
6
THE TRANSPORT LA YER

The transport layer is not just another layer. It is the heart of the whole proto­
col hierarchy. Its task is to provide reliable, cost-effective data transport from the
source machine to the destination niachine, independent of the physical network
or networks currently in use. Without the transport layer, the whole concept of
layered protocols would make little sense. In this chapter we will study the trans­
port layer in detail, including its services, design, protocols, and performance.

6.1. THE TRANSPORT SERVICE

In the following sections we will provide an introduction to the transport ser­
vice. We look at what kind of service is provided to the application layer (or ses­
sion layer, if one exists), and especially how one can characterize the quality of
service. Then we will look at how applications access the transport service, that
is, what the interface is like.

6.1.1. Services Provided to the Upper Layers

The ultimate goal of the transport layer is to provide efficient, reliable, and
cost-effective service to its users, normally processes in the application layer. To
achieve this goal, the transport layer makes use of the services provided

479

Ex.1006.497DELL

480 THE TRANSPORT LAYER CHAP. 6

by the network layer. The hardware and/or software within the transport layer
that does the work is called the transport entity. The transport entity can be in
the operating system kernel, in a separate user process, in a library package bound
into network applications, or on the network interface card. In some cases, the
carrier may even provide reliable transport service, in which case the transport
entity lives on special interface machines at the edge of the subnet to which hosts
connect. The (logical) relationship of the network, transport, and application
layers is illustrated in Fig. 6-1.

Host 1

Application

(or session) Application/transport
layer Transport interface

____- address /
1--~~~---~~~~

Network ----­
address

Network layer

TPDU

' Transport/network
interface

Transport
protocol

Host 2

Application
(or session)

layer

Network layer

Fig. 6-1. The network, transport, and application layers.

Just as there are two types of network service, connection-oriented and con­
nectionless, there are also the same two types of transport service. The
connection-oriented transport service is similar to the connection-oriented net­
work service in many ways. In both cases, connections have three phases: estab­
lishment, data transfer, and release. Addressing and flow control are also similar
in both layers. Furthermore, the connectionless transport service is also very
similar to the connectionless network service.

The obvious question is then: If the transport layer service is so similar to the
network layer service, why are there two distinct layers? Why is one layer not
adequate? The answer is subtle, but crucial, and goes back to Fig. 1-16. In this
figure we can see that the network layer is part of the communication subnet and
is run by the carrier (at least for WANs). What happens if the network layer
offers connection-oriented service but is unreliable? Suppose that it frequently
loses packets? What happens if routers crash from time to time?

Problems occur, that's what. The users have no control over the subnet, so
they cannot solve the problem of poor service by using better routers or putting
more error handling in the data link layer. The only possibility is to put another

Ex.1006.498DELL

480 THE TRANSPORT LAYER CHAP. 6

by the network layer. The hardware and/or software within the transport layer

that does the work is called the transport entity. The transport entity can be in

the operating system kernel, in a separate user process, in a library package bound

into network applications, or on the network interface card. In some cases, the

carrier may even provide reliable transport service, in which case the transport

entity lives on special interface machines at the edge of the subnet to which hosts

connect. The (logical) relationship of the network, transport, and application

layers is illustrated in Fig. 6—1.

 Host 1 Host 2
r———‘-—“—~“——*

Application Application

(or session) Application/transport (or session)

layer Transport interface layer
w/

TPDU

Transport Ch
entity _ Transport

protocol
————~o————-——~—

Network /" \
address Transport/network

interface
Network layer Network layer

Fig. 6-1. The network, transport, and application layers.

Just as there are two types of network service, connection-oriented and con-

nectionless, there are also the same two types of transport service. The

connection-oriented transport service is similar to the connection-oriented net—

work service in many ways. In both cases, connections have three phases: estab-

lishment, data transfer, and release. Addressing and flow control are also similar

in both layers. Furthermore, the connectionless transport service is also very
similar to the eonnectionless network service.

The obvious question is then: If the transport layer service is so similar to the

network layer service, why are there two distinct layers? Why is one layer not

adequate? The answer is subtle, but crucial, and goes back to Fig. 1-16. In this

figure we can see that the network layer is part of the communication subnet and

is run by the carrier (at least for WANs). What happens if the network layer

offers connection-oriented service but is unreliable? Suppose that it frequently

loses packets? What happens if routers crash from time to time?

Problems occur, that’s what. The users have no control over the subnet, so

they cannot solve the problem of poor service by using better routers or putting

more error handling in the data link layer. The only possibility is to put another

DELL Ex.1006.498

SEC. 6.1 THE TRANSPORT SERVICE 481

layer on top of the network layer that improves the quality of the service. If a
transport entity is informed halfway through a long transmission that its network
connection has been abruptly terminated, with no indication of what has happened
to the data currently in transit, it can set up a new network connection to the
remote transport entity. Using this new network connection, it can send a query to
its peer asking which data arrived and which did not, and then pick up from where
it left off.

In essence, the existence of the transport layer makes it possible for the trans­
port service to be more reliable than the underlying network service. Lost packets
and mangled data can be detected and compensated for by the transport layer.
Furthermore, the transport service primitives can be designed to be independent of
the network service primitives which may vary considerably from network to net­
work (e.g., connectionless LAN service may be quite different than connection-­
oriented WAN service).

Thanks to the transport layer, it is possible for application programs to be
written using a standard set of primitives, and to have these programs work on a
wide variety of networks, without having to worry about dealing with different
subnet interfaces and unreliable transmission. If all real networks were flawless
and all had the same service primitives, the transport layer would probably not be
needed. However, in the real world it fulfills the key function of isolating the
upper layers from the technology, design, and imperfections of the subnet.

For this reason, many people have made a distinction between layers 1
through 4 on the one hand, and layer(s) above 4 on the other. The bottom four
layers can be seen as the transport service provider, whereas the upper layer(s)
are the transport service user. This distinction of provider versus user has a
considerable impact on the design of the layers and puts the transport layer in a
key position, since it forms the major boundary between the provider and user of
the reliable data transmission service.

6.1.2. Quality of Service

Another way of looking at the transport layer is to regard its primary function
as enhancing the QoS (Quality of Service) provided by the network layer. If the
network service is impeccable, the transport layer has an easy job. If, however,
the network service is poor, the transport layer has to bridge the gap between what
the transport users want and what the network layer provides.

While at first glance, quality of service might seem like a vague concept (get­
ting everyone to agree what constitutes "good" service is a nontrivial exercise),
QoS can be characterized by a number of specific parameters, as we saw in Chap.
5. The transport service may allow the user to specify preferred, acceptable, and
minimum values for various service parameters at the time a connection is set up.
Some of the parameters also apply to connectionless transport. It is up to the
transport layer to examine these parameters, and depending on the kind of

Ex.1006.499DELL

482 THE TRANSPORT LAYER CHAP. 6

network service or services available to it, determine whether it can provide the
required service. In the remainder of this section we will discuss some possible
QoS parameters. They are summarized in Fig. 6-2. Note that few networks or
protocols provide all of these parameters. Many just try their best to reduce the
residual error rate and leave it at that. Others have elaborate QoS architectures
(Campbell et al., 1994).

Connection establishment delay

Connection establishment failure probability

Throughput

Transit delay

Residual error ratio
--

Protection

Priority

Resilience

Fig. 6-2. Typical transport layer quality of service parameters.

The Connection establishment delay is the amount of time elapsing between a
transport connection being requested and the confirmation being received by the
user of the transport service. It includes the processing delay in the remote trans­
port entity. As with all parameters measuring a delay, the shorter the delay, the
better the service.

The Connection establishment failure probability is the chance of a connec­
tion not being established within the maximum establishment delay time, for
example, due to network congestion, lack of table space somewhere, or other
internal problems.

The Throughput parameter measures the number of bytes of user data
transferred per second, measured over some time interval. The throughput is
measured separately for each direction.

The Transit delay measures the time between a message being sent by the
transport user on the source machine and its being received by the transport user
on the destination machine. As with throughput, each direction is handled
separately.

The Residual error ratio measures the number of lost or garbled messages as
a fraction of the total sent. In theory, the residual error rate should be zero, since
it is the job of the transport layer to hide all network layer errors. In practice it
may have some (small) finite value.

The Protection parameter provides a way for the transport user to specify
interest in having the transport layer provide protection against unauthorized third
parties (wiretappers) reading or modifying the transmitted data.

Ex.1006.500DELL

SEC. 6.1 THE TRANSPORT SERVICE 483

The Priority parameter provides a way for a transport user to indicate that
some of its connections are more important than other ones, and in the event of
congestion, to make sure that the high-priority connections get serviced before the
low-priority ones.

Finally, the Resilience parameter gives the probability of the transport layer
itself spontaneously terminating a connection due to internal problems or conges­
tion.

The QoS parameters are specified by the transport user when a connection is
requested. Both the desired and minimum acceptable values can be given. In
some cases, upon seeing the QoS parameters, the transport layer may immediately
realize that some of them are unachievable, in which case it tells the caller that the
connection attempt failed, without even bothering to contact the destination. The
failure report specifies the reason for the failure.

In other cases, the transport layer knows it cannot achieve the desired goal
(e.g., 600 Mbps throughput), but it can achieve a lower, but still acceptable rate
(e.g., 150 Mbps). It then sends the lower rate and the minimum acceptable rate to
the remote machine, asking to establish a connection. If the remote machine can­
not handle the proposed value, but it can handle a value above the minimum, it
may make a counteroffer. If it cannot handle any value above the minimum, it
rejects the connection attempt. Finally, the originating transport user is informed
of whether the connection was established or rejected, and if it was established,
the values of the parameters agreed upon.

This process is called option negotiation. Once the options have been nego­
tiated, they remain that way throughout the life of the connection. To keep custo­
mers from being too greedy, most carriers have the tendency to charge more
money for better quality service.

6.1.3. Transport Service Primitives

The transport service primitives allow transport users (e.g., application pro­
grams) to access the transport service. Each transport service has its own access
primitives. In this section, we will first examine a simple (hypothetical) transport
service and then look at a real example.

The transport service is similar to the network service, but there are also some
important differences. The main difference is that the network service is intended
to model the service offered by real networks, warts and all. Real networks can
lose packets, so the network service is generally unreliable.

The (connection-oriented) transport service, in contrast, is reliable. Of course,
real networks are not error-free, but that is precisely the purpose of the transport
layer-to provide a reliable service on top of an unreliable network.

As an example, consider two processes connected by pipes in UNIX. They
assume the connection between them is perfect. They do not want to know about
acknowledgements, lost packets, congestion, or anything like that. What they

Ex.1006.501DELL

484 THE TRANSPORT LAYER CHAP. 6

want is a 100 percent reliable connection. Process A puts data into one end of the
pipe, and process B takes it out of the other. This is what the connection-oriented
transport service is all about-hiding the imperfections of the network service so
that user processes can just assume the existence of an error-free bit stream.

As an aside, the transport layer can also provide unreliable (datagram) ser­
vice, but there is relatively little to say about that, so we will concentrate on the
connection-oriented transport service in this chapter.

A second difference between the network service and transport service is
whom the services are intended for. The network service is used only by the
transport entities. Few users write their own transport entities, and thus few users
or programs ever see the bare network service. In contrast, many programs (and
thus programmers) see the transport primitives. Consequently, the transport ser­
vice must be convenient and easy to use.

To get an idea of what a transport service might be like, consider the five
primitives listed in Fig. 6-3. This transport interface is truly bare bones but it
gives the essential flavor of what a connection-oriented transport interface has to
do. It allows application programs to establish, use, and release connections,
which is sufficient for many applications.

Primitive TPDU sent Meaning

LISTEN (none) Block until some process tries to connect

CONNECT CONNECTION REQ. Actively attempt to establish a connection
--~

SEND DATA Send information

RECEIVE (none) Block until a DATA TPDU arrives

DISCONNECT DISCONNECTION REQ. This side wants to release the connection

Fig. 6-3. The primitives for a simple transport service.

To see how these primitives might be used, consider an application with a
server and a number of remote clients. To start with, the server executes a LISTEN

primitive, typically by calling a library procedure that makes a system call to
block the server until a client turns up. When a client wants to talk to the server,
it executes a CONNECT primitive. The transport entity carries out this primitive by
blocking the caller and sending a packet to the server. Encapsulated in the pay­
load of this packet is a transport layer message for the server's transport entity.

A quick note on terminology is now in order. For lack of a better term, we
will reluctantly use the somewhat ungainly acronym TPDU (Transport Protocol
Data Unit) for messages sent from transport entity to transport entity. Thus
TPDUs (exchanged by the transport layer) are contained in packets (exchanged by
the network layer). In turn, packets are contained in frames (exchanged by the
data link layer). When a frame arrives, the data link layer processes the frame
header and passes the contents of the frame payload field up to the network entity.

Ex.1006.502DELL

SEC. 6.1 THE TRANSPORT SERVICE 485

The network entity processes the packet header and passes the contents of the
packet payload up to the transport entity. This nesting is illustrated in Fig. 6-4.

Frame
header

Packet
header

TPDU
header

TPDU payload

1---·-----Packet payload--------1

Frame payload

Fig. 6-4. Nesting of TPDUs, packets, and frames.

Getting back to our client-server example, the client's CONNECT call causes a
CONNECTION REQUEST TPDU to be sent to the server. When it arrives, the trans­
port entity checks to see that the server is blocked on a LISTEN (i.e., is interested
in handling requests). It then unblocks the server and sends a CONNECTION

ACCEPTED TPDU back to the client. When this TPDU arrives, the client is
unblocked and the connection is established.

Data can now be exchanged using the SEND and RECEIVE primitives. In the
simplest form, either party can do a (blocking) RECEIVE to wait for the other party
to do a SEND. When the TPDU arrives, the receiver is unblocked. It can then pro­
cess the TPDU and send a reply. As long as both sides can keep track of whose
turn it is to send, this scheme works fine.

Note that at the network layer, even a simple unidirectional data exchange is
more complicated than at the transport layer. Every data packet sent will also be
acknowledged (eventually). The packets bearing control TPDUs are also
acknowledged, implicitly or explicitly. These acknowledgements are managed by
the transport entities using the network layer protocol and are not visible to the
transport users. Similarly, the transport entities will need to worry about timers
and retransmissions. None of this machinery is seen by the transport users. To
the transport users, a connection is a reliable bit pipe: one user stuffs bits in and
they magically appear at the other end. This ability to hide complexity is the rea­
son that layered protocols are such a powerful tool.

When a connection is no longer needed, it must be released to free up table
space within the two transport entities. Disconnection has two variants: asym­
metric and symmetric. In the asymmetric variant, either transport user can issue a
DISCONNECT primitive, which results in a DISCONNECT TPDU being sent to the
remote transport entity. Upon arrival, the connection is released.

In the symmetric variant, each direction is closed separately, independently of
the other one. When one side does a DISCONNECT, that means it has no more data

Ex.1006.503DELL

SEC. 6.1 THE TRANSPORT SERVICE 485

The network entity processes the packet header and passes the contents of the

packet payload up to the transport entity. This nesting is illustrated in Fig. 6-4.

Frame Packet TPDU
header header header

TPDU payload
 Packet payload —-———-—>‘ IFrame payload —--———————->

Fig. 6-4. Nesting of TPDUs, packets, and frames.

Getting back to our client-server example, the client’s CONNECT call causes a

CONNECTION REQUEST TPDU to be sent to the server. When it arrives, the trans-

port entity checks to see that the server is blocked on a LISTEN (i.e., is interested

in handling requests). It then unblocks the server and sends a CONNECTION

ACCEPTED TPDU back to the client. When this TPDU arrives, the client is
unblocked and the connection is established.

Data can now be exchanged using the SEND and RECEIVE primitives. In the

simplest form, either party can do a (blocking) RECEIVE to wait for the other party

to do a SEND. When the TPDU arrives, the receiver is unblocked. It can then pro—

cess the TPDU and send a reply. As long as both sides can keep track of whose
turn it is to send, this scheme works fine.

Note that at the network layer, even a simple unidirectional data exchange is

more complicated than at the transport layer. Every data packet sent will also be

acknowledged (eventually). The packets bearing control TPDUs are also

acknowledged, implicitly or explicitly. These acknowledgements are managed by

the transport entities using the network layer protocol and are not Visible to the

transport users. Similarly, the transport entities will need to worry abOut timers

and retransmissions. None of this machinery is seen by the transport users. To

the transport users, a connection is a reliable bit pipe: one user stuffs bits in and

they magically appear at the other end. This ability to hide complexity is the rea—

son that layered protocols are such a powerful tool.

When a connection is no longer needed, it must be released to free up table

space within the two transport entities. Disconnection has two variants: asym—

metric and symmetric. In the asymmetric variant, either transport user can issue a

DISCONNECT primitive, which results in a DISCONNECT TPDU being sent to the

remote transport entity. Upon arrival, the connection is released.

In the symmetric variant, each direction is closed separately, independently of

the other one. When one side does a DISCONNECT, that means it has no more data

DELL Ex.1006.503

486 THE TRANSPORT LAYER CHAP. 6

to send, but it is still willing to accept data from its partner. In this model, a con­
nection is released when both sides have done a DISCONNECT.

A state diagram for connection establishment and release for these simple
primitives is given in Fig. 6-5. Each transition is triggered by some event, either a
primitive executed by the local transport user or an incoming packet. For simpli­
city, we assume here that each TPDU is separately acknowledged. We also
assume that a symmetric disconnection model is used, with the client going first.
Please note that this model is quite unsophisticated. We will look at more realis­
tic models later on.

Connection request Connect primitive

TPDU '""'''(-----------------1~--ID_L_E-~1--------..1""'"'''

PASSIVE
ESTABLISHMENT

PENDING

I
I
I
I , ________________ ,...

ESTABLISHED

ACTIVE
ESTABLISHMENT

PENDING

j
Connect primitive

executed
Connection ac cepted

d

est Disconnection requ
TPDU recei ved

PASSIVE
DISCONNECT...,. __________ _

PENDING

I
I
I

___ ...

TPDU receive
I

Disconnect primitive I

' I executed
I
I ACTIVE I

I DISCONNECT
PENDING

IDLE Discon:~""e""ci- - - - - - - - -- - - - - -I
primitive executed ~-----'

Disconnection request
TPDU received

Fig. 6-5. A state diagram for a simple connection management scheme. Transi­
tions labeled in italics are caused by packet arrivals. The solid lines show the
client's state sequence. The dashed lines show the server's state sequence.

Berkeley Sockets

Let us now briefly inspect another set of transport primitives, the socket prim­
itives used in Berkeley UNIX for TCP. They are listed in Fig. 6-6. Roughly
speaking, they follow the model of our first example but offer more features and
flexibility. We will not look at the coffesponding TPDUs here. That discussion
will have to wait until we study TCP later in this chapter.

The first four primitives in the list are executed in that order by servers. The
SOCKET primitive creates a new end point and allocates table space for it within

Ex.1006.504DELL

SEC. 6.1 THE TRANSPORT SERVICE 487

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Block the caller until a connection attempt arrives

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Fig. 6-6. The socket primitives for TCP.

the transport entity. The parameters of the call specify the addressing format to
be used, the type of service desired (e.g., reliable byte stream), and the protocol.
A successful SOCKET call returns an ordinary file descriptor for use in succeeding
calls, the same way an OPEN call does.

Newly created sockets do not have addresses. These are assigned using the
BIND primitive. Once a server has bound an address to a socket, remote clients
can connect to it. The reason for not having the SOCKET call create an address
directly is that some processes care about their address (e.g., they have been using
the same address for years and everyone knows this address), whereas others do
not care.

Next comes the LISTEN call, which allocates space to queue incoming calls for
the case that several clients try to connect at the same time. In contrast to LISTEN

in our first example, in the socket model LISTEN is not a blocking call.
To block waiting for an incoming connection, the server executes an ACCEPT

primitive. When a TPDU asking for a connection arrives, the transport entity
creates a new socket with the same properties as the original one and returns a file
descriptor for it. The server can then fork off a process or thread to handle the
connection on the new socket and go back to waiting for the next connection on
the original socket.

Now let us look at the client side. Here, too, a socket must first be created
using the SOCKET primitive, but BIND is not required since the address used does
not matter to the server. The CONNECT primitive blocks the caller and actively
starts the connection process. When it completes (i.e., when the appropriate
TPDU is received from the server), the client process is unblocked and the con­
nection is established. Both sides can now use SEND and RECEIVE to transmit and
receive data over the full-duplex connection.

Connection release with sockets is symmetric. When both sides have exe­
cuted a CLOSE primitive, the connection is released.

Ex.1006.505DELL

488 THE TRANSPORT LA YER CHAP. 6

6.2. ELEMENTS OF TRANSPORT PROTOCOLS

The transport service is implemented by a transport protocol used between
the two transport entities. In some ways, transport protocols resemble the data
link protocols we studied in detail in Chap. 3. Both have to deal with error con­
trol, sequencing, and flow control, among other issues.

However, significant differences between the two also exist. These differ­
ences are due to major dissimilarities between the environments in which the two
protocols operate, as shown in Fig. 6-7. At the data link layer, two routers com­
municate directly via a physical channel, whereas at the transport layer, this phy­
sical channel is replaced by the entire subnet. This difference has many important
implications for the protocols.

Router Router Subnet

\ ~ D o,Host
·-~------·

\Physical
communication channel

(a) (b)

Fig. 6-7. (a) Environment of the data link layer. (b) Environment of the trans­
port layer.

For one thing, in the data link layer, it is not necessary for a router to specify
which router it wants to talk to-each outgoing line uniquely specifies a particular
router. In the transport layer, explicit addressing of destinations is required.

For another thing, the process of establishing a connection over the wire of
Fig. 6-7(a) is simple: the other end is always there (unless it has crashed, in which
case it is not there). Either way, there is not much to do. In the transport layer,
initial connection establishment is more complicated, as we will see.

Another, exceedingly annoying, difference between the data link layer and the
transport layer is the potential existence of storage capacity in the subnet. When a
router sends a frame, it may arrive or be lost, but it cannot bounce around for a
while, go into hiding in a far corner of the world, and then suddenly emerge at an
inopportune moment 30 sec later. If the subnet uses datagrams and adaptive rout­
ing inside, there is a nonnegligible probability that a packet may be stored for a
number of seconds and then delivered later. The consequences of this ability of
the subnet to store packets can sometimes be disastrous and require the use of spe­
cial protocols.

A final difference between the data link and transport layers is one of amount
rather than of kind. Buffering and flow control are needed in both layers, but the
presence of a large and dynamically varying number of connections in the

Ex.1006.506DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 489

transport layer may require a different approach than we used in the data link
layer. In Chap. 3, some of the protocols allocate a fixed number of buffers to each
line, so that when a frame arrives there is always a buffer available. In the trans­
port layer, the larger number of connections that must be managed make the idea
of dedicating many buffers to each one less attractive. In the following sections,
we will examine all of these important issues and others.

6.2.1. Addressing

When an application process wishes to set up a connection to a remote appli­
cation process, it must specify which one to connect to. (Connectionless transport
has the same problem: To whom should each message be sent?) The method nor­
mally used is to define transport addresses to which processes can listen for con­
nection requests. In the Internet, these end points are (IP address, local port)
pairs. In ATM networks, they are AAL-SAPs. We will use the neutral term
TSAP (Transport Service Access Point). The analogous end points in the net­
work layer (i.e., network layer addresses) are then called NSAPs. IP addresses
are examples of NSAPs.

Figure 6-8 illustrates the relationship between the NSAP, TSAP, network con­
nection, and transport connection for a connection-oriented subnet (e.g., ATM).
Note that a transport entity normally supports multiple TSAPs. On some net­
works, multiple NSAPs also exist, but on others each machine has only one NSAP
(e.g., one IP address). A possible connection scenario for a transport connection
over a connection-oriented network layer is as follows.

1. A time-of-day server process on host 2 attaches itself to TSAP 122 to
wait for an incoming call. How a process attaches itself to a TSAP is
outside the networking model and depends entirely on the local
operating system. A call such as our LISTEN might be used, for
example.

2. An application process on host 1 wants to find out the time-of-day,
so it issues a CONNECT request specifying TSAP 6 as the source and
TSAP 122 as the destination.

3. The transport entity on host 1 selects a network address on its
machine (if it has more than one) and sets up a network connection
between them. (With a connectionless subnet, establishing this net­
work layer connection would not be done.) Using this network con­
nection, host 1 's transport entity can talk to the transport entity on
host 2.

4. The first thing the transport entity on 1 says to its peer on 2 is:
"Good morning. I would like to establish a transport connection
between my TSAP 6 and your TSAP 122. What do you say?"

Ex.1006.507DELL

490 THE TRANSPORT LAYER CHAP. 6

5. The transport entity on 2 then asks the time-of-day server at TSAP
122 if it is willing to accept a new connection. If it agrees, the trans­
port connection is established.

Note that the transport connection goes from TSAP to TSAP, whereas the net­
work connection only goes part way, from NSAP to NSAP.

Host 1 Host2

Application ~ TSAP 6
process ~

Application?
layer "- Server

Network : "Transport
connection : connection
starts here : starts here

------.....!.

Transport \TSAP 122
layer

i' NSAP
I

Network
-,

layer
NSAP

Data link
layer

Physical
layer

Phys
I

\ ,
'~----------------------------''

Fig. 6-8. TSAPs, NSAPs, and connections.

The picture painted above is fine, except we have swept one little problem
under the rug: How does the user process on host 1 know that the time-of-day
server is attached to TSAP 122? One possibility is that the time-of-day server has
been attaching itself to TSAP 122 for years, and gradually all the network users
have learned this. In this model, services have stable TSAP addresses which can
be printed on paper and given to new users when they join the network.

While stable TSAP addresses might work for a small number of key services
that never change, in general, user processes often want to talk to other user
processes that only exist for a short time and do not have a TSAP address that is
known in advance. Furthermore, if there are potentially many server processes,
most of which are rarely used, it is wasteful to have each of them active and
listening to a stable TSAP address all day long. In short, a better scheme is
needed.

One such scheme, used by UNIX hosts on the Internet, is shown in Fig. 6-9 in a
simplified form. It is known as the initial connection protocol. Instead of every
conceivable server listening at a well-known TSAP, each machine that wishes to

Ex.1006.508DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 491

offer service to remote users has a special process server that acts as a proxy for
less-heavily used servers. It listens to a set of ports at the same time, waiting for a
TCP connection request. Potential users of a service begin by doing a
CONNECT request, specifying the TSAP address (TCP port) of the service they
want. If no server is waiting for them, they get a connection to the process server,
as shown in Fig. 6-9(a).

Layer

4

Host 1 Host2 Host 1 Host2

(user

I
TSAP

...._____......_J
(a) (b)

Fig. 6-9. How a user process in host 1 establishes a connection with a time-of­
day server in host 2.

After it gets the incoming request, the process server spawns off the requested
server, allowing it to inherit the existing connection with the user. The new server
then does the requested work, while the process server goes back to listening for
new requests, as shown in Fig. 6-9(b).

While the initial connection protocol works fine for those servers that can be
created as they are needed, there are many situations in which services do exist
independently of the process server. A file server, for example, needs to run on
special hardware (a machine with a disk) and cannot just be created on-the-fly
when someone wants to talk to it.

To handle this situation, an alternative scheme is often used. In this model,
there exists a special process called a name server or sometimes a directory
server. To find the TSAP address corresponding to a given service name, such as
"time-of-day," a user sets up a connection to the name server (which listens to a
well-known TSAP). The user then sends a message specifying the service name,

Ex.1006.509DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 491

offer service to remote users has a special process server that acts as a proxy for

less—heavily used servers. It listens to a set of ports at the same time, waiting for a

TCP connection request. Potential users of a service begin by doing a

CONNECT request, specifying the TSAP address (TCP port) of the service they

want. If no server is waiting for them, they get a connection to the process server,

as shown in Fig. 6-9(a).

Host 1 H0812 HOSt 1 Host 2

_| _—1

 Layer

Process
Server

(a) (b)

Fig. 6-9. How a user process in host 1 establishes a connection with a time-of-
day server in host 2.

After it gets the incoming request, the process server spawns off the requested

server, allowing it to inherit the existing connection with the user. The new server

then does the requested work, while the process server goes back to listening for

new requests, as shown in Fig. 6-9(b).

While the initial connection protocol works fine for those servers that can be

created as they are needed, there are many situations in which services do exist

independently of the process server. A file server, for example, needs to run on

special hardware (a machine with a disk) and cannot just be created on—the—fly
when someone wants to talk to it.

To handle this situation, an alternative scheme is often used. In this model,

there exists a special process called a name server or sometimes a directory

server. To find the TSAP address corresponding to a given service name, such as

“time-of—day,” a user sets up a connection to the name server (which listens to a

well-known TSAP). The user then sends a message specifying the service name,

DELL Ex.1006.509

492 THE TRANSPORT LA YER CHAP. 6

and the name server sends back the TSAP address. Then the user releases the
connection with the name server and establishes a new one with the desired ser­
vice.

In this model, when a new service is created, it must register itself with the
name server, giving both its service name (typically an ASCII string) and the
address of its TSAP. The name server records this information in its internal data­
base, so that when queries come in later, it will know the answers.

The function of the name server is analogous to the directory assistance
operator in the telephone system-it provides a mapping of names onto numbers.
Just as in the telephone system, it is essential that the address of the well-known
TSAP used by the name server (or the process server in the initial connection pro­
tocol) is indeed well known. If you do not know the number of the information
operator, you cannot call the information operator to find it out. If you think the
number you dial for information is obvious, try it in a foreign country some time.

Now let us suppose that the user has successfully located the address of the
TSAP to be connected to. Another interesting question is how does the local
transport entity know on which machine that TSAP is located? More specifically,
how does the transport entity know which network layer address to use to set up a
network connection to the remote transport entity that manages the TSAP
requested?

The answer depends on the structure of TSAP addresses. One possible struc­
ture is that TSAP addresses are hierarchical addresses. With hierarchical
addresses, the address consists of a sequence of fields used to disjointly partition
the address space. For example, a truly universal TSAP address might have the
following structure:

address = <galaxy> <star> <planet> <country> <network> <host> <port>

With this scheme, it is straightforward to locate a TSAP anywhere in the known
universe. Equivalently, if a TSAP address is a concatenation of an NSAP address
and a port (a local identifier specifying one of the local TSAPs), then when a
transport entity is given a TSAP address to connect to, it uses the NSAP address
contained in the TSAP address to reach the proper remote transport entity.

As a simple example of a hierarchical address, consider the telephone number
19076543210. This number can be parsed as 1-907-654-3210, where 1 is a coun­
try code (United States + Canada), 907 is an area code (Alaska), 654 is an end
office in Alaska, and 3210 is one of the "p01ts" (subscriber lines) in that end
office.

The alternative to a hierarchical address space is a flat address space. If the
TSAP addresses are not hierarchical, a second level of mapping is needed to
locate the proper machine. There would have to be a name server that took trans­
port addresses as input and returned network addresses as output. Alternatively,
in some situations (e.g., on a LAN), it is possible to broadcast a query asking the
destination machine to please identify itself by sending a packet.

Ex.1006.510DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 493

6.2.2. Establishing a Connection

Establishing a connection sounds easy, but it is actually surprisingly tricky.
At first glance, it would seem sufficient for one transport entity to just send a CON­

NECTION REQUEST TPDU to the destination and wait for a CONNECTION

ACCEPTED reply. The problem occurs when the network can lose, store, and
duplicate packets.

Imagine a subnet that is so congested that acknowledgements hardly ever get
back in time, and each packet times out and is retransmitted two or three times.
Suppose that the subnet uses datagrams inside, and every packet follows a dif­
ferent route. Some of the packets might get stuck in a traffic jam inside the sub­
net and take a long time to arrive; that is, they are stored in the subnet and pop out
much later.

The worst possible nightmare is as follows. A user establishes a connection
with a bank, sends messages telling the bank to transfer a large amount of money
to the account of a not-entirely-trustworthy person, and then releases the connec­
tion. Unfortunately, each packet in the scenario is duplicated and stored in the
subnet. After the connection has been released, all the packets pop out of the sub­
net and arrive at the destination in order, asking the bank to establish a new con­
nection, transfer money (again), and. release the connection. The bank has no way
of telling that these are duplicates. It must assume that this is a second, indepen­
dent transaction, and transfers the money again. For the remainder of this section
we will study the problem of delayed duplicates, with special emphasis on algo­
rithms for establishing connections in a reliable way, so that nightmares like the
one above cannot happen.

The crux of the problem is the existence of delayed duplicates. It can be
attacked in various ways, none of them very satisfactory. Otie way is to use
throwaway transport addresses. In this approach, each time a transport address is
needed, a new one is generated. When a connection is released, the address is dis­
carded. This strategy makes the process server model of Fig. 6-9 impossible.

Another possibility is to give each connection a connection identifier (i.e., a
sequence number incremented for each connection established), chosen by the ini­
tiating party, and put in each TPDU, including the one requesting the connection.
After each connection is released, each transport entity could update a table listing
obsolete connections as (peer transport entity, connection identifier) pairs. When­
ever a connection request came in, it could be checked against the table, to see if
it belonged to a previously released connection.

Unfortunately, this s.cheme has a basic flaw: it requires each transport entity
to maintain a certain amount of history information indefinitely. If a machine
crashes and loses its memory, it will no longer know which connection identifiers
have already been used.

Instead, we need to take a different tack. Rather than allowing packets to live
forever within the subnet, we must devise a mechanism to kill off aged packets

Ex.1006.511DELL

494 THE TRANSPORT LAYER CHAP. 6

that are still wandering about. If we can ensure that no packet lives longer than
some known time, the problem becomes somewhat more manageable.

Packet lifetime can be restricted to a known maximum using one of the fol­
lowing techniques:

1. Restricted subnet design.

2. Putting a hop counter in each packet.

3. Times tamping each packet.

The first method includes any method that prevents packets from looping, com­
bined with some way of bounding congestion delay over the (now known) longest
possible path. The second method consists of having the hop count incremented
each time the packet is forwarded. The data link protocol simply discards any
packet whose hop counter has exceeded a certain value. The third method
requires each packet to bear the time it was created, with the routers agreeing to
discard any packet older than some agreed upon time. This latter method requires
the router clocks to be synchronized, which itself is a nontrivial task unless syn­
chronization is achieved external to the network, for example by listening to
WWV or some other radio station that broadcasts the precise time periodically.

In practice, we will need to guarantee no.t only that a packet is dead, but also
that all acknowledgements to it are also dead, so we will now introduce T, which
is some small multiple of the true maximum packet lifetime. The multiple is
protocol-dependent and simply has the effect of making T longer. If we wait a
time T after a packet has been sent, we can be sure that all traces of it are now
gone and that neither it nor its acknowledgements will suddenly appear out of the
blue to complicate matters.

With packet lifetimes bounded, it is possible to devise a foolproof way to
establish connections safely. The method described below is due to Tomlinson
(1975). It solves the problem but introduces some peculiarities of its own. The
method was further refined by Sunshine and Dalal (1978). Variants of it are
widely used in practice.

To get around the problem of a machine losing all memory of where it was
after a crash, Tomlinson proposed equipping each host with a time-of-day clock.
The clocks at different hosts need not be synchronized. Each clock is assumed to
take the form of a binary counter that increments itself at uniform intervals.
Furthermore, the number of bits in the counter must equal or exceed the number
of bits in the sequence numbers. Last, and most important, the clock is assumed
to continue running even if the host goes down.

The basic idea is to ensure that two identically numbered TPDUs are never
outstanding at the same time. When a connection is set up, the low-order k bits of
the clock are used as the initial sequence number (also k bits). Thus, unlike our
protocols of Chap. 3, each connection starts numbering its TPDUs with a different

Ex.1006.512DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 495

sequence number. The sequence space should be so large that by the time
sequence numbers wrap around, old TPDUs with the same sequence number are
long gone. This linear relation between time and initial sequence numbers is
shown in Fig. 6-10.

T
2k-1

Forbidden T

~
t-

15 120 ~
E
::l
c
Q)
()
c
Q)
::l
O"
Q)
(/)

80
70 ,_________ Restart after
60 crash with 70

0o 30 60 90 120 150 180
Time

(a)

Q)
.Cl
E
::l
c
Q)
()
c
Q)
::i
O"
Q)
(/)

Time

(b)

Fig. 6-10. (a) TPDUs may not enter the forbidden region. (b) The resynchroni­
zation problem.

Once both transport entities have agreed on the initial sequence number, any
sliding window protocol can be used for data flow control. In reality, the initial
sequence number curve (shown by the heavy line) is not really linear, but a stair­
case, since the clock advances in discrete steps. For simplicity we will ignore this
detail.

A problem occurs when a host crashes. When it comes up again, its transport
entity does not know where it was in the sequence space. One solution is to
require transport entities to be idle for T sec after a recovery to let all old TPDUs
die off. However, in a complex internetwork, T may be large, so this strategy is
unattractive.

To avoid requiring T sec of dead time after a crash, it is necessary to introduce
a new restriction on the use of sequence numbers. We can best see the need for
this restriction by means of an example. Let T, the maximum packet lifetime, be
60 sec and let the clock tick once per second. As shown in Fig. 6-10, the initial
sequence number for a connection opened at time x will be x. Imagine that at
t = 30 sec, an ordinary data TPDU being sent on (a previously opened) connection
5 is given sequence number 80. Call this TPDU X. Immediately after sending
TPDU X, the host crashes and then quickly restarts. At t = 60, it begins reopening
connections 0 through 4. At t = 70, it reopens connection 5, using initial
sequence number 70 as requiredl. Within the next 15 sec it sends data TPDUs 70
through 80. Thus at t = 85, a new TPDU with sequence number 80 and connec­
tion 5 has been injected into the subnet. Unfortunately;, TPDU X still exists. If it

Ex.1006.513DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 495

sequence number. The sequence space should be so large that by the time

sequence numbers wrap around, old TPDUs with the same sequence number are

long gone. This linear relation between time and initial sequence numbers is

shoWn in Fig. 6—10.

NI}: _‘.
Forbidden

9 message

g 120 g

o ' C

5 38 , 8
3- ' ' \Restart after g
$ 60 crash with 70 a

a /
Actual sequence

0 numbers used0 30 60 90 120 150 180
Time Time

(a) (b)

Fig. 6-10. (a) TPDUs may not enter the forbidden region. (b) The resynchroni—
zation problem.

Once both transport entities have agreed on the initial sequence number, any

sliding window protocol can be used for data flow control. In reality, the initial

sequence number curve (shown by the heavy line) is not really linear, but a stair-

case, since the clock advances in discrete steps. For simplicity we will ignore this
detail.

A problem occurs when a host crashes. When it comes up again, its transport

entity does not know where it was in the sequence space. One solution is to

require transport entities to be idle for T sec after a recovery to let all old TPDUs
die off. However, in a complex intemetwork, T may be large, so this strategy is

unattractive.

To avoid requiring T sec of dead time after a crash, it is necessary to introduce

a new restriction on the use of sequence numbers. We can best see the need for

this restriction by means of an example. Let T, the maximum packet lifetime, be

60 sec and let the clock tick once per second. As shown in Fig. 6—10, the initial

sequence number for a connection opened at time x will be x. Imagine that at

t = 30 sec, an ordinary data TPDU being sent on (a previously opened) connection

5 is given sequence number 80'. Call this TPDU X. Immediately after sending

TPDU X, the host crashes and then quickly restarts. At t = 60, it begins reopening

connections 0 through 4. At t 2 70, it reopens connection 5, using initial

sequence number 70 as required. Within the next 15 see it sends data TPDUS 70

through 80. Thus at l = 85, a new TPDU with sequence number 80 and connec—

tion 5 has been injected into the subnet. Unfortunately, TPDU X still exists. If it

DELL Ex.1006.513

496 THE TRANSPORT LA YER CHAP. 6

should arrive at the receiver before the new TPDU 80, TPDU X will be accepted
and the correct TPDU 80 will be rejected as a duplicate.

To prevent such problems, we must prevent sequence numbers from being
used (i.e., assigned to new TPDU s) for a time T before their potential use as initial
sequence numbers. The illegal combinations of time and sequence number are
shown as the forbidden region ih Fig. 6-lO(a). Before sending any TPDU on any
connection, the transport entity must read the clock and check to see that it is not
in the forbidden region.

The protocol can get itself into trouble in two different ways. If a host sends
too much data too fast on a newly opened connection, the actual sequence number
versus time curve may rise more steeply than the initial sequence number versus
time curve. This means that the maximum data rate on any connection is one
TPDU per clock tick. It also means that the transport entity must wait until the
clock ticks before opening a new connection after a crash restart, lest the same
number be used twice. Both of these points argue for a short clock tick (a few
milliseconds).

