576 Radix Tree Routing Tables Chapter 18

61 #define rn_mask rn_u.rn_leaf.rn_Mask
62 #define rn_off rn_u.rn_node.rn_Off
63 #define rn_1 rn_u.rn_node.rn_L
64 #define rn_r rn_u.rn_node.rn_R .
radix.h
Figure 18.18 radix_node structure: the nodes of the routing tree.
41-45 The first five members are common to both internal nodes and leaves, followed by a

union defining three members if the node is a leaf, or a different three members if the
node is internal. As is common throughout the Net/3 code, a set of #define state-
ments provide shorthand names for the members in the union.

4142 rn_mklist is the head of a linked list of masks for this node. We describe this field
in Section 18.9. rn_p points to the parent node.
43 If rn_b is greater than or equal to 0, the node is an internal node, else the node is a

leaf. For the internal nodes, rn_b is the bit number to test: for example, its value is 32
in the top node of the tree in Figure 18.4. For leaves, rn_b is negative and its value is -1
minus the index of the network mask. This index is the first bit number where a 0 occurs.
Figure 18.19 shows the indexes of the masks from Figure 18.4.

32-bit IP mask (bits 32-63) index | rn_b

3333 3333 4444 4444 4455 5555 5555 6666
2345 6789 0123 4567 8901 2345 6789 0123

00000000 0000 0000 0000 0000 0000 0000 0000 0000 0 -1
££000000: 1111 1111 0000 0000 0000 0000 0000 0000 40 —41
ffffffe0: 1111 1111 1112 1111 1111 1111 1110 0000 59 —60

Figure 18.19 Example of mask indexes.

As we can see, the index of the all-zero mask is handled specially: its index is 0, not 32.
44 rn_bmask is a 1-byte mask used with the internal nodes to test whether the corre-
sponding bit is on or off. Its value is 0 in leaves. We'll see how this member is used
with the rn_of £ member shortly.
45 Figure 18.20 shows the three values for the rn_flags member.

Constant Description

RNF_ACTIVE | this node is alive (for rt free)
RNF_NORMAL | leaf contains normal route (not currently used)
RNF_ROOT leaf is a root leaf for the tree

Figure 18.20 rn_flags values.
The RNF_ROOT flag is set only for the three radix nodes in the radix_node_head

structure: the top of the tree and the left and right end nodes. These three nodes can
never be deleted from the routing tree.

DELL EX.1095.601

Section 18.5 Radix Node Data Structures 577

48-49 For a leaf, rn_key points to the socket address structure and rn_mask points to a
socket address structure containing the mask. If rn_mask is null, the implied mask is
all one bits (i.e., this route is to a host, not to a network).

Figure 18.21 shows an example corresponding to the leaf for 140.252.13.32 in Fig-

ure 18.4.
to radix_node{}
for bit 63
radix_node{}
Frn_mklist
m_p R
rn_b =60 sockaddr_in{}
rn_bmask 0 e ™
rn_flags RNF_ACTIVE 140.252. 13 . 32
rn_key ————»{16|2I 0 |8c|fc,0d|20| 0 J
rn_mask E
rn_dupedkey NULL

255.255.255.224

radix_mask{} 810] [Fe[ef]ff[e0] 0]
L» rm_off -60

rm_unused 0

rm_flags 0

rm_mklist NULL

rm_mask -

rm_refs 0

Figure 18.21 radix_node structure corresponding to leaf for 140.252.13.32 in Figure 18.4.

This example also shows a radix_mask structure, which we describe in Fig-
ure 18.22. We draw this latter structure with a smaller width, to help distinguish it as a
different structure from the radix_node; we’ll encounter both structures in many of
the figures that follow. We describe the reason for the radix_mask structure in Sec-
tion 18.9.

The rn_b of -60 corresponds to an index of 59. rn_key points to a sockaddr_in,
with a length of 16 and an address family of 2 (AF_INET). The mask structure pointed
to by rn_mask and rm_mask has a length of 8 and a family of O (this family is
AF_UNSPEC, but it is never even looked at).

50-51 The rn_dupedkey pointer is used when there are multiple leaves with the same
key. We describe these in Section 18.9.
52-58 We describe rn_off in Section 18.8. rn_1 and rn_r are the left and right pointers

for the internal node.
Figure 18.22 shows the radix_mask structure.

DELL EX.1095.602

578 Radix Tree Routing Tables Chapter 18

76-83

18.6

- radix.h
76 extern struct radix_mask {
77 short ro_b; /* bit offset; -l-index(netmask) */
78 char ro_unused; /* cf. rn_bmask */
79 u_char rm_flags; /* cf. rn_flags */
80 struct radix_mask *rm_mklist; /* more masks to try */
81 caddr_t rm_mask; /* the mask */
82 int rm_refs; /* # of references to this struct */
83 } *rn_mkfreelist;

radix.h

Figure 18.22 radix_mask structure.

Each of these structures contains a pointer to a mask: rm_mask, which is really a
pointer to a socket address structure containing the mask. Each radix_node structure
points to a linked list of radix_mask structures, allowing multiple masks per node:
rn_mklist points to the first, and then each rm_mk1list points to the next. This struc-
ture definition also declares the global rn_mkfreelist, which is the head of a linked
list of available structures.

Routing Structures
The focal points of access to the kernel’s routing information are

the rtalloc function, which searches for a route to a destination,
2. the route structure that is filled in by this function, and

the rtentry structure that is pointed to by the route structure.

Figure 18.8 showed that the protocol control blocks (PCBs) used by UDP and TCP
(Chapter 22) contain a route structure, which we show in Figure 18.23.

router
46 struct route {
47 struct rtentry *ro_rt; /* pointer to struct with information */
48 struct sockaddr ro_dst; /* destination of this route */
49 };
route.h

Figure 18.23 route structure.

ro_dst is declared as a generic socket address structure, but for the Internet protocols
it is a sockaddr_in. Notice that unlike most references to this type of structure,
ro_dst is the structure itself, not a pointer to one.

At this point it is worth reviewing Figure 8.24, which shows the use of these routes
every time an IP datagram is output.

e If the caller passes a pointer to a route structure, that structure is used. Other-
wise a local route structure is used and it is set to 0, setting ro_rt to a null
pointer. UDP and TCP pass a pointer to the route structure in their PCB to
ip_output.

DELL EX.1095.603

Section 18.6 Routing Structures 579

83-84

86

85

¢ If the route structure points to an rtentry structure (the ro_rt pointer is
nonnull), and if the referenced interface is still up, and if the destination address
in the route structure equals the destination address of the IP datagram, that
route is used. Otherwise the socket address structure so_dst is filled in with
the destination IP address and rtalloc is called to locate a route to that desti-
nation. For a TCP connection the destination address of the datagram never
changes from the destination address of the route, but a UDP application can
send a datagram to a different destination with each sendto.

¢ If rtalloc returns a null pointer in ro_rt, a route was not found and
ip_output returns an error.

e If the RTF_GATEWAY flag is set in the rtentry structure, the route is indirect
(the G flag in Figure 18.2). The destination address (dst) for the interface output
function becomes the IP address of the gateway, the rt_gateway member, not
the destination address of the IP datagram.

