence numbers
The initial receive sequence number is copied from the sequence number of the

received segment. The tcp_rcvseqinit macro (shown at the end of the previous sec-
tion) initializes rcv_adv and rcv_nxt to the receive sequence number, plus 1. The
TF_ACKNOW flag is set, causing tcp_output to be called at the bottom of this function.
The segment it sends will contain rcv nxt as the acknowledgment field (Figure 26.27),
which acknowledges the SYN iust received.

If the received segment contains an ACK, and if snd_una is greater than the ISS for
the connection, the active open is complete, and the connection is established.

This second test appears superfluous. At the beginning of Figure 28.20 snd_una was set to the
received acknowledgment field if the ACK flag was on. Also the if following the case
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top input.c
554          if (t±flags & TH_ACK) {                                         --
555 tp->snd_una = ti->ti_ack;
556 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
557 tp >snd_nxt = tp->snd_una;
558 }
559 tp >t_timer[TCPT_REXMT] - 0;
560 tp >irs- ti->ti_seq;
561 tcp_rcvseqinit(tp) ;
562 tp->t_flags I= TF_ACKNOW;
563 if (tiflags & TH_ACK && SEQ_GT(tp->snd una, tp->iss)) {
564 tcpstat.tcps_connects++;
565 soisconnected(so);
566 tp->t_state : TCPS_ESTABLISHED;
567 /* Do window scaling on this connection? */
568 if ((tp->t_flags & (TF_RCVD_SCALE I TF_REQ_SCALE)) :=
569 (TF_RCVD_SCALE I TF_REQ_SCALE)) {
570 tp->snd_scale : tp->requested s scale;
571 tp->rcv_scale = tp->request r scale;
572 }
573 (void) tcp_reass(tp, (struct tcpiphdr *) 0,
574 (struct mbuf *) 0);
575 /*
576 * if we didn’t have to retransmit the SYN,
577 * use its rtt as our initial srtt & rtt var.
578 */
579 if (tp->t_rtt)
580 tcp_xmit_timer(tp, tp->t_rtt);
581 } else
582 tp->t_state = TCPS_SYN_RECEIVED;

tcp_input.c

tcp_±nputfunc~on:processreceived SYNIn response ~ an activeopen.Figure 28.20

565-566

567--572

573--574

statement in Figure 28.18 verified that the received acknowledgment field is greater than the
ISS. So at this point in the code, if the ACK flag is set, we’re already guaranteed that snd_una
is greater than the ISS.

Connection is established
soisconnected sets the socket state to connected, and the state of the TCP con-

nection is set to ESTABLISHED.

Check for window scale option
If TCP sent the window scale option in its SYN and the received SYN also contains

the option, the option is enabled and the two variables snd_scale and roy_scale are
set. Since the TCP control block is initialized to 0 by t¢l~_newtcpcb, these two vari-
ables correctly default to 0 if the window scale option is not used.

Pass any queued data to process
Since data can arrive for a connection before the connection is established, any such

data is now placed in the receive buffer by calling t cp_r eas s with a null pointer as the
second argument.
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575--580

581--582

This test is unnecessary. In this piece of code, TCP has just received the SYN with an ACK that
moves it from the SYN_SENT state to the ESTABLISHED state. If data appears with this
received SYN segment, it isn’t processed until the label dodata near the end of the function. If
TCP just received a SYN without an ACK (a simultaneous open) but with some data, that data
is handled later (Figure 29.2) when the ACK is received that moves the connection from the
SYN_RCVD state to the ESTABLISHED state.

Although it is valid for data to accompany a SYN, and Net/3 handles this type of received seg-
ment correctly, Net/3 never generates such a segment

Update RTT estimators
If the SYN that is ACKed was being timed, tcp_xmit_timer initializes the RTT

estimators based on the measured RTT for the SYN.

TCP ignores a received timestamp option here, and checks only the t_rtt counter. TCP sends
a timestamp in a SYN generated by an active open (Figure 26.24) and if the other end agrees to
the option, the other end should echo the received timestamp in its SYN. (Net/3 echoes the
received timestamp in a SYN in Figure 28.10.) This would allow TCP to use the received time-
stamp here, instead of t_rtt, but since both have the same precision (500 ms) there’s no
advantage in using the timestamp value. The real advantage in using the timestamp option,
instead of the t_rtt counter, is with large pipes, when lots of segments are in flight at once,
providing more RTT timings and (it is hoped) better estimators.

Simultaneous open

When TCP receives a SYN without an ACK in the SYN_SENT state, it is a simulta-
neous open and the connection moves to the SYN_RCVD state.

The next piece of code, shown in Figure 28.21, handles any data received with the
SYN. The label trimth÷nstep6 is also jumped to at the end of Figure 28.17.

583 trimthenstep6:
584 /*
585 * Advance ti->ti_seq to correspond to first data byte.
586 * If data, trim to stay within window,
587 * dropping FIN if necessary.
588 */
589 ti->ti_seq++;
590 if (ti->ti_len > tp->rcv_wnd) {
591 todrop : ti->ti_len - tp->rcv_wnd;
592 m_adj(m, -todrop);
593 ti >ti_len = tp->rcv wnd;
594 tiflags &- ~TH_FIN;
595 tcpstat.tcps_rcvpackafterwin++;
596 tcpstat.tcps_rcvbyteafterwin += todrop;
597 }
598 tp->snd wll = ti->ti_seq - i;
599 tp->rcv up = ti->ti_seq;
600 goto step6;
601 }

Figure 28.21 tcp_input function: common processing for receipt of SYN.

tcp_input.c

tcp_input.c
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584 589

590-597

598-599

The sequence number of the segment is incremented by i to account for the SYN. If
there is any data in the segment, t i_seq now contains the starting sequence number of
the first byte of data.

Drop any received data that follows receive window
ti_len is the number of data bytes in the segment. If it is greater than the receive

window, the excess data (t i_l en minus rcv_wnd) is dropped by re_adj. The negative
argument to this function causes the data to be trimmed from the end of the mbuf chain
(Figure 2.20). ti_len is updated to be the new amount of data in the mbuf chain and
in case the FIN flag was set, it is cleared. This is because the FIN would follow the final
data byte, which was just discarded because it was outside the receive window.

If too much data is received with a SYN, and if the SYN is in response to an active open, the
other end received TCP’s SYN, which contained a window advertisement. This means the
other end ignored the advertised window and is exhibiting unsocial behavior. But if too much
data accompanies a SYN performing an active open, the other end has not received a window
advertisement, so it has to guess how much data can accompany its SYN.

Force update of window variables
snd wl! is set the received sequence number minus 1. We’ll see in Figure 29.15

that this causes the three window update variables, snd_wnd, snd_wll, and snd w12,
to be updated. The receive urgent pointer (rcv_up) is set to the received sequence
number. A jump is made to stelo6, which refers to a step in RFC 793, and we cover this
in Figure 29.15.

28.7

602--613

PAWS: Protection Against Wrapped Sequence Numbers

The next part of tcp_input, shown in Figure 28.22, provides protection against
wrapped sequence numbers: the PAWS algorithm from RFC 1323. Also recall our dis-
cussion of the timestamp option in Section 26.6.

Basic PAWS test
ts_present was set by tcp_dooptions if a timestamp option was present. If

the following three conditions are all true, the segment is dropped:

1. the RST flag is not set (Exercise 28.8),

2. TCP has received a valid timestamp from this peer (ts_recent is nonzero),
and

3. the received timestamp in this segment (ts_val) is less than the previously
received timestamp from this peer.

PAWS is built on the premise that the 32-bit timestamp values wrap around at a much
lower frequency than the 32-bit sequence numbers, on a high-speed connection. Exer-
cise 28.6 shows that even at the highest possible timestamp counter frequency (incre-
menting by 1 bit every millisecond), the sign bit of the timestamp wraps around only
every 24 days. On a high-speed network such as a gigabit network, the sequence
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602
603
604
605
606
607
608
609
610
611
612
613

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

* SEates other than LISTEN or SYN SENT.
* First check timestamp, if present.
* Then check that at least some bytes of segment are within
* receive window. If segment begins before rcv_nxt,
* drop leading data (and SYN); if nothing left, just ack.

* RFC 1323 PAWS: If we have a timestamp reply on this segment
* and it’s less than ts_recent, drop it.

if (~s~resent && (tiflags & TH_RST) -- 0 && tp >ts_recent &&
TSTMP_LT(ts_val, tp->ts_recent)) {

/* Check to see if ts_recent is over 24 days old. */
if ((int) (tcp_now tp->ts_recent_age) > TCP_PAWS_IDLE) {

/*
* Invalidate ts_recent. If this segment updates
* ts_recent, the age will be reset later and ts_recent
* will get a valid value. If it does not, setting
* ts_recent to zero will at least satisfy the
* requ±rement that zero he placed in the timestamp
* echo reply when ts_recent isn’t valid. The
* age isn’t reset until we get a valid ts_recent
* because we don’t want out-of-order segments to be
* dropped when ts_recent is old.
*/

tp->ts_recent : 0;
} else {

tcpstat.tcps_rcvduppack++;
tcpstat.tcps_rcvdupbyte +- ti->ti_len;
tcpstat.tcps~awsdrop+÷;
goto dropafterack;

}

Figure 28.22 tcp_input function: process timestamp option.

tcp_input.c

tcp_input.c

ff l 4--~2 7

number can wrap in 17 seconds (Section 24.3 of Volume 1). Therefore, if the received
timestamp value is less .than the most recent one from this peer, this segment is old and
must be discarded (subject to the outdated timestamp test that follows). The packet
might be discarded later in the input processing because the sequence number is "old,"
but PAWS is intended for high-speed connections where the sequence numbers can
wrap quickly.

Notice that the PAWS algorithm is symmetric: it not only discards duplicate data
segments but also discards duplicate ACKs. All received segments are subject to PAWS.
Recall that the header prediction code also applied the PAWS test (Figure 28.11).

Check for outdated timestamp

There is a small possibility that the reason the PAWS test fails is because the connec-
tion has been idle for a long time. The received segment is not a duplicate; it is just that
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because the connection has been idle for so long, the peer’s timestamp value has
wrapped around when compared to the most recent timestamp from that peer.

Whenever is_recent is copied from the timestamp in a received segment,
t s_rec ent_age records the current time (t cp_now). If the time at which t s_recent

was saved is more than 24 days ago, it is set to 0 to invalidate it. The constant
TCP_PAWS_IDLE is defined to be (24 x 24 x 60 x 60 x 2), the final 2 being the number of
ticks per second. The received segment is not dropped in this case, since the problem is
not a duplicated segment, but an outdated timestamp. See also Exercises 28.6 and 28.7.

Figure 28.23 shows an example of an outdated timestamp. The system on the left is
a non-Net/3 system that increments its timestamp clock at the highest frequency
allowed by RFC 1323: once every millisecond. The system on the right is a Net/3 sys-
tem.

timestamp = 1 data, timestamp = 1

ACK

ts_recent      : ts_val = 1
recent age tcp now=N

628--683

timestamp = 2,147,483,649 -’~ timestamp
timestamp : 2,147,483,650 J changes sign

timestamp = 2,160,000,001    data, timestamp = 2,160,000,001

connection idle
for 25 days =

4,320,000 ticks

ts_val = 2,160,000,001
< ts_recent : 1

t cp_now = N + 4,320,000

Figure 28.23 Example of outdated timestamp.

When the data segment arrives with a timestamp of 1, that value is saved in
ts_recent and ts_recent_age is set to the current time (tcp_now), as shown in
Figures 28.11 and 28.35. The connection is then idle for 25 days, during which time
top_now will increase by 4,320,000 (25 x 24 x 60 x 60 x 2). During these 25 days the
other end’s timestamp clock will increase by 2,160,000,000 (25 x 24 x 60 x 60 x 1000).
During this interval the timestamp "changes sign" with regard to the value 1, that is,
2,147,483,649 is greater than 1, but 2,147,483,650 is less than 1 (recall Figure 24.26).
Therefore, when the data segment is received with a timestamp of 2,160,000,001, this
value is less than ts_recent (1), when compared using the TSTMP_LT macro, so the
PAWS test fails. But since tcp_now minus ts_recent_age is greater than 24 days, the
reason for the failure is that the connection has been idle for more than 24 days, and the
segment is accepted.

Drop duplicate segment
The segment is determined to be a duplicate based on the PAWS algorithm, and the

timestamp is not outdated. It is dropped, after being acknowledged (since all duplicate
segments are acknowledged).
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Figure 24.5 shows a much smaller value for tcps_pawsdrop (22) than for
tcps_rcvduppack (46,953). This is probably because fewer systems support the timestamp
option today, causing most duplicate packets to be discarded by later tests in TCP’s input pro-
cessing instead of by PAWS.

28.8 Trim Segment so Data is Within Window

This section trims the received segment so that it contains only data that is within the
advertised window:

¯ duplicate data at the beginning of the received segment is discarded, and
¯ data that is beyond the end of the window is discarded from the end of the seg-

ment.

What remains is new data within the window. The code shown in Figure 28.24 checks if
there is any duplicate data at the beginning of the segment.

635 todrop = tp->rcv_nxt - ti->ti_seq;
636 if (todrop > 0) {
637 if (tiflags & TH_SYN) {
638 tiflags &= -TH_SYN;
639 ti->ti_seq++;
640 if (ti->ti_urp > i)
641 ti->ti_urp--;
642 else
643 tiflags &= NTH_URG;
644 todrop--;
645 }

Figure 28.24

tcp_input.c

tcp_input.c

tc~)_input function: check for duplicate data at beginning of segment.

63 5--63 6

637--645

Check if any duplicate data at front of segment
If the starting sequence number of the received segment (ti_seq) is less than the

next receive sequence number expected (rcv_nxt), data at the beginning of the seg-
ment is old and todrop will be greater than 0. These data bytes have already been
acknowledged and passed to the application (Figure 24.18).
Remove duplicate SYN

If the SYN flag is set, it refers to the first sequence number in the segment, which is
known to be old. The SYN flag is cleared and the starting sequence number of the seg-
ment is incremented by i to skip over the duplicate SYN. Furthermore, if the urgent off-
set in the received segment (ti_urp) is greater than 1, it must be decremented by 1,
since the urgent offset is relative to the starting sequence number, which was just incre-
mented. If the urgent offset is 0 or 1, it is left alone, but in case it was 1, the URG flag is
cleared. Finally todrolo is decremented by 1 (since the SYN occupies a sequence num-
ber).

The handling of duplicate data at the front of the segment continues in Figure 28.25.
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tcp_input.c
646            if (todrop >: ti->ti_len) {
647 tcpstat.tcps_rcvduppack++;
648 tcpstat.tcps_rcvdupbyte +: ti->ti_len;
649 /*
650 * If segment is just one to the left of the window,
651 * check two special cases:
652 * i. Don’t toss RST in response to 4.2-style keepalive.
653 * 2. If the only thing to drop is a FIN, we can drop
654 * it, but check the ACK or we will get into FIN
655 * wars if our FINs crossed (both CLOSING).
656 * In either case, send ACK to resynchronize,
657 * but keep on processing for RST or ACK.
658 */
659 if ((tiflags & TH_FIN && todrop == ti->ti_len + i)
660 ) {
661 todrop = ti->ti_len;
662 tiflags &= -TH_FIN;
663 tp->t_flags I= TF_ACKNOW;
664 } else {
665 /*
666 * Handle the case when a bound socket connects
667 * to itself. Allow packets with a SYN and
668 * an ACK to continue with the processing.
669 */
670 if (todrop !- 0 I I (tiflags & TH ACK) -- 0)
671 goto dropafterack;
672 }
673 } else {
674 tcpstat.tcps_rcvpartduppack++;
675 tcpstat.tcps_rcvpartdupbyte += todrop;
676 }
677 m_adj(m, todrop);
678 ti->ti_seq += todrop;
679 ti >ti_len -- todrop;
680 if (ti->ti_urp > todrop)
681 ti >ti_urp - todrop;
682 else {
683 tiflags &= -TH_URG;
684 ti->ti_urp - 0;
685 }
686    }

tcp_input.c

Figure 28.25 tcp_input function: handle completely duplicate segment.

646--648

649--663

Check for entire duplicate packet
If the amount of duplicate data at the front of the segment is greater than or equal to

the size of the segment, the entire segment is a duplicate.

Check for duplicate FIN
The next check is whether the FIN is duplicated. Figure 28.26 shows an example of

this.
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664 672

664 672

673--676

677-685

3 4 5 6 7 8

old sequence numbers that TCP has
acknowledged and passed to socket layer

received segment: / ti_!÷n = 4, FIN flag set

ti_seq = 6

FIN

rcv_nxt = 11
next receive

sequence number

Figure 28.26 Example of duplicate packet with FIN flag set.

In this example todrop equals 5, which is greater than or equal to ti_len (4). Since
the FIN flag is set and todrol~ equals t±_l÷n plus 1, ~oclrop is set to 4, the FIN flag is
cleared, and the TF_ACKNOW flag is set, forcing an immediate ACK to be sent at the end
of this function. This example also works for other segments if ~±_secl plus t±_len
equals 10.

The code contains the comment regarding 4.2BSD keepalives. This code (another test within
the i f statement) is omitted.

Generate duplicate ACK
If todrop is nonzero (the completely duplicate segment contains data) or the ACK

flag is not set, the segment is dropped and an ACK is generated by dropafterack.
This normally occurs when the other end did not receive our ACK, causing the other
end to retransmit the segment. TCP generates another ACK.

Handle simultaneous open or self-connect

This code also handles either a simultaneous open or a socket that connects to itself.
We go over both of these scenarios in the next section. If todrop equals 0 (there is no
data in the completely duplicate segment) and the ACK flag is set, processing is allowed
to continue.

This i f statement is new with 4.4BSD. Earlier Berkeley-derived systems just had a jump to
dropafterack. These systems could not handle either a simultaneous open or a socket con-
necting to itself.

Nevertheless, the piece of code in this figure still has bugs, which we describe at the end of this
section.

Update statistics for partial duplicate segments
This else clause is executed when todrop is less than the segment length: only

part of the segment contains duplicate bytes.

Remove duplicate data and update urgent offset
The duplicate bytes are removed from the front of the mbuf chain by ra_adj and the

starting sequence number and length adjusted appropriately. If the urgent offset points
to data still in the mbuf, it is also adjusted. Otherwise the urgent offset is set to 0 and
the URG flag is cleared.
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687--696

697--703

The next part of input processing, shown in Figure 28.27, handles data that arrives
after the process has terminated.

687
688
689
690
691
692
693
694
695
696

* If new data is received on a connection after the
* user processes are gone, then RST the other end.
*/

if ((so->so_state & SS_NOFDREF) &&
tp->t_state > TCPS_CLOSE WAIT && ti->ti_len) {
tp : tcp_close(tp);
tcpstat.tcps_rcvafterclose++;
goto dropwithreset;

Figure 28.27

tcp_input.c

tcp_input.c

tcp_±nput function: handle data that arrives after the process terminates.

If the socket has no descriptor referencing it, the process has closed the connection
(the state is any one of the five with a value greater than CLOSE_WAIT in Figure 24.16),
and there is data in the received segment, the connection is closed. The segment is then
dropped and an RST is output.

Because of TCP’s half-close, if a process terminates unexpectedly (perhaps it is ter-
minated by a signal), when the kernel closes all open descriptors as part of process ter-
mination, a FIN is output by TCP. The connection moves into the FIN_WAIT_I state.
But the receipt of the FIN by the other end doesn’t tell TCP whether this end performed
a half-close or a full-close. If the other end assumes a half-close, and sends more data, it
will receive an RST from the code in Figure 28.27.

The next piece of code, shown in Figure 28.29, removes any data from the end of the
received segment that is beyond the right edge of the advertised window.
Calculate number of bytes beyond right edge of window

todrop contains the number of bytes of data beyond the right edge of the window.
For example, in Figure 28.28, todrol~ would be (6 + 5) minus (4 + 6), or 1.

rcv_wnd = 6: receive window
(advertised to sender)

1 2 3 ~ 4 5 6 7 8 9 10 11
L

old sequence numbers
that have been acknowledged "~ ~ ~

rcv_nxt = 4 rcv_adv = 10
ti_len = 5

6 7 8 9received segment: [

ti_seq = 6

Figure 28.28 Example of received segment with data beyond right edge of window.
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697
698
699
7OO
701
702
703
704
7O5
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

726
727
728
729
730
731
732
733
734
735
736

/.                                                                  tcp_input.c

* If segment ends after window, drop trailing data
* (and PUSH and FIN); if nothing left, just ACK.
*/

todrop = (ti->ti_seq + ti->ti_len) - (tp->rcv_nxt + tp->rcv_wnd);
if (todrop > 0) {

tcpstat.tcps_rcvpackafterwim++;
if (todrop >= ti->ti_len) {

tcpstat.tcps_rcvbyteafterwin +: ti->ti_len;

* If a new connection request is received
* while in TIME_WAIT, drop the old connection
* and start over if the sequence numbers
* are above the previous ones.
*!

if (tiflags & TH_SYN &&
tp->t_state := TCPS_TIME WAIT &&
SEQ_GT(ti->ti_seq, ~p->rcv_nxt)) {
iss = tp->rcv nxt + TCP_ISSINCR;
tp : tcp_close(tp);
goto findpcb;

]
!*

* If window is closed can only take segment~ at
* window edge, and have to drop data and PUSH from
* incoming segments. Continue processing, but
* remember to ack. Otherwise, drop segment
* and ack.
*/

if (tp->rcv wnd == 0 && ti->ti_seq := tp->rcv_nxt) {
tp->~_flags 1 = TF_ACKNOW;
tcpstat.tcps_rcvwinprobe++;

} else
goto dropafterack;

} else
tcpstat.tcps_rcvbyteafterwin +: todrop;

m_adj(m, -todrop);
ti->ti_len -= todrop;
tiflags &= ~(TH_PUSH I TH_FIN) ;

Figure 28.29 top_input function: remove data beyond right edge of window.

tcp_input.c

Check for new incarnation of a connection in the TIME_WAIT state
70~--718 If todrop is greater than or equal to the length of the segment, the entire segment

will be dropped. If the following three conditions are all true:
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1. the SYN flag is set, and

2. the connection is in the TIME_WAIT state, and
3. the new starting sequence number is greater than the final sequence number for

the connection,

719-728

729-730

731-735

this is a request for a new incarnation of a coixnection that was recently terminated and
is currently in the TIME WAIT state. This is allowed by RFC 1122, but the ISS for the
new connection must be greater than the last sequence number used (rcv_nxe). TCP
adds 128,000 (TCP_ISSINCR), which becomes the ISS when the code in Figure 28.17 is
executed. The PCB and TCP control block for the connection in the TIME_WAIT state is
discarded by tcp_c3_ose. A jump is made to findpcb (Figure 28.5) to locate the PCB
for the listening server, assuming it is still running. The code in Figure 28.7 is then exe-
cuted, creating a new socket for the new connection, and finally the code in Figures
28.16 and 28.17 will complete the new connection request.

Check for probe of closed window

If the receive window is closed (rcv_wnd equals 0) and the received segment starts
at the left edge of the window (:ccv_nxt), then the other end is probing TCP’s closed
window. An immediate ACK is sent as the reply, even though the ACK may still adver-
tise a window of 0. Processing of the received segment also continues for this case.

Drop other segments that are completely outside window

The entire segment lies outside the window and it is not a window probe, so the
segment is discarded and an ACK is sent as the reply. This ACK will contain the
expected sequence number.
Handle segments that contain some valid data

The data to the right of the window is discarded from the mbuf chain by m__adj and
ti_3_en is updated. In the case of a probe into a closed window, this discards all the
data in the mbuf chain and sets ti_l÷n to 0. Finally the FIN and PSH flags are cleared.

When to Drop an ACK

The code in Figure 28.25 has a bug that causes a jump to dropafterack in several
cases when the code should fall through for further processing of the segment [Carlson
1993; Lanciani 1993]. In an actual scenario, when both ends of a connection had a hole
in the data on the reassembly queue and both ends enter the persist state, the connec-
tion becomes deadlocked as both ends throw away perfectly good ACKs.

The fix is to simplify the code at the beginning of Figure 28.25. Instead of jumping
to dropafterack, a completely duplicate segment causes the FIN flag to be turned off
and an immediate ACK to be generated at the end of the function. Lines 646-676 in
Figure 28.25 are replaced with the code shown in Figure 28.30. This code also corrects
another bug present in the original code (Exercise 28.9).
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if (todrop > ti->ti_len I I
todrop :: ti->ti_len && (tiflags & TH_FIN) := 0) {

* Any valid FIN must be to the left of the window.
* At this point the FIN must be a duplicate or
* out of sequence; drop it.
*!
tiflags &= -TH_FIN;

* Send an ACK to resynchronize and drop any data.
* But keep on processing for RST or ACK.
*/

tp >t_flags I= TF_ACKNOW;
todrop = ti >ti_len;
tcpstat.tcps_rcvdupbyte += todrop;
tcpstat.tcps_rcvduppack++;

} else {
tcpstat.tcps_rcvpartduppack++;
tcpstat.tcps_rcvpartdupbyte += todrop;

}

Figure 28.30 Correction for lines 646-676 of Figure 28.25.

28.9 Self-Connects and Simultaneous Opens

It is instructive to look at the steps involved in a socket co~necting to itself to see how
the one-line fix to Figure 28.25 that was added to 4.4BSD allows this. This same fix
allowed simultaneous opens to work, which wasn’t handled correctly prior to 4.4BSD.

A process creates a socket and connects it to itself using the system calls: socket,
b±nd a local port (say 3000), and then connect to this same port and some local IP
address. If the connect succeeds, the socket is connected to itself: anything written to
the socket can be read back from the socket. This is similar to a full-duplex pipe, but
with a single descriptor instead of two descriptors. Although this is of limited use
within a process, we’ll see that the state transitions are the same as they are for a simul-
taneous open. If your system doesn’t allow a socket to connect to itself, it probably
doesn’t handle simultaneous opens correctly either, and the latter are required by
RFC 1122. Some people are surprised that a self-connect even works, given that a single
lnternet PCB and a single TCP control block are used. But TCP is a full-duplex, sym-
metric protocol and it maintains separate variables for each direction of data flow.

Figure 28.31 shows the send sequence space when the process calls connect. A
SYN segment is sent and the state becomes SYN SENT.

The SYN is received and processed in Figures 28.18 and 28.20, but since the SYN
does not contain an ACK the resulting state is SYN_RCVD. According to the state tran-
sition diagram (Figure 24.15), this looks like a simultaneous open. Figure 28.32 shows
the receive sequence space.
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send SYN:
SYN
153        154

snd_una snd_nxt
snd_max

155 ... state = SYN_SENT

Figure 28.31 Send sequence space when SYN is sent for self-connect.

receive SYN:
SYN

153 154 155 ... state : SYN_RCVD

~cv_nxt

Figure 28.32 Receive sequence space after received SYN is processed.

Figure 28.20 sets the TF_ACKNOW flag and the segment generated by tcp_output will
contain a SYN and an ACK (the tcp_outflags value in Figure 24.16). The sequence
number of the SYN is 153 and the acknowledgment number is 154.

Nothing changes in the send sequence space from Figure 28.20, except the state is
now SYN_SENT. Figure 28.33 shows the receive sequence space when the segment
with the SYN and ACK is received.

SYN
receive SYN, ACK: 153 154 155

rcv_nxt

Figure 28.33 Receive sequence space when segment with SYN and ACK received.

Since the connection state is SYN_RCVD, the segment is not processed by the active
open or passive open code that we saw earlier in this chapter. It must be processed by
the SYN_RCVD code that we’ll examine in Figure 29.2. But it is first processed by Fig-
ure 28.24, and it looks like a duplicate SYN:

todrop = rcv_nxt    ti_seq
: 154 - 153
: 1

Since the SYN flag is set, the flag is cleared, t i_s eq becomes 154, and t odrop becomes
0. But the test at the beginning of Figure 28.25 is true, because todrop equals the
length of the segment (0). The segment is counted as a duplicate packet and the code
with the comment "Handle the case when a bound socket connects to itself" is exe-
cuted. Earlier releases jumped to dropafterack, which skipped the necessary code to
handle the SYN_RCVD state, preventing the connection from ever being established.
Instead, Net/3 continues processing the received segment if todrop equals 0 and the
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ACK flag is set, both of which are true in this example. This allows the SYN_RCVD
processing to happen later in the function, which moves the connection to the ESTAB-
LISHED state.

It is also interesting to look at the sequence of function calls in this self-connect.
This is shown in Figure 28.34.

connect

soconnect

tcp_output tcp_input

ip_output ipintr

;l

(softwareinterrupt)

looutput

add to ipintrq

(system call)

--~ t cp_output t cp_input

ip_output ipintr

I I

(softwareinterrupt)

looutput

add to ipintrq

action: send SYN process SYN send SYN, ACK process SYN, ACK

starting state: CLOSED SYN_SENT SYN_RCVD SYN_RCVD

ending state:SYN_SENT SYN_RCVD SYN_RCVD ESTABLISHED

Figure 28.34 Sequence of function calls for self-connect.

The order of the operations goes from the left to the right. The steps that we show
begin with the process calling connect. This issues the PRU_CONNECT request, which
sends a SYN down the protocol stack. Since the segmen~ is destined for the host’s own
IP address it is routed to the loopback interface, which adds the segment to ±p±ntrq
and generates a software interrupt.

The software interrupt causes ipintr to execute, which calls tcp_input. This
function calls tcp_output, causing a SYN segment with an ACK to be sent down the
protocol stack. It is again added to ipintrq by the loopback interface, and a software
interrupt is generated. When this interrupt is processed by ip±ntr, the function
t cp_input is called, and it moves the connection to the ESTABLISHED state.
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28.10

73 7-- 74 6

Record Timestamp

The next part of tcp_input, shown in Figure 28.35, handles a received timestamp
option.

737
738
739
740
741
742
743
744
745
746

* If last ACK falls within this segment’s sequence nul~bers,
* record its timestamp.
*/

if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +

((tiflags & (TH_SYN I TH_FIN)) !: O))) {
tp >ts_recent_age : tcp_now;
tp->ts_recent = ts_val;

}

Figure 28.35 tcp_input ftmction: record timestamp.

tcp_input.c

tcp_input.c

If the received segment contains a timestamp, the timestamp value is saved in
ts_recent. We discussed in Section 26.6 how this code used by Net/3 is flawed. The
expression

( (tiflags & (TH_SYNITH_FIN)) !- 0)

is 0 if neither of the two flags is set, or 1 if either is set. This effectively adds 1 to
t i_l en if either flag is set.

28.11

759--761

RST Processing

Figure 28.36 shows the switch statement to handle the RST flag, which depends on the
connection state.

SYN_RCVD state

The socket’s error code is set to ECONNREFUSED, and a jump is made a few lines for-
ward to close the socket.

This state can be entered from two directions. Normally it is entered from the LIS-
TEN state, after a SYN has been received. TCP replied with a SYN and an ACK but
received an RST in reply. Perhaps the other end sent its SYN and then terminated
before the reply arrived, causing it to send an RST. In this case the socket referred to by
so is the new socket created by sonewconn in Figure 28.7. Since dropsocket will still
be true, the socket is discarded at the label drop. The listening descriptor isn’t affected
at all. This is why we show the state transition from SYN_RCVD back to LISTEN in
Figure 24.15.

This state can also be entered by a simultaneous open, after a process has called
connect. In this case the socket error is returned to the process.
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747
748
749
750
751
752
753
754
755
756
757
758

759
760
761

762
763
764
765
766
767
768
769
770
771

* If the RST bit is set examine the state:
* SYN_RECEIVED state:
* If passive open, return to LISTEN state.
* If active open, inform user that connection was refused.
* ESTABLISHED, FIN WAIT_I, FIN_WAIT2, CLOSE_WAIT states:
* Inform user that connection was reset, and close tcb.
* CLOSING, LAST_ACK, TIHE_WAIT states
* Close the tcb.
*/

if (tiflags & TH_RST)
switch (tp >t_state) {

case TCPS_SYN_RECEIVED:
so->so_error = ECONNREFUSED;
goto close;

case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_I:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE WAIT:

so >so_error = ECONNRESET;
close:

tp->t_state = TCPS_CLOSED;
tcpstat.tcps_drops++;
tp = tcp_close(tp) ;
goto drop;

772 case TCPS_CLOSING:
773 case TCPS_LAST_ACK:
774 case TCPS_TIME WAIT:
775 tp = tcp_close(tp);
776 goto drop;
777

Figure 28.36 t cp_input function: process RST flag.

tcp_input.c

tcp_input.c

762--777

Other states
The receipt of an RST in the ESTABLISHED, FIN_WAIT_l, FIN_WAIT_2, or

CLOSE_WAIT states returns the error ECONNRESET. In the CLOSING, LAST_ACK, and
TIME_WAIT state an error is not generated, since the process has closed the socket.

Allowing an RST to terminate a connection in the TIME_WAIT state circumvents the reason
this state exists. RFC 1337 [Braden 1992] discusses this and other forms of "TIME_WAIT assas-
sination hazards" and recommends not letting an RST prematurely terminate the TIME_WAIT
state. See Exercise 28.10 for an example.

The next piece of code, shown in Figure 28.37, checks for erroneous SYNs and veri-
fies that an ACK is present.
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778 /*
779 * If a SYN is in the window, then this is an
780 * error and we send an RST and drop the connection.
781 */
782 if (tiflags & TH_SYN) {
783 tp - tcp_drop(tp, ECONNRESET);
784 goto dropwithreset;
785 }
786 /*
787 * If the ACK bit is off we drop the segment and return.
788 */
789 if ((tiflags & TH_ACK) == 0)
790 goto drop;

Figure 28.37 tcp_input function: handle SYN-full and ACKqess segments.

tcp_input.c

tcp_input.c

778--785

786-790

If the SYN flag is still set, this is an error and the connection is dropped with the
error ECONNRESET.

If the ACK flag is not set, the segment is dropped. The remainder of this functiorb
which we continue in the next chapter, assumes the ACK flag is set.

28.12 Summary

This chapter has started our detailed look at TCP input. It continues in the next chapter.
The code in this chapter verifies the segment’s checksum, processes any TCP

options, handles SYNs that initiate or complete connection requests, trims excess data
from the beginning or end of the segment, and processes the RST flag.

Header prediction is a successful attempt to handle common cases with the mini-
mum amount of processing. Although the general processing steps that we’ve covered
handle all possible cases (which they must), many segments are well behaved and the
processing steps can be minimized.

Exercises

28.1 Given that the maximum size of a socket buffer is 262,144 in Net/3, what are the possible
window scale shift factors calculated by Figure 28.7?

28.2 Given that the maximum size of a socket buffer is 262,144 in Net/3, what is the maximum
throughput possible with a round-trip time of 60 ms? (Hint: See Figure 24.5 in Volume 1
and solve for the bandwidth.)

28.3 Why are the two timestamp values fetched using bcopy in Figure 28.10?

28.4 We mentioned in Section 26.6 that TCP correctly handles timestamp options in a format
other than the one recommended in Appendix A of RFC 1323. While this is true, what is
the penalty for not following the recommended format?
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28.5

28.6

28.7

28.8

28.9

28.10

The PRU_ATTACH request allocates the PCB and the TCP control block, but doesn’t call
tcp_temlolate to allocate the header template. Instead we saw in Eigure 28.17 that the
header template is allocated when the SYN arrives. Why doesn’t the PRU_ATTACH request
allocate this template?

Read RFC 1323 to determine why the limit of 24 days was chosen in Figure 28.22.

The comparison of tcp_~ow minus is_recent_age to TCP_PAWS_IDLE in Figure 28.22
is also subject to sign bit wrap around, if the connection is idle for a period much longer
than 24 days. With the 500-ms timestamp clock used by Net/3, when does this become a
problem?

Read RFC 1323 to find out why RST segments are exempt from the PAWS test in Fig-
ure 28.22.

A client sends a SYN and the server responds with a SYN/ACK. The client moves to the
ESTABLISHED state and responds with an ACK, but this ACK is lost. The server resends
its SYN/ACKo Describe the processing steps when the client receives this duplicate
SYN/ACK.

A client and server have an established connection and the server performs the active
close. The connection terminates normally and the socket pair goes into the TIME_WAIT
state on the server. Before this 2MSL wait expires on the server, the same client (i.e., the
same socket pair on the client) sends a SYN to the server’s socket pair but with a sequence
number that is less than the ending sequence number from the previous incarnation of this
connection. Describe what happens.
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29.1 Introduction

This chapter continues the discussion of TCP input processing, picking up where the
previous chapter left off. Recall that the final test in Figure 28.37 was that either the
ACK flag was set or, if not, the segment was dropped.

The ACK flag is handled, the window information is updated, the URG flag is pro-
cessed, and any data in the segment is processed. Finally the FIN flag is processed and
t cp_ou.tput is called, if required.

29.2 ACK Processing Overview

We begin this chapter with ACK processing, a summary of which is shown in Fig-
ure 29.1. The SYN_RCVD state is handled specially, followed by common processing
for all remaining states. (Remember that a received ACK in either the LISTEN or
SYN_SENT state was discussed in the previous chapter.) This is followed by special
processing for the three states in which a received ACK causes a state transition, and for
the TIME WAIT state, in which the receipt of an ACK causes the 2MSL timer to be
restarted.

29.3 Completion of Passive Opens and Simultaneous Opens

The. first part of the ACK processing, shown in Figure 29.2, handles the SYN_RCVD
state. As mentioned in the previous chapter, this handles the completion of a passive
open (the common case) and also handles simultaneous opens and self-connects (the
infrequent case).

967
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switch (tp >t_state)

case TCPS_SYN_RECEIVED:
complete processing of passive open and process

simultaneous open or self-connect;
/* fall into ... */

case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_I:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE_WAIT:
case TCPS_CLOSING:
case TCPS_LAST_ACK:
case TCPS_TIME WAIT:

process duplicate ACK;

update RTT estimators;

if all outstanding data ACKed, turn off retransmission timer;

remove ACKed data from socket send buffer;

switch (tp->t_state) {

case TCPS_FIN_WAIT_I:
if (FIN is ACKed) (

move to FIN_WAIT_2 state;
start FIN_WAIT_2 timer;

}
break;

case TCPS__CLOSING:
if (FIN is ACKed)

move to TIME_WAIT state;
start TIME_WAIT timer;

}
break;

case TCPS__LAST_ACK:
if (FIN is ACKed)

move to CLOSED state;
break;

case TCPS__TI~E_WAIT:
restart TIME WAIT timer;
goto dropafterack;

}

Figure 29.1 Summary of ACK processing.

801--806

Verify received ACK
For the ACK to acknowledge the SYN that was sent, it must be greater than

snd una (which is set to the ISS for the connection, the sequence number of the SYN,
by tcp_sendseq±n±t) and less than or equal to snd_ma×. If so, the socket is marked
as connected and the state becomes ESTABLISHED.
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7 91 / *
tcp_input.c

792 * Ack processing.
793 */
794 switch (tp->t_state) {

795
796
797
798
799
800
801
8O2
803
804
8O5
806
807
8O8
8O9
810
811
812
813
814
815

* send an RST.
*/

case TCPS_SYN_RECEIVED:
if (SEQ_GT(tp->snd_una, ti->ti_ack) I I

SEQ_GT(ti->ti_ack, tp->snd_max))
goto dropwithreset;

tcpstat.tcps_connects++;
soisconnected(so);
tp->t_state = TCPS_ESTABLISHED;
/* Do window scaling? */
if ((tp >t_flags & (TF_RCVD_SCALE I

(TF_RCVD_SCALE 1 TF_REQ_SCALE))
tp->snd_scale = tp->requested s scale;
tp->rcv_scale - tp->request_r_scale;

}
(void) tcp_reass(tp, (struct tcpiphdr *) 0,
tp->snd_wll = ti->ti_seq - I;
* fall into ... */

In SYN_RECEIVED state if the ack ACKs our SYN then enter
ESTABLISHED state and continue processing, otherwise

TF_REQ_SCALE)) ::
{

(struct mbuf *)

Figure 29.2 tcp_input function: received ACK in SYN_RCVD state.

0);

tcp_input.c

807--812

813

814

Since soi s c onnec ted wakes up the process that performed the passive open (nor-
mally a server), we see that this doesn’t occur until the last of the three segments in the
three-way handshake has been received. If the server is blocked in a call to accept,
that call now returns; if the server is blocked in a call to select waiting for the listen-
ing descriptor to become readable, it is now readable.

Check for window scale option
If TCP sent a window scale option and received one, the send and receive scale fac-

tors are saved in the TCP control block. Otherwise the default values of sad_scale
and rcv_scale in the TCP control block are 0 (no scaling).
Pass queued data to process

Any data queued for the connection can now be passed to the process. This is done
by tcp_reass with a null pointer as the second argument. This data would have
arrived with the SYN that moved the connection into the SYN_RCVD state.

snd_wll is set to the received sequence number minus 1. We’ll see in Figure 29.15
that this causes the three window update variables to be updated.
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29.4 Fast Retransmit and Fast Recovery Algorithms

The next part of ACK processing, shown in Figure 29.3, handles duplicate ACKs and
determines if TCP’s fast retransmit and fast recovery algorithms [Jacobson 1990c]
should come into play. The two algorithms are separate but are normally implemented
together [Floyd 1994].

The fast retransmit algorithm occurs when TCP deduces from a small number
(normally 3) of consecutive duplicate ACKs that a segment has been lost and
deduces the starting sequence number of the missing segment. The missing seg-
ment is retransmitted. The algorithm is mentioned in Section 4.2.2.21 of
RFC 1122, which states that TCP may generate an immediate ACK when an out-
of-order segment is received. We saw that Net/3 generates the immediate
duplicate ACKs in Figure 27.15. This algorithm first appeared in the 4.3BSD
Tahoe release and the subsequent Net/1 release. In these two implementations,
after the missing segment was retransmitted, the slow start phase was entered.

The fast recovery algorithm says that after the fast retransmit algorithm (that is,
after the missing segment has been retransmitted), congestion avoidance but not
slow start is performed. This is an improvement that allows higher throughput
under moderate congestion, especially for large windows. This algorithm
appeared in the 4.3BSD Reno release and the subsequent Net/2 release.

Net/3 implements both fast retransmit and fast recovery, as we describe shortly.
In the discussion of Figure 24.17 we noted that an acceptable ACK must be in the

range
snd_una < acknowledgment field <= snd_max

This first test of the acknowledgment field compares it only to snd_una. The compari-
son against snd_max is in Figure 29.5. The reason for separating the tests is so that the
following five tests can be applied to the received segment:

1. If the acknowledgment field is less than or equal to snd_una, and
2. the length of the received segment is 0, and
3. the advertised window (t iwin) has not changed, and
4. TCP has outstanding data that has not been acknowledged (the retransmission

timer is nonzero), and
5. the received segment contains the biggest ACK TCP has seen (the acknowledg-

ment field equals snd_una),

then this segment is a completely duplicate ACK. (Tests 1, 2, and 3 are in Figure 29.3;
tests 4 and 5 are at the beginning of Figure 29.4.)

TCP counts the number of these duplicate ACKs that are received in a row (in the
variable t_dupacks), and when the number reaches athreshold of 3
(tcprexmtthresh), the lost segment is retransmitted. This is the fast retransmit algo-
rithm described in Section 21.7 of Volume 1. It works in conjunction with the code we
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816
817
818
819
820
821
822
823
824
825
826
827
828
829
83O

case
case
case
case
case
case
case

/.                                                                     tcp_input.c
* In ESTABLISHED state: drop duplicate ACKs; ACK out-of-range
* ACKs. If the ack is in the range
* tp->snd_una < ti >ti_ack <= tp->snd_max
* then advance tp->snd_una to ti->ti_ack and drop
* data from the retransmission queue. If this ACK reflects
* more up-to date window information we update our window information.
*/
TCPS_ESTABLISHED:
TCPS_FIN_WAIT_I:
TCPS_FIN WAIT_2:
TCPS_CLOSE_WAIT:
TCPS_CLOSING:
TCPS_LAST_ACK:
TCPS_TIME_WAIT:

831 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
832 if (ti->ti_len == 0 && tiwin -= tp->snd_wnd) {
833 tcpstat.tcps_rcvdupack++;
834 /*
835 * If we have outstanding data (other than
836 * a window probe), this is a completely
837 * duplicate ack (ie, window info didn’t
838 * change), the ack is the biggest we’ve
839 * seen and we’ve seen exactly our rexmt
840 * threshold of them, assume a packet
841 * has been dropped and retransm±t it.
842 * Kludge snd_nxt & the congestion
843 * window so we send only this one
844 * packet.
845
846 * We know we’re losing at the current
847 * window size so do congestion avoidance
848 * (set ssthresh to half the current window
849 * and pull our congestion window back to
850 * the new ssthresh] .
851 *
852 * Dup acks mean that packets have left the
853 * network (they’re now cached at the receiver)
854 * so bump cwnd by the amount in the receiver
855 * to keep a constant cwnd packets in the
856 * network.
857                         */

l~izure 29.3 tcp_input function: check for completely duplicate ACK.

tcp_input.c

saw in Figure 27.15: when TCP receives an out-of-order segment, it is required to gener-
ate an immediate duplicate ACK, telling the other end that a segment might have been
been lost and telling it the value of the next expected sequence number. The goal of the
fast retransmit algorithm is for TCP to retransmit immediately what appears to be the
missing segment, instead of waiting for the retransmission timer to expire. Figure 21.7
of Volume i gives a detailed example of how this algorithm works.
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861 868

869 870

871--873

874 875

The receipt of a duplicate ACK also tells TCP that a packet has "’left the network,"
because the other end had to receive an out-of-order segment to send the duplicate
ACK. Thefast recovery algorithm says that after some number of consecutive duplicate
ACKs have been received, TCP should perform congestion avoidance (i.e., slow down)
but need not wait for the pipe to empty between the two connection end points (slow
start). The expression "a packet has left the network" means a packet has been received
by the other end and has been added to the out-of-order queue for the connection. The
packet is not still in transit somewhere between the two end points.

If only the first three tests shown earlier are true, the ACK is still a duplicate and is
counted by the statistic tcps_rcvdupack, but the counter of the number of consecu-
tive duplicate ACKs for this connection (t_du~oacks) is reset to 0. If only the first test is
true, the counter t_dupacks is reset to 0.

The remainder of the fast recovery algorithm is shown in Figure 29.4. When all five
tests are true, the fast recovery algorithm processes the segment depending on the num-
ber of these consecutive duplicate ACKs that have been received.

1. t_dupacks equals 3 (tcprexmtthresh). Congestion avoidance is performed
and the missing segment is retransmitted.

2. t_dupacks exceeds 3. Increase the congestion window and perform normal
TCP output.

3. t_dupacks is less than 3. Do nothing.

Number of consecutive duplicate ACKs reaches threshold of 3
When t_dupacks reaches 3 (tcprexmtthresh), the value of snd_nxt is saved in

onxt and the slow start threshold (ssthresh) is set to one-half the current congestion
window, with a minimum value of two segments. This is what was done with the slow
start threshold when the retransmission timer expired in Figure 25.27, but we’ll see later
in this piece of code that the fast recovery algorithm does not set the congestion win-
dow to one segment, as was done with the timeout.

Turn off retransmission timer
The retransmission timer is turned off and, in case a segment is currently being

timed, t_rtt is set to 0.
Retransmit missing segment

snd_nxt is set to the starting sequence number of the segment that appears to have
been lost (the acknowledgment field of the duplicate ACK) and the congestion window
is set to one segment. This causes tcp_output to send only the missing segment.
(This is shown by segment 63 in Figure 21.7 of Volume 1.)

Set congestion window

The congestion window is set to the slow start threshold plus the number of seg-
ments that the other end has cached. By cached we mean the number of out-of-order
segments that the other end has received and generated duplicate ACKs for. These can-
not be passed to the process at the other end until the missing segment (which was just
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858
859
860
861
862
863
864
865

866
867
868
869
870
871
872
873
874
875
876
877
878
879
88O
881
882
883
884
885
886
887

if (tp->t_timer[TCPT_REXMT] -: 0 I I
ti->ti_ack !- tp->snd_una)
tp->t_dupacks - 0;

else if (++tp->t_dupacks == tcprexmtthresh)
tcp_seq onxt = tp->snd nxt;
u_int win =

min(tp->snd_wnd, tp->snd_cwnd) / 2 /
tp >t_maxseg;

tcp_input.c

if (win < 2)
win - 2;

tp->snd_ssthresh : win * tp->t_maxseg;
tp->t_timer[TCPT_REXMT] : 0;
tp->t_rtt = 0;
tp->snd_nxt = ti >ti_ack;
tp->snd_cwnd = tp->t_maxseg;
(void) tcp_output(tp);
tp >snd_cwnd : tp->snd_ssthresh +

tp->t_maxseg * tp->t_dupacks;
if (SEQ_GT(onxt, tp->snd nxt))

tp->snd_nxt : onxt;
goto drop;

} else if (tp->t_dupacks > tcprexmtthresh) {
tp->snd_cwnd += tp->t_maxseg;
(void) tcp_output(tp);

goto drop;
}

else
tp->t_dupacks = 0;

break; /* beyond ACK processing (to step 6) */

tcp_input.c
Figure 29.4 tcp_input function: duplicate ACK processing.

876 878

879--883

sent) is received. Figures 21.10 and 21.11 in Volume i show what happens with the con-
gestion window and slow start threshold when the fast recovery algorithm is in effect.

Se[ snd_nxt

The value of the next sequence number to send is set to the maximum of its previ-
ous value (onxt) and its current value. Its current value was modified by tc~)_output
when the segment was retransmitted. Normally this causes snd_nxt to be set back to
its previous value, which means that only the missing segment is retransmitted, and
that future calls to tcp_output carry on with the next segment in sequence.

Number of consecutive duplicate ACKs exceeds threshold of 3

The missing segment was retransmitted when t_dupacks equaled 3, so the receipt
of each additional duplicate ACK means that another packet has left the network. The
congestion window is incremented by one segment, t¢p_output sends the next seg-
ment in sequence, and the duplicate ACK is dropped. (This is shown by segments 67,
69, and 71 in Figure 21.7 of Volume 1.)
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884-885

886

This statement is executed when the received segment contains a duplicate ACK,
but either the length is nonzero or the advertised window changed. Only the first of the
five tests described earlier is true. The counter of consecutive duplicate ACKs is set to 0.

Skip remainder of ACK processing
This break is executed in three cases: (1) only the first of the five tests described

earlier is true, or (2) only the first three of the five tests is true, or (3) the ACK is a dupli-
cate, but the number of consecutive duplicates is less than the threshold of 3. For any of
these cases the ACK is still a duplicate and the break goes to the end of the sw±tch
that started in Figure 29.2, which continues processing at the label s t ep 6,

To understand the purpose in this aggressive window manipulation, consider the
following example. Assume the window is eight segments, and segments 1 through 8
are sent. Segment 1 is lost, but the remainder arrive OK and are acknowledged. After
the ACKs for segments 2, 3, and 4 arrive, the missing segment (1) is retransmitted. TCP
would like the subsequent ACKs for 5 through 8 to allow some of the segments starting
with 9 to be sent, to keep the pipe full. But the window is 8, which prevents segments 9
and above from being sent. Therefore, the congestion window is temporarily inflated
by one segment each time another duplicate ACK is received, since the receipt of the
duplicate ACK tells TCP that another segment has left the pipe at the other end. When
the acknowledgment of segment 1 is finally received, the next figure reduces the con-
gestion window back to the slow start threshold. This increase in the congestion win-
dow as the duplicate ACKs arrive, and its subsequent decrease when the fresh ACK
arrives, can be seen visually in Figure 21.10 of Volume 1.

29.5 ACK Processing

The ACK processing continues with Figure 29.5.

888 /*
889 * If the congestion window was inflated to account
890 * for the other side’s cached packets, retract it.
891 */
892 if (tp->t_dupacks > tcprexmtthresh &&
893 tp->snd_cwnd > tp->snd_ssthresh)
894 tp->snd_cwnd = tp->snd_ssthresh;
895 tp >t_dupacks = 0;

896
897
898
899
900
901
902

if (SEQ_GT(ti->ti_ack, tp->snd_max))
tcpstat.tcps_rcvacktoomuch++;
goto dropafterack;

}
acked = ti->ti_ack - tp >snd_una;
tcpstat.tcps_rcvackpack++;
tcpstat.tcps_rcvackbyte +: acked;

Figure 29.5 tcp_input function: ACK processing continued.

tcp_input.c

tcp_input.c
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Adjust congestion window

888-895 If the number of consecutive duplicate ACKs exceeds the threshold of 3, this is the
first nonduplicate ACK after a string of four or more duplicate ACKs. The fast recovery
algorithm is complete. Since the congestion window was incremented by one segment
for every consecutive duplicate after the third, if it now exceeds the slow start threshold,
it is set back to the slow start threshold. The counter of consecutive duplicate ACKs is
set to 0.

896--899

Check for out-of-range ACK

Recall the definition of an acceptable ACK,

snd_una < acknowledgment field <= snd_max

900--902

If the acknowledgment field is greater than snd_max, the other end is acknowledging
data that TCP hasn’t even sent yet! This probably occurs on a high-speed connection
when the sequence numbers wrap and a missing ACK reappears later. As we can see in
Figure 24.5, this rarely happens (since today’s networks aren’t fast enough).
Calculate number of bytes acknowledged

At this point TCP knows that it has an acceptable ACK. acked is the number of
bytes acknowledged.

903--915

916--924

The next part of ACK processing, shown in Figure 29.6, deals with RTT measure-
ments and the retransmission timer.

Update RTT estimators

If either (1) a timestamp option was present, or (2) a segment was being timed and
the acknowledgment number is greater than the starting sequence number of the seg-
ment being timed, t cp_xra± t_g iraer updates the RTT estimators. Notice that the sec-
ond argument to this function when timestamps are used is the current time (tcp_now)
minus the timestamp echo reply (t s_ecr) plus I (since the function subtracts 1).

Delayed ACKs are the reason for the greater-than test of the sequence numbers. For
example, if TCP sends and times a segment with bytes 1-1024, followed by a segment
with bytes 1025-2048, if an ACK of 2049 is returned, this test will consider whether 2049
is greater than 1 (the starting sequence number of the segment being timed), and since
this is true, the RTT estimators are updated.
Check if all outstm~ding data has t>een acknow|edged

If the acknowledgment field of the received segment (g±_ack) equals the maxi-
mum sequence number that TCP has sent (snd_raax), all outstanding data has been
acknowledged. The retransmission timer is turned off and the needougpu~ flag is set
to 1. This flag forces a call to ~cp_ougpu¢ at the end of this function. Since there is no
more data waiting to be acknowledged, TCP may have more data to send that it has not
been able to send earlier because the data was beyond the right edge of the window.
Now that a new ACK has been received, the window will probably move to the right
(snd_una is updated in Figure 29.8), which could allow more data to be sent.
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903
904
905
906
907
908
909
910
911
912
913
914
915

916
917
918
919
920
921
922
923
924
925
926

* If we have a timestamp reply, update smoothed
* round-trip time. If no timestamp is present but
* transmit timer is running and timed sequence
* number was acked, update smoothed round trip time.
* Since we now have an rtt measurement, cancel the
* timer backoff (cf., Phfl Karn’s retransm±t alg.).
* Recompute the initial retransmit timer°
*/

if (ts_x)resent)
tcp_xmit_timer(tp, tcp now - ts_ecr + i);

else if (tp >t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)
tcp_xmit_timer(tp, tp->t_rtt);

* If all outstanding data is acked, stop retran~mit
* timer and remember to restart (more output or persist).
* If there is more data to be acked, restart retransmit
* timer, using current (possibly backed-off) value.
*/

if (ti->ti_ack == tp->snd max) {
tp->t_timer[TCPT_REXMT] : 0;
needoutput = i;

} else if (tp->t_timer[TCPT_PERSIST] == 0)
tp->t_timer[TCPT_REXMT] - tp->t_rxtcur;

Figure 29.6 tcp_input function: RTT measurements and retransmission timer.

tcp_input.c

tcp_input.c

925--926

Unacknowledged data outstanding
Since there is additional data that has been sent but not acknowledged, if the persist

timer is not on, the retransmission timer is restarted using the current value of
t_rxt cur.

Karn’s Algorithm and Timestamps

Notice that timestamps overrule the portion of Karn’s algorithm (Section 21.3 of
Volume 1) that says: when a timeout and retransmission occurs, the RTT estimators can-
not be updated when the acknowledgment for the retransmitted data is received (the
retransmission ambiguity problem). In Figure 25.26 we saw that t_rtt was set to 0 when
a retransmission took place, because of Karn’s algorithm. If timestamps are not present
and it is a retransmission, the code in Figure 29.6 does not update the RTT estimators
because t_rtt will be 0 from the retransmission. But if a timestamp is present, t_rtt
isn’t examined, allowing the RTT estimators to be updated using the received time-
stamp echo reply. With RFC 1323 timestamps the ambiguity is gone since the ts_ecr
value was copied by the other end from. the segment being acknowledged. The other
half of Karn’s algorithm, specifying that an exponential backoff must be used with
retransmissions, still holds, of course.
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Figure 29.7 shows the next part of ACK processing, updating the congestion win-
dow.

927
928
929
930
931
932
933
934-
935
936
937
938

* When new data is acked, open the congestion window.
* If the window gives us less than ssthresh packets
* in flight, open exponentially (maxseg per packet
* Otherwise open linearly: maxseg per window
* (maxseg^2 / cwnd per packet), plus a constant
* fraction of a packet (maxseg/8) to help larger windows
* open quickly enough.
*/

{
u_int cw = tp->snd_cwnd;
u_int incr - tp->t_maxseg;

tcp_input.c

939
940
941
942

if (cw > tp->snd_ssthresh)
incr = incr * incr / cw + incr / 8;

tp->snd_cwnd = min(cw + incr, TCP_MAXWIN << tp->snd_scale) ;
}

tcp_input.c
Ngure 29.7 t cp_±nput funct~n: open congestion window ~ response to ACKs.

927-942

Update congestion window
One of the rules of slow start and congestion avoidance is that a received ACK

increases the congestion window. By default the congestion window is increased by
one segment for each received ACK (slow start). But if the current congestion window
is greater than the slow start threshold, it is increased by 1 divided by the congestion
window, plus a constant fraction of a segment. The term

incr * incr / cw

is

t_maxseg * t_maxseg / snd_cwnd

which is 1 divided by the congestion window, taking into account that snd_cwnd is
maintained in bytes, not segments. The constant fraction is the segment size divided by
8. The congestion window is then limited by the maximum value of the send window
for this connection. Example calculations of this algorithm are in Section 21.8 of
Volume 1.

Adding in the constan~ fraction (the segment size divided by 8) is wrong [Floyd 1994]. But it
has been in the BSD sources since 4.3BSD Reno and is still in 4.4BSD and Net/3. It should be
removed.

The next part of t cp_J_nput, shown in Figure 29.8, removes the acknowledged data
from the send buffer.
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tcp_input.c
if (acked > so->so_snd.sb_cc) {

tp->s~d_wnd -= so >so_snd.sb_cc;
sbdrop(&so->so_snd, (int) so->so_snd.sb_cc);
ourfinisacked = i;

else {
sbdrop(&so->so_snd, acked);
tp->snd_wnd -= acked;
ourfinisacked : 0;

}
if (so >so_snd.sb_flags & SB_NOTKFY)

sowwakeup(so);
tp->snd_una : ti->ti_ack;
if (SEQ_LT(tp->snd_nxt, tp->snd una))

tp->snd_nxt - tp->snd_una;

943
944
945
946
947
948
949
950
951
952
953
954
955
956

Figure 29.8 tcp_input function: remove acknowledged data from send buffer.

tcp_input.c

943--946

947--951

951-956

Remove acknowledged bytes from the send buffer
If the number of bytes acknowledged exceeds the number of bytes on the send buff-

er, snd_wnd is decremented by the number of bytes in the send buffer and TCP knows
that its FIN has been ACKed. That number of bytes is then removed from the send
buffer by sbdrop. This method for detecting the ACK of a FIN works only because the
FIN occupies 1 byte in the sequence number space.

Otherwise the number of bytes acknowledged is less than or equal to the number of
bytes in the send buffer, so ourfinisacked is set to 0, and acked bytes of data are
dropped from the send buffer.

Wakeup processes waiting on send buffer
sowwakeup awakens any processes waiting on the send buffer, snd_una is

updated to contain the oldest unacknowledged sequence number. If this new value of
snd_una exceeds snd_nxt, the latter is updated, since the intervening bytes have been
acknowledged.

Figure 29.9 shows how snd_nxt can end up with a sequence number that is less
than snd_una. Assume two segments are transmitted, the first with bytes 1-512 and
the second with bytes 513-1024.

1 2 ... 512 513 514 ... 1024 1025

one segment one segment

snd_una snd_nxt
snd_max

Figure 29.9 Two segments sent on a connection.

The retransmission timer then expires before an acknowledgment is returned. The code
in Figure 25.26 sets snd_nxt back to snd_una, slow start is entered, top_output is
called, and one segment containing bytes 1-512 is retransmitted, top_output
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increases snd_nxt to 513, and we have the scenario shown in Figure 29.10.

1 2 ... 512    513    514 ... 1024 1025

segment retransmitted

snd_una snd_nxt snd_max

958--971

Figure 29.10 Continuation of Figure 29.9 after retransmission timer expires.

At this point an ACK of 1025 arrives (either the two original segments or the ACK was
delayed somewhere in the network). The ACK is valid since it is less than or equal to
and_max, but snd_nxt will be less than the updated value of snd_una.

The general ACK processing is now complete, and the sw±tch shown in Fig:
ure 29.11 handles four special cases.

957 switch (tp->t_state) {
tcp_input.c

958
959
960
961
962
963
964
965
966
967
968
969
970
991
972
973
974
975
976
977
978

* In FIN_WAIT_I state in addition to the processing
* for the ESTABLISHED state if our FIN is now acknowledged
* then enter FIN_WAIT_2.
*/

case TCPS_FIN_WAIT_I:
if (ourfinisacked) {

/*
* If we can’t receive any more
* data, then closing user can proceed.
* Starting the timer is contrary to the
* specification, but if we don’t get a FIN
* we’ll hang forever.