Unfortunately, entering the forbidden region from underneath by sending too
fast is not the only way to get into trouble. From Fig. 6-1 O(b), it should be clear
that at any data rate less than the clock rate, the curve of actual sequence numbers
used versus time will eventually run into the forbidden region from the left. The
greater the slope of the actual sequence number curve, the longer this event will
be delayed. As we stated above, just before sending every TPDU, the transport
entity must check to see if it is about to enter the forbidden region, and if so,
either delay the TPDU for T sec or resynchronize the sequence numbers.

The clock-based method solves the delayed duplicate problem for data
TPDUs, but for this method to be useful, a connection must first be established.
Since control TPDUs may also be delayed, there is a potential problem in getting
both sides to agree on the initial sequence number. Suppose, for example, that
connections are established by having host 1 send a CONNECTION REQUEST TPDU
containing the proposed initial sequence number and destination port number to a
remote peer, host 2. The receiver, host 2, then acknowledges this request by send­
ing a CONNECTION ACCEPTED TPDU back. If the CONNECTION REQUEST TPDU
is lost but a delayed duplicate CONNECTION REQUEST suddenly shows up at host 2,
the connection will be established incorrectly.

To solve this problem, Tomlinson (197 5) introduced the three-way
handshake. This establishment protocol does not require both sides to begin
sending with the same sequence number, so it can be used with synchronization
methods other than the global clock method. The normal setup procedure when
host 1 initiates is shown in Fig. 6-ll(a). Host 1 chooses a sequence number, x,
and sends a CONNECTION REQUEST TPDU containing it to host 2. Host 2 replies
with a CONNECTION ACCEPTED TPDU acknowledging x and announcing its own
initial sequence number, y. Finally, host 1 acknowledges host 2's choice of an
initial sequence number in the first data TPDU that it sends.

Ex.1006.514DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS

Ql
E
i=

l

Host 1 Host2 Host 1

Old duplicate

CR(seq,,, X)

(a) (b)

(c)

Fig. 6-11. Three protocol scenarios for establishing a connection using a three­
way handshake. CR and ACC denote CONNECTION REQUEST and CONNECTION AC­

CEPTED, respectively. (a) Normal operation. (b) Old duplicate CONNECTION RE­

QUEST appearing out of nowhere. (c) Duplicate CONNECTION REQUEST and dupli­
cate ACK.

497

Host2

Now let us see how the three-way handshake works in the presence of delayed
duplicate control TPDUs. In Fig. 6-12(b), the first TPDU is a delayed duplicate
CONNECTION REQUEST from an old connection. This TPDU arrives at host 2
without host 1 's knowledge. Host 2 reacts to this TPDU by sending host 1 a CON­

NECTION ACCEPTED TPDU, in effect asking for verification that host 1 was indeed
trying to set up a new connection. When host 1 rejects host 2's attempt to estab­
lish, host 2 realizes that it was tricked by a delayed duplicate and abandons the
connection. In this way, a delayed duplicate does no damage.

Ex.1006.515DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 497

Host 1 Host 2 Host 1 Host 2

Old duplicate

CH (Seq =

Time
Host 1 , Host 2

’r'i‘.

Old duplicate

Fig. 6-11. Three protocol scenarios for establishing a connection using a three-
way handshake. CR and ACC denote CONNECTION REQUEST and CONNECTION AC~
CEPTED, respectively. (a) Normal operation. (b) 01d duplicate CONNECTION RE-
QUEST appearing out of nowhere. (c) Duplicate CONNECTION REQUEST and dupli~
cate ACK.

Now let us see how the three-way handshake works in the presence of delayed

duplicate control TPDUs. In Fig. 6—l2(b), the first TPDU is a delayed duplicate
CONNECTION REQUEST from an old connection. This TPDU arrives at host 2

without host 1’s knowledge. Host 2 reacts to this TPDU by sending host 1 a CON-

NECTION ACCEPTED TPDU, in effect asking for verification that host 1 was indeed

trying to set up a new connection. When host 1 rejects host 2’s attempt to estab-

lish, host 2 realizes that it was tricked by a delayed duplicate and abandons the

connection. In this way, a delayed duplicate does no damage.

DELL Ex.1006.515

498 THE TRANSPORT LA YER CHAP. 6

The worst case is when both a delayed CONNECTION REQUEST and an
acknowledgement to a CONNECTION ACCEPTED are floating around in the subnet.
This case is shown in Fig. 6-11 (c). As in the previous example, host 2 gets a
delayed CONNECTION REQUEST and replies to it. At this point it is crucial to real­
ize that host 2 has proposed using y as the initial sequence number for host 2 to
host 1 traffic, knowing full well that no TPDUs containing sequence number y or
acknowledgements to y are still in existence. When the second delayed TPDU
arrives at host 2, the fact that z has been acknowledged rather than y tells host 2
that this, too, is an old duplicate. The important thing to realize here is that there
is no combination of old CONNECTION REQUEST' CONNECTION ACCEPTED, or
other TPDUs that can cause the protocol to fail and have a connection set up by
accident when no one wants it.

An alternative scheme for establishing connections reliably in the face of
delayed duplicates is described in (Watson, 1981). It uses multiple timers to
exclude undesired events.

6.2.3. Releasing a Connection

Releasing a connection is easier than establishing one. Nevertheless, there are
more pitfalls than one might expect. As we mentioned earlier, there are two styles
of terminating a connection: asymmetric release and symmetric release. Asym­
metric release is the way the telephone system works: when one party hangs up,
the connection is broken. Symmetric release treats the connection as two separate
unidirectional connections and requires each one to be released separately.

Q)

E
i=

Host 1

~ -;;-----
1\Jo data are

delivered after
a disconnect

request

Host2

Fig. 6-12. Abrupt disconnection with loss of data.

Asymmetric release is abrupt and may result in data loss. Consider the
scenario of Fig. 6-12. After the connection is established, host 1 sends a TPDU

Ex.1006.516DELL

498 THE TRANSPORT LAYER CHAP. 6

The worst case is when both a delayed CONNECTION REQUEST and an

acknowledgement to a CONNECTION ACCEPTED are floating around in the subnet.

This case is shown in Fig. 6—11(c). As in the previous example, host 2 gets a

delayed CONNECTION REQUEST and replies to it. At this point it is crucial to real-

ize that host 2 has proposed using y as the initial sequence number for host 2 to

host 1 traffic, knowing full well that no TPDUs containing sequence number y or

acknowledgements to y are still in existence. When the second delayed TPDU

arrives at host 2, the fact that z has been acknowledged rather than y tells host 2

that this, too, is an old duplicate. The important thing to realize here is that there

is no combination of old CONNECTION REQUEST, CONNECTION ACCEPTED, or

other TPDUs that can cause the protocol to fail and have a connection set up by
accident when no one wants it.

An alternative scheme for establishing connections reliably in the face of

delayed duplicates is described in (Watson, 1981). It uses multiple timers to
exclude undesired events.

6.2.3. Releasing a Connection

Releasing a connection is easier than establishing one. Nevertheless, there are

more pitfalls than one might expect. As we mentioned earlier, there are two styles

of terminating a connection: asymmetric release and symmetric release. Asym-

metric release is the way the telephone system works: when one party hangs up,

the connection is broken. Symmetric release treats the connection as two separate

unidirectional connections and requires each one to be released separately.

Host 1 Host 2

Time

No data are
delivered after

a disconnect

request E

Fig. 6-12. Abrupt disconnection with loss of data.

Asymmetric release is abrupt and may result in data loss. Consider the

scenario of Fig. 6-12. After the connection is established, host 1 sends a TPDU

DELL Ex.1006.516

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 499

that arrives properly at host 2. Then host 1 sends another TPDU. Unfortunately,
host 2 issues a DISCONNECT before the second TPDU arrives. The result is that
the connection is released and data are lost.

Clearly, a more sophisticated release protocol is required to avoid data loss.
One way is to use symmetric release, in which each direction is released
independently of the other one. Here, a host can continue to receive data even
after it has sent a DISCONNECT TPDU.

Symmetric release does the job when each process has a fixed amount of data
to send and clearly knows when it has sent it. In other situations, determining that
all the work has been done and the connection should be terminated is not so obvi­
ous. One can envision a protocol in which host 1 says: "I am done. Are you done
too?" If host 2 responds: "I am done too. Goodbye." the connection can be safely
released.

Unfortunately, this protocol does not always work. There is a famous prob­
lem that deals with this issue. It is called the two-army problem. Imagine that a
white army is encamped in a valley, as shown in Fig. 6-13. On both of the sur­
rounding hillsides are blue amties. The white army is larger than either of the
blue armies alone, but together they are larger than the white army. If either blue
army attacks by itself, it will be defeated, but if the two blue armies attack simul­
taneously, they will be victorious.

·~ White army

~

Fig. 6-13. The two-army problem.

·~ Blue
army

#2

The blue armies want to synchronize their attacks. However, their only com­
munication medium is to send messengers on foot down into the valley, where
they might be captured and the message lost (i.e., they have to use an unreliable
communication channel). The question is: Does a protocol exist that allows the
blue armies to win?

Suppose that the commander of blue army #1 sends a message reading: "I
propose we attack at dawn on March 29. How about it?" Now suppose that the

Ex.1006.517DELL

500 THE TRANSPORT LA YER CHAP. 6

message arrives, and the commander of blue army #2 agrees, and that his reply
gets safely back to blue army #1. Will the attack happen? Probably not, because
commander #2 does not know if his reply got through. If it did not, blue army #1
will not attack, so it would be foolish for him to charge into battle.

Now let us improve the protocol by making it a three-way handshake. The
initiator of the original proposal must acknowledge the response. Assuming no
messages are lost, blue army #2 will get the acknowledgement, but the com­
mander of blue army #1 will now hesitate. After all, he does not know if his
acknowledgement got through, and if it did not, he knows that blue army #2 will
not attack. We could now make a four-way handshake protocol, but that does not
help either.

In fact, it can be proven that no protocol exists that works. Suppose that some
protocol did exist. Either the last message of the protocol is essential or it is not.
If it is not, remove it (and any other unessential messages) until we are left with a
protocol in which every message is essential. What happens if the final message
does not get through? We just said that it was essential, so if it is lost, the attack
does not take place. Since the sender of the final message can never be sure of its
arrival, he will not risk attacking. Worse yet, the other blue army knows this, so it
will not attack either.

To see the relevance of the two-army problem to releasing connections, just
substitute "disconnect" for "attack." If neither side is prepared to disconnect
until it is convinced that the other side is prepared to disconnect too, the discon­
nection will never happen.

In practice, one is usually prepared to take more risks when releasing connec­
tions than when attacking white armies, so the situation is not entirely hopeless.
Figure 6-14 illustrates four scenarios of releasing using a three-way handshake.
While this protocol is not infallible, it is usually adequate.

In Fig. 6-14(a), we see the normal case in which one of the users sends a DR

(DISCONNECTION REQUEST) TPDU in order to initiate the connection release.
When it arrives, the recipient sends back a DR TPDU, too, and starts a timer, just
in case its DR is lost. When this DR arrives, the original sender sends back an ACK

TPDU and releases the connection. Finally, when the ACK TPDU arrives, the
receiver also releases the connection. Releasing a connection means that the
transport entity removes the information about the connection from its table of
open connections and signals the connection's owner (the transport user)
somehow. This action is different from a transport user issuing a DISCONNECT

primitive.
If the final ACK TPDU is lost, as shown in Fig. 6-14(b), the situation is saved

by the timer. When the timer expires, the connection is released anyway.
Now consider the case of the second DR being lost. The user initiating the

disconnection will not receive the expected response, will time out, and will start
all over again. In Fig. 6-14(c) we see how this works, assuming that the second
time no TPDUs are lost and all TPDUs are delivered correctly and on time.

Ex.1006.518DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 501

Host 1 Host2

Send DR ~ + start timer

Send DR

~
+start timer

Release
connection

Send ACK ~ Release
connection

(a)

Host 1 Host2

Send DR -__DR
+ start timer ------ Send DR &

of. s1art timer

~
(Timeout) D

send ~R ~ Se,nd DR &
+ start timer 1 rt t· OP. s a 1mer

Release
connection

SendACK ~CK
------ Release

connection

(c)

Host 1

Send DR -__DR
+ start timer ------

Release
connection

Send ACK

Host 1

ACK

(b)

Host2

Send DR
+ start timer

• • • • • • • • • •
(Timeout)
release

connection

Host2

SendDR ~
+ sta~ timer Send DR &

• • • • •
(Timeout)

sendDR ---~
+start timer ~

• • • • • •
(N Timeouts)

release
connection

(d)

start timer

(Tim out)
release

connection

Fig. 6-14. Four protocol scenarios for releasing a connection. (a) Normal case
of three-way handshake. (b) Final ACK lost. (c) Response lost. (d) Response
lost and subsequent DRs lost.

Our last scenario, Fig. 6-14(d), is the same as Fig. 6-14(c) except that now we
assume all the repeated attempts to retransmit the DR also fail due to lost TPDUs.
After N retries, the sender just gives up and releases the connectiori. Meanwhile,
the receiver times out and also exits.

While this protocol usually suffices, in theory it can fail if the initial DR and
N retransmissions are all lost. The sender will give up and release the connection,
while the other side knows nothing at all about the attempts to disconnect and is
still fully active. This situation results in a half-open connection.

Ex.1006.519DELL

SEC. 6.2

Host 1

Send DR
+ start timer

Release
connection

Send ACK

Host 1

Send DR
+ start timer

(Timeout)
send DR

+ start timer

Release
connection

Send ACK

ELEMENTS OF TRANSPORT PROTOCOLS

4%

%

(a)

\DR>

\

A/DR/

%

Host 2

N
Send DR

+ start timer

Release
connection

Host 2

Send DR &

*l::I 4% start timer
DR

Send DR &
start timer

Release
connection

(C)

501

(0')

Host 1 Host 2

Send DR DR
+ start timer\

Send DR

M+ start timerRelease :connection 0

2O
0

ACK °
Send ACK\ :

W (Timeout)
release

connection

_____J
(b)

Host 1 Host 2

Send DR DR

+ start timer\Send DR &
/ start timer

new: .. l
O

(Timeout) 0

send DR \% :+ start timer 0

10
O
O
O

(N Timeouts) (Timeout)
release release

connection connection

Fig. 6-14. Four protocol scenarios for releasing a connection. (a) Norrnal case

of three—way handshake. (b) Final ACK lost. (0) Response lost. (d) Response
lost and subsequent DRs lost.

Our last scenario, Fig. 6-14(d), is the same as Fig. 6-14(c) except that now we

assume all the repeated attempts to retransmit the DR also fail due to lost TPDUs.

After N retries, the Sender \just gives up and releases the connection. Meanwhile,
the receiver times out and also exits.

While this protocol usually suffices, in theory it can fail if the initial DR and

N retransmissions are all lost. The sender will give up and release the connection,

while the other side knOWS nothing at all about the attempts to disconnect and is

still fully active. This situation results in a half—open connection.

DELL Ex.1006.519

502 THE TRANSPORT LA YER CHAP. 6

We could have avoided this problem by not allowing the sender to give up
after N retries but forcing it to go on forever until it gets a response. However, if
the other side is allowed to time out, then the sender will indeed go on forever,
because no response will ever be forthcoming. If we do not allow the receiving
side to time out, then the protocol hangs in Fig. 6- l 4(b).

One way to kill off half-open connections is to have a rule saying that if no
TPDUs have arrived for a certain number of seconds, the connection is automati­
cally disconnected. That way, if one side ever disconnects, the other side will
detect the lack of activity and also disconnect. Of course, if this rule is intro­
duced, it is necessary for each transport entity to have a timer that is stopped and
then restarted whenever a TPDU is sent. If this timer expires, a dummy TPDU is
transmitted, just to keep the other side from disconnecting. On the other hand, if
the automatic disconnect rule is used and too many dummy TPDUs in a row are
lost on an otherwise idle connection, first one side, then the other side will
automatically disconnect.

We will not belabor this point any more, but by now it should be clear that
releasing a connection is not nearly as simple as it at first appears.

6.2.4. Flow Control and Buffering

Having examined connection establishment and release in some detail, let us
now look at how connections are managed while they are in use. One of the key
issues has come up before: flow control. In some ways the flow control problem
in the transport layer is the same as in the data link layer, but in other ways it is
different. The basic similarity is that in both layers a sliding window or other
scheme is needed on each connection to keep a fast transmitter from overrunning
a slow receiver. The main difference is that a router usually has relatively few
lines whereas a host may have numerous connections. This difference makes it
impractical to implement the data link buffering strategy in the transport layer.

In the data link protocols of Chap. 3, frames were buffered at both the sending
router ancl at the receiving router. In protocol 6, for example, both sender and
receiver are required to dedicate MaxSeq + 1 buffers to each line, half for input
and half for output. For a host with a maximum of, say, 64 connections, and a 4-
bit sequence number, this protocol would require 1024 buffers.

In the data link layer, the sending side must buffer outgoing frames because
they might have to be retransmitted. If the subnet provides datagram service, the
sending transport entity must also buffer, and for the same reason. If the receiver
knows that the sender buffers all TPDUs until they are acknowledged, the receiver
may or may not dedicate specific buffers to specific connections, as it sees fit.
The receiver may, for example, maintain a single buffer pool shared by all con­
nections. When a TPDU comes in, an attempt is made to dynamically acquire a
new buffer. If one is available, the TPDU is accepted; otherwise, it is discarded.
Since the sender is prepared to retransmit TPDUs lost by the subnet, no harm is

Ex.1006.520DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 503

done by having the receiver drop TPDUs, although some resources are wasted.
The sender just keeps trying until it gets an acknowledgement.

In summary, if the network service is unreliable, the sender must buffer all
TPDUs sent, just as in the data link layer. However, with reliable network ser­
vice, other trade-offs become possible. In particular, if the sender knows that the
receiver always has buffer space, it need not retain copies of the TPDUs it sends.
However, if the receiver cannot guarantee that every incoming TPDU will be
accepted, the sender will have to buffer anyway. In the latter case, the sender
cannot trust the network layer's acknowledgement, because the acknowledgement
means only that the TPDU arrived, not that it was accepted. We will come back
to this important point later.

Even if the receiver has agreed to do the buffering, there still remains the
question of the buffer size. If most TPDUs are nearly the same size, it is natural
to organize the buffers as a pool of identical size buffers, with one TPDU per
buffer, as in Fig. 6-15(a). However, if there is wide variation in TPDU size, from
a few characters typed at a terminal to thousands of characters from file transfers,
a pool of fixed-sized buffers presents problems. If the buffer size is chosen equal
to the largest possible TPDU, space will be wasted whenever a short TPDU
arrives. If the buffer size is chosen less than the maximum TPDU size, multiple
buffers will be needed for long TPDUs, with the attendant complexity.

(a)

Unused
space

(c)

Fig. 6-15. (a) Chained fixed-size buffers. (b) Chained variable-size buffers.
(c) One large circular buffer per connection.

Another approach to the buffer size problem is to use variable-size buffers, as
in Fig. 6-15(b). The advantage here is better memory utilization, at the price of

Ex.1006.521DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 503

done by having the receiver drop TPDUs, although some resources are wasted.

The sender just keeps trying until it gets an acknowledgement.

In summary, if the network service is unreliable, the sender must buffer all

TPDUs sent, just as in the data link layer. However, with reliable network ser—

vice, other trade-offs become possible. In particular, if the sender knows that the

receiver always has buffer space, it need not retain copies of the TPDUs it sends.

However, if the receiver cannot guarantee that every incoming TPDU will be

accepted, the sender will have to buffer anyway. In the latter case, the sender

cannot trust the network layer’s acknowledgement, because the acknowledgement

means only that the TPDU arrived, not that it was accepted. We will come back

to this important point later.

Even if the receiver has agreed to do the buffering, there still remains the

question of the buffer size. If rnost TPDUs are nearly the same size, it is natural

to organize the buffers as a pool of identical size buffers, with one TPDU per

buffer, as in Fig. 6—15(a). However, if there is wide variation in TPDU size, from

a few characters typed at a terminal to thousands of characters from file transfers,

a pool of fixed—sized buffers presents problems. If the buffer size is chosen equal
to the largest possible TPDU, space will be wasted whenever a short TPDU

arrives. If the buffer size is chosen less than the maximum TPDU size, multiple

buffers will be needed for long TPDUs, with the attendant complexity.

TPDU 1

 } TPDU 2

} TPDU 3

(a)
TPDU 4

Unused
space

(C)

Fig. 6-15. (a) Chained fixed—size buffers. (b) Chained variable-size buffers.
(c) One large circular buffer per connection.

Another approach to the buffer size problem is to use variable-size buffers, as

in Fig. 6—15(b). The advantage here is better memory utilization, at the price of

DELL Ex.1006.521

504 THE TRANSPORT LAYER CHAP. 6

more complicated buffer management. A third possibility is to dedicate a single
large circular buffer per connection, as in Fig. 6-15(c). This system also makes
good use of memory, provided that all connections are heavily loaded but is poor
if some connections are lightly loaded.

The optimum trade-off between source buffering and destination buffering
depends on the type of traffic carried by the connection. For low-bandwidth
bursty traffic, such as that produced by an interactive terminal, it is better not to
dedicate any buffers, but rather to acquire them dynamically at both ends. Since
the sender cannot be sure the receiver will be able to acquire a buffer, the sender
must retain a copy of the TPDU until it is acknowledged. On the other hand, for
file transfer and other high-bandwidth traffic, it is better if the receiver does dedi­
cate a full window of buffers, to allow the data to flow at maximum speed. Thus
for low-bandwidth bursty traffic, it is better to buffer at the sender, and for high­
bandwidth, smooth traffic, it is better to buffer at the receiver.

As connections are opened and closed, and as the traffic pattern changes, the
sender and receiver need to dynamically adjust their buffer allocations. Conse­
quently, the transport protocol should allow a sending host to request buffer space
at the other end. Buffers could be allocated per connection, or collectively, for all
the connections running between the two hosts. Alternatively, the receiver, know­
ing its buffer situation (but not knowing the offered traffic) could tell the sender
"I have reserved X buffers for you." If the number of open connections should
increase, it may be necessary for an allocation to be reduced, so the protocol
should provide for this possibility.

A reasonably general way to manage dynamic buffer allocation is to decouple
the buffering from the acknowledgements, in contrast to the sliding window pro­
tocols of Chap. 3. Dynamic buffer management means, in effect, a variable-sized
window. Initially, the sender requests a certain number of buffers, based on its
perceived needs. The receiver then grants as many of these as it can afford.
Every time the sender transmits a TPDU, it must decrement its allocation, stop­
ping altogether when the allocation reaches zero. The receiver then separately
piggybacks both acknowledgements and buffer allocations onto the reverse traffic.

Figure 6-16 shows an example of how dynamic window management might
work in a datagram subnet with 4--bit sequence numbers. Assume that buffer allo­
cation information travels in separate TPDUs, as shown, and is not piggybacked
onto reverse traffic. Initially, A wants eight buffers, but is granted only four of
these. It then sends three TPDUs, of which the third is lost. TPDU 6 acknowl­
edges receipt of all TPDUs up to and including sequence number 1, thus allowing
A to release those buffers, and furthermore informs A that it has permission to
send three more TPDUs starting beyond 1 (i.e., TPDUs 2, 3, and 4). A knows that
it has already sent number 2, so it thinks that it may send TPDUs 3 and 4, which it
proceeds to do. At this point it is blocked and must wait for more buffer alloca­
tion. Timeout induced retransmissions (line 9), however, may occur while
blocked, since they use buffers that have already been allocated. In line 10, B

Ex.1006.522DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 505

acknowledges receipt of all TPDUs up to and including 4, but refuses to let A con­
tinue. Such a situation is impossible with the fixed window protocols of Chap. 3.
The next TPDU from B to A allocates another buffer and allows A to continue.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A Message B Comments

< request 8 buffers> A wants 8 buffers

<ack = 15, buf = 4> B grants messages 0-3 only

<seq = 0, data = mO> A has 3 buffers left now

<seq = 1, data= m1 > A has 2 buffers left now

<seq = 2, data = m2> Message lost but A thinks it has 1 left

<ack = 1 , buf = 3> B acknowledges 0 and 1, permits 2-4

<seq = 3, data = m3> A has buffer left

<seq = 4, data = m4> A has 0 buffers left, and must stop

<seq = 2, data = m2> A times out and retransmits

<ack = 4, bu! = 0> Everything acknowledged, but A still blocked

<ack = 4, buf = 1> A may now send 5

<ack = 4, bu! = 2> B found a new buffer somewhere

<seq = 5, data = m5> A has 1 buffer left

<seq = 6, data = m6> A is now blocked again

<ack = 6, buf = 0> A is still blocked

<ack = 6, buf = 4> Potential deadlock

Fig. 6-16. Dynamic buffer allocation. The arrows show the direction of
transmission. An ellipsis(...) indicates a lost TPDU.

Potential problems with buffer allocation schemes of this kind can arise in
datagram networks if control TPDUs can get lost. Look at line 16. B has now
allocated more buffers to A, but the allocation TPDU was lost. Since control
TPDUs are not sequenced or timed out, A is now deadlocked. To prevent this
situation, each host should periodically send control TPDUs giving the acknowl­
edgement and buffer status on each connection. That way, the deadlock will be
broken, sooner or later.

Up until now we have tacitly assumed that the only limit imposed on the
sender's data rate is the amount of buffer space available in the receiver. As
memory prices continue to fall dramatically, it may become feasible to equip
hosts with so much memory that lack of buffers is rarely, if ever, a problem.

When buffer space no longer limits the maximum flow, another bottleneck
will appear: the carrying capacity of the subnet. If adjacent routers can exchange
at most x frames/sec and there are k disjoint paths between a pair of hosts, there is
no way that those hosts can exchange more than kx TPDUs/sec, no matter how
much buffer space is available at each end. If the sender pushes too hard (i.e.,
sends more than kx TPDUs/sec), the subnet will become congested, because it
will be unable to deliver TPDUs as fast as they are coming in.

Ex.1006.523DELL

506 THE TRANSPORT LAYER CHAP. 6

What is needed is a mechanism based on the subnet's carrying capacity rather
than on the receiver's buffering capacity. Clearly, the flow control mechanism
must be applied at the sender to prevent it from having too many unacknowledged
TPDUs outstanding at once. Belsnes (1975) proposed using a sliding window
flow control scheme in which the sender dynamically adjusts the window size to
match the network's carrying capacity. If the network can handle c TPDUs/sec
and the cycle time (including transmission, propagation, queueing, processing at
the receiver, and return of the acknowledgement) is r, then the sender's window
should be er. With a window of this size the sender normally operates with the
pipeline full. Any small decrease in network performance will cause it to block.

In order to adjust the window size periodically, the sender could monitor both
parameters and then compute the desired window size. The carrying capacity can
be determined by simply counting the number of TPDUs acknowledged during
some time period and then dividing by the time period. During the measurement,
the sender should send as fast as it can, to make sure that the network's carrying
capacity, and not the low input rate, is the factor limiting the acknowledgement
rate. The time required for a transmitted TPDU to be acknowledged can be meas­
ured exactly and a running mean maintained. Since the capacity of the network
depends on the amount of traffic in it, the window size should be adjusted fre­
quently, to track changes in the carrying capacity. As we will see later, the Inter­
net uses a similar scheme.

6.2.5. Multiplexing

Multiplexing several conversations onto connections, virtual circuits, and
physical links plays a role in several layers of the network architecture. In the
transport layer the need for multiplexing can arise in a number of ways. For
example, in networks that use virtual circuits within the subnet, each open con­
nection consumes some table space in the routers for the entire duration of the
connection. If buffers are dedicated to the virtual circuit in each router as well, a
user who left a terminal logged into a remote machine during a coffee break is
nevertheless consuming expensive resources. Although this implementation of
packet switching defeats one of the main reasons for having packet switching in
the first place-to bill the user based on the amount of data sent, not the connect
time-many carriers have chosen this approach because it so closely resembles
the circuit switching model to which they have grown accustomed over the
decades.

The consequence of a price structure that heavily penalizes installations for
having many virtual circuits open for long periods of time is to make multiplexing
of different transport connections onto the same network connection attractive.
This form of multiplexing, called upward multiplexing, is shown in Fig. 6-l 7(a).
In this figure, four distinct transport connections all use the same network connec­
tion (e.g., ATM virtual circuit) to the remote host. When connect time forms the

Ex.1006.524DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 507

major component of the carrier's bill, it is up to the transport layer to group trans­
port connections according to their destination and map each group onto the
minimum number of network connections. If too many transport connections are
mapped onto one network connection, the performance will be poor, because the
window will usually be full, and users will have to wait their turn to send one
message. If too few transport connections are mapped onto one network connec­
tion, the service will be expensive. When upward multiplexing is used with
ATM, we have the ironic (tragic?) situation of having to identify the connection
using a field in the transport header, even though A TM provides more than 4000
virtual circuit numbers per virtual path expressly for that purpose.

Router lines

To router

(a) (b)

Transport address

/
Network
address

Fig. 6-17. (a) Upward multiplexing. (b) Downward multiplexing.

Multiplexing can also be useful in the transport layer for another reason,
related to carrier technical decisions rather than carrier pricing decisions. Sup­
pose, for example, that a certain important user needs a high-bandwidth connec­
tion from time to time. If the subnet enforces a sliding window flow control with
an n-bit sequence number, the user must stop sending as soon as 2n - 1 packets
are outstanding and must wait for the packets to propagate to the remote host and
be acknowledged. If the physical connection is via a satellite, the user is effec­
tively limited to 2n - 1 packets every 540 msec. With, for example, n = 8 and
128-byte packets, the usable bandwidth is about 484 kbps, even though the physi­
cal channel bandwidth is more than 100 times higher.

One possible solution is to have the transport layer open multiple network
connections and distribute the traffic among them on a round-robin basis, as indi­
cated in Fig. 6-17 (b). This modus operandi is called downward multiplexing.
With k network connections open, the effective bandwidth is increased by a factor
of k. With 4095 virtual circuits, 128-byte packets, and an 8-bit sequence number,

Ex.1006.525DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 507

major component of the carrier’s bill, it is up to the transport layer to group trans-

port connections according to their destination and map each group onto the

minimum number of network connections. If too many transport connections are

mapped onto one network connection, the performance will be poor, because the

window will usually be full, and users will have to wait their turn to send one

message. If too few transport connections are mapped onto one network connec-

tion, the service will be expensive. When upward multiplexing is used with

ATM, we have the ironic (tragic?) situation of having to identify the connection

using a field in the transport header, even though ATM provides more than 4000

Virtual circuit numbers per virtual path expressly for that purpose.

Transport address

Layer /O + .7 0

Network

4 /address° +

3

2 Router lines
To router

(a) (b)

Fig. 6—17. (a) Upward multiplexing. (b) Downward multiplexing.

Multiplexing can also be useful in the transport layer for another reason,

related to carrier technical decisions rather than carrier pricing decisions. Sup-

pose, for example, that a certain important user needs a high—bandwidth connec—

tion from time to time. If the subnet enforces a sliding window flow control with

an n—bit sequence number, the user must stop sending as soon as 2” — 1 packets

are outstanding and must wait for the packets to propagate to the remote host and

be acknowledged. If the physical connection is via a satellite, the user is effec-

tively limited to 2" — 1 packets every 540 msec. With, for example, n = 8 and

128—byte packets, the usable bandwidth is about 484 kbps, even though the physi-

cal channel bandwidth is more than 100 times higher.

One possible solution is to have the transport layer open multiple network

connections and distribute the traffic among them on a round-robin basis, as indi—

cated in Fig. 6—l7(b). This modus operandi is called downward multiplexing.

With k network connections open, the effective bandwidth is increased by a factor

of k. With 4095 virtual circuits, 128-byte packets, and an 8—bit sequence number,

DELL Ex.1006.525

508 THE TRANSPORT LA YER CHAP. 6

it is theoretically possible to achieve data rates in excess of 1.6 Gbps. Of course,
this performance can be achieved only if the output line can support 1.6 Gbps,
because all 4095 virtual circuits are still being sent out over one physical line, at
least in Fig. 6-17 (b). If multiple output lines are available, downward multiplex­
ing can also be used to increase the performance even more.

6.2.6. Crash Recovery

If hosts and routers are subject to crashes, recovery from these crashes
becomes an issue. If the transport entity is entirely within the hosts, recovery
from network and router crashes is straightforward. If the network layer provides
datagram service, the transport entities expect lost TPDUs all the time and know
how to cope with them. If the network layer provides connection-oriented ser­
vice, then loss of a virtual circuit is handled by establishing a new one and then
probing the remote transport entity to ask it which TPDUs it has received and
which ones it has not received. The latter ones can be retransmitted.

A more troublesome problem is how to recover from host crashes. In particu­
lar, it may be desirable for clients to be able to continue working when servers
crash and then quickly reboot. To illustrate the difficulty, let us assume that one
host, the client, is sending a long file to another host, the file server, using a sim­
ple stop-and-wait protocol. The transport layer on the server simply passes the
incoming TPDUs to the transport user, one by one. Part way through the
transmission, the server crashes. When it comes back up, its tables are reinitial­
ized, so it no longer knows precisely where it was.

In an attempt to recover its previous status, the server might send a broadcast
TPDU to all other hosts, announcing that it had just crashed and requesting that its
clients inform it of the status of all open connections. Each client can be in one of
two states: one TPDU outstanding, SJ, or no TPDUs outstanding, SO. Based on
only this state information, the client must decide whether or not to retransmit the
most recent TPDU.

At first glance it would seem obvious: the client should retransmit only if it
has an unacknowledged TPDU outstanding (i.e., is in state SJ) when it learns of
the crash. However, a closer inspection reveals difficulties with this naive
approach. Consider, for example, the situation when the server's transport entity
first sends an acknowledgement, and then, when the acknowledgement has been
sent, performs the write up to the application process. Writing a TPDU onto the
output stream and sending an acknowledgement are two distinct indivisible events
that cannot be done simultaneously. If a crash occurs after the acknowledgement
has been sent but before the write has been done, the client will receive the
acknowledgement and thus be in state SO when the crash recovery announcement
arrives. The client will therefore not retransmit, (incorrectly) thinking that the
TPDU has arrived. This decision by the client leads to a missing TPDU.

Ex.1006.526DELL

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 509

At this point you may be thinking: "That problem can be solved easily. All
you have to do is reprogram the transport entity to first do the write and then send
the acknowledgement." Try again. Imagine that the write has been done but the
crash occurs before the acknowledgement can be sent. The client will be in state
SJ and thus retransmit, leading to an undetected duplicate TPDU in the output
stream to the server application process.

No matter how the sender and receiver are programmed, there are always
situations where the protocol fails to recover properly. The server can be pro­
grammed in one of two ways: acknowledge first or write first. The client can be
programmed in one of four ways: always retransmit the last TPDU, never
retransmit the last TPDU, retransmit only in state SO, or retransmit only in state
SJ. This gives eight combinations, but as we shall see, for each combination there
is some set of events that makes the protocol fail.

Three events are possible at the server: sending an acknowledgement (A),
writing to the output process (W), and crashing (C). The three events can occur
in six different orderings: AC(W), AWC, C(AW), C(WA), WAC, and WC(A),
where the parentheses are used to indicate that neither A nor W may follow C (i.e.,
once it has crashed, it has crashed). Figure 6-18 shows all eight combinations of
client and server strategy and the valid event sequences for each one. Notice that
for each strategy there is some sequence of events that causes the protocol to fail.
For example, if the client always retransmits, the A WC event will generate an
undetected duplicate, even though the other two events work properly.

Strategy used by receiving host

First ACK, then write First write, then ACK

Strategy used by
sending host

Always retransmit

Never retransmit

Retransmit in SO

Retransmit in S1

------·~~~~~~~-

AC(W) AWC C(AW) C(WA)

OK DUP OK OK

LOST OK LOST LOST

OK DUP LOST LOST

LOST OK OK OK

OK = Protocol functions correctly
DUP =Protocol generates a duplicate message
LOST = Protocol loses a message

WAC

DUP

OK

DUP

OK

Fig. 6-18. Different combinations of client and server strategy.

WC(A)

DUP

OK

OK

DUP

Making the protocol more elaborate does not help. Even if the client and
server exchange several TPDUs before the server attempts to write, so that the
client knows exactly what is about to happen, the client has no way of knowing
whether a crash occurred just before or just after the write. The conclusion is

Ex.1006.527DELL

510 THE TRANSPORT LA YER CHAP. 6

inescapable: under our ground rules of no simultaneous events, host crash and
recovery cannot be made transparent to higher layers.

Put in more general terms, this result can be restated as recovery from a layer
N crash can only be done by layer N + 1, and then only if the higher layer retains
enough status information. As mentioned above, the transport layer can recover
from failures in the network layer, provided that each end of a connection keeps
track of where it is.

This problem gets us into the issue of what a so-called end-to-end acknowl­
edgement really means. In principle, the transport protocol is end-to-end and not
chained like the lower layers. Now consider the case of a user entering requests
for transactions against a remote database. Suppose that the remote transport
entity is programmed to first pass TPDUs to the next layer up and then acknowl­
edge. Even in this case, the receipt of an acknowledgement back at the user's
machine does not necessarily mean that the remote host stayed up long enough to
actually update the database. A truly end-to-end acknowledgement, whose receipt
means that the work has actually been done, and lack thereof means that it has
not, is probably impossible to achieve. This point is discussed in more detail by
Saltzer et al. (1984).

6.3. A SIMPLE TRANSPORT PROTOCOL

To make the ideas discussed so far more concrete, in this section we will
study an example transport layer in detail. The example has been carefully
chosen to be reasonably realistic, yet still simple enough to be easy to understand.
The abstract service primitives we will use are the connection-oriented primitives
of Fig. 6-3.

6.3.1. The Example Service Primitives

Our first problem is how to express these transport pnm1tives concretely.
CONNECT is easy: we will just have a library procedure connect that can be called
with the appropriate parameters necessary to establish a connection. The parame­
ters are the local and remote TSAPs. During the call, the caller is blocked (i.e.,
suspended) while the transport entity tries to set up the connection. If the connec­
tion succeeds, the caller is unblocked, and can start transmitting data.

When a process wants to be able to accept incoming calls, it calls listen,
specifying a particular TSAP to listen to. The process then blocks until some
remote process attempts to establish a connection to its TSAP.

Note that this model is highly asymmetric. One side is passive, executing a
listen and waiting until something happens. The other side is active and initiates
the connection. An interesting question arises of what to do if the active side

Ex.1006.528DELL

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 511

begins first. One strategy is to have the connection attempt fail if there is no
listener at the remote TSAP. Another strategy is to have the initiator block (possi­
bly forever) until a listener appears.

A compromise, used in our example, is to hold the connection request at the
receiving end for a certain time interval. If a process on that host calls listen
before the timer goes off, the connection is established; otherwise, it is rejected
and the caller is unblocked aiid given an error return.

To release a connection, we will use a procedure disconnect. When both
sides have disconnected, the connection is released. In other words, we are using
a symmetric disconnection model.

Data transmission has precisely the same problem as connection establish­
ment: sending is active but receiving is passive. We will use the same solution for
data transmission as for connection establishment, an active call send that trans­
mits data, and a passive call receive that blocks until a TPDU arrives.

Our concrete service definition thus consists of five primitives: CONNECT,

LISTEN, DISCONNECT, SEND, and RECEIVE. Each primitive corresponds exactly
with a library procedure that executes the primitive. The parameters for the ser­
vice primitives and library procedures are as follows:

conn um
conn um
status
status
status

= LISTEN(local)
= CONNECT(local, remote)
= SEND(connum, buffer, bytes)
= RECEIVE(connum, buffer, bytes)
= DISCONNECT(connum)

The LISTEN primitive announces the caller's willingness to accept connection
requests directed at the indicated TSAP. The user of the primitive is blocked until
an attempt is made to connect to it. There is no timeout.

The CONNECT primitive takes two parameters, a local TSAP (i.e., transport
address), local, and a remote TSAP, remote, and tries to establish a transport con­
nection between the two. If it succeeds, it returns in connum a nonnegative
number used to identify the connection on subsequent calls. If it fails, the reason
for failure is put in connum as a negative number. In our simple model, each
TSAP may participate in only one transport connection, so a possible reason for
failure is that one of the transport addresses is currently in use. Some other rea­
sons are: remote host down, illegal local address, and illegal remote address.

The SEND primitive transmits the contents of the buffer as a message on the
indicated transport connection, possibly in several units if it is too big. Possible
errors, returned in status, are no connection, illegal buffer address, or negative
count.

The RECEIVE primitive indicates the caller's desire to accept data. The size of
the incoming message is placed in bytes. If the remote process has released the
connection or the buffer address is illegal (e.g., outside the user's program), status
is set to an error code indicating the nature of the problem.