Figure 18.24 shows the rtentry structure.

route.h

83 struct rtentry {

84 struct radix_node rt_nodes(2]; /* a leaf and an internal node */

85 struct sockaddr *rt_gateway; /* value associated with rn_key */

86 short rt_flags; /* Figure 18.25 */

87 short rt_refent; /* #held references */

88 u_long rt_use; /* raw #packets sent */

89 struct ifnet *rt_ifp; /* interface to use */

90 struct ifaddr *rt_ifa; /* interface address to use */

91 struct sockaddr *rt_genmask; /* for generation of cloned routes */

92 caddr_t rt_llinfo; /* pointer to link level info cache */

93 struct rt_metrics rt_rmx; /* metrics: Figure 18.26 */

94 struct rtentry *rt_gwroute; /* implied entry for gatewayed routes */

95 };

96 #define rt_key(r) ((struct sockaddr *) ((r)->rt_nodes->rn_key))

97 #define rt_mask(r) ({struct sockaddr *) ((r)->rt_nodes->rn_mask)) toh
route.

Figure 18.24 rtentry structure.

Two radix_node structures are contained within this structure. As we noted in
the example with Figure 18.7, each time a new leaf is added to the routing tree a new
internal node is also added. rt_nodes[0] contains the leaf entry and rt_nodes[1]
contains the internal node. The two #define statements at the end of Figure 18.24 pro-
vide a shorthand access to the key and mask of this leaf node.

Figure 18.25 shows the various constants stored in rt_flags and the correspond-
ing character output by netstat in the “Flags” column (Figure 18.2).

 The RTF_BLACKHOLE flag is not output by netstat and the two with lowercase
flag characters, RTF_DONE and RTF_MASK, are used in routing messages and not nor-
mally stored in the routing table entry.

If the RTF_GATEWAY flag is set, rt_gateway contains a pointer to a socket address
structure containing the address (e.g., the IP address) of that gateway. Also,

DELL EX.1095.604

580 Radix Tree Routing Tables Chapter 18

87

88

89-90

92

Constant netstat Description
flag

RTF._BLACKHOLE discard packets without error (loopback driver: Figure 5.27)
RTF_CLONING C generate new routes on use (used by ARP)
RTF_DONE d kernel confirmation that message from process was completed
RTF_DYNAMIC D created dynamically (by redirect)
RTF_GATEWAY G destination is a gateway (indirect route)
RTF_HOST H host entry (else network entry)
RTF_LLINFO L set by ARP when rt_11info pointer valid
RTF_MASK m subnet mask present (not used)
RTF_MODIFIED M modified dynamically (by redirect)
RTF_PROTO1 1 protocol-specific routing flag
RTF_PROTO2 2 protocol-specific routing flag (ARP uses)
RTF_REJECT R discard packets with error (loopback driver: Figure 5.27)
RTF_STATIC S manually added entry (route program)
RTF_UP U route usable
RTF_XRESOLVE X external daemon resolves name (used with X.25)

Figure 18.25 rt_flags values.

rt_gwroute points to the rtentry for that gateway. This latter pointer was used in
ether_output (Figure 4.15).

rt_refent counts the “held” references to this structure. We describe this counter
at the end of Section 19.3. This counter is output as the “Refs” column in Figure 18.2.

rt_use is initialized to 0 when the structure is allocated; we saw it incremented in
Figure 8.24 each time an IP datagram was output using the route. This counter is also
the value printed in the “Use” column in Figure 18.2.

rt_ifpand rt_ifa point to the interface structure and the interface address struc-
ture, respectively. Recall from Figure 6.5 that a given interface can have multiple
addresses, so minimally the rt_ifa is required.

The rt_11linfo pointer allows link-layer protocols to store pointers to their proto-
col-specific structures in the routing table entry. This pointer is normally used with the
RTF_LLINFO flag. Figure 21.1 shows how ARP uses this pointer.

- route.h
54 struct rt_metrics {
55 u_long rmx_locks; /* bitmask for values kernel leaves alone */
56 u_long rmx_mtu; /* MTU for this path */
57 u_long rmx_hopcount; /* max hops expected */
58 u_long rmx_expire; /* lifetime for route, e.g. redirect */
59 u_long rmx_recvpipe; /* inbound delay-bandwith product */
60 u_long rmx_sendpipe; /* outbound delay-bandwith product */
61 u_long rmx_ssthresh; /* outbound gateway buffer limit */
62 u_long rmx_rtt; /* estimated round trip time */
63 u_long rmx_rttvar; /* estimated RTT variance */
64 u_long rmx_pksent; /* #packets sent using this route */
65 };

routeh

Figure 18.26 rt_metrics structure.

DELL EX.1095.605

Section 18.7 Initialization: route_init and rtable_init Functions 581

93

54—65

18.7

Figure 18.26 shows the rt_metrics structure, which is contained within the
rtentry structure. Figure 27.3 shows that TCP uses six members in this structure.

rmx_locks is a bitmask telling the kernel which of the eight metrics that follow
must not be modified. The values for this bitmask are shown in Figure 20.13.

rmx_expire is used by ARP (Chapter 21) as a timer for each ARP entry. Contrary
to the comment with rmx_expire, it is not used for redirects.

Figure 18.28 summarizes the structures that we’ve described, their relationships,
and the various types of socket address structures they reference. The rtentry that we
show is for the route to 128.32.33.5 in Figure 18.2. The other radix_node contained in
the rtentry is for the bit 36 test right above this node in Figure 18.4. The two
sockaddr_dl structures pointed to by the first ifaddr were shown in Figure 3.38.
Also note from Figure 6.5 that the ifnet structure is contained within an le_softc
structure, and the second ifaddr structure is contained within an in_ifaddr struc-
ture.

Initialization: route_init and rtable_init Functions

The initialization of the routing tables is somewhat obscure and takes us back to the
domain structures in Chapter 7. Before outlining the function calls, Figure 18.27 shows
the relevant fields from the doma in structure (Figure 7.5) for various protocol families.

OsI Internet Routing Unix XNS
Member
value value value value value Comment
dom_family AF_IS0 AF_INET PF_ROUTE AF’_UNIX AF_NS
dom_init 0 0 route_init | 0 0
dom_rtattach | rn_inithead | rn_inithead | 0 0 rn_inithead
dom_rtoffset | 48 32 0 0 16 in bits
dom_maxrtkey | 32 16 0 0 16 in bytes

Figure 18.27 Members of domain structure relevant to routing.

The PF_ROUTE domain is the only one with an initialization function. Also, only the
domains that require a routing table have a dom_rtattach function, and it is always
rn_inithead. The routing domain and the Unix domain protocols do not require a
routing table.

The dom_rtoffset member is the offset, in bits, (from the beginning of the
domain’s socket address structure) of the first bit to be examined for routing. The size
of this structure in bytes is given by dom_maxrtkey. We saw earlier in this chapter that
the offset of the IP address in the sockaddr_in structure is 32 bits. The
dom_maxrtkey member is the size in bytes of the protocol’s socket address structure:
16 for sockaddr_in.

Figure 18.29 outlines the steps involved in initializing the routing tables.