*/
if (so->so_state & SS_CAN~RCVMORE) {

soisdisconnected(so);
tp->t_timer[TCPT_2MSL] = tcp_maxidle;

}
tp >t_state = TCPS FIN WAIT_2;

}
break;

Figure 29.11 t cp_input function: receipt of ACK in FIN_WAIT_I state.

tcp_input.c

Receipt of ACK in FIN_WAIT_I state
In this state the process has closed the connection and TCP has sent the FIN. But

other ACKs can be received for data segments sent before the FIN. Therefore the con-
nection moves into the FIN_WAIT_2 state only when the FIN has been acknowledged.
The flag ourf±n±sacked is set in Figure 29.8; this depends on whether the number of
bytes ACKed exceeds the amount of data in the send buffer or not.
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9 72--9 75

Set FIN_WAIT_2 timer

We also described in Section 25.6 how Net/3 sets a FIN WAIT_2 timer to prevent
an infinite wait in the FIN WAIT_2 state. This timer is set only if the process com-
pletely closed the connection (i.e., the close system call or its kernel equivalent if the
process was terminated by a signal), and not if the process performed a half-close (i.e.,
the FIN was sent but the process can still receive data on the connection).

Figure 29.12 shows the receipt of an ACK in the CLOSING state.

9 ? 9 /.
tcp_input.c

980 * In CLOSING state in addition to the processing for
981 * the BSTABLISHED state if the ACK acknowledges our FIN
982 * then enter the TIME-WAIT state, otherwise ignore
983 * the segment.
984 */
985 case TCPS_CLOSING:
986 if (ourfinisacked) {
987 tp->t_state - TCPS_TIME WAIT;
988 tcp_canceltimers(tp);
989 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
990 soisdisconnected(so);
991 }
992 break;

Fig~a~e 29.12 top_input function: receipt of ACK in CLOSING s~ate.

tcp_input.c

979-992

Receipt of ACK in CLOSING state
If the ACK is for the FIN (and not for some previous data segment), the connection

moves into the TIME WAIT state. Any pending timers are cleared (such as a pending
retransmission timer), and the TIME_WAIT timer is started with a value of twice the
MSL.

The processing of an ACK in the LAST_ACK state is shown in Figure 29.13.

tcp_input.c
993                  /*
994 * In LAST_ACK, we may still be waiting for data to drain
995 * and/or to be acked, as well as for the ack of our FIN.
996 * If our FIN is now acknowledged, delete the TCB,
997 * enter the closed state, and return.
998 */
999 case TCPS_LAST_ACK:

i000 if (ourfinisacked) {
i001 tp : tcp_close(tp);
1002 goto drop;
1003
1004 break;

Figure 29.13 t cp_input function: receipt of ACK in LAST_ACK state.

tcplinput.c
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993--1004

Receipt of ACK in LAST_ACK state
If the FIN is ACKed, the new state is CLOSED. This state transition is handled by

t cp_c 1 o s e, which also releases the Internet PCB and TCP control block.

Figure 29.14 shows the processing of an ACK in the TIME_WAIT state.

lO o 5 /, tcp_input.c
1006 * In TIME_WAIT state the only thing that should arrive
1007 * is a retransmission of the remote FIN. Acknowledge
1008 * it and restart the finack timer.
1009 */
i010 case TCPS_TIME_WAIT:
i011 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1012 goto dropafterack;
1013 }
1014

Figure 29.14 tcp_iiqput function: receipt of ACK in TIME_WAIT state.

tcp_input.c

1005--1014

Receipt of ACK in TIME_WAIT state

In this state both ends have sent a FIN and both FINs have been acknowledged. If
TCP’s ACK of the remote FIN was lost, however, the other end will retransmit the FIN
(with an ACK). TCP drops the segment and resends the ACK. Additionally, the
TIME WAIT timer must be restarted with a value of twice the MSL.

29.6 Update Window Information

There are two variables in the TCP control block that we haven’t described yet:
snd_wll and snd_wl2.

snd__wl 1 records the sequence number of the last segment used to update the
send window (snd_wnd).

snd_wl2 records the acknowledgment number of the last segment used to
update the send window.

Our only encounter with these variables so far was when a connection was established
(active, passive, or simultaneous open) and snd_wl3_ was set to t±_8÷q minus 1. We
said this was to guarantee a window update, which we’ll see in the following code.

The send window (snd wnd) is updated from the advertised window in the
received segment (t ±w± n) if any one of the following three conditions is true:

1. The segment contains new data. Since snd_wl 1 contains the starting sequence
number of the last segment that was used to update the send window, if

snd_wll < ti_seq

this condition is true.

DELL EX.1095.1006



982 TCP Input (Continued) Chapter 29

2. The segment does not contain new data (snd_wll equals ti_seq), but the seg-
ment acknowledges new data. The latter condition is true if

snd w12 < ti_ack

since snd_w!2 records the acknowledgment number of the last segment that
updated the send window.

3. The segment does not contain new data, and the segment does not acknowledge
new data, but the advertised window is larger than the current send window.

The purpose of these tests is to prevent an old segment from affecting the send window,
since the send window is not an absolute sequence number, but is an offset from
snd_una.

Figure 29.15 shows the code that implements the update of the send window.

1015
1016
1017
1018
1019
1020
1021
1022
1023

tcp_input.c
step6:

/*
* Update window information.
* Don’t look at window if no ACK: TAC’s send garbage on first SYN.
*/

if ((tiflags & TH_ACK) &&
(SEQ_LT[tp->snd_wll, ti->ti_seq) ~I tp >snd_wll := ti->ti_seq &&

(SEQ_LT(tp->snd w12, ti->ti_ack)
tp->snd w12 == ti >ti_ack && tiwin > tp->snd_wnd))) {

1024
1025
1026
1027

/* keep track of pure window updates */
if (ti->ti_len :: 0 &&

tp->snd_wl2 :: ti->ti_ack && tiwin > tp->snd wnd)
tcpstat.tcps_rcvwinupd++;

1028
1029
1030
1031
1032
1033
1034

tp->snd wnd : tiwin;
tp->snd_wll : ti->ti_seq;
tp->snd_wl2 = ti->ti_ack;
if (tp->snd_wnd > tp->max_sndwnd)

tp->max_sndwnd = tp >snd_wnd;
needoutput - i;

Figure 29.15 tcp_input function: update window information.

tcp_input.c

1015--1023

Check if send window should be updated

This i f test verifies that the ACK flag is set along with any one of the three previ-
ously stated conditions. Recall that a jump was made to step6 after the receipt of a
SYN in either the LISTEN or SYN_SENT state, and in the LISTEN state the SYN does
not contain an ACK.

The term TAC referred to in the comment is a "terminal access controller." These were Telnet
clients on the ARPANET.
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102d 1027

1028-1033

If the received segment is a pure window update (the length is 0 and the ACK does
not acknowledge new data, but the advertised window is larger), the statistic
t cps_rcvwinupd is incremented.

Update variables

The send window is updated and new values of snd wll and snd_wl2 are
recorded. Additionally, if this advertised window is the largest one TCP has received
from this peer, the new value is recorded in max_sndwnd. This is an attempt to guess
the size of the other end’s receive buffer, and it is used in Figure 26.8. needoutput is
set to 1 since the new value of snd_wnd might enable a segment to be sent.

29.7

1035--1039

1040--1050

Urgent Mode Processing

The next part of TCP input processing handles segments with the URG flag set.

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

* Process segments with URG.
*/

if ((tiflags & TH URG) && ti->ti_urp &&
TCPS_HAVERCVDFIN(tp >t_state) =: 0) {
/*

* This is a kludge, but if we receive and accept
* random urgent pointers, we’ll crash in
* soreceive. It’s hard to imagine someone
* actually wanting to send this much urgent data.
*/

if (ti->ti_urp + so >so_rcv.sb_cc > sb_max) {
ti->ti_urp : 0;        /* XXX */
tiflags &= -TH_URG; /* XXX */
goto dodata; /* XXX */

}

Figure 29.16 tcp_input function: urgent mode processing.

tcp_input.c

tcp_input.c

Check if URG flag should be processed

These segments must have the URG flag set, a nonzero urgent offset (t i_urp), and
the connection must not have received a FIN. The macro TCPS_HAVERCVDFIN is true
only for the TIME_WAIT state, so the URG is processed in any other state. This is con-
trary to a comment appearing later in the code stating that the URG flag is ignored in
the CLOSE_WAIT, CLOSING, LAST_ACK, or TIME WAIT states.

Ignore bogus urgent offsets
If the urgent offset plus the number of bytes already in the receive buffer exceeds

the maximum size of a socket buffer, the urgent notification is ignored. The urgent off-
set is set to 0, the URG flag is cleared, and the rest of the urgent mode processing is
skipped.
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1051--1065

The next piece of code, shown in Figure 29.17, processes the urgent pointer.

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

* a FIN has been received from the remote side.
* In these states we ignore the URG.

* According to RFC961 (Assigned Protocols),
* the urgent pointer points to the last octet
* of urgent data. We continue, however,
* to consider it to indicate the first octet
* of data past the urgent section as the original
* spec states (in one of two places).

if (SEQ_GT(ti->ti_seq + ti->ti_urp, tp->rcv up)) {
tp->rcv_up : ti >ti_seq + ti->ti_urp;
so->so_oobmark - so->so_rcv.sb_cc +

(tp >rcv up - tp->rcv_nxt) - i;
if (so->so_oobmark -: 0)

so->so_state I: SS_RCVATMARK;
sohasoutofband(so);
tp->t_oobflags &: -(TCPOOB_HAVEDATA i TCPOOB_HADDATA);

}
/.

* Remove out of-band data so doesn’t get presented to user.
* This can happen independent of advancing the URG pointer,
* but if two URG’s are pending at once, some out-of band
* data may creep in... ick.

if (ti->ti_urp <= ti->ti_len
#ifdef SO_OOBINLINE

&& (so->so_options & SO_OOBINLINE) == 0
#endif

)
tcp_pulloutofband(so, ti, m);

] else {

* If no out-of-band data is expected, pull receive
* urgent pointer along with the receive window.

if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
tp->rcv_up : tp->rcv_nxt;

}

tcp_input.c

If this segment advances the known urgent pointer,
then mark the data stream. This should not happen
in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT states since

Figure 29.17 tcp_input function: processing of received urgent pointer.

tcp_input.c

If the starting sequence number of the received segment plus the urgent offset
exceeds the current receive urgent pointer, a new urgent pointer has been received. For
example, when the 3-byte segment that was sent in Figure 26.30 arrives at the receiver,
we have the scenario shown in Figure 29.18.
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1066--1070

1071 1072

1074 1085

1086 1093

receivedsegment
ti_len =3

4    5    6

Figure 29.18

rcv_nxt
rcv_up
ti_seq

t i_urp = 3
(urgent offset)

Receiver side when segment from Figure 26.30 arrives.

Normally the receive urgent pointer (roy_up) equals rcv_nxV. In this example, since
the ± f test is true (4 plus 3 is greater than 4), the new value of roy_up is calculated as 7.
Calculate receive urgent pointer

The out-of-band mark in the socket’s receive buffer is calculated, taking into
account any data bytes already in the receive buffer (so_~cv. sb_cc). In our example,
assuming there is no data already in the receive buffer, so_oobma~k is set to 2: that is,
the byte with the sequence number 6 is considered the out-of-band byte. If this out-of-
band mark is 0, the socket is currently at the out-of-band mark. This happens if the
send system call that sends the out-of-band byte specifies a length of 1, and if the
receive buffer is empty when this segment arrives at the other end. This reiterates that
Berkeley-derived systems consider the urgent pointer to point to the first byte of data
after the out-of-band byte.

Notify process of TCP’s urgent mode

sohasoutofband notifies the process that out-of-band data has arrived for the
socket. The two flags TCPOOB_HAVEDATA and TCPOOB_EIADDATA are cleared. These
two flags are used with the PRU_RCVOOB request in Figure 30.8.
Pull out-of-band byte out of normal data stream

If the urgent offset is less than or equal to the number of bytes in the received seg-
ment, the out-of-band byte is contained in the segment. With TCP’s urgent mode it is
possible for the urgent offset to point to a data byte that has not yet been received. If the
SO_OOBINLTNE constant is defined (which it always is for Net/3), and if the corre-
sponding socket option is not enabled, the receiving process wants the out-of-band byte
pulled out of the normal stream of data and placed into the variable t_iobc. This is
done by t cp_loul 1 out o f band, which we cover in the next section.

Notice that the receiving process is notified that the sender has entered urgent
mode, regardless of whether the byte pointed to by the urgent pointer is readable or not.
This is a feature of TCP’s urgent mode.

Adjust receive urgent pointer if not urgent mode

When the receiver is not processing an urgent pointer, if rcv_nxt is greater than
the receive urgent pointer, rcv_up is moved to the right and set equal to rcv_nxt.
This keeps the receive urgent pointer at the left edge of the receive window so that the
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comparison using SEQ_GT at the beginning of Figure 29.17 will work correctly when an
URG flag is received.

If the solution to Exercise 26.6 is implemented, corresponding changes will have to go into Fig-
ures 29.16 and 29.17 also.

29.8 tcp_pulloutofband Function

This function is called from Figure 29.17 when

1. urgent mode notification arrives in a received segment, and

2. the out-of-band byte is contained within the segment (i.e., the urgent pointer
points into the received segment), and

3. the SO_OOB~NLINE socket option is not enabled for this socket.

This function removes the out-of-band byte from the normal stream of data (i.e., the
mbuf chain containing the received segment) and places it into the t_i obc variable in
the TCP control block for the connection. The process reads this variable using the
MSG_OOB flag with the recv system call: the PRU_RCVOOB request in Figure 30.8. Fig-
ure 29.19 shows the function.

1282
1283
1284
1285
1286
1287
1288

1289
1290
1291
1292

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

void
tcp~mulioutofband(so, ti, m)
struct socket *so;
struct tcpiphdr *ti;
struct mbuf *m;
{

int cnt = ti->ti_urp - i;

while (cnt >: 0) {
if (m->m_len > cnt) {

char *cp - mtod(m, caddr_t) + cnt;
struct tcpcb *tp = sototcpcb(so) ;

tp->t_iobc : *cp;
tp >t_oobflags I- TCPOOB_HAVEDATA;
bcopy(cp + i, cp, (unsigned) (m->m_len cnt - i));
m->m_len--;
return;

cnt -= m->m_len;
m = m >m_nexti
if (m == 0)

break;
}
panic("tcp_pulloutofband");

Figure 29.19 tcp_pulloutofband function: place out-of-band byte into t_iobc.

tcp_input.c

tcp_input.c
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1282--1289

1290--1298

Consider the example in Figure 29.20. The urgent offset is 3, therefore the urgent
pointer is 7, and the sequence number of the out-of-band byte is 6. There are 5 bytes in
the received segment, all contained in a single mbuf.

receivedsegment
m_len : ti_len = 5

4 5 6 7 8

r cv_nxt out-of-band r cp_up
ti_seq byte

t i_urp = 3
~ (urgent offset) ~

Figure 29.20 Received segment with an out-of-band byte.

The variable cnt is 2 and since m_len (which is 5) is greater than 2, the true portion of
the i f statement is executed.

cp points to the shaded byte with a sequence number of 6. This is placed into the
variable t_iobc, which contains the out-of-band byte. The TCPOOB_HAVEDATA flag is
set and bcopy moves the next 2 bytes (with sequence numbers 7 and 8) left i byte, giv-
ing the arrangement shown in Figure 29.21.

ti_len = 5

m_l en : 4

4 5 7 8 ~

rcv_nxt
t i_seq

t_iobc

Figure 29.21 Result from Figure 29.20 after removal of out-of-band byte.

Remember that the numbers 7 and 8 specify the sequence numbers of the data bytes,
not the contents of the data bytes. The length of the mbuf is decremented from 5 to 4
but ti_len is left as 5, for sequencing of the segment into the socket’s receive buffer.
Both the TCP_REASS macro and the tcp_reass function (which are called in the next
section) increment rcv_nxt by t i_len, which in this example must be 5, because the
next expected receive sequence number is 9. Also notice in this function that the length
field in the packet header (m_pkthdr. len) in the first mbuf is not decremented by 1.
This is because that length field is not used by sbappend, which appends the data to
the socket’s receive buffer.
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1299 1302

Skip to next mbuf in chain
The out-of-band byte is not contained in this mbuf, so cnt is decremented by the

number of bytes in the mbuf and the next mbuf in the chain is processed. Since this
function is called only when the urgent offset points into the received segment, if there
is not another mbuf on the chain, the br÷ak causes the call to pan±c.

29.9

1094 1105

Processing of Received Data

tcp_input continues by taking the received data (if any) and either appending it to the
socket’s receive buffer (if it is the next expected segment) or placing it onto the socket’s
out-of-order queue. Figure 29.22 shows the code that performs this task.

1094
1095
1096
1097
1098
1099
ii00
ii01
1102
1103
1104
1105
1106
1107
1108
1109
iii0
iiii
1112
1113
1114
1115

dodat a : /* XXX * /
tcp_input.c

/*
¯ Process the segment text, merging it into the TCP sequencing queue,
¯ and arranging for acknowledgment of receipt if necessary.
¯ This process logically involves adjusting tp->rcv_wnd as data
¯ is presented to the user (this happens in tcp_usrreq.c,
¯ case PRU_RCVD). If a FIN has already been received on this
¯ connection then we just ignore the text.
*/

if ((ti->ti_len II (tillage & TH_FIN)) &&
TCPS_HAVERCVDFIN(tp >t_state) -- 0) {
TCP_REASS(tp, ti, m, so, tiflags);
/*

¯ Note the amount of data that peer has sent into
¯ our window, in order to estimate the sender’s
¯ buffer size.
*/

len = so->so_rcv.sb_hiwat - (tp >rcv_adv - tp->rcv_nxt);
else {

m freem(m);
tiflags &: -TH_FIN;

tcp_input.c

~gure29.22 tcp_lnput ~nction:mergereceived dataintosequencingqueue ~rsocket

Segment data is processed if

1. the length of the received data is greater than 0 or the FIN flag is set, and

2. a FIN has not yet been received for the connection.

The macro TCP_REASS processes the data. If the data is in sequence (i.e., the next
expected data for this connection), the delayed-ACK flag is set, rcv_nxt is incre-
mented, and the data is appended to the socket’s receive buffer. If the data is out of
order, the macro calls t cp_~eas s to add the data to the connection’s reassembly queue
(which might fill a hole and cause already-queued data to be appended to the socket’s
receive buffer).
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1106--1111

1112--1115

Recall that the final argument to the macro (tiflags) can be modified. Specifi-
cally, if the data is out of order, t cp_r÷a s s sets t i f 1 a gs to 0, clearing the FIN flag (if
it was set). That’s why the ± f statement is true if the FIN flag is set even if there is no
data in the segment.

Consider the following example. A connection is established and the sender imme-
diately transmits three segments: one with bytes 1-1024, another with bytes 1025-2048,
and another with the FIN flag but no data. The first segment is lost, so when the second
arrives (bytes 1025-2048) the receiver places it onto the out-of-order list and generates
an immediate ACK. When the third segment with the FIN flag is received, the code in
Figure 29.22 is executed. Even though the data length is 0, since the FIN flag is set,
TCP_REASS is invoked, which calls tcp_reass. Since ti_seq (2049, the sequence
number of the FIN) does not equal rcv_nxt (1), tcp_reass returns 0 (Figure 27.23),
which in the TCP_REASS macro sets tiflags to 0. This clears the FIN flag, preventing
the code that follows (Section 29.10) from processing the FIN flag.

Guess size of other end’s send buffer

The calculation of l en is attempt to guess the size of the other end’s send buffer.
Consider the following example. A socket has a receive buffer size of 8192 (the Net/3
default), so TCP advertises a window of 8192 in its SYN. The first segment with bytes
1-1024 is then received. Figure 29.23 shows the state of the receive space after
TCP_REASS has incremented rcv_nxt to account for the received segment.

so_rcv, sb_hiwat : 8192                        ~-I

rcv_nxt rcv_adv
1025 = 8193

Figure 29.23 Receipt of bytes 1-1024 into a 8192-byte receive window.

The calculation of len yields 1024. The value of len will increase as the other end
sends more data into the receive window, but it will never exceed the size of the other
end’s send buffer. Recall that the variable max_sndwnd, calculated in Figure 29.15, is an
attempt to guess the size of the other end’s receive buffer.

This variable len is never used! It is left over code from Net/1 when the variable max_rcvd
was stored in the TCP control block after the calculation of 1 en:

if (len > tp->max_rcvd)
tp->max_rcvd = len;

But even in Net/1 the variable max_rcvd was never used.

If the length is 0 and the FIN flag is not set, or if a FIN has already been received for
the connection, the received mbuf chain is discarded and the FIN flag is cleared.
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29.10 FIN Processing

1116--1125

1126

1127--1134

The next step in t cp_input, shown in Figure 29.24, handles the FIN flag.

1116 /*
1117 * If FIN is received ACK the FIN and let the user know
1118 * that the connection is closing.
1119 */
1120 if (tiflags & TH_FIN) {
1121 if (TCPS_HAVERCVDFIN(tp >t_state) -- 0) {
1122 socantrcvmore(so) ;
1123 tp->t_flags I= TF_ACKNOW;
1124 tp->rcv_nxt++;
1125 }
1126 switch (tp->t_state) {

1127
1128
1129
1130
1131
1132
1133
1134

* In SYN_RECEIVED and ESTABLISHED states
* enter the CLOSE WAIT state.
*/

case TCPS_SYN_RECEIVED:
case TCPS_ESTABLISHED:

tp->t_state = TCPS_CLOSE_WAIT;
break;

Figure 29.24 top_input function: FIN processing, first half.

tcp_input.c

tcp_input.c

Process first FIN received on connection
If the FIN flag is set and this is the first FIN received for this connection,

socantrcvmore marks the socket as write-only, TF_ACKNOW is set to acknowledge the
FIN immediately (i.e., it is not delayed), and rcv_nx¢ steps over the FIN in the
sequence space.

The remainder of FIN processing is handled by a swi t ch that depends on the con-
nection state. Notice that the FIN is not processed in the CLOSED, LISTEN, or
SYN_SENT states, since in these three states a SYN has not been received to synchronize
the received sequence number, making it impossible to validate the sequence number of
the FIN. A FIN is also ignored in the CLOSING, CLOSE_WAIT, and LAST_ACK states,
because in these three states the FIN is a duplicate.

SYN_RCVD or ESTABLISHED states
From either the ESTABLISHED or SYN_RCVD states, the CLOSE_WAIT state is

entered.

The receipt of a FIN in the SYN_RCVD state is unusual, but legal. It is not shown in Fig-
ure 24.15. It means a socket is in the LISTEN state when a segment containing a SYN and a
FIN is received. Alternatively, a SYN is received for a listening socket, moving the connection
to the SYN_RCVD state but before the ACK is received a FIN is received. (We know the seg-
ment does not contain a valid ACK, because if it did the code in Figure 29.2 would have
moved the connection to the ESTABLISHED state.)
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1135--1141

1142--1148

1149--1152

The next part of FIN processing is shown in Figure 29.25

1135
1136
1137
1138
1139
1140
1141

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

1153
1154
1155
1156
1157
1158
1159
1160

/.                                                     tcp_input.c
* If still in FIN WAIT_I state FIN has not been acked so
* enter the CLOSING state.
*/

case TCPS_FIN WAIT_I:
tp->t_state : TCPS_CLOSING;
break;

/*
* In FIN_WAIT_2 state enter the TIME WAIT state,
* starting the time-wait timer, turning off the other
* standard timers.
*/

case TCPS_FIN_WAIT_2:
tp->t_state - TCPS_TIME_WAIT;
tcp_canceltimers(tp);
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
soisdisconnected(so);
break;

/*
* In TIME_WAIT state restart the 2 MSL time_wait timer.
*/

case TCPS_TIME_WAIT:
tp->t_timer[TCPT_2MSL] - 2 * TCPTV_MSL;
break;

}

tcp_input.c
Figure 29.25 tcp_input function: FIN processing, second half.

FIN_WAIT_I state

Since ACK processing is already complete for this segment, if the connection is in
the FIN_WAIT_I state when the FIN is processed, it means a simultaneous close is tak-
ing place--the two FINs from each end have passed in the network. The connection
enters the CLOSING state.

FIN_WAIT_2 staIe
The receipt of the FIN moves the connection into the TIME_WAIT state. When a

segment containing a FIN and an ACK is received in the FIN_WAIT_I state (the typical
scenario), although Figure 24.15 shows the transition directly from the FIN_WAIT_I
state to the TIME_WAIT state, the ACK is processed in Figure 29.11, moving the connec-
tion to the FIN_WAIT_2 state. The FIN processing here moves the connection into the
TIME_WAIT state. Because the ACK is processed before the FIN, the FIN_WAIT_2 state
is always passed through, albeit momentarily.

Start TIME_WAIT timer
Any pending TCP timer is turned off and the TIME_WAIT timer is started with a

value of twice the MSL. (If the received segment contained a FIN and an ACK, Fig-
ure 29.11 started the FIN_WAIT_2 timer.) The socket is disconnected.
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1153-1159

TIME_WAIT state

If a FIN arrives in the TIME_WAIT state, it is a duplicate, and similar to Fig-
ure 29.14, the TIME_WAIT timer is restarted with a value of twice the MSL.

29.11 Final Processing

The final part of the slow path through tcp_input along with the label
dropafterack is shown in Figure 29.26.

1161
1162

if (so->so_options & SO_DEBUG)
tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);

1163 /*
1164 * Return any desired output.
1165 */
1166 if (needoutput II (tp->t_flags & TF_ACKNOW))
1167 (void) tcp_output(tp);
1168 return;

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

dropafterack:
/*

* Generate an ACK dropping incoming segment if it occupies
* sequence space, where the ACK reflects our state.
*/

if (tiflags & TH_RST)
goto drop;

m_freem(m);
tp->t_flags I= TF_ACKNOW;
(void) tcp_output(tp);
return;

Figure 29.26 tclg_input function: final processing.

tcp_input.c

tcp_&put.c

11 61--i 1 62

1163--1168

1169--1179

SO DEBUG socket option
If the SO_DEBUG socket option is enabled, tcp_trace appends the trace record to

the kernel’s circular buffer. Remember that the code in Figure 28.7 saved both the origi-
nal connection state and the IP and TCP headers, since these values may have changed
in this function.
Call t C~)_output

If either the needoutput flag was set (Figures 29.6 and 29.15) or if an immediate
ACK is required, tcp_output is called.
dropafterack

An ACK is generated only if the RST flag was not set. (A segment with an RST is
never ACKed.) The mbuf chain containing the received segment is released, and
top_output generates an immediate ACK.

Figure 29.27 completes the tcp_input function.
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1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

drop~ithreset:                                                                tcp_input.c
/*

* Generate an RST, dropping incoming segment.
* Make ACK acceptable to originator of segment.
* Don’t bother to respond if destination was broadcast/multicast.
*/

if ((tiflags & TH_RST) II m >m_flags & (M_BCAST 1 H MCAST) I I
IN_MULTICAST(ti->ti_dst.s_addr))
goto drop;

if (tiflags & TH_ACK)
tcp_respond(tp, ti, m, (tcp_seq) 0, ti->ti_ack, TH_RST);

else {
if (tiflags & TH_SYN)

ti->ti_len++;
tcp_respond(tp, ti, m, ti->ti_seq + ti->ti_len, (tcp_seq) 0,

TH_RST 1 TH_ACK);
}
/.
if

destroy temporarily created socket */
(dropsocket)

(void) soabort(so);
return;

drop:
/*

* Drop space held by incoming segment and return.
*/

if (tp && (tp >t_inpcb->inp_socket->so_options & SO_DEBUG))
tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);

m_freem(m);
/* destroy temporarily created socket */
if (dropsocket)

(void) soabort(so);
return;

tcp_input.c
Figure 29.27 tcp_input ftmction: final processing.

1180--1188

1189--1296

dropwithreset

An RST is generated unless the received segment also contained an RST, or the
received segment was sent as a broadcast or multicast. An RST is never generated in
response to an RST, since this could lead to RST storms (a continual exchange of RST
segments between two end points).

This code contains the same error that we noted in Figure 28.16: it does not check whether the
destination address of the received segment was a broadcast address.

Similarly, the destination address argument to IN_MULTICAST needs to be converted to host
byte order.

Sequence number and acknowledgment number of RST segment

The values of the sequence number field, the acknowledgment field, and the ACK
flag of the RST segment depend on whether the received segment contained an ACK.
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1192 1193

1197--1199

1201--1206

1207--1211

Figure 29.28 summarizes these fields in the RST segment that is generated.

received segment

contains ACK
ACK-less

seq#

received ack. field
0

RST segment generated

ack. field
~ _flags__

0
I TH_RSTreceived seq# field [ TH_RST I TH_ACI<

Figure 29.28 Values of fields in RST segment generated.

Realize that the ACK flag is normally set in all segments except when an initial SYN is
sent (Figure 24.16). The fourth argument to tc~o_respond is the acknowledgment
field, and the fifth argument is the sequence number.

Rejecting connections
If the SYN flag is set, t±_l÷n must be incremented by 1, causing the acknowledg-

ment field of the RST to be 1 greater than the received sequence number of the SYN.
This code is executed when a SYN arrives for a nonexistent server. When the Internet
PCB is not found in Figure 28.6, a jump is made to drot~w±d~r÷se¢. But for the
received RST to be acceptable to the other end, the acknowledgment field must ACK the
SYN (Figure 28.18). Figure 18.14 of Volume 1 contains an example of this type of RST
segment.

Finally note that tcp_respond builds the RST in the first mbuf of the received
chain and releases any remaining rebuts in the chain. When that mbuf finally makes its
way to the device driver, it will be discarded.

Destroy temporarily created socket
If a temporary socket was created in Figure 28.7 for a listening server, but the code

in Figure 28.16 found the received segment to contain an error, dropsocket will be 1.
If so, that socket is now destroyed.
Drop (without ACK or RST)

tcp_trace is called when a segment is dropped without generating an ACK or an
RST. If the SO_~)EBUG flag is set and an ACK is generated, ¢<~o_out~out generates a
trace record. If the SO_~)E~3UG flag is set and an RST is generated, a trace record is not
generated for the RST.

The mbuf chain containing the received segment is released and the temporary
socket is destroyed if dro~osocket is nonzero.

29.12 Implementation Refinements

The refinements to speed up TCP processing are similar to the ones described for UDP
(Section 23.12). Multiple passes over the data should be avoided and the checksum
computation should be combined with a copy. [Dalton et al. 1993] describe these modi-
fications.

The linear search of the TCP PCBs is also a bottleneck when the number of connec-
tions increases. [McKenney and Dove 1992] address this problem by replacing the lin-
ear search with hash tables.
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[Partridge 1993] describes a research implementation being developed by Van
Jacobson that greatly-reduces the TCP input processing. The received packet is pro-
cessed by IP (about 25 instructions on a RISC system)~ then by a demultiplexer to locate
the PCB (about 10 instructions), and then by TCP (about 30 instructions). These 30
instructions perform header prediction and calculate the pseudo-header checksum. If
the segment passes the header prediction test, contains data, and the process is waiting
for the data, the data is copied into the process buffer and the remainder of the TCP
checksum is calculated and verified (a one-pass copy and checksum). If the TCP header
prediction fails, the slow path through the TCP input processing occurs.

29.13 Header Compression

We now describe TCP header compression. Although header compression is not part of
TCP input, we needed to cover TCP thorougl~ly before describing header compression.
Header compression is described in detail in RFC 1144 [Jacobson 1990a]. It was
designed by Van Jacobson and is sometimes called VJ header compression. Our purpose
in this section is not to go through the header compression source code (a well-
commented version of which is presented in RFC 1144, and which is approximately the
same size as tczo_output), but to provide an overview of the algorithm. Be sure to dis-
tinguish between header prediction (Section 28.4) and header compression.

Introduction

Most implementations of SLIP and PPP support header compression. Although header
compression could, in theory, be used with any data link, it is h~tended for slow-speed
serial links. Header compression works with TCP segments only--it does nothing with
other IP datagrams (e.g., ICMP, IGMP, UDP, etc.). Header compression reduces the size
of the combined IP/TCP header from its normal 40 bytes to as few as 3 bytes. This
reduces the size of a typical TCP segment from an interactive application such as Rlogin
or Telnet from 41 bytes to 4 bytes--a big saving on a slow-speed serial link.

Each end of the serial link maintains two connection state tables, one for datagrams
sent and one for datagrams received. Each table allows a maximum of 256 entries, but
typically there are 16 entries in this table, allowing up to 16 different TCP connections to
be compressed at any time. Each entry contains an 8-bit connection ID (hence the limit
of 256), some flags, and the complete uncompressed IP/TCP header from the most
recent datagram. The 96-bit socket pair that uniquely identifies each connection--the
source and destination IP addresses and source and destination TCP ports--are con-
tained in this uncompressed header. Figure 29.29 shows an example of these tables.

Since a TCP connection is full duplex, header compression can be applied in both
directions. Each end must implement both compression and decompression. A connec-
tion appears in both tables, as shown in Figure 29.29. In this example, the entry with a
connection ID of i in the top two tables has a source IP address of 128.1.2.3, source TCP
port of 1500, destination IP address of 192.3.4.5, and a destination TCP port of 25. The
entry with a connection ID of 2 in the bottom two tables is for the other direction of the
same connection.
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Transmit Connection State Table
id flags
0

1 28.1.2.3,1500,
2

15

most recent IP/TCP hdr

192.3.4.5, 25}

id

0

1

2

Receive Connection State Table

flags most recent IP/TCP hdr

{128.1.2.3,1500,192.3.4.5, 25}

Receive Connection State Table
flags most recent IP/TCP hdrid

0

1

2 {192.3.4.5, 25, 128.1.2.3, 1500}

15

Transmit Connection State Table
id flags most recent IP/TCP hdr
0

1

2 {192.3.4.5, 25, 128.1.2.3, 1500}

15[
Figure 29.29 A pair of connection state tables at each end of a link (e.g., SLIP link).

We show these tables as arrays, but the source code defines each entry as a struc-
ture, and a connection table is a circular linked list of these structures. The most
recently used structure is stored at the head of the list.

By saving the most recent uncompressed header at each end, only the differences in
various header fields from the previous datagram to the current datagram are transmit-
ted across the link (along with a special first byte indicating which fields follow). Since
some header fields don’t change at all from one datagram to the next, and other header
fields change by small amounts, this differential coding provides the savings. Header
compression works with the IP and TCP headers only--the data contents of the TCP
segment are not modified.

Figure 29.30 shows the steps involved at the sending side when it has an IP data-
gram to send across a link using header compression.

Three different types of datagrams are sent and must be recognized at the receiver:

o

Type :~p is specified with the high-order 4 bits of the first byte equal to 4. This is
the normal IP version number in the IP header (Figure 8.8). The normal,
uncompressed datagram is transmitted across the link.

Type COFIPRESSED_TCP is specified by setting the high-order bit of the first
byte. This looks like an IP version between 8 and 15 (i.e., the remaining 7 bits of
this byte are used by the compression algorithm). The compressed header and
uncompressed data are transmitted across the link, as we describe later in this
section.
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IP datagram
to send

examine
datagram

°therlTCP
search connection~ rnuna] f    "
table for matching ~
96-bit socket pair~

n°tlf°und

use oldest
entry in table

non-TCP or
uncompressible TCP

type

save uncompressed[
IP/TCP headers

in table entry

save uncompressed
IP/TCP headers

in table entry

compress ] type COMPRESSED_TCP~,..
can’t / compress

type UNCOMPRESSED TCP~

Figure 29.30 Steps involved in header compression at sender side.

Type UNCOMPRESSED_TCP is specified with the high-order 4 bits of the first
byte equal to 7. The normal, uncompressed datagram is transmitted across the
link, but the IP protocol field (which equals 6 for TCP), is replaced with the con-
nection ID. This identifies the connection state table entry for the receiver.

The receiver can identify the datagram type by examining its first byte. The code
that does this was shown in Figure 5.13. In Figure 5.16 the sender calls
s l_c orapre s s_t c p to check if a TCP segment is compressible, and the return value of
this function is logically ORed into the first byte of the datagram.

Figure 29.31 shows an illustration of the first byte that is sent across the link.

i
4-bit 4-bit

version header length
first byte

transmitted 0 1 0 0 IP

across link 0 i i i - UNCOMPRES SED_TCP

1 C I P S A W U COMPRESSED_TCP

Fig~,re 29.31 First byte transmitted across link.

The 4 bits shown as "-" comprise the normal IP header length field. The 7 bits shown
as c, I, P, s, A, W, and u indicate which optional fields follow. We describe these fields
shortly.

Figure 29.32 shows the complete IP datagram for the various datagrams that are
sent.
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~_ 20-60 byte IP header

~- first 4 bits of IP datagram

non-TCP 1010 0 protocol != TCP 0-65515 bytes of IP data

20-60 byte IP header ~1

protocol --     ]UNCOMPRESSED_TCP: i i    connection ID

20-60 byte TCP header [ 0-65495 bytes of TCP data

0-65495 bytes of TCP data
"l-

20-60 byte TCP header

COMPRESSED_TCP: I1CIP I 0-65495 bytes of TCP data

I-- 3-16 byte ~J
I~ compressed ~1

TCP header

Figure 29.32 Different types of IP datagrams possible with header compression.

We show two datagrams with a type of IP: one that is not a TCP segment (e.g., a proto-
col of UDP, ICMP, or IGMP), and one that is a TCP segment. This is to illustrate the dif-
ferences between the TCP segment sent as type I P and the TCP segment sent as type
UNCOMPRESSED_TCP: the first 4 bits are different as is the protocol field in the IP
header.

Datagrams are not candidates for header compression if the protocol is not TCP, or
if the protocol is TCP but any one of the following conditions is true.

¯ The datagram is an IP fragment: either the fragment offset is nonzero or the
more-fragments bit is set.

¯ Any one of the SYN, FIN, or RST flags is set.
¯ The ACK flag is not set.

If any one of these three conditions is true, the datagram is sent as type I P.
Furthermore, even if the datagram is a TCP segment that looks compressible, it is

possible to abort the compression and send the datagram as type UNCOMPRESSED_TCP
if certain fields have changed between the current datagram and the last datagram sent
for this connection. These are fields that normally do not change for a given connection,
so the compression scheme was not designed to encode their differences from one data-
gram to the next. The TOS field and the don’t fragment bit are examples. Also, when
the differences in som~ fields are greater than 65535, the compression algorithm fails
and the datagram is sent uncompressed.
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Compression of Header Fields

We now describe how the fields in the IP and TCP headers, shown in Figure 29.33, are
compressed. The shaded fields normally don’t change during a connection.

4-bit
version

15 16

-bit header 8-bit type of service
length (TOS)

16-bit identification               3-b~t

16-bit total length (in bytes)

13-bit fragment offset

16-bit header checksum
/

8-bit time to live |
(TrL) 8-bit protocol

32-bit source IP address

32-bit destination IP address

16-bit source port number 16-bit destination port number

32-bit sequence number

4-bit header
length

32-bit acknowledgment number

IdA P~R~-
reserved R C S I S I Y [ I 16-bit window size(6 bits) G K HITININ

16-bit TCP checksum 16-bit urgent pointer

31

20 bytes

20 bytes

Figure 29.33 Combined IP and TCP headers: shaded fields normally don’t change.

If any of the shaded fields have changed from the previous segment on this connection
to the current segment, the segment is sent uncompressed. We don’t show IP options or
TCP options in this figure, but if either are present and have changed from the previous
segment, the segment is sent uncompressed (Exercise 29.7).

If the algorithm transmitted only the nonshaded fields when the shaded fields do
not change from the previous segment, about a 50% savings would result. VJ header
compression does even better than this, by knowing which fields in the IP and TCP
headers normally don’t change. Figure 29.34 shows the format of the compressed
IP/TCP header.

The smallest compressed header consists of 3 bytes: the first byte (the flag bits) fol-
lowed by the 16-bit TCP checksum. For protection against possible link errors, the TCP
checksum is always transmitted without any change. (SLIP provides no link-layer
checksum, although PPP does provide one.)

DELL EX.1095.1024



1000    TCP Input (Continued) Chapter 29

#bytes:

0, 1,3~

0, 1, 31

0, 1,3~

0,1,31

0, 1, 31

1 !~~P~S_ A W U~flagbits;firstbytesentacrosslink

connid (C) l if C = 1: co~mection ID

unmodified

116-bit TCP checksum, always present
TCP checksum

lif U = 1: TCP urgent offset

l if W = 1: current- previous TCP window

l if A = 1: current - previous TCP acknowledgment#

df S = 1: current - previous TCP sequence#

u rgoff (u)

awin (w)

~ack (A)

~seq (S)

aipi~ (I)

unmodified
data

if I = 1: current -previous IP identification

Figure 29.34 Format of compressed IP/TCP header.

The other six fields, connid, urgoff, Awin, Aack, Aseq, and Aipid, are optional. We show
the number of bytes used to encode all the fields to the left of the field in Figure 29.34.
The largest compressed header appears to be 19 bytes, but we’ll see shortly that the
4 bits SAWU can never be set at the same time in a compressed header, so the largest
size is actually 16 bytes.

Six of the 7 bits in the first byte specify which of the six optional fields are present.
The high-order bit of the first byte is always set to 1. This identifies the datagram type
as COMPRESSED_TCP. Figure 29.35 summarizes the 7 bits, which we now describe.

Flag
bit

C
I
P
S
A
W
U

Structure
Description member Meaning if flag =- 0 Meaning if flag -- 1

connection ID
IP identification
TCP push flag
TCP sequence#
TCP acknowledgment#
TCP window
TCP urgent offset

ip_id

th_seq
th_ack
th_win
th_urg

same cormection ID as last
ip_id has increased by 1
PSH flag off
same th_seq as last
same th_ack as last
same th_win as last
URG flag not set

connid : connection ID
Aipid = current - previous
PSH flag on
Aseq = current - previous
zXack = current- previous
Awin = current - previous
urgoff = urgent offset

Figure 29.35 The 7 bits in the compressed header.
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C

P

If this bit is 0, this segment has the same connection ID as the previous com-
pressed or uncompressed segment. If this flag is 1, connid is the connection ID,
a value between 0 and 255.

If this bit is 0, the IP identification field has increased by 1 (the typical case). If
this bit is 1, Aipid is the current value of ±p_±d minus its previous value.

This bit is a copy of the PSH flag from the TCP segment. Since the PSH flag
doesn’t follow any established pattern, it must be explicitly specified for each
segment.

S If this bit is 0, the TCP sequence number has not changed. If this bit is 1, Aseq is
the current value of th_secl minus its previous value.

A If this bit is 0, the TCP acknowledgment number has not changed (the typical
case). If this bit is 1, Aack is the current value of t?x_ack minus its previous
value.

W

U

If this bit is 0, the TCP window has not changed (the typical case). If this bit is
1, Awin is the current value of ~h_w±n minus its previous value.

If this bit is 0, the URG flag in the segment is not set and the urgent offset has
not changed from its previous value (the typical case). If this bit is 1, urgoff is
the current value of ~h_urg and the URG flag is set. If the urgent offset
changes without the URG flag being set, the segment is sent uncompressed.
(This often occurs in the first segment following urgent data.)

The differences are encoded as the current value minus the previous value, because
most of these differences will be small positive numbers (with Awin being an exception)
given the way these fields normally change.

We note that five of the optional fields in Figure 29.34 are encoded in 0, 1, or 3 bytes.

0 bytes:

I byte:

3 bytes:

If the corresponding flag is not set, nothing is encoded for the field.

If the value to send is between 1 and 255, a single byte encodes the value.

If the value to send is either 0 or between 256 and 65535, 3 bytes encode
the value: the first byte is 0, followed by the 2-byte value. Tt~is always
works for the three 16-bit values, urgoff, Awin, and Aipid; but if the differ-
ence to encode for the two 32-bit values, Aack and Aseq, is less than 0 or
greater than 65535, the segment is sent uncompressed.

If we compare the nonshaded fields in Figure 29.33 with the possible fields in Fig-
ure 29.34 we notice that some fields are never transmitted.

The IP total length field is not transmitted since most link layers provide the
length of a received message to the receiver.

Since the only field in the IP header that is being transmitted is the identification
field, the IP checksum is also omitted. This is a hop-by-hop checksum that pro-
tects only the IP header across any given link.
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Special Cases

Two common cases are detected and transmitted as special combinations of the 4 low-
order bits: SAWU. Since urgent data is rare, if the URG flag in the segment is set and
both the sequence number and window also change (implying that the 4 low-order bits
would be 1011 or 1111), the segment is sent uncompressed. Therefore if the 4 low-order
bits are sent as 1011 (called *SA) or 1111 (called *S), the following two special cases
apply:

*SA The sequence number and acknowledgment number both increase by the
amount of data in the last segment, the window and urgent offset don’t
change, and the URG flag is not set. This special case avoids encoding both
Aseq and Aack.

This case occurs frequently for both directions of echoed terminal traffic. Fig-
ures 19.3 and 19.4 of Volume 1 give examples of this type of data flow across
an Rlogin connection.

The sequence number changes by the amount of data in the last segment, the
acknowledgment number, window, and urgent offset don’t change, and the
URG flag is not set. This special case avoids encoding Aseq.

This case occurs frequently for the sending side of a unidirectional data trans-
fer (e.g., FTP). Figures 20.1, 20.2, and 20.3 of Volume 1 give examples of this
type of data transfer. This case also occurs for the sender of nonechoed termi-
nal traffic (e.g., commands that are not echoed by a full-screen editor).

Examples

Two simple examples were run across the SLIP link between the systems bsdi and
slip in Figure 1.17. This SLIP link uses header compression in both directions. The
t cpdump program described in Appendix A of Volume 1 was also run on the host bsdi
to save a copy of all the frames. This program has an option that outputs the com-
pressed header, showing all the fields in Figure 29.34.

Two traces were obtained: a short portion of an Rlogin connection and a file transfer
from bsd± to s!±p using FTP. Figure 29.36 shows a summary of the different frame
types for both connections.

The two entries of 75 verify our claim that this special case often occurs for both
directions of echoed terminal traffic. The entry of 325 verifies our claim that this special
case occurs frequently for the sending side of a unidirectional data transfer.

The 10 frames of type IP for the FTP example correspond to four segments with the
SYN flag set and six segments with the FIN flag set. FTP uses two connections: one for
the interactive commands and one for the file transfer.

The UNCOMPRESSED_TCP frame types normally correspond to the first segment fol-
lowing connection establishment, the one that establishes the connection ID. An addi-
tional few are seen in these examples when the type of service is set (the Net/3 Rlogin
and FTP clients and servers all set the TOS field after the connection is established).
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frame type

IP
UNCOMPRESSED TCP

COMPRESSED_TCP
*SA special case
*S special case
nonspecial

Total

Rlogin
input output

1 1
3 2

75 75
25 1
9 93

113 172

FTP
input ouVput

5 5
2 3

0 0
1 325

337 13

345 346

Figure 29.36 Counts of different frame types for Rlogin and FTP connections.

Rlogin            FTP

#bytes input output input output

3 102 44 2 250
4 94 78
5 7 12 5 2
6 6 325 5
7 13 2 1
8 1
9 4 1

Total 109 169 338 338

Figure 29.37 Distribution of compressed-header sizes.

Figure 29.37 shows the distribution of the compressed-header sizes. The average
size of the compressed header for the final four columns in Figure 29.37 is 3.1, 4.1, 6.0,
and 3.3 bytes, a significant savings compared to the uncompressed 40-byte headers,
especially for the interactive connection.

Almost all of the 325 6-byte headers in the FTP input column contain only a Aack of
256, which being greater than 255 is encoded in 3 bytes. The SLIP MTU is 296, so TCP
uses an MSS of 256. Almost all of the 250 3-byte headers in the FTP output column con-
tain the *S special case (sequence number change only) with a change of 256 bytes. But
since this change refers to the amount of data in the previous segment, nothing is trans-
mitted other than the flag byte and the TCP checksum. The 78 4-byte headers in the
FTP output column are this same special case, but with a change in the IP identification
field also (Exercise 29.8).

Configuration

Header compression must be enabled on a given SLIP or PPP link. With a SLIP link
there are normally two flags that can be set when the interface is configured: enable
header compression and autoenable header compression. These two flags are set using
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the 15_ nk 0 and 3_ ± nk2 flags to the ± £ c on £ 5- g command, respectively. Normally a client
(the dialin host) decides whether to use header compression or not. The server (the host
or terminal server to which the client dials in) specifies the autoenable flag only. If
header compression is enabled by the client, its TCP will send a datagram of type
UNCOMPRESSED_TCP to specify the connection ID. When the server sees this packet it
enables header compression (since it was in the autoenable mode). If the server never
sees this type of packet, it never enables header compression for this line.

PPP allows the negotiation of options between the two ends of the link when the
link is established. One of the options that can be negotiated is whether to use header
compression or not.

29.14 Summary

This chapter completes our detailed look at TCP input processing. We started with the
processing of an ACK in the SYN_RCVD state, which completes a passive open, a
simultaneous open, or a self-connect.

The fast retransmit algorithm lets TCP detect a dropped segment after receiving a
specified number of consecutive duplicate ACKs and retransmit the segment before the
retransmission timer expires. Net/3 combines the fast retransmit algorithm with the
fast recovery algorithm, which tries to keep the data flowing from the sender to the
receiver, albeit at a slower rate, using congestion avoidance but not slow start.

ACK processing then discards the acknowledged data from the socket’s send buffer
and handles a few TCP states specially, when the receipt of an ACK changes the connec-
tion state.

The URG flag is processed, if set, and TCP’s urgent mode is mapped into the socket
abstraction of out-of-band data. This is complicated because the process can receive the
out-of-band byte inline or in a special out-of-band buffer, and TCP can receive urgent
notification before the data byte referenced by the urgent pointer has been received.

TCP input processing completes by calling TCP_REASS to merge the received data
into either the socket’s receive buffer or the socket’s out-of-order queue, processing the
FIN flag, and calling tcp_out~ut if a segment must be generated in response to the
received segment.

TCP header compression is a technique used on SLIP and PPP links to reduce the
size of the IP and TCP headers from the normal 40 bytes to around 3-6 bytes (typically).
This is done by recognizing that most fields in these headers don’t change from one seg-
ment to the next on a given connection, and the fields that do change often change by a
small amount. This allows a flag byte to be sent indicating which fields have changed,
and the changes are encoded as differences from the previous segment.
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Exercises

29.1 A client connects to a server and no segments are lost. Which process, the client or server,
completes its open of the connection first?

29.2 A Net/3 system receives a SYN for a listening socket and the SYN segment also contains
50 bytes of data. What happens?

29.3 Continue the previous exercise assuming that the client does not retransmit the 50 bytes of
data; instead the client responds with a segment that acknowledges the server’s
SYN/ACK and contains a FIN. What happens?

29.4 A Net/3 client performs a passive open to a listening server. The server’s response to the
client’s SYN is a segment with the expected SYN/ACK, but the segment also contains 50
bytes of data and the FIN flag. List the processing steps for the client’s TCP.

29.5 Figure 18.19 in Volume 1 and Figure 14 in RFC 793 both show four segments exchanged
during a simultaneous close. But if we trace a simultaneous close between two Net/3 sys-
tems, or if we watch the close sequence following a self-connect on a Net/3 system, we see
six segments, not four. The extra two segments are a retransmission of the FIN by each
end when the other’s FIN is received. Where is the bug and what is the fix?

29.6 Page 72 of RFC 793 says that when data in the send buffer is acknowledged by the other
end "Users should receive positive acknowledgments for buffers which have been sent
and fully acknowledged (i.e., send buffer should be returned with ’ok’ response)." Does
Net/3 provide this notification?

29.7 What effect do the options defined in RFC 1323 have on TCP header compression?

29.8 What effect does the Net/3 assignment of the IP identification field have on TCP header
compression?
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TCP User Requests

30.1 Introduction

This chapter looks at the TCP user-request function tcp_usrreq, which is called as the
protocol’s pr_usrrecl function to handle many of the system calls that reference a TCP
socket. We also look at tcp_ctloutput, which is called when the process calls
setsockopt for a TCP socket.

30.2

45-58

59--64

65--66

tcp_usrreq Function

TCP’s user-request function is called for a variety of operations. Figure 30.1 shows the
beginning and end of tcp_usrreq. The body of the sw± tch is shown in following fig-
ures. The function arguments, some of which differ depending on the request, are
described in Figure 15.17.

in_control processes ioctl requests

The PRU_CONTROL request is from the ioctl system call.The function
in_control processes the request completely.

Control information is invalid

A call to sendmsg specifying control information is invalid for a TCP socket. If this
happens, the mbufs are released and EINVAL is returned.

This remainder of the function executes at splnet. This is overly conservative
locking to avoid sprinkling the individual case statements with calls to splnet when
the calls are really necessary. As we mentioned with Figure 23.15, setting the processor
priority to splnet only stops a software interrupt from causing the IP input routine to

1007
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tcp usr~q.c
45 int                                                                                    --
46 tcp_usrreq(so, req, m, ham, control)
47 struct socket *so;
48 int req;
49 struct mbuf *m, *nam, *control;
5O {
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8O
81

82

struct inpcb *inp;
struct tcpcb *tp;
int
int error = 0;
int ostate;

if (req == PRU_CONTROL)
return (in_contro!(so, (int) m, (caddr_t) nam,

(struct ifnet *) control));
±f (control && control->m_len) {

m_freem(control);
if (m)

m_freem(m);
return (EINVAL);

s = splnet();
inp - sotoinpcb(so);
/*

* When a TCP is attached to a socket, then there will be
* a (struct inpcb) pointed at by the socket, and this
* structure will point at a subsidary (struct tcpcb).
*/

±f (inp == 0 && req !: PRU_ATTACH) {
splx(s);
return (EINVAL); /* XXX */

}
if (inp) {

tp = intotcpcb(inp);
/* WHAT IF TP IS 07 */
ostate : tp->t_state;

} else
ostate = 0;

switch (req) {

276
277
278
279
280
281
282
283 }

/* switch cases */

default:
panic("tcp_usrreq");

}
if (tp && (so->so_options & SO_DEBUG])

tcp_trace(TA_USER, ostate, tp, (struct tcpiphdr *) 0, req);
splx(s);
return (error);

tcp_usrreq.c
Figure 30.1 Body of tcp_usrreq function.
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67-81

be executed (which could call t cp_input). It does not prevent the interface layer from
accepting incoming packets and placing them onto IP’s input queue.

The pointer to the Intemet PCB is obtained from the socket structure pointer. The
only time the resulting PCB pointer is allowed to be a null pointer is when the
PRU_ATTACH request is issued, which occurs in response to the socket system call.

If ±np is nonnull, the current connection state is saved in ostate for the call to
tclo_trac÷ at the end of the function.

We now discuss the individual case statements. The PRU_ATTACH request, shown
in Figure 30.2, is issued by the socket system call and by sonewconn when a connec-
tion request arrives for a listening socket (Figure 28.7).

83 /*
84 * TCP attaches to socket via PRU_ATTACH, reserving space,
85 * and an internet control block.
86 */
87 case PRU_ATTACH:
88 if (inp)
89 error : EISCONN;
90 break;
91 }
92 error = tcp_attach(so);
93 if (error)
94 break;
95 if ((so->so_options & SO_LINGER) && so->so_linger =- 0)
96 so->so_linger = TCP_LINGERTIME;
97 tp : sototcpcb(so) ;
98 break;

tcp_usrreq.c

99
i00
i01
102
103
104
105
106
107
108
109
ii0
iii

case

* PRU_DETACH detaches the TCP protocol from the socket.
* If the protocol state is non-embryonic, then can’t
* do this directly: have to initiate a PRU_DISCONNECT,
* which may finish later; embryonic TCB’s can just
* be discarded here.
*/
PRU_DETACH:

if (tp->t_state > TCPS_LISTEN)
tp = tcp_disconnect(tp);

else
tp : tcp_close(tp);

break;

Figure 30.2 tcp_usrreq function: PRU_ATTACH and PRU_DETACH requests.

tcp_usrreq.c

83--94

95--96

PRU_ATTACH request

If the socket structure already points to a PCB, E I S CONN is returned, t cp_at t a ch
completes the processing: it allocates and initializes the Internet PCB and the TCP con-
trol block.

If the SO_LTNGER socket option is set, and the linger time is 0, it is set to 120
(TCP_LINGERTIME).
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97

99--111

How can a socket option be set before the PRU_ATTACH request is issued? It is impossible to
set a socket option before calling socket, but sonewconn also issues the PRU_ATTACH
request. The PRU_ATTACH request is issued after sonewconn copies the so_options from
the listening socket to the newly created socket. This code prevents a newly accepted connec-
tion from inheriting a linger time of 0 from the listening socket.

There is a bug here. The constant TCP_LINGERTIME is initialized to 120 in the header
tcp_timer.h with the comment "linger at most 2 minutes." But the so_linger value
becomes the final argument to the kernel’s tsleep function (called from soclose), which
becomes the final argument to the kernel’s t imeout function and is in clock ticks, not seconds.
If the system’s clock-tick frequency (hz) is 100, this value for the linger time is 1.2 seconds, not
2 minutes.

tp is now set to the pointer to the socket’s TCP control block. This is required at the
end, in case the SO_DEBUG socket option is set.

PRU_DETACH request
The close system call issues the PRU_DETACH request if the PRU_DISCONNECT

request fails. If the connection has not been completed (the connection state is less than
ESTABLISHED), nothing needs to be sent to the other end. But if the connection has
been established, tcp_di sconnect initiates TCP’s connection-close sequence (e.g., any
pending data is sent, followed by a FIN).

The test for the state being greater than LISTEN is incorrect, because if the state is SYN_SENT
or SYN_RCVD, both of which are greater than LISTEN, tcp_disconnect just calls
tcp_c lose. This case could be simplified by just calling tcp_disconnect.

Figure 30.3 shows the processing for the bind and 1 i st en system calls.

112 /*
113 * Give the socket an address.
114 */
115 case PRU_BIND:
116 error - in_pcbbind(inp, ham);
117 if (error)
118 break;
119 break;

120 /*
121 * Prepare to accept connections.
122 */
123 case PRU_LISTEN:
124 if (inp->inp_iport -- 0)
125 error : in_pcbbind(inp, (struct mbuf *) 0);
126 if (error == 0)
127 tp->t_state = TCPS_LISTEN;
128 break;

Figure 30.3 tcp_usrreq function: PRU_BIND and PRU_LISTEN requests.

tcp_usrreq.c

tcp_usrreq.c

112-119    All the work for a PRU_BIND request is done by in_pcbbind.
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120--128 For the PRU_LISTEN request, if the socket has not been bound with a local port,
in_pcbbind assigns one automatically. This is rare, since most servers explicitly bind
their well-known port, although RPC (remote procedure call) servers typically bind an
ephemeral port and then register the port with the Port Mapper. (Section 29.4 of
Volume 1 describes the Port Mapper.) The connection state is set to LISTEN. This is the
main purpose of listen: to set the socket’s state so that incoming connections are
accepted (i.e., a passive open).

Figure 30.4 shows the processing for the connect system call: an active open nor-
mally initiated by a client.

12 9 /.
tcp_usrreq.c

130 * Initiate connection to peer.
131 * Create a template for use in transmissions on this connection.
132 * Enter SYN_SENT state, and mark socket as connecting.
133 * Start keepalive timer, and seed output sequence space.
134 * Send initial segment on connection.
135 */
136 case PRU_CONNECT:
137 if (inp->inp_iport == 0) {
138 error = in_pcbbind(inp, (struct mbuf *) 0);
139 if {error)
140 break;
141 }
142 error = in~cbconnect(inp, ham);
143 if (error)
144 break;

145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161

162
163

tp->t_template _ tcp_template(tp);
if (tp->t_template -: 0) {

in_pcbdisconnect(inp);
error = ENOBUFS;
break;

}
/* Compute window scaling to request. */
while (tp >request r scale < TCP MAX WINSHIFT &&

(TCP_MAXWIN << tp->request r scale) < so >so_rcv.sb_hiwat)
tp->request_r_scale++;

soisconnecting(so);
tcpstat.tcps_connattempt++;
tp->t_state = TCPS SYN SENT;
tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;

tp->iss = tcp_iss;
tcp_iss += TCP_ISSINCR / 2;
tcp_sendseqinit(tp);

error = tcp_output(tp);
break;

Figure 30.4 tcp_usrreq function: PRU_CONNECT request.

tcp_usrreq.c
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129--141

142--144

145--150

151--154

155--158

159--161

162

164--169

1 70--i 83

Assign ephemeral port
If the socket has not been bound with a local port, in_pcbbind assigns one auto-

matically. This is typical for clients, which normally don’t care about the value of the
local port.

Connect PCB
in_pcbconnect acquires a route to the destination, determines the outgoing inter-

face, and verifies that the socket pair is unique.

Initialize IP and TCP headers
tcp_template allocates an mbuf for a copy of the IP and TCP headers, and it ini-

tializes both headers with as much information as possible. The only way for this func-
tion to fail is for the kernel to run out of mbufs.

Calculate window scale factor

The window scale value for the receive buffer is calculated: 65535 (TCP_lVJ_AXWIN) is
left shifted until the value is greater than or equal to the size of the receive buffer
(so_roy. sb_hiwat). The resulting shift count (between 0 and 14) is the scale factor
that will be sent in the SYN. (We saw identical code in Figure 28.7 that was executed for
a passive open.) Since the window scale option is sent in the SYN resulting from a
connect, the process must set the SO_RCVBUF socket option before calling connect,
or the default buffer size is used (tcp_recvspace from Figure 24.3).

Set socket and connection state
soisconnecting sets the appropriate bits in the socket’s state variable, and the

state of the TCP connection is set to SYN_SENT. This causes the call to tcp_output
that follows to send the SYN (see the tcp_outflags value in Figure 24.16). The con-
nection-establishment timer is initialized to 75 seconds, tep_output will also set the
retransmission timer for the SYN, as shown in Figure 25.15.

Initialize sequence numbers
The initial send sequence number is copied from the global te~_±ss. This global is

then incremented by 64,000 (TCP_ISS[ENCR divided by 2). We saw this same handling
of tcp_iss when the ISS was initialized after a listening server received a SYN (Fig-
ure 28.17). The send sequence numbers are then initialized by tep_sendseqinit.