Ex.1006.529DELL

512 THE TRANSPORT LA YER CHAP. 6

The DISCONNECT primitive terminates a transport connection. The parameter
connum tells which one. Possible errors are connum belongs to another process,
or connum is not a valid connection identifier. The error code, or 0 for success, is
returned in status.

6.3.2. The Example Transport Entity

Before looking at the code of the example transport entity, please be sure you
realize that this example is analogous to the early examples presented in Chap. 3:
it is more for pedagogical purposes than a serious proposal. Many of the technical
details (such as extensive error checking) that would be needed in a production
system have been omitted here for the sake of simplicity.

The transport layer makes use of the network service primitives to send and
receive TPDUs. For this example, we need to choose network service primitives
to use. One choice would have been unreliable datagram service. We have not
made that choice to keep the example simple. With unreliable datagram service,
the transport code would have been large and complex, mostly dealing with lost
and delayed packets. Furthermore, most of these ideas have already been dis­
cussed at length in Chap. 3.

Instead, we have chosen to use a connection-oriented reliable network service.
This way we can focus on transport issues that do not occur in the lower layers.
These include connection establishment, connection release, and credit manage­
ment, among others. A simple transport service built on top of an ATM network
might look something like this.

In general, the transport entity may be part of the host's operating system or it
may be a package of library routines running within the user's address space. It
may also be contained on a coprocessor chip or network board plugged into the
host's backplane. For simplicity, our example has been programmed as though it
were a library package, but the changes needed to make it part of the operating
system are minimal (primarily how user buffers are accessed).

It is worth noting, however, that in this example, the "transport entity" is not
really a separate entity at all, but part of the user process. In particular, when the
user executes a primitive that blocks, such as LISTEN, the entire transport entity
blocks as well. While this design is fine for a host with only a single user process,
on a host with multiple users, it would be more natural to have the transport entity
be a separ~te process, distinct from all the user processes.

The interface to the network layer is via the procedures to_net and from_net
(not shown). Each has six parameters. First comes the connection identifier,
which maps one-to-one onto network virtual circuits. Next come the Q and M
bits, which, when set to 1, indicate control message and more data from this mes­
sage follows in the next packet, respectively. After that we have the packet type,
chosen from the set of six packet types listed in Fig. 6-19. Finally, we have a
pointer to the data itself, and an integer giving the number of bytes of data.

Ex.1006.530DELL

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 513

Network packet Meaning

CALL REQUEST Sent to establish a connection

CALL ACCEPTED Response to CALL REQUEST

CLEAR REQUEST Sent to release a connection

CLEAR CONFIRMATION Response to CLEAR REQUEST

DATA Used to transport data

CREDIT Control packet for managing the window

Fig. 6-19. The network layer packets used in our example.

On calls to to_net, the transport entity fills in all the parameters for the net­
work layer to read; on calls to from_net, the network layer dismembers an incom­
ing packet for the transport entity. By passing information as procedure parame­
ters rather than passing the actual outgoing or incoming packet itself, the transport
layer is shielded from the details of the network layer protocol. If the transport
entity should attempt to send a packet when the underlying virtual circuit's sliding
window is full, it is suspended within to_net until there is room in the window.
This mechanism is transparent to the transport entity and is controlled by the net­
work layer using commands like enable_transport_layer and
disable_transporLlayer analogous to those described in the protocols of Chap. 3.
The management of the packet layer window is also done by the network layer.

In addition to this transparent suspension mechanism, there are also explicit
sleep and wakeup procedures (not shown) called by the transport entity. The pro­
cedure sleep is called when the transport entity is logically blocked waiting for an
external event to happen, generally the arrival of a packet. After sleep has been
called, the transport entity (and the user process, of course) stop executing.

The actual code of the transport entity is shown in Fig. 6-20. Each connection
is always in one of seven states, as follows:

1. IDLE-Connection not established yet.

2. w AITING-CONNECT has been executed and CALL REQUEST sent.

3. QUEUED-A CALL REQUEST has arrived; no LISTEN yet.

4. ESTABLISHED-The connection has been established.

5. SENDING-The user ils waiting for permission to send a packet.

6. RECEIVING-A RECEIVE has been done.

7. DISCONNECTING-A DISCONNECT has been done locally.

Transitions between states can occur when any of the following events occur: a
primitive is executed, a packet arrives, or the timer expires.

Ex.1006.531DELL

514 THE TRANSPORT LAYER CHAP. 6

#define MAX_CONN 32
#define MAX_MSG_SIZE 8192
#define MAX_PKLSIZE 512
#define TIMEOUT 20

I* maximum number of simultaneous connections */
/* largest message in bytes */

#define CRED i
#define OK 0

#define ERR_FULL -1
#define ERR_REJECT -2
#define ERR_CLOSED -3
#define LOW_ERR -3

typedef int transporLaddress;

I* largest packet in bytes */

typedef enum {CALL_REQ,CALL_ACC,CLEAR_REQ,CLEAR_CONF,DATA_PKT,CREDIT} pkUype;
typedef en um {IDLE,WAITING,QUEUED,EST ABLISHED,SENDING, RECEIVING,DISCONN} estate;

/* Global variables. */
transport_address listen_address;
int listen_conn;
unsigned char data[MAX_PKT _SIZE];

struct conn {

f* local address being listened to */
f* connection identifier for listen */
f* scratch area for packet data*/

transport_address local_address, remote_address;
estate state; /* state of this connection */
unsigned char *user_buLaddr; f* pointer to receive buffer */
int byte_count; f* send/receive count */
int clueq_received; f* set when CLEAR_REQ packet received */
int timer; /* used to time out CALL_REQ packets */
int credits; /* number of messages that may be sent */

} conn[MAX_CONN];

void sleep(void); /* prototypes */
void wakeup(void);
void to_net(int cid, int q, int m, pkUype pt, unsigned char *p, int bytes);
void from_net(int *Cid, int *q, int *m, pkUype *pt, unsigned char *p, int *bytes);

int listen(transport_address t)
{ /* User wants to listen for a connection. See if CALL_REQ has already arrived. */

int i = 1, found = O;

for (i = 1; i <= MAX_CONN; i++) /*search the table for CALLREQ */
if (conn[i].state == QUEUED && conn[i].locaLaddress == t) {

found= i;
break;

if (found == 0) {
/* No CALL_REQ is waiting. Go to sleep until arrival or timeout. */
listen_address = t; sleep(); i = listen_conn ;

}
conn[i].state =ESTABLISHED;
conn[i].timer = O;

/*connection is ESTABLISHED */
/* timer is not used */

Ex.1006.532DELL

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 515

listen_conn = O;
to_net(i, 0, 0, CALL_ACC, data, O);
return(i);

/* 0 is assumed to be an invalid address */
/* tell net to accept connection */
/* return connection identifier */

}

int connect(transporLaddress I, transport_address r)
{ /* User wants to connect to a remote process; send CALL_REQ packet. */

inti;
struct conn *Cptr;

data[O) = r; data[1 J = I; /* CALLREQ packet needs these */
i = MAX_CONN; /* search table backward */
while (conn[i].state != IDLE && i > 1) i = i - 1;
if (conn[i).state == IDLE) {

/* Make a table entry that CALLREQ has been sent. *I
cptr = &conn[i];
cptr->local_address = I; cptr->remote_address = r;
cptr->state =WAITING; cptr->clueq_received = O;
cptr->credits = O; cptr->timer == O;
to_net(i, 0, 0, CALL_REQ, data, 2);
sleep(); /* wait for CALL_ACC or CLEAR_REQ */
if (cptr->state ==ESTABLISHED) return(i);
if (cptr->clueq_received) {

}

/* Other side refused call. */
cptr->state = IDLE; /* back to IDLE state */
to_net(i, 0, 0, CLEAR_CQNF, data, O);
return(ERR_REJECT);

} else return(ERR_FULL);
}

/* reject CONNECT: no table space */

int send(int cid, unsigned char bufptr[], int bytes)
{/*User wants to send a message. */

int i, count, m;
struct conn *Cptr = &conn[cid];

/* Enter SENDING state. */
cptr->state =SENDING;
cptr->byte_count = O; /* # bytes sent so far this message */
if (cptr->clr _req_received == 0 && cptr->credits == 0) sleep();
if (cptr->clueq_received == 0) {

/* Credit available; split message into packets if need be. */
do {

if (bytes - cptr->byte_count > MAX_PKLSIZE) {/* multipacket message */
count = MAX_PKLSIZE; m = 1; /* more packets later *I

} else { /* single packet message *I
count = bytes - cptr->byte_count; m = O; /* last pkt of this message */

}
for (i = O; i <count; i++) data[i] = bufptr[cptr->byte_count + i];
to_net(cid, 0, m, DATA_PKT, data, count); /*send 1 packet*/
cptr->byte_count = cptr->byte_count + count; /* increment bytes sent so far */

} while (cptr->byte_count <bytes); /*loop until whole message sent*/

Ex.1006.533DELL

516 THE TRANSPORT LA YER CHAP. 6

cptr->credits- -; /* each message uses up one credit */
cptr->state =ESTABLISHED;
return(OK);

} else {

}
}

cptr->state =ESTABLISHED;
return(ERR_CLOSED); /* send failed: peer wants to disconnect *I

int receive(int cid, unsigned char bufptr[], int *bytes)
{ /* User is prepared to receive a message. */

struct conn *Cptr = &conn[cid];

if (cptr->clueq_received == 0) {
/* Connection still established; try to receive. */
cptr->state = RECEIVING;

}

cptr->user _buLaddr = bufptr;
cptr->byte_count = O;
data[O] = CRED;
data[1] = 1;
to_net(cid, 1, 0, CREDIT, data, 2);
sleep();
*bytes = cptr->byte_count;

cptr->state =ESTABLISHED;

/* send credit */
/* block awaiting data */

return(cptr->clr _req_received ? ERR_CLOSED : OK);
}

int disconnect(int cid)
{ /* User wants to release a connection. */
struct conn *cptr = &conn[cid];

if (cptr->clr _req_received) { /* other side initiated termination */
cptr->state =IDLE; /*connection is now released*/
to_net(cid, 0, 0, CLEAR_CONF, data, O);

} else { /* we initiated termination */
cptr->state = DISCONN; /*not released until other side agrees*/
to_net(cid, 0, 0, CLEAR_REQ, data, O);

}
return(OK);

}

void packeLarrival(void)
{ /* A packet has arrived, get and process it. */
int cid; /* connection on which packet arrived */
int count, i, q, m;
pkLtype ptype; /* CALLREQ, CALLACC, CLEAR_REQ, CLEAR_CONF, DATA_PKT, CREDIT*/
unsigned char data[MAX_PKT _SIZE]; /*data portion of the incoming packet*/
struct conn *cptr;

from_net(&cid, &q, &m, &ptype, data, &count); I* go get it*/
cptr = &conn[cid];

Ex.1006.534DELL

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 517

switch (ptype) {
case CALLREQ: /* remote user wants to establish connection *f

}
}

cptr->locaLaddress = data[O]; cptr->remote_address = data[1];
if (cptr->locaLaddress == listen_address) {

listen_conn = cid; cptr->state =ESTABLISHED; wakeup();
} else {

cptr->state = QUEUED; cptr->timer = TIMEOUT;
}
cptr->clr _req_received = O; cptr->credits = O;
break;

case CALL_ACC: /* remote user has accepted our CALL_REQ */
cptr->state =ESTABLISHED;
wakeup();
break;

case CLEAR_REQ: /* remote user wants to disconnect or reject call */
cptr->clr_req_received = 1;
if (cptr->state == DISCONN) cptr->state =IDLE; /*clear collision*/
if (cptr->state == WAITING II c:ptr->state ==RECEIVING II cptr->state ==SENDING) wakeup();
break;

case CLEAR_CONF: /* remote user agrees to disconnect */
cptr->state = IDLE;
break;

case CREDIT: /* remote user is waiting for data */
cptr->credits += data[1];
if (cptr··>state == SENDING) wakeup();
break;

case DAT A_PKT: /* remote user has sent data *f
for (i = O; i <count; i++) cptr->user_buLaddr[cptr->byte_count + i] = data[i];
cptr->byte_count += count;
if (m == O) wakeup();

void clock(void)
{ /* The clock has ticked, check for timeouts of queued connect requests. */

inti;
struct conn *Cptr;

for (i = 1; i <= MAX_CQNN; i++) {
cptr = &conn[i];

}
}

if (cptr->timer > 0) { /*timer was running */
cptr->timer--;
if (cptr->timer == 0) { /*timer has now expirE:id */

cptr->state = IDLE;
to_net(i, 0, 0, CLEAR_REQ, data, O);

Fig. 6-20 .. An example transport entity.

Ex.1006.535DELL

518 THE TRANSPORT LA YER CHAP. 6

The procedures shown in Fig. 6-20 are of two types. Most are directly call­
able by user programs. packet_arrival and clock are different, however. They are
spontaneously triggered by external events: the arrival of a packet and the clock
ticking, respectively. In effect, they are interrupt routines. We will assume that
they are never invoked while a transport entity procedure is running. Only when
the user process is sleeping or executing outside the transport entity may they be
called. This property is crucial to the correct functioning of the transport entity.

The existence of the Q (Qualifier) bit in the packet header allows us to avoid
the overhead of a transport protocol header. Ordinary data messages are sent as
data packets with Q = 0. Transport protocol control messages, of which there is
only one (CREDIT) in our example, are sent as data packets with Q = 1. These
control messages are detected and processed by the receiving transport entity.

The main data structure used by the transport entity is the array conn, which
has one record for each potential connection. The record maintains the state of
the connection, including the transport addresses at either end, the number of mes­
sages sent and received on the connection, the current state, the user buffer
pointer, the number of bytes of the current messages sent or received so far, a bit
indicating that the remote user has issued a DISCONNECT, a timer, and a permis­
sion counter used to enable sending of messages. Not all of these fields are used
in our simple example, but a complete transport entity Would need all of them, and
perhaps more. Each conn entry is assumed initialized to the IDLE state.

When the user calls CONNECT, the network layer is instructed to send a CALL

REQUEST packet to the remote machine, and the user is put to sleep. When the
CALL REQUEST packet arrives at the other side, the transport entity is interrupted
to run packet_arrival to check if the local user is listening on the specified
address. If so, a CALL ACCEPTED packet is sent back and the remote user is awak­
ened; if not, the CALL REQUEST is queued for TIMEOUT clock ticks. If a LISTEN

is done within this period, the connection is established; otherwise, it times out
and is rejected with a CLEAR REQUEST packet. This mechanism is needed to
prevent the initiator from blocking forever in the event that the remote process
does not want to connect to it.

Although we have eliminated the transport protocol header, we still need a
way to keep track of which packet belongs to which transport connection, since
multiple connections may exist simultaneously. The simplest approach is to use
the network layer virtual circuit number as the transport connection number as
well. Furthermore, the virtual circuit number can also be used as the index into
the conn array. When a packet comes in on network layer virtual circuit k, it
belongs to transport connection k, whose state is in the record conn[k]. For con­
nections initiated at a host, the connection number is chosen by the originating
transport entity. For incoming calls, the network layer makes the choice, choos­
ing any unused virtual circuit number.

To avoid having to provide and manage buffers within the transport entity, a
flow control mechanism different from the traditional sliding window is used

Ex.1006.536DELL

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 519

here. Instead, when a user calls RECEIVE, a special credit message is sent to the
transport entity on the sending machine and is recorded in the conn array. When
SEND is called, the transport entity checks to see if a credit has arrived on the
specified connection. If so, the message is sent (in multiple packets if need be)
and the credit decremented; if not, the transport entity puts itself to sleep until a
credit arrives. This mechanism guarantees that no message is ever sent unless the
other side has already done a RECEIVE. As a result, whenever a message arrives
there is guaranteed to be a buffer available into which it can be put. The scheme
can easily be generalized to allow receivers to provide multiple buffers and
request multiple messages.

You should keep the simplicity of Fig. 6-20 in mind. A realistic transport
entity would normally check all user supplied parameters for validity, handle
recovery from network layer crashes, deal with call collisions, and support a more
general transport service including such facilities as interrupts, datagrams, and
nonblocking versions of the SEND and RECEIVE primitives.

6.3.3. The Example as a Finite State Machine

Writing a transport entity is difficult and exacting work, especially for more
realistic protocols. To reduce the chance of making an error, it is often useful to
represent the state of the protocol as a finite state machine.

We have already seen that our example protocol has seven states per connec­
tion. It is also possible to isolate 12 events that can happen to move a connection
from one state to another. Five of these events are the five service primitives.
Another six are the arrivals of the six legal packet types. The last one is the
expiration of the timer. Figure 6-21 shows the main protocol actions in matrix
form. The columns are the states and the rows are the 12 events.

Each entry in the matrix (i.e., the finite state machine) of Fig. 6-21 has up to
three fields: a predicate, an action, and a new state. The predicate indicates under
what conditions the action is taken. For example, in the upper left-hand entry, if a
LISTEN is executed and there is no more table space (predicate P 1), the LISTEN

fails and the state does not change. On the other hand, if a CALL REQUEST packet
has already arrived for the transport address being listened to (predicate P2), the
connection is established immediately. Another possibility is that P2 is false, that
is, no CALL REQUEST has come in, in which case the connection remains in the
IDLE state, awaiting a CALL REQUEST packet.

It is worth pointing out that the choice of states to use in the matrix is not
entirely fixed by the protocol itself. In this example, there is no state LISTENING,
which might have been a reasonable thing to have following a LISTEN. There is
no LISTENING state because a state is associated with a connection record entry,
and no connection record is created by LISTEN. Why not? Because we have
decided to use the network layer virtual circuit numbers as the connection

Ex.1006.537DELL

520 THE TRANSPORT LA YER CHAP. 6

State
Dis-

Idle Waiting Queued Established Sending Receiving connecting

P1: -/Idle
LISTEN P2: A 1 /Estab

P2: A2/ldle
-/Es tab

CONNECT
P1: -/Idle
iJ.i: A3/Wait

en
Q)

.2: P4: AS/Idle

'E DISCONNECT P4: A6/Disc

ct PS: A 7 /Estab
SEND PS: AB/Send

RECEIVE A9/Receiving

P3: A 1/Estab
Call_req P3: A4/Queu'd

Call_acc -/Est ab

m
~

al
a.

Clear_req -/Idle A10/Estab A10/Estab A10/Estab -/Idle

Ol c:: .E Clear_conf
0

-/Idle
0

-=
Data Pkt A12/Estab

Credit A11/Estab A7/Estab

~ {Timeout -/Idle

Predicates
P1: Connection table full
P2: Call_req pending
P3: LISTEN pending
P4: Clear_req pending
P5: Credit available

Actions
A1: Send Call_acc A7: Send message
A2: Wait for Call_req AB: Wait for credit
A3: Send Call_req A9: Send credit
A4: Start timer A10: Set Clr_req_received flag
A5: Send Clear_conf A 11: Record credit
A6: Send Clear_req A12: Accept message

Fig. 6-21. The example protocol as a finite state machine. Each entry has an
optional predicate, an optional action, and the new state. The tilde indicates that
no major action is taken. An overbar above a predicate indicates the negation of
the predicate. Blank entries correspond to impossible or invalid events.

identifiers, and for a LISTEN, the virtual circuit number is ultimately chosen by the
network layer when the CALL REQUEST packet arrives.

The actions Al through Al 2 are the major actions, such as sending packets
and starting timers. Not all the minor actions, such as initializing the fields of a
connection record, are listed. If an action involves waking up a sleeping process,

Ex.1006.538DELL

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 521

the actions following the wakeup also count. For example, if a CALL REQUEST

packet comes in and a process was asleep waiting for it, the transmission of the
CALL ACCEPT packet following the wakeup counts as part of the action for CALL

REQUEST. After each action is performed, the connection may move to a new
state, as shown in Fig. 6-21.

The advantage of representing the protocol as a matrix is threefold. First, in
this form it is much easier for the programmer to systematically check each com­
bination of state and event to see if an action is required. In production imple­
mentations, some of the combinations would be used for error handling. In
Fig. 6-21 no distinction is made between impossible situations and illegal ones.
For example, if a connection is in waiting state, the DISCONNECT event is impossi­
ble because the user is blocked and cannot execute any primitives at all. On the
other hand, in sending state, data packets are not expected because no credit has
been issued. The arrival of a data packet is a protocol error.

The second advantage of the matrix representation of the protocol is in imple­
menting it. One could envision a two-dimensional array in which element a [i] [j]
was a pointer or index to the procedure that handled the occurrence of event i
when in state j. One possible implementation is to write the transport entity as a
short loop, waiting for an event at the top of the loop. When an event happens,
the relevant connection is located and its state is extracted. With the event and
state now known, the transport entity just indexes into the array a and calls the
proper procedure. This approach gives a much more regular and systematic
design than our transport entity.

The third advantage of the finite state machine approach is for protocol
description. In some standards documents, the protocols are given as finite state
machines of the type of Fig. 6-21. Going from this kind of description to a work­
ing transport entity is much easier if the transport entity is also driven by a finite
state machine based on the one in the standard.

The primary disadvantage of the finite state machine approach is that it may
be more difficult to understand than the straight programming example we used
initially. However, this problem may be partially solved by drawing the finite
state machine as a graph, as is done in Fig. 6-22.

6.4. THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP)

The Internet has two main protocols in the transport layer, a connection­
oriented protocol and a connectionless one. In the following sections we will
study both of them. The connection-oriented protocol is TCP. The connection­
less protocol is UDP. Because UDP is basically just IP with a short header added,
we will focus on TCP.

TCP (Transmission Control Protocol) was specifically designed to provide
a reliable end-to-end byte stream over an unreliable internetwork. An

Ex.1006.539DELL

522 THE TRANSPORT LAYER CHAP. 6

CONNECT
(

TIMEOUT
/ ' IDLE

(CLEAR REQ CALL REQ I
_a I-·

0 z LU LU
LU a: z

WAITING f-J z QUEUED (/)J 0 :::J <t:
(.) (.)

(/)

l CALLACC
Ci j LISTEN

EST AB-

DATA, LISHED RECEIVE

(CLEAR REQ ~)~ l DATA, SEND
SENDING z

CLEAR REQ
RECEIVING

0
()
(/)

Ci

DISCON·
NECTING

~ CLEAR REQ, CLEAR CONF

Fig. 6-22. The example protocol in graphical form. Transitions that leave the
connection state unchanged have been omitted for simplicity.

internetwork differs from a single network because different parts may have
wildly different topologies, bandwidths, delays, packet sizes, and other parame­
ters. TCP was designed to dynamically adapt to properties of the internetwork
and to be robust in the face of many kinds of failures.

TCP was formally defined in RFC 793. As time went on, various errors and
inconsistencies were detected, and the requirements were changed in some areas.
These clarifications and some bug fixes are detailed in RFC 1122. Extensions are
given in RFC 1323.

Each machine supporting TCP has a TCP transport entity, either a user pro­
cess or part of the kernel that manages TCP streams and interfaces to the IP layer.
A TCP entity accepts user data streams from local processes, breaks them up into
pieces not exceeding 64K bytes (in practice, usually about 1500 bytes), and sends
each piece as a separate IP datagram. When IP datagrams containing TCP data
arrive at a machine, they are given to the TCP entity, which reconstructs the origi­
nal byte streams. For simplicity, we will sometimes use just "TCP" to mean the

Ex.1006.540DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 523

TCP transport entity (a piece of software) or the TCP protocol (a set of rules).
From the context it will be clear which is meant. For example, in "The user gives
TCP the data," the TCP transport entity is clearly intended.

The IP layer gives no guarantee that datagrams will be delivered properly, so
it is up to TCP to time out and retransmit them as need be. Datagrams that do
arrive may well do so in the wrong order; it is also up to TCP to reassemble them
into messages in the proper sequence. In short, TCP must furnish the reliability
that most users want and that IP does not provide.

6.4.1. The TCP Service Model

TCP service is obtained by having both the sender and receiver create end
points, called sockets, as discussed in Sec. 6.1.3. Each socket has a socket
number (address) consisting of the IP address of the host and a 16-bit number
local to that host, called a port. A port is the TCP name for a TSAP. To obtain
TCP service, a connection must be explicitly established between a socket on the
sending machine and a socket on the receiving machine. The socket calls are
listed in Fig. 6-6.

A socket may be used for multiple connections at the same time. In other
words, two or more connections may terminate at the same socket. Connections
are identified by the socket identifiers at both ends, that is, (socket], socket2). No
virtual circuit numbers or other identifiers are used.

Port numbers below 256 are called well-known ports and are reserved for
standard services. For example, any process wishing to establish a connection to
a host to transfer a file using FTP can connect to the destination host's port 21 to
contact its FTP daemon. Similarly, to establish a remote login session using TEL­
NET, port 23 is used. The list of well-known ports is given in RFC 1700.

All TCP connections are full-duplex and point-to-point. Full duplex means
that traffic can go in both directions at the same time. Point-to-point means that
each connection has exactly two end points. TCP does not support multicasting or
broadcasting.

A TCP connection is a byte stream, not a message stream. Message bound­
aries are not preserved end to end. For example, if the sending process does four
512-byte writes to a TCP stream, these data may be delivered to the receiving pro­
cess as four 512-byte chunks, two 1024-byte chunks, one 2048-byte chunk (see
Fig. 6-23), or some other way. There is no way for the receiver to detect the
unit(s) in which the data were written.

Files in UNIX have this property too. The reader of a file cannot tell whether
the file was written a block at a time, a byte at a time, or all in one blow. As with
a UNIX file, the TCP software has no idea of what the bytes mean and no interest
in finding out. A byte is just a byte.

When an application passes data to TCP, TCP may send it immediately or
buffer it (in order to collect a larger amount to send at once), at its discretion.

Ex.1006.541DELL

524 THE TRANSPORT LA YER CHAP. 6

IE"••'•'){ .jce "••'•m
A B C D

(a) (b)

Fig. 6-23. (a) Four 512-byte segments sent as separate IP datagrams. (b) The
2048 bytes of data delivered to the application in a single READ call.

However, sometimes, the application really wants the data to be sent immediately.
For example, suppose a user is logged into a remote machine. After a command
line has been finished and the carriage return typed, it is essential that the line be
shipped off to the remote machine immediately and not buffered until the next
line comes in. To force data out, applications can use the PUSH flag, which tells
TCP not to delay the transmission.

Some early applications used the PUSH flag as a kind of marker to delineate
messages boundaries. While this trick sometimes works, it sometimes fails since
not all implementations of TCP pass the PUSH flag to the application on the
receiving side. Furthermore, if additional PUSHes come in before the first one
has been transmitted (e.g., because the output line is busy), TCP is free to collect
all the PUSHed data into a single IP datagram, with no separation between the
vanous pieces.

One last feature of the TCP service that is worth mentioning here is urgent
data. When an interactive user hits the DEL or CTRL-C key to break off a
remote computation that has already begun, the sending application puts some
control information in the data stream and gives it to TCP along with the
URGENT flag. This event causes TCP to stop accumulating data and transmit
everything it has for that connection immediately.

When the urgent data are received at the destination, the receiving application
is interrupted (e.g., given a signal in UNlX terms), so it can stop whatever it was
doing and read the data stream to find the urgent data. The end of the urgent data
is marked, so the application knows when it is over. The start of the urgent data is
not marked. It is up to the application to figure that out. This scheme basically
provides a crude signaling mechanism and leaves everything else up to the appli­
cation.

6.4.2. The TCP Protocol

In this section we will give a general overview of the TCP protocol. In the
next one we will go over the protocol header, field by field. Every byte on a TCP
connection has its own 32-bit sequence number. For a host blasting away at full

Ex.1006.542DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 525

speed on a 10-Mbps LAN, theoretically the sequence numbers could wrap around
in an hour, but in practice it takes much longer. The sequence numbers are used
both for acknowledgements and for the window mechanism, which use separate
32-bit header fields.

The sending and receiving TCP entities exchange data in the form of seg­
ments. A segment consists of a fixed 20-byte header (plus an optional part) fol­
lowed by zero or more data bytes. The TCP software decides how big segments
should be. It can accumulate data from several writes into one segment or split
data from one write over multiple segments. Two limits restrict the segment size.
First, each segment, including the TCP header, must fit in the 65,535 byte IP pay­
load. Second, each network has a maximum transfer unit or MTU, and each
segment must fit in the MTU. In practice, the MTU is generally a few thousand
bytes and thus defines the upper bound on segment size. If a segment passes
through a sequence of networks without being fragmented and then hits one
whose MTU is smaller than the segment, the router at the boundary fragments the
segment into two or more smaller segments.

A segment that is too large for a network that it must transit can be broken up
into multiple segments by a router. Each new segment gets its own IP header, so
fragmentation by routers increases the total overhead (because each additional
segment adds 20 bytes of extra header information in the form of an IP header).

The basic protocol used by TCP entities is the sliding window protocol.
When a sender transmits a segment, it also starts a timer. When the segment
arrives at the destination, the receiving TCP entity sends back a segment (with
data if any exists, otherwise without data) bearing an acknowledgement number
equal to the next sequence number it expects to receive. If the sender's timer goes
off before the acknowledgement is received, the sender transmits the segment
again.

Although this protocol sounds simple, there are many ins and outs that we will
cover below. For example, since segments can be fragmented, it is possible that
part of a transmitted segment arrives and is acknowledged by the receiving TCP
entity, but the rest is lost. Segments can also arrive out of order, so bytes
3072--4095 can arrive but cannot be acknowledged because bytes 2048-3071 have
not turned up yet. Segments can also be delayed so long in transit that the sender
times out and retransmits them. If a retransmitted segment takes a different route
than the original, and is fragmented differently, bits and pieces of both the original
and the duplicate can arrive sporadicaliy, requiring a careful administration to
achieve a reliable byte stream. Finally, with so many networks making up the
Internet, it is possible that a segment may occasionally hit a congested (or broken)
network along its path.

TCP must be prepared to deal with these problems and solve them in an effi­
cient way. A considerable amount of effort has gone into optimizing the perfor­
mance of TCP streams, even in the face of network problems. A number of the
algorithms used by many TCP implementations will be discussed below.

Ex.1006.543DELL

526 THE TRANSPORT LA YER CHAP. 6

6.4.3. The TCP Segment Header

Figure 6-24 shows the layout of a TCP segment. Every segment begins with a
fixed-format 20-byte header. The fixed header may be followed by header
options. After the options, if any, up to 65,535 - 20- 20 = 65,515 data bytes may
follow, where the first 20 refers to the IP header and the second to the TCP
header. Segments without any data are legal and are commonly used for
acknowledgements and control messages.

-------------- 32 Bits----------------.

Source port

Checksum

1

Sequence number

Acknowledgement number

U A P R S F
R C S S Y I
GKHTNN

Options (0 or more 32-bit words)

Data (optional)

Fig. 6-24. The TCP header.

Destination port

Window size

Urgent pointer

I

Let us dissect the TCP header field by field. The Source port and Destination
port fields identify the local end points of the connection. E11ch host may decide
for itself how to allocate its own ports starting at 256. A port plus its host's IP
address forms a 48-bit unique TSAP. The source and destination socket numbers
together identify the connection.

The Sequence number and Acknowledgement number fields perform their
usual functions. Note that the latter specifies the next byte expected, not the last
byte correctly received. Both are 32 bits long because every byte of data is num­
bered in a TCP stream.

The TCP header length tells how many 32-bit words are contained in the TCP
header. This information is needed because the Options field is of variable length,
so the header is too. Technically, this field really indicates the start of the data

Ex.1006.544DELL

526 THE TRANSPORT LAYER CHAP. 6

6.4.3. The TCP Segment Header

Figure 6-24 shows the layout of a TCP segment. Every segment begins with a

fixed-format 20-byte header. The fixed header may be followed by header

options. After the options, if any, up to 65,535 — 20 — 20 = 65,515 data bytes may
follow, where the first 20 refers to the 1P header and the second to the TCP

header. Segments without any data are legal and are commonly used for

acknowledgements and control messages.

< 32 Bits >

___.llllllIilllJllLlllllllliLllllll

Source port 1 Destination port
Sequence number

Acknowledgement number

TCP U A P R S F
header R C S S Y | Window size

length G K H T N N

Checksum ‘ Urgent pointer
:2 Options (0 or more 32-bit words) :2

:2 Data (optional) ::

Fig. 6-24. The TCP header.

Let us dissect the TCP header field by field. The Source port and Destination

port fields identify the local end points of the connection. Each host may decide

for itself how to allocate its own ports starting at 256. A port plus its host’s IP

address forms a 48—bit unique TSAP. The source and destination socket numbers

together identify the connection.

The Sequence number and Acknowledgement number fields perform their

usual functions. Note that the latter specifies the next byte expected, not the last

byte correctly received. Both are 32 bits long because every byte of data is num—

bered in a TCP stream.

The TCP header length tells how many 32—bit words are contained in the TCP
header. This information is needed because the Options field is of variable length,

so the header is too. Technically, this field really indicates the start of the data

DELL Ex.1006.544

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 527

within the segment, measured in 32-bit words, but that number is just the header
length in words, so the effect is the same.

Next comes a 6-bit field that is not used. The fact that this field has survived
intact for over a decade is testimony to how well thought out TCP is. Lesser pro­
tocols would have needed it to fix bugs in the original design.

Now come six 1-bit flags. URG is set to 1 if the Urgent pointer is in use. The
Urgent pointer is used to indicate a byte offset from the current sequence number
at which urgent data ary to be found. This facility is in lieu of interrupt messages.
As we mentioned above, this facility is a bare bones way of allowing the sender to
signal the receiver without getting TCP itself involved in the reason for the inter­
rupt.

The ACK bit is set to 1 to indicate that the Acknowledgement number is valid.
If ACK is 0, the segment does not contain an acknowledgement so the Acknowl­
edgement number field is ignored.

The PSH bit indicates PUSHed data. The receiver is hereby kindly requested
to deliver the data to the application upon arrival and not buffer it until a full
buffer has. been received (which it might otherwise do for efficiency reasons).

The RST bit is used to reset a connection that has become confused due to a
host crash or some other reason. It is also used to reject an invalid segment or
refuse an attempt to open a connection. In general, if you get a segment with the
RST bit on, you have a problem on your hands.

The SYN bit is used to establish connections. The connection request has
SYN= 1 and ACK= 0 to indicate that the piggyback acknowledgement field is not
in use. The connection reply does bear an acknowledgement, so it has SYN = 1
and ACK = 1. In essence the SYN bit is used to denote CONNECTION REQUEST and
CONNECTION ACCEPTED, with the ACK bit used to distinguish between those two
possibilities.

The FIN bit is used to release a connection. It specifies that the sender has no
more data to transmit. However, after closing a connection, a process may con­
tinue to receive data indefinitely. Both SYN and FIN segments have sequence
numbers and are thus guaranteed to be processed in the correct order.

Flow control in TCP is handled using a variable-size sliding window. The
Window field tells how many bytes may be sent starting at the byte acknowledged.
A Window field of 0 is legal and says that the bytes up to and including
Acknowledgement number - 1 have been received, but that the receiver is
currently badly in need of a rest and would like no more data for the moment,
thank you. Permission to send can be granted later by sending a segment with the
same Acknowledgement number and a nonzero Window field.

A Checksum is also provided for extreme reliability. It checksums the header,
the data, and the conceptual pseudoheader shown in Fig. 6-25. When performing
this computation, the TCP Checksum field is set to zero, and the data field is pad­
ded out with an additional zero byte if its length is an odd number. The checksum
algorithm is simply to add up all the 16-bit words in l's complement and then to

Ex.1006.545DELL

528 THE TRANSPORT LAYER CHAP. 6

take the l's complement of the sum. As a consequence, when the receiver per­
forms the calculation on the entire segment, including the Checksum field, the
result should be 0.

32 Bits---------------..-

Source address

Destination address

00000000
I

Protocol= 6
I

TCP segment length

Fig. 6-25. The pseudoheader included in the TCP checksum.

The pseudoheader contains the 32-bit IP addresses of the source and destina­
tion machines, the protocol number for TCP (6), and the byte count for the TCP
segment (including the header). Including the pseudoheader in the TCP checksum
computation helps detect misdelivered packets, but doing so violates the protocol
hierarchy since the IP addresses in it belong to the IP layer, not the TCP layer.

The Options field was designed to provide a way to add extra facilities not
covered by the regular header. The most important option is the one that allows
each host to specify the maximum TCP payload it is willing to accept. Using
large segments is more efficient than using small ones because the 20-byte header
can then be amortized over more data, but small hosts may not be able to handle
very large segments. During connection setup, each side can announce its max­
imum and see its partner's. the smaller of the two numbers wins. If a host does
not use this option, it defaults to a 536-byte payload. All Internet hosts are
required to accept TCP segments of 536 + 20 = 556 bytes.

For lines with high bandwidth, high delay, or both, the 64 KB window is often
a problem. On a T3 line (44.736 Mbps), it takes only 12 msec to output a full 64
KB window. If the round trip propagation delay is 50 msec (typical for a trans­
continental fiber), the sender will be idle 3/4 of the time waiting for acknowledge­
ments. On a satellite connection, the situation is even worse. A larger window
size would allow the sender to keep pumping data out, but using the 16-bit Win­
dow size field, there is no way to express such a size. In RFC 1323, a Window
scale option was proposed, allowing the sender and receiver to negotiate a win­
dow scale factor. This number allows both sides to shift the Window size field up
to 16 bits to the left, thus allowing windows of up to 232 bytes. Most TCP imple­
mentations now support this option.

Another option proposed by RFC 1106 and now widely implemented is the
use of the selective repeat instead of go back n protocol. If the receiver gets one
bad segment and then a large number of good ones, the normal TCP protocol will

Ex.1006.546DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 529

eventually time out and retransmit all the unacknowledged segments, including all
those that were received correctly. RFC 1106 introduced NAKs, to allow the
receiver to ask for a specific segment (or segments). After it gets these, it can
acknowledge all the buffered data, thus reducing the amount of data retransmitted.

6.4.4. TCP Connection Management

Connections are established in TCP using the three-way handshake discussed
in Sec. 6.2.2. To establish a connection, one side, say the server, passively waits
for an incoming connection by executing the LISTEN and ACCEPT primitives, either
specifying a specific source or Illobody in particular.

The other side, say the client, executes a CONNECT primitive, specifying the
IP address and port to which it wants to connect, the maximum TCP segment size
it is willing to accept, and optionally some user data (e.g., a password). The CON­

NECT primitive sends a TCP segment with the SYN bit on and ACK bit off and
waits for a response.

When this segment arrives at the destination, the TCP entity there checks to
see if there is a process that has done a LISTEN on the port given in the Destination
port field. If not, it sends a reply with the RST bit on to reject the connection.

Host 1

Q)

1

Host2 Host 1

(a) (b}

Fig. 6-26. (a) TCP connection establishment in the normal case. (b) Call colli­
sion.

Host2

If some process is listening to the port, that process is given the incoming
TCP segment. It can then either accept or reject the connection. If it accepts, an
acknowledgement segment is sent back. The sequence of TCP segments sent in
the normal case is shown in Fig. 6-26(a). Note that a SYN segment consumes 1
byte of sequence space so it can be acknowledged unambiguously.

Ex.1006.547DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 529

eventually time out and retransmit all the unacknowledged segments, including all

those that were received correctly. RFC 1106 introduced NAKs, to allow the

receiver to ask for a specific segment (or segments). After it gets these, it can

acknowledge all the buffered data, thus reducing the amount of data retransmitted.

6.4.4. TCP Connection Management

Connections are established in TCP using the three—way handshake discussed

in Sec. 6.2.2. To establish a connection, one side, say the server, passively waits

for an incoming connection by executing the LISTEN and ACCEPT primitives, either

specifying a specific source or nobody in particular.

The other side, say the client, executes a CONNECT primitive, specifying the

IP address and port to which it wants to connect, the maximum TCP segment size

it is willing to accept, and optionally some user data (e.g., a password). The CON-

NECT primitive sends a TCP segment with the SYN bit on and ACK bit off and

waits for a response.

When this segment arrives at the destination, the TCP entity there checks to

see if there is a process that has done a LISTEN on the port given in the Destination

port field. If not, it sends a reply with the RST bit on to reject the connection.

Host 1 Host 2 Host 1 Host 2

Time
Fig. 15-26. (a) TCP connection establishment in the normal case. (b) Call colli—
sion.

If some process is listening to the port, that process is given the incoming

TCP segment. It can then either accept or reject the connection. If it accepts, an

acknowledgement segment is sent back. The sequence of TCP segments sent in

the normal case is shown in Fig. 6-26(a). Note that a SYN segment consumes 1

byte of sequence space so it can be acknowledged unambiguously.