DELL EX.1095.606

582

{1

radix node

{}

radix_node

rt_metrics{}

Radix Tree Routing Tables

Chapter 18

Y4

rtentry{} inpcb{}
rn_mklist f
rn_p 128.32.33. 5
rn_b 16]2] 0 [80]z0[21]os] 0 |
rn_bmask 140.252.13.33
rn_flags r—»ﬁel 2 | 0 'Bc'fc]Odl2l| 0 4] [ro_rt -
rn_key — N y 16 | 2 0 8 o
rn_mask both sockaddr_in{} 80120121)05 g §
rn_dupedkey 'g g
rn_mklist ifnet{} 0 §
rn_p ~—>| _if_name 1> 1e\0 e
rn_b 36 if_next -+ t0 SLIP ifnet{} - G
rn_bmask 0x08 I if_addrlist e
T flags (T .
rn_off 4 . — oo .
p— 1E_J.n<.S{ex 1 b
if_unit 0
Imn_r
rt_gateway - .
rt_flags UGHS
rt_refent 2 .
rt_use 16 A
rt_ifp = Ethernet addr %
rt_ifa — ifaddr{}
rt_genmask \ o[Tfa_adar J»{20[18] 1 [18[3]6]0[1[e]o]os]oo[20[03[¢6[42] 0 |
rt_llinfo ifa_dstaddr
p— T A ifa_netmask J»{11]0] 0 [oJoJo]o]ee[ee[ee[o]oJoJoJoJo] o |
rme_mtu N—f ifa_ifp N)

rmx_hopcount

rmx_expire

rmx_recvpipe

rmx_sendpipe

rmx_ssthresh

rmx_rtt

rmx_rttvar

rmx_pksent

rt_gwroute

radix_node({}
for 140.252.13.33

+ ifa_next both sockaddr_dl{}

ifa_rtrequest

ifa_flags

ifa_refecnt

ifa_metric

ifaddr{}

140.252.13 . 35
_| 3 ifa_adar +—»{16]2] 0 [sc[tc[og[23] 0 |
ifa_brdaddr 140.252.13 . 63
ifa netmask \~|16| 2] 0 [scfecfoal3g] 0 |
N ifa_ifp 255.255.255.224
ifa_next 16|2 | 0 |ff|ff|ff|eo| 0 J

ifa_rtrequest

N

ifa_flags

all three sockaddx_in{}

ifa_refent

ifa_metric

Figure 18.28 Summary of routing structures.

DELL EX.1095.607

Section 18.7

Initialization: route_init and rtable_init Functions 583

main() /* kernel initialization */
{
ifinit();
domaininit () ;
}
domaininit () /* Figure 7.15 */

{

ADDDOMAIN (unix) ;

ADDDOMAIN (route) ;

ADDDOMAIN (inet) ;

ADDDOMAIN(0si) ;

for (dp = alldomains) {

(*dp->dom_init) () ;

for (pr = all protocols for this domain)
(*pr->pr_init) () ;

}
raw_init ()
initialize head of routing protocol control blocks;
route_init ()
{

rn_init();
—rtable_init () ;

/* pr_init() function for SOCK_RAW/PF_ROUTE protocol */

/* dow_init () function for PF_ROUTE domain */

}
rn_init ()
{
for (dp = all domains)
if (dp->dom_maxrtkey > max_keylen)
max_keylen = dp->dom_maxrtkey;
allocate and initialize rn_zeros, rn_ones, masked_key;
rn_inithead(&mask_rnhead); /* allocate and init tree for masks */
}
rtable_init ()
{ B
for (dp = all domains)
(*dp->dom_rtattach) (&rt_tables [dp->dom_family]) ;
}
rn_inithead() /* dom_attach() function for all protocol families */
{
allocate and initialize one radix_node_head structure;
¥

Figure 18.29 Steps involved in initialization of routing tables.

DELL EX.1095.608

584 Radix Tree Routing Tables : Chapter 18

domaininit is called once by the kernel’s main function when the system is ini-
tialized. The linked list of domain structures is built by the ADDDOMAIN macro and the
linked list is traversed, calling each domain’s dom_init function, if defined. As we
saw in Figure 18.27, the only dom_init function is route_init, which is shown in

Figure 18.30. :

: route.c
49 void
50 route_init{()
51 ¢
52 rn_init(); /* initialize all zeros, all ones, mask table */
53 rtable_init{(void **) rt_tables);
54 1}

route.c

Figure 18.30 route_init function.

The function rn_init, shown in Figure 18.32, is called only once.
The function rtable_init, shown in Figure 18.31, is also called only once. It in
turn calls all the dom_rtattach functions, which initialize a routing table tree for that

domain.

- route.c
39 void
40 rtable_init (table)
41 void “**table;
42 {
43 struct domain *dom;
44 for (dom = domaing; dom; dom = dom->dom_next)
45 if (dom->dom_rtattach)
46 dom->dom_rtattach (&table[dom->dom_family],
47 dom->dom_rtoffset);
48 }

route.c

Figure 18.31 rtable_init function: call each domain’s dom_rtattach function.
We saw in Figure 18.27 that the only dom_rtattach function is rn_inithead,
which we describe in the next section.
18.8 |Initialization: rn_init and rn_inithead Functions

The function rn_init, shown in Figure 18.32, is called once by route_init to initial-
ize some of the globals used by the radix functions.

radix.c
750 void
751 rn_init ()
752 {
753 char *cp, *cplim;
754 struct domain *dom;

DELL EX.1095.609

Section 18.8 Initialization: rn_init and rn_inithead Functions 585

755 for {(dom = domains; dom; dom = dom->dom_next)
756 if (dom->dom_maxrtkey > max_keylen)
757 max_keylen = dom->dom_maxrtkey;
758 if (max_keylen == 0) {
759 printf ("rn_init: radix functions require max_keylen be set\n");
760 return;
761 }
762 R_Malloc(rn_zeros, char *, 3 * max_keylen);
763 if (rn_zeros == NULL)
764 panic{"rn_init");
765 Bzero(rn_zeros, 3 * max_keylen);
766 rn_ones = Cp = rn_zeros + max_keylen;
767 maskedKey = cplim = rn_ones + max_keylen;
768 while (¢cp < cplim)
769 *cp++ = -1;
770 if (rn_inithead((void **) &mask_rnhead, 0) == 0)
771 panic("rn_init 2");
772}
radix.c
Figure 18.32 rn_init function.
Determine max_keylen
750761 All the domain structures are examined and the global max_keylen is set to the

largest value of dom_maxrtkey. In Figure 18.27 the largest value is 32 for AF_IS0, but
in a typical system that excludes the OSI and XNS protocols, max_keylen is 16, the size
of a sockaddr_in structure.
Allocate and initialize rn_zeros, rn_ones, and maskedKey

762769 A buffer three times the size of max_keylen is allocated and the pointer stored in
the global rn_zeros. R_Malloc is a macro that calls the kernel’s malloc function,
specifying a type of M_RTABLE and M_DONTWAIT. We'll also encounter the macros
Bemp, Becopy, Bzero, and Free, which call kernel functions of similar names, with the

arguments appropriately type cast.
This buffer is divided into three pieces, and each piece is initialized as shown in Fig-

ure 18.33.
le Max_keylenbytes | max_keylen bytes |l Max keylenbytes)
L P — » Lt
~
[o00o 000111 111J000 070 0]
rn_zeros rn_ones maskedKey

Figure 18.33 rn_zeros, rn_ones, and maskedKey arrays.

rn_zeros is an array of all zero bits, rn_ones is an array of all one bits, and
maskedKey is an array used to hold a temporary copy of a search key that has been
masked.

DELL EX.1095.610

586 Radix Tree Routing Tables Chapter 18
Initialize tree of masks
770-772 The function rn_inithead is called to initialize the head of the routing tree for the

address masks; the radix_node_head structure pointed to by the global

mask_rnhead in Figure 18.8.

