
576 Radix Tree Routing Tables Chapter 18

41--45

41--42

43

61 #define rn_mask
62 #define rn_off
63 #define rn_l
64 #define rn_r

rn_u.rn_leaf.rn_Mask
rn_u.rn_node.rn_Off
rn_u.rn_node.rn_L
rn_u.rn_node.rn_R

Figure 18.18 radix_node structure: the nodes of the routing tree.

radix.h

The first five members are common to both internal nodes and leaves, followed by a
union defining three members if the node is a leaf, or a different three members if the
node is internal. As is common throughout the Net/3 code, a set of #define state-
ments provide shorthand names for the members in the union.

rn_mkl i st is the head of a linked list of masks for this node. We describe this field
in Section 18.9. rn_p points to the parent node.

If rn_b is greater than or equal to 0, the node is an internal node, else the node is a
leaf. For the internal nodes, rn_b is the bit number to test: for example, its value is 32
in the top node of the tree in Figure 18.4. For leaves, rn_b is negative and its value is -1
minus the index of the network mask. This index is the first bit number where a 0 occurs.
Figure 18.19 shows the indexes of the masks from Figure 18.4.

32~itIP mask ~its32-63) index rn_b

3333 3333 4444 4444 4455 5555 5555 6666
2345 6789 0123 4567 8901 2345 6789 0123

00000000: 0000 0000 0000 0000 0000 0000 0000 0000 0 -1
ff000000: iiii iiii 0000 0000 0000 0000 0000 0000 40 -41
ffffffe0: iiii iiii iiii iiii iiii iiii iii0 O00O 59 --60

Figure 18.19 Example of mask indexes.

As we can see, the index of the all-zero mask is handled specially: its index is 0, not 32.
44 rn_bmask is a 1-byte mask used with the internal nodes to test whether the corre-

sponding bit is on or off. Its value is 0 in leaves. We’ll see how this member is used
with the rn_o f f member shortly.

45 Figure 18.20 shows the three values for the rn_flags member.

Constant Description

RNF_ACTIVE this node is alive (for rt free)
RN<_NORMAL leaf contains normal route (not currently used)
RNF ROOT leaf is a root leaf for the tree

Figure 18.20 rn_flags values.

The RNF_ROOT flag is set only for the three radix nodes in the radix_node_head
structure: the top of the tree and the left and right end nodes. These three nodes can
never be deleted from the routing tree.

DELL EX.1095.601

Section 18.5 Radix Node Data Structures 877

48--49

50-51

52 58

For a leaf, rn_key points to the socket address structure and rn_mask points to a
socket address structure containing the mask. If rn_mask is null, the implied mask is
all one bits (i.e., this route is to a host, not to a network).

Figure 18.21 shows an example corresponding to the leaf for 140.252.13.32 in Fig-
ure 18.4.

radix_node{}
-rn_mklist
rn_p
rn_b
rn bmask
rn_flags
rn_key

rn_mask
rn_dupedkey

radix_mask{}

~
rm_off
rm_unused
rm_flags

rm_mklist
rm_mask
rm_refs

to radix_node { }
for bit 63

-60 sockaddr_in{}

RNF ACTIVE 140.252. 13 . 32
,116! 2! 0 I ol olo ! ol o]

 ? i? 5i ?i221 0

Fignre 18.21 radix_node structure corresponding to leaf for 140.252.13.32 in Figure 18.4.

This example also shows a radix_mask structure, which we describe in Fig-
ure 18.22. We draw this latter structure with a smaller width, to help distinguish it as a
different structure from the radi×_node; we’ll encounter both structures in many of
the figures that follow. We describe the reason for the radix_mask structure in Sec-
tion 18.9.

The rn_b of -60 corresponds to an index of 59. rn_key points to a sockaddr_in,

with a length of 16 and an address family of 2 (AF_INET). The mask structure pointed
to by rn_mask and rm mask has a length of 8 and a family of 0 (this family is
AF_UNSPEC, but it is never even looked at).

The rn_dupedkey pointer is used when there are multiple leaves with the same
key. We describe these in Section 18.9.

We describe rn_off in Section 18.8. rn_l and rn_r are the left and right pointers
for the internal node.

Figure 18.22 shows the radix_mask structure.

DELL EX.1095.602

578 Radix Tree Routing Tables Chapter 18

radix.h
76 extern struct radix_mask {

76--83

77 short rm b; /* bit offset; -l-index(netmask) */
78 char rm unused; /* cf. rn_bmask */
79 u_char rm_flags; /* cf. rn_flags */
80 struct radix_mask *rm mklist; /* more masks to try */
81 caddr_t rm mask; /* the mask */
82 int rm_refs; /* # of references to this struct */
83 } *rn_mkfreelist;

Figure 18.22 radix_mask structure.

radix.h

Each of these structures contains a pointer to a mask: rm_mask, which is really a
pointer to a socket address structure containing the mask. Each radix_node structure
points to a linked list of radix_mask structures, allowing multiple masks per node:
rn_mklist points to the first, and then each rm_mklist points to the next. This struc-
ture definition also declares the global rn_mkfree i i st, which is the head of a linked
list of available structures.

18.6 Routing Structures

The focal points of access to the kernel’s routing information are

1. the rtalloc function, which searches for a route to a destination,
2. the route structure that is filled in by this function, and

3. the rtentry structure that is pointed to by the route structure.

Figure 18.8 showed that the protocol control blocks (PCBs) used by UDP and TCP
(Chapter 22) contain a route structure, which we show in Figure 18.23.

46 struct route {
47 struct rtentry *ro_rt;
48 struct sockaddr ro_dst;
49 };

mute.h

/* pointer to struct with information */
/* destination of this route */

mute.h
Figure 18.23 route structure.

ro_dst is declared as a generic socket address structure, but for the Internet protocols
it is a sockaddr_in. Notice that unlike most references to this type of structure,
ro_dst is the structure itself, not a pointer to one.

At this point it is worth reviewing Figure 8.24, which shows the use of these routes
every time an IP datagram is output.

If the caller passes a pointer to a route structure, that structure is used. Other-
wise a local route structure is used and it is set to 0, setting ro_rt to a null
pointer. UDP and TCP pass a pointer to the route structure in their PCB to
ip_output.

DELL EX.1095.603

Section 18.6 Routing Structures 579

83 84

86

85

¯ If the route structure points to an rtentry structure (the ro_rt pointer is
nonnull), and if the referenced interface is still up, and if the destination address
in the route structure equals the destination address of the IP datagram, that
route is used. Otherwise the socket address structure so_dst is filled in with
the destination IP address and rtal loc is called to locate a route to that desti-
nation. For a TCP connection the destination address of the datagram never
changes from the destination address of the route, but a UDP application can
send a datagram to a different destination with each sendto.

¯ If rtalloc returns a null pointer in ro_rt, a route was not found and
ip_output returns an error.

If the RTF_GATEWAY flag is set in the rtentry structure, the route is indirect
(the G flag in Figure 18.2). The destination address (dst) for the interface output
function becomes the IP address of the gateway, the rt_gateway member, not
the destination address of the IP datagram.

Figure 18.24 shows the r tent ry structure.

83 struct rtentry {
84 struct radix_node rt_nodes[2] ; /* a leaf and an internal node */

route.h

85
86
87
88
89
90
91
92
93
94
95 };

struct sockaddr *rt_gateway;
short rt_flags; /*
short rt_refcnt; /*
u_long rt_use; /*
struct ifnet *rt_ifp; /*
struct ifaddr *rt_ifa; /*
struct sockaddr *rt_gerrmask;
caddr_t rt_llinfo; /*
struct rt_metrics rt_rmx; /*
struct rtentry *rt_gwroute; /*

/* value associated with rn_key */
Figure 18.25 */
#held references */
raw #packets sent */
interface to use */
interface address to use */

/* for generation of cloned routes */
pointer to link level info cache */
metrics: Figure 18.26 */
implied entry for gatewayed routes */

96 #define rt_key(r) ((struct sockaddr *) ((r)->rt_nodes->rn_key))
97 #define rt_mask(r) ((struct sockaddr *) ((r)->rt_nodes->rn mask))

route.h
Figure 18.24 rtentry structure.

Two radix_node structures are contained within this structure. As we noted in
the example with Figure 18.7, each time a new leaf is added to the routing tree a new
internal node is also added, rt_nodes [0] contains the leaf entry and rt_nodes [1]
contains the internal node. The two #define statements at the end of Figure 18.24 pro-
vide a shorthand access to the key and mask of this leaf node.

Figure 18.25 shows the various constants stored in rt_flags and the correspond-
ing character output by n e t s t at in the "Flags" column (Figure 18.2).

’ The RTF_BLACKHOLE flag is not output by netstat and the two with lowercase
flag characters, RTF_DONE and RTF_MASI<, are used in routing messages and not nor-
mally stored in the routing table entry.

If the RTF_GATEWAY flag is set, rt_gateway contains a pointer to a socket address
structure containing the address (e.g., the IP address) of that gateway. Also,

DELL EX.1095.604

580 Radix Tree Routing Tables Chapter 18

netstatConstant flag Description

RTF_BLACKHOLE
RTF_CLONING
RTF_DONE
RTF_DYNAMIC
R TF_GA TEWA Y
RTF_HOST

RTF_LLINFO
RTF_MASK

R TF_MODIFIBD
RTF PROTOI
RTF_PROT02
R TF_REJECT
RTF_STATIC
RTF_UP

RTF_XRESOLVE

c
d
D
G
H
L
m
M
1
2
R
S
U
X

discard packets without error (Ioopback driver: Figure 5.27)
generate new routes on use (used by ARP)
kernel confirmation that message from process was completed
created dynamically (by redirect)
destination is a gateway (indirect route)
host entry (else network entry)
set by ARP when rt_l 1 info pointer valid
subnet mask present (not used)
modified dynamically (by redirect)
protocol-specific routing flag
protocol-specific routing flag (ARP uses)
discard packets with error (loopback driver: Figure 5.27)
manually added entry (route program)
route usable
external daemon resolves name (used with X.25)

Figure 18.25 rt_flags values.

89--90

rt_gwroute points to the rtentry for that gateway. This latter pointer was used in
ether_output (Figure 4.15).

87 rt_refcnt counts the "held" references to this structure. We describe this counter
at the end of Section 19.3. This counter is output as the "Refs" column in Figure 18.2.

rt_use is initialized to 0 when the structure is allocated; we saw it incremented in
Figure 8.24 each time an IP datagram was output using the route. This counter is also
the value printed in the "Use" column in Figure 18.2.

rt_i fp and rt_i fa point to the interface structure and the interface address struc-
ture, respectively. Recall from Figure 6.5 that a given interface can have multiple
addresses, so minimally the r t_i f a is required.

The rt_!linfo pointer allows link-layer protocols to store pointers to their proto-
col-specific structures in the routing table entry. This pointer is normally used with the
RTF_LLINFO flag. Figure 21.1 shows how ARP uses this pointer.

route.h
54 struct rt_metrics {
55 u_long rmx_locks; /* bitmask for values kernel leaves alone */
56 u_long rmx mtu; /* MTU for this path */
57 u_long rmx_hopcount; /* max hops expected */
58 u_long rmx_expire; /* lifetime for route, e.g. redirect */
59 u_long rmx_recvpipe; /* inbound delay-bandwith product */
60 u_long rmx_sendpipe; /* outbound delay-bandwith product */
61 u_long rmx_ssthresh; /* outbound gateway buffer limit */
62 u_long rmx_rtt; /* estimated round trip time */
63 u_long rmx_rttvar; /* estimated RTT variance */
64 u_long rmx_pksent; /* #packets sent using this route */
65) ;

~o~te.h

Figure 18.26 rt_metrics structure.

DELL EX.1095.605

Section18.7 Initialization: route_init and rtable_init Functions 581

93

54-65

Figure 18.26 shows the rt_metrics structure, which is contained within the
rtentry structure. Figure 27.3 shows that TCP uses six members in this structure.

rmx_loeks is a bitmask telling the kernel which of the eight metrics that follow
must not be modified. The values for this bitmask are shown in Figure 20.13.

rmx_expire is used by ARP (Chapter 21) as a timer for each ARP entry. Contrary
to the comment with rmx_expire, it is not used for redirects.

Figure 18.28 summarizes the structures that we’ve described, their relationships,
and the various types of socket address structures they reference. The rtentry that we
show is for the route to 128.32.33.5 in Figure 18.2. The other radix_node contained in
the rtentry is for the bit 36 test right above this node in Figure 18.4. The two
sockaddr_dl structures pointed to by the first ifaddr were shown in Figure 3.38.
Also note from Figure 6.5 that the ifnet structure is contained within an le_softc
structure, and the second i faddr structure is contained within an in_ifaddr struc-
ture.

18.7 Initialization: route_init and rtable_init Functions

The initialization of the routing tables is somewhat obscure and takes us back to the
domain structures in Chapter 7. Before outlining the function calls, Figure 18.27 shows
the relevant fields from the domain structure (Figure 7.5) for various protocol families.

Member

dom_family
dom_init
dom_rtattach
dom_rtoffset
dom maxrtkey

OSI
value

AF_ISO
0
rn inithead
48
32

Internet
value

AF_INET
0
rn_inithead
32
16

Routing
value

PF_ROUTE
route_init
0
0
0

Unix
value

A F_ U!VkX
0
0
0
0

XNS
value

AF_NS
0
rn inithead
16
16

Comment

in bits
in bytes

Figure 18.27 Members of domain structure relevant to routing.

The PF_ROUTE domain is the only one with an initialization function. Also, only the
domains that require a routing table have a dom_rtattach function, and it is always
rn_inithead. The routing domain and the Unix domain protocols do not require a
routing table.

The dom_rtoffset member is the offset, in bits, (from the beginning of the
domain’s socket address structure) of the first bit to be examined for routing. The size
of this structure in bytes is given by dom_maxrtkey. We saw earlier in this chapter that
the offset of the IP address in the sockaddr_in structure is 32 bits. The
dora maxrtkey member is the size in bytes of the protocol’s socket address structure:
16 for sockaddr_in.

Figure 18.29 outlines the steps involved in initializing the routing tables.

DELL EX.1095.606

582 Radix Tree Routing Tables Chapter 18

rtentry{}

rn_mklist

rn_b
rn_bmask
rn_flags

rn_key

rn_mask
rn_dupedkey

rn_mklist

rn_p

rn_b

rn_bmask
rn_flags

rn_off

rn_l

rt_gateway
rt_flags

rt_refcnt

rt_use
rt_ifp

rt_ifa

rt_genmask

rt_llinfo

rmx_locks

rmx_expire

rmx_recvpipe

rmx_sendpipe

rmx_ssthresh
rmx_rtt

rmx_pksent

rt_gwroute -

radix_node{}
for140.252.13.33

128.32.33. 5
0

140.252.13.33
0

both sockaddr_in{ }

ifnet{}
if_name

if_next

if_addrlist

if_index
if_unit

~le\O
-~to SLIP ifnet{}

1

0

]
]

inpcb { }

ro rt

16 2 0
80 20 21 05

0

ifaddr{}
ifa_addr

ifa_dstaddr
ifa_netmask

ifa_ifp

ifa_next

ifa rtrequest
ifa_flags

ifa_refcnt

ifa_metric

ifaddr{}
ifa_addr

ifa_brdaddr
ifa netmask

ifa_ifp

ifa_next

ifa_rtrequest
ifa_flags

ifa_refcnt
ifa_metric

i,~ Ethemetaddr ~

~L20118! 1 1181316 1011 l e I0 Io8!ool2olo31f61421 o !

both sockaddr_dl { }

140.252.13.35

~ 1612 ! 0 !Sclfc10d123!
140.252.13.63

255.255.255.224

o

o

0

all three sockaddr_in{ }

Figure 18.28 Summary of routing structures.

DELL EX.1095.607

Section18.7 Initialization: route_init and rtable_init Functions 583

main
{

/* kernel initialization */

.oo

ifinit () ;

};.d.o.ma i hi_ n i t

domaininit ()
{

();

/* Figure 7.15 */

ADDDOMAIN(unix);
ADDDOMAIN(route);
ADDDOHAIN(inet);
ADDDOMAIN(osi);
.oo

for (dp : all domains) {

-- ~ ~ ~P~(>.P~m-_=>~alnrlipt~°)nt~ctil~ ~: this domain)

//.~_~
-rn init();

rt~ble_init();

1 ~n_init ()
for (dp = all domains)

if (dp->dom_maxrtkey > max_keylen)
max_keylen : dp->dom_maxrtkey;

allocate and initialize rn_zeros, rn_ones, masked_key ;

~ rn_inithead(&mask_rnhead); /* allocate and init tree for masks */

rtable_init()
.

for (dp : all domains)

~ ./../~. ~ (*dp >dom_rtattach)(&rt_tables[dp->dom_family]);

rn_inithead() /* dom_attach() function for all protocol families */

allocate and initialize one radix_node_head structure;

Figure 18.29 Steps involved in initialization of routing tables.

DELL EX.1095.608

584 Radix Tree Routing Tables Chapter 18

domaininit is called once by the kernel’s main function when the system is ini-
tialized. The linked list of domain structures is built by the AD~)DOMAIN macro and the
linked list is traversed, calling each domain’s dom_init function, if defined. As we
saw in Figure 18.27, the only dom_init function is route_init, which is shown in
Figure 18.30.

route.c
49 void
50 route_init ()
51 {
52 rn_init(); /* initialize all zeros, all ones, mask table */

rtable_init((void **) rt_tables);53
54 }

Figure 18.30 route_±nit function.

route.c

The function rn_init, shown in Figure 18.32, is called only once.
The function rtable_init, shown in Figure 18.31, is also called only once. It in

turn calls all the dom_rtattach functions, which initialize a routing table tree for that
domain.

39 void
40 rtable_init(table)
41 void **table;
42 {
43 struct domain *dom;
44 for (dom : domains; dom; dom = dom->dom_next)
45 if (dom->dom_rtattach)
46 dom->dom_rtattach(&table[dom->dom_family],
47 dom->dom rtoffset);
48 }

route.c

route.c

Figure 18.31 rtable_init function: call each domain’s dom_rtattach function.

We saw in Figure 18.27 that the only dom_rtattach function is rn_inithead,
which we describe in the next section.

18.8 Initialization: rn_init and rn_±nithead Functions

The function rn_init, shown in Figure 18.32, is called once by route_init to initial-
ize some of the globals used by the radix functions.

radix.c
750 void
751 rn_init ()
752 {
753 char *cp, *cplim;
754 struct domain *dom;

DELL EX.1095.609

Section18.8 Initialization: rn_init and rn_inithead Functions 585

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

770
771
772

for (dom - domains; dom; dom = dom->dom_next)
if (dom->dom_maxrtkey > max_keylen)

max_keylen = dom->dom maxrtkey;
if (max_keylen -_ 0) {

printf("rn_init: radix functions require max_keylen be set\n");
Eeturn;

]
R Malloc(rn_zeros, char *, 3 * max_keylen);
if (rn_zeros -- NULL)

panic("rn_init");
Bzero(rn_zeros, 3 * max_keylen);
rn_ones cp : rn_zeros + max_keylen;
maskedKey - cplim - rn_ones + max_keylen;
while (cp < cplim)

¯ Cp++ : -i;

if (rn_inithead((void **) &mask_rnhead, 0) == 0)
panic("rn_init 2");

radix.c

Figure 18.32 rn_init function.

750--761

762--769

Determine max_keylen
All the domain structures are examined and the global max_keylen is set to the

largest value of dom maxrtkey. In Figure]8.27 the largest value is 32 for AF_ISO, but
in a typical system that excludes the OSI and XNS protocols, max_keylen is]6, the size
of a sockaddr_in structure.
Allocate and initialize rn_zeros, rn_ones, and maskedKey

A buffer three times the size of max_keylen is allocated and the pointer stored in
the global rn_zeros. R_Malloc is a macro that calls the kernel’s malloc function,
specifying a type of M_RTABLE and M_DONTWAIT. We’ll also encounter the macros
Bcmp, Bcopy, I3zero, and Free, which call kernel functions of similar names, with the
arguments appropriately type cast.

This buffer is divided into three pieces, and each piece is initialized as shown in Fig-
ure 18.33.

~ max_keylen bytes ~!~ raax_keylen bytes ~ raax_keylen bytes

10 0 0 ... 0 0 0[i i i ... i 1 110 0 0 ... 0 0 01

rn_zeros rn_ones maskedKey

Figure 18.33 rn_zeros, rn_ones, and raaskedKey arrays.

rn_zeros is an array of all zero bits, rn_ones is an array of all one bits, and
maskedKey is an array used to hold a temporary copy of a search key that has been
masked.

DELL EX.1095.610

586 Radix Tree Routing Tables Chapter 18

770--772

Initialize tree of masks

The function rn_inithead is called to initialize the head of the routing tree for the
address masks; the rad±×_node_head structure pointed to by the global
raask_rnhead in Figure 18.8.

From Figure 18.27 we see that rn_in±¢head is also the dom_a¢¢ach function for
all the protocols that require a routing table. Instead of showing the source code for this
function, Figure 18.34 shows the radix_node_head structure that it builds for the
Internet protocols.

0
1

AF_INET = 2
3

25

rt_tables [] : radix_node_head { }
rnh_treetop
rnh_addrsize
rnh_pktsize
rnh_addaddr
rnh_addpkt
rnh_deladdr
rnh_delpkt
rnh_matchaddr
rnh_matchpkt
rnh_walktree
rn mklist
rn_p
rn b
rn_bmask
rn_flags
rn_key
rn_mask
rn_dupedkey
rn_mklist
rn_p
rn_b
rn_bmask
rn_flags
rn_off
rn_l
rn_r
rn mklist
rn_p
rn_b
rn_bmask
rn_flags
rn_key

rn_mask
rn_dupedkey

0
0
rn_a ddrou t e
NULL
rn delroute
NULL
re_match
NULL
rn_walktree
NULL

-33
0
ACTIVE I ROOT
rn zeros
NULL
NULL
NULL

32
OxSO
ACTIVE I ROOT
4

~ULL

-33
0
ACTIVE I ROOT
rn_olqes
NULL
NULL

radix_node { }
rnh_nodes [0]
(leftmost leaf)

radix node{}
rnh_nodes[1]
(internalnode)

top oftree

radix_node{}
rnh_nodes[2]
(rightmostleaf)

Figure 18.34 radix_node_head structure built by rn_inithead for Internet protocols.

The three radix_node structures form a tree: the middle of the three is the top (it is
pointed to by rnh_treetop), the first of the three is the leftmost leaf of the tree, and

DELL EX.1095.611

Section 18.9 Duplicate Keys and Mask Lists 587

the last of the three is the rightmost leaf of the tree. The parent pointer of all three
nodes (rn_p) points to the middle node.

The value 32 for rnh_nodes [1] . rn_b is the bit position to test. It is from the
dom_rtoffset member of the Internet domain structure (Figure 18.27). Instead of
performing shifts and masks during forwarding, the byte offset and corresponding byte
mask are precomputed. The byte offset from the start of a socket address structure is in
the rn_off member of the radix_node structure (4 in this case) and the byte mask is
in the rn_bmask member (0x8 0 in this case). These values are computed whenever a
radix_node structure is added to the tree, to speed up the comparisons during for-
warding. As additional examples, the offset and byte mask for the two nodes that test
bit 33 in Figure 18.4 would be 4 and 0x4 0, respectively. The offset and byte mask for
the two nodes that test bit 63 would be 7 and 0x01.

The value of -33 for the rn_b member of both leaves is negative one minus the
index of the leaf.

The key of the leftmost node is all zero bits (rn_zeros) and the key of the right-
most node is all one bits (rn_ones).

All three nodes have the IRNF_ROOT flag set. (We have omitted the RNF_ prefix.)
This indicates that the node is one of the three original nodes used to build the tree.
These are the only nodes with this flag.

One detail we have not mentioned is that the Network File System (NFS) also ~ses the routing
table functions. For each mount point on the local host a radix_node_head structure is allo-
cated, along with an array of pointers to these structures (indexed by the protocol family), sim-
ilar to the rt_tables array. Each time this mount point is exported, the protocol address of
the host that can mount this filesystem is added to the appropriate tree for the mount point.

18.9 Duplicate Keys and Mask Lists

Before looking at the source code that looks up entries in a routing table we need to
understand two fields in the radix_node structure: rn_dupedkey, which forms a
linked list of additional radix_node structures containing duplicate keys, and
r n_mkl i s t, which starts a linked list of radix_mask structures containing network
masks.

We first return to Figure 18.4 and the two boxes on the far left of the tree labeled
"end" and "’default." These are duplicate keys. The leftmost node with the RNF_ROOT
flag set (rnh_nodes [0] in Figure 18.34) has a key of all zero bits, but this is the same
key as the default route. We would have the same problem with the rightmost end
node in the tree, which has a key of all one bits, if an entry were created for
255.255.255.255, but this is the limited broadcast address, which doesn’t appear in the
routing table. In general, the radix node functions in Net/3 allow any key to be dupli-
cated, if each occurrence has a unique mask.

Figure 18.35 shows the two nodes with a duplicate key of all zero bits, In this figure
we have removed the RNF_ prefix for the rn_flags and omit nonnull parent, left, and
right pointers, which add nothing to the discussion.

DELL EX.1095.612

888 Radix Tree Routing Tables Chapter 18

left pointer
from bit 33

node

radix_node{

I
r n_mklist
rn_p

rn_b
rn_bmask
rn_flags

rn_mask
rn_dupedkey

radix_node{}
rn_mklist

rn b
rn bmask
rn_flags
rn_key
rn_mask
rn_dupedkey

radix_mask{}
rm_off
rm_unused
rm flags
rm mklist
rm_mask
rm_refs

radix node{}
rn_mklist
rn_p
rn b
rn_bmask
rn_flags

rn_off
rn_left
rn_right

32
Ox80
ACTIVEIROOT
4

head of routing tree:
node for bit 32 at
top of Figure 18.4

}
NULL

33
o
ACTIVE I ROOT

NULL rn_zeros:

-i
0
ACTIVE ~

.~

NULL

ULL

o I

0.0.0.0
~16[2] 0 100100!00[00[0 [

sockaddr_in

Figure 18.35 Duplicated nodes with a key of all zero bits.

The top node is the top of the routing tree--the node for bit 32 at the top of Fig-
ure 18.4. The next two nodes are leaves (their rn_b values are negative) with the
rn_dupedkey member of the first pointing to the second. The first of these two leaves
is the rnh_nodes [0] structure from Figure 18.34, which is the left end marker of the
tree--its RNF_ROOT flag is set. Its key was explicitly set by rn_inithead to
rn_zeros.

The second of these leaves is the entry for the default route. Its rn_key points to a
sockaddr_in with the value 0.0.0.0, and it has a mask of all zero bits. Its rn_mask
points to rn_zeros, since equivalent masks in the mask table are shared.

DELL EX.1095.613

Section 18.9 Duplicate Keys and Mask Lists 589

Normally keys are not shared, let alone shared with masks. The rn key pointers of the two
end markers (those with the RNF_ROOT flag) are special since they are built by rm_inithead
(Figure 18.34). The key of the left end marker points to rn_zeros and the key of the right end
marker points to rn_ones.

The final structure is a radix_mask structure and is pointed to by both the top
mode of the tree and the leaf for the default route. The list from the top node of the tree
is used with the backtracking algorithm when the search is looking for a network mask.
The list of radix_mask structures with an internal node specifies the masks that apply
to subtrees starting at that node. In the case of duplicate keys, a mask list also appears
with the leaves, as we’ll see in the following example.

We now show a duplicate key that is added to the routing tree intentionally and the
resulting mask list. In Figure 18.4 we have a host route for 127.0.0.1 and a network
route for 127.0.0.0. The default mask for the class A network route is 0xf f 000000, as
we show in the figure. If we divide the 24 bits following the class A network ID into a
16-bit subnet ID and an 8-bit host ID, we can add a route for the subnet 127.0.0 with a
mask of OxffffffO0:

bsdi $ route add 127.0.0.0 -netmask OxffffffO0 140.252,13.33

Although it makes little practical sense to use network 127 in this fashion, our interest is
in the resulting routing table structure. Although duplicate keys are not common with
the Internet protocols (other than the previous example with the default route), dupli-
cate keys are required to provide routes to subnet 0 of any network.

There is an implied priority in these three entries with a network ID of 127. If the
search key is 127.0.0.1 it matches all three entries, but the host route is selected because
it is the most specific: its mask (0xffffffff) has the most one bits. If the search key is
127.0.0.2 it matches both network routes, but the route for subnet 0, with a mask of
0×££££££00, is more specific than the route with a mask of 0×ff000000. The search
key 127.1.2.3 matches only the entry with a mask of 0 x f f 0000 00.

Figure 18.36 shows the resulting tree structure, starting at the internal node for bit
33 from Figure 18.4. We show two boxes for the entry with the key of 127.0.0.0 since
there are two leaves with this duplicate key.

OxO0000000

~ ~

~ 127~A

127.0.0.0
OxffffffO0
OxffO00000

Figure 18.36 Routing tree showing duplicate keys for 127.0.0.0.

DELL EX.1095.614

590 Radix Tree Routing Tables Chapter 18

Figure 18.37 shows the resulting radix_node and radix_mask structures.

radix node{}

l
r n_mklist
rn_p
rn_b
rn bmask
rn_flags
rn_key
rn_mask
rn_dupedkey

radix_node{}
~ rn mklist~-~ -

rn_p
rn b
rn_bmask
rn_ f iag s
rn_key
rn mask
rn_dupedkey

radix_mask { }

rm_unused
rm_flags
rm_mklist
rm_mask
rm_refs

radix_node{}
rn_mklist
rn_p
rn b
rn bmask
rn_flags
rn_off
rn_left
rn_right

63
OxOl
ACTIVE
7

node for bit 63

radix_node{ } for 127.0.0.1

57
0
ACTIVE

sockaddr_in

127. 0 . 0 . 0
17flooloolool 0

0

-41
0
ACTIVE

sockaddr_in

127. 0 . 0 . 0
~a61 2I o 17 1ooloolool

5101010 If looloolool o

radix_mask{}

~
rm_off 41
rm_unused
rm_flags

rm_mklist

~ULL
rm_mask
rm_refs

Figure 18.37 Example routing table structures for the duplicate keys for network 127.0.0.0.

DELL EX.1095.615

Section 18.10 rn_match Function 591

First look at the linked list of radix_mask structures for each radix_node. The mask
list for the top node (bit 63) consists of the entry for 0xffffff00 followed by
0xf f 0 0 0 0 0 0. The more-specific mask comes first in the list so that it is tried first. The
mask list for the second radix_node (the one with the rn_b of -57) is the same as that
of the first. But the list for the third radix_node consists of only the entry with a mask
of OxffO00000.

Notice that masks with the same value are shared but keys with the same value are
not. This is because the masks are maintained in their own routing tree, explicitly to be
shared, because equal masks are so common (e.g., every class C network route has the
same mask of 0 x f f f f f f 00), while equal keys are infrequent.

18.10 rn_mat ch Function

We now show the rn_match function, which is called as the rnh_matchaddr function
for the Internet protocols. We’ll see that it is called by the r t a 1 ! o c 1 function, which is
called by the rtal loc function. The algorithm is as follows:

1. Start at the top of the tree and go to the leaf corresponding to the bits in the
search key. Check the leaf for an exact match (Figure 18.38).

2. Check the leaf for a network match (Figure 18.40).

3. Backtrack (Figure 18.43).

Figure 18.38 shows the first part of rn_match.

135 struct radix_node *
136 rn_match(v_arg, head)
137 void *v_arg;
138 struct radix_node_head *head;
139 {
140 caddr_t v : v_arg;
141 struct radix_node *t head->rnh_treetop, *x;
142 caddr_t cp = v, cp2, cp3;
143 caddr_t cplim, mstart;
144 struct radix_node *saved_t, *top = t;
145 int off - t->rn_off, vlen - *(u_char *) cp, matched_off;

146
147
148
149
150
151
152
153
154
155

* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/

for (; t->rn_b >: 0;) {
if (t->rn_bmask & cp[t->rn_off])

t = t->rn_r; /* right if bit on */
else

t : t->rn_l; /* left if bit off */

radix.c

DELL EX.1095.616

592 Radix Tree Routing Tables Chapter 18

135--145

146--155

156--164

156 /*
157 * See if we match exactly as a host destination
158 */
159 cp +: off;
160 cp2 = t->rn_key + off;
161 cplim = v + vlen;
162 for (; cp < cplim; cp++, cp2++)
163 if (*cp !: *cp2)
164 goto onl;
165 /*
166 * This extra grot is in case we are explicitly asked
167 ~ to look up the default, ugh!
168 */
169 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
170 t : t->rn._dupedkey;
171 return t;
172 onl:

Figure 18.38 rn_mat ch function: go down tree, check for exact host match.

radix.c

The first argument v_arg is a pointer to a socket address structure, and the second
argument head is a pointer to the rad±x_node_head structure for the protocol. All
protocols call this function (Figure 18.17) but each calls it with a different head argu-
ment.

In the assignment statements, o £ f is the rn_o f f member of the top node of the tree
(4 for Internet addresses, from Figure 18.34), and vlen is the length field from the
socket address structure of the search key (16 for Internet addresses).

Go down the tree to the corresponding leaf
This loop starts at the top of the tree and moves down the left and right branches

until a leaf is encountered (rn_b is less than 0). Each test of the appropriate bit is made
using the precomputed byte mask in rn_bmask and the corresponding precomputed
offset in rn_off. For Internet addresses, rn_of f will be 4, 5, 6, or 7.

Check for exact match
When the leaf is encountered, a check is first made for an exact match. All bytes of

the socket address structure, starting at the rn_off value for the protocol famil)~ are
compared. This is shown in Figure 18.39 for an Internet socket address structure.

vlen =16

off:4 ~

sockaddr_in:(16)len family" port IP address (all zero)

1 byte 1 2

I[~

4 8

these 12 bytes are compared
v_arg

Figure 18.39 Variables during comparison of sockaddr_in structures.

As soon as a mismatch is found, a jump is made to onl.

DELL EX.1095.617

Section 18.10 rn_match Function 593

1 65--1 72

1 73--1 74

1 75--1 83

Normally the final 8 bytes of the sockaddr_in are 0 but proxy ARP (Section 21.12) sets one of
these bytes nonzero. This allows two routing table entries for a given IP address: one for the
normal IP address (with the final 8 bytes of 0) and a proxy ARP entry for the same IP address
(with one of the final 8 bytes nonzero).

The length byte in Figure 18.39 was assigned to vlen at the beginning of the func-
tion, and we’ll see that r t al 1 o c i uses the family member to select the routing table to
search. The port is never used by the routing functions.
Explicit check for default

Figure 18.35 showed that the default route is stored as a duplicate leaf with a key of
0. The first of the duplicate leaves has the RNF_ROOT flag set. Hence if the RNF_ROOT
flag is set in the matching node and the leaf contains a duplicate key, the value of the
pointer rn_dupedkey is returned (i.e., the pointer to the node containing the default
route in Figure 18.35). If a default route has not bee~ entered and the search matches
the left end marker (a key of all zero bits), or if th6 search encounters the right end
marker (a key of all one bits), the returned pointer t po~ints to a node with the
RNF_ROOT flag set. We’ll see that rtallocl explicitly checks whether the matching
node has this flag set, and considers such a match an error.

At thi~ point in rn_match a leaf has been reached but it is not an exact match with
the search key. The next part of the function, shown in Figure 18.40, checks whether the
leaf is a network match.

173 matched_off : cp - v;
174 saved_t - t;
175 do {
176 if (t >rn_mask) {
177 /*
178 * Even if we don’t match exactly as a host;
179 * we may match if the leaf we wound up at is
180 * a route to a net.
181 */
182 cp3 : matched_off + t->rn_mask;
183 cp2 - matched_off + t->rn_key;
184 for (; cp < cplim; cp++)
185 if ((*cp2++ ^ *cp) & *cp3++)
186 break;
187 if (cp == cplim)
188 return t;
189 cp = matched_off + v;
190 }
191 } while (t = t->rn_dupedkey);
192 t : saved_t;

Figure 18.40 rn_mat ch function: check for network match.

radix.c

radix.c

cp points to the unequal byte in the search key. mat ched_o f f is set to the offset of
this byte from the start of the socket address structure.

The do while loop iterates through all duplicate leaves and each one with a net-
work mask is compared. Let’s work through the code with an example. Assume we’re

DELL EX.1095.618

594 Radix Tree Routing Tables Chapter 18

184--190

looking up the IP address 140.252.13.60 in the routing table in Figure 18.4. The search
will end up at the node labeled 140.252.13.32 (bits 62 and 63 are both off), which con-
tains a network mask. Figure 18.41 shows the structures when the for loop in Fig-
ure 18.40 starts executing.

radix_node{)
rn mklist
rn_p
rn b
rn_bmask
rn_flags
Dn_key

rn mask f
rn_dupedkey

140. 252. 13 . 60
searchkey: I 16 II I8c

I matched_off : 7

v cp

cplim

- 60 cp2o ,
~ 25.5 . 255 . 255 . 224

8 ! I I ff I
cp3

Figure 18.41 Example for network mask comparison.

0 I

The search key and the routing table key are both sockaddr_in structures, but the
length of the mask is different. The mask length is the minimum number of bytes con-
taining nonzero values. All the bytes past this point, up through max_k÷ylen, are 0.

The search key is exclusive ORed with the routing table key, and the result logically
ANDed with the network mask, one byte at a time. If the resulting byte is ever nonzero,
the loop terminates because they don’t match (Exercise 18.1). If the loop terminates nor-
mally, however, the search key ANDed with the network mask matches the routing
table entrsa The pointer to the routing table entry is returned.

Figure 18.42 shows how this example matches, and how the IP address
140.252.13.188 does not match, looking at just the fourth byte of the IP address. The
search for both IP addresses ends up at this node since both addresses have bits 57, 62,
and 63 off.

search key = 140.252.13.60 search key = 140.252.13.188

searehkeybyte(*cp): 0011 ii00 = 3c i011 ii00 : be
routing table key byte(*cp2): 0010 0000 = 20 0010 0000 - 20

exclusive OR: 0001 ll00 1001 ii00
networkmaskbyte(*cp3): iii0 0000 -e0 iii0 0000 = e0

logicalAND: 0000 0000 1000 0000

Figure 18.42 Example of search key match using network mask.

The first example (140.252.13.60) matches since the result of the logical AND is 0 (and all
the remaining bytes in the address, the key, and the mask are all 0). The other example
does not match since the result of the logical AND is nonzero.

DELL EX.1095.619

Section 18.10 rn_match Function 595

191

193 195

196

197-210

If the routing table entry has duplicate keys, the loop is repeated for each key.

ing

193
194
195
196
197
198
199
200
201
202
203
204
2O5
206
207
2O8
209
210
211
212
213
214
215
216
217
218
219
220
221
222

The final portion of rn_match, shown in Figure 18.43, backtracks up the tree, look-
for a network match or a match with the default.

};

/* start searching up the tree */
do {

struct radix_mask *m;
t = t->rn_p;
if (m = t >rn mklist) {

/*
* After doing measurements here, it may
* turn out to be faster to open code
* rn_search_m here instead of always
* copying and masking.
*/

off = min(t->rn_off, matched_off);
mstart : maskedKey + off;
do {

cp2 - mstart;
cp3 - m->rm_mask + off;
for (cp : v + off; cp < cplim;)

*cp2++ = *cp++ & *cp3++;
x - rn_search(maskedKey, t);
while (x && x->rn_mask [= m >rm mask)

x : x >rn_dupedkey;
if (x &&

(Bcmp(mstart, x->rn_key + off,
vlen - off) == 0))

return x;
] while (m - m->rm mklist);

}
} while (t != top);
return 0;

Figure 18.43 rn_mat ch function: backtrack up the tree.

radix.c

radix.c

The do while loop continues up the tree, checking each level, until the top has
been checked.

The pointer t is replaced with the pointer to the parent node, moving up one level.
Having the parent pointer in each node simplifies backtracking.

Each level is checked only if the internal node has a nonnull list of masks.
rn_mklist is a pointer to a linked list of radix_node structures, each containing a
mask that applies to the subtree starting at that node. The inner do whi 1 e loop iterates
through each radix_mas k structure on the list.

Using the previous example, 140.252.13.188, Figure 18.44 shows the various data
structures when the innermost for loop starts. This loop logically ANDs each byte of
the search key with each byte of the mask, storing the result in the global maskedKey.
The mask value is 0xffffffe0 and the search would have backtracked from the leaf
for 140.252.13.32 in Figure 18.4 two levels to the node that tests bit 62.

DELL EX.1095.620

596 Radix Tree Routing Tables Chapter 18

211

t~
radix_node{}
rn_mklist
rn_D
rn_b
rn_bmask
rn_flags

rn_off
rn_left
rn_right

140.252. 13 .188 "
search key:] 16I] 18el fclOd}bc!

matched_off = 7

cp

62
2
RNF_A C T I VE
7

cplim

radix_mask{}
rm_off

]i60

rm_unused
rra_flags
rm_mklist

tNULLrm_mask
rm_refs I0

255 . 255 . 255 . 224

cp3

0 I

maskedKey:l I

mstart
cp2

Fizure 18.44 Preparation [o search again using masked search ke~

Once the for loop completes, the masking is complete, and rn_search (shown in Fig-
ure 18.48) is called with raaskedKey as the search key and the pointer t as the top of the
subtree to search. Figure 18.45 shows the value of raaskedKey for our example.

maskedKey:I. [aO[0

off= 7

mstart

Figure 18.45 maskedKey when rn_search is called.

Thebyte 0xa0 is the logical AND of 0xbc (188, the search key) and 0xe0 (the mask).
rn_search proceeds down the tree from its starting point, branching right or left

depending on the key, until a leaf is reached. In this example the search key is the 9
bytes shown in Figure 18.45 and the leaf that’s reached is the one labeled 140.252.13.32
in Figure 18.4, since bits 62 and 63 are off in the byte 0xa0. Figure 18.46 shows the data
structures when Bcrap is called to check if a match has been found.

DELL EX.1095.621

Section 18.10 rn_match Function 597

212--221

radix_node{}
rn_mklist
rn_p
rn b
rn_bmask
rn_flags
rn_key
rn_mask
rn_dupedkey

-6O

RNF ACTIVE 140.252. 13 . 32

mstart
F~Zure ~8.46 Comparison of maskedKey and new leaf.

vlen off =9

0

Since the 9-byte strings are not the same, the comparison fails.
This while loop handles duplicate keys, each with a different mask. The only key

of the duplicates that is compared is the one whose rn_mask pointer equals
m->rm_mask. As an example, recall Figures 18.36 and 18.37. If the search starts at the
node for bit 63, the first time through the inner do while loop m points to the
radix_mask structure for 0xffffff00. When rn_search returns the pointer to the
first of the duplicate leaves for 127.0.0.0, the rm_mask of this leaf equals m->rm_mask,
so Bcml~ is called. If the comparison fails, m is replaced with the pointer to the next
radix_mask structure on the list (the one with a mask of 0xff000000) and the do
while loop iterates around again with the new mask. rn_search again returns the
pointer to the first of the duplicate leaves for 127.0.0.0, but its rn_mask does not equal
m->rm_mask. The while steps to the next of the duplicate leaves and its rn_mask is
the right one.

Returning to our example with the search key of 140.252.13.188, since the search
from the node that tests bit 62 failed, the backtracking continues up the tree until the top
is reached, which is the next node up the tree with a nonnull rn_mkl i st.

Figure 18.47 shows the data structures when the top node of the tree is reached. At
this point maskedKey is computed (it is all zero bits) and rn_search starts at this
node (the top of the tree) and continues down the two left branches to the leaf labeled
"default" in Figure 18.4.

When rn_search returns, x points to the radix_node with an rn_b of -33,
which is the first leaf encountered after the two left branches from the top of the tree.
But x->rn_mask (which is null) does not equal m->rm_mask, so x is replaced with
x->rn_dupedkey. The test of the while loop occurs again, but now x->rn_mask
equals m->rm_mask, so the while loop terminates. Bcmp compares the 12 bytes of 0
starting at ms t art with the 12 bytes of 0 stating at x->rn_key plus 4, and since they’re
equal, the function returns the pointer x, which points to the entry for the default route.

DELL EX.1095.622

598 Radix Tree Routing Tables Chapter 18

t~
radix_node{}

_rn_mklist
rn_p
rn_b
rn_bmask
rn_flags

rn_off
rn_left
rn_right

140, 252. 13 . 188
search key:l 16 I I I 8c Ifc IOd Ibc I

mat ched_o f f = 7 - 1

v

32
OxSO
ACTIVEIROOT

radix mask{}

~
rm of~

-NILL rn zeros:

rm_unused
rm_flags
rm_mklist

mask ’ ~’ 0- Irm
rm_refs 0 ~ rn_off=4

/ //~kedKey:[

radix_node{} ~ off:4

rn mklist NULL
rn_p
rn_b -33
rn_bmask 0
rn_flags ACTIVEIROOT

-rn_key
rn mask NULL

-rn_dupedkey

o l

radix_node{}
-rn_mklist

rn_p
rn_b
rn_bmask
rn_flags
rn_key

-rn_mask
rn_dupedkey

1
0
ACTIVE

mstart

0 I
vlen - off=12 v

0 . 0 . 0 . 0
~ 16] [] O0 [O0 [O0 { O0 f

off :4NULL

o I

Figure 18.47 Backtrack to top of tree and rn_s earch that locates default leaf.

cplim

DELL EX.1095.623

Section 18.12 Summary 599

18.11 rn_search Function

rn_search was called in the previous section from rn_match to search a subtree of
the routing table.

79 struct radix_node *
80 rn_search(v_arg, head)
81 void *v_arg;
82 struct radix_node *head;
83 {
84 struct radix_node *x;
85 caddr_t v;

radix.c

86
87
88
89
90
91
92
93

for (x : head, v : v_arg; x->rn_b >- 0;) {
if (x->rn_bmask & v[x >rn_off])

x - x->rn_r; /* right if bit on */
else

x - x->rn_l; /* left if bit off */
}
return (x);

radix.c
Figure 18.48 rn_search function.

This loop is similar to the one in Figure 18.38. It compares one bit in the search key
at each node, branching left if the bit is off or right if the bit is on, terminating when a
leaf is encountered. The pointer to that leaf is returned.

18.12 Summary

Each routing table entry is identified by a key: the destination IP address in the case of
the Internet protocols, which is either a host address or a network address with an asso-
ciated network mask. Once the entry is located by searching for the key, additional
information in the entry specifies the IP address of a router to which datagrams should
be sent for the destination, a pointer to the interface to use, metrics, and so on.

The information maintained by the Internet protocols is the route structure, com-
posed of just two elements: a pointer to a routing table entry and the destination
address. We’ll encounter one of these route structures in each of the Internet protocol
control blocks used by UDP, TCP, and raw IP.

The Patricia tree data structure is well suited to routing tables. Routing table
lookups occur much more frequently than adding or deleting routes, so from a perfor-
mance standpoint using Patricia trees for the routing table makes sense. Patricia trees
provide fast lookups at the expense of additional work in adding and deleting. Mea-
surements in [Sklower 1991] comparing the radix tree approach to the Net/1 hash table
show that the radix tree method is about two times faster in building a test tree and four
times faster in searching.

DELL EX.1095.624

600 Radix Tree Routing Tables Chapter 18

Exercises

18.1 We said with Figure 18.3 that the general condition for matching a routing table entry is
that the search key logically ANDed with the routing table mask equal the routing table
key. But in Figure 18.40 a different test is used. Build a logic truth table showing that the
two tests are the same.

18.2 Assume a Net/3 system needs a routing table with 20,000 entries (IP addresses). Approxi-
mately how much memory is required for this, ignoring the space required for the masks?

18.3 What is the limit imposed on the length of a routing table key by the rad±x_node struc-
ture?

DELL EX.1095.625

Routing Requests and

Routing Messages

19.1 Introduction

The various protocols within the kernel don’t access the routing trees directly, using the
functions from the previous chapter, but instead call a few functions that we describe in
this chapter: rtalloc and rtallocl are two that perform routing table lookups,
~ct~÷qu÷st adds and deletes routing table entries, and ~ ±n±t is called by most inter-
faces when the interface goes up or down.

Routing messages communicate information in two directions. A process such as
the ~oute command or one of the routing daemons (routed or gated) writes routing
messages to a routing socket, causing the kernel to add a new route, delete an existing
route, or modify an existing route. The kernel also generates routing messages that can
be read by any routing socket when events occur in which the processes might be inter-
ested: an interface has gone down, a redirect has been received, and so on. In this chap-
ter we cover the formats of these routing messages and the information contained
therein, and we save our discussion of routing sockets until the next chapter.

Another interface provided by the kernel to the routing tables is through the
system_ system call, which we describe at the end of this chapter. This system call
allows a process to read the entire routing table or a list of all the configured interfaces
and interface addresses.

19.2 rtalloc and rtallocl Functions

rtalloc and rtalloc! are the functions normally called to look up an entry in the
routing table. Figure 19.1 shows rtalloc.

601

DELL EX.1095.626

602 Routing Requests and Routing Messages Chapter 19

route.c

58-65

66--76

77 78

94--101

79

58 void
59 rtalloc(ro)
60 struct route *to;
61 {
62 if (ro->ro_rt && ro->ro_rt->rt_ifp &&
63 return; /* XXX */
64 ro >ro_rt = rtallocl(&ro >ro_dst, i) ;
65 }

(ro >ro_rt->rt_flags & RTF_UP))

Figure 19.1 rtalloc function.

route.c

The argument ro is often the pointer to a rout e structure contained in an Internet
PCB (Chapter 22) which is used by UDP and TCP. If ro already points to an rtentry
structure (ro_rt is nonnull), and that structure points to an interface structure, and the
route is up, the function returns. Otherwise rtallocl is called with a second argu-
ment of 1. We’ll see the purpose of this argument shortly.

rtallocl, shown in Figure 19.2, calls the rnh_matchaddr function, which is
always rn_mat ch (Figure 18.17) for Internet addresses.

The first argument is a pointer to a socket address structure containing the address
to search for. The sa_fami ly member selects the routing table to search.

Call rn_mat ch
If the following three conditions are met, the search is successful.

1. A routing table exists for the protocol family,

2. rn_match returns a nonnull pointer, and

3. the matching radix_node does not have the RNF_ROOT flag set.

Remember that the two leaves that mark the end of the tree both have the RNF_I~OOT
flag set.

Search fails

If the search fails because any one of the three conditions is not met, the statistic
rts_unreach is incremented and if the second argument to rtallocl (report) is
nonzero, a routing message is generated that can be read by any interested processes on
a routing socket. The routing message has the type RTM_MISS, and the function returns
a null pointer.

If all three of the conditions are met, the lookup succeeded and the pointer to the
matching radix_node is stored in rt and newrt. Notice that in the definition of the
rtentry structure (Figure 18.24) the two radix_node structures are at the beginning,
and, as shown in Figure 18.8, the first of these two structures contains the leaf node.
Therefore the pointer to a radix_node structure returned by rn_match is really a
pointer to an r tent ry structure, which is the matching leaf node.

DELL EX.1095.627

Section 19.2 rtalloc and rtallocl Functions 603

route.c
66
67
68
69
70
71
72
73
74
75
76

77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

i00
i01
102
103
104

struct rtentry *
rtallocl(dst, report)
struct sockaddr *dst;
int report;

struct radix node_head *rnh = rt_tables[dst->sa_family]
struct rtentry *rt;
struct radix_node *rn;
struct rtentry *newrt : 0;
struct rt_addrinfo info;
int s = splnet(), err = 0, msgtype = RTM_MISS;

if (rnh && (rn = rnh->rnh_matchaddr((caddr_t) dst, rnh)
((rn >rn_flags & RNF_ROOT) == 0)) {
newrt : rt : (struct rtentry *) rn;
if (report && (rt->rt_flags & RTF_CLONING)) {

err - rtrequest(RTM_RESOLVE, dst, SA(0),
SA(0), 0, &newrt);

if (err)
newrt = rt;
rt->rt_refcnt++;
goto miss;

}
if ((rt - newrt) && (rt->rt_flags & RTF_XRESOLVE))

msgtype - RT~_RESOLVE;
goto miss;

}
] else

rt->rt_refcnt++;
} else {

rtstat.rts_unreach++;
miss:if (report) {

bzero((caddr_t) & info, sizeof(info));
info.rti_info[RTAX_DST] = dst;
rt_missmsg(msgtype, &info, 0, err);

}
}
splx(s);
return (newrt);

Figure 19.2 rtallocl function.

&&

route.c

80-82

Create clone entries
If the caller specified a nonzero second argument, and if the RTF_CLONING flag is

set, rtrequest is called with a command of RTM_RESOLVE to create a new rtentry
structure that is a clone of the one that was located. This feature is used by ARP and for
multicast addresses.

DELL EX.1095.628

604 Routing Requests and Routing Messages Chapter 19

8]-87

92 93

Clone creation fails
If rtrequest returns an error, newrt is set back to the entry returned by

rn_match and its reference count is incremented. A jump is made to miss where an
RTM_MISS message is generated.

Check for external resolution
If rtrequest succeeds but the newly cloned entry has the RTF_XRESOLVE flag set,

a jump is made to mi s s, this time to generate an RTM_RESOLVE message. The intent of
this message is to notify a user process when the route is created, and it could be used
with the conversion of IP addresses to X.121 addresses.

Increment reference count for normal successful search
When the search succeeds but the RTF_CLONING flag is not set, this statement

increments the entry’s reference count. This is the normal flow through the function,
which then returns the nonnull pointer.

For a small function, rtallocl has many options in how it operates. There are
seven different flows through the function, summarized in Figure 19.3.

entry not found

entry found

report
argument

0
1

0
1
1
1

RTF_
CLONING

flag

1
1
1

RTM_
RESOLVE

return

OK
OK

error

RTF_
XRESOLVE

flag

0
1

routing
message
generated

RTM_MISS

RTM_RESOLVE

RTM_MISS

rt_refcnt

++

++

++

++

++

i return
value

null
null

ptr
ptr
ptr
ptr
ptr

Figure 19.3 Summary of operation of rtallocl:

We note that the first two rows (entry not found) are impossible if a default route exists.
Also we show rt_refcnt being incremented in the fifth and sixth rows when the call
to rtrequest with a command of RTM_RESOLVE is OK. The increment is done by
rtrequest.

19.3

209-213

RTFREE Macro and rtfree Function

The RTFREE macro, shown in Figure 19.4, calls the rt free function only if the refer-
ence count is less than or equal to 1, otherwise it just decrements the reference count.

The r t f r e e function, shown in Figure 19.5, releases an r t entry structure when
there are no more references to it. We’ll see in Figure 22.7, for example, that when a pro-
cess control block is released, if it points to a routing entry, r t f r e e is called.

DELL EX.1095.629

Section 19.3 RTFREE Macro and rtfree Function 605

209 #define RTFREE(rt) \
210 if ((rt)->rt_refcnt <:
211 rtfree(rt); \
212 else \
213 (rt)->rt_refcnt--;

i) \

/* no need for function call */

Figure 19.4 RTFREE macro.

route.h

route.h

105--115

116

117--122

105 void
106 rtfree(rt)
107 struct rtentry *rt;
108 {
109 struct ifaddr *ifa;

ii0 if (rt =: 0)
iii panic("rtfree");
112 rt->rt_refcnt--;
113 if (rt->rt_refcnt <: 0 && (rt->rt_flags & RTF_UP) :: 0) {
114 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE I RNF_ROOT))
115 panic("rtfree 2");
116 rttrash--;
117 if (rt->rt_refcnt < 0) {
118 printf("rtfree: %x not freed (neg refs)\n", rt);
119 return;
120 }
121 ifa : rt->rt_ifa;
122 IFAFREE(ifa);
123 Free(rt_key(rt));
124 Free(rt);
125 }
126 }

Figure 19.5 rt free function: release an rtentry structure.

route.c

route.c

The entry’s reference count is decremented and if it is less than or equal to 0 and the
route is not usable, the entry can be released. If either of the flags RNF_ACTIVE or
RNF_ROOT are set, this is an internal error. If RNF_ACTIVE is set, this structure is still
part of the routing table tree. If RNF_ROOT is set, this structure is one of the end mark-
ers built by rn_inithead.

rttrash is a debugging counter of the number of routing entries not in the routing
tree, but not released. It is incremented by rtrequest when it begins deleting a route,
and then decremented here. Its value should normally be 0.

Release interface reference
A check is made that the reference count is not negative, and then IFAFREE decre-

ments the reference count for the i faddr structure and releases it by calling i fafree
when it reaches 0.

DELL EX.1095.630

606 Routing Requests and Routing Messages Chapter 19

123--124

Release routing memory
The memory occupied by the routing entry key and its gateway is released. We’ll

see in rt_setgate that the memory for both is allocated in one contiguous chunk,
allowing both to be released with a single call to Free. Finally the rtentry structure
itself is released.

Routing Table Reference Counts

The handling of the routing table reference count, rt_re font, differs from most other
reference counts. We see in Figure 18.2 that most routes have a reference count of 0, yet
the routing table entries without any references are not deleted. We just saw the reason
in rt free: an entry with a reference count of 0 is not deleted unless the entry’s RTF_UP
flag is not set. The only time this flag is cleared is by rtrequest when a route is
deleted from the routing tree.

Most routes are used in the following fashion.

If the route is created automatically as a route to an interface when the interface
is configured (which is typical for Ethernet interfaces, for example), then
rtinit calls rtrequest with a command of RTM_ADD, creating the new entry
and setting the reference count to 1. rtinit then decrements the reference
count to 0 before returning.

A point-to-point interface follows a similar procedure, so the route starts with a
reference count of 0.

If the route is created manually by the route command or by a routing daemon,
a similar procedure occurs, with route_output calling rtrequest with a
command of RTM ADD, setting the reference count to 1. This is then decre-
mented by route_output to 0 before it returns.

Therefore all newly created routes start with a reference count of 0.

When an IP datagram is sent on a socket, be it TCP or UDP, we saw that
ip_output calls rtalloc, which calls rtallocl. In Figure 19.3 we saw that
the reference count is incremented by r t a 11 oc 1 if the route is found.

The located route is called a held route, since a pointer to the routing table entry
is being held by the protocol, normally in a route structure contained within a
protocol control block. An rtentry structure that is being held by someone
else cannot be deleted, which is why rt free doesn’t release the structure until
its reference count reaches 0.

A protocol releases a held route by calling RTFREE or rt free. We saw this in
Figure 8.24 when ip_output detects a change in the destination address. We’ll
encounter it in Chapter 22 when a protocol control block that holds a route is
released.

Part of the confusion we’ll encounter in the code that follows is that rtallocl is
often called to look up a route in order to verify that a route to the destination exists, but

DELL EX.1095.631

Section 19.4 rtrequest Function 607

when the caller doesn’t want to hold the route. Since rtallocl increments the
counter, the caller immediately decrements it.

Consider a route being deleted by rtrequest. The RTF_UP flag is cleared, and if
no one is holding the route (its reference count is 0), rtfree should be called. But
rtfree considers it an error for the reference count to go below 0, so rtrequest
checks whether its reference count is less than or equal to 0, and, if so, increments it and
calls rt free. Normally this sets the reference count to 1 and rtfree decrements it to
0 and deletes the route.

19.4 rtrequest Function

The rtrequest function is the focal point for adding and deleting routing table entries.
Figure 19.6 shows some of the other functions that call it.

Figure 19.6 Summary of functions that call rtrequest.

rtrequest is a switch statement with one case per command: RTM_ADD,
RTM_DELETE, and RTM_RESOLVE. Figure 19.7 shows the start of the function and the
RTM_DELETE command.

290 int
291 rtrequest(req, dst, gateway, netmask, flags, ret_nrt)
292 int req, flags;
293 struct sockaddr *dst, *gateway, *netmask;
294 struct rtentry **ret_nrt;
295 {
296 int s = splnet();
297 int error - 0;
298 struct rtentry *rt;
299 struct radix_node *rn;
300 struct radix_node_head *rnh;
301 struct ifaddr *ifa;
302 struct sockaddr *ndst;
303 #define senderr(x) { error - x ; goto bad;

304
305
306
307

if ((rnh : rt_tables[dst->sa_family]) -= 0)
senderr(ESRCH) ;

if (flags & RTF_HOST)
netmask - 0;

route.c

DELL EX.1095.632

608 Routing Requests and Routing Messages Chapter 19

290--307

309--315

316 320

321 322

323--330

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

switch (req} {
case RTM_DELETE:

if ((rn - rnh->rnh_deladdr(dst, netmask, rnh)) :- 0)
senderr(ESRCH) ;

if (rn >rn_flags & (RNF_ACTIVE I RNF_ROOT))
panic("rtrequest delete");

rt : (struct rtentry *) rn;
rt->rt_flags &: -RTF_UP;
if (rt->rt_gwroute) {

rt - rt->rt_gwroute;
RTFREE(rt);
(rt : (struct rtentry *) rn)->rt_gwroute = 0;

}
if ((ifa = rt->rt_ifa) && ifa->ifa_rtrequest)

ifa->ifa_rtrequest(RTM_DELETE, rt, SA(0));
rttrash±+;
if (ret_nrt)

*ret_nrt = rt;
else if (rt->rt_refcnt <- 0) {

rt->rt_refcnt++;
rtfree(rt);

}
break;

Figure 19.7 rtrequest function: RTM_DELETE command.
route.c

The second argument, dst, is a socket address structure specifying the key to be
added or deleted from the routing table. The sa_fam±l¥ from this key selects the rout-
ing table. If the flags argument indicates a host route (instead of a route to a net-
work), the n÷tmask pointer is set to null, ignoring any value the caller may have
passed.

Delete from routing tree
The rnh_del addr function (rn_del e t e from Figure 18.17) deletes the entry from

the routing table tree and returns a pointer to the corresponding rtentry structure.
The RTF_UP flag is cleared.

Remove reference to gateway routing table entry
If the entry is an indirect route through a gateway, RTFREE decrements the

rt_refcnt member of the gateway’s entry and deletes it if the count reaches 0. The
rt_gwroute pointer is set to null and rt is set back to point to the entry that was
deleted.

Call interface request function
If an i fa_rtrequest function is defined for this entry, that function is called. This

function is used by ARP, for example, in Chapter 21 to delete the corresponding ARP
entry.
Return pointer or release reference

The rttrash global is incremented because the entry may not be released in the
code that follows. If the caller wants the pointer to the rtentry structure that was

DELL EX.1095.633

Section 19.4 rtrequest Function 609

331--339

340--342

343--348

349--352

deleted from the routing tree (if ret_nrt is nonnull), then that pointer is returned, but
the entry cannot be released: it is the caller’s responsibility to call rt free when it is fin-
ished with the entry. If ret_nrt is null, the entry can be released: if the reference count
is less than or equal to 0, it is incremented, and rt free is called. The break causes the
function to return.

Figure 19.8 shows the next part of the function, which handles the RTM_RESOLVE
command. This function is called with this command only from rtallecl, when a
new entry is to be created from an entry with the RTF_CLONING flag set.

route.c
331 case RTM_RESOLVE:
332 if (ret_nrt -- 0 I I (rt - *ret_nrt) -: 0)
333 senderr(EINVAL);
334 ifa - rt >rt_ifa;
335 flags - rt >rt_flags & -RTF_CLONING;
336 gateway - rt >rt_gateway;
337 if ((netmask = rt->rt_genmask) - 0)
338 flags I- RTF_HOST;
339 goto makeroute;

Figure 19.8 rtrequest function: RTM_RESOLVE command.

route.c

The final argument, ret_nrt, is used differently for this command: it contains the
pointer to the entry with the RTF_CLONING flag set (Figure 19.2). The new entry will
have the same rt_ifa pointer, the same flags (with the RTF_CLONING flag cleared),
and the same rt_gateway. If the entry being cloned has a null rt_genmask pointer,
the new entry has its RTF_HOST flag set, because it is a host route; otherwise the new
entry is a network route and the network mask of the new entry is copied from the
rt_genmask value. We give an example of cloned routes with a network mask at the
end of this section. This case continues at the label makeroute, which is in the next
figure.

Figure 19.9 shows the RTM_ADD command.
Locate corresponding interface

The function i f a_i fwi throute finds the appropriate local interface for the desti-
nation (dst), returning a pointer to its i faddr structure.

Allocate memory for routing table entry
An rtentry structure is allocated. Recall that this structure contains both the two

radix_node structures for the routing tree and the other routing information. The
structure is zeroed and the rt_flags are set from the caller’s flags, including the
RTF_UP flag.

Allocate and copy gateway address
The rt_setgate function (Figure 19.11) allocates memory for both the routing

table key (dst) and its gateway. It then copies gateway into the new memory and
sets the pointers rt_key, rt_gateway, and rt_gwroute.

DELL EX.1095.634

610 Routing Requests and Routing Messages Chapter 19

route.c

353 357

340
341
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
38O
381
382
383

case RTM ADD:
if ((ifa - ifa_ifwithroute(flags, dst, gateway)) =- 0)

senderr(ENETUNREACH);

makeroute:
R Malloc(rt, struct rtentry *, sizeof(*rt));
if (rt == 0)

senderr(ENOBUFS);
Bzero(rt, sizeof(*rt));
rt->rt_flags = RTF_UP I flags;
if (rt_setgate(rt, dst, gateway)) {

Free(rt);
senderr(ENOBUFS);

}
ndst - rt_key(rt);
if (netmask) {

rt_maskedcopy(dst, ndst, netmask);
] else

Bcopy(dst, ndst, dst >sa_len);

rn = rnh->rnh_addaddr((caddr_t) ndst, (caddr_t) netmask,
rnh, rt >rt_nodes);

if (rn == 0) {
if (rt->rt_gwroute)

rtfree(rt->rt_gwroute);
Free(rt_key(rt));
Free(rt);
senderr(EEXIST);

}
ifa->ifa_refcnt++;
rt->rt_ifa - ifa;
rt->rt_ifp = ifa->ifa_ifp;
if (req -- RTM_RESOLVE)

rt->rt_rmx = (*ret_nrt)->rt_rmx; /* copy metrics */
if (ifa >ifa_rtrequest)

ifa->ifa_rtrequest(req, rt, SA(ret_nrt ? *ret_nrt : 0));
if (ret_nrt) { "

*ret_nrt rt;
rt >rt_refcnt++;

}
break;

}
bad:

splx(s);
return (error);

Figure 19.9 rtrequest function: RTM_ADD command.
route.c

Cop~, ~lestination a~l~lress
The destination address (the routing table key dst) must now be copied into the

memory pointed to by rn_key. If a network mask is supplied, rt__maskedcopy logi-
cally ANDs dst and netmask, forming the new key. Otherwise dst is copied into the

DELL EX.1095.635

Section 19.4 rtrequest Function 611

new key. The reason for logically ANDing dst and netmask is to guarantee that the
key in the table has already been ANDed with its mask, so when a search key is com-
pared against the key in the table only the search key needs to be ANDed. For example,
the following command adds another IP address (an alias) to the Ethernet interface 1 e 0,
with subnet 12 instead of 13:

bsdi $ ifconfig leO inet 140.252.12.63 netmask OxffffffeO alias

The problem is that we’ve incorrectly specified all one bits for the host ID. Neverthe-
less, when the key is stored in the routing table we can verify with netstat that the
address is first logically ANDed with the mask:

Destination Gateway Flags Refs Use Interface
140.252.12.32 link#1 U C 0 0 le0

358--366

367--369

3 70--371

3 72-3 73

374--378

Add entry to routing tree

The rnh_addaddr function (rn_addroute from Figure 18.17) adds this rtentry
structure, with its destination and mask, to the routing table tree. If an error occurs, the
structures are released and EEXIST returned (i.e., the entry is already in the routing
table).

Store interface pointers
The i faddr structure’s reference count is incremented and the pointers to its

i faddr and i fnet structures are stored.

Copy metrics for newly cloned route
If the command was RTM_RESOLVE (not RTM ADD), the entire metrics structure is

copied from the cloned entry into the new entry. If the command was RTM_ADD, the
caller can set the metrics after this function returns.

Call interface request function
If an ifa_rtrequest function is defined for this entry, that function is called.

ARP uses this to perform additional processing for both the RTM_ADD and
RTM_RESOLVE commands (Section 21.13).

Return pointer and increment reference count
If the caller wants a copy of the pointer to the new structure, it is returned through

ret_nrt and the rt_refcnt reference count is incremented from 0 to 1.

Example: Cloned Routes with Network Masks

The only use of the rt_genmask value is with cloned routes created by the
RTM_RESOLVE command in rtrequest. If an rt_genmask pointer is nonnull, then
the socket address structure pointed to by this pointer becomes the network mask of the
newly created route. In our routing table, Figure 18.2, the cloned routes are for the local
Ethernet and for multicast addresses. The following example from [Sklower 1991] pro-
vides a different use of cloned routes. Another example is in Exercise 19.2.

Consider a class B network, say 128.1, that is behind a point-to-point link. The sub-
net mask is 0xf f f f f f 0 0, the typical value that uses 8 bits for the subnet ID and 8 bits

DELL EX.1095.636

612 Routing Requests and Routing Messages Chapter 19

for the host ID. We need a routing table entry for all possible 254 subnets, with a gate-
way value of a router that is directly connected to our host and that knows how to reach
the link to which the 128.1 network is connected.

The easiest solution, assuming the gateway router isn’t our default router, is a single
entry with a destination of 128.1.0.0 and a mask of 0×f£ff0000. Assume, however,
that the topology of the 128.1 network is such that each of the possible 254 subnets can
have different operational characteristics: RTTs, MTUs, delays, and so on. If a separate
routing table entry were used for each subnet, we would see that whenever a connec-
tion is closed, TCP would update the routing table entry with statistics about that
route--its RTT, RTT variance, and so on (Figure 27.3). While we could create up to 254
entries by hand using the route command, one per subnet, a better solution is to use
the cloning feature.

One entry is created by the system administrator with a destination of 128.1.0.0 and
a network mask of 0xffff0000. Additionally, the RTF_CLONING flag is set and the
genmask is set to 0xf f f f f f 0 0, which differs from the network mask. If the routing
table is searched for 128.1.2.3, and an entry does not exist for the 128.1.2 subnet, the
entry for 128.1 with the mask of 0xf f f f 0 0 0 0 is the best match. A new entry is created
(since the RTF_CLONING flag is set) with a destination of 128.1.2 and a network mask of
0xf f f f f f 0 0 (the genmask value). The next time any host on this subnet is referenced,
say 128.1.2.88, it will match this newly created entry.

19.5

384--391

rt_setgate Function

Each leaf in the routing tree has a key (rt_key, which is just the rn_key member of the
radix_node structure contained at the beginning of the rtentry structure), and an
associated gateway (rt_gateway). Both are socket address structures specified when
the routing table entry is created. Memory is allocated for both structures by
rt_setgate, as shown in Figure 19.10.

This example shows two of the entries from Figure 18.2, the ones with keys of
127.0.0.1 and 140.252.13.33. The former’s gateway member points to an Internet socket
address structure, while the latter’s points to a data-link socket address structure that
contains an Ethernet address. The former was entered into the routing table by the
route system when the system was initialized, and the latter was created by ARR

We purposely show the two structures pointed to by rt_key one right after the
other, since they are allocated together by rt_setgate, which we show in Figure 19.11.

Set lengths from socket address structures

dlen is the length of the destination socket address structure, and glen is the
length of the gateway socket address structure. The ROUNDUP macro rounds the value
up to the next multiple of 4 bytes, but the size of most socket address structures is
already a multiple of 4.

DELL EX.1095.637

Section 19.5 rt_setgate Function 613

rtentry{}

~- rt_key

rt_gateway

Ir adix node{}
(leaf) -

Ir adix_node{}
<node)

127. 0 . 0 . 1
17flO0100!Oll 0

i 127.
[16] 2] 0 [7f]O0[O0[Ol[

sockaddr_in socka~dr_in

rtentry{}

~- rt_key Ir adix node{ }
(leaf) -

Iradix node{}
(node) -

/- sdl_family
r t_gat eway

~ [/- sdl_index

-- | / / {- sdl_type

/ / J ~ fsdl alen
-- [[[| [I Ethernetaddr I

140.252. 13.33 ~ ~
18clfcl0dl211 0 1201181 1

v v-
sockaddr_in sockaddr_dl

Figure 19.10 Example of routing table keys and associated gateways.

392--397

398 401

Allocate memory
If memory has not been allocated for this routing table key and gateway yet, or if

glen is greater than the current size of the structure pointed to by rt_gateway, a new
piece of memory is allocated and rn_key is set to point to the new memory.
Use memory already allocated for key and gateway

An adequately sized piece of memory is already allocated for the key and gateway,
so new is set to point to this existing memory.

DELL EX.1095.638

614 Routing Requests and Routing Messages Chapter 19

384 int
385 rt_setgate(rt0, dst, gate)
386 struct rtentry *rt0;
387 struct sockaddr *dst, *gate;
388 {
389 caddr_t new, old;
390 int dlen = ROUNDUP(dst->sa_len),
391 struct rtentry *rt = rt0;

392
393
394
395
396
397
398
399
4O0
401
402
403
404
4O5
406
407
4O8
409
410
411
412
413
414
415
416
417 }

glen : ROUNDUP(gate->sa_len)

if (rt->rt_gateway -= 0 I I glen > ROUNDUP(rt >rt_gateway->sa_len)
old = (caddr_t) rt_key(rt);
R_Malloc(new, caddr_t, dlen + glen);
if (new == 0)

return i;
rt->rt_nodes->rn_key - new;

} else {
new - rt->rt_nodes->rn_key;
old - 0;

}
Bcopy(gate, (rt->rt_gateway = (struct sockaddr *)
if (old) {

Bcopy(dst, new, dlen);
Free(old);

(rt->rt_gwroute) {
rt = rt->rt_gwroute;
RTFREE(rt);
rt - rt0;
rt->rt_gwroute : 0;

}
if (rt->rt_flags & RTF_GATEWAY) {

rt->rt_gwroute - rtallocl(gate, i);

}
return 0;

(new + dlen)), glen);

route.c

Figure 19oll rt_setgate function.

402

403-406

407-412

Copy new gateway
The new gateway structure is copied and rt_gateway is set to point to the socket

address structure.

Copy key from old memory to new memory
If a new piece of memory was allocated, the routing table key (dst) is copied right

before the gateway field that was just copied. The old piece of memory is released.

Release gateway routing pointer
If the routing table entry contains a nonnull rt_gwroute pointer, that structure is

released by RTFREE and the rt_gwroute pointer is set to null.

DELL EX.1095.639

Section 19.6 rtinit Function 615

413 415

Locate and store new gateway routing pointer
If the routing table entry is an indirect route, rtaltocl locates the entry for the

new gateway, which is stored in rt_gwroute. If an invalid gateway is specified for an
indirect route, an error is not returned by rt_setgate, but the rt_gwroute pointer
will be null.