DELL Ex.1006.547

530 THE TRANSPORT LA YER CHAP. 6

In the event that two hosts simultaneously attempt to establish a connection
between the same two sockets, the sequence of events is as illustrated in Fig. 6-
26(b). The result of these events is that just one connection is established, not two
because connections are identified by their end points. If the first setup results in
a connection identified by (x, y) and the second one does too, only one table entry
is made, namely, for (x, y).

The initial sequence number on a connection is not 0 for the reasons we dis­
cussed earlier. A clock-based scheme is used, with a clock tick every 4 µsec. For
additional safety, when a host crashes, it may not reboot for the maximum packet
lifetime (120 sec) to make sure that no packets from previous connections are still
roaming around the Internet somewhere ..

Although TCP connections are full duplex, to understand how connections are
released it is best to think of them as a pair of simplex connections. Each simplex
connection is released independently of its sibling. To release a connection, either
party can send a TCP segment with the FIN bit set, which means that it has no
more data to transmit. When the FIN is acknowledged, that direction is shut down
for new data. Data may continue to flow indefinitely in the other direction, how­
ever. When both directions have been shut down, the connection is released.
Normally, four TCP segments are needed to release a connection, one FIN and
one ACK for each direction. However, it is possible for the first ACK and the
second FIN to be contained in the same segment, reducing the total count to three.

Just as with telephone calls in which both people say goodbye and hang up the
phone simultaneously, both ends of a TCP connection may send FIN segments at
the same time. These are each acknowledged in the usual way, and the connec­
tion shut down. There is, in fact, no essential difference between the two hosts
releasing sequentially or simultaneously.

To avoid the two-army problem, timers are used. If a response to a FIN is not
forthcoming within two maximum packet lifetimes, the sender of the FIN releases
the connection. The other side will eventually notice that nobody seems to be
listening to it any more, and time out as well. While this solution is not perfect,
given the fact that a perfect solution is theoretically impossible, it will have to do.
In practice, problems rarely arise.

The steps required to establish and release connections can be represented in a
finite state machine with the 11 states listed in Fig. 6-27. In each state, certain
events are legal. When a legal event happens, some action may be taken. If some
other event happens, an error is reported.

Each connection starts in the CLOSED state. It leaves that state when it does
either a passive open (LISTEN), or an active open (CONNECT). If the other side
does the opposite one, a connection is established and the state becomes ESTAB­
LISHED. Connection release can be initiated by either side. When it is complete,
the state returns to CLOSED.

The finite state machine itself is shown in Fig. 6-28. The common case of a
client actively connecting to a passive server is shown with heavy lines-solid for

Ex.1006.548DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 531

State Description

CLOSED No connection is active or pending

LISTEN The server is waiting for an incoming call

SYN RCVD A connection request has arrived; wait for ACK

SYN SENT The application has started to open a connection

ESTABLISHED The normal data transfer state

FIN WAIT 1 The application has said it is finished

FIN WAIT 2 The other side has agreed to release

TIMED WAIT Wait for all packets to die off

CLOSING Both sides have tried to close simultaneously

CLOSE WAIT The other side has initiated a release

LAST ACK Wait for all packets to die off

Fig. 6-27. The states used in the TCP connection management finite state
machine.

the client, dotted for the server. The lightface lines are unusual event sequences.
Each line in Fig. 6-28 is marked by an event/action pair. The event can either be
a user-initiated system call (CONNECT, LISTEN, SEND, or CLOSE), a segment arrival
(SYN, FIN, ACK, or RST), or in one case, a timeout of twice the maximum packet
lifetime. The action is the sending of a control segment (SYN, FIN, or RST) or
nothing, indicated by-. Comments are shown in parentheses.

The diagram can best be understood by first following the path of a client (the
heavy solid line) then later the path of a server (the heavy dashed line). When an
application on the client machine issues a CONNECT request, the local TCP entity
creates a connection record, marks it as being in the SYN SENT state, and sends a
SYN segment. Note that many connections may be open (or being opened) at the
same time on behalf of multiple applications, so the state is per connection and
recorded in the connection record. When the SYN+ACK arrives, TCP sends the
final ACK of the three-way handshake and switches into the ESTABLISHED state.
Data can now be sent and received.

When an application is finished, it executes a CLOSE primitive, which causes
the local TCP entity to send a FIN segment and wait for the corresponding ACK
(dashed box marked active close). When the ACK arrives, a transition is made to
state FIN WAIT 2 and one direction of the connection is now closed. When the
other side closes, too, a FIN comes in, which is acknowledged. Now both sides
are closed, but TCP waits a time equal to the maximum packet lifetime to guaran­
tee that all packets from the connection have died off, just in case the acknowl­
edgement was lost. When the timer goes off, TCP deletes the connection record.

Ex.1006.549DELL

532 THE TRANSPORT LA YER

(Start)
CONNECT/SYN

CLOSED

I
I

LISTEN/- : CLOSE/-

CLOSE/-

r·--.:3-~~~~~~--i:_~~~----GISTEN

SYN
RCVD

I
I
I

RST/-

SYN/SYN + ACK

SEND/SYN

(simultaneous open)

: (Data transfer state)
I

CHAP. 6

SYN
SENT

; ACK/- _b
'~------------------~ABLISHED 1---------

SYN+ ACK/ACK
CLOSE/FIN

,
I
I

(Step 3 of the three-way handshake)

CLOSE/FIN

(Active close)

I
I

' '
FIN/ACK

~-----------------(Pa~~i;e-\
Close)

r--------- ---------------------------------------1 ~----------r----------1
1
I
I
I
I
I
I
I
I

FIN
WAIT1

FIN/ACK
I I I
I I I

: : CLOSE :
: : WAIT :
I I I

~LOSING
I I I

: : CLOSE/FIN:
I I I

i ACK/- ACK/-

' I
I
I
I
I
I
I
I
I

FIN
WAIT2

FIN+ ACK/ACK [
TIMED

FIN/ACK WAIT

I I I
I I I

I I CT?JJ I I I I
I I I
I I K I
I I I
I I I
l I I I

!_ ______________________________________ _ I I I I
_________ J ~----------~----------J

(Timeout/) :
I

~LOSED ---------~?~--:_ _______)

(Go back to start)

Fig. 6-28. TCP connection management finite state machine. The heavy solid
line is the normal path for a client. The heavy dashed line is the normal path for
a server. The light lines are unusual events.

Now let us examine connection management from the server's viewpoint.
The server does a LISTEN and settles down to see who turns up. When a SYN
comes in, it is acknowledged and the server goes to the SYN RCVD state. When
the server's SYN is itself acknowledged, the three-way handshake is complete and
the server goes to the ESTABLISHED state. Data transfer can now occur.

When the client has had enough, it does a CLOSE, which causes a FIN to
arrive at the server (dashed box marked passive close). The server is then

Ex.1006.550DELL

532 THE TRANSPORT LAYER CHAP. 6

“" CONNECT/SYN

CLOSED

CLOSE/—

LISTEN/- ,j CLOSE/—
SYN/SYN + ACK '

x""""""""""" LISTEN

\ SEND/SYN

SYN/SYN + ACK (simultaneous open)

(Data transfer state)

SYN + ACK/ACK

CLOSE/FIN (Step 3 of the three—way handshake)

FIN/ACK

FIN/ACK

l—————————.~> CLOSE
CLOSING WAIT

ACK/v ACK/~

FIN + ACK/ACK ~—
FIN/ACK

CLOSED <- ____________________ »’

La___l
(Go back to sta)

Fig. 6-28. TCP connection management finite state machine. The heavy solid
line is the normal path for a client. The heavy dashed line is the normal path for
a server. The light lines are unusual events.

Now let us examine connection management from the server’s viewpoint.

The server does a LISTEN and settles down to see who turns up. When a SYN

comes in, it is acknowledged and the server goes to the SYN RCVD state. When

the server’s SYN is itself acknowledged, the three-way handshake is complete and

the server goes to the ESTABLISHED state. Data transfer can now occur.

When the client has had enough, it does a CLOSE, which causes a FIN to

arrive at the server (dashed box marked passive close). The server is then

DELL Ex.1006.550

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 533

signaled. When it, too, does a CLOSE, a FIN is sent to the client. When the
client's acknowledgement shows up, the server releases the connection and
deletes the connection record.

6.4.5. TCP Transmission Policy

Window management in TCP is not directly tied to acknowledgements as it is
in most data link protocols. For example, suppose the receiver has a 4096-byte
buffer as shown in Fig. 6-29. If the sender transmits a 2048-byte segment that is
correctly received, the receiver will acknowledge the segment. However, since it
now has only 2048 of buffer space (until the application removes some data from
the buffer), it will advertise a window of 2048 starting at the next byte expected.

Sender
Application
doesa2K -
write

Application
doesa3K -

..... -----1~CK = 2048 WIN = 2048

Receiver Receiver's
buffer

0 4K

Empty I

write r------1]K / SEQ= 20~----

Sender is
blocked

Sender may
send up to 2K ---

Application , ___ reads 2K

Fig. 6-29. Window management in TCP.

Now the sender transmits another 2048 bytes, which are acknowledged, but
the advertised window is 0. The sender must stop until the application process on

Ex.1006.551DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 533

signaled. When it, too, does a CLOSE, a FIN is sent to the client. When the

Client’s acknowledgement shows up, the server releases the connection and
deletes the connection record.

6.4.5. TCP Transmission Policy

Window management in TCP is nOt directly tied to acknowledgements as it is

in most data link protocols. For example, suppose the receiver has a 4096—byte

buffer as shown in Fig. 6-29. If the sender transmits a 2048-byte segment that is

correctly received, the receiver will acknowledge the segment. However, since it

now has only 2048 of buffer space (until the application removes some data from

the buffer), it will advertise a window of 2048 starting at the next byte expected.

Sender Receiver Receiver's

Application buffer

does a 2K —> 0 4Kwrite #—

'\ Empty

Hm= 2048 WIN = 2048
Application
does a 3K —>

write l\—[2K SEQ ___ 2048

Sender is Application

blocked reads 2K

Sender may
send up to 2K ——>

Fig. 6-29. Window management in TCP.

Now the sender transmits another 2048 bytes, which are acknowledged, but

the advertised window is 0. The sender must stop until the application process on

DELL Ex.1006.551

534 THE TRANSPORT LA YER CHAP. 6

the receiving host has removed some data from the buffer, at which time TCP can
advertise a larger window.

When the window is 0, the sender may not normally send segments, with two
exceptions. First, urgent data may be sent, for example, to allow the user to kill
the process running on the remote machine. Second, the sender may send a I-byte
segment to make the receiver reannounce the next byte expected and window
size. The TCP standard explicitly provides this option to prevent deadlock if a
window announcement ever gets lost.

Senders are not required to transmit data as soon as they come in from the
application. Neither are receivers required to send acknowledgements as soon as
possible. For example, in Fig. 6-29, When the first 2 KB of data came in, TCP,
knowing that it had a 4-KB window available, would have been completely
correct in just buffering the data until another 2 KB came in, to be able to transmit
a segment with a 4-KB payload. This freedom can be exploited to improve per­
formance.

Consider a TELNET connection to an interactive editor that reacts on every
keystroke. In the worst case, when a character arrives at the sending TCP entity,
TCP creates a 21-byte TCP segment, which it gives to IP to send as a 41-byte IP
datagram. At the receiving side, TCP immediately sends a 40-byte acknowledge­
ment (20 bytes of TCP header and 20 bytes of IP header). Later, when the editor
has read the byte, TCP sends a window update, moving the window 1 byte to the
right. This packet is also 40 bytes. Finally, when the editor has processed the
character, it echoes it as a 41-byte packet. In all, 162 bytes of bandwidth are used
and four segments are sent for each character typed. When bandwidth is scarce,
this method of doing business is not desirable.

One approach that many TCP implementations use to optimize this situation
is to delay acknowledgements and window updates for 500 msec in the hope of
acquiring some data on which to hitch a free ride. Assuming the editor echoes
within 500 msec, only one 41-byte packet now need be sent back to the remote
user, cutting the packet count and bandwidth usage in half.

Although this rule reduces the load placed on the network by the receiver, the
sender is still operating inefficiently by sending 41-byte packets containing 1 byte
of data. A way to reduce this usage is known as Nagle's algorithm (Nagle,
1984). What Nagle suggested is simple: when data come into the sender one byte
at a time, just send the first byte and buffer all the rest until the outstanding byte is
acknowledged. Then send all the buffered characters in one TCP segment and
start buffering again until they are all acknowledged. If the user is typing quickly
and the network is slow, a substantial number of characters may go in each seg­
ment, greatly reducing the bandwidth used. The algorithm additionally allows a
new packet to be sent if enough data have trickled in to fill half the window or a
maximum segment.

Nagle's algorithm is widely used by TCP implementations, but there are times
when it is better to disable it. In particular, when an X-Windows application is

Ex.1006.552DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 535

being run over the Internet, mouse movements have to be sent to the remote com­
puter. Gathering them up to send in bursts makes the mouse cursor tnove errati­
cally, which makes for unhappy users.

Another problem that can ruin TCP performance is the silly window syn­
drome (Clark, 1982). This problem occurs when data are passed to the sending
TCP entity in large blocks, but an interactive application on the receiving side
reads data 1 byte at a time. To see the problem, look at Fig. 6-30. Initially, the
TCP buffer on the receiving side is full and the sender knows this (i.e., has a win­
dow of size 0). Then the interactive application reads one character from the TCP
stream. This action makes the receiving TCP happy, so it sends a window update
to the sender saying that it is all right to send 1 byte. The sender obliges and
sends 1 byte. The buffer is now full, so the receiver acknowledges the 1-byte seg­
ment but sets the window to 0. This behavior can go on forever.

Application reads 1 byte

Window update segment sent

I Header I
i

New byte arrives

I
1 Byte

Fig. 6-30. Silly window syndrome.

Clark's solution is to prevent the receiver from sending a window update for 1
byte. Instead it is forced to wait until it has a decent amount of space available
and advertise that instead. Specifically, the receiver should not send a window
update until it can handle the maximum segment size it advertised when the con­
nection was established, or its buffer is half empty, whichever is smaller.

Furthermore, the sender can also help by not sending tiny segments. Instead,
it should try to wait until it has accumulated enough space in the window to send a
full segment or at least one containing half of the receiver's buffer size (which it
must estimate from the pattern of window updates it has received in the past).

Ex.1006.553DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 535

being run over the Internet, mouse movements have to be sent to the remote com-

puter. Gathering them up to send in bursts makes the mouse cursor move errati—

cally, which makes for unhappy users.

Another problem that can ruin TCP performance is the silly window syn-

drome (Clark, 1982). This problem occurs when data are passed to the sending

TCP entity in large blocks, but an interactive application on the receiving side

reads data 1 byte at a time. To see the problem, look at Fig. 6—30. Initially, the

TCP buffer on the receiving side is full and the sender knows this (i.e., has a win—

dow of size 0). Then the interactive application reads one character from the TCP

stream. This action makes the receiving TCP happy, so it sends a window update

to the sender saying that it is all right to send 1 byte. The sender obliges and

sends 1 byte. The buffer is now full, so the receiver acknowledges the l-byte seg—

ment but sets the window to 0. This behavior can go on forever.

Application reads 1 byte

1

Window update segment sent

-. New byte a‘rrives

1 Byte

Fig. 6-30. Silly window syndrome.

Clark’s solution is to prevent the receiver from sending a window update for 1
byte. Instead it is forced to wait until it has a decent amount of space available

and advertise that instead. Specifically, the receiver should not send a window

update until it can handle the maximum segment size it advertised when the con—

nection was established, or its buffer is half empty, whichever is smaller.

Furthermore, the sender can also help by not sending tiny segments. Instead,

it should try to wait until it has accumulated enough space in the window to send a

full segment or at least one containing half of the receiver’s buffer size (which it

must estimate from the pattern of window updates it has received in the past).

DELL Ex.1006.553

536 THE TRANSPORT LA YER CHAP. 6

Nagle's algorithm and Clark's solution to the silly window syndrome are
complementary. Nagle was trying to solve the problem caused by the sending
application delivering data to TCP a byte at a time. Clark was trying to solve the
problem of the receiving application sucking the data up from TCP a byte at a
time. Both solutions are valid and can work together. The goal is for the sender
not to send small segments and the receiver not to ask for them.

The receiving TCP can go further in improving performance than just doing
window updates in large units. Like the sending TCP, it also has the ability to
buffer data, so it can block a READ request from the application until it has a large
chunk of data to provide. Doing this reduces the number of calls to TCP, and
hence the overhead. Of course, it also increases the response time, but for nonin­
teractive applications like file transfer, efficiency may outweigh response time to
individual requests.

Another receiver issue is what to do with out of order segments. They can be
kept or discarded, at the receiver's discretion. Of course, acknowledgements can
be sent only when all the data up to the byte acknowledged have been received. If
the receiver gets segments 0, 1, 2, 4, 5, 6, and 7, it can acknowledge everything up
to and including the last byte in segment 2. When the sender times out, it then
retransmits segment 3. If the receiver has buffered segments 4 through 7, upon
receipt of segment 3 it can acknowledge all bytes up to the end of segment 7.

6.4.6. TCP Congestion Control

When the load offered to any network is more than it can handle, congestion
builds up. The Internet is no exception. In this section we will discuss algorithms
that have been developed over the past decade to deal with congestion. Although
the network layer also tries to manage congestion, most of the heavy lifting is
done by TCP because the real solution to congestion is to slow down the data rate.

In theory, congestion can be dealt with by employing a principle borrowed
from physics: the law of conservation of packets. The idea is not to inject a new
packet into the network until an old one leaves (i.e., is delivered). TCP attempts
to achieve this goal by dynamically manipulating the window size.

The first step in managing congestion is detecting it. In the old days, detect­
ing congestion was difficult. A timeout caused by a lost packet could have been
caused by either (1) noise on a transmission line or (2) packet discard at a cong­
ested router. Telling the difference was difficult.

Nowadays, packet loss due to transmission errors is relatively rare because
most long-haul trunks are fiber (although wireless networks are a different story).
Consequently, most transmission timeouts on the Internet are due to congestion.
All the Internet TCP algqrithms assume that timeouts are caused by congestion
and monitor timeouts for signs of trouble the way miners watch their canaries.

Before discussing how TCP reacts to congestion, let us first describe what it
does to try to prevent it from occurring in the first place. When a connection is

Ex.1006.554DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 537

established, a suitable window size has to be chosen. The receiver can specify a
window based on its buffer size. If the sender sticks to this window size, prob­
lems will not occur due to buffer overflow at the receiving end, but they may still
occur due to internal congestion within the network.

In Fig. 6-31, we see this problem illustrated hydraulically. In Fig. 6-31(a), we
see a thick pipe leading to a small-capacity receiver. As long as the sender does
not send more water than the bucket can contain, no water will be lost. In Fig. 6-
31 (b), the limiting factor is not the bucket capacity, but the internal carrying capa­
city of the network. If too much water comes in too fast, it will back up and some
will be lost (in this case by overflowing the funnel).

5\ ""Transmission
~~ rate adjustment

•
Transmission
network

Small-capacity
receiver~

(a) (b)

Internal
congestion

Fig. 6-31. (a) A fast network feeding a low-capacity receiver. (b) A slow net­
work feeding a high-capacity receiver.

The Internet solution is to realize that two potential problems exist-network
capacity and receiver capacity--and to deal with each of them separately. To do
so, each sender maintains two windows: the window the receiver has granted and
a second window, the congestion window. Each reflects the number of bytes the
sender may transmit. The number of bytes that may be sent is the minimum of the
two windows. Thus the effective window is the minimum of what the sender

Ex.1006.555DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 537

established, a suitable window size has to be chosen. The receiver can specify a

window based on its buffer size. If the sender sticks to this window size, prob—

lems will not occur due to buffer overflow at the receiving end, but they may still

occur due to internal congestion within the network.

In Fig. 6-31, we see this problem illustrated hydraulically. In Fig. 6-31(a), we

see a thick pipe leading to a small—capacity receiver. As long as the sender does

not send more water than the bucket can contain, no water will be lost. In Fig. 6-

31(b), the limiting factor is not the bucket capacity, but the internal carrying capa-

city of the network. If too much water comes in too fast, it will back up and some

will be lost (in this case by overflowing the funnel).

fi\Transmission
‘V rate adjustment

Transmission Internal

network congestion

Small-capacity
receiver\

Large—capacity
receiver

(a) (b)

Fig. 15-31. (a) A fast network feeding a low-capacity receiver. (b) A slow net—
work feeding a high-capacity receiver.

The Internet solution is to realize that two potential problems exist—network

capacity and receiver capacity—and to deal with each of them separately. To do

so, each sender maintains two windows: the window the receiver has granted and

a second window, the congestion window. Each reflects the number of bytes the

sender may transmit. The number of bytes that may be sent is the minimum of the
two windows. Thus the effective window is the minimum of what the sender

DELL Ex.1006.555

538 THE TRANSPORT LA YER CHAP. 6

thinks is all right and what the receiver thinks is all right. If the receiver says
"Send SK" but the sender knows that bursts of more than 4K clog the network up,
it sends 4K. On the other hand, if the receiver says "Send SK" and the sender
knows that bursts of up to 32K get through effortlessly, it sends the full SK
requested.

When a connection is established, the sender initializes the congestion win­
dow to the size of the maximum segment in use on the connection. It then sends
one maximum segment. If this segment is acknowledged before the timer goes
off, it adds one segment's worth of bytes to the congestion window to make it two
maximum size segments and sends two segments. As each of these segments is
acknowledged, the congestion window is increased by one maximum segment
size. When the congestion window is n segments, if all n are acknowledged on
time, the congestion window is increased by the byte count corresponding to n
segments. In effect, each burst successfully acknowledged doubles the congestion
window.

The congestion window keeps growing exponentially until either a timeout
occurs or the receiver's window is reached. The idea is that if bursts of size, say,
1024, 204S, and 4096 bytes work fine, but a burst of S192 bytes gives a timeout,
the congestion window should be set to 4096 to avoid congestion. As long as the
congestion window remains at 4096, no bursts longer than that will be sent, no
matter how much window space the receiver grants. This algorithm is called slow
start, but it is not slow at all (Jacobson, 19SS). It is exponential. All TCP imple­
mentations are required to support it.

Now let us look at the Internet congestion control algorithm. It uses a third
parameter, the threshold, initially 64K, in addition to the receiver and congestion
windows. When a timeout occurs, the threshold is set to half of the current
congestion window, and the congestion window is reset to one maximum seg­
ment. Slow start is then used to determine what the network can handle, except
that exponential growth stops when the threshold is hit. From that point on, suc­
cessful transmissions grow the congestion window linearly (by one maximum seg­
ment for each burst) instead of one per segment. In effect, this algorithm is guess­
ing that it is probably acceptable to cut the congestion window in half, and then it
gradually works its way up from there.

As an illustration of how the congestion algorithm works, see Fig. 6-32. The
maximum segment size here is 1024 bytes. Initially the congestion window was
64K, but a timeout occurred, so the threshold is set to 32K and the congestion
window to lK for transmission 0 here. The congestion window then grows
exponentially until it hits the threshold (32K). Starting then it grows linearly.

Transmission 13 is unlucky (it should have known) and a timeout occurs. The
threshold is set to half the current window (by now 40K, so half is 20K) and slow
start initiated all over again. When the acknowledgements from transmission lS
start coming in, the first four each increment the congestion window by one seg­
ment, but after that, growth becomes linear again.

Ex.1006.556DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 539

44

40

36 Threshold

(ii 32 -------------- -----------------~---
~
~ 28
g
~ 24

"O
c:
"§ 20
c:
0

~ 16
Cl
c:
0
() 12

8

4

/Timeout

Threshold

- / _________ _

O'---'---'--'-~--'-----'~'---'---'--'--~--'-----'~'--~-'--'-~-'----'-~'--~-'-~

0 2 4 6 8 10 12 14 16 18 20 22 24

Transmission number

Fig. 6-32. An example of the Internet congestion algorithm.

If no more timeouts occur, the congestion window will continue to grow up to
the size of the receiver's window. At that point, it will stop growing and remain
constant as long as there are no more timeouts and the receiver's window does not
change size. As an aside, if an ICMP SOURCE QUENCH packet comes in and is
passed to TCP, this event is treated the same way as a timeout.

Work on improving the congestion control mechanism is continuing. For
example, Brakmo et al. (1994) have reported improving TCP throughput by 40
percent to 70 percent by managing the clock more accurately, predicting conges­
tion before timeouts occur, and using this early warning system to improve the
slow start algorithm.

6.4. 7. TCP Timer Management

TCP uses multiple timers (at least conceptually) to do its work. The most
important of these is the retransmission timer. When a segment is sent, a
retransmission timer is started. If the segment is acknowledged before the timer
expires, the timer is stopped. If, on the other hand, the timer goes off before the
acknowledgement comes in, the segment is retransmitted (and the timer started
again). The question that arises is: How long should the timeout interval be?

Ex.1006.557DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 539

44 T‘ tImeou

/40

36 Threshold

32 _______________________________t: _ -

Non

Threshold[0.5

NOCongestionwindow(kilobytes) a;

.3 ID

.l_l__l_
O 2 4 6 8 10 12 14 16 18 20 22 24

Transmission number

Fig. 6-32. An example of the Internet congestion algorithm.

If no more timeouts occur, the congestion window will continue to grow up to

the size of the receiver’s window. At that point, it will stop growing and remain

constant as long as there are no more timeouts and the receiver’s window does not

change size. As an aside, if an ICMP SOURCE QUENCH packet comes in and is

passed to TCP, this event is treated the same way as a timeout.

Work on improving the congestion control mechanism is continuing. For

example, Brakmo et a1. (1994) have reported improving TCP throughput by 40

percent to 70 percent by managing the clock more accurately, predicting conges-

tion before timeouts occur, and using this early warning system to improve the

slow start algorithm.

6.4.7. TCP Timer Management

TCP uses multiple timers (at least conceptually) to do its work. The most

important of these is the retransmission timer. When a segment is sent, a

retransmission timer is started. If the segment is acknowledged before the timer

expires, the timer is stopped. If, on the other hand, the timer goes off before the

acknowledgement comes in, the segment is retransmitted (and the timer started

again). The question that arises is: How long should the timeout interval be?

DELL Ex.1006.557

540 THE TRANSPORT LAYER CHAP. 6

This problem is much more difficult in the Internet transport layer than in the
generic data link protocols of Chap. 3. In the latter case, the expected delay is
highly predictable (i.e., has a low variance), so the timer can be set to go off just
slightly after the acknowledgement is expected, as shown in Fig. 6-33(a). Since
acknowledgements are rarely delayed in the data link layer, the absence of an
acknowledgement at the expected time generally means the frame or the acknowl­
edgement has been lost.

0.3

0.2

~
:0
Cll
.0 e
a..

0.1

10

T

20 30 40
Round trip time (msec)

(a)

~
:0
Cll
.0 e
a..

50

0.3

0.2

0.1

10 20 30 40
Round trip time (msec)

(b)

Fig. 6-33. (a) Probability density of acknowledgement arrival times in the data
link layer. (b) Probability density of acknowledgement arrival times for TCP.

50

TCP is faced with a radically different environment. The probability density
function for the time it takes for a TCP acknowledgement to come back looks
more like Fig. 6-33(b) than Fig. 6-33(a). Determining the round-trip time to the
destination is tricky. Even when it is known, deciding on the timeout interval is
also difficult. If the timeout is set too short, say T 1 in Fig. 6-33(b), unnecessary
retransmissions will occur, clogging the Internet with useless packets. If it is set
too long, (T 2), performance will suffer due to the long retransmission delay when­
ever a packet is lost. Furthermore, the mean and variance of the acknowledge­
ment arrival distribution can change rapidly within a few seconds as congestion
builds up or is resolved.

The solution is to use a highly dynamic algorithm that constantly adjusts the
timeout interval, based on continuous measurements of network performance.
The algorithm generally used by TCP is due to Jacobson (1988) and works as fol­
lows. For each connection, TCP maintains a variable, RTT, that is the best current
estimate of the round-trip time to the destination in question. When a segment is
sent, a timer is started, both to see how long the acknowledgement takes and to

Ex.1006.558DELL

540 THE TRANSPORT LAYER CHAP. 6

This problem is much more difficult in the Internet transport layer than in the

generic data link protocols of Chap. 3. In the latter case, the expected delay is

highly predictable (i.e., has a low variance), so the timer can be set to go off just

slightly after the acknowledgement is expected, as shown in Fig. 6—33(a). Since

acknowledgements are rarely delayed in the data link layer, the absence of an

acknowledgement at the expected time generally means the frame or the acknowl—

edgement has been lost.

0.3 T 0.3 — TI T2
l I I| I I
| I ll I |I I |
| 1 || I |

0.2 E 0.2 ~ I I
g I g l I
E . E l I(B I as I I.Q | Q I I
9 l 9 I ia_ I 0. | I

0.1 I 0.1 — I I
I l iI I II I II I l

l I I
. I

O | ' | l l O '0 1O 20 30 40 50 0 1O 20 3O 40 50

Round trip time (msec) Round trip time (msec)

(a) (b)

Fig. 6-33. (a) Probability density of acknowledgement arrival times in the data
link layer. (b) Probability density of acknowledgement arrival times for TCP.

TCP is faced with a radically different environment. The probability density

function for the time it takes for a TCP acknowledgement to come back looks

more like Fig. 6-33(b) than Fig. 6-33(a). Determining the round-trip time to the

destination is tricky. Even when it is known, deciding on the timeout interval is

also difficult. If the timeout is set too short, say T1 in Fig. 6—33(b), unnecessary

retransmissions will occur, clogging the Internet with useless packets. If it is set

too long, (T2), performance will suffer due to the long retransmission delay when—

ever a packet is lost. Furthermore, the mean and variance of the acknowledge—

ment arrival distribution can change rapidly within a few seconds as congestion

builds up or is resolved.

The solution is to use a highly dynamic algorithm that constantly adjusts the

timeout interval, based on continuous measurements of network performance.

The algorithm generally used by TCP is due to Jacobson (1988) and works as fol—
lows. For each connection, TCP maintains a variable, RTT, that is the best current

estimate of the round-trip time to the destination in question. When a segment is

sent, a timer is started, both to see how long the acknowledgement takes and to

DELL Ex.1006.558

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 541

trigger a retransmission if it takes too long. If the acknowledgement gets back
before the timer expires, TCP measures how long the acknowledgement took, say,
M. It then updates RTT according to the formula

RTT = aRTT + (1 - a)M

where a is a smoothing factor that determines how much weight is given to the
old value. Typically a = 7 /8.

Even given a good value of RTT, choosing a suitable retransmission timeout is
a nontrivial matter. Normally, TCP uses PRTT, but the trick is choosing p. In the
initial implementations, P was always 2, but experience showed that a constant
value was inflexible because it failed to respond when the variance went up.

In 1988, Jacobson proposed making P roughly proportional to the standard
deviation of the acknowledgement arrival time probability density function so a
large variance means a large p and vice versa. In particular, he suggested using
the mean deviation as a cheap estimator of the standard deviation. His algorithm
requires keeping track of another smoothed variable, D, the deviation. Whenever
an acknowledgement comes in, the difference between the expected and observed
values, I RTT - M I is computed. A smoothed value of this is maintained in D by
the formula

D=aD+(l-a) IRTT-MI

where a may or may not be the same value used to smooth RTT. While D is not
exactly the same as the standard deviation, it is good enough and Jacobson
showed how it could be computed using only integer adds, subtracts, and shifts, a
big plus. Most TCP implementations now use this algorithm and set the timeout
interval to

Timeout= RTT + 4*D

The choice of the factor 4 is somewhat arbitrary, but it has two advantages. First,
multiplication by 4 can be done with a single shift. Second, it minimizes unneces­
sary timeouts and retransmissilons because less than one percent of all packets
come in more than four standard deviations late. (Actually, Jacobson initially said
to use 2, but later work has shown that 4 gives better performance.)

One problem that occurs with the dynamic estimation of RTT is what to do
when a segment times out and is sent again. When the acknowledgement comes
in, it is unclear whether the acknowledgement refers to the first transmission or a
later one.. Guessing wrong can seriously contaminate the estimate of RTT. Phil
Karn discovered this problem the hard way. He is an amateur radio enthusiast
interested in transmitting TCP/IP packets by ham radio, a notoriously unreliable
medium (on a good day, half the packets get through). He made a simple pro­
posal: do not update RTT on any segments that have been retransmitted. Instead,
the timeout is doubled on each failure until the segments get through the first
time. This fix is called Karn's algorithm. Most TCP implementations use it.

Ex.1006.559DELL

542 THE TRANSPORT LAYER CHAP. 6

The retransmission timer is not the only one TCP uses. A second timer is the
persistence timer. It is designed to prevent the following deadlock. The receiver
sends an acknowledgement with a window size of 0, telling the sender to wait.
Later, the receiver updates the window, but the packet with the update is lost.
Now both the sender and the receiver are waiting for each other to do something.
When the persistence timer goes off, the sender transmits a probe to the receiver.
The response to the probe gives the window size. If it is still zero, the persistence
timer is set again and the cycle repeats. If it is nonzero, data can now be sent.

A third timer that some implementations use is the keepalive timer. When a
connection has been idle for a long time, the keepalive timer may go off to cause
one side to check if the other side is still there. If it fails to respond, the connec­
tion is terminated. This feature is controversial because it adds overhead and may
terminate an otherwise healthy connection due to a transient network partition.

The last timer used on each TCP connection is the one used in the TIMED
WAIT state while closing. It runs for twice the maximum packet lifetime to make
sure that when a connection is closed, all packets created by it have died off.

6.4.8. UDP

The Internet protocol suite also supports a connectiortless transport protocol,
UDP (User Data Protocol). UDP provides a way for applications to send encap­
sulated raw IP datagrams and send them without having to establish a connection.
Many client-server applications that have one request and one response use UDP
rather than go to the trouble of establishing and later releasing a connection. UDP
is described in RFC 768.

--------------32 Bits----------------

Source port Destination port

UDP length UDP checksum

Fig. 6-34. The UDP header.

A UDP segment consists of an 8-byte header followed by the data. The
header is shown in Fig. 6-34. The two ports serve the same function as they do in
TCP: to identify the end points within the source and destination machines. The
UDP length field includes the 8-byte header and the data. The UDP checksum
includes the same format pseudoheader shown in Fig. 6-25, the UDP header, and
the UDP data, padded out to an even number of bytes if need be. It is optional
and stored as 0 if not computed (a true computed 0 is stored as all 1 s, which is the
same in 1 's complement). Turning it off is foolish unless the quality of the data
does not matter (e.g., digitized speech).

Ex.1006.560DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 543

6.4.9. Wireless TCP and UDP

In theory, transport protocols should be independent of the technology of the
underlying network layer. In particular, TCP should not care whether IP is run­
ning over fiber or over radio. In practice, it does matter because most TCP imple­
mentations have been carefully optimized based on assumptions that are true for
wired networks but which fail for wireless networks. Ignoring the properties of
wireless transmission can lead to a TCP implementation that is logically correct
but has horrendous performance.

The principal problem is the congestion control algorithm. Nearly all TCP
implementations nowadays assume that timeouts are caused by congestion, not by
lost packets. Consequently, when a timer goes off, TCP slows down and sends
less vigorously (e.g., Jacobson's slow start algorithm). The idea behind this
approach is to reduce the network load and thus alleviate the congestion.

Unfortunately, wireless transmission links are highly unreliable. They lose
packets all the time. The proper approach to dealing with lost packets is to send
them again, and as quickly as possible. Slowing down just makes matters worse.
If, say, 20 percent of all packets are lost, then when the sender transmits 100
packets/sec, the throughput is 80 packets/sec. If the sender slows down to 50
packets/sec, the throughput drops to 40 packets/sec.

In effect, when a packet is lost on a wired network, the sender should slow
down. When one is lost on a wireless network, the sender should try harder.
When the sender does not know what the network is, it is difficult to make the
correct decision.

Frequently, the path from sender to receiver is inhomogeneous. The first
1000 km might be over a wired network, but the last 1 km might be wireless.
Now making the correct decision on a timeout is even harder, since it matters
where the problem occurred. A solution proposed by Bakne and Badrinath
(1995), indirect TCP, is to split the TCP connection into two separate connec­
tions, as shown in Fig. 6-35. The first connection goes from the sender to the base
station. The second one goes from the base station to the receiver. The base sta­
tion simply copies packets between the connections in both directions.

Sender TCP #1

Router

TCP#2

Mobile
host

Fig. 6-35. Splitting a TCP connection into two connections.

Ex.1006.561DELL

544 THE TRANSPORT LA YER CHAP. 6

The advantage of this scheme is that both connections are now homogeneous.
Timeouts on the first connection can slow the sender down, whereas timeouts on
the second one can speed it up. Other parameters can also be tuned separately for
the two connections. The disadvantage is that it violates the semantics of TCP.
Since each part of the connection is a full TCP connection, the base station
acknowledges each TCP segment in the usual way. Only now, receipt of an
acknowledgement by the sender does not mean that the receiver got the segment,
only that the base station got it.

A different solution, due to Balakrishnan et al. (1995), does not break the
semantics of TCP. It works by making several small modifications to the network
layer code in the base station. One of the changes is the addition of a snooping
agent that observes and caches TCP segments going out to the mobile host, and
acknowledgements coming back from it. When the snooping agent sees a TCP
segment going out to the mobile host but does not see an acknowledgement com­
ing back before its (relatively short) timer goes off, it just retransmits that seg­
ment, without telling the source that it is doing so. It also generates a retransmis­
sion when it sees duplicate acknowledgements from the mobile host go by, invari­
ably meaning that the mobile host has missed something. Duplicate acknowl­
edgements are discarded on the spot, to avoid having the source misinterpret them
as a sign of congestion.

One disadvantage of this transparency, however, is that if the wireless link is
very lossy, the source may time out waiting for an acknowledgement and invoke
the congestion control algorithm. With indirect TCP, the congestion control algo­
rithm will never be started unless there really is congestion in the wired part of the
network.

The Balakrishnan et al. paper also has a solution to the problem of lost seg­
ments originating at the mobile host. When the base station notices a gap in the
inbound sequence numbers, it generates a request for a selective repeat of the
missing bytes using a TCP option. Using these two fixes, the wireless link is
made more reliable in both directions, without the source knowing about it, and
without changing the semantics of TCP.

While UDP does not suffer from the same problems as TCP, wireless com­
munication also introduces difficulties for it. The main trouble is that programs
use UDP expecting it to be highly reliable. They know that no guarantees are
given, but they still expect it to be near perfect. In a wireless environment, it will
be far from perfect. For programs that are able to recover from lost UDP mes­
sages, but only at considerable cost, suddenly going from an environment where
messages theoretically can be lost but rarely are, to one in which they are con­
stantly being lost can result in a performance disaster.

Wireless communication also affects areas other than just performance. For
example, how does a mobile host find a local printer to connect to, rather than use
its home printer? Somewhat related to this is how to get the WWW page for the
local cell, even if its name is not known. Also, WWW page designers tend to

Ex.1006.562DELL

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 545

assume lots of bandwidth is available. Putting a large logo on every page
becomes counterproductive if it is going to take 30 sec to transmit at 9600 bps
every time the page is referenced, irritating the users no end.

6.5. THE ATM AAL LAYER PROTOCOLS

It is not really clear whether or not A TM has a transport layer. On the one
hand, the ATM layer has the functionality of a network layer, and there is another
layer on top of it (AAL), which sort of makes AAL a transport layer. Some
experts agree with this view (e.g., De Prycker, 1993, page 112). One of the proto­
cols used here (AAL 5) is functionally similar to UDP, which is unquestionably a
transport protocol.

On the other hand, none of the AAL protocols provide a reliable end-to-end
connection, as TCP does (although with only very minor changes they could).
Also, in most applications another transport layer is used on top of AAL. Rather
than split hairs, we will discuss the AAL layer and its protocols in this chapter
without making a claim that it is a true transport layer.

The AAL layer in ATM networks is radically different than TCP, largely
because the designers were primarily interested in transmitting voice and video
streams, in which rapid delivery is more important than accurate delivery.
Remember that the ATM layer just outputs 53-byte cells one after another. It has
no error control, no flow control, and no other control. Consequently, it is not
well matched to the requirements that most applications need.

To bridge this gap, in Recommendation I.363, ITU has defined an end-to-end
layer on top of the ATM layer. This layer, called AAL (ATM Adaptation
Layer) has a tortuous history, full of mistakes, revisions, and unfinished business.
In the following sections we will look at it and its design.