Send initial SYN
tcp_output sends the initial SYN to initiate the connection. A local error (for

example, out of mbufs or no route to destination) is returned by tcp_output, which
becomes the return value from tcp_usrreq, which is returned to the process.

Figure 30.5 shows the processing for the PRU CO1X!NECT2, PRU_DISCONNECT, and
PRU ACCEPT requests.

The PRU_CONNECT2 request, a result of the socketpair system call, is invalid for
the TCP protocol.

The close system call issues the PRU_DISCONNECT request. If the connection has
been established, a FIN must be sent and the normal TCP close sequence followed. This
is done by tcp_disconnect.
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184--191

192--200

164
165
166
167
168
169

* Create a TCP connection between two sockets.
*/

case PRU_CONNECT2:
error : EOPNOTSUPP;
break;

tcp_usrreq.c

170
171
172
173
174
175
176
177
178
179
180
181
182
183

* Initiate disconnect from peer.
* If connection never passed embryonic stage, just drop;
* else if don’t need to let data drain, then can just drop anyway,
* else have to begin TCP shutdown process: mark socket disconnecting,
* drain unread data, state switch to reflect user close, and
* send segment (e.g. FIN) to peer. Socket will be really disconnected
* when peer sends FIN and acks ours.

* SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.

case PRU_DISCONNECT:
tp = tcp_disconnect(tp);
break;

184
185
186
187
188
189
190
191

Figure 30.5

* Accept a connection. Essentially all the work is
* done at higher levels; just return the address
* of the peer, storing through addr.
*/

case PRU_ACCEPT:
in_setpeeraddr(inp, nam);
break;

tcp_usr~q.c

tcp_usrreqfunction:PRU_CONNECT2, PRU_DISCONNECT, and PRU_ACCEPTrequests.

The comment beginning with "SHOULD IMPLEMENT" refers to the fact that a socket that
encounters an error cannot be reused. For example, if a client issues a connect and receives
an error, it cannot issue another connect on the same socket. Instead, the socket with the
error must be closed, a new socket created with socket, and the connect issued on the new
socket.

All the work associated with the accept system call is done by the socket layer and
the protocol layer. The PRU_ACCEPT request just returns the IP address and port num-
ber of the peer to the process.

The PRU_SHUTDOWN, PRU_RCVD, and PRU_SEND requests are processed in Fig-
ure 30.6.
PRU_SHUTDOWN request

This request is issued by soshutdown when the process calls shutdown to prevent
any further output, socantsendmore sets the socket’s flags to prevent any future out-
put. tcp_usrclosed sets the connection state according to Figure 24.15.
tcp_output attempts to send the FIN, but if there is still pending data to send to the
other end, that data is sent before the FIN is sent.
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192
193
194
195
196
197
198
199
200

201
202
203
204
205
206

207
208
209
210
211
212
213
214

top usrreq.c

* Mark the connection as being incapable of further output.
*/

case PRU_SHUTDOWN:
socantsendmore(so);
tp = tcp ~usrclosed(tp);
if (tp)

error = tcp_output(tp);
break;

* After a receive, possibly send window update to peer.
*/

case PRU_RCVD:
(void) tcp_output(tp);
break;

* Do a send by putting data in output queue and updating urgent
* marker if URG set. Possibly send more data.
*/

case PRU_SEND:
sbappend(&so->so_snd, m);
error : tcp_output(tp);
break;

tcp_usr~q.c
Figure30.6 tcp_usrreqfunction:PRU_SHUTDOWN, PRU_RCVD, and PRU_SENDrequests.

201--206

207-214

PRU_RCVD request

This request is issued by soreceive after the process has read data from the
socket’s receive buffer. TCP needs to know about this since the receive buffer may now
have enough room to allow the advertised window to increase, tcp_outlvut will
determine whether a window update segment should be sent.

PRU_SEND request
In Figure 23.14 we showed how the five write functions ended up issuing this

request, sbapp÷r~cl adds the data to the socket’s send buffer (where it must wait until
acknowledged by the other end), and top_output sends a segment, if possible.

215--220

Figure 30.7 shows the processing of the PRU_ABORT and PRU_SENSE requests.
PRU__ABORT request

A PRU_ABORT request is issued for a TCP socket by soclose if the socket is a lis-
tening socket (e.g., a server) and if there are pending connections for the server that
have already initiated or completed the three-way handshake, but have not been
accepted by the server yet. tcp_drop sends an RST if the connection is synchro-
nized.
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215 /*
216 * Abort the TCP.
217 */
218 case PRU_ABORT :
219 tp = tcp_drop(tp, ECONNABORTED);
220 break;

221 case PRU_SENSE:
222 ((struct stat *)
223 (void) splx(s);
224 return (0);

m)->st_blksize : so->so_snd.sb_hiwat;

Figure 30.7 tcp_usrreq function: PRU_ABORT and PRU_SENSE requests.

tcp_usrreq.c

tcp_usrreq.c

221 224

225--232

PRU_SENSE request
The fstat system call generates the PRU_SENSE request. TCP returns the size of

the send buffer as the s t_blks i ze element of the s t at structure.

Figure 30.8 shows the PRU_RCVOOB request, issued by soreceive when the pro-
cess issues a read system call specifying the MSG_OOB flag to read out-of-band data.

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

case PRU_RCVOOB:
if ((so->so_oobmark :: 0 &&

(so->so_state & SS_RCVATHARK) :: 0)
so->so_options & SO_OOBINLINE I I
tp->t_oobflags & TCPOOB_HADDATA) {
error : EINVAL;
break;

II

((tp >t_oobflags & TCPOOB_HAVEDATA) == 0)
error = EWOULDBLOCK;
break;

m->m_len = i;
*mtod(m, caddr_t) = tp->t_iobc;
if (((int) nam& HSG_PEEK) =: 0)

tp >t_oobflags ^= (TCPOOB_HAVEDATA
break;

I TCPOOB_HADDATA);

Figure 30.8 tcp_usrreq function: PRU_RCVOOB request.

tcp_usrreq.c

tcp_usrreq.c

Verify that reading out-of-band data is appropriate
It is an error for the process to try to read out-of-band data if any one of the follow-

ing three conditions is true:

1. if the socket’s out-of-band mark is 0 (so_oobmark) and the socket is not at the
mark (the SS_RCVATMARK flag is not set), or
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233--236

237--238

239--241

2. if the SO_OOBINLINE socket option is set, or

3. if the TCP©O]3_HA]ZDATA flag is set for the connection (i.e., the connection did
have an out-of-band byte, but it has already been read).

The error EINVAL is returned if any one of these is true.
Check that out-of-band byte has arrived

If none of the three conditions above is true, but the TCPOOB_HAVEDATA flag is
false, this indicates that TCP has received an urgent mode notification from the other
end, but the byte whose sequence number is i less than the urgent pointer has not been
received yet (Figure 29.17). The error EWOULDBLOCK is returned. It is possible for TCP
to send an urgent notification with an urgent offset referencing a byte that the sender
has not been able to send yet. Figure 26.7 of Volume 1 shows an example of this sce-
nario, which often happens if the sender’s data transmission has been stopped by a
zero-window advertisement.

Return out-of-band byte
The single byte of out-of-band data that was stored int_iobc by

t cp_pul l outo fband is returned to the process.

Flip flags
If the process is actually reading the out-of-band byte (as compared to peeking at it

with the MSG_PEEK flag), this exclusive OR turns the HAVE flag off and the HAD flag on.
We are guaranteed at this point in the case statement that the HAVE flag is set and the
HAD flag is cleared. The purpose of the HAD flag is to prevent the process from trying to
read the out-of-band byte more than once. Once the HAD flag is set, it is not cleared
until a new urgent pointer is received from the other end (Figure 29.17).

The reason for this hard-to-understand exclusive OR, instead of the simpler

tp->t_oobflags : TCPOOB_HADDATA;

is to allow additional bits in t_oobflags to be used. Net/Z, however, only uses the 2 bits
that we’ve described.

242--247

248--257

The PRU_SENDOOB request, shown in Figure 30.9, is issued by sosend when the
process writes data and specifies the MSG_OOB flag.

Check for room and append to send buffer

The process is allowed to exceed the size of the send buffer by up to 512 bytes when
sending out-of-band data. The socket layer is more permissive, allowing out-of-band
data to exceed the size of the send buffer by 1024 bytes (Figure 16.24). sbappend adds
the data to the end of the send buffer.

Calculate urgent pointer
The urgent pointer (snd_up) points to the byte following the final byte from the

write request. We showed this in Figure 26.30, assuming the process writes 3 bytes of
data with the MSG_OOB flag set and that the send buffer was empty. Realize that if the
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242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

258
259
260

case PRU_SENDOOB:
if (sbspace(&so->so_snd) < -512) {

m_freem(m);
error = ENOBUFS;
break;

}
/.

* According to RFC961 (Assigned Protocols),
* the urgent pointer points to the last octet
* of urgent data. We continue, however,
* to consider it to indicate the first octet
* of data past the urgent section.
* Otherwise, snd_up should be one lower.
*/

sbappend(&so->so_snd, m);
tp->snd_up : tp->snd_una + so->so_snd.sb_cc;

tp->t_force = i;
error : tcp_output(tp);
tp->t_force = 0;

261 break;

Figure 30.9 tcp_usrreq function: PRU_SENDOOB request.

tcp_usrreq.c

tcp_usrreq.c

258--261

262--267

268-275

process writes more than i byte of data with the MSG_OOB flag set, only the final byte is
considered the out-of-band byte when the data is received by a Berkeley-derived sys-
tem.

Force TCP output
t_force is set to 1 and tcp_output is called. This causes a segment to be sent

with the URG flag set and with a nonzero urgent offset, even if no data can be sent
because of a zero-window advertisement. Figure 26.7 of Volume 1 shows the transmis-
sion of an urgent segment into a closed window.

The final three requests are shown in Figure 30.10.
The getsockname and getpeername system calls issue the PRU_SOCKADDR and

PRU_PEERADDR requests, respectively. The functions in_setsockaddr and
in_setpeeraddr fetch the information from the PCB, storing the result in the addr
argument.

The PRU_SLOWTIMO request is issued by the tep_s lowt imo function. As the com-
ment indicates, the only reason t ep_s 1 owt imo doesn’t call t cp_t ime r s directly is to
allow the timer expiration to be traced by the call to top_trace at the end of the func-
tion (Figure 30.1). For the trace record to show which one of the four TCP timer coun-
ters expired, tcp_slowtimo passes the index into the t_timer array (Figure 25.1) as
the ham argument, and this is left shifted 8 bits and logically ORed into the request
value (req). The trpt program knows about this hack and handles it accordingly.
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tcp_usrreq.c
262       case PRU_SOCKADDR:
263 in_setsockaddr(inp, ham) ;
264 break;

265 case PRU_PEERADDR:
266 in_setpeeraddr(inp, nam);
267 break;

268 /*
269 * TCP slow timer went off; going through this
270 * routine for tracing’s sake.
271 */
272 case PRU_SLOWTIMO:
273 tp = tcp_tim@rs{tp, (int) ham);
274 req I= (int) ham << 8; /* for debug’s sake */
275 break;

Fizure38.18 tCp_usrreqfUnction:PRU_SOCKADDR, PRU_PEERADDR, and PRU_SLOWTIMOrequests.

30.3

361 372

373-377

378-38d

385-386

tcp_attach Function

The tcp_attach function is called by tcp_usrreq to process the PRU_ATTACH
request (i.e., when the socket system call is issued or when a new connection request
arrives for a listening socket). Figure 30.11 shows the code.
Allocate space for send buffer and receive buffer

If space has not been allocated for the socket’s send and receive buffers,
sbreserve sets them both to 8192, the default values of the global variables
tcp_sendspace and tcp_recvspace (Figure 24.3).

Whether these defaults are adequate depends on the MSS for each direction of the connection,
which depends on the MTU. For example, [Comer and Lin 1994] show that anomalous behav-
ior occurs if the send buffer is less than three times the MSS, which drastically reduces perfor-
mance. Some implementations have much higher defaults, such as 61,444 bytes, realizing the
effect these defaults have on performance, especially with higher MTUs (e.g., FDDI and ATM).

Allocate Internet PCB and TCP control block
in_pcballoc allocates an Internet PCB and tcp_newtcpcb allocates a TCP con-

trol block and links it to the PCB.
The code with the comment xxx is executed if the call to malloc in

tcp_newtcpcb fails. Remember that the PRU ATTACH request is issued as a result of
the socket system call, and when a connection request arrives for a listening socket
(sonewconn). In the latter case the socket flag SS_NOFDREF is set. If this flag is left on,
the call to sofree by in_pcbdetach releases the socket structure. As we saw in
top_input, this structure should not be released until that function is done with the
received segment (the dro~osocket flag in Figure 29.27). Therefore the current value of
the SS_NOFDREF flag is saved in the variable nofd when in_pcbdetach is called, and
reset before t <p_at t a.ch returns.

The TCP connection state is initialized to CLOSED.
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361 int
362 tcp_attach(so)
363 struct socket *so;
364 {
365 struct tcpcb *tp;
366 struct inpcb *inp;
367 int error;

368
369
3?O
371
372
373
374
375
376
377
378
379

if (so->so_snd.sb_hiwat := 0 I I so->so_rcv.sb_hiwat == 0) {
error - soreserve(so, tcp_sendspace, tcp_recvspace);
if (error)

return (error);
}
error : in_pcballoc(so, &tcb);
if (error)

return (error);
inp = sotoinpcb(so);
tp - tcp_newtcpcb(inp);
if (tp -- 0) {

int nofd : so->so_state & SS_NOFDREF;    /* XXX */

tcp_usrreq.c

380 so->so_state &= -SS_NOFDREF;
381 in_pcbdetach(inp);
382 so->so_state I- nofd;
383 return (ENOBUFS) ;
384 }
385 tp >t_state = TCPS_CLOSED;
386 return (0);
387 }

/* don’t free the socket yet */

tcp_usrreq.c
Figure 30.11 tcp_attach function: create a new TCP socket.

30.4

396-402

403-404

tcp_disconnect Function

t cp_di s c onnec t, shown in Figure 30.12, initiates a TCP disconnect.

Connection not yet synchronized
If the socket is not yet in the ESTABLISHED state (i.e., LISTEN, SYN_SENT, or

SYN_RCVD), tcp_c!ose just releases the PCB and the TCP control block. Nothing
needs to be sent to the other end since the connection has not been synchronized.
Hard disconnect

If the connection is synchronized, the SO_LINGER socket option is set, and the
linger time (so_linger) is set to 0, the connection is dropped by top_drop. This sets
the connection state to CLOSED, sends an RST to the other end, and releases the PCB

~,and TCP control block. The connection does not pass through the TIME_WAIT state.
The call to close that caused the PRU_DISCONNECT request will discard any data still
in the send or receive buffers.

If the SO_LINGER socket option has been set with a nonzero linger time, it is han-
dled by soclose.

DELL EX.1095.1044



1020    TCP User Requests Chapter 30

396 struct tcpcb *
397 tcp_disconnect(tp)
398 struct tcpcb
399 {
400 struct socket *so : tp->t_inpcb->inp_socket;

401 if (tp->t_state < TCPS_ESTABLISHED)
402 tp = tcp_close(tp);
403 else if ((so >so_options & SO_LINGER)
404 tp = tcp_drop(tp, 0);
405 else {
406 soisdisconnecting(so);
407 sbflush(&so->so_rcv);
408 tp = tcp_usrclosed(tp);
409 if (tp)
410 (vo±d) tcp_output(tp);
411 }
412 return (tp);
413

&& so->so_linger == 0)

Figure 30.12 tcp_disconnect function: initiate TCP disconnect.

tcp_usrreq.c

tcp_usrreq.c

405--406

407

408--410

Graceful disconnect
This code is executed when the connection has been synchronized but the

SO_T,INGER option either was not set or was set with a nonzero linger time. TCP’s nor-
mal co~mection termination steps must be followed, so±sd±sconnect±ng sets the
socket’s state.

Discard pending receive data
Any pending data in the receive buffer is discarded by s]oflush, since the process

has closed the socket. The send buffer is left alone, however, and tcp_outpu¢ will try
to send what remains. We say "try" because there’s no guarantee that the data still to be
sent will be transmitted successfully. The other end might crash before it receives and
acknowledges the data, or even if the TCP module at the other end receives and
acknowledges the data, the system might crash before the application at the other end
reads the data. Since the local process has closed the socket, if TCP gives up trying to
send what remains in the send buffer (because its retransmission timer finally expires),
there is no way to notify the process of the error.
Change connection state

tcp_usrclosed moves the connection into the next state, based on the current
state. This normally moves the connection to the FIN WAIT_I state, since the connec-
tion is typically closed from the ESTABLISHED state. We’ll see that tc~o_usrclosed
always returns the current control block pointer (tp), since the state must be synchro-
nized to get to this point in the code, so top_output is always called to send a seg-
ment. If the connection moves from the ESTABLISHED to the FIN_WAIT_I state, this
causes a FIN to be sent.
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30.5

429-434

435-438

439-441

443-444

tcp_usrclosed Function

This function, shown in Figure 30.13, is called from tcp_disconnect and when the
PRU_SHUTDOWN request is processed.

tcp usrreq.c
424 struct tcpcb *                                                                           -
425 tcp_usrclosed(tp)
426 struct tcpcb *tp;
427 {

428 switch (tp->t_state) {

429 case TCPS_CLOSED:
430 case TCPS_LISTEN:
431 case TCPS~SYN_SENT:
432 tp->t_state = TCPS_CLOSED;
433 tp = tcp_close(tp);
434 break;

435
436
437
438

case TCPS_SYN_RECEIVED:
case TCPS_ESTABLISHED:

tp->t_state = TCPS_FIN_WAIT_I;
break;

439 case TCPS_CLOSE_WAIT:
440 tp->t_state = TCPS_LAST_ACK;
441 break;
442 }
443 if (tp && tp >t_state >: TCPS_FIN_WAIT_2)
444 soisdisconnected(tp->t_inpcb->inp_socket);
445 return (tp);
446 }

tcp_usr~q.c

Figure30.13 tcp_usrclosedfuncfion:moveconnectiontonextstate, based on processclose.

Simple close when SYN not received
If a SYN has not been received on the connection, a FIN need not be sent. The new

state is CLOSED and top_close releases the Internet PCB and the TCP control block.

Move to FIN_WAIT_I state
In the SYN_RCVD and ESTABLISHED states, the new state is FIN_WAIT_l, which

causes the next call to top_output to send a FIN (the tcp_outflags value in Fig-
ure 24.16).

Move to LAST_ACK state
In the CLOSE WAIT state, the close moves the connection into the LAST_ACK

state. The next call to top_output will cause a FIN to be sent.
If the connection state is either FIN_WAIT_2 or TIME_WAIT, soisdisconnected

marks the socket state appropriately.
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30.6 tcp_ctloutput Function

296--303

304--308

The tcp_ctloutput function is called by the getsockopt and setsockopt system
calls when the descriptor argument refers to a TCF socket and when the level is not
SOL_SOCKET. Figure 30.14 shows the two socket options supported by TCP.

optname Variable Access Description

TCP_NODELAYt_flags read, write Nagle algorithm (Figure 26.8)
TCP_MAXSEG t_maxseg read, write maximum segment size TCP will send

Figure 30.14 Socket options supported by TCP.

Figure 30.15 shows the first part of the function.

284 int
285 tcp_ctloutput(op, so, level, optname, mp)
286 int      op;
287 struct socket *so;
288 int level, optname;
289 struct mbuf **mp;
290 {
291 int error : 0, s;
292 struct inpcb *inp;
293 struct tcpcb *tp;
294 struct mbuf *m;
295 int i;

296
297
298
299
300
301
302
303
304
305
306
307
308
309

inp
if

}
if

spinet();
= sotoinpcb(so);

(inp :: NULL) {
splx(s);
if (op == PRCO_SETOPT && *mp)

(void) m_free(*mp)
return (ECONNRESET);

(level != IPPROTO_TCP)
error : ip_ctloutput(op, so, level, optname, mp);
splx(s);
return (error);

}
tp = intotcpcb(inp);

Figure 30.15 t Cp_Ct ioutput function: first part.

tcp_usrreq.c

tcp_usrreq.c

The processor priority is set to splnet while the function executes, and inp points
to the Internet PCB for the socket. If inp is null, the mbuf is released if the operation
was to set a socket option, and an error is returned.

If the level (the second argument to the getsockopt and setsockopt system
calls) is not IPPROTO_TCP, the command is for some other protocol (i.e., IP). For exam-
ple, it is possible to create a TCP socket and set the IP source routing socket option. In
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309

315-316

317-321

322-327

this example IP processes the socket option, not TCP. ip_ctloutput handles the com-
mand.

The command is for TCP, so tp is set to the TCP control block.

The remainder of the function is a switch with two cases: one for PRCO_SETOPT
(shown in Figure 30.16) and one for PRCO_GETOPT (shown in Figure 30.17).

310 switch (op) {

311 case PRCO_SETOPT:
312 m : *mp;
313 switch (optname) {

314 case TCP_NODELAY:
315 if (m :: NULL I I m->m_len < sizeof(int))
316 error = EINVAL;
317 else if (*mtod(m, int *))
318 tp->t_flags I: TF_NODELAY;
319 else
320 tp->t_flags &: -TF_NODELAY;
321 break;

322 case TCP_MAXSEG:
323 if (m && (i : *mtod(m, int
324 tp->t_maxseg =
325 else
326 error : EINVAL;
327 :break;

328 default:
329 error
330 break;
331 }
332 if (m)
333 (void)
334 break;

*)) > 0
i;

: ENOPROTOOPT;

m_free(m);

Figure 30.16 tcp_ctloutput function: set a socket option.

tcp_usrreq.c

&& i <: tp->t_maxseg)

tcp_usrreq.c

m is an mbuf containing the fourth argument to setsockopt. For both of the TCP
options the mbuf must contain an integer value. If either the mbuf pointer is null, or the
amount of data in the mbuf is less than the size of an integer, an error is returned.
TCP_NODELAY option

If the integer value is nonzero, the TF_NODELAY flag is set. This disables the Nagle
algorithm in Figure 26.8. If the integer value is 0, the Nagle algorithm is enabled (the
default) and the TF_NODELAY flag is cleared.

TCP_MAXSEG option
A process can only decrease the MSS. When a TCP socket is created,

tcp_newtcpcb initializes t_maxseg to its default of 512. When a SYN is received
from the other end with an MSS option, tcp_input calls tcp_mss, and t__maxseg can
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332--333

335--337

339--341

be set as high as the outgoing interface MTU (minus 40 bytes for the default IP and TCP
headers), which is 1460 for an Ethernet. Therefore, after a call to socket but before a
connection is established, a process can only decrease the MSS from its default of 512.
After a connection is established, the process can decrease the MSS from whatever value
was selected by tcp_mss.

4.4BSD was the first Berkeley release to allow the MSS to be set with a socket option. Prior
releases only allowed a getsockopt for the MSS.

Release mbuf

The mbuf chain is released.

335
336
337

Figure 30.17 shows the processing for the PRCO_GETOPT command.

case PRCO_GETOPT:
*mp : m = m_get(M_WAIT, MT_SOOPTS);
m->m_len = sizeof(±nt);

338 switch (optname) {
339 case TCP_NODELAY:
340 *mtod(m, int *)
341 break;
342 case TCP_}4AXSEG:
343 *mtod(m, int *)
344 break;
345 default:
346 error = ENOPROTOOPT;
347 break;
348 }
349 break;
35O }
351 splx(s);
352 return (error);
353 ]

: tp->t_flags & TF_NODELAY;

= tp->t_maxseg;

Figure 30.17 tcp_ct 1output function: get a socket option.

tcp_usrreq.c

tcp_usrreq.c

Both TCP socket options return an integer to the process, so m_get obtains an mbuf
and its length is set to the size of an integer.

TCP_NODELAY returns the current status of the TF_NODELAY flag: 0 if the flag is not
set (the Nagle algorithm is enabled) or TF_NODELAY if the flag is set.

The TCP_I~XSEG option returns the current value of t_maxseg. As we said in our
discussion of the PRCO_SETOPT command, the value returned depends whether the
socket has been connected yet.
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30.7 Summary

The t cp_us r r ÷q function is straightforward because most of the required processing is
done by other functions. The PRU_Xxx requests form the glue between the protocol-
independent system calls and the TCP protocol processing.

The tcp_c~_ou~pu~ function is also simple because only two socket options are
supported by TCP: enable or disable the Nagle algorithm, and set or fetch the maximum
segment size.

Exercises

30.1 Now that we’ve covered all of TCP, list the processing steps and the TCP state transitions
when a client goes through the normal steps of sock÷t, conn÷ct, wr±t÷ (a request to the
server), ~ceac~ (a reply from the server), and clos÷. Do the same exercise for the server
end.

30.2 If a process sets the SO_L~I~GER socket option with a linger time of 0 and then calls close,
we showed how tcp_cl±sconnect is called, which causes an RST to be sent. What hap-
pens if a process sets this socket option with a linger time of 0 but is then killed by a signal
instead of calling close? Is the RST segment still sent?

30.3 The description for TCP_L:~I~GEI~T~E in Figure 25.4 is the "maximum #seconds for
SO_L~NGER socket option." Given the code in Figure 30.2, is this description correct?

30.4 A Net/3 client calls socke~ and oor~ne~t to actively open a connection to a server. The
server is reached through the client’s default router. A total of 1,129 segments are sent by
the client host to the server. Assuming the route to the destination does not change, how
many routing table lookups are done on the client host for this connection? Explain.

30.5 Obtain the sock program described in Appendix C of Volume 1. Run it as a sink server
with a pause before reading (-P) and a large receive buffer. Then run the same program
on another system as a source client. Watch the data with ~epcl~ra~. Verify that TCP’s
ACK-every-other-segment does not occur and that the only ACKs seen from the server are
delayed ACKs.

30.6 Modify the $O_KEEPAL~VE socket option so that the parameters can be configured on a
per-connection basis.

30.7 Read RFC 1122 to determine why it recommends that an implementation should allow an
RST to carry data. Modify the Net/3 code to implement this.
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BPF: BSD Packet Filter

31.1 Introduction

The BSD Packet Filter (BPF) is a software device that "taps" network interfaces. A pro-
cess accesses a BPF device by opening /dev/bp£0, /dev/bpfl, and so on. Each BPF
device can be opened only by one process at a time.

Since each BPF device allocates 8192 bytes of buffer space, the system administrator typically
limits the number of BPF devices. If open returns EI3USY, the device is in use, and a process
tries the next device until the open succeeds.

The device is configured with several ioctl commands that associate the device
with a network interface and install filters to receive incoming packets selectively. Pack-
ets are received by reading from the device, and packets are queued on the network
interface by writing to the device.

We will use the term packet even though frame is more accurate, since BPF works at the data-
link layer and includes the link-layer headers in the frames it sends and receives.

BPF works only with network interfaces that been modified to support BPF. In
Chapter 3 we saw that the Ethernet, SLIP, and loopback drivers call bpfattach. This
call configures the interface for access through the BPF devices. In this section we show
how the BPF device driver is organized and how packets move between the driver and
the rtetwork interfaces.

BPF is normally used as a diagnostic tool to examine the traffic on a locally attached
network. The tc~durn~ program is the best example of such a tool and is described in
Appendix A of Volume 1. Normally the user is interested in packets between a given
set of machines, or for a particular protocol, or even for a particular TCP connection. A
BPF device can be configured with a filter that discards or accepts incoming packets
according to a filter specification. Filters are specified as instructions to a pseudo-
machine. The details of BPF filters are not discussed in this text. For more information
about filters, see bpf(4) and [McCarme and Jacobson 1993].

1027
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31.2 Code Introduction

The code for the portion of the BPF device driver that we describe resides in the two
headers and one C file listed in Figure 31.1.

File Description

n÷t/lop £. h BPF constants
net/bp fdesc, h BPF structures
net/bpf, c BPF device support

Figure 31.1 Files discussed in this chapter.

Global Variables

The global variables introduced in this chapter are shown in Figure 31.2.

Variable Datatype Description

bpf_iflist struct bpf_if * linked list of BPF-capable interfaces
bpf_dtab struct bpf_d [ ] array of BPF descriptor structures
bpf_bufsize int default size of BPF buffers

Figure 31.2 Global variables introduced in this chapter.

Statistics

Figure 31.3 shows the two statistics collected in the bpf_d structure for every active
BPF device.

bpf_d member Description

bd_rcount #packets received from network interface
bd_dcount #packets dropped because of insufficient buffer space

Figure 31.3 Statistics collected in this chapter.

The remainder of this chapter is divided into four sections:

¯ BPF interface structures,
¯ BPF device descriptors,
¯ BPF input processing, and
¯ BPF output processing.
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31.3

67--69

70

71

72--74

bpf_if Structure

BPF keeps a list of the network interfaces that support BPF. Each interface is described
by a bp f_i f structure, and the global pointer bpf_i f 1 i s t points to the first structure
in the list. Figure 31.4 shows a BPF interface structure.

67 struct bpf_if {
68
69
70
71
72
73
74 };

struct bpf_if ~bif_next;
struct bpf_d *bif_dlist;
struct bpf_if **bif_driverp;
u_int    bif_dlt;
u_int    bif_hdrlen;
struct ifnet *bif_ifp;

/* list of all interfaces */
/* descriptor list */

/* pointer into softc */
/* link layer type */
/* length of header (with padding)
/* correspoding interface */

Figure 31.4 bp f_i f structure.

bpfdesc.h

./

bpfdesc.h

bi f_next points to the next BPF interface structure in the list. bi f_dlist points
to a list of BPF devices that have been opened and configured to tap this interface.

bif_driverp points to a bpf_if pointer stored in the ifnet structure of the
tapped interface. When the interface is not tapped, *bif_driverp is null. When a
BPF device is configured to tap an interface, *bi f_driverp is changed to point back to
the bi f_i f structure and tells the interface to begin passing packets to BPF.

The type of interface is saved in bif_dlt. The values for our example interfaces
are shown in Figure 31.5.

b i f_dl t Description
DLT_ENI OMB lOMb Ethernet interface
DLT_SLIP SLIP interface
DLT_NULL loopback interface

Figure 31.5 bif_dlt values.

Each packet accepted by BPF has a BPF header prepended to it. bi f_hdrlen is the
size of the header. Finally, b±f_±£p points to the ±fnet structure for the associated
interface.

Figure 31.6 shows the b~f_hdr structure that is prepended to every incoming
packet.

122 struct bpf_hdr {
123 struct timeval bh_tstamp;
124 u_long bh_caplen;
125 u_long bh_datalen;
126 u_short bh_hdrlen;
127
128 };

/* time stamp */
/* length of captured portion */
/* original length of packet */

bpf .h

/* length of bpf header (this struct plus
alignment padding) */

bpf .h

Figure 31,6 bp f_hdr structure.
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122--128 bh_tstamp records the time the packet was captured, bh_caplen is the number
of bytes saved by BPF, and bh_datalen is the number of bytes in the original packet.
bh_headlen is the size of the bpf_hdr structure plus any padding. This value should
match bi f_hdr i en for the receiving interface and is used by processes to interpret the
packets read from the BPF device.

Figure 31.7 shows how bpf_i f structures are connected to the i fnet structures for
each of our three sample interfaces (le_so ftc [ 0 ], s l_softc [ 0 ], and loif).

bpf_iflist:

~_ bpf_if { }

L bif_dlist

bpf_i f { }                                        bpf_i f { }
~’ bif_next -~t ~[ bif_next

~
INULL |bif_dlist }NULL Ibif_dlist INULL--~-~_

/--~p ]     ~--bi f_driverp~
DLT_ENIOM~ bif dlt     IDLT_SLIP I bif_dlt     IDLT_NULL

le_softc [0] :

if_bpf

sl_softc[O]:

sc_bpf

loif:

if_bpf

Figure 31.7 bpf_if and ifnet structures.

1053--1063

Notice that bif_driverp points to the if_bpf and sc_bpf pointers in the net-
work interfaces and not to the interface structures.

The SLIP device uses sc_bpf, instead of the if_bpf member. One reason might be that the
SLIP BPF code was written before the if_bpf member was added to the ifnet structure.
The i fnet structure in Net/2 does not include a i f_bpf member.

The link-type and header-length members are initialized for all three interfaces
according to the information passed by each driver in the call to bp f at t ach.

In Chapter 3 we saw that bpfattach was called by the Ethemet, SLIP, and loop-
back drivers. The linked list of BPF interface structures is built as each device driver
calls bp f a t t a c h during initialization. The function is shown in Figure 31.8.

bpfattach is called by each device driver that supports BPF. The first argument is
the pointer saved in bi f_driverp (described with Figure 31.4). The second argument
points to the ifnet structure of the interface. The third argument identifies the data-
link type, and the fourth argument identifies the size of link-layer header passed with
the packet. A new bpf_i f structure is allocated for the interface.
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1053 void
1054 bpfattach(driverp, ifp, dlt, hdrlen)
1055 caddr_t *driverp;
1056 struct ifnet *ifp;
1057 u_int    dlt, hdrlen;
1058 {
1059 struct bpf_if *bp;
1060 int i;
1061 bp = (struct bpf_if *) malloc(sizeof(*bp), M_DEVBUF, H_DONTWAIT);
1062 if (bp == 0)
1063 panic("bpfattach");

1064
1065
1066
1067

1068
1069

1070

1071
1072
1073
1074
1075
1076
1077

1078
1079
1080
1081
1082
1083

1084
1085

bp->bif_dlist : 0;
bp->bif_driverp : (struct bpf_if **) driverp;
bp->bif_ifp : ifp;
bp->bif_dlt : dlt;

bp->bif_next = bpf_iflist;
bpf_iflist = bp;

*bp->bif_driverp : 0;

* Compute the length of the bpf header. This is not necessarily
* equal to SIZEOF_BPF_HDR because we want to insert spacing such
* that the network layer header begins on a longword boundary (for
* performance reasons and to alleviate alignment restrictions).
*/

bp->bif_hdrlen = BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen;

* Mark all the descriptors free if this hasn’t been done.
*/

if (!D_mSFREE(&bpf_dtab[0]))
for (i : 0; i < NBPFILTER; ++i)

D_HARKFREE(&bpf_dtab[i]);

printf("bpf: %s%d attached\n", ifp->if_name, ifp->if_unit);

Figure 31.8 bpfattach function.

1064-1070

1071-1077

Initialize bpf_if structure
The bpf_i f structure is initialized from the arguments and inserted into the front

of the BPF interface list, bpf_± f l i s t.

Compute BPF header size
bi f_hdrl en is set to force the netv;ork-layer header (e.g., the IP header) to start on a

longword boundary. This improves performance and avoids unnecessary alignment
restrictions for the BPF filter. Figure 31.9 shows the overall organization of the captured
BPF packet for each of our three sample interfaces.
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bpf_hdr{ } ether_header(} IP packet
~~

18 bytes 14 bytes

1078--1083

1084--1085

~- padding

bpf_hdr { } ~     SLIP pseudo-link header I IPpacket) ~

18 bytes 2 bytes 16 bytes

bpf_hdr(}

18bytes

~padding

~ loopb ack pseudo-link header

IP packet

2 bytes 4 bytes
Figure 31.9 BPF packet organization.

The e ther_h÷ader structure was described with Figure 4.10, the SLIP pseudo-link
header was described with Figure 5.14, and the loopback pseudo-link header was
described with Figure 5.28.

Notice that the SLIP and loopback packets require 2 bytes of padding to force the IP
header to appear on a 4-byte boundary.
Initialize bpf_dtab table

This code initializes the BPF descriptor table, which is described with Figure 31.10.
The initialization occurs the first time bp fat t a ch is called and is skipped thereafter.
Print console message

A short message is printed to the console to announce that the interface has been
configured for use by BPF.

31.4

45--46

47--52

bpf_d Structure

To begin tapping an interface, a process opens a BPF device and issues ±oc¢! com-
mands to select the interface, the read buffer size, and timeouts, and to specify a BPF fil-
ter. Each BPF device has an associated bpf_d structure, shown in Figure 31.10.

bp f_d structures are placed on a linked list when more than one BPF device is
attached to the same network interface, bd_n÷x¢ points to the next structure in the list.

Packet buffers
Each b;)f_d structure has two packet buffers associated with it. Incoming packets

are always stored in the buffer attached to bd_sbuf (the store buffer). The other buffer
is either attached to hal_f bur (the free buffer), which means it is empty, or to bd_hbuf
(the hold buffer), which means it contains packets that are being read by a process.
bd_slen and bd_h!÷n record the number of bytes saved in the store and hold buffer
respectively.
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53--5 7

58--63

45 struct bpf_d {
46 struct bpf_d *bd_next;
47 caddr_t bd_sbuf;
48 caddr_t bd_hbuf;
49 caddr_t bd_fbuf;
50 int bd_slen;
51 int bd_hlen;

52 int bd_bufsize;

/* Linked list of descriptors */
/* store slot */
/* hold slot */
/* free slot */
/* current length of store buffer */
/* current length of hold buffer */

/* absolute length of buffers */

53 struct bpf_if *bd_bif; /* interface descriptor */
54 u_long bd_rtout; /* Read timeout in ’ticks’ */
55 struct bpf_insn *bd_filter; /* filter code */
56 u_long bd_rcount; /* number of packets received */
57 u_long bd_dcount; /* number of packets dropped */

bpfdesc.h

58 u_char bd_promisc;
59 u_char bd_state;
60 u_char bd_immediate;
61 u_char bd_pad;
62 struct selinfo bd_sel;
63 };

/* true if listening promiscuously */
/* idle, waiting, or timed out */
/* true to return on packet arrival */
/* explicit alignment */
/* bsd select info */

Figure 31.10 b9 £_d structttre.

bpfdesc.h

When the store buffer becomes full, it is attached to bd_hbuf and the free buffer is
attached to bd_sbuf. When the hold buffer is emptied, it is attached to bd_fbuf. The
macro ROTATE_BUFFERS attaches the store buffer to bd_hbuf, attaches the free buffer
to bd_sbuf, and clears bd_fbuf. It is called when the store buffer becomes full, or
when the process doesn’t want to wait for more packets.

bd_bufsize records the size of the two buffers associated with the device. It
defaults to 4096 (BPF_BUFSIZE) bytes, The default value can be changed by patching
the kernel, or bd_bufsize can be changed for a particular BPF device with the
BIOCSBLEN ioct i command. The BIOCGBLEN command returns the current value of
bd_bu f s i z e, which can never exceed 32768 (BPF_MAXBUFS I Z E) bytes. There is also a
minimum size of 32 (BPF_MINBUFSIZE) bytes.

bd_bif points to the bpf_if structure associated with the BPF device. The
BIOCSETTF command specifies the device, bd_rtout is the number of clock ticks to
delay while waiting for packets to appear, bd_f i lter points to the BPF filter code for
this device. Two statistics, which are available to a process through the BIOCGSTATS
command, are kept in bd_rcount and bd_dcount.

bd_promisc is set with the BIOCPROMISC command and causes the interface to
operate in promiscuous mode. bd_state is unused, bd_immediate is set with the
BIOCIMMEDIATE command and causes the driver to return each packet as it is received
instead of waiting for the hold buffer to fill. bd_pad pads the bpf_d structure to a
longword boundary, and bd_sel holds the selinfo structure for the select system
call. We don’t describe the use of select with a BPF device, but select itself is
described in Section 16.13.
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bpfopen Function

When open is called for a BPF device, the call is routed to bpfop÷n (Figure 31.11) for
processing.

256 int
257 bpfopen(dev, flag)
258 dev_t    dev;
259 int flag;
260 {
261 skruct bpf_d *d;

262 if (minor(dev) >: NBPFILTER)
263 return {ENXIO);
264 /*
265 * Each minor can be opened by only one process.
266 * minor is in use, return EBUSY.
267 */
268 d = &bpf_dtab[minor(dev)];
269 if ([D_ISFREE(d))
270 return (EBUSY);

If the requested

271 /* Mark "free" and do most initialization. */
272 bzero((char *) d, sizeof(*d));
273 d->bd_bufsize = bpf_bufsize;

274 return (0);
275 }

Figure 31.11 bpfopen function.

256--263

264--275

The number of BPF devices is limited at compile time to NBPFTLTER. The minor
device number specifies the device and ENXIO is returned if it is too large. This hap-
pens when the system administrator creates more /dev/bpfx entries than the value
NBPFILTER.

Allocate bpf_d structure
Only one process is allowed access to a BPF device at a time. If the bpf_d structure

is already active, ]{BUSY is returned. Programs such as ¢cpdurap try the next device
when this error is returned. If the device is available, the entry in the bp£_dCab table
specified by the minor device number is cleared and the size of the packet buffers is set
to the default value.

bpfioctl Function

Once the device is opened, it is configured with ioctl commands. Figure 31.12 sum-
marizes the ioctl commands used with BPF devices. Figure 31.13 shows the
bpfioc¢l function. Only the code for BIOCSETF and BIOCSETIF is shown. We have
omitted the ioct 1 commands that are not discussed in this text.
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501
502
503
504
505
506
507
5O8
509

510
511
512
513
514
515
516

517
518
519
52O
521
522

Command

FIONREAD
BIOCGBLEN
BIOCSBLEN
BIOCSETF
BIOCFLUSH
BIOCPROMISC
BIOCGDLT

BIOCGETIF
BIOCSETIF
BIOCSRTI~EOUT

BIOCGRTIMEOUT
BIOCGSTATS
BIOCIMMEDIATE

BIOCVERSION

Third argument

u_int
u_int
u_int
struct bpf_program

u_int
struct ifreq
struct ifreq
struct timeval
struct timeval
struct bpf_stat
u_int
struct bpf_version

Funct~n

bpfioctl
bpfioctl
bpfioctl
bpf_setf
reset_d
ifpromisc
bpfioctl
bpf_ifname
bpf_setif
bpfiootl
bpfioctl
bpfioctl
bpfioctl
bpfioctl

Description

return #bytes in hold buffer and store buffers.
return size of packet buffers
set size of packet buffers
install BPF program
discard pending packets
enable promiscuous mode
return bi f_dlt
return name of attached interface
attach network interface to device
set read timeout value
return read timeout value
return BPF statistics
enable immediate mode
return BPF version information

Figure 31.12 BPF ioctl commands.

bpf.c
int
bpfioctl(dev, cmd, addr, flag)
dev_t dev;
int cmd;
caddr_t addr;
int      flag;

struct bpf_d *d = &bpf_dtab[minor(dev)];
int       s, error = 0;

switch (cmd) {
/*

* Set link layer read filter.
*/

case BIOCSETF:
error = bpf_setf(d, (struct bpf_program *)
break;

/*
* Set interface.
*/

case BIOCSETIF:
error = bpf_setif(d,
break;

addr);

(struct ifreq *) addr);

/* other ioctl commands from Figure 31.12 */

668
669
670
671
672
673 }

default:
error - EINVAL;
break;

}
return (error);

Figure 31.13 bpfioctl function.
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501--509

510--522

668--673

As with bpfopen, the minor device number selects the bpf_d structure from the
bpf_dtab table. The command is processed by the cases within the switch. We show
two commands, BIOCSETF and BIOCSETIF, as well as the default case.

The bl~ f_s e t f function installs the filter passed in addr, and bp f_s e t i f attaches
the named interface to the bpf_d structure. We don’t show the implementation of
bpf_setf in this text.

If the command is not recognized, EINVAL is returned.
Figure 31.14 shows the bpf_d structure after b!of_setif has attached it to the

LANCE interface in our example system.

bpf_dtab[2]through

bpf_dtab[NBPFILTER-I]$

bpf_dtab[]:
bd next
hd_sbuf
bd hbuf
bd_fbuf
bd_slen
bd_hlen
bd_bufsize

¯ bd_bif

bd next
bd_sbuf
bd_hbuf
bd_fbuf
bd_slen
bd hlen
bd_bufsize
bd_bif

NULL

o
o
4096

free buffer

Figure 31.14 BPF device attached to the Ethernet interface.

In the figure, bif_dlist points to bpf_dtab [0], the first and only descriptor in
the descriptor list for the Ethemet interface. In bpf_dtab[0], the bd_sbuf and
bd_hbuf members point to the store and hold buffers. Each buffer is 4096
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(bd_bufsize) bytes long. bd_bif points back to the bpf_if structure for the inter-
face.

if_bpf in the ifnet structure (le_softe [0] ) also points back to the bpf_if
structure. As shown in Figures 4.19 and 4.11, when if_bpf is nonnull, the driver
begins passing packets to the BPF device by calling bpf_tap.

Figure 31.15 shows the same structures after a second BPF device is opened and
attached to the same Ethernet network interface as in Figure 31.10.

bpf_iflist:

]
bpf_if()

bif_next -I ..... ~

_driverp

bif_dlt
bif_hdrlen

le_softc[0] :

if_bpf

bpf_dtab[2]through

bpf_dtab[NBPFILTER-l]i

to other
structures

bpf_dtab[]:
bd_next
bd_sbuf
bd_hbuf
bd_fbuf
bd_slen
bd_hlen
bd_bufsize

bif

bd_next
bd_sbuf
bd_hbuf
bd_fbuf
bd_slen
bd_hlen

bif

NULL

IVULL

NULL

0
0
4096

Figure 31.15 Two BPF devices attached to the Ethernet interface.

When the second BPF device is opened, a new bpf_d structure is allocated from the
bpf_dtab table, in this case, bpf_dtab [ 1 ]. The second BPF device is also attached to
the Ethernet interface, so bi f_dlis t points to bp f_dtab [ 1 ], and
blof_dtab [ 1] .bd__next points to bpf_dtab[0 ], which is the first BPF descriptor
attached to the Ethernet interface. Separate store and hold buffers are allocated and
attached to the new descriptor structure.
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bpf_setif Function

The bp f_set i f function, which associates the BPF descriptor with a network interface,
is shown in Figure 31.16.

721 static int
722 bpf_setif(d, ifr}
723 struct bpf_d *d;
724 struct ifreq *ifr;
725 {
726 struCt bpf_if *bp;
727 char *cp;
728 int unit, s, error;

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
75O
751

* Separate string into name part and unit number, Put a null
* byte at the end of the name part, and compute the number.
* If the a unit number is unspecified, the default is 0,
* as initialized above. XXX This should be common code.
*/

unit = 0;
cp : ifr->ifr_name;
cp[sizeof(ifr->ifr_name) - i] : ’\0’;
while (*cp++) {

if (*cp >= ’0’ && *cp <- ’9’) {
unit = *cp -
*cp++ = ’\0’;
while (*cp)

unit = i0 * unit + *c9++ ’0’;
break;

}
}
/.

* Look through attached interfaces for the named one.
*/

for (bp = bpf_iflist; bp != 0; bp - bp->bif_next) {
struct ifnet *ifp = bp->bif_ifp;

752
753
754
755
756
757
758
759
760
761
762
763

if (ifp == 0 II unit !: ifp->if_unit
I ] strcmp(ifp->if_name, ifr->ifr_name) !: 0)
continue;

/*
* We found the requested interface.
* If it’s not up, return an error.
* Allocate the packet buffers if we need to.
* If we’re already attached to requested interface,
* just flush the buffer.
*/

if ((ifp->if_flags & IFF_UP) := 0)
return (ENETDOWN];
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764
765
766
767
768
769
770
771
772
773
774
775

776
777
778
779
780
781
782
783
784

if (d->bd_sbuf =: 0){
error = bpf_allocbufs(d);
if (error [= 0)

return (error);
}
s = splimp();
if (bp !: d->bd_bif) {

if (d->bd_bif)
/*

* Detach if attached to something else.
*/

bpf_detachd(d);

bpf_attachd(d, bp);
}
reset_d(d);
splx(s];
return (0);

}
/* Not found. */
return (ENXIO);

Figure 31.16 bp f_s et i f function.

bpf.c

721--746

747-754

755-768

769-777

778--784

The first part of bpf_setif separates the text portion of the name in the ifreq

structure (Figure 4.23) from the numeric portion. The numeric portion is saved in unit.
For example, if the first 4 bytes of ifr_name start is "sll \ 0", after this code executes
they are"sl\0\o" and unit is 1.

Locate matching if net structure

The for loop searches the interfaces that support BPF (the ones in bpf_iflist)

for the one specified in the i freq structure.
If the matching interface is not up ENETDOWN is returned. ]f the interface is up,

bp f_al locate attaches the free and store buffers to the bp f_d structure, if they have
not already been allocated.

Attach bpf_d structure

If no interface is attached to the BPF device, or if a different interface from the one
specified in the i £r÷q structure is attached, bp £_detachd discards the previous inter-
face (if any), and bpf_attachd attaches the new interface to the device.

res÷t_d resets the packet buffers, discarding any pending packets in the process.
The function returns 0 to indicate success or returns ENXZO if the interface was not
located.

bpf_attachd Function

The bp f_at t a c hd function shown in Figure 31.17 associates a BPF descriptor structure
with a BPF device and with a network interface.
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189 static void                                                                         bpf.c
190 bpf_attachd(d, bp)
191 struct bpf_d *d;
192 struct bpf_if *bp;
193 {
194 /*
195 * Point d at bp, and add d to the interface’s list of listeners.
196 * Finally, point the driver’s bpf cookie at the interface so
197 * it will divert packets to bpf.
198 */
199 d->bd_bif = bp;
200 d->bd_next = bp->bif_dlist;
201 bp->bif_dlist = d;

202
203

*bp->bif_driverp : bp;

Figure 31.17 hpf_attachd f~nction.

189--203 First, bd_bi f is set to point to the BPF interface structure for the network device.
Next, the bp f_d structure is inserted into the front of the list of bp f_d structures associ-
ated with the device. Finally, the BPF pointer within the network interface is changed to
point to the BPF structure, which causes the interface to begin passing packets to the
BPF device.

31.5 BPF Input

Once the BPF device is opened and configured, a process uses the read system call to
receive packets from the interface. The BPF tap collects copies of the incoming packets
so BPF does not interfere with normal network processing. Incoming packets are col-
lected in the store and hold buffers associated with each BPF device.

Function

We described the call to bpf_tap by the LANCE device driver with Figure 4.11 and use
this call to describe the bpf_talo. The call (from Figure 4.11) is:

bpf_tap(le->sc_if.if_bpf, buf, len + sizeof(struct ether_header));

The bpf_tap function is shown in Figure 31.18.
The first argument is a pointer to the bpf_i f structure, which is set by bpfattach.

The second argument is a pointer to the incoming packet, including the Ethernet header.
’The third argument is the number of bytes contained in the buffer, in this case, the size
of the Ethernet header (14 bytes) plus the size of the data portion of the Ethernet frame.
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869 void
870 bpf_tap(arg, pkt, pktlen)
871 caddr_t arg;
872 u_char *pkt;
873 u_int    pktlen;
874 {
875 struct bpf_if *bp;
876 struct bpf_d *d;
877 u_int    slen;
878 /*
879 * Note that the ipl does not have to be raised at this point.
880 * The only problem that could arise here is that if two different
881 * interfaces shared any data. This is not the case.
882 */
883 bp = (struct bpf_if *) arg;
884 for (d = bp->bif_dlist; d !~ 0; d ~ d->bd_next) {
885 ++d->bd_rcount;
886 slen = bpf_filter(d->bd_filter, pkt, pktlen, pktlen);
887 if (slen != 0)
888 catchpacket(d, pkt, pktlen, slen, bcopy);
889 }
89O }

Figure 31.18 bpf_tap function.

bee

883--890

Pass packet to one or more BPF devices
The for loop traverses the list of BPF devices attached to the interface. For each

device, the packet is passed to bpf_filter. If the filter accepts the packet, it returns
the number of bytes to capture and catchpacket saves a copy of the packet. If the fil-
ter rejects the packet, slen is 0 and the loop continues. When the loop completes,
bpf_tap returns. This mechanism enables each BPF device to have a separate filter
when multiple BPF devices are associated with the same network interface.

The loopback driver calls bpf_mtap to pass packets to BPF. This function is similar
to bpf_tap but copies the packet from an mbuf chain instead of from a contiguous area
of memory. This function is not described in this text.

catchpacket Function

946--955

In Figure 31.18 we saw that catchpacket is called when the filter accepts the packet.
The function is shown in Figure 31.19.

The arguments to catchpacket are: d, a pointer to the BPF device structure; pkt a
generic pointer to the incoming packet; pktlen the length of the packet as it was
received; snaplen the number of bytes to save from the packet; and cpfn a pointer to a
function that will copy the packet from ~kt to a contiguous area of memory. When the
packet is already in a contiguous area of memory, cpfn is bcopy. When the packet is
stored in an mbuf (i.e., pkt points to the first mbuf in a chain such as with the loopback
driver), cpfn is bpf_mcopy.
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946 static void                                                                        bp~c
947 catchpacket(d, pkt, pktlen, snaplen, cp[n)
948 strucE bpf_d *d;
949 u_char *pkt;
950 u_int    pktlen, snaplen;
951 void (*cpfn) (const void *, void *, u_int);
952 {
953 struct bpf_hdr *hp;
954 int totlen, cnrlen;
955 int hdrlen : d >bd_bif->bif_hdrlen;
956 /*
957 * Figure out how many bytes to move. If the packet is
958 * greater or equal to the snapshot length, transfer that
959 * much. Otherwise, transfer the whole packet (unless
960 * we hit the buffer size limit).
961 */
962 totlen = hdrlen + min(snaplen, pktlen);
963 if (totlen > d->bd bufsize)
964 totlen - d->bd bufsize;

965 /*
966 * Round up the end of the previous packet to the next longword.
967 */
968 curlen = BPF WORDALIGN(d->bd_slen);
969 if (curlen + totlen > d->bd_bufsize) {
970 /*
971 * This packet will overflow the storage buffer.
972 * Rotate the buffers if we can, then wakeup any
973 * pending reads.
974 */
975 if (d >bd_fbuf =- 0) {
976 /*
977 * We haven’t completed the previous read yet,
978 * so drop the packet.
979 */
980 ++d->bd_dcount;
981 return;
9~2 }
983 ROTATE_BUFFERS(d);
984 bpf_wakeup(d);
985 curlen - 0;
986 } else if (d->bd_immediate)
987 /*
988 * Immediate mode is set. A packet arrived so any
989 * reads should be woken up.
990 */
991 bpf_wakeup(d);
992 /*
993 * Append the bpf header.
994 */
995 hp = (struct bpf_hdr *} (d->bd_sbuf + curlen);
996 microtime(&hp->bh_tstamp);
997 hp->bh_datalen : pktlen;
998 hp->bh_hdrlen = hdrlen;
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956--964

965--985

986--991

992--1004

999 /*
i000 * Copy the packet data into the store buffer and update its length.
i001 */
1002 (*cpfn) (pkt, (u_char *) hp + hdrlen, (hp->bh_caplen = totlen - hdrlen));
1003 d->bd_slen = curlen + totlen;
1004 }

bp~c

Figure 31.19 catchpacket function.

In addition to the link-layer header and the packet, catchpacket appends a
bp f_hdr to every packet. The number of bytes to save from the packet is the smaller of
snaplen and pktlen. The resulting packet and bpf_hdr must fit within the packet
buffers (bd_bu f s i z e bytes).

Will the packet fit?
curlen is the number of bytes already in the store buffer plus enough bytes to

align the next packet on a longword boundary. If the incoming packet doesn’t fit in the
remaining buffer space, the store buffer is full. If a free buffer is not available (i.e., a pro-
cess is still reading data from the hold buffer), the incoming packet is discarded. If a
free buffer is available, it is rotated into place by ROTATE_BUFFERS and any process
waiting for incoming data is awakened by bpf_wakeup.

Immediate mode processing
If the device is operating in immediate mode, any waiting processes are awakened

to process the incoming packet--there is no buffering of packets in the kernel.
Append BPF header

The current time (microg 2me), the packet length, and the header length are saved
in a bpf_hdr. The function pointed to by cpfn is called to copy the packet into the
store buffer and the length of the store buffer is updated. Since bpf_tap is called
directly from leread even before the packet is transferred from a device buffer to an
mbuf chain, the receive timestamp is close to the actual reception time.

bpfread Function

The kernel routes a read on a BPF device to bpfread. BPF supports a timed read
through the BIOCSRTIHEOUT command. This "feature" is easily emulated by the more
general select system call, but tcpdurap, for example, uses BIOCSRTIHEOUT and not
select. The process must provide a read buffer that matches the size of the hold buff-
er for the device. The BIOCGBLEN command returns the size of the buffer. Normally, a
read returns when the store buffer becomes full. The kernel rotates the store buffer to
the hoid buffer, which is copied to the buffer provided with the read system call while
the BPF device continues collecting incoming packets in the store buffer, bpfread is
shown in Figure 31.20.
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344 ±nt                                                                       bp~c

345 bpfread(dev, uio)
346 dev_t    dev;
347 struct uio *uio;
348 {
349 struct bpf_d *d = &bpf_dtab[minor(dev)];
350 int error;
351 int

352
353
354
355
356
357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

* Restrict application to use a buffer the same size as
* as kernel buffers.

*/
if (uio->uio_resid != d->bd_bufsize)

return (EINVAL);

s = splimp();
/*

* If the hold buffer is empty, then do a timed sleep, which
* ends when the timeout expires or when enough packets
* have arrived to fill the store buffer.
*/

while (d->bd_hbuf == 0) {
if (d->bd_immediate && d->bd_slen != 0) {

/*
* A packet(s) either arrived since the previous
* read or arrived while we were asleep.
* Rotate the buffers and return what’s here.
*/

ROTATE_BUFFERS(d);
break;

}
error : tsleep((caddr_t) d, PRINET i PCATCH,
if (error == EINTR I I error == ERESTART) {

splx{s);
return (error);

}
if

"bpf", d->bd_rtout);

(error == EWOULDBLOCK) {
/*

* On a timeout, return what’s in the buffer,
* which may be nothing. If there is something
* in the store buffer, we can rotate the buffers.
*/

if (d->bd_hbuf)
/*

* We filled up the buffer in between
* getting the timeout and arriving
* here, so we don’t need to rotate.

*/
break;
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344--357

358--364

365--373

374--384

392
393
394
395
396
397
398
399
400
401
402
403

}
}
/*

if (d->bd_slen ::
splx{s);
return (0);

}
ROTATE_BUFFERS(d);
break;

0) {

* At this point, we know we have
*/

splx(s);

something in the hold slot.

404 /*
405 * Move data from hold buffer into user space.
406 * We know the entire buffer is transferred since
407 * we checked above that the read buffer is bpf_bufsize bytes.
408 */
409 error : uiomove(d->bd_hbuf, d->bd_hlen, UIO_READ, uio);

410 s : splimp();
411 d->bd_fbuf - d->bd_hbuf;
412 d->bd~nbuf : 0;
413 d >bd_hlen : 0;
414 splx(s);

415 return (error);
416 }

Figure 31.20 bpfread function.

bpd.c

The minor device number selects the BPF device from the bpf_dtab table. If the
read buffer doesn’t match the size of the BPF device buffers, EINVAL is returned.

Wait for data

Since multiple processes may be reading from the same BPF device, the whi 1 e loop
forces the read to continue when some other process gets to the data first. If there is
data in the hold buffer, the loop is skipped. This is different from two processes tapping
the same network interface through two different BPF devices (Exercise 31.2).

Immediate mode

If the device is in immediate mode and there is some data in the store buffer, the
buffers are rotated and the whi 1 e loop terminates.

No packets available
If the device is not in the immediate mode, or there is no data in the store buffer, the

process sleeps until a signal arrives, the read timer expires, or data arrives in the hold
buffer. If a signal arrives, EINTR or ERESTART is returned.

Remember that a process never sees the ERESTART error because the error is handled by the
syscall function and never returned to a process.
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385--391

392--399

400--416

Check hold buffer
If the timer expired and data is in the hold buffer, the loop terminates.

Check store buffer
If the timer expired and there is no data in the store buffer, the read returns 0. The

process must handle this case when using a timed read. If the timer expired and there is
data in the store buffer, it is rotated to the hold buffer and the loop terminates.

If tsleep returns without an error and data is present, the while loop test is false
and the loop terminates.
Packets are available

At this point, there is data in the hold buffer, u±omove moves bd_hlen bytes of
data from the hold buffer to the process. After the move, the hold buffer is moved to
the free buffer, and the buffer counts are cleared before the function returns. The com-
ment before uiornove indicates that uioraove will always be able to copy bd hlen
bytes into the process because the read buffer was checked to ensure it can hold the
maximum number of bytes, bcl_bu f s i z e.

31.6 BPF Output

Finally, we describe how to add packets to the network interface output queues with
BPE An entire data-link frame must be constructed by the process. For Ethernet this
includes the source and destination hardware addresses and the frame type (Figure 4.8).
The kernel will not modify the frame before putting it on the interface’s output queue.

bpfwrite Function

437--449

450--457

458--465

The frame is passed to the BPF device with the write system call, which the kernel
routes to bpfwrite, shown in Figure 31.21.

Check device number
The minor device number selects the BPF device, which must be attached to a net-

work interface. If it isn’t, ENXIO is returned.
Copy data into mbuf chain

If the write specified 0 bytes, 0 is returned immediately, bpf_movein copies the
data from the process into an mbuf chain. Based on the interface type passed from
bif_dlt, it computes the length of the packet excluding the link-layer header and
returns the value in datlen. It also returns an initialized sockaddr structure in dst.
For Ethernet, the type of this address structure will be AF_UNSPEC, indicating that the
mbuf chain contains the data-link header for the outgoing frame. If the packet is larger
than the MTU of the interface, EMSGSIZE is returned.

Queue packet
The resulting mbuf chain is passed to the network interface using the i f_output

function specified in the i fnet structure. For Ethernet, i f_output is ether_output.
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31.7

437 int
438 bpfwrite(dev, uio)
439 dev_t    dev;
440 struct uio *uio;
441 {
442 struct bpf_d *d = &bpf_dtab[minor(dev)];
443 struct ifnet *ifp;
444 struct mbuf *m;
445 int error, s;
446 static struct sockaddr dst;
447 int datlen;

448 if (d->bd_bif == 0)
449 return (ENXIO);

450 ifp : d->bd_bif->bif_ifp;

451 if (uio->uio_resid == 0)
452 return (0);

453 error : bpf_movein(uio, (int) d->bd_bif->bif_dlt,
454 if (error)
455 return (error);

456 if (datlen > ifp->if_mtu)
457 return (EMSGSIZE);

458 s - splnet();
459 error = (*ifp->if_output) (ifp,
460 splx(s);
461 /*
462 * The driver frees the mbuf.
463 */
464 return (error);
465 }

&m, &dst,

m, &dst, (struct rtentry *) 0);

Figure 31.21 bp fwr i t e function.