From Figure 18.27 we see that rn_inithead is also the dom_attach function for
all the protocols that require a routing table. Instead of showing the source code for this
function, Figure 18.34 shows the radix_node_head structure that it builds for the

Internet protocols.

rt_tables[]: radix_node_head{}
0 | rnh_treetop
1 f rnh_addrsize |0
AF_INET =2 rnh_pktsize 0
3 rnh_addaddr rn_addroute
rnh_addpkt NULL
rnh_deladdr rn_delroute
25 rnh_delpkt NULL
rnh_matchaddr |rn_match
rnh_matchpkt NULL
rnh_walktree |rn_walktree
/—b rn_mklist fXi7 A W
——+TNn_p
rn_b =33
Tn_bmask 0 radix_node{}
rnh_nodes (0]
rn_flags ACTIVE|ROOT (leftmost leaf)
rn_key rn_zeros
rn_mask NULL
rn_dupedkey NULL Y,
>_’ rn_mklist noLn T T 3
Cw rn_p
rn_b 32 radix_node({}
rn_bmask 0x80 rnh_nodes[1)
rn_flags ACTIVE|ROOT (internal node)
rn_off 4 top of tree
;- rn_1
L rn_r D
C rn_mklist NuLL 3
[rn_p
rn_b -33
n_bmask 0 radix_node{}
rn_flags ACTIVE|ROOT (rr ?;Et?x?oiﬁe[a 2f)]
rn_key rn_ones
rn_mask NULL
rn_dupedkey ll] Uflli _______)

Figure 18.34 radix_node_head structure built by rn_inithead for Internet protocols.

The three radix_node structures form a tree: the middle of the three is the top (it is
pointed to by rnh_treetop), the first of the three is the leftmost leaf of the tree, and

DELL EX.1095.611

Section 18.9 Duplicate Keys and Mask Lists 587

18.9

the last of the three is the rightmost leaf of the tree. The parent pointer of all three
nodes (rn_p) points to the middle node.

The value 32 for rnh_nodes[1].rn_b is the bit position to test. It is from the
dom_rtoffset member of the Internet domain structure (Figure 18.27). Instead of
performing shifts and masks during forwarding, the byte offset and corresponding byte
mask are precomputed. The byte offset from the start of a socket address structure is in
the rn_off member of the radix_node structure (4 in this case) and the byte mask is
in the rn_bmask member (0x80 in this case). These values are computed whenever a
radix_node structure is added to the tree, to speed up the comparisons during for-
warding. As additional examples, the offset and byte mask for the two nodes that test
bit 33 in Figure 18.4 would be 4 and 0x40, respectively. The offset and byte mask for
the two nodes that test bit 63 would be 7 and 0x01.

The value of -33 for the rn_b member of both leaves is negative one minus the
index of the leaf.

The key of the leftmost node is all zero bits (rn_zeros) and the key of the right-
most node is all one bits (rn_ones).

All three nodes have the RNF_ROOT flag set. (We have omitted the RNF_ prefix.)
This indicates that the node is one of the three original nodes used to build the tree.
These are the only nodes with this flag.

One detail we have not mentioned is that the Network File System (NFS) also uses the routing
table functions. For each mount point on the local host a radix_node_head structure is allo-
cated, along with an array of pointers to these structures (indexed by the protocol family), sim-
ilar to the rt_tables array. Each time this mount point is exported, the protocol address of
the host that can mount this filesystem is added to the appropriate tree for the mount point.

Duplicate Keys and Mask Lists

Before looking at the source code that looks up entries in a routing table we need to
understand two fields in the radix_node structure: rn_dupedkey, which forms a
linked list of additional radix_node structures containing duplicate keys, and
rn_mklist, which starts a linked list of radix_mask structures containing network
masks.

We first return to Figure 18.4 and the two boxes on the far left of the tree labeled
“end” and “default.” These are duplicate keys. The leftmost node with the RNF_ROOT
flag set (rnh_nodes[0] in Figure 18.34) has a key of all zero bits, but this is the same
key as the default route. We would have the same problem with the rightmost end
node in the tree, which has a key of all one bits, if an entry were created for
255.255.255.255, but this is the limited broadcast address, which doesn’t appear in the
routing table. In general, the radix node functions in Net/3 allow any key to be dupli-
cated, if each occurrence has a unique mask.

Figure 18.35 shows the two nodes with a duplicate key of all zero bits. In this figure
we have removed the RNF_ prefix for the rn_flags and omit nonnull parent, left, and
right pointers, which add nothing to the discussion.

DELL EX.1095.612

588

Radix Tree Routing Tables Chapter 18

radix_node{}

rn_mklist A
(rm_p
rn_b 32
h bmask 080 head of routing tree:
_f 7 node for bit 32 at
rn_flags ACTIVE| ROOT top of Figure 18.4
rn_off 4
left pointer rn_left
from bit 33 rn_right
it /

node

radix_node{}

rn_mklist NULL

rn_p

m_b -33

rn_bmask 0

rn_flags ACTIVE|ROOT

rn_key g 0 —I
rn_mask NULL rm_zeros:

+rn_dupedkey

radix_node{}
| rn_mklist
rn_p

rn_b -1
rn_bmask 0
rn_flags ACTIVE |} 0.0.0.0

rn_key +———[»{16]2] 0 JooJooJoofoo] 0
rn_mask i N

rn_dupedkey NULL sockaddr_in

radix mask{}

- \—’. rm_off -1
rm_unused 0
rm_flags 0
rm_mklist NULL
rm_mask -
rm_refs 0

Figure 18.35 Duplicated nodes with a key of all zero bits.

The top node is the top of the routing tree—the node for bit 32 at the top of Fig-
ure 18.4. The next two nodes are leaves (their rn_b values are negative) with the
rn_dupedkey member of the first pointing to the second. The first of these two leaves
is the rnh_nodes [0] structure from Figure 18.34, which is the left end marker of the
tree—its RNF_ROOT flag is set. Its key was explicitly set by rn_inithead to
rn_zeros.

The second of these leaves is the entry for the default route. Its rn_key points to a
sockaddr_in with the value 0.0.0.0, and it has a mask of all zero bits. Its rn_mask
points to rn_zeros, since equivalent masks in the mask table are shared.

DELL EX.1095.613

Section 18.9 Duplicate Keys and Mask Lists 589

Normally keys are not shared, let alone shared with masks. The rn_key pointers of the two
end markers (those with the RNF_ROOT flag) are special since they are built by rn_inithead
(Figure 18.34). The key of the left end marker points to rn_zeros and the key of the right end
marker points to rn_ones.

The final structure is a radix_mask structure and is pointed to by both the top
node of the tree and the leaf for the default route. The list from the top node of the tree
is used with the backtracking algorithm when the search is looking for a network mask.
The list of radix_mask structures with an internal node specifies the masks that apply
to subtrees starting at that node. In the case of duplicate keys, a mask list also appears
with the leaves, as we'll see in the following example.

We now show a duplicate key that is added to the routing tree intentionally and the
resulting mask list. In Figure 18.4 we have a host route for 127.0.0.1 and a network
route for 127.0.0.0. The default mask for the class A network route is 0x££000000, as
we show in the figure. If we divide the 24 bits following the class A network ID into a
16-bit subnet ID and an 8-bit host ID, we can add a route for the subnet 127.0.0 with a
mask of OxEELLE££00:

bsdi $ route add 127.0.0.0 -netmask Oxffffff00 140.252.13.33

Although it makes little practical sense to use network 127 in this fashion, our interest is
in the resulting routing table structure. Although duplicate keys are not common with
the Internet protocols (other than the previous example with the default route), dupli-
cate keys are required to provide routes to subnet 0 of any network.