The goal of AAL is to provide useful services to application programs and to
shield them from the mechanics of chopping data up into cells at the source and
reassembling them at the destination. When ITU began defining AAL, it realized
that different applications had different requirements, so it organized the service
space along three axes:

1. Real-time service versus nonreal-time service.

2. Constant bit rate service versus variable bit rate service.

3. Connection-oriented service versus connectionless service.

In principle, with three axes and two values on each axis, eight distinct services
can be defined, as shown in Fig. 6-36. ITU felt that only four of these were of any
use, and named them classes A, B, C, and D, as noted. The others were not sup­
ported. Starting with ATM 4.0, Fig. 6-36 is somewhat obsolete, so it has been
presented here mostly as background information to help understand why the

Ex.1006.563DELL

546 THE TRANSPORT LA YER CHAP. 6

AAL protocols have been designed as they have been. Instead of these service
classes, the major distinction now is between the traffic classes we studied in
Chap. 5 (ABR, CBR, NRT-VBR, RT-VBR, and UBR).

A B c D

Real

I
None

Real

I
None

Real

I None
Real

I None
time time time time

Timing

Bit rate Constant Variable Constant Variable

Mode Connection orientated Connectionless

Fig. 6-36. Original service classes supported by AAL (now obsolete).

To handle these four classes of service, ITU defined four protocols, AAL 1
through AAL 4, respectively. However, later it discovered that the technical
requirements for classes C and D were so similar that AAL 3 and AAL 4 were
combined into AAL 3/4. Then the computer industry, which had been asleep at
the switch, realized that none of them were any good. It solved this problem by
the simple expedient of defining another protocol, AAL 5. We will look at all
four of these shortly. We will also look at an interesting control protocol used on
ATM systems.

6.5.1. Structure of the A TM Adaptation Layer

The ATM adaptation layer is divided into two major parts, one of which is
often further subdivided, as illustrated in Fig. 6-37.

The upper part of the A TM adaptation layer is called the convergence sub­
layer. Its job is to provide the interface to the application. It consists of a subpart
that is common to all applications (for a given AAL protocol) and an application
specific subpart. The functions of each of these parts are protocol dependent but
can include message framing and error detection.

In addition, at the source, the convergence sublayer is responsible for accept­
ing bit streams or arbitrary length messages from the applications and breaking
them up into units of 44 to 48 bytes for transmission. The exact size is protocol
dependent, since some protocols use part of the 48-byte A TM payload for their
own headers. At the destination, this sublayer reassembles the cells into the origi­
nal messages. In general, message boundaries are preserved, when present. In
other words, if the source sends four 512-byte messages, they will arrive as four
512-byte messages, not one 2048-byte message. For data streams, no message
boundaries exist, so they are not preserved.

The lower part of the AAL is called the SAR (Segmentation And Reassem­
bly) sublayer. It can add headers and trailers to the data units given to it by the

Ex.1006.564DELL

SEC. 6.5

ATM{ adaptation
layer

THE A TM AAL LAYER PROTOCOLS

ATM layer

!--~~~~~~-~~~~~~~~~~~~~____,

Physical layer

'---~~~~~~-~~~~~~~~~~~~~~

547

}

Discussed
in chapter 6

}

Discussed
in chapter 5

}

Discussed
in chapter 3

Fig. 6-37. The ATM model showing the ATM adaptation layer and its sublayers.

convergence sublayer to form cell payloads. These payloads are then given to the
ATM layer for transmission. At the destination, the SAR sublayer reassembles
the cells into messages. The SAR sublayer is basically concerned with cells,
whereas the convergence sublayer is concerned with messages.

The generic operation of the convergence and SAR sublayers is shown in
Fig. 6-38. When a message comes in to the AAL from the application, the con­
vergence sublayer may give it a header and/or trailer. The message is then broken
up into 44- to 48-byte units, which are passed to the SAR sublayer. The SAR sub­
layer may add its own header and trailer to each piece and pass them down to the
ATM layer for transmission as independent cells. Note that the figure shows the
most general case because some of the AAL protocols have null headers and/or
trailers.

The SAR sublayer also has some additional functions for some (but not all)
service classes. In particular, it sometimes handles error detection and multiplex­
ing. The SAR sublayer is present for all service classes but does more or less
work, depending on the specific protocol.

The communication between the application and AAL layer uses the standard
OSI request and indication primitives that we discussed in Chap. 1. The com­
munication between the sublayers uses different primitives.

6.5.2. AAL 1

AAL 1 is the protocol used for transmitting class A traffic, that is, real-time,
constant bit rate, connection-oriented traffic, such as uncompressed audio and
video. Bits are fed in by the application at a constant rate and must be delivered
at the far end at the same constant rate, with a minimum of delay, jitter, and over­
head. The input is a stream of bits, with no message boundaries. For this traffic,
error detecting protocols such as stop-and-wait are not used because the delays
that are introduced by timeouts and retransmissions are unacceptable. However,

Ex.1006.565DELL

SEC. 65 THE ATM AAL LAYER PROTOCOLS 547

ATM

adaptation
layer

Discussed

in chapter 6

DiscussedATM layer i in chapter 5

l Discussed
in chapter 3

Physical layer

J

Fig. 6-37. The ATM model showing the ATM adaptation layer and its sublayers.

convergence sublayer to form cell payloads. These payloads are then given to the

ATM layer for transmission. At the destination, the SAR sublayer reassembles

the cells into messages. The SAR sublayer is basically concerned with cells,

whereas the convergence sublayer is concerned with messages.

The generic operation of the convergence and SAR sublayers is shown in

Fig. 6-38. When a message comes in to the AAL from the application, the con-

vergence sublayer may give it a header and/or trailer. The message is then broken

up into 44— to 48—byte units, which are passed to the SAR sublayer. The SAR sub-

layer may add its own header and trailer to each piece and pass them down to the

ATM layer for transmission as independent cells. Note that the figure shows the

most general case because some of the AAL protocols have null headers and/or
trailers.

The SAR sublayer also has some additional functions for some (but not all)

service classes. In particular, it sometimes handles error detection and multiplex—

ing. The SAR sublayer is present for all service classes but does more or less

work, depending on the specific protocol.

The communication between the application and AAL layer uses the standard

081 request and indication primitives that we discussed in Chap. 1. The com-

munication between the sublayers uses different primitives.

6.5.2. AAL 1

AAL l is the protocol used for transmitting class A traffic, that is, real—time,

constant bit rate, connection—oriented traffic, such as uncompressed audio and

video. Bits are fed in by the application at a constant rate and must be delivered

at the far end at the same constant rate, with a minimum of delay, jitter, and over-

head. The input is a stream of bits, with no message boundaries. For this traffic,