Summary

&datlen);

In this chapter we showed how BPF devices are configured, how incoming frames are
passed to BPF devices, and how outgoing frames can be transmitted on a BPF device.

We showed that a single network interface can have multiple BPF taps, each with a
separate filter The store and hold buffers minimize the number of read system calls
required to process incoming frames.

We focused only on the major features of BPF in this chapter For a more detailed
description of the filtering code and the other features of the BPF device, the interested
reader should examine the source code and the Net/3 manual pages.
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Exercises

31.1

31.2

Why is it OK to call bpf_wakeup in catchpacket before the packet is stored in the BPF
buffers?

With Figure 31.20, we noted that two processes may be waiting for data from the same BPF
device. With Figure 31.11, we noted that only one process at a time can open a particular
BPF device. How can both of these statements be true?

31.3 What happens if the device named in the BIOCSETTF command does not support BPF?
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Raw IP

32.1 Introduction

A process accesses the raw IP layer by creating a socket of type SOCK_RAW in the Inter-
net domain. There are three uses for raw sockets:

Raw sockets allow a process to send and receive ICMP and IGMP messages.

The Ping program uses this type of socket to send ICMP echo requests and to
receive ICMP echo replies.

Some routing daemons use this feature to track ICMP redirects that are pro-
cessed by the kernel. We saw in Section 19.7 that Net/3 generates an
RTH_REDIRECT message on a routing socket when a redirect is processed, obvi-
ating the need for this use of raw sockets.

This feature is also used to implement protocols based on ICMP, such as router
advertisement and router solicitation (Section 9.6 of Volume 1), which use ICMP
but are better implemented as user processes than within the kernel.

The multicast routing daemon uses a raw IGMP socket to send and receive
IGMP messages.

Raw sockets let a process build its own IP headers. The Traceroute program
uses this feature to build its own UDP datagrams, including the IP and UDP
headers.

1049
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Raw sockets let a process read and write IP datagrams with an IP protocol type
that the kernel doesn’t support.

The gated program uses this to support three routing protocols that are built
directly on IP: EGP, HELLO, and OSPF.

This type of raw socket can also be used to experiment with new transport lay-
ers on top of IP, instead of adding support to the kernel. It is usually much eas-
ier to debug code within a user process than it is within the kernel.

This chapter examines the implementation of raw IP sockets.

32.2 Code Introduction

There are five raw IP functions in a single C file, shown in Figure 32.1.

File             Description

net inet/raw_ip, c raw IP functions

Figure 32.1 File discussed in this chapter.

Figure 32.2 shows the relationship of the five raw IP functions to other kernel func-
tions.

socket get sockopt
receive buffer set sockoptsystem initialization

software interrupt

Figure 32.2 Relationship of raw IP functions to rest of kernel.

various
system calls

The shaded ellipses are the five functions that we cover in this chapter. Be aware that
the "rip" prefix used within the raw IP functions stands for "raw IP" and not the "Rout-
ing Information Protocol," whose common acronym is RIP.
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Global Variables

Four global variables are introduced in this chapter, which are shown in Figure 32.3.

Variable Datatype Description

rawinpcb struct inpcb head of the raw IP Internet PCB list
ripsrc struct sockaddr_in contains sender’s IP address on input
rip_recvspace u_long default size of socket receive buffer, 8192 bytes
rip_sendspace u_long default size of socket send buffer, 8192 bytes

Figure 32.3 Global variables introduced in this chapter.

Statistics

Raw IP maintains two of the counters in the ipstat structure (Figure 8.4). We describe
these in Figure 32.4.

ipstat member Description Used by
SNMP

ips_noproto #packets with an unknown or unsupported protocol *
ips_rawout total #raw ip packets generated

Figure 32.4 Raw IP statistics maintained in the ip s t at structure.

The use of the ips_noproto counter with SNMP is shown in Figure 8.6. Figure 8.5
shows some sample output of these two counters.

32.3 Raw IP protosw Structure

Unlike all other protocols, raw IP is accessed through multiple entries in the inetsw
array. There are four entries in this structure with a socket type of SOCK_RAW, each with
a different protocol value:

¯ IPPROTO_ICMP (protocol value of 1),
¯ ]-PPROTO_IGMP (protocol value of 2),
¯ IPPROTO_RAW (protocol value of 255), and
¯ raw wildcard entry (protocol value of 0).

The first two entries for ICMP and IGMP were described earlier (Figures 11.12 and 13.9).
The difference in these four entries can be summarized as follows:

If the process creates a raw socket (SOCK_RAW) with a nonzero protocol value
(the third argument to socket), and if that value matches IPPROTO_ICMP,
IPPROTO_IGMP, or IPPROTO_RAW, then the corresponding protosw entry is
used.
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If the process creates a raw socket with a nonzero protocol value that is not
known to the kernel, the wildcard entry with a protocol of 0 is matched by
p£findproto. This allows a process to handle any IP protocol that is not
known to the kernel, without making kernel modifications.

We saw in Section 7.8 that all entries in the ip_protox array that are unknown are
set to point to the entry for IPPROTO_RAW, whose protocol switch entry we show in
Figure 32.5.

Member

pr_type
pr_domain
pr_protocol
pr_flags
pr_input
pr_ontput
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

inetsw[3]

SOCK_RAW
&inetdomain
IPPROTO RAW (255)
PR_ATOMIC/PR_ADDR
rip_input
0
0
rip_ctloutput
rip_usrreq
0
0
0
0
0

Description

raw socket
raw IP is part of the Internet domain
appears in the ip_p field of the IP header
socket layer flags, not used by protocol processing
receives messages from IP layer
not used by raw IP
not used by raw IP
respond to administrative requests from a process
respond to communication requests from a process
not used by raw IP
not used by raw IP
not used by raw IP
not used by raw IP
not used by raw IP

Figure 32.5 The raw IP protosw structure.

We describe the three functions that begin with rip_ in this chapter. We also cover the
function rip_output, which is not in the protocol switch entry but is called by
rip_usrreq when a raw IP datagram is output.

The fifth raw IP function, rip_init, is contained only in the wildcard entry. The
initialization function must be called only once, so it could appear in either the
I PPROTO_RAW entry or in the wildcard entry.

What Figure 32.5 doesn’t show, however, is that other protocols (ICMP and IGMP)
also reference some of the raw IP functions in their protosw entries. Figure 32.6 com-
pares the relevant fields in the protosw entries for the four SOCK_RAW protocols. To
highlight the differences, values in these rows are in a bolder font when they differ.

protosw

entry

pr_input
pr_output
pr_ctloutput
pr_usrreq
pr_init
pr_sysctl
pr_fasttimo

IPPROT0_ICHP (1)

icmp_input
rip_output
rip_ctloutput
rip_usrreq
0
icmp_sysctl
0

SOCK_RAW protocoltype
IPPROTO_IGMP (2)

igmp input
rip_output
rip_ctloutput
rip_usrreq
igmp_init
0
igmp fasttimo

I PPROTO_RAW (255)

rip_input
rip_output
rip_ctloutput
rip_usrreq
0
0
0

wildcard (0)

rip_input
rip_output
rip_ctloutput
rip_usrreq
rip_init
0
0

Figure 32.6 Comparison of protocol switch values for raw sockets.
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The implementation of raw sockets has changed with the different BSD releases. The entry
with a protocol of TPPROTO_RAW has always been used as the wildcard entry in the
ip_protox table for unknown IP protocols. The entry with a protocol of 0 has always been
the default entry, to allow processes to read and write IP datagrams with a protocol that the
kernel doesn’t support.

Usage of the IPPROTO_RAW entry by a process started when Traceroute was developed by Van
Jacobson, because Traceroute was the first process that needed to write its own IP headers (to
change the TTL field). The kernel patches to 4.3BSD and Net/1 to support Traceroute included
a change to rip_output so that if the protocol was IPPROTO_RAW, it was assumed the pro-
cess had passed a complete IP datagram, including the IP header. This was changed with
Net/2 when the IP_HDRINCL socket option was introduced, removing this overloading of the
IPPROTO_RAW protocol and allowing a process to send its own IP header with the wildcard
entry.

32.4 rip_init Function

The domaininit function calls the raw IP initialization function rip_init (Fig-
ure 32.7) at system initialization time.

47 void
48 rip_init()
49 {

yaw_ip.c

~o
5! }

rawinpcb.inp_next ~ rawinpcb.inp_prev = &rawinpcb;

Figure 32.7 rip_init function.

raw_ip. C

The only action performed by this function is to set the next and previous pointers
in the head PCB (rawinpcb) to point to itself. This is an empty doubly linked list.

Whenever a socket of type SOCK_RAW is created by the socket system call, we’ll
see that the raw IP PRU ATTACH function creates an Internet PCB and puts it onto the
rawinpcb list.

32.5 rip_input Function
Since all entries in the ip_protox array for unknown protocols are set to point to the
entry for IPPROTO_RAW (Section 7.8), and since the pr_input function for this protocol
is rip_input (Figure 32.6), this function is called for all IP datagrams that have a
protocol value that the kernel doesn’t recognize. But from Figure 32.2 we see that both
ICMP and IGMP also call rip_input. This happens under the following conditions:

icmp_input calls rip_input for all unknown ICMP message types and for all
ICMP messages that are not reflected.
igmp_input calls rip_input for all IGMP packets.
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One reason for calling rip_input in these two cases is to allow a process with a raw
socket to handle new ICMP and IGMP messages that might not be supported by the
kernel.

Figure 32.8 shows the rip_input function.

59 void
60 rip_input(m)
61 struct mbuf *m;

63 struct ip *ip = mtod(m, struct ip *);
64 struct inpcb *inp;
65 struct socket *last = 0;

/’a W_iF . O

66 ripsrc.sin_addr : ip->ip_src;
67 for (inp : rawinpcb.inp_next; inp !: &rawinpcb; inp = inp->inp_next)
68 if (inp->inp_ip.ip_p && inp->inp_ip.ip_p != ip->ip~o)
69 continue;
70 if {inp->inp_laddr.s_addr &&
71 inp->inp_laddr.s_addr := ip >ip_dst.s_addr)
72 continue;
73 if (inp->inp_faddr.s_addr &&
74 inp->inp_faddr.s_addr == ip->ip_src.s_addr)
75 continue;
76 if (last) {
77 struct mbuf *n;
78 if (n : m_copy(m, 0, (int) M_COPYALL)) {
79 if (sbappendaddr(&last->so_rcv, &ripsrc,
80 n, (struct mbuf *) 0) := 0)
81 /* should notify about lost packet */
82 m_freem(n);
83 else
84 sorwakeup(last);
85
86 }
87 last : inp->inp_socket;

88 }
89 if (last) {
90 if (sbappendaddr(&last->so_rcv, &ripsrc,
91 m, (struct mbuf *) 0) -- 0)
92 m_freem{m);
93 else
94 sorwakeup(last);
95 ] else {
96 m_freem(m);
97 ipstat.ips_noproto++;
98 ipstat.ips_delivered--;
99 }

i00 }

Figure 32.8 rip_input function.
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59--66

67--88

68--69

70--75

76--94

95--99

Save source IP address
The source address from the IP datagram is put into the global variable ripsrc,

which becomes an argument to sbappendaddr whenever a matching PCB is found.
Unlike UDP, there is no concept of a port number with raw IP, so the sin_port field in
the sockaddr_in structure is always 0.

Search all raw IP PCBs for one or more matching entries
Raw IP handles its list of PCBs differently from UDP and TCP. We saw that these

two protocols maintain a pointer to the PCB for the most recently received datagram (a
one-behind cache) and call the generic function in_pcblookup to search for a single
"best" match when the received datagram does not equal the cache entry. Raw IP has
completely different criteria for a matching PCB, so it searches the PCB list itself.
in_pcblookup cannot be used because a raw IP datagram can be delivered to multiple
sockets, so every PCB on the raw PCB list must be scanned. This is similar to UDP’s
handling of a received datagram destined for a broadcast or multicast address (Fig-
ure 23.26).

Compare protocols

If the protocol field in the PCB is nonzero, and if it doesn’t match the protocol field
in the IP header, the PCB is ignored. This implies that a raw socket with a protocol
value of 0 (the third argument to socket) can match any received raw IP datagram.

Compare local and foreign IP addresses
If the local address in the PCB is nonzero, and if it doesn’t match the destination IP

address in the IP header, the PCB is ignored. If the foreign address in the PCB is
nonzero, and if it doesn’t match the source IP address in the IP header, the PCB is
ignored.

These three tests imply that a process can create a raw socket with a protocol of 0,
not bind a local address, and not connect to a foreign address, and the process receives
all datagrams processed by rip_input.

Lines 71 and 74 both contain the same bug: the test for equality should be a test for inequality.

Pass copy of received datagram to processes

sbappendaddr passes a copy of the received datagram to the process. The use of
the variable last is similar to what we saw in Figure 23.26: since sbappendaddr
releases the mbuf after placing it onto the appropriate queue, if more than one process
receives a copy of the datagram, rip_input must make a copy by calling re_copy. But
if only one process receives the datagram, there’s no need to make a copy.

Undeliverable datagram

If no matching sockets are found for the datagram, the mbuf is released,
ips_noproto is incremented, and ips_delivered is decremented. This latter
counter was incremented by IP just before calling the rip_input (Figure 8.15). It must
be decremented so that the two SNMP counters, ipInDiscards and ipInDelivers

(Figure 8.6) are correct, since the datagram was not really delivered to a transport layer.
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At the beginning of this section we mentioned that icrap_input calls rip_input for
unknown message types and for messages that are not reflected. This means that the receipt of
an ]CMP host unreachable causes ips_noproto to be incremented if there are no raw listen-
ers whose PCB is matched by rip_input. That’s one reason this counter has such a large
value in Figure 8.5. The description of this counter as being "unknown or unsupported proto-
cols" is not entirely accurate.

Net/3 does not generate an ICMP destination unreachable message with code 2 (protocol
unreachable) when an IP datagram is received with a protocol field that is not handled by
either the kernel or some process through a raw socket. RFC 1122 says an implementation
should generate this ICMP error. (See Exercise 32.4.)

32.6

119--128

129

130--133

134--136

rip_output Function

We saw in Figure 32.6 that rip_output is called for output for raw sockets by ICMP,
IGMP, and raw IP. Output occurs when the application calls one of the five write func-
tions: send, sendto, sendmsg, write, or writer. If the socket is connected, any of
the five functions can be called, although a destination address cannot be specified with
sendto or sendmsg. If the socket is unconnected, only sendto and sendmsg can be
called, and a destination address must be specified.

The function rip_output is shown in Figure 32.9.

Kernel fills in IP header
If the IP_HDRINCL socket option is not defined, M_PR~.PEND allocates room for an

IP header, and fields in the IP header are filled in. The fields that are not filled in here
are left for ip_output to initialize (Figure 8.22). The protocol field is set to the value
stored in the PCB, which we’ll see in Figure 32.10 is the third argument to the socket
system call.

The TOS is set to 0 and the TTL to 255. These values are always used for a raw
socket when the kernel fills in the header. This differs from UDP and TCP where the
process had the capability of setting the IP_TTL and IP_TOS socket options.

Any IP options set by the process with the I P_OPTIONS socket options are passed
to ip_output through the opts variable.

Caller fills in IP header: IP_HDRINCL socket option
If the I P_HDRINCL socket option is set, the caller supplies a completed IP header at

the front of the datagram. The only modification made to this IP header is to set the ID
field if the value supplied by the process is 0. The ID field of an IP datagram can be 0.
The assignment of the ID field here by rip_output iS just a convention that allows the
process to set it to 0, asking the kernel to assign an ID value based on the kernel’s cur-
rent ip_i d variable.

The opts variable is set to a null pointer, which ignores any IP options the process
may have set with the IP_OPTIONS socket option. The convention here is that if the
caller builds its own IP header, that header includes any IP options the caller might
want. The flags variable must also include the IP_RAWOUTPUT flag, telling
ip_output to leave the header alone.
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105 int
106 rip_output(m, so, dst)
107 struct mbuf *m;
108 struct socket *so;
109 u_long dst;
ii0 {
iii struct ip *ip;
112 struct inpcb *inp = sotoinpcb(so);
113 struct mbuf *opts;
114 int flags : (so->so_options & SO_DONTROUTE)

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

I IP_ALLOWBROADCAST;

;’aw_ip. c

* If the user handed us a complete IP packet, use it.
* Otherwise, allocate an mbuf for a header and fill it in.
*/

if ((inp->inp_flags & INP_HDRINCL) == 0) {
M_PREPEND(m, sizeof(struct ip), M_WAIT);
ip = mtod(m, struct ip *);
ip->lp_tos : 0;
ip->ip_off = 0;
ip->ip~ = inp->inp_ip.ip~;
ip->Ip_len = m->m_pkthdr.len;
ip->ip_src = inp->inp_laddr;
ip->lp_dst.s_addr : dst;
ip->zp_ttl : MAXTTL;
opts = inp->inp_options;

} else {
ip : mtod(m, struct ip *);
if (ip->ip_id == 0)

ip->ip_id = htons(ip_id++);
opts = MULL;
/* XXX prevent ip_output from overwriting header fields */
flags I= IP_RAWOUTPUT;
ipstat.ips_rawout++;

}
return (ip_output(m, opts, &inp->inp_route, flags, inp->inp_moptions));

raw_ip.c
Figure 32.9 rip_output function.

137 The counter ips_rawout is incremented. Running Traceroute causes this variable
to be incremented by i for each datagram sent by Traceroute.

The operation of rip_output has changed over time. When the IP_HDRINCL socket option
is used in Net/3, the only change made to the IP header by rip_output is to set the ID field,
if the process sets it to 0. The Net/3 ip_output function does nothing to the IP header fields
because the IP_RAWOUTPUT flag is set. Net/2, however, always set certain fields in the IP
header, even if the IP_HDRINCL socket option was set: the IP version was set to 4, the frag-
ment offset was set to 0, and the more-fragments flag was cleared.
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32.7

194--206

207-210

211-215

rip_usrreq Function

The protocol’s user-request function is called for a variety of operations. As with the
UDP and TCP user-request functions, r±p_usrreq is a large sw±tch statement, with
one case for each PRU_xxx request.

The PRU_ATTACH request, shown in Figure 32.10, is from the socket system call.

194 int
195 rip_usrreq(so, req, m, nam, control)
196 struct socket *so;
197 int req;
198 struct mbuf *m, *ham, *control;
199 {
200 int error = 0;
201 struct inpcb *inp    sotoinpcb(so);
202 extern struct socket *ip mrouter;
203 switch (req) {

204
2O5
206
207
208
209
210
211
212
213
214
215
216

raw_ip, c

case PRU_ATTACH:
if (inp)

panic("rip_attach");
if ((so->so_state & SS_PRIV) -- 0) {

error - EACCES;
break;

}
if ((error : soreserve(so, rip_sendspace, rip_recvspace))

(error = in_pcballoc(so, &rawinpcb)))
break;

inp - (struct inpcb *) so->so_pcb;
inp->inp_ip.ip~p = (int) ham;
break;

Figure 32,10 rip_usrreq function: PRU_ATTACH request.
l’aw_ip.c

Since the socket function creates a new socket structure each time it is called,
that structure cannot point to an Internet PCB.

Verify superuser
Only the superuser can create a raw socket. This is to prevent random users from

writing their own IP datagrams to the network.

Create Internet PCB and reserve buffer space
Space is reserved for input and output queues, and in_pcballoc allocates a new

Internet PCB. The PCB is added to the raw IP PCB list (rawinpcb). The PCB is linked
to the socket structure. The ham argument to rip_usrreq is the third argument to
the socket system call: the protocol. It is stored in the PCB since it is used by
rip_input to demultiplex received datagrams, and its value is placed into the protocol
field of outgoing datagrams by rip_output (if IP_HDRINCL is not set).

A raw IP socket can be connected to a foreign IP address similar to a UDP socket
being cormected to a foreign IP address. This fixes the foreign IP address from which
the raw socket receives datagrams, as we saw in rip_input. Since raw IP is a
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connectionless protocol like UDP, a PRU_DISCONNECT request can occur in two cases:

1. When a connected raw socket is closed, PRU_DISCONNECT is called before
PRU_DETACH.

2. When a connect is issued on an already-connected raw socket, soconnect
issues the PRU_DI SCONNECT request before the PRU_CONNECT request.

2! 7--222

223--225

226 230

231

233--250

Figure 32.11 shows the PRU_DISCONNECT, PRU_ABORT, and PRU_DETACH requests.
~aw ~.c

217       case PRU_DISCONNECT:                                                                  -
218 if ((so->so_state & SS_ISCONNECTED) =- 0) {
219 error : ENOTCOK~;
220 break;
221 }

222 /* FALLTHROUGH */

223 case PRU_ABORT:
224 soisdisconnected(so);
225 /* FALLTHROUGH */

226 case PRU_DETACH:
227 if (inp =: 0)
228 panic("rip_detach");
229 if (so -= ip_mrouter)
230 ip_mrouter_done();
231 in_pcbdetach(inp);
232 break;

Figure 32.11
l’aw_ip.c

rip_usrreq function: PRU_DISCONNECT, PRU_ABORT, and PRU_DETACH requests.

The socket must already be connected to disconnect or else an error is returned.
A PRU ABORT abort should never be issued for a raw IP socket, but this case also

handles the fall through from PRU_DISCONNECT. The socket is marked as discon-
nected.

The close system call issues the PRU_DETACH request, and this case also handles
the fall through from the PRU_DISCONNECT request. If the socket structure is the one
used for multicast routing (ip_mrouter), multicast routing is disabled by calling
ip_mrouter_done. Normally the mrouted(8) daemon issues the DVMRP_DONE socket
option to disable multicast routing, so this check handles the case of the router daemon
terminating (i.e., crashing) without issuing the socket option.

The Internet PCB is released by in_pebdetach, which also removes the PCB from
the list of raw IP PCBs (rawinpcb).

A raw IP socket can be bound to a local IP address with the PRU_BIND request,
shown in Figure 32.12. We saw in rip_input that the socket will receive only data-
grams sent to this IP address.

The process fills in a sockaddr_in structure with the local IP address. The follow-
ing three conditions must all be true, or else the error EADDRNOTAVAIL is returned:
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233
234
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
25O

case PRU_BIND :
{

struct sockaddr_in *addr = mtod(nam,

if

}
if

(nam->m_len !: sizeof(*addr)) {
error = EINVAL;
break;

( ’ifnet == O)
(addr->sin_family [: AF_INET) &&
(addr->sin_family !: AF_IMPLINK))
addr->sin_addr.s_addr &&
ifa_ifwithaddr((struct sockaddr *)

error : EADDRNOTAVAIL;
break;

}
inp->inp_laddr = addr->sin_addr;
break;

struct

Figure 32.12 rip_usrreq function: PRU_BIND request.

raw_ip.c

sockaddr_in *);

addr) == 0)) {

raw_ip.c

251--270

1. at least one interface must be configured,

2. the address family must be AF_INET (or AF_IMPLINK, a historical artifact), and

3. if the IP address being bound is not 0.0o0.0, it must correspond to a local inter-
face. For the call to ifa_ifwithaddr to succeed, the port number in the
caller’s sockaddr_in must be 0.

The local IP address is stored in the PCB.

A process can also connect a raw IP socket to a particular foreign IP address. We
saw in rip_input that this restricts the process so that it receives only IP datagrams
with a source IP address equal to the connected IP address. A process has the option of
calling bind, connect, both, or neither, depending on the type of filtering it wants
rip_input to place on received datagrams. Figure 32.13 shows the PRU_CONNECT
request.

If the caller’s soekaddr_in is initialized correctly and at least one IP interface is
configured, the specified foreign IP address is stored in the PCB. Notice that this pro-
cess differs from the connection of a UDP socket to a foreign address. In the UDP case,
in_pcbconnect acquires a route to the foreign address and also stores the outgoing
interface as the local address (Figure 22.9). With raw IP, only the foreign IP address is
stored in the PCB, and unless the process also calls bind, only the foreign address is
compared by rip_input.
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251
252
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

case PRU_CONNECT:
{

struct sockaddr_im *addr = mtod(nam,

if (nam->m_len != sizeof(*addr)) {
error : EINVAL;
break;

(ifnet =: 0) {
error = EADDRNOTAVAIL;
break;

((addr->sin_family != AF_INET) &&
(addr->sin_family != AF_IMPLINK))
error : EAFNOSUPPORT;
break;

}
inp->inp_faddr = addr >sin_addr;
soisconnected(so) ;
break;

struct

Figure 32.13 rip_usrreq func~on: PRU_CONNECT request.

raw_~.c

sockaddr_in *);

2 71-2 73

274--279

A call to shutdown specifying that the process has finished sending data generates
the PRU_SHUTDOWN request, although it is rare for a process to issue this system call for
a raw IP socket. Figure 32.14 shows the PRU_CONNECT2 and PRU_SHUTDOWN requests.

raw ip.c
271       case PRU_CONNECT2 :                                                                     --
272 error = EOPNOTSUPP;
273 break;

274 /*
275 * Hark the connection as being incapable of further input.
276 */
277 case PRU_SHUTDOWN:
278 socantsendmore(so);
279 break;

Figure 32.14 rip_usrreq function: PRU_CONNECT2 and PRU_SHUTDOWN requests.
raw_ip.c

The PRU_CONNECT2 request is not supported for a raw IP socket.
socant sendmore sets the socket’s flags to prevent any future output.
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280--303

319--324

In Figure 23.14 we showed how the five write functions call the protocol’s
pr_usrr÷q function with a PRU_SV.ND request. We show this request in Figure 32.15.

280 /*
281 * Ship a packet out. The appropriate raw output
282 * routine handles any massaging necessary.
283 */
284 case PRU_SEND:
285 {
286 u_long dst;

287 if (so->so_state & SS_ISCONNECTED) {
288 if (ham) {
289 error = EISCONN;
290 break;
291 }
292 dst : inp-minp_faddr.s_addr;
293 } else {
294 if (ham := NULL) {
295 error : ENOTCONN;
296 break;
297 }
298 dst - mtod(nam, struct sockaddr_in *)->sin_addr.s_addr;
299 }
300 error = rip_output(m, so, dst);
301 m : NULL;
302 break;
303 }

~’aw_ip.c

Figure 32.15 rip_usrreq function: PRU_SEND request.

If the socket state is connected, the caller cannot specify a destination address (the
ham argument). Likewise, if the state is unconnected, a destination address is required.
If all is OK, in either state, dst is set to the destination IP address, rip_output sends
the datagram. The mbuf pointer m is set to a null pointer, to prevent it from being
released at the end of the function. This is because the interface output routine will
release the mbuf after it has been output. (Remember that rip_output passes the
mbuf chain to ip_output, who appends it to the interface’s output queue.)

The final part of rip_usrreq is shown in Figure 32.16. The PRU_SENSE request,
generated by the fstat system call, returns nothing. The PRU_SOCKADDR and
PRU_PEERADDR requests are from the g÷tsockname and getloeername system calls,
respectively. The remaining requests are not supported.

The functions in_setsockaddr and in_setpeeraddr fetch the information
from the PCB, storing the result in the ham argument.
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304 case PRU_SENSE:
305 /*
306 * fstat: don’t bother with a blocksize.
307 */
308 return (0);

309 /*
310 * Not supported.
311 */
312 case PRU_RCVOOB:
313 case PRU_RCVD:
314 case PRU_LISTEN:
315 case PRU_ACCEPT:
316 case PRU_SENDOOB:
317 error = EOPNOTSUPP;
318 break;

319 case PRU_SOCKADDR:
320 in_setsockaddr(inp, ram);
321 break;

322 case PRU_PEERADDR:
323 in_setpeeraddr(inp, ram);
324 break;

325 default:
326 panic("rip_usrreq"
327 }
328 if (m != NULL)
329 m_freem(m);
330 return (error);
331 }

Figure 32.16 rlp_usrreq function: remaining requests.

l’aw_ip.c

32.8

144--172

rip_ct loutput Function

The setsockopt and getsockopt system calls invoke the rip_ctloutput function.
Only one IP socket option is handled here, along with eight socket options related to
multicast routing.

Figure 32.17 shows the first part of the rip_ct loutput function.
The size of the mbuf that contains either the new value of the option or will hold the

current value of the option must be at least as large as an integer. For the setsockopt
system call, the flag is set if the integer value in the mbuf is nonzero, or cleared other-
wise. For the getsockopt system call, the value returned in the mbuf is either 0 or the
nonzero value of the flag. The function returns, to avoid the processing at the end of the
swi t ch statement for other IP options.
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144 int                                                                       raw_ip.c
145 rip_ctloutput(op, so, level, optname, m)
146 int      op;
147 struct socket *so;
148 int      level, optname;
149 struct mbuf **m;
150 {
151
152

153
154

155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

strugt inpcb *inp : sotoinpcb(so);
int       error;

if (level !: IPPROTO_IP)
return (EINVAL);

switch (optname) {

case IP_HDRINCL:
if (op -- PRCO_SETOPT II op == PRCO_GETOPT) {

if (m -- 0 I I *m == 0 I I (*m)->m_len < sizeof(int))
return (BINVAL);

if (op := PRCO_SETOPT) {
if (*mtod(*m, int *))

inp->inp_flags I= INP_HDRINCL;
else

inp->inp_flags &: -INP_HDRINCL;
(void) m_free(*m);

} else {
(*m)->m_len = sizeof(int);
*mtod(*m, int *) : inp->inp_flags & INP_HDRINCL;

return (0);
}
break;

Figure 32.17 rip_usrreq function: process IP_HDRINCL socket option.

173
174
175
176
177
178
179
180

188
189
190 }

case DVMRP_INIT:
case DVMRP_DONE:
case DVMRP_ADD_VIF:
case DVMRP_DEL_VIF:
case DVMRP_ADD_LGRP:
case DVMRP_DEL_LGRP:
case DVMRP_ADD_MRT:
case DVMRP_DEL_MRT:

/* shown in Figure 14.9 */

}
return (ip_ctloutput(op, so, level, optname, m));

Figure 32.18 rip_usrreq function: process multicast routing socket option.

raw_ip.c

raw_ip.c

raw_ip.c
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1 73--1 88

189

Figure 32.18 shows the last portion of the rip_ctloutput function. It handles
eight multicast routing socket options.

These eight socket options are valid only for the setsockopt system call. They are
processed by the ip_mrout er_cmd function as discussed with Figure 14.9.

Any other IP socket options, such as IP_OPTIONS to set the IP options, are pro-
cessed by ip_ct loutput.

32.9 Summary

Raw sockets provide three capabilities for an IP host.

1. They

2. They

3. They

are used to send and receive ICMP and IGMP messages.

allow a process to build its own 1P headers.

allow additional IP-based protocols to be supported in a user process.

We saw that raw IP output is simple--it just fills in a few fields in the IP
header--but it allows a process to supply its own 1P header. This allows diagnostic
programs to create any type of IP datagram.

Raw IP input provides three types of filtering for incoming IP datagrams. The pro-
cess chooses to receive datagrams based on (1) the protocol field, (2) the source IP
address (set by connect), and (3) the destination IP address (set by bind). The process
chooses which combination of these three filters (if any) to apply.

Exercises

32.1

32.2

32.3

32.4

32.5

Assume the IP_HDRINCL socket option is not set. What value will rip_output place
into the IP header protocol field (ip_p) when the third argument to socket is 0? What
value will rip_output place into this field when the third argument to socket is
I PPROTO_RAW (255)?

A process creates a raw socket with a protocol value of IPPROTO_RAW (255). What type of
IP datagrams will the process receive on this socket?

A process creates a raw socket with a protocol value of 0. What type of IP datagrams will
the process receive on this socket?

Modify rip_input to send an ICMP destination unreachable with code 2 (protocol
unreachable) when appropriate. Be careful not to generate the error for received ICMP
and IGMP packets for which rip_input is called.

If a process wants to write its own IP datagrams with its own IP header, what are the dif-
ferences in using a raw IP socket with the IP_HDRINCL option, and using BPF (Chap-
ter 31)?

32.6 When would a process read from a raw IP socket, and when would it read from BPF?
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Epilogue

"We have come a long way. Nine chapters stuffed with code is a lot to negotiate. If you didn’t
assimilate all of it the first time through, don’t worry--you weren’t really expected to. Even
the best of code takes time to absorb, and you seldom grasp all the implications until you try
to use and modify the program. Much of what you learn about programming comes only
from working with the code: reading, revising and rereading."

From the Epilogue of Software Tools [Kernighan and Plauger 1976].

"In fact, this RFC will argue that modularity is one of the chief villains in attempting to
obtain good performance, so that the designer is faced with a delicate and inevitable tradeoff
between good structure and good performance."

From RFC 817 ]Clark 1982].

This text has provided a long and detailed examination of a significant piece of a real
operating system. Versions of the code presented in the text are shipped as part of the
Unix kernel with most flavors of Unix today, along with many non-Unix systems.

The code that we’ve examined is not perfect and it is not the only way to write a
TCP/IP protocol stack. It has been modified, enhanced, tweaked, and maligned over
the past 15 years by many people. Large portions of the code that we’ve presented
weren’t even written at the U. C. Berkeley Computer Systems Research Group: the
multicasting code was written by Steve Deering, the long fat pipe support was added
by Thomas Skibo, portions of the TCP code were written by Van Jacobson, and so on,
The code contains gotos (221 to be exact), many large functions (e.g., tcp_±~pu~ and
tcp_ouCpu~), and numerous examples of questionable coding style. (We tried to note
these items when discussing the code.) Nevertheless, the code is unquestionably
"industrial strength" and continues to be the base upon which new features are added
and the standard upon which other implementations are measured.
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The Berkeley networking code was designed on VAXes when a VAX-11/780 with 4
megabytes of memory was a big system. For that reason some of the design features
(e.g., mbufs) emphasized memory savings over higher performance. This would
change if the code were rewritten from scratch today.

There has been a strong push over the last few years toward higher performance of
networking software, as the underlying networks become faster (e.g., FDDI and ATM)
and as high-bandwidth applications become more prevalent (e.g., voice and video).
Whenever designing networking software within the kernel of an operating system,
clarity normally gives way to speed [Clark 1982]. This will continue in any real-world
implementation.

The research implementation of the Internet protocols described in [Partridge 1993]
and [Jacobson 1993] is a move toward much higher performance. [Jacobson 1993]
reports the code is 10 to 100 times faster than the implementation described in this book.
Mbufs, software interrupts, and much of the protocol layering evident in BSD systems
are gone. If widely released, this implementation could become the standard that oth-
ers are measured against in the future.

In July 1994 the successor to IP version 4, 1P version 6 (IPv6), was announced. It
uses 128~bit (16-byte) addresses. Many changes will take place with the IP and ICMP
protocols, but the transport layers, UDP and TCP, will remain virtually the same.
(There is talk of a TCPng, the next generation of TCP, but the authors think just upgrad-
ing IP will provide enough of a challenge for the hundreds of vendors and millions of
users across the world to put off any changes to TCP.) It will take a year or two for
vendor-supported implementations to appear, and many years after that for end users
to migrate their hosts and routers to IPv6. Research implementations of IPv6 based on
the code in this text should appear in early 1995.

To continue your understanding of the Berkeley networking code, the best course of
action at this point is to obtain the source code, and modify it. The source code is easily
obtainable (Appendix B) and numerous exercises throughout the text suggest modifica-
tions.

DELL EX.1095.1093



Appendix A

Solutions to Selected Exercises

Chapter 1

1.2

Chapter 2

SLIP drivers execute at s p]_ ~ ~y (Figure 1.13), which must be a priority lower than
or equal to s!~]_J_Inl~ and must be a priority higher than sl~]_ne~. Therefore the
SLIP drivers are blocked from interrupting.

2.1 The i~_~.x<P flag is a property of the mbuf itself, not a property of the packet
described by the mbuf.

2.2 The caller asks for more than 100 (MHI~.I~) contiguous bytes.

2.3 This is infeasible since clusters can be pointed to by multiple mbufs (Section 2.9).
Also, there is no room in a cluster for a back pointer (Exercise 2.4).

2.4

Chapter 3

In the macros HCLALLOC and HCLFREE in <sys/mbuf. h> we see that the refer-
ence count is an array named mclrefcnt. This array is allocated when the ker-
nel is initialized in the file machdep, c.

3.3

3.4

A large interactive queue would defeat the purpose of the queue by delaying new
interactive traffic behind the existing interactive data.

Since the s l_s o f t c structures are all declared as global variables, they are initial-
ized to 0 when the kernel starts.
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3.5
type

nlen
alert

sl~n

SLIP

1 1 2 1 1 1 1 ~nl÷n_~ 9 bytes
I- (3 bytes) r I

/-- type
~ /-- nlen
| [ /-alert

~family ~ ~ ~ ~ slen

lenAm - index .............. ...................l°°Pb°ck o 3 Ox18 3 o o o o
1 1 2 1 1 1 1 ~nlen~ 9 bytes

I- (3 bytes) - I

Chapter 4

4.1

4.2

leread must examine the packet to decide if it needs to be discarded after it is
passed to BPF. Since a BPF tap can enable promiscuous mode on the interface,
packets may be addressed to some other system on the Ethemet and must be dis-
carded after BPF has processed them.

When the interface is not tapped, the tests must be done in ether_input.

If the tests were reversed, the broadcast flag would never be set.

If the second i f wasn’t preceded by. an el s e, every broadcast packet would also
have the multicast flag set.

Chapter 5

5.1

5.2

5.5

5.6

The loopback interface does not need an input function because all its packets are
received directly from 1 ooutput, which performs the "input" functions.

The stack allocation is faster than dynamic memory allocation. Performance is
important for BPF processing, since the code is executed for each incoming
packet.
The first character that overflows the buffer is discarded, SC_ERROR is set, and
s 1 input resets the cluster pointers to begin collecting characters at the start of
the buffer. Because $C_ERROR is set, slinput discards the frame when it
receives the SLIP END character.

IP discards the packet when the checksum is found to be invalid or when it
notices that the IP header length does not match the physical packet size.
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5.7 Since ± fp points to the first member of a 1 ÷_s o f t c structure,
sc = (struct le_softc *)ifp;

initializes s c correctly.

This is very hard to do. Some routers may send ICMP source quench messages
when they begin discarding packets but Net/3 discards these messages for UDP
sockets (Figure 23.30). An application would have to begin using the same tech-
niques used by TCP: estimation of the available bandwidth and delay on
roundtrip times for acknowledged datagrams.

Chapter 6

6.1 Before IP subnetting (RFC 950 [Mogul and Postel 1985]), the network and host
portions of IP addresses always appeared on byte boundaries. The definition of
an in_addr structure was

struct in_addr {
union {

struct { u_char s_bl, s_b2, s_b3, s_b4; } S_un_b;
struct { u_short s_wl, s_w2; } S_un_w;
u_long S_addr;

} S_un;
#define s_addr S_un.S_addr /* should be used for all code */
#define s_host S_un.S_un_b.s_b2 /* OBSOLETE: host on imp */
#define s_net S_un.S_un_b.s_bl /* OBSOLETE: network */
#define s_imp S_un.S un w.s_w2 /* OBSOLETE: imp */
#define s_impno S_un.S un b.s b4     /* OBSOLETE: imp # */
#define s_lh S_un.S_un_b.s_b3      /* OBSOLETE: logical host */
};

The Internet address could be accessed as 8-bit bytes, 16-bit words, or a single
32-bit address. The macros s_host, s_net, s_imp, and so on have names that
correspond to the physical structure of early TCP/IP networks.

The use of subnetting and supernettingmakes the byte and worddivisions obso-
lete.

6.2 A pointer to the structure labeled s l_s o f t C [ 0 ] is returned.

6.3 The interface output functions, such as ether_output, have a pointer only to the
i fnet structure for the interface, and not to an i faddr structure. Using the IP
address in the arpcom structure (which is the last IP address assigned to the inter-
face) avoids having to select an address from the i faddr address list.

6.4 Only a superuser process can create a raw IP socket. By using a UDP socket, any
process can examine the interface configurations but the kernel can still require
superuser privileges to modify the interface addresses.

6.5 Three functions loop through a netmask 1 byte at a time. These are
i fa_ifwithnet, i faof_i fpforaddr, and rt_maskedcopy. A shorter mask
improves the performance of these functions.
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6.6

Chapter 7

7.1

The Telnet connection is established with the remote system. Net/2 systems
shouldn’t forward these packets, and other systems should never accept loopback
packets that arrive on any interface other than the loopback interface.

The following call returns a pointer to ±n÷t sw [ 6 ] :
pffindproto(PF_INET, 0, SOCK_RAW) ;

Chapter 8

8.1

8.4

Probably not. The system could not respond to any broadcasts since it would
have no source address to use in the repl~

Since the packet has been damaged, there is no way of knowing if the addresses in
the header are correct or not.

8.5 If an application selects a source address that differs from the address of the
selected outgoing interface, redirects from the selected next-hop router fail. The
next-hop router sees a source address different from that of the subnetwork on
which it was transmitted and does not send a redirect message° This is a conse-
quence of implementing the weak end system model and is noted in RFC 1122.

8.6 The new host thinks the broadcast packet is the address of some other host in the
unsubnetted network and trys to send it back out on the network. The network
interface begins broadcasting ARP requests for the broadcast address, which are
never answered.

8.7 The decrement of the TTL is done after the comparison for less than or equal to 1
to avoid the potential error of decrementing a received TTL of 0 to become 255.

8.8 If two routers each consider the other the best next-hop for a packet, a routing
loop exists. Until the loop is removed, the original packet bounces between the
two routers and each one sends an ICMP redirect back to the source host if that
host is on the same network as the routers. Loops may exist when the routing
tables are temporarily inconsistent during a routing update.

The TTL of the original packet eventually reaches 0 and the packet is discarded.
This is one of the primary reasons why the TTL field exists.

8.9 The four Ethernet broadcast addresses would not be checked because they do not
belong to the receiving interface. The limited-broadcast addresses would be
checked. This implies that a system on a SLIP link can communicate with the sys-
tem on the other end without knowing the other system’s address by utilizing the
limited-broadcast address.

8.10 ICMP error messages are generated only for the initial fragment of a datagram,
which always has an offset of 0. The host and network forms for 0 are the same,
so no conversion is necessary.
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Chapter 9

9.1

9.2

9.3

9.4

9.5

9.6

RFC 1122 says that the behavior is implementation dependent when conflicting
options appear in a packet. Net/3 processes the first source route option correctly,
but since this updates ±p_dst in the packet header, the second source route pro-
cessing will be incorrect.

The host within the network can be used as a relay to access other hosts within the
network. To communicate with an otherwise-blocked host, the source host need
only construct packets with a loose route to the relay host and then to the final
destination host. The router does not drop the packets because the destination
address is the relay host, which will process the route and forward the packet to
the final destination host. The destination host reverses the route and uses the
relay host to return packets.

The same principle from the previous exercise applies. We pick a relay router that
can communicate with the source and destination hosts and construct source
routes to pass through the relay and to the destination. The relay router must be
on the same network as the destination host so that a default route is not required
for communication.

This technique can be extended to allow two hosts to communicate even if they
do not have routes to each other, as long as they can find willing relay hosts.

If the source route is the only IP option, the NOP option causes all the IP
addresses to be on a 4-byte boundary in the IP header. This can optimize memory
references to these addresses on many architectures. This alignment technique
also works when multiple options are present if each option is padded with NOPs
to a 4-byte boundary.

A nonstandard time value cannot be confused with a standard value since the
largest standard time value is 86,399,999 (24 x 60 x 60 x 1000- 1) and this value
can be represented in 28 bits, which avoids any conflict with the high-order bit
since time values are 32 bits long.

The source route option code may change ±p_clsc in the packet during process-
ing. The destination is saved so that the timestamp processing code uses the orig-
inal destination.

Chapter 10

10.2 After reassembly, only the options from the initial fragment are available to the
transport protocols.

10.3 The fragment is read into a cluster since the data length (204 + 20) is greater than
208 (Figure 2.16).

m_pu~_ ~_u~ in Figure 10.11 moves the first 40 bytes into a separate mbuf as in Fig-
ure 2.18.
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ipq
for id : 6

mbuf{
m_next
m nextpkt

m_len
m_data
re_type

m_flags
next

~

ipq_next
ipcL_Pr ev
ipq_src

ipq_dst

NULL
NULL

NT_FTABL~

20g-~q heal

mbuf { }
m_next
m_nextpkt
m_len
-m_data
re_type
m_flags
m~pkthdr, len
m_pkthdr, rcvi f

len
id off

ttlI p cksum
ipf_next
ipf_prev

first 20 bytes
of datagram
(828-847)

NULL
4O

MT_ DATA

M_ P!<THDR
224

mbuf { }
m_next
m_nextpkt

re_fen
.m_data
re_type
m_flags

¯ m_ext, ext_bu f
m_ext, ext_free
m_ext, ext_size

NULL

NULL

184

MT_DA TA

M_EXT

NULL
2048

next 184 bytes of datagram

10.5 The average number of received fragments per datagram is

10.6

Chapter 11

72, 786 - 349
-4.4

16, 557

The average number of fragments created for an outgoing datagram is

796, 084
-- =3.1
260, 484

In Figure 10.11 the packet is initially processed as a fragment The reserved bit ls
discarded when ip_off is left shifted. The resulting packet is processed as a
fragment or as a comple[e datagram, depending on the values of the MF and off-
set bits.

11.1 The outgoing reply uses the source address of the interface on which the request
was received. Hosts are not required to recognize 0.0.0.0 as a valid broadcast
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11.2

11.7

11.10

11.11

address, so the request may be ignored. The recommended broadcast address is
255.255.255.255.

Assume that a host sends link-level broadcasts packets with the IP source
address of another host and the packet contains errors such as an improperly
formed option. Every host receives and detects the error because of the link-level
broadcast and because options are processed before a final destination check.
Many hosts that detect the error try to send an ICMP message back to the IP
source of the packet even though the original packet was sent as a link-level
broadcast. The unfortunate host will begin receiving many bogus ICMP error
messages. This is one reason why ICMP errors must not be sent in response to
link-level broadcasts.

11.3 In the first case, such a redirect message can fool the host into sending packets to
an arbitrary host on an alternate subnetwork. This host may be masquerading as
a router but recording the traffic it receives instead. RFC 1009 requires that
touters only generate redirect messages for other routers on the same subnet.
Even if the host ignores these messages to redirect packets to a new subnetwork,
a host on the same subnetwork can fool the host. The second case guards against
this by requiring that the host only accept the redirect advice from the original
router that it had (erroneously) selected to receive the traffic. Presumably this
incorrect router was a default router specified by an administrator.

11.4 By passing the message to r±p_±nput, a process-level daemon could respond
and old systems that relied on this behavior could continue to be supported.

11.5 ICMP errors are sent only for the initial fragment of an IP datagram. Since the
offset value of an initial fragment is always 0, the byte ordering of the field is
unimportant.

11.6 If the ICMP request was received on an interface that was not yet configured
with an IP address, i a would be null and no reply could be generated.

Net/3 reflects the data along with the timestamp reply.

The high-order bit is reserved and must be 0. If it is sent, ±crap_÷r~cor will dis-
card the packet.
The return value is discarded because ±crap_s÷nd does not return an error, but
more significantly, errors generated during ICMP processing are discarded to
avoid generating an endless series of error messages.

Chapter 12

12.1 On an Ethernet, tile IP broadcast address 255.255.255.255 translates to the Ether-
net broadcast address f f : ~ ~ : f f : f ~ : f f : f f and is received by every Ethernet
interface on the network. Systems that aren’t running IP software must actively
receive and discard each of these broadcast packets.

A packet sent to the IP all-hosts multicast group 224.0.0.1 translates to the Ether-
net multicast address 0 ~_ .- 0 0 : 5 e : 0 0 : 0 0 : 01 and is received only by systems
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12.2

12.3

12.4

12.5

12.6

12.8

12.9

12.10

12.11

12.12

Chapter 13

that have explicitly instructed their interfaces to receive IP multicast datagrams.
Systems that aren’t running IP or that aren’t level-2 compliant never receive
these datagrams, as they are discarded by the Ethernet interface hardware itself.

One alternative would be to specify interfaces by their text name as with the
i f r÷q structure and the i oc ¢ 1 commands for accessing interface information.
ip_s etmopt ions and ip_getmopt ions would have to call i funi t instead of
INADDR TO IFP to locate the pointer to the interface’s i fnet structure.

The high-order 4 bits of a multicast group are always 1110, so only 5 significant
bits are discarded by the mapping function.
The entire ip_moptions structure must fit within an mbuf, which limits the size
of the structure to 108 bytes (remember the 20-byte mbuf header).
IP_MAX_HEMBERSHIPS can be larger but must be less than or equal to 25.
(4+1 +1+2+(4x25) = 108)

The datagram is duplicated and two copies appear on the IP input queue. A
multicast application must be prepared to discard duplicate datagrams.

The process could create a second socket and request another
I P_MAX_MEMBERSHIPS through the second socket.

Define a new mbuf flag M_LOCAL for the re_flags member of the mbuf header.
The flag can be set on loopback packets by ilo_ouCput instead of computing the
checksum, ipintr can skip the checksum verification if the flag is on. SunOS
5.X has an option to do this (ip_local_cksum, page 531, Volume 1).

There are 223-1 (8,388,607) unique Ethernet IP multicast addresses. Remember
that IP group 224.0.0.0 is reserved.

This assumption is correct since in_addmulti rejects all add requests if the
interface does not have an ioctl function, and this implies that in_delmulti
is never called if i f_ioct 1 is null.

The mbuf is never released. It appears that ip_getmoptions contains a mem-
ory leak. ip_getmoptions is called from ip_ctloutput, which allows a call
such as:

ip_getmoptions(IP ADD MEMBERSHIP, 0, mp)

which exercises the bug in ip_getmopt ions.

13.1 Responding to an IGMP query from the loopback interface is unnecessary since
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13.2

13.3

the local host is the only system on the loopback network and it already knows
its membership status.
max linkhdr + sizeof (struct ip) + IGMP_MINLEN = 16+20 +8 = 44 < 100
The primary reason for the random delay in reporting memberships is to mini-
mize (ideally to 1) the number of reports that appear on a multicast network. A
point-to-point network consists only of two interfaces, so the delay is not neces-
sary to minimize the response to the query. One interface (presumably a multi-
cast router) generates the query, and the other interface responds.

There is another reason not to flood the interface’s output queue with all the
membership reports. The output queue may have a packet or byte limit that
could be exceeded by many IGMP membership reports. For example, in the
SLIP driver, if the output queue is full or the device is too busy, the entire queue
of pending packets is discarded (Figure 5.16).

Chapter 14

14.1

14.2

14.3

14.4

Five. One each for networks A through E.
grplst_member is called only by ip_mforward, but ip_mforward can be
called by ipintr during protocol processing, or by ip_eutput, which can be
called indirectly from the socket layer. The cache is a shared data structure that
must be protected while it is being updated. The membership list itself is pro-
tected by splx calls in add_lgrp and del_lgrp, where it is modified.

The SIOCDELMULTI command affects only the Ethernet multicast list for the
interface. The IP multicast group list remains unchanged, so the interface
remains a member of the group. The interface continues accepting multicast
datagrams for any groups that are still on the IP group membership list for the
interface. Specifically, when ether_delmulti returns ENETRESET to
leioctl, the function lereset is called to reconfigure the interface (Fig-
ure 12.31).

Only one virtual interface is considered to be the parent interface for a multicast
spanning tree. If the packet is accepted on the tunnel, then the physical interface
cannot be the parent and ip_mforward discards the packet.

Chapter 15

15.1

15.2

The socket could be shared across a fork or passed to a process through a Unix
domain socket ([Stevens 1990]).

The sa_len member of the structure is larger than the size of the buffer after
accept returns. This is usually not a problem with the fixed-length Internet
address, but it can be when using variable-length addresses supported by the
OSI protocols, for example.

DELL EX.1095.1102



1078    Solutions to Selected Exercises Appendix A

15.4 The call to soqremque is only made when so_qlen is not equal to 0. If
soqremque returns a null pointer there must be an error in the socket queueing
code so the kernel panics.

15.5 The copy is made so that bzero can clear the structure while it is locked and so
that dora_dispose and sbrelease can be called after splx. This minimizes
the amount of time the CPU is kept at spl imp and therefore the amount of time
that network interrupts are blocked.

15.6 The sbspace macro will return 0. As a result, the sbappendaddr and
sbappendcontrol functions (used by UDP) will refuse to queue additional
packets. TCP uses sbappend, which assumes that the caller has checked for
space first. TCP calls sbappend even when sbspace returns 0. The data placed
in the receive queue is not available to a process because the SS_CANTRCVMORE
flag prevents the read system calls from returning any data.

Chapter 16

16.1

16.2

16.5

When the value is assigned to uio_resid in the uio structure it becomes a
large negative number, s o s end rejects the message with Z INVAL.

Net/2 did not check for a negative value. This problem is described by the comment at the
start of s o s end (Figure 16.23).

No. The only time the cluster is ever filled with less than MCLBYTES is at the end
of a message when less than MCLBYTES remain, resid is 0 at this time and the
loop is terminated by the break on line 394 before reaching the test for
space > 0.

The process blocks until the buffer is unlocked. In this case the lock exists only
while another process is examining the buffer or passing data to the protocol
layer, and not when a process must wait for space in the buffer, which may take
an indefinite amount of time.

16.6 If the send buffer contained many mbufs, each of which contained only a few
bytes of data, sb_ce may be well below the limit specified by sb_hiwat while a
large amount of memory would be allocated for the mbufs. If the kernel didn’t
limit the number of mbufs attached to each buffer, a process could easily create a
memory shortage.

16.7 recvit is called from recvfrom and recvmsg. Only recvmsg handles control
information. The entire msghdr structure, including the length of the control
message, is copied back to the process by recvmsg. For address information,
recvmsg sets the namelenp argument to null because it expects the length in
msg_namelen. When recvfrom calls recvit, the namelenp is nonnull
because it expects the length in * name 1 enp.

16.8 MSG_EOR is cleared by soreceive so that it is not inadvertently returned by
s or ÷c e ire before an M_EOR mbuf is processed.
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16.9

Chapter 17

17.1

17.2

Chapter 18

18.1

18.2

18.3

There would be a race condition while select examined the descriptors. If a
selectable event occurred after selscan examined the descriptor but before
select called tsleep, it would not be detected and the process would sleep
until another selectable event occurred.

This simplifies the code that copies data between the kernel and the process.
copyin and copyout can be used for a single mbuf, but uiomove is needed to
handle multiple mbufs.
The code works correctly because the first member of a 1 inger structure is the
expected integer flag.

Write eight rows, one for each possible combination of the bits from the search
key, the routing table key, and the routing table mask.

row

1
2
3
4
5
6
7
8

1
search key

0
0
0
0
1
1
1
1

2
table key

0
0
1
1
0
0
1
1

3 1&3 2-=4? 1 ^2 6&3table mask

0 0 yes 0 0:yes
1 0 yes 0 0=yes
0 0 no 1 0=yes
1 O no 1 1 =no
0 0 yes 1 0=yes
1 1 no 1 1=no
0 0 no 0 0=yes
1 1 yes 0 0=yes

The column "2 =- 4?" should equal the final column "6 & 3." On first glance they
are not the same, but we can ignore rows 3 and 7 because in these two rows the
routing table bit is 1 while the same bit in the routing table mask is 1. When the
routing table is built the key is logically ANDed with the mask, guaranteeing that
for every bit of 0 in the mask, the corresponding bit in the key is also 0.

Another way to look at the exclusive OR and logical AND in Figure 18.40 is that
the exclusive OR becomes 1 only if the the search key bit differs from the bit in the
routing table key. The logical AND then ignores any differences that correspond
to a bit that’s 0 in the mask. If the result is still nonzero, the search key does not
match the routing table key.
The size of an rtentry structure is 120 bytes, which includes the two
radix_node structures. Each entry also requires two sockaddr_in structures
(Figure 18.28), for 152 bytes per routing table entry. The total is about 3
megabytes.

Since rn_b is a short integer, assuming 16 bits for a short imposes a limit of
32767 bits per key (4095 bytes).
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Chapter 19

19.1

19.2

19.3

Chapter 20

20.1

20.2

Chapter 21

21.1

The RTF_DYNAMTC flag is set in Figure 19.15 when the route is created by a redi-
rect, and the RTF_MODIFq-ED flag is set when the gateway field of an existing
route is modified by a redirect. If a route is created by a redirect and then later
modified by another redirect, both flags will be set.

A host route is created for each host accessed through the default route. TCP can
then maintain and update routing metrics for each individual host (Figure 27.3).

Each rt__msghdr structure requires 76 bytes. Two sockaddr_±n structures are
present for a host route (destination and gateway) giving a message size of 108
bytes. The message size for each ARP entry is 112 bytes: one sockaddr_±n and
one sockadflr_dl. The total size is then (15 x 112 + 20 x 108) or 3840 bytes. A
network route (instead of a host route) requires an additional 8 bytes for the net-
work mask (116 bytes for the message instead of 108), so if the 20 routes are all
network routes, the total size is 4000 bytes.

The return value is returned in the rtm_errno member of the message (Fig-
ure 20.14) and also as the return value from wr±te (Figure 20.22). The latter is
more reliable since the former may run into mbuf starvation, causing the reply
message to be discarded (Figure 20.17).
For a SOCK_RAW socket, the pffindproto function (Figure 7.20) returns the
entry with a protocol of 0 (the wildcard) if an exact match isn’t found.

It is assumed that the ifnet structure is at the beginning of the arpcom struc-
ture, which it is (Figure 3.20).

21.2 Sending the ICMP echo request does not require ARP, since the destination
address is the broadcast address. But the ICMP echo replies are normally uni-
cast, so each sender uses ARP to determine the destination Ethernet address.
When the local host receives each ARP request, in_arpinput replies and cre-
ates an entry for the other host.

21.3 When a new ARP entry is created, the rt_gateway value, a sockaddr_dl
structure in this case, is copied from the entry being cloned by rtrequest in
Figure 19.8. In Figure 21.1 we see that the sdl_alen member of this entry is 0.

21.4 With Net/3, if the caller of arpresolve supplies a pointer to a routing table
entry, arplookup is not called, and the corresponding Ethernet address is avail-
able through the rt_gateway pointer (assuming it hasn’t expired). This avoids
any type of lookup in the common case. In Chapter 22 we’ll see that TCP and
UDP store a pointer to their routing table entry in their protocol control block,
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avoiding a search of the routing table in the case of TCP (where the destination
IP address never changes for a connection) and in the case of UDP when the des-
tination doesn’t change.

21.5 The timeout of an incomplete ARP entry occurs between 0 and 5 minutes after
the entry is created, arpresolve sets rt_e×pire to the current time when the
ARP request is sent. The next time arptimer runs, if that entry is not resolved,
it is deleted (assuming its reference count is 0).

21.6 ether_output returns EHOSTUNREACH instead of EHOSTDOWN, causing an
ICMP host unreachable error to be sent to the sending host by ip_forward.

21.7 The value for 140.252.13.32 is set in Figure 21.28 to the current time when the
entry is created. It never changes.

21.8

21.9

’21.10

The values for 140.252.13.33 and 140.252.13.34 are copied from the entry for
140.252.13.32 when these two entries are cloned by rtrequest. They are then
set to the time at which an ARP request is sent by arpresolve, and finally set
by in_arpinput to the time at which an ARP reply is received, plus 20 minutes.

The value for 140.252.13.35 is also copied from the entry for 140.252.13.32 when
the entry is cloned, but then set to 0 by the code at the end of Figure 21.29.

Change the call to arplookup at the beginning of Figure 21.19 to always specify
a second argument of 1 (the create flag).
The first datagram was sent after the halfway mark to the next second. Therefore
both the first and second datagrams caused ARP requests to be sent, about 500
ms apart, since the kernel’s time. tv_sec variable had different values when
these two datagrams were sent.

Each packet to send is an mbuf chain. The m_nextpkt pointer in the first mbuf
in each chain could be used to form a list of mbufs awaiting transmission.

Chapter 22

22.1

22.2

22.4

22.5

An infinite loop occurs, waiting for a port to become available. This assumes the
process is allowed to open enough descriptors to tie up all ephemeral ports.

Few, if any, servers support this option. [Cheswick and Bellovin 1994] mention
how this would be nice for implementing firewall systems.
The udb structure is initialized to 0 so udb. inp_lport starts at 0. The first time
through in_pcbbind it is incremented to 1, which is less than 1024, so it is set to
1024.

Normally the caller sets the address family (sa_family) to AF_INET, but we
saw in Figure 22.20 that the test for this is commented out. The caller can set the
length member (sa_len), but we saw in Figure 15.20 that the function
sockargs always sets this to the third argument to bind, which for a
s ockaddr_in structure is specified as 16, normally using C’s s i z e o f operator.
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22.6

The local IP address (sin_addr) can be specified as a wildcard address or as a
local IP address. The local port number (s±n_port), can be either 0 (telling the
kernel to choose an ephemeral port) or nonzero if the process wants a particular
port. Normally a TCP or UDP server specifies a wildcard IP address and a
nonzero port, and a UDP client often specifies a wildcard IP address and a port
number of 0.

A process is allowed to b±nd a local broadcast address, because the call to
i fa_ifwithaddr in Figure 22.22 succeeds. That address is used as the source
address for IP datagrams sent on the socket. As noted in Section C.2, this behav-
ior is not allowed by RFC 1122.

An attempt to bind 255.255.255.255, however, fails, since that address is not
acceptable to i fa_i fwithaddr.