19,6

452

453--459

460--469

4 70-473

rtinit Function

There are four calls to rt ini t from the Internet protocols to add or delete routes associ-
ated with interfaces.

in_control calls rtinit twice when the destination address of a point-to-
point interface is set (Figure 6.21). The first call specifies RTM_DELETE to delete
any existing route to the destination; the second call specifies RTM_ADD to add
the new route.

¯ in_ifinit calls rtinit to add a network route for a broadcast network or a
host route for a point-to-point link (Figure 6.19). If the route is for an Ethernet
interface, the RTF_CLONING flag is automatically set by in_i finit.

¯ in_i fscrub calls rtinit to delete an existing route for an interface.

Figure 19.12 shows the first part of the rtinit function. The cmd argument is always
RTM_ADD or RTM_DELETE.

Get destination address for route
If the route is to a host, the destination address is the other end of the point-to-point

link. Otherwise we’re dealing with a network route and the destination address is the
unicast address of the interface (masked with i f a_ne t mas k).

Mask network address with network mask

If a route is being deleted, the destination must be looked up in the routing table to
locate its routing table entry. If the route being deleted is a network route and the inter-
face has an associated network mask, an mbuf is allocated and the destination address
is copied into the mbuf by rt_maskedcopy, logically ANDing the caller’s address with
the mask. dst is set to point to the masked copy in the mbuf, and that is the destination
looked up in the next step.

Search for routing table entry
rtallocl searches the routing table for the destination address. If the entry is

found, its reference count is decremented (since r t al lo c ! incremented the reference
count). If the pointer to the interface’s i faddr in the routing table does not equal the
caller’s argument, an error is returned.

Process request
rtrequest executes the command, either RTM_ADD or RTM_DELETE. When it

returns, if an mbuf was allocated earlier, it is released.

DELL EX.1095.640

616 Routing RequeSts and Routing Messages Chapter 19

route.c
441
442
443
444
445
446
447
448
449
45O
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

int
rtinit(ifa, cmd, flags)

struct ifaddr *ira;

int cmd, flags;

struct rtentry *rt;
struct sockaddr *dst;
struct sockaddr *deldst;
struct mbuf *m : 0;
struct rtentry *nrt = 0;
int error;

dst - flags & RTF_HOST ? ifa->ifa_dstaddr : ifa >ifa_addr;
if (cmd -: RTM_DELETE) {

if ((flags & RTF_HOST) =: 0 && ifa >ifa_netmask) {
m = m_get(M_WAIT, MT_SONAME);
deldst : mtod(m, struct sockaddr *);
rt_maskedcopy(dst, deldst, ifa->ifa_netmask) ;
dst = deldst;

}
if (rt = rtallocl(dst, 0)) {

rt >rt_refcnt--;
if (rt->rt_ifa != ifa) {

if (m)
(void) m_free(m);

return (flags & RTF_HOST ? EHOSTUNREACH
: ENETUNREACH);

}
}

}
error - rtrequest(cmd, dst, ifa->ifa_addr, ifa >ifa_netmask,

flags I ifa->ifa_flags, &nrt);
if (m)

(void) m_free(m);

Figure 19.12 rtinit function: call rtrequest to handle command.

route.c

474-480

481 --482

Figure 19.13 shows the second half of r t i n i t.

Generate routing message on successful delete

If a route was deleted, and rtrequest returned 0 along with a pointer to the
rtentry structure that was deleted (in nrt), a routing socket message is generated by
rt_newaddrrasg. If the reference count is less than or equal to 0, it is incremented and
the route is released by rt free.
Successful add

If a route was added, and rtrequest returned 0 along with a pointer to the
rtentry structure that was added (in nrt), the reference count is decremented (since
r t r e que s t incremented it).

DELL EX.1095.641

Section 19.7 rtredirect Function 617

d83 494

495

474
475
476
477
478
479
48O
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

if

}
if

(cmd -- RTM_DELETE && error -- 0 && (rt
rt_newaddrmsg(cmd, ifa, error, nrt);
if (rt >rt_refcnt <- 0) {

rt >rt_refcnt++;
rtfree(rt);

}

(cmd := RTM_ADD && error == 0 &&
rt >rt_refcnt -;
if (rt->rt_ifa != ifa) {

= nrt)) {

(rt : nrt)) {

printf("rtinit: wrong ifa (%x) was (%x)\n", ifa,
rt->rt_ifa);

if (rt->rt_ifa >ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, SA(0));

IFAFREE(rt >rt_ifa);
rt->rt_ifa = ifa;
rt >rt_ifp = ifa->ifa_ifp;
ifa >ifa_refcnt++;
if (ifa->ifa_rtrequest)

ifa->ifa_rtrequest(RTM ADD, rt, SA(0));
}
rt_newaddrmsg(cmd, ifa, error, nrt) ;

}
return (error) ;

Figure 19.13 rtinit function: second half.

route.c

route.c

Incorrect interface
If the pointer to the interface’s ifaddr in the new routing table entry does not

equal the caller’s argument, an error occurred. Recall that rtrequest determines the
i fa pointer that is stored in the new entry by calling i fa_ifwithroute (Figure 19.9).
When this error occurs the following steps take place: an error message is output to the
console, the ifa_rtrequest function is called (if defined) with a command of
RTM_DELETE, the i faddr structure is released, the rt_i fa pointer is set to the value
specified by the caller, the interface reference count is incremented, and the new inter-
face’s i fa_rtrequest function (if defined) is called with a command of RTM_ADD.

Generate routing message
A routing socket message is generated by rt_newaddrmsg for the RTH_AD© com-

mand.

19.7 rtredirect Function

When an ICMP redirect is received, icmp_input calls rtredirect and then calls
pfctlinput (Figure 11.27). This latter function calls udp_ctlinput and
t cp_ct ! input, which go through all the UDP and TCP protocol control blocks. If the

DELL EX.1095.642

618 Routing Requests and Routing Messages Chapter 19

PCB is connected to the foreign address that has been redirected, and if the PCB holds a
route to that foreign address, the route is released by rt£ree. The next time any of
these control blocks is used to send an IP datagram to that foreign address, rtalloc
will be called and the destination will be looked up in the routing table, possibly finding
a new (redirected) route.

The purpose of ~t~ed±rect, the first half of which is shown in Figure 19.14, is to
validate the information in the redirect, update the routing table immediatel~ and then
generate a routing socket message.

route.c
147 int
148 rtredirect(dst, gateway, netmask, flags, src, rtp)
149 struct sockaddr *dst, *gateway, *netmask, *src;
150 int flags;
151 struct rtentry **rtp;
152 {
153 struct rtentry *rt;
154 int error = 0;
155 short *stat = 0;
156 struct rt_addrinfo info;
157 struct ifaddr *ifa;

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

/* verify the gateway is directly reachable */
if ((ifa : ifa_ifwithnet(gateway)) :: 0) {

error : ENETUNREACH;
goto out;

}
rt = rtallocl(dst,
/*

* If the redirect isn’t from our current router for this dst,
* it’s either old or wrong. If it redirects us to ourselves,
* we have a routing loop, perhaps as a result of an interface
* going down recently.
*/

#define equal(al, a2) (bcmp((caddr_t) (al], (caddr_t] (a2), (al)->sa_len) :: 0)
if ([(flags & RTF_DONE) && rt &&

(!equal(src, rt->rt_gateway) I I rt->rt_ifa != ifa))
error - EINVAL;

else if (ifa_ifwithaddr(gateway))
error = EHOSTUNREACH;

if (error)
goto done;

/*
* Create a new entry if we just got back a wildcard entry
* or if the lookup failed. This is necessary for hosts
* which use routing redirects generated by smart gateways
* to dynamically build the routing tables.
*/

if ((rt == 0) I I (rt_mask(rt) && rt_mask(rt)->sa_len < 2))
goto create;

Figure 19.14 rtredirect function: validate received redirect.

DELL EX.1095.643

Section 19.7 rtredirect Function 619

147--157

158 162

163--177

The arguments are dst, the destination IP address of the datagram that caused the
redirect (HD in Figure 8.18); gateway, the IP address of the router to use as the new
gateway field for the destination (R2 in Figure 8.18); netmask, which is a null pointer;
flags, which is RTF_GATEWAY and RTF_HOST; src, the IP address of the router that
sent the redirect (R1 in Figure 8,18); and rtp, which is a null pointer. We indicate that
netmask and rtp are both null pointers when called by icmp_input, but these argu-
ments might be nonnull when called from other protocols.
New gateway must be directly connected

The new gateway must be directly connected or the redirect is invalid.
Locate routing table entry for destination and validate redirect

rtallocl searches the routing table for a route to the destination. The following
conditions must all be true, or the redirect is invalid and an error is returned. Notice
that icmp_input ignores any error return from rtredirect. ICMP does not generate
an error in response to an invalid redirect--it just ignores it.

¯ the RTF_DONE flag must not be set;
¯ r t a 11 oc must have located a routing table entry for ds t;
¯ the address of the router that sent the redirect (src) must equal the current

rt_gat eway for the destination;
¯ the interface for the new gateway (the i fa returned by i fa_i fwithnet) must

equal the current interface for the destination (rt_i fa), that is, the new gate-
way must be on the same network as the current gateway; and

¯ the new gateway cannot redirect this host to itself, that is, there cannot exist an
attached interface with a unicast address or a broadcast address equal to
gateway.

178-185

186-195

Must create a new route

If a route to the destination was not found, or if the routing table entry that was
located is the default route, a new entry is created for the destination. As the comment
indicates, a host with access to multiple routers can use this feature to learn of the cor-
rect router when the default is not correct. The test for finding the default route is
whether the routing table entry has an associated mask and if the length field of the
mask is less than 2, since the mask for the default route is rn_zeros (Figure 18.35).

Figure 19.15 shows the second half of this function.

Create new host route
If the current route to the destination is a network route and the redirect is a host

redirect and not a network redirect, a new host route is created for the destination and
the existing network route is left alone. We mentioned that the f lags argument always
specifies RTF_HOST since the Net/3 ICMP considers all received redirects as host redi-
rects.

DELL EX.1095.644

620 Routing Requests and Routing Messages Chapter 19

186
187
188
189
190
191
192
193
194
195
196
197
198
199
2OO
201
202
203
204
2O5
206
207
2O8
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226
227
228
229
230
231
232

* Don’t listen to the redirect if it’s
* for a route to an interface.
*/

if (rt->rt_flags & RTF_GATEWAY) {
if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {

/*
* Changing from route to net -> route to host.
* Create new route, rather than smashing route to net.
*/

create:
flags I= RTF_GATEWAY 1 RTF_DYNAMIC;
error - rtrequest((int) RTM_ADD, dst, gateway,

netmask, flags,
(struct rtentry **) 0);

stat = &rtstat.rts_dynamic;
} else {

/*
* Smash the current notion of the gateway to
* this destination. Should check about netmask!!
*/

rt->rt_flags I= RTF_MODIFIED;
flags I= RTF_MODIFIED;
stat - &rtstat.rts_newgateway;
rt_setgate(rt, rt_key(rt), gateway);

]
} else

error = EHOSTUNREACH;
done:

if (rt) {
if (rtp&& [error)

*rtp - rt;
else

rtfree(rt);
}

OUt :
if (error)

rtstat.rts_badredirect++;
else if (stat != NULL)

(*star)++;

bzero((caddr_t) & info, sizeof(info));
info.rti_info[RTAX_DST] = dst;
info.rti_info[RTAX_GATEWAY] - gateway;
info.rti_info[RTAX_NETMASK] = netmask;
info.rti_info[RTAX_AUTHOR] = src;
rt_missmsg(RTM_REDIRECT, &info, flags, error);

Figure 19.15 rtredirect function: second half.

route.c

route.c

DELL EX.1095.645

Section 19.8 Routing Message Structures 621

196--201

202 211

212--213

214--225

226--232

Create route
rtrequest creates the new route, setting the RTF_GATEWAY and RTF_DYNAMIC

flags. The netmask argument is a null pointer, since the new route is a host route with
an implied mask of all one bits. star points to a counter that is incremented later.

Modify existing host route
This code is executed when the current route to the destination is already a host

route. A new entry is not created, but the existing entry is modified. The
RTF_MODIFIED flag is set and rt_setgate changes the rt_gateway field of the rout-
ing table entry to the new gateway address.

Ignore if destination is directly connected
If the current route to the destination is a direct route (the RTF_GATEWAY flag is not

set), it is a redirect for a destination that is already directly connected. EHOSTUNREACH
is returned.

Return pointer and increment statistic
If a routing table entry was located, it is either returned (if rtp is nonnull and there

were no errors) or released by rtfree. The appropriate statistic is incremented.
Generate routing message

An rt_addrinfo structure is cleared and a routing socket message is generated by
rt_missmsg. This message is sent by raw_input to any processes interested in the
redirect.

19.8 Routing Message Structures

Routing messages consist of a fixed-length header followed by up to eight socket
address structures. The fixed-length header is one of the following three structures:

¯ rt_msghdr
¯ if_msghdr
¯ ifa_msghdr

Figure 18.11 provided an overview of which functions generated the different messages
and Figure 18.9 showed which structure is used by each message type. The first three
members of the three structures have the same data type and meaning: the message
length, version, and type. This allows the receiver of the message to decode the mes-
sage. Also, each structure has a member that encodes which of the eight potential
socket address structures follow the structure (a bitmask): the rtm_addrs, i fm_addrs,
and i fam_addrs members.

Figure 19.16 shows the most common of the structures, rt_msghdr. The
RTM_IFINFO message uses an if_msghdr structure, shown in Figure 19.17. The
RTM_NEWADDR and RTM_DELADDR messages use an i fa_msghdr structure, shown in
Figure 19.18.

DELL EX.1095.646

622 Routing Requests and Routing Messages Chapter 19

mute.h
139 struct rt_msghdr {
140 u_short rtm_msglen; /* to skip over non understood messages */
141 u_char rtm_version; /* future binary compatibility */
142 u_char rt~type; /* message type */

143 u_short rtm_index; /* index for associated ifp */
144 int rtm_flags; /* flags, incl. kern & message, e.g. DONE */
145 int rtm_addrs; /* bitmask identifying sockaddrs in msg */
146 pid_t rim pid; /* identify sender */
147 int rtm_seq; /* for sender to identify action */
148 int rtm_errno; /* why failed */
149 int rtm use; /* from rtentry */
150 u_long rtm_inits; /* which metrics we are initializing */
151 struct rt_metrics rtm_rmx; /* metrics themselves */
152 };

route.h

235 struct if_msghdr {
236 u_short ifm msglen;
237 u_char ifm_version;
238 u_char ifm_type;

239 int ifm_addrs;
240 int ifm_flags;
241 u_short ifm_index;
242 struct if_data ifm_data;
243 };

Figure 19.16 rt_msghdr structure.

/* to skip over non-understood messages */
/* future binary coipatability */
/* message type */

/* like rtm_addrs */
/* value of if_flags */
/* index for associated ifp */
/* statistics and other data about if */

Figure 19.17 if_msghdr structure.

248 struct ifa msghdr {
249 u_short ifam~nsglen;
250 u_char ifam_version;
251 u_char ifam_type;

252 int ifam_addrs;
253 int ifam_flags;
254 u_short ifam_index;
255 int ifam_metric;
256];

/* to skip over non understood messages */
/* future binary compatability */
/* message type */

/* like rtm_addrs */
/* value of ifa_flags */
/* index for associated ifp */
/* value of ±fa_metric */

Figure 19.18 ira msghdr structure.

Note that the first three members across the three different structures have the same
data types and meanings.

The three variables rtm_addrs, i fm_addrs, and i fam_addrs are bitmasks defin-
ing which socket address structures follow the header. Figure 19.19 shows the constants
used with these bitmasks.

DELL EX.1095.647

Section 19.8 Routing Message Structures 623

Array index ~

Constant Value I

RTAX DST 0
R TAX_GA TE WA Y 1
RTAX_NETMASK 2
RTAX_GENMASK 3
RTAX IFP 4
RTAX_IFA 5
R TAX_A UTH O R 6
RTAX_BRD 7

R TA X_MA X 8

Namein
rtsock.c

dst
gate
netmask
genmask
ifpaddr
ifaaddr

brdaddr

Description

destination socket address structure
gateway socket address structure
netmask socket address structure
cloning mask socket address structure
interface name socket address structure
interface address socket address structure
socket address structure for author of redirect
broadcast or point-to-point destination address
#elements in an rti_info [] array

Figure 19.19 Constants used to refer to members of rti_info array.

The bitmask value is always the constant 1 left shifted by the number of bits specified
by the array index. For example, 0×20 (RTA_TFA) is 1 left shifted by five bits
(RTAX_IFA). We’ll see this fact used in the code.

The socket address structures that are present always occur in order of increasing
array index, one right after the other. For example, if the bitmask is 0x87, the first
socket address structure contains the destination, followed by the gateway, followed by
the network mask, followed by the broadcast address.

The array indexes in Figure 19.19 are used within the kernel to refer to its
rt_addrinfo structure, shown in Figure 19.20. This structure holds the same bitmask
that we described, indicating which addresses are present, and pointers to those socket
address structures.

route.h
199 struct rt_addrinfo {
200 int rti_addrs; /* bitmask, same as rtm_addrs */
201 struct sockaddr *rti_info[RTAX MAX] ;
202 } ;

route.h

Figure 19.20 r~_addr2n£o structure: encode which addresses are present and pointers to them.

For example, if the RTA_GATEWAY bit is set in the rt i_addrs member, then the mem-
ber r ti_info [RTAX_GATEWAY] is a pointer to a socket address structure containing
the gateway’s address. In the case of the Internet protocols, the socket address structure
is a sockaddr_±n containing the gateway’s IP address.

The fifth column in Figure 19.19 shows the names used for the corresponding mem-
bers of an r ~ 2_i n f o array throughout the file r ¢ s o c k. c. These definitions look like

#define dst info.rti_info[RTAX_DST]

We’ll encounter these names in many of the source files later in this chapter. The
RTAX_AUTHOR element is not assigned a name because it is never passed from a process
to the kernel.

We’ve already encountered this rt_addrinfo structure twice: irt rtallocl (Fig-
ure 19.2) and rtredirect (Figure 19.14). Figure 19.21 shows the format of this

DELL EX.1095.648

624 Routing Requests and Routing Messages Chapter 19

structure when built by rtallocl,
r t _mi s sins g is called.

rt_addrinfo{}
rti_addrs
rti_info[RTAX_DST]
rti_info[RTAX_GATEWAY
rti_info[RTAX_NETMASK]
rti_info[RTAX_GENMASK]
rti_info[RTAX_IFP]
rti_info[RTAX_IFA]
rti_info[RTAX AUTHOR]
rti_info[RTAX_BRD]

0

NULL

NULL

NULL
NULL

NULL

NULL

NULL

after a routing table lookup fails, when

sockaddr_in {]
IP address that was not found

Figure 19.21 rt_addrinfo structure passed by rtallocl to rt_missrasg.

All the unused pointers are null because the structure is set to 0 before it is used. Also
note that the rti_addrs member is not initialized with the appropriate bitmask
because when this structure is used within the kernel, a null pointer in the rti_info
array indicates a nonexistent socket address structure. The bitmask is needed only for
messages between a process and the kernel.

Figure 19.22 shows the format of the structure built by rtr÷dir÷ct when it calls
rt_mi s smsg.

rt_addrinfo{}
rti_addrs
rti_info[RTAX_DST]
rti_info[RTAX_GATEWAY]-
rti_info[RTAX_NETMASK]
rti_info[RTAX_GENMASK]
rti_info[RTAX_IFP]
rti_info[RTAX_IFA]
rti_info[RTAX_AUTHOR]
rti_info[RTAX_BRD]

0

NULL

NULL

NULL

NULL

sockaddr_in{}
destinationIPaddressthatcausedredirect]

sockaddr_in{}
IPaddressofnew gatewayto use]

sockaddr_in{}
IPaddressofrouterthatgeneratedredirect]

Figure 19.22 rt_addrinfo structure passed by rtredirect to rt_missmsg.

The following sections show howthese structures are placed into the messages sent
to a process.

Figure 19.23 shows the rout e_cb structure, which we’ll encounter in the following
sections. It contains four counters; one each for the IP, XNS, and OSI protocols, and an
"any" counter. Each counter is the number of routing sockets currently in existence for
that domain.

By keeping track of the number of routing socket listeners, the kernel avoids build-
ing a routing message and calling raw_input to send the message when there aren’t
any processes waiting for a message.

DELL EX.1095.649

Section 19.9 rt_missmsg Function 625

route.h
203 struct route_cb {
204 int ip_count; /* IP */
205 int ns_count; /* XNS */
206 int iso_count; /* ISO */
207 int any_count; /* sum of above three counters */
208 };

Figure 19.23 route_cb structure: counters of routing socket listeners.

route.h

19.9

51 6--525

526--528

rt_missmsg Function
The function rt_missmsg, shown in Figure 19.24, takes the structures shown in Fig-
ures 19.21 and 19.22, calls rt_msgl to build a corresponding variable-length message
for a process in an mbuf chain, and then calls raw_input to pass the mbuf chain to all
appropriate routing sockets.

516 void
517 rt_missmsg(type, rtinfo, flags, error)
518 int type, flags, error;
519 struct rt_addrinfo *rtinfo;
520 {
521 struct rt_msghdr *rtm;
522 struct mbuf *m;
523 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];

524 if (route_cb.any_count == 0)
525 return;

526 m = rt_msgl(type, rtinfo);
527 if (m == 0)
528 return;

529 rtm : mtod(m, struct rt_msghdr *);
530 rtm->rtm_flags = RTF_DONE [flags;
531 rtm->rtm_errno = error;
532 rtm->rtm_addrs : rtinfo->rti_addrs;

533 route_proto.sp_protocol : sa ? sa->sa_family : 0;
534 raw_input(m, &route_proto, &route_src, &route_dst);
535 }

Figure 19.24 rt_missmsg function.

rtsock.c

rtsock.c

If there aren’t any routing socket listeners, the function returns immediately.

Build message in mbuf chain

rt_msgl (Section 19.12) builds the appropriate message in an mbuf chain, and
returns the pointer to the chain. Figure 19.25 shows an example of the resulting mbuf
chain, using the rt_addrinfo structure from Figure 19.22. The information needs to
be in an mbuf chain because raw_input calls sbappendaddr to append the mbuf
chain to a socket’s receive buffer.

DELL EX.1095.650

626 Routing Requests and Routing Messages Chapter 19

mbuf{~
m next
m next~kt
m_len
.m_data
m_type
m_flags
m~okthdr.len
m_pkthdr.rcvif

rt_msghdr{}
(76 bytes)

sockaddr_in{}
(16 bytes)

sockaddr_in{}
(firsthalf8bytes)

next mbuf in chain

NULL
i00

MT_ DATA

M_PKTHDR
124
NULL

mbuf{]
m_next
m_nextpkt

m_len
m_data
m_type
m_flags

sockaddr_in{)
(last hal~ 8 bytes)

sockaddr_in{}
(16 bytes)

(unused)
(84 byes)

Figure 19.25 Mbuf chain built by rt_msgl corresponding to Figure 19.22.

NULL
NULL
24

MT_ DATA
0

529--532

533--534

Finish building message
The two members rtm_flags and rtm_errno are set to the values passed by the

caller. The rtm_addrs member is copied from the rti_addrs value. We showed this
value as 0 in Figures 19.21 and 19.22, but rt_msgl calculates and stores the appropriate
bitmask, based on which pointers in the rt i_info array are nonnull.
Set protocol of message, call raw_input

The final three arguments to raw_input specify the protocol, source, and destina-
tion of the routing message. These three structures are initialized as

struct sockaddr route_dst : { 2, PF_ROUTE, } ;
struct sockaddr route_src : { 2, PF_ROUTE, };
struct sockproto route_proto = { PF_ROUTE, };

The first two structures are never modified by the kernel. The sockproto structure,
shown in Figure 19.26, is one we haven’t seen before.

socket.h
128 struct sockproto {
129 u_short sp_family; /* address family */
130 u_short sp_protocol; /* protocol */
131 } ;

socket.h

Figure 19.26 sockproto structure.

DELL EX.1095.651

Section 19.10 rt_ifmsg Function 627

The family is never changed from its initial value of PF_ROUTE, but the protocol is
set each time raw__input is called. When a process creates a routing socket by calling
socket, the third argument (the protocol) specifies the protocol in which the process is
interested. The caller of raw_input sets the sp_protocol member of the
route_proto structure to the protocol of the routing message. In the case of
rt_missmsg, it is set to the sa_family of the destination socket address structure (if
specified by the caller), which in Figures 19.21 and 19.22 would be AF_INET.

19.10

547--548

549--552

rt_i fmsg Function

In Figure 4.30 we saw that if_up and if_down both call rt_ifmsg, shown in Fig-
ure 19.27, to generate a routing socket message when an interface goes up or down.

540 void
541 rt_ifmsg(ifp)
542 struct ifnet *ifp;
543 {
544 struct if_msghdr *ifm;
545 struct mbuf *m;
546 struct rt_addrinfo info;

rtsock.c

547 if (route_cb.any_count =: 0)
548 return;

549 bzero((caddr_t) & info, sizeof(info));
550 m : rt_msgI(RTM_IFINFO, &info);
551 if (m == 0)
552 return;

553
554
555
556
557

ifm : mtod(m, struct if_msghdr *);
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags - ifp->if_flags;
ifm->ifm_data = ifp->if_data; /*
ifm->ifm_addrs = 0;

structure assignment */

558 route_proto.sp_protocol = 0;
559 raw_input(m, &route_proto, &route_src, &route_dst) ;
560 }

Figure 19.27 rt_ifmsg function.

rtsock.c

If there aren’t any routing socket listeners, the function returns immediately.

Build message in mbuf chain
An rt_addrinfo structure is set to 0 and rt_msgl builds an appropriate message

in an mbuf chain. Notice that all socket address pointers in the rt_addrinfo structure
are null, so only the fixed-length if_msghdr structure becomes the routing message;
there are no addresses.

DELL EX.1095.652

628 Routing Requests and Routing Messages Chapter 19

553-557

558-559

Finish building message
The interface’s index, flags, and i f_data structure are copied into the message in

the mbuf and the ± £m_addrs bitmask is set to 0.

Set protocol of message, call raw_input:
The protocol of the routing message is set to 0 because this message can apply to all

protocol suites. It is a message about an interface, not about some specific destination.
raw_±nput delivers the message to the appropriate listeners.

19.11 rt_newaddrmsg Function
In Figure 19.13 we saw that rtinit calls rt_newaddrmsg with a command of
RTM._ADD or RTM_DE~,ETW. when an interface has an address added or deleted. Fig-
ure 19.28 shows the first half of the function.

569 void
570 rt_newaddrmsg(cmd, ifa, error, rt)
571 int cmd, error;
572 struct ifaddr *ifa;
573 struct rtentry *rt;
574 {
575 struct rt_addrinfo info;
576 struct sockaddr *sa;
577 int pass;
578 struct mbuf *m;
579 struct ifnet *ifp = ifa->ifa_ifp;

rtsock.c

580 if (route_cb.any_count :: 0)
581 return;

582
583
584
585
586
587

for (pass - i; pass < 3; pass++) {
bzero((caddr_t) & ±nfo, sizeof(info));
if ((cmd :: RTM_ADD && pass =: i) I [

(cmd := RTM_DELETE && pass == 2)) {
struct ifa_msghdr *ifam;
int ncmd = cmd =: RTM_ADD ? RTM NEWADDR : RTM_DELADDR;

588
589
590
591
592
593
594
595
596
597
598
599

ifaaddr : sa = ifa->ifa_addr;
ifpaddr : ifp->if_addrlist->ifa_addr;
netmask = ifa->ifa_netmask;
brdaddr = ifa->ifa_dstaddr;
if ((m - rt_msgl(ncmd, &info)) == NULL)

continue;
ifam : mtod(m, struct ifa_msghdr *);
ifam->ifam_index = ifp->if_index;
ifam->ifam_metric = ifa->ifa_metric;
ifam >ifam_flags = ifa->ifa_flags;
ifam->ifam_addrs = info.rti_addrs;

Figure 19.28 rt_newaddrmsg function: first half: create ifa_msghdr message.

rtsock.c

DELL EX.1095.653

Section 19.11 rt_newaddrmsg Function 629

580--581

582

583

588--591

600--609

616 619

If there aren’t any routing socket listeners, the function returns immediately.

Generate two routing messages
The for loop iterates twice because two messages are generated. If the command is

RTM_ADD, the first message is of type RTM_NEWADDR and the second message is of type
RTM_ADD. If the command is RTM_DELETE, the first message is of type RTM_DELETE
and the second message is of type RTM_DELADDR. The RTM_NEWADDR and
RTM_DELADDR messages are built from an i fa_msghdr structure, while the RTM_ADD
and RTM_DELETE messages are built from an rt_msghdr structure. The function gen-
erates two messages because one message provides information about the interface and
the other about the addresses.

An rt_addrinfo structure is set to 0.

Generate message with up to four addresses
Pointers to four socket address structures containing information about the inter-

face address that has been added or deleted are stored in the rti_info array. Recall
from Figure 19.19 that i faaddr, i fpaddr, netmask, and brdaddr reference elements
in the rti_info array named info. rt_msgl builds the appropriate message in an
mbuf chain. Notice that sa is set to point to the i fa_addr structure, and we’ll see at
the end of the function that the family of this socket address structure becomes the
protocol of the routing message.

Remaining members of the i fa_msghdr structure are filled in with the interface’s
index, metric, and flags, along with the bitmask set by rt_msgl.

Figure 19.29 shows the second half of rt_newaddrmsg, which creates an
rt_msghdr message with information about the routing table entry that was added or
deleted.

Build message
Pointers to three socket address structures are stored in the rti_info array: the

rt_mask, rt_key, and rt_gateway structures, sa is set to point to the destination
address, and its family becomes the protocol of the routing message, rt_msgl builds
the appropriate message in an mbuf chain.

Additional fields in the rt_msghdr structure are filled in, including the bitmask set
by rt_msgl.

Set protocol of message, call raw input

The protocol of the routing message is set and raw_input passes the message to
the appropriate listeners. The function returns after two iterations through the loop.

DELL EX.1095.654

630 Routing Requests and Routing Messages Chapter 19

rtsock.c
600 if ((cmd :: RTM_ADD && pass :: 2) I I
601 (cmd :: RTM_DELETE && pass :: i))
602 struct rt_msghdr *rtm;

603 if (rt :: 0)
604 continue;
605 netmask = rtjnask(rt);
606 dst - sa : rt_key(rt);
607 gate : rt >rt_gateway;
608 if ((m = rt_msgl(cmd, &info)) == NULL)
609 continue;
610 rtm - mtod(m, struct rt_msghdr *);
611 rtm->rtm_index : ifp->if_index;
612 rtm >rtm_flags I- rt >rt_flags;
613 rtm->rtm_errno - error;
614 rtm->rtm_addrs = info.rti_addrs;
615
616 route_proto.sp_protocol sa ? sa >sa_family : 0;
617 raw_input(m, &route_proto, &route_src, &route_dst);
618
619 }

Figure 19.29 rt_newaddrmsg function: second half, create rt_msghdr message.

rtsock.c

19.12

399--422

423--424

425--428

rt_msgl Function

The functions described in the previous three sections each called rt_msgl to build the
appropriate routing message. In Figure 19.25 we showed the mbuf chain that was built
by rt_msgl from the rt_msghdr and rt_add~±nfo structures in Figure 19.22. Fig-
ure 19.30 shows the function.
Get mbuf and determine fixed size of message

An mbuf with a packet header is obtained and the length of the fixed-size message
is stored in l÷n. Two of the message types in Figure 18.9 use an i fa_msghdr structure,
one uses an i f_msghdr structure, and the remaining nine use an rt_msghdr structure.

Verify structure fits in mbuf
The size of the fixed-length structure must fit entirely within the data portion of the

packet header mbuf, because the mbuf pointer is cast to a structure pointer using mtod
and the structure is then referenced through the pointer. The largest of the three struc-
tures is i f_msghdr, which at 84 bytes is less than MHLEN (100).

Initialize mbuf packet header and zero structure
The two fields in the packet header are initialized and the structure in the mbuf is

set to 0.

DELL EX.1095.655

Section 19.12 rt_msg! Function 631

rtsock.c
399 static struct mbuf *
400 rt_msgl(type, rtinfo)
401 int type;
402 struct rt_addrinfo *rtinfo;
403 {
404 struct rt_msghdr *rtm;
405 struct mbuf *m;
406 int i;
407 struct sockaddr *sa;
408 int len, dlen;

409 m - m_gethdr(M_DONTWAIT, MT_DATA);
410 if (m == 0)
411 return (m);
412 switch (type) {

413
414
415
416

417
418
419

420
421
422
423
424
425
426
427
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

case RTM_DELADDR:
case RTM NEWADDR:

len = sizeof(struct ifa~nsghdr);
break;

case RTM_IFINFO:
len : sizeof(struct if_msghdr);
break;

default:
len = sizeof(struct rt_msghdr);

}
if (len > MHLEN)

panic("rt_msgl") ;
m->m~kthdr.len = m->m len - len;
m->m~kthdr.rcvif = 0;
rtm- mtod(m, struct rt_msghdr *)
bzero((caddr_t) rtm, len);

for (i - 0; i < RTAX HAX; i++) {
if ((sa - rtinfo->rti_info[i] == NULL)

continue;
rtinfo >rti_addrs I= (i << i)
dlen - ROUNDUP(sa->sa_len);
m_copyback(m, len, dlen, (caddr_t) sa);
len +- dlen;

if (m->m~kthdr.len !- len)
m_freem(m);
return (NULL);

}
rtm->rtm_msglen - len;
rtm->rtm version : RTM VERSION;
rtm >rtm_type - type;
return (m);

Figure 19.30 rt_msgl function: obtain and initialize mbuf.

rtsock.c

DELL EX.1095.656

632 Routing Requests and Routing Messages Chapter 19

429--436

437--440

441--445

19.13

Copy socket address structures into mbuf chain
The caller passes a pointer to an rt_addrinfo structure. The socket address struc-

tures corresponding to all the nonnull pointers in the rti_info are copied into the
mbuf by m_copyback. The value 1 is left shifted by the RTAX_XXX index to generate
the corresponding RTA_xxx bitmask (Figure 19.19), and each individual bitmask is logi-
cally ORed into the rti_addrs member, which the caller can store on return into the
corresponding member of the message structure. The ROUNDUP macro rounds the size
of each socket address structure up to the next multiple of 4 bytes.

If, when the loop terminates, the length in the mbuf packet header does not equal
len, the function m_copyback wasn’t able to obtain a required mbuf.
Store length, version, and type

The length, version, and message type are stored in the first three members of the
message structure. Again, all three xxx_msghdr structures start with the same three
members, so this code works with all three structures even though the pointer rtm is a
pointer to an rt_msghdr structure.

rt_msg2 Function

rt_msgl constructs a routing message in an mbuf chain, and the three functions that
called it then called raw_input to append the mbuf chain to one or more socket’s
receive buffer, rt_msg2 is different--it builds a routing message in a memory buffer,
not an mbuf chain, and has an argument to a walkarg structure that is used when
rt_msg2 is called by the two functions that handle the sysct 1 system call for the rout-
ing domain, rt_msg2 is called in two different scenarios:

I. from route_output to process the RTM_GET command, and

2. from sysctl_dumpentry and sysctl_iflist to process a sysctl system
call.

Before looking at rt_msg2, Figure 19.31 shows the walkarg structure that is used
in scenario 2. We go through all these members as we encounter them.

41 struct walkarg {
42 int w_op;
43 int w_arg;
44 int w_given;
45 int w_needed;
46 int w_tmemsize;
47 caddr_t w where;
48 caddr_t w_tmem;
49 };

Figure 19.31 walkarg structure: used

rtsock.c

/* NET RT xxx */
/* RTF_xxx for FLAGS, if_index for IFLIST */
/* size of process’ buffer */
/* #bytes actually needed (at end) */
/* size of buffer pointed to by w_tmem */
/* ptr to process’ buffer (maybe null) */
/* ptr to our malloc’ed buffer */

-rtsock.c

with the sys c t ! system call in the routing domain.

Figure 19.32 shows the first half of the rt_msg2 function. This portion is similar to
the first half of rt_msgl.

DELL EX.1095.657

Section 19.13 rt_msg2 Function 633

rtsock.c

446--455

446 static int
447 rt_msg2(type, rtinfo, cp, w)
448 int type;
449 struct rt_addrinfo *rtinfo;
450 caddr_t cp;
451 struct walkarg *w;
452 {
453 int i;
454 int len, dlen, second_time = 0;
455 caddr_t cp0;

456 rtinfo->rti_addrs = 0;
457 again:
458 switch (type) {

459 case RTM_DELADDR:
460 case RTM NEWADDR:
461 len - sizeof(struct ifa_msghdr);
462 break;

463 case RTM_IFINFO:
464 len = sizeof(struct if_msghdr);
465 break;

466 default:
467 len - sizeof(struct rt_msghdr);
468 }
469 if (cp0 = cp)
470 cp += len;
471 for (i = 0; i < RTAX_MAX; i++) {
472 struct sockaddr *sa;

473 if ((sa = rtinfo->rti_info[i])
474 continue;
475 rtinfo->rti_addrs I- (i << i);
476 dlen = ROUNDUP(sa->sa_len);
477 if (cp] {
478 bcopy((caddr_t) sa, cp,
479 cp +- dlen;
480 }
481 len +: dlen;
482 }

== 0)

(unsigned) dlen);

Figure 19.32 rt_msg2 function: copy socket address structures.

rtsock.c

Since this function stores the resulting message in a memory buffer, the caller speci-
fies the start of that buffer in the cp argument. It is the caller’s responsibility to ensure
that the buffer is large enough for the message that is generated. To help the caller
determine this size, if the cp argument is null rt_msg2 doesn’t store anything but pro-
cesses the input and returns the total number of bytes required to hold the result. We’ll
see that route_output uses this feature and calls this function twice: first to determine
the size and then to store the result, after allocating a buffer of the correct size. When
rt_msg2 is called by route_output, the final argument is null. This final argument is
nonnull when called as part of the sysct 1 system call processing.

DELL EX.1095.658

634 Routing Requests and Routing Messages Chapter 19

458 470

4 71--4 82

483--484

485--486

Determine size of structure
The size of the fixed-length message structure is set based on the message type. If

the cp pointer is nonnull, it is incremented by this size.

Copy socket address structures
The £or loop goes through the rti_in£o array, and for each element that is a non-

null pointer it sets the appropriate bit in the rt±_addrs bitmask, copies the socket
address structure (if cp is nonnull), and updates the length.

Figure 19.33 shows the second half of rt_msg2, most of which handles the optional
wal karg structure.

483 if (cp :: 0 && w != NULL && !second_time) {
484 struct walkarg *rw : w;

485 rw->w_needed +- len;
486 if (rw->w needed <: 0 && rw >w where)
487 if (rw->w_tmemsize < len) {
488 if (rw->w_tmem)
489 free(rw->w_tmem, M_RTABLE);
490 if (rw >w_tmem = (caddr_t)
491 malloc(len, M_RTABLE, M_NOWAIT))
492 rw->w_tmemsize - len;
493 }
494 if (rw->w_tmem) {
495 cp - rw->w_tmem;
496 second_time = i;
497 goto again;
498 } else
499 rw->w_where - 0;
5OO }
501 }
502 if (cp) {
503 struct rt_msghdr *rtm= (struct

504 rtm->rtm_version : RTM VERSION;
505 rtm->rtm_type - type;
506 rtm->rtm msglen - fen;
5O7
508 return (len);
5O9 }

rt_msghdr *) cp0;

Figure 19.33 rt_msg2 function: handle optional walkarg argument.

rtsock.c

rtsock.c

This i f statement is true only when a pointer to a walkarg structure was passed
and this is the first loop through the function. The variable second_time was initial-
ized to 0 but can be set to 1 within this i f statement, and a jump made back to the label
again in Figure 19.32. The test for cp being a null pointer is superfluous since when-
ever the w pointer is nonnull, the cp pointer is null, and vice versa.

Check if data to be stored
w_needed is incremented by the size of the message. This variable is initialized to

0 minus the size of the user’s buffer to the sysctl function. For example, if the buffer

DELL EX.1095.659

Section 19.14 sysctl_rtable Function 635

size is 500 bytes, w_needed is initialized to -500. As long as it remains negative, there
is room in the buffer, w_where is a pointer to the buffer in the calling process. It is null
if the process doesn’t want the result--the process just wants sys c t 1 to return the size
of the result, so the process can allocate a buffer and call sysctl again, rt_msg2
doesn’t copy the data back to the process--that is up to the caller--but if the w_where
pointer is null, there’s no need for rt_msg2 to malloc a buffer to hold the result and
loop back through the function again, storing the result in this buffer. There are really
five different scenarios that this function handles, summarized in Figure 19.34.

called from cp w

null null
route_output

nonnull null

null nonnull
sy s c t l_r tab i e null nonnull

nonnull nonnull

w.w_where second_time

null 0
nonnull 0
nonnull 1

Description

wants return length
wants result

process wants return length
first time around to calculate length
second time around to store result

Figure 19.34 Summary of different scenarios for rt_msg2.

487--493

494--499

502--509

Allocate buffer first time or if message length increases
w_tmemsize is the size of the buffer pointed to by w_tmem. It is initialized to 0 by

sysctl_rtable, so the first time rt_msg2 is called for a given sysctl request, the
buffer must be allocated. Also, if the size of the result increases, the existing buffer must
be released and a new (larger) buffer allocated.
Go around again and store result

If w_tmem is nonnull, a buffer already exists or one was just allocated, cp is set to
point to this buffer, second_time is set to 1, and a jump is made to again. The if
statement at the beginning of this figure won’t be true during this second pass, since
second_time is now 1. If w_tmem is null, the call to malloc failed, so the pointer to
the buffer in the process is set to null, preventing anything from being returned.

Store length, version, and type
If cp is nonnull, the first three elements of the message header are stored. The func-

tion returns the length of the message.

19.14 sysctl_rtable Function

This function handles the sysctl system call on a routing socket. It is called by
net_sysct 1 as shown in Figure 18.11.

Before going through the source code, Figure 19.35 shows the typical use of this sys-
tem call with respect to the routing table. This example is from the arp program.

The first three elements in the mib array cause the kernel to call sysctl_rtable
to process the remaining elements.

DELL EX.1095.660

636 Routing Requests and Routing Messages Chapter 19

int mib[6];
size_t needed;
char *buf, *lim, *next;
struct rt_msghdr *rtm;

mib[0] - CTL_NET;
mib[l] = PF_ROUTE;
mib[2] = 0;
mib[3] = AF_INET;
mib[4] : NET RT FLAGS;
mib[5] - RTF_LLINFO;

/* address family; can be 0 */
/* operation */
/* flags; can be 0 */

if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0)
quit("sysctl error, estimate");

if ((buf - malloc(needed)) -- NULL)
quit("malloc");

if (sysctl(mib, 6, bur, &needed, NULL, 0) < 0)
quit("sysctl error, retrieval");

lim = bur + needed;
for (next : buf; next < lim; next +- rtm >rtm msglen) {

rtm- (struct rt_msghdr *)next;
... /* do whatever */

}

Figure 19.35 Example of sysct i with routing table.

m±b [4] specifies the operation. Three operations are supported.

o

NET RT DUMP: return the routing table corresponding to the address family
specified by mib [3]. If the address family is 0, all routing tables are returned.

An RTM_GET routing message is returned for each routing table entry contain-
ing two, three, or four socket address structures per message: those addresses
pointed to by rt_key, rt_gateway, rt_netmask, and rt_genmask. The
final two pointers might be null.

NET RT FLAGS: the same as the previous command except mib [5] specifies an
!{TF_xxx flag (Figure 18.25), and only entries with this flag set are returned.

NET RT IFLIST: return information on all the configured interfaces. If the
mi]o[5] value is nonzero it specifies an interface index and only the interface
with the corresponding i f_index is returned. Otherwise all interfaces on the
i fnet linked list are returned.

For each interface one RTM_IFINFO message is returned, with information
about the interface itself, followed by one RTM_NEWA]3DR message for each
ifaddr structure on the interface’s if_addrlist linked list. If the mib [3]
value is nonzero, RTM_NEWADDR messages are returned for only the addresses

DELL EX.1095.661

Section 19.14 sysctl_rtable Function 637

with an address family that matches the mib [3] value. Otherwise mib [3] is 0
and information on all addresses is returned.

This operation is intended to replace the SIOCGIFCONF ioct 1 (Figure 4.26).

One problem with this system call is that the amount of information returned can
vary, depending on the number of routing table entries or the number of interfaces.
Therefore the first call to sysctl typically specifies a null pointer as the third argu-
ment, which means: don’t return any data, just return the number of bytes of return
information. As we see in Figure 19.35, the process then calls malloc, followed by
sy s c t 1 to fetch the information. This second call to sy s c t 1 again returns the number
of bytes through the fourth argument (which might have changed since the previous
call), and this value provides the pointer lim that points just beyond the final byte of
data that was returned. The process then steps through the routing messages in the
buffer, using the rtm msglen member to step to the next message.

Figure 19.36 shows the values for these six mib variables that various Net/3 pro-
grams specify to access the routing table and interface list.

mib []

0
1
2
3
4
5

arp

CTL_NET
PF_ROUTE
0
AF_INET

:NET RT FLAGS
RTF_LLINFO

route

CTL_NET
PF_ROUTE
0
0
NET RT DUMP
0

netstat

CTL_NET
PF_ROUTE
0
0
NET RT DUMP
0

routed

CTL_NET
PF_ROUTE
0
AF_INET
NET RT IFLIST
0

gated

CTL_NET
PF_ROUTE
0
0
NET RT IFLIST
0

rwhod

CTL_NET
PF_ROUTE
0
AF_INET
NET RT IFLIST
0

Figure 19.36 Examples of programs that call sysetl to obtain routing table and interface list.

The first three programs fetch entries from the routing table and the last three fetch the
interface list. The routed program supports only the Internet routing protocols, so it
specifies a mib[3] value of AF_INET, while gated supports other protocols, so its
value for mib [3] is 0.

705--719

720 721

Figure 19.37 shows the organization of the three sysctl_xxx functions that we
cover in the following sections.

Figure 19.38 shows the sy s c t 1 _r tab 1 e function.

Validate arguments
The new argument is used when the process is calling sysctl to set the value of a

variable, which isn’t supported with the routing tables. Therefore this argument must
be a null pointer.

namelen must be 3 because at this point in the processing of the system call, three
elements in the name array remain: name[0], the address family (what the process
specifies as mib [3]); name [1], the operation (mib [4]); and name [2], the flags
(mib [5]).

DELL EX.1095.662

638 Routing Requests and Routing Messages Chapter 19

sysctl
system call

/ Iselected

builds routing message
in buffer and copies

back to process

Figure 19.37 Functions that support the sysctl system call for routing sockets.

705 int
706 sysctl_rtable(name, namelen, where, given, new, newlen)
707 int *name;
708 int namelen;
709 caddr_t where;
710 size_t *given;
711 caddr_t *new;
712 size_t newlen;
713 {
714 struct radix_node_head *rnh;
715 int i, s, error - EINVAL;
716 u_char af;
717 struct walkarg w;

718 if (new)
719 return (EPERM);

rtsock.c

DELL EX.1095.663

Section 19.14 sysctl_rtable Function 639

723-728

731-738

720 if (namelen !- 3)
721 return (EINVAL);
722 af - name[0];
723 Bzero(&w, sizeof(w));
724 w.v~where - where;
725 w.w_given : *given;
726 w.w_needed = 0 - w.w_given;
727 w.w op - name[l];
728 w.~_arg - name[2];

729 s = splnet();
730 switch (w.w_op) {

731 case NET RT DUMP:
732 case NET RT FLAGS:
733 for (i - i; i <- AF_MAX; i++)
734 if ({rnh - rt_tables[i]) && (af == 0 I I af == i) &&
735 (error - rnh->rnh walktree(rnh,
736 sysctl_dumpentry, &w)))
737 break;
738 break;

739 case NET RT IFLIST:
740 error - sysctl_iflist(af, &w);
741 }
742 splx(s);
743 if (w.w_tmem)
744 free(w.w_tmem, H_RTABLE);
745 w.w_needed +- w.w_given;
746 if (where) {
747 *given = w.w_where - where;
748 if (*given < w.w_needed)
749 return (ENOMEM);
750 } else {
751 *given = (ii * w.w_needed) / i0;
752 }
753 return (error);
754 }

Figure 19.38 sysctl_rtable function: process sysctl system call requests.

rtsock.c

Initialize walkarg structure

A walkarg structure (Figure 19.31) is set to 0 and the following members are ini-
tialized: w_where is the address in the calling process of the buffer for the results (this
can be a null pointer, as we mentioned); w_given is the size of the buffer in bytes (this
is meaningless on input if w_where is a null pointer, but it must be set on return to the
amount of data that would have been returned); w_needed is set to the negative of the
buffer size; w_op is the operation (the NET RT XXX value); and w_arg is the flags value.

Dump routing table

The NET RT DUMP and NET RT FLAGS operations are handled the same way: a
loop is made through all the routing tables (the rt_tables array), and if the routing

DELL EX.1095.664

640 Routing Requests and Routing Messages Chapter 19

739-740

743-744

745

746-749

750--752

table is in use and either the address family argument was 0 or the address family argu-
ment matches the family of this routing table, the rnh_walktree function is called to
process the entire routing table. In Figure 18.17 we show that this function is normally
rn_walktre÷. The second argument to this function is the address of another function
that is called for each leaf of the routing tree (sysc t l_dumpentry). The third pointer
is just a pointer to anything that rn_walktree passes to the sysctl_dumpentry
function. This argument is a pointer to the walkarg structure that contains all the
information about this sysct 1 call.

Return interface list
The NET RT IFLIST operation calls the function sysctl_iflist, which goes

through all the i fnet structures.

Release buffer
If a buffer was allocated by rt_msg2 to contain a routing message, it is now

released.

Update w_needed
The size of each message was added to w_needed by rt_msg2. Since this variable

was initialized to the negative of w_given, its value can now be expressed as
w_needed : 0 - w_given + totalbytes

where totalbytes is the sum of all the message lengths added by rt_msg2. By
adding the value of w_given back into w_needed, we get

w_needed : 0 - w_given + totalbytes + w_given
: totalbytes

the total number of bytes. Since the two values of w_given in this equation end up
canceling each other, when the process specifies w__where as a null pointer it need not
initialize the value of w_given. Indeed, we see in Figure 19.35 that the variable
needed was not initialized.
Return actual size of message

If where is nonnull, the number of bytes stored in the buffer is returned through the
given pointer. If this value is less than the size of the buffer specified by the process,
an error is returned because the return information has been truncated.

Return estimated size of message
When the where pointer is null, the process just wants the total number of bytes

returned. A 10% fudge factor is added to the size, in case the size of the desired tables
increases between this call to sysct 1 and the next.

19.15 SySCt l_dumpent ry Function

In the previous section we described how this function is called by rn_walktree,
which in turn is called by sysctl_rtable. Figure 19.39 shows the function.

DELL EX.1095.665

Section 19.15 sysctl_dumpentry Function 641

rtsock.c
623
624
625
626
627
628
629
630

631
632
633
634
635
636
637
638
639
640

641
642
643
644
645
646
64?
648
649
650
651
652
653

int
sysctl_dumpentry(rn, w)
struct radix node *rn;
struct walkarg *w;
{

struct rtentry *rt = (struct rtentry *) rn;
int error : 0, size;
struct rt_addrinfo info;

if (w->w_op -= NET RT FLAGS && ! (rt->rt_flags & w->w_arg))
return 0;

bzero((caddr_t) & info, sizeof(info));
dst = rt_key(rt);
gate = rt->rt_gateway;
netmask = rt_mask(rt);
genmask : rt->rt_genmask;
size = rt_msg2(RTM_GET, &info, 0, w);
if (w->w_where && w->w_tmem) {

struct rt_msghdr *rtm : (struct rt_msghdr *) w->w_tmem;

rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rtm->rtm_rmx : rt->rt_rmx;
rtm->rtm_index : rt->rt_ifp >if_index;
rtm->rtm_errno : rtm->rtm_pid = rtm->rtm_seq : 0;
rtm->rtm_addrs - info.rti_addrs;
if (error : copyout((caddr_t) rtm, w->w_where, size))

w->w where : NULL;
else

w >w where += size;
}
return (error);

Figure 19.39 sysctl_dumpentry function: process one routing table entry.

rtsock.c

623--630

631--632

633--638

Each time this function is called, its first argument points to a radix_node struc-
ture, which is also a pointer to a rtentry structure. The second argument points to the
wa 1 kar g structure that was initialized by sy s c t l_r tab ! e.

Check flags of routing table entry

If the process specified a flag value (mib [5]), this entry is skipped if the rt_flags
member doesn’t have the desired flag set. We see in Figure 19.36 that the arp program
uses this to select only those entries with the RTF_LLINFO flag set, since these are the
entries of interest to ARP.
Form routing message

The following four pointers in the rti_info array are copied from the routing
table entry: dst, gate, netmask, and genmask. The first two are always nonnull, but
the other two can be null. rt_msg2 forms an RTH_GET message.

DELL EX.1095.666

642 Routing Requests and Routing Messages Chapter 19

639--651

Copy message back to process
If the process wants the message returned and a buffer was allocated by rt_msg2,

the remainder of the routing message is formed in the buffer pointed to by w_tm÷m and
cop¥out copies the message back to the process. If the copy was successful, w__where
is incremented by the number of bytes copied.

19.16 sysctl_iflist Function

This function, shown in Figure 19.40, is called directly by sysct!_rtable to return the
interface list to the process.

654 int
655 sysctl_iflist(af, w)
656 int af;
657 struct walkarg *w;
658 {
659 struct ifnet *ifp;
660 struct ifaddr *ifa;
661 struct rt_addrinfo info;
662 int len, error = 0;

rtsock.c

663
664
665
666
667
668
669
670
671
672

bzero((caddr_t) & info, sizeof(info));
for (ifp : ifnet; ifp; ifp : ifp->if_next) {

if (w->w_arg && w->w_arg !- ifp->if_index)
continue;

ifa - ifp->if_addrlist;
ifpaddr = ifa->ifa_addr;
len : rt_msg2(RTH_IFINFO, &info, (caddr_t) 0, w) ;
ifpaddr - 0;
if (w->w where && w->w_tmem) {

struct if_msghdr *ifm;

673
674
675
676
677
678
679
68O
681
682
683
684
685
686
687
688
689
690

ifm = (struct if_msghdr *) w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags - ifp->if_flags;
ifm->ifm_data - ifp->if_data;
ifm->ifm_addrs = info.rti_addrs;
if (error - copyout((caddr_t) ifm, w->w_where, len))

return (error);
w->w where +- fen;

}
while (ira - ifa->ifa_next) {

if (af && af != ifa->ifa_addr >sa_family)
continue;

ifaaddr = ifa->ifa_addr;
netmask - ifa >ifa_netmask;
brdaddr = ifa >ifa_dstaddr;
fen = rt_msg2(RTM_NEWADDR, &info, 0, w);
if (w->w_where && w >w_tmem) {

struct ifa_msghdr *ifam;

DELL EX.1095.667

Section 19.16 sysc~l_iflis~ Function 643

654--666

667 670

671--681

682--684

685--688

689--699

701

691 ifam : (struct ifa_msghdr *) w->w_tmem;
692 ifam->ifam_index : ifa->ifa_ifp->if_index;
693 ifam >ifam_flags - ifa->ifa_flags;
694 ifam->ifam_metric = ifa->ifa_metric;
695 ifam->ifam_addrs = info.rti_addrs;
696 if (error = copyout(w->w_tmem, w->w where, len))
697 return (error);
698 w->w_where += len;
699 }
7OO }
701 ifaaddr = netmask = brdaddr - O;
702
703 return (0);
704

Figure 19.40 ~sysctl_i flist function: return list of interfaces and their addresses.

rtsock.c

This function is a for loop that iterates through each interface starting with the one
pointed to by ifnet. Then a while loop proceeds through the linked list of ifaddr
structures for each interface. An RTM_IFINFO routing message is generated for each
interface and an RT~I_NEWADDR message for each address.

Check interface index
The process can specify a nonzero flags argument (mib [5] in Figure 19.36) to select

only the interface with a matching i f_index value.
Build routing message

The only socket address structure returned with the RTM_IFINFO message is
i fpaddr. The message is built by rt_msg2. The pointer i fpaddr in the info struc-
ture is then set to 0, since the same imfo structure is used for generating the subsequent
RTM_NEWADDR messages.
Copy message back to process

If the process wants the message returned, the remainder of the i f_msghdr struc-
ture is filled in, copyout copies the buffer to the process, and w where is incremented.
Iterate through address structures, check address family

Each i faddr structure for the interface is processed and the process can specify a
nonzero address family (mib [3] in Figure 19.36) to select only the interface addresses
of the given family.
Build routing message

Up to three socket address structures are returned in each RTM NEWA]DDR message:
i faaddr, metmask, and brdaddr. The message is built by rt_msg2.
Copy message back to process

If the process wants the message returned, the remainder of the i fa_msghdr struc-
ture is filled in, copyout copies the buffer to the process, and w_where is incremented.

These three pointers in the info array are set to 0, since the same array is used for
the next interface message.

DELL EX.1095.668

644 Routing Requests and Routing Messages Chapter 19

19.17 Summary

Routing messages all have the same format--a fixed-length structure followed by a
variable number of socket address structures. There are three different types of mes-
sages, each corresponding to a different fixedqength structure, and the first three ele-
ments of each structure identify the length, version, and type of message. A bitmask in
each structure identifies which socket address structures follow the fixed-length struc-
ture.

These messages are passed between a process and the kernel in two different ways.
Messages can be passed in either direction, one message per read or write, across a rout-
ing socket. This allows a superuser process complete read and write access to the ker-
nel’s routing tables. This is how routing daemons such as toltec] and gat÷c]
implement their desired routing policy.

Alternatively any process can read the contents of the kernel’s routing tables using
the sysct]_ system call. This does not involve a routing socket and does not require
special privileges. The entire result, normally consisting of many routing messages, is
returned as part of the system call. Since the process does not know the size of the
result, a method is provided for the system call to return this size without returning the
actual result.

Exercises

19.1 What is the difference in the RTF_DYNAMIC and RTF_MODIFIED flags? Can both be set for
a given routing table entry?

19.2 What happens when the default route is entered with the command of the form
bsdi $ route add default -cloning -genmask 255.255.255.255 sun

19.3 Estimate the space required by sysctl to dump a routing table that contains 15 ARP
entries and 20 routes.

DELL EX.1095.669

2O

Routing Sockets

20.1 Introduction

A process sends and receives the routing messages described in the previous chapter by
using a socket in the routing domain. The sock÷~ system call is issued specifying a fam-
ily of PF_ROUTE and a socket type of SOCK_RAW.

The process can then send five routing messages to the kernel:

1. RTM_ADD: add a new route.

2. RTM_DELE~: delete an existing route.

3. R~M_G~.~: fetch all the information about a route.

4. R~FI_CHAI’qGE: change the gateway, interface, or metrics of an existing route.

5. RTI~I_~.OCK: specify which metrics the kernel should not modify.

Additionally, the process can receive any of the other seven types of routing messages
that are generated by the kernel when some event, such as interface down, redirect
received, etc., occurs.

This chapter looks at the routing domain, the routing control blocks that are created
for each routing socket, the function that handles messages from a process
(rouCe_outpu~), the function that sends routing messages to one or more processes
(raw_±npu¢), and the various functions that support all the socket operations on a
routing socket.

645

DELL EX.1095.670

646 Routing Sockets Chapter 20

20.2 routedomain and protosw Structures

Before describing the routing socket functions, we need to discuss additional details
about the routing domain; the SOC~<_RAW protocol supported i n the routing domain;
and routing control blocks, one of which is associated with each routing socket.

Figure 20.1 lists the domain structure for the PF_ROUTE domain, named
rout edomain.

Member

dom_family
dom_name
dom_init
dom_externalize
dom_dispose
dom_!grotosw
dom_protoswNPROTOSW
dom_next
dom_rtattach
dom_rtoffset
dom_maxrtkey

Value

PF_ROUTE
route
route_init
0
0
routesw

0
0
0

Description

protocol family for domain
name
domain initialization, Figure 18.30
not used in routing domain
not used in routing domain
protocol switch structure, Figure 20.2
pointer past end of protocol switch structure
filled in by doma i n i ni t, Figure 7.15
not used in routing domain
not used in routing domain
not used in routing domain

Figure 20.1 routedomain structure.

Unlike the Internet domain, which supports multiple protocols (TCP, UDP, ICMP,
etc.), only one protocol (of type SOCK_RAW) is supported in the routing domain. Fig-
ure 20.2 lists the protocol switch entry for the PF_ROUTE domain.

Member

pr_type
pr_domain
pr~rotocol
pr_flags
pr_input
pr_output
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

routesw[0]

SOCK_RAW
&routedomain
0
PR_ATOMICIPR_ADDR
raw.input
route_output
raw_ctlinput
0
route_usrreq
raw_init
0
0
0
sysctl_rtable

Description

raw socket
part of the routing domain

socket layer flags, not used by protocol processing
this entry not used; raw_input called directly
called for PRU_SEND requests
control input function
not used
respond to communication requests from a process
initialization
not used
not used
not used
for sysctl(8) system call

Figure 20.2 The routing protocol p~otosw structure.

DELL EX.1095.671

Section 20.4 raw_init Function 647

20.3

39--47

20.4

38--42

Routing Control Blocks

Each time a routing socket is created with a call of the form
socket (PF_ROUTE, SOCK_RAW, protocol) ;

the corresponding PRU ATTACH request to the protocol’s user-request function
(route_usrreq) allocates a routing control block and links it to the socket structure.
The protocol can restrict the messages sent to the process on this socket to one particular
family. If a protocol of AF_INET is specified, for example, only routing messages con-
taining Internet addresses will be sent to the process. A protocol of 0 causes all routing
messages from the kernel to be sent on the socket.

Recall that we call these structures routing control blocks, not raw control blocks, to avoid confu-
sion with the raw IP control blocks in Chapter 32.

Figure 20.3 shows the definition of the rawcb structure.

39 struct rawcb {
40 struct rawcb *rcb_next;
41 struct rawcb *rcb_prev;
42 struct socket *rcb_socket;
43 struct sockaddr *rcb_faddr;
44 struct sockaddr *rcb_laddr;
45 struct sockproto rcb_proto;
46 };

/* doubly linked list */

/* back pointer to socket */
/* destination address */
/* socket’s address */
/* protoco! family, protocol */

raw_cb.h

47 #define sotorawcb(so) ((struct rawcb *) (so)->so_pcb)
raw_cb.h

Figure 20.3 rawcb structure.

Additionally, a global of the same name, rawcb, is allocated as the head of the dou-
bly linked list. Figure 20.4 shows the arrangement.

We showed the sockproto structure in Figure 19.26. Its sp_fainily member is
set to PF_ROUTE and its sp_protocol member is set to the third argument to the
socket system call. The rcb_faddr member is permanently set to point to
route_src, which we described with Figure 19.26. rcb_laddr is always a null
pointer.

raw_init Function

The raw_init function, shown in Figure 20.5, is the protocol initialization function in
the protosw structure in Figure 20.2. We described the entire initialization of the rout-
ing domain with Figure 18.29.

The function initializes the doubly linked list of routing control blocks by setting the
next and previous pointers of the head structure to point to itself.

DELL EX.1095.672

648 Routing Sockets Chapter 20

DTYPE_SO

descriptor

file{}

f_type

f_data

socket { }

so_type

so~Dcb

descriptor

file{}

f_type

f_data

socket{}

so_type

so_pcb

rcb_next rcb_next

rcb~rev rcb_prev

rcb_socket rcb_socket
rcb_faddr rcb_faddr

rcb_laddr rcb_laddr

rcb_proto rcb_proto

< _ doubly linked circular list of
ali routing control blocks

Figure 20.4 Relationship of raw protocol control blocks to other data structures.

socket layer

38 void
39 raw_init ()
40 {

raw_usrreq.c

41
42 }

rawcb.rcb_next : rawcb.rcb_prev : &rawcb;

raw_usrreq.
Figure 20.5 raw_ini t function: initialize doubly linked list of routing control blocks.

20.5 route_output Function

As we showed in Figure 18.11, route_output is called when the PRU_SEND request is
issued to the protocol’s user-request function, which is the result of a write operation by
a process to a routing socket. In Figure 18.9 we indicated that five different types of
routing messages are accepted by the kernel from a process.

Since this function is invoked as a result of a write by a process, the data from the
process (the routing message to process) is in an mbuf chain from sosend. Figure 20.6

DELL EX.1095.673

Section 20.5 rout e_output Function 649

shows an overview of the processing steps, assuming the process sends an RTM_ADD
command, specifying three addresses: the destination, its gateway, and a network mask
(hence this is a network route, not a host route).

process

i~ US~L O0 pB A CRpriess ~

process

processes
selected by
raw_input

data written
by process

mbuf chain mbuf chain

rtm_addrs

destination
IPaddress

somkaddr_in{}

gateway
IPaddress

somkaddr_in{}

network
mask

sockaddr_in{}

rt_addrinfo{}
rti_addrs
rti_info[DST]
-rti_info[GATEWAY]
-rti_info[NETMASK]
rti_info[GENMASK]
rti_info[IFP]
rti_info[IFA]
rti_info[AUTHOR]
rti_info[BRD]

OxO 7

OxO 7
~

I array of pointers formed
NULL ? by rt_addrs from
NULL I rtln_addrs bitmask
NULL
NULL
NULL

Figure 20.6 Example processing of an RTM_ADD command from a process.

There are numerous points to note in this figure, most of which we’ll cover as we pro-
ceed through the source code for route_output. Also note that, to save space, we
omit the RTAX_ prefix for each array index in the rt_addrinfo structure.

DELL EX.1095.674

650 Routing Sockets Chapter 20

The process specifies which socket address structures follow the fixed-length
rt_rasghdr structure by setting the bitmask rtra_addrs. We show a bitmask
of 0x0V, which corresponds to a destination address, a gateway address, and a
network mask (Figure 19.19). The RTM ADD command requires the first two; the
third is optional. Another optional address, the genraask specifies the mask to
be used for generating cloned routes.

The wr±t÷ system call (the sosend function) copies the buffer from the process
into an mbuf chain in the kernel.

m_copydata copies the mbuf chain into a buffer that route_output obtains
using malloc. It is easier to access all the information in the structure and the
socket address structures that follow when stored in a single contiguous buffer
than it is when stored in an mbuf chain.

The function rt_xaddrs is called by route_output to take the bitmask and
build the rt_addrinfo structure that points into the buffer. The code in
route_output references these structures using the names shown in the fifth
column in Figure 19.19. The bitmask is also copied into the rti_addrs mem-
ber.

route_output normally modifies the rt_msghdr structure. If an error occurs,
the corresponding errno value is returned in rtra_errno (for example,
EEXIST if the route already exists); otherwise the flag RTF_DONE is logically
ORed into the rtm_f lags supplied by the process.

The rt_msghdr structure and the addresses that follow become input to 0 or
more processes that are reading from a routing socket. The buffer is first con-
verted back into an mbuf chain by m_copybaek, raw__input goes through all
the routing PCBs and passes a copy to the appropriate processes. We also show
that a process with a routing socket receives a copy of each message it writes to
that socket unless it disables the SO_USELOOPBACK socket option.

To avoid receiving a copy of their own routing messages, some programs, such as route,
call shutdown with a second argument of 0 to prevent any data from being received on
the routing socket.

We examine the source code for route_output in seven parts. Figure 20.7 shows an
overview of the function.

int
route_output()

{
R_Malloc() to allocate buffer;
m_copydata() to copy from mbuf chain into buffer;
rt_xaddrs{) to build rt_addrdnfo{};

switch (message type) {
case RTM ADD:

rtrequest(RTM_ADD);
rt_setmetrdcs();
break;

DELL EX.1095.675

Section 20.5 rout e_output Function 651

case RTM_DELETE:
rtrequest (RTM DELETE) ;
break;

case RTM GET:
case RTM_CHANGE:
case RTM LOCK:

rtallocl();

switch (message type)
case RTM_GET:

rt_msg2(RTM GET);
break;

case RTM CHANGE:
change appropriate fields;
/* fall through */

case RTM LOCK:
set rmx_locks;
break;

}
break;

set rtm_error if error, else set RTF_DONE flag;

m_copyback() to copy from buffer into mbuf chain;

raw_input(); /* mbuf chain to appropriate processes */

Figure 20.7 Summary of rout e_output processing steps.

113-136

137-142

143-146

147-149

The first part of route_output is shown in Figure 20.8.

Check mbuf for validity
The mbuf chain is checked for validity: its length must be at least the size of an

rt_msghdr structure. The first longword is fetched from the data portion of the mbuf,
which contains the rtm_msgl en value.

Allocate buffer

A buffer is allocated to hold the entire message and m_copydata copies the mes-
sage from the mbuf chain into the buffer.

Check version number

The version of the message is checked. In the future, should a new version of the
routing messages be introduced, this member could be used to provide support for
older versions.

The process ID is copied into rtm_pid and the bitmask supplied by the process is
copied into info.rti_addrs, a structure local to this function. The function
rt_xaddrs (shown in the next section) fills in the eight socket address pointers in the
info structure to point into the buffer now containing the message.

DELL EX.1095.676

652 Routing Sockets Chapter 20

rtsock.c
113 int
114 route_output(m, so)
115 struct mbuf *m;
116 struct socket *so;
117 {
118
119
120
121
122
123
124

struct rt_msghdr *rtm = 0;
struct rtentry *rt - 0;
struct rtentry *saved nrt = 0;
struct rt_addrinfo info;
int len, error : 0;
struct ifnet *ifp : 0;
struct ifaddr *ifa = 0;

125 #define senderr(e) { error = e; goto flush;}
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149

150
151

152
153
154
155
156
157
158
159

if (m =- 0 I I ((m >m_len < sizeof(long)) &&
(m = m_pullup(m, sizeof(long))) -= 0))

return (ENOBUFS) ;
if ((m->m_flags & M_PKTHDR) == 0)

panic("route_output");
len = m->m_pkthdr.len;
if (len < sizeof(*rtm)

len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
dst : 0;
senderr(EINVAL);

}
R Halloc(rtm, struct rt_msghdr *, len);
if (rtm =- 0) {

dst : 0;
senderr(ENOBUFS);

}
m_copydata(m, 0, fen, (caddr_t) rtm);
if (rtm->rtm version !: RTM VERSION) {

dst = 0;
senderr(EPROTONOSUPPORT);

}
rtm->rtm_pid - curproc->p_pid;

info.rti_addrs = rtm->rtm_addrs;
rt_xaddrs((caddr_t) (rtm + i), len + (caddr_t) rtm, &info);

if (dst := 0)
senderr(EINVAL) ;

if (genmask) {
struct radix_node *t;
t = rn_addmask((caddr_t) genmask, i, 2);
if (t && Bcmp(genmask, t->rn_key, *(u_char *) genmask) == 0)

genmask = (struct sockaddr *) (t->rn_key);
else

senderr(ENOBUFS);
}

Figure 20.8 rout e_output function: initial processing, copy message from mbuf chain.

rtsock.c

DELL EX.1095.677

Section 20.5 route_output Function 683

150 151

152 159

162--163

1 64--165

1 66--1 72

1 73--176

Destination address req-ired

A destination address is a required address for all commands. If the
info. rti_info [RTAX_DST] element is a null pointer, EINVAL is returned. Remem-
ber that dst refers to this array element (Figure 19.19).

Handle optional genmask

A genmask is optional and is used as the network mask for routes created when the
RTF_CLONING flag is set (Figure 19.8). rn_addmask adds the mask to the tree of
masks, first searching for an existing entry for the mask and then referencing that entry
if found. If the mask is found or added to the mask tree, an additional check is made
that the entry in the mask tree really equals the genmask value, and, if so, the genmask
pointer is replaced with a pointer to the mask in the mask tree.

Figure 20.9 shows the next part of route_output, which handles the RTM_ADD
and RTM_DELETE commands.

rtsock.c
160 switch (rtm >rtm_type)

161
162
163
164
165
166
167
168
169
170
171
172

case RTM ADD:
if (gate :- 0)

senderr(EINVAL)
error : rtrequest(RTM_ADD, dst, gate, netmask,

rtm->rtm_flags, &saved_nrt);
if (error -- 0 && saved_nrt) {

rt_setmetrics(rtm >rtm_inits,
&rtm->rtm_rmx, &saved_nrt >rt_rmx);

saved_nrt >rt_refcnt--;
saved_nrt->rt_genmask - genmask;

}
break;

173 case RTM_DELETE:
174 error : rtrequest(RTM_DELETE, dst, gate, netmask,
175 rtm->rtm_flags, (struct rtentry **)
176 break;

0);

Figure 20.9 route_output function: process RTM_ADD and RTM_DELETE commands.
rtsock.c

An RTM ADD command requires the process to specify a gateway.
rtrequest processes the request. The netmask pointer can be null if the route

being entered is a host route. If all is OK, the pointer to the new routing table entry is
returned through saved_rift.

The rt_metrics structure is copied from the caller’s buffer into the routing table
entry. The reference count is decremented and the genmask pointer is stored (possibly
a null pointer).

Processing the RTM_DELETE command is simple because all the work is done by
rtrequest. Since the final argument is a null pointer, rtrequest calls rt free if the
reference count is 0, deleting the entry from the routing table (Figure 19.7).

DELL EX.1095.678

654 Routing Sockets Chapter 20

177--182

183--187

188 193

The next
mon code for

part of the processing is shown in Figure 20.10, which handles the com-
the RTM_GET, RTM_CHANGE, and RTM_LOCK commands.

177 case RTM_GET:
178 case RTM_CHANGE:
179 case RTM_LOCK:
180 rt = rtallocl(dst, 0);
181 if (rt -- 0)
182 senderr(ESRCH);
183 if (rtm->rtm_type [: RTM_GET) { /* XXX: too grotty */
184 struct radix_node *rn;
185 extern struct radix node_head *mask_rnhead;

186
187
188
189
190
191
192
193
]_94
195
196
197

Figure 20.10

rtsock.c

if (Bcmp(dst, rt_key(rt), dst >sa_len) !- 0)
senderr(ESRCH);

if (netmask && (rn - rn_search(netmask,
mask_rnhead->rnh_treetop)))

(struct sockaddr *) rn->rn_key;
rn = rn->rn_dupedkey)

sockaddr *) rn >rn_mask)

netmask -
for (rn = rt->rt_nodes; rn;

if (netmask =- (struct
break;

if (rn -- 0)
senderr(ETOOMANYREFS);

rt = (struct rtentry *) rn;

} rtsock.c

route_outputfunction:commonprocessing ~rRTM_GET, RTM_CHANGE, and RTM_LOCK.