error detecting protocols such as stop—and—wait are not used because the delays

that are introduced by timeouts and retransmissions are unacceptable. However,

DELL Ex.1006.565

548 THE TRANSPORT LAYER CHAP. 6

Output by application

Heade~J~Trailer
Message

convergenc~~~b~:~~r I C; ~~ CS I

~~~/LLLLLLL~\~~­
,~~~:E I ~I cs • ~I • ~I ~~~~~_,__, __ 

AT~;~~~:l~l~I cs -~11~1~~~1 ~~~~~~~~-
ATM 1/ \ / ---- 4:-;s -=-header ___ 5

3 
___ _ 

SAR Convergence SAR Bytes Convergence 
header sublayer header trailer sublayer trailer 

Fig. 6-38. The headers and trailers that can be added to a message in an A TM 
network. 

Unused 

missing cells are reported to the application, which must then take its own action 
(if any) to recover from them. 

AAL 1 uses a convergence sublayer and a SAR sublayer. The convergence 
sublayer detects lost and misinserted cells. (A misinserted cell is one that is 
delivered to the wrong destination as a result of an undetected error in its virtual 
circuit or virtual path identifiers.) It also smoothes out incoming traffic to provide 
delivery of cells at a constant rate. Finally, the convergence sublayer breaks up 
the input messages or stream into 46- or 47-byte units that are given to the SAR 
sublayer for transmission. At the other end it extracts these and reconstructs the 
original input. The AAL 1 convergence sublayer does not have any protocol 
headers of its own. 

In contrast, the AAL 1 SAR sublayer does have a protocol. The formats of its 
cells are given in Fig. 6-39. Both formats begin with a 1-byte header containing a 
3-bit cell sequence number, SN, (to detect missing or misinserted cells). This 
field is followed by a 3-bit sequence number protection, SNP, (i.e., checksum) 
over the sequence number to allow correction of single errors and detection of 
double errors in the sequence field. It uses a cyclic redundancy check with the 
polynomial x 3 + x + 1. An even parity bit covering the header byte further 
reduces the likelihood of a bad sequence number sneaking in unnoticed. AAL 1 
cells need not be filled with a full 47 bytes. For example, to transmit digitized 
voice arriving at a rate of 1 byte every 125 µsec, filling a cell with 47 bytes means 
collecting samples for 5.875 msec. If this delay before transmission is 

Ex.1006.566DELL

548

Output by application

Output by
convergence sublayer

THE TRANSPORT LAYER

Header i/l/fl

CHAP. 6

Message

Trailer     cs / /// csd 
      
 

Output 3 s is V s ‘3‘

by SAR [A OS A A // / / A A CS
sublayer R l R RI 1 R R l

Output A s 37 A 87/ S A S

by[ CWA TAi/ ¢ / A TA, csATM layer M R R M R R M R     
ATM/

header

SAR Convergence

 
 

«— 44-48 —>

SAR Bytes

. 7%
g

/ Unused
Convergence

 

header sublayer header trailer sublayertrailer

Fig. 6—38. The headers and trailers that can be added to a message in an ATM
network.

missing cells are reported to the application, which must then take its own action

(if any) to recover from them.

AAL 1 uses a convergence sublayer and a SAR sublayer. The convergence

sublayer detects lost and misinserted cells. (A misinserted cell is one that is

delivered to the wrong destination as a result of an undetected error in its virtual

Circuit or virtual path identifiers.) It also smoothes out incoming traffic to provide

delivery of cells at a constant rate. Finally, the convergence sublayer breaks up

the input messages or stream into 46- or 47—byte units that are given to the SAR

sublayer for transmission. At the other end it extracts these and reconstructs the

original input. The AAL 1 convergence sublayer does not have any protocol
headers of its own.

In contrast, the AAL l SAR sublayer does have a protocol. The formats of its

cells are given in Fig. 6-39. Both formats begin with a 1—byte header containing a

3—bit ccll sequence number, SN, (to detect missing or misinserted cells). This

field is followed by a 3-bit sequence number protection, SNP, (i.e., checksum)

over the sequence number to allow correction of single errors and detection of

double errors in the sequence field. It uses a cyclic redundancy check with the

polynomial x3 +x +1. An even parity bit covering the header byte further
reduces the likelihood of a bad sequence number sneakng in unnoticed. AAL 1

cells need not be filled with a full 47 bytes. For example, to transmit digitized

voice arriving at a rate of 1 byte every 125 usec, filling a cell with 47 bytes means

collecting samples for 5.875 msec. If this delay before transmission is

DELL Ex.1006.566



SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 549 

Bits 3 3 

non-P I 0 I SN I SNP I J 
""' . Even parity 

47-Byte payload 

P 1 SN SNP 46-Byte payload 

Fig. 6-39. The AAL 1 cell format. 

unacceptable, partial cells can be sent. In this case, the number of actual data 
bytes per cell is the same for all cells and agreed on in advance. 

The P cells are used when message boundaries must be preserved. The 
Pointer field is used to give the offset of the start of the next message. ·Only cells 
with an even sequence number may be P cells, so the pointer is in the range 0 to 
92, to put it within the payload of either its own cell or the one following it. Note 
that this scheme allows messages to be an arbitrary number of bytes long, so mes­
sages can be run continuously and need not align on cell boundaries. 

The high-order bit of the Pointer field is reserved for future use. The initial 
header bit of all the odd-numbered cells forms a data stream used for clock syn­
chronization. 

6.5.3. AAL 2 

AAL 1 is designed for simple, connection-oriented, real-time data streams 
without error detection, except for missing and misinserted cells. For pure 
uncompressed audio or video, or any other data stream in which having a few gar­
bled bits once in a while is not a problem, AAL 1 is adequate. 

For compressed audio or video, the rate can vary strongly in time. For exam­
ple, many compression schemes transmit a full video frame periodically and then 
send only the differences between subsequent frames and the last full frame for 
several frames. When the camera is stationary and nothing is moving, the differ­
ence frames are small, but when the camera is panning rapidly, they are large. 
Also, message boundaries must be preserved so that the start of the next full frame 
can be recognized, even in the presence of lost cells or bad data. For these rea­
sons, a fancier protocol is needed. AAL 2 has been designed for this purpose. 

As in AAL 1, the CS sublayer does not have a protocol but the SAR sublayer 
does. The SAR cell format is shown in Fig. 6-40. It has a 1-byte header and a 2-
byte trailer, leaving room for up to 45 data bytes per cell. 

The SN field (Sequence Number) is used for numbering cells in order to detect 
missing or misinserted cells. The IT field (Information Type) is used to indicate 

Ex.1006.567DELL

SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 549

Bits 1

—ll—— ‘ 1non——PI” 47-Byte payload
Even parity

P III-I 46-Byte payioad
48 Bytes ———————————————————>

Fig. 6-39. The AAL 1 cell format.

 

 

 

 

 
 

  

unacceptable, partial cells can be sent. In this case, the number of actual data

bytes per cell is the same for all cells and agreed on in advance.

The P cells are used when message boundaries must be preserved. The
Pointer field is used to give the offset of the start of the next message. only cells

with an even sequence number may be P cells, so the pointer is in the range 0 to

92, to put it within the payload of either its own cell or the one following it. Note

that this scheme allows messages to be an arbitrary number of bytes long, so mes-

sages can be run continuously and need not align on cell boundaries.

The high-order bit of the Pointer field is reserved for future use. The initial

header bit of all the odd-numbered cells forms a data stream used for clock syn-
chronization.

6.5.3. AAL 2

AAL 1 is designed for simple, connection-oriented, real-time data streams

without error detection, except for missing and misinserted cells. For pure

uncompressed audio or video, or any other data stream in which having a few gar—

bled bits once in a while is not a problem, AAL l is adequate.

For compressed audio or Video, the rate can vary strongly in time. For exam—

ple, many compression schemes transmit a full video frame periodically and then

send only the differences between subsequent frames and the last full frame for

several frames. When the camera is stationary and nothing is moving, the differ—

ence frames are small, but when the camera is panning rapidly, they are large.

Also, message boundaries must be preserved so that the start of the next full frame
can be recognized, even in the presence of lost cells or bad data. For these rea—

sons, 3 fancier protocol is needed. AAL 2 has been designed for this purpose.

As in AAL 1, the CS sublayer does not have a protocol but the SAR sublayer

does. The SAR cell formatis shown1n Fig. 6—40 It has a 1——byte header and a 2—

byte trailer, leaving room for up to 45 data bytes per cell

The SN field (Sequence Number)IS used for numbering cellsin order to detect

missing or misinserted cells. The IT field (Information Type) is used to indicate

DELL Ex.1006.567



550 THE TRANSPORT LA YER CHAP. 6 

-1Byte- ---- 2 Bytes---~ 

I~ _s_N_~l_IT_-L._ _____ 4_s_-B_y_ie_p~~;/~o-_a-_d ____ _L__L_1_--'--___ c_R_c __ _J 

48 Bytes -------------~ 

Fig. 6-40. The AAL 2 cell format. 

that the cell is the start, middle, or end of a message. The LI (Length indicator) 
field tells how big the payload is, in bytes (it might be less than 45 bytes). 
Finally, the CRC field is a checksum over the entire cell, so errors can be 
detected. 

Strange as it may sound, the field sizes are not included in the standard. 
According to one insider, at the very end of the standardization process the com­
mittee realized that AAL 2 had so many problems that it should not be used. 
Unfortunately, it was too late to stop the standardization process. They had a 
deadline to meet. In a last ditch effort, the committee removed all the field sizes 
so that the formal standard could be issued on time, but in such a way that nobody 
could actually qse it. Such is life in the world of standardization. 

6.5.4. AAL 3/4 

Originally, ITU had different protocols for classes C and D, connection­
oriented service and connectionless service for data transport that is sensitive to 
loss or errors but is not time dependent. Then ITU discovered that there was no 
real need for two protocols, so they were combined into a single protocol, AAL 
3/4. 

AAL 3/4 can operate in two modes: stream or message. In message mode, 
each call from the application to AAL 3/4 injects one message into the network. 
The message is delivered as such, that is, message boundaries are preserved. In 
stream mode the boundaries are not preserved. The discussion below will concen­
trate on message mode. Reliable and unreliable (i.e., no guarantee) transport are 
available in each mode. 

A feature of AAL 3/4 not present in any of the other protocols is multiplexing. 
This aspect of AAL 3/4 allows multiple sessions (e.g., remote logins) from a sin­
gle host to travel along the same virtual circuit and be separated at the destination, 
as illustrated in Fig. 6-41. 

The reason that this facility is desirable is that carriers often charge for each 
connection setup and for each second that a connection is open. If a pair of hosts 
have several sessions open simultaneously, giving each one its own virtual circuit 
will be more expensive than multiplexing all of them onto the same virtual circuit. 
If one virtual circuit has sufficient bandwidth to handle the job, there is no need 

Ex.1006.568DELL



SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 

Virtual 

Three sessions {­
multiplexed / 
onto virtual 

circuit 2 circuit 2 

551 

Fig. 6-41. Multiplexing of several sessions onto one virtual circuit. 

for more than one. All sessions using a single virtual circuit get the same quality 
of service, since this is negotiated per virtual circuit. 

This issue is the real reason that there were originally separate AAL 3 and 
AAL 4 formats: the Americans wanted multiplexing and the Europeans did not. 
So each group went off and made its own standard. Eventually, the Europeans 
decided that saving 10 bits in the header was not worth the price of having the 
United States and Europe not be able to communicate. For the same money, they 
could have stuck to their guns and we would have had four incompatible AAL 
standards (of which one is broken) instead of three. 

Unlike AAL 1 and AAL 2, AAL 3/4 has both a convergence sublayer protocol 
and a SAR sublayer protocol. Messages as large as 65,535 bytes come into the 
convergence sublayer from the application. These are first padded out to a multi­
ple of 4 bytes. Then a header and a trailer are attached, as shown in Fig. 6-42. 

Bytes 1 2 0-3 

El Btag BA size I Payload (1 to 65535 bytes) Padding 

CS header 

Fig. 6-42. AAL 3/4 convergence sublayer message format. 

Etag 

2 

Length 
(0-65535) 

CS trailer 

The CF/field (Common Part Indicator) gives the message type and the count­
ing unit for the BA size and Length fields. The Btag and Etag fields are used to 
frame messages. The two bytes must be the same and are incremented by one on 
every new message sent. This mechanism checks for lost or misinserted cells. 
The BA size field is used for buffer allocation. It tells the receiver how much 
buffer space to allocate for the message in advance of its arrival. The Length field 
gives the payload length again. In message mode, it must be equal to BA size, but 
in stream mode it may be different. The trailer also contains 1 unused byte. 

After the convergence sublayer has constructed and added a header and trailer 
to the message, as shown in Fig. 6-42, it passes the message to the SAR sublayer, 

Ex.1006.569DELL

SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 551

Virtual Virtual path

/circuit 1 

  

 
     

Three sessions {\./ \ é} 12:23....onto virtual / Virtualcircuit 2 circuit 2

Fig. 6—41. Multiplexing of several sessions onto one virtual circuit.

for more than one. All sessions using a single virtual circuit get the same quality

of service, since this is negotiated per virtual circuit.

This issue is the real reason that there were originally separate AAL 3 and

AAL 4 formats: the Americans wanted multiplexing and the Europeans did not.

So each group went off and made its own standard. Eventually, the Europeans

decided that saving 10 bits in the header was not worth the price of having the

United States and Europe not be able to communicate. For the same money, they

could have stuck to their guns and we would have had four incompatible AAL

standards (of which one is broken) instead of three.

Unlike AAL l and AAL 2, AAL 3/4 has both a convergence sublayer protocol

and a SAR sublayer protocol. Messages as large as 65,535 bytes come into the

convergence sublayer from the application. These are first padded out to a multi-

ple of 4 bytes. Then a header and a trailer are attached, as shown in Fig. 6-42.

 

   
Bytes 1 1 2 ii 0-3 1 1 2

CPI Btag BA size Payload (1 to 65535 bytes) Padding Length(0—65535)
W...)

CS header CS trailer

Fig. 6-42. AAL 3/4 convergence sublayer message format.

The CPI field (Common Part Indicator) gives the message type and the count—

ing unit for the BA size and Length fields. The Brag and Etag fields are used to

frame messages. The two bytes must be the same and are incremented by one on

every new message sent. This mechanism checks for lost or misinserted cells.
The BA size field is used for buffer allocation. it tells the receiver how much

buffer space to allocate for the message in advance of its arrival. The Length field

gives the payload length again. In message mode, it must be equal to BA size, but

in stream mode it may be different. The trailer also contains 1 unused byte.
After the convergence sublayer has constructed and added a header and trailer

to the message, as shown in Fig. 6—42, it passes the message to the SAR sublayer,

 

    

DELL Ex.1006.569



552 THE TRANSPORT LAYER CHAP. 6 

which chops the message up into 44-byte chunks. Note that to support multiplex­
ing, the convergence sublayer may have several messages constructed internally 
at once and may pass 44-byte chunks to the SAR sublayer first from one message, 
then from another, in any order. 

The SAR sublayer inserts each 44-byte chunk into the payload of a cell whose 
format is shown in Fig. 6-43. These cells are then transmitted to the destination 
for reassembly, after which checksum verification is performed and action taken 
if need be. 

Bits 2 4 10 6 10 
---) )1-------------;;-----r-----. 

I ~ I ~ I MID 44~payload I ~ CRC 
~l~~~~~~~·--,t--~~~~-~1--f--"~~ 

00 Middle 
01 End 1-44 
10 Beginning 
11 Single cell message 

48 Bytes ------------~ 

Fig. 6-43. The AAL 3/4 cell format. 

The fields in the AAL 3/4 cell are as follows. The ST (Segment Type) field is 
used for message framing. It indicates whether the cell begins a message, is in the 
middle of a message, is the last cell of a message, or is a small (i.e., single cell) 
message. Next comes a 4-bit sequence number, SN, for detecting missing and 
misinserted cells. The MID (Multiplexing ID) field is used to keep track of which 
cell belongs to which session. Remember that the convergence sublayer may 
have several messages, belonging to different sessions, buffered at once, and it 
may send pieces of these messages in whatever order it wishes. All the pieces 
from messages belonging to session i carry i in the MID field, so they can be 
correctly reassembled at the destination. The trailer contains the payload length 
and cell checksum. 

Notice that AAL 3/4 has two layers of protocol overhead: 8 bytes are added to 
every message and 4 bytes are added to every cell. All in all, it is a heavyweight 
mechanism, especially for short messages. 

6.5.5. AAL 5 

The AAL 1 through AAL 3/4 protocols were largely designed by the telecom­
munications industry and standardized by ITU without a lot of input from the 
computer industry. When the computer industry finally woke up and began to 
understand the implications of Fig. 6-43, a sense of panic set in. The complexity 
and inefficiency generated by two layers of protocol, coupled with the surpris­
ingly short checksum (only 10 bits), caused some researchers to invent a new 

Ex.1006.570DELL



SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 553 

adaptation protocol. It was called SEAL (Simple Efficient Adaptation Layer), 
which suggests what the designers thought of the old ones. After some discuss­
ion, the A TM Forum accepted SEAL and assigned it the name AAL 5. For more 
information about AAL 5 and how it differs from AAL 3/4, see (Suzuki, 1994). 

AAL 5 offers several kinds of service to its applications. One choice is reli­
able service (i.e., guaranteed delivery with flow control to prevent overruns). 
Another choice is unreliable service (i.e., no guaranteed delivery), with options to 
have cells with checksum errors either discarded or passed to the application any­
way (but reported as bad). Both unicast and multicast are supported, but multicast 
does not provide guaranteed dellivery. 

Like AAL 3/4, AAL 5 supports both message mode and stream mode. In 
message mode, an application can pass a datagram of length 1 to 65,535 bytes to 
the AAL layer and have it delivered to the destination, either on a guaranteed or a 
best efforts basis. Upon arrival in the convergence sublayer, a message is padded 
out and a trailer added, as shown in Fig. 6-44. The amount of padding (0 to 47 
bytes) is chosen to make the entire message, including the padding and trailer, be 
a multiple of 48 bytes. AAL 5 does not have a convergence sublayer header, just 
an 8-byte trailer. 

Bytes 

~i ----P-ay-lo_a_d_(_1 --1tf ~5byOOs) 
2 4 

uu Length CRC 

Fig. 6-44. AAL 5 convergence sublayer message format. 

The UU (User to User) field is not used by the AAL layer itself. Instead, it is 
available for a higher layer for its own purposes, for example, sequencing or mul­
tiplexing. The higher layer in question may be the service-specific subpart of the 
convergence sublayer. The Length field tells how long the true payload is, in 
bytes, not counting the padding. A value of 0 is used to abort the current message 
in midstream. The CRC field is the standard 32-bit checksum over the entire mes­
sage, including the padding and the trailer (with the CRC field set to 0). One 8-bit 
field in the trailer is reserved for future use. 

The message is transmitted by passing it to the SAR sublayer, which does not 
add any headers or trailers. Instead, it breaks the message into 48-byte units and 
passes each of these to the ATM layer for transmission. It also tells the A TM 
layer to set a bit in the PT! field on the last cell, so message boundaries are 
preserved. A case can be made that this is an incorrect mixing of protocol layers 
because the AAL layer should not be using bits in the A TM layer's header. Doing 
so violates the most basic principle of protocol engineering, and suggests the 
layering should have perhaps been done differently. 

The principal advantage of AAL 5 over AAL 3/4 is the much greater effi­
ciency. While AAL 3/4 adds only 4 bytes per message, it also adds 4 bytes per 

Ex.1006.571DELL



554 THE TRANSPORT LA YER CHAP. 6 

cell, reducing the payload capacity to 44 bytes, a loss of 8 percent on long mes­
sages. AAL 5 has a slightly large trailer per message (8 bytes) but has no over­
head in each cell. The lack of sequence numbers in the cells is compensated for 
by the longer checksum, which can detect lost, misinserted, or missing cells 
without using sequence numbers. 

Within the Internet community, it is expected that the normal way of interfac­
ing to ATM networks will be to transport IP packets with the AAL 5 payload 
field. Various issues relating to this approach are discussed in RFC 1483 and 
RFC 1577. 

6.5.6. Comparison of AAL Protocols 

The reader is hereby forgiven if he or she thinks that the various AAL proto­
cols seem unnecessarily similar to one another and poorly thought out. The value 
of having distinct convergence and SAR sublayers is also questionable, especially 
since AAL 5 does not have anything in the SAR sublayer. A slightly enhanced 
ATM layer header could have provided for sequencing, multiplexing, and framing 
quite adequately. 

Some of the differences between the various AAL protocols are summarized 
in Fig. 6-45. These relate to efficiency, error handling, multiplexing, and the rela­
tion between the AAL sublayers. 

Item AAL 1 AAL2 AAL 3/4 AAL5 

Service class A B CID CID 

Multiplexing No No Yes No 

Message delimiting None None BtaglEtag Bit in PTI 

Advance buffer allocation No No Yes No 

User bytes available 0 0 0 ·1 

CS padding 0 0 32-Bit word 0-47 bytes 

CS protocol overhead (bytes) 0 0 8 8 
--

CS checksum None None None 32 Bits 

SAR payload bytes 46-47 45 44 48 

SAR protocol overhead (bytes) 1-2 3 4 0 

SAR checksum None None 10 Bits None 

Fig. 6-45. Some differences between the various AAL protocols. 

The overall impression that AAL gives is of too many variants with too many 
minor differences and a job half done. The original four service classes, A, B, C, 
D, have been effectively abandoned. AAL 1 is probably not really necessary; 

Ex.1006.572DELL



SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 555 

AAL 2 is broken; AAL 3 and AAL 4 never saw the light of day; and AAL 3/4 is 
inefficient and has too short a checksum. 

The future lies with AAL 5, but even here there is room for improvement. 
AAL 5 messages should have had a sequence number and a bit to distinguish data 
from control messages, so it could have been used as a reliable transport protocol. 
Unused space in the trailer was even available for them. As it stands, for reliable 
transport, the additional overhead of a transport layer is required on top of it, 
when it could have been avoided. If the full AAL committee had turned its work 
in as a class project, the professor would probably have given it back with instruc­
tions to fix it and tum it in again when it was finished. More criticism of ATM 
can be found in (Sterbenz et al., 1995). 

6.5.7. SSCOP-Service Specific Connection-Oriented Protocol 

Despite all these different AAL protocols, none of them provides for simple 
end-to-end reliable transport connections. For applications where that is required, 
another AAL protocol exists: SSCOP (Service Specific Connection Oriented 
Protocol). However, SSCOP is only used for control, not for data transmission. 

SSCOP users send messages, each of which is assigned a 24-bit sequence 
number. Messages can be up to 64K bytes and are not fragmented. They must be 
delivered in order. Unlike some other reliable transport protocols, missing mes­
sages are always retransmitted using selective repeat rather than go back n. 

SSCOP is fundamentally a dynamic sliding window protocol. For each con­
nection, the receiver maintains a window of message sequence numbers that it is 
prepared to receive, and a bit map marking the ones it already has. This window 
can change size during protocol operation. 

What makes SSCOP unusual is the way acknowledgements are handled: there 
is no piggybacking. Instead, peliodically, the sender polls the receiver and asks it 
to send back the bit map giving the window status. Based on the result, the sender 
discards messages that have been accepted and updates its window. SSCOP is 
described in detail in (Henderson, 1995). 

6.6. PERFORMANCE ISSUES 

Performance issues are very important in computer networks. When hundreds 
or thousands of computers are connected together, complex interactions, with 
unforeseen consequences, are common. Frequently, this complexity leads to poor 
performance and no one knows why. In the following sections, we will examine 
many issues related to network performance to see what kinds of problems exist 
and what can be done about them. 

Unfortunately, understanding network performance is more of an art than a 
science. There is little underlying theory that is actually of any use in practice. 

Ex.1006.573DELL



556 THE TRANSPORT LAYER CHAP. 6 

The best we can do is give rules of thumb gained from hard experience and 
present examples taken from the real world. We have intentionally delayed this 
discussion until after studying the transport layer in TCP and A TM networks in 
order to be able to point out places where they have done things right or done 
things wrong. 

The transport layer is not the only place performance issues arise. We saw 
some of them in the network layer in the previous chapter. Nevertheless, the net­
work layer tends to be largely concerned with routing and congestion control. 
The broader, system-oriented issues tend to be transport related, so this chapter is 
an appropriate place to examine them. 

In the next five sections, we will look at five aspects of network performance: 

1. Performance problems. 

2. Measuring network performance. 

3. System design for better performance. 

4. Fast TPDU processing. 

5. Protocols for future high--performance networks. 

As an aside, we need a name for the units exchanged by transport entities. The 
TCP term, segment, is confusing at best and is never used outside the TCP world 
in this context. The proper ATM terms, CS-PDU, SAR-PDU, and CPCS-PDU, 
are specific to A TM. Packets clearly refer to the network layer and messages 
belong to the application layer. For lack of a standard term, we will go back to 
calling the units exchanged by transport entities TPDUs. When we mean both 
TPDU and packet together, we will use packet as the collective term, as in "The 
CPU must be fast enough to process incoming packets in real time." By this we 
mean both the network layer packet and the TPDU encapsulated in it. 

6.6.1. Performance Problems in Computer Networks 

Some performance problems, such as congestion, are caused by temporary 
resource overloads. If more traffic suddenly arrives at a router than the router can 
handle, congestion will build up and performance will suffer. We studied conges­
tion in detail in the previous chapter. 

Performance also degrades when there is a structural resource imbalance. For 
example, if a gigabit communication line is attached to a low-end PC, the poor 
CPU will not be able to process the incoming packets fast enough, and some will 
be lost. These packets will eventually be retransmitted, adding delay, wasting 
bandwidth, and generally reducing performance. 

Overloads can also be synchronously triggered. For example, if a TPDU con­
tains a bad parameter (e.g., the port or process for which it is destined), in many 

Ex.1006.574DELL



SEC. 6.6 PERFORMANCE ISSUES 557 

cases the receiver will thoughtfully send back an error notification. Now consider 
what could happen if a bad TPDU is broadcast to 10,000 machines: each one 
might send back an error message. The resulting broadcast storm could cripple 
the network. UDP suffered from this problem until the protocol was changed to 
cause hosts to refrain from responding to errors in UDP TPDUs sent to broadcast 
addresses. 

A second example of synchronous overload is what happens after an electrical 
power failure. When the power comes back on, all the machines simultaneously 
jump to their ROMs to start rebooting. A typical reboot sequence might require 
first going to some (RARP) server to learn one's true identity, and then to some 
file server to get a copy of the operating system. If hundreds of machines all do 
this at once, the server will probably collapse under the load. 

Even in the absence of synchronous overloads and when there are sufficient 
resources available, poor performance can occur due to lack of system tuning. 
For example, if a machine has plenty of CPU power and memory, but not enough 
of the memory has been allocated for buff er space, overruns will occur and 
TPDUs will be lost. Similarly, if the scheduling algorithm does not give a high 
enough priority to processing incoming TPDU s, some of them may be lost. 

Another tuning issue is setting timeouts correctly. When a TPDU is sent, a 
timer is typically set to guard against its loss. If the timeout is set too short, 
unnecessary retransmissions will occur, clogging the wires. If the timeout is set 
too long, unnecessary delays will occur after a TPDU is lost. Other tunable 
parameters include how long to wait for data to piggyback onto before sending a 
separate acknowledgement and the number of retransmissions before giving up. 

Gigabit networks bring with them new performance problems. Consider, for 
example, sending data from San Diego to Boston when the receiver's buffer is 
64K bytes. Suppose that the link is 1 Gbps and the one-way speed-of-light-in­
fiber delay is 20 msec. Initially, at t = 0, the pipe is empty, as illustrated in 
Fig. 6-46(a). Only 500 µsec later, in Fig. 6-46(b), all the TPDUs are out on the 
fiber. The lead TPDU will now be somewhere in the vicinity of Brawley, still 
deep in Southern California. However, the transmitter must stop until it gets a 
window update. 

After 20 msec, the lead TPDU hits Boston, as shown in Fig. 6-46(c) and is 
acknowledged. Finally, 40 msec after starting, the first acknowledgement gets 
back to the sender and the second burst can be transmitted. Since the transmission 
line was used for 0.5 msec out of 40, the efficiency is about 1.25 percent. This 
situation is typical of running older protocols over gigabit lines. 

A useful quantity to keep in mind when analyzing network performance is the 
bandwidth-delay product. It is obtained by multiplying the bandwidth (in 
bits/sec) by the round-trip delay time (in sec). The product is the capacity of the 
pipe from the sender to the receiver and back (in bits). 

For the example of Fig. 6-46 the bandwidth-delay product is 40 million bits. 
In other words, the sender would have to transmit a burst of 40 million bits to be 

Ex.1006.575DELL



558 THE TRANSPORT LAYER CHAP. 6 

(a) (b) 

(c) (d) 

Fig. 6-46. The state of transmitting one megabit from San Diego to Boston. (a) 
At t = 0. (b) After 500 µsec. (c) After 20 msec. (d) After 40 msec. 

able to keep going full speed until the first acknowledgement came back. It takes 
this many bits to fill the pipe (in both directions). This is why a burst of half a 
million bits only achieves a 1.25 percent efficiency: it is only 1.25 percent of the 
pipe capacity. 

The conclusion to be drawn here is that to achieve good performance, the 
receiver's window must be at least as large as the bandwidth-delay product, 
preferably somewhat larger since the receiver may not respond instantly. For a 
transcontinental gigabit line, at least 5 megabytes are required for each connec­
tion. 

If the efficiency is terrible for sending a megabit, imagine what it is like when 
sending a few hundred bytes for a remote procedure call. Unless some other use 
can be found for the line while the first client is waiting for its reply, a gigabit line 
is no better than a megabit line, just more expensive. 

Another performance problem that occurs with time-critical applications like 
audio and video is jitter. Having a short mean transmission time is not enough. A 
small standard deviation is also required. Achieving a short mean transmission 
time along with a small standard deviation demands a serious engineering effort. 

Ex.1006.576DELL

558 THE TRANSPORT LAYER CHAP. 6

 
Fig. 6-46. The state of transmitting one megabit from San Diego to Boston. (a)
At t: 0. (b) After 500 “see. (c) After 20 msec. (d) After 40 msec.

able to keep going full speed until the first acknowledgement came back. It takes

this many bits to fill the pipe (in both directions). This is why a burst of half a

million bits only achieves a 1.25 percent efficiency: it is only 1.25 percent of the

pipe capacity.

The conclusion to be drawn here is that to achieve good performance, the

receiver’s window must be at least as large as the bandwidth~delay product,

preferably somewhat larger since the receiver may not respond instantly. For a

transcontinental gigabit line, at least 5 megabytes are required for each connec—
tion.

If the efficiency is terrible for sending a megabit, imagine what it is like when

sending a few hundred bytes for a remote procedure call. Unless some other use

can be found for the line while the first client is waiting for its reply, a gigabit line

is no better than a megabit line, just more expensive.

Another performance problem that occurs with time-critical applications like

audio and video is jitter. Having a short mean transmission time is not enough. A

small standard deviation is also required. Achieving a short mean transmission

time along with a small standard deviation demands a serious engineering effort.

DELL Ex.1006.576



SEC. 6.6 PERFORMANCE ISSUES 559 

6.6.2. Measuring Network Performance 

When a network performs poorly, its users often complain to the folks running 
it, demanding improvements. To improve the performance, the operators must 
first determine exactly what is going on. To find out what is really happening, the 
operators must make measurements. In this section we will look at network per­
formance measurements. The discussion below is based on the work of Mogul 
(1993). For a more thorough discussion of the measurement process, see (Jain, 
1991; and Villamizan and Song, 1995). 

The basic loop used to improve network performance contains the following 
steps: 

1. Measure the relevant network parameters and performance. 

2. Try to understand what is going on. 

3. Change one parameter. 

These steps are repeated until the performance is good enough or it is clear that 
the last drop of improvement has been squeezed out. 

Measurements can be made in many ways and at many locations (both physi­
cally and in the protocol stack). The most basic kind of measurement is to start a 
timer when beginning some activity and use it to see how long that activity takes. 
For example, knowing how long it takes for a TPDU to be acknowledged is a key 
measurement. Other measurements are made with counters that record how often 
some event has happened (e.g., number of lost TPDUs). Finally, one is often 
interested in knowing the amount of something, such as the number of bytes pro­
cessed in a certain time interval. 

Measuring network performance and parameters has many potential pitfalls. 
Below we list a few of them. Any systematic attempt to measure network perfor­
mance should be careful to avoid these. 

Make Sure that the Sample Size Is Large Enough 

Do not measure the time to send one TPDU, but repeat the measurement, say, 
one million times and take the average. Having a large sample will reduce the 
uncertainty in the measured mean and standard deviation. This uncertainty can be 
computed using standard statistical formulas. 

Make Sure that the Samples Are Representative 

Ideally, the whole sequence of one million measurements should be repeated 
at different times of the day and the week to see the effect of different system 
loads on the measured quantity. Measurements of congestion, for example, are of 

Ex.1006.577DELL



560 THE TRANSPORT LA YER CHAP. 6 

little use if they are made at a moment when there is no congestion. Sometimes 
the results may be counterintuitive at first, such as heavy congestion at 10, 11, 1, 
and 2 o'clock, but no congestion at noon (when all the users are away at lunch). 

Be Careful When Using a Coarse-Grained Clock 

Computer clocks work by adding one to some counter at regular intervals. 
For example, a millisecond timer adds one to a counter every 1 msec. Using such 
a timer to measure an event that takes less than 1 msec is not impossible, but 
requires some care. 

To measure the time to send a TPDU, for example, the system clock (say, in 
milliseconds) should be read out when the transport layer code is entered, and 
again when it is exited. If the true TPDU send time is 300 µsec, the difference 
between the two readings will be either 0 or 1, both wrong. However, if the meas­
urement is repeated one million times and the total of all measurements added up 
and divided by one million, the mean time will be accurate to better than 1 µsec. 

Be Sure that Nothing Unexpected Is Going On during Your Tests 

Making measurements on a university system the day some major lab project 
has to be turned in may give different results than if made the next day. Likewise, 
if some researcher has decided to run a video conference over your network dur­
ing your tests, you may get a biased result. It is best to run tests on an idle system 
and create the entire workload yourself. Even this approach has pitfalls though. 
While you might think nobody will be using the network at 3 A.M., that might be 
precisely when the automatic backup program begins copying all the disks to 
videotape. Furthermore, there might be heavy traffic for your wonderful World 
Wide Web pages from distant time zones. 

Caching Can Wreak Havoc with Measurements 

To measure file transfer times, the obvious way to do it is to open a large file, 
read the whole thing, close it, and see how long it takes. Then repeat the meas­
urement many more times to get a good average. The trouble is, the system may 
cache the file, so that only the first measurement actually involves network traffic. 
The rest are just reads from the local cache. The results from such a measurement 
are essentially worthless (unless you want to measure cache performance). 

Often you can get around caching by simply overflowing the cache. For 
example, if the cache is 10 MB, the test loop could open, read, and close two 10-
MB files on each pass, in an attempt to force the cache hit rate to 0. Still, caution 
is advised unless you are absolutely sure you understand the caching algorithm. 

Buffering can have a similar effect. One popular TCP/IP performance utility 
program has been known to report that UDP can achieve a performance 

Ex.1006.578DELL



SEC. 6.6 PERFORMANCE ISSUES 561 

substantially higher than the physical line allows. How does this occur? A call to 
UDP normally returns control as soon as the message has been accepted by the 
kernel and added to the transmission queue. If there is sufficient buff er space, 
timing 1000 UDP calls does not mean that all the data have been sent. Most of 
them may still be in the kernel, but the performance utility thinks they have all 
been transmitted. 

Understand What You Are Measuring 

When you measure the time to read a remote file, your measurements depend 
on the network, the operating systems on both the client and server, the particular 
hardware interface boards used, their drivers, and other factors. If done carefully, 
you will ultimately discover the file transfer time for the configuration you are 
using. If your goal is to tune this particular configuration, these measurements are 
fine. 

However, if you are making similar measurements on three different systems 
in order to choose which network interface board to buy, your results could be 
thrown off completely by the fact that one of the network drivers is truly awful 
and is only getting 10 percent of the performance of the board. 

Be Careful about Extrapolating the Results 

Suppose that you make measurements of something with simulated network 
loads running from 0 (idle) to 0.4 (40 percent of capacity), as shown by the data 
points and solid line through them in Fig. 6-47. It may be tempting to extrapolate 
linearly, as shown by the dotted line. However, many queueing results involve a 
factor of 1/(1 - p), wher pis the load, so the true values may look more like the 
dashed line. 

6.6.3. System Design for Better Performance 

Measuring and tinkering can often improve performance considerably, but 
they cannot substitute for good design in the first place. A poorly designed net­
work can be improved only so much. Beyond that, it has to be redone from 
scratch. 

In this section, we will present some rules of thumb based on experience with 
many networks. These rules relate to system design, not just network design, 
since the software and operating system are often more important than the routers 
and interface boards. Most of these ideas have been common knowledge to net­
work designers for years and have been passed on from generation to generation 
by word of mouth. They were first stated explicitly by Mogul (1993); our treat­
ment largely parallels his. Another relevant source is (Metcalfe, 1993). 

Ex.1006.579DELL



562 

5 

4 

Q) 

E 3 
:;::: 
Q) 
en c: 
0 c. 
gi 2 
a: 

THE TRANSPORT LAYER 

I 
I 

/ 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

CHAP. 6 

,,,," 

//<~---······································ 
..,,.,,,,.~: ................. .. 

............ 
·························· 

.......... ~-· 
_,..$:::.··· 

o~~~~~~~~~~~~~-~~~~~~~~~--~~~~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Load 

Fig. 6-47. Response as a function of load. 

Rule #1: CPU Speed Is More Important than Network Speed 

Long experience has shown that in nearly all networks, operating system and 
protocol overhead dominates actual time on the wire. For example, in theory, the 
minimum RPC time on an Ethernet is 102 µsec, corresponding to a minimum 
(64-byte) request followed by a minimum (64-byte) reply. In practice, getting the 
RPC time down to 1500 µsec is a considerable achievement (Van Renesse et al., 
1988). Note that 1500 µsec is 15 times worse than the theoretical minimum. 
Nearly all the overhead is in the software. 

Similarly, the biggest problem in running at 1 Gbps is getting the bits from the 
user's buffer out onto the fiber fast enough and having the receiving CPU process 
them as fast as they come in. In short, if you double the CPU speed, you often 
can come close to doubling the throughput. Doubling the network capacity often 
has no effect since the bottleneck is generally in the hosts. 

Rule #2: Reduce Packet Count to Reduce Software Overhead 

Processing a TPDU has a certain amount of overhead per TPDU (e.g., header 
processing) and a certain amount of processing per byte (e.g., doing the check­
sum). When sending 1 million bytes, the per-byte overhead is the same no matter 
what the TPDU size is. However, using 128-byte TPDUs means 32 times as 
much per-TPDU overhead as using 4K TPDUs. This overhead adds up fast. 

Ex.1006.580DELL



SEC. 6.6 PERFORMANCE ISSUES 563 

In addition to the TPDU overhead, there is overhead in the lower layers to 
consider. Each arriving packet causes an interrupt. On a modern RISC processor, 
each interrupt breaks the CPU pipeline, interferes with the cache, requires a 
change to the memory management context, and forces a substantial number of 
CPU registers to be saved. Ann-fold reduction in TPDUs sent thus reduces the 
interrupt and packet overhead by a factor of n. 

This observation argues for collecting a substantial amount of data before 
transmission in order to reduce interrupts at the other side. Nagle's algorithm and 
Clark's solution to the silly window syndrome are attempts to do precisely this. 

Rule #3: Minimize Context Switches 

Context switches (e.g., from kernel mode to user mode) are deadly. They 
have the same bad properties as interrupts, the worst being a long series of initial 
cache misses. Context switches can be reduced by having the library procedure 
that sends data do internal buffering until it has a substantial amount of them. 
Similarly, on the receiving side, small incoming TPDUs should be collected 
together and passed to the user in one fell swoop instead of individually to minim­
ize context switches. 

In the best case, an incoming packet causes a context switch from the current 
user to the kernel, and then a switch to the receiving process to give it the newly­
arrived data. Unfortunately, with many operating systems, additional context 
switches happen. For example, if the network manager runs as a special process 
in user space, a packet arrival is likely to cause a context switch from the current 
user to the kernel, then another one from the kernel to the network manager fol­
lowed by another one back to the kernel, and finally one from the kernel to the 
receiving process. This sequence is shown in Fig. 6-48. All these context 
switches on each packet are very wasteful of CPU time and will have a devastat­
ing effect on network performance. 

User process running at the 
time of the packet arrival 

Network 
manager 

Receiving 
process 

0 

Fig. 6-48. Four context switches to handle one packet with a user-space net­
work manager. 

Ex.1006.581DELL

SEC. 6.6 PERFORMANCE ISSUES 563

In addition to the TPDU overhead, there is overhead in the lower layers to

consider. Each arriving packet causes an interrupt. On a modern RISC processor,

each interrupt breaks the CPU pipeline, interferes with the cache, requires a

change to the memory management context, and forces a substantial number of

CPU registers to be saved. An n-fold reduction in TPDUs sent thus reduces the

interrupt and packet overhead by a factor of n.

This observation argues for collecting a substantial amount of data before

transmission in order to reduce interrupts at the other side. Nagle’s algorithm and

Clark’s solution to the silly window syndrome are attempts to do precisely this.

Rule #3: Minimize Context Switches

Context switches (e.g., from kernel mode to user mode) are deadly. They

have the same bad properties as interrupts, the worst being a long series of initial

cache misses. Context switches can be reduced by having the library procedure

that sends data do internal buffering until it has a substantial amount of them.

Similarly, on the receiving side, small incoming TPDUs should be collected

together and passed to the user in one fell swoop instead of individually to minim-
ize context switches.

In the best case, an incoming packet causes a context switch from the current

user to the kernel, and then a switch to the receiving process to give it the newly—

arrived data. Unfortunately, with many operating systems, additional context

switches happen. For example, if the network manager runs as a special process

in user space, a packet arrival is likely to cause a context switch from the current

user to the kernel, then another one from the kernel to the network manager fol—

lowed by another one back to the kernel, and finally one from the kernel to the

receiving process. This sequence is shown in Fig. 6—48. All these context

switches on each packet are very wasteful of CPU time and will have a devastat-

ing effect on network performance.

User process running at the Network Receiving
time of the packet arrival manager process

\\—otn
@/___________ <9___________ef

Fig. 6-48. Four context switches to handle one packet with a user-space net—
work manager.

 

 
Kernei space

 

DELL Ex.1006.581



564 THE TRANSPORT LA YER CHAP. 6 

Rule #4: Minimize Copying 

Even worse than multiple context switches is making multiple copies. It is 
not unusual for an incoming packet to be copied three or four times before the 
TPDU enclosed in it is delivered. After a packet is received by the network inter­
face in a special on-board hardware buffer, it is typically copied to a kernel buffer. 
From there it is copied to a network layer buffer, then to a transport layer buffer, 
and finally to the receiving application process. 

A clever operating system will copy a word at a time, but it is not unusual to 
require about five instructions per word (a load, a store, incrementing an index 
register, a test for end-of-data, and a conditional branch). On a 50-MIPS machine, 
making three copies of each packet at five instructions per 32-bit word copied 
requires 75 nsec per incoming byte. Such a machine can thus accept data at a 
maximum rate of about 107 Mbps. When overhead for header processing, inter­
rupt handling, and context switches is factored in, 50 Mbps might be achievable, 
and we have not even considered the actual processing of the data. Clearly, han­
dling a 1-Gbps line is out of the question. 

In fact, probably a 50-Mbps line is out of the question, too. In the computa­
tion above, we have assumed that a 50-MIPS machine can execute any 50 million 
instructions/sec. In reality, machines can only run at such speeds if they are not 
referencing memory. Memory operations are often a factor of three slower than 
register-register instructions, so actually getting 16 Mbps out of the 1 Gbps line 
might be considered pretty good. Note that hardware assistance will not help 
here. The problem is too much copying by the operating system. 

Rule #5: You Can Buy More Bandwidth but Not Lower Delay 

The next three rules deal with communication, rather than protocol process­
ing. The first rule states that if you want more bandwidth, you can just buy it. 
Putting a second fiber next to the first one doubles the bandwidth but does nothing 
to reduce the delay. Making the delay shorter requires improving the protocol 
software, the operating system, or the network interface. Even if all of these are 
done, the delay will not be reduced if the bottleneck is the transmission time. 

Rule #6: A voiding Congestion Is Better than Recovering from It 

The old maxim that an ounce of prevention is worth a pound of cure certainly 
holds for network congestion. When a network is congested, packets are lost, 
bandwidth is wasted, useless delays are introduced, and more. Recovering from it 
takes time and patience. Not having it occur in the first place is better. Conges­
tion avoidance is like getting your DTP vaccination: it hurts a little at the time you 
get it, but it prevents something that would hurt a lot more. 

Ex.1006.582DELL



SEC. 6.6 PERFORMANCE ISSUES 565 

Rule #7: A void Timeouts 

Timers are necessary in networks, but they should be used sparingly and 
timeouts should be minimized. When a timer goes off, some action is generally 
repeated. If it is truly necessary to repeat the action, so be it, but repeating it 
unnecessarily is wasteful. 

The way to avoid extra work is to be careful that timers are set a little bit on 
the conservative side. A timer that takes too long to expire adds a small amount 
of extra delay to one connection in the (unlikely) event of a TPDU being lost. A 
timer that goes off when it should not have uses up scarce CPU time, wastes 
bandwidth, and puts extra load on perhaps dozens of routers for no good reason. 

6.6.4. Fast TPDU Processing 

The moral of the story above is that the main obstacle to fast networking is 
protocol software. In this section we will look at some ways to speed up this 
software. For more information, see (Clark et al., 1989; Edwards and Muir, 1995; 
and Chandranmenon and Varghese, 1995). 

TPDU processing overhead has two components: overhead per TPDU and 
overhead per byte. Both must be attacked. The key to fast TPDU processing is to 
separate out the normal case (one-way data transfer) and handle it specially. 
Although a sequence of special TPDUs are needed to get into the ESTABLISHED 
state, once there, TPDU processing is straightforward until one side starts to close 
the connection. 

Let us begin by examining the sending side in the ESTABLISHED state when 
there are data to be transmitted. For the sake of clarity, we assume here that the 
transport entity is in the kernel, although the same ideas apply if it is a user-space 
process or a library inside the sending process. In Fig. 6-49, the sending process 
traps into the kernel to do the SEND. The first thing the transport entity does is 
make .a test to see if this is the normal case: the state is ESTABLISHED, neither 
side is trying to close the connection, a regular (i.e., not an out-of-band) full 
TPDU is being sent, and there is enough window space available at the receiver. 
If all conditions are met, no further tests are needed and the fast path through the 
sending transport entity can be taken. 

In the normal case, the headers of consecutive data TPDUs are almost the 
same. To take advantage of this fact, a prototype header is stored within the 
transport entity. At the start of the fast path, it is copied as fast as possible to a 
scratch buffer, word by word. Those fields that change from TPDU to TPDU are 
then overwritten in the buffer. Frequently, these fields are easily derived from 
state variables, such as the next sequence number. A pointer to the full TPDU 
header plus a pointer to the user data are then passed to the network layer. Here 
the same strategy can be followed (not shown in Fig. 6-49). Finally, the network 
layer gives the resulting packet to the data link layer fot transmission. 

Ex.1006.583DELL



566 THE TRANSPORT LA YER CHAP. 6 

8 _sending 
process 

- Trap into the kernel to send TPDU 

D--

Receiving process ..________ 

TPDU passed to the receiving process @ 

Network 

Fig. 6-49. The fast path from sender to receiver is shown with a heavy line. 
The processing steps on this path are shaded. 

As an example of how this principle works in practice, let us consider TCP/IP. 
Fig. 6-50(a) shows the TCP header. The fields that are the same between con­
secutive TPDUs on a one-way flow are shaded. All the sending transport entity 
has to do is copy the five words from the prototype header into the output buffer, 
fill in the next sequence number (by copying it from a word in memory), compute 
the checksum, and increment the sequence number in memory. It can then hand 
the header and data to a special IP procedure for sending a regular, maximum 
TPDU. IP then copies its five-word prototype header [see Fig. 6-50(b)] into the 
buffer, fills in the Ident(fication field, and computes its checksum. The packet is 
now ready for transmission. 

VER. IHL 

(a) (b) 

Fig. 6-50. (a) TCP header. (b) IP header. In both cases, the shaded fields are 
taken from the prototype without change. 

Now let us look at fast path processing on the receiving side of Fig. 6-49. 
Step 1 is locating the connection record for the incoming TPDU. For ATM, 

Ex.1006.584DELL

566 THE TRANSPORT LAYER CHAP. 6

 

+5 Sending Rece'ving process \©
process TPDU passed to the receiving process

x 
  

K Trap into the kernel to send TPDU

> }-—>

 

 
  

 
  

       
       
 

 

Network

Fig. 6-49. The fast path from sender to receiver is shown with a heavy line.
The processing steps on this path are shaded,

As an example of how this principle works in practice, let us consider TCP/1P.

Fig. 6—50(a) shows the TCP header. The fields that are the same between con—

secutive TPDUs on a one—way flow are shaded. All the sending transport entity

has to do is copy the five words from the prototype header into the output buffer,

fill in the next sequence number (by copying it from a word in memory), compute

the Checksum, and increment the sequence number in memory. It can then hand

the header and data to a special IP procedure for sending a regular, maximum

TPDU. IP then copies its five—word prototype header [see Fig. 6—50(b)] into the

buffer, fills in the Identification field, and computes its Checksum. The packet is

now ready for transmission.
 

  

  
 

  
  

 
  

identification   
Header Checksum 

  
Checksum

   
estination addres

(b)

 

Fig. 6-50. (a) TCP header. (b) IP header. In both cases, the shaded fields are
taken from the prototype without change.

Now let us look at fast path processing on the receiving side of Fig. 6-49.

Step 1 is locating the connection record for the incoming TPDU. For ATM,

DELL Ex.1006.584



SEC. 6.6 PERFORMANCE ISSUES 567 

finding the connection record is easy: the VP/ field can be used as an index into 
the path table to find the virtual circuit table for that path and the VCI can be used 
as an index to find the connection record. For TCP, the connection record can be 
stored in a hash table for which some simple function of the two IP addresses and 
two ports is the key. Once the connection record has been located, both addresses 
and both ports must be compared to verify that the correct record has been found. 

An optimization that often speeds up connection record lookup even more is 
just to maintain a pointer to the last one used and try that one first. Clark et al. 
(1989) tried this and observed a hit rate exceeding 90 percent. Other lookup 
heuristics are described in (McKenney and Dove, 1992). 

The TPDU is then checked to see if it is a normal one: the state is ESTAB­
LISHED, neither side is trying to close the connection, the TPDU is a full one, no 
special flags are set, and the sequence number is the one expected. These tests 