Chapter 23

23.1

23.2

sosend places the user data into a single mbuf if the size is less than or equal to
100 bytes; into two mbufs if the size is less than or equal to 207 bytes; or into one
or more mbufs, each with a cluster, otherwise. Furthermore, sosend calls
MH_iLIGN if the size is less than 100 bytes, which, it is hoped, will allow room at
the beginning of the mbuf for the protocol headers. Since udp_outpu¢ calls
N_PIREPEND, the following five scenarios are possible: (1) If the size of the user
data is less than or equal to 72 bytes, a single mbuf contains the IP header, UDP
header, and data. (2) If the size is between 73 and 100 bytes, one mbuf is allo-
cated by sosend for the data and another is allocated by ~__PREPEND for the IP
and UDP headers. (3) If the size is between 101 and 207 bytes, two mbufs are
allocated by sosend for the data and another by M_PREPEND for the IP and UDP
headers. (4) If the size is between 208 and MCLBYTES, one mbuf with a cluster is
allocated by sosend for the data and another by ~PREPEND for the IP and UDP
headers. (5) Beyond this size, sos÷nd allocates as many mbufs with clusters as
necessary to hold the data (up to 64 for a maximum data size of 65507 bytes with
1024-byte clusters), and one mbuf is allocated by M_PREPEND for the IP and UDP
headers.

IP options are passed to ip_output, which calls ip_insertoptions to insert
the options into the outgoing IP datagram. This function in turn allocates a new
mbuf to hold the IP header including options if the first mbuf in the chain points
to a cluster (which never happens with UDP output) or if there is not enough
room at the beginning of the first mbuf in the chain for the options. In scenario 1
from the previous solution, the size of the optiofis determines whether another
mbuf is allocated by ip_insertoptions: if the size of the user data is less than
100-28- optlen, (where optlen is the number of bytes of IP options), there is
room in the mbuf for the IP header with options, the UDP header, and the data.

In scenarios 2, 3, 4, and 5, the first mbuf in the chain is always allocated by
M_PREPEND just for the IP and UDP headers. M_PREPEND calls m_prepend,
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23.3

23.4

23.5

23.6

23.7

23.8

23.9

23.10

which calls MH_ALIGN, moving the 28 bytes of headers to the end of the mbuf,
hence there is always room for the maximum of 40 bytes of IP options in this first
mbuf in the chain.

No. The function in_pcbconnect is called, either when the application calls
connect or when the first datagram is sent on an unconnected UDP socket.
Since the local address is a wildcard and the local port is 0, in__pcbconnect sets
the local port to an ephemeral port (by calling in_pcbbind) and sets the local
address based on the route to the destination.

The processor priority level is left at s;)lnet; it is not restored to the saved value.
This is a bug.

No. in_pcbconnect will not allow a connection to port 0. Even if the process
doesn’t call connect directly, an implicit connect is performed, so
in_pcbconnect is called regardless.

The application must call ioct! with the SIOCGIFCONF command to return
information on all configured IP interfaces. The destination address in the
received UDP datagram must then be compared against all the IP addresses and
broadcast addresses in the list returned by ioctl. (As an alternative to ioctl,
the sysctl system call described in Section 19.14 can also be used to obtain the
information on all the configured interfaces.)

recvi t releases the mbuf with the control informationl

To disconnect a connected UDP socket, call connect with an invalid address,
such as 0.0.0.0, and a port of 0. Since the socket is already connected,
soconnect calls sodisconnect, which calls udp_usrreq with a
PRU_DISCONNECT request. This sets the foreign address to 0.0.0.0 and the for-
eign port to 0, allowing a subsequent call to sendto that specifies a destination
address to succeed. Specifying the invalid address causes the PRU_CONNECT
request from sodisconnect to fail. We don’t want the connect to succeed, we
just want the PRU_DISCONNECT request executed and this back door through
connect is the only way to execute this request, since the sockets API doesn’t
provide a disconnect function.

The manual page for connect(2) usually contains the following note that hints
at this: "Datagram sockets may dissolve the association by connecting to an
invalid address, such as a null address." What this note fails to mention is that
the call to connect for the invalid address is expected to return an error. The
term null address is also vague: it means the IP address 0.0.0.0, not a null pointer
for the second argument to bind.
Since an unconnected UDP socket is temporarily connected to the foreign IP
address by in_pcbcor~nect, the scenario is the same as if the process calls
connect: the datagram is sent out the primary interface with a destination IP
address corresponding to the broadcast address of that interface.

The server must set the IP_RECVDSTADDR socket option and use recvmsg to
obtain the destination IP address from the client’s request. For this address to be
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23.11

23.12

Chapter 24

the source IP address of the reply requires that this IP address be bound to the
socket. Since you cannot b±nd a socket more than once, the server must create a
brand new socket for each reply.

Notice in ±p_outpu¢ (Figure 8.22) that IP does not modify the DF bit supplied
by the caller. A new socket option could be defined to cause udp_outpu¢ to set
the DF bit before passing datagrams to IP.

No. It is used only in the udp_±n~ou¢ function and should be local to that func-
tion.

24.1 The total number of ESTABLISHED connections is 126,820. Dividing this into
the total number of bytes transmitted and received yields an average of about
30,000 bytes in each direction.

24.2 In tc~_oucpu¢, the mbuf obtained for the IP and TCP headers also contains
room for the link-layer headers (ma×_l ±nkhdr). The IP and TCP header proto-
type is copied into the mbuf using bco!oy, which won’t work if the 40-byte
header were split between two mbufs. Although the 40-byte headers must fit
into one mbuf, the link-layer header need not. But a performance penalty would
occur later (÷¢her_out~u¢) because a separate mbuf would be required for the
link-layer header.

24.3 On the author’s system ]osdJ_, the count was 16, 15 of which were standard sys-
tem daemons (Telnet, Rlogin, FTP, etc.). On vangogh, cs.berk÷l÷y, edu, a
medium-sized multiuser system with around 20 users, the count was 60. On a
large multiuser system (world. s¢fl. corn) with around 150 users, the count was
417 TCP end points and 809 UDP end points.

Chapter 25

25.1

25.2

In Figure 24.5 there were 531,285 delayed ACKs over 2,592,000 seconds (30 days).
This is an average of about one delayed ACK every 5 seconds, or one delayed
ACK every 25 times tcp_fasttimo is called. This means 96% of the time (24
times out of every 25) every TCP control block is checked for the delayed-ACK
flag, when not one is set. On the large multiuser system in the solution to Exer-
cise 24.3, this involves looking at over 400 control blocks, 5 times a second.

One alternative implementation would be to set a global flag when a delayed
ACK is needed and only go through the list of control blocks when the flag is set.
Alternatively, another list could be maintained that contains only the control
blocks that require a delayed ACK. See, for example, the variable
igmp_timers_are_running in Figure 13.14.

This allows the variable tcp_keepintvl to be patched in the running kernel,
which then changes the value of t <p__maxidl e the next time ¢ ¢p_s low� imo is
called.
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25.3 t_idle actually counts the time since a segment was last received or transmit-
ted. This is because TCP output must be acknowledged by the other end and the
receipt of the ACK clears t_idle, as does the receipt of a data segment (Fig-
ure 28.8).

25.4 Here is one way to rewrite the code:

25.5

case TCPT_2MSL:
if (tp->t_state == TCPS_TIME_WAIT)

tp : tcp_close(tp);
else {

if (tp->t_idle <: tcp_maxidle)
tp->t_timer[TCPT_2MSL] : tcp_keepintvl;

else
tp : tcp_close(tp);

}
break;

When the duplicate ACK is received, t_idle is 150, but it is reset to 0. When
the FIN_WAIT_2 timer expires, t_idle will be 1048 (1198 - 150), so the timer is
set to 150 ticks. When the timer expires the next time, t_idle will be 1198, so
the timer is set to 150 ticks. When the timer expires the next time, t_idle will
be 1198 + 150, so the connection is closed. The duplicate ACK extends the time
until the connection is closed.

25.6 The first keepalive probe will be sent I hour in the future. When the process sets
the option, nothing happens other than setting the SO_KEEPALIVE option in the
socket structure. When the timer expires 1 hour in the future, since the option
is enabled, the code in Figure 25.16 sends the first probe.

25.7 The value of tcp_rttdflt initializes the RTT estimators for every TCP connec-
tion. A site can change the default of 3, if desired, by patching the global vari-
able. If the value were a #define constant, it could be changed only by
recompiling the kernel.

Chapter 26

26.1

26.2

26.3

26.4

The counter t_idle is always running for a connection, whereas TCP does not
measure the amount of time since the last segment was sent on a connection.

In Figure 25.26 snd_nxt is set to snd_una, giving a value of 0 for len.

If you’re running a Net/3 system and encounter a peer that can’t handle either of
these two newer options (i.e., that peer refuses to establish the connection, even
though a host is required to ignore options it doesn’t understand), this global can
be patched in the kernel to disable one or both of these options.

The timestamp option would have updated the RTT estimators each time an
ACK was received for new data: 16 times, twice the number of times without the
option. The value calculated when the ACK of 6145 was received at time
217.944, however, would have been bogus--either the data segment with bytes
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26.10

5633 through 6144 that was sent at time 3.740, or the received ACK of 6145, was
delayed somewhere for about 200 seconds.

26.5 There is no guarantee that the 2-byte MSS value is correctly aligned for such a
memory reference.

26.6 (This solution is from Dave Borman.) The maximum amount of TCP data in a
segment is 65495 bytes, which is 65535 minus the minimum IP and TCP headers
(40). Hence there are 39 values of the urgent offset that make no sense: 65496
through and including 65535. Whenever the sender has a 32-bit urgent offset
that exceeds 65495, 65535 is sent as the urgent offset instead, and the URG flag is
set. This puts the receiver into urgent mode and tells the receiver that the urgent
offset points to data that has not been sent yet. The special value of 65535 contin-
ues to be sent as the urgent offset (with the URG flag set) until the urgent offset is
less than or equal to 65495, at which point the real urgent offset is sent.

26.7 We’ve mentioned that data segments are transmitted reliably (i.e., the retransmis-
sion timer is set) but ACKs are not. RST segments are not transmitted reliably
either. RST segments are generated when a bogus segment arrives (either a seg-
ment that is wrong for a connection, or a segment for a nonexistent connection).
If the RST segment is discarded by ±p_outpu¢, when the other end retransmits
the segment that caused the RST to be generated, another RST will be generated.

26.8 The application does eight writes of 1024 bytes. The first four times sosend is
called, cop_output is called, and a segment is sent. Since these four segments
each contain the final bytes of data in the send buffer, the PSH flag is set for each
segment (Figure 26.25). The send buffer is also full, so the next write by the pro-
cess puts the process to sleep in sosend. When the ACK is returned with an
advertised window of 0, the 4096 bytes of data in the send buffer have been
acknowledged and are discarded, and the process wakes up and continues filling
the send buffer with the next four writes. But nothing can be sent until a
nonzero window is advertised by the receiver, When this happens, the next four
segments are sent, but only the final segment contains the PSH flag, since the first
three segments do not empty the send buffer.

26.9 The tp argument to top_respond can be a null pointer if the segment being
sent does not correspond to a connection. The code should check the value of tp
and use the default only if the pointer is null.

¢cp_oucpu¢ always allocates an mbuf just to contain the IP and TCP headers,
by calling MGETHDR in Figures 26.25 and 26.26. This code allocates room at the
front of the new mbuf only for the linkqayer header (max_linkhdr)o If IP
options are in use and the size of the options exceeds max_!±nkhdr, another
mbuf is allocated by ±p_±~-~ser¢opt±ons. If the size of the IP options is less
than or equal to max_linkhdr, then even though ip_insertoptions will use
the space at the beginning of the mbuf, this will cause ether_output to allocate
another mbuf for the link-layer header (assuming Ethernet output).

To try to avoid the extra mbuf, Figures 26.25 and 26.26 could call MH_ALIGN if
the segment will contain IP options.
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26.11

26.12

Chapter 27

About 80 lines of C code, assuming RFC 1323 timestamps are in use and the seg-
ment is timed.

The macro MGETHDR invokes the macro MALLOC, which might call the function
real 1 oc. The function m_c opy is also called, but a full-sized segment will be in a
cluster, so the mbuf is not copied, a reference is made to the cluster. The call to
MGET by m_copy might call malloc. The function bcopy copies the header
template and in_c ks um calculates the TCP checksum.

Nothing changes with writev because of the logic in sosend. Since the total
size of the data (150) is less than MINCLSIZE (208), one mbuf is allocated for the
first 100 bytes, and since the protocol is not atomic, the PRU_SEND request is
issued. Another mbuf is allocated for the next 50 bytes, and another PRU_SEND
is issued. TCP still generates two segments. (writer only generates a single
"record," that is, a single PRU_SEND request, for PR_ATOMIC protocols such as
UDP.)

With two buffers of length 200 and 300 the total size now exceeds MINCLSIZE.
An mbuf cluster is allocated and only one PRU_SEND is issued. One 500-byte
segment is generated by TCP.

27.1

27.2

27.3

Chapter 28

The first six rows of the table are asynchronous errors that are generated by the
receipt of a segment or the expiration of a timer. By storing the nonzero error
code in so_error, the process receives the error on the next read or write. The
call from top_disconnect, however, occurs when the process calls close, or
when the descriptor is closed automatically on process termination. In either
case of the descriptor being closed, the process won’t issue a read or write call to
fetch the error. Also, since the process had to set the socket option explicitly to
force the RST, returning an error provides no useful information to the process.

Assuming a 32-bit u_long, the maximum value is just under 4298 seconds (1.2
hours).

The statistics in the routing table are updated by tcp_close and it is called only
when the connection enters the CLOSED state. Since the sending of data to the
other end is terminated by the FTP client (it does the active close), the local end
point enters the TIME_WAIT state. The routing table statistics won’t be updated
until twice the MSL has elapsed.

28.1 0,1,2, and3.

28.2 34.9 Mbits/sec. For higher speeds, larger buffers are required on both ends.

28.3 In the general case, tcp_dooptions doesn’t know whether the two timestamp
values are aligned on 32-bit boundaries or not. The special code in Figure 28.4,
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however, knows that the values are on 32-bit boundaries, and avoids calling
bcopy.

28.4 The "options prediction" code in Figure 28.4 handles only the recommended for-
mat, so systems that send other than the recommended format cause the slower
processing of tcp_doop¢ ±ons to occur for every received segment.

28.5 If tcp_t÷mpla¢÷ were called every time a socket were created, instead of every
time a connection is established, each listening server on a system would have
one allocated, which it would never use.

28.6 The timestamp clock frequency should be between 1 bit/ms and 1 bit/sec.
(Net/3 uses 2 bits/sec.) With the highest frequency of 1 bit/ms, a 32-bit time-
stamp wraps its sign bit in 231/(24 X 60 X 60 × 1000) days, which is 24.8 days.

28.7 With a frequency of 1 bit per 500 ms, a 32-bit timestamp wraps its sign bit in
231/(24 × 60 x 60 x 2) days, which is 12,427 days, or about 34 years, longer than
the uptime of current computer systems.

28.8 The cleanup function of an RST should take precedence over timestamps, and it
is recommended that RSTs not carry timestamps (which is enforced by
tcp_±npu~ in Figure 26.24).

28.9 Since the client is in the ESTABLISHED state, processing ends up in Figure 28.24.
todrop is 1 because rcv_n×t was incremented over the SYN when it was first
received. The SYN flag is cleared (since it is a duplicate), t±_seq is incre-
mented, and ¢odro~ is decremented to 0. The if statement at the top of Fig-
ure 28.25 is executed since todrop and ti_len are both 0. The next if
statement is skipped, and processing continues with the call to m_ad~. But
tcp_output is not called in the continuation of tcp_input in the next chapter,
therefore the client does not respond to the duplicate SYN/ACK. The server will
time out and resend the SYN/ACK (recall the timer set in Figure 28.17 when a
passive socket receives a SYN), which will also be ignored, This is another bug
in the code in Figure 28.25 and this one is also fixed with the code shown in Fig-
ure 28.30.

28.10 The client’s SYN arrives at the server and is delivered to the socket in the
TIME_WAIT state. The code in Figure 28.24 turns off the SYN flag and the code
in Figure 28.25 jumps to ckopaf~÷rack, dropping the segment but generating
an ACK with an acknowledgment field of ~cv_n×t (Figure 26.27). This is called
a resynchronization ACK because its purpose is to tell the other end what sequence
number it expects. When this ACK is received at the client (which is in the
SYN_SENT state), its acknowledgment field is not the expected value (Fig-
ure 28.18), causing an RST to be sent. The sequence number of the RST is the
acknowledgment field from the resynchronization ACK, and the ACK flag of the
RST segment is off (Figure 29.28). When the server receives the RST, its
TIME_WAIT state is prematurely terminated and the socket is closed on the
server’s host (Figure 28.36). The client times out after 6 seconds and retransmits
its SYN. Assuming a listening server process is running on the server host, the
new connection is established. Because of this form of TIME_WAIT
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assassination, a new connection is established not only when a SYN arrives with
a higher sequence number (as checked for in Figure 28.29), but also when a SYN
with a lower sequence number arrives°

Chapter 29

29.1 Assume a 2-second RTT. The server has a passive open pending and the client
issues its active open at time 0. The server receives the SYN at time 1 and
responds with its own SYN and an ACK of the client’s SYN. The client receives
this segment at time 2, and the code in Figure 28.20 completes the active open
with the call to soisconnected (waking up the client process) and an ACK will
be sent back to the server. The server receives the ACK at time 3, and the code in
Figure 29.2 completes the server’s passive open, returning control to the server
process. In general, the client process receives control about one-half RTT before
the server.

29.2 Assume the sequence number of the SYN is 1000 and the 50 bytes of data are
numbered 1001-1050. When the SYN is processed by tcp_input, first the case
starting in Figure 28.15 is executed, which sets rcv_nxt to 1001, and then a
jump is made to step6. Figure 29.22 calls tcp_reass and the data is placed
onto the socket’s reassembly queue. But the data cannot be appended to the
socket’s receive buffer yet (Figure 27.23) so rcv_nxt is left at 1001. When
tcp_output is called to generate the immediate ACK, rcv_nxt (1001) is sent as
the acknowledgment field. In summary, the SYN is acknowledged, but not the
50 bytes of data. Since the client will retransmit the 50 bytes of data, there is no
advantage in sending data with a SYN generated by an active open.

29.3 The server’s socket is in the SYN_RCVD state when the client’s ACK/FIN
arrives, so tcp_input ends up processing the ACK in Figure 29.2. The connec-
tion moves to the ESTABLISHED state and tcp_reass appends the already-
queued data to the socket’s receive buffer, rcv_nxt is incremented to 1051.
tcp_input continues and the FIN is handled in Figure 29.24 where the
TF_ACKNOW flag is set and rcv_nxt becomes 1052. socantrcvmore sets the
socket’s state so that after the server reads the 50 bytes of data, the server will
receive an end-of-file. The server’s socket also moves to the CLOSE_WAIT state.
tcp_out~ut will be called to ACK the client’s FIN (since rcv_nxt equals 1052).
Assuming the server process closes its socket when it reads the end-of-file, the
server will then send a FIN for the client to ACK.

29.4

In this example six segments requiring three round trips are required to pass the
50 bytes from the client to server. To reduce the number of segments requires the
TCP extensions for transactions [Braden 1994].

The client’s socket is in the SYN_SENT state when the server’s response is
received. Figure 28.20 processes the segment and moves the connection to the
ESTABLISHED state. A jump is made to step6 and the data is processed in Fig-
ure 29.22. TCP_REASS appends the data to the socket’s receive buffer and
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rcv_nxt is incremented to acknowledge the data. The FIN is then processed in
Figure 29.24, incrementing rcv_n×t again and moving the connection to the
CLOSE WAIT state. When top_output is called, the acknowledgment field
ACKs the SYN, the 50 bytes of data, and the FIN. The client process then reads
the 50 bytes of data, followed by the end-of-file, and then probably closes its
socket. This moves the connection to the LAST_ACK state and causes a FIN to
be sent by the client, which the server should acknowledge.

29.5 The bug is in the entry tcp_o~tflags~PCPS_CI~OSlNG~ shown in Fig-
ure 24.16. It specifies the TH_F IN flag, whereas the state transition diagram (Fig-
ure 24.15) doesn’t specify that the FIN should be retransmitted. To fix this,
remove TH_FIN from the tcp_outflags entry for this state. The bug is rela-
tively harmless--it just causes two extra segments to be exchanged--and a
simultaneous close or a close following a self-connect is rare.

29.6 No. An OK return from a write system call only means the data has been copied
into the socket buffer. Net/3 does not notify the process when that data is
acknowledged by the other end. An application-level acknowledgment is
required to obtain this information.

29.7 RFC 1323 timestamps defeat header compression because whenever the time-
stamps change, the TCP options change, and the segment is sent uncompressed.
The window scale option has no effect because the value in the TCP header is
stilI a 16-bit value.

29.8

Chapter 30

30.2

30.3

30.4

IP assigns the ID field from a global variable that is incremented each time any IP
datagram is sent. This increases the probability that two consecutive TCP seg-
ments sent on the same connection will have ID values that differ by more than
1. A difference other than 1 causes the Aipid field in Figure 29.34 to be transmit-
ted, increasing the size of the compressed header. A better scheme would be for
TCP to maintain its own counter for assigning IDs.

Yes, the RST is still sent. Part of process termination is the closing of all open
descriptors. The same function (soclose) is eventually called, regardless of
whether the process explicitly closes the socket descriptor or implicitly closes it
(by terminating first).

No. The only use of this constant is when a listening socket sets the SO_LINGER
socket option with a linger time of 0. Normally this causes an RST to be sent
when the connection is closed (Figure 30.12), but Figure 30.2 changes this value
of 0 to 120 (clock ticks) for a listening socket that receives a connection request.

Two if this is the first use of the default route; otherwise one. When the socket is
created the Internet PCB is set to 0 by in_pcballoc. This sets the route struc-
ture in the PCB to 0. When the first segment is sent (the SYN), tcp_output calls
ip_output. Since the ro_rt pointer is null, ro_dst is filled in with the desti-
nation address of the IP datagram and rtalloc is called. The pointer to the
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Chapter 31

default route is saved in the ro_rt member of the route structure within the
PCB for this connection. When ether_output is called by ip_output, it
checks whether the rt_gwrout e member of the routing table entry is null, and,
if so, rtallocl is called. Assuming the route doesn’t change, each time
tcp_output is called for this connection, the cached ro_rt pointer is used,
avoiding any additional routing table lookups.

31.1

31.2

31.3

Chapter 32

Because catchpacket will always run to completion before any sleeping pro-
cesses are awakened by the bp f_wakeup call.

A process that opens a BPF device may call fork resulting in multiple processes
with access to the same BPF device.

Only supported devices are on the BPF interface list (bpf_iflist), so
bpf_set i f returns ENXIO when the interface is not found.

32.1

32.2

32.3

32.4

32.5

0 in the first example, and 255 in the second. Both of these values are reserved in
RFC 1700 [Reynolds and Postel 1994] and should not appear in datagrams. This
means, for example, that a socket created with a protocol of IPPROTO_RAW
should always have the IP_HDRINCL socket option set, and datagrams written
to the socket should have a valid protocol value.

Since the IP protocol value of 255 is reserved, datagrams should never appear on
the wire with this protocol value. Since this is a nonzero protocol value, the first
of the three tests in rip_input will ignore every received datagram that does
not have this protocol value. Therefore the process should not receive any data-
grams on the socket.

Even though this protocol value is reserved and datagrams should never appear
on the wire with this value, the first of the three tests in rip_input allows data-
grams with any protocol value to be received by sockets of this type. The only
input filtering that occurs for this type of raw socket is based on the source and
destination IP addresses, if the process calls either connect or bind, or both.

Since the array ip_protox array (Figure 7.22) contains information about which
protocol the kernel supports, the ICMP error should be generated only when
there are no raw listeners for the protocol and the pointer
inetsw [ip_protox [ ip->ip_p] ] ,pr_input equals rip_input.

In both cases the process must build its own IF header, in addition to whatever
follows the IP header (UDP datagram, TCP segment, or whatever). With a raw
IP socket, output is normally done using sendto specifying the destination
address as an Internet socket address structure containing an IP address.
ip_output is called and normal IP routing is done based on the destination IP
address.
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32.6

BPF requires the process to supply a complete data-link header, such as an Ether-
net header. Output is normally done by calling wr±te, since a destination
address cannot be specified. The packet is passed directly to the interface output
function, bypassing ±~_out~ut (Figure 31.20). The process selects the outgoing
interface using the BIOCSET.~F ±octl (Figure 31.16). Since IP routing is not per-
formed, the destination of the packet is limited to another system on an attached
network (unless the process duplicates the IP routing function and sends the
packet to a router on an attached network, for the router to forward based on the
destination IP address).

A raw IP socket receives only IP datagrams destined for an IP protocol that.the
kernel does not process itself. A process cannot receive TCP segments or UDP
datagrams on a raw socket, for example.

BPF can receive all frames received on a specified interface, regardless of whether
they are IP datagrams or not. The BIOCPROHISC ioctl can put the interface
into a promiscuous mode, to receive datagrams that are not even destined for
this host.
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Source Code Availability

URLs: Uniform Resource Locators

This text uses URLs to specify the location and method of access of resources on the
Internet. For example, the common "anonymous FTP" technique is designated as

ftp://ftp.cdrom.com/pub/bsd-sources/4.4BSD Lite.tar.gz

This specifies anonymous FTP to the host ftp.cdrom.com. The filename is
4.4BSD-Lite. tar. gz in the directory pub/bsd-sources. The suffix . tar implies
the standard Unix tar(l) format, and the additional . gz suffix implies that the file has
been compressed with the GNU gz ip(1) program.

4.4BSO-Lite

There are numerous ways to obtain the 4.4BSD-Lite release. The entire 4.4BSD-Lite
release is available from Walnut Creek CD-ROM as

ftp: //ftp. cdrom, com/pub/bsd-sources/4 0 4BSD-Lite. tar. gz

You can also obtain this release on CD-ROM. Contact I 800 786 9907 or +1 510 674 0783.
O’Reilly & Associates publishes the entire set of 4.4BSD manuals along with the

4.4BSD-Lite release on CD-ROM. Contact I 800 889 8969 or +1 707 829 0515.

Operating Systems that Run the 4.4BSD-Lite Networking Software

The 4.4BSD-Lite release is not a complete operating system. To experiment with the net-
working software described in this text you need an operating system that is built from
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the 4.4BSD-Lite release or an environment that supports the 4.4BSD-Lite networking
code.

The operating system used by the authors is commercially available from Berkeley
Software Design, Inc. Contact 1 800 ITS BSD8, +1 719 260 8114, or into@bad±, corn for
additional information.

There are also freely available operating systems built on 4o4BSD-Lite. These are
known by the names NetBSD, 386BSD, and FreeBSD. Additional information is avail-
able from Walnut Creek CD-ROM(ftp.cdrom.com) or on the various
comp. os. 3 8 6bsd Usenet newsgroups.

RFCs

All RFCs are available at no charge through electronic mail or by using anonymous FTP
across the Internet. Sending electronic mail as shown here:

To: rfc-info@ISl. EDU
Subject: getting rfcs

help : ways_to_get_rfcs

returns a detailed listing of various ways to obtain the RFCs using either email or
anonymous FTP.

Remember that the starting place is to obtain the current index and look up the RFC
that you want in the index. This entry tells you if that RFC has been made obsolete or
updated by a newer RFC.

GNU Software

The GNU Indent program was used to format all the source code presented in the text,
and the GNU Gzip program is often used on the Internet to compress files. These pro-
grams are available as

ftp://prep.ai.mit.edu/pub/gnu/indent-l.9.l.tar.gz
ftp://prep.ai.mit.edu/pub/gnu/gzip 1.2.2.tar

The numbers in the filenames will change as newer versions are released. There are also
versions of the Gzip program for other operating systems, such as MS-DOS.

There are many sites around the world that also provide the GNU archives, and the
FTP greeting on prep. ai. mit. edu displays their names.

PPP Software

There are several freely available implementations of PPP. Part 5 of the
comp. protocols, ppp FAQ is a good place to start:

http://cs.uni-bonn.de/ppp/part5.html
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mrouted Software

Current releases of the m~out÷d software as well as other multicast applications can be
found at the Xerox Palo Alto Research Center:

ftp: //parcftp.xerox. com/pub/net-research/

ISODE Software

An SNMP agent implementation compatible with Net/3 is part of the ISODE software
package. For more information, start with the ISODE Consortium’s World Wide Web
page at

http: //www. isode, com/
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Appendix C

RFC 1122 Compliance

This appendix summarizes the compliance of the Net/3 implementation with RFC 1122
[Braden 1989a]. This RFC summarizes these requirements in four categories

¯ link layer
¯ internet layer
¯ UDP
¯ TCP

We have chosen to present these requirements in the same breakdown and order as the
chapters of this text.

C.1 Link-Layer Requirements

This section summarizes the link-layer requirements from Section 2.5 of RFC 1122 and
the compliance of the Net/3 code that we’ve examined to those requirements.

May support trailer encapsulation.
Partially: Net/3 does not send IP datagrams with trailer encapsulation but some
Net/3 device drivers may be able to receive such datagrams. We have omitted all
the trailer encapsulation code in this text. Interested readers are referred to RFC 893
and Section 11.8 of [Leffier et al. 1989] for additional details.

¯ Must not send trailers by default without negotiation,
Not applicable: Net/2 would negotiate the use of trailers but Net/3 ignores requests
to send trailers and does not request trailers itself.

1097
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Must be able to send and receive RFC 894 Ethernet encapsulation.
Yes: Net/3 supports RFC 894 Ethernet encapsulation.

Should be able to receive RFC 1042 (IEEE 802) encapsulation.
No: Net/3 processes packets received with 802.3 encapsulation but only for use with
OSI protocols. IP packets that arrive with 802.3 encapsulation are discarded by
ether_input (Figure 4.13).

May send RFC 1042 encapsulation, in which case there must be a software configura-
tion switch to select the encapsulation method and RFC 894 must be the default.
No: Net/3 does not send IP packets in RFC 1042 encapsulation.

Must report link-layer broadcasts to the IP layer.
Yes: The link layer reports link-layer broadcasts by setting the M_BCAST flag (or the
M_MCAST flag for multicasts) in the mbuf packet header.

Must pass the IP TOS value to the link layer.
Yes: The TOS value is not passed explicitly, but is part of the IP header available to
the link layer.

C.2 IP Requirements                     ~

This section summarizes the IP requirements from Section 3.5 of RFC 1122 and the com-
pliance of the Net/3 code that we’ve examined to those requirements.

¯ Must implement IP and ICMP.
Yes: inetsw [ 0 ] implements the IP protocol and inet sw [ 4 ] implements ICMP.

¯ Must handle remote multihoming in application layer.
Yes: The kernel is unaware of communication to remote multihomed hosts and nei-
ther hinders nor supports such communication by an application.

¯ May support local multihoming.
Yes: Net/3 supports multiple IP interfaces with the ±fnet list and multiple
addresses per IP interface with the i faddr list for each i ~net structure.

Must meet router specifications if forwarding datagrams.
Partially: See Chapter 18 for a discussion of the router requirements.

¯ Must provide configuration switch for embedded router functionality. The switch
must default to host operation.
Yes: The ipforwarding variable defaults to false and controls the IP packet for-
warding mechanism in Net/3.
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¯ Must not enable routing based on number of interfaces.
Yes: The if_attach function does not modify ipforwardir~g according to the
number of interfaces configured at system initialization time.

Should log discarded datagrams, including the contents of the datagram, and record
the event in a statistics counter.
Partially: Net/3 does not provide a mechanism for logging the contents of discarded
datagrams but maintains a variety of statistics counters.

Must silently discard datagrams that arrive with an IP version other than 4.
Yes: i pint r implements this requirement.

Must verify IP checksum and silently discard an invalid datagram.
Yes: ipintr calls ip_cksum and implements this requirement.

Must support subnet addressing (RFC 950).
Yes: Every IP address has an associated subnet mask in the in_i faddr structure.

Must transmit packets with host’s own IP address as the source address.
Partially: When the transport layer sends an IP datagram with all-0 bits as the source
address, IP inserts the IP address of the outgoing interface in its place. A process can
bind one of the local IP broadcast addresses to the local socket, and IP will transmit
it as an invalid source address.

Must silently discard datagrams not destined for the host.
Yes: If the system is not configured as a router, ipintr discards datagrams that
arrive with a bad destination address (i.e., an unrecognized unicast, broadcast, or
multicast address).

Must silently discard datagrams with bad source address (nonunicast address).
No: i~)intr does not examine the source address of incoming datagrams before
delivering the datagram to the transport protocols.

Must support reassembly.
Yes: ip_reas s implements reassembly.

May retain same ID field in identical datagrams.
No: ip_output assigns a new ID to every outgoing datagram and does not allow
the ID to be specified by the transport protocols. See Chapter 32.

Must allow the transport layer to set TOS.
Yes: ip_output accepts any TOS value set in the IP header by the transport proto-
cols. The transport layer must default TOS to all 0s. The TOS value for a particular
datagram or connection may be set by the application through the IP_TOS socket
option.
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Must pass received TOS up to transport layer.
Yes: Net/3 preserves the TOS field during input processing. The entire IP header is
made available to the transport layer when IP calls the pr_±nput function for the
receiving protocol. Unfortunately, the UDP and TCP transport layers ignore it.

¯ Should not use RFC 795 [Postel 1981d] link-layer mappings for TOS.
Yes: Net/3 does not use these mappings.

Must not send packet with TTL of 0.
Partiaily: The IP layer (±p_output) in Net/3 does not check this requirement and
relies on the transport layers not to construct an IP header with a TTL of 0. UDP,
TCP, ICMP, and IGMP all select a nonzero TTL default value. The default value can
be overridden by the I P_TT< option.

¯ Must not discard received packets with a TTL less than 2.
Yes: If the system is the final destination of the packet, ±p±ntr accepts it regardless
of the TTL value. The TTL is examined only when the packet is being forwarded.

¯ Must allow transport layer to set TTL.
Yes: The transport layer must set TTL before calling ±p_output.

Must enable configuration of a fixed TTL.
Yes: The default TTL is specified by the global integer ±p_de f t t 1, which defaults ~
64 (TPDEFTTL). Both UDP and TCP use this value unless the I P_TTL socket option
has specified a different value for a particular socket. ±~_defttl can be modified
through the IPCTL_DEFTTL name for sysctl.

Multihoming

Should select, as the source address for a reply, the specific address received as the
destination address of the request,
Yes: Responses generated by the kernel (ICMP reply messages) include the correct
source address (Section C.5). Responses generated by the transport protocols are
described in their respective chapters.

Must allow application to choose local IP address.
Yes: An application can bind a socket to a specific local IP address (Section 15.8).

May silently discard datagrams addressed to an interface other than the one on
which it is received.
No: Net/3 implements the weak end system model and ±p±ntr accepts such
packets.

May require packets to exit the system through the interface with an IP address that
corresponds to the source address of the packet. This requirement pertains only to
packets that are not source routed.
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No: Net/3 allows packets to exit the system through any interface--another weak
end system characteristic.

Broadcast

Must not select an IP broadcast address as a source address.
Partially: If an application explicitly selects a source address, the IP layer does not
override the selection. Otherwise, IP selects as a source address the specific IP
address associated with the outgoing interface.

Should accept an all-0s or all-ls broadcast address.
Yes: ±p±nt~ accepts packets sent to either address.

May support a configurable option to send all 0s or all ls as the broadcast address on
an interface. If provided, the configurable broadcast address must default to all 1so
No: A process must explicitly send to either the all-0s (TNADDR_ANY) or all-ls broad-
cast address (INADDR_!3P, O/kDCA~T). There is no configurable default.

Must recognize all broadcast address formats.
Yes: ±pin~r recognizes the limited (all-ls and all-0s) and the network-directed and
subnet-directed broadcast addresses.

Must use an IP broadcast or IP multicast destination address in a link-layer broad-
cast.
Yes: ±p_out!~t~ enables the link-layer multicast or broadcast flags only when the
destination is an IP multicast or broadcast address.

Should silently discard link-layer broadcasts when the packet does not specify an IP
broadcast address as its destination.
No: There is no explicit test for the M_~3CAS~P or M_~C;~S~P flags on incoming packets
in Net/3, but ±p_fo~wa~c? will discard these packets before forwarding them.

Should use limited broadcast address for connected networks.
Partially: The decision to use the limited broadcast address (versus a subnet-directed
or network-directed broadcast) is left to the application level by Net/3.

IP Interface

Must allow transport layer to use all IP mechanisms (e.g., IP options, TTL, TOS).
Yes: All the IP mechanisms are available to the transport layer in Net/3.

Must pass interface identification up to transport layer.
Yes: The ra_pktt~dr, rcv±£ member of each mbuf containing an incoming packet
points to the ± £n÷¢ structure of the interface that received the packet.
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Must pass all IP options to transport layer.
Yes: The entire IP header, including options, is present in the packet passed to the
pr_±n~ut function of the receiving transport protocol by ±p±ntr.

Must allow transport layer to send ICMP port unreachable and any of the ICMP
query messages.
Yes: The transport layer may send any ICMP error messages by calling ±crap_÷rror
or may format and send any type of IP datagram by calling the ±p_output func-
tion.

Must pass the following ICMP messages to the transport layer: destination unreach-
able, source quench, echo reply, timestamp reply, and time exceeded.
Yes: These messages are distributed by 1CMP to other transport protocols or to any
waiting processes using the raw IP socket mechanism.

Must include contents of ICMP message (IP header plus the data bytes present) in
ICMP message passed to the transport layer.
Yes: ±crap_±nput passes the portion of the original IP packet contained within the
ICMP message to the transport layers.

Should be able to leap tall. buildings at a single bound.
No: The next version of IP may meet this requirement.

C,3 IP Options Requirements

This section summarizes the IP option processing requirements from Section 3.5 of
RFC 1122 and the compliance of the Net/3 code that we’ve examined to those require-
ments.

¯ Must allow transport layer to send IP options.
Yes: The second argument to ±p_output is a list of IP options to include in the out-
going IP datagram.

¯ Must pass all IP options received to higher layer.
Yes: The IP header and options are passed to the Dr_input function of the receiving
transport protocol.

¯ Must silently ignore unknown options.
Yes: The de £au~_t case in J_p_doopt ions skips over unknown options.

¯ May support the security option.
No: Net/3 does not support the IP security option.
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¯ Should not send the stream identifier option and must ignore it in received datagrams.
Yes: Net/3 does not support the stream identifier option and ignores it on incoming
datagrams.

¯ May support the record route option.
Yes: Net/3 supports the record route option.

May support the timestamp option.
Partially: Net/3 supports the timestamp option but does not implement it exactly as
specified. The originating host does not insert a timestamp when required but the
destination host records a timestamp before passing the datagram to the transport
layer. The timestamp value follows the rules regarding standard values as specified
in Section 3.2.2.8 of RFC 1122 for the ICMP timestamp message.

Must support originating a source route and must be able to act as the final destina-
tion of a source route.
Yes: A source route may be included in the options passed to ±p_ouCpu~t, and
±p_ctoopt ±ons correctly terminates a source route and saves it for use in construct-
ing return routes.

¯ Must pass a datagram with completed source route up to the transport layer.
Yes: The source route option is passed up with any other options that may have
appeared in the datagram.

¯ Must build correct (nonredundant) return route.
No: Net/3 blindly reverses the source route and does not check or correct for a route
that was built incorrectly with a redundant hop for the original source host.

¯ Must not send multiple source route options in one header.
No: The IP layer in Net/3 does not prohibit a transport protocol from constructing
and sending multiple source route options in a single datagram.

Source Route Forwarding

May support packet forwarding with the source route option.
Yes: Net/3 supports the source route options. ±p_ctoo~t ±or~s does all the work.

Must obey corresponding router rules while processing source routes.
Yes: Net/3 follows the router rules whether or not the packet contains a source
route.

Must update TTL according to gateway rules.
Yes: ±p_£o~cward implements this requirement.
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Must generate ICMP error codes 4 and 5 (fragmentation required and source route
failed).
Yes: ±p_output is able to generate a fragmentation required message, and
±p_doopt J_ons is able to generate the source route failed message.

Must allow the IP source address of a source routed packet to not be an IP address of
the forwarding host.
Yes: J_p_output transmits such packets.

RFC 1122 lists this as a may requirement because the addresses may be different, which must be
allowed.

Must update timestamp and record route options.
Yes: ±~_doop ~ ion÷ processes these options for source routed packets.

Must support a configurable switch for nonlocal source routing. The switch must
default to off.
No: Net/3 always allows nonlocal source routing and does not provide a switch to
disable this function. Nonlocal source routing is routing packets between two differ-
ent interfaces instead of receiving and sending the packet on the same interface.

Must satisfy gateway access rules for nonlocal source routing.
Yes." Net/3 follows the forwarding rules for nonlocal source routing.

Should send an ICMP destination unreachable error (source route failed) if a source
routed packet cannot be forwarded (except for ICMP error messages).
Yes: ±~_doop~±or~s sends the ICMP destination unreachable error. ±crap_÷r~or
discards it if the original datagram was an ICMP error message.

C.4 IP Fragmentation and Reassembly Requirements

This section summarizes the IP fragmentation and reassembly requirements from Sec-
tion 3.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those
requirements.

Must be able to reassemble incoming datagrams of at least 576 bytes.
Yes: ±p_r÷as s supports reassembly of datagrams of indefinite size.

¯ Should support a configurable or indefinite maximum size for incoming datagrams.
Yes: Net/3 supports an indefinite maximum size for incoming datagramso

¯ Must provide a mechanism for the transport layer to learn the maximum datagram
size to receive.
Not applicable: Net/3 has an indefinite limit based on available memory.
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Must send ICMP time exceeded error on reassembly timeout.
No: Net/3 does not send an ICMP time exceeded error. See Figure 10.30 and Exer-
cise 10.1.

Should support a fixed reassembly timeout value. The remaining TTL value in a
received IP fragment should not be used as a reassembly timeout value.
Yes: Net/3 uses a compile-time value of 30 seconds (T P~’Ri~GTTL is 60 slow-timeout
intervals, which equals 30 seconds).

Must provide the MMS_S (maximum message size to send) to higher layers.
Partially: TCP derives the MMS_S from the maximum MTU found in the route entry
for the destination or from the MTU of the outgoing interface. A UDP application
does not have access to this information.

May support local fragmentation of outgoing packets.
Yes: ±p_output fragments an outgoing packet if it is too large for the selected inter-
face.

Must not allow transport layer to send a message larger than MMS_S if local frag-
mentation is not supported.
Not applicable: This is a transport-level requirement that does not apply to Net/3
since local fragmentation is supported.

Should not send messages larger than 576 bytes to a remote destination in the absence
of other information regarding the minimum path MTU to the destination.
Partially: Net/3 TCP defaults to a segment size of 552 (512 data bytes + 40 header
bytes). Net/3 UDP applications cannot determine if a destination is local or remote
and so they often restrict their messages to 540 bytes (512 + 20 + 8). There is no ker-
nel mechanism that prohibitssending larger messages.

May support an all-subnets-MTU configuration flag.
Yes: The global integer subnetsare!ocal defaults to true. TCP uses this fla~ to
select a larger segment size (the size of the outgoing interface’s MTU) instead of the
default segment size for destinations on a subnet of the local network.

C.5 ICMP Requirements

This section summarizes the ICMP requirements from Section 3.5 of RFC 1122 and the
compliance of the Net/3 code that we’ve examined to those requirements.

Must silently discard ICMP messages with unknown type.
Partially: icmp_input ignores these messages and passes them to rlp_input,
which delivers the message to any waiting processes or silently discards the message
if no process is prepared to receive the message.
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May include more than 8 bytes of the original datagram.
No: The ±crap_error function returns only a maximum of 8 bytes of the original
datagram in the ICMP error message, Exercise 11.9.

Must return the header and data unchanged from the received datagram.
Partially: Net/3 converts the ID, offset, and length fields of an IP packet from net-
work byte order to host byte order in ±p±ntr. This facilitates processing the packet,
but Net/3 neglects to return the offset and length fields to network byte order before
including the header in an ICMP error message. If the system operates with the
same byte ordering as the network, this error is harmless. If it operates with a differ-
ent ordering, the IP header contained within the 1CMP error message has incorrect
offset and length values.

The authors found that an Intel implementation of SVR4 and AIX 3.2 (Net/2 based) both
return the length byte-swapped. Implementations other than Net/2 or Net/3 that were tried
(Cisco, NetBlazer, VM, and Solaris 2.3) did not have this bug.

Another error occurs when an ICMP port unreachable error is sent from the UDP code: the
header length of the received datagram is changed incorrectly (Section 23.7). The authors
found this error in Net/2 and Net/3 implementations. Net/l, however, did not have the bug.

Must demultiplex received ICMP error message to transport protocol.
Yes: ±trap_error uses the protocol field from the original header to select the
appropriate transport protocol to respond to the error.

Should send ICMP error messages with a TOS field of 0.
Yes: All ICMP error messages are constructed with a TOS of 0 by ±crnp_÷rror.

Must not send an ICMP error message caused by a previous ICMP error message.
Partially: icrap_÷rror sends an error for an ICMP redirect message, which Sec-
tion 3.2.2 of RFC 1122 classifies as an ICMP error message.

Must not send an ICMP error message caused by an IP broadcast or IP multicast
datagram.
No: icmp_error does not check for this case.

The icrap_error function from the original Deering multicast code for BSD checks for this
case.

Must not send an ICMP error message caused by an link-layer broadcast.
Yes: icmp_÷rror discards ICMP messages that arrive as linkqayer broadcasts or
multicasts.

Must not send an ICMP error message caused by an noninitial fragment.
Yes: ±cmp_÷rror discards errors generated in this case.

Must not send an ICMP error message caused by an datagram with nonunique
source address.
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Yes: i crap_r e f 1 e c t checks for experimental and multicast addresses, ip_ou t put
discards messages sent from a broadcast address.

Must return ICMP error messages when not prohibited.
Partially: In general, Net/3 sends appropriate ICMP error messages. It fails to send
an ICMP reassembly timeout message at the appropriate time (Exercise 10.1).

Should generate ICMP destination unreachable (protocol and port).
No: Datagrams for unsupported protocols are delivered to rip_input where they
are silently discarded if there are no processes registered to accept the datagrams.
UDP generates an ICMP port unreachable error

Must pass ICMP destination unreachable to higher layer
Yes: icmp_input passes the message to the pr_ct 1 input function defined for the
protocol (udp_ct 1 input and tcp_ct 1 inpu~ for UDP and TCP, respectively).

Should respond to destination unreachable error
See Sections 23.9 and 27.6.

Must interpret destination unreachable as only a hint, as it may indicate a transient
condition.
See Sections 23.9 and 27.6.

Must not send an ICMP redirect when configured as a host.
Yes: ip_forward, the only function that detects and sends redirects, is not called
unless the system is configured as a router.

Must update route cache when an ICMP redirect is received.
Yes: ~pintr calls rtredirect to process the message.

Must handle both host and network redirects. Furthermore, network redirects must
be treated as host redirects.
Yes: ipintr calls rtredirect for both types of messages.

Should discard illegal redirects.
Yes: rtredirect discards illegal redirects (Section 19.7).

May send source quench if memory is unavailable.
Yes: ip_forward sends a source quench if ip_output returns ENOBUFS. This
occurs when there is a shortage of mbufs or when an interface output queue is full.

Must pass source quench to higher layer
Yes: ±crop_input passes source quench errors to the transport layers.

Should respond to source quench in higher layer.
See Sections 23.9 and 27.6 for UDP and TCP processing. Neither ICMP nor IGMP
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accept ICMP error messages (they don’t define a pr_ctl input function), in which
case they are discarded by IP.

Must pass time exceeded error to transport layer.
Yes: icmp_input passes this message to the transport layers.

Should send parameter problem errors.
Yes: ip_doopt ±ons complains about incorrectly formed options.

Must pass parameter problem errors to transport layer.
Yes: i crop_input passes parameter problem errors to the transport layer.

May report parameter problem errors to process.
See Sections 23.9 and 27.6 for UDP and TCP processing. Neither ICMP nor IGMP
accept ICMP error messages.

Must support an echo server and should support an echo client.
Yes: ic~p_input implements the echo server and the ping program implements
the echo client using a raw IP socket.

May discard echo requests to a broadcast address.
No: The reply is sent by ±cmp_re£1ect.

May discard echo request to multicast address.
No: Net/3 responds to multicast echo requests. Both letup_reflect and
ip_output permit multicast destination addresses.

Must use specific destination address as echo reply source.
Yes: ic~np_reflect converts a broadcast or multicast destination to the specific
address of the receiving interface and uses the result as the source address for the
echo reply.

Must return echo request data in echo reply.
Yes: The data portion of the echo request is not altered by i crop_re f 1 e c t.

Must pass echo reply to higher layer.
Yes: ICMP echo replies are passed to rip_input for receipt by registered processes.

Must reflect record route and timestamp options in ICMP echo request message.
Yes: icmp_ref~ect includes the record route and timestamp options in the echo
reply message.

Must reverse and reflect source route option.
Yes: icrnp_reflect retrieves the reversed source route with ip_srcroute and
includes it in the outgoing echo reply.
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¯ Should not support the ICMP information request or reply.
Partially: The kernel does not generate or respond to either message, but a process
may send or receive the messages through the raw IP mechanism.

May implement the ICMP timestamp request and timestamp reply messages.
Yes: ±crap_±nput implements the timestamp server functionality. The timestamp
client may be implemented through the raw IP mechanism.

Must minimize timestamp delay variability (if implementing the timestamp mes-
sages).
Partially: The receive timestamp is applied after the message is taken off the IP input
queue and the transmit timestamp is applied before the message is placed in the
interface output queue.

May silently discard broadcast timestamp request.
No: ±cmp_±nput responds to broadcast timestamp requests.

May silently discard multicast timestamp requests.
No: ±crap_i~put responds to broadcast timestamp requests.

Must use specific destination address as timestamp reply source address.
Yes: ±cm~_r÷f]_÷ct converts a broadcast or multicast destination to the specific
address of the receiving interface and uses the result as the source address for the
timestamp reply.

Should reflect record route and timestamp options in an ICMP timestamp request.
Yes: ±cm~_ref]_ect includes the record route and timestamp options in the time-
stamp reply message.

Must reverse and reflect source route option in ICMP timestamp request.
Yes: J_cmlo_re£1÷ct retrieves the reversed source route with ±p_srcrout÷ and
includes it in the outgoing timestamp reply.

Must pass timestamp reply to higher layer.
Yes: ICMP timestamp replies are passed to rip_±nput for receipt by registered pro-
cesses.

Must obey rules for standard timestamp value.
Yes: ± cin~_input calls ±p~ J_me, which returns a standard time value.

Must provide a configurable method for selecting the address mask selection
method for an interface.
No: Net/3 supports only static configuration of address masks through the
i fconfig program.
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Must support static configuration of address mask.
Yes: This is accomplished indirectly by specifying static information when the
± f con£ ±g program configures an interface during system initialization, typically in
the/etc/netstart start-up script.

May get address mask dynamically during system initialization.
No: Net/3 does not support the use of BOOTP or DHCP to acquire address mask
information.

May get address with an ICMP address mask request and reply messages.
No: Net/3 does not support the use ICMP messages to acquire address mask infor-
mation.

Must retransmit address mask request if no reply.
Not Applicable: Not required since this method is not implemented by Net/3.

Should assume default mask if no reply is received.
Not Applicable: Not required since this method is not implemented by Net/3.

Must update address mask from first reply only.
Not Applicable: Not required since this method is not implemented by Net/3.

Should perform reasonableness check on any installed address mask.
No: Net/3 performs no reasonableness check on address masks.

Must not send unauthorized address mask reply messages and must be explicitly
configured to be agent.
Yes: icmp_input only responds to address mask requests if icmpmaskrepl is
nonzero (it defaults to 0).

Should support an associated address mask authority flag with each static address
mask configuration.
No: Net/3 consults a global authority flag (icmpmaskrepl) to determine if it
should send address mask replies for any interface.

Must broadcast address mask reply when initialized.
No: Net/3 does not broadcast an address mask reply when an interface is config-
ured.

C.6 Multicasting Requirements

This section summarizes the IP multicast requirements from Section 3.5 of RFC 1122 and
the compliance of the Net/3 code that we’ve examined to those requirements.
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Should support local IP multicasting (RFC 1112).
Yes: Net/3 supports IP multicasting.

Should join the all-hosts group at start-up.
Yes: in_i finit joins the all-hosts group while initializing an interface.

Should provide a mechanism for higher layers to discover an interface’s IP multicast
capability.
Yes: The IFF_MULTICAS~P flag in the interface’s i fnet structure is available directly
to kernel code and by the SIOCGIFFLAGS command for processes.

C.7 IGMP Requirements

This section summarizes the IGMP requirements from Section 3.5 of RFC 1122 and the
compliance of the Net/3 code that we’ve examined to those requirements.

¯ May support IGMP (RFC 1112).
Yes: Net/3 supports IGMP.

C.8 Routing Requirements

This section summarizes the routing requirements from Section 3.5 of RFC 1122 and the
compliance of the Net/3 code that we’ve examined to those requirements. Be aware
that the requirements of this RFC apply to a host and not necessarily the kernel imple-
mentation. Some items are not explicitly handled by the kernel routing functions in
Net/3, but they are expected to be provided by a routing daemon such as routed or
gated.

Must use address mask in determining whether a datagram’s destination is on a con-
nected network.
Yes: When an interface for a connected network such as an Ethernet is configured, its
address mask is specified (or a default is chosen based on the class of IP address)
and stored in the routing table entry. This mask is used by rn_match when it
checks a leaf for a network match.

¯ Must operate correctly in a minimal environment when there are no routers (all net-
works are directly connected).
Yes: The system administrator must not configure a default route in this case.

¯ Must keep a "route cache" of mappings to next-hop routers.
Yes: The routing table is the cache.
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¯ Should treat a received network redirect the same as a host redirect.
Yes, as described in Section 19.7.

¯ Must use a default router when no entry exists for the destination in the routing
table.
Yes, if a default route has been entered into the routing table.

Must support multiple default routers.
Multiple defaults are not supported by the kernel. Instead, this should be provided
by a routing daemon.

May implement a table of static routes.
Yes: These can be created at system initialization time with the route command.

May include a flag with each static route specifying whether or not the route can be
overridden by a redirect.
No.

May allow the routing table key to be a complete host address and not just a network
address.
Yes: Host routes take priority over a network route to the same network.

Should include the TOS in the routing table entry.
No: There is a TOS field in the sockaddr_±narp that we describe in Chapter 21,
but it is not currently used.

Must be able to detect the failure of a next-hop router that appears as the gateway
field in the routing table and be able to choose an alternate next-hop router.
Negative advice, the Rq~I~_r.OST~IG message generated by ±n_~_os ±ng, is passed to
any processes reading from a routing socket, which allows the process (e.g., a rout-
ing daemon) to handle this event.

Should not assume that a route is good forever.
Yes: There are no timeouts on routing table entries in the kernel other than those cre-
ated by ARP. Again, the standard Unix routing daemons time out routes and
replace them with alternatives when possible.

Must not ping routers continuously (ICMP echo request).
Yes: The Net/3 kernel does not do this. The routing daemons don’t generate ICMP
echo requests either.

Must use pinging of a router only when traffic is being sent to that router.
The Net/3 kernel never generates pings to a next-hop router.

Should allow higher and lower layers to give positive and negative advice.
Partially: The only information passed by other layers to the Net/3 routing functions
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is by in_losing, which is called only from TCP. The only action performed by the
routing layer is to generate the RTM_LOS ING message.

Must switch to another default router when the existing default fails.
Yes, although the Net/3 kernel does not do this, it is supported by the routing dae-
mons.

Must allow the following information to be configured manually in the routing table:
IP address, network mask list of defaults.
Yes, but only one default is supported in the kernel.

C.9 ARP Requirements

This section summarizes the ARP requirements from Section 2.5 of RFC 1122 and the
compliance of the Net/3 code that we’ve examined to those requirements.

Must provide a mechanism to flush out-of-date ARP entries. If this mechanism
involves a timeout, it should be configurable.
Yes and yes: arpt iraer provides this mechanism. The timeout is configurable (the
arpt_prune and arp~_keep globals) but the only ways to change their values are
to recompile the kernel or modify the kernel with a debugger.

Must include a mechanism to prevent ARP flooding.
Yes, as we described with Figure 21.24.

Should save (rather than discard) at least one (the latest) packet of each set of packets
destined to the same unresolved IP address, and transmit the saved packet when the
address has been resolved.
Yes: This is the purpose of the 1 a_ho 1 d member of the 11 in f o_a rp structure.

C.10 UDP Requirements

This section summarizes the UDP requirements from Section 4.1.5 of RFC 1122 and the
compliance of the Net/3 code that we’ve examined to those requirements.

¯ Should send ICMP port unreachable.
Yes: udp_input does this.

¯ Must pass received IP options to application.
No: The code to do this is commented out in udp_input. This means that a pro-
cess that receives a UDP datagram with a source route option cannot send a reply
using the reversed route.

¯ Must allow application to specify IP options to send.
Yes: The IP_OPq?IONS socket option does this. The options are saved in the PCB
and placed into the outgoing IP datagram by ip_output.
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Must pass IP options down to IP layer.
Yes: As mentioned above, IP places the options into the IP datagram.
Must pass received ICMP messages to application.
Yes: We must look at the exact wording from the RFC: "A UDP-based application
that wants to receive ICMP error messages is responsible for maintaining the state
necessary to demultiplex these messages when they arrive; for example, the applica-
tion may keep a pending receive operation for this purpose." The state required by
Berkeley-derived systems is that the socket be connected to the foreign address and
port. As the comments at the beginning of Figure 23.26 indicate, some applications
create both a connected and an unconnected socket for a given foreign port, using
the connected socket to receive asynchronous errors.

Must be able to generate and verify UDP checksum.
Yes: This is done by udp_input, based on the global integer udpcksum.

Must silently discard datagrams with bad checksum.
Yes: This is done only if udpcksura is nonzero. As we mentioned earlier, this vari-
able controls both the sending of checksums and the verification of received check-
sums. If this variable is 0, the kernel does not verify a received nonzero checksum.

May allow sending application to specify whether outgoing checksum is calculated,
but must default to on.
No: The application has no control over UDP checksums. Regarding the default,
UDP checksums are generated unless the kernel is compiled with 4.2BSD compati-
bility defined, or unless the administrator has disabled UDP checksums using
sysctl(8).

May allow receiving application to specify whether received UDP datagrams with-
out a checksum (i.e., the received checksum is 0) are discarded or passed to the
application.
No: Received datagrams with a checksum field of 0 are passed to the receiving pro-
cess.

Must pass destination IP address to application.
Yes: The application must call r÷cvmsg and specify the IP_RECVDSTADDR socket
option. Also recall our discussion following Figure 23.25 noting that 4.4BSD broke
this option when the destination address is a multicast or broadcast address.

Must allow application to specify local IP address to be used when sending a UDP
datagram.
Yes: The application can call b±nd to set the local IP address. Recall our discussion
at the end of Section 22.8 about the difference between the source IP address and the
IP address of the outgoing interface. Net/3 does not allow the application to choose
the outgoing interface--that is done by ip_output, based on the route to the desti-
nation IP address.

Must allow application to specify wildcard local IP address.
Yes: If the IP address INADDR_ANY is specified in the call to bind, the local IP
address is chosen by in_pcbconnect, based on the route to the destination.
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¯ Should allow application to learn of the local address that was chosen.
Yes: The application must call connect. When a datagram is sent on an uncon-
nected socket with a wildcard local address, ±l~_output chooses the outgoing inter-
face, which also becomes the source address. The inp_laddr member of the PCB,
however, is restored to the wildcard address at the end of udp_output before
sendto returns. Therefore, getsockname cannot return the value. But the applica-
tion can connect a UDP socket to the destination, causing in__pcbconnect to
determine the local interface and store the address in the PCB. The application can
then call getsockname to fetch the IP address of the local interface.

¯ Must silently discard a received UDP datagram with an invalid source IP address
(broadcast or multicast).
No: A received UDP datagram with an invalid source address is delivered to a
socket, if a socket is bound to the destination port.

Must send a valid IP source address.
Yes: If the local IP address is set by bind, it checks the validity of the address. If the
local IP address is wildcarded, ip_output chooses the local address.

¯ Must provide the full IP interface from Section 3.4 of RFC 1122.
Refer to Section C.2.

Must allow application to specify TTL, TOS, and IP options for output datagrams.
Yes: The application can use the IP_TTL, IP_TOS, and IP_OPTIONS socket
options.

May pass received TOS to application.
No: There is no way for the application to receive this value from the IP header.
Notice that a getsockopt of IP_TOS returns the value used in outgoing data-
grams, not the value from a received datagram. The received ito_tos value is avail-
able to udp_input, but is discarded along with the entire IP header.

C.11 TCP Requirements

This section summarizes the TCP requirements from Section 4.2.5 of RFC 1122 and the
compliance of the Net/3 code that we’ve examined to those requirements.

PSH Flag

¯ May aggregate data sent by the user without the PSH flag.
Yes and no: Net/3 does not give the process a way to specify the PSH flag with a
write operation, but Net/3 does aggregate data sent by the user in separate write
operations.

¯ May queue data received without the PSH flag.
No: The absence or presence of a PSH flag in a received datagram makes no differ-
ence. Received data is placed onto the socket’s received queue when it is processed.
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Sender should collapse successive PSH flags when it packetizes data.
No.

¯ May implement PSH flag on write calls.
No: This is not part of the sockets API.

¯ Since the PSH flag is not part of the write calls, must not buffer data indefinitely and
must set the PSH flag in the last buffered segment.
Yes: This is the method used by Berkeley-derived implementations.

¯ May pass received PSH flag to application.
No: This is not part of the sockets API.

¯ Should send maximum-sized segment whenever possible, to improve performance.
Yes.

Window

¯ Must treat window size as an unsigned number. Should treat window size as 32-bit
value.
Yes: All the window sizes in Figure 24.13 are uns±gned ~_ongs, which is also
required by the window scale option of RFC 1323.

¯ Receiver must not shrink the window (move the right edge to the left).
Yes, in Figure 26.29.

¯ Sender must be robust against window shrinking.
Yes, in Figure 29.15.

¯ May keep offered receive window closed indefinitely.
Yes.

¯ Sender must probe a zero window.
Yes, this is the purpose of the persist timer.

¯ Should send first zero-window probe when the window has been closed for the RTO.
No: Net/3 sets a lower bound for the persist timer of 5 seconds, which is normally
greater than the RTO.

¯ Should exponentially increase the interval between successive probes.
Yes, as shown in Figure 25.14.

¯ Must allow peer’s window to stay closed indefinitely.
Yes, TCP never gives up probing a closed window.