There is an implied priority in these three entries with a network ID of 127. If the
search key is 127.0.0.1 it matches all three entries, but the host route is selected because
it is the most specific: its mask (0xf££f£££f) has the most one bits. If the search key is
127.0.0.2 it matches both network routes, but the route for subnet 0, with a mask of
Ox££££££00, is more specific than the route with a mask of 0x£f£000000. The search.
key 127.1.2.3 matches only the entry with a mask of 0x££000000.

Figure 18.36 shows the resulting tree structure, starting at the internal node for bit
33 from Figure 18.4. We show two boxes for the entry with the key of 127.0.0.0 since
there are two leaves with this duplicate key.

off

Ox££E££££00
0x££000000

0.0.0.0
0x00000000

127.0.0.0
OxfEEE££00
0x££000000

Figure 18.36 Routing tree showing duplicate keys for 127.0.0.0.

DELL EX.1095.614

590

Radix Tree Routing Tables

Chapter 18

Figure 18.37 shows the resulting radix_node and radix_mask structures.

radix_node{}

~

\

rrn_mklist

rn_p

rn_b

63

rn_bmask

0x01

rn_flags

ACTIVE

n_off

7

trn_left

rn_right

radix_node{}

| rn_mklist

rn_p

rn_b

-57

rn_bmask

0

rn_flags

ACTIVE

rn_key

rn_mask

| rn_mklist

rn_p

rn_b

~41

rn_bmask

0

rn_flags

ACTIVE

rn_key

rn_mask

rn_dupedkey

radix_mask{}

NULL E

rm_off

=57

rm_unused

rm_flags

L rm_mklist

rm_mask 1/

rm_refs

radix_mask{}

rm_off

rm_unused

rm_flags

rm_mklist

~——>[16| 2| 0

- rn_dupedkey
radix_node{}

+————|—{16]2] ©

j;:ﬂ 5[0]0] 0 [££]ooJoo]o0] 0

rm_mask

rm_refs

a

node for bit 63

radix_node{} for 127.0.0.1

sockaddr_in

- 127.0.0.0

[7£]oo0]00]00] 0

7[oJoJoee]er[££]o0] 0

sockaddr_in

127.0.0.0

|7f|oo{00|oo| 0

Figure 18.37 Example routing table structures for the duplicate keys for network 127.0.0.0.

DELL EX.1095.615

Section 18.10 rn_match Function 591

18.10

First look at the linked list of radix_mask structures for each radix_node. The mask
list for the top node (bit 63) consists of the entry for Oxffffff00 followed by
0xf£000000. The more-specific mask comes first in the list so that it is tried first. The
mask list for the second radix_node (the one with the rn_b of —-57) is the same as that
of the first. But the list for the third radix_node consists of only the entry with a mask
of 0x££000000.

Notice that masks with the same value are shared but keys with the same value are
not. This is because the masks are maintained in their own routing tree, explicitly to be
shared, because equal masks are so common (e.g., every class C network route has the
same mask of 0xf £££££00), while equal keys are infrequent.

rn_match Function

We now show the rn_match function, which is called as the rnh_matchaddr function
for the Internet protocols. We'll see that it is called by the rtallocl function, which is
called by the rtalloc function. The algorithm is as follows:

1. Start at the top of the tree and go to the leaf corresponding to the bits in the
search key. Check the leaf for an exact match (Figure 18.38).

Check the leaf for a network match (Figure 18.40).
Backtrack (Figure 18.43).

Figure 18.38 shows the first part of rn_match.

radix.c

135 struct radix_node *

136 rn_match(v_arg, head)

137 void *v_arg;

138 struct radix_node_head *head;

139 {

140 caddr_t v = v_arg;

141 struct radix_node *t = head->rnh_treetop, *x;

142 caddr_t cp = v, cp2, Cp3;

143 caddr_t cplim, mstart;

144 struct radix_node *saved_t, *top = t;

145 int off = t->rn_off, vlen = *(u_char *) cp, matched off;
146 /*

147 * Open code rn_search(v, top) to avoid overhead of extra
148 * gubroutine call.

149 */ .

150 for (; t-»rn_b >= 0;) {

151 if (t->rn_bmask & cpl[t->rn_off])

152 £t = t->rn_r; /* right if bit on */

153 else

154 t = t->rn_1; /* left if bit off */

155 }

DELL EX.1095.616

592 Radix Tree Routing Tables Chapter 18

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

oni:

/*

* See if we match exactly as a host destination
*/

cp += Ooff;

cp2 = t->rn_key + off;
cplim = v + vlen;

for (; cp < cplim; cp++, Cp2++)
if (*cp = *cp2)
goto onl;
/*

* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*/
if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
t = t->rn_dupedkey;
return t;

135-145

radix.c

Figure 18.38 rn_match function: go down tree, check for exact host match.

The first argument v_arg is a pointer to a socket address structure, and the second

argument head is a pointer to the radix_node_head structure for the protocol. All
protocols call this function (Figure 18.17) but each calls it with a different head argu-

ment.
In the assignment statements, o£f is the rn_of £ member of the top node of the tree

(4 for Internet addresses, from Figure 18.34), and vlen is the length field from the
socket address structure of the search key (16 for Internet addresses).

Go down the tree to the corresponding leaf

146—155

This loop starts at the top of the tree and moves down the left and right branches

until a leaf is encountered (rn_b is less than 0). Each test of the appropriate bit is made
using the precomputed byte mask in rn_bmask and the corresponding precomputed
offset in rn_off. For Internet addresses, rn_off willbe4,5,6,0r 7.

Check for exact match

156—-164

When the leaf is encountered, a check is first made for an exact match. All bytes of

the socket address structure, starting at the xrn_off value for the protocol family, are
compared. This is shown in Figure 18.39 for an Internet socket address structure.

vlen =16
off=4 |
sockaddr_in: (1{32) family| port IP address (all zero)
Tbyte 1 2 : 4 8 |
* these 12 bytes are compared gl
v_arg

Figure 18.39 Variables during comparison of sockaddr_in structures.

As soon as a mismatch is found, a jump is made to onl.

DELL EX.1095.617

Section 18.10 rn_match Function 593

165-172

173174

175-183

Normally the final 8 bytes of the sockaddr_in are 0 but proxy ARP (Section 21.12) sets one of
these bytes nonzero. This allows two routing table entries for a given IP address: one for the
normal IP address (with the final 8 bytes of 0) and a proxy ARP entry for the same IP address
(with one of the final 8 bytes nonzero).

The length byte in Figure 18.39 was assigned to vlen at the beginning of the func-
tion, and we’ll see that rtallocl uses the family member to select the routing table to
search. The port is never used by the routing functions.

Explicit check for default

Figure 18.35 showed that the default route is stored as a duplicate leaf with a key of
0. The first of the duplicate leaves has the RNF_ROOT flag set. Hence if the RNF_ROQT
flag is set in the matching node and the leaf contains a duplicate key, the value of the
pointer rn_dupedkey is returned (ie., the pointer to the node containing the default
route in Figure 18.35). If a default route has not been entered and the search matches
the left end marker (a key of all zero bits), or if the search_encounters the right end
marker (a key of all one bits), the returned pointer t points to a node with the
RNF_ROOT flag set. We'll see that rtallocl explicitly checks whether the matching
node has this flag set, and considers such a match an error.