take just a handful of instructions. If all conditions are met, a special fast path 
TCP procedure is called. 

The fast path updates the connection record and copies the data to the user. 
While it is copying, it also computes the checksum, eliminating an extra pass over 
the data. If the checksum is correct, the connection record is updated and an 
acknowledgement is sent back. The general scheme of first making a quick check 
to see if the header is what is expected, and having a special procedure to handle 
that case, is called header prediction. Many TCP implementations use it. When 
this optimization and all the other ones discussed in this chapter are used together, 
it is possible to get TCP to run at 90 percent of the speed of a local memory-to­
memory copy, assuming the network itself is fast enough. 

Two other areas where major performance gains are possible are buffer 
management and timer management. The issue in buffer management is avoiding 
unnecessary copying, as we mentioned above. Timer management is important 
because nearly all timers set do not expire. They are set to guard against TPDU 
loss, but most TPDUs arrive correctly and their acknowledgements also arrive 
correctly. Hence it is important to optimize timer management for the case of 
timers rarely expiring. 

A common scheme is to use a linked list of timer events sorted by expiry 
time. The head entry contains a counter telling how many ticks away from expiry 
it is. Each successive entry contains a counter telling how many ticks after the 
previous entry it is. Thus if timers expire in 3, 10, and 12 ticks, respectively, the 
three counters are 3, 7, and 2, respectively. 

At every clock tick, the counter in the head entry is decremented. When it 
hits zero, its event is processed and the next item on the list becomes the head. Its 
counter does not have to be changed. In this scheme, inserting and deleting timers 
are expensive operations, with execution times proportional to the length of the 
list. 

A more efficient approach can be used if the maximum timer interval is 
bounded and known in advance. Here an array, called a timing wheel, can be 

Ex.1006.585DELL



568 THE TRANSPORT LAYER CHAP. 6 

used, as shown in Fig. 6-51. Each slot corresponds to one clock tick. The current 
time shown is T = 4. Timers are scheduled to expire at 3, 10, and 12 ticks from 
now. If a new timer suddenly is set to expire in seven ticks, an entry is just made 
in slot 11. Similarly, if the timer set for T + 10 has to be canceled, the list starting 
in slot 14 has to be searched and the required entry removed. Note that the array 
of Fig. 6-51 cannot accommodate timers beyond T + 15. 

Slot 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Pointer to list of timers for T + 12 

-- Current time, T 

Pointer to list of timers for T + 3 

- ~-- Pointer to list of timers for T + 10 

Fig. 6-51. A timing wheel. 

When the clock ticks, the current time pointer is advanced by one slot (circu­
larly). If the entry now pointed to is nonzero, all of its timers are processed. 
Many variations on the basic idea are discussed in (Varghese and Lauck, 1987). 

6.6.5. Protocols for Gigabit Networks 

At the start of the 1990s, gigabit networks began to appear. People's first 
reaction was to use the old protocols on them, but various problems quickly arose. 
In this section we will discuss some of these problems and the directions new pro­
tocols are taking to solve them. Other information can be found in (Baransel et 
al., 1995; and Partridge, 1994). 

The first problem is that many protocols use 16-bit or 32-bit sequence 
numbers. In the old days, 232 was a pretty good approximation to infinity. It no 
longer is. At a data rate of I Gbps, it takes about 32 sec to send 232 bytes. If 
sequence numbers refer to bytes, as they do in TCP, then a sender can start 
transmitting byte 0, blast away, and 32 sec later be back at byte 0. Even assuming 
that all bytes have been acknowledged, the sender cannot safely transmit new data 

Ex.1006.586DELL



SEC. 6.6 PERFORMANCE ISSUES 569 

labeled starting at 0 because the old packets may still be floating around some­
where. In the Internet, for example, packets can live for 120 sec. If packets are 
numbered instead of bytes, the problem is less severe, unless the sequence 
numbers are 16 bits, in which case the problem is even worse. 

The problem is that many protocol designers simply assumed, without stating 
it, that the time to use up the entire sequence space would greatly exceed the max­
imum packet lifetime. Consequently there was no need to even worry about the 
problem of old duplicates still existing when the sequence numbers wrapped 
around. At gigabit speeds, that unstated assumption fails. 

A second problem is that communication speeds have improved much faster 
than computing speeds. (Note to computer engineers: Go out ~nd beat those com­
munication engineers! We are counting on you.) In the 1970s, the ARPANET 
ran at 56 kbps and had computers that ran at about 1 MIPS. Packets were 1008 
bits, so the ARPANET was capable of delivering about 56 packets/sec. With 
almost 18 msec available per packet, a host could afford to spend 18,000 instruc­
tions processing a packet. Of course, doing so would soak up the entire CPU, but 
it could devote 9000 instructions per packet and still have half the CPU left over 
to do real work. 

Compare these numbers to modem 100-MIPS computers exchanging 4-KB 
packets over a gigabit line. Packets can flow in at a rate of over 30,000 per 
second, so packet processing must be completed in 15 µsec if we want to reserve 
half the CPU for applications. In 15 µsec, a 100-MIPS computer can execute 
1500 instructions, only 116 of what the ARPANET hosts had available. Further­
more, modern RISC instructions do less per instruction than the old CISC instruc­
tions did, so the problem is even worse than it appears. The conclusion is: there is 
less time available for protocol processing than there used to be, so protocols must 
become simpler. 

A third problem is that the go back n protocol performs poorly on lines with a 
large bandwidth-delay product Consider, for example, a 4000-km line operating 
at 1 Gbps. The round-trip transmission time is 40 msec, in which time a sender 
can transmit 5 megabytes. If an error is detected, it will be 40 msec before the 
sender is told about it. If go back n is used, the sender will have to retransmit not 
just the bad packet, but also the 5 megabytes worth of packets that came after -
ward. Clearly, this is a massive waste of resources. 

A fourth problem is that gigabit lines are fundamentally different from mega­
bit lines in that long ones are delay limited rather than bandwidth limited. In 
Fig. 6-52 we show the time it takes to transfer a I-megabit file 4000 km at various 
transmission speeds. At speeds up to 1 Mbps, the transmission time is dominated 
by the rate at which the bits can be sent. By 1 Gbps, the 40-msec round-trip delay 
dominates the 1 msec it takes to put the bits on the fiber. Further increases in 
bandwidth have hardly any effect at all. 

Figure 6-52 has unfortunate implications for network protocols. It says that 
stop-and-wait protocols, such as RPC, have an inherent upper bound on their 

Ex.1006.587DELL



570 

1000 sec 

100 sec 

~ 10 sec 
:;::; 

~ 1 sec 
c 
~ 
~ 100 msec 
i.I 

10 msec 

1 msec 

THE TRANSPORT LA YER CHAP. 6 

~~-'-~~'--~-'-____J__~~-'--~-'-~~'---~-'--~___J'--~--L--
104 105 106 107 108 109 1010 1011 1012 

Data rate (bps) 

Fig. 6-52. Time to transfer and acknowledge a I-megabit file over a 4000-km 
line. 

performance. This limit is dictated by the speed of light. No amount of techno­
logical progress in optics will improve matters (new laws of physics would help, 
though). 

A fifth problem that is worth mentioning is not a technological or protocol one 
like the others, but a result of new applications. Simply stated, it is that for many 
gigabit applications, such as multimedia, the variance in the packet arrival times is 
as important as the mean delay itself. A slow-but-uniform delivery rate, is often 
preferable to a fast-but-jumpy one. 

Let us now turn from the problems to ways of dealing with them. We will 
first make some general remarks, then look at protocol mechanisms, packet lay­
out, and protocol software. 

The basic principle that all gigabit network designers should learn by heart is: 

Design for speed, not for bandwidth optimization. 

Old protocols were often designed to minimize the number of bits on the wire, 
frequently by using small fields and packing them together into bytes and words. 
Nowadays, there is plenty of bandwidth. Protocol processing is the problem, so 
protocols should be designed to minimize it. 

A tempting way to go fast is to build fast network interfaces in hardware. The 
difficulty with this strategy is that unless the protocol is exceedingly simple, 
hardware just means a plug-in board with a second CPU and its own program. To 
avoid having the network coprocessor be as expensive as the main CPU, it is often 
a slower chip. The consequence of this design is that much of the time the main 

Ex.1006.588DELL

570 THE TRANSPORT LAYER CHAP. 6

1000 sec —

100 sec —

10 sec!—
1sec—

100 msec — \

10 msec —

Filetransfertime  
1 msec —

I J I i I L. I L _L___ i

103 104 105 106 107 108 109 1010 10“ 1012

Data rate (bps)

Fig. 6-52. Time to transfer and acknowledge a l-megabit file over a 4000«kn1
line.

performance. This limit is dictated by the speed of light. No amount of techno-

logical progress in optics will improve matters (new laws of physics would help,

though).

A fifth problem that is worth mentioning is not a technological or protocol one

like the others, but a result of new applications. Simply stated, it is that for many

gigabit applications, such as multimedia, the variance in the packet arrival times is

as important as the mean delay itself. A slow—but—uniform delivery rate, is often

preferable to a fast—but-jumpy one.

Let us now turn from the problems to ways of dealing with them. We will

first make some general remarks, then look at protocol mechanisms, packet lay—

out, and protocol software.

The basic principle that all gigabit network designers should learn by heart is:

Design for speed, notfor bandwidth optimization.

Old protocols were often designed to minimize the number of bits on the wire,

frequently by using small fields and packing them together into bytes and words.

Nowadays, there is plenty of bandwidth. Protocol processing is the problem, so

protocols should be designed to minimize it.

A tempting way to go fast is to build fast network interfaces in hardware. The

difficulty with this strategy is that unless the protocol is exceedingly simple,

hardware just means a plug-in board with a second CPU and its own program. To

avoid having the network coprocessor be as expensive as the main CPU, it is often

a slower chip. The consequence of this design is that much of the time the main

DELL Ex.1006.588



SEC. 6.6 PERFORMANCE ISSUES 571 

(fast) CPU is idle waiting for the second (slow) CPU to do the critical work. It is 
a myth to think that the main CPU has other work to do while waiting. Further­
more, when two general-purpose CPUs communicate, race conditions can occur, 
so elaborate protocols are needed between the two processors to synchronize them 
correctly. Usually, the best approach is to make the protocols simple and have the 
main CPU do the work. 

Let us now look at the issue of feedback in high-speed protocols. Due to the 
(relatively) long delay loop, feedback should be avoided: it takes too long for the 
receiver to signal the sender. One example of feedback is governing the transmis­
sion rate using a sliding window protocol. To avoid the (long) delays inherent in 
the receiver sending window updates to the sender, it is better to use a rate-based 
protocol. In such a protocol, the sender can send all it wants to, provided it does 
not send faster than some rate the sender and receiver have agreed upon in 
advance. 

A second example of feedback is Jacobson's slow start algorithm. This algo­
rithm makes multiple probes to see how much the network can handle. With 
high-speed networks, making half a dozen or so small probes to see how the net­
work responds wastes a huge amount of bandwidth. A more efficient scheme is to 
have the sender, receiver, and network all reserve the necessary resources at con­
nection setup time. Reserving resources in advance also has the advantage of 
making it easier to reduce jitter. In short, going to high speeds inexorably pushes 
the design toward connection-oriented operation, or something fairly close to it. 

Packet layout is an important consideration in gigabit networks. The header 
should contain as few fields as possible, to reduce processing time, and these 
fields should be big enough to do the job and be word aligned for ease of process­
ing. In this context, "big enough" means that problems such as sequence 
numbers wrapping around while old packets still exist, receivers being unable to 
advertise enough window space because the window field is too small, and so on, 
do not occur. 

The header and data should be separately checksummed, for two reasons. 
First, to make it possible to checksum the header but not the data. Second, to ver­
ify that the header is correct before starting to copy the data into user space. It is 
desirable to do the data checksum at the time the data are copied to user space, but 
if the header is incorrect, the copy may be to the wrong process. To avoid an 
incorrect copy but to allow the data checksum to be done during copying, it is 
essential that the two checksums be separate. 

The maximum data size should be large, to permit efficient operation even in 
the face of long delays. Also, the larger the data block, the smaller the fraction of 
the total bandwidth devoted to headers. 

Another valuable feature is the ability to send a normal amount of data along 
with the connection request. In this way, one round-trip time can be saved. 

Finally, a few words about the protocol software are appropriate. A key 
thought is concentrating on the successful case. Many older protocols tend to 

Ex.1006.589DELL



572 THE TRANSPORT LA YER CHAP. 6 

emphasize what to do when something goes wrong (e.g., a packet getting lost). 
To make the protocols run fast, the designer should aim for minimizing processing 
time when everything goes right. Minimizing processing time when an error 
occurs is secondary. 

A second software issue is minimizing copying time. As we saw earlier, 
copying data is often the main source of overhead. Ideally, the hardware should 
dump each incoming packet into memory as a contiguous block of data. The 
software should then copy this packet to the user buffer with a single block copy. 
Depending on how the cache works, it may even be desirable to avoid a copy 
loop. In other words, to copy 1024 words, the fastest way may be to have 1024 
back-to-back MOVE instructions (or 1024 load-store pairs). The copy routine is 
so critical it should be carefully handcrafted in assembly code, unless there is a 
way to trick the compiler into producing precisely the optimal code. 

In the late 1980s, there was a brief flurry of interest in fast special-purpose 
protocols such as NETBLT (Clark et al., 1987), VTMP (Cheriton and Williamson, 
1989), and XTP (Chesson, 1989). A survey is given in (Doeringer et al., 1990). 
However, the trend now is toward simplifying general-purpose protocols to make 
them fast, too. A TM exhibits many of the features discussed above, and IPv6 
does too. 

6.7. SUMMARY 

The transport layer is the key to understanding layered protocols. It provides 
various services, the most important of which is an end-to-end, reliable, 
connection-oriented byte stream from sender to receiver. It is accessed through 
service primitives that permit the establishment, use and release of connections. 

Transport protocols must be able to do connection management over unreli­
able networks. Connection establishment is complicated by the existence of 
delayed duplicate packets that can reappear at inopportune moments. To deal 
with them, three-way handshakes are needed to establish connections. Releasing 
a connection is easier than establishing one but is still far from trivial due to the 
two-army problem. 

Even when the network layer is completely reliable, the transport layer has 
plenty of work to do, as we saw in our example. It must handle all the service 
primitives, manage connections and timers, and allocate and utilize credits. 

The main Internet transport protocol is TCP. It uses a 20-byte header on all 
segments. Segments can be fragmented by routers within the Internet, so hosts 
must be prepared to do reassembly. A great deal of work has gone into optimiz­
ing TCP performance, using algorithms from Nagle, Clark, Jacobson, Karn, and 
others. 

A TM has four protocols in the AAL layer. All of them break messages into 
cells at the source and reassemble the cells into messages at the destination. The 

Ex.1006.590DELL



SEC. 6.7 SUMMARY 573 

CS and SAR sublayers add their own headers and trailers in various ways, leaving 
from 44 to 48 bytes of cell payload. 

Network performance is typically dominated by protocol and TPDU process­
ing overhead, and this situation gets worse at higher speeds. Protocols should be 
designed to minimize the number of TPDUs, context switches, and times each 
TPDU is copied. For gigabit networks, simple protocols using rate, rather than 
credit, flow control are called for. 

PROBLEMS 

1. In our example transport primitives of Fig. 6-3, LISTEN is a blocking call. Is this 
strictly necessary? If not, explain how a nonblocking primitive could be used. What 
advantage would this have over the scheme described in the text? 

2. In the model underlying Fig. 6-5, it is assumed that packets may be lost by the net­
work layer and thus must be individually acknowledged. Suppose that the network 
layer is 100 percent reliable and never loses packets. What changes, if any, are 
needed to Fig. 6-5? 

3. Imagine a generalized n-army problem, in which the agreement of any two of the 
armies is sufficient for victory. Does a protocol exist that allows blue to win? 

4. Suppose that the clock-driven scheme for generating initial sequence numbers is used 
with a 15-bit wide clock counter. The clock ticks once every 100 msec, and the max­
imum packet lifetime is 60 sec. How often need resynchronization take place 
(a) in the worst case? 
(b) when the data consumes 240 sequence numbers/min? 

5. Why does the maximum packet lifetime, T, have to be large enough to ensure that not 
only the packet, but also its acknowledgements, have vanished? 

6. Imagine that a two-way handshake rather than a three-way handshake were used to set 
up connections. In other words, the third message was not required. Are deadlocks 
now possible? Give an example or show that none exist. 

7. Consider the problem of recovering from host crashes (i.e., Fig. 6-18). If the interval 
between writing and sending an acknowledgement, or vice versa, can be made rela­
tively small, what are the two best sender-receiver strategies for minimizing the 
chance of a protocol failure? 

8. Are deadlocks possible with the transport entity described in the text? 

9. Out of curiosity, the implementer of the transport entity of Fig. 6-20 has decid~d to put 
counters inside the sleep procedure to collect statistics about the conn array. Among 
these are the number of connections in each of the seven possible states, 
ni (i = 1, ... , 7). After writing a massive FORTRAN program to analyze the data, 
our implementer discovered that the relation L,ni = MAX_CONN appears to always 
be true. Are there any other invariants involving only these seven variables? 

Ex.1006.591DELL



574 THE TRANSPORT LA YER CHAP. 6 

10. What happens when the user of the transport entity given in Fig. 6-20 sends a zero 
length message? Discuss the significance of your answer. 

11. For each event that can potentially occur in the transport entity of Fig. 6-20, tell 
whether it is legal or not when the user is sleeping in sending state. 

12. Discuss the advantages and disadvantages of credils versus sliding window protocols. 

13. Datagram fragmentation and reassembly are handled by IP and are invisible to TCP. 
Does this mean that TCP does not have to worry about data arriving in the wrong 
order? 

14. A process on host 1 has been assigned port p and a process on host 2 has been 
assigned port q. Is it possible for there to be two or more TCP connections between 
these two ports at the same time? 

15. The maximum payload of a TCP segment is 65,515 bytes. Why was such a strange 
number chosen? 

16. Describe two ways to get into the SYN RCVD state of Fig. 6-28. 

17. Give a potential disadvantage when Nagle's algorithm is used on a badly congested 
network. 

18. Consider the effect of using slow start on a line with a 10-msec round-trip time and no 
congestion. The receive window is 24 KB and the maximum segment size is 2 KB. 
How long does it take before the first full window can be sent? 

19. Suppose that the TCP congestion window is set to 18K bytes and a timeout occurs. 
How big will the window be if the next four transmission bursts are all successful? 
Assume that the maximum segment size is 1 KB. 

20. If the TCP round-trip time, RTT, is currently 30 msec and the following acknowledge­
ments come in after 26, 32, and 24 msec, respectively, what is the new RTT estimate? 
Use a= 0.9. 

21. A TCP machine is sending windows of 65,535 bytes over a 1-Gbps channel that has a 
10-msec one-way delay. What is the maximum throughput achievable? What is the 
line efficiency? 

22. In a network that has a maximum TPDU size of 128 bytes, a maximum TPDU lifetime 
of 30 sec, and an 8-bit sequence number, what is the maximum data rate per connec­
tion? 

23. Why does UDP exist? Would it not have been enough to just let user processes send 
raw IP packets? 

24. A group of N users located in the same building are all using the same remote com­
puter via an ATM network. The average user generates L lines of traffic (input+ out­
put) per hour, on the average, with the mean line length being P bytes, excluding the 
ATM headers. The packet carrier charges C cents per byte of user data transported, 
plus X cents per hour for each ATM virtual circuit open. Under what conditions is it 
cost effective to multiplex all N transport connections onto the same ATM virtual cir­
cuit, if such multiplexing adds 2 bytes of data to each packet? Assume that even one 
A TM virtual circuit has enough bandwidth for all the users. 

Ex.1006.592DELL



CHAP. 6 PROBLEMS 575 

25. Can AAL 1 handle messages shorter than 40 bytes using the scheme with the Pointer 
field? Explain your answer. 

26. Make a guess at what the field sizes for AAL 2 were before they were pulled from the 
standard. 

27. AAL 3/4 allows multiple sessions to be multiplexed onto a single virtual circuit. Give 
an example of a situation in which that has no value. Assume that one virtual circuit 
has sufficient bandwidth to carry all the traffic. Hint: Think about virtual paths. 

28. What is the payload size of the maximum length message that fits in a single AAL 3/4 
cell? 

29. When a 1024-byte message is sent with AAL 3/4, what is the efficiency obtained? In 
other words, what fraction of the bits transmitted are useful data bits? Repeat the 
problem for AAL 5. 

30. An ATM device is transmitting single-cell messages at 600 Mbps. One cell in 100 is 
totally scrambled due to random noise. How many undetected errors per week can be 
expected with the 32-bit AAL 5 checksum? 

31. A client sends a 128-byte request to a server located 100 km away over a 1-gigabit 
optical fiber. What is the efficiency of the line during the remote procedure call? 

32. Consider the situation of the previous problem again. Compute the minimum possible 
response time both for the given 1-Gbps line and for a 1-Mbps line. What conclusion 
can you draw? 

33. Suppose that you are measuring the time to receive a TPDU. When an interrupt 
occurs, you read out the system clock in milliseconds. When the TPDU is fully pro­
cessed, you read out the clock again. You measure 0 msec 270,000 times and 1 msec 
730,000 times. How long does it take to receive a TPDU? 

34. A CPU executes instructions at the rate of 100 MIPS. Data can be copied 64 bits at a 
time, with each word copied costing six instructions. If an coming packet has to be 
copied twice, can this system handle a 1-Gbps line? For simplicity, assume that all 
instructions, even those instructions that read or write memory, run at the full 100-
MIPS rate. 

35. To get around the problem of sequence numbers wrapping around while old packets 
still exist, one could use 64-bit sequence numbers. However, theoretically, an optical 
fiber can run at 75 Tbps. What maximum packet lifetime is required to make sure that 
future 75 Tbps networks do not have wraparound problems even with 64-bit sequence 
numbers? Assume that each byte has its own sequence number, as TCP does. 

36. In the text we calculated that a gigabit line dumps 30,000 packets/sec on the host, giv­
ing it only 1500 instructions to process it and leaving half the CPU time for applica­
tions. This calculation assumed a 4-KB packet. Redo the calculation for an 
ARPANET-sized packet (128 bytes). 

37. For a I-Gbps network operating over 4000 km, the delay is the limiting factor, not the 
bandwidth. Consider a MAN with the average source and destination 20 km apart. At 
what data rate does the round-trip delay due to the speed of light equal the transmis­
sion delay for a 1-KB packet? 

Ex.1006.593DELL



576 THE TRANSPORT LAYER CHAP. 6 

38. Modify the program of Fig. 6-20 to do error recovery. Add a new packet type, reset, 
that can arrive after a connection has been opened by both sides but closed by neither. 
This event, which happens simultaneously on both ends of the connection, means that 
any packets that were in transit have either been delivered or destroyed, but in either 
case are no longer in the subnet. 

39. Write a program that simulates buffer management in a transport entity using a sliding 
window for flow control rather than the credit system of Fig. 6-20. Let higher-layer 
processes randomly qpen connections, send data, and close connections. To keep it 
simple, have all the data travel from machine A to machine B, and none the other way. 
Experiment with 9-ifferent buffer allocation strategies at B, such as dedicating buffers 
to specific connections versus a common buffer pool, and measure the total 
throughput achieved by each one. 

Ex.1006.594DELL



7 
THE APPLICATION LAYER 

Having finished all the preliminaries, we now come to the application layer, 
where all the interesting applications can be found. The layers below the applica­
tion layer are there to provide reliable transport, but they do not do any real work 
for users. In this chapter we will study some real applications. 

However, even in the application layer there is a need for support protocols to 
allow the real applications to function. Accordingly, we will look at three of these 
before starting with the applications themselves. The first area is security, which 
is not a single protocol, but a large number of concepts and protocols that can be 
used to ensure privacy where needed. The second is DNS, which handles naming 
within the Internet. The third support protocol is for network management. After 
that, we will examine four real applications: electronic mail, USENET (net news), 
the World Wide Web, and finally, multimedia. 

7.1. NETWORK SECURITY 

For the first few decades of their existence, computer networks were primarily 
used by university researchers for sending email, and by corporate employees for 
sharing printers. Under these conditions, security did not get a lot of attention. 
But now, as millions of ordinary citizens are using networks for banking, shop­
ping, and filing their tax returns, network security is looming on the horizon as a 

577 

Ex.1006.595DELL



578 THE APPLICATION LA YER CHAP. 7 

potentially massive problem. In the following sections, we will study network 
security from several angles, point out numerous pitfalls, and discuss many algo­
rithms and protocols for making networks more secure. 

Security is a broad topic and covers a multitude of sins. In its simplest form, 
it is concerned with making sure that nosy people cannot read, or worse yet, 
modify messages intended for other recipients. It is concerned with people trying 
to access remote services that they are not authorized to use. It also deals with 
how to tell whether that message purportedly from the IRS saying: "Pay by Fri­
day or else" is really from the IRS or from the Mafia. Security also deals with the 
problems of legitimate messages being captured and replayed, and with people 
trying to deny that they sent certain messages. 

Most security problems are intentionally caused by malicious people trying to 
gain some benefit or harm someone. A few of the most common perpetrators are 
listed in Fig. 7-1. It should be clear from this list that making a network secure 
involves a lot more than just keeping it free of programming errors. It involves 
outsmarting often intelligent, dedicated, and sometimes well-funded adversaries. 
It should also be clear that measures that will stop casual adversaries will have lit­
tle impact on the serious ones. 

Adversary Goal 

Student To have fun snooping on people's email 

Hacker To test out someone's security system; steal data 

Sales rep To claim to represent all of Europe, not just Andorra 

Businessman To discover a competitor's strategic marketing plan 

Ex-employee To get revenge for being fired 

Accountant To embezzle money from a company 
------

Stockbroker To deny a promise made to a customer by email 

Con man To steal credit card numbers for sale 

Spy To learn an enemy's military strength 
--~ -----

Terrorist To steal germ warfare secrets 

Fig. 7-1. Some people who cause security problems and why. 

Network security problems can be divided roughly into four intertwined areas: 
secrecy, authentication, nonrepudiation, and integrity control. Secrecy has to do 
with keeping information out of the hands of unauthorized users. This is what 
usually comes to mind when people think about network security. Authentication 
deals with determining whom you are talking to before revealing sensitive infor­
mation or entering into a business deal. Nonrepudiation deals with signatures: 

Ex.1006.596DELL



SEC. 7.1 NETWORK SECURITY 579 

How do you prove that your customer really placed an electronic order for ten 
million left-handed doohickeys at 89 cents each when he later claims the price 
was 69 cents? Finally, how can you be sure that a message you received was 
really the one sent and not something that a malicious adversary modified in tran­
sit or concocted? 

All these issues (secrecy, authentication, nonrepudiation, and integrity con­
trol) occur in traditional systems, too, but with some significant differences. 
Secrecy and integrity are achieved by using registered mail and locking docu­
ments up. Robbing the mail train is harder than it was in Jesse James' day. 

Also, people can usually tell the difference between an original paper docu­
ment and a photocopy, and it often matters to them. As a test, make a photocopy 
of a valid check. Try cashing the original check at your bank on Monday. Now 
try cashing the photocopy of the check on Tuesday. Observe the difference in the 
bank's behavior. With electronic checks, the original and the copy are indistin­
guishable. It may take a while for banks to get used to this. 

People authenticate other people by recognizing their faces, voices, and 
handwriting. Proof of signing ils handled by signatures on letterhead paper, raised 
seals, and so on. Tampering can usually be detected by handwriting, paper, and 
ink experts. None of these options are available electronically. Clearly, other 
solutions are needed. 

Before getting into the solutions themselves, it is worth spending a few 
moments considering where in the protocol stack network security belongs. There 
is probably no one single place. Every layer has something to contribute. In the 
physical layer, wiretapping can be foiled by enclosing transmission lines in sealed 
tubes containing argon gas at high pressure. Any attempt to drill into a tube will 
release some gas, reducing the pressure and triggering an alarm. Some military 
systems use this technique. 

In the data link layer, packets on a point-to-point line can be encoded as they 
leave one machine and decoded as they enter another. All the details can be han­
dled in the data link layer, with higher layers oblivious to what is going on. This 
solution breaks down when packets have to traverse multiple routers, however, 
because packets have to be decrypted at each router, leaving them vulnerable to 
attacks from within the router. Also, it does not allow some sessions to be pro­
tected (e.g., those involving on-line purchases by credit card) and others not. 
Nevertheless, link encryption., as this method is called, can be added to any net­
work easily and is often useful. 

In the network layer, firewalls can be installed to keep packets in or keep 
packets out. We looked at firewalls in Chap. 5. In the transport layer, entire con­
nections can be encrypted, end to end, that is, process to process. Although these 
solutions help with secrecy issues and many people are working hard to improve 
them, none of them solve the authentication or nonrepudiation problem in a suffi­
ciently general way. To tackle these problems, the solutions must be in the appli­
cation layer, which is why they are being studied in this chapter. 

Ex.1006.597DELL



580 THE APPLICATION LA YER CHAP. 7 

7.1.1. Traditional Cryptography 

Cryptography has a long and colorful history. In this section we will just 
sketch some of the highlights, as background information for what follows. For a 
complete history, Kahn's (1967) book is still recommended reading. For a 
comprehensive treatment of the current state-of-the-art, see (Kaufman et al., 1995; 
Schneier, 1996; and Stinson, 1995). 

Historically, four groups of people have used and contributed to the art of 
cryptography: the military, the diplomatic corps, diarists, and lovers. Of these, the 
military has had the most important role and has shaped the field. Within military 
organizations, the messages to be encrypted have traditionally been given to 
poorly paid code clerks for encryption and transmission. The sheer volume of 
messages prevented this work from being done by a few elite specialists. 

Until the advent of computers, one of the main constraints on cryptography 
had been the ability of the code clerk to perform the necessary transformations, 
often on a battlefield with little equipment. An additional constraint has been the 
difficulty in switching over quickly from one cryptographic method to another 
one, since this entails retraining a large number of people. However, the danger 
of a code clerk being captured by the enemy has made it essential to be able to 
change the cryptographic method instantly, if need be. These conflicting require­
ments have given rise to the model of Fig. 7-2. 

i:i~~~~~ t Intruder t l ~~:~v~er 
just ~ --0- can alter 

listen~s----~ ~----m~essages 

Plaintext, P-
Encryption Decryption 

method method 

Encryption 
key, k 

Ciphertext, C = Ek(P) 

Fig. 7-2. The encryption model. 

Decryption 
key 

,____ Plaintext 

The messages to be encrypted, known as the plaintext, are transformed by a 
function that is parametrized by a key. The output of the encryption process, 
known as the ciphertext, is then transmitted, often by messenger or radio. We 
assume that the enemy, or intruder, hears and accurately copies down the com­
plete ciphertext. However, unlike the intended recipient, he does not know what 
the decryption key is and so cannot decrypt the ciphertext easily. Sometimes the 

Ex.1006.598DELL

580 THE APPLICATION LAYER CHAP. 7

7.1.1. Traditional Cryptography

Cryptography has a long and colorful history. In this section we will just

sketch some of the highlights, as background information for what follows. For a

complete history, Kahn’s (1967) book is still recommended reading. For a

comprehensive treatment of the current state-of—the—art, see (Kaufman et al., 1995;

Schneier, 1996; and Stinson, 1995).

Historically, four groups of people have used and contributed to the art of

cryptography: the military, the diplomatic corps, diarists, and lovers. Of these, the

military has had the most important role and has shaped the field. Within military

organizations, the messages to be encrypted have traditionally been given to

poorly paid code clerks for encryption and transmission. The sheer volume of

messages prevented this work from being done by a few elite specialists.

Until the advent of computers, one of the main constraints on cryptography

had been the ability of the code clerk to perform the necessary transformations,

often on a battlefield with little equipment. An additional constraint has been the

difficulty in switching over quickly from one cryptographic method to another

one, since this entails retraining a large number of people. However, the danger

of a code clerk being captured by the enemy has made it essential to be able to

change the cryptographic method instantly, if need be. These conflicting require—

ments have given rise to the model of Fig. 7—2.

Passive J L Activeintruder % Intruder _ intruder
just can alter

listens \ messages

_ Encryption Decryption _

PIa'nteXt’ Pw, — EPlalnteXt
Ciphertext, C = Ek(P)

Encryption Decryption
key, k key

 

  
 

  
  

Fig. 7-2. The encryption model.

The messages to be encrypted, known as the plaintext, are transformed by a

function that is parametrized by a key. The output of the encryption process,

known as the ciphertext, is then transmitted, often by messenger or radio. We

assume that the enemy, or intruder, hears and accurately copies down the com-

plete ciphertext. However, unlike the intended recipient, he does not know what

the decryption key is and so cannot decrypt the ciphertext easily. Sometimes the

DELL Ex.1006.598



SEC. 7.1 NETWOF.K SECURITY 581 

intruder can not only listen to the communication channel (passive intruder) but 
can also record messages and play them back later, inject his own messages, or 
modify legitimate messages before they get to the receiver (active intruder). The 
art of breaking ciphers is called cryptanalysis. The art of devising ciphers ( cryp­
tography) and breaking them (cryptanalysis) is collectively known as cryptology. 

It will often be useful to have a notation for relating plaintext, ciphertext, and 
keys. We will use C = EK(P) to mean that the encryption of the plaintext P using 
key K gives the ciphertext C. Similarly, P = DK(C) represents of decryption of C 
to get the plaintext again. It then follows that 

DK(EK(P)) = P 

This notation suggests that E and D are just mathematical functions, which they 
are. The only tricky part is that both are functions of two parameters, and we 
have written one of the parameters (the key) as a subscript, rather than as an argu­
ment, to distinguish it from the message. 

A fundamental rule of cryptography is that one must assume that the crypt­
analyst knows the general method of encryption used. In other words, the crypt­
analyst knows how the encryption method, E, of Fig. 7-2 works. The amount of 
effort necessary to invent, test, and install a new method every time the old 
method is compromised or thought to be compromised has always made it 
impractical to keep this secret, and thinking it is secret when it is not does more 
harm than good. 

This is where the key enters. The key consists of a (relatively) short string 
that selects one of many potential encryptions. In contrast to the general method, 
which may only be changed every few years, the key can be changed as often as 
required. Thus our basic model is a stable and publicly known general method 
parametrized by a secret and easily changed key. 

The nonsecrecy of the algorithm cannot be emphasized enough. By publiciz­
ing the algorithm, the cryptographer gets free consulting from a large number of 
academic cryptologists eager to break the system so they can publish papers 
demonstrating how smart they are. If many experts have tried to break the algo­
rithm for 5 years after its publication and no one has succeeded, it is probably 
pretty solid. 

The real secrecy is in the key, and its length is a major design issue. Consider 
a simple combination lock. The general principle is that you enter digits in 
sequence. Everyone knows this, but the key is secret. A key length of two digits 
means that there are 100 possibilities. A key length of three digits means 1000 
possibilities, and a key length of six digits means a million. The longer the key, 
the higher the work factor the cryptanalyst has to deal with. The work factor for 
breaking the system by exhaustive search of the key space is exponential in the 
key length. Secrecy comes from having a strong (but public) algorithm and a long 
key. To prevent your kid brother from reading your email, 64-bit keys will do. 
To keep major governments at bay, keys of at least 256 bits are needed. 

Ex.1006.599DELL



582 THE APPLICATION LAYER CHAP. 7 

From the cryptanalyst's point of view, the cryptanalysis problem has three 
principal variations. When he has a quantity of ciphertext and no plaintext, he is 
confronted with the ciphertext only problem. The cryptograms that appear in the 
puzzle section of newspapers pose this kind of problem. When he has some 
matched ciphertext and plaintext, the problem becomes known as the known 
plaintext problem. Finally, when the cryptanalyst has the ability to encrypt 
pieces of plaintext of his own choosing, we have the chosen plaintext problem. 
Newspaper cryptograms could be broken trivially if the cryptanalyst were allowed 
to ask such questions as: What is the encryption of ABCDE? 

Novices in the cryptography business often assume that if a cipher can with­
stand a ciphertext only attack, it is secure. This assumption is very naive. In 
many cases the cryptanalyst can make a good guess at parts of the plaintext. For 
example, the first thing many timesharing systems say when you call them up is 
"PLEASE LOGIN." Equipped with some matched plaintext-ciphertext pairs, the 
cryptanalyst's job becomes much easier. To achieve security, the cryptographer 
should be conservative and make sure that the system is unbreakable even if his 
opponent can encrypt arbitrary amounts of chosen plaintext. 

Encryption methods have historically been divided into two categories: substi­
tution ciphers and transposition ciphers. We will now deal with each of these 
briefly as background information for modern cryptography. 

Substitution Ciphers 

In a substitution cipher each letter or group of letters is replaced by another 
letter or group of letters to disguise it. One of the oldest known ciphers is the 
Caesar cipher, attributed to Julius Caesar. In this method, a becomes D, b 
becomes E, c becomes F, ... , and z becomes C. For example, attack becomes 
DWWDFN. In examples, plaintext will be given in lowercase letters, and cipher­
text in uppercase letters. 

A slight generalization of the Caesar cipher allows the ciphertext alphabet to 
be shifted by k letters, instead of always 3. In this case k becomes a key to the 
general method of circularly shifted alphabets. The Caesar cipher may have 
fooled the Carthaginians, but it has not fooled anyone since. 

The next improvement is to have each of the symbols in the plaintext, say the 
26 letters for simplicity, map onto some other letter. For example, 

plaintext: 
ciphertext: 

abcdefghijklmnopqrstuvwxyz 
QWERTYUIOPASDFGHJKLZXCVBNM 

This general system is called a monoalphabetic substitution, with the key being 
the 26-letter string corresponding to the full alphabet. For the key above, the 
plaintext attack would be transformed into the ciphertext QZZQEA. 

Ex.1006.600DELL



SEC. 7.1 NETWORK SECURITY 583 

At first glance this might appear to be a safe system because although the 
cryptanalyst knows the general system (letter for letter substitution), he does not 
know which of the 26 ! ::::: 4 x 1026 possible keys is in use. In contrast with the 
Caesar cipher, trying all of them is not a promising approach. Even at 1 µsec per 
solution, a computer would take 1013 years to try all the keys. 

Nevertheless, given a surprisingly small amount of ciphertext, the cipher can 
be broken easily. The basic attack takes advantage of the statistical properties of 
natural languages. In English, for example, e is the most common letter, followed 
by t, o, a, n, i, etc. The most common two letter combinations, or digrams, are 
th, in, er, re, and an. The most common three letter combinations, or trigrams, 
are the, ing, and, and ion. 

A cryptanalyst trying to break a monoalphabetic cipher would start out by 
counting the relative frequencies of all letters in the ciphertext. Then he might 
tentatively assign the most common one to e and the next most common one to t. 
He would then look at trigrams to find a common one of the form tXe, which 
strongly suggests that Xis h. Similarly, if the pattern thYt occurs frequently, the Y 
probably stands for a. With this information, he can look for a frequently occur­
ring trigram of the form aZW, which is most likely and. By making guesses at 
common letters, digrams, and trigrams, and knowing about likely patterns of 
vowels and consonants, the cryptanalyst builds up a tentative plaintext, letter by 
letter. 

Another approach is to guess a probable word or phrase. For example, con­
sider the following ciphertext from an accounting firm (blocked into groups of 
five characters): 

CTBMN BYCTC BTJDS QXBNS GSTJC BTSWX CTQTZ CQVUJ 
QJSGS TJQZZ MNQJS VLNSX VSZJU JDSTS JQUUS JUBXJ 
DSKSU JSNTK BGAQJ ZBGYQ TLCTZ BNYBN QJSW 

A likely word in a message from an accounting firm is financial. Using our 
knowledge that financial has a repeated letter (i), with four other letters between 
their occurrences, we look for repeated letters in the ciphertext at this spacing. 
We find 12 hits, at positions 6, 15, 27, 31, 42, 48, 56, 66, 70, 71, 76, and 82. 
However, only two of these, 31 and 42, have the next ietter (corresponding to n in 
the plaintext) repeated in the proper place. Of these two, only 31 also has the a 
correctly positioned, so we know that financial begins at position 30. From this 
point on, deducing the key is easy by using the frequency statistics for English 
text. 

Transposition Ciphers 

Substitution ciphers preserve the order of the plaintext symbols but disguise 
them. Transposition ciphers, in contrast, reorder the letters but do not disguise 
them. Figure 7-3 depicts a common transposition cipher, the columnar 

Ex.1006.601DELL



584 THE APPLICATION LA YER CHAP. 7 

transposition. The cipher is keyed by a word or phrase not containing any 
repeated letters. In this example, MEGABUCK is the key. The purpose of the 
key is to number the columns, column 1 being under the key letter closest to the 
start of the alphabet, and so on. The plaintext is written horizontally, in rows. 
The ciphertext is read out by columns, starting with the column whose key letter 
is the lowest. 

M E G A B 

7 4 5 1 2 

p I e a s 

a n s f e 

e m 

d 0 I a 

0 m y s w 

b a n k a 

LI n t s 

0 t w 0 a 

u c 
8 3 

e t 

r 0 

0 

r s 

s 

c c 

x t 

b c 

K 

6 

r 

n 

n 

t 

s 

0 

w 

d 

Plaintext 

pleasetransferonemilliondollarsto 
myswissbankaccountsixtwotwo 

Ciphertext 

AFLLSKSOSELAWAIA TOOSSCTCLNMOMANT 
ESIL YNTWRNNTSOWDPAEDOBUOERIRICXB 

Fig. 7-3. A transposition cipher. 

To break a transposition cipher, the cryptanalyst must first be aware that he is 
dealing with a transposition cipher. By looking at the frequency of E, T, A, 0, I, 
N, etc., it is easy to see if they fit the normal pattern for plaintext. If so, the cipher 
is clearly a transposition cipher, because in such a cipher every letter represents 
itself. 

The next step is to make a guess at the number of columns. In many cases a 
probable word or phrase may be guessed at from the context of the message. For 
example, suppose that our cryptanalyst suspected the plaintext phrase milliondol­
lars to occur somewhere in the message. Observe that digrams MO, IL, LL, LA, 
IR and OS occur in the ciphertext as a result of this phrase wrapping around. The 
ciphertext letter 0 follows the ciphertext letter M (i.e., they are vertically adjacent 
in column 4) because they are separated in the probable phrase by a distance equal 
to the key length. If a key of length seven had been used, the digrams MD, IO, 
LL, LL, IA, OR, and NS would have occurred instead. In fact, for each key length, 
a different set of digrams is produced in the ciphertext. By hunting for the various 
possibilities, the cryptanalyst can often easily determine the key length. 

The remaining step is to order the columns. When the number of columns, k, 
is small, each of the k(k - 1) column pairs can be examined to see if its digram 
frequencies match those for English plaintext. The pair with the best match is 
assumed to be correctly positioned. Now each remaining column is tentatively 
tried as the successor to this pair. The column whose digram and trigram frequen­
cies give the best match is tentatively assumed to be correct. The predecessor 

Ex.1006.602DELL



SEC. 7.1 NETWORK SECURITY 585 

column is found in the same way. The entire process is continued until a potential 
ordering is found. Chances are that the plaintext will be recognizable at this point 
(e.g., if milloin occurs, it is clear what the error is). 

Some transposition ciphers accept a fixed-length block of input and produce a 
fixed-length block of output. These ciphers can be completely described by just 
giving a list telling the order in which the characters are to be output. For exam­
ple, the cipher of Fig. 7-3 can be seen as a 64 character block cipher. Its output is 
4, 12, 20, 28, 36, 44, 52, 60, 5, 13 , ... , 62. In other words, the fourth input char­
acter, a, is the first to be output, followed by the twelfth, f, and so on. 

One-Time Pads 

Constructing an unbreakable cipher is actually quite easy; the technique has 
been known for decades. First choose a random bit string as the key. Then con­
vert the plaintext into a bit string, for example by using its ASCII representation. 
Finally, compute the EXCLUSIVE OR of these two strings, bit by bit. The result­
ing ciphertext cannot be broken, because every possible plaintext is an equally 
probable candidate. The ciphertext gives the cryptanalyst no information at all. 
In a sufficiently large sample of ciphertext, each letter will occur equally often, as 
will every digram and every trigram. 

This method, known as the one-time pad, has a number of practical disadvan­
tages, unfortunately. To start with, the key cannot be memorized, so both sender 
and receiver must carry a written copy with them. If either one is subject to cap­
ture, written keys are clearly undesirable. Additionally, the total amount of data 
that can be transmitted is limited by the amount of key available. If the spy 
strikes it rich and discovers a wealth of data, he may find himself unable to 
transmit it back to headquarters because the key has been used up. Another prob­
lem is the sensitivity of the method to lost or inserted characters. If the sender and 
receiver get out of synchronization, all data from then on will appear garbled. 

With the advent of computers, the one-time pad might potentially become 
practical for some applications. The source of the key could be a special CD that 
contains several gigabits of information, and if transported in a music CD box and 
prefixed by a few songs, would not even be suspicious. Of course, at gigabit net­
wo(k speeds, having to insert a new CD every 5 sec could become tedious. For 
this reason, we will now start looking at modern encryption algorithms that can 
process arbitrarily large amounts of plaintext. 

7 .1.2. Two Fundamental Cryptographic Principles 

Although we will study many different cryptographic systems in the pages 
ahead, there are two principles underlying all of them that are important to under­
stand. The first principle is that all encrypted messages must contain some 

Ex.1006.603DELL



586 THE APPLICATION LA YER CHAP. 7 

redundancy, that is, information not needed to understand the message. An exam­
ple may make it clear why this is needed. Consider a mail-order company, The 
Couch Potato (TCP), with 60,000 products. Thinking they are being very effi­
cient, TCP' s programmers decide that ordering messages should consist of a 16-
byte customer name followed by a 3-byte data field (1 byte for the quantity and 2 
bytes for the product number). The last 3 bytes are to be encrypted using a very 
long key known only by the customer and TCP. 

At first this might seem secure, and in a sense it is because passive intruders 
cannot decrypt the messages. Unfortunately, it also has a fatal flaw that renders it 
useless. Suppose that a recently-fired employee wants to punish TCP for firing 
her. Just before leaving, she takes (part of) the customer list with her. She works 
through the night writing a program to generate fictitious orders using real custo­
mer names. Since she does not have the list of keys, she just puts random 
numbers in the last 3 bytes, and sends hundreds of orders off to TCP. 

When these messages arrive, TCP' s computer uses the customer's name to 
locate the key and decrypt the message. Unfortunately for TCP, almost every 3-
byte message is valid, so the computer begins printing out shipping instructions. 
While it might seem odd for a customer to order 137 sets of children's swings, or 
240 sandboxes, for all the computer knows, the customer might be planning to 
open a chain of franchised playgrounds. In this way an active intruder (the ex­
employee) can cause a massive amount of trouble, even though she cannot under­
stand the messages her computer is generating. 

This problem can be solved by adding redundancy to all messages. For exam­
ple, if order messages are extended to 12 bytes, the first 9 of which must be zeros, 
then this attack no longer works because the ex-employee no longer can generate 
a large stream of valid messages. The moral of the story is that all messages must 
contain considerable redundancy so that active intruders cannot send random junk 
and have it be interpreted as a valid message. 

However, adding redundancy also makes it much easier for cryptanalysts to 
break messages. Suppose that the mail order business is highly competitive, and 
The Couch Potato's main competitor, The Sofa Tuber, would dearly love to know 
how many sandboxes TCP is selling. Consequently, they have tapped TCP's tele­
phone line. In the original scheme with 3-byte messages, cryptanalysis was 
nearly impossible, because after guessing a key, the cryptanalyst had no way of 
telling whether the guess was right. After all, almost every message is technically 
legal. With the new 12-byte scheme, it is easy for the cryptanalyst to tell a valid 
message from an invalid one. 

Thus cryptographic principle number one is that all messages must contain 
redundancy to prevent active intruders from tricking the receiver into acting on a 
false message. However, this same redundancy makes it much easier for passive 
intruders to break the system, so there is some tension here. Furthermore, the 
redundancy should never be in the form of n zeros at the start or end of a message, 
since running such messages through some cryptographic algorithms gives more 

Ex.1006.604DELL



SEC. 7.1 NETWORK SECURITY 587 

predictable results, making the cryptanalysts' job easier. A random string of 
English words would be a much better choice for the redundancy. 

The second cryptographic principle is that some measures must be taken to 
prevent active intruders from playing back old messages. If no such measures 
were taken, our ex-employee could tap TCP' s phone line and just keep repeating 
previously sent valid messages. One such measure is including in every message 
a timestamp valid only for, say., 5 minutes. The receiver can then just keep mes­
sages around for 5 minutes, to compare newly arrived messages to previous ones 
to filter out duplicates. Messages older than 5 minutes can be thrown out, since 
any replays sent more than 5 minutes later will be rejected as too old. Measures 
other than timestamps will be discussed later. 

7.1.3. Secret-Key Algorithms 

Modern cryptography uses the same basic ideas as traditional cryptography, 
transposition and substitution, but its emphasis is different. Traditionally, crypto­
graphers have used simple algorithms and relied on very long keys for their secu­
rity. Nowadays the reverse is true: the object is to make the encryption algorithm 
so complex and involuted that even if the cryptanalyst acquires vast mounds of 
enciphered text of his own choosing, he will not be able to make any sense of it at 
all. 

Transpositions and substitutions can be implemented with simple circuits. 
Figure 7-4(a) shows a device, known as a P-box (P stands for permutation), used 
to effect a transposition on an 8-bit input. If the 8 bits are designated from top to 
bottom as 01234567, the output of this particular P-box is 36071245. By 
appropriate internal wiring, a P-box can be made to perform any transposition, 
and do it at practically the speed of light. 

P-box S-box Product cipher 

S1 S5 Sg 

S2 Se S10 
P1 P2 Ps P4 

Ss S7 S11 

S4 Sa S12 

(a) (b) (c) 

Fig. 7-4. Basic elements of product ciphers. (a) P-box. (b) S-box. (c) Product. 

Substitutions are performed by S-boxes, as shown in Fig. 7-4(b ). In this 
example a 3-bit plaintext is entered and a 3-bit ciphertext is output. The 3-bit 
input selects one of the eight lines exiting from the first stage and sets it to 1; all 
the other lines are 0. The second stage is a P-box. The third stage encodes the 

Ex.1006.605DELL

SEC. 7.1 NETWORK SECURITY 587

predictable results, making the cryptanalysts’ job easier. A random string of

English words would be a much better choice for the redundancy.

The second cryptographic principle is that some measures must be taken to

prevent active intruders from playing back old messages. If no such measures

were taken, our eX—employee could tap TCP’s phone line and just keep repeating