¯ Sender must not timeout a connection just because the other end keeps advertising a
zero window.
Yes.

Urgent Data

Must have urgent pointer point to last byte of urgent data.
No: Berkeley-derived implementations continue to interpret the urgent pointer as
pointing just beyond the last byte of urgent data.
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¯ Must support a sequence of urgent data of any length.
Yes, with the bug fix discussed in Exercise 26.6.

¯ Must inform the receiving process (1) when TCP receives an urgent pointer and
there was no previously pending urgent data, or (2) when the urgent pointer
advances in the data stream.
Yes, in Figure 29.17.

¯ Must be a way for the process to determine how much urgent data remains, or at
least whether more urgent data remains to be read.
Yes, this is the purpose of the out-of-band mark, the SIOCATMARK ioctl.

TCP Options

Must be able to receive TCP options in any segment.
Yes.

¯ Must ignore any options not supported.
Yes, in Seetion 28.3.

¯ Must cope with an illegal option length.
Yes, in Section 28.3.

¯ Must implement both sending and receiving the MSS option.
Yes, a received MSS option is handled in Figure 28.10, and Figure 26.23 always sends
an MSS option with a SYN.

¯ Should send an MSS option in every SYN when its receive MSS differs from 536, and
may send it always.
Yes, as mentioned earlier, an MSS option is always sent by Net/3 with a SYN.

¯ If an MSS option is not received with a SYN, must assume a default MSS of 536.
No: The default MSS is 512, not 536.

This is probably a historical artifact because VAXes had a physical page size of 512 bytes and
trailer protocols working only with data that is a multiple of 512.

Must calculate the "effective send MSS."
Yes, in Section 27.5.

TCP Checksums

¯ Must generate a TCP checksum in outgoing segments and must verify received
checksums.
Yes, TCP checksums are always calculated and verified.

Initial Sequence Number Selection

¯ Must use the specified clock-driven selection from RFC 793.
No: RFC 793 specifies a clock that changes by 125,000 every half-second, whereas
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the Net/3 ISN (the global variable ¢c~_±ss) is incremented by 64,000 every half-
second, about one-half the specified rate.

Opening Connections

Must support simultaneous open attempts.
Yes, although Berkeley-derived systems prior to 4.4BSD did not support this, as
described in Section 28.9.

¯ Must keep track of whether it reached the SYN_RCVD state from the LISTEN or
SYN_SENT states.
Yes, same result, different technique. The purpose of this requirement is to allow a
passive open that receives an RST to return to the LISTEN state (as shown in Fig-
ure 24.15), but force an active open that ends up in SYN_RCVD and then receives an
RST to be aborted. This is described following Figure 28.36.

¯ A passive open must not affect previously created connections.
Yes.

¯ Must allow a listening socket with a given local port at the same time that another
socket with the same local port is in the SYN SENT or SYN_RCVD state.
Yes: The stated purpose of this requirement is to allow a given application to accept
multiple connection attempts at about the same time. This is done in Berkeley-
derived implementations by cloning new connections from the socket in the LISTEN
state when the incoming SYN arrives.

¯ Must ask IP to select a local IP address to be used as the source IP address when the
source IP address is not specified by the process performing an active open on a
multihomed host.
Yes, done by in_pcbconnect.

¯ Must continue to use the same source IP address for all segments sent on a connec-
tion.
Yes: Once ±n__pcbconnec¢ selects the source address, it doesn’t change.

¯ Must not allow an active open for a broadcast or multicast foreign address.
Yes and no: TCP will not send segments to a broadcast address because the call to
±p_outt~u¢ in Figure 26.32 does not specify the SO_BROADCAST option. Net/3,
however, allows connection attempts to multicast addresses.

¯ Must ignore incoming SYNs with an invalid source address.
Yes: The code in Figure 28.16 checks for these invalid source addresses.

Closing Connections

¯ Should allow an RST to contain data.
No: The RST processing in Figure 28.36 ends up jumping to drop, which skips the
processing of any segment data in Figure 29.22.

¯ Must inform process whether other end closed the connection normally (e.g., sent a
FIN) or aborted the connection with an RST.
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Yes: The read system calls return 0 (end-of-file) when the FIN is processed, but -1
with an error of ~.CONNRES~.q? when an RST is received.

May implement a half-close.
Yes: The process calls shutdown with a second argument of 1 to send a FIN. The
process can still read from the connection.

If the process completely closes a connection (i.e., not a half-close) and received data
is still pending in TCP, or if new data arrives after the close, TCP should send an RST
to indicate data was lost.
No and yes: If a process calls close and unread data is in the socket’s receive buff-
er, an RST is not sent. But if data arrives after a socket is closed, an RST is returned
to the sender.

Must linger in TIME_WAIT state for twice the MSL.
Yes, although the Net/3 MSL of 30 seconds is much smaller than the RFC 793 recom-
mended value of 2 minutes.

May accept a new SYN from a peer to reopen a connection directly from the
TIME_WAIT state.
Yes, as shown in Figure 28.29.

Retransmissions

Must implement Van Jacobson’s slow start and congestion avoidance.
Yes.

¯ May reuse the same IP identifier field when a retransmission is identical to the origi-
nal packet.
No: The IP identifier is assigned by ip_output from the global variable ip_id,
which increments each time an IP datagram is sent. It is not assigned by TCP.

¯ Must implement Jacobson’s algorithm for calculating the RTO and Karn’s algorithm
for selecting the RTT measurements.
Yes, but realize that when RFC 1323 timestamps are present, the retransmission
ambiguity problem is gone, obviating half of Karn’s algorithm, as we discussed with
Figure 29.6.

¯ Must include an exponential backoff for successive RTO values.
Yes, as described with Figure 25.22.

¯ Retransmission of SYN segments should use the same algorithm as data segments.
Yes, as shown in Figure 25.15.

¯ Should initialize estimation parameters to calculate an initial RTO of 3 seconds.
No: The initial value of t_rxtcur calculated by tcp_newtcpct~ is 6 seconds. This
is also seen in Figure 25.15.

¯ Should have a lower bound on the RTO measured in fractions of a second and an
upper bound of twice the MSL.
No: The lower bound is I second and the upper bound is 64 seconds (Figure 25.3).
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Generating ACKs

¯ Should queue out-of-order segments.
Yes, done by tcp_reass.

¯ Must process all queued segments before sending any ACKs.
Yes, but only for in-order segments, ipintr calls tcp_inlout for each queued
datagram that is a TCP segment. For in-order segments, tcp_inl~ut schedules a
delayed ACK and returns to ipintr. If there are additional TCP segments on IP’s
input queue, tcp_input is called by ipintr for each one. Only when ipintr
finds no more IP datagrams on its input queue and returns can tcp_fasttimo be
called to generate a delayed ACK. This ACK will contain the highest acknowledg-
ment number in all the segments processed by t cp_input.

The problem is with out-of-order segments: tc~_inpu~ calls tclo_output itself,
before returning to ipintr, to generate the ACK for the out-of-order segment. If
there are additional segments on IP’s input queue that would have made the out-of-
order segment be in order, they are processed after the immediate ACK is sent.

¯ May generate an immediate ACK for an out-of-order segment.
Yes, this is needed for the fast retransmit and fast recovery algorithms (Section 29.4).

¯ Should implement delayed ACKs and the delay must be less than 0.5 seconds.
Yes: The TF_DELACK flag is checked by the t c~)_f as t t ilno function every 200 ms.

¯ Should send an ACK for at least every second segment.
Yes, the code in Figure 26.9 generates an ACK for every second segment. We also
discussed that this happens only if the process receiving the data reads the data as it
arrives, since the calls to top_output that cause every other segment to be
acknowledged are driven by the PRU_RCVD request.

¯ Must include silly window syndrome avoidance in the receiver.
Yes, as seen in Figure 26.29.

Sending Data

¯ The TTL value for TCP segments must be configurable.
Yes: The TTL is initialized to 64 (IPDEFTTL) by tcp_newtcpcb, but can then be
changed by a process using the I P_TTL socket option.

¯ Must include sender silly window syndrome avoidance.
Yes, in Figure 26.8.

¯ Should implement the Nagle algorithm.
Yes, in Figure 26.8.

¯ Must allow a process to disable the Nagle algorithm on a given connection.
Yes, with the TCP_NO]gELAY socket option.
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Connection Failures

Keepalive

¯ Must pass negative advice to IP when the number of retransmissions for a given seg-
ment exceeds some value R1.
Yes: The value of R1 is 4, and in Figure 25.26, when the number of retransmissions
exceeds 4, ±n_~_os±ng is called.

¯ Must close a connection when the number of retransmissions for a given segment
exceeds some value R2.
Yes: The value of R2 is 12 (Figure 25.26).

¯ Must allow process to set the value of R2.
No: The value 12 is hardcoded in Figure 25.26.

¯ Should inform the process when R1 is reached and before R2 is reached.
No.

Should default R1 to at least 3 retransmissions and R2 to at least 100 seconds.
Yes: R1 is 4 retransmissions, and with a minimum RTO of 1 second, the
tcp_~a¢~:o£f array (Section 25.9) guarantees a minimum value of R2 of over 500
seconds.

Must handle SYN retransmissions in the same general way as data retransmissions.
Yes, but R1 is normally not reached for the retransmission of a SYN (Figure 25.15).

Must set R2 to at least 3 minutes for a SYN.
No: R2 for a SYN is limited to 75 seconds by the connection-establishment timer
(Figure 25.15).

Packets

¯ May provide keepalives.
Yes, they are provided.

¯ Must allow process to turn keepalives on or off, and must default to off.
Yes: Default is off and process must turn them on with the $O_K~.~.PAT.TVI~ socket
option.

¯ Must send keepalives only when connection is idle for a given period.
Yes.

¯ Must allow the keepalive interval to be configurable and must default to no less than
2 hours.
No and yes: The idle time before sending keepalive probes is not easily config-
urable, but it defaults to 2 hours. If the default idle time is changed (by changing the
global variable tep_kee~±d3_e), it affects all users of the keepalive option on the
host--it cannot be configured on a per-connection basis as many users would like.

¯ Must not interpret the failure to respond to any given probe as a dead connection.
Yes: Nine probes are sent before the connection is considered dead.
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IP Options

¯ Must ignore received IP options it doesn’t understand.
Yes: This is done by the IP layer.

¯ May support the timestamp and record route options in received segments.
No: Net/3 only reflects these options for ICMP packets that are reflected back to the
sender (icmp_reflect). tcp_input discards any received IP options by calling
ip_s t ripopt ions in Figure 28.2.

¯ Must allow process to specify a source rou~e when a connection is actively opened,
and this route must take precedence over a source route received for this connection.
Yes: The source route is specified with the II~_OPTIOI’~S socket option, tcp_input
never looks at a received source route when the connection is actively opened.

¯ Must save a received source route in a connection that is passively opened and use
the return route for all segments sent on this connection. If a different source route
arrives in a later segment, the later route should override the earlier one.
Yes and no: Figure 28.7 calls ip_srcroute, but only when the SYN arrives for a lis-
tening socket. If a different source route arrives later, it is not used.

Receiving ICMP Messages from IP

Receipt of an ICMP source quench should trigger slow start.
Yes: The function t cp_quench is called by tcp_ct 1 input.

Receipt of a network unreachable, host unreachable, or source route failed must not
cause TCP to abort the connection and the process should be informed.
Yes and no: As described following Figure 27.12, Net/3 now completely ignores
host unreachable and network unreachable errors for an established connection.

¯ Receipt of a protocol unreachable, port unreachable, or fragmentation required and
DF bit set should abort an existing connection.
No: tcio_notify records these ICMP error in t_softerror, which is reported to
the process if the connection is eventually dropped.

¯ Should handle time exceeded and parameter problem errors the same as required
previously for network and host unreachable.
Yes: ICMP parameter problem errors are just recorded in t_softerror by
t cp_not i fy. ICMP time exceeded errors are ignored by t cp_ct 1 input. Neither
type of ICMP error causes the connection to be aborted.

Application Programming Interface

¯ Must be a method for reporting soft errors to the process, normally in an asyn-
chronous fashion.
No: Soft errors are returned to the process if the connection is aborted.
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¯ Must allow process to specify TOS for segments sent on a connection. Should
application change this during a connection’s lifetime.
Yes to both, with the IP_TOS socket option.

¯ May pass most recently received TOS to process.
No: There is no way to do this with the sockets APL Calling g÷tsockopt for
IP_<Po~ returns only the current value being sent; it does not return the most
recently received value.

¯ May implement a "flush" call.
No: TCP sends the data from the process as quickly as it can.

¯ Must allow process to specify local IP address before either an active open or a pas-
sive open.
Yes: This is done by calling bind before either connect or accept.
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Index

Rather than provide a separate glossary (with most of the entries being acronyms), this
index also serves as a glossary for all the acronyms used in the book. The primary entry
for the acronym appears under the acronym name. For example, all references to the
Address Resolution Protocol appear under ARP. The entry under the compound term
"Address Resolution Protocol" refers back to the main entry under ARP.

The two end papers at the back of the book contain a list of all the functions and
macros presented or described in the text, along with the starting page number of the
source code. Similarly one front end paper contains a list of all the structures presented
in the text. These end papers should be the starting point to locate the definition of a
function or structure.

The various functions, constants, variables, and the like that appear in this index
refer to their appearance in the text. We have not attempted to index all these names
when they appear in source code files that are included in the text. The definitive
answer to a question such as "where are all the references to the constant
TF_RECVOPTS" can only be obtained by obtaining the Net/3 source code (Appendix B)
and using a tool such as grep.

The entries in this index for RFCs refer only to the reference for that RFC in the Bib-
liography. This is to help locate an RFC if you encounter a reference to it by number
within the text.

224.0.0.1, 343, 345-346
224.0.0.2, 343, 346
224.0.1.2, 343, 346
2MSL, timer, 818-819, 821-822, 825-827, 893, 967
4.1cBSD, 4
4.2BSD, 4-6, 887, 1128

compatibility, 768, 1114
keepalives, 956

4.3BSD, 5, 844, 1053, 1128-1129
Reno, xix, 5, 191, 562, 569, 678, 776, 934, 970,

977, 1126
Tahoe, xix, 5, 773, 834, 970, 1129

4.4BSD, xix, 678, 977
4.4BSD-Lite, xix
4.5BSD, 778
802.3 encapsulation, 106, 125
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ac_enaddr member, 81, 99, 111, 683
ac_if member, 81
ac_ipaddr member, 81, 183, 683
ac_multiaddrs member, 81, 343, 364, 366
ac_multicnt member, 81.
accept function, 440-441, 443, 445-446, 455,

457-464, 474, 552, 555-556, 713, 722, 787,
969,1013-1014,1077, 1123

accept_args structure, 459
acceptable ACK, 808
access rights, 189, 470, 518
ACK (acknowledgment flag, TCP header),

461-463, 803, 805, 887
acceptable, 808
number, 803, 807
pure, 831, 851, 937
resynchronization, 960, 1088

acknowledgment flag, TCP header, see ACK
adb program, 200
add_l grp function, 401, 411-412, 1077
add_tort function, 401, 422-423
acld_v±£ function, 401,408-409
ADDDOMATN macro, 193-194, 584
address

class A IP, 155
class B IP, 155
class C IP, 155
class D IP, 155, 341
class E IF, 155
directed broadcast, 157, 162
Ethernet broadcast, 97, 100, 103
Ethernet destination, 99, 110
Ethernet hardware, 75, 81, 87, 91-92, 104, 341,

1046
Ethernet multicast, 100, 103-104, 341-342
Ethernet source, 99
Ethernet unicast, 100
IP, 155-183
IP broadcast, 182, 234, 1101
IP destination, 162, 182
IP experimental, 156
IP multicast, 155-156, 341
IP unicast, 155-156, 182
limited broadcast, 753
link-level, 77, 85-90, 92, 94, 97, 158, 185
network broadcast, 162
subnet, 1129

address assignment, IP, 161-177
address family, 75, 86, 110, 152, 162, 182, 185, 187

Internet, 185
OSL 185
routing, 185
Unix, 185

address mapping, II? to Ethernet multicast,
341-342

address mask, link-level, 77
address mask reply, ICMP, 319
address mask request, ICMP, 319
Address Resolution Protocol, see ARP
ADVANCE macro, 661
Advanced Research Projects Agency network see

ARPANET
AF_IMPLINK constant, 1060
AF_TNET constant, 75, 109-110, 160, 185, 187, 192,

361, 363, 564, 577, 581,627, 637, 647, 662, 701,
1060, 1081

AF_TS0 constant, 75, 109, 185, 581, 585
AF_LINK constant, 75, 86, 90-91, 121, 185, 698,

702, 1070
AF_LOCAL constant, 185
AF_NS constant, 581
AF_OSI constant, 75, 185
AF_ROUTE constant, 75, 185
AF_UNIX constant, 75, 185, 581
AF_UNSPEC constant, 75, 109-110, 363, 577, 684,

686, 1046
AIX, 4
alias, IP address, 174-177
all-hosts group, 168, 170-171,339, 343, 345, 355,

365, 379, 381, 383, 386, 391, 393, 561, 1075
joining, 171, 1111
membership report, 394

all-routers group, 339, 343
Almquist, P., 140, 226, 1125-1126
ambiguity problem, retransmission, 976
American National Standards Institute, see ANSI
ANSI (American National Standards Institute),

103
ANSI C function prototypes, 41
any_count member, 666
anycasting, 351, 1130
API (application program interface), 5, 476, 483
ARP (Address Resolution Protocol), 67, 77, 86, 97,

100-101, 106, 141, 343, 675-712
cache, 572, 675, 680, 682, 691, 703-704, 710-712
flooding, 109, 696
gratuitous, 178, 683, 707
header, 681
input queue, 97
multicasting, 710-711
proxy, 688, 703-704
RFC 1122 compliance, 1113

routing table, 675-678
structures, 681-683
timer functions, 694-696

arp program, 571-572, 635, 641, 679-680, 688,
692, 694, 703-704, 706-707, 709-711
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arp_allocated variable, 680, 707
arp_inuse variable, 680, 707, 710
arp_maxtries variable, 680, 699
arp_pro member, 686
arp_rtrequest function, 90, ]69, 679, 695-696

703-710
ARPANET (Advanced Research Projects Agency

network), 24, 901, 982, 1129
arpcom structure, 77, 80, 86, 92, 99-101, 120, 159,

178, 343-344, 346, 364, 366, 683, 693, 709,
1071, 1080

arphdr structure, 681, 687
ARPHRD_ETHER constant, 686
arpinit_done variable, 680
arpinput function, 106
arpintr function, 107, 679, 687-688, 694
arpintrq variable, 97, 101, 106, 680, 687
arplookup function, 679, 691, 693, 697, 701-704

707, 1080-1081
ARPOP_REPLY constant, 686, 694
ARPOP_REQUEST constant, 686
ARPOP_REVREPLY constant, 686
ARPOP_REVREQUEST constant, 686
arprequest function, 679, 683-686, 688, 707
arpresolve function, 109-110, 234, 378, 679,

683-684, 692, 696-701, 707, 710, 712,
1080-1081

arpt_down variable, 680
arpt_keep variable, 680, 692, 1113
arpt_t~rune variable, 680, 695, 1113
arptfree function, 679, 695-696, 699, 704, 709
arptiraer function, 679, 694-695, 706, 711, 1081,

1113
arptnew function, 702
arpwhohas function, 679, 683-684, 699
assassination, TIME_WAIT, 964, 1089, 1126
Asynchronous Transfer Mode, see ATM
ATM (Asynchronous Transfer Mode), 1018, 1068
atoi function, 8
Auerbach, K., 300, 1125

b_to_q function, 146
backlog, connection, 463
backoff, exponential, 836, 1119
Banks, D., 994, 1126
BBN (Bolt Beranek and Newman), 5
Bcmp macro, 585, 596-597
Bcopy macro, 585
bd bif member, 1033, 1036-1037, 1040
bd_bufsize member, 1033, 1036-1037, 1043,

1046
bd_dcount member, 1033

bd_fbuf member, 1032-1033, 1036-1037
bd_filter member, 1033
bd_hbuf member, 1032-1033, 1036-1037
bd_blen member, 1032, 1036-1037, 1046
bd_immediate member, 1033
bd_next member, 1032, 1036-1037
bd_pad member, 1033
bd_promisc member, 1033
bd_rcount member, 1028, 1033
bd_rtout member, 1033
bd_sbuf member, 1032-1033, 1036-1037
bd_sel member, 1033
bd_slen member, 1032, 1036-1037
bd_state member, 1033
Bellovin, S. M., 1081, 1126
Berkeley fast filesystem, 27
Berkeley Software Distribution, see BSD
Berkeley-derived implementation, 4
BGP (Border Gateway Protocol), 574
bh_caplen member, 1030
bh_datalen member, 1030
bh_headlen member, 1030
bh_tstamp member, 1030
bibliography, 1125-1131
bif_dlist member, 1029-1030, 1036-1037
bif_dlt member, 1029-1030, 1035-1037, 1046
bif_driverp member, 1029-1030, 1036-1037
bif_hdrlen member, 1029-1031, 1036-1037
bif_if member, 1029
bif_ifp member, 1029-1030, 1036-1037
bif_next member, 1029-1030, 1036-1037
bind, 719-721

explicit, 729
implicit, 729

bind function, 8-9, 445-446, 452-454, 464, 554,
664, 666, 670, 719-721, 725, 729-730,
732-733, 740, 748, 750-751, 753, 786, 793,
930, 960, 1010, 1060, 1065, 1081-1084, 1091,
1114-1115, 1123

bind_args structure, 453
BIOCFLUSH constant, 1035
BIOCGBLEN constant, 1033, 1035, 1043
BIOCGDLT constant, 1035
BIOCGETIF constant, 1035
BIOCGRTINEOUT constant, 1035
BIOCGSTAT$ constant, 1033, 1035
BIOCINNEDIATE constant, 1033, 1035
BIOCPRONISC constant, 1033, 1035, 1092
BIOCSBLEN cons[anl, 1033, 1035
BIOCSETF constant, 1034-1036
BIOCSETIF constant, 1033-1036, 1048, 1092
BIOCSRTIMEOUT constant, 1035, 1043
BIOCVERSION constant, 1035
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Blindheim, R., xxii
Boggs, D. R., 351, 1125
Bolt Beranek and Newman, see BBN
BOOTP (Bootstrap Protocol), 291,321, 1110, 1126
Bootstrap Protocol, see BOOTP
Border Gateway Protocol, see BGP
Borman, D.A., 235, 824, 1086, 1126, 1128
Bostic, K., xxii
BPF (BSD Packet Filter), 68, 81, 83-85, 101-102,

104, 106-107, 112, 134, 137-138, 141,152,
1027-1048, 1065, 1092, 1129

header, 134
loopback packet, 152
SLIP, 104

BPF_BUFSIZE constant, 1033
BPF~AXBUFSIZE constant, 1033
BPF~INBUF$IZE constant, 1033
bpf_allocate function, 1039
bpf_attachd function, 1039-1040
bp£_bufsize variable, 1028
bp f _d structure, 1028, 1032 - 1040
bpf_detachd function, 1039
bpf_dtab variable, 1028, 1032, 1034, 1036-1037,

1045
bpf_filter function, 1041
bp f_hdr structure, 1029 - 1030, 1032, 1043
bpf_if structure, 1028-1033, 1036-1037, 1040
bpf_iflist variable, 1028-1031, 1036-1037,

1039, 1091
bpf_ifname function, 1035
bpf_mcopy function, 1041
bpf_movein function, 1046
bpf_mtap function, 152, ]04]
bpf_program structure, 1035
bpf_set£ function, 1035-1036
bpf_seti£ function, 1035-1036, 1038-1039, 1091
bp£_stat structure, 1035
bpf_tap function, 104, 112, 138, 141,152, 1037,

1040-1041, 1043
bpf_version structure, 1035
bp£_wakeup function, 1043, 1048, 1091
bpfattach function, 81, 84-85, 1027, 1030-1032,

1040
bpfioctl function, 1034-1035
bpfopen function, 1034, 1036
bpfread function, 1043-1046
bpfwrite function, 1046-1047
Braden, R. T,, 205, 235, 252, 291,301,824, 866, 868,

870, 964, 1089, 1097, 1125-1126, 1128
Brakmo, L. S., 845, 1126
broadcast

packet, 99
storm, 326

broadcast address
Ethernet, 97, 100, 103
IP, 182, 234, 1101
limited, 753

BSD (Berkeley Software Distribution), 3, 68-69, 74,
76, 106, 140, 191,219, 223, 397, 435, 441,453,
1027

history, 3-5
Packet Filter, see BPF

buffers
reliable protocol, 490
socket, 476-477
unreliable protocol, 490-491

BUFOFFSET constant, 133-134
bug, 33, 181,223, 327-328, 442, 473, 548, 667, 692,

774, 879, 948, 956, 959, 1005, 1010, 1076, 1083,
1088, 1090, 1106, 1126, 1128

Bz~ro macro, 585

C function prototypes, ANSI, 41
cache

ARP, 572, 675, 680, 682, 691,703-704, 710-712
hiding, UDP, 791
multicast group, 399, 412, 415, 434
multicast one-behind, 398-399, 422, 424, 434
TCP one-behind, 231,798, 897, 929, 941
UDP one-behind, 231, 757, 773-774, 786, 791,

794
unicast one-behind, 223, 253

cached route, 746-747, 750, 768, 843, 887, 894, 898,
1111

cached segments, 972
cached_tort variable, 398
cached_or±g±n variable, 398, 423
cached_originmask variable, 398
caddr_t data type, 52
Calamvokis, C., 994, 1126
callout function, 94
Carlson, J., 959,1126
carrier sense multiple access, see CSMA
Casner, S., 350, 1126
catchpacke~ function, 1041-1043, 1048, 1091
Chapin, A. L., 9, 1130
checksum

algorithm, 1126
ICMP, 309
IP, 234-239
TCP, 800
UDP, 758, 764-768, 792

Cheriton, D. P., 401,419, 1127
Cheswick, W. R., 1081, 1126
child interface, 418-419, 429
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Clark, D. D., 1067-1068, 1126
Clark, J. J., xxii
class

A IP address, 155
B IP address, 155
C IP address, 155
DIP address, 155, 341
E IP address, 155

cl±st, high-water mark, 147
el±st, structure, 131, 141
clnl±ntrq variable, 97, 100-101, 150
CLNP (Connectionless Network Protocol), 97, 100,

666
input queue, 97

CLOCAL constant, 135
close function, 10, 13, 440, 442, 445-447, 468,

471, 514, 542, 552, 555, 666-667, 669, 786, 818,
820, 825, 827, 829, 980, 1010, 1012, 1019, 1025,
1059, 1087, 1119

cluster
mbuf, 16, 33
reference counts, 56-60
SLIP, 131

cmsg_data member, 781
cmsg_len member, 482-483, 781
crasg_level member, 483
crasg_type member, 482-483
crasghdr structure, 482-483, 781
code, ICMP, 302-303
collision, 97-98, 143

with select, 531-532, 534
Comer, D. E., 457, 1018, 1126
compressed SLIP, see CSLIP
compression, header, 995-1004
Computer Systems Research Group, see CSRG
__CONCAT macro, 193
concurrenc}¢ interrupt levels and, 23-26
congestion

avoidance, 844, 939, 970, 972, 977, 1119, 1127
window, 835, 844, 852, 854-855, 882, 903, 906,

939, 972-975, 977
connect ,breaking association with, 468
connect function, 8, 439-440, 445-446, 464-465,

481, 494, 552, 664, 666, 721, 725, 727, 729-730,
735, 740-741, 748, 750-751, 763, 787-788,
793, 805, 813, 828, 882, 903, 918-920, 930, 946,
948, 960, 962-963, 1011-1013, 1025,
1059-1060, 1065, 1083, 1091, 1115, 1123

connect structure, 453, 464-465, 467-468, 481
connect_args structure, 465
connected UDP socket, 721, 755, 779-780
connection, old incarnation, 814

connection-establishment timer, 817, 819, 828-831,
892, 946, 1012, 1121

Connectionless Network Protocol, see CLNP
connectionless, transport, OSI, 106
control block

routing, 647
TCP, 713, 718, 800, 803-805, 808, 818-819,

821-822, 832-835, 837, 846, 866-867,
871-872, 884, 887-888, 893, 897, 906-907,
909, 916, 930, 932, 944-946, 949, 959-960,
966, 969, 981, 986, 989, 1009-1010,
1018-1019, 1021, 1023, 1084

control message, 509-510
reference counts, 470

conventions
source code, 1-3
typographical, 3

Coordinated Universal Time, see UTC
copyin function, 453, 483-484, 525, 1079
copyout function, 460, 642-643, 1079
copyright, source code, xxi-xxii
cpu_startup function, 79-83
CRC (cyclic redundancy check), 99, 103
Croft, W., 321, 1126
Crowcroft, J., xxii, 750, 1126
CSLIP (compressed SLIP), 147, 995-1004, 1127
CSMA (carrier sense multiple access), 97
CSRG (Computer Systems Research Group), xix,

xxii, 1067
CTL_HW constant, 201
CTL_KERN constant, 201
CTL_NET constant, 201, 637
CTL_USER constant, 201
cyclic redundancy check, see CRC

Dalton, C., 994, 1126
data-link frame, 96, 127, 210, 278, 1027, 1046-1047
Dawle]~ K. B., xxii
DECNET, 100
Deering, S. E., 301, 338, 381, 401, 419, 901, 1067,

1127, 1129, 1131
default

raw protocol, 191
route, 181
TTL, 207

deferred carries, 236
del_lgrp function, 401, 412-414, 1077
del_mrt function, 401, 421
del_vif function, 401, 409-410
delayed ACK timer, 817-818, 821, 861, 864
Delp, G., 750
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demultiplexing
IP, 219
TCP segments, 721-723, 728
UDP datagrams, 723-724

descriptor, 10-15
socket, 6, 445-447

destination
address, Ethernet, 99, 110
address, IP, 162, 182
group, 405
unreachable, ICMP, 279

/dev/bp£ device, 1027
/dev/kmem device, 916
/dev/nen device, 37
/dev/udp device, 8
device driver, 63-94

BPF, 1027-1028
Ethernet, 63-64, 77, 81, 92, 95-96, 98-112,

124-125, 161, 1029, 1037, 1040
loopback, 64, 128, 150-153, 161, 1029
SLIP, 63-64, 69, 83, 128-150, 161, 179, 1029
TTY, 129-130, 134-135, 141,148-149

DF (don’t fragment flag, IP header), 230, 275-276,
278-279, 283, 302, 1084, 1122

DHCP (Dynamic Host Configuration Protocol),
321, 1110, 1127

diameter, Internet, 223, 1129
direct route, 561,621,706
directed broadcast address, 157, 162
Distance Vector Multicast Routing Protocol, see

DVMRP
DLT_EN10MB constant, 1029-1030
DLT_NU<L constant, 1029-1030
DLT_SLIP constant, 1029-1030
DNS (Domain Name System), 140, 291, 1125
Dogfight, SGI, 338
don_at¢ach member, 586
dora dispose member, 187, 470, 646,1078
don externalize member, 187, 517-518, 646
dom_fanily member, 187, 581,646, 671
dora init member, 187, 194, 581,584, 646
dom_maxrtkey member, 183, 581,585, 646
don_nane member, 187, 646
don_next member, 187, 193, 646
don protosw member, 187, 646
don~rotoswNPROTOSW member, 187, 646
dom_rtattach member, ]87, 58], 584, 646
dom_rtoffset member, 187, 581,587, 646
domain, 185, 323, 445, 447, 449

initialization, IP, 199
initialization, routing, 646
Internet, 75,160,193, 309, 316, 385, 460, 483

OSI, 75
routing, 67, 75, 437, 539, 554, 569-570, 572, 581,

584, 624, 632, 645-673
Unix, 75, 189, 450, 460, 470, 510, 518, 1077

Domain Name System, see DNS
donain structure, 186-188, 19t-195, 202, 204,

581,584-585, 587, 646
Internet, 186, 191-196
routing, 646

donaininit function, 79, 193-196, 199, 204, 571,
584, 646, 756, 760, 796, 812, 1050, 1053

donains variable, 186-187, 193, 195-196, 204
don’t fragment flag, IP header, see DF
dotted-decimal, 7, 156
Dove, K. F., 750, 791,994, 1129
Droms, R., 321, 1127
dtom macro, 44, 46-48, 50-52, 61,909, 913
DTYPE_SOCKET constant, 13-14, 713
DTYPE_VNODE constant, 13
dup function, 10-11
duplicate keys, 587-591
duplicate, wandering, 813
DVMRP (Distance Vector Multicast Routing

Protocol), 337-339, 384, 401,418-419, 1131
DVMRP_ADD_LGRP socket option, 401,411-413
DVMRP_ADD_MRT socket option, 401,419, 421-422
DVMRP_ADD_VIF socket option, 401,407, 409
DVMRP_DEL_LGRP socket option, 401,411-412,

414
DVMRP_DEL_MRT socket option, 401,421
DVMRP_DEL_VIF socket option, 401, 407, 409-410
DVMRP_DONE socket option, 401, 433, 1059
D~RP_XNKT socket option, 401,403
Dynamic Host Configuration Protocol, see DHCP

EACCES error, 234, 403, 453
EADDRINUSE error, 359, 403, 409, 720, 733-734,

74O
EADDRNOTAVAIL error, 173, 175, 234, 354, 358,

366, 409, 411, 414, 468, 1059
EAFNOSUPPORT error, 110, 179, 361,363, 468
EALREADY error, 465, 467
EBADF error, 528, 534
EBUSY error, 1027, 1034
echo option, 866
echo reply, ICMP, 317
echo request, ICMP, 317
ECONNABORTED error, 892
ECONNREFUSED error, 303, 748, 843, 892, 963
ECONNRESET error, 892, 964-965, 1119
EDESTADDREQ error, 494
EDOM error, 544
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Edwards, A., 994, 1126
EEXIST error, 611,650
EGP (Exterior Gateway Protocol), 65, 1050
EHOSTDOWN error, 228, 699-700, 712, 905, 1081
EHOSTUNREACH error, 107-108, 152, 228, 232, 303,

621,699, 828, 843, 892, 905, 1081
EINPROGRESS error, 465
ETNTR error, 457, 459, 478, 528, 1045
EINVAL error, 124-125, 172, 178-180, 240, 271,

353-355, 358, 366, 401,.409, 411,414, 453, 459,
539, 543, 551,653, 785, 1007, 1016, 1036, 1045,
1078

EISCONN error, 467-468, 763, 787, 1009
EIv!SGSIZE error, 228, 234, 279, 303, 484, 495, 1046
encapsulation

802.3, 106, 125
Ethernet, 99, 106
SLIP, 128-129

END character, SLIP, 129, 144
end of option list, see EOL
ENETDOWN error, 107, 228, 1039
ENETRESET error, 140, 362, 364, 369, 1077
ENETUNREACH error, 152, 232, 376, 905
enm_ac member, 343, 366
enm_addrhi member, 342, 344
enm_addrlo member, 342, 344
ertm next member, 343, 366
enm_refcount member, 343,364,366
ENOBUFS error, 111,226, 228, 279, 351,453, 479,

789, 882, 889, 892, 906, 1107
ENOPROTOOPT error, 202, 241,303, 334, 348,

539-540, 546
ENOTCONN error, 494, 515, 556, 763, 788
ENOTDIR error, 245, 334
ENOTSUPP error, 554
ENXIO error, 116, 132, 369, 1034, 1039, 1046, 1091
EOL (end of option list), 249-250, 282-283, 865,

933-934
EOPNOTSUPP error, 164, 245, 351,371,403, 468,

513
EPERN error, 166
ephemeral port, 21,715, 719, 725, 729-730, 732,

740, 748, 751-753, 760, 813, 945, 1011-1012,
1081-1083

EPIPE error, 489, 494
Epoch, Unix, 105, 683, 695
ERESTART error, 456-457, 478, 528, 1045
err_sys function, 6
errno variable, 6, 650, 744, 748, 783, 892, 921
error

EACCES, 234, 403, 453
EADDRINUSE, 359, 403, 409, 720, 733-734, 740

EADDRNOTAVAIL, 173, 175, 234, 354, 358, 366,
409, 411,414, 468, 1059

EAFNOSUPPORT, 110, 179, 361,363, 468
EALREADY, 465, 467
EBADF, 528, 534
EBUSY, 1027, 1034
ECONNABORTED, 892
ECONNREFUSED, 303, 748, 843, 892, 963
ECONNRESET, 892, 964-965, 1119
EDESTADDREQ, 494
EmOIq, 544
EEXIST, 61], 650
EHOSTDOWN, 228, 699-700, 7]2, 905, 1081
EHOSTUNREACH, ]07-]08, ]52, 228, 232, 303,

621, 699, 828, 843, 892, 905, 1081
EINPROGRESS, 465
EINTR, 457, 459, 478, 528, 1045
ETNVAL, 124-125, 172, 178-180, 240, 271,

353-355, 358, 366, 401, 409, 411,414, 453, 459,
539, 543, 551,653, 785, 1007, 1016, 1036, 1045,
1078

EISCONN, 467-468, 763, 787, 1009
EMSGSIZE, 228, 234, 279, 303, 484, 495, 1046
ENETDOWN, 107, 228, 1039
ENETRESET, ]40, 362, 364, 369, 1077
ENETUNREACH, 152, 232, 376, 905
ENOBUFS, 111,226, 228, 279, 35], 453, 479, 789,

882, 889, 892, 906, ]]07
ENOPROTOOPT, 202, 241,303, 334, 348,

539-540, 546
ENOTCONN, 494, 515, 556, 763, 788
ENOTDIR, 245, 334
ENOTSUPP, 554
ENXIO, I]6, ]32, 369, 1034, 1039, ]046, 1091
EOPNOTSUPP, ]64, 245, 351, 37], 403, 468, 513
EPERM, ]66
EPIPE, 489, 494
ERESTART, 456-457, 478, 528, 1045
ESRCH, 421,654
ETIMEDOUT, 828, 843, 892
ETOOMANYREFS, 359, 655
EWOULDBLOCK, 439, 457, 459, 478, 491,496,

515-516, 528, 792, ]016
ICMP, 205, 223, 226, 228, 232, 250, 292, 326

ESC character, SLIP, 129, 144
ESRCH error, 421,654
Estrin, D., 419, 1127
/etc/mrouted.conf file, 407
/etc/netstart file, 84, 162, 560, 706, 709, 1110
ETHER_LOOKUP_MULTI macro, 343-344, 364, 369
ETHER }4AP IP ]vlULTICAST macro, 342, 363,

378, 697, 710-711
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ether_addraulti function, 356, 362-364, 369
ether_arp structure, 309, 681,685-686, 689
ether_delmulti function, 356, 362,369-371,

1077
ether_dhost member, 103-104
ether_header structure, 101-104, 111,681, 1032,

1040
ether_ifattach function, 91-92
ether_input function, 100-101,104-107, 125,

213, 221,373, 687, 943, 1070, 1098
ether_ipmulticast_max variable, 340, 363
ether_ipmulticast_min variable, 340, 363
ether_multi structure, 81,342-344, 346, 356,

363-366, 369, 379
reference counts, 343, 346, 364, 369

ether_output function, 96, 101,107-112, 127,
139, 141,150, 152, 378, 580, 679, 684-686, 692,
696, 699-701,789, 1047, 1071, 1081, 1084,
1086, 1091

ether_type member, 101
etherbroadcastaddr variable, 97, 103, 363
ETHERMTU constant, 81, 92
Ethernet

broadcast address, 97, 100, 103
destination address, 99, 110
device driver, 63-64, 77, 81, 92, 95-96, 98-112,

124-125, 161, 1029, 1037, 1040
encapsulation, 99, 106
frame, 66, 92, 95, 99-104, 106-112, 125, 212, 216,

363, 1040, 1046
hardware address, 75, 81, 87, 91-92, 104, 341,

1046
header, 92, 103, 110
initialization, 80-81
length, 106
MTU, 92
multicast address, 100, 103-104, 341-342
multicasting, 156
sockaddr_dl structure, 91
source address, 99
type, 99, 103, 106-107, 110, 141, 686
unicast address, 100

ETHERTYPE_ARP constant, 686-687
ETHERTYPE_IP constant, 686-687, 694
ETHERTYPE_IPTRAILERS constant, 686-687, 694
ETHERTYPE_REVARP constant, 686
ETIMEDOUT error, 828, 843, 892
ETOOMANYREFS error, 359, 655
EWOULDBLOCK error, 439, 457, 459, 478, 491,496,

515-516, 528, 792, 1016
exec function, 27, 555
exercises, solutions to, 1069-1092

exit function, 10
expanding-ring search, 351
experimental address, IP, 156
exponential backoff, 836, 1119
ext_buf member, 34
ext_free member, 34
ext_size member, 34
Exterior Gateway Protocol, see EGP
external buffer, mbuf, 33

F_GETFL macro, 552
F_GETOWN constant, 550, 552
F_SETFL macro, 552
F_SETOWN constant, 550, 552
f_data member, 13, 446-447, 471
f_ops member, 13, 446-447, 471
f_type member, 13
falloc function, 447, 460
FAQ (frequently asked question), 1094
Farinacci, D., 399, 419, 1127, 1129
fast

filesystem, Berkeley, 27
recovery, 970-974, 1120, 1128
retransmit, 908, 970-974, 1120, 1128

FASYNC constant, 549-550,552
fcntl function, 10, 439, 445, 507, 537-538,

548-551,557
FD_SETSIZE macro, 525
fd_ofileflags member, 13
fd_ofiles member, 13-14,446-447
fd_set data type, 525
FDDI (Fiber Distributed Data Interface), 69,337,

1018, 1068
ffs function, 528
Fiber Distributed Data Interface, see FDDI
file structure, 13-14, 446-447, 453, 455,

459-460, 471,487, 503, 528, 539, 554, 713
File Transfer Protocol, see FTP
filedesc structure, 13, 446-447, 451
fileops structure, 13, 437, 446-448, 529
filesystem, Berkeley fast, 27
FIN (finish flag, TCP header), 468, 470, 803, 805
FIN_WAIT_2 timer, 818-819, 821-822, 825-827,

980, 991, 1085
finish flag, TCP header, see FIN        ~,
Finlayson, R., 100, 321, 1127
FIOASYNC constant, 550, 552
FIONBTO constant, 550,552
FIONREAD constant, 550, 552, 1035
firewaI1 gateway, 1126
flooding, ARP, 109, 696
Floyd, S., xxii, 970, 977, 1127
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FNONBLOCK constant, 549-550, 552
fo_close member, 448, 471
fo_ioctl member, 448,552
fo_read member, 448
fo_select member, 448, 528-529
fo_write member, 448, 761
Forgie, J., 215,1127
fork function, 10-11, 27, 555, 1091
forwarding

IP, 181, 217-228
multicast, 424-433

fragmentation, 1128
broadcast packet, 234
ICMP, 314
IP, 48-50, 210, 232, 275-283
offset, 276

frame
data-link, 96, 127, 210, 278, 1027, 1046-1047
Ethernet, 66, 92, 95, 99-104, 106-112, 125, 212,

216, 363, 1040, 1046
PPP, 129
SLIP, 83, 128, 131, 133-137, 143-144, 146-147,

1070
FRAME_END constant, 136
FREAD constant, 469, 528
free function, 88, 671, 897
Free macro, 585, 606
frequently asked question, see FAQ
fstat function, 670, 789, 1015, 1062
fstat program, 187
FTP (File Transfer Protocol), 4, 140, 272, 921, 1002,

1084, 1087, 1093-1094, 1125
fudge factor, 463, 640
full-duplex, 808
Fuller, V., 170, 1127         ,~.
function prototypes, ANSI C, 41
FWRITE constant, 469, 528

garbage byte, 887
gated program, 559-560, 571-572, 601, 637, 644,

1050,1111
GATEWAY constant, 2, 158
gateway, firewaII, 1126
Gateway Requirements RFC, 1126
gather, 481-482, 486-487
getbits macro, 525
getmsg function, 8
getpeername function, 44~3, 445, 501, 514,

537-538, 555-557, 670, 741, 789, 1017, 1062
getsock function, 451-453, 455, 459, 465, 469,

487, 503, 539, 545, 554, 556

getsockname function, 443, 445, 537-538, 554,
556-557, 670, 741, 789, 1017, 1062, 1115

getsoekopt function, 239-244, 401, 437, 445,
537-539, 545-548, 557, 1022, 1024, 1063, 1115,
1123

Gilmore, J., 321, 1126
Glater, G., xxii
GNU software, 1094
Grandi, S., xxii
gratuitous ARP, 178, 683, 707
grep program, 2-3, 1133
grotty, 654
group, destination, 405

SNMP, 65
grplst_member function, 412, 415, 429, 1077
Gulbenkian, J., xxii
Gurwitz, R., 5

hack, 913, 1017
half-close, 468, 807, 818, 825, 957, 980, 1119
hardware address, 68, 85-87, 89,100

Ethernet, 75, 81, 87, 91-92, 104, 341, 1046
hardware interrupt, 205
hardware multicasting, 156, 337
Haverty, J., 5
HDLC (high-level data link control), 27
header

ARP, 681
BPF, 134
compression, 995-1004
Ethemet, 92, 103, 110
ICMP, 309
IGMP, 385
IP, 210-212
prediction, 923, 934-941
TCP, 801-803
template, 885
UDP, 759-760

held route, 606, 659
HELLO (routing protocol), 1050
Hering, D., xxii
hiding, UDP cache, 791
high-level data link control, see HDLC
high-water mark, 477, 479, 490, 495-496, 508, 534,

539, 543
clist, 147

Hinden, R., 190, 716, 1130
history, BSD, 3-5
Hoffman, E., 1128
Hogue, J. E., xxii
Hornig, C., 100, 1127
Host Requirements RFC, 1125
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host unreachable, ICMP, 208, 223, 253
host, vs. router, 157
howmany macro, 525
hp_device structure, 81
htons function, 7
Hutchinson, N. C., 60, 750, 1127
hz variable, 64, 94, 544, 548, 1010
hzto function, 525

l_ia member, 387
l_inm member, 387
la_addr member, 162, 168, 219
la_broadaddr member, 162, 166, 219, 320
la_dstaddr member, 162, 168, 320
¯ a_flags member, 161, 171
la_ifa member, 161
¯ a_ifp member, 161
za_multiaddrs member, 161, 346, 361,366
za_net member, 162, 219
¯ a_netbroadcast member, 162,219
za_netmask member, 162, 170
za_next member, 159, 161, 346
la_sockmask member, 162, 166, 168, 170, 172,

320
ia_subneC member, 162,219
ia_subnetmask member, 162, 170, 172
IANA (Internet Assigned Numbers Authority),

338, 341,363
ICMP (Internet Control Message Protocol), 65, 83,

140, 188-191,193, 198, 203, 205-206, 228,
240, 259, 301-335, 381,440, 451, 464, 477, 541,
1130

address mask reply, 319
address mask request, 319
checksum, 309
code, 302-303
destination unreachable, 279
echo reply, 317
echo request, 317
error, 205, 223, 226, 228, 232, 250, 292, 326
errors and UDP sockets, 748-749
fragmentation, 314
header, 309
host unreachable, 208, 223, 253
in÷tsw variable, 203, 309-310, 1098
input processing, 310-323
output processing, 324-333
parameter problem, 252, 257, 262, 314
port unreachable, 494
protosw structure, 309-310
redirect, 221, 223-228, 252, 321
redirect and raw sockets, 746-748

reply, 234
RFC 1122 compliance, 1105-1110
router discovery, 1127
router solicitation, 339
source quench, 226, 314
source route failure, 257
time exceeded, 223, 292-293, 300, 314
timestamp reply, 318
timestamp request, 318
type, 250, 302-303
unreachable, 314

icmp structure, 308-309
ICMP_ADVLEN macro, 312,322
ICMP_ADVLENMIN constant, 312, 322
ICMP_ECHO constant, 302-303, 306, 316-317
ICMP_ECHOREPLY constant, 302-303, 306,

316-317
ICMP_INFOTYPE constant, 325
ICMP_IREQ constant, 302-303, 321
ICMP_IREQREPLY constant, 302-303, 321
ICMP_MASKLEN constant, 312
ICMP_MASKREPLY constant, 302-303, 319-321
ICMP_MASKREQ constant, 302-303, 319-321
ICMP_MZNLEN constant, 312
ICMP_PARAMPROB constant, 250, 302-303
I CM P_PARAMPROB_O PTAB SENT constant,

302 -303
ICMP_REDIRECT constant, 302-303, 306, 321-322
ICMP_REDIRECT_HOST constant, 302-303
ICMP_REDIRECT_NET constant, 302-303
ICMP_REDIRECT_TOSHOST constant, 302-303
ICMP_REDIRECT_TOSNET constant, 302-303
ICMP_ROUTERADVERT constant, 302-303, 321
ICMP_ROUTERSOLICIT constant, 302-303, 321
IC~P_SOURCEQUENCH constant, 228, 302-303,

306
ICMP_TIMXCEED constant, 302-303, 306
ICMP_TIMXCEED_INTRANS constant, 302-303
ICMP_TKMXCEED_REASS constant, 302-303
ICMP_TSLEN constant, 312
ICMP_TSTAMP constant, 302-303, 318-319
IC}4P_TSTAMPREPLY constant, 302-303, 318-319
ICMP_UNREACH constant, 302-303, 306
ICMP._UNREACH_HOST constant, 228, 302-303
I CMP_UNREACH_HO S T_PROH I B constant,

302 -303
ICMP UNREACH_HOST_UNKNOWN constant,

302-303
ICMP_UNREACH_ISOLATED constant, 302-303
ICMP_UNREACH_NEEDFRAG constant, 228,

302-303
ICMP_UNREACH_NET constant, 302-303
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ICNP_UNREACH NET PROHIB constant, 302-303
I CMP_UNREACH_NET_UNKNOWN constant,

302-303
ICMP_UNREACH_PORT constant, 302-303
ICMP_UNREACH_PROTOCOL constant, 302-303
ICMP_UNREACH_SRCFAIL constant, 302-303
ICMP UNREACH_TOSHOST constant, 302-303
ICMP_UNREACH_TOSNET constant, 302-303
icmp_cksum member, 309, 314, 317-319, 321,

333
icmp_code member, 309, 313, 315, 317-319, 321,

327
icmp_data member, 317
icmp_dun member, 309
icmp_error function, 205, 226, 246, 252, 306,

324-329, 332, 335, 774, 1075, 1102, 1104, 1106
icmp_gwadc]r member, 321, 327
icmp hun member, 309
icrap_id member, 317-319
icrap_±nput function, 304, 309-323, 329, 333,

335, 571, 617, 619, 743, 756, 782-783, 796,
1050, 1052-1053, 1056, 1102, 1105, 1107-1110

error processing, 313-315
redirect processing, 321-323
reply processing, 323
request processing, 316-321

¯ cmp_ip member, 314, 321
~cmp_leavegroup function, 395
zcrap_len member, 314
¯ cmp__mask member, 319-320
1crop nextmtu member, 314,327
lcmp_otime member, 318
¯ cmp__pmvoid member, 314
zcrap_pptr member, 314, 327
zcmp_reflect function, 45,303-304, 317, 324,

326, 328-333, 1107-1109, 1122
icmp_rtime member, 318, 335
icmp_send function, 324, 332-333, 1075
icmp_seq member, 317-319
icmp_sysctl function, 203, 319, 334, 1052
icmp_ttirae member, 318-319
icrap_type member, 309, 313-315, 317-321, 325,

327
icmp_void member, 314
ICMPCTL_MASKREPL constant, 202, 334
icmpdst variable, 319, 322
icmpgw variable, 322
icmpInAddrMaskReps variable, 307
icmpInAddrMasks variable, 307
icmpInDestUnreachs variable, 307
icmpInEchoReps variable, 307
icmpInEchos variab|e, 307

lcmpInErrors variable, 307
zcmpInMsgs variable, 307
¯ cmpInParmProbs variable, 307
¯ craplnRedirects variable, 307
¯ cmpInSrcQuenchs variable, 307
¯ cmpInTimeExcds variable, 307
zcmpInTimestampReps variable, 307
icmplnTimestamps variable, 307
icrapmaskrepl variable, 305, 319, 334, 1110
lcmp0utAddrMaskReps variable, 307
icmpOutAddrMasks variable, 307
~cmpOutDestUnreachs variable, 307
¯ crapOutEchoReps variable, 307
zcrap0utEchos variable, 307
zcmpOutErrors variable, 307
¯ cmpOutMsgs variable, 307
zcmpOutParmprobs variable, 307
¯ cmpOutRedirects variable, 307
icmpOutSrcQuenchs variable, 307
lcmpOutTimeExcds variable, 307
zcmpOutTimestampReps variable, 307
¯ cmpOutTimestamps variable, 307
¯ cmpsrc variable, 312, 315, 322-323
zcmpstat structure, 306-307
zcmpstat variable, 305-307
¯ cps_badcode member, 306-307, 315
¯ cps_badlen member, 306-307, 315, 319
icps_checksum member, 306-307, 313
lCps_error member, 306, 324
¯ cps_inhist member, 306-307
zcps_oldicmp member, 306-307
¯ cps_oldshort member, 306-307
lCpS_outhist member, 306-307, 317
zcps_reflect member, 306, 317
¯ cps_tooshort member, 306-307,312
IEEE (Institute of Electrical and Electronics

Engineers), 69, 100, 106, 341
IEN (Internet Experiment Notes), 215
IETF (Internet Engineering Task Force), 350-351,

1125
IF_DEQUEUE macro, 25, 30, 72
IF_DROP macro, 69, 72
IF_ENQUEUE macro, 72
IF_PREPEND macro, 72
IF_QFULL macro, 72
if_addrlen member, 69, 85, 89, 94
if_addrlist member, 66, 91, 166, 636, 656
if_addrs variable, 94
if_attach function, 66, 80-81, 84-92, 1099
if_baudrate member, 69
if_bpf member, 68, 1030, 1036-1037, 1040
if_collisions member, 69, 97-98
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if_data structure, 628
if_done member, 70-71, 96, 127
if_down function, 122-123, 571, 627
if_flags member, 67-68, 83-85, 99, 121-122,

337
if_hdrlen member, 69, 85, 94
if_ibytes member, 97, 99, 106
if_ierrors member, 97-99, 138
if_imcasts member, 97,99
if_index member, 67, 87, 91, 99, 574, 636, 643,

681
if_index variable, 64-65, 86-87
if_indexlim variable, 64, 88, 91
if_init member, 71, 81, 96, 127
if_ioctl member, 71, 81, 96, 122, 124, 127, 163,

165, 168, 172, 177, 344, 356, 361-362
if_ipackets member, 97-99
if_iqdrops member, 69, 97, 99
i f_lastchange member, 69, 97-98, 106
if_len member, 72
if_metric member, 69, 121, 123
i f_msghdr structure, 570, 621, 627, 630, 643
if mtu member, 69, 81, 83, 85, 94, 97, 99
if_name member, 67, 81, 87-88, 90-91, 94, 97, 99
i f_next member, 66, 91
i f_noproto member, 69, 97, 99
if_obytes member, 97, 99
i f_oerrors member, 97-99, 141
if_omcasts member, 97, 99, 141
if_opackets member, 97-99
if_output member, 71, 81, 96, 101, 107, 127,

129-130, 139-140, 150, 152, 234, 378, 677,
1046

i f_pcount member, 68
if_qflush function, 72, 123
if_reset member, 71, 81, 96, 127
i f_s lowt imo function, 93-94
if_snd member, 72, 84, 99, 101, 131, 140-14l, 148
if_start member, 71, 81, 96, 111-112, 127
i f_t imer member, 68, 93-94
i f_type member, 68-69, 86, 92, 98-99
if_unit member, 67, 81, 87-88, 91, 97, 119, 125,

149, 153, 178
if_up function, 122-123, 571, 627
if_watchdog member, 68, 71, 94, 96, 127
IFA_ROUTE constant, 171
ifa_addr member, 73, 89-90, 168-169, 629, 656
ifa_addrlist member, 90
i f a_broadaddr member, 73
ifa_dstaddr member, 73, 168
ifa_flags member, 74
ifa_ifaddr member, 91

ifa_ifp member, 73, 90-91, 158-159, 346
i fa_ifwithaddr function, 182, 264, 409,

731-732, 740, 1060, 1082
i fa_ifwithaf function, 182
ifa_ifwithdst function, 257
ifa_ifwithdstaddr function, 182,232
ifa_ifwithnet function, 86, 182, 257, 619, 1071
i fa_i fwithroute function, 182, 609, 617
ifa_metric member, 74
i fa_msghdr structure, 570, 621, 629-630, 643
ifa_netmask member, 73, 89-91, 168, 6]5
ifa_next member, 73, 9], ]59, 346
ifa_refcnt member, 74
ifa_rtrequest member, 74, 90, 608, 611,617,

679, 704
ifa_withdstaddr function, 738
ifa_withnet function, 738
ifaddr structure, 66, 73-74, 76-78, 86-87, 89-90,

94,120,125,155,158-161,166,168, 178,
182-183, 232, 568-569, 581,605, 609, 611,615,
617, 636, 643, 656, 676-677, 704, 1071, 1098

reference counts, 74, 177
ifAdminStatus variable, 98-99
ifafree function, 74,605
IFAFREE macro, 74, 177, 605
ifam_addrs member, 621-622
ifaof_ifpforaddr function, 182, 264, 319-320,

335, 1071
ire_bur member, 117-118, !20-121
ife_len member, 117-118, 120-121
ifconf function, 115-120
ifconf structure, 114, 117-118, 120-121
ifconfig program, 86, 105, 123, 162, 174, 183,

561, 679, 1004, 1109-1110
ifDescr variable, 99
if Entry variable, 98
IFF_ALLMULTI constant, 67, 363
IFF_BROADCAST constant, 67-68, 74, 81,234
IFF_CANTCHANGE constant, 68, 122
IFF_DEBUG constant, 67
IFF_LINK0 constant, 67,83
IFF_LINK1 constant, 67, 83
IFF_LINK2 constant, 67,83
IFF_LOOPBACK constant, 67, 85
IFF_MULTICAS~P constant, 67, 81, 84-85, 337, 1111
IFF_NOARP constant, 67
IFF_NOTRAILERS constant, 67
IFF_OACTIVE constant, 67, 112
IFF_POINTOPOINT constant, 67-68, 74, 84
IFF_PRO}4ISC constant, 67, 125
IFF_RUNNING constant, 67
IFF_SIMPLEX constant, 67, 8], 150
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IFF_UP constant, 67, 97, 99, 123, 125, 179-180
if Index variable, 99, 574, 681
ifInDiscards variable, 99
ifInErrors variable, 99
ifinit function, 79, 84, 93-94
ifInNUcastPkts variable, 99
ifInOctets variable, 99
ifInUcastPkts variable, 99
ifInUnknownProtos variable, 99
ifioctl function, 115-116, 121-125, 149,

163-164, 166, 344-345, 451, 552, 554
ifLastChange variable, 98-99
ifm_addrs member, 621-622, 628
i fMtu variable, 99
ifnet structure, 33, 64-74, 76-78, 80-81, 83-87,

90-92, 94-95, 97-101, 105, 107, 112, 116, 120,
128-131, 140, 152, 158-159, 164, 166,
181-182, 232, 337, 340, 343, 345-346, 366,
406-407, 409, 427, 568-569, 581, 61t, 636, 640,
643, 676-677, 681, 689, 706, 1029-1030, 1037,
1046, 1071, 1076, 1080, 1098, 1101, 1111

ifnet utility functions, 182
ifnet variable, 64, 86-87, 91, 94, 118, 120, 159,

182, 346, 366
IFNET_SLOWHZ constant, 94
ifnet_addrs variable, 64, 86-87, 90-91, 120,

158-159
ifNumber variable, 65
ifOperStatus variable, 99
ifOutDiscards variable, 99
ifOutErrors variable, 99
ifOutNUcastPkts variable, 99
if0utOctets variable, 99
ifOutQLen variable, 99
ifOutUcastPkts variable, 99
IFP TO IA macro, 346, 371
ifPhysAddress variable, 99
ifpromisc function, 1035
IFQ_MAXLEN constant, 72, 200
ifq_drops member, 69, 72, 97, 99
ifq_head member, 72
ifq_len member, 97, 99
ifcL_maxlen member, 72
ifq_tail member, 72
ifqmaxlen variable, 64, 72, 84, 93
if queue struc%ure, 71-72, 97, 207, 680
ifr_addr member, 117-118, 121, 168
ifr_flags member, 121-122
ifr_metric member, 121
ifr_name member, 116-119, 121, 1039
ifra_addr member, 175
ifra name member, 174

ifreq structure, 114, 116-119, 121, 162, 164, 168,
172, 174-175, 344, 361, 1035, 1039, 1076

ifSpecific variable, 98-99
if Speed variable, 98-99
IFT_ETHER constant, 69, 92,121, 706-707
IFT_FDDI constant, 69
IFT_IS088023 constant, 69
IFT_IS088025 constant, 69
IFT_LOOP constant, 69, 121
IFT_OTHER constant, 69
IFT_SLIP constant, 69, 121
ifTable variable, 98-99
ifType variable, 99
ifunit function, 116, 182-183
IGMP (Internet Group Management Protocol), 188,

191, 193, 228, 240, 337-338, 346, 373,
381-396, 401, 403, 411-415, 417-419, 440,
451, 477, 541, 1127

header, 385
inetsw variable, 385
input processing, 391-395
protosw structure, 384-385
RFC 1122 compliance, 1111

igml3 structure, 384-385
IGMP_HOST_MEMBERSHIP_QUERY constant, 384,

391-394, 411
IGMP_HOST_MEMBERSHIP REPORT constant,

384, 394-395, 41]-412
IGMP MAX HOST_REPORT_DELAY constant, 386
IGMP_MINLEN constant, 391, 1077
IGMP_RANDOM_DELAY macro, 386-387, 393
igmp_all_hosts_group variable, 383
igmp_cksum member, 384-385
igmp_code member, 384-385
igmp__fasttimo function, 381-382, 385-389,

393, 1052
igrap_group member, 384-385
igmp_init function, 194, 385, 1052
igmp_input function, 381-382, 385, 391, 393,

412, 419, 1050, 1052-1053
igmp_j oingroup function, 356, 361, 381-382,

386-387
igmp_l eavegroup function, 356, 368, 395
igmp_report function, 395
igmp_sendreport function, 11], 381-382,