At this point in rn_match a leaf has been reached but it is not an exact match with
the search key. The next part of the function, shown in Figure 18.40, checks whether the
leaf is a network match.

radix.c
173 matched_off = ¢cp - v;
174 saved_t = t;
175 do {
176 if (t->rn_mask) {
177 /*
178 * Even if we don’t match exactly as a host;
179 * we may match if the leaf we wound up at is
180 * a route to a net.
181 */
182 cp3 = matched_off + t->rn_mask;
183 cp2 = matched_off + t->rn_key;
184 for (; cp < cplim; cp++)
185 1f ((*cp2++ 7 *cp) & *cp3++)
186 break;
187 if (cp == cplim)
188 return t;
189 cp = matched_off + v;
190 }
191 } while (t = t->rn_dupedkey) ;
192 t = saved_t;
radix.c

Figure 18.40 rn_match function: check for network match.

cp points to the unequal byte in the search key. matched_off is set to the offset of
this byte from the start of the socket address structure.

The do while loop iterates through all duplicate leaves and each one with a net-
work mask is compared. Let’s work through the code with an example. Assume we’re

DELL EX.1095.618

594 Radix Tree Routing Tables Chapter 18
looking up the IP address 140.252.13.60 in the routing table in Figure 18.4. The search
will end up at the node labeled 140.252.13.32 (bits 62 and 63 are both off), which con-
tains a network mask. Figure 18.41 shows the structures when the for loop in Fig-
ure 18.40 starts executing.

140 . 252 . 13 . 60
searchkey:’ 16 ' f { 8c l fc l od , 3c , 0 I
\ »
[matched_off =7 = T
radix_node{} T T cplim
rn_mklist v cp
rn_p
rn_b -60 cp2
rn_bmask 0
rn_flags RNF_ACTIVE 140 .252. 13 ¥ 32
rn_key e ":]6 l‘ | | 8c l fo] 0d | 20 l 0]
rn_mask '
rn_dupedkey 255 . 255 . 255 . 224
L»{Sl | [fE|fi[£f]e0] 0 |
cp3
Figure 18.41 Example for network mask comparison.
The search key and the routing table key are both sockaddr_in structures, but the
length of the mask is different. The mask length is the minimum number of bytes con-
taining nonzero values. All the bytes past this point, up through max_keylen, are 0.
184-190 The search key is exclusive ORed with the routing table key, and the result logically

ANDed with the network mask, one byte at a time. If the resulting byte is ever nonzero,
the loop terminates because they don’t match (Exercise 18.1). If the loop terminates nor-
mally, however, the search key ANDed with the network mask matches the routing
table entry. The pointer to the routing table entry is returned.

Figure 1842 shows how this example matches, and how the IP address
140.252.13.188 does not match, looking at just the fourth byte of the IP address. The
search for both IP addresses ends up at this node since both addresses have bits 57, 62,
and 63 off.

[search key = 140.252.13.60 | search key = 140.252.13.188
search key byte (*cp): 0011 1100 = 3¢ 1011 1100 = bc
routing table key byte (*cp2): 0010 0000 = 20 0010 0000 = 20
exclusive OR: 0001 1100 1001 1100

network mask byte (*cp3): 1110 0000 = e0 1110 0000 = e0
logical AND: 0000 0000 1000 0000

Figure 18.42 Example of search key match using network mask.
The first example (140.252.13.60) matches since the result of the logical AND is 0 (and all

the remaining bytes in the address, the key, and the mask are all 0). The other example
does not match since the result of the logical AND is nonzero.

DELL EX.1095.619

Section 18.10 rn_match Function 595

191

193-195

196

197-210

If the routing table entry has duplicate keys, the loop is repeated for each key.

The final portion of rn_mat ch, shown in Figure 18.43, backtracks up the tree, look-
ing for a network match or a match with the default.

- radix.c
193 /* start searching up the tree */
194 do {
195 struct radix_mask *m;
196 t = t->rn_p;
197 if (m = t->rn_mklist) {
198 /*
199 * After doing measurements here, it may
200 * turn out to be faster to open code
201 * rn_search_m here instead of always
202 * copying and masking.
203 */
204 off = min(t->rn_off, matched_off);
205 mstart = maskedKey + off;
206 do {
207 cp2 = mstart;
208 cp3 = m->rm_mask + off;
209 for (cp = v + off; cp < ¢plim;)
210 *Cp2++ = *Cp++ & *Cp3++;
211 x = rn_search(maskedKey, t);
212 while (x && x->rn_mask != m->rm_mask)
213 x = x->rn_dupedkey;
214 if (x &&
215 (Becmp (mstart, x->rn_key + off,
216 vlen - off) == 0))
217 return x;
218 } while (m = m->rm_mklist);
219 }
220 } while (t != top);
221 return 0;
222 };

radix.c

Figure 18.43 rn_match function: backtrack up the tree.

The do while loop continues up the tree, checking each level, until the top has
been checked.

The pointer t is replaced with the pointer to the parent node, moving up one level.
Having the parent pointer in each node simplifies backtracking.

Each level is checked only if the internal node has a nonnull list of masks.
rn_mklist is a pointer to a linked list of radix_node structures, each containing a
mask that applies to the subtree starting at that node. The inner do while loop iterates
through each radix_mask structure on the list.

Using the previous example, 140.252.13.188, Figure 18.44 shows the various data
structures when the innermost for loop starts. This loop logically ANDs each byte of
the search key with each byte of the mask, storing the result in the global maskedKey.
The mask value is 0xf£f£ffe0 and the search would have backtracked from the leaf

-for 140.252.13.32 in Figure 18.4 two levels to the node that tests bit 62.

DELL EX.1095.620

596 Radix Tree Routing Tables Chapter 18
140 .252 . 13 . 188 -
searchkey:| 16 |] [8c] fc]oa]be | 0)
| >
I matched_off =7 T T
radix_node({} T cplim
t—» v n mklist op
rm_p
rn_b 62
rn_bmask 2
m_flags RNF_ACTIVE
rn_off 7
rn_left
rn_right
radix_mask(}
n rm_off -60
rm_unused 0
rm_flags 0
rm_mklist NULL 255 . 255 . 255 . 224
rm_mask ~ﬂ8 [| I ff| ff | ff—[eO I 0
rm_refs 0 | o
I rn_off=7 g
cp3
maskedKey: [
| »l
| off=7
mstart
cp2
Figure 18.44 Preparation to search again using masked search key.
Once the for loop completes, the masking is complete, and rn_search (shown in Fig-
ure 18.48) is called with maskedKey as the search key and the pointer t as the top of the
subtree to search. Figure 18.45 shows the value of maskedKey for our example.
maskedkey: . [a0] 0]
|
off=7 gl
mstart
Figure 18.45 maskedKey when rn_search is called.
The byte 0xa0 is the logical AND of 0xbc (188, the search key) and 0xe0 (the mask).
211 rn_search proceeds down the tree from its starting point, branching right or left

depending on the key, until a leaf is reached. In this example the search key is the 9
bytes shown in Figure 18.45 and the leaf that’s reached is the one labeled 140.252.13.32
in Figure 18.4, since bits 62 and 63 are off in the byte 0xa0. Figure 18.46 shows the data
structures when Bcmp is called to check if a match has been found.

DELL EX.1095.621

Section 18.10 rn_match Function 597

radix_node{}
x—» rn_mklist
rn_p
rn_b -60
rn_bmask 0
rn_flags RNF_ACTIVE 140 .252 . 13 . 32
rn_key {16 [] [8cTEc]od]20] 0
ro_mask | vlien - off=9
rn_dupedkey I

(I A

maskedKey:l [a0 ! 0
off =7

mstart

Figure 18.46 Comparison of maskedKey and new leaf.