Locate existing entry
Since all three commands reference an existing entry, r t a 11 o c 1 locates the entry. If

the entry isn’t found, ESRCH is returned.

Do not allow network match
For [he RTM_CHANGE and RTM_LOCK commands, a network match is inadequate: an

exact match with the routing table key is required. Therefore, if the dst argument
doesn’t equal the routing table key, the match was a network match and ESRCH is
returned.

Use network mask to find correct entry
Even with an exact match, if there are duplicate keys, each with a different network

mask, the correct entry must still be located. If a netmask argument was supplied, it is
looked up in the mask table (mask_rnhead). If found, the netmask pointer is replaced
with the pointer to the mask in the mask tree. Each leaf node in the duplicate key list is
examined, looking for an entry with an rn_mask pointer that equals netmask. This
test compares the pointers, not the structures that they point to. This works because all
masks appear in the mask tree, and only one copy of each unique mask is stored in this
tree. In the common case, keys are not duplicated, so the for loop iterates once. If a
host entry is being modified, a mask must not be specified and then both netmask and
rn_mask are null pointers (which are equal). But if an entry that has an associated
mask is being modified, that mask must be specified as the netmask argument.

DELL EX.1095.679

Section 20.5 route_output Function

194--195 If the for loop terminates without finding a matching network mask,
ETOOMANYREFS is returned.

The comment xXx is because this function must go to all this work to find the desired entry.
All these details should be hidden in another function similar to rtallocl that detects a net-
work match and handles a mask argument.

The next part of this function, shown in Figure 20.11, continues processing the
RTM_GET command. This command is unique among the commands supported by
route_output in that it can return more data than it was passed. For example, only a
single socket address structure is required as input, the destination, but at least two are
returned: the destination and its gateway. With regard to Figure 20.6, this means the
buffer allocated for m_copydata to copy into might need to be increased in size.

198 switch (rtm->rtm_type) {
rtsock.c

199
2OO
201

.202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

case RTM_GET:
dst - rt_key(rt);
gate = rt->rt_gateway;
netmask = rt_mask(rt);
genmask : rt->rt_genmask;
if (rtm >rtm_addrs & (RTA_IFP I RTA_IFA)) {

if (ifp = rt->rt_ifp) {
ifpaddr = ifp >if_addrlist->ifa_addr;
ifaaddr = rt->rt_ifa->ifa_addr;
rtm >rtm_index - ifp >if_index;

} else {
ifpaddr = 0;
ifaaddr = 0;

}
}
len rt_msg2(RTM GET, &info, (caddr_t) 0,

(struct walkarg *) 0);
if (len > rtm->rtm msglen) {

struct rt_msghdr *new_rtm;
R_Malloc(new_rtm, struct rt_msghdr *, len);
if (new_rtm ~- 0)

senderr(ENOBUFS);
Bcopy(rtm, new_rtm, rtm->rtm_msglen);
Free(rtm);
rtm- new_rtm;

}
(void) rt_msg2(RTM_GET, &info, (caddr_t) rtm,

(struct walkarg *) 0);
rtm >rtm_flags = rt->rt_flags;
rtm->rtln_rmx - rt->rt_rmx;
rtm->rtm_addrs = info.rti_addrs;
break;

Figure 20.11 route_output function: RTM_GET processing.

rtsock.c

DELL EX.1095.680

656 Routing Sockets Chapter 20

198-203

204 213

214--224

225--230

231--233

234--244

245-256

257--258

Return destination, gateway, and masks
Four pointers are stored in the rti_info array: dst, gate, netmask, and

genmask. The latter two might be null pointers. These pointers in the info structure
point to the socket address structures that will be returned to the process.

Return interface information

The process can set the masks RTA_IFP and RTA_IFA in the rtm_flags bitmask.
If either or both are set, the process wants to receive the contents of both the i£addr
structures pointed to by this routing table entry: the link-level address of the interface
(pointed to by rt_i£p->i£_addrlist) and the protocol address for this entry
(pointed to by rt_i f a-> i £ a_addr). The interface index is also returned.
Construct reply

rt_msg2 is called with a null third pointer to calculate the length of the routing
message corresponding to RTM_GET and the addresses pointed to by the ±nfo struc-
ture. If the length of the result message exceeds the length of the input message, then a
new buffer is allocated, the input message is copied into the new buffer, the old buffer is
released, and rtm is set to point to the new buffer.

~t_msg2 is called again, this time with a nonnull third pointer, which builds the
result message in the buffer. The final three members in the ~t_msghdr structure are
then filled in.

Figure 20.12 shows the processing of the RTM_CHANGE and RTM_LOCK commands.
Change gateway

If a gate address was passed by the process, rt_setgate is called to change the
gateway for the entry.

Locate new interface
The new gateway (if changed) can also require new rt_ifp and rt_i fa pointers.

The process can specify these new values by passing either an i fpaddr socket address
structure or an i faaddr socket address structure. The former is tried first, and then the
latter. If neither is passed by the process, the rt_ifp and rt_ifa pointers are left
alone.

Check if interface changed
If an interface was located (ira is nonnull), then the existing rt_ifa pointer for

the route is compared to the new value. If it has changed, new values for rt_i fp and
rt_ifa are stored in the routing table entry. Before doing this the interface request
function (if defined) is called with a command of RTH_DEL~.T~.. The delete is required
because the link-layer information from one type of network to another can be quite dif-
ferent, say changing a route from an X.25 network to an Ethernet, and the output rou-
tines must be notified.

Update metrics
The metrics in the routing table entry are updated by rt_setraetrics.

DELL EX.1095.681

Section 20.5 rout e_output Function 657

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
25O
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

rtsock.c
case RTM_CHANGE:

if (gate && rt_setgate(rt, rt_key(rt), gate))
senderr(EDQUOT);

/* new gateway could require new ifaddr, ifp; flags may also be
different; ifp may be specified by ii sockaddr when protocol
address is ambiguous */

if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) &&
(ifp = ifa->ifa_ifp))
ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,

ifp);
else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) I I

(ifa = ifa_ifwithroute(rt->rt_flags,
rt_key(rt), gate)))

ifp = ifa >ifa_ifp;
if (ira) {

struct ifaddr *oifa = rt->rt_ifa;
if (oifa != ifa) {

if (oifa && oifa->ifa_rtrequest)
oifa->ifa_rtrequest(RTM_DELETE,

rt, gate);
IFAFREE(rt >rt_ifa);
rt->rt_ifa = ifa;
ifa->ifa_refcnt++;
rt >rt_ifp = ifp;

}
}
rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,

&rt->rt_rmx);
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)

rt->rt_ifa->ifa_rtrequest(RTM ADD, rt, gate);
if (genmask)

rt->rt_genmask - genmask;
/*

* Fall into
*/

case RTM_LOCK:
rt->rt_rmx.rmx_locks &= -(rtm->rtm_inits);
rt->rt_rmx.rmx_locks I=

(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
break;

}
break;

273 default:
274 senderr(EOPNOTSUPP);
275 }

Figure 20.12 route_output function: RTM_CHANGE and RTM_LOCK processing.
rtsock.c

Call interface request function

259-260 If an interface request function is defined, it is called with a command of RTM_ADD.

DELL EX.1095.682

658 Routing Sockets Chapter 20

261--262

266--270

Store clone generation mask
If the process specifies the genmask argument, the pointer to the mask that was

obtained in Figure 20.8 is saved in rt_genraask.

Update bitmask of locked metrics
The RTM_LOCK command updates the bitmask stored in rt_rmx, rmx_locks. Fig-

ure 20.13 shows the values of the different bits in this bitmask, one value per metric.

273--275

Constant Value
R TV_MTU 0 x 01
RTV__HOPCOUNT Ox02
RTV_EXPIRE Ox04
RTV_RPIPE OxO 8
RTV_SPIPE Oxl 0

RTV_SSTHRESH Ox20
RTV__RTT Ox40
RTV__RTTVAR Ox80

Description

initialize or lock rmx mtu
initialize or lock rmx hopcount
initialize or lock rmx_expire
initialize or lock rmx_recvpipe
initialize or lock rmx_sendpipe
initialize or lock rntx_ssthresh
initialize or lock rmx rtt
initialize or lock rmx rttvar

Figure 20.13 Constants to initialize or lock metrics.

The rmx_locks member of the rt_metrics structure in the routing table entry is the
bitmask telling the kernel which metrics to leave alone. That is, those metrics specified
by rmx_loeks won’t be updated by the kernel. The only use of these metrics by the
kernel is with TCP, as noted with Figure 27.3. The rmx_pksent metric cannot be
locked or initialized, but it turns out this member is never even referenced or updated
by the kernel.

The rtm_inits value in the message from the process specifies the bitmask of
which metrics were just initialized by rt_setmetrics. The rtm_rmx.rm_x_locks
value in the message specifies the bitmask of which metrics should now be locked. The
value of rt_rmx, rmx_locks is the bitmask in the routing table of which metrics are
currently locked. First, any bits to be initialized (rtm_inits) are unlocked. Any bits
that are both initialized (rtm_inits) and locked (rtm_rmx. rrax_locks) are locked.

This default is for the switch at the beginning of Figure 20.9 and catches any of
the routing commands other than the five that are supported in messages from a pro-
cess.

The final part of route_output, shown in Figure 20.14, sends the reply to
raw_input.

DELL EX.1095.683

Section 20.5 route_output Function 659

rtsock.c

276--282

283--284

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
3OO
301
302
303
304
3O5
306
307
3O8
309
310
311
312
313

flush:
if (rtm) {

if (error)
rtm->rtm_errno = error;

else
rtm->rtm_flags I: RTF_DONE;

if (rt)
rtfree(rt);

{
struct rawcb *rp = 0;
/*

* Check to see if we don’t want our own messages.
*/

if ((so->so_options & SO_USELOOPBACK) := 0) {
if (route_cb.any count <: i) {

if (rtm)
Free(rtm);

m_freem(m);
return (error);

}
/* There is another listener, so construct message */
rp : sotorawcb(so);

}
if

(rtm) {
m_copyback(m, 0, rtm->rtm msglen, (caddr_t) rtm) ;
Free(rtm);

(rp)
rp->rcb_proto.sp_family = 0; /* Avoid us */

if (dst)
route_proto.sp_protocol = dst->sa_family;

raw input(m, &route_proto, &route_src, &route_dst);
if (rp)

rp->rcb_proto.sp_family : PF_ROUTE;
}
return (error);

Figure 20.14 route_output function: pass results to raw_input.
rtsock.c

Return error or OK

flush is the label jumped to by the senderr macro defined at the beginning of the
function. If an error occurred it is returned in the rtra_errno member; otherwise the
RTF_DONE flag is set.

Release held route
If a route is being held, it is released. The call to rtallocl at the beginning of Fig-

ure 20.10 holds the route, if found.

DELL EX.1095.684

660 Routing Sockets Chapter 20

285--296

297--299

300--303

304--305

306--308

309--313

No process to receive message
The SO_USELOOPBACK socket option is true by default and specifies that the send-

ing process is to receive a copy of each routing message that it writes to a routing
socket. (If the sender doesn’t receive a copy, it can’t receive any of the information
returned by RTM_OET.) If that option is not set, and the total count of routing sockets is
less than or equal to 1, there are no other processes to receive the message and the
sender doesn’t want a copy. The buffer and mbuf chain are both released and the func-
tion returns.
Other listeners but no Ioopback copy

There is at least one other listener but the sending process does not want a copy.
The pointer rp, which defaults to null, is set to point to the routing control block for the
sender and is also used as a flag that the sender doesn’t want a copy.

Convert buffer into mbuf chain
The buffer is converted back into an mbuf chain (Figure 20.6) and the buffer

released.

Avoid Ioopback copy
If rp is set, some other process might want the message but the sender does not

want a copy. The sp_famil¥ member of the sender’s routing control block is tem-
porarily set to 0, but the sp_family of the message (the route_proto structure,
shown with Figure 19.26) has a family of PF_ROUTE. This trick prevents raw_input
from passing a copy of the result to the sending process because raw_input does not
pass a copy to any socket with an sp_family of 0.

Set address family of routing message
If dst is a nonnull pointer, the address family of that socket address structure

becomes the protocol of the routing message. With the Internet protocols this value
would be PF_INET. A copy is passed to the appropriate listeners by raw_input.

If the sp_fami ly member in the calling process was temporarily set to 0, it is reset
to PF_ROUTE, its normal value.

20.6 rt_xaddrs Function

The rt_xaddrs function is called only once from route_output (Figure 20.8) after
the routing message from the process has been copied from the mbuf chain into a buffer
and after the bitmask from the process (rtm_addrs) has been copied into the
rti_info member of an rt_addrinfo structure. The purpose of rt_xaddrs is to
take this bitmask and set the pointers in the rti_info array to point to the correspond-
ing address in the buffer. Figure 20.15 shows the function.

rtsock.c
330 #define ROUNDUP(a) \
331 ((a) > 0 ? (i + (((a) - i) I (sizeof(long) - i))) : sizeof(long))
332 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_Ien))

DELL EX.1095.685

Section 20.7 rt_setmetrics Function 661

330-340

341-347

333 static void
334 rt_xaddrs(cp, cplim, rtinfo)
335 caddr_t cp, cplim;
336 struct rt_addrinfo *rtinfo;
337 {
338 struct sockaddr *sa;
339 int i;

bzero(rtinfo->rti_info,
for

340
341
342
343
344
345
346
347

}
}

sizeof(rtinfo->rti_info))
(i : 0; (i < RTAX_MAX) && (cp < cplim); i++)
if ((rtinfo->rti_addrs & (i << i)) == 0)

continue;
rtinfo->rti_info[i] - sa = (struct sockaddr *) cp;
ADVANCE(cp, sa);

Figure 20.15 rt_xaddrs function: fill rti_into array with pointers.

rtsock.c

The array of pointers is set to 0 so all the pointers to address structures not appear-
ing in the bitmask will be null.

Each of the 8 (RTA× MAX) possible bits in the bitmask is tested and, if set, a pointer
is stored in the rti_info array to the corresponding socket address structure. The
ADVANCE macro takes the sa_len field of the socket address structure, rounds it up to
the next multiple of 4 bytes, and increments the pointer cp accordingly.

20.7

314--318

319 329

rt_setmetrics Function

This function was called twice from route_output: when a new route was added and
when an existing route was changed. The rtm_init s member in the routing message
from the process specifies which of the metrics the process wants to initialize from the
rtm_rmx array. The bit values in the bitmask are shown in Figure 20.13.

Notice that both rtm_addrs and rtm__init s are bitmasks in the message from the
process, the former specifying the socket address structures that follow, and the latter
specifying which metrics are to be initialized. Socket address structures whose bits
don’t appear in rtm_addrs don’t even appear in the routing message, to save space.
But the entire rt_metrics array always appears in the fixed-length rt_msghdr
structure--elements in the array whose bits are not set in rtm_ini t s are ignored.

Figure 20.16 shows the rt_setmetrics function.
The which argument is always the rtm_inits member of the routing message

from the process, in points to the rt_metrics structure from the process, and out
points to the rt_metries structure in the routing table entry that is being created or
modified.

Each of the 8 bits in the bitmask is tested and if set, the corresponding metric is
copied. Notice that when a new routing table entry is being created with the RTM_ADD
command, route_output calls rtrequest, which sets the entire routing table entry
to 0 (Figure 19.9). Hence, any metrics not specified by the process in the routing mes-
sage default to 0.

DELL EX.1095.686

662 Routing Sockets Chapter 20

314 void
315 rt_setmetrics(which, in, out)
316 u_long which;
317 struct rt_metrics *in, *out;

318 {

3!9 #define metric(f, e) if (which & (f)} out >e
320 metric(RTV_RPIPE, rmx_recvpipe);

321 metric(RTV_SPIPE, rmx_sendpipe);

322 metric(RTV_SSTHRESH, rmx_ssthresh);
323 metric(RTV_RTT, rmx_rtt);

324 metric(RTV_RTTVAR, rmx_rttvar);

325 metric(RTV_HOPCOUNT, rmx_hopcount);

326 metric(RTV_HTU, rmx_mtu);

327 metric(RTV_EXPIRE, rmx_expire);

328 #under metric

329 }

: in->e;

Figure 20.16 rt_setmetrics function: set elements of the rt_metrics structure.

rtsock.c

rtsock.c

20.8 raw_input Function

All routing messages destined for a process--those that originate from within the ker-
nel and those that originate from a process--are given to raw_±nput, which selects the
processes to receive the message. Figure 18.11 summarizes the four functions that call
raw_input.

When a routing socket is created, the family is always PF_ROUTE and the protocol,
the third argument to socket, can be 0, which means the process wants to receive all
routing messages, or a value such as AF_INET, which restricts the socket to messages
containing addresses of that specific protocol family. A routing control block is created
for each routing socket (Section 20.3) and these two values are stored in the sp_f ami ly
and sp_protocol members of the rcb_proto structure.

Figure 20.17 shows the raw_input function.

51 void

52 raw_input(m0, proto, src, dst)

53 struct mbuf *m0;
54 struct sockproto ~proto;

55 struct sockaddr *src, *dst;

56 {
57 struct rawcb *rp;

58 struct mbuf *m = m0;

59 int sockets : 0;

60 struct socket *last;

raw_usrreq.c

DELL EX.1095.687

Section 20.8 raw_input Function 663

61 last : 0;
62 for (rp - rawcb.rcb_next; rp !: &rawcb; rp : rp->rcb_next)
63 if (rp->rcb_proto.sp_family !: proto >sp_family)
64 continue;
65 if (rp >rcb_proto.sp~rotocol &&
66 rp->rcb~roto.sp_protocol !- proto >sp~rotocol)
67 continue;
68 /*
69 * We assume the lower level routines have
70 * placed the address in a canonical format
71 * suitable for a structure comparison.
72 *
73 * Note that if the lengths are not the same
74 * the comparison will fail at the first byte.
75 */
76 #define equal(al, a2) \
77 (bcmp((caddr_t) (al), (caddr_t) (a2), al->sa_len) :: 0)
78 if (rp->rcb_laddr && !equal(rp->rcb_laddr, dst))
79 continue;
80 if (rp->rcb_faddr && [equal(rp->rcb_faddr, src)}
81 continue;
82 if (last) {
8~ struct mbuf *n;
84 if (n : m_copy(m, 0, (int) H_COPYALL)) {
85 if (sbappendaddr(&last->so_rcv, src,
86 n, (struct mbuf *) 0) == 0)
87 /* should notify about lost packet */
88 m_freem(n);
89 else {
90 sorwakeup(last);
91 sockets++;
92 }
93 }
94 }
95 last = rp->rcb_socket;
96 }
97 if (last) {
98 if (sbappendaddr(&last >so_rcv, src,
99 m, (struct mbuf *) 0) - 0)

i00 m_freem(m);
i01 else {
102 sorwakeup(last);
103 sockets++;
104 }
105 } else
106 m freem(m);
107 }

Figure 20.17 raw_input function: pass routing messages to 0 or more processes.

raw_usrreq.c

DELL EX.1095.688

664 Routing Sockets Chapter 20

51--61

62--67

68--81

82--107

In all four calls to raw_input that we’ve seen, the proto, src, and dst arguments
are pointers to the three globals route~roto, route_src, and route_dst, which
are declared and initialized as shown with Figure 19.26.

Compare address family and protocol
The for loop goes through every routing control block checking for a match. The

family in the control block (normally PF_ROUTE) must match the family in the
sockproto structure or the control block is skipped. Next, if the protocol in the control
block (the third argument to socket) is nonzero, it must match the family in the
sockproto structure, or the message is skipped. Hence a process that creates a routing
socket with a protocol of 0 receives all routing messages.

Compare local and foreign addresses
These two tests compare the local address in the control block and the foreign

address in the control block, if specified. Currently the process is unable to set the
rcb_laddr or rcb_faddr members of the control block. Normally a process would
set the former with bind and the latter with connect, but that is not possible with
routing sockets in Net/3. Instead, we’ll see that route_usrreq permanently connects
the socket to the route_src socket address structure, which is OK since that is always
the src argument to this function.
Append message to socket receive buffer

If last is nonnull, it points to the most recently seen socket structure that should
receive this message. If this variable is nonnull, a copy of the message is appended to
that socket’s receive buffer by re_copy and sbappendaddr, and any processes waiting
on this receive buffer are awakened. Then last is set to point to this socket that just
matched the previous tests. The use of last is to avoid calling re_copy (an expensive
operation) if only one process is to receive the message.

If N processes are to receive the message, the first N - 1 receive a copy and the final
one receives the message itself.

The variable sockets that is incremented within this function is not used. Since it
is incremented only when a message is passed to a process, if it is 0 at the end of the
function it indicates that no process received the message (but the value isn’t stored
anywhere).

20.9 route_usrreq Function

route_usrreq is the routing protocol’s user-request function. It is called for a variety
of operations. Figure 20.18 shows the function.

rtsock.c
64 int
65 route_usrreq(so, req, m, ham, control)
66 struct socket *so;
67 int req;
68 struct mbuf *m, *nam, *control;
69 {

DELL EX.1095.689

Section 20.9 route_usrreq Function 665

64--77

70 int error : 0;
71 struct rawcb *rp - sotorawcb(so);
72 int s;

73
74
75
76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99

i00
i01
102
103
104

if (req == PRU_ATTACH) {
MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M WAITOK) ;
if (so->so_pcb = (caddr_t) rp)

bzero(so->so_pcb, sizeof(*rp));
}
if (req := PRU_DETACH && rp) {

int af = rp->rcb~roto.sp~rotocol;
if (af :: AF_INET)

route_cb.ip_count--;
else if (af == AF_NS)

route_cb.ns_count--;
else if (af == AF_ISO)

route_cb.iso_count--;
route_cb.any_count -;

}
s = splnet();
error = raw_usrreq(so, req, m, ham, control);
rp = sotorawcb(so);
if (req == PRU_ATTACH && rp) {

int af - rp->rcb_proto.sp_protocol;
if (error) {

free((caddr_t) rp, H_PCB);
splx(s);
return (error);

}
if (af == AF_INET)

route_cb.ip_count++;
else if (af -= AF_NS)

route_cb.ns_count++;
else if (af == AF_ISO)

route_cb.iso_count++;
route_cb.any_count++;

i05 rp->rcb_faddr = &route_src;
106 soisconnected(so);
107 so->so_options I= SO_USELOOPBACK;
108 }
109 splx(s);
ii0 return (error);
iii }

Figure 20.18 route_usrreq function: process PRU_xxx requests.

rtsock.c

PRU_ATTACH: allocate control block
The PRU_ATTACH request is issued when the process calls socket. Memory is allo-

cated for a routing control block. The pointer returned by MALLOC is stored in the
so_pcb member of the socket structure, and if the memory was allocated, the rawcb
structure is set to 0.

DELL EX.1095.690

666 Routing Sockets Chapter 20

78 87

88-90

91-104

105-106

107-111

20.10

119--129

130--133

134--137

2 62--2 69

PRU_DETACH: decrement counters
The close system call issues the PRU_DETACH request. If the socket structure

points to a protocol control block, two of the counters in the route_cb structure are
decremented: one is the any_count and one is based on the protocol.
Process request

The function raw_usrreq is called to process the PRU_xxx request further.
Increment counters

If the request is PRU_ATTACH and the socket points to a routing control block, a
check is made for an error from raw_usrreq. Two of the counters in the route_oh
structure are then incremented: one is the any_count and one is based on the protocol.

Connect socket
The foreign address in the routing control block is set to route_src. This perma-

nently connects the new socket to receive routing messages from the PF_ROUTE family.
Enable SO_USELOOPBACK by default

The SO_USELOOPBACK socket option is enabled. This is a socket option that
defaults to being enabled--all others default to being disabled.

raw_usrreq Function

raw_usrreq performs most of the processing for the user request in the routing
domain. It was called by route_usrreq in the previous section. The reason the user-
request processing is divided between these two functions is that other protocols (e.g.,
the OSI CLNP) call raw_usrreq but not route_usrreq, raw_usrreq is not
intended to be the pr_usrreq function for a protocol. Instead it is a common subrou-
tine called by the various p r_u s r r e q functions.

Figure 20.19 shows the beginning and end of the raw_usrreq function. The body
of the swi t ch is discussed in separate figures following this figure.
PRU_CONTROL requests invalid

The PRU_CONTROL request is from the ioct! system call and is not supported in
the routing domain.

Control information invalid

If control information was passed by the process (using the sendmsg system call)
an error is returned, since the routing domain doesn’t use this optional information.

Socket must have a control block

If the socket structure doesn’t point to a routing control block, an error is
returned. If a new socket is being created, it is the caller’s responsibility (i.e.,
route_usrreq) to allocate this control block and store the pointer in the so_pcb
member before calling this function.

The default for this switch catches two requests that are not handled by case
statements: PRU_BIND and PRU_CONNECT. The code for these two requests is present
but commented out in Net/3. Therefore issuing the bind or connect system calls on a

DELL EX.1095.691

Section 20.10 raw_usrreq Function 667

119 int
120 raw_usrreq(so, req, m, nam, control)
121 struct socket *so;
122 int req;
123 struct mbuf *m, *nam, *control;
124 {
125 struct rawcb *rp = sotorawcb(so);
126 int error : 0;
127 int len;

128 if (req == PRU CONTROL)
129 return (EOPNOTSUPP);
130 if (control && control->m_len)
131 error = EOPNOTSUPP;
132 goto release;
133 }
134 if (rp :: 0) {
135 error : EINVAL;
136 goto release;
137 }
138 switch (req) {

raw_usrreq.c

262
263
264
265
Z66
267
268
269 }

/* switch cases */

default:
panic("raw_usrreq");

}
release:

if (m !: NULL)
m_freem(m);

return (error);

Figure 20.19 Body of raw_usrreq function.

raw_usrreq.c

139--148

149--150

151--159

160--161

routing socket causes a kernel panic. This is a bug. Fortunately it requires a superuser
process to create this type of socket.

We now discuss the individual ca s e statements. Figure 20.20 shows the processing
for the PRU_ATTACH and PRU_DETACH requests.

The PRU_ATTACH request is a result of the socket system call. A routing socket
must be created by a superuser process.

The function raw_attach (Figure 20.24) links the control block into the doubly
linked list. The ham argument is the third argument to socket and gets stored in the
control block.

The PRU_DETACH is issued by the close system call. The test of a null rp pointer
is superfluous, since the test was already done before the switch statement.

raw_detach (Figure 20.25) removes the control block from the doubly linked list.

DELL EX.1095.692

668 Routing Sockets Chapter 20

/* raw_usrreq.c
* Allocate a raw control block and fill in the
* necessary info to allow packets to be routed to
* the appropriate raw interface routine.
*/

case PRU ATTACH:
if ((so->so_state & SS_PRIV) =- 0 {

error - EACCES;
break;

}
error = raw_attach(so, (int) ham)
break;

139
140
141
142
143
144
145
146
147
148
149
150

151 /*
152 * Destroy state just before socket deallocation.
153 * Flush data or not depending on the options.
154 */
155 case PRU_DETACH:
156 if (rp =- 0) {
157 error - ENOTCONN;
158 break;
159
160 raw_detach(rp);
161 break;

Figure 20.20 raw_usrreq function: PRU_ATTACH and PRU_DETACH requests.
raw_usrreq.c

Figure 20.21 shows the processing of the PRU_CONNECT2, PRU_DISCONNECT, and
PRU_SHUTDOWN requests.

186 case PRU_CONNECT2 :
raw_usrreq.c

187 error = EOPNOTSUPP;
188 goto release;

189 case PRU_DISCONNECT:
190 if (rp->rcb_faddr -- 0)
191 error - ENOTCONN;
192 break;
193 }
194 raw_disconnect(rp);
195 soisdisconnected(so);
196 break;

197
198
199
200
201
202

Figure 20.21

* Mark the connection as being incapable of further input.

case PRU_SHUTDOWN:
socantsendmore(so);
break;

raw_usr~q.c

raw_usrreq ~nction:PRU_CONNECT2, PRU_DISCONNECT, and PRU_SHUTDOWNrequests.

DELL EX.1095.693

Section 20.10 raw_usrreq Function 669

186--188

189--196

197--202

203--217

The PRU_CONNECT2 request is from the socketpair system call and is not sup-
ported in the routing domain.

Since a routing socket is always connected (Figure 20.18), the PRU_DISCONNECT
request is issued by close before the PRU_DETACH request. The socket must already
be connected to a foreign address, which is always true for a routing socket.
raw_disconnect and soisdisconnected complete the processing.

The PRU_SHUTDOWN request is from the shutdown system call when the argument
specifies that no more writes will be performed on the socket, socantsendmore dis-
ables further writes.

The most common request for a routing socket, PRU_SEND, and the PRU_ABORT
and PRU_SENSE requests are shown in Figure 20.22.

203 /*
204 * Ship a packet out. The appropriate raw output
205 * routine handles any massaging necessary.
206 */
207 case PRU_SEND:
208 if (nam) {
209 if (rp->rcb_faddr) {
210 error - EISCONN;
211 break;
212]
213 rp->rcb_faddr - mtod(nam, struct sockaddr *) ;
214] else if (rp->rcb_faddr -- 0) {
215 error - ENOTCONN;
216 break;
217 }
218 error - (*so->so_proto->pr_output) (m, so);
219 m - NULL;
220 if (ham)
221 rp >rcb_faddr = 0;
222 break;

raw_usrreq.c

223 case PRU_ABORT:
224 raw_disconnect(rp);
225 sofree(so);
226 soisdisconnected(so);
227 break;

228
229
230
231
232

case PRU_SENSE:
/*

* stat: don’t bother with a blocksize.
*/

return (0);
~W_USF~q.c

Figure20.22 raw_usrreq ~nction:PRU_SEND, PRU ABORT, and PRU_SENSErequests.

The PRU_SEND request is issued by sosend when the process writes to the socket.
If a ham argument is specified, that is, the process specified a destination address using
either sendto or sendmsg, an error is returned because route_usrreq always sets
rcb_faddr for a routing socket.

DELL EX.1095.694

670 Routing Sockets Chapter 20

218--222

223--227

228--232

233--243

244--261

The message in the mbuf chain pointed to by ra is passed to the protocol’s
pr_eutput function, which is route_output.

If a PRU_ABORT request is issued, the control block is disconnected, the socket is
released, and the socket is disconnected.

The PRU_SENSE request is issued by the fstat system call. The function returns
OK.

Figure 20.23 shows the remaining PRU_XXX requests.

233 /*
234 * Not supported.
235 */
236 case PRU_RCVOOB:
237 case PRU_RCVD:
238 return (EOPNOTSUPP);

239 case PRU_LISTEN:
240 case PRU_ACCEPT:
241 case PRU_SEHDOOB:
242 error = EOPNOTSUPP;
243 break;

244 case PRU_SOCKADDR:
245 if (rp->rcb_laddr -= 0) {
246 error : EINVAL;
247 break;
248 }
249 len = rp->rcb_laddr->sa_len;
250 bcopy((caddr_t) rp->rcb_laddr, mtod(nam, caddr_t),
251 nam->m_len = len;
252 break;

253 case PRU_PEERADDR:
254 if (rp->rcb_faddr == 0) {
255 error = ENOTCONN;
256 break;
257 }
258 len = rp->rcb_faddr->sa_len;
259 bcopy((caddr_t) rp->rcb_faddr, mtod(nam,
260 nam->m_len : len;
261 break;

caddr_t),

Fizure 20.23 raw_usrreq function: finalpart.

raw_usrreq.c

(unsigned) len);

(unsigned) fen);

raw_usrreq.c

These five requests are not supported.
The PRU_SOCKADDR and PRU_PEERADDR requests are from the get socknarae and

getpeernarae system calls respectively. The former always returns an error, since the
b±nd system call, which sets the local address, is not supported in the routing domain.
The latter always returns the contents of the socket address structure route_src,
which was set by route_usrreq as the foreign address.

DELL EX.1095.695

Section20.11 raw_attach, raw_detach, and raw_disconnect Functions 671

20.11 raw_attach~ raw_detach~ and raw_disconnect Functions
The raw_attach function, shown in Figure 20.24, was called by raw_input to finish
processing the PRU_ATTACH request.

49 int
50 raw_attach(so, proto)
51 struct socket *so;
52 int proto;
53 {
54 struct rawcb *rp - sotorawcb(so);
55 int error;

raw_cb.c

56 /*
57 * It is assumed that raw_attach is called
58 * after space has been allocated for the
59 * rawcb.
60 */
61 if (rp -= 0)
62 return (ENOBUFS) ;
63 if (error soreserve(so, raw sendspace, raw recvspace))
64 return (error);
65 rp->rcb_socket = so;
66 rp->rcb_proto.sp_family = so->so~oroto->pr_domain->dom_family;
67 rp->rcb~oroto.sp_protocol = proto;
68 insque(rp, &rawcb);
69 return (0) ;
7O }

raw_cb.c
Figure 20.24 raw_attach function.

49--64

65--67

68--70

The caller must have already allocated the raw protocol control block, soreserve
sets the high-water marks for the send and receive buffers to 8192. This should be more
than adequate for the routing messages.

A pointer to the socket structure is stored in the protocol control block along with
the dom_fami ly (which is PF_ROUTE from Figure 20.1 for the routing domain) and the
proto argument (which is the third argument to socket).

insque adds the control block to the front of the doubly linked list headed by the
global rawcb.

75--84

The raw_detach function, shown in Figure 20.25, was called by raw_input to fin-
ish processing the PRU_DETACH request.

The so_pcb pointer in the socket structure is set to null and the socket is released.
The control block is removed from the doubly linked list by remque and the memory
used for the control block is released by free.

88--94

The raw_disconnect function, shown in Figure 20.26, was called by raw_input
to process the PRU_DISCONNECT and PRU_ABORT requests.

If the socket does not reference a descriptor, raw_detach releases the socket and
control block.

DELL EX.1095.696

672 Routing Sockets Chapter 20

¯ raw cb.c
75 void -
76 raw_detach (rp)
77 struct rawcb *rp;
78 {
79 struct socket *so : rp->rcb_socket;

80 so->so_pcb - 0;
81 sofree(so);
82 remque(rp);
83 free((caddr_t)
84 }

88 void
89 raw_disconnect(rp)
90 struct rawcb *rp;
91 {

(rp), M_PCB);

Figure 20.25 raw_detach function.

92
93
94

if (rp->rcb_socket->so_state & SS_NOFDREF)
raw_detach(rp);

Figure 20.26 raw_disconnect function.

?’aw_ob.c

raw_cb.c

yaw_ob.c

20.12 Summary

A routing socket is a raw socket in the PF_ROUTE domain. Routing sockets can be cre-
ated only by a superuser process. If a nonprivileged process wants to read the routing
information contained in the kernel, the sysctl system call supported by the routing
domain can be used (we described this in the previous chapter).

This chapter was our first encounter with the protocol control blocks (PCBs) that are
normally associated with each socket. In the routing domain a special rawcb contains
information about the routing socket: the local and foreign addresses, the address fam-
ily, and the protocol. We’ll see in Chapter 22 that the larger Internet protocol control
block (inpcb) is used with UDP, TCP, and raw IP sockets. The concepts are the same,
however: the socket structure is used by the socket layer, and the PCB, a rawcb or an
inpcb, is used by the protocol layer. The socket structure points to the PCB and vice
versa.

The route_output function handles the five routing requests that can be issued
by a process, raw__input delivers a routing message to one or more routing sockets,
depending on the protocol and address family. The various PRU_xxx requests for a
routing socket are handled by raw_usrreq and route_usrreq. In later chapters
we’ll encounter additional xxx_usrreq functions, one per protocol (UDP, TCP, and raw
IP), each consisting of a switch statement to handle each request.

DELL EX.1095.697

Chapter 20 Exercises 673

Exercises

20.1 List two ways a process can receive the return value from route_output when the pro-
cess writes a message to a routing socket. Which method is more reliable?

20.2 What happens when a process specifies a nonzero protocol argument to the socket system
call, since the pr_pro[ocol member of the routesw structure is 0?

20.3 Routes in the routing table (other than ARP entries) never time out. Implement a timeout
on routes.

DELL EX.1095.698

DELL EX.1095.699DELL EX.1095.699

21

ARP: Address Resolution

Protocol

21.1 Introduction

ARP, the Address Resolution Protocol, handles the translation of 32-bit IP addresses into
the corresponding hardware address. For an Ethernet, the hardware addresses are
48-bit Ethernet addresses. In this chapter we only consider mapping IP addresses into
48-bit Ethernet addresses, although ARP is more general and can work with other types
of data links. ARP is specified in RFC 826 [Plummer 1982].

When a host has an IP datagram to send to another host on a locally attached Ether-
net, the local host first looks up the destination host in the ARP cache, a table that maps a
32-bit IP address into its corresponding 48-bit Ethernet address. If the entry is found for
the destination, the corresponding Ethernet address is copied into the Ethernet header .
and the datagram is added to the appropriate interface’s output queue. If the entry is
not found, the ARP functions hold onto the IP datagram, broadcast an ARP request ask-
ing the destination host for its Ethernet address, and, when a reply is received, send the
datagram to its destination.

This simple overview handles the common case, but there are many details that we
describe in this chapter as we examine the Net/3 implementation of ARP. Chapter 4 of
Volume I contains additional ARP examples.

21.2 ARP and the Routing Table

The Net/3 implementation of ARP is tied to the routing table, which is why we post-
poned discussing ARP until we had described the structure of the Net/3 routing tables.
Figure 21.1 shows an example that we use in this chapter when describing ARP.

675

DELL EX.1095.700

676 ARP: Address Resolution Protocol Chapter 21

llinfo_arp:
llinfo_arp{}
la_next ~
la_prev

sockaddr_dl{

AF LINK
IF~_ETHER
sdl_alen =0

rtentry{}
rn_key :

]40.252.]3.32

rt_llinfo
rt_gateway
rt_flags UC
rt_ifp

-rt_ifa

rmx_expire

llinfo_arp{}
la_next

--la_prev
la_rt
la_hold
la_asked

sockaddr_dl{}

~AF LINK
IF~_ETHER
sdl_alen :6
8:0:20:3:f6:42

rtentry{}

rn_key =
]40.252.]3.33

rt_llinfo
rt_gateway
rt_flags
rt_ifp
rt_ifa

rmx_expire

HL

//

llinfo_arp{}
la_next

--la_prev
la_rt

la_hold
la_asked

sockaddr_dl{}

IFT ETHER
sdl-alen =6
0:0:~0:c2:9b:26

rtentry{}

rn_key =
]40.252.]3.34

rt_llinfo
<~rt_gateway

rt_flags
~rt_ifp
rt_ifa

rmx_expire

llinfo_arp{}
la_next

-la_prev

la_rt
la_hold
la_asked

sockaddr_dl{}

~
AF LINK
IF~_ETHER
sdl alen :6

0:0:~0:6f:2d:40

rtentry{}
rn_key =

]40.252.]3.35

rt_llinfo
rt_gateway
rt_flags

rt_ifp -
rt_ifa

rmx_expire

UHL

Figure 21.1 Relationship of ARP to routing table and interface structures.

The entire figure corresponds to the example network used throughout the text (Fig-
ure 1.17). It shows the ARP entries on the system bsdi. The ifnet, ifaddr, and
in_ifaddr structures are simplified from Figures 3.32 and 6.5. We have removed
some of the details from these three structures, which were covered in Chapters 3 and 6.

DELL EX.1095.701

Section 21.2 ARP and the Routing Table 677

For example, we don’t show the two sockaddr_dl structures that appear after each
i faddr structure--instead we summarize the information contained in these two
structures. Similarly, we summarize the information contained in the three in_i faddr
structures.

We briefly summarize some relevant points from this figure, the details of which we
cover as we proceed through the chapter

A doubly linked list of l linfo_arp structures contains a minimal amount of
information for each hardware address known by ARP. The global
llinfo_arlo is the head of this list. Not shown in this figure is that the
la_prev pointer of the first entry points to the last entry, and the la_next
pointer of the last entry points to the first entry. This linked list is processed by
the ARP timer function every 5 minutes.

For each IP address with a known hardware address, a routing table entry exists
(an r tent ry structure). The 11 in f o_arp structure points to the correspond-
ing r t e n try structure, and vice versa, using the 1 a_r t and r t _ 11 i n f o point-
ers. The three routing table entries in this figure with an associated
llinfo_arl~ structure are for the hosts sun (140.252.13.33), svr4
(140.252.13.34), and bsdi itself (140.252.13.35). These three are also shown in
Figure 18.2.

We show a fourth routing table entry on the left, without an 11 info_arp struc-
ture, which is the entry for the interface route to the local Ethernet
(140.252.13.32). We show its rt_flags with the c bit on, since this entry is
cloned to form the other three routing table entries. This entry is created by the
call to rtinit when the IP address is assigned to the interface by in_i finit
(Figure 6.19). The other three entries are host entries (the H flag) and are gener-
ated by ARP (the L flag) when a datagram is sent to that IP address.

The rt_gateway member of the rtentry structure points to a sockaddr_dl
structure. This data-link socket address structure contains the hardware address
if the sdl_alen member equals 6.

The rt_i fp member of the routing table entry points to the i fret structure of
the outgoing interface. Notice that the two routing table entries in the middle,
for other hosts on the local Ethernet, both point to le_softc [0], but the rout-
ing table entry on the right, for the host bsdi itself, points to the loopback struc-
ture. Since rt_ifp.if_output (Figure 8.25) points to the output routine,
packets sent to the local IP address are routed to the loopback interface.

Each routing table entry also points to the corresponding in_i faddr structure.
(Actually the rt_i fa member points to an i faddr structure, but recall from
Figure 6.8 that the first member of an in_i faddr structure is an i faddr struc-
ture.) We show only one of these pointers in the figure, although all four point
to the same structure. Remember that a single interface, say le0, can have mul-
tiple IP addresses, each with its own in_ifaddr structure, which is why the
rt_i fa pointer is required in addition to the rt_i fp pointer

DELL EX.1095.702

678 ARP: Address Resolution Protocol Chapter 21

o

The la_hold member is a pointer to an mbuf chain. An ARP request is broad-
cast because a datagram is sent to that IP address. While the kernel awaits the
ARP reply it holds onto the mbuf chain for the datagram by storing its address
in la_hold. When the ARP reply is received, the mbuf chain pointed to by
la_hold is sent.

Finally, we show the variable rmx_expire, which is in the rt_raetrics struc-
ture within the routing table entry. This value is the timer associated with each
ARP entry. Some time after an ARP entry has been created (normally 20 min-
utes) the ARP entry is deleted.

Even though major routing table changes took place with 4.3BSD Reno, the ARP cache was left
alone with 4.3BSD Reno and Net/2. 4.4BSD, however, removed the stand-alone ARP cache
and moved the ARP information into the routing table.

The ARP table in Net/2 was an array of structures composed of the following members: an IP
address, an Ethernet address, a timer, flags, and a pointer to an mbuf (similar to the
member in Figure 21.1). We see with Net/3 that the same information is now spread through-
out multiple structures, all of which are linked.

21.3 Code Introduction

There are nine ARP functions in a single C file and definitions in two headers, as shown
in Figure 21.2.

File Description

net / i f_arp, h arphdr structure definition
net inet / i f_ether, h various structure and constant definitions
netii~et / if_ether, c ARP functions

Figure 21.2 Files discussed in this chapter.

Figure 21.3 shows the relationship of the ARP functions to other kernel functions.
In this figure we also show the relationship between the ARP functions and some of the
routing functions from Chapter 19. We describe all these relationships as we proceed
through the chapter.

Global Variables

Ten global variables are introduced in this chapter, which are shown in Figure 21.4.

DELL EX.1095.703

Section 21.3 Code Introduction 679

if con fig arp program,
program routing socket

kernel ADD

software interrupt RTM_GET
m when ARP request for one ARP entry
~ or reply received

Ethernet ~ ~1 ~
device drivers ~

~ arpresolve

arpwhohas arplookup out

every
5 minutes

arptimer

timer has
expired

arptfree

)request rtallocl

output ~nction
(ether_output)

add route to network when IP address
RT~~ONING

rtrequest

JRTM ADD
RTM--DELETE

~ SOLVE

i fa_rtrequest function
for all Ethernet devices

]Figure 21.3 Relationship of ARP functions to rest of kernel.

DELL EX.1095.704

680 ARP: Address Resolution Protocol Chapter 21

Variable Datatype Descrip[ion

llinfo_arp struct llinfo_arp head of llinfo_arp doubly linked list (Figure 21.1)
arpintrq struct i fqueue ARP input queue from Ethernet device drivers (Figure 4.9)

arpt_prune int #minutes between checking ARP list (5)
arpt_keep int #minutes ARP entry valid once resolved (20)
arpt_down int #seconds between ARP flooding algorithm (20)
arp_inus e int #ARP entries currently in use
arp_al located int #ARP entries ever allocated
arp_maxt ties int max #tries for an IP address before pausing (5)
arpinit_done int initialization-performed flag
useloopback int use loopback for local host (default true)

Figure 21.4 Global variables introduced in this chapter.

Statistics

The only statistics maintained by ARP are the two globals arp_inuse and
arp_al located, from Figure 21.4. The former counts the number of ARP entries cur-
rently in use and the latter counts the total number of ARP entries allocated since the
system was initialized. Neither counter is output by the netstat program, but they
can be examined with a debugger.

The entire ARP cache can be listed using the arp -a command, which uses the
sysctl system call with the arguments shown in Figure 19.36. Figure 21.5 shows the
output from this command, for the entries shown in Figure 18.2.

bsdi $ arp -a
sun.tuc.noao.edu (140.252.13.33) at 8:0:20:3:f6:42
svr4.tuc.noao.edu (140.252.13.34) at 0:0:c0:c2:9b:26
bsdi.tuc.noao.edu (140.252.13.35) at 0:0:c0:6f:2d:40 permanent
ALL SYSTEMS.HCAST.NET (224.0.0.i) at (incomplete)

Figure 21.5 arp a output corresponding to Figure 18.2.

Since the multicast group 224.0.0.1 has the L flag set in Figure 18.2, and since the arp
program looks for entries with the RTF_LLINFO flag set, the multicast groups are out-
put by the program. Later in this chapter we’ll see why this entry is marked as "incom-
plete" and why the entry above it is "permanent."

SNMP Variables

As described in Section 25.8 of Volume 1, the original SNMP MIB defined an address
translation group that was the system’s ARP cache. MIB-II deprecated this group and
instead each network protocol group (i.e., IP) contains its own address translation
tables. Notice that the change in Net/2 to Net/3 from a stand-alone ARP table to an
integration of the ARP information within the IP routing table parallels this SNMP
change.

DELL EX.1095.705

Section 21.4 ARP Structures 681

Figure 21.6 shows the IP address translation table from MIB-II, named
±pNetToMediaTable. The values returned by SNMP for this table are taken from the
routing table entry and its corresponding ± fne¢ structure.

IP address translation tabh
Name

ipNetToMedialfIndex
ipNetToHediaPhysAddress
ipNetToMediaNetAddress
ipNetToHediaType

index : < ipNetToMedialflndex >.< ipNetToMediaNetAddress >
Member

if_index
rt_gateway
rt_key
rt_flags

Description

corresponding interface: i fIndex
physical address
IP address
type of mapping: 1 = other, 2 = invalidated,

3 = dynamic, 4 = static (see text)

Figure 21.6 IP address translation table: iDNetToMediaTable.

If the routing table entry has an expiration time of 0 it is considered permanent and
hence "static." Otherwise the entry is considered "dynamic."

21.4 ARP Structures

Figure 21.7 shows the format of an ARP packet when transmitted on an Ethernet.

ether_type

ether_dhost ether_shost ~
Ethernet Ethernet fram~

destination addr source addr typeI
6 bytes 6 2 2

Ethernet header
ether_header { }

ARPheader I
arphdr{} 91

- hardware type, ar_hrd (ARPHRD_ETHER)

i
protocol type, ar~oro (ETHERTYPE_I P)

/--hardware length, ar_hln (6)

I ~protocol length, argo In (4)
~ ~ ar_op arp_sha arp_spa arp_tha arp_tpa

op
sender sender target target

Ethernet addr IP addr Ethernet addr IP addr
2 1 1 2 6 4 6 4

Ethernet ARP fields
ether_arp { }

Figure 21.7 Format of an ARP request or reply when used on an Ethernet.

The ether_header structure (Figure 4.10) defines the 14-byte Ethernet header; the
arphdr structure defines the next five fields, which are common to ARP requests and
ARP replies on any type of media; and the ether_arp structure combines the arphdr
structure with the sender and target addresses when ARP is used on an Ethernet.

Figure 21.8 shows the definition of the arphdr structure. Figure 21.7 shows the
values of the first four fields in this structure when ARP is mapping IP addresses to
Ethernet addresses.

Figure 21.9 shows the combination of the arphdr structure with the fields used
with IP addresses and Ethernet addresses, forming the ether_arp structure. Notice
that ARP uses the terms hardware to describe the 48-bit Ethernet address, and protocol to
describe the 32-bit IP address.

DELL EX.1095.706

682 ARP: Address Resolution Protocol Chapter 21

45 struct arphdr {
46 u short ar_hrd;
47 u_short ar~oro ;
48 u_char ar_hln;
49 u_char ar_pln;
50 u_short ar_op ;
51 };

if_arp.h

/* format of hardware address */
/* format of protocol address */
/* length of hardware address */
/* length of protocol address */
/* ARP/RARP operation, Figure 21.15 */

if_arp.h

Figure 21.8 arphdr structure: common ARP request/reply header.

79 struct ether_arp {
80 struct arphdr ea_hdr;
81 u_char arp_sha[6];
82 u_char arp_spa[4];
83 u_char arp_tha[6] ;
84 u_char arp_tpa[4];
85 };

86 #define arp_hrd ea_hdr.ar_hrd
87 #define arp_pro ea_hdr.ar_pro
88 #define arp_hln ea_hdr.ar_hln
89 #define arp_pln ea~hdr.ar_pln
90 #define arp_op ea_hdr.ar_op

/* fixed-size header */
/* sender hardware address */
/* sender protocol address */
/* target hardware address */
/* target protocol address */

Figure 21.9 ether_arp structure.

if_ether.h

if_ether.h

One llinfo_arp structure, shown in Figure 21.10, exists for each ARP entry.
Additionally, one of these structures is allocated as a global of the same name and used
as the head of the linked list of all these structures. We often refer to this list as the ARP
cache, since it is the only data structure in Figure 21.1 that has a one-to-one correspon-
dence with the ARP entries.

103 struct llinfo_arp {
104 struct llinfo_arp *la_next;
105 struct llinfo_arp *la_prev;
106 struct rtentry *la_rt;
107 struct mbuf *la_hold;
108 long la_asked;
109 };

/* last packet until resolved/timeout */
/* #times we’ve queried for this addr */

if_ether.h

ii0 #define la_timer la_rt->rt_rmx.rmx_expire /* deletion time in seconds */
if_ether.h

Figure 21.10 llinfo_arp structure.

With Net/2 and earlier systems it was easy to identify the structure called the ARP cache, since
a single structure contained everything for each ARP entry. Since Net/3 stores the ARP infor-
mation among multiple structures, no single structure can be called the ARP cache. Neverthe-
less, having the concept of an ARP cache, which is the collection of information describing a
single ARP entry, simplifies the discussion.

DELL EX.1095.707

Section 21.5 arpwhohas Function 683

104--106

107

108--109

ii0

21.5

196--202

The first two entries form the doubly linked list, which is updated by the insque
and remque functions, la_rt points to the associated routing table entry, and the
rt_l 1 info member of the routing table entry points to this structure.

When ARP receives an IP datagram to send to another host but the destination’s
hardware address is not in the ARP cache, an ARP request must be sent and the ARP
reply received before the datagram can be sent. While waiting for the reply the mbuf
pointer to the datagram is saved in la_hold. When the ARP reply is received, the
packet pointed to by la_hold (if any) is sent.

la_asked counts how many consecutive times an ARP request has been sent to
this IP address without receiving a reply. We’ll see in Figure 21.24 that when this
counter reaches a limit, that host is considered down and another ARP request won’t be
sent for a while.

This definition uses the rmx_exp i r e member of the r t_me t r i c s structure in the
routing table entry as the ARP timer. When the value is 0, the ARP entry is considered
permanent. When nonzero, the value is the number of seconds since the Unix Epoch
when the entry expires.

arpwhohas Function

The arpwhohas function is normally called by arpresolve to broadcast an ARP
request. It is also called by each Ethernet device driver to issue a gratuitous ARP request
when the IP address is assigned to the interface (the SIOCSIFAgDR ioctl in Fig-
ure 6.28). Section 4.7 of Volume 1 describes gratuitous ARP--it detects if another host
on the Ethernet is using the same IP address and also allows other hosts with ARP
entries for this host to update their ARP entry if this host has changed its Ethernet
address, arpwhohas simply calls arprequest, shown in the next section, with the
correct arguments.

196 void
197 arpwhohas(ac, addr)
198 struct arpcom *ac;
199 struct in_addr *addr;
2OO {
201 arprequest(ac, &ac->ac_ipaddr.s_addr,
202 }

if_et’her.c

Figure 21.11

&addr->s_addr, ac->ac_enaddr) ;

if_ether.c

arpwhohas function: broadcast an ARP request.

The arpcom structure (Figure 3.26) is common to all Ethernet devices and is part of
the le_softc structure, for example (Figure 3.20). The ac_ipaddr member is a copy
of the interface’s IP address, which is set by the driver when the SIOCSIFADDR ioctl
is executed (Figure 6.28). ac_enaddr is the Ethernet address of the device.

The second argument to this function, addr, is the IP address for which the ARP
request is being issued: the target IP address. In the case of a gratuitous ARP request,
addr equals ac_ipaddr, so the second and third arguments to arprequest are the
same, which means the sender IP address will equal the target IP address in the gratu-
itous ARP request.

DELL EX.1095.708

684 ARP: Address Resolution Protocol Chapter 21

21.6 arprequest Function

The arprequest function is called by arpwhohas to broadcast an ARP request. It
builds an ARP request packet and passes it to the interface’s output function.

Before looking at the source code, let’s examine the data structures built by the
function. To send the ARP request the interface output function for the Ethernet device
(ether_output) is called. One argument to ether_output is an mbuf containing the
data to send: everything that follows the Ethernet type field in Figure 21.7. Another
argument is a socket address structure containing the destination address. Normally
this destination address is an IP address (e.g., when ip_output calls ether_output
in Figure 21.3). For the special case of an ARP request, the sa_family member of the
socket address structure is set to AF_UNSPEC, which tells ether_output that it con-
tains a filled-in Ethernet header, including the destination Ethernet address. This pre-
vents ether_output from calling arpresolve, which would cause an infinite loop.
We don’t show this loop in Figure 21.3, but the "interface output function" below
arprequest is ether_output. If ether_output were to call arpresolve again,
the infinite loop would occur.

Figure 21.12 shows the mbuf and the socket address structure built by this function.
We also show the two pointers eh and ea, which are used in the function.

sockaddr { }

16 AF_- IUNSPEC I
1 byte 1

eh

Ethernet header

14 bytes

sa_data []

mbuf { }
m_next
m_nextpkt
m_len
.m_data
m_type
m_flags
m_pkthdr.len
m~okthdr.rcvif

ether_arp{}
(28bytes)

NULL
NULL
28

MT DATA
M_PKTHDR
28
NULL

unused
(72 bytes)

Figure 21.12 sockaddr and mbuf built by arprequest.

Figure 21.13 shows the arprequest function.

DELL EX.1095.709

Section 21.6 arprequest Function 685

209 static void if_ether.c
210 arprequest(ac, sip, tip, enaddr)
211 struct arpcom *ac;
212 u_long *sip, *tip;
213 u_char *enaddr;
214 {
215 struct mbuf *m;
216 struct ether_header *eh;
217 struct ether_arp *ea;
218 struct sockaddr sa;

209--223

219
220
221
222
223

224
225
226

227
228
229

230
231
232
233
234
235
236
237

238
239

if ((m : m_gethdr(M_DONTWAIT, MT_DATA)) -- NULL)
return;

m->m_len = sizeof(*ea);
m->m_pkthdr.len = sizeof(*ea);
MH_ALIGN(m, sizeof(*ea));

ea = mtod(m, struct ether_arp *);
eh = (struct ether_header *) sa.sa_data;
bzero((caddr_t) ea, sizeof(*ea));

bcopy((caddr_t) etherbroadcastaddr, (caddr_t) eh->ether_dhost,
sizeof(eh->ether_dhost));

eh->ether_type = ETHERTYPE_ARP; /* if output() will swap */

ea->arp_hrd = htons(ARPHRD_ETHER);
ea >arp~ro - htons(ETHERTYPE_IP);
ea->arp_hln _ sizeof(ea >arp_sha); /* hardware address length */
ea->arp_pln - sizeof(ea >arp_spa); /* protocol address length */
ea->arp_op : htons(ARPOP_REQUEST);
bcopy((caddr_t) enaddr, (caddr_t) ea->arp_sha, sizeof(ea >arp_sha));
bcopy((caddr_t) sip, (caddr_t) ea->arp_spa, sizeof(ea->arp_spa));
bcopy((caddr_t) tip, (caddr_t) ea->arp_tpa, sizeof(ea->arp_tpa));

sa.sa_family : AF_UNSPEC;
sa.sa_len = sizeof(sa);

240 (*ac->ac_if.if_output) (&ac->ac_if, m, &sa, (struct rtentry *) 0);
241 }

if_ethe~c

Figure 21.13 arpreques t function: build an ARP request packet and send it.

Allocate and initialize mbuf

A packet header mbuf is allocated and the two length fields are set. HH_ALIGN
allows room for a 28-byte ether_arp structure at the end of the mbuf, and sets the
m_data pointer accordingly. The reason for moving this structure to the end of the
mbuf is to allow ether_output to prepend the 14-byte Ethernet header in the same
mbuf.

DELL EX.1095.710

686 ARP: Address Resolution Protocol Chapter 21

224 226

227-229

230--237

Initialize pointers
The two pointers ea and eh are set and the ether_arp structure is set to 0. The

only purpose of the call to bzero is to set the target hardware address to 0, because the
other eight fields in this structure are explicitly set to their respective value.

Fill in Ethernet header

The destination Ethernet address is set to the Ethernet broadcast address and the
Ethernet type field is set to ETHERTYPE_ARP. Note the comment that this 2-byte field
will be converted from host byte order to network byte order by the interface output
function. This function also fills in the Ethernet source address field. Figure 21.14
shows the different values for the Ethernet type field.

Constant Value Description

ETHERTYPE IP Ox0800 IP frames
ETHERTYPE ARP 0x0806 ARP frames
ETHERTYPE_REVARP 0x8035 reverse ARP (RARP) frames
ETHERTYPE IPTRAILERS 0xl 000 trailer encapsulation (deprecated)

Figure 21.14 Ethernet type fields.

RARP maps an Ethernet address to an IP address and is used when a diskless system
bootstraps. RARP is normally not part of the kernel’s implementation of TCP/IP, so it is
not covered in this text. Chapter 5 of Volume i describes RARP.

Fill in ARP fields

All fields in the ether_arp structure are filled in, except the target hardware
address, which is what the ARP request is looking for. The constant ARPHRD_ETHER,
which has a value of 1, specifies the format of the hardware addresses as 6-byte Ethernet
addresses. To identify the protocol addresses as 4-byte IP addresses, arp_pro is set to
the Ethernet type field for IP from Figure 21.14. Figure 21.15 shows the various ARP
operation codes. We encounter the first two in this chapter. The last two are used with
RARP.

Constant Value

ARPOP_REQUEST 1
ARPOP_REPL Y 2

ARPOP_REVREQUEST 3
ARPOP_REVREPL Y 4

Description

ARP request to resolve protocol address
reply to ARP request
RARP request to resolve hardware address
reply to RARP request

Figure 21.15 ARP operation codes.

238 241

Fill in sockaddr and call interface output function
The sa_family member of the socket address structure is set to AF_UNSPEC and

the sa_len member is set to 16. The interface output function is called, which we said
is ether_output.

DELL EX.1095.711

Section 21.7 arpintr Function 687

21.7

319--343

arpintr Function

In Figure 4.13 we saw that when ether_input receives an Ethernet frame with a type
field of ETHERTYPE_ARP, it schedules a software interrupt of priority NET I S R_ARP and
appends the frame to ARP’s input queue: arpintrq. When thekernel processes the
software interrupt, the function arpintr, shown in Figure 21.16, is called.

319 void
320 arpintr()
321 {
322 struct mbuf *m;
323 struct arphdr *at;
324 int s;

if_ether.c

325 while (arpintrq.ifq_head) {
326 s - splimp();
327 IF_DEQUEUE(&arpintrq, m);
328 splx(s);
329 if (m =- 0 I I (m->m_flags & M_PKTHDR) == 0)
330 panic("arpintr");

331 if (m->m_len >: sizeof(struct arphdr) &&
332 (ar - mtod(m, struct arphdr *)) &&
333 ntohs(ar->ar_hrd) == ARPHRD_ETHER &&
334 m->m_len >= sizeof(struct arphdr) + 2*ar->ar_hln + 2*at >ar_pln)

335 switch (ntohs(ar->ar_pro))
336 case ETHERTYPE_IP:
337 case ETHERTYPE_IPTRAILERS:
338 in_arpinput(m);
339 continue;
340]

341 in_freem(m);
342 }
343 }

if_ether.c
Figure 21.16 arpintr function: process Ethernet frames containing ARP requests or replies.

The while loop processes one frame at a time, as long as there are frames on the
queue. The frame is processed if the hardware type specifies Ethernet addresses, and if
the size of the frame is greater than or equal to the size of an arphdr structure plus the
sizes of two hardware addresses and two protocol addresses. If the type of protocol
addresses is either ETHERTYPE_IP or ETHERTYPE_IPTRAILERS, the in_arpinput
function, shown in the next section, is called. Otherwise the frame is discarded.

Notice the order of the tests within the i f statement. The length is checked twice.
First, if the length is at least the size of an arphdr structure, then the fields in that struc-
ture can be examined. The length is checked again, using the two length fields in the
arphdr structure.

DELL EX.1095.712

688 ARP: Address Resolution Protocol Chapter 21

21.8 in_arpinput Function

This function is called by arp±n~r to process each received ARP request or ARP reply.
While ARP is conceptually simple, numerous rules add compl6xity to the implementa-
tion. The following two scenarios are typical:

If a request is received for one of the host’s IP addresses, a reply is sent. This is
the normal case of some other-host on the Ethernet wanting to send this host a
packet. Also, since we’re about to receive a packet from that other host, and
we’ll probably send a reply, an ARP entry is created for that host (if one doesn’t
already exist) because we have its IP address and hardware address. This opti-
mization avoids another ARP exchange when the packet is received from the
other host.
If a reply is received in response to a request sent by this host, the corresponding
ARP entry is now complete (the hardware address is known). The other host’s
hardware address is stored in the soc]~acldr_dl structure and any queued
packet for that host can now be sent. Again, this is the normal case.

ARP requests are normally broadcast so each host sees all ARP requests on the Ethernet,
even those requests for which it is not the target. Recall from arp~÷c~u÷st that when a
request is sent, it contains the sender’s IP address and hardware address. This allows the
following tests also to occur.

If some other host sends a request or reply with a sender IP address that equals
this host’s IP address, one of the two hosts is misconfigured. Net/3 detects this
error and logs a message for the administrator. (We say "request or reply" here
because ±n_a~p±n~u~ doesn’t examine the operation type. But ARP replies are
normally unicast, in which case only the target host of the reply receives the
reply.)
If this host receives a request or reply from some other host for which an ARP
entry already exists, and if the other host’s hardware address has changed, the
hardware address in the ARP entry is updated accordingly. This can happen if
the other host is shut down and then rebooted with a different Ethernet inter-
face (hence a different hardware address) before its ARP entry times out. The
use of this technique, along with the other host sending a gratuitous ARP
request when it reboots, prevents this host from being unable to communicate
with the other host after the reboot because of an ARP entry that is no longer
valid.
This host can be configured as a proxy ARP server. This means it responds to
ARP requests for some other host, supplying the other host’s hardware address
in the reply. The host whose hardware address is supplied in the proxy ARP
reply must be one that is able to forward IP datagrams to the host that is the tar-
get of the ARP request. Section 4.6 of Volume I discusses proxy ARP.

A Net/3 system can be configured as a proxy ARP server. These ARP entries
are added with the a~ command, specifying the IP address, hardware address,

DELL EX.1095.713

Section 21.8 in_arpinput Function 689

and the keyword pub. We’ll see the support for this in Figure 21.20 and we
describe it in Section 21.12.

358 375

376--382

We examine in_arpinput in four parts. Figure 21.17 shows the first part.

358 static void
359 in_arpinput(m)
360 struct inbuf *m;
361 {
362 struct
363 struct
364 struct
365 struct
366 struct
367 struct
368 struct
369 struct
370 struct
371 int

ether_arp *ea;
arpcom *ac : (struct arpcom *) m->m_pkthdr.rcvif;
ether_header *eh;
llinfo_arp *la : O;
rtentry *rt;
in_ifaddr *ia, *maybe_ia = O;
sockaddr_dl *sdl;
sockaddr sa;
in_addr isaddr, itaddr, myaddr;

op;

if_ether.c

372
373
374
375

ea = mtod(m, struct ether_arp *);
op = ntohs(ea->arp_op);
bcopy((caddr_t) ea >arp_spa, (caddr_t) & isaddr,
bcopy((caddr_t) ea->arp_tpa, (caddr_t) & itaddr,

sizeof(isaddr));
sizeof(itaddr));

376
377
378
379
380
381
382
383
384
385

for (ia : in_ifaddr; ia; ia - ia >ia_next)
if (ia >ia_ifp := &ac->ac_if)

maybe_ia = ia;
if ((itaddr.s_addr := ia->ia_addr.sin_addr.s_addr)

(isaddr.s_addr -: ia->ia_addr.sin_addr.s_addr))
break;

}
if (maybe_ia :: O)

goto out;
myaddr - ia ? ia->ia_addr.sin_addr : maybe_ia->ia_addr.sin_addr;

Figure 21.17 in_arpinput function: look for matching interface.

if_ether.c

The length of the ether_arp structure was verified by the caller, so ea is set to
point to the received packet. The ARP operation (request or reply) is copied into op but
it isn’t examined until later in the function. The sender’s IP address and target IP
address are copied into isaddr and itaddr.

Look for matching interface and IP address

The linked list of Internet addresses for the host is scanned (the list of in_i faddr
structures, Figure 6.5). Remember that a given interface can have multiple IP addresses.
Since the received packet contains a pointer (in the mbuf packet header) to the receiving
interface’s i fnet structure, the only IP addresses considered in the for loop are those
associated with the receiving interface. If either the target IP address or the sender’s IP
address matches one of the IP addresses for the receiving interface, the break termi-
nates the loop.

DELL EX.1095.714

690 ARP: Address Resolution Protocol Chapter 21

383--384

385

If the loop terminates with the variable mayb÷_±a equal to 0, the entire list of con-
figured IP addresses was searched and not one was associated with the received inter-
face. The function jumps to out (Figure 21.19), where the mbuf is discarded and the
function returns. This should only happen if an ARP request is received on an interface
that has been initialized but has not been assigned an IP address.

If the for loop terminates having located a receiving interface (maybe_±a is non-
null) but none of its IP addresses matched the sender or target IP address, myadc]r is set
to the final IP address assigned to the interface. Otherwise (the normal case) myaddr
contains the local IP address that matched either the sender or target IP address.

Figure 21.18 shows the next part of the in_arpinput function, which performs
some validation of the packet.

386 if
387
388
389 if
390
391
392
393
394
395 }
396 if
397
398
399
400
401
402 }

(!bcmp((caddr_t) ea->arp_sha, caddr_t) ac->ac_enaddr,
sizeof(ea->arp_sha)))

goto out; /* it s from me, ignore it. */
(!bcmp((caddr_t) ea->arp_sha, caddr_t) etherbroadcastaddr,

sizeof(ea->arp_sha))) {
log(LOG_ERR,

"arp: ether address is broadcast for IP address %x!\n",
ntohl(isaddr.s_addr));

goto out;

if_ether, c

(isaddr.s_addr :: myaddr.s_addr) {
log(LOG_ERR,

"duplicate IP address %x!! sent from ethernet address: %s\n",
ntohl(isaddr.s_addr), ether_sprintf(ea->arp_sha));

itaddr = myaddr;
goto reply;

if_ether.c

Figure 21.18 in_arpinput function: validate received packet.

386--388

389--395

396--402

Validate sender’s hardware address
If the sender’s hardware address equals the hardware address of the interface, the

host received a copy of its own request, which is ignored.
If the sender’s hardware address is the Ethernet broadcast address, this is an error.

The error is logged and the packet is discarded.

Check sender’s IP address
If the sender’s IP address equals myadd~, then the sender is using the same IP

address as this host. This is also an error--probably a configuration error by the system
administrator on either this host or the sending host. The error is logged and the func-
tion jumps to reply (Figure 21.19), after setting the target IP address to myaddr (the
duplicate address). Notice that this ARP packet could have been destined for some
other host on the Ethernet--it need not have been sent to this host. Nevertheless, if this
form of IP address spoofing is detected, the error is logged and a reply generated.

Figure 21.19 shows the next part of in_arpinput.

DELL EX.1095.715

Section 21.8 in_arpinput Function 691

if_ether.c

403

404

403 la : arplookup(isaddr.s_addr, itaddr.s_addr :: myaddr.s_addr, 0);
404 if (la && (rt - la->la_rt) && (sdl = SDL(rt->rt_gateway))) {
405 if (sdl->sdl_alen &&
406 bcmp((caddr_t) ea->arp_sha, LLADDR(sdl), sdl->sdl_alen))
407 Iog(LOG_INFO, "arp info overwritten for %x by %s\n",
408 isaddr.s_addr, ether_sprintf(ea >arp_sha));
409 bcopy((caddr_t) ea->arp_sha, LLADDR(sdl),
410 sdl->sdl_alen - sizeof(ea->arp_sha));
411 if (rt >rt_expire)
412 rt->rt_expire = time.tv_sec + arpt_keep;
413 rt->rt_flags &: -RTF_REJECT;
414 la->la_asked - 0;
415 if (la >la_hold) {
416 (*ac >ac_if.if_output) (&ac->ac_if, la->la_hold,
417 rt_key(rt), rt);
418 la >la_hold = 0;
419 }
420 }

421 reply:
422 if (op !: ARPOP_REQUEST)
423 out:
424 m_freem(m);
425 return;
426 }

Figure 21.19 in_arpinput function: create a new ARP entry or update existing entry.
if_ether.c

Search routing table for match with sender’s IP address
arplookup searches the ARP cache for the sender’s IP address (isaddr). The sec-

ond argument is I if the target IP address equals myaddr (meaning create a new entry if
an entry doesn’t exist), or 0 otherwise (do not create a new entry). An entry is always
created for the sender if this host is the target; otherwise the host is processing a broad-
cast intended for some other target, so it just looks for an existing entry for the sender.
As mentioned earlier, this means that if a host receives an ARP request for itself from
another host, an ARP entry is created for that other host on the assumption that, since
that host is about to send us a packet, we’ll probably send a reply.

The third argument is 0, which means do not look for a proxy ARP entry (described
later). The return value is a pointer to an 11 info_arp structure, or a null pointer if an
entry is not found or created.

Update existing entry or fill in new entry

The code associated with the i f statement is executed only if the following three
conditions are all true:

1. an ARP entry was found or a new ARP entry was successfully created (la is
nonnull),

2. the ARP entry points to a routing table entry (rt), and

DELL EX.1095.716

692 ARP: Address Resolution Protocol Chapter 21

405 408

409-410

411--412

413--414

415--420

421--426

3. the rt_gateway field of the routing table entry points to a sockaddr_dl
structure.

The first condition is false for every broadcast ARP request not directed to this host,
from some other host whose IP address is not currently in the routing table.
Check if sender’s hardware addresses changed

If the link-level address length (sdl_al÷n) is nonzero (meaning that an existing
entry is being referenced and not a new entry that was just created), the link-level
address is compared to the sender’s hardware address. If they are different, the
sender’s Ethernet address has changed. This can happen if the sending host is shut
down, its Ethernet interface card replaced, and it reboots before the ARP entry times
out. While not common, this is a possibility that must be handled. An informational
message is logged and the code continues, which will update the hardware address
with its new value.

The sender’s IP address in the log message should be converted to host byte order. This is a
bug.

Record sender’s hardware address

The sender’s hardware address is copied into the sockaddr_dl structure pointed
to by the rt_gat eway member of the routing table entry. The link-level address length
(sd!_alen) in the sockaddr_dl structure is also set to 6. This assignment of the
length field is required if this is a newly created entry (Exercise 21.3).

Update newly resolved ARP entry
When the sender’s hardware address is resolved, the following steps occur. If the

expiration time is nonzero, it is reset to 20 minutes (arpt_keep) in the future. This test
exists because the arp command can create permanent entries: entries that never time
out. These entries are marked with an expiration time of 0. We’ll also see in Fig-
ure 21.24 that when an ARP request is sent (i.e., for a nonpermanent ARP entry) the
expiration time is set to the current time, which is nonzero.

The RTF_REJECT flag is cleared and the la_asked counter is set to 0. We’ll see
that these last two steps are used in arpresolve to avoid ARP flooding.

If ARP is holding onto an mbuf awaiting ARP resolution of that host’s hardware
address (the la_hold pointer), the mbuf is passed to the interface output function. (We
show this in Figure 21.1.) Since this mbuf was being held by ARP, the destination
address must be on a local Ethernet so the interface output function is ether_output.
This function again calls arpresolve, but the hardware address was just filled in,
allowing the mbuf to be queued on the actual device’s output queue.
Finished with ARP reply packets

If the ARP operation is not a request, the received packet is discarded and the func-
tion returns.

The remainder of the function, shown in Figure 21.20, generates a reply to an ARP
request. A reply is generated in only two instances:

DELL EX.1095.717

Section 21.8 in_arpinput Function 693

427-432

4~33--437

1. this host is the target of a request for its hardware address, or

2. this host receives a request for another host’s hardware address for which this
host has been configured to act as an ARP proxy server.

At this point in the function, an ARP request has been received, but since ARP requests
are normally broadcast, the request could be for any system on the Ethernet.