389 -391
igmp_tiraers_are_running variable, 383, 386,

388, 1084
igmp_type member, 384-385, 391
igm~)stat structure, 383
igmpstat variable, 382-383
igps_rcv_badqueries member, 383, 393
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igps_rcv_badreports member, 383
igps_rcv_badsum member, 383
igps_.rcv_ourreports member, 383
igps_rcv_queries member, 383
lgps_rcv_reports member, 383
lgps_rcv_tooshort member, 383
igps_rcv_total member, 383
lgps_snd_reports member, 383
imo_membership member, 348, 359, 366
zmo_multicast_i fp member, 347, 366
~mo multicast_loop member, 348, 355, 37],

376
imo_multicast_ttl member, 348, 354-355, 371
imo hum memberships member, 348
IMP (Interface Message Processor), 24, 40, 744,

1060
implementation, Berkeley-derived, 4
implementation refinements

TCP, 994-995
UDP, 791-792

lint_interface member, 356, 358, 366
imr_mul t iaddr member, 356, 358, 366
IN_FIRST_HULTI macro, 387-388
IN_LOOKUP_~ULTI macro, 346-347, 359, 373, 376
IN_MULTICAST macro, 943-944, 993
TN NEXT_MULTI macro, 387-388
in_addmulti function, 171, 356, 359-361,386,

1076
in_addr structure, 160-162, 258, 271,348, 401,

406-407, 410, 1071
in_aliasreq structure, 162, 164, 174-176
in_arpinput function, 109, 679, 687-694, 696,

701,711, 1080-1081
in_broadcast function, 181,943-944
in_canforward function, 181, 22l, 245
in_cksum function, 216, 234-239, 245, 313, 333,

768, 792, 1087
VAX, 239

in_control function, 162-168, 171-177, 451,
615, 785, 1007

in_delmulti function, 356, 359, 366, 368-369,
380, 395, 1076

in_ifaddr structure, 77-78, 89, 155, 158-162,
164, 166-168, 171,174-176, 183, 207, 218,
253, 319, 329, 345-346, 348, 361,366, 387, 581,
676-677, 689, 738, 1099

in_ifaddr variable, 158-159, 177, 207, 215,
218-219, 329, 346, 387

in_ifinit function, 168-171,175-177, 615, 677,
679, 704, 706, 1111

in_if scrub function, 169, 176, 615
in_ifwithnet function, 232

in_interfaces variable, 158, 166
in_localaddr function, 181,901
in_losing function, 57], 749-750, 843,

I]]2-]I]3, 1121
in_moptions structure, 366
in_multi structure, 161,345-346, 348, 356, 359,

36], 365-366, 368-369, 379, 381-382,
386-389, 395

reference counts, 359-360, 368, 386, 395
in_multistep structure, 387
in_netof function, 181,421
in_~cballoc function, 715, 717-719, 785, 1018,

1058, 1090
ii~.~ocbbind function, 451,725, 728-735, 740,

751-753, 763, 786, 1010-1012, 1081, 1083
in_pcbconflict function, 725
in_pcbconnect function, 572, 728-730,

735-741,751-752, 763, 787, 944, 1012, 1060,
1083, 1114-1115, 1118

in_pcbdetach function, 715, 717-719, 741,786,
1018, 1059

in_pcbdisconnect function, 738, 741,768, 788
in._pcblookup function, 722-728, 730, 732-734,

738-740, 750-751,773-774, 777, 785, 929,
1055

in_.pcbnotify function, 742-746, 748-749, 783
in_pcbopts function, 240
i~_rtchange function, 303-304, 743-744, 746
in_scrub function, 175
in_setgeeraddr function, 741-742, 789, 1017,

1062
in_setsockaddr function, 741-742, 789, 1017,

1062
in_sockmask member, 170
in_socktrim function, 170, 183
in_uiomove function, 792
in_uniqueport function, 725
INADDR_ALLHOSTS_GROUP constant, 338-339
INADDR_ANY constant, 219, 353, 358, 363, 371,379,

389, 409, 736, 741, 1101, 1114
INADDR_BROADCAST constant, 219, 736, 1101
INADDR_ZAX_LOCAL_GROUP constant, 338-339,

428
INADDR TO IFP macro, 354, 358, 1076
INADDR_UNSPEC_GROUP constant, 338-339
incarnation, connection, old, 814
indirect route, 561, 569, 580, 608, 615, 706
inet_addr function, 7
inetctlerrmap variable, 744, 782-783, 904
inetd program, 555
inetdomain variable, 186-187, 193, 195, 204, 309,

385, 758, 801, 1052

DELL EX.1095.1171



TCP/IP Illustrated Index    1147

±n÷tsw variable, 186, 191-192, 195, 199-200, 204,
220, 228, 286, 310, 1051, 1091

ICMP, 203, 309-310, 1098
IGMP, 385
IP, 191, 198, 203, 228, 1098
raw IP, 191, 193, 197, 199, 204, 1052, 1072
TCP, 198-199, 801
UDP, 203, 758

¯ nit_sysent, c file, 443
initial send sequence number, see ISS
initial sequence number, see ISN
zr~m_addr member, 345
znm_±a member, 345-346, 366
xnm_±fp member, 345-346, 366
lnm_ne×t member, 346, 366
~_nm_re£count member, 346,366
lnm_t±raer member, 346, 366, 386
INP_CONTROLOPTS constant, 717, 776
INP_HDRINCL constant, 717
INP_RECVDSTADDR constant, 242, 717
INP_RECVOPTS constant, 242, 717
INP_RECVRE~OPTS constant, 242, 717
inp_back member, 732
±np_£addr member, 14, 715-716, 748, 752, 774,

80O
±np_£1a~s member, 717
±n~_£~or~ member, 14, 716, 748, 752, 774, 800
±n~_head member, 716, 718
~np_±p member, 717
±n~_]_addr member, 14, 716, 740, 752, 758, 774,

800, 1115
~nlo_~ort member, 14, 21,715-716, 752, 758,

760, 800, 813, 1081
inp_moptions member, 347, 717
inp_next member, 14, 715-716, 732, 824
inp_options member, 347, 717, 768, 932
inp_ppcb member, 714-715, 7]7
inp_prev member, ]4, 7]5-7]6
inp_route member, 347, 717
inp_socket member, 13-14, 21,347, 714,

717-718
inpcb structure, 13-14, 440, 568, 672, 714-717,

732
INPLOOKUP_WILDCARD constant, 727-728, 730,

732-734, 774
input processing

ICMP, 310-323
IGMP, 391-395
IP, 212-220
IP multicast, 373
TCP, 923-1005
UDP, 769-780

insque function, 55, 291-292, 671,683, 707, 718,
913

Institute of Electrical and Electronics Engineers, see
IEEE

interface address, IP source address versus
outgoing, 740-741

interface layer, 10, 63-94
Interface Message Processor, see IMP
internal node, routing table, 564
International Atomic Time, see TAI
International Organization for Standardization,

see ISO
Internet address family, 185
Internet Assigned Numbers Authority, see IANA
Interr~et Control Message Protocol, see ICMP
Intemet diameter, 223, 1129
Intemet domain, 75, 160, 193, 309, 316, 385, 460,

483
Internet domain structure, 186, 191-196
Internet Engineering Task Force, see IETF
Internet Experiment Notes, see IEN
Internet Group Management Protocol, see IGMP
Intemet Protocol, see IP
Internet protocol family, 185, 202-203, 361
interprocess communication, see IPC
interrupt, 95, 100-101, 141,312, 469-470, 496, 499,

525, 528
hardware, 205
levels and concurrenc]¢ 23-26
network, 73, 138, 148, 213, 469, 1078
service routine, see isr
software, 106-107, 138, 153, 205, 212, 436

IOCBASECMD macro, 554
IOCGROUP macro, 554
IOCPARM LEN macro, 554
ioctl function, 13, 74, 84, 95-96, 114-117, 120,

125, 127, 130, 132, 149, 159, 162-166,
173-174, 177, 183, 344, 348, 380, 439-440,
445, 447, 451,506-507, 537-538, 548-549,
552, 554, 557, 569, 637, 666, 683, 785, 1007,
1027, 1032-1035, 1076, 1083, 1092, 1117

Joy_base member, 481, 483, 486
iov_len member, 48l, 483, 487
iovcnt member, 481
iovec structure, 481,483-487, 493, 501-503
IP (Internet Protocol), 65, 191

address, 155-183
address assignment, 161-177
broadcast address, 182, 234, 1101
checksum, 234-239
demultiplexing, 219
destination address, 162, 182
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domain initialization, 199
experimental address, 156
forwarding, 181, 217-228
fragmentation, 48-50, 210, 232, 275-283
header, 210-212
inetsw variable, 191, 198, 203, 228, 1098
input processing, 212-220
input queue, 97, 106
multicast address, 155-156, 341
multicast groups, well-known, 338-339
multicast input processing, 373
multicast routing, 397-434
multicasting, 155-156, 337-380
option class, 249
options, 247-273
output processing, 228-234
packet, 210
protosw structure, 186, 191-196
raw, 183, 191, 197, 230, 240, 276, 301, 304-305,

312-313, 384, 391, 440, 451, 477, 541,
1049-1065, 1071, 1102, 1108

reassembly, 48-50, 219, 275-277, 283-300
RPC 1122 compliance, 1098-1105
route selection, 230-232
source address, 232
source address versus outgoing interface

address, 740-741
subnetting, 156, 170, 181, 1071
subnetting, and redirects, 226
supernetting, 170, 1071
to Ethernet multicast address mapping,

341-342
unicast address, 155-156, 182
utility functions, 181

IP address, class A, 155
class B, 155
class C, 155
class D, 155, 341
class E, 155

IP_ADD_MEMBERSHIP socket option, 348,
356-357, 434, 451, 1076

IP_ALLOWBROADCAST constant, 226, 229-230,
234, 333

IP_DEFAULT_MULTICAST_LOOP constant, 371
IP_DEFAULT_MULTICAST_TTL constant, 351,

37], 376
IP_DF constant, 276, 325
IP_DROP_MEMBERSHIP socket option, 348, 366,

451
IP_FORWARDING constant, 228-230, 376, 400, 430
IP_HDRINCL socket option, 191, 1053, 1056-1058,

1065, 1091

IP HDR LEN constant, 432
IP_ZAX_~EMBERSHIPS constant, 380
IP_MAXPACKET constant, 265
IP_MF constant, 276, 325
IP_MULTICAST_IF socket option, 348, 353-354,

371, 710, 738
IP_MULTICAST_LOOP socket option, 348,

354-355, 371
IP_MULTICAST_TTL socket option, 348, 354, 371
IP_OPTTONS socket option, 230, 240, 242-243,

269-270, 717, 1056, 1065, 1113, 1115, 1122
IP_RAWOUTPUT constant, 230, 1056-1057
IP_RECVDSTADDR socket option, 240, 242, 776,

781, 793-794, 1083, 1114
IP_RECVOPTS socket option, 240, 242-243, 769,

776, 794
IP_RECVRETOPTS socket option, 240, 242-243,

776
IP_RETOPTS socket option, 794
IP_ROUTETOIF constant, 229, 232
IP_TOS socket option, 240, 242, 717,1056,1099,

1115, 1123
TP_TTL socket option, 240, 242, 717, 1056, 1100,

1115, 1120
ip_cksum member, 211, 1099
ip_ctloutput function, 240-243, 348, 538, 541,

758, 1023, 1065
ip_defttl variable, 207, 209, 245, 785, 835, 889,

1100
ip_deq function, 292
ip_dooptions function, 217-218, 220, 249-265,

273, 283, 405, 1102-1104, 1108
ip_drain function, 193, 298-300, 892
ip_dst member, 211, 218-219, 252, 255, 257, 266,

277, 285-286, 293, 298, 329, 405, 1073
ip_enq function, 292, 294
ip_forward ftmction, 205-206, 219-228, 232,

245-246, 250, 252, 265, 279, 572, 1081, 1101,
1103, 1107

ip_freef function, 298-299
ip_freemoptions function, 719
ip_getmoptions function, 348, 371, 380, 1076
ip_hl member, 211-212, 215, 230, 247, 328, 427,

432, 809
ip_hlen member, 283, 285
ip_id member, 200, 211, 216, 230, 275, 277,

285-286, 289, 293, 373, 1056
ip_id variable, 200, 207, 230, 1000-1001, 1119
ip_ifmatrix variable, 186, 200, 223
ip_init function, 186, 193-194, 199-201
ip_insertoptions function, 230, 248, 265-269,

272, 1082, 1086
TCP example, 267-268
UDP example, 268
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ip_len member, 211-212, 216, 223, 234, 267, 277,
281,285, 298, 312, 327-328, 378, 427, 432,
771-772, 774, 809, 926

ip_mforward function, 221, 228, 373, 376-377,
400, 405, 409, 424-430, 434, 1077

ip_mloopback function, 376-378, 400, 425, 427
ip_moptions structure, 347-348, 351, 353-354,

357, 365-366, 371, 375-376, 379-380, 389,
399, 430, 1076

ip__mreq structure, 348, 356, 358, 366
ip_mrouter variable, 340, 373, 403, 424, 434,1059
ip_mrouter_cmd function, 401,403, 412, 1065
ip_mrouter_done function, 401, 433-434, 1059
ip_rarouter_init function, 401,403-404
ip_nhops variable, 218, 248, 257-259, 261
ip_of f member, 211, 216, 230, 234, 275-277, 279,

281, 283, 285-286, 293, 300, 325, 335, 378,
1074

ip_optcopy function, 279, 282-283
ip_output function, 107, 193, 205-206, 209, 216,

220-221, 223, 226, 228-234, 245, 265, 269,
278-281, 293, 300, 324, 326, 329, 332-333,
335, 347, 351, 354, 375-378, 381-382, 389,
399-400, 424-425, 427, 430, 433-434, 569,
572, 578-579, 606, 679, 684, 699-700, 710,
717, 738, 741, 746, 756, 761,764, 767-768, 789,
793, 796, 852, 882, 885, 887-889, 906, 917, 932,
962, 1050, 1056-1057, 1062, 1076-1077, 1082,
1084, 1086, 1090-1092, 1099-1105,
1107-1108, 1113-1115, 1118-1119

ip_p member, 199, 211-212, 220, 277, 285-286,
293, 309-310, 315, 328, 385, 801, 1052, 1065,
1091

ip~cbopts function, 242, 269-272, 717
ip_protox variable, 199-200, 204, 207, 220, 286,

310, 1052-1053, 1091
ip_reass function, 283, 285-298, 300, 1099, 1104
ip_rtaddr function, 253-254, 257, 405, 572
ip_setmoptions function, 348, 351-359, 366,

381-382, 572, 1076
ip_slowtimo function, 94, 193, 292, 298-300
ip_src member, 211, 233, 255, 259, 277, 285-286,

293, 298, 321, 329, 376, 405
ip_srcroute function, 258-261, 265, 272, 332,

932, 1108-1109, 1122
ip_srcrt structure, 248, 258-259, 261, 265, 273
ip_srcrt variable, 248, 257-259, 261
ip_stripoptions function, 769, 925, 1122
ip_sum member, 212, 216
ip_sysctl function, 193, 203, 244-245
ip_tiraestamp structure, 248, 26!

ip_tos member, 140, 211, 242, 244, 285, 287, 328,
1115

ip_ttl member, 211, 221, 223, 242, 244, 246, 329,
350, 376, 428

ip_v member, 211-212, 215, 230
ip structure, 210-211, 250, 261, 286-289, 298, 324,

1077
ipas frag structure, 285-289, 292, 297-298
IPC (interprocess communication), 9, 185
IPCTL_DEFTTL constant, 201-202, 244, 1100
IPCTL_FORWARDING constant, 201-202, 244
IPCTL_SENDREDIRECTS constant, 201-202, 244
ipDefaultTTL variable, 209
IPDEFTTL constant, i]00, 1120
ipf_mff member, 285-288, 294, 298
ipf_next member, 287-289
ipf_prev member, 287-289
ipf_tos member, 298
ipforward_rt variable, 207, 223, 226
ipforwarding variable, 157-158, 207, 209,

219-220, 226, 245-246, 252, 1098-1099
ipForwarding variable, 209
ipForwDatagrams variable, 209
ipFragCreates variable, 209
ipFragFails variable, 209
ipFragOKs variable, 209
IPFRAGTTL constant, 209, 292, 1105
ipInAddrErrors variable, 209
ipInDelivers variable, 209, 1055
ipInDiscards variable, 209, 1055
ipInHdrErrors variable, 209
ipInReceives variable, 209
ipintr function, 101, 107, 131, 150, 205-206,

212-221, 223, 226, 245, 247, 249, 252,
258-259, 283, 285-286, 290, 300, 310, 312,
332, 373, 379, 382, 391, 399-400, 405, 409, 412,
424-425, 427, 743, 756, 771, 776, 796, 923, 962,
1050, 1076-1077, 1099-1102, 1106-1107, 1120

ipintrq variable, 25, 97, 101, 106, 130-131, 138,
150, 200, 205-207, 212-213, 220, 373, 400,
424-425, 962

ipInUnknownProtos variable, 209
ipNetToMediaIfIndex variable, 681
ipNetToMediaNetAddress variable, 681
ipNetToMediaPhysAddress variable, 681
ipNetToMediaTable variable, 681
ipNetToMediaType variable, 681
IPOPT_COPIED constant, 283
IPOPT_EOL constant, 249
IPOPT_LSRR constant, 249, 257
IPOPT_MINOFF constant, 250, 257
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IPOPT_NOP constant, 249, 261
IPOPT_OFFSET constant, 250
IPOPT_OLEN constant, 250
IPOPT_OPTVAL constant, 250
IPOPT_RR constant, 249
IPOPT_SATID constant, 249
IPOPT_SECURITY constant, 249
IPOPT_SSRR constant, 249, 257, 261
IPOPT_TS constant, 249
IPOPT TS PRESPEC constant, 261, 264
IPOPT TS TSANDADDR constant, 261, 264
IPOPT TS TSONLY constant, 261,264
ipopt_dst member, 265-266
ipopt_list member, 265, 267
ipoption structure, 248, 259, 265, 267, 269, 271,

332
ipOutDiscards variable, 209
ipOutNoRoutes variable, 209
ipOutRequests variable, 209
ipovly structure, 760, 764, 772, 803, 906
IPPORT_RESERVED constant, 732-733
IPPORT_USERRESERVED constant, 733
TPPROTO_ICNP constant, 191, 203, 309, 1051
IPPROTO_IGNP constant, 191,201, 385, 1051
IPPROTO_IP constant, 240
IPPROTO RAW constant, 191, 193, 200, 1051-1053,

1065, 1091
TPPROTO_TCP constant, 191,196, 240, 801, 1022
IPPROTO_UDP constant, 191, 203, 758
ipq structure, 277, 286-291, 293-294, 296, 298,

3OO
ipq variable, 200, 277, 285-289
lpq_dst member, 288
~pq_id member, 288
zpq_next member, 286, 288-289, 293
zpq_p member, 288
zpq_prev member, 286, 288-289, 293
zpc]_src member, 288
lpq_ttl member, 288,292
¯ pqmaxlen variable, 107, 200, 207
~pReasraFails variable, 209
xpReasmOKs variable, 209
~pReasraReqds variable, 209
zpReasmTimeout variable, 209
ipRouteAge variable, 574
zpRouteDest variable, 574
lpRouteIfIndex variable, 574
zpRouteZnfo variable, 574
~pRouteMask variable, 574
±pRouteMetricl variable, 574
3_pRouteMetric2 variable, 574
~pRouteMetric3 variable, 574

¯ pRouteMetric4 variable, 574
zpRouteMetric5 variable, 574
zpRouteNextHop variable, 574
zpRouteProto variable, 573-574
zpRouteTable variable, 573-574
ipRouteType variable, 573-574
¯ ps_badhlen member, 207-209
~ps_badlen member, 207-209
ips_badoptions member, 207-209, 248
zps_badsum member, 207-209
zps_badvers member, 207-209
~_ps_cantforward member, 207-209, 340, 373
lps_cantfrag member, 207-209, 278
±ps_delivered member, 207-209, ]055
~_ps_forward member, 207-209, 340
ips_fragdropped member, 207-209, 291
zps_fragmented member, 207-209, 278
¯ ps_fragments member, 207-209
ips_fragtimeout member, 207-209
¯ ps_localout member, 207-209
ips_noproto member, 207-209, 1051, 1055-1056
~ps_noroute member, 207-209, 340
ips_odropped member, 207-209,278
ips__ofragments member, 207-209,278
~ps_rawout member, 207-208, 105], 1057
~_ps_reasserabled member, 207-209
zps_redirectsent member, 207-208
~ps_tooshort member, 207-209
lps_toosmall member, 48,207-209
zps_total member, 207-209
ipsendredirects variable, 207, 225, 245
ipstat structure, 207-209, 248, 278, 340, 1051
zpstat variable, 207, 278, 340
zpt_code member, 262
ipt_flg member, 261-262, 264
¯ pt_len member, 262
~pt_oflw member, 262
ipt_ptr member, 262
±pt_ta member, 262
zpt_time member, 262
lptime function, 264, 1109
IPTOS_LOWDELAY constant, 140
IPTTLDEC constant, 223
IPv4, 1068
IPv5, 215
IPv6, 215, 1068
IPVERSION constant, 215, 230
ISN (initial sequence number), 1118
ISO (International Organization for

Standardization ), 100
ISO Development Environment, see ISODE
iso_ifaddr structure, 77-78, 159
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ISODE (ISO Development Environment), 65, 69,
98, 1095

isodoraain variable, 187, 195
isosw variable, 195
isr (interrupt service routine), 73, 95, 106, 291
ISS (initial send sequence number), 797, 812-814,

945-949, 959, 968, 1012
ltano, W. M., 106, 1127
itimerfix function, 525

Jacobson, V., 5, 60, 112, 147, 419, 500, 562, 800, 824,
831-832, 866, 934, 970, 995, 1027, 1067-1068,
1126-1130

Jain, R., 223, 750, 1128

Kacker, M., xxii
Karels, M. J., 5, 24, 33-34, 94,129, 445, 457, 470,

562, 1097,1128-1129
Karn, P., 144, 844, 1128
Karn’s algorithm, 844, 976, 1119, 1128
Kastenholz, F. J., 226, 1125-1126
Ka76 J., 234,1128
keepalive

probe, 818, 820, 822, 828-830, 848-849,
887-888, 1085, 1121

timer, 818-819, 821, 828-831, 842, 887, 892, 918,
933

Kent, C. A., 1128
Kercheval, B., xxii
kernel statistics, 37
Kernighan, B. W., xxii, 1067, 1128
Kieber, U., xxii
Krol, E., 1128
ktrace program, 30
Kullberg, A., 235, 1129-1130
kvm function, 37

l_linger member, 542, 547
l_onoff member, 542, 547
la_asked member, 683, 692, 695, 699-700, 707
la_hold member, 678, 683, 692, 696, 699-700,

707, 1113
la_next member, 677
la_prev member, 677
la_rt member, 677, 683
LAN (local area network), 711, 827, 84], 845, 903,

940
Lanciani, D., 959, 1128
last ack .sent member, 867, 869, 871, 884
Laubach, M., xxii
layering, 1068, 1126

le_softc structure, 77, 80, 86, 91, 97, 100-101,
120, 125, 159, 178, 309, 343, 346, 366, 581, 677,
683, 1030, 1036-1037, 1071

le_softe variable, 77, 80, 86, 97, 100-101, 120,
153, 159, 343, 346, 1030, 1036-1037

leaf node, routing table, 564
leattach function, 80-83, 86, 91-92
leaves, in multicast spam~ing trees, 417, 419
Leffier, So J., 24, 33-34, 94, 129, 445, 457, 470, 562,

1097, 1129
leinit function, 96,127, 178
leintr function, 100-103
leioctl function, 96,115,122,124-125,127, 163,

i68,177-178, 356, 362-366, 1077
len member, 16, 20-21, 32, 39, 53, 58, 987
leput function, 1~12
leread function, 101-104, 106, 125, 1043, 1070
Leres, C., 725
lereset function, 96, 127, 362-363, 1077
lestart function, 96, 101, 112, 127
LETBUF constant, 112
igc_gaddr member, 411
igc_vifi member, 411
igrplctl structure, 401, 411
Li, T., 170,1127
library functions, system calls and, 7-8
limited broadcast address, 753
Lin, J. C., 1018, 1126
line discipline, 129-130, 148-149

SLIP, 129-132, 134, 149
linger structure, 539, 542, 1079
link layer, RFC 1122 compliance, 1097-1098
link_rtrequest function, 90
link-level address, 77, 85-90, 92, 94, 97,158,185
link-level address mask, 77
listen function, 437, 440, 445-446, 455, 457, 459,

463-464, 468, 524, 729-730, 786, 805,
930-931, 1010-1011

Liu, C., 419, 1127
LLADDR macro, 87
llinfo_arp structure, 677, 680, 682, 691,

695-697, 701, 704, 706-707, 710-711, 1113
llinfo_arp variable, 677, 680
local area network, see LAN
local multicast group, 339
locking, mbuf, 43
loif variable, 77, 86, 120, 128, 159, 1030
loioctl function, 115,124,163,166,177,180, 362
LOMTU constant, 85
long fat pipe, 866, 1128
loop_rtrequest function, 90
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loopattaeh function, 78, 80, 85-86
loopback

device driver, 64, 128, 150-153, 161, 1029
initialization, 85
MTU, 85
multicast, 400
network, 156, 181
packet, BPF, 152
pseudo-device, 64
sockaddr_dl structure, 1070

loose source and record route, see LSRR
looutput function, 96, 110, 127, 150-153, 212,

378, 962, 1070
low-water mark, 477, 479, 496, 530-531, 534, 539,

543
LSRR (loose source and record route), 249-250,

254-255, 257, 270-271,283, 398, 404-406,
427, 432-434, 1073

multicast tunnel 427, 430
Lumley, J., 994, 1126
Lynch, D. C., 1129

M_BCAST constant, 3, 39, 103, 125, 221, 234, 245,
325, 697, 943, 1098, 1101

~_BUF constant, 716
M_COPYALL constant, 53
M_COPYFLAGS constant, 39, 61
M_DONTWAIT constant, 41-42, 52-53, 88, 585, 763,

781,874, 884
~_EOR constant, 39, 491,498, 508, 1078
M_EXT constant, 31, 33-34, 39, 46, 52, 60-61, 1069
M_FREE constant, 40
M_FTABLE constant, 40
M_HTABLE constant, 40
M_IFADDR constant, 40
M LEADINGSPACE macro, 764
M MBUF constant, 40
M_MCAST constant, 39, 104, ]25, 325, 373, 376, 697,

943, 1098, 1101
M NOWAIT constant, 491
M_PCB constant, 40, 715
M_PKTHDR constant, 16-17, 20, 31-34, 39, 52, 60
M_PREPEND macro, 52, 111,267, 763-764, 793,

1056, 1082
M_RTABLE constant, 40, 585
M_SOCKET constant, 40, 716
M_SOOPTS constant, 40
M._WATT constant, 41-42, 52, 763
M_WAITOK constant, 88, 478
re_act member, 34
m_adj function, 53, 771, 912-913, 951,956, 959,

1088

m_cat function, 53, 294, 296-297
m_clfree member, 36
re_clusters member, 36
re_copy function, 53, 56-61, 110, 223, 279, 430,

432, 664, 777, 874, 1055, 1087
m_copyback function, 53, 632, 650
m_copydata function, 52-53, 650-651,655, 874
m_copym function, 53
m_dat member, 31
m_data member, 15, 17, 21, 31, 33-34, 47-48, 52,

152, 267-268, 279, 288, 291,294, 298, 432, 685
m_devget function, 44-51, 53, 60, 101,104, 283,

909
re_drain member, 36-37
re_drops member, 36-37, 61
m_ext structure, 33-34
re_flags member, 15-16, 20, 31-32, 34, 39, 774
re_free function, 53, 73, 271,542, 719, 887, 897
m_freem function, 53, 58, 73, 763
m_get function, 41, 43, 53, 371,539, 1024
m_getelr function, 53, 554
m_gethdr function, 53, 326, 887
m_hdr structure, 32, 39, 195
m_len member, 15-17, 21, 31-33, 39, 45, 47-48,

52, 259, 267, 291,298, 427, 432, 519, 546, 987
m_mbufs member, 36
m retypes member, 36-37, 42
m next member, 15-16, 33-34, 39, 42, 52, 54, 776
m_nextpkt member, 15, 34, 39, 42, 54, 72, 281,

508, 515, 1081
m_pktdat member, 32, 45, 267-268
m_pkthdr member, 16, 21, 32-33, 39, 58, 195, 216,

298, 987, 1101
m_prepend function, 1082
m_pullup function, 44-51, 53, 60-61,215-216,

283, 312, 391,769, 909, 925, 927,1073
m_reclaim function, 43, 796, 892
m_retry function, 42-43
re_spare member, 36
re_type member, 15, 39, 42, 508
re_wait member, 36-37, 61
machdep, c file, 291, 1069
main function, 79, 82-83, 85, 93, 571,584, 756, 796,

1050
malloc function, 40, 88, 412, 484, 585, 635, 637,

650, 715, 834, 1018, 1087
MALLOC macro, 40, 42-43, 483, 665, 718, 1087
Mallory, T., 235, 1129-1130
management information base, see MIB
Mann, T., 100, 321, 1127
Mano, M. M., 235, 1129
manual pages, Unix, 3
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mapped pages, 33
mask, lists, 587-591
mask_rnhead variable, 568-569, 572, 586, 654
maskedKey variable, 572, 585, 595-597
match

most specific, 562
wildcard, 722

MAX_IPOPTLEN constant, 258, 265
max_datalen variable, 186, 195
max_hdr variable, 186, 195, 498, 763
max_keylen variable, 572, 585, 594
max_l±nkhdr variable, 186, 194-195, 267-268,

279, 813, 1077, 1084, 1086
max_protohdr variable, 49, 186, 194-195, 813
max_rcvd member, 989
max_sndwnd member, 859, 983, 989
maximum segment lifetime, see MSL
maximum segment size, see MSS
maximum transmission unit, see MTU
MAXTTL constant, 329
MAXVIFS constant, 406
MBONE (multicast backbone), 350-351, 1126
mbstat structure, 36-37,42
mbtypes variable, 42
mbuf, 15-19, 31-61

chain, 16, 34
cluster, 16, 33
external buffer, 33
locking, 43
packet header, 16, 32
queue of, 34, 39

mbu f structure, 33, 38-40, 47, 267-268, 309
MBUFLOCK macro, 42-43
McCanne, S., xxii, 1027, 1129
McCloghrie, K., 64, 399, 1129
McGregor, G., 129, 1129
McKenney, P. E., 750, 791,994, 1129
McKusick, M. K., xxii, 5, 24, 33-34, 94, 129, 445,

457, 470, 562, 1097, 1128-1129
MCLALLOC macro, 33, 43, 1069
MCLBYTES constant, 33, 37, 134, 498, 534, 900-901,

1078, 1082
I~CLFREE macro, 33, 43, 1069
MCLGET macro, 33, 52, 498
mclrefcnt variable, 1069
memory leak, 4,34, 470, 1076
Mendez, T., 351, 1130
message boundaries, 508-509
MF (more fragments flag, IP header), 275-277, 279,

281,283, 285, 289
MFREE macro, 43, 52-53
MGET macro, 41-43, 47, 52-53, 1087

MGETHDR macro, 52-53, 266-267, 432, 764, 874,
1086-1087

MH_ALIGN macro, 52, 326, 328, 498, 685,
1082-1083, 1086

ZHLEN constant, 37, 47, 557, 630, 813, 1069
MIB (management information base), 64-65, 69,

383, 399, 680, 1129
MIB-II, SNMP, 65
microtime function, 264, 1043
Milliken, W., 351, 1130
MI~]CLBYTES constant, 46
MINCLSIZE constant, 37, 498, 1087
MLEN constant, 37, 539
mma;) function, 52
Mogul, J. C., 33, 100, 156, 223, 301,319, 321,773,

791,901,1071,1127-1129
more fragments flag, IP header, see MF
most specific match, 562
Moy, J., 419,1129
MPFail variable, 48
mrouted program, 339, 363, 391,397, 401-407,

409, 411-412, 416-421, 424, 428, 433-434,
1059

MROUTING constant, 2
tort structure, 398,419-424
mrt_children member, 420
mrt_leaves member, 420
mrt_next member, 419-420
mrt_origin member, 420
mrt_originmask member, 420
mrt_parent member, 420
mrtc_children member, 419
mrtc_leaves member, 419
mrtc_origin member, 419, 423
mrtc_originmask member, 419
mrtc_parent member, 419
mrtctl structure, 40],419-420,423
mrtfind function, 423-424, 428
MRTHASHMOD macro, 42]
IqRTHASHSIZ constant, 419-421
torts bad tunnel member, 399
mrts_cant_tunnel member, 399
mrts_grp_lookups member, 399
mrts_grp_misses member, 399
mrts mrt lookups member, 399
torts tort misses member, 399
mrts no route member, 399
mrtstat structure, 398-399
mrtstat variable, 398-399
mrttable variable, 398, 419-420
MSG_CTRUNC constant, 505-506
MSG_DONTROUTE constant, 229, 482, 499
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MSG_DONTWAIT constant, 482, 491, 499, 505, 507,
511, 515, 535

MSG_EOR constant, 190, 482, 490-491, 498, 500,
506, 511, 520, 535, 1078

FISG_OOB constant, 482, 505-506, 518-519, 986,
1015-1017

MSG_PEEK constant, 505, 507, 515, 517, 519-520,
522-523, 1016

MSG_HRLrNC constant, 506, 523
FISG WAITALL constant, 505, 507, 515, 522
msg_eontrol member, 482-483
msg_eontrollen member, 482-483
msg_flags member, 482-483, 505-506
msg_iov member, 482-483
msg_iovlen member, 482-483, 503
msg_name member, 482-483
msg_naraelen member, 482-483, 1078
msghdr structure, 482-483, 502-503, 505, 761,

1078
MSIZE constant, 37,47
MSL (maximum segment lifetime), 813-814, 818,

820, 980-981, 991-992, 1087, 1119
MSS (maximum segment size), 57, 797, 871, 874,

891, 896-903, 944, 1003, 1018, 1023-1024,
1117

option, 834, 865, 871-872, 874, 891, 897, 918,
929, 933-934, 1117

MT_ADDR constant, 509-510
MT_CONTROL constant, 40, 509-510, 776
MT_DATA constant, 21, 34, 40, 509-510
MT_FREE constant, 40
MT_FTABLE constant, 40
FIT_HEADER constant, 34, 40
MT_HTABLE constant, 39-40
FIT_IFADDR constant, 40
MT_OOBDATA constant, 40, 510, 519
MT_PCB constant, 40
MT_RIGHTS constant, 40
MT_RTABLE constant, 40
MH_SOCKE<P constant, 40
FIT_SONAME constant, 15, 21, 39-40, 453
ZH_SOOPTS constant, 40
mtod macro, 44, 46-47, 52-53, 283, 324, 630
MTU (maximum transmission unit), 85, 92, 99,

147, 153, 232, 234, 276, 278-279, 290, 327, 612,
658, 898, 900-901, 920, 1003, 1018, 1024, I046

discovery, path, 276, 279, 327, 794, 901, 1129
Ethernet, 92
loopback, 85
SLIP, 134, 147

multibyte options, 248

multicast
address, Etl~ernet, 100, 103-104, 341-342
address, IP, 155-156, 341
address mapping, IP to Ethernet, 341-342
backbone, see MBONE
forwarding, 424-433
group, 337
group cache, 399, 412, 415, 434
group, joining, 355-366
group, leaving, 366-371
group, local, 339
loopback, 400
network, example, 416
one-behind cache, 398-399, 422, 424, 434
output processing, 375-378, 400
packet, 99
performance, 379
routing, algorithms, 416-419
routing table, 419-424
scope, 348-351, 428
socket option, 348
TTL, 348-351
tunnel, 398, 404-406, 427, 431-433
tunnel, example, 404
tunnel LSRR, 427, 430

mutticasting, 1127
ARP, 710-711
Ethernet, 156
hardware, 156, 337
IP, 155-156, 337-380
RFC 1122 compliance, 1110-1111

multihomed, 100, 155, 219, 245, 329, 337-338, 380,
741, 779-780, 1098, 1100-1101, 1118

Muuss, M., 5

Nagle algorithm, 858-859
National Optical Astronomy Observatories, see

NOAO
NBPFTLTER constant, 1034, 1036-1037
Net/l, 8, 34, 562, 599, 750, 832, 844, 871, 943, 970,

989, 1053
Net/2, 28, 34, 40, 562, 678, 680, 682, 702, 712, 718,

905, 943,970, 1053,1057
Net/3, 4
NET_RT_DUMP constant, 636-637, 639
NET RT FLAGS constant, 636-637, 639
NET RT IFLIST constant, 636-637, 640
net_sysctl function, 202-203, 571, 635, 638, 756
nethash function, 419-421, 424
NETISR_ARP constant, 687
netstat program, 36-37, 40, 94, 97-98, 207-208,

306, 383, 398, 560-561, 563, 573, 579, 611, 680,
706, 716, 718, 757, 774, 797, 815, 940
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network
broadcast address, 162
interface, 63-94
interface tap, see NIT
interrupt, 73, 138, 148, 213, 469, 1078
loopback, 156, 181
mask, 157, 162
mask, index of, 576

Network File System, see NFS
Network Time Protocol, see NTP
ne×t member, 286-289
NFDB£TS constant, 525,528
NFS (Network File System), 13, 112, 275, 441,449,

491,499, 507, 511,587, 699, 785
NIT (network interface tap), 1129
NLE constant, 80
no operation, see NOP
NOAO (National Optical Astronomy

Observatories), xxii, 28
noao. edu networks, 28
nonblocking semantics, 459
nonlocal source route, 1104
NOP (no operation), 249-250, 260, 27l, 273, 282,

427, 432, 865, 933-934
nseleoll variable, 476, 525, 528, 534-535
NTOHS macro, 216
NTP (Network Time Protocol), 338
nude, IP header, 211
null_sdl variable, 706
numv±fs variable, 398,407

O_XSYNC constant, 549
O_NONBLOCK constant, 549
Olivier, G., 223, 1129
O’Malley, S. W., 845, 1126
open function, 8, 1027, 1034
open shortest path first, see OSPF
open systems interconnection, see OSI
OPTBXT macro, 244
options

class, IP, 249
echo, 866
IP, 247-273
MSS, 834, 865, 871-872, 874, 891, 897, 918, 929,

933-934, 1117
multibyte, 248
record route, 252-254
single-byte, 248
source route, 254-261
TCP, 864-866, 1117
timestamp, 261-264, 865-871, 874, 933-934,

1128

window scale, 865-866, 871,874, 929, 933-934,
1128

OPTSET macro, 242
OPTSIZ constant, 259
orecv function, 500
organization, source code, 26-28
osend function, 480
OSI (open systems interconnection), 9-10, 23, 27,

39, 66, 69, 75-77, 86, 100-101,105-106, 121,
123, 150, 158, 162, 185-186, 190, 194, 457, 498,
500, 508, 510, 514, 562, 570, 581,624, 666

address family, 185
connectionless transport, 106
domain, 75
protocol family, 185

osockaddr structure, 74-76
OSPF (open shortest path first), 574, 1050, 1129
out-of-band, data, 40, 505-507, 509-510, 519, 533,

855, 858, 879, 983-988, 1004, 1015-1016, 1117
output processing

ICMP, 324-333
IP, 228-234
multicast, 375-378, 400
TCP, 851-890
UDP, 760-768

output queue, TI"Y, 134, 141
ovbcopy function, 267, 271

P_SELECT constant, 525, 528, 534
p_£d member, 13, 446-447
p_mopt±ons structure, 347-348
packet

broadcast, 99
header, mbuf, 16, 32
IP, 210
multicast, 99
unicast, 99

panic function, 152, 166, 460, 474, 988
parameter problem, ICMP, 252, 257, 262, 314
parent interface, 418-419,1077
Partridge, C., xxii, 60, 190, 235, 239, 351,401,500,

524, 716, 750, 763, 773-774, 791-792, 844,
936, 995, 1068, 1126, 1128-1131

Pasquale, J., 234, 1128
passing descriptors, 189, 470
passive open, 967-969
path MTU, discover)~ 276, 279, 327, 794, 901, 1129
Patricia tree, 562
PAWS (protection against wrapped sequence

numbers), 798, 868-869, 937, 951-954, 966,
1128

Paxson, V., xxii, 834, 1130
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PCATCH constant, 456
PCB (protocol control block), 13, 347, 569, 578, 602,

618, 650, 713-753, 756-757, 760-761, 763,
768-769, 773-774, 777, 783, 785-786,
788-789, 793, 797-800, 803, 813, 815, 818,
821-822, 833-835, 885, 889, 893, 897-898,
923, 929-930, 932-933, 941,944-946,
959-960, 966, 981, 994-995, 1009, 1012,
1017-1019, 1021-1022, 1051, 1053,
1055-1056, 1058-1060, 1062, 1090-1091,
1113, 1115

pdev_attach member, 78-79, 82-83, 85
pdevinit structure, 78, 82, 85
pdevinit variable, 64, 78-79
performance

fragmentation, 291
header alignment, 283
IP checksum, 236, 239
low-water mark, 496
multicast, 379
send buffer size, 1018
SLIP, 147
sosend function, 500
TCP, 1126

Perlman, R., 416, 1130
persist, timer, 818-821, 827, 835, 855, 858, 861, 878,

882, 939, 976, 1116
Peterson, L. L., 60, 750, 845, 1126-1127
PF_INET constant, 10, 185-186, 197-198, 201, 449,

660, 1072
PF_ISO constant, 185
PF_LOCAL constant, 185
PF_OSI constant, 185-186, 201
PF_ROUTE constant, 185-186, 554, 569-570, 581,

627, 645-647, 660, 662, 664, 666, 671-672
PF_UNIX constant, 185-186
pfctlinput function, 123, 198, 204, 303-304,

323, 617, 743-744, 746-747, 782
pffasttirao function, 195,796
pffindproto function, 191, 196-199, 204, 449,

1052, 1072, 1080
pffindtype function, 196-198, 204, 449
pfslowtirao function, 195,796
phyint_send function, 424-425, 429-430
physical interface, 424
PIM (protocol independent multicasting), 419
ping program, 140, 272, 313, 316, 1108
Pink, S., 239, 500, 524, 750, 763, 773-774, 791-792,

1130
pipes, Unix, 450

Piscitello, D. M., 9, 1130
pkthdr structure, 34
Plauger, P.J., 1067,1128
Plummer, D. C., 100, 675, 1130
Point-to-Point Protocol, see PPP
port

ephemeral, 21, 715, 719, 725, 729-730, 732, 740,
748, 751-753, 760, 813, 945, 1011-1012,
1081-1083

mapper, 1011
reserved, 732
unreachable, ICMP, 494
well-known, 719, 729, 733, 774, 814, 1011

Portable Operating System Interface, see POSIX
POSIX (Portable Operating System Interface), 185
Postel, J. B., 100, 107, 156, 193, 205, 291, 301, 319,

813, 1071, 1091, 1100, 1125-1126, 1129-1130
PPP (Point-to-Point Protocol), 23, 28, 129, 161-162,

560, 780, 846, 995, 999, 1003-1004, 1094
frame, 129

PR_ADDR constant, 189, 193, 309, 385, 508, 646,
758, 1052

PR ATOMIC constant, 189-190, 193, 309, 385, 490,
493, 499, 508, 515, 534, 646, 758, 1052, 1087

PR_CONNREQUIRED constant, 189, 531, 730, 801
PR_FASTHZ constant, 386
PR_RIGHTS constant, 189
PR_SLOWHZ constant, 824, 834
PR WANTRCVD constant, 189, 801
pr_ctlinput member, 190, 193, 198, 303-304,

309, 315, 385, 646, 744, 758, 782, 801, 1052,
1107-1108

pr_ctloutput member, 190, 193, 309, 385, 436,
538, 540-542, 646, 758, 801, 1052

pr_domain member, 188, 193, 309, 385, 646, 758,
801, 1052

pr_drain member, 191,193, 309, 385, 646, 758,
801, 892, 1052

pr_fasttimo member, 190, 193, 196, 309, 385,
646, 758, 801, 821, 1052

pr_flags member, 188-189, 193, 309, 385, 531,
646, 758, 801, 1052

pr_init member, 190, 193-194, 309, 385, 646,
758, 801, 1052

pr_input member, 190, 193, 220, 286, 309-310,
385, 391, 646, 758, 769, 801, 923, 1052-1053,
1091, 1100, 1102

pr_output member, 190, 193, 228, 309, 385, 646,
670, 758, 801, 1052

DELL EX.1095.1181



TCP/IP Illustrated Index    1157

pr_protocol member, 188, 191, 193, 196, 200,
203, 309, 385, 646, 673, 758, 801, 1052

pr_slowtimo member, 190, 193, 196, 309, 385,
646, 758, 801, 822, 826, 1052

pr_sysctl member, 191, 193, 202-203, 309, 385,
646, 758, 801, 1052

pr_type member, 188-189, 191, 193, 309, 385,
437, 646, 758, 801, 1052

pr usrreq member, 164, 190, 193, 309, 385, 436,
450, 455, 461, 474, 480, 489-490, 499, 501, 540,
552, 646, 666, 758, 801, 1007, 1052, 1062

PRC_BOSTDEAD constant, 316, 744
PRC_IFDOWN constant, 123, 316
PRC_MSGSIZE constant, 302,316
PRC_PARAMPROB constant, 302, 316
PRC_QUENCH constant, 302, 316, 783, 904
PRC_QUENCH2 constant, 316
PRC_REDIRECT_HOST constant, 302,316
PRC_REDIRECT_NET constant, 316
PRC_REDIRECT_TOSHOST constant, 316
PRC_REDIRECT_TOSNET constant, 316
PRC_ROUTEDEAD constant, 316
PRC_TIMXCEED_INTRANS constant, 302, 316
PRC_TIMXCEED_REASS constant, 302, 316
PRC_UNREACH_HOST constant, 302, 316
PRC_UNREACH_NET constant, 302, 316
PRC_UNREACH_PORT constant, 302, 316
PRC_UNREACH_PROTOCOL constant, 302, 316
PRC_UNREACH_SRCFAIL constant, 302, 316
PRC0_GETOPT constant, 240, 243-244, 401, 546,

1023-1024
PRCO_SETOPT constant, 240, 242-243, 401, 540,

1023-1024
prev member, 286-289
principle, robustness, 857
printf function, 7-8, 81,797
proc structure, 11, 446, 531
promiscuous, mode, 101, 104, 125, 1033, 1035,

1070, 1092
protection against wrapped sequence numbers, see

PAWS
protocol

control block, see PCB
entry points, 190
family, 182, 185, 189-190, 196, 202
family, Internet, 185, 202-203, 361
family, OSI, 185
family, routing, 185
family, Unix, 185
independent multicasting, see PIM
layer, 10

protosw structure, 186-196, 198-200, 202, 204,
220, 228, 309, 384-385, 440, 446-447, 449,
500, 647, 744, 795, 801, 1051-1052

ICMP, 309-310
IGMP, 384-385
IP, 186, 191-196
raw 1P, 1051-1053
routing, 646
TCP, 801
UDP, 758

prototypes, ANSI C function, 41
proxy ARP, 688, 703-704
PRU_ABORT constant, 450, 471, 669-671, 786,

788-789, 892, 1014, 1059
PRU ACCEPT constant, 450, 461, 787, 1012-1013
PRU_ATTACE constant, 450, 462-463, 477, 647,

665-667, 671,717, 785, 822, 833, 932, 966,
1009-1010, 1018, 1053, 1058

PRU BIND constant, 450, 454-455, 666, 786, 1010,
1059

PRU_CONNECT constant, 450, 465, 468, 666,
787-788, 851, 871, 873, 884, 919, 962,
1059-1060, 1083

PRU CONNECT2 constant, 450, 668-669, 787, 1012,
1061

PRU_CONTROL constant, 164, 554, 666, 785, 1007
PRU_DETACH constant, 450, 473, 666-667, 669,

671, 719, 786, 788, 1010, 1059
PRU_DISCONNECT constant, 450, 668-669, 671,

787-788, 897, 1010, 1012, 1019, 1059, 1083
PRU_LISTEN constant, 450, 455, 730, 786, 1011
PRU_PEERADDR constant, 450, 556, 670, 741, 789,

1017, 1062
PRU RCVD constant, 450, 501, 514, 523, 790,

851-852, 863, 1013, 1120
PRU_RCVOOB constant, 450, 501, 513, 790,

985-986, 1015
PRU SEND constant, 450, 480, 499, 648, 669, 761,

784, 788-789, 851, 884, 920, 1013, 1062, 1087
PRU_SENDOOB constant, 450, 480, 499, 851, 861,

884, 1016
PRU_SENSE constant, 669-670, 789, 1014-1015,

1062
PRU SHUTDOWN constant, 450, 469-470, 668-669,

788, 851, 884, 1013, 1021, 1061
PRU_SLOWTIMO constant, 822, 824, 1017
PRU SOCKADDR constant, 450, 554, 670, 741, 789,

1017, 1062
prune, 418
ps program, 456
pseudo-device, 78, 83

loopback, 64
SLIP, 64, 82
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pseudo-header
TCP, 880, 885, 926, 995
UDP, 764-768

PSH (push flag, TCP header), 803, 875, 889, 937,
959, 1000-1001, 1086, 1115-1116

pure ACK, 831,851,937
push flag, TCP header, see PSH
putc function, 146
putmsg function, 8

Quarterman, J. S., 24, 33-34, 94, 129, 445, 457, 470,
562,1097, 1129

queue
ARP, input, 97
CLNP, input, 97
IP, input, 97, 106

queue of mbufs, 34, 39
quiet time, 812-814

R_Malloc macro, 585
radix node data structures, 573-578
radix_mask structure, 577-578, 587, 589-591,

595, 597
radix_node structure, 568-569, 573, 575,

577-579, 581,586-587, 590-591, 595, 597,
600, 602, 609, 612, 641, 1079

radix_node_head structure, 567-569, 573,
575-576, 586-587, 592

Rago, S. A., xxii, 5, 435, 1130
Ramsey, N. F., 106, 1127
RARP (Reverse Address Resolution Protocol), 100,

106, 321,686
Ravi, C., xxii
raw IP, 183, 191,197, 230, 240, 276, 301,304-305,

312-313, 384, 391,440, 451,477, 541,
1049-1065, 1071, 1102, 1108

inetsw variable, 191,193, 197, 199, 204, 1052,
1072

protosw structure, 1051-1053
raw protocol, default, 191
raw sockets, ICMP redirect and, 746-748
raw attach function, 667, 671-672
raw_ctlinput function, 646
raw_detach function, 667, 671-672
raw_disconnect function, 669, 671-672
raw_init function, 571,646-648
raw_input function, 312, 571,621,624-629, 632,

645-646, 650, 659-660, 662-664, 671-672
raw_recvspace variable, 572
raw_sendspace variable, 572
raw_us~req function, 571, 666-670, 672

rawcb structure, 440, 647, 665, 672
rawcb variable, 572, 647, 671
rawinpcb variable, 1051, 1053, 1058-1059
rcb_faddr member, 647, 664, 669
rcb_laddr member, 647, 664
rcb_proto member, 662
rcmd function, 732
rcv_adv member, 808, 860, 863-864, 878, 884,

941,948
rcv_nxt member, 808, 830, 860, 863-864, 867,

869, 871,878, 884, 907-909, 915-916, 937,
940-941,948, 954, 959, 985, 987-990,
1088-1090

rcv_scale member, 866, 949, 969
rcv_up member, 951,985
rcv_wnd member, 808, 951,959
rcvif member, 16, 20, 33, 53, 152
RDP (Reliable Datagram Protocol), 189-190, 490,

716, 1130
read function, 10, 13, 129, 435, 439, 445-447, 475,

500-501, 1025, 1040, 1043
ready function, 13, 445-446, 475, 500-501
REASS_MBUF macro, 913
reassembly

IP, 48-50, 219, 275-277, 283-300
TCP, 50-51,906-916
TTL, 298

receive sequence space, TCP, 808
record boundaries, 189
record route option, 252-254
recovery, fast, 970-974, 1120,1128
recv function, 445-446, 500-501, 503, 986
recvfrom function, 7-8, 10, 19, 21-22, 443,

445-446, 457, 474-475, 500-501, 503, 748,
792, 1078

recvit function, 501, 503-505, 535, 1078, 1083
recvmsg function, 21,435, 443, 445-446, 475,

500-503, 505-506, 511,523, 776, 781, 1078,
1083, 1114

redirect, ICMP, 221, 223-228, 252, 321
reference counts

cluster, 56-60
control message, 470
ether_multi structure, 343, 346, 364, 369
ifaddr structure, 74, 177
in_multi structure, 359-360, 368,386,395
routing table, 606-607

refinements
TCP implementation, 994-995
UDP implementation, 791-792

reliable
protocol buffers, 490
protocols, 189
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Reliable Datagram Protocol see RDP
remote procedure call, see RPC
remote terminal protocol, see Telnet
remque function, 55, 291-292, 298, 671, 683, 710,

719
reply, ICMP, 234
Request for Comment, see RFC
request_r_scale member, 873
requested s .scale member, 934
reserved port, 732
reset flag, TCP header, see RST
reset segment, TCP, see RST
reset_d function, 1035, 1039
resynchronization ACK, 960, 1088
retransmission

ambiguity problem, 976
time out, see RTO
timer, 749, 817, 819-822, 828, 831-833, 835, 841,

843-844, 846, 859, 861, 880, 882, 889, 918, 920,
939, 948, 970-972, 975-976, 978, 1012, 1020,
1086

retransmit, fast, 908, 970-974, 1120, 1128
Reverse Address Resolution Protocol, see RARP
reverse path, 417

broadcasting, see RPB
multicasting, see RPM

reversed source route, 240, 255, 258-259, 261, 332,
1103, 1108-1109

Reynolds, J. K., 100, 107, 193, 1091, 1130
RFC (Request for Comment), 791, 1130

792, 1130
793, 1130
795, 1130
817, 1126
826, 1130
894, 1127
903, 1127
950, 1129
951, 1126
1009, 1126
1042, 1130
1055, 1t30
1071, 1126
1072, 1128
1075, 1131
1112, 1127
1122, 1125
1122 compliance, ARP, 1113
1122 compliance, ICMP, 110.5-1110
1122 compliance, IGMP, 1111
1122 compliance, IP, 1098-1105
1122 compliance, link layer, 1097-1098
1122 compliance, multicasting, 1110-1111

1122 compliance, routing, 1111-1113
1122 compliance, TCP, 1115-1123
1122 compliance, UDP, 1113-1115
1123, 1125
1127, 1125
1141, 1129
1144, 1127
1151, 1130
1190, 1131
1191, 1129
1213, 1129
1256, 1127
1323, 1128
1332, 1129
1337, 1126
1349, 1125
1462, 1128
1519, 1127
1541, 1127
1546, 1130
1548, 1130
1624, 1130
1644, 1126
1700, 1130
1716, 1125
Gateway Requirements, 1126
Host Requirements, 1125
how to obtain, 1094
Router Requirements, 1125

Rijsinghani, A., 235, 1129-1130
RIP (Routing Information Protocol), 291, 574, 1050
rip_ctloutput function, 193, 240, 309, 385,

401-402, 412, 538, 541, 1050,1052, 1063-1065
rip_init function, 193-194, 1050, 1052-1053
rip_input function, 193, 303-304, 310, 312-313,

316, 319, 321, 323, 335, 382, 391, 412, 419,
1050, 1052-1056, 1058-1060, 1065, 1075,
1091, 1105, 1107-1109

rip_output function, 193, 309, 382, 385, 1050,
1052-1053, 1056-1058, 1062, 1065

rip_recvspace variable, 1051
rip_sendspace variable, 1051
rip_usrreq function, 193, 309, 385, 451, 1050,

1052, 1058-1062
ripsrc variable, 1051, 1055
Rlogin, 140, 732, 858, 995, 1002, 1084
rm mask member, 577-578, 597
rm_mklist member, 578
rmx_expire member, 581, 658, 678, 683, 694, 706,

711-712, 894
rmx_hopcount member, 658, 894
rmx_locks member, 581, 658, 893
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rmx_mtu member, 658, 894
rmx_pksent member, 658, 893
rmx_recvpipe member, 658, 894
rrax_rtt member, 658, 894, 899, 921
rmx_rttvar member, 658, 894, 899
rrax_sendpipe member, 658, 894, 896, 90]
rmx_ssthresh member, 658, 894, 896, 903
rn_addmask function, 653
rn_addroute function, 571,575, 611
rn_b member, 576-577, 587-588, 591-592, 597,

1079
rn bmask member, 576, 587, 592
rn_delete function, 571,575, 608
rn_dupedkey member, 577, 587-588, 593, 597
rn_flags member, 576, 587
rn_init function, 571,584-587
rn_inithead function, 192, 569, 571, 575, 581,

584-589, 605
rn_key member, 577, 588-589, 597, 610, 612-613
rn_! member, 577
rn_raask member, 577, 588, 597, 654
rn_match function, 571,575, 591-599, 602, 604,

1111
rn_mkfreelist variable, 572,578
rn_mklist member, 576, 578, 587, 595, 597
rn_off member, 576-577, 587, 592
rn_ones variable, 572, 585, 587, 589
rn_p member, 576, 587
rn_r member, 577
rn_search function, 571,596-597, 599
rn_walktree function, 571,575, 638, 640
rn_zeros variable, 572, 585, 587-589, 619
RNF_ACTIVE constant, 576, 605
RNF_NORMAL constant, 576
}{NF_ROOT constant, 576, 587-589, 593, 602, 605
rnh_addaddr member, 575, 611
rnh_addpkt member, 575
rnh_addr s i ze member, 575
rnh_deladdr member, 575, 608
rnh_delpkt member, 575
rnh_matchaddr member, 575, 591, 602
rnh_matchpkt member, 575
rnh_nodes member, 587-588
rnh_pktsize member, 575
rnh_treetop member, 575, 586
rnh_walktree member, 575, 640
ro_dst member, 221, 223, 254, 578, ]090
ro_rt member, 22], 578-579, 602, 1090-]09]
robustness principle, 857
Romkey, J. L., 129, 144, 1130
Rose, M. T., 9, 64, 1129-1130
ROTATE_BUFF]~RS macro, 1033, 1043

round-trip time, see RTT
ROUNDUP macro, 612, 632
route

cached, 746-747, 750, 768, 843, 887, 894, 898,
1111

characteristics, 893-896
default, 181
direct, 561,621,706
held, 606, 659
indirect, 561,569, 580, 608, 615, 706
selection, IP, 230-232

route program, 560-561,569, 571-572, 601,606,
612, 650, 893-894, 1112

rout e structure, 220-221,223, 23l, 234, 358-359,
568-569, 578-579, 599, 602, 1090-1091

route_cb variable, 572, 624, 666
route_dst variable, 572, 626, 664
route_init function, 57l, 581-584, 646
route_output function, 571,606-607, 632-633,

645-646, 648-661,670, 672-673, 679, 710
route_proto variable, 572, 626-627, 660, 664
route_src variable, 572, 626, 647, 664, 666, 670
route_usrreq function, 571,646-647, 664-666,

669-670, 672
routed program, 559, 571-572, 601,637, 644, 1111
routedoraain variable, 187,195, 646
router, discovery, ICMP, 1127

solicitation, ICMP, 339
vs. host, 157

Router Requirements RFC, 1125
routesw variable, 195, 646, 673
Routhier, S., 223, 750, 1128
routing

address family, 185
control block, 647
domain, 67, 75, 437, 539, 554, 569-570, 572, 581,

584, 624, 632, 645-673
domain initialization, 646
domain structure, 646
IP multicast, 397-434
mechanism, 559
messages, 601-644
policy, 559
protocol family, 185
protosw structure, 646
requests, 601-644
RFC 1122 compliance, 1111-1113
socket, 569, 645-673
structures, 578-581
table, 560-569
table, ARP, 675-678
table internal node, 564
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table leaf node, 564
table reference counts, 606-607

Routing Information Protocol, see RIP
RPB (reverse path broadcasting), 417, 419, 434
RPC (remote procedure call), 729, 1011
RPM (reverse path multicasting), 418-419, 434

example, 418
rsh program, 732
RST (reset flag, TCP header), 234, 800, 803, 820,

843, 868, 886-887, 889, 892, 930, 948, 957,
963-966, 992-994, 1014, 1019, 1025,
1086-1088, 1090, 1118-1119, 1126

storm, 993
rt_aflflrinfo structure, 621,623, 625, 627,

629-630, 632, 649-650, 660, 750
rt_expire member, 695, 700-701, 1081
rt_flags member, 573, 579-580, 609, 641,677,

681
rt_gateway member, 574, 579, 609, 612-614, 61c~

621,629, 636, 677, 681,692, 695, 698, 702,
706-707, 709, 1080

rt_genmask member, 609, 611, 636, 658
rt_gwrout e member, 580, 608-609, 614-615,

1091
rt_ifa member, 580, 609, 617, 619, 656, 677
rt_ifmsg function, 123, 571,627-628
rt_i fp member, 224, 580, 656, 677
rt_key member, 574, 609, 612, 629, 636, 681
rt_llinfo member, 580, 677, 683, 707, 710
rt_mask member, 573-574, 629
rt_maskedcopy function, 610, 615, 1071
rt_metrics member, 661,683, 711
rt_metrics structure, 581,653, 658, 661,678,

893-894
rt_missmsg function, 571,621,624-627, 750
rt_~sg! function, 625-627,629-632
rt_rasg2 function, 632-635, 638, 640-643, 656
rt_msghdr structure, 569-570, 621,629-630, 632,

650-651,656, 661, 1080
rt_netmask member, 636
rt_newaddrmsg function, 571,616-617, 628-630
rt_nodes member, 579
rt_refcnt member, 580, 604, 606, 608, 611,702
rt_rmx member, 658
rt_setgate function, 606, 609, 612-615, 621,

656, 706
rt_setmetrics function, 656, 658, 661
rt_tables variable, 567-568,572;586-587, 639
rt_use member, 580
rt_xaddrs function, 650-651,660-661
RTA_AUTHOR constant, 623
RTA_BRD constant, 623