Since the 9-byte strings are not the same, the comparison fails.

212-221 This while loop handles duplicate keys, each with a different mask. The only key
of the duplicates that is compared is the one whose rn_mask pointer equals
m->rm_mask. As an example, recall Figures 18.36 and 18.37. If the search starts at the
node for bit 63, the first time through the inner do while loop m points to the
radix_mask structure for OxfE££££00. When rn_search returns the pointer to the
first of the duplicate leaves for 127.0.0.0, the rm_mask of this leaf equals m~>rm_mask,
so Bcmp is called. If the comparison fails, m is replaced with the pointer to the next
radix_mask structure on the list (the one with a mask of 0x££000000) and the do
while loop iterates around again with the new mask. rn_search again returns the
pointer to the first of the duplicate leaves for 127.0.0.0, but its rn_mask does not equal
m->rm_mask. The while steps to the next of the duplicate leaves and its rn_mask is
the right one.

Returning to our example with the search key of 140.252.13.188, since the search
from the node that tests bit 62 failed, the backtracking continues up the tree until the top
is reached, which is the next node up the tree with a nonnull rn_mklist.

Figure 18.47 shows the data structures when the top node of the tree is reached. At
this point maskedKey is computed (it is all zero bits) and rn_search starts at this
node (the top of the tree) and continues down the two left branches to the leaf labeled
“default” in Figure 18.4.

When rn_search returns, x points to the radix_node with an rn_b of -33,
which is the first leaf encountered after the two left branches from the top of the tree.
But x->rn_mask (which is null) does not equal m->rm_mask, so x is replaced with
x->rn_dupedkey. The test of the while loop occurs again, but now x->rn_mask
equals m->rm_mask, so the while loop terminates. Bcmp compares the 12 bytes of 0
starting at mstart with the 12 bytes of 0 stating at x->rn_key plus 4, and since they’re
equal, the function returns the pointer x, which points to the entry for the default route.

DELL EX.1095.622

598 Radix Tree Routing

Tables

Chapter 18

140 . 252 . 13 . 188

searchkey:[16 |] [8cfc]od[be]

»

} matched _off =7 o
t cplim
radix_node{} N
E~—»rn_mklist
(_ rn_p
rn_b 32
rn_bmask 0x80
rn_flags ACTIVE | ROOT
rn_off 4
rn_left
rn_right
radix_mask{}
/mL’/" rm_off -1
rm_unused 0
rm_flags 0
rm_mklist NULL rn_zeros:
rm_mask ——»m }] 0 !
rm_refs 0 ,
rn_off=4
maskedKey: [1 0 |
! B >
[off=4 o >

radix_node{}

vlien - off=12

Figure 18.47 Backtrack to top of tree and rn_search that locates default leaf.

rn_mklist NULL
rm_p mstart
rn_b =33
A rn_bmask 0
rn_flags ACTIVE | ROOT
p— rn_key
rn_mask NULL
-rn_dupedkey
C radix_node{}
k___ rn_mklist
x=—¥ rm_p
rn_b -1
rn_bmask 0
rn_flags ACTIVE 0.0.0.0
rn_key +—{16]] [ooJooJooJoo]]
rn_mask
rn_dupedkey NULL off =4

DELL EX.1095.623

Section 18.12 Summary 599

18.11

18.12

rn_search Function

rn_search was called in the previous section from rn_match to search a subtree of
the routing table.

radix.c
79 struct radix_node *
80 rn_search(v_arg, head)
81 void *v_arg;
82 struct radix_node *head;
83 {
84 struct radix_node *x;
85 caddr_t wv;
86 for (x = head, v = v_arg; x->rn_b >= 0;) {
87 if (x->rn_bmask & v[x->rn_off])
88 X = X->In_r; /* right if bit on */
89 else
90 X = X->rn_1; /* left if bit off */
91 }
92 return (x);
93 };
radix.c

Figure 18.48 rn_search function.

This loop is similar to the one in Figure 18.38. It compares one bit in the search key
at each node, branching left if the bit is off or right if the bit is on, terminating when a
leaf is encountered. The pointer to that leaf is returned.

Summary

Each routing table entry is identified by a key: the destination IP address in the case of
the Internet protocols, which is either a host address or a network address with an asso-
ciated network mask. Once the entry is located by searching for the key, additional
information in the entry specifies the IP address of a router to which datagrams should
be sent for the destination, a pointer to the interface to use, metrics, and so on.

The information maintained by the Internet protocols is the route structure, com-
posed of just two elements: a pointer to a routing table entry and the destination
address. We'll encounter one of these route structures in each of the Internet protocol
control blocks used by UDP, TCP, and raw IP.

The Patricia tree data structure is well suited to routing tables. Routing table
lookups occur much more frequently than adding or deleting routes, so from a perfor-
mance standpoint using Patricia trees for the routing table makes sense. Patricia trees
provide fast lookups at the expense of additional work in adding and deleting. Mea-
surements in [Sklower 1991] comparing the radix tree approach to the Net/1 hash table
show that the radix tree method is about two times faster in building a test tree and four
times faster in searching.

DELL EX.1095.624

600 Radix Tree Routing Tables Chapter 18

Exercises

18.1 We said with Figure 18.3 that the general condition for matching a routing table entry is
that the search key logically ANDed with the routing table mask equal the routing table
key. But in Figure 18.40 a different test is used. Build a logic truth table showing that the
two tests are the same.

18.2 Assume a Net/3 system needs a routing table with 20,000 entries (IP addresses). Approxi-
mately how much memory is required for this, ignoring the space required for the masks?

18.3 What is the limit imposed on the length of a routing table key by the radix_node struc-
ture?

DELL EX.1095.625

19.1

19.2

X%

Routing Requesfts and
Routing Messages

Introduction

The various protocols within the kernel don’t access the routing trees directly, using the
functions from the previous chapter, but instead call a few functions that we describe in
this chapter: rtalloc and rtallocl are two that perform routing table lookups,
rtrequest adds and deletes routing table entries, and rtinit is called by most inter-
faces when the interface goes up or down.

Routing messages communicate information in two directions. A process such as
the route command or one of the routing daemons (routed or gated) writes routing
messages to a routing socket, causing the kernel to add a new route, delete an existing
route, or modify an existing route. The kernel also generates routing messages that can
be read by any routing socket when events occur in which the processes might be inter-
ested: an interface has gone down, a redirect has been received, and so on. In this chap-
ter we cover the formats of these routing messages and the information contained
therein, and we save our discussion of routing sockets until the next chapter.

Another interface provided by the kernel to the routing tables is through the
sysctl system call, which we describe at the end of this chapter. This system call
allows a process to read the entire routing table or a list of all the configured interfaces
and interface addresses.

rtalloc and rtallocl Functions

rtalloc and rtallocl are the functions normally called to look up an entry in the
routing table. Figure 19.1 shows rtalloc.

601

DELL EX.1095.626

602 Routing Requests and Routing Messages Chapter 19
- route.c
58 void
59 rtalloc(ro)
60 struct route *ro;
61 {
62 if (ro-»ro_rt && ro->ro_rt->rt_ifp && (ro->ro_rt->rt_flags & RTF_UP))
63 return; /* XXX */
64 ro->ro_rt = rtallocl(&ro->ro_dst, 1);
65 }
route.c
Figure 19.1 rtalloc function.