427 if (itaddr.s_addr -- myaddr.s_addr) {
428 /* I am the target */
429 bcopy((caddr_t) ea->arp_sha, (caddr_t) ea >arp_tha,
430 sizeof(ea->arp_sha));
431 bcopy((caddr_t) ac->ac_enaddr, (caddr_t) ea->arp_sha,
432 sizeof(ea->arp_sha));
433 } else {
434 la = arplookup(itaddr.s_addr, 0, SIN_PROXY);
435 if (la == NULL)
436 goto out;
437 rt - la->la_rt;
438 bcopy((caddr_t) ea->arp_sha, (caddr_t) ea >arp_tha,
439 sizeof(ea->arp_sha));
440 sdl - SDL(rt->rt_gateway) ;
441 bcopy(LLADDR(sdl), (caddr_t) ea >arp_sha, sizeof(ea->arp_sha)
442 }

if_ether.c

443 bcopy((caddr_t) ea->arp_spa, (caddr_t) ea >arp_tpa, sizeof(ea->arp_spa));
444 bcopy((caddr_t) & itaddr, (caddr_t) ea->arp_spa, sizeof(ea->arp_spa));
445 ea->arp_op : htons(ARPOP_REPLY);
446 ea->arp_pro = htons(ETHERTYPE_IP); /* let’s be sure! */
447 eh - (struct ether_header *) sa.sa_data;
448 bcopy((caddr_t) ea->arp_tha, (caddr_t) eh >ether_dhost,
449 sizeof(eh >ether_dhost));
450 eh->ether_type = ETHERTYPE_ARP;
451 sa.sa_family = AF_UNSPEC;
452 sa.sa_len - sizeof(sa);
453 (*ac >ac_if.if_output) (&ac->ac_if, m, &sa, (struct rtentry *) 0);
454 return;
4 5 ~ }

if_ether.c

Figure 21.20 in_arpinput function: form ARP reply and send it.

This host is the target

If the target IP address equals myaddr, this host is the target of the request. The
source hardware address is copied into the target hardware address (i.e., whoever sent
it becomes the target) and the Ethernet address of the interface is copied from the
arpcom structure into the source hardware address. The remainder of the ARP reply is
constructed after the e 1 s e clause.

Check if this host is a proxy server for target
Even if this host is not the target, this host can be configured to be a proxy server for

the specified target, arplookup is called again with the create flag set to 0 (the second

DELL EX.1095.718

694 ARP: Address Resolution Protocol Chapter 21

437--442

443--444

445~446

447 452

453 455

argument) and the third argument set to SEN_PROXY. This finds an entry in the routing
table only if that entry’s SEN_PROXY flag is set. If an entry is not found (the typical case
where this host receives a copy of some other ARP request on the Ethernet), the code at
out discards the mbuf and returns.

Form proxy reply
To handle a proxy ARP request, the sender’s hardware address becomes the target

hardware address and the Ethernet address from the ARP entry is copied into the
sender hardware address field. This value from the ARP entry can be the Ethernet
address of any host on the Ethernet capable of sending IP datagrams to the target IP
address. Normally the host providing the proxy ARP service supplies its own Ethernet
address, but that’s not required. Proxy entries are created by the system administrator
using the argo command, with the keyword pub, specifying the target IP address (which
becomes the key of the routing table entry) and an Ethernet address to return in the
ARP reply.

Complete construction of ARP reply packet
The remainder of the function completes the construction of the ARP reply. The

sender and target hardware addresses have been filled in. The sender and target IP
addresses are now swapped. The target IP address is contained in ±taddr, which
might have been changed if another host was found using this host’s IP address (Fig-
ure 21.18).

The ARP operation is set to ARPOP_REPLY and the type of protocol address is set to
ETHERTYPE_IP. The comment "let’s be sure!" is because arpintr also calls this func-
tion when the type of protocol address is ETHERTYPE_IPTRAILERS, but the use of
trailer encapsulation is no longer supported.
Fill in $ockaddr with Ethernet header

A sockaddr structure is filled in with the 14-byte Ethernet header, as shown in Fig-
ure 21.12. The target hardware address also becomes the Ethernet destination address.

The ARP reply is passed to the interface’s output routine and the function returns.

21.9 ARP Timer Functions

ARP entries are normally dynamic--they are created when needed and time out auto-
matically. It is also possible for the system administrator to create permanent entries
(i.e., no timeout), and the proxy entries we discussed in the previous section are always
permanent. Recall from Figure 21.1 and the #define at the end of Figure 21.10 that the
rinx_expire member of the routing metrics structure is used by ARP as a timer.

arpt imer Function

This function, shown in Figure 21.21, is called every 5 minutes. It goes through all the
ARP entries to see if any have expired.

DELL EX.1095.719

Section 21.9 ARP Timer Functions 695

if_ether.c
static void
arptimer (ignored_arg)
void *ignored_arg;

74
75
76
77
78
79

8O
81
82
83
84
85
86
87
88

int s : spinet();
struct llinfo_arp *la : llinfo_arp.la_next;

timeout(arptimer, (caddr_t) O, arpt~prune * hz);
while (la !: &llinfo_arp) {

struct rtentry *rt - la->la_rt;
la - la->la_next;
if (rt >rt_expire && rt >rt_expire <= time.tv_sec)

arptfree(la->la_prev); /* timer has expired, clear */

splx(s);

Figure 21.21 arpt imer function: check all ARP timers every 5 minutes.

if_ether.c

8O

81--86

Set next timeout
We’ll see that the a rp_rt r eque st function causes a rpt ±met to be called the first

time, and from that point arpt ±net causes itself to be called 5 minutes (arpt_prune)
in the future.

Check all ARP entries

Each entry in the linked list is processed. If the timer is nonzero (it is not a perma-
nent entry) and if the timer has expired, arpt free releases the entry. If rt_e×p±re is
nonzero, it contains a count of the number of seconds since the Unix Epoch when the
entry expires.

arpt free Function

467 473

This function, shown in Figure 21.22, is called by arpt±ner to delete a single entry
from the linked list of 11 ±nfo_arp entries.

Invalidate (don’t delete) entries in use
If the routing table reference count is greater than 0 and the rt_gateway member

points to a sockaddr_dl structure, arpt free takes the following steps:

1. the link-layer address length is set to 0,

2. the la_asked counter is reset to 0, and

3. the RTF_RVJW.CT flag is cleared.

The function then returns. Since the reference count is nonzero, the routing table entry
is not deleted. But setting sdl_alen to 0 invalidates the entry, so the next time the
entry is used, an ARP request will be generated.

DELL EX.1095.720

696 ARP: Address Resolution Protocol Chapter 21

459 static void if_ether.c
460 arptfree(la)
461 struct llinfo_arp *la;
462 {
463 struct rtentry *rt = la >la_rt;
464 struct sockaddr_dl *sdl;
465 if (rt == 0)
466 panic("arptfree");
467 if (rt->rt_refcnt > 0 && (sdl - SDL(rt >rt_gateway)) &&
468 sdl->sdl_family -- AF_LINK) {
469 sdl >sdl_alen : 0;
470 la->la_asked = 0;
471 rt->rt_flags &- -RTF_REJECT;
472 return;
473 }
474 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *) 0, rt mask(rt),
475 0, (struct rtentry **) 0) ;
476 }

if_ether.c
arptfreefunction:deleteorinvalidatean ARPentr~Figure 21.22

474--475

Delete unreferenced entries

rtrequest deletes the routing table entry, and we’ll see in Section 21.13 that it calls
arp_rtrequest. This latter function frees any mbuf chain held by the ARP entry (the
1 a_ho 1 d pointer) and deletes the corresponding 11 in f o_arp entry.

21.10

252--261

arpresolve Function

We saw in Figure 4.16 that ether_output calls arpresolve to obtain the Ethernet
address for an IP address, arpresolve returns] if the destination Ethernet address is
known, allowing ether_output to queue the IP datagram on the interface’s output
queue. A return value of 0 means arpresolve does not know the Ethernet address.
The datagram is "held" by arpresolve (using the la_hold member of the
llinfo_arp structure) and an ARP request is sent. If and when an ARP reply is
received, in_arpinput completes the ARP entry and sends the held datagram.

arpresolve must also avoid ARPflooding, that is, it must not repeatedly send ARP
requests at a high rate when an ARP reply is not received. This can happen when sev-
eral datagrams are sent to the same unresolved IP address before an ARP reply is
received, or when a datagram destined for an unresolved address is fragmented, since
each fragment is sent to ether_output as a separate packet. Section 11.9 of Volume 1
contaihs an example of ARP flooding caused by fragmentation, and discusses the asso-
ciated problems. Figure 21.23 shows the first half of arpresolve.

dst is a pointer to a sockaddr_in containing the destination IP address and
desten is an array of 6 bytes that is filled in with the corresponding Ethernet address, if
known.

DELL EX.1095.721

Section 21.10 arpresolve Function 697

~ ether.c
252 int --
253 arpresolve(ac, rt, m, dst, desten)
254 struct arpcom *ac;
255 struct rtentry *rt;
256 struct mbuf *m;
257 struct sockaddr *dst;
258 u_char *desten;
259 {
260 struct
261 struct

262-270

271--276

277--281

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

llinfo_arp *la;
sockaddr_dl *sdl;

if (m->m_flags & M_BCAST) { /* broadcast */
bcopy((caddr_t) etherbroadcastaddr, (caddr_t) desten,

sizeof(etherbroadcastaddr));
return (i);

(m >m_flags & M_MCAST) { /* multicast */
ETHER_MAP IP MULTICAST(&SIN(dst)->sin_addr, desten)
return (i);

}
if (rt)

la -
else

(struct llinfo_arp *) rt->rt_llinfo;
{

if (la = arplookup(SIN(dst)->sin_addr.s_addr,
rt : la >la_rt;

(la :- 0 I I rt := 0) {
log(LOG_DEBUG, "arpresolve:
m freem(m);
return (0);

i, 0)

can’t allocate llinfo");

Figure 21.23 arpresolve function: find ARP entry if required.

if_ether.c

Handle broadcast and multicast destinations
If the M_BCAST flag of the mbuf is set, the destination is filled in with the Ethernet

broadcast address and the function returns 1. If the M MCAST flag is set, the
ETHER_MAP IP MULTICAST macro (Figure 12.6) converts the class D address into the
corresponding Ethernet address.

Get pointer to llinfo_arp structure
The destination address is a unicast address. If a pointer to a routing table entry is

passed by the caller, la is set to the corresponding llinfo_arp structure. Otherwise
arplookup searches the routing table for the specified IP address. The second argu-
ment is 1, telling arplookup to create the entry if it doesn’t already exist; the third
argument is 0, which means don’t look for a proxy ARP entry.

If either rt or la are null pointers, one of the allocations failed, since arplookup
should have created an entry if one didn’t exist. An error message is logged, the packet
released, and the function returns 0.

DELL EX.1095.722

698 ARP: Address Resolution Protocol Chapter 21

282-291

Figure 21.24 contains the last half of arpresolve. It checks whether the ARP entry
is still valid, and, if not, sends an ARP request.

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

sdl : SDL(rt >rt_gateway);
/*

* Check the address family and length is valid, the address
* is resolved; otherwise, try to resolve.
*/

if ((rt->rt_expire -= 0 I I rt->rt_expire > time.tv_sec) &&
sdl->sdl_family -- AF_LINK && sdl >sdl_alen != 0) {
bcopy(LLADDR(sdl), desten, sdl >sdl_alen);
return i;

}
/.

* There is an arptab entry, but no ethernet address
* response yet. Replace the held mbuf with this
* latest one.
*/

if (la->la_hold)
m_freem(la->la_hold);

la->la_hold = m;

if_ether.c

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

if (rt->rt_expire) {
rt->rt_flags &= -RTF_REJECT;
if (la->la_asked :- 0 I I rt->rt_expire !: time.tv_sec)

rt->rt_expire - time.tv_sec;
if (la->la_asked++ < arp_maxtries)

arpwhohas(ac, &(SIN(dst)->sin_addr));
else {

rt->rt_fiags I- RTF_REJECT;
rt->rt_expire +- arpt_down;
la->la_asked = 0;

}
}

}
return (0) ;

Figure 21.24 arpresolve2 function: check if ARP entry valid, send ARP request if not.

if_ether.c

Check ARP entry for validity
Even though an ARP entry is located, it must be checked for validity. The entry is

valid if the following conditions are all true:

1. the entry is permanent (the expiration time is 0) or the expiration time is greater
than the current time, and

2. the family of the socket address structure pointed to by rt_gateway is
AF_LINK, and

3. the link-level address length (sdl_alen) is nonzero.

DELL EX.1095.723

Section 21.10 arpresolve Function 699

292--299

300--314

Recall that arptfree invalidated an ARP entry that was still referenced by setting
sdl_alen to 0. If the entry is valid, the Ethernet address contained in the
sockaddr_dl is copied into desten and the function returns 1.

Hold only most recent IP datagram
At this point an ARP entry exists but it does not contain a valid Ethernet address.

An ARP request must be sent. First the pointer to the mbuf chain is saved in la_hold,
after releasing any mbuf chain that was already pointed to by la_hold. This means
that if multiple IP datagrams are sent quickly to a given destination, and an ARP entry
does not already exist for the destination, during the time it takes to send an ARP
request and receive a reply only the last datagram is held, and all prior ones are dis-
carded. An example that generates this condition is NFS. If NFS sends an 8500-byte IP
datagram that is fragmented into six IP fragments, and if all six fragments are sent by
ip_output to ether_output in the time it takes to send an ARP request and receive
a reply, the first five fragments are discarded and only the final fragment is sent when
the reply is received. This in turn causes an NFS timeout, and a retransmission of all six
fragments.

Send ARP request but avoid ARP flooding
RFC 1122 requires ARP to avoid sending ARP requests to a given destination at a

high rate when a reply is not received. The technique used by Net/3 to avoid ARP
flooding is as follows.

Net/3 never sends more than one ARP request in any given second to a destina-
tion.

¯ If a reply is not received after five ARP requests (i.e., after about 5 seconds), the
RTF_REJECT flag in the routing table is set and the expiration time is set for 20
seconds in the future. This causes ether_output to refuse to send IP data-
grams to this destination for 20 seconds, returning EHOSTDOWN or
EHOSTUNREACH instead (Figure 4.15).

¯ After the 20-second pause in ARP requests, arpresolve will send ARP
requests to that destination again.

If the expiration time is nonzero (i.e., this is not a permanent entry) the RTF_REJECT
flag is cleared, in case it had been set earlier to avoid flooding. The counter la_asked
counts the number of consecutive times an ARP request has been sent to this destina-
tion. If the counter is 0 or if the expiration time does not equal the current time (looking
only at the seconds portion of the current time), an ARP request might be sent. This
comparison avoids sending more than one ARP request during any second. The expira-
tion time is then set to the current time in seconds (i.e., the microseconds portion,
time. tv_us ec is ignored).

The counter is compared to the limit of 5 (arp_maxtries) and then incremented.
If the value was less than 5, arpwhohas sends the request. If the request equals 5, how-
ever, ARP has reached its limit: the RTF_REJECT flag is set, the expiration time is set to
20 seconds in the future, and the counter la_asked is reset to 0.

DELL EX.1095.724

700 ARP: Address Resolution Protocol Chapter 21

Figure 21.25 shows an example to explain further the algorithm used by
arpreso!ve and ether_output to avoid ARP flooding.

datagram # 1 2 3 4 5 6 7

ARP ARP ARP ARP
req req req req

Figure 21.25

8 9 10 11 12 13

14 ~ 15 16

ARP
req turn: on

RTF_RE, IECT
Algorithm used to avoid ARP flooding.

14 49 50 51 52

o.o
17 34 35 | 36

EHOSTDO~N returned ARP
req

We show 26 seconds of time, labeled 10 through 36. We assume a process is sending an
IP datagram every one-half second, causing two datagrams to be sent every second.
The datagrams are numbered 1 through 52. We also assume that the destination host is
down, so there are no replies to the ARP requests. The following actions take place:

¯ We assume la_asked is 0 when datagram i is written by the process, la_hold
is set to point to datagram 1, rt_expire is set to the current time (10),
la_asked becomes 1, and an ARP request is sent. The function returns 0.

¯ When datagram 2 is written by the process, datagram 1 is discarded and
la_hold is set to point to datagram 2. Since rt_expire equals the current
time (10), nothing else happens (an ARP request is not sent) and the function
returns 0.

When datagram 3 is written, datagram 2 is discarded and la_hold is set to
point to datagram 3. The current time (11) does not equal rt_expire (10), so
rt_expire is set to 11. la_asked is less than 5, so la_asked becomes 2 and
an ARP request is sent.

When datagram 4 is written, datagram 3 is discarded and la_hold is set to
point to datagram 4. Since rt_expire equals the current time (11), nothing else
happens and the function returns 0.

Similar actions occur for datagrams 5 through 10. After datagram 9 causes an
ARP request to be sent, la_asked is 5.

When datagram 11 is written, datagram 10 is discarded and la_held is set to
point to datagram 11. The current time (15) does not equal rt_expire (14), so
rt_expire is set to 15. la_asked is no longer less than 5, so the ARP flooding
avoidance algorithm takes place: RTF_REJECT flag is set, rt_expire is set to
35 (20 seconds in the future), and la_asked is reset to 0. The function returns 0.

When datagram 12 is written, ether_output notices that the RTF_REJECT flag
is set and that the current time is less than rt_expire (35) causing EHOSTDOWN
to be returned to the sender (normally ip_output).

¯ The EHOSTDOWN error is returned for datagrams 13 through 50.

DELL EX.1095.725

Section 21.11 arplookup Function 701

When datagram 51 is written, even though the RTF_REJECT flag is set
ether_output does not return the error because the current time (35) is no
longer less than rt_expire (35). arpresolve is called and the entire process
starts over again: five ARP requests are sent in 5 seconds, followed by a 20-sec-
ond pause. This continues until the sending process gives up or the destination
host responds to an ARP request.

21.11

111-119

arplookup Function

arplookup calls the routing function rtallocl to look up an ARP entry in the Inter-
net routing table. We’ve seen three calls to arplookup:

1. from in_arpinput to look up and possibly create an entry corresponding to
the source IP address of a received ARP packet,

2. from in_arpinput to see if a proxy ARP entry exists for the destination IP
address of a received ARP request, and

3. from arpresolve to look up or create an entry corresponding to the destina-
tion IP address of a datagram that is about to be sent.

If arpl ookup succeeds, a pointer is returned to the corresponding 11 i nfo_arp struc-
ture; otherwise a null pointer is returned.

arplookup has three arguments. The first is the IP address to search for, the sec-
ond is a flag that is true if the entry is not found and a new entry should be created, and
the third is a flag that is true if a proxy ARP entry should be searched for and possibly
created.

Proxy ARP entries are handled by defining a different form of the Internet socket
address structure, a sockaddr_inarp structure, shown in Figure 21.26 This structure
is used only by ARP.

iii struct sockaddr_inarp { if_ether.h
112 u_char sin_len;
113 u_char sin_family;
114 u_short sin~ort;
115 struct in_addr sin_addr;
116 struct in_addr sin_srcaddr;
117 u_short sin_tos;
118 u_short sin_other;
119 };

/* sizeof(struct sockaddr_inarp) : 16 */
/* AF_INET */

/* IP address */
/* not used */
/* not used */
/* 0 or SIN_PROXY */

if_ether.h
Figure 21.26 sockaddr_inarp structure.

The first 8 bytes are the same as a sockaddr_in structure and the sin_family is
also set to AF_INET. The final 8 bytes, however, are different: the sin_srcaddr,
sin_tos, and sin_other members. Of these three, only the final one is used, being
set to SIN_PROXY (1) if the entry is a proxy entry.

DELL EX.1095.726

702 ARP: Address Resolution Protocol Chapter 21

Figure 21.27 shows the arp 1 ookup function.

480 static struct llinfo_arp *
481 arplookup(addr, create, proxy)
482 u_long addr;
483 int create, proxy;
484 {
485 struct rtentry *rt;
486 static struct sockaddr_inarp sin -
487 {sizeof(sin), AF_INET};

if_ether.c

488 sin.sin_addr.s_addr = addr;
489 sin.sin_other - proxy ? SIN_PROXY : 0;
490 rt = rtallocl((struct sockaddr *) &sin, create);
491 if (rt -= 0)
492 return (0);
493 rt->rt_refcnt -;
494 if ((rt->rt_flags & RTF_GATEWAY) II (rt->rt_flags & RTF_LLINFO) = 0 I)
495 rt->rt_gateway >sa_family [= AF_LINK) {
496 if (create)
497 log(LOG_DEBUG, "arptnew failed on %x\n", ntohl(addr));
498 return (0);
499 }
500 return ((struct llinfo_arp *) rt->rt_llinfo);
s01 }

if_ether.c

Figure 21.27 arplookup function: look up an ARP entry in the routing table.

480--489

490--492

493

494--499

Initialize sockaddr_inarp to look up

The sin_addr member is set to the IP address that is being looked up. The
s in_other member is set to s IN_PROXY if the proxy argument is nonzero, or 0 other-
wise.
Look up entry in routing table

rtal!ocl looks up the IP address in the Internet routing table, creating a new
entry if the create argument is nonzero. If the entry is not found, the function returns
0 (a null pointer).
Decrement routing table reference count

If the entry is found, the reference count for the routing table entry is decremented.
This is because ARP is not considered to "hold onto" a routing table entry like the trans-
port layers, so the increment of rt_refcnt that was done by the routing table lookup
is undone here by ARP.

If the RTF_GATEWAY flag is set, or the RTF_LLINFO flag is not set, or the address
family of the socket address structure pointed to by rt_gateway is not AF_LINK,
something is wrong and a null pointer is returned. If the entry was created this way, a
log message is created.

The comment in the log message with the function name arptnew refers to the older Net/2
function that created ARP entries.

DELL EX.1095.727

Section 21.12 Proxy ARP 703

If rtallocl creates a new entry because the matching entry had the
RTF_CLONING flag set, the function arp_rtrequest (which we describe in Sec-
tion 21.13) is also called by rtrequest.

21.12 Proxy ARP

Net/3 supports proxy ARP, as we saw in the previous section. Two different types of
proxy ARP entries can be added to the routing table. Both are added with the arp com-
mand, specifying the pub option. Adding a proxy ARP entry always causes a gratu-
itous ARP request to be issued by arp_rtrequest (Figure 21.28) because the
RTF_ANNOUNCE flag is set when the entry is created.

The first type of proxy ARP entry allows an IP address for a host on an attached net-
work to be entered into the ARP cache. Any Ethernet address can be assigned to the
entry. These entries are added to the routing table with an explicit mask of
0xffffffff. The purpose of this mask is to allow the call to rtallocl in Fig-
ure 21.27 to match this entry, even if the SIN_PROXY flag is set in the socket address
structure of the search key. This in turn allows the call to arplookup from Figure 21.20
to match this entry when a search is made for the target address with the SIN_PROXY
flag set.

This type of entry can be used if a host H1 that doesn’t implement ARP is on an
attached network. The host with the proxy entry answers all ARP requests for Hl’s
hardware address, supplying the Ethernet address that was specified when the proxy
entry was created (i.e., the Ethernet address of H1). These entries are output with the
notation "published" by the arp -a command.

The second type of proxy ARP entry is for a host for which a routing table entry
already exists. The kernel creates another routing table entry for the destination, with
this new entry containing the link-layer information (i.e., the Ethernet address). The
SIN_PROXY flag is set in the sin_other member of the sockaddr_inarp structure
(Figure 21.26) in the new routing table entry. Recall that routing table searches compare
12 bytes of the Internet socket address structure (Figure 18.39). This use of the
SIN_PROXY flag is the only time the final 8 bytes of the structure are nonzero. When
arplookup specifies the SIN_PROXY value in the sin_other member of the structure
passed to rtallocl, the only entries in the routing table that will match are ones that
also have the SIN_PROXY flag set.

This type of entry normally specifies the Ethernet address of the host acting as the
proxy server. If the proxy entry was created for a host HD, the sequence of steps is as
follows.

The proxy server receives a broadcast ARP request for HD’s hardware address
from some other host HS. The host HS thinks HD is on the local network.

2. The proxy server responds, supplying its own Ethernet address.

3. HS sends the datagram with a destination IP address of HD to the proxy
server’s Ethernet address.

DELL EX.1095.728

704 ARP: Address Resolution Protocol Chapter 21

4. The proxy server receives the datagram for HD and forwards it, using the nor-
mal routing table entry for HD.

This type of entry was used on the router netb in the example in Section 4.6 of
Volume 1. These entries are output by the a~clo -a command with the notation "pub-
lished (proxy only)."

21.13 arp_rtrequest Function

Figure 21.3 provides an overview of the relationship between the ARP functions and the
routing functions. We’ve encountered two calls to the routing table functions from the
ARP functions.

arplooku!o calls rtal locl to look up an ARP entry and possibly create a new
entry if a match isn’t found.

If a matching entry is found in the routing table and the R<PF_CLONING flag is
not set (i.e., it is a matching entry for the destination host), the pointer to the
matching entry is returned. But if the RTF_CLONING bit is set, rta!loc3_ calls
rtrequest with a command of RTH_RESOLVE. This is how the entries for
140.252.13.33 and 140.252.13.34 in Figure 18.2 were created--they were cloned
from the entry for 140.252.13.32.
arptfree calls rtrequest with a command of RTM_DELETE to delete an
entry from the routing t’&ble that corresponds to an ARP entry.

Additionally, the arp command manipulates the ARP cache by sending and receiving
routing messages on a routing socket. The arp command issues routing messages with
commands of RTM_ADD, RTM_DELETE, and RTM_GET. The first two commands cause
rtz-equest to be called and the third causes rtallocl to be called.

Finally, when an Ethernet device driver has an IP address assigned to the interface,
rtinit adds a route to the network. This causes rtrequest to be called witha com-
mand of RTM ADD and with the flags of RTF_UP and RTF_CLONING. This is how the
entry for 140.252.13.32 in Figure 18.2 was created.

As described in Chapter 19, each i f addr structure can contain a pointer to a func-
tion (the i fa_rtrequest member) that is automatically called when a routing table
entry is added or deleted for that interface. We saw in Figure 6.17 that in_i finit sets
this pointer to the function arp_rtrequest for all Ethernet devices. Therefore, when-
ever the routing functions are called to add or delete a routing table entry for ARP,
arp_rtrequest is also called. The purpose of this function is to do whatever type of
initialization or cleanup is required above and beyond what the generic routing table
functions perform. For example, this is where a new 1 ! info_arp structure is allocated
and initialized whenever a new ARP entry is created. In a similar way, the
!linfo_arp structure is deleted by this function after the generic routing routines
have completed processing an RTM_DELETE command.

DELL EX.1095.729

Section 21.13 arp_rtrequest Function 705

Figure 21.28 shows the first part of the arp_rtrequest function.

92 void
93 arp_rtrequest(req, rt, sa)
94 int req;
95 struct rtentry *rt;
96 struct sockaddr *sa;
97 {
98 struct sockaddr *gate = rt->rt_gateway;
99 struct llinfo_arp *la : (struct llinfo_arp *) rt->rt_llinfo;

i00 static struct sockaddr_dl null_sdl =
i01 {sizeof(null_sdl), AF_LINK};

102 if (!arpinit_done) {
103 arpinit_done = i;
104 timeout(arptimer, (caddr_t)
105
106 if (rt->rt_flags & RTF_GATEWAY)
107 return;
108 switch (req) {

109
ii0
iii
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

0, hz);

case RTM ADD:
/*

* XXX: If this is a manually added route to interface
* such as older version of routed or gated might provide,
* restore cloning bit.
*/

if ((rt->rt_flags & RTF_HOST) := 0 &&
SIN(rt_mask(rt))->sin_addr.s_addr !: 0xffffffff)
rt->rt_flags I: RTF_CLONING;

if (rt->rt_flags & RTF_CLONING) {
/*

* Case i: This route should come from a route to iface.
*/

rt_setgate(rt, rt_key(rt),
(struct sockaddr *) &null_sdl);

gate = rt->rt_gateway;
SDL(gate)->sdl_type = rt->rt_ifp->if_type;
SDL(gate)->sdl_index = rt >rt_ifp->if_index;
rt->rt_expire = time.tv_sec;
break;

}
/* Announce a new entry if requested. */
if (rt->rt_flags & RTF_ANNOUNCE)

arprequest((struct arpcom *) rt->rt_ifp,
&SIN(rt_key(rt))->sin_addr.s_addr,
&SIN(rt_key(rt))->sin_addr.s_addr,
(u_char *) LLADDR(SDL(gate)));

/* FALLTHROUGH */

Figure 21.28 arp_rtrequest function: RTM_ADD command.

if_ether.c

if_ether.c

DELL EX.1095.730

706 ARP: Address Resolution Protocol Chapter 21

92--105

106--107

108

109

110-117

118-126

127-128

Initialize ARP timeout function

The first time arp_rtrequest is called (when the first Ethernet interface is
assigned an iP address during system initialization), the t imeout function schedules
the function arptimer to be called in 1 clock tick. This starts the ARP timer code run-
ning every 5 minutes, since arpt imer always calls t imeout.
Ignore indirect routes

If the RTF_GATEWAY flag is set, the function returns. This flag indicates an indirect
routing table entry and all ARP entries are direct routes.

The remainder of the function is a switch with three cases: RTM_ADD,
RTM_RESOLVE, and RTM_DELETE. (The latter two are shown in figures that follow.)

RTM_ADD command

The first case for RTM_ADD is invoked by either the arp command manually creat-
ing an ARP entry or by an Ethernet interface being assigned an IP address by rtinit
(Figure 21.3).
Backward compatibility

If the RTF_HOST flag is cleared, this routing table entry has an associated mask (i.e.,
it is a network route, not a host route). If that mask is not all one bits, then the entry is
really a route to an interface, so the RTF_CLONING flag is set. As the comment indi-
cates, this is for backward compatibility with older versions of some routing daemons.
Also, the command

route add -net 224.0.0.0 -interface bsdi

that is in the file /etc/netstart creates the entry for this network shown in Fig-
ure 18.2 that has the RTF_CLONING flag set.

Initialize entry for network route to interface
If the RTF_CLONING flag is set (which i n_i f ±nit sets for all Ethernet interfaces),

this entry is probably being added by rtinit, rt_setgate allocates space for a
sockaddr_dl structure, which is pointed to by the rt_gateway member. This data-
link socket address structure is the one associated with the routing table entry for
140.252.13.32 in Figure 21.1. The sdl_len and sdl_faraily members are initialized
from the static definition of null_sd! at the beginning of the function, and the
sdl_type (probably IFT_ETHER) and sdl_index members are copied from the inter-
face’s if net structure. This structure never contains an Ethernet address and the
sdl_alen member remains 0.

Finally, the expiration time is set to the current time, which is simply the time the
entry was created, and the break causes the function to return. For entries created at
system initialization, their rrax_exp i re value is the time at which the system was boot-
strapped. Notice in Figure 21.1 that this routing table entry does not have an associated
llinfo_arp structure, so it is never processed by arptimer. Nevertheless this
sockaddr_d! structure is used: since it is the rt_gateway structure for the entry that
is cloned for host-specific entries on this Ethernet, it is copied by rtrequest when the
newly cloned entries are created with the RTM_RESOLVE command. Also, the net s t at
program prints the sdl_index value as link#n, as we see in Figure 18.2.

DELL EX.1095.731

Section 21.13 arp_rtrequest Function 707

130-135

136

137-144

145-146

147-158

159-161

Send gratuitous ARP request
If the RTF_ANNOUNCE flag is set, this entry is being created by the arp command

with the pub option. This option has two ramifications: (l) the SIN_PROXY flag will be
set in the sin_other member of the sockaddr_ir~arp structure, and (2) the
RTF_ANNOUNCE flag will be set. Since the RTF_ANNOUNCE flag is set, arprequest
broadcasts a gratuitous ARP request. Notice that the second and third arguments are
the same, which causes the sender IP address to equal the target IP address in the ARP
request.

The code falls through to the case for the RTM_RESOLVE command.

Figure 21.29 shows the next part of the arp_rtrequest function, which handles
the RTM_RESOLVE command. This command is issued when rtallocl matches an
entry with the RTF_CLONING flag set and its second argument is nonzero (the create
argument to arplookup). A new 1 linfo_arp structure must be allocated and initial-
ized.

Verify sockaddr_dl structure
The family and length of the sockaddr_dl structure pointed to by the

rt_gateway pointer are verified. The interface type (probably IFT_ETHER) and index
are then copied into the new sockaddr_dl structure.

Handle route changes
Normally the routing table entry is new and does.not point to an ll±r~fo_ar~

structure. If the la pointer is nonnull, however, arp_rtrequest was called when a
route changed for an existing routing table entry. Since the l linfo_arp structure is
already allocated, the break causes the function to return.

Initialize llinfo_ar~ structure
An 11 i nfo_arp structure is allocated and its pointer is stored in the r t_l lin f o

pointer of the routing table entry. The two statistics arp_inuse and arp_allocated
are incremented and the llinfo_arp structure is set to 0. This sets la_hold to a null
pointer and la_asked to 0.

The rt pointer is stored in the llinfo_arp structure and the RTF_LLINFO flag is
set. In Figure 18.2 we see that the three routing table entries created by ARP,
140.252.13.33, 140.252.13.34, and 140.252.13.35, all have the L flag enabled, as does the
entry for 224.0.0.1. Recall that the arp program looks only for entries with this flag
(Figure 19.36). Finally the new structure is added to the front of the linked list of
11 info_arp structures by i_nsque.

The ARP entry has been created: rtrequest creates the routing table entry (often
cloning a network-specific entry for the Ethernet) and arto_rtrequest allocates and
initializes an llinfo_arp structure. All that remains is for an ARP request to be
broadcast so that an ARP reply can fill in the host’s Ethernet address. In the common
sequence of events, arp_rtrequest is called because arpresolve called arplookup
(the intermediate sequence of function calls can be followed in Figure 21.3). When con-
trol returns to arpresolve, it broadcasts the ARP request.

DELL EX.1095.732

708 ARP: Address Resolution Protocol Chapter 21

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179
180

case RTM_RESOLVE:
if (gate->sa_family != AF_LINK I I

gate->sa_len < sizeof(null_sdl)) {
log(LOG_DEBUG, "arp_rtrequest: bad gateway value");
break;

}
SDL(gate)->sdl_type : rt->rt_ifp->if_type;
SDL(gate)->sdl_index = rt->rt_ifp->if_index;
if (la != 0)

break; /* This happens on a route change */
/*

* Case 2: This route may come from cloning, or a manual route
* add with a LL address.
*/

R Malloc(la, struct llinfo_arp *, sizeof(*la));
rt >rt_llinfo = (caddr_t) la;
if (la == 0) {

log(LOG_DEBUG, "arp_rtrequest: malloc failed\n");
break;

}
arp_inuse++, arp_allocated++;
Bzero(la, sizeof(*la));

if_ether.c

la->la_rt = rt;
rt->rt_flags I= RTF_LLINFO;
insque(la, &llinfo_arp);

if (SIN(rt_key(rt)) >sin_addr.s_addr ==
(IA_SIN(rt->rt_ifa))->sin_addr.s_addr) {

/*
* This test used to be
* if (loif.if_flags & IFF_UP)
* It allowed local traffic to be forced
* through the hardware by configuring the loopback down.
* However, it causes problems during network configuration
* for boards that can’t receive packets they send.
* It is now necessary to clear "useloopback" and remove
* the route to force traffic out to the hardware.
*/

rt->rt_expire = 0;
Bcopy(((struct arpcom * rt->rt_ifp)->ac_enaddr,

LLADDR(SDL(gate)) SDL(gate)->sdl_alen = 6);
if (useloopback)

rt->rt_ifp : &loif;

}
break;

Figure 21.29 arp_rtrequest function: RTM_RESOLVE command.

if_ether.c

DELL EX.1095.733

Section 21.13 arp_rtrequest Function 709

1 62--1 73

1 74--1 76

1 77--1 78

Handle local host specially
This portion of code is a special test that is new with 4.4BSD (although the comment

is left over from earlier releases). It creates the rightmost routing table entry in Fig-
ure 21.1 with a key consisting of the local host’s IP address (140.252.13.35). The ± f test
checks whether the routing table key equals the IP address of the interface. If so, the
entry that was just created (probably as a clone of the interface entry) refers to the local
host.

Make entry permanent and set Ethernet address

The expiration time is set to 0, making the entry permanent--it will never time out.
The Ethernet address is copied from the arpcora structure of the interface into the
sockaddr_dl structure pointed to by the rt.gateway member.

Set interface pointer to Ioopback interface

If the global useloopback is nonzero (it defaults to 1), the interface pointer in the
routing table entry is changed to point to the loopback interface. This means that any
datagrams sent to the host’s own IP address are sent to the loopback interface instead.
Prior to 4.4BSD, the route from the host’s own IP address to the loopback interface was
established using a command of the form

route add 140.252.13.35 127.0.0.I

in the /÷tc/n÷tstart file. Although this still works with 4.4BSD, it is unnecessary
because the code we just looked at creates an equivalent route automatically, the first
time an IP datagram is sent to the host’s own IP address. Also realize that this piece of
code is executed only once per interface. Once the routing table entry and the perma-
nent ARP entry are created, they don’t expire, so another RTM_RESOLVE for this IP
address won’t occur.

The final part of arp_rtrequest, shown in Figure 21.30, handles the
RTN_DEr.ETE request. From Figure 21.3 we see that this command can be generated
from the ar~ command, to delete an entry manually, and from the arpt free function,
when an ARP entry times out.

181 case RTM_DELETE:
182 if (la :: 0)
183 break;
184 arp_inuse--;
185 remque(la);
186 rt->rt_llinfo : 0;
187 rt >rt_flags &: -RTF_LLINFO;
188 if (la->la_hold)
189 m_freem(la->la_hold);
190 Free((caddr_t) la);
191
192]

Figure 21.30 arp_rtrequest function: RTM_DELETE command.

if_ether.c

if_ether.c

DELL EX.1095.734

710 ARP: Address Resolution Protocol Chapter 21

182--183

184--190

Veri~/la pointer
The t a pointer should always be nonnull (that is, the routing table entry should

always point to an 11 ±nfo_arp structure); otherwise the break causes the function to
return.

Delete llinfo_arp structure
The arp_inuse statistic is decremented and the 11 info_a_~cp structure is removed

from the doubly linked list by remque. The rt_llinfo pointer is set to 0 and the
RTF_LLINFO flag is cleared. If an mbuf is held by the ARP entry (i.e., an ARP request is
outstanding), that mbuf is released. Finally the llinfo_arp structure is released.

Notice that the switch statement does not provide a default case and does not
provide a case for the RTM_GET command. This is because the RTM_GET command
issued by the arp program is handled entirely by the route_output function, and
rtrequest is not called. Also, the call to rtal!ocl that we show in Figure 21.3,
which is caused by an RT~_GET command, specifies a second argument of 0; therefore
rtallocl does not call rtrequest in this case.

21.14 ARP and Multicasting

If an IP datagram is destined for a multicast group, ip_output checks whether the
process has assigned a specific interface to the socket (Figure 12.40), and if so, the data-
gram is sent out that interface. Otherwise, ip_output selects the outgoing interface
using the normal IP routing table (Figure 8.24). Therefore, On a system with more than
one multicast-capable interface, the IP routing table specifies the default interface for
each multicast group.

We saw in Figure 18.2 that an entry was created in our routing table for the 224.0.0.0
network and since that entry has its "clone" flag set, all multicast groups starting with
224 had the associated interface (le0) as its default. Additional routing table entries
can be created for the other multicast groups (the ones beginning with 225-239), or spe-
cific entries can be created for particular multicast groups to assign an explicit default.
For example, a routing table entry could be created for 224.0.1.1 (the network time
protocol) with an interface that differs from the interface for 224.0.0.0. If an entry for a
multicast group does not exist in the routing table, and the process doesn’t specify an
interface with the IP_MULTICAST_IF socket option, the default interface for the group
becomes the interface associated with the "default" route in the table. In Figure 18.2 the
entry for 224.0.0.0 isn’t really needed, since both it and the default route use the inter-
face leO.

Once the interface is selected, if the interface is an Ethernet, arpresolve is called
to convert the multicast group address into its corresponding Ethernet address. In Fig-
ure 21.23 this was done by invoking the macro ETHER_MAP IP MULTICAST. Since this
simple macro logically ORs the low-order 23 bits of the multicast group with a constant
(Figure 12.6), an ARP request-reply is not required and the mapping does not need to
go into the ARP cache. The macro is just invoked each time the conversion is required.

Multicast group addresses appear in the Net/3 ARP cache if the multicast group is
cloned from another entry, as we saw in Figure 21.5. This is because these entries have

DELL EX.1095.735

Chapter 21 Exercises 711

the RTF_LLINFO flag set. These are not true ARP entries because they do not require
an ARP request-reply, and they do not have an associated link-layer address, since the
mapping is done when needed by the ETHER MAP IP MULTICAST macro.

The timeout of the ARP entries for these multicast group addresses is different from
normal ARP entries. When a routing table entry is created for a multicast group, such
as the entry for 224.0.0.1 in Figure 18.2, rtrequest copies the rt_metrics structure
from the entry being cloned (Figure 19.9). We mentioned with Figure 21.28 that the net-
work entry has an rmx_expire value of the time the RTH ADD command was exe-
cuted, normally the time the system was initialized. The new entry for 224.0.0.1 has this
same expiration time.

This means the ARP entry for a multicast group such as 224.0.0.1 expires the next
time arpt imer executes, because its expiration time is always in the past. The entry is
created again the next time it is looked up in the routing table.

21.15 Summary

ARP provides the dynamic mapping between IP addresses and hardware addresses.
This chapter has examined an implementation of ARP that maps IP addresses to Ether-
net addresses.

The Net/3 implementation is a major change from previous BSD releases. The ARP
information is now stored in various structures: the routing table, a data-link socket
address structure, and an !linfo_arp structure. Figure 21.1 shows the relationships
between all the structures.

Sending an ARP request is simple: the appropriate fields are filled in and the
request is sent as a broadcast. Processing a received request is more complicated
because each host receives all broadcast ARP requests. Besides responding to requests
for one of the host’s IP addresses, in_arpinput also checks that some other host isn’t
using the host’s IP address. Since all ARP requests contain the sender’s IP and hard-
ware addresses, any host on the Ethernet can use this information to update an existing
ARP entry for the sender.

ARP flooding can be a problem on a LAN and Net/3 is the first BSD release to han-
dle this. A maximum of one ARP request per second is sent to any given destination,
and after five consecutive requests without a reply, a 20-second pause occurs before
another ARP request is sent to that destination.

Exercises

21.1 What assumption is made in the assignment of the local variable ac in Figure 21.17?

21.2 If we ping the broadcast address of the local Ethernet and then execute arp -a, we see that
this causes the ARP cache to be filled with entries for almost every other host on the local
Ethernet. Why?

21.3 Follow through the code and explain why the assignment of 6 to sdl_alen is required in
Figure 21.19.

DELL EX.1095.736

712 ARP: Address Resolution Protocol Chapter 21

21.4 With the separate ARP table in Net/2, independent of the routing table, each time
arp~esolve was called, a search was made of the ARP table. Compare this to the Net/3
approach. Which is more efficient?

21.5 The ARP code in Net/2 explicitly set a timeout of 3 minutes for an incomplete entry in the
ARP cache, that is, for an entry that is awaiting an ARP reply. We’ve never explicitly said
how Net/3 handles this timeout. When does Net/3 time out an incomplete ARP entry?

21.6

21.7

21.8

21.9

21.10

What changes in the avoidance of ARP flooding when a Net/3 system is acting as a router
and the packets that cause the flooding are from some other host?

What are the values of the four rmx_÷×pi~÷ variables shown in Figure 21.1? Where in the
code are the values set?

What change would be required to the code in this chapter to cause an ARP entry to be cre-
ated for every host that broadcasts an ARP request?

To verify the example in Figure 21.25 the authors ran the sock: program from Appendix C
of Volume 1, writing a UDP datagram every 500 ms to a nonexistent host on the local
Ethernet. (The -p option of the program was modified to allow millisecond waits.) But
only 10 UDP datagrams were sent without an error, instead of the 11 shown in Fig-
ure 21.25, before the first EHOSTDO~ error was returned. Why?

Modify ARP to hold onto all packets for a destination, awaiting an ARP reply, instead of
just the most recent one. What are the implications of this change? Should there be a limit,
as there is for each interface’s output queue? Are any changes required to the data struc-
tures?

DELL EX.1095.737

Protocol Control Blocks

22.1 Introduction

Protocol control blocks (PCBs) are used at the protocol layer to hold the various pieces
of information required for each UDP or TCP socket. The Internet protocols maintain
Internet protocol control blocks and TCP control blocks. Since UDP is connectionless, every-
thing it needs for an end point is found in the Internet PCB; there are no UDP control
blocks.

The Internet PCB contains the information common to all UDP and TCP end points:
foreign and local IP addresses, foreign and local port numbers, IP header prototype, IP
options to use for this end point, and a pointer to the routing table entry for the destina-
tion of this end point. The TCP control block contains all of the state information that
TCP maintains for each connection: sequence numbers in both directions, window sizes,
retransmission timers, and the like.

In this chapter we describe the Internet PCBs used in Net/3, saving TCP’s control
blocks until we describe TCP in detail. We examine the numerous functions that oper-
ate on Internet PCBs, since we’ll encounter them when we describe UDP and TCP. Most
of the functions begin with the six characters

Figure 22.1 summarizes the protocol control blocks that we describe and their rela-
tionship to the f i ! e and s o cke ~ structures. There are numerous points to consider in
this figure.

When a socket is created by either socket or accept, the socket layer creates a
file structure and a socket structure. The file type is DTYPE_SOCKET and the
socket type is SOCK_DGRAH for UDP end points or SOCK_STREAM for TCP end
points.

713

DELL EX.1095.738

714 Protocol Control Blocks Chapter 22

descriptor

file{}

DTYPE_SOCK~f_dataf-type

socket{}

udb :
inpcb{}

inp_next
fnp_prev

inp_iport

SOCK_DGRA~ so_type
so_pcb

inpcb{}
inp_next

lnp_prev

inp_faddr

inp_iport

inp_socket

[np~opcb --

descriptor

file{}

f_type

f_data

socket{}

so_type
so_pcb

inpcb{}
inp_next

lnp~rev

[np_faddr

[np_fport

inp_laddr

inp_iport

inp_socket
inp_ppcb -

socket layer

descriptor

file{}

DTYPE_SOCKET] f_type

~ f_data

~ socket { }

SOCK_STRE~ :Oo~ycPbe

-~- _ _ doubly_linked circular list of all UDP
Internet protocol control blocks

protocol layer
inpcb{}

tcb:~
Ilnp_Drev

inp_iport

inpcb{}
inp_next
inp_prev

inp_faddr
inp_fport

inp_laddr

inp_iport

inp_socket

inp~opcb

~-~

tcpcb{}

t_inpcb

descriptor

file{l

f_type

f_data

socket{}

so_type
so_pcb

inpcb{}
inp_next

inp~Drev

inp_faddr
inp_fport

inp_laddr

inp_iport

inp_socket

inp_ppcb

tcpcb{]

t_inpcb

doublZ linked circular list of all TCP
....]n~e~e~ ~}0{o[o~-cJn~:o] b]o~-k~-

and associated TCP control bIocks

Figure 22.1 Internet protocol control blocks and their relationship to other structures.

The protocol layer is then called. UDP creates an Internet PCB (an inpcb struc-
ture) and links it to the socket structure: the so_pcb member points to the
inpcb structure and the inp_socket member points to the socket structure.
TCP does the same and also creates its own control block (a tcpcb structure)
and links it to the inpcb using the inp_ppcb and t_inpcb pointers. In the

DELL EX.1095.739

Section 22.2 Code Introduction 715

two UDP inpcbs the inp_ppcb member is a null pointer, since UDP does not
maintain its own control block.
The four other members of the inpcb structure that we show, inp_faddr
through inp_iport, form the socket pair {or this end point: the foreign IP
address and port number along with the local IP address and port number.

Both UDP and TCP maintain a doubly linked list of all.their Internet PCBs, using
the inp_next and inp__prev pointers. They allocate a global inpcb structure
as the head of their list (named udb and tcb) and only use three members in the
structure: the next and previous pointers, and the local port number. This latter
member contains the next ephemeral port number to use for this protocol.

The Internet PCB is a transport layer data structure. It is used by TCP, UDP, and raw IP,
but not by IP, ICMP, or IGMP.

We haven’t described raw IP yet, but it too uses Internet PCBs. Unlike TCP and
UDP, raw IP does not use the port number members in the PCB, and raw IP uses only
two of the functions that we describe in this chapter: in_pcballoc to allocate a PCB,
and in_pcbdetach to release a PCB. We return to raw IP in Chapter 32.

22.2 Code Introduction

All the PCB functions are in a single C file and a single header contains the definitions,
as shown in Figure 22.2.

~le

netinet/in_pcb.h
netinet/in_pcb.c

Figure22.2

Description

inpcb structure definition
PCB functions

Files discussed in this chapter.

Global Variables

One global variable is introduced in this chapter, which is shown in Figure 22.3.

Variable Datatype Description

zero±n_addr strucC ±n_addr 32-bit IP address of all zero bits

Figure 22.3 Global variable introduced in this chapter.

Statistics

Internet PCBs and TCP PCBs are both allocated by the kernel’s mal 3_oc function with a
type of M_PCB. This is just one of the approximately 60 different types of memory

DELL EX.1095.740

716 Protocol Control Blocks Chapter 22

allocated by the kernel. Mbufs, for example, are allocated with a type of M_BUF, and
socket structures are allocated with a type of M_SOCKET.

Since the kernel can keep counters of the different types of memory buffers that are
allocated, various statistics on the number of PCBs can be maintained. The command
vmst at -m shows the kernel’s memory allocation statistics and the net s t at -m com-
mand shows the mbuf allocation statistics.

22.3

43--45

46-49

inpcb Structure

Figure 22.4 shows the definition of the inpcb structure. It is not a big structure, and
occupies only 84 bytes.

42
43
44
45
46
47
48
49
5O
51
52
53
54
55
56
57

in_pcb.h
struct inpcb {

struct inpcb *inp_next, *inp_prev; /* doubly linked list */
struct inpcb *inp_head; /* pointer back to chain of inpcb’s for

struct in_addr inp_faddr;
u_short inp_fport;
struct in_addr inp_laddr;
u_short inp_iport;
struct socket *inp_socket;
caddr_t inp_ppcb;
struct route inp_route;
int inp_flags;
struct ip inp_ip;
struct mbuf *inp_options;
struct

this protocol */
/* foreign IP address */
/* foreign port# */
/* !ocal IP address */
/* !ocal port# */
/* back pointer to socket */
/* pointer to per protocol PCB */
/* placeholder for routing entry */
/* generic IP/datagram flags */
/* header prototype; should have more */
/* IP options */

ip_moptions *inps~options; /* IP multicast options */

in_pcb.h

Figure 22.4 inpcb structure.

~_np_next and inp_prev form the doubiy linked list of all PCBs for UDP and TCP.
Additionally, each PCB has a pointer to the head of the protocol’s linked list
(inp_head). For PCBs on the UDP list, inp_head always points to udb (Figure 22.1);
for PCBs on the TCP list, this pointer always points to t cb.

The next four members, inp_faddr, inp_fport, inp_laddr, and inp_iport,
contain the socket pair for this IP end point: the foreign IP address and port number and
the local IP address and port number. These four values are maintained in the PCB in
network byte order, not host byte order.

The Internet PCB is used by both transport layers, TCP and UDP. While it makes sense to store
the local and foreign IP addresses in this structure, the port numbers really don’t belong here.
The definition of a port number and its size are specified by each transport layer and could dif-
fer between different transport layers. This problem was identified in [Partridge 1987], where
8-bit port numbers were used in version 1 of RDE which required reimplementing several
standard kernel routines to use 8-bit port numbers. Version 2 of RDP [Partridge and Hinden
1990] uses 16-bit port numbers. The port numbers really belong in a transport-specific control
block, such as TCP’s tcpcb. A new UDP-specific PCB would then be required. While doable,
this would complicate some of the routines we’ll examine shortly.

DELL EX.1095.741

Section 22.4 in_pcballoc and in_pcbdetach Functions 7!7

50-51

52

53

54

55--56

inp_socket is a pointer to the socket structure for this PCB and inp_ppcb is a
pointer to an optional transport-specific control block for this PCB. We saw in Fig-
ure 22.1 that the inp_ppcb pointer is used with TCP to point to the corresponding
tcpcb, but is not used by UDP. The link between the socket and inpcb is two way
because sometimes the kernel starts at the socket layer and needs to find the corre-
sponding Internet PCB (e.g., user output), and sometimes the kernel starts at the PCB
and needs to locate the corresponding socket structure (e.g., processing a received IP
datagram).

If IP has a route to the foreign address, it is stored in the inp_route entry. We’ll
see that when an ICMP redirect message is received, all Internet PCBs are scanned and
all those with a foreign IP address that matches the redirected IP address have their
inp_route entry marked as ir~valid. This forces IP to find a new route to the foreign
address the next time the PCB is used for output.

Various flags are stored in the inp_flags member Figure 22.5 lists the individual
flags.

inp_flags Description

INP_HDRINCL process supplies entire IP header (raw socket only)
I1VP RECVOPTS receive incoming IP options as control information (UDP only, not implemented)
INP_RECVRETOPTS receive IP options for reply as control information (UDP only, not implemented)
SNP RECVDSTADDR receive IP destination address as control information (UDP only)
INP_CONTROLOPTS IIVP_RECVOPTS ! INP RECVRETOPTS,] IIVP_RECVDSTADDR

Figure 22.5 inp_flags values.

A copy of an IP header is maintained in the PCB but only two members are used,
the TOS and TTL. The TOS is initialized to 0 (normal service) and the TTL is initialized
by the transport layer We’ll see that TCP and UDP both default the TTL to 64. A pro-
cess can change these defaults using the IP_TOS or IP_TTL socket options, and the
new value is recorded in the inpcb, inp_ip structure. This structure is then used by
TCP and UDP as the prototype IP header when sending IP datagrams.

A process can set the IP options for outgoing datagrams with the IP_OPTIONS
socket option. A copy of the caller’s options are stored in an mbuf by the function
ip_pcbopts and a pointer to that mbuf is stored in the inp_options member. Each
time TCP or UDP calls the ip_output function, a pointer to these IP options is passed
for IP to insert into the outgoing IP datagram. Similarly, a pointer to a copy of the
user’s IP multicast options is maintained in the inp_mopt i ors member.

22.4 in_pcballoc and in_pcbdetach Functions

An Internet PCB is allocated by TCP, UDP, and raw IP when a socket is created. A
PRU_ATTACH request is issued by the socket system call. In the case of UDP, we’ll see
in Figure 23.33 that the resulting call is

DELL EX.1095.742

718 Protocol Control Blocks Chapter 22

struct socket *so;
int error;

error ~ in~cballoc(so, &udb);

Figure 22.6 shows the in_pcballoc function.

36 int
37 in_pcballoc(so, head)
38 struct socket *so;
39 struct inpcb *head;
40 {
41 struct inpcb *inp;

42 MALLOC(inp, struct inpcb * sizeof(*inp), M_PCB,
43 if (inp -- NULL)
44 return (ENOBUFS);
45 bzero((caddr_t) inp, sizeof(*inp));

46 inp >inp_head = head;
47 inp >inp_socket = so;
48 insque(inp, head);
49 so->so_pcb - (caddr_t)
50 return (0) ;
51 }

inp;

M_WAITOK);

Figure 22.6 in_pcbal loc function: allocate an Internet PCB.

in_pcb.c

in_pcb.c

36--45

46--49

Allocate PCB and initialize to zero
in_pcbal!oc calls the kernel’s memory allocator using the macro NALLOCo Since

these PCBs are always allocated as the result of a system call, it is OK to wait for one.

Net/2 and earlier Berkeley releases stored both Internet PCBs and TCP PCBs in mbufs. Their
sizes were 80 and 108 bytes, respectively. With the Net/3 release, the sizes went to 84 and 140
bytes, so TCP control blocks no longer fit into an mbuf. Net/3 uses the kerneI’s memory allo-
cator instead of mbufs for both types of control blocks.

Careful readers may note that the example in Figure 2.6 shows 17 mbufs allocated for PCBs,
yet we just said that Net/3 no longer uses mbufs for Internet PCBs or TCP PCBs. Net/3 does,
however, use mbufs for Unix domain PCBs, and that is what this counter refers to. The mbuf
statistics output by netstat are for all mbufs in the kernel across all protocol suites, not just
the Internet protocols.

bz÷ro sets the PCB to 0. This is important because the IP addresses and port numbers
in the PCB must be initialized to 0o

Link structures together
The inp_head member points to the head of the protocol’s PCB list (either udb or

tcb), the ±np_sock÷t member points to the sock÷t structure, the new PCB is added
to the protocol’s doubly linked list (insque), and the socket structure points to the
PCB. The ±nsque function puts the new PCB at the head of the protocol’s list.

DELL EX.1095.743

Section 22.5 Binding, Connecting, and Demultiplexing 719

252--263

264--265

An Internet PCB is deallocated when a PRU_D~.TACH request is issued. This hap-
pens when the socket is closed. The function in_locbdetach, shown in Figure 22.7, is
eventually called.

252 int
253 in_pcbdetach(inp)
254 struct inpcb *inp;
255 {
256 struct socket *so : inp->inp_socket;

in_pcb.c

257 so->so_pcb = 0;
258 sofree(so);
259 if (inp->inp_options)
260 (void) m_free(inp->inp_options);
261 if (inp->inp_route.ro_rt)
262 rtfree(inp->inp_route.ro_rt);
263 ip_freemoptions(inp->inp_moptions);
264 remque(inp);
265 FREE(inp, M_PCB);
266 }

Figure 22.7 in_pcbdetach function: deallocate an Internet PCB.

in_pcb.c

The PCB pointer in the socket structure is set to 0 and that structure is released by
sofree. If an mbuf with IP options was allocated for this PCB, it is released by
m_free. If a route is held by this PCB, it is released by rt free. Any multicast options
are also released by ip_freemoptions.

The PCB is removed from the protocol’s doubly linked list by remque and the
memory used by the PCB is returned to the kernel.

22.5 Binding, Connecting, and Demultiplexing

Before examining the kernel functions that bind sockets, connect sockets, and demulti-
plex incoming datagrams, we describe the rules imposed by the kernel on these actions.

Binding of Local IP Address and Port Number

Figure 22.8 shows the six different combinations of a local IP address and local port
number that a process can specify in a call to bind.

The first three lines are typical for servers--they bind a specific port, termed the
server’s well-known port, whose value is known by the client. The last three lines are
typical for clients--they don’t care what the local port, termed an ephemeral port, is, as
long as it is unique on the client host.

Most servers and most clients specify the wildcard IP address in the call to bind.
This is indicated in Figure 22.8 by the notation * on lines 3 and 6.

DELL EX.1095.744

720 Protocol Control Blocks Chapter 22

Local IP address

unicast or broadcast
multicast

unicast or broadcast
multicast

Local port

nonzero
nonzero
nonzero

0
0
0

Description

one local interface, specific port
one local multicast group, specific port
any local interface or mulficast group, specific port

one local interface, kernel chooses port
one multicast group, kernel chooses port
any local interface, kernel chooses port

Figure 22.8 Combination of local IP address and local port number for b±nd.

If a server binds a specific IP address to a socket (i.e., not the wildcard address),
then only IP datagrams arriving with that specific IP address as the destination IP
address--be it unicast, broadcast, or multicast--are delivered to the process. Naturally,
when the process binds a specific unicast or broadcast IP address to a socket, the kernel
verifies that the IP address corresponds to a local interface.

It is rare, though possible, for a client to bind a specific IP address (lines 4 and 5 in
Figure 22.8). Normally a client binds the wildcard IP address (the final line in Fig-
ure 22.8), which lets the kernel choose the outgoing interface based on the route chosen
to reach the server.

What we don’t show in Figure 22.8 is what happens if the client tries to bind a local
port that is already in use with another socket. By default a process cannot bind a port
number if that port is already in use. The error EA~)~)RINUSE (address already in use) is
returned if this occurs. The definition of in use is simply whether a PCB exists with that
port as its local port. This notion of "in use" is relative to a given protocol: TCP or UDP,
since TCP port numbers are independent of UDP port numbers.

Net/3 allows a process to change this default behavior by specifying one of follow-
ing two socket options:

SO_REUS EADDR

SO_REUSEPORT

Allows the process to bind a port number that is already in use, but
the IP address being bound (ir~cluding the wildcard) must not already
be bound to that same port.

For example, if an attached interface has the IP address 140.252.1.29
then one socket can be bound to 140.252.1.29, port 5555; another
socket can be bound to 127.0.0.1, port 5555; and another socket can be
bound to the wildcard IP address, port 5555. The call to b±nd for the
second and third cases must be preceded by a call to setsockopt,
setting the SO_REUSEADDR option.

Allows a process to reuse both the IP address and port number, but
each binding of the IP address and port number, including the first,
must specify this socket option. With SO_REUSEAD©R, the first bind-
ing of the port number need not specify the socket option.

For example, if an attached interface has the IP address 140.252.1.29
and a socket is bound to 140.252.1.29, port 6666 specifying the

DELL EX.1095.745

Section 22.5 Binding, Connecting, and Demultiplexing 721

SO_REUSEPORT socket option, then another socket can also specify
this same socket option and bind 140.252.1.29, port 6666.

Later in this section we describe what happens in this final example when an IP data-
gram arrives with a destination address of 140.252.1.29 and a destination port of 6666,
since two sockets are bound to that end point.

The SO_REUSEPORT option is new with Net/3 and was introduced with the support for multi-
casting in 4.4BSD. Before this release it was never possible for two sockets to be bound to the
same IP address and same port number.

Unfortunately the SO_REUSEPORT option was not part of the original Stanford multicast
sources and is therefore not widely supported. Other systems that support multicasting, such
as Solaris 2.x, let a process specify SO_REUSEADDR to specify that it is OK to bind multiple
sockets to the same IP address and same port number.

Connecting a UDP Socket

We normally associate the connect system call with TCP clients, but it is also possible
for a UDP client or a UDP server to call connect and specify the foreign IP address and
foreign port number for the socket. This restricts the socket to exchanging UDP data-
grams with that one particular peer.

There is a side effect when a UDP socket is connected: the local IP address, if not
already specified by a call to bind, is automatically set by connect. It is set to the local
interface address chosen by IP routing to reach the specified peer.

Figure 22.9 shows the three different states of a UDP socket along with the pseudo-
code of the function calls to end up in that state.

Local socket Foreign socket Description

locallP, lport foreignlP.fport restricted to one peer:
socket (), bind (*, lport), connect (foreignlP, fport)
socket (), bind (locallP, lport) , connect (foreignlP, fport)

locallP. Iport *.* restricted to datagrams arriving on one local interface: locallP
socket (), bind (locallP, lport)

*. lport *.* receives all datagrams sent to lport:
socket (), bind (*, lport)

Figure 22.9 Specification of local and foreign IP addresses and port numbers for UDP sockets.

The first of the three states is called a connected UDP socket and the next two states are
called unconnected UDP sockets. The difference between the two unconnected sockets is
that the first has a fully specified local address and the second has a wildcarded local IP
address.

Demultiplexing of Received IP Datagrams by TCP

Figure 22.10 shows the state of three Telnet server sockets on the host sun. The first two
sockets are in the LISTEN state, waiting for incoming connection requests, and the third

DELL EX.1095.746

722 Protocol Control Blocks Chapter 22

is connected to a client at port 1500 on the host with an IP address of 140.252.1.11. The
first listening socket will handle connection requests that arrive on the 140.252.1.29
interface and the second listening socket will handle all other interfaces (since its local
IP address is the wildcard).

Local address Local port Foreign address Foreign port TCP state

140.252.1.29 23 * * LISTEN
¯ 23 * * LISTEN

140.252.1.29 23 140.252.1.11 1500 ESTABLISHED

Figure 22.10 Three TCP sockets with a local port of 23.

We show both of the Iistening sockets with unspecified foreign IP addresses and port
numbers because the sockets API doesn’t allow a TCP server to restrict either of these
values. A TCP server must acc÷pt the client’s connection and is then told of the
client’s IP address and port number after the connection establishment is complete (i.e.,
when TCP’s three-way handshake is complete). Only then can the server close the con-
nection if it doesn’t like the client’s IP address and port number. This isn’t a required
TCP feature, it is just the way the sockets API has always worked.

When TCP receives a segment with a destination port of 23 it searches through its
list of Internet PCBs looking for a match by calling ±n_pcb~_ookup. When we examine
this function shortly we’ll see that it has a preference for the smallest number of wildcard
matches. To determine the number of wildcard matches we consider only the local and
foreign IP addresses. We do not consider the foreign port number. The local port num-
ber must match, or we don’t even consider the PCB. The number of wildcard matches
can be 0, 1 (local IP address or foreign IP address), or 2 (both local and foreign IP
addresses).

For example, assume the incoming segment is from 140.252.1.11, port 1500, destined
for 140.252.1.29, port 23. Figure 22.11 shows the number of wildcard matches for the
three sockets from Figure 22.10.

Local address

140.252.1.29

140.252.1.29

Local port

23
23
23

Foreign address Foreign port

140.252.1.11 1500

TCP state

LISTEN
LISTEN
ESTABLISHED

#wildcard
matches

1
2
0

Figure 22.11 Incoming segment from {140.252.1.11, 1500} to {140.252.1.29, 23}.

The first socket matches these four values, but with one wildcard match (the foreign IP
address). The second socket also matches the incoming segment, but with two wildcard
matches (the local and foreign IP addresseS). The third socket is a complete match with
no wildcards. Net/3 uses the third socket, the one with the smallest number of wild-
card matches.

Continuing this example, assume the incoming segment is from 140.252.1.11, port
1501, destined for 140.252.1.29, port 23. Figure 22.12 shows the number of wildcard
matches.

DELL EX.1095.747

Section 22.5 Binding, Connecting, and Demultiplexing 723

Local address

140.252.1.29

140.252.1.29

Local port

23
23
23

Foreign address Foreign port

140.252.1.11 1500

TCP state

LISTEN
LISTEN
ESTABLISHED

#wildcard
matches

1
2

Figure 22.12 Incoming segment from {140.252.1.11, 1501} to {140.252.1.29, 23}.

The first socket matches with one wildcard match; the second socket matches with two
wildcard matches; and the third socket doesn’t match at all, since the foreign port num-
bers are unequal. (The foreign port numbers are compared only if the foreign IP
address in the PCB is not a wildcard.) The first socket is chosen.

In these two examples we never said what type of TCP segment arrived: we assume
that the segment in Figure 22.11 contains data or an acknowledgment for an established
connection since it is delivered to an established socket. We also assume that the seg-
ment in Figure 22.12 is an incoming connection request (a SYN) since it is delivered to a
listening socket. But the demultiplexing code in ±n_~cblookup doesn’t care. If the
TCP segment is the wrong type for the socket that it is delivered to, we’ll see later how
TCP handles this. For now the important fact is that the demultiplexing code only com-
pares the source and destination socket pair from the IP datagram against the values in
the PCB.

Demultiplexing of Received IP Datagrams by UDP

The delivery of UDP datagrams is more complicated than the TCP example we just
examined, since UDP datagrams can be sent to a broadcast or multicast address. Since
Net/3 (and most systems with multicast support) allow multiple sockets to have identi-
cal local IP addresses and ports, how are multiple recipients handled? The Net/3 rules
are:

o

An incoming UDP datagram destined for either a broadcast IP address or a
multicast IP address is delivered to all matching sockets. There is no concept of
a "best" match here (i.e., the one with the smallest number of wildcard
matches).

An incoming UDP datagram destined for a unicast IP address is delivered only
to one matching socket, the one with the smallest number of wildcard matches.
If there are multiple sockets with the same "smallest" number of wildcard
matches, which socket receives the incoming datagram is implementation-
dependent.

Figure 22.13 shows four UDP sockets that we’ll use for some examples. Having four
UDP sockets with the same local port number requires using either $O_REUSEADDR or
SO_R~.USEPOR2L The first two sockets have been connected to a foreign IP address and
port number, and the last two are unconnected.

DELL EX.1095.748

724 Protocol Control Blocks Chapter 22

Local address Local port Foreign address Foreign port Comment

140.252.1.29 577 140.252.1.11 1500 connected, local IP = unicast
140.252.13.63 577 140.252.13.35 1500 connected, local IP = broadcast
140.252.13.63 577 * * unconnected, local IP = broadcast

¯ 577 * * unconnected, local IP = wildcard

Figure 22.13 Four UDP sockets with a local port of 577.

Consider an incoming UDP datagram destined for 140.252.13.63 (the broadcast
address on the 140.252.13 subnet), port 577, from 140.252.13.34, port 1500. Figure 22.14
shows that it is delivered to the third and fourth sockets.

Local address

140.252.1.29
140.252.13.63
140.252.13.63

Local port

577
577
577
577

Foreign address

140.252.1.11
140.252.13.35

Foreign port Delivered?

1500 no, local and foreign IP mismatch
1500 no, foreign IP mismatch

* yes
* yes

Figure 22.14 Received datagram from {140.252.13.34, 1500} to {140.252.13.63, 577}.

The broadcast datagram is not delivered to the first socket because the local IP address
doesn’t match the destination IP address and the foreign IP address doesn’t match the
source IP address. It isn’t delivered to the second socket because the foreign IP address
doesn’t match the source IP address.

As the next example, consider an incoming UDP datagram destined for 140.252.1.29
(a unicast address), port 577, from 140.252.1.11, port 1500. Figure 22.15 shows to which
sockets the datagram is delivered.

Local address Local port Foreign address Foreign port Delivered?

140.252.1.29 577 140.252.1.11 1500 yes, 0 wildcard matches
140.252.13.63 577 140.252.13.35 1500 no, local and foreign IP mismatch
140.252.13.63 577 * * no, local IP mismatch

¯ 577 * * no, 2 wildcard matches

Figure 22.15 Received datagram from {140.252.1.11, 1500} to {140.252.1.29, 577}.

The datagram matches the first socket with no wildcard matches and also matches the
fourth socket with two wildcard matches. It is delivered to the first socket, the best
match.

22.6 in_pcblookup Function

The function in~ocbl ookup serves four different purposes.

1. When either TCP or UDP receives an IP datagram, in_pcblookup scans the
protocol’s list of Internet PCBs looking for a matching PCB to receive the

DELL EX.1095.749

Section 22.6 in_pcblookup Function 725

416--417

datagram. This is transport layer demultiplexing of a received datagram.
2. When a process executes the bind system call, to assign a local IP address and

local port number to a socket, in_pcbbind is called by the protocol to verify
that the requested local address pair is not already in use.

3. When a process executes the bind system call, requesting an ephemeral port be
assigned to its socket, the kernel picks an ephemeral port and calls
in_pcbbind to check if the port is in use. If it is in use, the next ephemeral
port number is tried, and so on, until an unused port is located.

4. When a process executes the connect system call, either explicitly or implicitly,
in~pcbbind verifies that the requested socket pair is unique. (An implicit call
to connect happens when a UDP datagram is sent on an unconnected socket.
We’ll see this scenario in Chapter 23.)

In cases 2, 3, and 4 in_pcbbind calls in_pcblookup. Two options confuse the logic
of the function. First, a process can specify either the SO_REUSEADDR or
SO_REUSEPORT socket option to say that a duplicate local address is OK.

Second, sometimes a wildcard match is OK (e.g., an incoming UDP datagram can
match a PCB that has a wildcard for its local IP address, meaning that the socket will
accept UDP datagrams that arrive on any local interface), while other times a wildcard
match is forbidden (e.g., when connecting to a foreign IP address and port number).

In the original Stanford IP multicast code appears the comment that "The logic of
in_pcblookup is rather opaque and there is not a single comment,..." The adjective opaque
is an understatement.

The publicly available IP multicast code available for BSD/386, which is derived from the port
to 4.4BSD done by Craig Leres, fixed the overloaded semantics of this function by using
in_pcblookup only for case 1 above. Cases 2 and 4 are handled by a new function named
in_~cbconflict, and case 3 is handled by a new function named in_uniqueport. Divid-
ing the original functionality into separate functions is much clearer, but in the Net/3 release,
which we’re describing in this text, the logic is still combined into the single function
in_pcbl ookup.

Figure 22.16 shows the in_pcblookup function°

The function starts at the head of the protocol’s PCB list and potentially goes
through every PCB on the list. The variable match remembers the pointer to the entry
with the best match so far, and matchwi ld remembers the number of wildcards in that
match. The latter is initialized to 3, which is a value greater than the maximum number
of wildcard matches that can be encountered. (Any value greater than 2 would work.)
Each time around the loop, the variable wi ldcard starts at 0 and counts the number of
wildcard matches for each PCB.

Compare local port number
The first comparison is the local port number. If the PCB’s local port doesn’t match

the lport argument, the PCB is ignored.

DELL EX.1095.750

726 Protocol Control Blocks Chapter 22

405 struct inpcb * in_pcb.c
406 in_pcblookup(head, faddr, fport_arg, laddr, tport_arg, flags)
407 struct inpcb *head;

408 struct in_addr faddr, laddr;

409 u_int ,fport_arg, lport_arg;

410 int flags;

411 {
412 struct inpcb *inp, *match : 0;
413 int matchwild : 3, wildcard;
414 u_short fport = fport_arg, iport = iport_arg;

415

416

417

for (inp ~ head->inp_next; inp !: head; inp = inp->inp_next) {
~f (inp->inp_iport != iport)

continue; /* ignore if local ports are unequal */

418 wildcard = 0;

419
420
421
422
423
424
425
426
427

if (inp->inp_laddr.s_addr !: INADDR ANY) {
if (laddr.s_addr == INADDR_ANY)

wildcard++;
else if (inp->inp_laddr.s_addr != laddr.s_addr)

continue;
} else {

if (laddr.s_addr != INADDR_ANY)
wildcard++;

}

428
429
430
431
432
433
434
435
436
437

if (inp->inp_faddr.s_addr [- IHADDR_ANY) {
if (faddr.s_addr == INADDR_ANY)

wildcard++;
else if (inp->inp_faddr.s_addr != faddr.s_addr II

inp->inp_fport !: fport)
continue;

} else {
if (faddr.s_addr != INADDR ANY)

wildcard++;
}

438
439

if (wildcard && (flags & INPLOOKUP_WILDCARD) == 0)
continue; /* wildcard match not allowed */

440
441
442
443
444
445
446
447
448 }

if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild -: 0)

break; /* exact match, all done */
)

)
return (match);

Figure 22.16 in_pcblookup function: search all the PCBs for a match.

in_pcb.c

DELL EX.1095.751

Section 22.6 in~cblookup Function 727

419--427

Compare local address
in_pcblookup compares the local address in the PCB with the laddr argument.

If one is a wildcard and the other is not a wildcard, the wildcard counter is incre-
mented. If both are not wildcards, then they must be the same, or this PCB is ignored.
If both are wildcards, nothing changes: they can’t be compared and the wildcard
counter isn’t incremented. Figure 22.17 summarizes the four different conditions.

PCB local IP laddr argument Description

not * * wildcard++
not * not * compare IP addresses, skip PCB if not equal

¯ * can’t compare
¯ not * wildcard++

Figure 22.17 Four scenarios for the local IP address comparison done by in_pcblookup.