RTA DST constant, 623
RTA_GATEWAY constant, 623
RTA_GENMASK constant, 623
RTA_IFA constant, 623, 656
RTh_IFP constant, 623, 656
RTA_NETMASK constant, 623
rtable_init function, 581-584
rtalloc function, 223, 232, 254, 358-359,

571-572, 578-579, 591, 601-604, 606,
618-619, 738, 752, 898, 1090

rtal!ocl function, 571, 591,593, 601-604,
606-607, 609, 615, 619, 623-624, 654-655,
659, 679, 701-704, 707, 710, 1091

RTAX_AUTHOR constant, 623
RTAX_BRD constant, 623
RTAX DST constant, 623, 653
RTAX_GATEWAY constant, 623
RTAX_GENMASK constant, 623
RTAX_IFA constant, 623
RThX_IFP constant, 623
RTAX_MAX constant, 623, 661
RTAX NETMASK constant, 623
rtentry structure, 221,568-569, 575, 578-581,

602-604, 606, 608-609, 611-612, 616, 641,
677, 1079

RTF_ANNOUNCE constant, 703, 707
RTF_BLACKHOLE constant, 152,579-580
RTF_CLONING constant, 169, 580, 603-604, 609,

612, 615, 653, 703-704, 706-707
RTF_DONE cofistant, 579-580, 619, 650, 659
RTF_DYNAMIC constant, 224, 573, 580, 621,644,

750, 1080
RTF_GATEWAY constant, 573, 579-580, 619, 621,

702, 706
RTF_HOST constant, 171,580, 609, 619, 706
RTF_LLINFO constant, 580, 637, 641,680, 702, 707,

710-711
RTF_MASK constant, 579-580
RTF_MODIFIED constant, 224, 573, 580, 621,644,

1080
RTF_PROTO1 constant, 580
RTF_PROT02 constant, 580
RTF_REJECT constant, 109, 152, 580, 692, 695,

699-701
RTF_STATIC constant, 580
RTF_UP constant, 171,580, 606-609, 704
RTF_XRESOLVE constant, 580, 604
rt free function, 576, 604-607, 609, 616, 618, 621,

653, 719, 746
RTFREE macro, 234, 604-608, 614
rti_addrs member, 623-624, 626, 632, 634,

650-651
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rti_info member, 623-624, 626, 629, 632, 634,
641,653, 656, 660-661

rtinit function, 171-172, 571, 601, 606-607,
615-617, 628, 677, 679, 704, 706

rtioctl function, 552, 554
RTM_ADD constant, 570, 606-607, 609, 611, 615,

617, 628-629, 645, 649-650, 653, 657, 661,
704, 706, 711

RTM_CHANGE constant, 570, 645, 654, 656
RTM_DELADDR constant, 570, 621, 629
RTM_DELETE constant, 570, 607, 615, 617,

628-629, 645, 653, 656, 704, 706, 709, 750
RTM_GET constant, 570, 632, 636, 641,645,

654-656, 660, 704, 710
RTM_IFINFO constant, 570, 621, 636, 643
RTM_LOCK constant, 570, 645, 654, 656, 658
RTM_LOSING constant, 570, 750, 1112-1113
RTM_MISS constant, 570, 602, 604
RTM_NEWADDR constant, 570, 621, 629, 636, 643
RTM_REDIRECT constant, 570, 1049
RTM_RESOLVE constant, 570, 603-604, 607, 609,

611, 704, 706-707, 709
RTM_RTTUNIT constant, 894
rtm_.addrs member, 621-622, 626, 650, 660-661
rtm_errno member, 626, 650, 659, 1080
rtm_flags member, 626, 650, 656
rtm_inits member, 658, 661
rtm_msglen member, 637, 651
rtm~pid member, 651
rtm_rmx member, 658, 661
rtra_type member, 569
RTO (retransmission time out), 800, 831-832, 834,

836, 840-841, 843, 900, 1116, 1119, 1121
rtredirect function, 323, 571, 607, 617-621,

623-624, 1107
rtrequest function, 571, 601, 603-612, 615-617,

621, 653, 661, 679, 696, 703-704, 706-707,
710-711, 750, 1080-1081

rts_badredirect member, 573
rts_dynamic member, 573
rts_newgateway member, 573
rts_unreach member, 573,602
rts_wildcard member, 573
rtstat structure, 573
rtstat variable, 572-573
RTT (round-trip time), 6]2, 658, 797-798, 820, 823,

831-834, 836-837, 839-840, 842-848, 852,
866, 868-871, 889, 894, 899, 917-919, 939,
950, 975-976, 1085, 1089, 1119

rttrash variable, 572, 605, 608
RTV_EXPIRE constant, 658
RTV_HOPCOUNT constant, 658

RTV_MTU constant, 658
RTV_RPIPE constant, 658
RTV_RTT constant, 658, 899
RTV_RTTVAR constant, 658
RTV_SPIPE constant, 658
RTV_SSTHRESH constant, 658
runt packet, 103
rwhod program, 571-572

s_addr member, 160, 266, 410, 1071
s_host member, 1071
s_imp member, 1071
s_impno member, 1071
s_lh member, 1071
s_net member, 1071
sa_alen member, 121
sa_data member, 75-76, 160
sa_family member, 75-76, 94, 109, 153, 160, 212,

602, 608, 627, 684, 686, 1081
sa_len member, 75-76, 94, 117, 160, 453, 661, 686,

1077, 1081
sa_nlen member, 121
sa_slen member, 121
SACK (selective acknowledgment), 866, 1128
Salus, P. H., xxii, 5, 1130
save_rte function, 257-259, 261,272, 932
SB ASYNC constant, 477, 550
SB_LOCK constant, 477
SB_NOINTR constant, 469, 477
SB_NOTIFY constant, 477, 939
SB_SEL constant, 477
SB_WAIT constant, 477
SB_WANT constant, 477
sb_cc member, 476, 478, 490, 515, 530-531, 535,

550, 861, 985, 1078
sb_flags member, 477,550
sb_hiwat member, 463, 476-479, 489-491, 515,

531, 535, 539, 878, 894, 1012,1078
sb_lowat member, 476-479, 489-490, 508, 515,

530-531, 539
sb_max member, 476-477, 903
sb_mb member, 56, 470, 476
sb_mbcnt member, 476, 478
sb mbmax member, 476-479, 495
sb_sel member, 477, 531
sb_timeo member, 477, 496, 516, 539, 543-544,

548
sballoc macro, 478
sbappend function, 479, 508, 987, 1014, 1016, 1078
sbappendaddr function, 479, 508, 625, 664,

776-777, 1055, 1078
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sbappendcontrol function, 479, 509, 1078
sbappendrecord function, 479, 508
sbcompress function, 479
sbdrop function, 479, 978
sbdroprecord function, 479
sbflush function, 479, 1020
sbfree macro, 478
sbinsertoob function, 479, 509
sblock macro, 469, 478, 491, 511
SBLOCKWAIT constant, 491
sbrelease function, 470, 473, 479, 1078
sbreserve function, 479, 543, 903, 1018
sbspace macro, 478, 495, 531, 535, 1078
sbunlock macro, 478
sbwait function, 478, 496, 515-516, 522
SC_AUTOCOMP constant, 83-84
SC_COMPRESS constant, 83
SC_ERROR constant, 83, 135-137, 153, 1070
SC_NOICMP constant, 83, 140
sc_ac member, 80
sc_addr member, 80-81
sc_bpf member, 83, 1030
sc_buf member, 83, 131, 133
sc_comp member, 83
sc_ep member, 83, 131, 133
sc_escape member, 83, 136, 138
sc_fastq member, 83-84, 131, 140-141, 148
sc_if member, 80-81, 83-84, 1040
sc_mp member, 83, 131, 133
sc_softc structure, 83
sc_ttyp member, 83, 131-132
scatter, 481-482, 486
Schaller, D., xxii
schednetisr function, 106-107,153, 212
scheduler function, 79
Schmidt, D. C., xxii
SCM_RIGHTS constant, 517
sdl_alen member, 87, 91, 677, 692, 695, 698-699,

706, 711, 1070, 1080
sdl_data member, 87-88, 90, 97
sdl_family member, 86, 90-91, 706, 1070
sdl_index member, 86, 90-91, 121, 706, 1070
sdl_len member, 86, 90-91, 706, 1070
sdl_nlen member, 87, 90-91, 1070
sdl_slen member, 87, 91, 1070
sdl_type member, 86, 90-91, 121, 706, 1070
Sedgewick, R., 562, 1130
seg_next member, 834, 906, 908-909, 940
seg_grev member, 834, 906, 909
segments, cached, 972

sel_pid member, 534
select function, 13, 22, 445-447, 463-464,

475-477, 524-525, 528, 531-532, 534-535,
749, 783, 792, 905, 939, 969, 1033, 1043, 1079

selective acknowledgment, see SACK
self-connect, 956, 960-962, 967, 1005, 1090
selinfo structure, 477, 531-532, 534, 1033
selrecord function, 529, 531, 534
selscan function, 525, 528-529, 584, 1079
selwait variable, 476, 528, 532, 534
selwakeup function, 532-535
send function, 8, 229, 445-446, 480-483, 494,

760-761, 985, 1056
send sequence space, TCP, 808
sendit function, 480, 483-485, 487-489, 494, 496,

761
sendmsg function, 229, 435, 443, 445-446, 453,

475, 480-485, 502, 666, 669, 760-761, 1007,
1056

sendto function, 7-8, 10, 14-16, 19, 29, 39, 41, 93,
229, 445-446, 453, 475, 480-481,485, 579,
669, 729, 735, 738, 740-741, 748, 751-752,
760-761, 763, 774, 789, 793, 1056, 1083, 1091,
1115

SEQ_GEQ macro, 870
SEQ_GT macro, 810, 986
SEQ_LEQ macro, 868
SEQ_LT macro, 810, 868-869
sequence numbers, TCP, 807-812
sequence space

TCP receive, 808
TCP send, 808

Sequenced Packet Protocol, see SPP
Serial Line Internet Protocol, see SLIP
setsockopt function, 239-244, 401, 412, 437,

445-446, 463, 537-539, 557, 720, 768, 785,
1007, 1022-1023, 1063, 1065

shrink, window, 856-857, 878, 884, 1116
SHRT_MAX constant, 544
shutdown function, 445-446, 468-470, 514, 650,

669, 788, 807] 818, 825, 1013, 1061, 1119
shutdown_args structure, 469
ST_COLL constant, 531-532
si~oid member, 532, 534
STGIO signal, 22, 439-440, 478, 550, 552, 939
SIGPIPE signal, 489
SIGURG signal, 550, 552
silly window syndrome, see SWS
Simple Mail Transfer Protocol, see SMTP
Simple Network Management Protocol, see SNMP
Simpson, W. A., 129, 1130
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simultaneous
close, 807, 991, 1005
open, 948, 956, 960-962, 967-969

SIN_PROXY constant, 694, 701-703, 707
sln_addr member, 160, 183, 702, 742, 1082
s~_n_family member, 160, 701
san_len member, 160, 183
sln_other member, 701-703, 707
san_port member, 160, 742, 1055, 1082
sln_srcaddr member, 701
sln_tos member, 701
san_zero member, 160, 732
single-byte options, 248
SIOCADDMULTI constant, 344, 356, 361-363, 369,

379, 409, 451
SIOCAIFADDR constant, 162, 170, 174-177
SIOCATMARK constant, 506-507, 550, 552, 1117
SIOCDELMULTI constant, 344, 356, 361-363, 369,

380, 410, 434, 451, 1077
SIOCDIFADDR constant, 74, 162, 174-177
SIOCGIFADDR constant, 162, 173-174
SIOCGIFBRDADDR constant, 162, 173-174
SIOCGIFCONF constant, 114, 116, 120-121, 637,

1083
SIOCGIFDSTADDR constant, 162, 173-174
SIOCGIFFLAGS constant, 67, 114, 121, 1111
SIOCGIFMETRIC constant, 114, 121
SIOCGIFNETMASK constant, 162, 173-174
SIOCGPGRP constant, 440, 550, 552
SIOCSIFADDR constant, 162, 166-171, 177-180,

683
SIOCSIFBRDADDR constant, 162, 173-174
SIOCSIFDSTADDR constant, 162, 166, 172, 179
SIOCSIFFLAGS constant, 67, 114, 121-125, 178
SIOCSIFMETRIC constant, 114, 121, 123
SIOCSIFNETMASK constant, 162, 166, 170, 172
SIOCSPGRP constant, 440, 550, 552
Sirovica, D., 1126
Skibo, T., 1067
Sklower, K., xxii, 297, 562, 599, 611, 1130
sl_btom function, 130, 138
sl_compress_init function, 133
sl_compress_tcp function, 141, 997
sl_flags member, 531
sl_pid member, 531
sl_softc structure, 77, 83-84, 86, 120, 128,

130-133, 135, 140, 149, 159, 1030, 1069, 1071
sl_softc variable, 77, 86, 120, 128, 131, 159, 1030
sl_uncompress_tcp function, 138
slattach function, 78, 80, 82-84, 86, 94,

129-130, 132-133, 148-149

slattach program, 84, 130
SLBUFSIZE constant, 134
slclose function, 130, 148
slinit function, 130, 132-133
slinput function, 130-131,134-138, 153, 213,

1070
SLIOCGUNIT constant, 149-150
slioctl function, 96, 115, 124, 127, 130, 149, 163,

168, 177, 179, 361
SLIP (Serial Line [nternet Protocol), 23, 25, 27-28,

30, 63, 66-69, 71, 76, 78-80, 82-84, 86-87,
94-96, 98, 120-121j 124, 128-150, 158, 212,
219, 246, 283, 290, 337, 341, 361, 380, 451, 561,
995, 999, 1002-1004, 1027, 1030, 1032, 1069,
1127

BPF, 104
cluster, 131
device driver, 63-64, 69, 83, 128-150, 161, 179,

1029
discarding line noise, 144
encapsulation, 128-129
END character, 129, 144
ESC character, 129, 144
frame, 83, 128, 131, 133-137, 143-144, 146-147,

1070
initialization, 82-84
line discipline, 129-132, 134,149
MTU, 134, 147
packet, BPF format, 138
performance, 147
pseudo-device, 64, 82
sockaddr_dl structure, 1070
TOS queueing, 140, 147

SLIP_HDRLEN constant, 134, 138
SLIP_HIWAT constant, 134, 141,147-148
SLIPDIR_IN constant, 138
SLIPDIR_OUT constant, 141
SLIPDISC constant, 129, 132
SLMAX constant, 134
SLMTU constant, 83, 134, 147
slopen function, 130, 132-133, 149, 451
sloutput function, 96, 127, 130-131, 139-141
slow start, 844, 852, 882, 896, 903, 906, 920, 939,

970, 972, 974-975, 977, 1119, 1122, 1127
slstart function, 130-131, 141-148
sltioctl function, 115, 130, 149-150
SLX_CHDR constant, 138
SLX_DIR constant, 138
SMTP (Simple Mail Transfer Protocol), 140, 1125
snd_cwnd member, 835, 844, 854, 903, 939, 977
snd_max member, 808, 852, 859, 874, 877-878,

880, 882, 937-939, 948, 968, 970, 975, 979
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snd_nxt member, 808, 844, 857, 859, 871,874,
877-880, 882, 937, 948, 972-973, 978-979,
1085

snd_scale member, 866, 949, 969
snd_ssthresh member, 835, 896, 903, 906
snd_una member, 808, 830, 844, 846, 852, 854, 857,

859, 876, 880, 882, 938-939, 948-949, 968,
970, 975, 978-979, 982, 1085

snd up member, 802, 861, 878-879, 1016
snd_wll member, 951,969, 981-983
snd_wl2 member, 951, 981-983
snd wnd member, 808, 844, 854, 937, 939, 951,978,

981,983
SNMP (Simple Network Management Protocol),

2-3, 64-65, 69, 97-99, 141,157, 207, 209, 291,
306, 324, 383, 399, 573, 757, 799, 1051, 1055,
1095

group, 65
ICMP group, 307
interface group, 99
IP group, 209, 573
MIB-II, 65
TCP group, 799
UDP group, 757

SO_ACCEPTCONN constant, 437, 440, 730, 931
SO_BROADCAST socket option, 230, 347, 437, 539,

768, 882, 1118
SO_DEBUG socket option, 437, 539, 846, 882, 891,

916, 920, 931, 992, 994, 1010
SO_DONTROUTE socket option, 229, 347, 437, 499,

539, 738, 768, 882
SO_ERROR socket option, 539
SO_ISCOHFIRMING constant, 514
SO_KEEPALIVE socket option, 437, 539, 818, 829,

849, ]025, ]085, I]2]
SO_LINGER socket option, 473, 539, 547, 557, 820,

892, 1009, 1019-1020,1025, 1090
SO_OOBINLINE socket option, 437, 506, 510, 539,

985-986, 1016
SO_RCVBUF socket option, 539, 543, 932, 1012
SO_RCVLOWAT socket option, 539, 543
SO_RCVTIMEO socket option, 477, 516, 539, 543,

548
SO_REUSEADDR socket option, 437, 539, 720-721,

723, 725, 730-731,733-735, 740, 753, 777
SO_REUSEPORT socket option, 437, 539, 721,723,

725, 730-731,734-735, 777
SO_SNDBUF socket option, 491,539, 543
SO_SNDLOWAT socket option, 539, 543
SO_SNDTTMEO socket option, 477, 496, 539, 543,

548
SO_TYPE socket option, 539

SO_USELOOPBACK socket option, 437, 539, 650,
660, 666

so_dst member, 579
so_error member, 440, 460, 494, 530-53], 539,

548, 783, 905, 948, 1087
so_head member, 440-442, 473
so_linger member, 439, 463, 473, 539, 542, ]010,

1019
so_oobmark member, 440, 522, 531,985, 1015
so_options member, 347, 437, 463, 539, 547,

1010
so~cb member, 13, 440, 665-666, 671,714
so_pgid member, 439-440, 463, 550, 552
so_proto member, 440, 446-447, 450, 531
so_q member, 440-442, 461-464
so_q0 member, 440-442,461-463
so_q01en member, 440, 463
so_qlen member, 440, 463, 530, 1078
so_qlimit member, 440, 455, 463
so_rcv member, 440, 477, 509-510, 530-531,539,

550, 878, 985, 1012
so_snd member, 440, 477, 509-510, 531,539, 861
so_state member, 439, 463, 530-531,550
so_timeo member, 440
so_tpcb member, 441
so_type member, 13, 437, 446, 539
so_upcall member, 441
so_upcallarg member, 441
soal0ort function, 471
soaccept function, 460-461
sob±rid functfon, 453-455
socantrcvmore function, 442, 470, 990, 1089
socantsendmore function, 442, 669, 788, 1013,

1061
sock program, 712, 740, 846, 1025
SOCK_DGRAM constant, 10, 13, 188-191,198, 437,

483, 713, 755, 758
SOCK_RAW constant, 188-191,193, 196-197, 240,

309, 385, 645-646, 1049, 1051-1053, 1072,
1080

SOCK_RDM constant, 188-190, 483, 508
SOCI<_SEQPACKET constant, 188-190, 483, 490,

508
SOCK_STREAM constant, 188-191,196, 198, 437,

449, 483, 490, 508, 713, 801
soekaddr structure, 73-76 ~, 89, 94, 117, 120-121,

155, 160, 182, 221,322, 453, 474, 479, 482-483
505, 694, 1046

sockaddr_dl structure, 77-78, 86-92, 94, 97,
118, 120-121,159, 581,677, 688, 692, 695, 699,
706-707, 709, 1070, 1080
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Etbernet, 91
loopback, 1070
SLIP, 1070

sockaddr_in structure, 6, 76, 118, 155, 160-162,
166, 170, 183, 193, 312, 453, 460, 477, 564,
577-578, 581, 585, 588, 593-594, 623, 696,
701, 730, 736, 738, 742, 753, 761, 776-777, 782,
785, 944, 1055, 1059-1060, 1079-1081

sockaddr_inarp structure, 701, 703, 707, 1112
sockargs function, 451-453, 465, 1081
sockbuf structure, 56, 470, 476-479
socket, 14

buffers, 476-477
descriptor, 6, 445-447
I/O, 475-535
layer, 9, 435-474
pair, 6
routing, 569, 645-673
TCP, 198
UDP, 198
utility functions, 477-479

socket function, 6-8, 10-11, 13-14, 21, 198, 440,
444-448, 476-477, 627, 645, 647, 662,
664-665, 667, 671, 673, 713, 717, 730, 733, 785,
822, 960, 1009-1010, 1013, 1018, 1024-1025,
1051, 1053, 1055-1056, 1058, 1065

socket option, 537-557
DVMRP ABD_LGRP, 401, 411-413
DVMRP ADD MRT, 401, 419, 421-422
DVMRP ADD VIF, 401,407,409
DVMRP DEL LGRP, 401, 411-412,414
DVMRP_DEL_MRT, 401,421
DVMRP DEL VIF, 401, 407, 409-410
DVMRP_DONE, 40], 433, 1059
DVMRP_INIT, 401, 403
IP_ADD_MEMBERSHIP, 348, 356-357, 434, 451,

1076
IP_DROP_MEMBERSHIP, 348, 366, 451
IP_HDRINCL, 191, 1053, 1056-1058, 1065, 1091
IP_MULTICAST_IF, 348, 353-354, 371, 710,

738
IP_MULTICAST_LOOP, 348, 354-355, 371
IP_MULTICAST_TTL, 348, 354, 371
IP_OPTIONS, 230, 240, 242-243, 269-270, 717,

1056, 1065, 1113, 1115, 1122
IP_RECVDSTADDR, 240, 242, 776, 781, 793-794,

!083, 1714
I P_RECVOPTS, 240, 242-243, 769, 776, 794
IP_RECVRBTOPTS, 240, 242-243, 776
IP_RETOPTS, 794
IP_TOS, 240, 242, 717, 1056, 1099, 1115, 1123
IP_TTL, 240, 242, 717, 1056, 1100, 1115, 1120

multicas% 348
S0_BROADCAST, 230, 347, 437, 539, 768, 882,

1118
SO_DEBUG, 437, 539, 846, 882, 891, 916, 920,

931,992, 994, 1010
SO_DONTROUTE, 229, 347, 437, 499, 539, 738,

768, 882
SO_ERROR, 539
SO_KEEPALIVE, 437, 539, 818, 829, 849, 1025,

1085, 1121
SO_LINGER, 473, 539, 547, 557, 820, 892, 1009,

1019-1020, 1025, 1090
SO_OOBINLINE, 437, 506, 510, 539, 985-986,

1016
SO_RCVBUF, 539, 543, 932, ]0]2
SO_RCVLOWAT, 539, 543
SO_RCVTIMEO, 477, 516, 539, 543, 548
SO_REUSEADDR, 437, 539, 720-72], 723, 725,

730-731, 733-735, 740, 753, 777
SO_REUSEPORT, 437, 539, 721, 723, 725,

730-731, 734-735, 777
SO_SNDBUF , 491, 539, 543
SO_SNDLOWAT, 539, 543
SO_SNDTIME0, 477, 496, 539, 543, 548
SO_TYPE, 539
SO_USEL00PBACK, 437, 539, 650, 660, 666
TCP_MAXSEG, 1022, 1024
TCP._NODELAY, 858, 1022, 1024, 1120

socket structure, 11, 13-14, 21, 56, 347, 398,
437-442, 446-447, 449-450, 453, 461, 463,
471, 476, 509-510, 664-666, 671-672,
713-714, 716-719, 746, 777, 1009, 1018,
1058-1059, 1085

socket_args structure, 444, 447
socketops variable, 437, 446-448
socketpair function, 669, 787, 1012
sockets APL 5-6
sockmod streams module, 8
sockproto structure, 626, 647, 664
soclose function, 471-473, 1010, 1014, 1019, 1090
soconnect function, 464-465, 467-468, 788, 962,

1059, 1083
socreate function, 166, 447-451
sodisconnect function, 442, 468, 473, 1083
sofree function, 473, 719, 1018
software interrupt, 106-107, 138, 153, 205, 212, 436
sogetopt function, 240, 538, 545-548
sohasoutofband function, 533, 552, 985
soisconnected function, 461-465, 787, 949, 962,

969, 1089
soisconnecting function, 442, 464-465, 1012
soisdisconnected function, 442, 669, 897, 1021
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soisdisconnecting function, 442, 1020
SOL_SOCKET constant, 240, 539-540, 1022
Solaris, 85, 721
sol±st÷n function, 455
solutions to exercises, 1069-1092
SOMAXCONN constant, 440, 455
sonewconn function, 459, 461-464, 931,944, 963,

1009-1010, 1018
soo_close function, 446, 448, 471
soo_ioctl function, 164, 446, 448, 549, 552-554
soo_read function, 446, 448, 501
soo_select function, 446, 448, 528-532
soo_write function, 446, 448, 480, 761
soqinsque function, 442, 461
soqremque function, 442, 460-461, 463-464, 474,

1078
soqueue variable, 463
soreadable macro, 442, 529-530
soreceive function, 475, 501, 503, 505-524,

534-535, 792, 1014-1015, 1078
soreserve function, 671, 785
sorflush function, 469-470,473-474
sorwakeup macro, 463-464, 478, 533, 776-777,

779, 916, 940
sosend function, 59, 111, 475, 480, 483, 485,

489-500, 506, 515-516, 522, 524, 534-535,
648, 650, 669, 761,763-764, 789, 792-793,
1016, 1078, 1082, 1086-1087

performance, 500
sosendallatonee macro, 442, 493, 522
sosetopt function, 240, 412, 538-544, 546
soshutdown function, 469, 1013
source address

Ethernet, 99
IP, 232

source code
conventions, 1-3
copyright, xxi-xxii
organization, 26-28

source quench, ICMP, 226, 314
source route

example, 255
failure, ICMP, 257
nonlocal, 1104
option, 254-261
reversed, 240, 255, 258-259, 261,332, 1103,

1108-1109
sowakeup function, 478, 533, 552
sowriteable macro, 442, 529, 531
sowwakeup macro, 464, 478, 533, 939, 978
sp_family member, 647, 660, 662
sp_protocol member, 627, 647, 662

spanning tree, 416-418, 1077
example, 416

sp]0 function, 24
splbio function, 24
splclock function, 24
splhigh function, 24
splimp function, 23-26, 30, 43, 73, 94, ]12, 138,

213, 469, ]069, ]078
splnet function, 23-25, 212, 298, 434, 436, 467,

499, 763, 785, 1007, 1022, 1069, 1083
splsoftclock function, 24
spltty function, 24-25, 138, 1069
splx function, 24-26, 43, 73, 94, 148, 434, 436, 470,

496, 499, ]077-1078
SPP (Sequenced Packet Protocol), 189-190, 490
sprint_d function, 88
SS_ACCEPTCONN constant, 455
SS_ASYNC constant, 439-440, 552
SS_CANTRCVMORE constant, 439, 442, 530, 1078
SS_CANTSENDMORE constant, 439, 442, 531
SS_ISCONFIRMING constant, 439, 463, 500
SS_ISCONNECTED constant, 439, 442, 531
SS_ISCONRECTING constant, 439, 442, 467
SS_ISDISCONNECTING constant, 439, 442
SS_NBIO constant, 439-440, 550
SS_NOFDREF constant, 439, 741, 1018
SS_PR]_V constant, 166, 439, 450-451
SS_RCVATMARK constant, 439, 522, 531, 550, 1015
SSRR (strict source and record route), 249-250,

254-255, 257, 270-271
st_blksize member, 789, 1015
Stallings, W., 100, 106, 1131
stat structure, 789, 1015
state transition diagram, TCP, 805-807
statistics, kernel, 37
Stevens, D. A., xxii
Stevens, D. L., 457, 1126
Stevens, E. M., xxii
Stevens, S. H., xxii
Stevens, W. R., 5-7, 9, 11,186, 435, 440, 470, 524,

732, 1077, 1131
Stevens, W. R., xxii
strcpy function, 8
streams module, sockmod, 8
streams subsystem, SVR4, 5, 8, 749
strict source and record route, see SSRR
strong end system model, 219, 780
subnet

address, 1129
mask, 162

SUBNETSARELOCAL constant, 901
subnetsarelocal variable, 181, 901, 1105
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subnetting, 170
IP, 156, 170, 181, 1071

superman, building leaping ability, 1102
supernetting, 170

IP, 170, 1071
superuser privileges, 451
suser function, 451
SVR4, 4

streams subsystem, 5, 8, 749
SWS (silly window syndrome), 858, 878, 1120
sy_call member, 443
sy_narg member, 443
SYN (synchronize sequence numbers flag, TCP

header), 441,461,463, 803, 805, 828, 871
synchronize sequence numbers flag, TCP header,

see SYN
syscall function, 441,443-444, 454, 456, 489,

1045
__sysctl function, 202
sysctl function, 67, 201-202, 239, 244-245, 334,

571-572, 601, 632-635, 637-638, 640, 644,
672, 679, 756, 790, 1083, 1100

sysctl names, 201
sysctl program, 191,201,319, 334, 680, 790, 1114
sysctl_dumpentry function, 632, 638, 640-642
sysctl_iflist function, 632, 638, 640, 642-643
sysctl_int function, 245, 334, 790
sysctl_rtable function, 203, 571,635-642, 646,

679
sysent structure, 437, 441, 443
sysent variable, 437,443
system call

accept, 457-461
bind, 453-455
close, 471-473
connect, 464-468
fcntl, 548-552
getpeername, 554-556
getsockname, 554
ioctl, 548-550, 552-554
listen, 455
read, 500-501
readv, 500-50]
recvfrom, 500-501
recvmsg, 500-503
select, 524-528
sendmsg, 480-484
sendto, 480-483
shutdown, 468-470
socket, 447-450
write, 480-483
writer, 480-483

system calls, 7, 441-445
and library functions, 7-8

system, vs. router and host, 157

t_dupacks member, 844, 970, 972-973
t_flags member, 805, 819, 871-872
t_force member, 827, 855, 862, 874, 882, 1017
t_idle member, 822, 826-828, 830-831,849, 933,

1085
t_inpcb member, 714, 834
t_iobc member, 985-987, 1016
t_maxseg member, 834, 844, 852, 896, 901,903,

934, 1023-1024
t_newtcpcb member, 841,843
t_oobflags member, 1016
t_oproc member, 131,141
t_ospeed member, 132
t_outq member, 131,141
t_rcvuderr function, 749
t_rtseq member, 837, 880
t_rtt member, 823, 837, 840, 844, 880, 899,

917-918, 950, 972, 976
t_rttmin member, 832, 834, 841,898-899
t_rttvar member, 832-835, 839, 843-844, 846,

848, 894, 898-899
t_rxtcur member, 832, 834, 840, 843, 846, 848,

882, 900, 917, 939, 976, 1119
t_rxtshift member, 832, 835-836, 840-843,

846, 855
t_sc member, 131-132, 135, 149
t_softerror member, 841,843, 905, 1122
t_srtt member, 832-834, 837, 843-844, 846, 848,

894, 898-899
t_ssthresh member, 844
t_state member, 800, 805, 807
t_template member, 876, 880, 884, 888, 892
t_timer member, 819, 843, 1017
TA_DROP constant, 9]7
TA_INPUT constant, 917
TA_OUTPUT constant, 9]7
TA_USER constant, 917
TAC, 982
TAI (International Atomic Time), 1127
Tanenbaum, A. S., 416, 1131
Taylor, I. L., xxii
tcb variable, 715-716, 718, 732, 744, 797, 813, 824
TCP (Transmission Control Protocol), 65, 189, 191,

228, 240, 267, 440, 477, 541,795-1025, 1130
checksum, 800
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control block, 713, 718, 800, 803-805, 808,
818-819, 821-822, 832-835, 837, 846,
866-867, 871-872, 884, 887-888, 893, 897,
906-907, 909, 916, 930, 932, 944-946, 949,
959-960, 966, 969, 981,986, 989, 1009-1010,
1018-1019, 1021, 1023, 1084

header, 801-803
implementation refinements, 994-995
inetsw variable, 198-199, 801
input processing, 923-1005
one-behind cache, 231,798, 897, 929, 941
options, 864-866, 1117
output processing, 851-890
performance, 1126
protosw structure, 801
pseudo-header, 880, 885, 926, 995
reassembiy, 50-51,906-916
receive sequence space, 808
RFC 1122 compliance, 1115-1123
segments, demultiplexing, 721-723, 728
send sequence space, 808
sequence numbers, 807-812
socket, 198
state transition diagram, 805-807
three-way handshake, 440, 465, 556, 722, 915,

917, 969, 1014
timer, 817-849
transactions, 866, 1089, 1126

TCP_CO~lPAT_42 constant, 887
TCP_ISSINCR constant, 824, 945, 959, 1012
TCP_LINGERTIME constant, 820, 1009-1010, 1025
TCP_MAXRXTSHIFT constant, 820, 832, 836, 842
TCP_MAXSEG socket option, 1022, 1024
TCP_MAXWIN constant, 835, 864, 932, 1012
TCP_MAX_WINSHIFT constant, 835, 932
TCP_NODELAY socket option, 858, 1022, 1024, 1120
TCP_PAWS_IDLE constant, 953, 966
TCP_REASS macro, 891,906-916, 940, 987-989,

1004, 1089
TCP_REX}4TVAL macro, 840, 843
TCP_RTT_SCALE constant, 833, 899
TCP_RTT_SHIFT constant, 833
TCP_RTTVAR_SCALE constant, 833
TCP_RTTVAR_SHIFT constant, 833
tcp_attach function, 1009, 1018
tclo_backo£f variable, 832, 836, 1121
tcp_canceltimers function, 821
tcp_close function, 825-826, 89]-897, 930, 959,

981, 1010, 1019, 1021, 1087
tcp_ctl±nput function, 198, 617, 743-744, 796,

801, 891,904, 906, 1107, 1122
tcp_ctloutput function, 240, 538, 541, 796, 801,

1007, 1022-1025

tcp_debug structure, 916
tcp_debug variable, 917
tcp_debx variable, 917
tcp_disconnect function, 851,892, 1010, 1012,

1019-1021, 1025, 1087
tcp_dooptions function, 928, 933-934, 944, 951,

1087-1088
tcp_do_rfc1323 variable, 797, 834, 865, 872, 889
tcp_drain function, 796, 801, 891-892
tcp_drop function, 828-830, 841,851,886,

891-892, 905, 948, 1014, 1019
tcp_fastt imo function, 796, 801, 821-822, 848,

851, 1084, 1120
tcp_init function, 194, 796, 801,812-815, 822,

824, 849
tcp_in~ut function, 2, 461-462, 735, 743, 796,

801-802, 821-822, 825, 828, 830, 837, 843,
851,859-860, 863-864, 867-868, 871,
873-875, 880, 884, 886-887, 892-893, 897,
901,903, 906-907, 909, 917, 923-1005, 1009,
1018, 1023,1088-1089,1120, 1122

tcp_iss variable, 797, 812-814, 824, 871,
945-947, 1012, 1118

tcp_keepidle variable, 797, 819, 828, 830-831,
1121

tcp_keepintv1 variable, 797, 819, 826, 830, 1084
tcp_last_inpcb variable, 797, 897, 929
tcp_maxidle variable, 797, 819, 822, 825-826,

830, 849, 1084
tcp_mss function, 572, 834-835, 872, 891,894,

897-903, 934, 944, 1023-1024
tcp_mssdflt variable, 797, 834, 898, 901
tcp_newtcpcb function, 832-835, 837, 846, 865,

871,884, 899, 901,903, 949, 1018, 1023,
1119-1120

tcp_not±fy function, 303-304, 743-744, 807,
843, 891,904-905, 1122

tcp_now variable, 797, 824, 836-837, 867-868,
874, 890, 934, 937, 953, 966, 975

tcp_out flags variable, 797, 805, 808, 854, 892,
946, 961, 1012, 1021, 1090

tcp_output function, 56-58, 764, 795-796, 802,
805, 808, 821-823, 827, 836, 841,843-844,
851-890, 892, 897, 901,903, 906, 916-917,
923, 932, 939, 946-948, 961-962, 967,
972-973, 975, 978, 992, 994-995, 1004,
1012-1014, 1017, 1020-1021, 1084, 1086,
1088-1091, 1120

tcp_pulloutofband function, 985-988, 1016
tcp_quench function, 2, 303-304, 743, 882, 891,

904, 906, 1122
tcp_rcvseqinit macro, 948
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tcp_reass function, 51,891,906-916, 949, 969,
987-989, 1089, 1120

tcp__recvspace variable, 797, 932, 1012, 1018
tcp_respond function, 45, 830, 885-888, 994,

1086
tcp_rttdflt variable, 797, 834, 849, 1085
tcp_saveti structure, 931
tcp_sendseqinit macro, 947-948, 968, 1012
tcp_sendspace variable, 797, 1018
tcp_seq data type, 810
tcp_setpersist function, 827, 835-836
tcp_slowtimo function, 796, 801,822-824, 826,

830, 837, 848-849, 1017, 1084
tcp_template function, 876, 884-885, 888, 944,

966, 1012, 1088
tcp_timers function, 571,822, 824-831,

841-846, 851, 886, 893, 906, 1017
tcp_trace function, 882, 891,916-920, 931,992,

994, 1009, 1017
tcp_usrclosed function, 1013, 1020-1021
tcp_usrreq function, 461, 465, 796, 801,822, 826,

851,884, 917, 962, 1007-1018, 1025
tcp_xmit_timer function, 834, 836-841,843,

846, 882, 905, 939, 950, 975
tcpActiveOpens variable, 800
tcpAttemptFails variable, 800
tcpcb structure, 440, 7]4, 716-717, 803, 832, 916
tcpConnLocalAddress variable, 800
tcpConnLocalPort variable, 800
tcpConnReraAddress variable, 800
tcpConnRemPort variable, 800
tcpConnState variable, 800
tcpconsdebug variable, 916
tcpCurrEstab variable, 799-800
TCPDEBUG constant, 916
tcpdump program, ]01,917, 9]9-920, ]002, 1025,

1027, ]034, 1043
tcpEstabResets variable, 800
tcphdr structure, 801,906, 913
tcpInErrs variable, 800
tcpInSegs variable, 800
tcpiphdr structure, 802, 906-907, 9]6
tcpMaxConn variable, 800
TCPOLEN MAXSEG constant, 934
TCFOLEN_TIMESTAMP constant, 934
TCPOLEN_TSTANP_APPA constant, 874, 928
TCPOLEN WINDOW constant, 934
TCPOOB_HADDATA constant, 985, ]0]6
TCPOOB_HAVEDATA constant, 985, 987, ]016
TCPOPT_MAXSEG constant, 872
TCPOPT_TSTAHP_HDR constant, 874, 928
tcpOutRsts variable, 80(]

tcpOutSegs variable, 800
tcpPassiveOpens variable, 800
t¢pRetransSegs variable, 800
tcprexmtthresh variable, 797, 970, 972
tcpRtoAlgorithri~ variable, 800
tcpRtoHax variable, 800
tcpRtoMin variable, 800
TCPS_CLOSED constant, 807
TCPS_CLOSE_WAIT constant, 807
TCPS_CLOSING constant, 807
TCPS_ESTABLISHED constant, 807
TCPS FIN WAIT_I constant, 807
TCPS FIN WAIT_2 constant, 807
TCPS_HAVERCVDFIN macro, 807, 983
TCPS_HAVERCVDSYN macro, 807
TCPS_LAST_ACK constant, 807
TCPS_LISTEN constant, 807
TCPS SYN RECEIVED Constant, 807
TCPS SYN SENT constant, 807
TCPS_TIME_WAIT constant, 807
tcps_accepts member, 798-800
tcps_closed member, 798
tcps_connatterapt member, 798-800
tcps_conndrops member, 798-800
tcps_connects member, 798-799
tcps_delack member, 798-799
tcps_drops member, 798-800
tcps_keepdrops member, 798-799, 831
tcps_keepprobe member, 798-799
tcps_keeptimeo member, 798-799
tcps~awsdrop member, 798-799, 954
tcps~cbcachemiss member, 798-799
tcps_persisttimeo member, 798-799
tcps~redack member, 798-799
tcps_preddat member, 798-799
tcps_rcvackbyte member, 797-799
tcps_rcvackpack member, 798-799
tcps_rcvacktoorauch member, 798-799
tcps_rcvafterclose member, 798-799
tcps_rcvbadoff member, 798-800
tcps_rcvbadsura member, 798-800
tcps_rcvbyte member, 798-799
tcps_rcvbyteafterwin member, 798-799
tcps_rcvdupack member, 798-799, 972
tcps_rcvdupbyt e member, 798-799
tcps_rcvduppack member, 798-799, 954
tcps_rcvoobyte member, 798-799
tcps_rcvool0ack member, 798-799
tcps_rcvpack member, 798-799
tcps_rcvpackafterwin ~nember, 798-799
tcps_rcvpartdupbyte member, 798-799
tcps_rcvpartduppack member, 798-799
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tcps_rcvshort member, 798-800,927
tcps_rcvtotal member, 798-800
tcps_rcvwindup member, 799
tcps_rcwvinprobe member, 798-799
tcps_rcvwinupd member, 798, 983
tcps_rexmttimeo member, 798-799
tcps_rttupdated member, 798-799
tcps_segstimed member, 798-799
tcps_sndacks member, 798
tcps_sndbyte member, 797-799
tcps_sndctrl member, 798-799
tcps_sndpack member, 797-799
tcps_sndprobe member, 798-799
tcps_sndrexmitbyte member, 798-799
t cps_sndrexmi tpack member, 798-800
tcps_sndtotal member, 798-800
tcps_sndurg member, 798-799
tcps_sndwinup member, 798-799
tcps_timeoutdrop melnber, 798-799
tcpstat structure, 797-799
tcpstat variable, 797
TCPT_2MSL constant, 819, 825, 849
TCPT_KEEP constant, 8]9, 828, 831
TCPT_NTIMERS constant, 819
TCPT_PERSIST constant, 8]9, 827
TCPT_RANGESET macro, 820, 834-836, 900
TCPT_REXMT constant, 819
tcpTable variable, 799
TCPTV_KEEPCNT constant, 820, 830
TCPTV_KEEP_~DLE constant, 820
TCPTV_KEEP_INIT constant, 819-820, 828, 946
TCPTV_KEEPINTVL constant, 820
TCPTV_MIN constant, 820, 834
TCPTV_MSL constant, 8]3, 8]9-820, 825
TCPTV_PERSMAX constant, 820
TCPTV_PERSMIN constant, 820
TCPTV_REXMTMAX constant, 820, 834, 84]
TCPTV_SRTTBASE constant, 820, 834
TCPTV_SRTTDFLT constant, 820, 835
td_act member, 9]7
Te]net (remote terminal protocol), 4, ]40, 157, 272,

721,753, 858, 982, 995, 1084, ]125
telnet program, ]83
test network, 28
TF_ACKNOW constant 805, 821,852, 861, 876, 884,

946, 948, 956, 961,990, 1089
TF_DELACK constant, 805, 819, 821,884, 1120
TF_NODELAY constant, 805, 858, 1023-1024
TF_NOOPT constant, 805, 871
TF_RCVD_SCALE constant, 805
TF_RCVD_TSTMP constant, 805, 874
TF_REQ_SCALE constant, 805, 834, 872

TF_REQ_TSTHP constant, 805, 834, 872
TF_SENTFIN constant, 805, 861,877, 880
TFTP (Trivial File Transfer Protocol), 140, 291,776,

1125
TH_ACK constant, 803, 854, 872, 994
TH_FIN constant, 803, 854, 908, 916, 1090
TH_PUSH constant, 803, 854
TH_RST constant, 803, 854, 994
TH_SYN constant, 803, 854
TH_URG constant, 803, 854
th_ack member, 803, 1000-1001
th_flags member, 802-803
th_off member, 802, 878
th_seq member, 802, 1000-1001
th_urg member, 1(}01
th_urp member, 802-803
th_win member, 1000-]00]
Theimer, M., ]00, 32], 1127
three-way handshake, TCP, 440, 465, 556, 722, 9]5,

917, 969, 1014
ti_ack member, 837, 867, 938-939, 975
ti_dport member, 906, 909
ti_len member, 809-810, 868, 884, 906-907, 909,

927, 938-939, 951, 956, 959, 963, 987, 994,
1088

ti_next member, 885, 906, 909
t±_off member, 809, 885, 926
c±~pr member, 884
t ±_pr÷v member, 885, 906, 909
ti_s÷q member, 809, 871,906-907, 909, 915, 937,

951,954, 956, 961,981-982, 989, 1088
t±_sport member, 906,908
ti_e member, 913
ti_urp member, 879, 954, 983
~±_w±n member, 878
t±cl~ variable, 544, 548
time exceeded, ICMP, 223, 292-293, 300, 314
c±me variable, 105, 699, 1081
TIME WAIT, assassination, 964, 1089, 1126
t±meout function, 94, 195-196, 706, 1010
timer

2MSL, 818-819, 821-822, 825-827, 893, 967
connection-establishment 817, 819, 828-831,

892, 946, 948, 1012, 1121
delayed ACK, 817-818, 821,861,864
example, 846-848
FIN WAIT_2, 818-819, 821-822, 825-827, 980,

991, 1085
functions, ARP, 694-696
keepalive, 818-819, 821,828-831, 842, 887, 892,

918, 933
persist, 818-82l, 827, 835, 855, 858, 861,878,

882, 939, 976, 1116
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retransmission, 749, 817, 819-822, 828, 831-833,
835, 841,843-844, 846, 859, 861, 880, 882, 889,
918, 920, 939, 970-972, 975-976, 978,1012,
1020, 1086

TCP, 817-849
timestamp option, 261-264, 865-871,874,

933-934, 1128
timestamp reply, ICMP, 318
timestamp request, ICMP, 318
time-to-live, see TTL
~imeval structure, 105-106, 264, 525, 539,

543-544, 548, 1035
t±raevaladd function, 525
T1OCGPGRP constant, 552
tk_n±n variable, 128, 135
TLI (Transport Layer Interface), 5, 749
Topolcic, C., 215,1131
Torek, C., 730, 1131
TOS (type of service), 140-141,147-148, 153, 226,

230, 240, 285, 302-303, 316, 328, 717, 768, 785,
882, 998, 1002, 1056, 1112, 1115, 1123

queueing, SLIP, 140, 147
TP4, 189-190, 457, 463-464, 490, 494, 498, 508, 510,

514, 555-556
trace program, 30
traeeroute program, 140, 191,272, 313
transactions, TCP, 866, 1089, 1126
Transmission Control Protocol see TCP
Transport Layer Interface, see TLI
Trivial File Transfer Protocol, see TFTP
TRPB (truncated reverse path broadcast), 401,

416-419, 434
routing, example, 417

trpt program, 846, 891,916-917, 1017
truncated reverse path broadcast, see TRPB
truss program, 30
ts_ecr variable, 837, 867-868, 928, 934, 975-976
ts_present variable, 837, 868, 928, 934, 951
ts_recent member, 867-871,874, 934, 937, 951,

953, 963
ts_recent_age member, 867-868, 934, 937, 953,

966
ts_val variable, 867, 870, 928, 934, 937, 951
tsleep function, 441,456-457, 459, 461-465, 467,

473, 478, 528, 532, 534, 544, 1010, 1046, 1079
TSTMP_GEQ macro, 870, 937
TSTMP_LT macro, 953
TTL (time-to-live), 209, 216, 221,223, 230, 239,

244-245, 292, 329, 339, 348, 351, 354-355,
371,377, 379, 389, 428-4,30, 432, 717, 768, 785,
835, 882, 889, 1053, 1056, 1115, 1120

default, 207

multicast, 348-351
reassembly, 298

TTY, 141
device driver, 129-130, 134-135, 141,148-149
output queue, 134, 141

tty structure, 131-132, 135, 141,149
TTY_CHARMASK constant, 135
ttyflush function, 132
tunnel_send function, 424-425, 429, 431-433
tv_sec member, 544,1081
tv_usec member, 544, 548, 699
type, ICMP, 250, 302-303
type of service, see TOS
typographical conventions, 3

u_char data type, 250, 340, 348
u_int data type, 1035
u_long data type, 160-162
udb variable, 14, 21,715-716, 718, 732, 744, 756,

760, 786, 1081
UDP (User Datagram Protocol), 65, 73, 189, 191,

228, 240, 440, 477, 541,755-794
cache hiding, 791
checksum, 758, 764-768, 792
datagrams, demultiplexing, 723-724
header, 759-760
implementation refinements, 791-792
inetsw variable, 203, 758
input processing, 769-780
one-behind cache, 231, 757, 773-774, 786, 791,

794
output processing, 760-768
torotosw structure, 758
pseudo-header, 764-768
RFC 1122 compliance, 1113-1115
socket, 198
socket, connected, 721, 755, 779-780
socket, unconnected, 721,755
sockets, ICMP errors and, 748-749

udp_ctlinput function, 198, 617, 743-744, 756,
758, 782-784, 793, 904, 1107

udp_detacb function, 786
udp_in variable, 756, 776-777, 794
udp_init function, 194, 756, 758, 760
udl3_±nput function, 743, 756, 758-759, 769-781,

791, 793-794, 929, 1084, 1113-1115
udp_last_inpcb variable, 756, 773-774
udp_not i fy function, 303-304, 743-744,

783-784
udp_output function, 741, 756, 758-768, 772,

789, 792-793, 882, 1082, 1084, 1115
udp_recvspace variable, 756, 785
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udp_saveopt function, 776, 781,793
udp_sendspace variable, 756, 785
udp_soreceive function, 792
udp_sosend function, 792
udp_sysctl function, 203, 756, 758, 790-791
udp_usrreq function, 116, 163-164, 327, 465, 756,

758, 761,784-790, 793, 1083
udl~cksura variable, 756, 768, 772, 790, 1114
UDPCTL_CHECKSUM constant, 202
udphdr structure, 759
udpInDatagrams variable, 758
udpInErrors variable, 758
udpiphdr structure, 759, 765, 767-768, 885
udpLocalAddress variable, 758
udpLocalPort variable, 758
udpNoPorts variable, 758
udpOutnatagraras variable, 758
udlolos_iocbcachemiss member, 757, 774
udps_badlen member, 757-758
udps_badsura member, 757-758
udps_fullsock member, 757
udps_hdrops member, 757-758
udps_ipackets member, 757-758, 774
udps_noport member, 757-758, 774
udps_noportbcast member, 757-758, 774
udps_opackets member, 757
udpstat structure, 757, 774
udpstat variable, 756
udpTahle variable, 757
uh_dport member, 759
uh_sport member, 759
uh_sum member, 759
uh_ulen member, 759, 771-772
ul_dst member, 765
u1_len member, 765, 768
u1_next member, 765
u1_pr member, 765
ul~rev member, 765
u±_src member, 765
uz_ulen member, 768
ul_xl member, 765
u~o structure, 476, 485-487, 489, 491,503, 5]0,

1078
UIO_MAXIOV constant, 481,483, 500
UIO_READ constant, 486
UIO_SMALLTOV constant, 483
UIO_SYSPACE constant, 486
UIO_USERISPACE constant, 486
UIO_USERSPACE constant, 486-487
UIO_WRITE constant, 486-487
uio_iov member, 485-487
uio_iovcnt member, 486-487

uio_offset member, 485-487
uio_grocl3 member, 486-487
uio_resid member, 485-487, 489, 503, 505, 511,

515, 519, 1078
uio_rw member, 485-487
uio_segflg member, 485-487
uiomeve function, 485-487, 498, 519-520, 792,

1046, 1079
unconnected UDP socket, 721,755
unicast, 155

address, Ethernet, 100
address, IP, 155-156, 182
one-behind cache, 223, 253
packet, 99

uniform resource locater, see URL
Unix

address family, 185
domain, 75, 189, 450, 460, 470, 510, 518, 1077
domain protocol, 9-10, 40, 581,718, 787
Epoch, 105, 683, 695
manual pages, 3
protocol family, 185

unixdomain variable, 187, 193, 195
unixsw variable, 195
unreachable, ICMP, 314
unreliable protocol buffers, 490-491
unsocial behavior, 951
URG (urgent pointer flag, TCP header), 803, 878,

956, 983-986, 1000-1002, 1004, 1017, 1086
urgent

offset, 802-803, 878-880, 889, 954, 956, 983, 985,
987-988, 1000-1002, 1016-1017, 1086

pointer, 802, 861, 876, 878-880, 951,984-987,
1004, 1016, 1116-1117

pointer flag, TCP header, see URG
URL (uniform resource locater), 1093, 1125
useloopback variable, 680, 709
User Datagram Protocol, see UDP
UTC (Coordinated Universal Time), 105-106, 261,

264, 318, 1127
utility functions

i frier, 182
IP, 181
socket, 477-479

v_cached_group member, 406, 412
v_cached_result member, 406,412
v_flags member, 406
v_ifp member, 406-407
v lcl addr member, 406,410
v lcl .grps member, 406-407,411-412
v_Icl_grps_max member, 406-407,412
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v_icl_grps_n member, 406-407
v rmt addr member, 406
v_threshold member, 406
Varadhan, K., 170, 1127
Vardhana, G. N. A., xxii
VAX, 24, 60, 1068, 1117
vif structure, 398, 406-410, 412
vifc_flags member, 408
vifc_lel_addr member, 408-409
vi fcrmt addr member, 408
~dfc_~hreshold member, 408
vifc_vifi member, 408-409
vifctl structure, 401,407, 409
VIFF_TUNNEL constant, 406
vifi_t data type, 398, 401,406
vi ftable variable, 398, 406-408, 410, 418, 429,

434
villain, 1067
virtual

interface, 404-411
interface table, 406-410

vmstat program, 40, 716
vnode structure, 13
vsprintf function, 6

w_arg member, 639
w_given member, 639-640
w_needed member, 634-635, 639-640
w_op member, 639
w_tmem member, 635, 642
w_tmemsize member, 635
w where member, 635, 639-640, 642-643
Wait, J. W., xxii
Waitzman, D., 401, 1131
Wakeman, I., 1126
wakeup function, 441,456-457, 461,463-465, 467,

477, 532
walkarg structure, 632, 634, 639-641
WAN (wide area network), 901,940-941
wandering duplicate, 813
Wang, Z., 1126
Watson, G., 994, 1126
weak end system model, 219, 741,780, 1072,

1100-1101
Wei, L., 419, 1127
well-known

IP multicast groups, 338-339
multicast groups, 338
port, 719, 729, 733, 774, 814, 1011

wide area network, see WAN
wildcard match, 722

window
scale option, 865-866, 871, 874, 929, 933-934,

1128
shrink, 856-857, 878, 884, 1116
update, 859-861, 863-864, 876, 981, 983, 1014

Wolff, R., xxii
Wolff, S., xxii
write function, 8, 10, 13, 56, 129, 435, 439,

445-447, 475, 478, 480-481,534, 650, 752,
760-761,874, 890, 920, 1025, 1046, 1056, 1080,
1092

writev function, 13, 445-446, 475, 480-481,
760-761,890, 1056, 1087

X.25, 27, 580
Xerox Network Systems, see XNS
XNS (Xerox Network Systems), 9-10, 23, 27, 39,

189, 562, 581,624
X/Open, 5

Transport Layer Interface, see XTI
XTI (X/Open Transport Layer Interface), 5
xxx comment, 70, 91, 141,655, 763, 882, 913, 944,

1018

Yu, J. K, 170,1127

zeroin_addr variable, 715
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Function and Macro Definitions
accept 458
add_igrp 413
add_mr t 422
add_vi f 408
arpintr 687
arplookup 702
arprequest 685
arpresolve 697
arp_rtrequest 705
arpt free 696
arpt imer 695
arpwhohas 683

bind 454
bpfattach 1031
bpf_attachd 1040
bpfioctl 1035
bpfopen 1034
bpfread 1044
bpf_setif 1038
bpf_tap 104]
bpfwrite 1047

catchpacket 1042
connect 466

de~_igrp 414
del_mrt 421
del_vi f 410
domaininit 194
dtom 46

ether_addmult i 364
ether_delmulti 370
ether_i fattach 92
ether_input 104
ETHER_LOOKUP_MULTI 344
ETHER MAP IP MULTICAST 342
ether_output               108

fcntl 550

getpeername 556
getsock 452
getsockname 555
getsockopt 545
grplst_member 415

icmp_error 325
icmp_input 311
icmp_re flect 330
i cmp_s end 333
i cmp_sy s c t I 334
i fa_i fwithaddr 182
i f a_i fwi tha f 182
i fa_i fwi t hds t addr 182

ifa_ifwithnet 182
ifa_ifwithroute 182
ifaof_ifpforaddr 182
if_attach 88
ifconf ]18
IF_DEQUEUE 72
if_down 123
IF_DROP 72
IF_ENQUEUE 72
ifinit 93
ifioctl ]]6
IF_PREPEND 72
if_qflush 72
IF_QFULL 72
if_slowtimo 93
ifunit 182
i f_up 123
igmp_f as t t imo 389
igmp_input 392
igmp_joingroup 386
igmp_leavegroup 395
IGMP_RANDOM_DELAY 387
igmp_sendreport 390
in_addmulti 359
in_arpinput 689
in_broadcast 18]
in_canforward ]8]
in_cksum 237
in_control 165
in_de imu i t i 368
I N_F I R S T_MULT I 388
in_ifinit 169
in_localaddr 181
IN_LOOKUP_MULTI 347
in_losing 749
in_netof ]8]
IN_NEXT_MULTI 388
in_~cballoc 718
in_pcbbind 729
in_pcbconnect 735
in_pcbdetach 719
in_pcbdisconnect 74]
in_pcblookup 726
in_pcbnotify 745
in_rtchange 746
in_setpeeraddr 742
in_setsockaddr 742
insque 292
ip_ctloutput 241
ip_deq 292
ip_dooptions 251
ip_drain 299
ip_enq 292
ip_forward 222
ip_freef 299
ip_getmoptions 372

ip_init 200
ip_insertoptions 266
ipintr 213
ip_mforward 426
ip_mloopback 378
ip_mrout er_cmd 402
ip_mrout er_done 433
ip mrout er_init 404
i p_op t c opy 282
ip_output 229
ip_pcbopts 269
ip_reass 290
ip_rtaddr 254
ip_setmoptions 352
ip_slowtimo 299
ip_srcroute 260
ip_sysctl 244
iptime 264

leattach 82
leioctl 124
leread ]02
lestart I]3
listen 455
loioctl 180
loopattach 85
looutput 150

m_adj 53
main 79
m_cat 53
MCLGET 52
m_copy 53
m_copyback 53
m_copydata 53
m_copym 53
m_devget 53
MFREE 52
m_free 53
m_freem 53
m_get 41
MGET 42
m_getclr 53
MGETHDR 52
m_gethdr 53
ME_ALIGN 52
M_LEADINGSPACE 764
M_PREPEND 52
m_pu i i up 53
m_r e try 43
tort find 423
mtod 46

nethash 420
net_sysctl 203
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pfctlinput
pffasttimo
pffindproto
pffindtype
pfslowtimo
phyint_send

raw_attach
raw detach
raw_disconnect
raw_init
raw_input
raw_usrreq
recvit
recvmsg
remque
rip_ctloutput
rip_init
rip_input
rip_output
rip_usrreq
rn_init
rn_match
rn_search
route_init
route_output
route_usrreq
rtable_init
rtalloc
rtallocl
RTFREE
rtfree
rt_ifmsg
rtinit
rt_missmsg
rt_msgl
rt_msg2
rt_newaddrmsg
rtredirect
rtrequest
rt_setgate
rt_setmetrics
rt_xaddrs

save_rte
sballoc
sbappend
sbappendaddr
sbappendcontrol
sbappendrecord
sbcompress
sbdrop
sbdroprecord
sbflush
sbfree
sbinsertoob

Function and Macro Definitions
198
196
197
197
196
430

671
672
672
648
662
667
503
502
292

1064
1053
1054
1057
1058
584
591
599
584
652
664
584
602
603
605
6O5
627
616
625
631
633
628
618
607
614
662
660

259
478
479
479
479
479
479
479
479
479
478
479

sblock 478
sbrelease 479
sbreserve 479
sbspace 478
sbunlock 478
sbwait 478
select 526
selrecord 532
selscan 529
selwakeup 533
S endi t 488
sendmsg 484
SEQ_GEQ 810
SEQ_GT 810
SEQ_LEQ 810
SEQ_LT 810
setsockopt 540
shutdown 468
slattach 84
slclose 148
slinit 133
slinput 134
slioctl 179
slopen 132
sloutput 139
slstart 142
sltioctl 149
soaccept 460
sobind 454
socantrcvmore 442
socantsendmore 442
sockargs 452
socket 448
soclose 472
soconnect 467
socreate 449
sodisconnect 442
sofree 473
sogetopt 546
soisconnected 464
soisconnecting 442
soisdisconnected 442
soisdisconnecting 442
solisten 456
s onewc onn 462
soo_close 471
soo_ioctl 553
soo_select 530
soqinsque 442
s o qr emqu e 442
soreadable 530
soreceive 512
soreserve 479
sorflush 470
sorwakeup 478
s o s end 492

sosendallatonce 442
sosetopt 541
soshutdown 469
sowakeup 478
sowriteable 531
s owwakeup 478
sysct l_dumpent ry 641
sysctl_iflist 642
sysctl_rtable 638

tcp_attach 1019
tcp_canceltimers 821
tcp_close 895
t cp_c t i input 904
tcp_ctloutput 1022
tcp_disconnect 1020
tcp_dooptions 933
tcp_drop 893
tcp_fasttimo 821
tcp_init 812
t cp_inpu t 926
t cp_ms s 898
t cp_newt cp cb 833
t cp_no t i fy 905
tcp_output 853
tcp_pullouto fband 986
tcp_quench 906
tcp_rcvs eqini t 946
TCP_REASS 908
tcp_reass 911
tcp_respond 886
TC P_REXMTVAL 840
tcp_sendseqinit 946
tcp_setpersist 835
tcp_slowtimo 823
tcp_template 885
tcp_timers 824
tcp_trace 918
TC PT_RANGESET 820
tcp_usrclosed 1021
tcp_usrreq 1008
t cp_xmi t_t imer 838
tunnel_send 431

udp_ctlinput 783
udp_detach 786
udp_init 760
udp_input 770
udp_notify 784
udp_output 762
udp_saveopt 781
udp_sysctl 790
udp_usrreq 784
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