58-65 The argument ro is often the pointer to a route structure contained in an Internet
PCB (Chapter 22) which is used by UDP and TCP. If ro already points to an rtentry
structure (ro_rt is nonnull), and that structure points to an interface structure, and the
route is up, the function returns. Otherwise rtallocl is called with a second argu-
ment of 1. We'll see the purpose of this argument shortly.

rtallocl, shown in Figure 19.2, calls the rnh_matchaddr function, which is
always rn_match (Figure 18.17) for Internet addresses.

66-76 The first argument is a pointer to a socket address structure containing the address
to search for. The sa_family member selects the routing table to search.

Call rn_match
77-78 If the following three conditions are met, the search is successful.
1. A routing table exists for the protocol family,
2. rn_match returns a nonnull pointer, and
3. the matching radix_node does not have the RNF_ROOT flag set.
Remember that the two leaves that mark the end of the tree both have the RNF_ROOT
flag set. ’
Search fails
94-101 If the search fails because any one of the three conditions is not met, the statistic

79

rts_unreach is incremented and if the second argument to rtallocl (report) is
nonzero, a routing message is generated that can be read by any interested processes on
a routing socket. The routing message has the type RTM_MISS, and the function returns
a null pointer.

If all three of the conditions are met, the lookup succeeded and the pointer to the
matching radix_node is stored in rt and newrt. Notice that in the definition of the
rtentry structure (Figure 18.24) the two radix_node structures are at the beginning,
and, as shown in Figure 18.8, the first of these two structures contains the leaf node.
Therefore the pointer to a radix_node structure returned by rn_match is really a
pointer to an rtentry structure, which is the matching leaf node.

DELL EX.1095.627

Section 19.2 rtalloc and rtallocl Functions 603
route.c
66 struct rtentry *
67 rtallocl(dst, report)
68 struct sockaddr *dst;
69 int report;
70 {
71 struct radix_node_head *rnh = rt_tables[dst->sa_family];
72 struct rtentry *rt;
73 struct radix_node *rn;
74 struct rtentry *newrt = 0;
75 struct rt_addrinfo info;
76 int s = splnet (), err = 0, msgtype = RTM_MISS;
77 if (rnh && (rn = rnh->rnh _matchaddr((caddr_t) dst, rnh)) &&
78 ((rn->rn_flags & RNF_ROOT) == 0)) {
79 newrt = rt = (struct rtentry *) rn;
80 if (report && (rt->rt_flags & RTF_CLONING)) {
81 err = rtrequest (RTM_RESOLVE, dst, SA(0),
82 SA(0), 0O, &newrt);
83 if (err) {
84 * newrt = rt;
85 rt->rt_refcnt++;
86 goto miss;
87 }
88 if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) {
89 msgtype = RTM_RESOLVE;
90 goto miss;
91 }
92 } else
93 rt->rt_refcnt++;
94 } else {
95 rtstat.rts_unreach++;
96 miss:if (report) {
97 bzero((caddr_t) & info, sizeof (info));
98 info.rti_info[RTAX _DST] = dst;
99 rt_missmsg (msgtype, &info, 0, err);
100 }
101 }
102 splx(s);
103 return (newrt);
104 }
route.c

Figure 19.2 rtallocl function.

Create clone entries

8082

If the caller specified a nonzero second argument, and if the RTF_CLONING flag is

set, rtrequest is called with a command of RTM_RESOLVE to create a new rtentry
structure that is a clone of the one that was located. This feature is used by ARP and for
multicast addresses.

DELL EX.1095.628

604 Routing Requests and Routing Messages Chapter 19

83-87

88-91

92-93

19.3

209-213

Clone creation fails

If rtrequest returns an error, newrt is set back to the entry returned by
rn_match and its reference count is incremented. A jump is made to miss where an
RTM_MISS message is generated.

Check for external resolution

If rtrequest succeeds but the newly cloned entry has the RTF_XRESOLVE flag set,
a jump is made to miss, this time to generate an RTM_RESOLVE message. The intent of
this message is to notify a user process when the route is created, and it could be used
with the conversion of IP addresses to X.121 addresses.

Increment reference count for normal successful search

When the search succeeds but the RTF_CLONING flag is not set, this statement
increments the entry’s reference count. This is the normal flow through the function,
which then returns the nonnull pointer.

For a small function, rtallocl has many options in how it operates. There are
seven different flows through the function, summarized in Figure 19.3.

report RTF_- RTM_- RTF_- routing return
argument | CLONING | RESOLVE | XRESOLVE message rt_refcent | value
flag return flag generated
0 null
entry not found
1 RTM_MISS null
0 o+ ptr
0 o+ ptr
entry found 1 1 OK 0 +t ptr
1 1 OK 1 RTM_RESOLVE ++ ptr
1 1 error RTM_MISS ++ ptr

Figure 19.3 Summary of operation of rtallocl.

We note that the first two rows (entry not found) are impossible if a default route exists.
Also we show rt_refcnt being incremented in the fifth and sixth rows when the call
to rtrequest with a command of RTM_RESOLVE is OK. The increment is done by
rtrequest.

RTFREE Macro and rtfree Function

The RTFREE macro, shown in Figure 19.4, calls the rtfree function only if the refer-
ence count is less than or equal to 1, otherwise it just decrements the reference count.

The rtfree function, shown in Figure 19.5, releases an rtentry structure when
there are no more references to it. We'll see in Figure 22.7, for example, that when a pro-
cess control block is released, if it points to a routing entry, rt free is called.

DELL EX.1095.629

Section 19.3 RTFREE Macro and rtfree Function 605

105-115

116

117-122

route.h
209 #define RTFREE(rt) \
210 if ((rt)->rt_refcnt <= 1) \
211 rtfree(rt); \
212 else \
213 (rt)->rt_refcnt--; /* no need for function call */
route.h
Figure 19.4 RTFREE macro.
route.c
105 void
106 rtfree(rt)
107 struct rtentry *rt;
108 {
109 struct ifaddr *ifa;
110 if (xrt == 0)
111 panic(“"rtfree");
112 rt->rt_refcnt--;
113 if (rt->rt_refcnt <= 0 && (rt->rt_flags & RTF_UP) == 0) {
114 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT))
115 panic("rtfree 2");
116 rttrash--;
117 if (rt->rt_refcnt < 0) {
118 printf("rtfree: %x not freed (neg refs)\n", rt);
119 return;
120 }
121 ifa = rt->rt_ifa;
122 IFAFREE(ifa) ;
123 Free(rt_key(rt));
124 Free(rt);
125 }
126 1}
route.c

Figure 19.5 rtfree function: release an rtentry structure.

The entry’s reference count is decremented and if it is less than or equal to 0 and the
route is not usable, the entry can be released. If either of the flags RNF_ACTIVE or
RNF_ROOT are set, this is an internal error. If RNF_ACTIVE is set, this structure is still
part of the routing table tree. If RNF_ROOT is set, this structure is one of the end mark-
ers built by rn_inithead.

rttrash is a debugging counter of the number of routing entries not in the routing
tree, but not released. It is incremented by rtrequest when it begins deleting a route,
and then decremented here. Its value should normally be 0.

Release interface reference

A check is made that the reference count is not negative, and then IFAFREE decre-
ments the reference count for the ifaddr structure and releases it by calling ifafree
when it reaches 0.

DELL EX.1095.630

606 Routing Requests and Routing Messages Chapter 19

Release routing memory

123-124 The memory occupied by the routing entry key and its gateway is released. We'll
see in rt_setga