428--437

438--439

Compare foreign address and foreign port number
These lines perform the same test that we just described, but using the foreign

addresses instead of the local addresses. Also, if both foreign addresses are not wild-
cards then not only must the two IP addresses be equal, but the two foreign ports must
also be equal. Figure 22.18 summarizes the foreign IP comparisons.

PCB foreign IP faddr argument Description

not * * wildcard++
not * not * compare IP addresses and ports, skip PCB if not equal

¯ * can’t compare
¯ not * wildcard++

Figure 22.18 Four scenarios for the foreign IP address comparison done by in_pcblookup.

The additional comparison of the foreign port numbers can be performed for the
second line of Figure 22.18 because it is not possible to have a PCB with a nonwildcard
foreign address and a foreign port number of 0. This restriction is enforced by
connect, which we’ll see shortly requires a nonwildcard foreign IP address and a
nonzero foreign port. It is possible, however, and common, to have a wildcard local
address with a nonzero local port. We saw this in Figures 22.10 and 22.13.

Check if wildcard match allowed

The flags argument can be set to INPLOOKUP_WILDCARD, which means a match
containing wildcards is OK. If a match is found containing wildcards (wildcard is
nonzero) and this flag was not specified by the caller, this PCB is ignored. When TCP
and UDP call this function to demultiplex an incoming datagram,
INPLOOKUP_WILDCARD is always set, since a wildcard match is OK. (Recall our exam-
ples using Figures 22.10 and 22.13.) But when this function is called as part of the
connect system call, in order to verify that a socket pair is not already in use, the
f lags argument is set to 0.

DELL EX.1095.752

728 Protocol Control Blocks Chapter 22

440--4q7

Remember best match, return if exact match found
These statements remember the best match found so far. Again, the best match is

considered the one with the fewest number of wildcard matches. If a match is found
with one or two wildcards, that match is remembered and the loop continues. But if an
exact match is found (wildcard is 0), the loop terminates, and a pointer to the PCB
with that exact match is returned.

Example--Demultiplexing of Received TCP Segment

Figure 22.19 is from the TCP example we discussed with Figure 22.11. Assume
in_pcblookup is demultiplexing a received datagram from 140.252.1.11, port 1500,
destined for 140.252.1.29, port 23. Also assume that the order of the PCBs is the order of
the rows in the figure, laddr is the destination IP address, lloort is the destination
TCP port, faddr is the source IP address, and £port is the source TCP port.

PCB values
wildcard

Localaddress Local port Foreign address Foreign port

140.252.1.29 23 * * 1
¯ 23 * * 2

140.252.1.29 23 140.252.1.11 1500 0

Figure 22.19 laddr : 140.252.1.29, lport = 23, faddr = 140.252.1.11, fport : 1500.

When the first row is compared to the incoming segment, wi ldcard is 1 (the foreign IP
address), flags is set to INPLOOKUP_WILDCARD, so match is set to point to this PCB
and matchwild is set to 1. The loop continues since an exact match has not been found
yet. The next time around the loop, wildcard is 2 (the local and foreign IP addresses)
and since this is greater than matchwild, the entry is not remembered, and the loop
continues. The next time around the loop, wildcard is 0, which is less than
matchwild (1), so this entry is remembered in match. The loop also terminates since
an exact match has been found and the pointer to this PCB is returned to the caller.

If in_pcblookup were used by TCP and UDP only to demultiplex incoming data-
grams, it could be simplified. First, there’s no need to check whether the faddr or
laddr arguments are wildcards, since these are the source and destination IP addresses
from the received datagram. Also the flags argument could be removed, along with
its corresponding test, since wildcard matches are always OK.

This section has covered the mechanics of the in_pcblookup function. We’ll
return to this function and discuss its meaning after seeing how it is called from the
in pcbbind and in_pcbconnect functions.

22.7 in__pcbbind Function

The next function, in_pcbbind, binds a local address and port number to a socket. !t
is called from five functions:

DELL EX.1095.753

Section 22.7 in~Dcbbind Function 729

1. from bind for a TCP socket (normally to bind a server’s well-known port);

2. from bind for a UDP socket (either to bind a server’s well-known port or to
bind an ephemeral port to a client’s socket);

3. from connect for a TCP socket, if the socket has not yet been bound to a
nonzero port (this is typical for TCP clients);

4. from ! ± s ten for a TCP socket, if the socket has not yet been bound to a nonzero
port (this is rare, since 1 isten is called by a TCP server, which normally binds
a well-known port, not an ephemeral port); and

5. from in~ocbconnec¢ (Section 22.8), if the local IP address and local port num-
ber have not been set (typical for a call to connect for a UDP socket or for each
call to send¢o for an unconnected UDP socket).

In cases 3, 4, and 5, an ephemeral port number is bound to the socket and the local IP
address is not changed (in case it is already set).

We call cases 1 and 2 explicit binds and cases 3, 4, and 5 implicit binds. We also note
that although it is normal in case 2 for a server to bind a well-known port, servers
invoked using remote procedure calls (RPC) often bind ephemeral ports and then regis-
ter their ephemeral port with another program that maintains a mapping between the
server’s RPC program number and its ephemeral port (e.g., the Sun port mapper
described in Section 29.4 of Volume 1).

We’ll show the in~cbbind function in three sections. Figure 22.20 is the first sec-
tion.

52 int
53 in~cbbind(inp, ham)
54 struct inpcb *inp;
55 struct mbuf *nam;
56 {
57 struct socket *so - inp->inp_socket;
58 struct inpcb *head = inp >inp_head;
59 struct sockaddr_in *sin;
60 struct proc *p - curproc; /* XXX */
61 u_short iport = 0;
62 int wild = 0, reuseport = (so >so_options
63 int error;

& SO_REUSEPORT);

in_pcb.c

64 if (in_ifaddr := 0)
65 return (EADDRNOTAVAIL) ;
66 if (inp >inp_iport I I inp->inp_laddr.s_addr !- INADDR ANY)
67 return (EINVAL);

68
69
70
71

if ((so->so_options & (SO_REUSEADDR I SO_REUSEPORT)) -- 0 &&
((so->so~roto >pr_flags & PR_CONNREQUIRED) -- 0] I

(so->so_options & SO_ACCEPTCONN) == 0))
wigd = INPLOOKUP_WILDCARD;

Figure 22.20 in_pcbbind function: bind a local address and port number.

in_pcb.c

DELL EX.1095.754

730 Protocol Control Blocks Chapter 22

64-67

68 71

72-75

76 83

The first two tests verify that at least one interface has been assigned an IP address
and that the socket is not already bound. You can’t bind a socket twice.

This if statement is confusing. The net result sets the variable wild to
INPLOOKUP_WILDCARD if neither SO_REUSEADDR or SO_REUSEPORT are set.

The second test is true for UDP sockets since PR_CONNREQUIRED is false for con-
nectionless sockets and true for connection-oriented sockets.

The third test is where the confusion lies [Torek 1992]. The socket flag
SO_ACCEPTCONN is set only by the listen system call (Section 15.9), which is valid
only for a connection-oriented server. In the normal scenario, a TCP server calls
socket, bind, and then i i st en. Therefore, when in_pcbbind is called by bind, this
socket flag is cleared. Even if the process calls socket and then listen, without call-
ing bind, TCP’s PRU_LISTEN request calls in_pcbbind to assign an ephemeral port
to the socket before the socket layer sets the SO_ACCEPTCONN flag. This means the third
test in the i f statement, testing whether SO_ACCEPTCONN is not set, is always true. The
i f statement is therefore equivalent to

if ((so->so_options & (SO_REUSEADDRISO_REUSEPORT)) == 0 &&
((so >so~roto >pr_flags & PR_COINNREQUIRED) == 0 I I i)

wild = INPLOOKUP_WILDCARD;

Since anything logically ORed with I is always true, this is equivalent to
if ((so->so_options & (SO_REUSEADDRISO_REUSEPORT)) := 0)

wild : INPLOOKUP_WILDCARD;

which is simpler to understand: if either of the REUSe. socket options is set, wi 1 d is left
as 0. If neither of the REUSE socket options are set, wild is set to
INPLOOKUP_WILDCARD. In other words, when in~cblookup is called later in the
function, a wildcard match is allowed only if neither of the REUSE socket options are on.

The next section of the in_pcbbind, shown in Figure 22.22, function processes the
optional ham argument.

The nara argument is a nonnull pointer only when the process calls bind explicitly.
For an implicit bind (a side effect of connect, listen, or in_pcbconnect, cases 3, 4,
and 5 from the beginning of this section), ham is a null pointer. When the argument is
specified, it is an mbuf containing a sockaddr_in structure. Figure 22.21 shows the
four cases for the nonnull ham argument.

nam argument:

locallP lport

not * 0
not * nonzero

¯ 0
¯ nonzero

PCB member gets set to:

inp_laddr inp_iport

locallP ephemeral port
locallP lport

* ephemeral port
* lport

Comment

locallP must be local interface
subject to in_pcblookup

subject to in_pcblookup

Figure 22.21 Four cases for ham argument to in~cbbind.

The test for the correct address family is commented out, yet the identical test in the
in~cbconnect function (Figure 22.25) is performed. We expect either both to be in or
both to be out.

DELL EX.1095.755

Section 22.7 in_pcbbind Function 731

in_pcb.c
72 if (ham) {
73 sin = mtod(nam, struct sockaddr_in *);
74 if (nam->m_len != sizeof(*sin))
75 return (EINVAL);
76 #ifdef notdef
77 /*
78 * We should check the family, but old programs
79 * incorrectly fail to initialize it.
80 */
81 if (sin->sin_family != AF_INET)
82 return (EAFNOSUPPORT);
83 #endif
84
85
86
87
88
89
9O
91
92
93
94
95
96

85--94

95--99

97
98
99

i00
i01

102
103
104
105
106
107
108
109
ii0
iii
112

lport : sin->sin~ort; /* might be 0 */
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {

/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/

if (so->so_options & SO_REUSEADDR)
reuseport = SO_REUSEADDR I SO_REUSEPORT;

} else if (sin->sin_addr.s_addr != INADDR_ANY) {
sin->sin_port = 0; /* yech... */
if (ifa_ifwithaddr((struct sockaddr *) sin) == 0)

return (EADDRNOTAVAIL);
}
if (iport) {

struct inpcb *t;

/* GROSS */
if (ntohs(iport) < IPPORT_RESERVED &&

(error : suser(p->p_ucred, &p->p_acflag)))
return (error);

t = in_pcblookup(head, zeroin_addr, 0,
sin->sin_addr, iport, wild);

if (t && (reuseport & t->inp_socket->so_options) =: 0)
return (EADDRINUSE);

}
inp->inp_laddr = sin->sin_addr; /* might be wildcard */

Figure 22.22 in_pcbbind function: process optional nam argument.

in_pcb.c

Net/3 tests whether the IP address being bound is a multicast group. If so, the
SO_REUSEADDR option is considered identical to SO_REUSEPORT.

Otherwise, if the local address being bound by the caller is not the wildcard,
i fa_i fwi thaddr verifies that the address corresponds to a local interface.

The comment "yech" is probably because the port number in the socket address structure
must be 0 because i fa_i fwithaddr does a binary comparison of the entire structure, not just
a comparison of the IP addresses.

DELL EX.1095.756

732 Protocol Control Blocks Chapter 22

100--105

106 109

11i

113-122

This is one of the few instances where the process must zero the socket address structure before
issuing the system call. If b±nd is called and the final 8 bytes of the socket address structure
(s±n_z÷roIS]) are nonzero, ±fa_±fw±thaddr will not find the requested interface, and
±n~cbb±nd will return an error.

The next i f statement is executed when the caller is binding a nonzero port, that is,
the process wants to bind one particular port number (the second and fourth scenarios
from Figure 22.21). If the requested port is less than 1024 (I P.PORT_RESERVED) the pro-
cess must have superuser privilege. This is not part of the Internet protocols, but a
Berkeley convention. A port number less than 1024 is called a reserved port and is used,
for example, by the rcmd function [Stevens 1990], which in turn is used by the rlog±n
and rsh client programs as part of their authentication with their servers.

The function ~n_~cblooku~ (Figure 22.16) is then called to check whether a PCB
already exists with the same local IP address and local port number. The second argu-
ment is the wildcard IP address (the foreign IP address) and the third argument is a port
number of 0 (the foreign port). The wildcard value for the second argument causes
in_~cblooku~ to ignore the foreign IP address and foreign port in the PCB--only the
local IP address and local port are compared to s±n->s±n_addr and ~o~¢, respec-
tively. We mentioned earlier that w± ld is set to ~NPLOOKUP~LDCA~D only if neither
of the REUSE socket options are set.

The caller’s value for the local IP address is stored in the PCB. This can be the wild-
card address, if that’s the value specified by the caller. In this case the local IP address is
chosen by the kernel, but not until the socket is connected at some later time. This is
because the local IP address is determined by IP routing, based on foreign IP address.

The final section of in_pcbbind handles the assignment of an ephemeral port
when the caller explicitly binds a port of 0, or when the ham argument is a null pointer
(an implicit bind).

113 if (Iport =: 0)
114 do {
115 if (head->inp_Iport++ < IPPORT_RESERVED I]
116 head->inp_iport > IPPORT_USERRESERVED)
117 head >inp_!port - IPPORT_RESERVED;
118 Iport = htons(head->inp_Iport);
119 } while (in_pcblookup(head,
120 zeroin_addr, 0,
121 inp->inp_iport = Iport;
122 return (0);
123 }

Figure 22.23

in_pcb.c

inp->inp_laddr, iport, wild));

in_pcbbind function: choose an ephemeral port.

in_pcb.c

The next ephemeral port number to use for this protocol (TCP or UDP) is main-
tained in the head of the protocol’s PCB list: ¢c~ or udb. Other than the
and ±np_~ack pointers in the protocol’s h÷ad PCB, the only other element of the
±n~c~ structure that is used is the local port number. Confusingly, this local port num-
ber is maintained in host byte order in the head PCB, but in network byte order
in all the other PCBs on the list! The ephemeral port numbers start at 1024

DELL EX.1095.757

Section 22.7 in_pcbbind Function 733

(IPPORT_RESERVED) and get incremented by 1 until port 5000 is used
(IPPORT_USNRRESV, RVED), then cycle back to 1024. The loop is executed until
in_pcbbind does not find a match.

SO_REUSEADDR Examples

Let’s look at some common examples to see the interaction of in_pcbb±nd with
in_pcblookup and the two REUSE socket options.

A TCP or UDP server normally starts by calling socket and bind. Assume a TCP
server that calls bind, specifying the wildcard IP address and its nonzero well-
known port, say 23 (the Telnet server). Also assume that the server is not already
running and that the process does not set the SO_REUSEADDR socket option.

in_pcbbind calls in_pcblookup with INPLOOKUP_WILDCARD as the final argu-
ment. The loop in in_pcblookup won’t find a matching PCB, assuming no other
process is using the server’s well-known TCP port, causing a null pointer to be
returned. This is OK and in_pcbbind returns 0.

Assume the same scenario as above, but with the server already running when
someone tries to start the server a second time.

When in_pcblookup is called it finds the PCB with a local socket of {*, 23}. Since
the wildcard counter is 0, in_pcblookup returns the pointer to this entry: Since
reuseport is 0, in_pcbbind returns EADDRINUSE.

3. Assume the same scenario as the previous example, but when the attempt is made
to start the server a second time, the SO_REUSEADDR socket option is specified.

Since this socket option is specified, in_pcbbind calls in_pcblookup with a final
argument of 0. But the PCB with a local socket of {*, 23} is still matched and
returned because wildcard is 0, since in_pcblookup cannot compare the two
wildcard addresses (Figure 22.17). in_pcbbind again returns EADDRItqUSE, pre-
venting us from starting two instances of the server with identical local sockets,
regardless of whether we specify SO_REUSEADDR or not.

4. Assume that a Telnet server is already running with a local socket of {*, 23} and we
try to start another with a local socket of {140.252.13.35, 23}.

Assuming SO_REUSEADDR is not specified, in_pcblookup is called with a final
argument of INPLOOKUP_WILDCARD. When it compares the PCB containing *. 2 3,
the counter wi ldcard is set to 1. Since a wildcard match is allowed, this match is
remembered as the best match and a pointer to it is returned after all the TCP PCBs
are scanned, in_pcbbind returns EADDRINUSE.

This example is the same as the previous one, but we specify the SO_REUSEADDR
socket option for the second server that tries to bind the local socket {140.252.13.35,
23}.

The final argument to in_pcblookup is now 0, since the socket option is specified.
When the PCB with the local socket {*, 23} is compared, the wi 1 dcard counter is 1,

DELL EX.1095.758

734 Protocol Control Blocks Chapter 22

but since the final flags argument is 0, this entry is skipped and is not remembered
as a match. After comparing all the TCP PCBs, the function returns a null pointer
and in~ocbbind returns 0.

6. Assume the first Telnet server is started with a local socket of {140.252.13.35, 23}
when we try to start a second server with a local socket of {*, 23}. This is the same
as the previous example, except we’re starting the servers in reverse order this time.

The first server is started without a problem, assuming no other socket has already
bound port 23. When we start the second server, the final argument to
in_pcblookup is INPLOOKUP_WILDCARD, assuming the SO_REUSEADDR socket
option is not specified. When the PCB with the local socket of {140.252.13.35, 23} is
compared, the wi ldcard counter is set to 1 and this entry is remembered. After all
the TCP PCBs are compared, the pointer to this entry is returned, causing
in_pcbbind to return EADDRINUSE.

7. What if we start two instances of a server, both with a nonwildcard local IP address?
Assume we start the first Telnet server with a local socket of {140.252.13.35, 23} and
then try to start a second with a local socket of {127.0.0.1, 23}, without specifying
SO_REUSEADDR.

When the second server calls in_pcbbind, it calls in_pcbtookup with a final
argument of INPLOOKUP_WILDCARD. When the PCB with the local socket of
{140.252.13.35, 23} is compared, it is skipped because the local IP addresses are not
equal, in_pcblookup returns a null pointer, and in_pcbbind returns 0.

From this example we see that the SO_REUSEADDR socket option has no effect on
nonwildcard IP addresses. Indeed the test on the flags value
INPLOOKUP_WILDCARD in in_pcblookup is made only when wildcard is
greater than 0, that is, when either the PCB entry has a wildcard IP address or the IP
address being bound is the wildcard.

As a final example, assume we try to start two instances of the same server, both
with the same nonwildcard local IP address, say 127.0.0.1.

When the second server is started, in_pcblookup always returns a pointer to the
matching PCB with the same local socket. This happens regardless of the
SO_REUSEADDR socket option, because the wildcard counter is always 0 for this
comparison. Since in_pcblookup returns a nonnull pointer, in_pcbbind returns
EADDRINUSE.

From these examples we can state the rules about the binding of local IP addresses
and the SO_REUSEADDR socket option. These rules are shown in Figure 22.24. We
assume that locallP1 and locallP2 are two different unicast or broadcast IP addresses
valid on the local host, and that localmcastlP is a multicast group. We also assume that
the process is trying to bind the same nonzero port number that is already bound to the
existing PCB.

We need to differentiate between a unicast or broadcast address and a multicast
address, because we saw that in_pcbbind considers SO_REUSEADDR to be the same as
SO_REUSEPORT for a multicast address.

DELL EX.1095.759

Section 22.8 in_pcbconnect Function735

Existing PCB Try to bind Description

localIP1
locallP1
locallP1

localmcastlP

SO_REUSEADDR
off on

locallP1 error error
locallP2 OK OK

* error OK
locallP1 error OK

* error error
localmcastlP error OK

one server per IP address and port
one server for each local interface
one server for one interface, other server for remaining interfaces
one server for one interface, other server for remaining interfaces
can’t duplicate local sockets (same as first example)
multiple multicast recipients

Figure 22.24 Effect of SO_REUSEADDR socket option on binding of local IP address.

SO_REUSEPORT Socket Option

The handling of SO_REUSEPORT in Net/3 changes the logic of in_pcbbind to allow
duplicate local sockets as long as both sockets specify SO_REUSEPORT. In other words,
all the servers must agree to share the same local port.

22.8 in_pcbconnect Function
The function in_pcbconnect specifies the foreign IP address and foreign port number
for a socket. It is called £rom four functions:

1. from connect for a TCP socket (required for a TCP client);

2. from connect for a UDP socket (optional for a UDP client, rare for a UDP
server);

from sendto when a datagram is output on an unconnected UDP socket (com-
mon); and

from tcp_input when a connection request (a SYN segment) arrives on a TCP
socket that is in the LISTEN state (standard for a TCP server).

In all four cases it is common, though not required, for the local IP address and local
port be unspecified when in__pcbconnect is called. Therefore one function of
in__pcbconnect is to assign the local values when they are unspecified.

We’ll discuss the in_;)cbconnect function in four sections. Figure 22.25 shows the
first section.

130 int
131 in_pcbconnect(inp, ham)
132 struct inpcb *inp;
133 struct mbuf *ham;
134 {
135 struct in_ifaddr *ia;
136 struct sockaddr_in *ifaddr;
137 struct sockaddr_in *sin : mtod(nam, struct sockaddr_in *);

in_pcb.c

DELL EX.1095.760

736 Protocol Control Blocks Chapter 22

138 if (nam->m_len != sizeof(*sin))
139 return (EINVAL);
140 if (sin->sin_family != AF_INET)
141 return (EAFNOSUPPORT);
142 if (sin->sin_port == 0)
143 return (EADDRNOTAVAIL);
144 if (in_ifaddr) {
145 /*
146 * If the destination address is INADDR A~Y,
147 * use the primary local address.
148 * If the supplied address is INADDR_BROADCAST,
149 * and the primary interface supports broadcast,
150 * choose the broadcast address for that interface.
151 */
152 #define satosin(sa) ((struct sockaddr_in *) (sa))
153 #define sintosa(sin) ((struct sockaddr *)(sin))
154 #define ifatoia(ifa) ((struct in_ifaddr *) (ifa))
155 if (sin->sin_addr.s_addr -= INADDR_ANY)
156 sin->sin_addr = IA_SIN(in_ifaddr) >sin_addr;
157 else if (sin->sin_addr.s_addr == (u_long) INADDR_BROADCAST &&
158 (in_ifaddr->ia_ifp->if_flags & IFF_BROADCAST))
159 sin->sin_addr = satosin(&in_ifaddr->ia_broadaddr)->sin_addr;
16 o }

in_pcb.c ~

Figure22.25 in~ocbconnectfunction:veri~ arguments, checkforeignIPaddress.

130--143

144--160

Validate argument

The nam argument points to an mbuf containing a sockaddr_in structure with the
foreign IP address and port number. These lines validate the argument and verify that
the caller is not trying to connect to a port number of 0.

Handle connection to 0.0.0.0 and 255.255.255.255 specially

The test of the global in_i faddr verifies that an IP interface has been configured.
If the foreign IP address is 0.0.0.0 (INADDR_ANY), then 0.0.0.0 is replaced with the IP
address of the primary IP interface. This means the calling process is connecting to a
peer on this host. If the foreign IP address is 255.255.255.255 (INADDR_BROADCAST)

and the primary interface supports broadcasting, then 255.255.255.255 is replaced with
the broadcast address of the primary interface. This allows a UDP application to broad-
cast on the primary interface without having to figure out its IP address--it can simply
send datagrams to 255.255.255.255, and the kernel converts this to the appropriate IP
address for the interface.

The next section of code, Figure 22.26, handles the case of an unspecified local
address. This is the common scenario for TCP and UDP clients, cases 1, 2, and 3 from
the list at the beginning of this section.

DELL EX.1095.761

Section 22.8 in_pcbconnect Function 737

in_pcb.c161 if (inp->inp_laddr.s_addr :: INADDR_ANY) {
162 struct route *to;

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205

ia - (struct in_ifaddr *) 0;
/*

* If route is known or can be allocated now,
* our src addr is taken from the i/f, else punt.
*/

ro : &inp->inp_route;
if (ro->ro_rt &&

(satosin(&ro->ro_dst) >sin_addr.s_addr !=
sin->sin_addr.s_addr I I
inp->inp_socket->so_options & SO_DONTROUTE)) {

RTFREE(ro->ro_rt);
ro >ro_rt - (struct rtentry *) 0;

}
if

}
/*

((inp->inp_socket->so_options & SO_DONTROUTE) =- 0 &&
(ro->ro_rt -: (struct rtentry *) 0 I I
ro->ro_rt >rt_ifp == (struct ifnet *) 0)) {

/* No route yet, so try to acquire one */
ro->ro_dst.sa_family - AF_INET;
ro->ro_dst.sa_len - sizeof(struct sockaddr_in);
((struct sockaddr_in *) &ro->ro_dst)->sin_addr =

sin->sin_addr;
rtalloc(ro);

If we found a route, use the address
corresponding to the outgoing interface
unless it is the loopback (in case a route

* to our address on another net goes to loopback).
*/

if (ro->ro_rt && ! (ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK
ia = ifatoia(ro >ro_rt->rt_ifa);

if (ia -= 0) {
u_short fport - sin->sin_port;

sin->sin_port = 0;
ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin)));
if (ia -- 0)

ia = ifatoia(ifa_ifwithnet(sintosa(sin)));
si~->sin_]aort = fport;
if {ia =- 0)

ia = in_ifaddr;
if (ia == 0)

return (EADDRNOTAVAIL);

Figure 22.26 in_pcbconnect function: local IP address not yet specified.

/* XXX */

m_pcb.c

DELL EX.1095.762

738 Protocol Control Blocks Chapter 22

164--1 75

176-185

186-205

206--223

224--225

Release route if no longer valid
If a route is held by the PCB but the destination of that route differs from the foreign

address being connected to, or the SO_DONTROUTV. socket option is set, that route is
released.

To understand why a PCB may have an associated route, consider case 3 from the
list at the beginning of this section: ±n_pcbconn÷ct is called every time a UDP data-
gram is sent on an unconnected socket. Each time a process calls sendto, the UDP out-
put function calls in_pcbconnect, ip_output, and in_pcbdisconnect. If all the
datagrams sent on the socket go to the same destination IP address, then the first time
through ±n_pcb¢onn÷ct the route is allocated and it can be used from that point on.
But since a UDP application can send datagrams to a different IP address with each call
to sendto, the destination address must be compared to the saved route and the route
released when the destination changes. This same test is done in ±p_ou~pu~, which
seems to be redundant.

The SO_I]OI~TROUTE socket option tells the kernel to bypass the normal routing
decisions and send the IP datagram to the locally attached interface whose IP network
address matches the network portion of the destination address.
Acquire route

If the SO_DONTROUTE socket option is not set, and a route to the destination is not
held by the PCB, try to acquire one by calling r t a 11 oc.
Determine outgoing interface

The goal in this section of code is to have ±a point to an interface address structure
(in_i faddr, Section 6.5), which contains the IP address of the interface. If the PCB
holds a route that is still valid, or if rtal loc found a route, and the route is not to the
loopback interface, the corresponding interface is used. Otherwise i f a_withds t addr
and ifa_withnet are called to check if the foreign IP address is on the other end of a
point-to-point link or on an attached network. Both of these functions require that the
port number in the socket address structure be 0, so it is saved in fport across the calls.
If this fails, the primary IP address is used (in_i faddr), and if no interfaces are config-
ured (in_i faddr is zero), an error is returned.

Figure 22.27 shows the next section of in~ocbconnect, which handles a destina-
tion address that is a multicast address.

If the destination address is a multicast address and the process has specified the
outgoing interface to use for multicast packets (using the tP_MULTICAST_IF socket
option), then the IP address of that interface is used as the local address. A search is
made of all IP interfaces for the one matching the interface that was specified with the
socket option. An error is returned if that interface is no longer up.

The code that started at the beginning of Figure 22.26 to handle the case of a wild-
card local address is complete. The pointer to the sockaddr_in structure for the local
interface ia is saved in i faddr.

The final section of in_pcblookup is shown in Figure 22.28.

DELL EX.1095.763

Section 22.8 in_pcbconnect Function 739

206
207
2O8
209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226

227
228
229
230
231
232
233

* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, use the
* address of that interface as our source address.
*/

if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
inp->inp_moptions [- NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;

}
}
i faddr -

imo - inp->inp moptions;
if (imo >imo_multicast_ifp != NULL)

}

Figure 22.27

{
ifp : imo->imo_multicast_ifp;
for (ia - in_ifaddr; ia; ia - ia >ia_next)

if (ia->ia_ifp == ifp)
break;

if (ia -- 0)
return (EADDRNOTAVAIL);

(struct sockaddr_in *) &ia->ia_addr;

in_pcbconnect function: destination address is a multicast address.

in_pcb.c

in_pcb.c

if (in_pcblookup(inp->inp_head, in_pcb.c
sin >sin_addr,
sin->sin_port,

inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr,
inp->inp_iport,
0))

return (EADDRINUSE);

234 if (inp >inp_laddr.s_addr -= INADDR_ANY) {
235 if (inp >inp_Iport == 0)
236 (void) in_pcbbind(inp, (struct mbuf *)
237 inp >inp_laddr = ifaddr >sin_addr;
238 }
239 inp >inp_faddr - sin->sin_addr;
240 inp->inp_fport - sin >sin_port;
241 return (0);
242 }

0);

Figure 22.28 in_pcbconnect function: verify that socket pair is unique.

in_pcb.c

227233

Verify that socket pair is unique
in_pcblookup verifies that the socket pair is unique. The foreign address and for-

eign port are the values specified as arguments to in_pcbconnect. The local address
is either the value that was already bound to the socket or the value in i faddr that was

DELL EX.1095.764

740 Protocol Control Blocks Chapter 22

234 238

239-240

calculated in the code we just described. The local port can be 0, which is typical for a
TCP client, and we’ll see that later in this section of code an ephemeral port is chosen
for the local port.

This test prevents two TCP connections to the same foreign address and foreign
port from the same local address and local port. For example, if we establish a TCP con-
nection with the echo server on the host sun and then try to establish another connec-
tion to the same server from the same local port (8888, specified with the -b option), the
call to in_pcblookup returns a match, causing connect to return the error
EADDRTNUSE. (We use the sock program from Appendix C of Volume 1.)

bsdi $ sock -b 8888 sun echo &start first one in the background
bsdi $ sock -A -b 8888 sun echo then tryagain
connect() error: Address already in use

We specify the -A option to set the SO_REUSV.ADDR socket option, which lets the bind
succeed, but the connect cannot succeed. This is a contrived example, as we explicitly
bound the same local port (8888) to both sockets. In the normal scenario of two differ-
ent clients from the host bsdi to the echo server on the host sun, the local port will be 0
when the second client calls in_pcbl ookup from Figure 22.28.

This test also prevents two UDP sockets from being connected to the same foreign
address from the same local port. This test does not prevent two UDP sockets from
alternately sending datagrams to the same foreign address from the same local port, as
long as neither calls connect, since a UDP socket is only temporarily connected to a
peer for the duration of a sendto system call.

Implicit bind and assignment of ephemeral port
If the local address is still wildcarded for the socket, it is set to the value saved in

i faddr. This is an implicit bind: cases 3, 4, and 5 from the beginning of Section 22.7.
First a check is made as to whether the local port has been bound yet, and if not,
in_pcbbind binds an ephemeral port to the socket. The order of the call to
in_pcbbind and the assignment to inp_laddr is important, since in~ocbbind fails
if the local address is not the wildcard address.

Store foreign address and foreign port in PCB
The final step of this function sets the foreign IP address and foreign port number in

the PCB. We are guaranteed, on successful return from this function, that both socket
pairs in the PCB--the local and foreign--are filled in with specific values.

IP Source Address Versus Outgoing Interface Address

There is a subtle difference between the source address in the IP datagram versus the IP
address of the interface used to send the datagram.

The PCB member inp_laddr is used by TCP and UDP as the source address of the
IP datagram. It can be set by the process to the IP address of any configured interface by
bind. (The call to i fa_i fwithaddr in in___pcbbind verifies the local address desired
by the application.) in__pcbconnect assigns the local address only if it is a wildcard,
and when this happens the local address is based on the outgoing interface (since the
destination address is known).

DELL EX.1095.765

Section22.10 in_setsockaddr and in_setpeeraddr Functions 741

The outgoing interface, however, is also determined by ip_output based on the
destination IP address. On a multihomed host it is possible for the source address to be
a local interface that is not the outgoing interface, when the process explicitly binds a
local address that differs from the outgoing interface. This is allowed because Net/3
chooses the weak end system model (Section 8.4).

22.9 in_pcbdisconnect Function

A UDP socket is disconnected by in_pcbdisconnect. This removes the foreign asso-
ciation by setting the foreign IP address to all 0s (INADDR_ANY) and foreign port num-
ber to 0.

This is done after a datagram has been sent on an unconnected UDP socket and
when connect is called on a connected UDP socket. In the first case the sequence of
steps when the process calls sendto is: UDP calls in_~ocbconnect to connect the
socket temporarily to the destination, udp_output sends the datagram, and then
in_pcbdi sconnect removes the temporary connection.

in_pcbdisconnect is not called when a socket is closed since in_pcbdetach
handles the release of the PCB. A disconnect is required only when the PCB needs to be
reused for a different foreign address or port number.

Figure 22.29 shows the function i n__p cbdi s c onne c t.

243 int
244 in_pcbdisconnect(inp)
245 struct inpcb *inp;
246 {

in_pcb.c

247 inp->inp_faddr.s_addr : INADDR ANY;
248 inp->inp_fport : 0;
249 if (inp->inp_socket->so_state & SS_NOFDREF)
250 in_pcbdetach(inp);
251 }

in_pcb.c

Figure22.29 in_~cbdisconnectfunction:disconnect~om ~reignaddressand portnumben

If there is no longer a file table reference for this PCB (SS_NOF~)REF is set) then
in_pcbdetach (Figure 22.7) releases the PCB.

22.10 in_setsockaddr and in_setpeeraddr Functions
The get sockname system call returns the local protocol address of a socket (e.g., the IP
address and port number for an Internet socket) and the getpeername system call
returns the foreign protocol address. Both system calls end up issuing a
PRU_SOCKADDR request or a PRU_PEERADDR request. The protocol then calls either
in_set sockaddr or in_setpeeraddr. We show the first of these in Figure 22.30.

DELL EX.1095.766

742 Protocol Control Blocks Chapter 22

267 int in_pcb.c
268 in_setsockaddr(inp, ham)
269 struct inpcb *inp;
270 struct mbuf *ham;
271 {
272 struct sockaddr_in *sin;

273
274
275
276
277
278
279
280

nam->m_len : sizeof(*sin);
sin : mtod(nam, struct sockaddr_in *);
bzero((caddr_t) sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = inp->inp_iport;
sin >sin_addr : inp->inp_laddr;

Figure 22,30 in_setsockaddr function: return local address and port number.

in_pcb.c

The argument ham is a pointer to an mbuf that will hold the result: a sockaddr_in
structure that the system call copies back to the process. The code fills in the socket
address structure and copies the IP address and port number from the Internet PCB into
the s in_addr and sin_port members.

Figure 22.31 shows the in_setpeeraddr function. It is nearly identical to Fig-
ure 22.30, but copies the foreign IP address and port number from the PCB.

281 int
282 in_setpeeraddr(inp, nam)
283 struct inpcb *inp;
284 struct mbuf *ham;
285 {
286 struct sockaddr_in *sin;

ind~cb.c

287
288
289
290
291
292
293
294

nam->m_len : sizeof(*sin);
sin = mtod(nam, struct sockaddr_in *);
bzero((caddr_t) sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port : inp->inp_fport;
sin->sin_addr - inp->inp_faddr;

Figure 22.31 in_setpeeraddr function: return foreign address and port number.

in_pcb.c

22.11 in_pcbnotify, in_rtchange, and in_losing Functions

The function in_pcbnotify is called when an ICMP error is received, in order to
notify the appropriate process of the error. The "appropriate process" is found by
searching all the PCBs for one of the protocols (TCP or UDP) and comparing the local

DELL EX.1095.767

Section22.1] in~cbnotify, in_rtchange, and in_losing Functions 743

and foreign IP addresses and port numbers with the values returned in the ICMP error.
For example, when an ICMP source quench error is received in response to a TCP seg-
ment that some router discarded, TCP must locate the PCB for the connection that
caused the error and slow down the transmission on that connection.

Before showing the function we must review how it is called. Figure 22.32 summa-
rizes the functions called to process an ICMP error. The two shaded ellipses are the
functions described in this section.

the protocol’s pfctlinput: all protocol’s
control input function control input function

/
~ ot~r ICMP . (see text)

messages

(software interrupt)

Figure 22.32 Summary of processing of ICMP errors.

When an ICMP message is received, icmp_input is called. Five of the ICMP mes-
sages are classified as errors (Figures 11.1 and 11.2):

¯ destination unreachable,
¯ parameter problem,
¯ redirect,
¯ source quench, and
¯ time exceeded.

DELL EX.1095.768

744 Protocol Control Blocks Chapter 22

306~24

325--338

339

Redirects are handled differently from the other four errors. All other ICMP messages
(the queries) are handled as described in Chapter 11.

Each protocol defines its control input function, the pr_ct~±nput entry in the
protosw structure (Section 7.4). The ones for TCP and UDP are named
t cp_c t 1 input and udp_ct 1 input, and we’ll show their code in later chapters. Since
the ICMP error that is received contains the IP header of the datagram that caused the
error, the protocol that caused the error (TCP or UDP) is known. Four of the five ICMP
errors cause that protocol’s control input function to be called. Redirects are handled
differently: the function pfctlinput is called, and it in turn calls the control input
functions for all the protocols in the family (Internet). TCP and UDP are the only proto-
cols in the Internet family with control input functions.

Redirects are handled specially because they affect all IP datagrams going to that
destination, not just the one that caused the redirect. On the other hand, the other four
errors need only be processed by the protocol that caused the error.

The final points we need to make about Figure 22.32 are that TCP handles source
quenches differently from the other errors, and redirects are handled specially by
in_pcbnotify: the function i n_rtchange is called, regardless of the protocol that
caused the error

Figure 22.33 shows the in_pcbnot i fy function. When it is called by TCP, the first
argument is the address of tcb and the final argument is the address of the function
top_not i fy. For UDP, these two arguments are the address of udb and the address of
the function udp_not i fy.

Verify arguments
The crnd argument and the address family of the destination are verified. The for-

eign address is checked to ensure it is not 0.0.0.0.
Handle redirects specially

If the error is a redirect it is handled specially. (The error PRC_t~OS<PD~.AD is an old
error that was generated by the IMPs. Current systems should never see this error--it
is a historical artifact.) The foreign port, local port, and local address are all set to 0 so
that the for loop that follows won’t compare them. For a redirect we want that loop to
select the PCBs to receive notification based only on the foreign IP address, because that
is the IP address for which our host received a redirect. Also, the function that is called
for a redirect is in_rtchange (Figure 22.34) instead of the not i fy argument specified
by the caller

The global array inetctlerrmap maps one of the protocoMndependent error
codes (the PRC_xxx values from Figure 11.19) into its corresponding Unix errno value
(the final column in Figure 11.1).

DELL EX.1095.769

Section22.11 in_pcbnotify, in_rtchange, and in_losing Functions 74~

306 int in_pcb.c

307 in_pcbnotify(head, dst, fport_arg, laddr, iport_arg, cmd, notify)
308 struct inpcb *head;
309 struct sockaddr *dst;
310 u_int fport_arg, iport_arg;
311 struct in_addr laddr;
312 int cmd;
313 void (*notify) (struct inpcb *, int);
314 {
315 extern u_char inetctlerrmap[];
316 struct inpcb *inp, *oinp;
317 struct in_addr faddr;
318 u_short fport = fport_arg, iport = Iport_arg;
319 int errno;

320
321
322
323
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
35O
351
352
353
354

if ((unsigned) cmd > PRC_NCMDS] I dst->sa_family != AF_INET)
return;

faddr = ((struct sockaddr_in *) dst)->sin_addr;
if (faddr.s_addr =- IHADDR ANY)

return;

* Redirects go to all references to the destination,
* and use in_rtchange to invalidate the route cache.
* Dead host indications: notify all references to the destination.
* Otherwise, if we have knowledge of the local port and address,
* deliver only to that socket.
*/

if {PRC IS REDIRECT(cmd)] I cmd -- PRC_HOSTDEAD) {
fport - 0;
iport 0;
laddr.s_addr - 0;
if (cmd [PRC_HOSTDEAD)

notify - in_rtchange;
}
errno = inetctlerrmap[cmd] ;
for (inp = head >inp_next; inp !- head;) {

if (inp->inp_faddr.s_addr != faddr.s_addr
inp->inp_socket -= 0
(iport && inp >inp_iport != iport)
{laddr.s_addr && inp >inp_laddr.s_addr != laddr.s_addr)
(fport && inp->inp_fport !- fport)) {
inp inp >inp_next;
continue; /* skip this PCB */

}
oinp inp;
inp - inp->inp_~ext;
if (notify)

(*notify) (oinp, errno) ;
}

Figure 22.33 in_pcbnot i fy function: pass error notification to processes.

m_pcb.c

DELL EX.1095.770

746 Protocol Control Blocks Chapter 22

340--353

Call notify function for selected PCBs

This loop selects the PCBs to be notified. Multiple PCBs can be notified--the loop
keeps going even after a match is located. The first ± £ statement combines five tests,
and if any one of the five is true, the PCB is skipped: (1) if the foreign addresses are
unequal, (2) if the PCB does not have a corresponding socket structure, (3) if the local
ports are unequal, (4) if the local addresses are unequal, or (5) if the foreign ports are
unequal. The foreign addresses must match, while the other three foreign and local ele-
ments are compared only if the corresponding argument is nonzero. When a match is
found, the not ± fy function is called.

in_rtchange Function

We saw that in_pcbnot i fy calls the function in_rtchange when the ICMP error is a
redirect. This function is called for all PCBs with a foreign address that matches the IP
address that has been redirected. Figure 22.34 shows the in_r t change function.

391
392
393
394
395
396
397
398
399
400
401
402
403
404

void
in_rtchange(inp, errno)
struct inpcb *inp;
int errno;

if (inp->inp_route.ro_rt) {
rtfree(inp->inp_route.ro_rt);
inp->inp_route.ro_rt = 0;
/*

* A new route can be allocated the next time
* output is attempted.
*/

Figure 22.34 in_rtchange function: invalidate route.

in_pcb.c

in_pcb.c

If the PCB holds a route, that route is released by rtfree, and the PCB member is
marked as empty. We don’t try to update the route at this time, using the new router
address returned in the redirect. The new route will be allocated by ±p_output when
this PCB is used next, based on the kernel’s routing table, which is updated by the redi-
rect, before pfctlinput is called.

Redirects and Raw Sockets

Let’s examine the interaction of redirects, raw sockets, and the cached route in the PCB.
If we run the Ping program, which uses a raw socket, and an ICMP redirect error is
received for the IP address being pinged, Ping continues using the original route, not
the redirected route. We can see this as follows.

We ping the host svr4 on the 140.252.13 network from the host geraini on the
140.252.1 network. The default router for gemini is gateway, but the packets should
be sent to the router netb instead. Figure 22.35 shows the arrangement.

DELL EX.1095.771

Section22.11 in_pcbnotify, in_rtchange, and in_losing Functions 747

ping client

y~ redirect to 140.252.1.183
gat ewa _gemini

.1.471 ICMP echo request

T.1.11

~
Ethernet 140’252’1 1"1’183

~netb

’1~ .1.29

i .13.33

ping destination

¯ 13.34 i
Ethernet 140.252.13

Figure 22.35 Example of ICMP redirect.

We expect gateway to send a redirect when it receives the first ICMP echo request.
gemini $ ping -sv svr4
PING 140.252.13.34: 56 data bytes
ICMP Host redirect from gateway 140.252.1.4

to netb (140.252.1.183) for svr4 (140.252.13.34)
64 bytes from svr4 (140.252.13.34): icmp_seq=0, time:57~, ms

ICMP Host redirect from gateway 140.252.1.4
to netb (140.252.1.183) for svr4 (140.252.13.34)

64 bytes from svr4 (140.252.13.34): icmp_seq=l, time=392, ms

The -s option causes an ICMP echo request to be sent once a second, and the -v option
prints every received ICMP message (instead of only the ICMP echo replies).

Every ICMP echo request elicits a redirect, but the raw socket used by ping never
notices the redirect to change the route that it is using. The route that is first calculated
and stored in the PCB, causing the IP datagrams to be sent to the router gateway
(140.252.1.4), should be updated so that the datagrams are sent to the router netb
(140.252.1.183) instead. We see that the ICMP redirects are received by the kernel on
gemini, but they appear to be ignored.

If we terminate the program and start it again, we never see a redirect:
gemini $ ping -sv svr4
PING 140.252.13.34: 56 data bytes
64 bytes from svr4 (140.252.13.34): icmp_seq:0, time=388, ms
64 bytes from svr4 (140.252.13.34): icmp_seq:l, time:363, ms

The reason for this anomaly is that the raw IP socket code (Chapter 32) does not
have a control input function. Only TCP and UDP have a control input function. When
the redirect error is received, ICMP updates the kernel’s routing table accordingly, and
p f c t 1 input is called (Figure 22.32). But since there is no control input function for the
raw IP protocol, the cached route in the PCB associated with Ping’s raw socket is never
released. When we start the Ping program a second time, however, the route that is
allocated is based on the kernel’s updated routing table, and we never see the redirects.

DELL EX.1095.772

748 Protocol Control Blocks Chapter 22

ICMP Errors and UDP Sockets

One confusing part of the sockets API is that ICMP errors received on a UDP socket are
not passed to the application unless the application has issued a conn÷ct on the socket,
restricting the foreign IP address and port number for the socket. We now see where
this limitation is enforced by ±n_pcbnot ± fy.

Consider an ICMP port unreachable, probably the most common ICMP error on a
UDP socket. The foreign IP address and the foreign port number in the clst argument
to ±n_~vcbnot ± fy are the IP address and port number that caused the ICMP error. But
if the process has not issued a connect on the socket, the inp_faddr and inp_fport
members of the PCB are both 0, preventing in_pcbnotify from ever calling the
notify function for this socket. The for loop in Figure 22.33 will skip every UDP
PCB.

This limitation arises for two reasons. First, if the sending process has an uncon-
nected UDP socket, the only nonzero element in the socket pair is the local port. (This
assumes the process did not cdll bind.) This is the only value available to
in_pcbnot i fy tO demultiplex the incoming ICMP error and pass it to the correct pro-
cess. Although unlikely, there could be multiple processes bound to the same local port,
making it ambiguous which process should receive the error. There’s also the possibil-
ity that the process that sent the datagram that caused the ICMP error has terminated,
with another process then starting and using the same local port. This is also unlikely
since ephemeral ports are assigned in sequential order from 1024 to 5000 and reused
only after cycling around (Figure 22.23).

The second reason for this limitation is because the error notification from the ker-
nel to the process--an ÷rrno value--is inadequate. Consider a process that calls
s÷nd¢o on an unconnected UDP socket three times in a row, sending a UDP datagram
to three different destinations, and then waits for the replies with recv£rom. If one of
the datagrams generates an ICMP port unreachable error, and if the kernel were to
return the corresponding error (ECONNREFUSED) to the recvfrom that the process
issued, the ÷~no value doesn’t tell the process which of the three datagrams caused
the error. The kernel has all the information required in the ICMP error, but the sockets
API doesn’t provide a way to return this to the process.

Therefore the design decision was made that if a process wants to be notified of
these ICMP errors on a UDP socket, that socket must be connected to a single peer. If
the error ECONNREFUSED is returned on that connected socket, there’s no question
which peer generated the error.

There is still a remote possibility of an ICMP error being delivered to the wrong
process. One process sends the UDP datagram that elicits the ICMP error, but it termi-
nates before the error is received. Another process then starts up before the error is
received, binds the same local port, and connects to the same foreign address and for-
eign port, causing this new process to receive the error. There’s no way to prevent this
from occurring, given UDP’s lack of memory. We’ll see that TCP handles this with its
TIME WAIT state.

DELL EX.1095.773

Section22.11 in~cbnotify, in_rtchange, and in_losing Functions 749

In our preceding example, one way for the application to get around this limitation
is to use three connected UDP sockets instead of one unconnected socket, and call
selec¢ to determine when any one of the three has a received datagram or an error to
be read.

Here we have a scenario where the kernel has the information but the API (sockets) is inade-
quate. With most implementations of Unix System V and the other popular API (TLI), the
reverse is true: the TLI function t_rcvuderr can return the peer’s IP address, port number,
and an error value, but most SVR4 streams implementations of TCP/IP don’t provide a way
for ICMP to pass the error to an unconnected UDP end point.

In an ideal world, in_pcbnoti fy delivers the ICMP error to all UDP sockets that match, even
if the only nonwildcard match is the local port. The error returned to the process would
include the destination IP address and destination UDP port that caused the error, a[~owinZ
the process to determine if the error corresponds to a datagram sent by the process.

in_losing Function

The final function dealing with PCBs is in_los ing, shown in Figure 22.36. It is called
by TCP when its retransmission timer has expired four or more times in a row for a
given connection (Figure 25.26).

361 int
362 in_losing(inp)
363 struct inpcb *inp;
364 {
365 struct rtentry *rt;
366 struct rt_addrinfo info;

in_pcb.c

367
368
369
370
371
372
373
374

if ((rt = inp->inp_route.ro_rt))
inp->inp_route.ro_rt = 0;
bzero((caddr_t) & info, sizeof(info));
info.rti_info[RTAX_DST] =

(struct sockaddr *) &inp->inp_route.ro_dst;
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX NETMASK] = rt_mask(rt);
rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);

375
376
377
378
379
380
381
382
383
384
385
386

}
}

if (rt->rt_flags & RTF_DYNAMIC)
(void) rtrequest(RTM_DELETE, rt_key(rt),

rt->rt_gateway, rt mask(rt),
(struct rtentry **) 0);

else
/*

* A new route can be allocated
* the next time output is attempted.
*/

rtfree(rt);

rt->rt_flags,

Figure 22.36 in_losing function: invalidate cached route information.

in_pcb.c

DELL EX.1095.774

750 Protocol Control Blocks Chapter 22

3 61--3 74

375-384

Generate routing message
If the PCB holds a route, that route is discarded. An rt_addr±nfo structure is

filled in with information about the cached route that appears to be failing. The func-
tion r t_m± s smsg is then called to generate a message from the routing socket of type
RTM_LO$ IRG, indicating a problem with the route.

Delete or release route
If the cached route was generated by a redirect (RTF_DYNAMIC is set), the route is

deleted by calling ~tr÷quest with a request of RTM_D~.LET]~. Otherwise the cached
route is released, causing the next output on the socket to allocate another route to the
destination--hopefully a better route.

22.12 Implementation Refinements

Undoubtedly the most time-consuming algorithm we’ve encountered in this chapter is
the linear searching of the PCBs done by in_~cblookup. At the beginning of Sec-
tion 22.6 we noted four instances when this function is called. We can ignore the calls to
b±nd and conn÷ct, as they occur much less frequently than the calls to
in__pcb3ooku~ from TCP and UDP, to demultiplex every received IP datagram.

In later chapters we’ll see that TCP and UDP both try to help this linear search by
maintaining a pointer to the last PCB that the protocol referenced: a one-entry cache. If
the local address, local port, foreign address, and foreign port in the cached PCB match
the values in the received datagram, the protocol doesn’t even call in_pcblookup. If
the protocol’s data fits the packet train model [Jain and Routhier 1986], this simple
cache works well. But if the data does not fit this model and, for example, looks like
data entry into an on-line transaction processing system, the one-entry cache performs
poorly [McKenney and Dove 1992].

One proposal for a better PCB arrangement is to move a PCB to the front of the PCB
list when the PCB is referenced. ([McKenney and Dove 1992] attribute this idea to Jon
Crowcroft; [Partridge and Pink 1993] attribute it to Gary Delp.) This movement of the
PCB is easy to do since it is a doubly linked list and a pointer to the head of the list is
the first argument to in_pcblookup.

[McKenney and Dove 1992] compare the original Net/1 implementation (no cache),
an enhanced one-entry send-receive cache, the move-to-the-front heuristic, and their
own algorithm that uses hash chains. They show that maintaining a linear list of PCBs
on hash chains provides an order of magnitude improvement over the other algorithms.
The only cost for the hash chains is the memory required for the hash chain headers and
the computation of the hash function. They also consider adding the move-to-the-front
heuristic to their hash-chain algorithm and conclude that it is easier simply to add more
hash chains.

Another comparison of the BSD linear search to a hash table search is in [Hutchin-
son and Peterson 1991]. They show that the time required to demultiplex an incoming
UDP datagram is constant as the number of sockets increases for a hash table, but with
a linear search the time increases as the number of sockets increases.

DELL EX.1095.775

Section 22.13 Summary 751

22.13 Summary

An Internet PCB is associated with every Internet socket: TCP, UDP, and raw IP. It con-
tains information common to all Internet sockets: local and foreign IP addresses, pointer
to a route structure, and so on. All the PCBs for a given protocol are placed on a doubly
linked list maintained by that protocol.

In this chapter we’ve looked at numerous functions that manipulate the PCBs, and
three in detail.

in_pcbleokup is called by TCP and UDP to demultiplex every received data-
gram. It chooses which socket receives the datagram, taking into account wild-
card matches.

This function is also called by in pcbbind to verify that the local address and
local process are unique, and by in_pcbconnect to verify that the combina-
tion of a local address, local process, foreign address, and foreign process are
unique.

in_pcbbind explicitly or implicitly binds a local address and local port to a
socket. An explicit bind occurs when the process calls bind, and an implicit
bind occurs when a TCP client calls connect without calling bind, or when a
UDP process calls sendto or connect without calling bind.

in~cbconnect sets the foreign address and foreign process. If the local
address has not been set by the process, a route to the foreign address is calcu-
lated and the resulting local interface becomes the local address. If the local port
has not been set by the process, ±n_pcbb±nd chooses an ephemeral port for the
socket.

Figure 22.37 summarizes the common scenarios for various TCP and UDP applications
and the values stored in the PCB for the local address and port and the foreign address
and port. We have not yet covered all the actions shown in Figure 22.37 for TCP and
UDP processes, but will examine the code in later chapters.

DELL EX.1095.776

752 Protocol Control Blocks Chapter 22

foreign address: foreign port:
inp_faddr inp_fport

foreignlP fport

Application

TCP client:
connect (foreignlP, fport)

TCP client: -
bind (locallP, lport)
connect (foreignlP, fport)

TCP client:
bind (*, lport)
connect (foreignlP, fport)

TCP client:
bind (locallP, 0)
connect (foreignlP, fport)

TCP server:
bind (locallP, lport)
listen ()
accept ()

TCP serveri
bind (*, lport)
listen ()
accept ()

UDP client:
s endt o (foreignlP, fport)

UDP client:
connect (foreignlP , fport)
write ()

local address:
inp_laddr

in_pcbconnect
calls rtalloc to
allocate route to
foreignlP. Local
address is local
interface.
locallP

in_pcbconnect
calls rtalloc to
allocate route to
&reignlP. Local
address is local
interface.
locallP

local port:
inp_iport

in_pcbconnect
calls in_pcbbind to
choose ephemeral
port.

lport foreignlP fport

Iport fportforeignlP

in_pcbbind foreignlP fport
chooses ephemeral
port.

locallP Iport Source address fromSource port from
IP header. TCP header.

Destination address lport Source address fromSource port from
from IP header. IP header. TCP header.

in_pcbconnect
calls in_pcbbind to
choose ephemeral
port. Not changed
on subsequent calls
to sendto.

in_pcbconnect
calls in_pcbbind to
choose ephemeral
port. Not changed
on subsequent calls
to write.

in_pcbconnect
calls rtalloc to
allocate route to
;oreignlP. Local
address is local
interface. Reset to
0.0.0.0 after
datagram sent.
in_pcbconnect
calls rtalloc to
allocate route to
9reignlP. Local
address is local
interface. Not
changed on
subsequent calls to
write.

foreignlP. Reset to
0.0.0.0 after
datagram sent.

fport. Reset to 0 after
datagramsent.

fport

Figure 22.37 Summary of in_pcbbind and in_pcbconnect.

DELL EX.1095.777

Chapter 22 Exercises 753

Exercises

22.1

22.2

What happens in Figure 22.23 when the process asks for an ephemeral port and every
ephemeral port is in use?

In Figure 22.10 we showed two Telnet servers with listening sockets: one with a specific
local IP address and one with the wildcard for its local IP address. Does your system’s Tel-
net daemon allow you to specify the local IP address, and if so, how?

22.3 Assume a socket is bound to the local socket {140.252:1.29, 8888}, and this is the only socket
using local port 8888. (1) Go through the steps performed by ±n_pcbb±nc~ when another
socket is bound to {140.252.13.33, 8888}, without any socket options. (2) Go through the
steps performed when another socket is bound to the wildcard IP address, port 8888, with-
out any socket options. (3) Go through the steps performed when another socket is bound
to the wildcard IP address, port 8888, with the O_REU]~ADDR socket option.

22.4 What is the first ephemeral port number allocated by UDP?

22.5 When a process calls b±ncl, which elements in the sockaddr_in structure must be filled
in?

22.6 What happens if a process tries to b±ncl a local broadcast address? What happens if a pro-
cess tries to bind the limited broadcast address (255.255.255.255)?

DELL EX.1095.778

DELL EX.1095.779DELL EX.1095.779

23

UDP: User Datagram Protocol

23.1 Introduction

The User Datagram Protocol, or UDP, is a simple, datagram-oriented, transport-layer
protocol: each output operation by a process produces exactly one UDP datagram,
which causes one IP datagram to be sent.

A process accesses UDP by creating a socket of type $OCK_DGRAt~I in the Internet
domain. By default the socket is termed unconnected. Each time the process sends a
datagram it must specify the destination IP address and port number. Each time a data-
gram is received for the socket, the process can receive the source IP address and port
number from the datagram.

We mentioned in Section 22.5 that a UDP socket can also be connected to one particu-
lar IP address and port number. This causes all datagrams written to the socket to go to
that destination, and only datagrams arriving from that IP address and port number are
passed to the process.

This chapter examines the implementation of UDP.

23.2 Code Introduction

There are nine UDP functions in a single C file and various UDP definitions in two
headers, as shown in Figure 23.1.

Figure 23.2 shows the relationship of the six main UDP functions to other kernel
functions. The shaded ellipses are the six functions that we cover in this chapter. We
also cover three additional UDP functions that are called by some of these six functions.

755

DELL EX.1095.780

756 UDP: User Datagram Protocol Chapter 23

File Description

net inet/udp, h udphdr structure definition
net inet/udp_var, h other UDP definitions

net inet/udp_usrreq, c UDP functions

Figure 23.1 Files discussed in this chapter.

sysctl
system call system initialization

socket
receive buffer

software interrupt

Figure 23.2 Relationship of UDP functions to rest of kernel.

various
system calls

_ D

Global Variables

Seven global variables are introduced in this chapter, which are shown in Figure 23.3.

Variable Datatype Description

udb struct inpcb head of the UDP PCB list
udp_last_inpcb struct inpcb * pointer to PCB for last received datagram: one-behind cache
udpcksum int flag for calculating and verifying UDP checksum
udp_in struct sockaddr_in holds sender’s IP address and port on input
udpstat struct udpstat UDP statistics (Figure 23.4)
udp_recvspace u_!ong default size of socket receive buffer, 41,600 bytes
udp_sendspace u_long default size of socket send buffer, 9216 bytes

Figure 23.3 Global variables introduced in this chapter.

DELL EX.1095.781

Section 23.2 Code Introduction 757

Statistics

Various UDP statistics are maintained in the global structure udpstat, described in
Figure 23.4. We’ll see where these counters are incremented as we proceed through the
code.

Used byudpstat member Description SNMP
udps_badlen
udps_badsum
udps_fullsock
udps_hdrops
udps_ipackets
udps_noport
udps_noportbcast
udps_opackets
udpps_pcbcachemiss

#received datagrams with data length larger than packet
#received datagrams with checksum error
#received datagrams not delivered because input socket full
#received datagrams with packet shorter than header
total #received datagrams
#received datagrams with no process on destination port
#received broadcast/multicast datagrams with no process on dest. port
total #output datagrams
#received input datagrams missing pcb cache

Figt~re 23.4 UDP statistics maintained in the udpstat structure.

Figure 23.5 shows some sample output of these statistics, from the nets~a¢ -s
command.

netstat -s output
18,575,142 datagrams received

0 with incomplete header
18 with bad data length field
58 with bad checksum
84,079 dropped due to no socket
446 broadcast/multicast datagrams dropped due to no socket
5,356 dropped due to full socket buffers
18,485,185 delivered

18,676,277 datagrams output

udpstat member

udps_ipackets
udps_hdrops
udps_badlen
udps_badsum
udps_noport
udps_noportbcast
udps_fullsock
(seetext)
udps_opackets

Figure 23.5 Sample UDP statistics.

The number of UDP datagrams delivered (the second from last line of output) is the
number of datagrams received (udps_±~acke~ s) minus the six variables that precede
it in Figure 23.5.

SNMP Variables

Figure 23.6 shows the four simple SNMP variables in the UDP group and which coun-
ters from the ud~s ~ at structure implement that variable.

Figure 23.7 shows the UDP listener table, named ud~Tabl÷. The values returned
by SNMP for this table are taken from a UDP PCB, not the udps~a~ structure.

DELL EX.1095.782

758 UDP: User Datagram Protocol Chapter 23

SNMP variable udpstat member Description

udpInDatagrams udps_ipacket s #received datagrams delivered to processes
udpInErrors udps_hdrops + #undeliverable UDP datagrams for reasons other than no

udps_badsum + application at destination port (e.g., UDP checksum error)
udps_badlen

udpNoPort s udps_noport + #received datagrams for which no application process was at the
udps_noportbcast destination port

udpOutDatagrams udps_opackets #datagrams sent

Figure 23.6 Simple SNMP variables in udp group.

UDP listener table, index = < udpLocalAddress >.< udpLocalPort >
SNMP variable PCB variable Description

udpLocalAddres s inp_laddr local IP address for this listener
udpLocal Port inp_lport local port number for this listener

Figure 23.7 Variables in UDP listener table: udpTabl e.

23.3 UDP protosw Structure

Figure 23.8 lists the protocol switch entry for UDP.

Member

pr_type
pr_domain
pr~rotocol
pr_flags
pr_input
pr_output
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

inetsw[l]

SOCK_DGRAM
&inetdomain
IPPROTO_UDP (17)
PR_ATOMICIPR_ADDR
udp_input
0
udp ctlinput
ip_ctloutput
udp_usrreq
udp_init
0
0
0
udp_sysctl

Description

UDP provides datagram packet services
UDP is part of the Internet domain
appears in the ip_p field of the IP header
socket layer flags, not used by protocol processing
receives messages from IP layer
not used by UDP
control input function for ICMP errors
respond to administrative requests from a process
respond to communication requests from a process
initialization for UDP
not used by UDP
not used by UDP
not used by UDP
for sysctl(8) system call

Figure 23.8 The UDP protosw structure.

We describe the five functions that begin with udp_ in this chapter. We also cover a
sixth function, udp_output, which is not in the protocol switch entry but is called by
udp_usrr÷q when a UDP datagram is output.

DELL EX.1095.783

Section 23.4 UDP Header

23.4 UDP Header

The UDP header is defined as a udphdr structure. Figure 23.9 shows the C structure
and Figure 23.10 shows a picture of the UDP header.

39 struct udphdr {
40 u_short uh_sport;
41 u_short uh_dport;
42 short uh_ulen;
43 u_short uh_sum;
44 };

/* source port */
/* destination port */
/* udp length */
/* udp checksum */

Figure 23.9 udphdr structure.

udp.h

udp.h

0 15 16

uh_sport uh_dport
16-bit source port number 16-bit destination port number

uh_u i en uh_sum
16-bit UDP length 16-bit UDP checksum

31

8 bytes

data (if any)

Figure 23.10 UDP header and optional data.

In the source code the UDP header is normally referenced as an IP header immedi-
ately followed by a UDP header. This is how udp_input processes received IP data-
grams, and how udp_output builds outgoing IP datagrams. This combined IP/UDP
header is a udpiphdr structure, shown in Figure 23.11.

udp_var.h
38 struct udpiphdr {
39 struct ipovly ui_i; /* overlaid ip structure */
40 struct udphdr ui_u; /* udp header */
41];

42 #define ui_next ui_i.ih_next
43 #define ui~r)rev ui_i.ih_prev
44 #define ui_xl ui_i.ih_xl
45 #define ui_pr ui_i.ih_pr
46 #define ui_len ui_i.ih_len
47 #define ui_src ui_i.ih_src
48 #define ui_dst ui_±.ih_dst
49 #define ui_sport ui_u.uh_sport
50 #define ui_dport ui_u.uh_dport
51 #define ui_ulen ui_u.uh_ulen
52 #define ui_sum ui_u.uh_sum

Figure 23.11 udpiphdr structure: combined IP/UDP header.

udp_var.h

DELL EX.1095.784

760 UDP: User Datagrarn Protocol Chapter 23

The 20-byte IP header is defined as an ipovly structure, shown in Figure 23.12.

38 struct ipovly {
39 caddr_t ih_next, ih prey;
40 u_char ih_xl;
41 u_char ih_~)r;
42 short ih_len;
43 struct in_addr ih_src;
44 struct in_addr ih_dst;
45 };

/* for protocol sequence q’s */
/* (unused) */
/* protocol */
/* protocol length */
/* source internet address */
/* destination internet address */

Figure 23.12 ipovly structure..

ip_var.h

ip_var.h

Unfortunately this structure is not a real IP header, as shown in Figure 8.8. The size is
the same (20 bytes) but the fields are different. We’ll return to this discrepancy when we
discuss the calculation of the UDP checksum in Section 23.6.

23.5 udp_init Function

The domaininit function calls UDP’s initialization function (udp_init, Figure 23.13)
at system initialization time.

50 void
51 udp init()
52 {
53 udb.inp_next : udb.inp_prev - &udb;
54 }

Figure 23.13 udp_init function.

udp_usrreq.c

udp_usrreq.c

The only action performed by this function is to set the next and previous pointers
in the head PCB (udb) to point to itself. This is an empty doubly linked list.

The remainder of the udb PCB is initialized to 0, although the only other field used
in this head PCB is inp_lport, the next UDP ephemeral port number to allocate. In
the solution for Exercise 22.4 we mention that because this local port number is initial-
ized to 0, the first ephemeral port number will be 1024.

23.6 udp_output Function

UDP output occurs when the application calls one of the five write functions: send,
sendto, sendmsg, write, or writer. If the socket is connected, any of the five func-
tions can be called, although a destination address cannot be specified with sendto or
sendmsg. If the socket is unconnected, only sendto and sendmsg can be called, and a

DELL EX.1095.785

Section 23.6 udp_output. Function 761

destination address must be specified. Figure 23.14 summarizes how these five write
functions end up with udp_output being called, which in turn calls ip_output.

library function: C~~-"~send

~put data, destination address,
/ and control information into mbufs

place onto interface
output queue

Figure 23.14 How the five write functions end up calling udp_output.

All five functions end up calling sosend, passing a pointer to a msghdr structure as an
argument. The data to output is packaged into an mbuf chain and an optional destina-
tion address and optional control information are also put into mbufs by sosend. A
PRU_SEND request is issued.

UDP calls the function udp_output, which we show the first half of in Fig-
ure 23.15. The four arguments are ±np, a pointer to the socket Internet PCB; ra, a pointer
to the mbuf chain for output; addr, an optional pointer to an mbuf with the destination
address packaged as a sockaddx-_J_n structure; and control, an optional pointer to an
mbuf with control information from sendrnsg.

DELL EX.1095.786

762 UDP: User Datagram Protocol Chapter 23

udp_us~eq.c
333 int
334 udp_output(inp, m, addr, control)

335 struct inpcb *inp;

336 struct mbuf *m;
337 struct mbuf *addr, *control;

338 {

339 struct udpiphdr *ui;

340 int len : m->m_pkthdr.len;
341 struct in_addr laddr;
342 int s, error = 0;

343 if (control)
344 m_freem(control); /* XXX */

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

if (addr) {
laddr = inp->inp_laddr;
if (inp->inp_faddr.s_addr != INADDR_ANY) {

error = EISCONN;
goto release;

}
/*

* Must block input while temporarily connected.
*/

s = splnet();
error - in_pcbconnect(inp, addr);
if (error) {

splx(s);
goto release;

}
else {

if (inp->inp_faddr.s_addr =- INADDR_ANY) {
error = ENOTCONN;
goto release;

}
}
/.

* Calculate data length and get an mbuf for UDP and IP headers.
*/

M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT);
if (m-- 0) {

error - ENOBUFS;
goto release;

}

409
410
411
412 }

/* remainder of function shown in Figure 23.20 */

release:
m_freem(m);
return (error);

Figure 23.15 udp_output function: temporarily connect an unconnected socket.

udp_usrreq.c

DELL EX.1095.787

Section 23.6 udp_output Function 763

333--344

345--359

360--364

366--373

Discard optional control information
Any optional control information is discarded by in_f teem, without generating an

error. UDP output does not use control information for any purpose.

The comment xxx is because the control information is ignored without generating an error.
Other protocols, such as the routing domain and TCP, generate an error if the process passes
control information.

Temporarily connect an unconnected socket
If the caller specifies a destination address for the UDP datagram (addr is nonnull),

the socket is temporarily connected to that destination address by in~cbconnect.
The socket will be disconnected at the end of this function. Before doing this connect, a
check is made as to whether the socket is already connected, and, if so, the error
v.ISCONN is returned. This is why a sendto that specifies a destination address on a
connected socket returns an error.

Before the socket is temporarily connected, IP input processing is stopped by
splnet. This is done because the temporary connect changes the foreign address, for-
eign port, and possibly the local address in the socket’s PCB. If a received UDP data-
gram were processed while this PCB was temporarily connected, that datagram could
be delivered to the wrong process. Setting the processor priority to splnet only stops
a software interrupt from causing the IP input routine to be executed (Figure 1.12), it
does not prevent the interface layer from accepting incoming packets and placing them
onto IP’s input queue.

[Partridge and Pink 1993] note that this operation of temporarily connecting the socket is
expensive and consumes nearly one-third of the cost of each UDP transmission.

The local address from the PCB is saved in laddr before temporarily connecting,
because if it is the wildcard address it will be changed by in_pcbconnect when it
calls in_pcbbind.

The same rules apply to the destination address that would apply if the process
called connect, since in~cbconnect is called for both cases.

If the process doesn’t specify a destination address, and the socket is not connected,
ENOTCONN is returned.
Prepend IP and UDP headers

M_PREPEND allocates room for the IP and UDP headers in front of the data. Fig-
ure 1.8 showed one scenario, assuming there is not room in the first mbuf on the chain
for the 28 bytes of header. Exercise 23.1 details the other possible scenarios. The flag
M_DONTWAIT is specified because if the socket is temporarily connected, IP processing
is blocked, and M_PREPEND should not block.

Earlier Berkeley releases incorrectly specified M_WAIT here.

Prepending IP/UDP Headers and Mbuf Clusters

There is a subtle interaction between the M_PREPEND macro and mbuf clusters. If the
user data is placed into a cluster by sosend, then 56 bytes (max_hdr from Figure 7.17)

DELL EX.1095.788

764 UDP: User Datagram Protocol Chapter 23

are left unused at the beginning of the cluster, allowing room for the Ethernet, IP, and
UDP headers. This is to prevent M_PREPEND from allocating another mbuf just to hold
these headers. M_PREPEND calls M_LEADINGSPACE to calculate how much space is
available at the beginning of the mbuf:

#define M_LEADINGSPACE(m) \
((m) >m_flags & M_EXT ? /* (m) >m data - {m)->m_ext.ext_buf */ 0 : \

(m)->m_flags & M PKTHDR ? (m)->m_data - (m)->m_pktdat : \
(m)->m_data - (m)->m_dat)

The code that correctly calculates the amount of room at the front of a cluster is com-
mented out, and the macro always returns 0 if the data is in a cluster. This means that
when the user data is in a cluster, M_PREPEND always allocates a new mbuf for the
protocol headers instead of using the room allocated for this purpose by sosend.

The reason for commenting out the correct code in M_LEADINGSPACE is that the cluster might
be shared (Section 2.9), and, if it is shared, using the space before the user’s data in the duster
could wipe out someone else’s data.

With UDP data, dusters are no[shared, since udp_outDut does not save a copy of the data.
TCP, however, saves a copy of the data in its send buffer (waiting for the data to be acknowl-
edged), and if the data is in a cluster, it is shared. But tcp_output doesn’t call
M_LEADINGS PACE, because sos end leaves room for only 56 bytes at the beginning of the clus-
ter for datagram protocols, tcp_oucput always calls MGETHDR instead, to allocate an mbuf
for the protocol headers.

UDP Checksum Calculation and Pseudo-Header

Before showing the last half of udp_output we describe how UDP fills in some of the
fields in the IP/UDP headers, calculates the UDP checksum, and passes the IP/UDP
headers and the data to IP for output. The way this is done with the ipovly structure
is tricky.

Figure 23.16 shows the 28-byte IP/UDP headers that are built by udp_output in
the first mbuf in the chain pointed to by m. The unshaded fields are filled in by
udp_output and the shaded fields are filled in by ilo_output. This figure shows the
format of the headers as they appear on the wire.

The UDP checksum is calculated over three areas: (1) a 12-byte pseudo-header con-
taining fields from the IP header, (2) the 8-byte UDP header, and (3) the UDP data. Fig-
ure 23.17 shows the 12 bytes of pseudo-header used for the checksum computation,
along with the UDP header. The UDP header used for the checksum calculation is iden-
tical to the UDP header that appears on the wire (Figure 23.16).

The following three facts are used in computing the UDP checksum. (1) The third
32-bit word in the pseudo-header (Figure 23.17) looks similar to the third 32-bit word in
the IP header (Figure 23.16): two 8-bit values and a 16-bit value. (2) The order of the
three 32-bit values in the pseudo-header is irrelevant. Actually, the computation of the
Internet checksum does not depend on the order of the 16-bit values that are used (Sec-
tion 8.7). (3) Including additional 32-bit words of 0 in the checksum computation has no
effect.

DELL EX.1095.789

Section 23.6 udp_output Function 768

15 16

4-bit C-bit header 8-bit type of service
version length (TOS)

16-bit identification

8-bit time to live
(TTL)

3-bit
flags

8-bit protocol

32-bit source IP address

32-bit destination IP address

16-bit source port number

16-bit UDP length

16-bit total length (in bytes)

13-bit fragment offset

16-bit header checksum

16-bit destination port number

16-bit UDP checksum

31

20 bytes

8 bytes

Figure 23.16 IP/UDP headers: unshaded fields filled in by UDP; shaded fields filled in by IP.

0 15 16

32-bit source IP address

32-bit destination IP address

zero 8-bit protocol (17) 16-bit UDP length

16-bit source port number 16-bit destination port number

16-bit UDP length 16-bit UDP checksum

31

IUDP
pseudo-
header

UDPheader

Figure 23.17 Pseudo-header used for checksum computation and UDP header.

udp_output takes advantage of these three facts and fills in the fields in the
udpiphdr structure (Figure 23.11), which we depict in Figure 23.18. This structure is
contained in the first mbuf in the chain pointed to by the argument m.

The last three 32-bit words in the 20-byte IP header (the five members ui_xl,
ui_pr, ui_len, ui_src, and u±_dst) are used as the pseudo-header for the check-
sum computation. The first two 32-bit words in the IP header (ui_next and ui_prev)
are also used in the checksum computation, but they’re initialized to 0, and don’t affect
the checksum.

DELL EX.1095.790

766 UDP: User Datagram Protocol Chapter 23

0 15 16 31

ui_next

T

ui_prev

ui_xl ui_pr ui_len
20 bytes8-bit time to live (TTL) 8-bit protocol 16-bit header checksum

ui_src

32-bit source IP address

ui_dst
32-bit destination IP address

ui_sport ui_dport
q’

16-bit source port number 16-bit destination port number
8 bytes

ui_ulen ui_sum

]
16-bit UDP length 16-bit UDP checksum

Figure 23.18 udpiphdr structure used by udp_output.

0s don’t affect _ 1 ~
checksum calculation ~1~

next prev

source
IP addr

UDP
0 pr len

xl pr fen

pseudo-header m ~ UDP header
m!

protocol
dest UDP Isourcel dest I UDP I UDP t definition

IP addr 0 pr len port port len cksum for checksum
calculation

same fields, ~ .,~ same fields, _ I
different order same order ~1

udpiphdr
source dest source dest UDP UDP structure used
IP addr IP addr port port len cksum for checksum

src dst sport dport ulen sum calculation

source dest source dest UDP UDP headers on
IPaddr IP addr port port len cksum the wire

IP header m ~ UDP header

Figure 23.19 Operations to fill in IP/UDP headers and calculate UDP checksum.

Figure 23.19 summarizes the operations we’ve described.

1. The top picture shown in Figure 23.19 is the protocol definition of the pseudo-
header, which corresponds to Figure 23.17.

DELL EX.1095.791

Section 23.6 udp_output Function 767

The middle picture is the udpiphdr structure that is used in the source code,
which corresponds to Figure 23.11. (To make the figure readable, the prefix ui_
has been left off all the members.) This is the structure built by udp_output in
the first mbuf and then used to calculate the UDP checksum.

The bottom picture shows the IP/UDP headers that appear on the wire, which
corresponds to Figure 23.16. The seven fields with an arrow above are filled in
by udp_outl~ut before the checksum computation. The three fields with an
asterisk above are filled in by udp_output after the checksum computation.
The remaining six shaded fields are filled in by ip_output.

Figure 23.20 shows the last half of the udp_output function.

374
375
376
377
378
379
380
381
382
383
384
385
386
387

* Fill in mbuf with extended UDP header
* and addresses and length put into network format.
*/

ul : mtod(m, struct udpiphdr *);
ul->ui_next = ui->ui_prev : 0;
Ul->ui_xl : 0;
Ul->ui~r = IPPROTO_UDP;
ul >ui_len : htons((u_short) len + sizeof(struct udphdr));
ul->ui_src - inp->inp_laddr;
ul->ui_dst = inp->inp_faddr;
uz->ui_sport = inp->inp_iport;
Ul->ui_dport : inp->inp_fport;
ui->ui_ulen = ui->ui_len;

udp_usrreq.c

388
389
390
391
392
393
394
395
396
397
398
399
40O
401
402

403
404
405
406
407
408

* Stuff checksum and output datagram.
*/

ui->ui_sum : 0;
if (udpcksum) {

if ((ui->ui_sum : in_cksum(m, sizeof(struct udpiphdr) + fen)) := 0)
ui->ui_sum = 0xffff;

}
((struct ip *) ui)->ip_len - sizeof(struct udpiphdr) + len;
((struct ip *) ui)->ip_ttl - inp->inp_ip.ip_ttl; /* XXX */
((struct ip *) ui)->ip_tos = inp->inp_ip.ip_tos; /* XXX */
udpstat.udps_opackets++;
error : ip_output(m, inp->inp_options, &inp->inp_route,

inp->inp_socket->so_options & (SO_DONTROUTE I SO_BROADCAST),
inp->inp_moptions);

if (addr) {
in_pcbdisconnect(inp);
inp->inp_laddr = laddr;
splx(s);

}
return (error);

Figure 23.20

udp_usrreq.c

udp_output function: fill in headers, calculate checksum, pass to IP.

DELL EX.1095.792

768 UDP: User Datagram Protocol Chapter 23

374-387

388--395

Prepare pseudo-header for checksum computation
All the members in the udpiphdr structure (Figure 23.18) are set to their respective

values. The local and foreign sockets from the PCB are already in network byte order,
but the UDP length must be converted to network byte order. The UDP length is the
number of bytes of data (l÷n, which can be 0) plus the size of the UDP header (8). The
UDP length field appears twice in the UDP checksum calculation: u±_len and
u±_ul÷n. One of them is redundant.

Calculate checksum

The checksum is calculated by first setting it to 0 and then calling ±n_cksura. If
UDP checksums are disabled (a bad idea--see Section 11.3 of Volume 1), 0 is sent as the
checksum. If the calculated checksum is 0, 16 one bits are stored in the header instead
of 0. (In one’s complement arithmetic, all one bits and all zero bits are both considered
0.) This allows the receiver to distinguish between a UDP packet without a checksum
(the checksum field is 0) versus a UDP packet with a checksum whose value is 0 (the
checksum is 16 one bits).

396--398

400 402

403--407

The variable uclpcksura (Figure 23.3) normally defaults to 1, enabling UDP checksums. The
kernel can be compiled for 4.2BSD compatibility, which initializes ud~cksum to 0.

Fill in UDP length, TTL, and TOS
The pointer u± is cast toga pointer to a standard IP header (±p), and three fields in

the IP header are set by UDP. The IP length field is set to the amount of data in the UDP
datagram, plus 28, the size of the IP/UDP headers. Notice that this field in the IP
header is stored in host byte order, not network byte order like the rest of the multibyte
fields in the header, ip_output converts it to network byte order before transmission.

The TTL and TOS fields in the IP header are then set from the values in the socket’s
PCB. These values are defaulted by UDP when the socket is created, but can be
changed by the process using s÷¢sockopt. Since these three fields--IP length, TTL,
and TOS--are not part of the pseudo-header and not used in the UDP checksum com-
putation, they must be set after the checksum is calculated but before ±~_ou¢~ut is
called.

Send datagram

ip_output sends the datagram. The second argument, inp_options, are IP
options the process can set using set sockopt. These IP options are placed into the IP
header by ip_output. The third argument is a pointer to the cached route in the PCB,
and the fourth argument is the socket options. The only socket options that are passed
to ip_output are SO_DONTROUTE (bypass the routing tables) and SO_BROADCAST
(allow broadcasting). The final argument is a pointer to the multicast options for this
socket.

Disconnect temporarily connected socket

If the socket was temporarily connected, in_13cbdisconnect disconnects the
socket, the local IP address is restored in the PCB, and the interrupt level is restored to
its saved value.

DELL EX.1095.793

Section 23.7 udp_input Function 769

23.7 udp_input Function

UDP output is driven by a process calling one of the five write functions. The functions
shown in Figure 23.14 are all called directly as part of the system call. UDP input, on
the other hand, occurs when IP input receives an IP datagram on its input queue whose
protocol field specifies UDR IP calls the function udp_input through the pr_input
function in the protocol switch table (Figure 8.15). Since IP input is at the software
interrupt level, udp_input also executes at this level. The goal of udp_input is to
place the UDP datagram onto the appropriate socket’s buffer and wake up any process
blocked for input on that socket.

We’ll divide our discussion of the udp_input function into three sections:

1. the general validation that UDP performs on the received datagram,

2. processing UDP datagrams destined for a unicast address: locating the appro-
priate PCB and placing the datagram onto the socket’s buffer, and

3. processing UDP datagrams destined for a broadcast or multicast address: the
datagram may be delivered to multiple sockets.

This last step is new with the support of multicasting in Net/3, but consumes almost
one-third of the code.

General Validation of Received UDP Datagram

55--65

67--76

77--88

Figure 23.21 shows the first section of UDP input.
The two arguments to udp_input are m, a pointer to an mbuf chain containing the

IP datagram, and iphl en, the length of the IP header (including possible IP options).
Discard IP options

If IP options ar~ present they are discarded by ip_stripoptions. As the com-
ments indicate, UDP should save a copy of the IP options and make them available to
the receiving process through the IP_RECVOPTS socket option, but this isn’t imple-
mented yet.

If the length of the first mbuf on the mbuf chain is less than 28 bytes (the size of the
IP header plus the UDP header), m_pullup rearranges the mbuf chain so that at least
28 bytes are stored contiguously in the first mbuf.

DELL EX.1095.794

770 UDP: User Datagram Protocol Chapter 23

55 void udp_usrreq.c

56 udp_input(m, iphlen)
57 struct mbuf *m;
58 int iphlen;
59 {
60 struct ip *ip;
61 struct udphdr *uh;
62 struct inpcb *inp;
63 struct mbuf *opts = 0;
64 int len;
65 struct ip save_ip;

udpstat.udps_ipackets++;

/*
* Strip IP options, if any; should skip this,
* make available to user, and use on returned packets,
* but we don’t yet have a way to check the checksum
* with options still present.
*/

if (iphlen > sizeof(struct ip)) {
ip_stripoptions(m, (struct mbuf *) 0);
iphlen = sizeof(struct ip);

}
/.

* Get IP and UDP header together in first mbuf.
*/

ip : mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {

if ((m = m~oullup(m, iphlen + sizeof(struct udphdr))) == 0)
udpstat.udps_hdrops++;
return;

}
ip : mtod(m, struct ip *);

}
uh = (struct udphdr *) ((caddr_t) ip + iphlen) ;

/*
* Make mbuf data length reflect UDP length.
* If not enough data to reflect UDP length, drop.
*/

len = ntohs((u_short) uh->uh_ulen);
if (ip->ip_len != len) {

if (len > ip->ip_len) {
udpstat.udps_badlen++;
goto bad;

}
m_adj(m, len - ip->ip_len);
/* ip->ip_len = fen; */

}
/.

* Save a copy of the IP header in case we want to restore
* it for sending an ICMP error message in response.
*/

save_ip : *ip;

66

67
68
69
70
71
72
73
74
75
76
77
78
79
8O
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98
99

I00
i01
102
103
104
105
106

DELL EX.1095.795

Section 23.7 udp_input Function 771

89--101

107
108
109
ii0
iii
112
113
114
115
116
117
118
119
120

* Checksum extended UDP header and data.
./

if (udpcksum && uh->uh_sum) {
((struct ipovly *) ip) >ih_next = 0;
((struct ipovly *) ip)->ih_prev = 0;
((struct ipovly *) ip)->ih_xl = 0;
((struct ipovly *) ip)->ih_len = uh->uh_ulen;
if (uh->uh_sum - in_cksum(m, len + sizeof(struct ip))) {

udpstat.udps_badsum++;
m_freem(m);
return;

}

Figure 23.21 udp_input function: general validation of received UDP datagram.

udp_usrreq.c

Verify UDP length

There are two lengths associated with a UDP datagram: the length field in the IP
header (ip_len) and the length field in the UDP header (uh_ulen). Recall that
ipintr subtracted the length of the IP header from ip_len before calling udp_input
(Figure 10.11). The two lengths are compared and there are three possibilities:

1. ip_len equals uh_ulen. This is the common case.

2. ip_len is greater than uh_ulen. The IP datagram is too big, as shown in Fig-
ure 23.22.

IP datagram

IP UDP UDP dataheader header

UDP length: uh_ulen

IP length: ip_len plus IP header length

Figure 23.22 UDP length too small.

The code believes the smaller of the two lengths (the UDP header length) and
ra_adj removes the excess bytes of data from the end of the datagram. In the
code the second argument to m_adj is negative, which we said in Figure 2.20
trims data from the end of the mbuf chain. It is possible in this scenario that the
UDP length field has been corrupted. If so, the datagram will probably be dis-
carded shortly, assuming the sender calculated the UDP checksum, that this
checksum detects the error, and that the receiver verifies the checksum. The IP
length field should be correct since it was verified by IP against the amount of
data received from the interface, and the IP length field is covered by the
mandatory IP header checksum.

DELL EX.1095.796

772 UDP: User Datagram Protocol Chapter 23

o ip_len is less than uh_ulen. The IP datagram is smaller than possible, given
the length in the UDP header. Figure 23.23 shows this case.

.̄~ IP datagram ~

IP UDP data not
header header UDP data available

UDP length: uh_uler~

IP length: ip_l en plus IP header length

Figure 23.23 UDP length too big.

102--106

ii0

111--120

Something is wrong and the datagram is discarded. There is no other choice
here: if the UDP .length field has been corrupted, it can’t be detected with the
UDP checksum. The correct UDP length is needed to calculate the checksum.

As we’ve said, the UDP length is redundant. In Chapter 28 we’ll see that TCP does not have a
length field in its header--it uses the IP length field, minus the lengths of the IP and TCP
headers, to determine the amount of data in the datagram. Why does the UDP length field
exist? Possibly to add a small amount of error checking, since UDP checksums are optional.

Save copy of IP header and verify UDP checksum

udp_input saves a copy of the IP header before verifying the checksum, because
the checksum computation wipes out some of the fields in the original IP header.

The checksum is verified only if UDP checksums are enabled for the kernel
(udpcksum), and if the sender calculated a UDP checksum (the received checksum is
nonzero).

This test is incorrect. If the sender calculated a checksum, it should be verified, regardless of
whether outgoing checksums are calculated or not. The variable udpcksum should only spec-
ify whether outgoing checksums are calculated. Unfortunately many vendors have copied this
incorrect test, although many vendors today finally ship their kernels with UDP checksums
enabled by default.

Before calculating the checksum, the IP header is referenced as an ipoviy structure
(Figure 23.18) and the fields are initialized as described in the previous section when the
UDP checksum is calculated by udp_output.

At this point special code is executed if the datagram is destined for a broadcast or
multicast IP address. We defer this code until later in the section.

Demultiplexing Unicast Datagrams

Assuming the datagram is destined for a unicast address, Figure 23.24 shows the code
that is executed.

DELL EX.1095.797

Section 23.7 udp_input Function 773

udp_usrreq.c

/* demultiplex broadcast & multicast datagrams (Figure 23.26) */

206
207
208
209
210
211
212
213

* Locate pcb for unicast datagram.
*/

inp - udp_last_inpcb;
if (inp->inp_iport != uh->uh_dport I I

inp->inp_fport != uh->uh_sport I I
inp->inp_faddr.s_addr !- ip >ip_src.s_addr I I
inp->inp_laddr.s_addr !: ip->ip_dst.s_addr) {

214 inp : in~ocblookup(&udb, ip->ip_src, uh->uh_sport,
215 ip >ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD);
216 if (inp)
217 udp_last_inpcb - inp;
218 udpstat.udpps_pcbcachemiss++;
219 }
220 if (inp := 0) { ¯

221 udpstat.udps_noport++;
222 if (m->m_flags & (M_BCAST I H MCAST)) {
223 udpstat.udps_noportbcast++;
224 goto bad;
225 }
226 *ip = save_ip;
227 ip->ip_len +- iphlen;
228 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
229 return;
230 }

Figure 23.24 udp_input function: demultiplex unicast datagram.

¯ udp_usrreq.c

206--209

210--213

Check one-behind cache

UDP maintains a pointer to the last Internet PCB for which it received a datagram,
udp_last_inpcb. Before calling in~ocblookup, which might have to search many
PCBs on the UDP list, the foreign and local addresses and ports of that last PCB are
compared against the received datagram. This is called a one-behind cache [Partridge and
Pink 1993], and it is based on the assumption that the next datagram received has a high
probability of being destined for the same socket as the last received datagram [Mogul
1991]. This cache was introduced with the 4.3BSD Tahoe release.

The order of the four comparisons between the cached PCB and the received data-
gram is intentional. If the PCBs don’t match, the comparisons should stop as soon as
possible. The highest probability is that the destination port numbers are
different--this is therefore the first test. The lowest probability of a mismatch is
between the local addresses, especially on a host with just one interface, so this is the
last test.

DELL EX.1095.798

774 UDP: User Datagram Protocol Chapter 23

214--218

220--230

Unfortunately this one-behind cache, as coded, is practically useless [Partridge and
Pink 1993]. The most common type of UDP server binds only its well-known port, leav-
ing its local address, foreign address, and foreign port wildcarded. The most common
type of UDP client does not connect its UDP socket; it specifies the destination address
for each datagram using s÷ndto. Therefore most of the time the three values in the
PCB inp_laddr, inp_faddr, and inp_fport are wildcards. In the cache compari-
son the four values in the received datagram are never wildcards, meaning the cache
entry will compare equal with the received datagram only when the PCB has all four
local and foreign values specified to nonwildcard values. This happens only for a con-
nected UDP socket.

On the system bsdi, the counter udpps~cbcachemiss was 41,253 and the counter
udps_ipackets was 42,485. This is less than a 3% cache hit rate.

The netstat -s command prints most of the fields in the udpstat structure (Figure 23.5).
Unfortunately the Net/3 version, and most vendor’s versions, never print
udpps_pcbcachemiss. If you want to see the value, use a debugger to examine the variable
in the running kernel.

Search all UDP PCBs

Assuming the comparison with the cached PCB fails, in_pcblookup searches for a
match. The INPLOOKUP_WILDCARD flag is specified, allowing a wildcard match. If a
match is found, the pointer to the PCB is saved in udp_last_inpcb, which we said is
a cache of the last received UDP datagram’s PCB.

Generate ICMP port unreachable error
If a matching PCB is not found, UDP normally generates an ICMP port unreachable

error. First the re_flags for the received mbuf chain is checked to see if the datagram
was sent to a link-level broadcast or multicast destination address. It is possible to
receive an IP datagram with a unicast IP address that was sent to a broadcast or multi-
cast link-level address, but an ICMP port unreachable error must not be generated. If it
is OK to generate the ICMP error, the IP header is restored to its received value
(sav÷_ip) and the IP length is also set back to its original value.

This check for a link-level broadcast or multicast address is redundant, icmp_error also per-
forms this check. The only advantage in this redundant check is to maintain the counter
udps_noportbcast in addition to the counter udps_noport.

The addition of iphlen back into ip_len is a bug. icmp_error will also do this, causing
the IP length field in the IP header returned in the ICMP error to be 20 bytes too large. You can
tell if a system has this bug by adding a few lines of code to the Traceroute program (Chapter 8
of Volume I) to print this field in the ICMP port unreachable that is returned when the destina-
tion host is finally reached.

Figure 23.25 is the next section of processing for a unicast datagram, delivering the
datagram to the socket corresponding to the destination PCB.

DELL EX.1095.799

Section 23.7 udp_input Function 775

2 31 /.
udp_usrreq

232 * Construct sockaddr format source address.
233 * Stuff source address and datagram in user buffer.
234 */
235 udp_in.sin_port = uh >uh_sport;
236 udp_in.sin_addr - ip >i©_src;

237
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

273
274
275
276
277

if (inp->inp_flags & INP_CONTROLOPTS) {
struct mbuf **mp = &opts;

if (inp >inp_flags & INP_RECVDSTADDR) {
*mp = udp_saveopt((caddr_t) & ip->ip_dst,

sizeof(struct in_addr), IP_RECVDSTADDR);
if (*mp)

mp = &(*mp)->m_next;
}

#ifdef notyet
/* IP options were tossed above */
if (inp->inp_flags & INP_RECVOPTS} {

*mp : udp_saveopt((caddr_t) opts_deleted_above,
sizeof(struct in_addr) IP_RECVOPTS) ;

if (*mp)
mp = &(*mp)->m_next;

}
/* ip_srcroute doesn’t do what we want here, need to fix */
if (inp->inp_flags & INP_RECVRETOPTS) {

*mp = udp_saveopt((caddr_t) ip_srcroute(,
sizeof(struct in_addr) IP_RECVRETOPTS);

if (*mp)
mp : &(*mp)->m_next;

}
#endif

}
iphlen += sizeof(struct udphdr);
m->m_len -- iphlen;
m >m_pkthdr.len -: iphlen;
m->m_data +- iphlen;
if (sbappendaddr(&inp->inp_socket >so_rcv, (struct sockaddr *) &udp_in,

m, opts) :: 0) {
udpstat.udps_fullsock++;
goto bad;

]
sorwakeup(inp->inp_socket);
return;

bad:
m_freem(m);
if (opts)

m_freem(opts);

Figure 23.25 udp_input function: deliver unicast datagram to socket.

udp_usrreq.c

DELL EX.1095.800

776 UDP: User Datagram Protocol Chapter 23

231--236

237--244

245--260

262--272

Return source IP address and source port
The source IP address and source port number from the received IP datagram are

stored in the global sockaddr_±n structure udp_±n. This structure is passed as an
argument to sbappendaddr later in the function.

Using a global to hold the IP address and port number is OK because udp_±npu¢ is
single threaded. When this function is called by ±p±ntr it processes the received data-
gram completely before returning. Also, sbapp÷ndaddr copies the socket address
structure from the global into an mbuf.

IP_RECVDSTADDR socket option
The constant INP_CONTROLOPTS is the combination of the three socket options that

the process can set to cause control information to be returned through the recvmsg
system call for a UDP socket (Figure 22.5). The IP_RECVDSTADDR socket option
returns the destination IP address from the received UDP datagram as control informa-
tion. The function udp_saveopt allocates an mbuf of type HT_CONTROL and stores the
4-byte destination IP address in the mbuf. We show this function in Section 23.8.

This socket option appeared with 4.3BSD Reno and was intended for applications such as
TFTP, the Trivial File Transfer Protocol, that should not respond to client requests that are sent
to a broadcast address. Unfortunately, even if the receiving application uses this option, it is
nontrivial to determine if the destination IP address is a broadcast address or not (Exer-
cise 23.6).

When the multicasting changes were added in 4.4BSD, this code was left in only for datagrams
destined for a unicast address. We’ll see in Figure 23.26 that this option is not implemented for
datagrams sent to a broadcast of multicast address. This defeats the purpose of the option!

Unimplemented socket options

This code is commented out because it doesn’t work. The intent of the
I P_RECVOPTS socket option is to return the IP options from the received datagram as
control information, and the intent of IP_RECVRETOPTS socket option is to return
source route information. The manipulation of the mp variable by all three I P_RECV
socket options is to build a linked list of up to three mbufs that are then placed onto the
socket’s buffer by sbappendaddr. The code shown in Figure 23.25 only returns one
option as control information, so the re_next pointer of that mbuf is always a null
pointer.
Append data to socket’s receive queue

At this point the received datagram (the mbuf chain pointed to by m), is ready to be
placed onto the socket’s receive queue along with a socket address structure represent-
ing the sender’s IP address and port (udp_in), and optional control information (the
destination IP address, the mbuf pointed to by opts). This is done by sbappendaddr.
Before calling this function, however, the pointer and lengths of the first mbuf on the
chain are adjusted to ignore the IP and UDP headers. Before returning, sorwakeup is
called for the receiving socket to wake up any processes asleep on the socket’s receive
queue.

DELL EX.1095.801

Section 23.7 udp_input Function 777

273 276

Error return
If an error is encountered during UDP input processing, udp_input iumps to the

label bad. The mbuf chain containing the datagram is released, along with the mbuf
chain containing any control information (if present).

Demultiplexing Multicast and Broadcast Datagrams

121 138

139--145

146 164

165--177

178--188

189 197

We now return to the portion of udp_input that handles datagrams sent to a broadcast
or multicast IP address. The code is shown in Figure 23.26.

As the comments indicate, these datagrams are delivered to all sockets that match,
not just a single socket. The inadequacy of the UDP interface that is mentioned refers to
the inability of a process to receive asynchronous errors on a UDP socket (notably ICMP
port unreachables) unless the socket is connected. We described this in Section 22.11.

The source IP address and port number are saved in the global sockaddr_in
structure udp_in, which is passed to sbappendaddr. The mbuf chain’s length and
data pointer are updated to ignore the IP and UDP headers.

The large for loop scans each UDP PCB to find all matching PCBs.
in_pcblookup is not called for this demultiplexing because it returns only one PCB,
whereas the broadcast or multicast datagram may be delivered to more than one PCB.

If the local port in the PCB doesn’t match the destination port from the received
datagram, the entry is ignored. If the local address in the PCB is not the wildcard, it is
compared to the destination IP address and the entry is skipped if they’re not equal. If
the foreign address in the PCB is not a wildcard, it is compared to the source IP address
and if they match, the foreign port must also match the source port. This last test
assumes that if the socket is connected to a foreign IP address it must also be connected
to a foreign port, and vice versa. This is the same logic we saw in in_pcblookup.

If this is not the first match found (last is nonnull), a copy of the datagram is
placed onto the receive queue for the previous match. Since sbappendaddr releases
the mbuf chain when it is done, a copy is first made by re_copy. Any processes waiting
for this data are awakened by sorwakeup. A pointer to this matching socket struc-
ture is saved in last.

This use of the variable last avoids calling re_copy (an expensive operation since
an entire mbuf chain is copied) unless there are multiple recipients for a given data-
gram. In the common case of a single recipient, the for loop just sets last to the single
matching PCB, and when the loop terminates, sbappendaddr places the mbuf chain
onto the socket’s receive queue--a copy is not made.

If this matching socket doesn’t have either the SO_REUSEPORT or [he
SO_REUSEADDR socket option set, then there’s no need to check for additional matches
and the loop is terminated. The datagram is placed onto the single socket’s receive
queue in the call to sbap~oendaddr outside the loop.

If last is null at the end of the loop, no matches were found. An ICMP error is not
generated because the datagram was sent to a broadcast or multicast IP address.

DELL EX.1095.802

778 UDP: User Datagram Protocol Chapter 23

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

167
168
169
170
171
172

udp_usrreq.c
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) I I

in_broadcast(ip->ip_dst, m->m pkthdr.rcvif)) {
struct socket *last;
/*

* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/

* Construct sockaddr format source address.
*/

udp_in.sin_port : uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
m->m_len -= sizeof(struct udpiphdr);
m->m_data += sizeof(struct udpiphdr);
/*

* Locate pcb(s) for datagram.
* (Algorithm copied from raw_intr().)
*/

last : NULL;
for (inp : udb.inp_next; inp != &udb; inp : inp->inp_next)

if (inp->inp_Iport != uh->uh_dport)
continue;

if inp->inp_laddr.s_addr != INADDR ANY) {
if (inp->inp_laddr.s_addr !=

ip->ip_dst.s_addr)
continue;

}
if inp->inp_faddr.s_addr [: INADDR_ANY)

if (inp->inp_faddr.s_addr !:
ip->ip_src.s_addr I 1
inp->inp_fport != uh->uh_sport)
continue;

last !: NULL) {
struct mbuf *n;

if ((n : m_copy(m, 0, M_COPYALL)) != NULL) {
if (sbappendaddr(&last->so_rcv,

(struct sockaddr *) &udp_in,
n, (struct mbuf *) 0) =: 0) {

m_freem{n);
udpstat.udps_fullsock++;

DELL EX.1095.803

Section 23.7 udp_input Function 779

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
2O5

} else
sorwakeup (last) ;

}
}
last = inp->inp_socket;
/*

* Don’t !ook for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It assumes that am application will never
* clear these options after setting them.
*/

if {{last->so_options & (SO_REUSEPORT ~ SO_REUSEADDR) =: 0))
break;

if (last == NULL) {
/*

* NO matching pcb found; discard datagram.
* (No need to send an ICMP Port Unreachable
* for a broadcast or multicast datgram.)
*/

udpstat.udps_noportbcast++;
goto bad;

}
if (sbappendaddr(&last->so_rcv, (struct sockaddr *) &udp_in,

m, (struct mbuf *) 0) := 0)
udpstat.udps_fullsock++;
goto bad;

]
sorwakeup(last);
return;

}
u@_usr q.c

Figure 23.26 udp_input function: demultiplexing of broadcast and multicast datagrams.

198--204 The final matching entry (which could be the only matching entry) has the original
datagram (m) placed onto its receive queue. After sorwakeup is called, udp_in~)ut
returns, since the processing the broadcast or multicast datagram is complete.

The remainder of the function (shown previously in Figure 23.24) handles unicast
datagrams.

Connected UDP Sockets and Multihomed Hosts

There is a subtle problem when using a connected UDP socket to exchange datagrams
with a process on a multihomed host. Datagrams from the peer may arrive with a dif-
ferent source IP address and will not be delivered to the connected socket.

Consider the example shown in Figure 23.27.

DELL EX.1095.804

780 UDP: User Datagram Protocol Chapter 23

client process
connects to
140.252.1.29

PPP link

.1.29~] server process,

sun | unconnected
Ethemet, 140.252.13 ,13,33T, : ,/ UDP socket

(1) UDP request, destination IP = 140.252.1.29

(2) UDP reply, source IP = 140.252.13.33

(3) ICMP port unreachable

Figure 23.27 Example of coimected UDP socket sending datagram to a muir±homed host.

Three steps take place.

The client on bsd± creates a UDP socket and connects it to 140.252.1.29, the PPP
interface on sun, not the Ethernet interface. A datagram is sent on the socket to
the server.

The server on sun receives the datagram and accepts it, even though it arrives
on an interface that differs from the destination IP address. (sun is acting as a
router, so whether it implements the weak end system model or the strong end
system model doesn’t matter.) The datagram is delivered to the server, which is
waiting for client requests on an unconnected UDP socket.

The server sends a reply, but since the reply is being sent on an unconnected:
UDP socket, the source IP address for the reply is chosen by the kernel based on
the outgoing interface (140.252.13.33). The destination IP address in the request
is not used as the source address for the reply.

When the reply is received by bsdi it is not delivered to the client’s connected
UDP socket since the IP addresses don’t match.

bsdi generates an ICMP port unreachable error since the reply can’t be demul-
tiplexed. (This assumes that there is not another process on bsd± eligible to
receive the datagram.)

The problem in this example is that the server does not use the destination IP address
from the request as the source IP address of the reply. If it did, the problem wouldn’t
exist, but this solution is nontrivial--see Exercise 23.10. We’ll see in Figure 28.16 that a
TCP server uses the destination IP address from the client as the source IP address from
the server, if the server has not explicitly bound a local IP address to its socket.

DELL EX.1095.805

Section 23.8 udp_saveopt Function 781

23.8

278--289

290 299

udp_saveopt Function

If a process specifies the IP_RECVDSTADDR socket option, to receive the destination IP
address from the received datagram u dp_saveopt iscalled by u dp_input:

*mp : udp_saveopt((caddr_t) &ip->ip_dst, sizeof(struct in_addr),
IP_RECVDSTADDR);

Figure 23.28 shows this function.

278 /*
279 * Create a "control" mbuf containing the specified data
280 * with the specified type for presentation with a datagram.
281 */
282 struct mbuf *
283 udp_saveopt(p, size, type)
284 caddr_t p;
285 int size;
286 int type;
287 {
288 struct cmsghdr *cp;
289 struct mbuf *m;

290
291
292
293
294
295
296
297
298
299
300

if ((m = m_get(H_DONTWAIT, MT_CONTROL)) == NULL)
return ((struct mbuf *) NULL);

cp - (struct cmsghdr *) mtod(m, struct cmsghdr *);
bcopy(p, CMSG_DATA(cp), size);
size += sizeof(*cp);
m->m_len = size;
cp->cmsg_len : size;
cp->cmsg_level - IPPROTO_IP;
cp >cmsg_type - type;
return (m);

Figure 23.28 udp_saveopt function: create mbuf with control information.

udp_usrreq.c

udp_usrreq.c

The arguments are p, a pointer to the information to be stored in the mbuf (the des-
tination IP address from the received datagram); s i z e, its size in bytes (4 in this exam-
ple, the size of an IP address); and type, the type of control information
(I P_RECVDSTADDR).

An mbuf is allocated, and since the code is executing at the software interrupt layer,
M_DONTWAIT is specified. The pointer cp points to the data portion of the mbuf, and it
is cast into a pointer to a cmsghdr structure (Figure 16.14). The IP address is copied
from the IP header into the data portion of the cmsghdr structure by bcopy. The
length of the mbuf is then set (to 16 in this example), followed by the remainder of the
cmsghdr structure. Figure 23.29 shows the final state of the mbuf.

The cmsg_len field contains the length of the cmsghdr structure (12) plus the size
of the cmsg_data field (4 for this example). If the application calls recvmsg to receive
the control information, it must go through the cmsghdr structure to determine the
type and length of the cmsg_data field.

DELL EX.1095.806

782 UDP: User Datagram Protocol Chapter 23

20 bytes

’ mbuf { }

m_next

m nextpkt

m len

re_data

re_type

m flags

crasg_len

cmsg_level

cmsg_type

cmsg_data

NULL
NULL
16

MT_CONTROL
o

II;PROTOIP]]6 bytes
- ~ of control

IP_RECVDSTADDR J information
destination IP addressJ

Figure 23.29 Mbuf containing destination address from received datagram as control information.

23.9

314--322

323--325

udp_ct linput Function

When icmp_input receives an ICMP error (destination unreachable, parameter prob-
lem, redirect, source quench, and time exceeded) the corresponding protocol’s
pr_ct 1 input function is called:

if (ctlfunc : inetsw[ip_protox[icp >icmp_ip.ip_p]].pr_ctlinput)
(*ctlfunc) (code, (struct sockaddr *)&icmpsrc, &icp->icmp_ip);

For UDP, Figure 22.32 showed that the function udp_ct i input is called. We show this
function in Figure 23.30.

The arguments are crad, one of the PRC_xxx constants from Figure 11.19; sa, a
pointer to a sockaddr_in structure containing the source IP address from the ICMP
message; and ip, a pointer to the IP header that caused the error. For the destination
unreachable, parameter problem, source quench, and time exceeded errors, the pointer
ip points to the IP header that caused the error. But when udp_ctlinput is called by
pfctlinput for redirects (Figure 22.32), sa points to a sockaddr_in structure con-
taining the destination address that should be redirected, and ip is a null pointer. There
is no loss of information in this final case, since we saw in Section 22.11 that a redirect is
applied to all TCP and UDP sockets connected to the destination address. The nonnull
third argument is needed, however, for other errors, such as a port unreachable, since
the protocol header following the IP header contains the unreachable port.

If the error is not a redirect, and either the PRC_xxx value is too large or there is no
error code in the global array inetctlerrraap, the ICMP error is ignored. To under-
stand this test we need to review what happens to a received ICMP message.

1. icmp_input converts the ICMP type and code into a pRc_xxx error code.

2. The PRC_xxx error code is passed to the protocol’s control-input function.

DELL EX.1095.807

Section 23.9 udp_ctlinput Function 783

314 void
315 udp_ctlinput(cmd, sa, ip)
316 int cmd;
317 struct sockaddr *sa;
318 struct ip *ip;
319 {
320 struct udphdr *uh;
321 extern struct in_addr zeroin_addr;
322 extern u_char inetctlerrmap[];

323 if (!PRC IS REDIRECT(cmd) &&
324 ((unsigned) cmd >= PRC_NCMDS I I ±~etctlerrmap[cmd] == 0))
325 return;
326 if (ip) {
327 uh = (struct udphdr *) ((caddr_t) ip + (ip->ip_hl << 2));
328 in~mcbnotify(&udb, sa, uh->uh_dport, ip->ip_src, uh->uh_sport,
329 cmd, udp_notify);
330 } else
331 in_pcbnotify(&udb, sa, 0, zeroin_addr, 0, cmd, udp_notify);
332 }

udp_usrreq.c

udp_usrreq.c
Figure 23.30 udp_ctlinput function: process received ICMP errors.

326--331

3. The Internet protocols (TCP and UDP) map the PRC_xxx error code into one of
the Unix errno values using inetc t i er rmap, and this value is returned to the
process.

Figures 11.1 and 11.2 summarize this processing of ICMP messages.
Returning to Figure 23.30, we can see what happens to an ICMP source quench that

arrives in response to a UDP datagram, letup_input converts the ICMP message into
the error PRC_QUENCH and udp_ctlinput is called. But since the errno column for
this ICMP error is blank in Figure 11.2, the error is ignored.

The function in_pcbnoti fy notifies the appropriate PCBs of the ICMP error If
the third argument to udp_ct i input is nonnull, the source and destination UDP ports
from the datagram that caused the error are passed to in_pcbnoti fy along with the
source IP address.

udp_not i fy Function

301--313

The final argument to in_pcbnoti fy is a pointer to a function that in_pcbnoti fy
calls for each PCB that is to receive the error The function for UDP is udp_noti fy and
we show it in Figure 23.31.

The errno value, the second argument to this function, is stored in the socket’s
so_error variable. By setting this socket variable, the socket becomes readable and
writable if the process calls select. Any processes waiting to receive or send on the
socket are then awakened to receive the error

DELL EX.1095.808

784 UDP: User Datagram Protocol Chapter 23

305 static void udp_usrreq.c

306 udp_notify(inp, errno)
307 struct inpcb *inp;
308 int errno;
309 {
310 inp >inp_socket->so_error : errno;
311 sorwakeup (inp- >inp_socket) ;
312 sowwakeup (inp->inp_socket) ;
313]

Figure 23.31 udp_not i fy function: notify process of an asynchronous error.

udp_usrreq.c

23.10 udp_usrreq Function

The protocol’s user-request function is called for a variety of operations. We saw in Fig-
ure 23.14 that a call to any one of the five write functions on a UDP socket ends up call-
ing UDP’s user-request function with a request of PRU_SEND.

Figure 23.32 shows the beginning and end of udp_usrreq. The body of the
switch is discussed in separate figures following this figure. The function arguments
are described in Figure 15.17.

417 int
418 udp_usrreq(so, req, m, addr, control)
419 struct socket *so;
420 int req;
421 struct mbuf *m, *addr, *control;
422 {
423 struct inpcb *inp : sotoinpcb(so);
424 int error : 0;
425 int s;

426 if (req :: PRU_CONTROL)
427 return (in_control(so, (int) m, (caddr_t) addr,
428 (struct ifnet *) contro!));
429 if (inp =- NULL && req !- PRU_ATTACH) {
430 error = EINVAL;
431 goto release;
432 }
433 /*
434 * Note: need to block udp_input while changing
435 * the udp pcb queue and/or pcb addresses.
436 */
437 switch (req) {

udp_usrreq.c

/* switch cases */

DELL EX.1095.809

Section 23.10 udp_usrreq Function 788

41 7-428

429--432

433-436

522 default:
523 panic("udp_usrreq");
524 }

525 release:
526 if (control) {
527 printf("udp control data unexpectedly retained\n");
528 m_freem(control);
529 }
530 if (m)
531 m_freem(m);
532 return (error);
533 }

Figure 23.32 Body of udp_usrreq function.

udp_usrreq.c

The PRU_CONTROL request is from the ioctl system call. The function
in_c ont ro 1 processes the request completely.

The socket pointer was converted to the PCB pointer when inp was declared at the
beginning of the function. The only time a null PCB pointer is allowed is when a new
socket is being created (PRU_ATTACH).

The comment indicates that whenever entries are being added to or deleted from
UDP’s PCB list, the code must be protected by spinet. This is done because
udp_usrreq is called as part of a system call, and it doesn’t want to be interrupted by
UDP input (called by IP input, which is called as a software interrupt) while it is modi-
fying the doubly linked list of PCBs. UDP input is also blocked while modifying the
local or foreign addresses or ports in a PCB, to prevent a received UDP datagram from
being delivered incorrectly by in_pcblookup.

438--447

448--450

451--452

We now discuss the individual case statements. The PRU ATTACH request, shown
in Figure 23.33, is from the socket system call.

If the socket structure already points to a PCB, EINVAL is returned, in_pcbal loc
allocates a new PCB, adds it to the front of UDP’s PCB list, and links the socket struc-
ture and the PCB to each other.

soreserve reserves buffer space for a receive buffer and a send buffer for the
socket. As noted in Figure 16.7, soreserve just enforces system limits; the buffer
space is not actually allocated. The default values for the send and receive buffer sizes
are 9216 bytes (udp_sendspace) and 41,600 bytes (udp_recvspace). The former
allows for a maximum UDP datagram size of 9200 bytes (to hold 8 Kbytes of data in an
NFS packet), plus the 16-byte sockaddr_in structure for the destination address. The
latter allows for 40 1024-byte datagrams to be queued at one time for the socket. The
process can change these defaults by calling set sockopt.

There are two fields in the prototype IP header in the PCB that the process can
change by calling setsockopt: the TTL and the TOS. The TTL defaults to 64
@p_de f t t 1) and the TOS defaults to 0 (normal service), since the PCB is initialized to
0 by in_pcbal loc.

DELL EX.1095.810

786 UDP: User Datagram Protocol Chapter 23

udp_usrreq.c
438 case PRU_ATTACH:
439 if (inp != NULL) {
440 error = EINVAL;
441 break;
442 }
443 s = splnet();
444 error = in_pcballoc(so, &udb);
445 splx(s);
446 if (error)
447 break;
448 error : soreserve(so, udp_~endspace, udp_recv~pace);
449 if (error)
450 break;
451 ((struct inpcb *) so->so_pcb)->inp_ip.ip_ttl = ip_defttl;
452 break;

453--455

456--460

461--463

453 case PRU_DETACH:
454 udp_detach(inp);
455 break;

Figure 23.33 udp_usrreq function: PRU_ATTACH and PRU_DETACH requests.

- udp_usrreq.c

The close system call issues the PRU_DETACH request. The function
udp_detach, shown in Figure 23.34, is called. This function is also called later in this
section for the PRU_ABORT request.

534 static void
535 udp_detach(±np)
536 struct inpcb *inp;
537 {
538 int s = splnet();

udp_usrreq.c

539
540
541
542
543

if (inp :: udp_last_inpcb)
udp_last_inpcb - &udb;

in__pcbdetach(inp);
splx(s);

Figure 23.34 udp_detach function: delete a UDP PCB.

udp_usrreq.c

If the last-received PCB pointer (the one-behind cache) points to the PCB being
detached, the cache pointer is set to the head of the UDP list (udb). The function
±n_pcbdeeach removes the PCB from UDP’s list and releases the PCB.

Returning to udp_usrreq, a PRU_BIND request is the result of the bind system
call and a PRU_L I STEN request is the result of the I i s ten system call. Both are shown
in Figure 23.35.

All the work for a PRU_BIND request is done by in_pcbbind.
The PRU_LISTEN request is invalid for a connectionless protocol--it is used only

by connection-oriented protocols.

DELL EX.1095.811

Section 23.10 udp_usrreq Function 787

udp_usr~q.c
456 case PRU_BIND:
457 s = splnet();
458 error = in_pcbbind(inp, addr);
459 splx(s);
460 break;

461 case PRU_LISTEN:
462 error = EOPNOTSUPP;
463 break;

Figure 23.35 udp_usrreq function: PRU_BIND and PRU_LISTEN requests.

udp_usrreq.c

464--474

475--477

478--480

We mentioned earlier that a UDP application, either a client or server (normally a
client), can call connect. This fixes the foreign IP address and port number that this
socket can send to or receive from. Figure 23.36 shows the PRU_CONNECT,
PRU_CONNECT2, and PRU_ACCEPT requests.

464 case PRU_CONNECT:
465 if (inp->inp_faddr.s_addr !- INADDR ANY)
466 error : EISCONN;
467 break;
468 }
469 s - splnet();
470 error = in_pcbconnect(inp, addr);
471 splx(s);
472 if (error == 0)
473 soisconnected(so);
474 break;

475 case PRU_CONNECT2:
476 error = EOPNOTSUPP;
477 break;

udp_usrreq.c

478 case PRU_ACCEPT:
479 error = EOPNOTSUPP;
4 8 0 break ;

udp_usrreq.c
Figure23.36 udp_usrreqfunction:PRU_CONNECT, PRU_CONNECT2, and PRU_ACCEPTrequests.

If the socket is already connected, EISCONN is returned. The socket should never be
connected at this point, because a call to connect on an already-connected UDP socket
generates a PRU_DISCONNECT request before this PRU_CONNECT request. Otherwise
in_pcbconnect does all the work. If no errors are encountered, soisconnected
marks the socket structure as being connected.

The socketpair system call issues the PRU_CONNECT2 request, which is defined
only for the Unix domain protocols.

The PRU_ACCEPT request is from the accept system call, which is defined only for
connection-oriented protocols.

DELL EX.1095.812

788 UDP: User Datagram Protocol Chapter 23

The PRU_DISCONNECT request can occur in two cases for a UDP socket:

1. When a connected UDP socket is closed, PRU_DISCONNECT is called before
PRU_DETACH.

2. When a connect is issued on an already-connected UDP socket, soconnect
issues the PRU_DI SCONNECT request before the PRU_CONNECT request.

Figure 23.37 shows the PRU_DI SCONNECT request.

481
482
483
484
485
486
487
488
489
490
491

case PRU_DISCONNECT:
if (inp->inp_faddr.s_addr :: INADDR_ANY)

error = ENOTCONN;
break;

}
s = splnet();
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
splx(s);
so->so_state &= -SS_ISCONNECTED;
break;

/* XXX */

Figure 23.37 udp_usrreq function: PRU_DISCONNECT request.

udp_usrreq.c

udp_usrreq.c

If the socket is not already connected, ENOTCONN is returned. Otherwise
in_pcbdi s connect sets the foreign IP address to 0.0.0.0 and the foreign port to 0. The
local address is also set to 0.0.0.0, since this PCB variable could have been set by
connect.

A call to shutdown specifying that the process has finished sending data generates
the PRU_SHUTDOWN request, although it is rare for a process to issue this system call for
a UDP socket. Figure 23.38 shows the PRU_SHUTDOWN, PRU_SEND, and PRU_ABORT
requests.

492 case PRU_ZHUTDOWN :
udp_usrreq.c

493 socantsendmore (so) ;
494 break;

495
496

case PRU_SEND:
return (udp_output(inp, m, addr, control));

497 case PRU_ABORT:
498 soisdisconnected(so);
499 udp_detach(inp);
500 break;

udp_usrrgq.c

Figure23.38 udp_usrreqfunction:PRU_SHUTDOWN, PRU_SEND, and PRU_ABORTrequests.

492 494 socantsendmore sets the socket’s flags to prevent any future output.

DELL EX.1095.813

Section 23.10 udp_usrreq Function 789

495--496

497--500

501--506

507--511

In Figure 23.14 we showed how the five write functions ended up calling
udp_usrreq with a PRU_SEND request, udp_output sends the datagram.
udp_usrreq returns, to avoid falling through to the label release (Figure 23.32),
since the mbuf chain containing the data (m) must not be released yet. IP output
appends this mbuf chain to the appropriate interface output queue, and the device
driver will release the mbuf when the data has been transmitted.

The only buffering of UDP output within the kernel is on the interface’s output
queue. If there is room in the socket’s send buffer for the datagram and destination
address, sosend calls udp_usrreq, which we see calls udp_output. We saw in Fig-
ure 23.20 that ip_output is then called, which calls ether_output for an Ethernet,
placing the datagram onto the interface’s output queue (if there is room). If the process
calls sendto faster than the interface can transmit the datagrams, ether_output can
return ENOBUFS, which is returned to the process.

A PRU_ABORT request should never be generated for a UDP socket, but if it is, the
socket is disconnected and the PCB detached.

The PRU_SOCKADDR and PRU_PEERADDR requests are from the get sockname and
getpeername system calls, respectively. These two requests, and the PRU_SENSE
request, are shown in Figure 23.39.

udp_usrreq.c
501 case PRU_SOCKADDR :
502 in_setsockaddr(inp, addr);
503 break;

504 case PRU_PEERADDR:
505 in_setpeeraddr(inp, addr);
506 break;

507 case PRU_SENSE:
508 /*
509 * fstat: don’t bother with a blocksize.
510 */
511 return (0);

udp_usrreq.c
Figure23.39 udp_usrreqfunction:PRU_SOCKADDR, PRU_PEERADDR, and PRU_SENSErequests.

The functions in_se~:sockaddr and in_setpeeraddr fetch the information
from the PCB, storing the result in the addr argument.

The fstat system call generates the PRU SENSE request. The function returns OK,
but doesn’t return any other information. We’ll see later that TCP returns the size of the
send buffer as the s t_b 1 k s i z e element of the s t a t structure.

The remaining seven PRU__xxx requests, shown in Figure 23.40, are not supported
for a UDP socket.

DELL EX.1095.814

790 UDP: User Datagram Protocol Chapter 23

udp usrreq.c
512 case PRU_SENDOOB: --
513 case PRU_FASTTIMO:
514 case PRU_SLOWTIMO:
515 case PRU_PROTORCV:
516 case PRU_PROTOSEND:
517 error : EOPNOTSUPP;
518 break;

519 case PRU_RCVD:
520 case PRU_RCVOOB:
521 return (EOPNOTSUPP); /* do not free mbuf’s */

Figure 23.40 udp_usrreq function: unsupported requests.

udp_usrreq.c

There is a slight difference in how the last two are handled because PRU_RCVD
doesn’t pass a pointer to an mbuf as an argument (in is a null pointer) and PRU_RCVOOB
passes a pointer to an mbuf for the protocol to fill in. In both cases the error is immedi-
ately returned, without breaking out of the switch and releasing the mbuf chain. With
PRU_RCVOOB the caller releases the mbuf that it allocated.

23.11 udp_sysct I Function

The sysctl function for UDP supports only a single option, the UDP checksum flag.
The system administrator can enable or disable UDP checksums using the sysctl(8)
program. Figure 23.41 shows the udp_sysctl function.This function calls
sysct l_int to fetch or set the value of the integer udpcksum.

547 udp_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
548 int *name;
549 u_int namelen;
550 void *oldp;
551 size_t *oldlenp;
552 void *newp;
553 size_t newlen;
554 {
555
556
557

558
559
56O
561
562
563

565

udp_usrreq.c

/* All sysctl names at this level are terminal. */
if (namelen != i)

return (ENOTDIR);

switch (name[0]) {
case UDPCTL_CHECKSUM:

return (sysctl_int(oldp, oldlenp, newp, newlen, &udpcksum));
default:

return (ENOPROTOOPT);
}
/* NOTREACHED */

udp_usrreq.c
Figure 23.41 udp_sysctl function.

DELL EX.1095.815

Section 23.12 Implementation Refinements 791

23.12 Implementation Refinements

UDP PCB Cache

In Section 22.12 we talked about some general features of PCB searching and how the
code we’ve seen uses a linear search of the protocoI’s PCB list. We now tie this together
with the one-behind cache used by UDP in Figure 23.24.

The problem with the one-behind cache occurs when the cached PCB contains wild-
card values (for either the local address, foreign address, or foreign port): the cached
value never matches any received datagram. One solution tested in [Partridge and Pink
1993] is to modify the cache to not compare wildcarded values. That is, instead of com-
paring the foreign address in the PCB with the source address in the datagram, compare
these two values only if the foreign address in the PCB is not a wildcard.

There’s a subtle problem with this approach [Partridge and Pink 1993]. Assume
there are two sockets bound to local port 555. One has the remaining three elements
wildcarded, while the other has connected to the foreign address 128.1.2.3 and the for-
eign port 1600. If we cache the first PCB and a datagram arrives from 128.1.2.3, port
1600, we can’t ignore comparing the foreign addresses just because the cached value has
a wildcarded foreign address. This is called cache hiding. The cached PCB has hidden
another PCB that is a better match in this example.

To get around cache hiding requires more work when a new entry is added to or
deleted from the cache. Those PCBs that hide other PCBs cannot be cached. This is not
a problem, however, because the normal scenario is to have one socket per local port.
The example we just gave with two sockets bound to local port 555, while possible
(especially on a multihomed host), is rare.

The next enhancement tested in [Partridge and Pink 1993] is to also remember the
PCB of the last datagram sent. This is motivated by [Mogul 1991], who shows that half
of all datagrams received are replies to the last datagram that was sent. Cache hiding is
a problem here also, so PCBs that would hide other PCBs are not cached.

The results of these two caches shown in [Partridge and Pink 1993] on a general-
purpose system measured for around 100,000 received UDP datagrams show a 57% hit
rate for the last-received PCB cache and a 30% hit rate for the last-sent PCB cache. The
amount of CPU time spent in udp_input is more than halved, compared to the version
with no caching.

These two caches still depend on a certain amount of locality: that with a high prob-
ability the UDP datagram that just arrived is either from the same peer as the last UDP
datagram received or from the peer to whom the last datagram was sent. The latter is
typical for request-response applications that send a datagram and wait for a reply.
[McKenney and Dove 1992] show that some applications, such as data entry into an on-
line transaction processing (OLTP) system, don’t yield the high cache hit rates that [Par-
tridge and Pink 1993] observed. As we mentioned in Section 22.12, placing the PCBs
onto hash chains provided an order of magnitude improvement over the last-received
and last-sent caches for a system with thousands of OLTP connections.

DELL EX.1095.816

792 UDP: User Datagram Protocol Chapter 23

UDP Checksum

The next area for improving the implementation is to combine the copying of data
between the process and the kernel with the calculation of the checksum. In Net/3,
each byte of data is processed twice during an output operation: once when copied from
the process into an mbuf (the function uioraove, which is called by sosend), and again
when the UDP checksum is calculated (by the function in_cksum, which is called by
udp_outpu~). This happens on input as well as output.

[Partridge and Pink 1993] modified the UDP output processing from what we
showed in Figure 23.14 so that a UDP-specific function named udl~_sosend is called
instead of sosend. This new function calculates the checksum of the UDP header and
the pseudo-header in-line (instead of calling the general-purpose function ±n_cksuin)
and then copies the data from the process into an mbuf chain using a special function
named in_uiomove (instead of the general-purpose u±oraove). This new function
copies the data and updates the checksum. The amount of time spent copying the data
and calculating the checksum is reduced with this technique by about 40 to 45%.

On the receive side the scenario is different. UDP calculates the checksum of the
UDP header and the pseudo-header, removes the UDP header, and queues the data for
the appropriate socket. When the application reads the data, a special version of
soreceive (called udlo_soreceive) completes the calculation of the checksum while
copying the data into the user’s buffer. If the checksum is in error, however, the error is
not detected until the entire datagram has been copied into the user’s buffer. In the nor-
mal case of a blocking socket, udp_soreceive just waits for the next datagram to
arrive. But if the socket is nonblocking, the error EWOULDBLOCK must be returned if
another datagram is not ready to be passed to the process. This implies two changes in
the socket interface for a nonblocking read from a UDP socket:

The select function can indicate that a nonblocking UDP socket is readable,
yet the error EWOULDBLOCK is unexpectedly returned by one of the read func-
tions if the checksum fails.

Since a checksum error is detected after the datagram has been copied into the
user’s buffer, the application’s buffer is changed even though no data is
returned by the read.

Even with a blocking socket, if the datagram with the checksum error contains 100 bytes
of data and the next datagram without an error contains 40 bytes of data, recvfrom
returns a length of 40, but the 60 bytes that follow in the user’s buffer have also been
modified.

[Partridge and Pink 1993] compare the timings for a copy versus a copy-with-
checksum for six different computers. They show that the checksum is calculated for
free during the copy operation on many architectures. This occurs when memory
access speeds and CPU processing speeds are mismatched, as is true for many current
RISC processors.

DELL EX.1095.817

Chapter 23 Exercises 793

23.13 Summary

UDP is a simple, connectionless protocol, which is why we cover it before looking at
TCP. UDP output is simple: IP and UDP headers are prepended to the user’s data, as
much of the header is filled in as possible, and the result is passed to ±p_output. The
only complication is calculating the UDP checksum, which involves prepending a
pseudo-header just for the checksum computation. We’ll encounter a similar pseudo-
header for the calculation of the TCP checksum in Chapter 26.

When udp_±nput receives a datagram, it first performs a general validation (the
length and checksum); the processing then differs depending on whether the destina-
tion IP address is a unicast address or a broadcast or multicast address. A unicast data-
gram is delivered to at most one process, but a broadcast or multicast datagram can be
delivered to multiple processes. A one-behind cache is maintained for unicast data-
grams, which maintains a pointer to the last internet PCB for which a UDP datagram
was received. We saw, however, that because of the prevalence of wildcard addressing
with UDP applications, this cache is practically useless.

The udp_ctlinput function is called to handle received ICMP messages, and the
udp_us rreq function handles the PRU_xxx requests from the socket layer.

Exercises

23.1

23.2

23.3

23.4

23.5

23.6

23.7

23.8

23.9

List the five types of mbuf chains that udp_output passes to ip_output. (Hint: look at
sosend.)

What happens to the answer for the previous exercise when the process specifies IP
options for the outgoing datagram?

Does a UDP client need to call bind? Why or why not?

What happens to the processor priority level in udp_output if the socket is unconnected
and the call to M_PREPEND in Figure 23.15 fails?

udp_output does not check for a destination port of 0. Is it possible to send a UDP data-
gram with a destination port of 0?

Assuming the IP_RECVDSTADDR socket option worked when a datagram was sent to a
broadcast address, how can you then determine if this address is a broadcast address?

Who releases the mbuf that udp_saveopt (Figure 23.28) allocates?

How can a process disconnect a connected UDP socket? That is, the process calls connect
and exchanges datagrams with that peer, and then the process wants to disconnect the
socket, allowing it to call sendto and send a datagram to some other host.

In our discussion of Figure 22.25 we noted that a UDP application that calls connect with
a foreign IP address of 255.255.255.255 actually sends datagrams out the primary interface
with a destination IP address corresponding to the broadcast address of that interface.
What happens if a UDP application uses an unconnected socket instead, calling sendto
with a destination address of 255.255.255.255?

DELL EX.1095.818

794 UDP: User Datagram Protocol Chapter 23

23.10

23.11

23.12

23.13

23.14

23.15

23.16

After discussing the problem with Figure 23.27, we mentioned that this problem would not
exist if the server used the destination IP address from the request as the source IP address
of the reply. Explain how the server could do this.

Implement changes to allow a process to perform path MTU discovery using UDP: the
process must be able to set the "don’t fragment" bit in the resulting IP datagram and be
told if the corresponding ICMP destination unreachable error is received.

Does the variable udp_±n need to be global?

Modify udp_±npu¢ to save the IP options and make them available to the receiver with
the IP_RECVOPTS socket option.

Fix the one-behind cache in Figure 23.24.

Fix udp_input to implement the I P_RECVOPTS and T P_RETOPTS socket options.

Fix udp_input so that the IP_RECVDSTADDR socket option works for datagrams sent to a
broadcast or multicast address.

DELL EX.1095.819

TCP: Transmission Control

Protocol

24.1 Introduction

The Transmission Control Protocol, or TCP, provides a connection-oriented, reliable,
byte-stream service between the two end points of an application. This is completely
different from UDP’s connectionless, unreliable, datagram service.

The implementation of UDP presented in Chapter 23 comprised 9 functions and
about 800 lines of C code. The TCP implementation we’re about to describe comprises
28 functions and almost 4,500 lines of C code. Therefore we divide the presentation of
TCP into multiple chapters.

These chapters are not an introduction to TCP. We assume the teader is familiar
with the operation of TCP from Chapters 17-24 of Volume 1.

24.2 Code Introduction

The TCP functions appear in six C files and numerous TCP definitions are in seven
headers, as shown in Figure 24.1.

Figure 24.2 shows the relationship of the various TCP functions to other kernel
functions. The shaded ellipses are the nine main TCP functions that we cover. Eight of
these functions appear in the TCP proLosw structure (Figure 24.8) and the ninth is
tcp_output.

795

DELL EX.1095.820

796 TCP: Transmission Control Protocol Chapter 24

File

netinet/tcp.h
netinet/tcp_debug.h
netinet/tcp_fsm.h
netinet/tcp_seq.h
netinet/tcp_timer.h
netinet/tcp_var.h
netinet/tcpip.h

netinet/tcp_debug.c
netinet/tcp_input.c
netinet/tcp_output.c
netinet/tcp_subr.c
netinet/tcp_timer.c
netinet/tcp_usrreq.c

Description

t cphdr structure definition
t cp_debug structure definition
definitions for TCP’s finite state machine
macros for comparing TCP sequence numbers
definitions for TCP timers
tcpcb (control block) and tcpstat (statistics) structure definitions
TCP plus IP header definition
support for SO_DEBUG socket debugging (Section 27.10)
t cp_input and ancillary functions (Chapters 28 and 29)
tcp_output and ancillary functions (Chapter 26)
miscellaneous TCP subroutines (Chapter 27)
TCP timer handling (Chapter 25)
PRU_xxx request handling (Chapter 30)

Figure 24.1 Files discussed in the TCP chapters.

system initialization

socket
receiv buffer

software interrupt

various get sockopt
system calls set sockopt

~ ffasttimo~

Figure 24.2 Relationship of TCP functions to rest of the kernel.

DELL EX.1095.821

Section 24.2 Code Introduction 797

Global Variables

Figure 24.3 shows the global variables we encounter throughout the TCP functions.

Variable

tcb
tcp_last_inpcb

tcpstat

tcp_outflags

tcp_recvspace

tcp_sendspace

tcp_iss

tcprexmtthresh

tcp_mssdflt

tcp_rttdflt

tcp do rfc1323

tcp_now

tcp_keepidle

tcp_keepintvl

tcp_maxidle

Datatype

struct inpcb

struct inpcb *

struct tcpstat

u_char

u_long
u_long

tcp_seq

int

int
int

int
u_long

int
int

int

Description

head of the TCP Internet PCB list
pointer to PCB for last received segment: one-behind cache
TCP statistics (Figure 24.4)
array of output flags, indexed by connection state (Figure 24.16)
default size of socket receive buffer (8192 bytes)
default size of socket send buffer (8192 bytes)
initial send sequence number (1SS)
number of duplicate ACKs to trigger fast retransmit (3)
default MSS (512 bytes)
default RTT if no data (3 seconds)
if true (default), request window scale and timestamp options
500 ms counter for RFC 1323 timestamps
keepalive: idle time before first probe (2 hours)
keepalive: interval between probes when no response (75 sec)

(also used as timeout for connect)
keepalive: time after probing before giving up (10 min)

Figure 24.3 Global variables introduced in the following chapters.

Statistics

Various TCP statistics are maintained in the global structure tcpstat, described in Fig-
ure 24.4. We’ll see where these counters are incremented as we proceed through the
code.

Figure 24.5 shows some sample output of these statistics, from the netstat -s
command. These statistics were collected after the host had been up for 30 days. Since
some counters come in pairs--one counts the number of packets and the other the
number of bytes--we abbreviate these in the figure. For example, the two counters for
the second line of the table are tcps_sndpack and tcps_sndbyte.

The counter for tcps_sndbyte should be 3,722,884,824, not -22,194,928 bytes. This is an
average of about 405 bytes per segment, which makes sense. Similarly, the counter for
t cps_rcvackbyt e should be 3,738,811,552, not -21,264,360 bytes (for an average of about 565
bytes per segment). These numbers are incorrectly printed as negative numbers because the
printf calls in the netstat program use %d (signed decimal) instead of %lu (long integer,
unsigned decimal). All the counters are unsigned long integers, and these two counters are
near the maximum value of an unsigned 32-bit long integer (232 - 1 = 4, 294, 967, 295).

DELL EX.1095.822

798 TCP: Transmission Control Protocol Chapter 24

tcps tat member Description Used by
SNMP

tcps_accepts
tcps_closed
tcps_connattempt
tcps_conndrops
tcps_connects
tcps_delack
tcps_drops
tcps_keepdrops
tcps_keepprobe
tcps_keeptimeo
tcps_pawsdrop
tcps__pcbcachemiss
tcps_persisttimeo
tcps_predack
tcps_preddat
tcps_rcvackbyte
tcps_rcvackpack
tcps_rcvacktoomuch
tcps_rcvafterclose
tcps_rcvbadoff
tcps_rcvbadsum
tcps_rcvbyte
tcps_rcvbyteafterwin
tcps_rcvdupack
tcps_rcvdupbyte
tcps_rcvduppack
tcps_rcvoobyte
tcps_rcvoopack
tcps_rcvpack
tcps_rcvpackafterwin
tcps_rcvpartdupbyte
tcps_rcvpartduppack
tcps_rcvshort
tcps_rcvtotal
tcps_rcvwinprobe
tcps_rcvwinupd
tcps_rexmttimeo
tcps_rttupdated
tcps_segstimed
tcps_sndacks
tcps_sndbyte
tcps_sndctrl
tcps_sndpack
tcps_sndprobe
tcps_sndrexmitbyte
tcps_sndrexmitpack
tcps_sndtotal
tcps_sndurg
tcps_sndwinup
tcps_timeoutdrop

#SYNs received in LISTEN state
#connections closed (includes drops)
#connections initiated (calls to connect)
#embryonic connections dropped (before SYN received)
#connections established actively or passively
#delayed ACKs sent
#connections dropped (after SYN received)
#connections dropped in keepalive (established or awaiting SYN)
#keepalive probes sent
#times keepalive timer or connection-establishment timer expire
#segments dropped due to PAWS
#times PCB cache comparison fails
#times persist timer expires
#times header prediction correct for ACKs
#times header prediction correct for data packets
#bytes ACKed by received ACKs
#received ACK packets
#received ACKs for unsent data
#packets received after connection closed
#packets received with invalid header length
#packets received with checksum errors
#bytes received in sequence
#bytes received beyond advertised window
#duplicate ACKs received
#bytes received in completely duplicate packets
#packets received with completely duplicate bytes
#out-of-order bytes received
#out-of-order packets received
#packets received h~ sequence
#packets with some data beyond advertised window
#duplicate bytes in part-duplicate packets
#packets with some duplicate data
#packets received too short
total #packets received
#window probe packets received
#received window update packets
#retransmit timeouts
#times RTT estimators updated
#segments for which TCP tried to measure RTT
#ACK-only packets sent (data length = 0)
#data bytes sent
#control (SYN, FIN, RST) packets sent (data length = 0)
#data packets sent (data length > 0)
#window probes sent (1 byte of data forced by persist timer)
#data bytes retransmitted
#data packets retransmitted
total #packets sent
#packets sent with URG-only (data length = 0)
#window update-only packets sent (data length = 0)
#connections dropped in retransmission timeout

Figure 24.4 TCP statistics maintained in the tcpstat structure.

DELL EX.1095.823

Section 24.2 Code Introduction 799

netstat -s output

10,655,999 packets sent
9,177,823 data packets (-22,194,928 bytes)
257,295 data packets (81,075,086 bytes) retransmitted
862,900 ack-only packets (531,285 delayed)
229 URG-only packets
3,453 window probe packets
74,925 window update packets
279,387 control packets

8,801,953 packets received
6,617,079 acks (for -21,264,360 bytes)
235,311 duplicate acks
0 acks for unsent data
4,670,615 packets (324,965,351 bytes) rcvd in-sequence
46,953 completely duplicate packets (1,549,785 bytes)
22 old duplicate packets
3,442 packets with some dup. data (54,483 bytes duped)
77,114 out-of-order packets (13,938,456 bytes)
1,892 packets (1,755 bytes) of data after window
1,755 window probes
175,476 window update packets
1,017 packets received after close
60,370 discarded for bad checksums
279 discarded for bad header offset fields
0 discarded because packet too short

144,020 connection requests
92,595 connection accepts
126,820 connections established (including accepts)
237,743 connections closed (including 1,061 drops) .
110,016 embryonic connections dropped

6,363,546 segments updated rtt {of 6,444,667 attempts)
114,797 retransmit timeouts

86 connection dropped by rexmit timeout
1,173 persist timeouts
16,419 keepalive timeouts

6,899 keepalive probes sent
3,219 connections dropped by keepalive

733,130 correct ACK header predictions
1,266,889 correct data packet header predictions
1,851,557 cache misses

tcpstat members
tcps_sndtotal
tcps_snd{pack,byte}
tcps_sndrexmit{pack,byte}
tcps_sndacks,tcps_delack
tcps_sndurg
tcps_sndprobe
tcps_sndwinup
tcps_sndctrl

tcps_rcvtotal
tcps_rcvack{pack,byte}
tcps_rcvdupack
tcps_rcvacktoomuch
tcps_rcv{pack,byte}
tcps_rcvdup{pack,byte}
tcps_pawsdrop
tcps_rcvpartdup{pack,byte}
tcps_rcvoo{pack,byte}
tcps_rcv{pack,byte}afterwin
tcps_rcvwinprobe
tcps_rcvwindup
tcps_rcvafterclose
tcps_rcvbadsum
tcps_rcvbadoff
tcps_rcvshort

tcps_connattempt
tcps_accepts
tcps_connects
tcps_closed, tcps_drops
tcps_conndrops

tcps_{rttupdated, segstimed}
tcps_rexmttimeo
tcps_timeoutdrop
tcps_persisttimeo
tcps_keeptimeo
tcps_keepprobe
tcps_keepdrops

tcps_predack
tcps_preddat
tcps_pcbcachemiss

Figure 24.5 Sample TCP statistics.

SNMP Variables

Figure 24.6 shows the 14 simple SNMP variables in the TCP group and the counters
from the tcpstat structure implementing that variable. The constant values shown
for the first four entries are fixed by the Net/3 implementation. The counter
tcpCurrEstab is computed as the number of Internet PCBs on the TCP PCB list.

Figure 24.7 shows t cpTabl e, the TCP listener table.

DELL EX.1095.824

800 TCP: Transmission Control Protocol Chapter 24

SNMP variable
¢ cps t at members

or constant Description

tcpRtoAlgorithm 4 algorithm used to calculate retransmission timeout value:
1 = none of the following,
2 = a constant RTO,
3 = MIL-STD-1778 Appendix B,
4 = Van Jacobson’s algorithm.

t cpRt oMin 100 0 minimum retransmission timeout value, in milliseconds
t cpRt oMax 64 0 0 0 maximum retransmission timeout value, in milliseconds
t cpMaxConn 1 maximum #TCP connections (-1 if dynamic)
t cpActiveOpens t clos_connat tempt #transitions from CLOSED to SYN_SENT states
tcpPassiveOpenst c~os_accept s #transitions from LISTEN to SYN_RCVD states
¢cpAttemptFails tcps_conndrops #transitions from SYN_SENT or SYN_RCVD to CLOSED,

plus #transitions from SYN_RCVD to LISTEN
tcpEstabResets t c~s_drops #transitions from ESTABLISHED or CLOSE_WAIT states to

CLOSED
tcpCurrEstab (see text) #connections currently in ESTABLISHED or CLOSE_WAIT

states
t ClO InS eg s t clo s_rcvt o t a 1 total #segments received
tcpOutSegs tcps_sndtotal - total #segments sent, excluding those containing only

tc!os_sndrexmitpack retransmitted bytes
tcpRetransSegs tcps_sndrexmitpack total#retransmitted segments
tcpInErrs tc~s_rcvbadsum + I total #segments received with an error

tcps_rcvbadof f +
tcps_rcvshort

t c pOu t R S t s (not implemented) total #segments sent with RST flag set

Figure 24.6 Simple SNMP variables in tcp group.

index = < tcpConnLocalAddress >.< tcpConnLocalPort >.< tcpConnRemAddress >.< tcpConnRemPort >
SNMP variable PCB variable Description

tcpConnState t_state state of connection: 1 = CLOSED, 2 = LISTEN,
3 = SYN_SENT, 4 = SYN_RCVD, 5 = ESTABLISHED,
6 = FIN WAIT_l, 7 = FIN_WAIT2, 8 = CLOSE_WAIT,
9 = LAST_ACK, 10 = CLOSING, 11 = TIME_WAIT,
12 = delete TCP control block.

t cpConnLocalAddress inp_laddr local IP address

t cpConnLocalPort inp_iport local port number

t cpConnRemAddress inp_faddr foreign IP address

tcpConnRemPort inp_fport foreign port number

Figure 24.7 Variables in TCP listener table: tcpTable.

The first PCB variable (t_state) is from the TCP control block (Figure 24.13) and the
remaining four are from the Internet PCB (Figure 22.4).

DELL EX.1095.825

Section 24.4 TCP Header 801

24.3 TCP protosw Structure

Figure 24.8 lists the TCP protosw structure, the protocol switch entry for TCP.

Member

pr_type
pr_domain
pr_protocol
pr_flags
pr_input
pr_output
pr_ctlinput
pr_ctloutput
pr_usrreq
pr_init
pr_fasttimo
pr_slowtimo
pr_drain
pr_sysctl

inetsw[2]

SOCK STREAM
&inetdomain
IPPROTO TCP (6)
PR_CONNREQUIRED/PR WANTRCVD
tcp_input
0
tcp_ctlinput
tcp ctloutput
tcp_usrreq
tcp_init
tcp £asttimo
tcp_slowtimo
tcp_drain
0

Description

TCP provides a byte-stream service
TCP is part of the Internet domain
appears in the ±P_t~ field of the IP header
socket layer flags, not used by protocol processing
receives messages from IP layer
not used by TCP
control input function for ICMP errors
respond to administrative requests from a process
respond to communication requests from a process
initialization for TCP
fast timeout function, called every 200 ms
slow timeout function, called every 500 ms
called when kernel runs out of mbufs
not used by TCP

Figure 24.8 The TCP protosw structure.

24.4 TCP Header

The TCP header is defined as a tcphdr structure. Figure 24.9 shows the C structure
and Figure 24.10 shows a picture of the TCP header.

40 struct tcphdr {
41 u_short th_sport;
42 u_short th_dport;
43 tcp_seq th_seq;
44 tcp_seq th_ack;
45 #if BYTE_ORDER -- LITTLE_ENDIAN
46 u_char th_x2:4,
47 th_off:4;
48 #endif
49 #if BYTE_ORDER -= BIG_ENDIAN
50 u_char th_off:4,
51 th_x2:4;
52 #endif
53 u_char th_flags;
54 u_short th win;
55 u_short th_sum;
56 u_short th_urp;
57 };

/* source port */
/* destination port */
/* sequence number */

* acknowledgement number */

* (unused) */
* data offset */

/* data offset */
/* (unused) */

/* ACK, FIN, PUSH, RST, SYN, URG */
/* advertised window */
/* checksum */
/* urgent offset */

Figure 24.9 tcphdr structure.

tcp.h

tcp.h

DELL EX.1095.826

802 TCP: Transmission Control Protocol Chapter 24

th_sport
16-bit source port number

15 16

th_dport
16-bit destination port number

th_seq
32-bitsequencenumber

th_of f
4-bit header

length

th_x2
reserved
(6 bits)

th_sum
16-bit TCP checksum

th_ack
32-bit acknowledgment number

UA P R S F
R C S S Y I

th_win
16-bit window sizeGKHTNN

th_urp
16-bit urgent offset

options (if any)

data (if any)

31

20 bytes

Figure 24.10 TCP header and optional data.

Most RFCs, most books (including Volume 1), and the code we’ll examine call th_urp the
urgent pointer. A better term is the urgent offset, since this field is a 16-bit unsigned offset that
must be added to the sequence number field (th_seq) to give the 32-bit sequence number of
the last byte of urgent data. (There is a continuing debate over whether this sequence number
points to the last byte of urgent data or to the byte that follows. This is immaterial for the
present discussion.) We’ll see in Figure 24.13 that TCP correctly calls the 32-bit sequence num-
ber of the last byte of urgent data snd_up the send urgent pointer. But using the term pointer for
the 16-bit offset in the TCP header is misleading. In Exercise 26.6 we’ll reiterate the distinction
between the urgent pointer and the urgent offset.

The 4-bit header length, the 6 reserved bits that follow, and the 6 flag bits are
defined in C as two 4-bit bit-fields, followed by 8 bits of flags. To handle the difference
in the order of these 4-bit fields within an 8-bit byte, the code contains an #i fdef based
on the byte order of the system.

Also notice that we call the 4-bit th_off the header length, while the C code calls it
the data offset. Both are correct since it is the length of the TCP header, including
options, in 32-bit words, which is the offset of the first byte of data.

The th_flags member contains 6 flag bits, accessed using the names in Fig-
ure 24.11.

In Net/3 the TCP header is normally referenced as an IP header immediately fol-
lowed by a TCP header. This is how top_in,out processes received IP datagrams and
how top_output builds outgoing IP datagrams. This combined IP/TCP header is a
t cpiphdr structure, shown in Figure 24.12.

DELL EX.1095.827

Section 24.5 TCP Control Block 803

th_flags

TH~_A CK
TH_FIN

TH_PUSH
TH_RST
TH_ S YN
TH_ URG

Description

the acknowledgment number (th_ack) is valid
the sender is finished sending data
receiver should pass the data to application without delay
reset the connection
synchronize sequence numbers (establish connection)
the urgent offset (th urp) is valid

Figure 24.11 th_flags values.

38--58

38 struct tcpiphdr {
39 struct ipovly ti_i;
40 struct tcphdr ti_t;
41 };

42 #define ti_next
43 #define ti_prev
44 #define ti_xl
45 #define ti_pr
46 #define ti_len
47 #define ti_src
48 #define ti_dst
49 #define ti_sport
50 #define ti_dport
51 #define ti_seq
52 #define ti_ack
53 #define ti_x2
54 #define ti_off
55 #define ti_flags
56 #define ti_win
57 #define ti_sum
58 #define ti_urp

/* overlaid ip structure */
/* tcp header */

ti_i.ih_next
ti_i.ih_prev
ti_i.ih_xl
ti_i.ih_pr
ti_i.ih_len
ti_i.ih_src
ti_i.ih_dst
ti_t.th_sport
ti_t.th_dport
ti_t.th_seq
ti_t.th_ack
ti_t.th_x2
ti_t.th_off
ti_t.th_flags
ti_t.th_win
ti_t.th_sum
ti_t.th_ugp

Figure 24.12 tcpiphdr structure: combined IP/TCP header.

tcpip.h

tcpip.h

The 20-byte IP header is defined as an ipovly structure, which we showed earlier
in Figure 23.12. As we discussed with Figure 23.19, this structure is not a real IP header,
although the lengths are the same (20 bytes).

24.5 TCP Control Block

In Figure 22.1 we showed that TCP maintains its own control block, a tcpcb structure,
in addition to the standard Internet PCB. In contrast, UDP has everything it needs in
the Internet PCB--it doesn’t need its own control block.

The TCP control block is a large structure, occupying 140 bytes. As shown in Fig-
ure 22.1 there is a one-to-one relationship between the Internet PCB and the TCP control
block, and each points to the other. Figure 24.13 shows the definition of the TCP control
block.

DELL EX.1095.828

804 TCP: Transmission Control Protocol Chapter 24

tcp_var.h
struct tcpcb {

struct tcpiphdr *seg_next; /* reassembly queue of received segments *!
struct tcpiphdr *seg_prev; /* reassembly queue of received segments */
short t_state; /* connection state (Figure 24.16) */
short t_timer[TCPT_NTIMERS]; /* tcp timers (Chapter 25) */
short t_rxtshift; /* log(2) of rexmt exp. backoff */
short t_rxtcur; /* current retransmission timeout (#ticks) */
short t_dupacks; /* #consecutive duplicate ACKs received */
u_short t_maxseg; /* maximum segment size to send */
char t_force; /* 1 if forcing out a byte (persist/OOB) */
u_short t_flags; /* (Figure 24.14) */
struct tcpiphdr *t_template; /* skeletal packet for transmit */
struct inpcb *t_inpcb; /* back pointer to internet PCB */

/*
* The following fields are used as in the protocol specification.

41
42
43
44
45
46
47
48
49
5O
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66
67
68
69
7O
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
9O
91
92
93

* See RFC783, Dec. 1981, page 21.
*/

/* send sequence variables */
tcp_seq snd_una; /*
tcp_seq snd_nxt; /*
tcp_seq snd_up; /*
tcp_seq snd_wll; /*
tcp_seq snd_wl2; /*
tcp_seq iss; /*
u_long snd_wnd; /*

/* receive sequence variables */
u_long rcv_wnd; /*
tcp_seq rcv_nxt; /*
tcp_seq rcv_up; /*
tcp_seq irs; /*

/*

send unacknowledged */
send next */
send urgent pointer */
window update seg seq number */
window update seg ack number */
initial send sequence number */
send window */

receive window */
receive next */
receive urgent pointer */
initial receive sequence number */

* Additional variables for this implementation.
*/

/* receive variables */
tcp_seq rcv_adv; /* advertised window by other end */

/* retransmit variables */
tcp_seq snd_max; /* highest sequence number sent;

* used to recognize retransmits */
* congestion control (slow start, source quench, retransmit after loss) */

u_long snd_cwnd; /* congestion-controlled window */
u_long snd_ssthresh; /* snd_cwnd size threshhold for slow start

* exponential to linear switch */

/*
* transmit timing stuff. See below for scale of srtt and rttvar.
* "Variance" is actually smoothed difference.
*/

short t_idle;
short t_rtt;
tcp_seq t_rtseq;
short t_srtt;
short t_rttvar;
u_short t_rttmin;
u_long max_sndwnd;

/* inactivity time */
/* round-trip time */
/* sequence number being timed */
/* smoothed round-trip time */
/* variance in round-trip time */
/* minimum rtt allowed */
/* largest window peer has offered */

DELL EX.1095.829

Section 24.6 TCP State Transition Diagram 805

94 /* out-of band data */
95 char t_oobflags;
96 char t_iobc;
97 short t_softerror;

98 /* RFC 1323 variables */
99 u_char snd_scale;

i00 u_char rcv_scale;
i01 u_char request r scale;
102 u_char requested s scale;

103 u_long ts_recent;
104 u_long ts_recent_age;
105 tcp_seq last_ack_sent;
106 };

107 #define intotcpcb(ip)
108 #define sototcpcb(so)

/* TCPOOB_HAVEDATA, TCPOOB_HADDATA */
/* input character, if not SO_OOBINLINE */
/* possible error not yet reported */

/* scaling for send window (0-14) */
/* scaling for receive window (0 14) */
/* our pending window scale */
/* peer’s pending window scale */

/* timestamp echo data */
/* when last updated */
/* sequence number of last ack field */

((struct tcpcb *) (ip)->inp_ppcb)
(intotcpcb(sotoinpcb(so)))

Figure 24.13 t cpch structure: TCP control block.

tcp_var.h

We’ll save the discussion of these variables until we encounter them in the code.
Figure 24.14 shows the values for the t_flags member.

t _ f 1 ag s Description

TF ACKNOW send ACK immediately
TF_DELACK send ACK, but try to delay it
TF_NODELAY don’t delay packets to coalesce (disable Nagle algorithm)
TF_NOOPT don’t use TCP options (never set)
TF SENTEIN have sent FIN

TF_RCVD SCALE set when other side sends window scale option in SYN
TE RCVD_TSTMP set when other side sends timestamp option in SYN
TF_REQ_SCALE have/will request window scale option in SYN
TF REQ_TSTMP have/will request timestamp option in SYN

Figure 24.14 t_flags values.

24.6 TCP State Transition Diagram

Many of TCP’s actions, in response to different types of segments arriving on a connec-
tion, can be summarized in a state transition diagram, shown in Figure 24.15. We also
duplicate this diagram on one of the front end papers, for easy reference while reading
the TCP chapters.

These state transitions define the TCP finite state machine. Although the transition
from LISTEN to SYN_SENT is allowed by TCP, there is no way to do this using the
sockets API (i.e., a c onnec t is not allowed after a 1 i s t en).

The t_state member of the control block holds the current state of a connection,
with the values shown in Figure 24.16.

This figure also shows the tcp_out flags array, which contains the outgoing flags
for tcp_output to use when the connection is in that state.

DELL EX.1095.830

806 TCP: Transmission Control Protocol Chapter 24

starting point

CLOSED

apph passive open
send: <nothing>

timeout ~
send: RST ,t d" LISTEN

~ ~,.,~G~ ~/~ passive open

~� ~ recv: SYN
(SYN_RCVD ~.~ send: SYN, ACK

close
FIN

appl:
send:

simultaneous open

~ata transfer state

SYN_SENT
activeopen

simultaneous close

(FIN_WAIT_I ,~ s~CdV..:AcFINK ~-~ CLOSING ~

l<n°thing> "~~ ~

send send: <nothing> ~

~ recv: ~N ~TIME WAIT~
............ ~ send:ACK ~K - ~

2MSL timeout

I
I
I
I

appl: I close
send: ! FIN

I
I

appl: close
or timeout

~-~LAST ACK "~l recv: ACK
- ~send: <nothing>

passive close

active close

~ normal transitions for client
normal transitions for server
state transitions taken when application issues operation

reLy: state transitions taken when segment received
send: what is sent for this transition

Figure 24.15 TCP state transition diagram.

DELL EX.1095.831

Section 24.7 TCP Sequence Numbers 807

t_state

TCPS_CLOSED
TCPS_LISTEN
TCPS_SYN_SENT
TCPS_SYN_RECEIVED
TCPS_ESTABLISHED
TCPS_CLOSE_WAIT
TCPS_FIN_WAIT_I
TCPS_CLOSING

TCPS_LAST_ACK
TCPS_FIN_ WA IT_ 2
TCPS_TIME_WAIT

value

0

4

8
q

lO

Description

closed
listening for connection (passive open)
have sent SYN (active open)
have sent and received SYN; awaiting ACK
established (data transfer)
received FIN, waiting for application close
have closed, sent FIN; awaiting ACK and FIN
simultaneous close; awaiting ACK
received FIN have closed; awaiting ACK
have closed; awaiting FIN
2MSL wait state after active close

TH_RST

0
TH_SYN
TH SYN

t cp_out flags []

TH ACK

TH_FIN

TH_FIN
TH_FIN

TH ACK
TH ACK

TH ACK
TH ACK
TH_ACK
TH_A CK

TH ACK

Figure 24.16 t_state values.

Figure 24.16 also shows the numerical values of these constants since the code uses
their numerical relationships. For example, the following two macros are defined:

#define TCPS_HAVERCVDSYN(S) ((s) >: TCPS SYN RECEIVED)
#define TCPS_HAVERCVDFIN(S) ((s) >= TCPS_TIME_WAIT)

Similarly, we’ll see that t cp_not i fy handles ICMP errors differently when the connec.
tion is not yet established, that is, when t_state is less than TCPS_ESTABLISHED.

The name TCPS_HAVERCVDSYN is correct, but the name TCPS_HAVERCVDFIN is misleading.
A FIN has also been received in the CLOSE_WAIT, CLOSING, and LAST_ACK states. We
encounter this macro in Chapter 29.

Half-Close

When a process calls shutdown with a second argument of 1, it is called a half-close.
TCP sends a FIN but allows the process to continue receiving on the socket. (Sec-
tion 18.5 of Volume I contains examples of TCP’s half-close.)

For example, even though we label the ESTABLISHED state "data transfer," if the
process does a half-close, moving the connection to the FIN_WAIT_I and then the
FIN_WAIT 2 states, data can continue to be received by the process in these two states.

24.7 TCP Sequence Numbers

Every byte of data exchanged across a TCP connection, along with the SYN and FIN
flags, is assigned a 32-bit sequence number. The sequence number field in the TCP
header (Figure 24.10) contains the sequence number of the first byte of data in the seg-
ment. The acknowledgment number field in the TCP header contains the next sequence
number that the sender of the ACK expects to receive, which acknowledges all data
bytes through the acknowledgment number minus 1. In other words, the acknowledg-
ment number is the next sequence number expected by the sender of the ACK. The
acknowledgment number is valid only if the ACK flag is set in the header. We’ll see

DELL EX.1095.832

808 TCP: Transmission Control Protocol Chapter 24

that TCP always sets the ACK flag except for the first SYN sent by an active open (the
SYN_SENT state; see tcp_out flags [2] in Figure 24.16) and in some RST segments.

Since a TCP connection is full-duplex, each end must maintain a set of sequence
numbers for both directions of data flow. In the TCP control block (Figure 24.13) there
are 13 sequence numbers: eight for the send direction (the send sequence space) and five
for the receive direction (the receive sequence space).

Figure 24.17 shows the relationship of four of the variables in the send sequence
space: snd__wnd, snd_una, snd_nxt, and snd_max. In this example we number the
bytes 1 through 11.

snd_wnd = 6: offered window
(advertised by receiver)

-~ usable window

1 2 3 4 5 6 II 7 8 9 10 11 ...

can’t send until
window movessent and

acknowledged
~ sent, not ACKed ~"

can send ASAP

snd_una = 4 snd_nxt = 7
oldest next send

unacknowledged sequence number
sequence number

snd_max = 7
maximum send

sequence number

Figure 24.17 Example of send sequence space.

An acceptable ACK is one for which the following inequality holds:
snd_una < acknowledgment field <= snd_max

In Figure 24.17 an acceptable ACK has an acknowledgment field of 5, 6, or 7. An
acknowledgment field less than or equal to snd_una is a duplicate ACK--it acknowl-
edges data that has already been ACKed, or else snd_una would not have incremented
past those bytes.

We encounter the following test a few times in tcp_output, which is true if a seg-
ment is being retransmitted:

snd_nxt < snd_max

Figure 24.18 shows the other end of the connection in Figure 24.17: the receive
sequence space, assuming the segment containing sequence numbers 4, 5, and 6 has not
been received yet. We show the three variables rcv_nxt, rcv_wnd, and rcv_adv.

DELL EX.1095.833

Section 24.7 TCP Sequence Numbers 809

rcv_wnd = 6: receive window
(advertised to sender)

4 5 6 7 8 9 10 11 ...

old sequence numbers
that TCP has acknowledged ~

rcv_nxt = 4
next receive

sequence number

future sequence numbers
not yet allowed

rcv_adv = I0
highest advertised
sequence number

plus 1

Figure 24.18 Example of receive sequence space.

The receiver considers a received segment valid if it contains data within the win-
dow, that is, if either of the following two inequalities is true:

rcv_nxt <= beginning sequence number of segment < rcv_nxt + rcv_wnd

rcv_nxt <: ending sequence number of segment < rcv_nxt + rcv_w~d

The beginning sequence number of a segment is just the sequence number field in the
TCP header, t i_seq. The ending sequence number is the sequence number field plus
the number of bytes of TCP data, minus 1.

For example, Figure 24.19 could represent the TCP segment containing the 3 bytes
with sequence numbers 4, 5, and 6 in Figure 24.17.

63-byte IP datagram m

options
TCPIP header IP TCP header options

20 bytes 8 20 12 1 1 1

Figure 24.19 TCP segment transmitted as an IP datagram.

We assume that there are 8 bytes of IP options and 12 bytes of TCP options. Fig-
ure 24.20 shows the values of the relevant variables.

Variable Value Description

ip_hl 7
ip_len 63
ti_off 8
ti_seq 4

ti_len 3
6

length of IP header + options in 32-bit words (= 28 bytes)
length of IP datagram in bytes (20 + 8 + 20 + 12 + 3)
length of TCP header + options in 32-bit words (= 32 bytes)
sequence number of first byte of data
#bytes of TCP data: ip_len - (ip_hl x 4) - (ti_of f x 4)
sequence number of last byte of data: t i_seq + t i_len - 1

Figure 24.21] Values of variables corresponding to Figure 24.19.

DELL EX.1095.834

810 TCP: Transmission Control Protocol Chapter 24

ti_len is not a field that is transmitted in the TCP header. Instead, it is computed as
shown in Figure 24.20 and stored in the overlaid IP structure (Figure 24.12) once the
received header fields have been checksummed and verified. The last value in this fig-
ure is not stored in the header, but is computed from the other values when needed.

Modular Arithmetic with Sequence Numbers

A problem that TCP must deal with is that the sequence numbers are from a finite 32-bit
number space: 0 through 4,294,967,295. If more than 232 bytes of data are exchanged
across a TCP connection, the sequence numbers will be reused. Sequence numbers
wrap around from 4,294,967,295 to 0.

Even if less than 232 bytes of data are exchanged, wrap around is still a problem
because the sequence numbers for a connection don’t necessarily start at 0. The initial
sequence number for each direction of data flow across a connection can start anywhere
between 0 and 4,294,967,295. This complicates the comparison of sequence numbers.
For example, sequence number I is "greater than" 4,294,967,295, as we discuss below.

TCP sequence numbers are defined as uns igned longs in tcp. h:

typedef u_long tcp__seq;

The four macros shown in Figure 24.21 compare sequence numbers.

40 #define SEQ_LT(a,b) ((int) ((a)-(b)) < 0)
41 #define SEQ_LEQ(a,b) ((int) ((a)-(b)) <= 0)
42 #define SEQ_GT(a,b) {(int) ((a)-(b)) > 0)
43 #define SEQ_GEQ(a,b) ((int) ((a)-(b)) >= 0)

Figure 24.21 Macros for TCP sequence number comparison.

tep_seq.h

tep_seq.h

Example--Sequence Number Comparisons

Let’s look at an example to see how TCP’s sequence numbers operate. Assume 3-bit
sequence numbers, 0 through 7. Figure 24.22 shows these eight sequence numbers,
their 3-bit binary representation, and their two’s complement representation. (To form
the two’s complement take the binary number, convert each 0 to a I and vice versa, then
add 1.) We show the two’s complement because to form a - b we just add a to the two’s
complement of b.

The final three columns of this table are 0 minus x, 1 minus x, and 2 minus x. In
these final three columns, if the value is considered to be a signed integer (notice the cast
to int in all four macros in Figure 24.21), the value is less than 0 (the SEQ_LT macro) if
the high-order bit is 1, and the value is greater than 0 (the SEQ_GT macro) if the high-
order bit is 0 and the value is not 0. We show horizontal lines in these final three
columns to distinguish between the four negative and the four nonnegative values.

If we look at the fourth column of Figure 24.22, (labeled "0 - x"), we see that 0 (i.e.,
x), is less than 1, 2, 3, and 4 (the high-order bit of the result is 1), and 0 is greater than 5,
6, and 7 (the high-order bit is 0 and the result is not 0). We show this relationship picto-
rially in Figure 24.23.

DELL EX.1095.835

Section 24.7 TCP Sequence Numbers 811

x

o

1

2

3
4

5

6

7

binary two’scomplement 0-x 1-x 2-x

000 000 000 001 010
001 iii iii 000 001

010 ii0 ii0 iii 000

011 i01 i01 ii0 -iii
i00 i00 i00 i01 ii0

i01 011 011 i00 i01

ii0 010 010 011 i00

iii 001 001 010 011

Figure 24.22 Example using 3-bit sequence numbers.

5 6 7
~

1 2 3 4

0 is greater than 0 is less than
these numbers "~ -- these numbers

Figure 24.23 TCP sequence number comparisons for 3-bit sequence numbers.

Figure 24.24 shows a similar figure using the fifth row of the table (1 - x).

6 7 0 ~ 2 3 4 5

1 is greater than
these numbers

1 is less than
these numbers

Figure 24.24 TCP sequence number comparisons for 3-bit sequence numbers.

Figure 24.25 is another representation of the two previous figures, using circles to
reiterate the wrap around of sequence numbers.

0 0
7 " 1 77./~]

6~2

6~t~e;5 ~ 2

4 4
Figure 24.25 Another way to visualize Figures 24.23 and 24,24.

With regard to TCP, these sequence number comparisons determine whether a
given sequence number is in the future or in the past (a retransmission). For example,
using Figure 24.24, if TCP is expecting sequence number 1 and sequence number 6
arrives, since 6 is less than I using the sequence number arithmetic we showed, the data
byte is considered a retransmission of a previously received data byte and is discarded.
But if sequence number 5 is received, since it is greater than I it is considered a future

DELL EX.1095.836

812 TCP: Transmission Control Protocol Chapter 24

data byte and is saved by TCP, awaiting the arrival of the missing bytes 2, 3, and 4
(assuming byte 5 is within the receive window).

Figure 24.26 is an expansion of the left circle in Figure 24.25, using TCP’s 32-bit
sequence numbers instead of 3-bit sequence numbers.

4,294,967,295 0

2,147,483,649 2,147,483,648

232

\
I

I

Figure 24.26 Comparisons against 0, using 32-bit sequence numbers.

The right circle in Figure 24.26 is to reiterate that one-half of the 32-bit sequence space
uses 231 numbers.

24.8 tcp_init Function

The doraaininit function calls TCP’s initialization function, tcp_init (Figure 24.27),
at system initialization time.

tcp_subr.c
43 void
44 tcp_init ()
45 {

46

47

tcp_iss : i; /* wrong */
tcb.inp_next = tcb.inp_prev = &tcb;

48
49
50
51
52

if (max_protohdr < sizeof(struct tcpiphdr))
max_protohdr - sizeof(struct tcpiphdr);

if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
panic("tcp_init");

Figure 24.27 tcp_init function.

tcp_subr.c

46

Set initial send sequence number (ISS)
The initial send sequence number (ISS), tcp_iss, is initialized to 1. As the com-

ment indicates, this is wrong. We discuss the implications behind this choice shortly,
when we describe TCP’s quiet time. Compare this to the initialization of the IP identifier
in Figure 7.23, which used the time-of-day clock.

DELL EX.1095.837

Section 24.8 tcp_init Function 813

47

48-51

Initialize linked list of TCP Internet PCBs

The next and previous pointers in the head PCB (tcb) point to itself. This is an
empty doubly linked list. The remainder of the tcb PCB is initialized to 0 (all un-
initialized globals are set to 0)~ although the only other field used in this head PCB is
inp_lport, the next TCP ephemeral port number to allocate. The first ephemeral port
used by TCP will be 1024, for the reasons described in the solution for Exercise 22.4.
Calculate maximum protocol header length

If the maximum protocol header encountered so far is less than 40 bytes,
max_protohdr is set to 40 (the size of the combined IP and TCP headers, without any
options). This variable is described in Figure 7.17. If the sum of max_linkhdr (nor-
mally 16) and 40 is greater than the amount of data that fits into an mbuf with a packet
header (100 bytes, MHLEN from Figure 2.7), the kernel panics (Exercise 24.2).

MSL and Quiet Time Concept

TCP requires any host that crashes without retaining any knowledge of the last
sequence numbers used on active connections to refrain from sending any TCP seg-
ments for one MSL (2 minutes, the quiet time) on reboot. Few TCPs, if any, retain this
knowledge over a crash or operator shutdown.

MSL is the maximum segment lifetime. Each implementation chooses a value for the
MSL. It is the maximum amount of time any segment can exist in the network before
being discarded. A connection that is actively closed remains in the CLOSE_WAIT state
(Figure 24.15) for twice the MSL.

RFC 793 [Postel 1981c] recommends an MSL of 2 minutes, but Net/3 uses an MSL of 30 sec-
onds (the constant TCPTV_MSL in Figure 25.3).

The problem occurs if packets are delayed somewhere in the network (RFC 793 calls
these wandering duplicates). Assume a Net/3 system starts up, initializes t cp_i s s to 1
(as in Figure 24.27) and then crashes just after the sequence numbers wrap. We’ll see in
Section 25.5 that TCP increments t cp_i s s by 128,000 every second, causing the wrap
around of the ISS to occur about 9.3 hours after rebooting. Also, tcp_iss is incre-
mented by 64,000 each time a connect is issued, which can cause the wrap around to
occur earlier than 9.3 hours. The following scenario is one example of how an old seg-
ment can incorrectly be delivered to a connection:

A client and server have an established connection. The client’s port number is
1024. The client sends a data segment with a starting sequence number of 2.
This data segment gets trapped in a routing loop somewhere between the two
end points and is not delivered to the server. This data segment becomes a wan-
dering duplicate.

The client retransmits the data segment starting with sequence number 2, which
is delivered to the server.

3. The client closes the connection.

DELL EX.1095.838

814 TCP: Transmission Control Protocol Chapter 24

The client host crashes.

The client host reboots about 40 seconds after crashing, causing TCP to initialize
~cp_±ss to I again.

Another connection is immediately established by the same client to the same
server, using the same socket pair: the client uses 1024 again, and the server uses
its well-known port. The client’s SYN uses sequence number 1. This new con-
nection using the same socket pair is called a new incarnation of the old connec-
tion.

The wandering duplicate from step 1 is delivered to the server, and it thinks this
datagram belongs to the new connection, when it is really from the old connec-
tion.

Figure 24.28 is a time line of this sequence of steps.

step1

2--

3--

4--

40 sec

5--

6--

7--

-- client sends data segment with seq# 2 (becomes wandering duplicate)

-- client retransmits data segment with seq# 2, delivered to server

-- client closes connection with server

-- client host crashes

-- client host reboots, ISS set to 1

-- client-server establish new incarnation of previous connection

-- wandering duplicate from step 1 delivered to server-~-

~ < MSL

time
Figure 24.28 Example of old segment delivered to new incarnation of a connection.

This problem exists even if the rebooting TCP were to use an algorithm based on its
time-of-day clock to choose the ISS on rebooting: regardless of the ISS for the previous
incarnation of a connection, because of sequence number wrap it is possible for the ISS
after rebooting to nearly equal the sequence number in use before the reboot.

Besides saving the sequence number of all established connections, the only other
way around this problem is for the rebooting TCP to be quiet (i.e., not send any TCP
segments) for MSL seconds after crashing. Few TCPs do this, however, since it takes
most hosts longer than MSL seconds just to reboot.

DELL EX.1095.839

Chapter 24 Exercises 815

24.9 Summary

This chapter is an introduction to the TCP source code in the six chapters that follow.
TCP maintains its own control block for each connection, containing all the variable and
state information for the connection.

A state transition diagram is defined for TCP that shows under what conditions
TCP moves from one state to another and what segments get sent by TCP for each tran-
sition. This diagram shows how connections are established and terminated. We’ll
refer to this state transition diagram frequently in our description of TCP.

Every byte exchanged across a TCP connection has an associated sequence number,
and TCP maintains numerous sequence numbers in the connection control block: some
for sending and some for receiving (since TCP is full-duplex). Since these sequence
numbers are from a finite 32-bit sequence space, they wrap around from the maximum
value back to 0. We explained how the sequence numbers are compared to each other
using less-than and greater-than tests, which we’ll encounter repeatedly in the TCP
code.

Finally, we looked at one of the simplest of the TCP functions, tcp_±n±t, which
initializes TCP’s linked list of Internet PCBs. We also discussed TCP’s choice of an ini-
tial send sequence number, which is used when actively opening a connection.

Exercises

24,1 What is the average number of bytes transmitted and received per connection from the
statistics in Figure 24.5?

24.2 Is the kernel panic in tcp_±n± e reasonable?

24.3 Execute nee seat -a to see how many TCP end points your system currently has active.

DELL EX.1095.840

DELL EX.1095.841DELL EX.1095.841

TCP Timers

25.1 Introduction

We start our detailed description of the TCP source code by looking at the various TCP
timers. We encounter these timers throughout most of the TCP functions.

TCP maintains seven timers for each connection. They are briefly described here, in
the approximate order of their occurrence during the lifetime of a connection.

A connection-establishment timer starts when a SYN is sent to establish a new
connection. If a response is not received within 75 seconds, the connection
establishment is aborted.

A retransmission timer is set when TCP sends data. If the data is not acknowl-
edged by the other end when this timer expires, TCP retransmits the data. The
value of this timer (i.e., the amount of time TCP waits for an acknowledgment)
is calculated dynamically, based on the round-trip time measured by TCP for
this connection, and based on the number of times this data segment has been
retransmitted. The retransmission timer is bounded by TCP to be between 1
and 64 seconds.

A delayed ACK timer is set when TCP receives data that must be acknowledged,
but need not be acknowledged immediately. Instead, TCP waits up to 200 ms
before sending the ACK. If, during this 200-ms time period, TCP has data to
send on this connection, the pending acknowledgment is sent along with the
data (called piggybacking).

817

DELL EX.1095.842

818 TCP Timers Chapter 25

A persist timer is set when the other end of a connection advertises a window of
0, stopping TCP from sending data. Since window advertisements from the
other end are not sent reliably (that is, ACKs are not acknowledged, only data is
acknowledged), there’s a chance that a future window update, allowing TCP to
send some data, can be lost. Therefore, if TCP has data to send and the other
end advertises a window of 0, the persist timer is set and when it expires, i byte
of data is sent to see if the window has opened. Like the retransmission timer,
the persist timer value is calculated dynamically, based on the round-trip time.
The value of this is bounded by TCP to be between 5 and 60 seconds.

A keepalive timer can be set by the process using the SO_KEEPALIVE socket
option. If the connection is idle for 2 hours, the keepalive timer expires and a
special segment is sent to the other end, forcing it to respond. If the expected
response is received, TCP knows that the other host is still up, and TCP won’t
probe it again until the connection is idle for another 2 hours. Other responses
to the keepalive probe tell TCP that the other host has crashed and rebooted. If
no response is received to a fixed number of keepalive probes, TCP assumes that
the other end has crashed, although it can’t distinguish between the other end
being down (i.e., it crashed and has not yet rebooted) and a temporary lack of
co.nnectivity to the other end (i.e., an intermediate router or phone line is down).

A FIN_WAIT 2 timer. When a connection moves from the FIN_WAIT_I state to
the FIN_WAIT_2 state (Figure 24.15) and the connection cannot receive any more
data (implying the process called close, instead of taking advantage of TCP’s
half-close with shutdown), this timer is set to 10 minutes. When this timer
expires it is reset to 75 seconds, and when it expires the second time the connec-
tion is dropped. The purpose of this timer is to avoid leaving a connection in
the FIN WAIT_2 state forever, if the other end never sends a FIN. (We don’t
show this timeout in Figure 24.15.)

A TIME_WAIT timer, often called the 2MSL timer. The term 2MSL means twice
the MSL, the maximum segment lifetime defined in Section 24.8. It is set when a
connection enters the TIME_WAIT state (Figure 24.15), that is, when the connec-
tion is actively closed. Section 18.6 of Volume 1 describes the reasoning for the
2MSL wait state in detail. The timer is set to I minute (Net/3 uses an MSL of 30
seconds) when the connection enters the TIME_WAIT state and when it expires,
the TCP control block and Internet PCB are deleted, allowing that socket pair to
be reused.

TCP has two timer functions: one is called every 200 ms (the fast timer) and the
other every 500 ms (the slow timer). The delayed ACK timer is different from the other
six: when the delayed ACK timer is set for a connection it means that a delayed ACK
must be sent the next time the 200-ms timer expires (i.e., the elapsed time is between 0
and 200 ms). The other six timers are decremented every 500 ms, and only when the
counter reaches 0 does the corresponding action take place.

DELL EX.1095.843

Section 25.2 Code Introduction 819

25.2 Code Introduction

The delayed ACK timer is enabled for a connection when the TF_lg~.r.ACI< flag (Fig-
ure 24.14) is set in the TCP control block. The array t_t±mer in the TCP control block
contains four (TCPT_N~fIMERS) counters used to implement the other six timers. The
indexes into this array are shown in Figure 25.1. We describe briefly how the six timers
(other than the delayed ACK timer) are implemented by these four counters.

Constant Value

TCPT_REXMT 0
TCPT_PERSIST 1
TCPT_KEEP 2
TCPT_2MSL 3

Description

retransmission timer
persist timer
keepalive timer or connection-establishment timer
2MSL timer or FIN_WAIT_2 timer

Figure 25.1 Indexes into the t_timer array.

Each entry in the t_timer array contains the number of 500-ms clock ticks until the
timer expires, with 0 meaning that the timer is not set. Since each timer is a short, if
16 bits hold a short, the maximum timer value is 16,383.5 seconds, or about 4.5 hours.

Notice in Figure 25.1 that four "timer counters" implement six TCP "timers,"
because some of the timers are mutually exclusive. We’ll distinguish between the coun-
ters and the timers. The TCPT_KEEP counter implements both the keepalive timer and
the connection-establishment timer, since the two timers are never used at the same
time for a connection. Similarly, the 2MSL timer and the FIN_WAIT_2 timer are imple-
mented using the TCPT_2MSL counter, since a connection is only in one state at a time.
The first section of Figure 25.2 summarizes the implementation of the seven TCP timers.
The second and third sections of the table show how four of the seven timers are initial-
ized using three global variables from Figure 24.3 and two constants from Figure 25.3.
Notice that two of the three globals are used with multiple timers. We’ve already said
that the delayed ACK timer is tied to TCP’s 200-ms timer, and we describe how the
other two timers are set later in this chapter.

t_timer[TCPT_REXMT]
t_timer[TCPT_PERSIST]
t_timer[TCPT_KEEP] ¯

t_timer[TCPT_2MSL]
t_flags & TF_DELACK

tcp_keepidle (2hr)
tcp_keepintvl (75sec)
tcp_maxidle (10min)

2 * TCPTV_MSL (60sec)
TCPTV_KEEP_INIT (75sec) ¯

conn. delayed keep- FIN_- 2MSL
estab, rexmit

ACK persist alive WAIT_2

Figure 25.2 Implementation of the seven TCP timers.

DELL EX.1095.844

820 TCP Timers Chapter 25

Figure 25.3 shows the fundamental timer values for the Net/3 implementation.

Constant

TCPTV MSL

TCPTV_MIN
TCPTV_REXMTMAX

TCPTV_ PERSMIN
TCPTV_ PERSMAX
TCPTV_KEEP_INIT
TCPTV_KEEP_ IDLE

TCPTV_KEEPINTVL
TCPTV_ SR TTBASE

TCPTV_SRTTDFLT

#500-ms
clock ticks

60

2
128

10
120

150
14400

150
0
6

#sec Description

30 MSL, maximum segment lifetime
1 minimum value of retransmission timer

64 maximum value of retransmission timer
5 minimum value of persist timer

60 maximum value of persist timer
75 connection-establishment timer value

7200 idle time for connection before first probe (2 hours)
75 time between probes when no response

special value to denote no measurements yet for connection
3 default RTT when no measurements yet for connection

Figure 25.3 Fundamental timer values for the implementation.

Figure 25.4 shows other timer constants that we’ll encounter.

Constant Va~e

TCP_LINGERTIME 120
TCP MAXRXTSHIFT 12
TCPTV_KEERCNT 8

Description

maximum #seconds for SO_LINGER socket option
maximum #retransmissions waiting for an ACK
maximum #keepalive probes when no response received

Figure 25.4 Timer constants.

The TCPT_RANGESET macro, shown in Figure 25.5, sets a timer to a given value,
making certain the value is between the specified minimum and maximum.

102 #define TCPT_RANGESET(tv, value,
103 (tv) : (value); \
104 if ((tv) < (t~nin)) \
105 (tv) - (tvmin); \
106 else if ((tv) > (tvmax)) \
107 (tv) : (tvmax); \
108 }

tvmin, tvmax) { \
tcp_timer.h

Figure 25.5 TCPT_RANGESET macro.

tcp_timer.h

We see in Figure 25.3 that the retransmission timer and the persist timer have upper and
lower bounds, since their values are calculated dynamically, based on the measured
round-trip time. The other timers are set to constant values.

There is one additional timer that we allude to in Figure 25.4 but don’t discuss in
this chapter: the linger timer for a socket, set by the SO_LINGER socket option. This is a
socket-level timer used by the close system call (Section 15.15). We will see in Fig-
ure 30.12 that when a socket is closed, TCP checks whether this socket option is set and
whether the linger time is 0. If so, the connection is aborted with an RST instead of
TCP’s normal close.

DELL EX.1095.845

SecHon 25.4 tcp_fasttimo Function 821

25.3 tcp_canceltimers Function
The function tcp_canceltimers, shown in Figure 25.6, is called by tcp_input
when the TIME_VVAIT state is entered. All four timer counters are set to 0, which turns
off the retransmission, persist, keepalive, and FIN_VVAIT_2 timers, before tcp_input
sets the 2MSL timer.

107 void
108 tcp_canceltimers(tp)
109 struct tcpcb *tp;
ii0 {
iii int i;

tcp_timer.c

112
113
114 }

for (i = 0; i < TCPT_NTIHERS; i++)
tp->t_timer[i] = 0;

Figure 25.6 tcp_canceltimers function.
tcp_timer.c

25.4 tcp_fasttimo Function

The function tcp_fasttimo, shown in Figure 25.7, is called by pr_fasttimo every
200 ms. It handles only the delayed ACK timer.

41 void
42 tcp_fasttimo()
43 {
44 struct inpcb *inp;
45 struct tcpcb *tp;
46 int s = splnet();

47
48
49
50
51
52
53
54
55
56
57
58

inp : tcb.inp_next;
if (inp)

for (; inp [: &tcb; inp = inp->inp_next)
if ((tp = (struct tcpcb *) inp->inp_ppcb)

(tp->t_flags & TF_DELACK)) {
tp->t_flags &: ~TF_DELACK;
tp->t_flags]: TF_ACKNOW;
tcpstat.tcps_delack++;
(void) tcp_output(tp);

}
splx {s) ;

&&

Figure 25.7 tcp_fastt imo function, which is called every 200 ms.

tcp_timer.c

tcp_timer.c

Each Internet PCB on the TCP list that has a corresponding TCP control block is
checked. If the TF_DELACK flag is set, it is cleared and the TF_ACKNOW flag is set
instead, tcp_output is called, and since the TF_ACKNOW flag is set, an ACK is sent.

DELL EX.1095.846

822 TCP Timers Chapter 25

How can TCP have an Internet PCB on its PCB list that doesn’t have a TCP control
block (the test at line 50)? When a socket is created (the PRU_ATTACH request, in
response to the socket system call) we’ll see in Figure 30.11 that the creation of the
Internet PCB is done first, followed by the creation of the TCP control block. Between
these two operations a high-priority clock interrupt can occur (Figure 1.13), which calls
tcp_fasttimo.

25.5

71

72--89

90--93

94

tcp_slowtimo Function

The function tcp_slowtimo, shown in Figure 25.8, is called by pr_slowtimo every
500 ms. It handles the other six TCP timers: connection establishment, retransmission,
persist, keepalive, FIN_WAIT_2, and 2MSL.

tcp_maxidle is initialized to 10 minutes. This is the maximum amount of time
TCP will send keepalive probes to another host, waiting for a response from that host.
This variable is also used with the FIN WAIT_2 timer, as we describe in Section 25.6.
This initialization statement could be moved to tep_init, since it only needs to be
evaluated when the system is initialized (see Exercise 25.2).

Check each timer counter in all TCP control blocks

Each Internet PCB on the TCP list that has a corresponding TCP control block is
checked. Each of the four timer counters for each connection is tested, and if nonzero,
the counter is decremented. When the timer reaches 0, a PRU_SLOWTII~O request is
issued. We’ll see that this request calls the function tcp_timers, which we describe
later in this chapter.

The fourth argument to tcp_usrreq is a pointer to an mbuf. But this argument is
actually used for different purposes when the mbuf pointer is not required. Here we
see the index i is passed, telling the request which timer has expired. The funny-
looking cast of i to an mbuf pointer is to avoid a compile-time error.

Check if TCP control block has been deleted

Before examining the timers for a control block, a pointer to the next Internet PCB is
saved in ipnxt. Each time the PRU_SLOWTIMO request returns, t cp_s l owt imo checks
whether the next PCB in the TCP list still points to the PCB that’s being processed. If
not, it means the control block has been deleted--perhaps the 2MSL timer expired or
the retransmission timer expired and TCP is giving up on this connection--causing a
jump to tpgone, skipping the remaining timers for this control block, and moving on to
the next PCB.

Count idle time

t_idle is incremented for the control block. This counts the number of 500-ms
clock ticks since the last segment was received on this connection. It is set to 0 by
tcp_input when a segment is received on the connection and used for three purposes:
(1) by the keepalive algorithm to send a probe after the connection is idle for 2 hours, (2)
to drop a connection in the FIN_WAIT 2 state that is idle for 10 minutes and 75 seconds,
and (3) by tcp_o.utput to return to the slow start algorithm after the connection has
been idle for a while.

DELL EX.1095.847

Section 25.5 t cp_s 1 owt imo Function 823

tcp timenc
64 void -
65 tcp_slowtimo()
66 {
67 struct inpcb *ip, *ipnxt;
68 struct tcpcb *tp;
69 int s - splnet();
70 int i;

71
72
73
74
75
76
77
78
79

~80
81
82
83
84
85
86
87
88
89
9O
91
92
93
94
95
96
97
98
99

i00
i01
102

tcp maxidle - TCPTV_KEEPCHT * tcp_keepintvl;

¯ Search through tcb’s and update active timers.
*/

zp = tcb.inp_next;
if (ip :- 0) {

splx(s);
return;

}
for (; ip != &tcb; ip = ipnxt) {

ipnxt - ip->inp_next;
tp : intotcpcb(ip) ;
if (tp :- 0)

continue;
for (i = 0; i < TCPT_NTIHERS; i++) {

if (tp >t_timer[i] && --tp->t_timer[i] == 0)
(void) tcp_usrreq(tp->t_inpcb >inp_socket,

PRU_SLOWTIMO, (struct mbuf *) 0,
(struct mbuf *) i, (struct mbuf *) 0) ;

if (ipnxt->inp_prev != ip)
goto tpgone;

l
}
tp >t_idle++;
if (tp->t_rtt)

tp >t_rtt++;
tpgone:

;
}
tcp_iss +- TCP_ISSINCR / PR_SLOWHZ;
tcp_now++;
splx(s);

/* increment iss */
/* for timestamps */

tcp_timer.c
Figure 25.8 tcp_slowt imo function, which is called every 500 ms.

95--96

Increment RTT counter

If this connection is timing an outstanding segment, t_rtt is nonzero and counts
the number of 500-ms clock ticks until that segment is acknowledged. It is initialized to
1 by tcp_output when a segment is transmitted whose RTT should be timed.
t cp_s 1 owt imo increments this counter.

DELL EX.1095.848

824 TCP Timers Chapter 25

ioo

i01

75--79

Increment initial send sequence number
tcp_iss was initialized to 1 by tcp_init. Every 500 ms it is incremented by

64,000:128,000 (TCP_ISSTNCR) divided by 2 (PR_$LOWHZ). This is a rate of about once
every 8 microseconds, although tcp_iss is incremented only twice a second. We’ll see
that t cp_i s s is also incremented by 64,000 each time a connection is established, either
actively or passively.

RFC 793 specifies that the initial sequence number should increment roughly every 4 microsec-
onds, or 250,000 times a second. The Net/3 value increments at about one-half this rate.

Increment RFC 1323 timestamp value
tcp_now is initialized to 0 on bootstrap and incremented every 500 ms. It is used

by the timestamp option defined in RFC 1323 [Jacobson, Braden, and Borman 1992],
which we describe in Section 26.6.

Notice that if there are no TCP connections active on the host (tcb. inp_n÷×t is
null), neither t cp_i s s nor t cl~-now is incremented. This would occur only when the
system is being initialized, since it would be rare to find a Unix system attached to a
network without a few TCP servers active.

25.6 tcp_timers Function

The function tcp_timers is called by TCP’s PRU_SLOWTIMO request (Figure 30.10):
case PRU_SLOWTIMO:

tp = tcp_timers(tp, (int)nam);

when any one of the four TCP timer counters reaches 0 (Figure 25.8).
The structure of the function is a switch statement with one case per timer, as

outlined in Figure 25.9.

120 struct tcpcb *
121 tcp_timers(tp, timer)
122 struct tcpcb *tp;
123 int timer;
124 {
125 int rexmt;

tcp_timer.c

126 switch (timer). {

/* switch cases */

256 }
257 return (tp);
258 }

Figure 25.9 tcp_timers function: general organization.

tcp_timer.c

We now discuss three of the four timer counters (five of TCP’s timers), saving the
retransmission timer for Section 25.11.

DELL EX.1095.849

Section 25.6 tcp_timers Function 825

FIN_WAIT_2 and 2MSL Timers

TCP’s TCPT_2MSL counter implements two of TCP’s timers.

FIN_WAIT_2 timer. When tcp_input moves from the FIN_WAIT_I state to
the FIN_WAIT_2 state and the socket cannot receive any more data (implying
the process called close, instead of taking advantage of TCP’s half-close with
shutdown), the FIN_WAIT_2 timer is set to 10 minutes (tcp_raaxidle). We’ll
see that this prevents the connection from staying in the FIN_WAIT_2 state for-
ever.

2MSL timer. When TCP enters the TIME_WAIT state, the 2MSL timer is set to
60 seconds (TCPTV_MSL times 2).

Figure 25.10 shows the case for the 2MSL timer--executed when the timer reaches 0.

127
128
129
130
131
132
133
134
135
136
137
138
139

/. tcp_timenc

* 2 MSL timeout in shutdown went off. If we’re closed but
* still waiting for peer to close and connection has been idle
* too long, or if 2MSL time is up from TIME WAIT, delete connection
* control block. Otherwise, check again in a bit.
*/

case TCPT_2MSL:
if (tp->t_state != TCPS_TIME_WAIT &&

tp->t_idle <: tcp_maxidle)
tp->t_timer[TCPT_2MSL] : tcp_keepintvl;

else
tp : tcp_close(tp);

break;

Figure 25.10 tcp_timers function: expiration of 2MSL timer counter.

tcp_timer.c

127-139

127--139

2MSL timer
The puzzling logic in the conditional is because the two different uses of the

TCPT_2IqSL counter are intermixed (Exercise 25.4). Let’s first look at the TIME_WAIT
state. When the timer expires after 60 seconds, tcp_close is called and the control
blocks are released. We have the scenario shown in Figure 25.11. This figure shows the
series of function calls that occurs when the 2MSL timer expires. We also see that set-
ting one of the timers for N seconds in the future (2 x N ticks), causes the timer to expire
somewhere between 2 x N - 1 and 2 x N ticks in the future, since the time until the first
decrement of the counter is between 0 and 500 ms in the future.

FIN_WAIT_2 timer
If the connection state is not TIME_WAIT, the TCPT_2MSL counter is the

FIN_WAIT_2 timer. As soon as the connection has been idle for more than 10 minutes
(tcp_raaxidle) the connection is closed. But if the connection has been idle for less
than or equal to 10 minutes, the FIN_WAIT_2 timer is reset for 75 seconds in the future.
Figure 25.12 shows the typical scenario.

DELL EX.1095.850

826 TCP Timers Chapter 25

119 clock ticks x 500 ms/tick = 59.5 seconds

117 3 2 1 0

500 ms prslowtimo ()
per tick calls

t cp_s lowt imo ()
calls

t cp_us rreq (PRU_SLOWTIMO)
calls

tcp_timers (TCPT_2MSL)
calls

119 118

somewhere in here
connection enters

TIME_WAIT state, 2MSL
timer set for 60 seconds
(120 ticks) in the future

tcp_close()

Figure 25.11 Setting and expiration of 2MSL timer in TIME_WAIT state.

enter FIN_WAIT_2 state;
FIN_WAIT_2 timer set to
1200 (t cp_maxidle);

t_idle = 0

1200 ticks 150 ticks
(10 minutes)

[

(75 seconds) !

FIN_WAIT_2 timer FIN_WAIT_2 timer expires;
expires; t_idle = 1198; t_idle = 1198+150;
FIN_WAIT_2 timer set to tcp_close ()
150 (t cp_keepintvl)

Figure 25.12 FIN_WAIT_2 timer to avoid infinite wait in FIN_WAIT_2 state.

The connection moves from the FIN WAIT_I state to the FIN_WAIT_2 state on the
receipt of an ACK (Figure 24.15). Receiving this ACK sets t_idle to 0 and the
FIN_WAIT 2 timer is set to 1200 (tcp_maxidle). In Figure 25.12 we show the up
arrow just to the right of the tick mark starting the 10-minute period, to reiterate that the
first decrement of the counter occurs between 0 and 500 ms after the counter is set.
After 1199 ticks the timer expires, but since t_idle is incremented after the test and
decrement of the four counters in Figure 25.8, t_idle is 1198. (We assume the connec-
tion is idle for this 10-minute period.) The comparison of 1198 as less than or equal to
1200 is true, so the FIN_WAIT_2 timer is set to 150 (tcp_keepintvl). When the timer
expires again in 75 seconds, assuming the connection is still idle, t_idle is now 1348,
the test is false, and tcp_close is called.

The reason for the 75-second timeout after the first 10-minute timeout is as follows:
a connection in the FIN WAIT_2 state is not dropped until the connection has been idle
for more than 10 minutes. There’s no reason to test t_idle until at least 10 minutes
have expired, but once this time has passed, the value of t_idle is checked every 75
seconds. Since a duplicate segment could be received, say a duplicate of the ACK that

DELL EX.1095.851

Section 25.6 tcp_timers Function 827

moved the connection from the FIN_WAIT_I state to the FIN_WAIT_2 state, the
10-minute wait is restarted when the segment is received (since t_idle will be set to 0).

Terminating an idle connection after more than 10 minutes in the FIN_WAIT_2 state violates
the protocol specification, but this is practical. In the FIN_WAIT_2 state the process has called
close, all outstanding data on the connection has been sent and acknowledged, the other end
has acknowledged the FIN, and TCP is waiting for the process at the other end of the connec-
tion to issue its close. If the other process never closes its end of the connection, our end can
remain in the FIN_WAIT_2 forever. A counter should be maintained for the number of con-
nections terminated for this reason, to see how often this occurs.

Persist Timer

Figure 25.13 shows the ease for when the persist timer expires.

210 /*
211 * Persistence timer into zero window.
212 * Force a byte to be output, if possible.
213 */
214 case TCPT_PERSIST:
215 tcpstat.tcps_persisttimeo++;
216 tcp_setpersist(tp);
217 tp->t_force = i;
218 (void) tcp_output(tp);
219 tp->t_force = 0;
220 break;

Figure 25.13 tcp_timers function: expiration of persist timer.

tcp_timer, c

tcp_timer.c

210-22 0

Force window probe segment
When the persist timer expires, there is data to send on the connection but TCP has

been stopped by the other end’s advertisement of a zero-sized window.
tclo_setpersist calculates the next value for the persist timer and stores it in the
TCPT_PERSIST counter. The flag t_force is set to 1, forcing tcp_output to send 1
byte, even though the window advertised by the other end is 0.

Figure 25.14 shows typical values of the persist timer for a LAN, assuming the
retransmission timeout for the connection is 1.5 seconds (see Figure 22.1 of Volume 1).

]515]6[12] 24 [48] 60] 60 seconds[
0 5 10 16 28 52 100 160 220

Figure 25.14 Time line of persist timer when probing a zero window.

Once the value of the persist timer reaches 60 seconds, TCP continues sending window
probes every 60 seconds. The reason the first two values are both 5, and not 1.5 and 3, is
that the persist timer is lower bounded at 5 seconds. It is also upper bounded at 60 sec-
onds. The multiplication of each value by 2 to give the next value is called an
exponential backoff, and we describe how it is calculated in Section 25.9.

DELL EX.1095.852

828 TCP Timers Chapter 25

Connection Establishment and Keepalive Timers

TCP’s TCPT_KEEP counter implements two timers:

When a SYN is sent, the connection-establishment timer is set to 75 seconds
(TCPTV_KEEP_INIT). This happens when connect is called, putting a connec-
tion into the SYN_SENT state (active open), or when a connection moves from
the LISTEN to the SYN_RCVD state (passive open). If the connection doesn’t
enter the ESTABLISHED state within 75 seconds, the connection is dropped.

When a segment is received on a connection, tcp_input resets the keepalive
timer for that connection to 2 hours (tcp_keepidle), and the t_idle counter
for the connection is reset to 0. This happens for every TCP connection on the
system, whether the keepalive option is enabled for the socket or not. If the
keepalive timer expires (2 hours after the last segment was received on the con-
nection), and if the socket option is set, a keepalive probe is sent to the other
end. If the timer expires and the socket option is not set, the keepalive timer is
just reset for 2 hours in the future.

221--228

Figure 25.16 shows the case for TCP’s TCPT_KEEP counter.
Connection-establishment timer expires after 75 seconds

If the state is less than ESTABLISHED (Figure 24.16), the TCPT_K~.EP counter is the
connection-establishment timer. At the label dropit, tcp_drop is called to terminate
the connection attempt with an error of ETIMEDOUT. We’ll see that this error is the
default error--if, for example, a soft error such as an ICMP host unreachable was
received on the connection, the error returned to the process will be changed to
EHOSTUNREACH instead of the default.

In Figure 30.4 we’ll see that when TCP sends a SYN, two timers are initialized: the
connection-establishment timer as we just described, with a value of 75 seconds, and the
retransmission timer, to cause the SYN to be retransmitted if no response is received.
Figure 25.15 shows these two timers.

connection 75 secondsestablishment]]
timer: 0 75

/

retransmission] 6] 24] 48 seconds].]timer: 0 6 30 78

transmit retransmit retransmit tcp_drop ()
SYN SYN SYN

Figure 25.15 Connection-establishment timer and retransmission timer after SYN is sent.

The retransmission timer is initialized to 6 seconds for a new connection (Figure 25.19),
and successive values are calculated to be 24 and 48 seconds. We describe how these
values are calculated in Section 25.7. The retransmission timer causes the SYN to be

DELL EX.1095.853

Section 25.6 tcp_timers Function 829

221 /.
tcp_time~c

222 * Keep-alive timer went off; send something
223 * or drop connection if idle for too long.
224 */
225 case TCPT_KEEP:
226 tcpstat.tcps_keeptimeo++;
227 if (tp->t_state < TCPS_ESTABLISHED)
228 goto dropit;

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

/* connection establishment timer */

if (tp->t_inpcb->inp_socket->so_options & S0_KEEPALIVE &&
tp->t_state <: TCPS_CLOSE_WAIT) {
if (tp->t_idle >: tcp_keepidle + tcp_maxidle)

goto dropit;
/*

* Send a packet designed to force a response
* if the peer is up and reachable:
* either an ACK if the connection is still alive,
* or an RST if the peer has closed the connection
* due to timeout or reboot.
* Using sequence number tp->snd_una-i
* causes the transmitted zero-length segment
* to lie outside the receive window;
* by the protocol spec, this requires the
* correspondent TCP to respond.
*/

tcpstat.tcps_keepprobe++;
tcp_respond(tp, tp->t_template, (struct mbuf *) NULL,

tp->rcv nxt, tp->snd una - i, 0);
tp->t_timer[TCPT_KEEP] = tcp_keepintvl;

} else
tp->t_timer[TCPT_KEEP] = tcp_keepidle;

break;
dropit:

tcpstat.tcps_keepdrops++;
tp = tcp_drop(tp, ETIMEDOUT);
break;

Figure 25.16 tcp_timers function: expiration of keepalive timer.

tcp_timer.c

229--230

transmitted a total of three times, at times 0, 6, and 30. At time 75, 3 seconds before the
retransmission timer would expire again, the connection-establishment timer expires,
and tcp_drop terminates the connection attempt.

Keepalive timer expires after 2 hours of idle time
This timer expires after 2 hours of idle time on every connection, not just ones with

the SO_KEEPAr.TVE socket option enabled. If the socket option is set, probes are sent
only if the connection is in the ESTABLISHED or CLOSE_WAIT states (Figure 24.15).
Once the process calls close (the states greater than CLOSE_WAIT), keepalive probes
are not sent, even if the connection is idle for 2 hours.

DELL EX.1095.854

830 TCP Timers Chapter 25

231--232

233--248

Drop connection when no response
If the total idle time for the connection is greater than or equal to 2 hours

(tcp_keepidl’e) plus 10 minutes (top_max±die), the connection is dropped. This
means that TCP has sent its limit of nine keepalive probes, 75 seconds apart
(tcp_keep±ntvl), with no response. One reason TCP must send multiple keepalive
probes before considering the connection dead is that the ACKs sent in response do not
contain data and therefore are not reliably transmitted by TCPo An ACK that is a
response to a keepalive probe can get lost.

Send a keepalive probe
If TCP hasn’t reached the keepalive limit, tcp_respond sends a keepalive packet.

The acknowledgment field of the keepalive packet (the fourth argument to
tcp_respond) contains rcv nxt, the next sequence number expected on the connec-
tion. The sequence number field of the keepalive packet (the fifth argument) deliber-
ately contains snd_una minus 1, which is the sequence number of a byte of data that
the other end has already acknowledged (Figure 24.17). Since this sequence number is
outside the window, the other end must respond with an ACK, specifying the next
sequence number it expects.

Figure 25.17 summarizes this use of the keepalive timer.

2 hours
(connection idle)

segment
received

i 75 i 75 i 75 i 75 i 75 I 75 i 75 i 75 i 75 i
0 75 150 225 300 375 450 525 600 675

probe probe probe probe probe probe probe probe probe
1 2 3 4 5 6 7 8 9

t~p_drop ()

Figure 25.17 Summary of keepalive timer to detect unreachability of other end.

The nine keepalive probes are sent every 75 seconds, starting at time 0, through time
600. At time 675 (11.25 minutes after the 2-hour timer expired) the connection is
dropped. Notice that nine keepalive probes are sent, even though the constant
TCPTV_KEEPCNT (Figure 25.4) is 8. This is because the variable t_idle is incremented
in Figure 25.8 after the timer is decremented, compared to 0, and possibly handled.
When tcp_input receives a segment on a connection, it sets the keepalive timer to
14400 (tcp_keepidle) and t_idle to 0. The next time tcp_slowtimo is called, the
keepalive timer is decremented to 14399 and t_idle is incremented to i. About 2
hours later, when the keepalive timer is decremented from 1 to 0 and tcp_tiraers is
called, the value of t_idle will be 14399. We can build the table in Figure 25.18 to see
the value of t_idle each time tcp_tiraers is called.

The code in Figure 25.16 is waiting for t_idle to be greater than or equal to 15600
(tcp_keepidle + tcp_maxidle) and that only happens at time 675 in Figure 25.17,
after nine keepalive probes have been sent.

DELL EX.1095.855

Section 25.7 Retransmission Timer Calculations 831

249--250

probe#

1
2
3
4
5
6
7
8
9

timein
t_idleFigure 25.17

0 14399
75 14549
150 14699
225 14849
300 14999
375 15149
450 15299
525 15449
600 15599
675 15749

Figure 25.18 The value of t_idle when tcp_t imers is called for keepalive processing.

Reset keepalive timer

If the socket option is not set or the connection state is greater than CLOSE_WAIT,
the keepalive timer for this connection is reset to 2 hours (t c p_keepidl e).

Unfortunately the counter tcps_keepdrops (line 253) counts both uses of the TCPT_KEEP
counter: the connection-establishment timer and the keepalive timer.

25.7 Retransmission Timer Calculations

The timers that we’ve described so far in this chapter have fixed times associated with
them: 200 ms for the delayed ACK timer, 75 seconds for the connection-establishment
timer, 2 hours for the keepalive timer, and so on. The final two timers that we describe,
the retransmission timer and the persist timer, have values that depend on the mea-
sured RTT for the connection. Before going through the source code that calculates and
sets these timers we need to understand how TCP measures the RTT for a connection.

Fundamental to the operation of TCP is setting a retransmission timer when a seg-
ment is transmitted and an ACK is required from the other end. If the ACK is not
received when the retransmission timer expires, the segment is retransmitted. TCP
requires an ACK for data segments but does not require an ACK for a segment without
data (i.e., a pure ACK segment). If the calculated retransmission timeout is too small, it
can expire prematurely, causing needless retransmissions. If the calculated value is too
large, after a segment is lost, additional time is lost before the segment is retransmitted,
degrading performance. Complicating this is that the round-trip times between two
hosts can vary widely and dynamically over the course of a connection.

TCP in Net/3 calculates the retransmission timeout (RTO) by measuring the round-
trip time (nticks) of data segments and keeping track of the smoothed RTT estimator
(srtt) and a smoothed mean deviation estimator (rttvar). The mean deviation is a good
approximation of the standard deviation, but easier to compute since, unlike the stan-
dard deviation, the mean deviation does not require square root calculations. [Jacobson
1988b] provides additional details on these RTT measurements, which lead to the fol-
lowing equations:

DELL EX.1095.856

832 TCP Timers Chapter 25

delta = nticks - srtt

srtt ~- srtt + g x delta

rttvar ~- rttvar + h(I delta I - rttvar)

RTO = srtt + 4 x rttvar

delta is the difference between the measured round trip just obtained (nticks) and the
current smoothed RTT estimator (srtt). g is the gain applied to the RTT estimator and
equals 1/8. h is the gain applied to the mean deviation estimator and equals 1/4. The two
gains and the multiplier 4 in the RTO calculation are purposely powers of 2, so they can
be calculated using shift operations instead of multiplying or dividing.

[Jacobson 1988b] specified 2 x rttvar in the calculation of RTO, but after further research,
~acobson 1990d] changed the value to 4 x rttvar, which is what appeared in the Net/i imple-
mentation.

We now describe the variables and calculations used to calculate TCP’s retransmis-
sion timer, as we’ll encounter them throughout the TCP code. Figure 25.19 lists the vari-
ables in the control block related to the retransmission timer.

tcpcb Unitsmember

t_srtt ticks x 8 0

t_r ttvar ticks x 4 24

t_rxt cur ticks 12

t_rttmin ticks 2

t_rxtshift n.a. 0

t cp_newt cpcb #sec Descriptioninitial value

smoothed RTT estimator: srtt x 8
3 smoothed mean deviation estimator: r~tvar x 4
6 current retransmission timeout: RTO
1 minimum value for retransmission timeout

index into t cp_backo f f [] array (exponential backoff)

Figure 25.19 Control block variables for calculation of retransmission timer.

We show the tcp_backoff array at the end of Section 25.9. The tcp_mewtcpcb func-
tion sets the initial values for these variables, and we cover it in the next section. The
term shift in the variable t_rxtshift and its limit TCP_MAXRXTSHIFT is not entirely
accurate. The former is not used for bit shifting, but as Figure 25.19 indicates, it is an
index into an array.

The confusing part of TCP’s timeout calculations is that the two smoothed estima-
tors maintained in the C code (t_srtt and t_rttvar) are fixed-point integers, instead
of floating-point values. This is done to avoid floating-point calculations within the ker-
nel, but it complicates the code.

To keep the scaled and unscaled variables distinct, we’ll use the italic variables srtt
and rttvar to refer to the unscaled variables in the earlier equations, and t_srtt and
t_rttvar to refer to the scaled variables in the TCP control block.

Figure 25.20 shows four constants we encounter, which define the scale factors of 8
for t_srtt and 4 for t_rttvar.

DELL EX.1095.857

Section 25.8 tcp_newtcpcb Function 833

Constant Value Description
TCP_RTT_SCALE 8 multiplier: t_srtt = srtt x 8
TCP_RTT_SHIFT 3 shift: t_srtt = srtt << 3
TCP_RTTVAR_SCALE 4 multiplier: t_rt tvar = rttvar x 4
TCP_RTTVAR_SHIFT 2 shift: t_rttvar = rttvar << 2

Figure 25.20 Multipliers and shifts for RTT estimators.

25.8 tcp_newtcpcb Function

A new TCP control block is allocated and initialized by tcp_newtcpcb, shown in Fig-
ure 25.21. This function is called by TCP’s PRU_ATTACH request when a new socket is
created (Figure 30.2). The caller has previously allocated an Internet PCB for this con-
nection, pointed to by the argument inD. We present this function now because it ini-
tializes the TCP timer variables.

167 struct tcpcb *
168 tcp_newtcpcb(inp)
169 struct inpcb *inp;
170 {
171 struct tcpcb *tp;

tcp_subr.c

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

tp - malloc(sizeof(*tp), M_PCB, M_NOWAIT);
if (tp -: NULL)

return ((struct tcpcb *) 0);
bzero((char *) tp, sizeof(struct tcpcb));
tp >seg_next : tp->seg~rev - (struct tcpiphdr *) tp;
tp >t_maxseg : tcp_mssdflt;
tp->t_flags = tcp. do rfc1323 ? (TF_REQ_SCALE I TF_REQ_TSTMP) : 0;
tp->t_inpcb = inp;
/*

* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
* rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
* reasonable initial retransmit time.
*/

tp >t_srtt - TCPTV_SRTTBASE;
tp >t_rttvar = tcp_rttdflt * PR_SLOWHZ << 2;
tp->t_rttmin - TCPTV_MIN;
TCPT_RANGESET(tp->t_rxtcur,

((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> i,
TCPTV_MIN, TCPTV_REXHTMAX);

191
192

tp >snd_cwnd : TCP_MAXWIN << TCP MAX WINSHIFT;
tp->snd_ssthresh = TCP_MAXWIN << TCP MAX WINSHIFT;

193
194
195
196

inp->inp_ip.ip_ttl = ip_defttl;
inp->inp_ppcb = (caddr_t) tp;
return (tp);

Figure 25.2l tcp_newt cpcb function: create and initialize a new TCP control block.

tcp_subr.c

DELL EX.1095.858

834 TCP Timers Chapter 25

167--I 75

176

177--179

180-185

186-187

188-190

The kernel’s ma 11 o c function allocates memory for the control block, and b zero
sets it to 0.

The two variables seg_next and seg_prev point to the reassembly queue for out-
of-order segments received for this connection. We discuss this queue in detail in Sec-
tion 27.9.

The maximum segment size to send, t_maxseg, defaults to 512 (tcp_mssdflt).
This value can be changed by the top_ross function after an MSS option is received
from the other end. (TCP also sends an MSS option to the other end when a new con-
nection is established.) The two flags TF_REQ_SCALE and TF_REQ_TSTMP are set if the
system is configured to request window scaling and timestamps as defined in RFC 1323
(the global tcp_do_rfc1323 from Figure 24.3, which defaults to 1). The t_inpcb
pointer in the TCP control block is set to point to the Internet PCB passed in by the
caller.

The four variables t_srtt, t_rttvar, t_rttmin, and t_r×tcur, described in
Figure 25.19, are initialized. First, the smoothed RTT estimator t_srtt is set to 0
(TCPTV_SRTTBASE), which is a special value that means no RTT measurements have
been made yet for this connection, tcp_xmit_timer recognizes this special value
when the first RTT measurement is made.

The smoothed mean deviation estimator t_rttvar is set to 24:3 (tcp_rttdflt,
from Figure 24.3) times 2 (PR_SLOWHZ) multiplied by 4 (the left shift of 2 bits). Since
this scaled estimator is 4 times the variable rttvar, this value equals 6 clock ticks, or 3
seconds. The minimum RTO, stored in t_rttmin, is 2 ticks (TCPTV_MIN).

The current RTO in clock ticks is calculated and stored in t_rxtcur. It is bounded
by a minimum value of 2 ticks (TCPTV_MIN) and a maximum value of 128 ticks
(TCPTV_REXMTMAX). The value calculated as the second argument to TCPT_RANGESET
is 12 ticks, or 6 seconds. This is the first RTO for the connection.

Understanding these C expressions involving the scaled RTT estimators can be a
challenge. It helps to start with the unscaled equation and substitute the scaled vari-
ables. The unscaled equation we’re solving is

RTO = srtt + 2 x rttvar

where we use the multipler of 2 instead of 4 to calculate the first RTO.

The use of the multiplier 2 instead of 4 appears to be a leftover from the original 4.3BSD Tahoe
code [Paxson 1994].

Substituting the two scaling relationships

t_srtt = 8xsrtt

t_rttvar : 4 x rttvar

we get

RTO -
t_srtt t_rttvar

+2X
8 4

t_srtt
--+t_rttvar4

DELL EX.1095.859

Section 25.9 tcp_setpersist Function 835

191--192

193--194

which is the C code for the second argument to TCPT_RANGESET. In this code the vari-
able t_rttvar is not used--the constant TCPTV_SRTTDFLT, whose value is 6 ticks, is
used instead, and it must be multiplied by 4 to have the same scale as t_rttvar.

The congestion window (snd_cwnd) and slow start threshold (snd_ssth~esh) are
set to 1,073,725,440 (approximately one gigabyte), which is the largest possible TCP
window if the window scale option is in effect. (Slow start and congestion avoidance
are described in Section 21.6 of Volume 1.) It is calculated as the maximum value for the
window size field in the TCP header (65535, TCP_MAXWIN) times 214, where 14 is the
maximum value for the window scale factor (TCP_MAX_WINSHIFT). We’ll see that
when a SYN is sent or received on the connection, tcp_rass resets snd_cwnd to a sin-
gle segment.

The default IP TTL in the Internet PCB is set to 64 (ip_defttl) and the PCB is set
to point to the new TCP control block.

Not shown in this code is that numerous variables, such as the shift variable
t_rxtshi£t, are implicitly initialized to 0 since the control block is initialized by
bzero.

25.9 tcp_setpersist Function

The next function we look at that uses TCP’s retransmission timeout calculations is
tcp_setpersist. In Figure 25.13 we saw this function called when the persist timer
expired. This timer is set when TCP has data to send on a connection, but the other end
is advertising a window of 0. This ~unction, shown in Figure 25.22, calculates and stores
the next value for the timer.

493 void
494 tcp_setpersist(tp)
495 struct tcpcb *tp;
496 {
497 t = ((tp->t_srtt >> 2) + tp->t_rttvar) >> i;

498 if (tp->t_timer[TCPT_REXMT])
499 panic("tcp_output REXMT");
500 /*
501 * Start/restart persistance timer.
502 */
503 TCPT_RANGESET(tp->t_timer[TCPT_PERSIST],
504 t * tcp_backoff[tp->t_rxtshift],
505 TCPTV_PERSMIN, TCPTV_PERSMAX);
506 if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
507 tp->t_rxtshift++;
508 }

Figure 25.22

tcp_output.c

tcp_outpuL c
tcp_setpers ist function: calculate and store a new value for the persist timer.

Check retransmission timer not enabled
A check is made that the retransmission timer is not enabled when the persist timer

is about to be set, since the two timers are mutually exclusive: if data is being sent, the

DELL EX.1095.860

836 TCP Timers Chapter 25

500--505

506--507

other side must be advertising a nonzero window, but the persist timer is being set only
if the advertised window is 0.

Calculate RTO
The variable t is set to the RTO value that was calculated at the beginning of the

function. The equation being solved is

RTO = srtt + 2 x rttvar

which is identical to the formula used at the end of the previous section. With substitu-
tion we get

RTO =

t_srtt
4

+ t_rt tvar

which is the value computed for the variable t.
Apply exponential backoff

An exponential backoff is also applied to the RTO. This is done by multiplying the
RTO by a value from the tc~)_backof f array:

int tcp_backoff[TCP_MAXRXTSHIFT + i] :
{ i, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };

When tcp_output initially sets the persist timer for a connection, the code is
tp->t_rxtshift : 0;
tcp_setpersist(tp);

so the first time tcp_setpersist is called, t_rxtshift is 0. Since the value of
tcp_backoff [0] is 1, t is used as the persist timeout. The TCPT_RANGESET macro
bounds this value between 5 and 60 seconds, t_rxt shift is incremented by 1 until it
reaches a maximum of 12 (TCP_MAXRXTSHIFT), since tcp_backoff [12] is the final
entry in the array.

25.10 tcp_xmit_t imer Function

The next function we look at, t cp_xmit_t imer, is called each time an RTT measure-
ment is collected, to update the smoothed RTT estimator (srtt) and the smoothed mean
deviation estimator (rttvar).

The argument rtt is the RTT measurement to be applied. It is the value nticks + 1,
using the notation from Section 25.7. It can be from one of two sources:

If the timestamp option is present in a received segment, the measured RTT is
the current time (tclo_now) minus the timestamp value. We’ll examine the
timestamp option in Section 26.6, but for now all we need to know is that
tclo_now is incremented every 500 ms (Figure 25.8). When a data segment is
sent, top_now is sent as the timestamp, and the other end echoes this time-
stamp in the acknowledgment it sends back.

DELL EX.1095.861

Section 25.10 tcp_xmit_timer Function 837

1310--1325

If timestamps are not in use and a data segment is being timed, we saw in Fig-
ure 25.8 that the counter t_rtt is increniented every 500 ms for the connection.
We also mentioned in Section 25.5 that this counter is initialized to 1, so when
the acknowledgment is received the counter is the measured RTT (in ticks)
plus 1.

Typical code in t cp_input that calls t cp_xmi t_t imer is

if (is_present)
tcp_xmit_timer(tp, tcp_now - ts_ecr + i);

else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
tcp_xmit_timer(tp, tp->t_rtt);

If a timestamp was present in the segment (ts_present), the RTT estimators are
updated using the current time (tcp_now) minus the echoed timestamp (ts_ecr)
plus 1. (We describe the reason for adding i below.)

If a timestamp is not present, the RTT estimators are updated only if the received
segment acknowledges a data segment that was being timed. There is only one RTT
counter per TCP control block (t_rtt), so only one outstanding data segment can be
timed per connection. The starting sequence number of that segment is stored in
t_rt s eq when the segment is transmitted, to tell when an acknowledgment is received
that covers that sequence number. If the received acknowledgment number (t i_ack) is
greater than the starting sequence number of the segment being timed (t_rtseq), the
RTT estimators are updated using t_rtt as the measured RTT.

Before RFC 1323 timestamps were supported, TCP measured the RTT only by counting clock
ticks in t_rtt. But this variable is also used as a flag that specifies whether a segment is being
timed (Figure 25.8): if t_rtt is greater than 0, then tcp_slowtimo adds 1 to it every 500 ms.
Hence when t_rtt is nonzero, it is the number of ticks plus 1. We’ll see shortly that
tcp_xmit_timer always decrements its second argument by 1 to account for this offset.
Therefore when timestamps are being used, 1 is added to the second argument to account for
the decrement by I in t cp_xmit_t imer.

The greater-than test of the sequence numbers is because ACKs are cumulative: if
TCP sends and times a segment with sequence numbers 1-1024 (t_rtseq equals 1),
then immediately sends (but can’t time) a segment with sequence numbers 1025-2048,
and then receives an ACK with ti_ack equal to 2049, this is an ACK for sequence
numbers 1-2048 and the ACK acknowledges the first segment being timed as well as
the second (untimed) segment. Notice that when RFC 1323 timestamps are in use there
is no comparison of sequence numbers. If the other end sends a timestamp option, it
chooses the echo reply value (ts_ecr) to allow TCP to calculate the RTT.

Figure 25.23 shows the first part of the function that updates the estimators.

Update smoothed estimators
Recall that tcp_newtcpcb initialized the smoothed RTT estimator (t_srtt) to 0,

indicating that no measurements have been made for this connection, delta is the dif-
ference between the measured RTT and the current value of the smoothed RTT estima-
tor, in unscaled ticks, t_srtt is divided by 8 to convert from scaled to unscaled ticks.

DELL EX.1095.862

838 TCP Timers Chapter 25

1310 void tcp_input.c

1311 tcp_xmit_timer(tp, rtt)
1312 struct tcpcb *tp;
1313 short rtt;
1314 {
1315 short delta;

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

tcpstat.tcps_rttupdated++;
if (tp->t_srtt !- 0) {

/*
* srtt is stored as fixed point with 3 bits after the
* binary point (i.e., scaled by 8). The following magic
* is equivalent to the smoothing algorithm in rfc793 with
* an alpha of .875 (srtt : rtt/8 + srtt*7/8 in fixed
* point). Adjust rtt to origin 0.
*/

delta = rtt - 1 - (tp >t_srtt >> TCP_RTT_SHIFT);
if ((tp->t_srtt += delta) <- 0)

tp->t_srtt - i;
/*

* We accumulate a smoothed rtt variance (actually, a
* smoothed mean difference), then set the retransmit
* timer to smoothed rtt + 4 times the smoothed variance.
* rttvar is stored as fixed point with 2 bits after the
* binary point (scaled by 4). The following is
* equivalent to rfc793 smoothing with an alpha of .75
* (rttvar = rttvar*3/4 + Ideltal / 4). This replaces
* rfc793’s wired-in beta.
*/

if (delta < 0)
delta = delta;

delta -: {tp->t_rttvar >> TCP_RTTVAR_SHIFT);
if ((tp->t_rttvar += delta) <: 0)

tp >t_rttvar = i;
] else {

/*
* No rtt measurement yet - use the unsmoothed rtt.
* Set the variance to half the rtt (so our first
* retransmit happens at 3*rtt).
*/

tp->t_srtt : rtt << TCP_RTT_SHIFT;
tp->t_rttvar : rtt << (TCP_RTTVAR_SHIFT i);

}
tcp_input.c

Figure 25.23 tcp_xmit_timer function: apply new RTT measurement to smoothed esHmators.

1326-1327 The smoothed RTT estimator is updated using the equation

srtt ~- srtt + g x delta

Since the gain g is ½, this equation is

DELL EX.1095.863

Section 25.10 tcp_xmit_timer Function 839

1328-1342

1343 1350

8 x srtt 4- 8 x srtt + delta

which is

t_srtt 4-- t_srtt +delta

The mean deviation estimator is updated using the equation

rttvar 4- rttvar + h(I delta I - rttvar)

Substituting ¼ for h and the scaled variable t_rttvar for 4 x rttvar, we get
t_rttvar

I deltalt_rttvar t_rttvar 44- +
4 4 4

which is

t_rttvar
t_rttvar4-t_rttvar+ Ideltal-

4
This final equation corresponds to the C code.

Initialize smoothed estimators on first RTT measurement

If this is the first RTT measured for this connection, the smoothed RTT estimator is
initialized to the measured RTT. These calculations use the value of the argument rtt,
which we said is the measured RTT plus 1 (nticks + 1), whereas the earlier calculation of
delta subtracted i from rtt.

srtt = nticks + 1

or

which is

t_srtt
- nticks + 1

8

t_srtt : (nticks + 1) x 8

The smoothed mean deviation is set to one-half of the measured RTT:

srtt
rttvar = --

2
which is

t_rttvar nticks + 1
4 2

or

t_rtt~rar : (nticks + 1) x 2

The comment in the code states that this initial setting for the smoothed mean deviation
yields an initial RTO of 3 x srtt. Since the RTO is calculated as

RTO = srtt + 4 x rttvar

DELL EX.1095.864

840 TCP Timers Chapter 25

1352--1353

1354--1366

substituting for rttvar gives us

RTO = srtt + 4 x --

which is indeed

RTO = 3 x srtt

srtt
2

Figure 25.24 shows the final part of the t cp_xmit_t imer function.

1352
1353

1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366

1367
1368
1369
1370
1371
1372
1373
1374
1375

tp->t_rtt : 0;
tp->t_rxtshift : 0;

* the retransmit should happen at rtt + 4 * rttvar.
* Because of the way we do the smoothing, srtt and rttvar
* will each average +1/2 tick of bias. When we compute
* the retransmit timer, we want 1/2 tick of rounding and
* 1 extra tick because of +-1/2 tick uncertainty in the
* firing of the timer. The bias will give us exactly the
* 1.5 tick we need. But, because the bias is
* statistical, we have to test that we don’t drop be!ow
* the minimum feasible timer (which is 2 ticks).
*/

TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
tp->t_rttmin, TCPTV_REXMTMAX);

* We received an ack for a packet that wasn’t retransmitted;
* it is probably safe to discard any error indications we’ve
* received recently. This isn’t quite right, but close enough
* for now (a route might have failed after we sent a segment,
* and the return path might not be symmetrical).
*/

tp->t_softerror : 0;

Figure 25.24 tcp_xmit_timer function: final part.

tcp_input.c

tcp_input.c

The RTT counter (t_rtt) and the retransmission shift count (t_rxtshift) are
both reset to 0 in preparation for timing and transmission of the next segment.

The next RTO to use for the connection (t_rxt cur) is calculated using the macro
#define TCP_REXMTVAL(tp) \

(((tp)->t_srtt >> TCP_RTT_SHIFT) + (tp)->t_rttvar)

This is the now-familiar equation

RTO:srtt+4xrttvar

using the scaled variables updated by t cp_xmit_timer. Substituting these scaled
variables for srtt and rttvar, we have

t_srtt t_rttvar
RTO - + 4 x

8 4

DELL EX.1095.865

Section25.11 Retransmission Tirneout: tcp_tiraers Function 841

1367-1374

t_srtt
- +t_rttvar

8
which corresponds to the macro, The calculated value for the RTO is bounded by the
minimum RTO for this connection (t_rttmin, which t_newtcpcb set to 2 ticks), and
128 ticks (TCPTV_REXHTHAX).

Clear soft error variable

Since t cp_xmit_timer is called only when an acknowledgment is received for a
data segment that was sent, if a soft error was recorded for this connection
(<_softerror), that error is discarded. We describe soft errors in more detail in the
next section.

25.11 Retransmission Timeout: tcp_timers Function

Jill

11.51 3
0 1.5

(1)

We now return to the tcp_timers function and cover the final case that we didn’t
present in Section 25.6: the one that handles the expiration of the retransmission timer.
This code is executed when a data segment that was transmitted has not been acknowl-
edged by the other end within the RTO.

Figure 25.25 summarizes the actions caused by the retransmission timer. We
assume that the first timeout calculated by tcp_output is 1.5 seconds, which is typical
for a LAN (see Figure 21.1 of Volume 1).

24 48 64 64 64 64 64 64 64 sec

"46.5 94.5 158.5 222.5 286.5 350.5 414.5 478.5 542.5
(5) - - - [6) (7) (8) (9) (10) (11) (12) (13)

t cp_drop

I
6

I
12 seconds

]
4.5 10.5 22.5
(2) (3) (4) ~- new value of t_rxt sh± £t

Figure 25.25 Summary of retransmission timer when sending data.

The x-axis is labeled with the time in seconds: 0, 1.5, 4.5, and so on. Below each of these
numbers we show the value of t_rxtsh±f< that is used in the code we’re about to
examine. Only after 12 retransmissions and a total of 542.5 seconds (just over 9 min-
utes) does TCP give up and drop the connection.

RFC 793 recommended that an open of a new cormection, active or passive, allow a parameter
specifying the total timeout period for data sent by TCP. This is the total amount of time TCP
will try to send a given segment before giving up and terminating the connection. The recom-
mended default was 5 minutes.

RFC 1122 requires that an application must be able to specify a parameter for a connection giv-
ing either the total number of retransmissions or the total timeout value for data sent by TCP.
This parameter can be specified as "infinity," meaning TCP never gives up, allowing, perhaps,
an interactive user the choice of when to give up.

DELL EX.1095.866

842 TCP Timers Chapter 25

We’ll see in the code described shortly that Net/3 does not give the application any of this con-
trol: a fixed number of retransmissions (12) always occurs before TCP gives up, and the total
timeout before giving up depends on the RTT.

The first half of the retransmission timeout case is shown in Figure 25.26.

140 /*
tcp_time~c

141 * Retransmission timer went off. Message has not
142 * been acked within retransmit interval. Back off
143 * to a longer retransmit interval and retransmit one segment.
144 */
145 case TCPT_REXMT:
146 if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {
147 tp->t_rxtshift = TCP_MAXRXTSHIFT;
148 tcpstat.tcps_timeoutdrop++;
149 tp = tcp_drop(tp, tp->t_softerror ?
150 tp->t_softerror : ETIMEDOUT);
151 break;
152 }
153 tcpstat.tcps_rexmttimeo++;
154 rexmt = TCP_REXMTVAL(tp) * tcp backoff[tp->t_rxtshift];
155 TCPT_RANGESET(tp->t_rxtcur, rexmt,
156 tp->t_rttmin, TCPTV_REXMTMAX);
157 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
158 /*
159 * If losing, let the lower level know and try for
160 * a better route. Also, if we backed off this far,
161 * our srtt estimate is p[obably bogus~ Clobber it
162 * so we’ll take the next rtt measurement as our srtt;
163 * move the current srtt into rttvar to keep the current
164 * retransmit times until then.
165 */
166 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
167 in_losing(tp->t_inpcb);
168 tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
169 tp->t_srtt = 0;
170
171 tp->snd_nxt = tp->snd_una;
172 /*
173 * If timing a segment in this window, stop the timer.
174 */
175 tp->t_rtt = 0;

Figure 2S.26 top_timers function: expiration of retransmission timer, first half.

tcp_timer.c

146

Increment shift count

The retransmission shift count (t_rxtshift) is incremented, and if the value
exceeds 12 (TCP_HAXRXTSHTFT) it is time to drop the connection. This new value of
t_rxtshi ft is what we show in Figure 25.25. Notice the difference between this drop-
ping of a connection because an acknowledgment is not received from the other end in
response to data sent by TCP, and the keepalive timer, which drops a connection after a

DELL EX.1095.867

Section25.11 Retransmission Timeout: tcp_tiraers Function 843

147--152

153--157

158--167

168-170

long period of inactivity and no response from the other end. Both report the error
ETIMEDOUT to the process, unless a soft error is received for the connection.

Drop connection
A soft error is one that doesn’t cause TCP to terminate an established connection or

an attempt to establish a connection, but the soft error is recorded in case TCP gives up
later. For example, if TCP retransmits a SYN segment to establish a connection, receiv-
ing nothing in response, the error returned to the process will be ETIMEDOUT. But if
during the retransmissions an ICMP host unreachable is received for the connection,
that is considered a soft error and stored in t_softerror by tcp_notify. If TCP
finally gives up the retransmissions, the error returned to the process will be
EHOSTUNREACH instead of ETIMEDOUT, providing more information to the process. If
TCP receives an RST on the connection in response to the SYN, that’s considered a hard
error and the connection is terminated immediately with an error of ECONNREFUSED
(Figure 28.18).

Calculate new RTO
The next RTO is calculated using the TCP_REXMTVAL macro, applying an exponen-

tial backoff. In this code, t_rxtshift will be 1 the first time a given segment is
retransmitted, so the RTO will be twice the value calculated by TCP_REXMTVAL. This
value is stored in t_rxtcur and as the retransmission timer for the connection,
t_timer [TCPT_REXMT]. The value stored in t_rxtcur is used in tcp_input when
the retransmission timer is restarted (Figures 28.12 and 29.6).

Ask IP to find a new route
If this segment has been retransmitted four or more times, i n_l o sing releases the

cached route (if there is one), so when the segment is retransmitted by tclo_outtout (at
the end of this case statement in Figure 25.27) a new, and hopefully better, route will be
chosen. In Figure 25.25 in_losing is called each time the retransmission timer
expires, starting with the retransmission at time 22.5.

Clear estimators
The smoothed RTT estimator (t_srtt) is set to 0, which is what t_newtcpcb did.

This forces tcp_xmit_timer to use the next measured RTT as the smoothed RTT esti-
mator. This is done because the retransmitted segment has been sent four or more
times, implying that TCP’s smoothed RTT estimator is probably way off. But if the
retransmission timer expires again, at the beginning of this case statement the RTO is
calculated by TCP_REXMTVAL. That calculation should generate the same value as it
did for this retransmission (which will then be exponentially backed off), even though
t_srtt is set to 0. (The retransmission at time 42.464 in Figure 25.28 is an example of
what’s happening here.)

To accomplish this the value of t_rttvar is changed as follows. The next time the
RTO is calculated, the equation

t_srtt
RTO - + t_rttvar8

is evaluated. Since t_srtt will be 0, if t_rttvar is increased by t_srtt divided by

DELL EX.1095.868

844 TCP Timers Chapter 25

2 71

172 175

8, RTO will have the same value. If the retransmission timer expires again for this seg-
ment (e.g., times 84.064 through 217.184 in Figure 25.28), when this code is executed
again t_srtt will be 0, so t_r¢~var won’t change.

Force retransmission of oldest unacknowledged data
The next send sequence number (snd_nxt) is set to the oldest unacknowledged

sequence number (snd_una). Recall from Figure 24.17 that snd_nxt can be greater
than snd_una. By moving snd_nxt back, the retransmission will be the oldest seg-
ment that hasn’t been acknowledged.

Karn’s algorithm
The RTT counter, t_rth, is set to 0, in case the last segment transmitted was being

timed. Karn’s algorithm says that even if an ACK of that segment is received, since the
segment is about to be retransmitted, any timing of the segment is worthless since the
ACK could be for the first transmission or for the retransmission. The algorithm is
described in [Kam and Partridge 1987] and in Section 21.3 of Volume 1. Therefore the
only segments that are timed using the t_r¢¢ counter and used to update the RTT esti-
mators are those that are not retransmitted. We’ll see in Figure 29.6 that the use of
RFC 1323 timestamps overrides Kam’s algorithm.

Slow Start and Congestion Avoidance

176-205

206

208

The second half of this case is shown in Figure 25.27. It performs slow start and con-
gestion avoidance and retransmits the oldest unacknowledged segment.

Since a retransmission timeout has occurred, this is a strong indication of conges-
tion in the network. TCP’s congestion avoidance algorithm comes into play, and when a
segment is eventually acknowledged by the other end, TCP’s slow start algorithm will
continue the data transmission on the connection at a slower rate. Sections 20.6 and 21.6
of Volume I describe the two algorithms in detail.

w±n is set to one-half of the current window size (the minimum of the receiver’s
advertised window, snd_wnd, and the sender’s congestion window, snd_cwnd) in seg-
ments, not bytes (hence the division by t_maxseg). Its minimum value is two seg-
ments. This records one-half of the window size when the congestion occurred,
assuming one cause of the congestion is our sending segments too rapidly into the net-
work. This becomes the slow start threshold, t_ssthresh (which is stored in bytes,
hence the multiplication by t_maxseg). The congestion window, snd_cwnd, is set to
one segment, which forces slow start.

This code is enclosed in braces because it was added between the 4.3BSD and Net/1 releases
and required its own local variable (w±n).

The counter of consecutive duplicate ACKs, t_dupacks (which is used by the fast
retransmit algorithm in Section 29.4), is set to 0. We’ll see how this counter is used with
TCP’s fast retransmit and fast recovery algorithms in Chapter 29.

tcp_output resends a segment containing the oldest unacknowledged sequence
number. This is the retransmission caused by the retransmission timer expiring.

DELL EX.1095.869

Section25.11 Retransmission Timeout: tcp_timers Function 845

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
2OO
201
202
203
204
2O5
206
207
2O8
209

Close the congestion window down to one segment
(we’ll open it by one segment for each ack we get).
Since we probably have a window’s worth of unacked
data accumulated, this "slow start" keeps us from
dumping all that data as back-to-back packets (which
might overwhelm an intermediate gateway).

There are two phases to the opening: Initially we
open by one mss on each ack. This makes the window
size increase exponentially with time. If the
window is larger than the path can handle, this
exponential growth results in dropped packet(s)
almost immediately. To get more time between
drops but still "push" the network to take advantage
of improving conditions, we switch from exponential
to linear window opening at some threshhold size.
For a threshhold, we use half the current window
size, truncated to a multiple of the mss.

tcp_timenc

(the minimum cwnd that will give us exponential
growth is 2 mss. We don’t allow the threshhold

* to go below this.)
*/

u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg;
if (win < 2)

win = 2;
tp->snd_cwnd = tp->t_maxseg;
tp->snd_ssthresh : win * tp->t_maxseg;
tp->t_dupacks = O;

}
(void) tcp_output(tp);
break;

Figure 25.27 tcp_timers function: expiration of retransmission timer, second half.

tcp_timer.c

Accuracy

How accurate are these estimators that TCP maintains? At first they appear too coarse,
since the RTTs are measured in multiples of 500 ms. The mean and mean deviation are
maintained with additional accuracy (factors of 8 and 4 respectively), but LANs have
RTTs on the order of milliseconds, and a transcontinental RTT is around 60 ms. What
these estimators provide is a solid upper bound on the RTT so that the retransmission
timeout can be set without worrying that the timeout is too small, causing unnecessary
and wasteful retransmissions.

[Brakmo, O’Malley, and Peterson 1994] describe a TCP implementation that pro-
vides higher-resolution RTT measurements. This is done by recording the system clock
(which has a much higher resolution than 500 ms) when a segment is transmitted and
reading the system clock when the ACK is received, calculating a higher-resolution RTT.

DELL EX.1095.870

846 TCP Timers Chapter 25

The timestamp option provided by Net/3 (Section 26.6) can provide higher-
resolution RTTs, but Net/3 sets the resolution of these timestamps to 500 ms.

25.12 An RTT Example

We now go through an actual example to see how the calculations are performed. We
transfer 12288 bytes from the host bad± to vangogh, cs. b÷rk÷K÷g. ÷du. During the
transfer we purposely bring down the PPP link being used and then bring it back up, to
see how timeouts and retransmissions are handled. To transfer the data we use our
sock program (described in Appendix C of Volume 1) with the -D option, to enable the
SO_DEBUG socket option (Section 27.10). After the transfer is complete we examine the
debug records left in the kernel’s circular buffer using the trp~(8) program and print
the desired timer variables from the TCP control block.

Figure 25.28 shows the calculations that occur at the various times. We use the
notation M:N to mean that sequence numbers M through and including N - 1 are sent.
Each segment in this example contains 512 bytes. The notation "ack M" means that the
acknowledgment field of the ACK is M. The column labeled "actual delta (ms)" shows
the time difference between the RTT timer going on and going off. The column labeled
"r~ (arg.)" shows the second argument to the ~cp_xrn±~_t±mer function: the num-
ber of clock ticks plus i between the RTT timer going on and going off.

The function tcp_newtcpcb initializes t_srtt, t_rttvar, and t_rxtcur to the
values shown at time 0.0.

The first segment timed is the initial SYN. When its ACK is received 365 ms later,
tcp_xmit_timer is called with an rtt argument of 2. Since this is the first RTT mea-
surement (t_srt t is 0), the e 1 s e clause in Figure 25.23 calculates the first values of the
smoothed estimators.

The data segment containing bytes 1 through 512 is the next segment timed, and the
RTT variables are updated at time 1.259 when its ACK is received.

The next three segments show how ACKs are cumulative. The timer is started at
time 1.260 when bytes 513 through 1024 are sent. Another segment is sent with bytes
1025 through 1536, and the ACK received at time 2.206 acknowledges both data seg-
ments. The RTT estimators are then updated, since the ACK covers the starting
sequence number being timed (513).

The segment with bytes 1537 through 2048 is transmitted at time 2.206 and the
timer is started. Just that segment is acknowledged at time 3.132, and the estimators
updated.

The data segment at time 3.132 is fimed and the retransmission timer is set to 5 ticks
(the current value of t_rxtcur). Somewhere around this time the PPP link between
the routers sun and netb is taken down and then brought back up, a procedure that
takes a few minutes. When the retransmission timer expires at time 6.064, the code in
Figure 25.26 is executed to update the RTT variables, t_rxt s tai f t is incremented from
0 to 1 and t_rxtcur is set to 10 ticks (the exponential backoff). A segment starting
with the oldest unacknowledged sequence number (snd_una, which is 3073) is retrans-
mitred. After 5 seconds the timer expires again, t_rxtshi ft is incremented to 2, and
the retransmission timer is set to 20 ticks.

DELL EX.1095.871

Section 25.12 An RTT Example 847

xmit
time

0.0
0.365
0.365
0.415
1.259
1,260
1,261
2,206
2,206
2,207
2.209
3.132

3,132
3,133
3.736
3.736
3.737
3.739
3.739
3.740
6.064

11.264
21.664
42.464
84.064

150.624
217,184
217.944

217.944
217.945
218.834
218.834
218.836
219.209
219.209
219.760
219.760
220.103
220,103
220.105
220,106
220.821

220.821
221.310
221.310
221.312
221.312
221.674
221.955

send

SYN

ACK
1:513

513:1025
1025:1537

1537:2049
2049:2561
2561:3073

3073:3585
3585:4097

4097:4609
4609:5121

5121:5633
5633:6145
3073:3585
3073:3585
3073:3585
3073:3585
3073:3585
3073:3585
3073:3585

6145:6657
6657:7169

7169:7681
7681:8193

8193:8705

8705:9217

9217:9729
9729:10241

10241:10753

10753:11265

11265:11777

11777:12289

recv

SYN,ACK

ack 513

ack 1537

ack 2049

ack 2561

ack3073

ack 6145

ack 6657

RTT
timer

On

on

off

off

off
off
off
off
off
off
off

on

ack 7169

ack 7681 off

on
ack 8705

actual
delta (ms)

365

844

946

926

890

926

ack 9217 off 1061
on

ack 9729

ack 10241

ack 10753
ack 11265 off 1134

rtt t_srtt t_rttvar t_rxtcur
arg. (ticks x 8) (ticks x 4) (ticks)

0 24 12
2 16 4 6

2 15

3 16

3 16

16 3 10
16 3 20
16 3 40
0 5 80
0 5 128
0 5 128
0 5 128

3 24

2 22

3 22

3 22

Figure 25.28 Values of RTT variables and estimators during example.

t_rxt shift

1
2
3
4
5
6
7

DELL EX.1095.872

848 TCP Timers Chapter 25

When the retransmission timer expires at time 42.464, t_srtt is set to 0 and
t_rttvar is set to 5. As we mentioned in our discussion of Figure 25.26, this leaves the
calculation of t_rxtcur the same (so the next calculation yields 160), but by setting
~_srtt to 0, the next time the RTT estimators are updated (at time 218.834), the mea-
sured RTT becomes the smoothed RTT, as if the connection were starting fresh.

The rest of the data transfer continues, and the estimators are updated a few more
times.

25.13 Summary

The two functions tcp_fasttimo and tcp_slowtimo are called by the kernel every
200 ms and every 500 ms, respectively. These two functions drive TCP’s per-connection
timer maintenance.

TCP maintains the following seven timers for each connection:

’ a connection-establishment timer,
¯ a retransmission timer,
¯ a delayed ACK timer,
¯ a persist timer,
¯ a keepalive timer,
¯ a FIN_WAIT_2 timer, and
¯ a 2MSL timer.

The delayed ACK timer is different from the ~other six, since when it is set it means a
delayed ACK must be sent the next time TCP’s 200-ms timer expires. The other six
timers are counters that are decremented by 1 every time TCP’s 500-ms timer expires.
When any one of the counters reaches 0, the appropriate action is taken: drop the con-
nection, retransmit a segment, send a keepalive probe, and so on, as described in this
chapter. Since some of the timers are mutually exclusive, the six timers are really imple-
mented using four counters, which complicates the code.

This chapter also introduced the recommended way to calculate values for the
retransmission timer. TCP maintains two smoothed estimators for a connection: the
round-trip time and the mean deviation of the RTT. Although the algorithms are simple
and elegant, these estimators are maintained as scaled fixed-point numbers (to provide
adequate precision without using floating-point code within the kernel), which compli-
cates the code.

DELL EX.1095.873

Chapter 25 Exercises 849

Exercises

25.1 How efficient is TCP’s fast timeout function? (Hint: Look at the number of delayed ACKs
in Figure 24.5.) Suggest alternative implementations.

25.2 Why do you think the initialization of tcp_maxidle is in the tcp_slowtimo function
instead of the tcp_init ftmction?

25.3 tcp_slowtimo increments t_idle, which we said counts the clock ticks since a segment
was last received on the connection. Should TCP also count the idle time since a segment
was last sent on a cormection?

25.4 Rewrite the code in Figure 25.10 to separate the logic for the two different uses of the
TCPT_2MSL counter.

25.5 75 seconds after the connection in Figure 25.12 enters the FIN_WAIT_2 state a duplicate
ACK is received on the connection. What happens?

25.6 A connection has been idle for 1 hour when the appli4ation sets the SO_KEEPALIVE
option. Will the first keepalive probe be sent i or 2 hours in the future?

25.7 Why is tep_rttdflt a global variable and not a constant?

25.8 Rewrite the code related to Exercise 25.6 to implement the alternate behavior.

DELL EX.1095.874

DELL EX.1095.875DELL EX.1095.875

TCP Output

26.1 Introduction

The function tcp_output is called whenever a segment needs to be sent on a connec-
tion. There are numerous calls to this function from other TCP functions:

¯ tcp_usrreq calls it for various requests: PRU_CONNECT to send the initial SYN,
PRU_SHUTDOWN to send a FIN, PRU_RCVD in case a window update can be sent
after the process has read some data from the socket receive buffer, PRU_SEND to
send data, and PRU_SENDOOB to send out-of-band data.

¯ t cp_ f a s t t imo calls it to send a delayed ACK.
¯ tcp_timers calls it to retransmit a segment when the retransmission timer

expires.
¯ tcp_t imers calls it to send a persist probe when the persist timer expires.
¯ tcp_drop calls it to send an RST.
¯ tcp_disconnect calls it to send a FIN.
¯ tcp_input calls it when output is required or when an immediate ACK should

be sent.
¯ tcp_input calls it when a pure ACK is processed by the header prediction

code and there is more data to send. (A pure ACK is a segment without data that
just acknowledges data.)

¯ tcp_input calls it when the third consecutive duplicate ACK is received, to
send a single segment (the fast retransmit algorithm).

851

DELL EX.1095.876

852 TCP Output Chapter 26

tcp_output first determines whether a segment should be sent or not. TCP out-
put is controlled by numerous factors other than data being ready to send to the other
end of the connection. For example, the other end might be advertising a window of
size 0 that stops TCP from sending anything, the Nagle algorithm prevents TCP from
sending lots of small segments, and slow start and congestion avoidance limit the
amount of data TCP can send on a connection. Conversel)¢ some functions set flags just
to force tcp_output to send a segment, such as the TF__ACKNOW flag that means an
ACK should be sent immediately and not delayed. If tcp_output decides not to send
a segment, the data (if any) is left in the socket’s send buffer for a later call to this func-
tion.

26.2

61

62--68

69--70

t cp_outl3ut Overview

tcp_output is a large function, so we’ll discuss it in 14 parts. Figure 26.1 shows the
outline of the function.

Is an ACK expected from the other end?
idle is true if the maximum sequence number sent (snd_max) equals the oldest

unacknowledged sequence number (snd_una), that is, if an ACK is not expected from
the other end. In Figure 24.17 idle would be 0, since an ACK is expected for sequence
numbers 4-6, which have been sent but not yet acknowledged.

Go back to slow start

If an ACK is not expected from the other end and a segment has not been received
from the other end in one round-trip time, the congestion window is set to one segment
(t_maxseg bytes). This forces slow start to occur for this connection the next time a
segment is sent. When a significant pause occurs in the data transmission ("significant"
being more than the RTT), the network conditions can change from what was previ-
ously measured on the connection. Net/3 assumes the worst and returns to slow start.

Send more than one segment
When send is jumped to, a single segment is sent by calling ip_output. But if

tcp_output determines that more than one segment can be sent, sendalot is set to 1,
and the function tries to send another segment. Therefore, one call to tcp_output can
result in multiple segments being sent.

26.3 Determine if a Segment Should be Sent

Sometimes tcp_output is called but a segment is not generated. For example, the
PRU_RCVD request is generated when the socket layer removes data from the socket’s
receive buffer, passing the data to a process. It is possible that the process removed
enough data that TCP should send a segment to the other end with a new window
advertisement, but this is just a possibilit)0 not a certainty. The first half of tcp_output
determines if there is a reason to send a segment to the other end. If not, the function
returns without sending a segment.

DELL EX.1095.877

Section 26.3 Determine if a Segment Should be Sent 853

43 int
44 tcp_output(tp)
45 struct tcpcb *tp;
46 {
47 struct socket *so = tp->t_inpcb->inp_socket;
48 long len, win;
49 int off, flags, error;
50 struct mbuf *m;
51 struct tcpiphdr *ti;
52 u_char Opt[MAX_TCPOPTLEN];
53 unsigned opt!en, hdrlen;
54 int idle, sendalot;

55
56
57
58
59
6O
61
62
63
64
65
66
67
68

tcp_output.c

* Determine length of data that should be transmitted
* and flags that will be used.
* If there are some data or critical controls (SYN, RST)
* to send, then transmit; otherwise, investigate further.
*/

idle = (tp >snd max :: tp->snd una);
if (idle && tp->t_idle >- tp->t_rxtcur)

/*
* We have been idle for "a while" and no acks are
* expected to clock out any data we send --
* slow start to get ack "clock" running again.
*/

tp->snd_cwnd = tp->t_maxseg;

69 again:
70 sendalot = 0; /* set nonzero if more than one segment to output */

/* look for a reason to send a segment; */
/* goto send if a segment should be sent */

218 /*
219 * No reason to send a segment, just return~
220 */
221 return (0);

222 send:

/* form output segment, call ip_output() */

489
490
491
492 }

if (sendalot)
goto again;

return (0);

Figure 26.1 tcp_output function: overview.

tcp_outputoc

DELL EX.1095.878

8S4 TCP Output Chapter 26

71--72

73

Figure 26.2 shows the first of the tests to determine whether a segment should be
sent.

71
72

off = tp->snd_nxt - tp->snd~una;
win = min(tp->snd_wnd, tp->snd_cwnd);

tcp_output.c

73 flags = tcp_outflags[tp->t_state] ;
74 /*
75 * If in persist timeout with window of 0, send 1 byte.
76 * Otherwise, if window is small but nonzero
77 * and timer expired, we will send what we can
78 * and go to transmit state.
79 */
80 if (tp->t_force) {
81 if (win == 0) {
82 /*
83 * If we still have some data to send, then
84 * clear the FIN bit. Usually this would
85 * happen below when it realizes that we
86 * aren’t sending all the data. However,
87 * if we have exactly 1 byte of unsent data,
88 * then it won’t clear the FIN bit be!ow,
89 * and if we are in persist state, we wind
90 * up sending the packet without recording
91 * that we sent the FIN bit.
92 *
93 * We can’t just blindly clear the FIN bit,
94 * because if we don’t have any more data
95 * to send then the probe will be the FIN
96 * itself.
97 */
98 if (off < so->so_snd.sb_cc)
99 flags &= -TH_FIN;

i00 win = i;
i01 } else {
102 tp->t_timer[TCPT_PERSIST] = 0;
103 tp->t_rxtshift : 0;
104 }
10~

Figure 26.2 tcp_output function: data is being forced out.

tcp_output.c

o f f is the offset in bytes from the beginning of the send buffer of the first data byte
to send. The first off bytes in the send buffer, starting with snd_una, have already
been sent and are waiting to be ACKed.

win is the minimum of the window advertised by the receiver (snd_wnd) and the
congestion window (snd_cwnd).

The top_out flags array was shown in Figure 24.16. The value of this array that
is fetched and stored in flags depends on the current state of the connection, flags
contains the combination of the TH_ACK, TH_FIN, TH_RST, and TH_SYN flag bits to
send to the other end. The other two flag bits, TH_PUSH and TH_URG, will be logically
ORed into f 1 ags if necessary before the segment is sent.

DELL EX.1095.879

Section 26.3 Determine if a Segment Should be Sent 855

74 105 The flag t_force is set nonzero when the persist timer expires or when out-of-
band data is being sent. These two conditions invoke top_output as follows:

tp->t_force = i;
error : tcp_output(tp);
tp->t_force = 0;

This forces TCP to send a segment when it normally wouldn’t send anything.
If w±n is 0, the connection is in the persist state (since t_force is nonzero). The

FIN flag is cleared if there is more data in the socket’s send buffer, win must be set to 1
byte to force out a single byte.

If win is nonzero, out-of-band data is being sent, so the persist timer is cleared and
the exponential backoff index, t_rxt shift, is set to 0.

Figure 26.3 shows the next part of tcp_output, which calculates how much data
to send.

106
107
108
109
ii0
iii
112

;i13
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130

len : min(so >so_snd.sb_cc, win) - off;
if (fen < 0) {

/*
* If FIN has been sent but not acked,
* but we haven’t been called to retransmit,
* len will be -i. Otherwise, window shrank
* after we sent into it. If window shrank to 0,
* cancel pending retransmit and pull snd nxt
* back to (closed) window. We will enter persist
* state below. If the window didn’t close completely,
* just wait for an ACK.
*/

len = 0;
if (win == 0) {

tp >t_timer[TCPT_REXMT] - 0;
tp->snd_nxt = tp >snd_una;

}
}
if (len > tp->t_maxseg) {

len = tp >t maxseg;
sendalot = i;

}
if (SEQ_LT(tp->snd_nxt + len, tp >snd_una + so->so_snd.sb_cc))

flags &- -TH_FIN;

win : sbspace(&so >so_rcv);

Figure 26.3 tcp_output function: calculate how much data to send.

tcp_output.c

tcp_output.c

106

Calculate amount of data to send
len is the minimum of the number of bytes in the send buffer and win (which is

the minimum of the receiver’s advertised window and the congestion window, perhaps
1 byte if output is being forced), of f is subtracted because that many bytes at the
beginning of the send buffer have already been sent and are awaiting acknowledgment.

DELL EX.1095.880

856 TCP Output Chapter 26

107--117

Check for window shrink
One way for 1 ÷n to be less than 0 occurs if the receiver shrinks the window, that is,

the receiver moves the right edge of the window to the left. The following example
demonstrates how this can happen. First the receiver advertises a window of 6 bytes
and TCP transmits a segment with bytes 4, 5, and 6. TCP immediately transmits
another segment with bytes 7, 8, and 9. Figure 26.4 shows the status of our end after the
two segments are sent.

snd_wnd = 6: offered window
(advertised by receiver) ~

4 5 6 I 7 8 9

sent, not ACKed

snd_una : 4
oldest

unacknowledged
sequence number

snd_nxt = 10
next send

sequence number

Figure 26.4 Send buffer after bytes 4 through 9 are sent.

Then an ACK is received with an acknowledgment field of 7 (acknowledging’all data
up through and including byte 6) but with a window of 1. The receiver has shrunk the
window, as shown in Figure 26.5.

snd_wnd = 1

sent, not ACKed ~

snd_una = 7 snd_nxt = 10
oldest next send

unacknowledged sequence number
sequence number

Figure 26.5 Send buffer after receiving acknowledgment of bytes 4 through 6.

Performing the calculations in Figures 26.2 and 26.3, after the window is shrulnk, we
have

off : snd_nxt snd_una : I0 - 7 : 3
win : 1
len : min(so_snd.sb_cc, win) - off : min(3, i)

assuming the send buffer contains only bytes 7, 8, and 9.

DELL EX.1095.881

Section 26.3 Determine if a Segment Should be Sent 857

Both RFC 793 and RFC 1122 strongly discourage shrinking the window. Nevertheless, imple-
mentations must be prepared for this. Handling scenarios such as this comes under the
Robustness Principle, first mentioned in RFC 791: "Be liberal in what you accept, and conserva-
tive in what you send."

Another way for l÷n to be less than 0 occurs if the FIN has been sent but not
acknowledged and not retransmitted. (See Exercise 26.2.) We show this in Figure 26.6.

118--122

124--127

128--129

1 2 3 4 5 6 7 8 9 FIN

sent and acknowledged

snd_una : 10 snd_nxt : ii
oldest next send

unacknowledged sequence
sequence number number

Figure 26.6 Bytes i through 9 have been sent and acknowledged, and then connection is closed.

This figure continues Figure 26.4, assuming the final segment with bytes 7, 8, and 9 is
acknowledged, which sets snd_una to 10. The process then closes the connection,
causing the FIN to be sent. We’ll see later in this chapter that when the FIN is sent,
snd_nx¢ is incremented by 1 (since the FIN takes a sequence number), which in this
example sets snd_nx¢ to 11. The sequence number of the FIN is 10. Performing the
calculations in Figures 26.2 and 26.3, we have

off : snd_nxt snd_una : ii i0 : 1
win : 6
len : min(so_snd.sb_cc, win) off = min(O, 6)

We assume that the receiver advertises a window of 6, which makes no difference, since
the number of bytes in the send buffer (0) is less than this.
Enter persist state

len is set to 0. If the advertised window is 0, any pending retransmission is can-
celed by setting the retransmission timer to 0. snd_nxt is also pulled to the left of the
window by setting it to the value of snd_una. The connection will enter the persist
state later in this function, and when the receiver finally opens its window, TCP starts
retransmitting from the left of the window.

Send one segment at a time
If the amount of data to send exceeds one segment, len is set to a single segment

and the sendalot flag is set to 1. As shown in Figure 26.1, this causes another loop
through top_output after the segment is sent.

Turn off FIN flag if send buffer not emptied
If the send buffer is not being emptied by this output operation, the FIN flag must

be cleared (in case it is set in flags). Figure 26.7 shows an example of this.

DELL EX.1095.882

858 TCP Output Chapter 26

130

142-143

144-146

147--148

so_snd, sb_cc = 1025 (send buffer)

1 2 512 513 514 1024 1025

one segment onesegment

snd_una = I
oldest

unacknowledged
sequence number

snd_nxt = 513
next send

sequence number

Figure 26.7 Example of send buffer not being emptied when FIN is set.

In this example the first 512-byte segment has already been sent (and is waiting to be
acknowledged) and TCP is about to send the next 512-byte segment (bytes 512-1024).
There is still 1 byte left in the send buffer (byte 1025) and the process closes the connec-
tion. ! en equals 512 (one segment), and the C expression becomes

SEQ_LT(1025, 1026)

which is true, so the FIN flag is cleared. If the FIN flag were mistakenly left on, TCP
couldn’t send byte 1025 to the receiver.

Calculate window advertisement
win is set to the amount of space available in the receive buffer, which becomes

TCP’s wtndow advertisement to the other end. Be aware that this is the second use of
this variable in this function. Earlier it contained the maximum amount of data TCP
could send, but for the remainder of this function it contains the receive window adver-
tised by this end of the connection.

The silly window syndrome (called SWS and described in Section 22.3 of Volume 1)
occurs when small amounts of data, instead of full-sized segments, are exchanged
across a connection. It can be caused by a receiver who advertises small windows and
by a sender who transmits small segments. Correct avoidance of the silly window syn-
drome must be performed by both the sender and the receiver. Figure 26.8 shows silly
window avoidance by the sender.

Sender silly window avoidance
If a full-sized segment can be sent, it is sent.
If an ACK is not expected (idle is true), or if the Nagle algorithm is disabled

(TF_NODELAY is true) and TCP is emptying the send buffer, the data is sent. The Nagle
algorithm (Section 19.4 of Volume 1) prevents TCP from sending less than a full-sized
segment when an ACK is expected for the connection. It can be disabled using the
TCP_NODELAY socket option. For a normal interactive connection (e.g., Telnet or
Rlogin), if there is unacknowledged data, this i f statement is false, since the Nagle
algorithm is enabled by default.

If output is being forced by either the persist timer or sending out-of-band data,
some data is sent.

DELL EX.1095.883

Section 26.3 Determine if a Segment Should be Sent 859

149--150

151--152

154--168

131 /*
132 * Sender silly window avoidance. If connection is idle
133 * and can send all data, a maximum segment,
134 * at least a maximum default-sized segment do it,
135 * or are forced, do it; otherwise don’t bother.
136 * If peer’s buffer is tiny, then send
137 * when window is at least half open.
138 * If retransmitting (possibly after persist timer forced us
139 * to send into a smal! window), then must resend.
140 */
141 if (len) {
142 if (len -- tp->t_maxseg)
143 goto send;
144 if ((idle I I tp->t_flags & TF_NODELAY) &&
145 len + off >- so->so_snd.sb_cc)
146 goto send;
147 if (tp->t_force)
148 goto send;
149 if (len >- tp->max_sndwnd / 2)
150 goto send;
151 if (SEQ_LT(tp >snd nxt, tp->snd max))
152 goto send;
153 }

Figure 26.8 tcp_output function: sender silly window avoidance.

tcp_output.c

tcp_output.c

If the receiver’s window is at least half open, data is sent. This is to deal with peers
that always advertise tiny windows, perhaps smaller than the segment size. The vari-
able max_sndwnd is calculated by top_input as the largest window advertisement
ever advertised by the other end. It is an attempt to guess the size of the other end’s
receive buffer and assumes the other end never reduces the size of its receive buffer.

If the retransmission timer expired, then a segment must be sent. snd__max is the
highest sequence number that has been transmitted. We saw in Figure 25.26 that when
the retransmission timer expires, snd_nxt is set to snd una, that is, snd_nxt is
moved to the left edge of the window, making it less than snd_max.

The next portion of tcp_output, shown in Figure 26.9, determines if TCP must
send a segment just to advertise a new window to the other end. This is called a window
update.

The expression
min(win, (Iong)TCP_MAXWIN << tp->rcv_scale)

is the smaller of the amount of available space in the socket’s receive buffer (win) and
the maximum size of the window allowed for this connection. This is the maximum
window TCP can currently advertise to the other end. The expression

(tp->rcv_adv - tp->rcv_nxt)

is the number of bytes remaining in the last window advertisement that TCP sent to the
other end. Subtracting this from the maximum window yields adv, the number of

DELL EX.1095.884

860 TCP Output Chapter 26

154 /*
tcp_output.c

155 * Corapare available window to amount of window
156 * known to peer (as advertised window less
157 * next expected input). If the difference is at least two
158 * max size segments, or at least 50% of the maximum possible
159 * window, then want to send a window update to peer.
160 */
161 if
162
163
164
165
166
167
168

1 69--1 70

(win > 0) {
/*

* "adv" is the amount we can increase the window,
* taking into account that we are limited by
* TCP_MAXWIN << tp->rcv_scale.
*/

long adv = min(win, (long) TCP_FIAXWIN << tp >rcv_scale) -
(tp >rcv_adv - tp->rcv_nxt);

169 if (adv >= (long} (2 * tp->t_maxseg))
170 goto send;
171 if (2 * adv >- (long) so->so_rcv.sb_hiwat)
172 goto send;
173 }

Figure 26.9 tcp_output function: check if a window update should be sent.

tcp_output.c

bytes by which the window has opened, rcv_nxt is incremented by tcp_input
when data is received in sequence, and rcv_adv is incremented by tclo_output in
Figure 26.32 when the edge of the advertised window moves to the right.

Consider Figure 24.18 and assume that a segment with bytes 4, 5, and 6 is received
and that these three bytes are passed to the process. Figure 26.10 shows the state of the
receive space at this point in tcp_output.

win = 6: space in receive buffer

7

rcv_nxt : 7
next receive

sequence number

9 10 11 12 13 14

rcv_adv = 10
highest advertised
sequence number

plus 1

Figure 26.10 Transition from Figure 24.18 after bytes 4, 5, and 6 are received.

The value of adv is 3, since there are 3 more bytes of the receive space (bytes 10, 11, and
12) for the other end to fill.

If the window has opened by two or more segments, a window update is sent.
When data is received as full-sized segments, this code causes every other received

DELL EX.1095.885

Section 26.3 Determine if a Segment Should be Sent 861

1 71-1 72

174-178

1 79--180

181--182

183--190

segment to be acknowledged: TCP’s ACK-every-other-segment property. (We show an
example of this shortly.)

If the window has opened by at least 50% of the maximum possible window (the
socket’s receive buffer high-water mark), a window update is sent.

The next part of tep_outDut, shown in Figure 26.11, checks whether various flags
require TCP to send a segment

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

* Send if we owe peer an ACK.

if (tp->t_flags & TF_ACKNOW)
goto send;

if (flags & (TH_SYN I TH_RST))
goto send;

if (SEQ_GT(tp->snd_up, tp->snd_una))
goto send;

* If our state indicates that FIN should be sent
* and we have not yet done so, or we’re retransmitting the FIN,
* then we need to send.

if (flags & TH_FIN &&
((tp->t_flags & TF_SENTFIN)
goto send;

Figure 26.11

tcp_output.c

:: 0 I I tp->snd_nxt :: tp->snd_una))

tcp_output.c

¢ ep_oueput function: should a segment should be sent?

If an immediate ACK is required, a segment is sent. The TF_ACKNOW flag is set by
various functions: when the 200-ms delayed ACK timer expires, when a segment is
received out of order (for the fast retransmit algorithm), when a SYN is received during
the three-way handshake, when a persist probe is received, and when a FIN is received.

If flags specifies that a SYN or RST should be sent, a segment is sent.
If the urgent pointer, snd_up, is beyond the start of the send buffer, a segment is

sent. The urgent pointer is set by the PRU_SENDOOB request (Figure 30.9).
If flags specifies that a FIN should be sent, a segment is sent only if the FIN has

not already been sent, or if the FIN is being retransmitted. The flag TF_S~.NTFTN is set
later in this function when the FIN is sent.

191--217

218--221

At this point in teD_output there is no need to send a segment. Figure 26.12
shows the final piece of code before teD_output returns.

If there is data in the send buffer to send (so_snd. sb_ce is nonzero) and both the
retransmission timer and the persist timer are off, turn the persist timer on. This sce-
nario happens when the window advertised by the other end is too small to receive a
full-sized segment, and there is no other reason to send a segment.

top_output returns, since there is no reason to send a segment.

DELL EX.1095.886

862 TCP Output Chapter 26

191
192
193
194
195
196
197
198
199
200
201
202
203
204
2O5
206
20?
2O8
209.
210
211
212
213
214
215
216
217
218
219
220
221

*!
if

tcp_output.c

* TCP window updates are not reliable, rather a polling protocol
* using ’persist’ packets is used to ensure receipt of window
* updates. The three ’states’ for the output side are:
* idle not doing retransmits or persists
* persisting to move a small or zero window
* (re)transmitting and thereby not persisting

* tp->t_timer[TCPT_PERSIST]
is set when we are in persist state.

tp >t_force
is set when we are called to send a persist packet.

tp->t_timer[TCPT_REXMT]
is set when we are retransmitting

The output side is idle when both timers are zero.

If send window is too small, there is data to transmit, and no
retransmit or persist is pending, then go to persist state.
If nothing happens soon, send when timer expires:
if window is nonzero, transmit what we can,
otherwise force out a byte.

(so->so_snd.sb_cc && tp->t_timer[TCPT_REXMT]
tp->t_timer[TCPT_PERSIST] :- 0) {
tp->t_rxtshift 0;
tcp_setpersist(tp);

}
/*

* No reason to send a segment,
*/

return (0);

:: 0 &&

just return.

Figure 26.12 tcp_output function: enter persist state.

tcp_output.c

Example

A process writes 100 bytes, followed by a write of 50 bytes, on an idle connection.
Assume a segment size of 512 bytes. When the first write occurs, the code in Figure 26.8
(lines 144-146) sends a segment with 100 bytes of data since the connection is idle and
TCP is emptying the send buffer.

When 50-byte write occurs, the code in Figure 26.8 does not send a segment: the
amount of data is not a full-sized segment, the connection is not idle (assume TCP is
awaiting the ACK for the 100 bytes that it just sent), the Nagle algorithm is enabled by
default, t_force is not set, and assuming a typical receive window of 4096, 50 is not
greater than or equal to 2048. These 50 bytes remain in the send buffer, probably until
the ACK for the 100 bytes is received. This ACK will probably be delayed by the other
end, causing more delay in sending the final 50 bytes.

This example shows the timing delays that can occur when sending less than full-
sized segments with the Nagle algorithm enabled. See also Exercise 26.12.

DELL EX.1095.887

Section 26.3 Determine if a Segment Should be Sent 863

Example

This example demonstrates the ACK-every-other-segment property of TCP. Assume a
connection is established with a segment size of 1024 bytes and a receive buffer size of
4096. There is no data to send--TCP is just receiving.

A window of 4096 is advertised in the ACK of the SYN, and Figure 26.13 shows the
two variables rcv_n×t and rcv_adv. The receive buffer is empty.

I_~
space in receive buffer = 4096

~-

J

rcv nxt = 1 rcv_adv = 4097
next receive highest advertised

sequence number sequence number
plus

Figure 26.13 Receiver advertising a window of 4096.

The other end sends a segment with bytes 1-1024. tcp_input processes the seg-
ment, sets the delayed-ACK flag for the connection, and appends the 1024 bytes of data
to the socket’s receiver buffer (Figure 28.13). rcv_n×t is updated as shown in Fig-
ure 26.14.

space in receive buffer = 3072

1024~

rcv_nxt = 1025 rcv_adv = 4097
next receive highest advertised

sequence number sequence number
plus 1

Figure 26.14 Transition from Figure 26.13 after bytes 1-1024 received.

The process reads the 1024 bytes in its socket receive buffer. We’ll see in Figure 30.6
that the resulting PRU_RCVD request causes tcp_output to be called, because a win-
dow update might need to be sent after the process reads data from the receive buffer.
When top_output is called, the two variables still have the values shown in Fig-
ure 26.14 and the only difference is that the amount of space in the receive buffer has
increased to 4096 since the process has read the first 1024 bytes. The calculations in Fig-
ure 26.9 are performed:

adv : min(4096, 65535) - (4097 - 1025)
: 1024

DELL EX.1095.888

864 TCP Output Chapter 26

TCP_MAXWIN is 65535 and we assume a receive window scale shift of 0. Since the win-
dow has increased by less than two segments (2048), nothing is sent. But the
delayed-ACK flag is still set, so if the 200-ms timer expires, an ACK will be sent.

When TCP receives the next segment with bytes 1025-2048, t cp_input processes
the segment, sets the delayed-ACK flag for the connection (which was already on), and
appends the 1024 bytes of data to the socket’s receiver buffer, rcv_nxt is updated as
shown in Figure 26.15. i,<

space in receive buffer = 3072
~,~

11025 2048 ~

rcv_nxt = 2049 rcv_adv = 4097
next receive highest advertised

sequence number sequence number
plus I

Figure 26.15 Transition from Figure 26.14 after bytes 1025-2048 received.

The process reads bytes 1025-2048 and tclo_output is called. The two variables
still have the values shown in Figure 26.15, although the space in the receive buffer
increases to 4096 when the process reads the 1024 bytes of data. The calculations in Fig-
ure 26.9 are performed:

adv : mih(4096, 65535) - (4097 - 2049)
: 2048

This value is now greater than or equal to two segments, so a segment is sent with an
acknowledgment field of 2049 and an advertised window of 4096. This is a window
update. The receiver is willing to receive bytes 2049 through 6145. We’ll see later in this
function that when this segment is sent, the value of rcv_adv also gets updated to
6145.

This example shows that when receiving data faster than the 200-ms delayed ACK
timer, an ACK is sent when the receive window changes by more than two segments
due to the process reading the data. If data is received for the connection but the pro-
cess is not reading the data from the socket’s receive buffer, the ACK-every-other-
segment property won’t occur. Instead the sender will only see the delayed ACKs, each
advertising a smaller window, until the receive buffer is filled and the window goes
to 0.

26.4 TCP Options

The TCP header can contain options. We digress to discuss these options since the next
piece of tcl~_output decides which options to send and constructs the options in the
outgoing segment. Figure 26.16 shows the format of the options supported by Net/3.

DELL EX.1095.889

Section 26.4 TCP Options 865

End of option list:

i byte

No operation:

i byte

Maximum segment size:kind=2 len=4

1 byte i byte

maximum
segment

size (MSS)
2 bytes

Window scale factor: kind=3 len=3
cSoh~ fntt

i byte i byte i byte

Timestamp: kind=8 len=10 timestamp value I timestamp echoreply

i byte i byte 4 bytes 4 bytes

Figure 26.16 TCP options supported by Net/3.

Every option begins with a 1-byte kind that specifies the type of option. The first
two options (with kinds of 0 and 1) are single-byte options. The other three are multi-
byte options with a fen byte that follows the kind byte. The length is the total length,
including the kind and len bytes.

The multibyte integers--the MSS and the two timestamp values--are stored in net-
work byte order.

The final two options, window scale and timestamp, are new and therefore not sup-
ported by many systems. To provide interoperability with these older systems, the fol-
lowing rules apply.

TCP can send one of these options (or both) with the initial SYN segment corre-
sponding to an active open (that is, a SYN without an ACK). Net/3 does this
for both options if the global tcp_do_rfc1323 is nonzero (it defaults to 1).
This is done in tcp_newtcpcb.

The option is enabled only if the SYN reply from the other end also includes the
desired option. This is handled in Figures 28.20 and 29.2.

If TCP performs a passive open and receives a SYN specifying the option, the
response (the SYN plus ACK) must contain the option if TCP wants to enable
the option. This is done in Figure 26.23.

DELL EX.1095.890

866 TCP Output Chapter 26

Since a system must ignore options that it doesn’t understand, the newer options
are enabled by both ends only if both ends understand the option and both ends want
the option enabled.

The processing of the MSS option is covered in Section 27.5. The next two sections
summarize the Net/3 handling of the two newer options: window scale and timestamp.

Other options have been proposed, kinds of 4, 5, 6, and 7, called the selective-ACK and echo
options, are defined in RFC 1072 [Jacobson and Braden 1988]. We don’t show them in Fig-
ure 26.16 because the echo options were replaced with the timestamp option, and selective
ACKs, as currently defined, are still under discussion and were not included in RFC 1323.
Also, the T/TCP proposal for TCP transactions (RFC 1644 [Braden 1994], and Section 24.7 of
Volume 1) specifies three options with kinds of 11, 12, and 13.

26.5 Window Scale Option

The window scale option, defined in RFC 1323, avoids the limitation of a 16-bit window
size field in the TCP header (Figure 24.10). Larger windows are required for what are
called long fat pipes, networks with either a high bandwidth or a long delay (i.e., a long
RTT). Section 24.3 of Volume 1 gives examples of current networks that require larger
windows to obtain maximum TCP throughput.

The 1-byte shift count in Figure 26.16 is between 0 (no scaling performed) and 14.
This maximum value of 14 provides a maximum window of 1,073,725,440 bytes
(65535 x 214). Internally Net/3 maintains window sizes as 32-bit values, not 16-bit val-
ues.

The window scale option can only appear in a SYN segment; therefore the scale fac-
tor is fixed in each direction when the connection is established.

The two variables snd_sca:ke and rcv_sca~_e in the TCP control block specify the
shift count for the send window and the receive window, respectively. Both default to 0
for no scaling. Every 16-bit advertised window received from the other end is left
shifted by sr~d_sca~_e bits to obtain the real 32-bit advertised window size (Fig-
ure 28.6). Every time TCP sends a window advertisement to the other end, the internal
32-bit window size is right shifted by rcv_sca~Le bits to give the value that is placed
into the TCP header (Figure 26.29).

When TCP sends a SYN, either actively or passively, it chooses the value of
roy_scale to request, based on the size of the socket’s receive buffer (Figures 28.7
and 30.4).

26.6 Timestamp Option

The timestamp option is also defined in RFC 1323 and lets the sender place a timestamp
in every segment. The receiver sends the timestamp back in the acknowledgment,
allowing the sender to calculate the RTT for each received ACK. Figure 26.17 summa-
rizes the timestamp option and the variables involved.

DELL EX.1095.891

Section 26.6 Timestamp Option 867

received
segment

last ack sent

ti ack l

t rsaen~mmf-~d etnt - ~ 0x0101080a

~̄ 12-byte timestamp option ~

timestamp
timestamp

OxOlOlOSOa

l
echireply

ts_val ts_ecr

ts_recent

timestamp
timestamp echo reply

t cp_now - t s_ecr -- RTT

Figure 26.17 Summary of variables used with timestamp option.

The global variable tcp_now is the timestamp clock. It is initialized to 0 when the
kernel is initialized and incremented by 1 every 500 ms (Figure 25.8). Three variables
are maintained in the TCP control block for the timestamp option:

ts_recent is a copy of the most-recent valid timestamp from the other end.
(We describe shortly what makes a timestamp "valid.")
ts_recent_age is the value of top_now when ts_recent was last copied
from a received segment.
las~_ack_sent is the value of the acknowledgment field (t±_ack) the last
time a segment was sent (Figure 26.32). This is normally equal to rcv_nxt, the
next expected sequence number, unless ACKs are delayed.

The two variables ts_val and ts_ecr are local variables in the function
tcp_± r~pu~ that contain the two values from the timestamp option.

¯ t s_val is the timestamp sent by the other end with its data.
¯ ~s_ecr is the timestamp from the segment that is being acknowledged by the

received segment.

In an outgoing segment, the first 4 bytes of the timestamp option are set to
0x0101080a. This is the recommended value from Appendix A of RFC 1323. The 2
bytes of 1 are NOPs from Figure 26.16, followed by a kind of 8 and a fen of 10, which
identify the timestamp option. By placing two NOPs in front of the option, the two
32-bit timestamps in the option and the data that follows are aligned on 32-bit bound-
aries. Also, we show the received timestamp option in Figure 26.17 with the recom-
mended 12-byte format (which Net/3 always generates), but the code that processes

DELL EX.1095.892

868 TCP Output Chapter 26

Which

received options (Figure 28.10) does not require this format. The 10-byte format shown
in Figure 26.16, without two preceding NOPs, is handled fine on input (but see Exer-
cise 28.4).

The RTT of a transmitted segment and its ACK is calculated as tcp_now minus
ts_÷cr. The units are 500-ms clock ticks, since that is the units of the Net/3 time-
stamps.

The presence of the timestamp option also allows TCP to perform PAWS: protection
against wrapped sequence numbers. We describe this algorithm in Section 28.7. The
variable t s_r÷cent_age is used with PAWS.

tcp_outpu~ builds a timestamp option in an outgoing segment by copying
~cp_now into the timestamp and ~ s_r÷c ÷nt into the echo reply (Figure 26.24). This is
done for every segment when the option is in use, unless the RST flag is set.

Timestamp to Echo, RFC 1323 Algorithm

The test for a valid timestamp determines whether the value in ts_recent is updated,
and since this value is always sent as the timestamp echo reply, the test for validity
determines which timestamp gets echoed back to the other end. RFC 1323 specified the
following test:

ti_seq <: last_ack_sent < ti_seq + ti_len

which is implemented in C as shown in Figure 26.18.

if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {

tp >ts_recent_age - tcp_now;
tp->ts_recent = ts_val;

Figure 26.18 Typical code to determine if received timestamp is valid.

The variable ts_present is true if a timestamp option was received in the segment.
We encounter this code twice in tcp_±nput: Figure 28.11 does the test in the header
prediction code, and Figure 28.35 does the test in the normal input processing.

To see what this test is doing, Figure 26.19 shows show five different scenarios, cor-
responding to five different segments received on a connection. In each scenario
t i_l em is 3.

The left edge of the receive window begins with sequence number 4. In scenario 1
the segment contains completely duplicate data. The SEQ_LEQ test in Figure 28.11 is
true, but the SEQ_LT test fails. For scenarios 2, 3, and 4, both the SEQ_LEQ and SEQ_LT
tests are true because the left edge of the window is advanced by any one of these three
segments, even though scenario 2 contains two duplicate bytes of data, and scenario 3
contains one duplicate byte of data. Scenario 5 fails the SEQ_LEQ test, because it
doesn’t advance the left edge of the window. This segment is one in the future that’s
not the next expected, implying that a previous segment was lost or reordered.

Unfortunately this test to determine whether to update ts_recent is flawed
[Braden 1993]. Consider the following example.

DELL EX.1095.893

Section 26.6 Timestamp Option 869

scenario 1:[1 2 3]

last_ack_sent

receive window

test is false

scenario2:[2 3 4]

scenario 3: [3 4 5 [

scenario 4: I 4 5 6

scenario 5:[5 6

test is true

]
7] >testisfalse

Figure 26.19 Example receive window and five different scenarios of received segment.

In Figure 26.19 a segment that we don’t show arrives with bytes 1, 2, and 3. The
timestamp in this segment is saved in ts_r÷c÷nt because las¢_ack_sent is
1. An ACK is sent with an acknowledgment field of 4, and las¢_ack_sen¢ is
set to 4 (the value of rcv_nx¢). We have the receive window shown in Fig-
ure 26.19.

This ACK is lost.

The other end times out and retransmits the segment with bytes 1, 2, and 3.
This segment arrives and is the one labeled "scenario 1" in Figure 26.19. Since
the SEQ_LT test in Figure 26.18 fails, Cs_rec÷n¢ is not updated with the value
from the retransmitted segment.

A duplicate ACK is sent with an acknowledgment field of 4, but the timestamp
echo reply is ts_rec÷n¢, the value copied from the segment in step 1. But
when the receiver calculates the RTT using this value, it will (incorrectly) take
into account the original transmission, the lost ACK, the timeout, the retrans-
mission, and the duplicate ACK.

For correct RTT estimation by the other end, the timestamp value from the retransmis-
sion should be returned in the duplicate ACK.

The tests in Figure 26.18 also fail to update Cs_~ecen¢ if the length of the received
segment is 0, since the left edge of the window is not moved. This incorrect test can also
lead to problems with long-lived (greater than 24 days, the PAWS limit described in Sec-
tion 28.7), unidirectional connections (all the data flow is in one direction so the sender
of the data always sends the same ACKs).

DELL EX.1095.894

870 TCP Output Chapter 26

Which Timestamp to Echo, Corrected Algorithm

The algorithm we’ll encounter in the Net/3 sources is from Figure 26.18. The correct
algorithm given in [Braden 1993] replaces Figure 26.18 with the one in Figure 26.20.

if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
SEQ_LEQ(ti->ti_seq, tp->last_ack_sent)] {

Figure 26.20 Correct code to determine if received timestamp is valid.

This doesn’t test whether the left edge of the window moves or not, it just verifies that
the new timestamp (ts_val) is greater than or equal to the previous timestamp
(es_recent), and that the starting sequence number of the received segment is not
greater than the left edge of the window. Scenario 5 in Figure 26.19 would fail this new
test since it is out of order.

The macro TSTMP_GEQ is identical to SEQ_GEQ in Figure 24.21. It is used with
timestamps, since timestamps are 32-bit unsigned values that wrap around just like
sequence numbers.

Timestamps and Delayed ACKs

It is constructive to see how timestamps and RTT calculations are affected by delayed
ACKs. Recall from Figure 26.17 that the value saved by TCP in es_recent becomes
the echoed timestamp in segments that are sent, which are used by the other end in cal-
culating its RTT. When ACKs are delayed, the delay time should be taken into account
by the side that sees the delays, or else it might retransmit too quickly. In the example
that follows we only consider the code in Figure 26.20, but the incorrect code in Fig-
ure 26.18 also handles delayed ACKs correctly.

Consider the receive sequence space in Figure 26.21 when the received segment
contains bytes 4 and 5.

rcv_wnd = 6: receive window

4 5 6 7 8 9 10 11 ...

rcv_nxt

last_ack_sent

received segment:[4 5

ti_seq

Figure 26.21 Receive sequence space when segment with bytes 4 and 5 arrives.

DELL EX.1095.895

Section 26.7 Send a Segment 871

Since ti_seq is less than or equal to last_ack_sent, ts_recent is copied from the
segment, rcv_n×t is also increased by 2.

Assume that the ACK for these 2 bytes is delayed, and before that delayed ACK is
sent, the next in-order segment arrives. This is shown in Figure 26.22.

rcv_wnd = 6: receive window

4 5 6 7 8 9 10 11 ...

last ack sent rcv_nxt

received segment: 6

ti_seq

Figure 26.22 Receive sequence space when segment with bytes 6 and 7 arrives.

This time ti_seq is greater than last_ack_sent, so ts_recent is not updated.
This is intentional Assuming TCP now sends an ACK for sequence numbers 4-7, the
other end’s RTT will take into account the delayed ACK, since the echoed fimestamp
(Figure 26.24) is the one from the segment with sequence numbers 4 and 5. These fig-
ures also demonstrate that rcv_nxt equals last_ack_sent except when ACKs are
delayed.

26.7

223--234

235

Send a Segment

The last half of tcp_output sends the segment--it fills in all the fields in the TCP
header and passes the segment to IP for output.

Figure 26.23 shows the first part, which sends the MSS and window scale options
with a SYN segment.

The TCP options are built in the array opt, and the integer o~ot len keeps a count of
the number of bytes accumulated (since multiple options can be sent at once). If the
SYN flag bit is set, snd_nxt is set to the initial send sequence number (i ss). If TCP is
performing an active open, i s s is set by the PRU_CONNECT request when the TCP con-
trol block is created. If this is a passive open, top_input creates the TCP control block
and sets iss. In both cases, iss is set from the global tcp_iss.

The flag TF_NOOPT is checked, but this flag is never enabled and there is no way to
turn it on. Hence, the MSS option is always sent with a SYN segment.

In the Net/1 version of tcp_newtcpcb, the comment "send options!" appeared on the line
that initialized t_flags to 0. The TF_NOOPT flag is probably a historical artifact from a pre-
Net/1 system that had problems interoperating with other hosts when it sent the MSS option,
so the default was to not send the option.

DELL EX.1095.896

872 TCP Output Chapter 26

223
224
225
226
227
228
229
230
231
232
233
234
235
236

237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252

* Before ESTABLISHED, force sending of initial options
* unless TCP set not to do any options.
* NOTE: we assume that the IP/TCP header plus TCP options
* always fit in a single mbuf, leaving room for a maximum
* link header, i.e.
* max_linkhdr + sizeof (struct tcpiphdr) + optlen <= MHLEN
*/

optlen - 0;
hdrlen = sizeof(struct tcpiphdr);
if (flags & TH_SYN)

tp->snd_nxt - tp->iss;
if ((tp->t_flags & TF_NOOPT) == 0) {

u_short mss;

tcp_output.c

opt[0] - TCPOPT_MAXSEG;
opt[l] : 4;
mss = htons((u_short) tcp mss(tp, 0));
bcopy((caddr_t) & mss, (caddr_t) (opt + 2),
optlen - 4;

sizeof(mss));

if ((tp->t_flags & TF_REQ_SCALE) &&
[(flags & TH_ACK)

(tp->t_flags & TF_RCVD_SCALE))) {
*((u_long *) (opt + optlen)) = htonI(TCPOPT_NOP << 24

TCPOPT WINDOW << 16
TCPOLEN_WINDOW << 8
tp->request r scale);

optlen += 4;
}

tcp_output.c
Figure 26.23 tcp_output function: send options with first SYN segment.

236--241

242--244

Build MSS option
opt [0] is set to 2 (TCPOPT_MAXSEG) and opt [1] is set to 4, the length of the MSS

option in bytes. The function t c>_mss calculates the MSS to announce to the other
end; we cover this function in Section 27.5. The 16-bit MSS is stored in opt [2] and
o>t [3] by bcoloy (Exercise 26.5). Notice that Net/3 always sends an MSS announce-
ment with the SYN for a connection.
Should window scale option be sent?

If TCP is to request the window scale option, this option is sent only if this is an
active open (TH_ACK is not set) or if this is a passive open and the window scale option
was received in the SYN from the other end. Recall that t_flags was set to
TF_REQ_SCALEITF_REQ_TSTMP when the TCP control block was created in Fig-
ure 25.21, if the global variable t cp_do_r f c 13 2 3 was nonzero (its default value).

DELL EX.1095.897

Section26.7 Send a Segment 873

245--249

253 261

Build window scale option

Since the window scale option occupies 3 bytes (Figure 26.16), a 1-byte NOP is
stored before the option, forcing the option length to be 4 bytes. This causes the data in
the segment that follows the options to be aligned on a 4-byte boundary. If this is an
active open, request r scale is calculated by the PRU_CONNECT request. If this is a
passive open, the window scale factor is calculated by top_input when the SYN is
received.

RFC 1323 specifies that if TCP is prepared to scale windows it should send this
option even if its own shift count is 0. This is because the option serves two purposes:
to notify the other end that it supports the option, and to announce its shift count. Even
though TCP may calculate its own shift count as 0, the other end might want to use a
different value.

The next part of tcp_output is shown in Figure 26.24.
options in the outgoing segment.

253
254
255
256
257
258
259
260
261
262

It finishes building the

tcp_output.c
/*

* Send a timestamp and echo-reply if this is a SYN and our s±de
* wants to use timestamps (TF_REQ_TSTMP is set) or both our side
* and our peer have sent timestamps in our SYN’s.
*/

if ((tp->t_flags & (TF_REQ_TSTMP I TF_NOOPT)) := TF_REQ_TSTMP &&
(flags & TH_RST) :- 0 &&
((flags & (TH_SYN I TH_ACK)) -= TH_SYN I 1

(tp->t_flags & TF_RCVD_TSTHP)))
u_long *ip = (u_long *) (opt + optlen);

263
264
265
266
267
268
269

/* Form timestamp option as shown in appendix A of RFC 1323.
*Ip++ = htonI(TCPOPT_TSTAMP_HDR);
*Ip++ = htonl(tcp_now);
*ip = htonl(tp->ts_recent);
optlen +: TCPOLEN TSTAHP_APPA;

}
hdrlen +- optlen;

*/

270
271
272
273
274
275
276
277

* Adjust data length if insertion of options will
* bump the packet length beyond the t_maxseg length.
*/

if (fen > tp->t_maxseg - optlen) {
len : tp >t_maxseg - optlen;
sendalot = i;

}

Figure 26.24 tcp_output function: finish sending options.

tcp_output.c

Should timestamp option be sent?
If the following three conditions are all true, a timestamp option is sent: (1) TCP is

configured to request the timestamp option, (2) the segment being formed does not con-
tain the RST flag, and (3) either this is an active open (i.e., flags specifies the SYN flag

DELL EX.1095.898

874 TCP Output Chapter 26

263--267

270--277

284-292

293-297

298-308

but not the ACK flag) or TCP has received a timestamp from the other end
(TF_RCVD_TSTMP). Unlike the MSS and window scale options, a timestamp option can
be sent with every segment once both ends agree to use the option.
Build timestamp option

The timestamp option (Section 26.6) consists of 12 bytes (TCPOLW.N_TSTANP_APPA).
The first 4 bytes are 0x 01010 8 0 a (the constant Tc POPT_TSTAMP_HDR), as described
with Figure 26.17. The timestamp value is taken from top_now (the number of 500-ms
clock ticks since the system was initialized), and the timestamp echo reply is taken from
ts_recent, which is set by t cp_input.

Check if options have overflowed segment
The size of the TCP header is incremented by the number of option bytes (opt 3_en).

If the amount of data to send (len) exceeds the MSS minus the size of the options
(optlen), the data length is decreased accordingly and the senda3-ot flag is set, to
force another loop through this function after this segment is sent (Figure 26.1).

The MSS and window scale options only appear in SYN segments, which Net/3
always sends without data, so this adjustment of the data length doesn’t apply. When
the timestamp option is in use, however, it appears in all segments. This reduces the
amount of data in each full-sized data segment from the announced MSS to the
announced MSS minus 12 bytes.

The next part of tcp_output, shown in Figure 26.25, updates some statistics and
allocates an mbuf for the IP and TCP headers. This code is executed when the segment
being output contains some data (3- en is greater than 0).
Update statistics

If t_force is nonzero and TCP is sending a single byte of data, this is a window
probe. If snd_nxt is less than snd_max, this is a retransmission. Otherwise, this is
normal data transmission.

Allocate an mbuf for IP and TCP headers

An mbuf with a packet header is allocated by MGETHDR. This is for the IP and TCP
headers, and possibly the data (if there’s room). Although tcp_outl~ut is often called
as part of a system call (e.g., write) it is also called at the software interrupt level by
tcp_input, and as part of the timer processing. Therefore M_DONTWAIT is specified.
If an error is returned, a jump is made to the label out. This label is near the end of the
function, in Figure 26.32.

Copy data into mbuf

If the amount of data is less than 44 bytes (100 - 40 - 16, assuming no TCP options),
the data is copied directly from the socket send buffer into the new packet header mbuf
by ra_copydata. Otherwise re_copy creates a new mbuf chain with the data from the
socket send buffer and this chain is linked to the new packet header mbuf. Recall our
description of re_copy in Section 2.9, where we showed that if the data is in a cluster,
re_copy just references that cluster and doesn’t make a copy of the data.

DELL EX.1095.899

Section 26.7 Send a Segment 875

278 /*
279 * Grab a header mbuf, attaching a copy of data to
280 * be transmitted, and initialize the header from
281 * the template for sends on this connection.
282 */
283 if (len) {
284 if (tp->t_force && len == i)
285 tcpstat.tcps_sndprobe++;
286 else if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {
287 tcpstat.tcps_sndrexmitpack++;
288 tcpstat.tcps_sndrexmitbyte +: len;
289 } else {
290 tcpstat.tcps_sndpack++;
291 tcpstat.tcps_sndbyte +: len;
292 }
293 MGETHDR(m, M_DONTWAIT, MT_HEADER);
294 if (m == NULL) {
295 error = ENOBUFS;
296 goto out;
297 }
298 m->m_data +: max_linkhdr;
299 m->m_len = hdrlen;
300 if (len <= HHLEN - hdrlen - max_linkhdr) {
301 m_copydata(so->so_snd.sb_mb, off, (int) len,
302 mtod(m, caddr_t) + hdrlen);
303 m->m_len += len;
304 } else {
305 m->m_next = m_copy(so->so_snd.sb_mb, off, (int) len);
306 if (m->m_next == 0)
307 len = 0;
308 }
309 /*
310 * If we’re sending everything we’ve got, set PUSH.
311 * (This will keep happy those implementations that
312 * give data to the user only when a buffer fills or
313 * a PUSH comes in.)
314 */
315 if (off + len == so->so_snd.sb_cc)
316 flags I: TH_PUSH;

tcp_ou~ut.c

Figure26.25 tcp_outputfunc[ion:updatest~istics, alloc~embufforIPand TCPheaders.

tcp_output.c

309--316

Set PSH flag

If TCP is sending everything it has from the send buffer, the PSH flag is set. As the
comment indicates, this is intended for,receiving systems that only pass received data to
an application when the PSH flag is received or when a buffer fills. We’ll see in
tcp_input that Net/3 never holds data in a socket receive buffer waiting for a
received PSH flag.

DELL EX.1095.900