previously sent valid messages. One such measure is including in every message

a timestamp valid only for, say. 5 minutes. The receiver can then just keep mes-

sages around for 5 minutes, to compare newly arrived messages to previous ones

to filter out duplicates. Messages older than 5 minutes can be thrown out, since

any replays sent more than 5 minutes later will be rejected as too old. Measures

other than timestamps will be discussed later.

7.1.3. Secret-Key Algorithms

Modern cryptography uses the same basic ideas as traditional cryptography,

transposition and substitution, but its emphasis is different. Traditionally, crypto-

graphers have used simple algorithms and relied on very long keys for their secu-

rity. Nowadays the reverse is true: the object is to make the encryption algorithm

so complex and involuted that even if the cryptanalyst acquires vast mounds of

enciphered text of his own choosing, he will not be able to make any sense of it at
all.

Transpositions and substitutions can be implemented with simple circuits.

Figure 7—4(a) shows a device, known as a P-box (P stands for permutation), used

to effect a transposition on an 8—bit input. If the 8 bits are designated from top to

bottom as 01234567, the output of this particular P—box is 36071245. By

appropriate internal wiring, a P—box can be made to perform any transposition,

and do it at practically the speed of light.

 

    
P-box Product cipher

m to s1 :
2 8

a". °° 82 E
6 Hi _
8 8 83 L—O O

__ w c

a .. s, E
(a)

  
Fig. 7-4. Basic elements of product ciphers. (a) P—box. (b) S-box. (c) Product.

Substitutions are performed by S-boxes, as shown in Fig. 7-4(b). 111 this

example a 3-bit plaintext is entered and a 3-bit ciphertext is output. The 3-bit

input selects one of the eight lines exiting from the first stage and sets it to 1; all

the other lines are 0. The second stage is a P-box. The third stage encodes the

DELL Ex.1006.605



588 THE APPLICATION LA YER CHAP. 7 

selected input line in binary again. With the wiring shown, if the eight octal 
numbers 01234567 were input one after another, the output sequence would be 
24506713. In other words, 0 has been replaced by 2, 1 has been replaced by 4, 
etc. Again, by appropriate wiring of the P-box inside the S-box, any substitution 
can be accomplished. 

The real power of these basic elements only becomes apparent when we cas­
cade a whole series of boxes to form a product cipher, as shown in Fig. 7-4(c). 
In this example, 12 input lines are transposed by the first stage. Theoretically, it 
would be possible to have the second stage be an S-box that mapped a 12-bit 
number onto another 12-bit number. However, such a device would need 
212 = 4096 crossed wires in its middle stage. Instead, the input is broken up into 
four groups of 3 bits, each of which is substituted independently of the others. 
Although this method is less general, it is still powerful. By including a suffi­
ciently large number of stages in the product cipher, the output can be made to be 
an exceedingly complicated function of the input. 

DES 

In January 1977, the U.S. government adopted a product cipher developed by 
IBM as its official standard for unclassified information. This cipher, DES (Data 
Encryption Standard), was widely adopted by the industry for use in security 
products. It is no longer secure in its original form (Wayner, 1995), but in a modi­
fied form it is still useful. We will now explain how DES works. 

An outline of DES is shown in Fig. 7-5(a). Plaintext is encrypted in blocks of 
64 bits, yielding 64 bits of ciphertext. The algorithm, which is parametrized by a 
56-bit key, has 19 distinct stages. The first stage is a key independent transposi­
tion on the 64-bit plaintext. The last stage is the exact inverse of this transposi­
tion. The stage prior to the last one exchanges the leftmost 32 bits with the right­
most 32 bits. The remaining 16 stages are functionally identical but are 
parametrized by different functions of the key. The algorithm has been designed 
to allow decryption to be done with the same key as encryption. The steps are just 
run in the reverse order. 

The operation of one of these intermediate stages is illustrated in Fig. 7-5(b). 
Each stage takes two 32-bit inputs and produces two 32-bit outputs. The left out­
put is simply a copy of the right input. The right output is the bitwise 
EXCLUSIVE OR of the left input and a function of the right input and the key for 
this stage, Ki. All the complexity lies in this function. 

The function consists of four steps, carried out in sequence. First, a 48-bit 
number, E, is constructed by expanding the 32-bit Ri _ 1 according to a fixed trans­
position and duplication rule. Second, E and Ki are EXCLUSIVE ORed together. 
This output is then partitioned into eight groups of 6 bits each, each of which is 
fed into a different S-box. Each of the 64 possible inputs to an S-box is mapped 
onto a 4-bit output. Finally, these 8 x 4 bits are passed through a P-box. 

Ex.1006.606DELL



SEC. 7.1 

-:.0 
<D 
I.() 

64 bit plaintext 

Initial transposition 

Iteration 1 

Iteration 2 

[ Iteration 16 

32 bit swap 

Inverse transposition 

NETWORK SECURITY 589 

L;.1 EB f(Ri_1, K;) 

l!!!!!!! !!!!!!!! 
64 bit ciphertext 32 bits 32 bits 

L; R; 

(a) (b) 

Fiig. 7-5. The data encryption standard. (a) General outline. (b) Detail of one 
iteration. 

In each of the 16 iterations, a different key is used. Before the algorithm 
starts, a 56-bit transposition is applied to the key. Just before each iteration, the 
key is partitioned into two 28-bit units, each of which is rotated left by a number 
of bits dependent on the iteration number. Ki is derived from this rotated key by 
applying yet another 56-bit transposition to it. A different 48-bit subset of the 56 
bits is extracted and permuted on each round. 

DES Chaining 

Despite all this complexity, DES is basically a monoalphabetic substitution 
cipher using a 64-bit character. Whenever the same 64-bit plaintext block goes in 
the front end, the same 64-bit ciphertext block comes out the back end. A cryp­
tanalyst can exploit this property to help break DES. 

To see how this monoalphabetic substitution cipher property can be used to 
subvert DES, let us consider encrypting a long message the obvious way: by 
breaking it up into consecutive 8-byte (64-bit) blocks and encrypting them one 

Ex.1006.607DELL

SEC. 7.1 NETWORK SECURITY 589

 
 

  

  
  

.1131. ii I U i U H i U i ii 
 Iteration 1

> lllllllG)x

2—; Iteration 2

$ LN 69 «a... K.) 

 
  

Iteration 16
E

32 bit swap ‘

64 bit ciphertext 32 bits 32 bits

(a) (b)

Fig. 7-5. The data encryption standard. (a) General outline. (b) Detail of one
iteration. ‘ ‘

In each of the 16 iterations, a different key is used. Before the algorithm

starts, a 56—bit transposition is applied to the key. Just before each iteration, the

key is partitioned into two 28-bit units, each of which is rotated left by a number

of bits dependent on the iteration number. K,- is derived from this rotated key by

applying yet another 56—bit transposition to it. A different 48—bit subset of the 56

bits is extracted and permuted on each round.

DES Chaining

Despite all this complexity, DES is basically a monoalphabetic substitution

cipher using a 64—bit character. Whenever the same 64-bit plaintext block goes in

the front end, the same 64—bit ciphertext block comes out the back end. A cryp-

tanalyst can exploit this property to help break DES.

To see how this monoalphabetic substitution cipher property can be used to
subvert DES, let us consider encrypting a long message the obvious way: by

breaking it up into consecutive 8-byte (64—bit) blocks and encrypting them one

DELL Ex.1006.607



590 THE APPLICATION LA YER CHAP. 7 

after another with the same key. The last block is padded out to 64 bits, if need 
be. This technique is known as electronic code book mode. 

In Fig. 7-6 we have the start of a computer file listing the annual bonuses a 
company has decided to award to its employees. This file consists of consecutive 
32-byte records, one per employee, in the format shown: 16 bytes for the name, 8 
bytes for the position, and 8 bytes for the bonus. Each of the sixteen 8-byte 
blocks (numbered from 0 to 15) is encrypted by DES. 

Name Position Bonus 

A d a m s L e s I i e C I e r k 

>-B~I ~a~c~k ~~R_,_o~b~i ~n~._l_J_ B o s s 

C o I I i n s K i m M a n a g e r 

D a v i s B o b b i e J a n i t o r 

Bytes-------16----------s--------s---

Fig. 7-6. The plaintext of a file encrypted as 16 DES blocks. 

Leslie just had a fight with the boss and is not expecting much of a bonus. 
Kim, in contrast is the boss' favorite, and everyone knows this. Leslie can get 
access to the file after it is encrypted but before it is sent to the bank. Can Leslie 
rectify this unfair situation, given only the encrypted file? 

No problem at all. All Leslie has to do is make a copy of ciphertext block 11 
(which contains Kim's bonus) and use it to replace ciphertext block 3 (which con­
tains Leslie's bonus). Even without knowing what block 11 says, Leslie can 
expect to have a much merrier Christmas this year. (Copying ciphertext block 7 is 
also a possibility, but is more likely to be detected; besides, Leslie is not a greedy 
person.) 

To thwart this type of attack, DES (and all block ciphers) can be chained in 
various ways so that replacing a block the way Leslie did will cause the plaintext 
decrypted starting at the replaced block to be garbage. One way of chaining is 
cipher block chaining. In this method, shown in Fig. 7-7, each plaintext block is 
EXCLUSIVE ORed (#) with the previous ciphertext block before being 
encrypted. Consequently, the same plaintext block no longer maps onto the same 
ciphertext block, and the encryption is no longer a big monoalphabetic substitu­
tion cipher. The first block is EXCLUSIVE ORed with a randomly chosen ini­
tialization vector, IV, that is transmitted along with the ciphertext. 

We can see how cipher block chaining works by examining the example of 
Fig. 7-7. We start out by computing C0 = E(P 0 XOR IV). Then we compute 
C 1 = E(P 1 XOR C 0), and so on. Decryption works the other way, with 
P 0 =IV XOR D(C 0), and so on. Note that the encryption of block i is a function 

Ex.1006.608DELL

590 THE APPLICATION LAYER CHAP. 7

after another with the same key. The last block is padded out to 64 bits, if need

be. This technique is known as electronic code book mode.

In Fig. 7—6 we have the start of a computer file listing the annual bonuses a

company has decided to award to its employees. This file consists of consecutive
32-byte records, one per employee, in the format shown: 16 bytes for the name, 8

bytes for the position, and 8 bytes for the bonus. Each of the sixteen 8—byte

blocks (numbered from O to 15) is encrypted by DES.

 

  

 

                         

Name Position Bonus

Aldamis ,1 Lesii i e Clieirikii

Biiaiclk,i Roblinl i Boss Ii

010 i Iii his, Kliim i Mlanagleir

Dla Viilsi’i Boblbixe Jainitioir
Bytes< 16 >< 8 +< 8 >
 

Fig. 7-6. The plaintext of a file encrypted as 16 DES blocks.

Leslie just had a fight with the boss and is not expecting much of a bonus.

Kim, in contrast is the boss” favorite, and everyone knows this. Leslie can get

access to the file after it is encrypted but before it is sent to the bank. Can Leslie

rectify this unfair situation, given only the encrypted file?

No problem at all. All Leslie has to do is make a copy of ciphertext block 11

(which contains Kim’s bonus) and use it to replace ciphertext block 3 (which con-

tains Leslie’s bonus). Even without knowing what block 1] says, Leslie can

expect to have a much merrier Christmas this year. (Copying ciphertext block 7 is

also a possibility, but is more likely to be detected; besides, Leslie is not a greedy

person.)

To thwart this type of attack, DES (and all block ciphers) can be chained in

various ways so that replacing a block the way Leslie did will cause the plaintext

decrypted starting at the replaced block to be garbage. One way of chaining is

cipher block chaining. In this method, shown in Fig. 7-7, each plaintext block is

EXCLUSIVE ORed (#) with the previous ciphertext block before being

encrypted. Consequently, the same plaintext block no longer maps onto the same

ciphertext block, and the encryption is no longer a big monoalphabetic substitu—

tion Cipher. The first block is EXCLUSIVE ORed with a randomly chosen ini-

tialization vector, IV, that is transmitted. along with the ciphertext.

We can see how cipher block chaining works by examining the example of

Fig. 7-7. We start out by computing Co :E(P0 XOR IV). Then we compute

C 1 = E(P1 XOR C 0), and so on. Decryption works the other way, with

P0 2 IV XOR D(C0), and so on. Note that the encryption of block i is a function

DELL Ex.1006.608



SEC. 7.1 NETWORK SECURITY 591 

P1 P2 Ps Co C1 C2 Cs 

i i i b 

~ ~ ~ KeyT 
T T T""o;;c~ptioc Encryption 

/box box 

p-·· IVT T T T··· \Exclusive 

Co C1 C2 Cs Po P1 P2 Ps OR 

(a) (b) 

Fig. 7-7. Cipher block chaining 

of all the plaintext in blocks 0 through i - 1, so the same plaintext generates dif­
ferent ciphertext depending on where it occurs. A transformation of the type 
Leslie made will result in nonsense for two blocks starting at Leslie's bonus field. 
To an astute security officer, this peculiarity might suggest where to start the 
ensuing investigation. 

Cipher block chaining also has the advantage that the same plaintext block 
will not result in the same ciphertext block, making cryptanalysis more difficult. 
In fact, this is the main reason it is used. 

However, cipher block chaining has the disadvantage of requiring an entire 
64-bit block to arrive before decryption can begin. For use with interactive termi­
nals, where people can type lines shorter than eight characters and then stop, wait­
ing for a response, this mode is unsuitable. For byte-by-byte encryption, cipher 
feedback mode, shown in Fig. 7-8, can be used. In this figure, the state of the 
encryption machine is shown after bytes 0 through 9 have been encrypted and 
sent. When plaintext byte 10 arrives, as illustrated in Fig. 7-8(a), the DES algo­
rithm operates on the 64-bit shift register to generate a 64-bit ciphertext. The left­
most byte of that ciphertext is extracted and EXCLUSIVE ORed with P 10 . That 
byte is transmitted on the transmission line. In addition, the shift register is 
shifted left 8 bits, causing C 2 to fall off the left end, and C 10 is inserted in the 
position just vacated at the right end by C 9 . Note that the contents of the shift 
register depend on the entire previous history of the plaintext, so a pattern that 
repeats multiple times in the plaintext will be encrypted differently each time in 
the ciphertext. As with cipher block chaining, an initialization vector is needed to 
start the ball rolling. 

Decryption with cipher feedback mode just does the same thing as encryption. 
In particular, the contents of the shift register is encrypted, not decrypted, so the 
selected byte that is EXCLUSIVE ORed with C 10 to get P 10 is the same one that 
was EXCLUSIVE ORed with P 10 to generate C 10 in the first place. As long as 
the two shift registers remain identical, decryption works correctly. 

Ex.1006.609DELL

SEC. 7.1 NETWORK SECURITY 591

P0 P1 P2 C0 C1 02 C3

l T
W # [v if) 'Key 0 [3| [3] I§l\\

Etj E /E(r)i:rypllon V 1 fig 1 EgpryptionKey E :3 . . . IV GD 3:) ED‘CEEIUSW
Co 01 02 C3 Po

(3) (b)

 

   
Fig. 7-7. Cipher block chaining

of all the plaintext in blocks 0 through i — 1, so the same plaintext generates dif-

ferent ciphertext depending on where it occurs. A transformation of the type

Leslie made will result in nonsense for two blocks starting at Leslie’s bonus field.

To an astute security officer, this peculiarity might suggest where to start the

ensuing investigation.

Cipher block chaining also has the advantage that the same plaintext block

will not result in the same ciphertext block, making cryptanalysis more difficult.
In fact, this is the main reason it is used.

However, cipher block chaining has the disadvantage of requiring an entire

64—bit block to arrive before decryption can begin. For use with interactive tenni-
nals, where people can type lines shorter than eight characters and then stop, wait—

ing for a response, this mode is unsuitable. For byte-by-byte encryption, cipher

feedback mode, shown in Fig. 7-8, can be used. In this figure, the state of the

encryption machine is shown after bytes 0 through 9 have been encrypted and

sent. When plaintext byte 10 arrives, as illustrated in Fig. 7—8(a), the DES algo—
rithm operates on the 64-bit shift register to generate a 64-bit ciphertext. The left—

most byte of that ciphertext is extracted and EXCLUSIVE ORed with P10. That

byte is transmitted on the transmission line. In addition, the shift register is

shifted left 8 bits, causing C2 to fall off the left end, and C 10 is inserted in the

position just vacated at the right end by C 9. Note that the contents of the shift

register depend on the entire previous history of the plaintext, so a pattern that

repeats multiple times in the plaintext will be encrypted differently each time in

the ciphertext. As with cipher block chaining, an initialization vector is needed to

start the ball rolling.

Decryption with cipher feedback mode just does the same thing as encryption.

In particular, the contents of the shift register is encrypted, not decrypted, so the

selected byte that is EXCLUSIVE ORed with C 10 to get P10 is the same one that

was EXCLUSIVE ORed with P 10 to generate C 10 in the first place. As long as

the two shift registers remain identical, decryption works correctly.

DELL Ex.1006.609



592 THE APPLICATION LA YER CHAP. 7 

64-bit shift register 64-bit shift register -- -
! E . 

Ke -er ncrypt1on 
Y box 

C10 

a Select i leftmost byte 

! E . 
Ke -er ncrypt1on 

Y box 
C10 

a Select i leftmost byte 

P10-~ C10 

Exclusive OR 
C10 0 P10 

(a) (b) 

Fig. 7-8. Cipher feedback mode. 

As an aside, it should be noted that if one bit of the ciphertext is accidentally 
inverted during transmission, the 8 bytes that are decrypted while the bad byte is 
in the shift register will be corrupted. Once the bad byte is pushed out of the shift 
register, correct plaintext will once again be generated. Thus the effects of a sin­
gle inverted bit are relatively localized and do not ruin the rest of the message. 

Nevertheless, there exist applications in which having a 1-bit transmission 
error mess up 64 bits of plaintext is too large an effect. For these applications, a 
fourth option, output feedback mode, exists. It is identical to cipher feedback 
mode, except that the byte fed back into the right end of the shift register is taken 
from just before the EXCLUSIVE OR box, not just after it. 

Output feedback mode has the property that a I -bit error in the ciphertext 
causes only a 1-bit error in the resulting plaintext. On the other hand, it is less 
secure than the other modes, and should be avoided for general-purpose use. 
Electronic code book mode should also be avoided except under special cir­
cumstances (e.g., encrypting a single random number, such as a session key). For 
normal operation, cipher block chaining should be used when the input arrives in 
8-byte units (e.g., for encrypting disk files) and cipher feedback mode should be 
used for irregular input streams, such as keyboard input. 

Breaking DES 

DES has been enveloped in controversy from the day it was launched. It was 
based on a cipher developed and patented by IBM, called Lucifer, except that 
IBM's cipher used a 128-bit key instead of a 56-bit key. When the U.S. federal 
government wanted to standardize on one cipher for unclassified use, it "invited" 

Ex.1006.610DELL

592 THE APPLICATION LAYER CHAP. 7

 

       
 

 
 
 

 

 

 

64—bit shift register 64-bit shift register4— <—

lcz Cables are. ca c9 «
go—Wm—J \—v—V—_—/

. . l .
Key E Encryption Key E Encryption

bOX C box C10 to

V
"" Select

leftmost byte
      Select

leftmost byte

C10 C10 T’GDUL" P10
V

Pw->®\ Exclusive OR “__fi.....

(a) (b)

Fig. 7-8. Cipher feedback model

As an aside, it should be noted that if one bit of the ciphertext is accidentally

inverted during transmission, the 8 bytes that are decrypted while the bad byte is

in the shift register will be corrupted. Once the bad byte is pushed out of the shift

register, correct plaintext will once again be generated. Thus the effects of a sin-

gle inverted bit are relatively localized and do not ruin the rest of the message.

Nevertheless, there exist applications in which having a 1—bit transmission

error mess up 64 bits of plaintext is too large an effect. For these applications, a

fourth option, output feedback mode, exists. It is identical to cipher feedback
mode, except that the byte fed back into the right end of the shift register is taken

from just before the EXCLUSIVE 0R box, not just after it.

Output feedback mode has the property that a 1-bit error in the ciphertext

causes only a 1—bit error in the resulting plaintext. On the other hand, it is less

secure than the other modes, and should be avoided for general—purpose use.

Electronic code book mode should also be avoided except under special cir-

cumstances (e.g., encrypting a single random number, such as a session key). For

normal operation, cipher block chaining should be used when the input arrives in

8—byte units (e.g., for encrypting disk files) and cipher feedback mode should be

used for irregular input streams, such as keyboard input.

Breaking DES

DES has been enveloped in controversy from the day it was launched. It was

based on a cipher developed and patented by IBM, called Lucifer, except that

IBM’s cipher used a 128—bit key instead of a 56—bit key. When the US. federal

government wanted to standardize on one cipher for unclassified use, it “invited”

DELL Ex.1006.610



SEC. 7.1 NETWORK SECURITY 593 

IBM to "discuss" the matter with NSA, the government's code-breaking arm, 
which is the world's largest employer of mathematicians and cryptologists. NSA 
is so secret that an industry joke goes: 

Q: What does NSA stand for? 
A: No Such Agency. 

Actually, NSA stands for National Security Agency. 
After these discussions took place, IBM reduced the key from 128 bits to 56 

bits and decided to keep secret the process by which DES was designed. Many 
people suspected that the key length was reduced to make sure that NSA could 
just break DES, but no organization with a smaller budget could. The point of the 
secret design was supposedly to hide a trapdoor that could make it even easier for 
NSA to break DES. When an NSA employee discreetly told IEEE to cancel a 
planned conference on cryptography, that did not make people any more comfort­
able. 

In 1977, two Stanford cryptography researchers, Diffie and Hellman (1977), 
designed a machine to break DES and estimated that it could be built for 20 mil­
lion dollars. Given a small piece of plaintext and matched ciphertext, this 
machine could find the key by exhaustive search of the 256 -entry key space in 
under 1 day. Nowadays, such a machine would cost perhaps 1 million dollars. A 
detailed design for a machine that can break DES by exhaustive search in about 
four hours is presented in (Wiener, 1994). 

Here is another strategy. Although software encryption is 1000 times slower 
than hardware encryption, a high-end home computer can still do about 250,000 
encryptions/sec in software and is probably idle 2 million seconds/month. This 
idle time could be put to use breaking DES. If someone posted a message to one 
of the popular Internet newsgroups, it should not be hard to sign up the necessary 
140,000 people to check all 7 x 1016 keys in a month. 

Probably the most innovative idea for breaking DES is the Chinese Lottery 
(Quisquater and Girault, 1991). In this design, every radio and television has to 
be equipped with a cheap DES chip capable of performing 1 million 
encryptions/sec in hardware. Assuming that every one of the 1.2 billion people in 
China owns a radio or television, whenever the Chinese government wants to 
decrypt a message encrypted by DES, it just broadcasts the plaintext/ciphertext 
pair, and each of the 1.2 billion chips begins searching its preassigned section of 
the key space. Within 60 seconds, one (or more) hits will be found. To ensure 
that they are reported, the chips could be programmed to display or announce the 
message: 

CONGRATULATIONS! YOU HAVE JUST WON THE CHINESE LOTTERY. 
TO COLLECT, PLEASE CALL 1-800-BIG-PRIZE 

The conclusion that one can draw from these arguments is that DES should no 
longer be used for anything important. However, although 256 is a paltry 

Ex.1006.611DELL



594 THE APPLICATION LA YER CHAP. 7 

7 x 1016
, 2112 is a magnificent 5 x 1033

. Even with a billion DES chips doing a 
billion operations per second, it would take 100 million years to exhaustively 
search a 112-bit key space. Thus the thought arises of just running DES twice, 
with two different 56-bit keys. 

Unfortunately, Merkle and Hellman (1981) have developed a method that 
makes double encryption suspect. It is called the meet-in-the-middle attack and 
works like this (Hellman, 1980). Suppose that someone has doubly encrypted a 
series of plaintext blocks, using electronic code book mode. For a few values of i, 
the cryptanalyst has matched pairs (Pi, Ci) where 

Ci= EK2(EK1 (Pi)) 

If we now apply the decryption function, DK2 to each side of this equation, we get 

(7-1) 

because encrypting x and then decrypting it with the same key gives back x. 
The meet-in-the-middle attack uses this equation to find the DES keys, K 1 

and K2, as follows: 

1. Compute Ri = Ei(P 1) for all 256 values of i, where E is the DES 
encryption function. Sort this table in ascending order of Ri. 

2. Compute Sj = Dj( C 1) for all 256 values of j, where D is the DES 
decryption function. Sort this table in ascending order of Sj. 

3. Scan the first table looking for an Ri that matches some Sj in the 
second table. When a match is found, we then have a key pair (i,j) 
such that D/C 1) = Ei(P 1 ). Potentially, i is K 1 and j is K2. 

4. Check to see if E/Ei(P 2 )) is equal to C2 . If it is, try all the other 
(plaintext, ciphertext) pairs. If it is not, continue searching the two 
tables looking for matches. 

Many false alarms will certainly occur before the real keys are located, but even­
tually they will be found. This attack requires only 257 encryption or decryption 
operations (to construct the two tables), far less than 2112

. However it also 
requires a total of 260 bytes of storage for the two tables, so it is not currently 
feasible in this basic form, but Merkle and Hellman have shown various optimiza­
tions and trade-offs that permit less storage at the expense of more computing. 
All in all, double encryption using DES is probably not much more secure than 
single encryption. 

Triple encryption is another matter. As early as 1979, IBM realized that the 
DES key length was too short and devised a way to effectively increase it using 
triple encryption (Tuchman, 1979). The method chosen, which has since been 
incorporated in International Standard 8732, is illustrated in Fig. 7-9. Here two 

Ex.1006.612DELL



SEC. 7.1 NETWORK SECURITY 595 

keys and three stages are used. In the first stage, the plaintext is encrypted with 
K 1 . In the second stage, DES is run in decryption mode, using K 2 as the key. 
Finally, another encryption is done with K 1. 

K1 K2 K1 K1 K2 K1 

P-cb-[~J--d}-c c-ch-ch-ch-P 
(a) (b) 

Fig. 7-9. Triple encryption using DES. 

This design immediately gives rise to two questions. First, why are only two 
keys used, instead of three? Second, why is EDE used, instead of EEE? The rea­
son that two keys are used is that even the most paranoid cryptographers concede 
that 112 bits is sufficient for commercial applications for the time being. Going to 
168 bits would just add the unnecessary overhead of managing and transporting 
another key. 

The reason for encrypting, decrypting, and then encrypting again is backward 
compatibility with existing single-key DES systems. Both the encryption and 
decryption functions are mappings between sets of 64-bit numbers. From a cryp­
tographic point of view, the two mappings are equally strong. By using EDE, 
however, instead of EEE, a computer using triple encryption can speak to one 
using single encryption by just setting K 1 = K 2 . This property allows triple 
encryption to be phased in gradually, something of no concern to academic cryp­
tographers, but of considerable import to IBM and its customers. 

No method is known for breaking triple DES in EDE mode. Van Oorschot 
and Wiener (1988) have presented a method to speed up the search of EDE by a 
factor of 16, but even with their attack, EDE is highly secure. For anyone wishing 
nothing less than the very best, EEE with three distinct 56-bit keys (168 bits in all) 
is recommended. 

Before leaving the subject of DES, it is worth at least mentioning two recent 
developments in cryptanalysis. The first development is differential crypt­
analysis (Biham and Shamir, 1993). This technique can be used to attack any 
block cipher. It works by beginning with a pair of plaintext blocks that differ in 
only a small number of bits and watching carefully what happens on each internal 
iteration as the encryption proceeds. In many cases, some patterns are much more 
common than other patterns, and this observation leads to a probabilistic attack. 

The other development worth noting is linear cryptanalysis (Matsui, 1994). 
It can break DES with only 243 known plaintexts. It works by EXCLUSIVE 
ORing certain plaintext and ciphertext bits together to generate 1 bit. When done 
repeatedly, half the bits should be Os and half should be ls. Often, however, 
ciphers introduce a bias in one direction or the other, and this bias, however small, 
can be exploited to reduce the work factor. For the details, see Matsui's paper. 

Ex.1006.613DELL



596 THE APPLICATION LAYER CHAP. 7 

IDEA 

Perhaps all this hammering on why DES is insecure is like beating a dead 
horse, but the reality is that singly-encrypted DES is still widely used for secure 
applications, such as banking using automated teller machines. While this choice 
was probably appropriate when it was made, a decade or more ago, it is no longer 
adequate. 

At this point, the reader is probably legitimately wondering: "If DES is so 
weak, why hasn't anyone invented a better block cipher?" The fact is, many other 
block ciphers have been proposed, including BLOWFISH (Schneier, 1994), Crab 
(Kaliski and Robshaw, 1994), PEAL (Shimizu and Miyaguchi, 1988), KHAFRE 
(Merkle, 1991), LOKI91 (Brown et al., 1991), NEWDES (Scott, l985), REDOC­
II (Cusick and Wood, 1991), and SAFER K64 (Massey, 1994). Schneier (1996) 
discusses all of these and innumerable others. Probably the most interesting and 
important of the post-DES block ciphers is IDEA the (International Data 
Encryption Algorithm) (Lai and Massey, 1990; and Lai, 1992). Let us now 
study IDEA in more detail. 

IDEA was designed by two researchers in Switzerland, so it is probably free 
of any NSA "guidance" that might have introduced a secret trapdoor. It uses a 
128-bit key, which will make it immune to brute force, Chinese lottery, and 
meet-in-the-middle attacks for decades to come. It was also designed to withstand 
differential cryptanalysis. No currently known technique or machine is thought to 
be able to break IDEA. 

The basic structure of the algorithm resembles DES in that 64-bit plaintext 
input blocks are mangled in a sequence of parameterized iterations to produce 
64-bit ciphertext output blocks, as shown in Fig. 7-lO(a). Given the extensive bit 
mangling (for every iteration, every output bit depends on every input bit), eight 
iterations are sufficient. As with all block ciphers, IDEA can also be used in 
cipher feedback mode and the other DES modes. 

The details of one iteration are depicted in Fig. 7-lO(b ). Three operations are 
used, all on unsigned 16-bit numbers. These operations are EXCLUSIVE OR, 
addition modulo 216

, and multiplication modulo 216 + 1. All three of these can 
easily be done on a 16-bit microcomputer by ignoring the high-order parts of 
results. The operations have the property that no two pairs obey the associative 
law or distributive law, making cryptanalysis more difficult. The 128-bit key is 
used to generate 52 subkeys of 16 bits each, 6 for each of eight iterations and 4 for 
the final transformation. Decryption uses the same algorithm as encryption, only 
with different subkeys. 

Both software and hardware implementations of IDEA have been constructed. 
The first software implementation ran on a 33-MHz 386 and achieved an encryp­
tion rate of 0.88 Mbps. On a modern machine running ten times as fast, 9 Mbps 
should be achievable in software. An experimental 25-MHz VLSI chip was built 
at ETH Zurich and encrypted at a rate of 177 Mbps. 

Ex.1006.614DELL



SEC. 7.1 

64 bit plaintext 

i i i i i i i i 
Iteration 1 

Iteration 2 

Iteration 7 

l l r r r r r r 
Iteration 8 

r r r r r r r r 
Transformation 

64 bit ciphertext 

(a) 

NETWORK SECURITY 

0 
t 

Four 16-bit input blocks 

~ 
~~II~-~ 

Four 16-bit output blocks 

G) 16-Bit addition modulo 216 

Q 16-Bit multiplication modulo 216 + 1 

0 16-Bit EXCLUSIVE OR 

(b) 

Fig. 7-10. (a) IDEA. (b) Detail ofone iteration. 

7.1.4. Public-Key Algorithms 

0 
t 

597 

Historically the key distribution problem has always been the weak link in 
most cryptosystems. No matter how strong a cryptosystem was, if an intruder 
could steal the key, the system was worthless. Since all cryptologists always took 
for granted that the encryption key and decryption key were the same (or easily 
derived from one another) and the key had to be distributed to all users of the sys­
tem, it seemed as if there was an inherent built-in problem: keys had to protected 
from theft, but they also had to be distributed, so they could not just be locked up 
in a bank vault. 

In 1976, two researchers at Stanford University, Diffie and Hellman (1976), 
proposed a radically new kind of cryptosystem, one in which the encryption and 
decryption keys were different, artd the decryption key could not be derived from 
the encryption key. In their proposal, the (keyed) encryption algorithm, E, and the 

Ex.1006.615DELL

SEC. 7.1 NETWORK SECURITY 597

64 bit pIaintext Four 16-bit input blocks

llllllll [:1L__IL_.JI__.J

llllllll K”
Iteration 2

 

 

Iteration 7

Iteration 8 ,

Fotir 16-bit output blocks

® 16—Bit addition modulo 216

64 b” C'phefieXt ® 16-Bit multiplicatiOn modulo 216 + 1

   
 

 

® 18-Bit EXCLUSIVE OR

(a) (b)

Fig. 7-10. (a) IDEA. (b) Detail of one iteration.

7.1.4. Public-Key Algorithms

Historically the key distribution problem has always been the weak link in

most cryptosystems. No matter how strong a cryptosystem was, if an intruder

could steal the key, the system was worthless. Since all cryptologists always took
fOr granted that the encryption key and decryption key were the same (or easily

derived from one another) and the key had to be distributed to all users of the sys-

tem, it seemed as if there was an inherent built—in problem: keys had to protected

from theft, but they also had to be distributed, so they could not just be locked up
in a bank vault.

In 1976, two researchers at Stanford University, Diffie and Hellman (1976),

proposed a radically new kind of cryptosystem, one in which the encryption and

decryption keys were different, and the decryption key could not be derived from

the encryption key. In their proposal, the (keyed) encryption algorithm, E, and the

DELL Ex.1006.615



598 THE APPLICA TJON LA YER CHAP. 7 

(keyed) decryption algorithm, D, had to meet the following three requirements. 
These requirements can be stated simply as follows: 

1. D(E(P)) = P. 

2. It is exceedingly difficult to deduce D from E. 

3. E cannot be broken by a chosen plaintext attack. 

The first requirement says that if we apply D to an encrypted message, E(P), we 
get the original plaintext message, P, back. The second requirement speaks for 
itself. The third requirement is needed because, as we shall see in a moment, 
intruders may experiment with the algorithm to their hearts' content. Under these 
conditions, there is no reason that the encryption key cannot be made public. 

The method works like this. A person, say, Alice, wanting to receive secret 
messages, first devises two algorithms, EA and DA, meeting the above require­
ments. The encryption algorithm and key, EA, is then made public, hence the 
name public-key cryptography (to contrast it with traditional secret-key cryptog­
raphy). This might be done by putting it in a file that anyone who wanted to could 
read. Alice publishes the decryption algorithm (to get the free consulting), but 
keeps the decryption key secret. Thus, EA is public, but DA is private. 

Now let us see if we can solve the problem of establishing a secure channel 
between Alice and Bob, who have never had any previous contact. Both Alice's 
encryption key, EA, and Bob's encryption key, E8 , are assumed to be in a publicly 
readable file. (Basically, all users of the network are expected to publish their 
encryption keys as soon as they become network users.) Now Alice takes her first 
message, P, computes E8 (P), and sends it to Bob. Bob then decrypts it by apply­
ing his secret key D 8 fi.e., he computes D 8 (E8 (P)) = P]. No one else can read 
the encrypted message, E8 (P), because the encryption system is assumed strong 
and because it is too difficult to derive D8 from the publicly known E8 . Alice and 
Bob can now communicate securely. 

A note on terminology is perhaps useful here. Public-key cryptography 
requires each user to have two keys: a public key, used by the entire world for 
encrypting messages to be sent to that user, and a private key, which the user 
needs for decrypting messages. We will consistently refer to these keys as the 
public and private/keys, respectively, and distinguish them from the secret keys 
used for both encryption and decryption in conventional (also called symmetric 
key) cryptography. 

The RSA Algorithm 

The only catch is that we need to find algorithms that indeed satisfy all three 
requirements. Due to the potential advantages of public-key cryptography, many 
researchers are hard at work, and some algorithms have already been published. 
One good method was discovered by a group at M.I.T. (Rivest et al., 1978). It is 

Ex.1006.616DELL



SEC. 7.1 NETWORK SECURITY 599 

known by the initials of the three discoverers (Rivest, Shamir, Adleman): RSA. 
Their method is based on some principles from number theory. We will now 
summarize how to use the method below; for details, consult the paper. 

1. Choose two large primes, p and q, (typically greater than 10100
). 

2. Compute n = p x q and z = (p - 1) x (q - 1). 

3. Choose a number relatively prime to z and call it d. 

4. Find e such that e x d == 1 mod z. 

With these parameters computed in advance, we are ready to begin encryption. 
Divide the plaintext (regarded as a bit string) into blocks, so that each plaintext 
message, P, falls in the interval 0 '.S: P < n. This can be done by grouping the 
plaintext into blocks of k bits, where k is the largest integer for which 2k < n is 
true. 

To encrypt a message, P, compute C = pe (mod n). To decrypt C, compute 
P =Cd (mod n). It can be proven that for all Pin the specified range, the encryp­
tion and decryption functions are inverses. To perform the encryption, you need e 
and n. To perform the decryption, you need d and n. Therefore, the public key 
consists of the pair (e, n) and the private key consists of (d, n ). 

The security of the method is based on the difficulty of factoring large 
numbers. If the cryptanalyst could factor the (publicly known) n, he could then 
find p and q, and from these z .. Equipped with knowledge of z and e, d can be 
found using Euclid's algorithm. Fortunately, mathematicians have been trying to 
factor large numbers for at least 300 years, and the accumulated evidence sug­
gests that it is an exceedingly difficult problem. 

According to Rivest and colleagues, factoring a 200-digit number requires 4 
billion years of computer time; factoring a 500-digit number requires 1025 years. 
In both cases, they assume the best known algorithm and a computer with a 
1-µsec instruction time. Even if computers continue to get faster by an order of 
magnitude per decade, it will be centuries before factoring a 500-digit number 
becomes feasible, at which time our descendants can simply choose p and q still 
larger. 

A trivial pedagogical example of the RSA algorithm is given in Fig. 7-11. 
For this example we have chosen p = 3 and q = 11, giving n = 33 and z = 20. A 
suitable value for d is d = 7, since 7 and 20 have no common factors. With these 
choices, e can be found by solving the equation 7 e = 1 (mod 20), which yields 
e = 3. The ciphertext, C, for a plaintext message, P, is given by 
C = P 3 (mod 33). The ciphertext is decrypted by the receiver according to the 
rule P = C7 (mod 33). The figure shows the encryption of the plaintext 
"SUZANNE" as an example. 

Because the primes chosen for this example are so small, P must be less than 
33, so each plaintext block can contain only a single character. The result is a 

Ex.1006.617DELL



600 THE APPLICATION LA YER CHAP. 7 

Plaintext (P) Ciphertext (C) After decryption 
,---------"-------., ,---"----., 
Symbolic Numeric p3 ps (mod 33) C7 C7(mod 33) Symbolic 

s 19 6859 28 13492928512 19 s 
u 21 9261 21 1801088541 21 u 
z 26 17576 20 1280000000 26 z 
A 01 1 1 1 A 
N 14 2744 5 78125 14 N 
N 14 2744 5 78125 14 N 
E 05 125 26 8031810176 5 E 

'---
Sender's computation Receiver's computation 

Fig. 7-11. An example of the RSA algorithm. 

monoalphabetic substitution cipher, not very impressive. If instead we had 
chosen p and q ::::: 10100

, we would have n ::::: 10200
, so each block could be up to 

664 bits (2664 
::::: 10200

) or 83 8-bit characters, versus 8 characters for DES. 
It should be pointed out that using RSA as we have described is similar to 

using DES in ECB mode-the same input block gives the same output block. 
Therefore some form of chaining is needed for data encryption. However, in 
practice, most RSA-based systems use public-key cryptography primarily for dis­
tributing one-time session keys for use with DES, IDEA, or similar algorithms. 
RSA is too slow for actually encrypting large volumes of data. 

Other Public-Key Algorithms 

Although RSA is widely used, it is by no means the only public-key algorithm 
known. The first public-key algorithm was the knapsack algorithm (Merkle and 
Hellman, 1978). The idea here is that someone owns a large number of objects, 
each with a different weight. The owner encodes the message by secretly select­
ing a subset of the objects and placing them in the knapsack. The total weight of 
the objects in the knapsack is made public, as is the list of all possible objects. 
The list of objects in the knapsack is kept secret. With certain additional restric­
tions, the problem of figuring out a possible list of objects with the given weight 
was thought to be computationally infeasible, and formed the basis of the public­
key algorithm. 

The algorithm's inventor, Ralph Merkle, was quite sure that this algorithm 
could not be broken, so he offered a 100-dollar reward to anyone who could break 
it. Adi Shamir (the "S" in RSA) promptly broke it and collected the reward. 
Undeterred, Merkle strengthened the algorithm and offered a 1000-dollar reward 
to anyone who could break the new one. Ron Rivest (the "R" in RSA) promptly 
broke the new one and collected the reward. Merkle did not dare offer 10,000 

Ex.1006.618DELL



SEC. 7.1 NETWORK SECURITY 601 

dollars for the next version, so "A" (Leonard Adleman) was out of luck. 
Although it has been patched up again, the knapsack algorithm is not considered 
secure and is rarely used. 

Other public-key schemes are based on the difficulty of computing discrete 
logarithms (Rabin, 1979). Algorithms that use this principle have been invented 
by El Gamal (1985) and Schnorr (1991). 

A few other schemes exist, such as those based on elliptic curves (Menezes 
and Vanstone, 1993), but the three major categories are those based on the diffi­
culty of factoring large numbers, computing discrete logarithms, and determining 
the contents of a knapsack from its weight. These problems are thought to be 
genuinely difficult to solve because mathematicians have been working on them 
for many years without any great breakthroughs. 

7.1.5. Authentication Protocols 

Authentication is the technique by which a process verifies that its communi­
cation partner is who it is supposed to be and not an imposter. Verifying the iden­
tity of a remote process in the face of a malicious, active intruder is surprisingly 
difficult and requires complex protocols based on cryptography. In this section, 
we will study some of the many authentication protocols that are used on insecure 
computer networks. 

As an aside, some people confuse authorization with authentication. Authen­
tication deals with the question of whether or not you are actually communicating 
with a specific process. Authorization is concerned with what that process is per­
mitted to do. For example, a client process contacts a file server and says: "I am 
Scott's process and I want to delete the file cookbook.old." From the file server's 
point of view, two questions must be answered: 

1. Is this actually Scott's process (authentication)? 

2. Is Scott allowed to delete cookbook.old (authorization)? 

Only after both questions have been unambiguously answered in the affirmative 
can the requested action take place. The former question is really the key one. 
Once the file server knows whom it is talking to, checking authorization is just a 
matter of looking up entries in local tables. For this reason, we will concentrate 
on authentication in this section. 

The general model that all authentication protocols use is this. An initiating 
user (really a process), say, Alice, wants to establish a secure connection with a 
second user, Bob. Alice and Bob are sometimes called principals, the main char­
acters in our story. Bob is a banker with whom Alice would like to do business. 
Alice starts out by sending a message either to Bob, or to a trusted key distribu­
tion center (KDC), which is always honest. Several other message exchanges 

Ex.1006.619DELL



602 THE APPLICATION LA YER CHAP. 7 

follow in various directions. As these message are being sent, a nasty intruder, 
Trudy,t may intercept, modify, or replay them in order to trick Alice and Bob or 
just to gum up the works. 

Nevertheless, when the protocol has been completed, Alice is sure she is talk­
ing to Bob and Bob is sure he is talking to Alice. Furthermore, in most of the pro­
tocols, the two of them will also have established a secret session key for use in 
the upcoming conversation. In practice, for performance reasons, all data traffic 
is encrypted using secret-key cryptography, although public-key cryptography is 
widely used for the authentication protocols themselves and for establishing the 
session key. 

The point of using a new, randomly-chosen session key for each new connec­
tion is to minimize the amount of traffic that gets sent with the users' secret keys 
or public keys, to reduce the amount of ciphertext an intruder can obtain, and to 
minimize the damage done if a process crashes and its core dump falls into the 
wrong hands. Hopefully, the only key present then will be the session key. All 
the permanent keys should have been carefully zeroed out after the session was 
established. 

Authentication Based on a Shared Secret Key 

For our first authentication protocol, we will assume that Alice and Bob 
already share a secret key, KAB (In the formal protocols, we will abbreviate Alice 
as A and Bob as B, respectively.) This shared key might have been agreed upon 
on the telephone, or in person, but, in any event, not on the (insecure) network. 

This protocol is based on a principle found in many authentication protocols: 
one party sends a random number to the other, who then transforms it in a special 
way and then returns the result. Such protocols are called challenge-response 
protocols. In this and subsequent authentication protocols, the following notation 
will be used: 

A, B are the identities of Alice and Bob 
R/ s are the challenges, where the subscript identifies the challenger 
Ki are keys, where i indicates the owner; Ks is the session key 

The message sequence for our first shared-key authentication protocol is 
shown in Fig. 7-12. In message 1, Alice sends her identity, A, to Bob in a way 
that Bob understands. Bob, of course, has no way of knowing whether this mes­
sage came from Alice or from Trudy, so he chooses a challenge, a large random 
number, Rs, and sends it back to "Alice" as message 2, in plaintext. Alice then 
encrypts the message with the key she shares with Bob and sends the ciphertext, 
KAs(Rs), back in message 3. When Bob sees this message, he immediately 
knows that it came from Alice because Trudy does not know KAB and thus could 

t I thank Kaufman 1 et aI.23 (1995) for revealing her name. 

Ex.1006.620DELL



SEC. 7.1 NETWORK SECURITY 603 

not have generated it. Furthermore, since Rs was chosen randomly from a large 
space (say, 128-bit random numbers), it is very unlikely that Trudy would have 
seen Rs and its response from an earlier session. 

.0 >------- 0 cc 

Fig. 7-12. Two-way authentication using a challenge-response protocol. 

At this point, Bob is sure he is talking to Alice, but Alice is not sure of any­
thing. For all Alice knows, Trudy might have intercepted message 1 and sent 
back Rs in response. Maybe Bob died last night. To find out whom she is talking 
to, Alice picks a random number, RA and sends it to Bob as plaintext, in message 
4. When Bob responds with K,,i,s (RA), Alice knows she is talking to Bob. If they 
wish to establish a session key now, Alice can pick one, Ks, and send it to Bob 
encrypted with KAs. 

Although the protocol of Fig. 7-12 works, it contains extra messages. These 
can be eliminated by combining information, as illustrated in Fig. 7-13. Here 
Alice initiates the challenge-response protocol instead of waiting for Bob to do it. 
Similarly, while he is responding to Alice's challenge, Bob sends his own. The 
entire protocol can be reduced to three messages instead of five. 

Fig. 7-13. A shortened two-way authentication protocol. 

Is this new protocol an improvement over the original one? In one sense it is: 
it is shorter. Unfortunately, it is also wrong. Under certain circumstances, Trudy 
can defeat this protocol by using what is known as a reflection attack. In partic­
ular, Trudy can break it if it is possible to open multiple sessions with Bob at 

Ex.1006.621DELL

SEC. 7.1 NETWORK SECURITY 603

not have generated it. Furthermore, since RB was chosen randomly from a large

space (say, 128-bit random numbers), it is very unlikely that Trudy would have

seen RB and its response from an earlier session.

  
Fig. 7-12. Two—way authentication using a challenge—response protocol.

At this point, Bob is sure he is talking to Alice, but Alice is not sure of any—

thing. For all Alice knows, Trudy might have intercepted message 1 and sent

back RB in response. Maybe Bob died last night. To find out whom she is talking

to, Alice picks a random number, RA and sends it to Bob as plaintext, in message

4. When Bob responds with KAB (RA ), Alice knows she is talking to Bob. If they

wish to establish a session key now, Alice can pick one, KS, and send it to Bob

encrypted with KAB.

Although the protocol of Fig. 7—12 works, it contains extra messages. These

can be eliminated by combining information, as illustrated in Fig. 7—13. Here

Alice initiates the challenge-response protocol instead of waiting for Bob to do it.

Similarly, while he is responding to Alice’s challenge, Bob sends his own. The

entire protocol can be reduced to three messages instead of five.

 
Fig. 7-13. A shortened two-way authentication protocol.

Is this new protocol an improvement over the original one? In one sense it is:

it is shorter. Unfortunately, it is also wrong. Under certain circumstances, Trudy

can defeat this protocol by using what is known as a reflection attack. In partic-

ular, Trudy can break it if it is possible to open multiple sessions with Bob at

DELL Ex.1006.621



604 THE APPLICATION LA YER CHAP. 7 

once. This situation would be true, for example, if Bob is a bank and is prepared 
to accept many simultaneous connections from teller machines at once. 

Trudy's reflection attack is shown in Fig. 7-14. It starts out with Trudy claim­
ing she is Alice and sending Rr. Bob responds, as usual, with his own challenge, 
Rs. Now Trudy is stuck. What can she do? She does not know KAs(Rs). 

~ 11 I 
~ 

I A,Rr I 

21 Rs, KAs (Rr) ~ • 
} Fi<ot "'"ioo 

>, 31 -0 
A,Rs I .0 

::i I I --- 0 

i= en 
4 I Rs2, KAs (Rs) ~ .. } Sooood ''"'°' 

51 I 

- 1 KAs (Rs) 1 - } First session 

Fig. 7-14. The reflection attack. 

She can open a second session with message 3, supplying the Rs taken from 
message 2 as her challenge. Bob calmly encrypts it and sends back KAs(Rs) in 
message 4. Now Trudy has the missing information, so she can complete the first 
session and abort the second one. Bob is now convinced that Trudy is Alice, so 
when she asks for her bank account balance, he gives it to her without question. 
Then when she asks him to transfer it all to a secret bank account in Switzerland, 
he does so without a moment's hesitation. 

The moral of this story is: 

Designing a correct authentication protocol is harder than it looks. 

Three general rules that often help are as follows: 

1. Have the initiator prove who she is before the responder has to. In 
this case, Bob gives away valuable information before Trudy has to 
give any evidence of who she is. 

2. Have the initiator and responder use different keys for proof, even if 
this means having two shared keys, KAs and K' AB. 

3. Have the initiator and responder draw their challenges from different 
sets. For example, the initiator must use even numbers and the 
responder must use odd numbers. 

All three rules were violated here, with disastrous results. Note that our first 
(five-message) authentication protocol requires Alice to prove her identity first, so 
that protocol is not subject to the reflection attack. 

Ex.1006.622DELL



SEC. 7.1 NETWORK SECURITY 605 

Establishing a Shared Key: The Diffie-Hellman Key Exchange 

So far we have assumed that Alice and Bob share a secret key. Suppose that 
they do not? How can they establish one? One way would be for Alice to call 
Bob and give him her key on the phone, but he would probably start out by say­
ing: "How do I know you are Alice and not Trudy?" They could try to arrange a 
meeting, with each one bringing a passport, a drivers' license, and three major 
credit cards, but being busy people, they might not be able to find a mutually 
acceptable date for months. Fortunately, incredible as it may sound, there is a 
way for total strangers to establish a shared secret key in broad daylight, even 
with Trudy carefully recording every message. 

The protocol that allows strangers to estq.blish a shared secret key is called the 
Diffie-Hellman key exchange (Diffie and Hellman, 1976) and works as follows. 
Alice and Bob have to agree: on two large prime numbers, n, and g, where 
(n - 1)/2 is also a prime and certain conditions apply to g. These numbers may 
be public, so either one of them can just pick n and g and tell the other openly. 
Now Alice picks a large (say, 512-bit) number, x, and keeps it secret. Similarly, 
Bob picks a large secret number, y. 

Alice initiates the key exchange protocol by sending Bob a message contain­
ing (n, g, gx mod n), as shown in Fig. 7-15. Bob responds by sending Alice a 
message containing gY mod n .. Now Alice takes the number Bob sent her and 
raises it to the xth power to get (gY mod n)x. Bob performs a similar operation to 
get (gx mod n )Y. By the laws of modular arithmetic, both calculations yield 
gxy mod n. Lo and behold, Alice and Bob now share a secret key, gxy mod n. 

Alice 
picks x 

Bob 
picks y 

1---~ n, g, gx mod n 1----1 

~ , ..... 1----
2-1[ gY mod n 1-------1 ~ 

Alice computes 
(gY mod n)x 
= gxy mod n 

Bob computes 
(gx mod n)Y 
= gxy mod n 

Fig. 7-15. The Diffie-Hellman key exchange. 

Trudy, of course, has seen both messages. She knows g and n from message 
1. lf she could compute x and y, she could figure out the secret key. The trouble 
is, given only gx mod n, she cannot find x. No practical algorithm for computing 
discrete logarithms modulo a very large prime number is known. 

To make the above example more concrete, we will use the (completely 
unrealistic) values of n = 47 .and g = 3. Alice picks x = 8 and Bob picks y = 10. 

Ex.1006.623DELL



606 THE APPLICATION LA YER CHAP. 7 

Both of these are kept secret. Alice's message to Bob is (47, 3, 28) because 
38 mod 47 is 28. Bob's message to Alice is (17). Alice computes 178 mod 47, 
which is 4. Bob computes 28 10 mod 47, which is 4. Alice and Bob have 
independently determined that the secret key is now 4. Trudy has to solve the 
equation 3x mod 47 = 28, which can be done by exhaustive search for small 
numbers like this, but not when all the numbers are hundreds of bits long. All 
currently-known algorithms simply take too long, even using a massively parallel 
supercomputer. 

Despite the elegance of the Diffie-Hellman algorithm, there is a problem: 
when Bob gets the triple (47, 3, 28), how does he know it is from Alice and not 
from Trudy? There is no way he can know. Unfortunately, Trudy can exploit this 
fact to deceive both Alice and Bob, as illustrated in Fig. 7-16. Here, while Alice 
and Bob are choosing x and y, respectively, Trudy picks her own random number, 
z. Alice sends message 1 intended for Bob. Trudy intercepts it and sends mes­
sage 2 to Bob, using the correct g and n (which are public anyway) but with her 
own z instead of x. She also sends message 3 back to Alice. Later Bob sends 
message 4 to Alice, which Trudy again intercepts and keeps. 

Alice 
picks x 

Q) 

1----­
f--------i n, g, gx mod n 

~ •~~1------3-<I gz mod n ~ 

Trudy 
picks z 

Bob 
picks y 

2-----
r------< n, g, gz mod n r------• .o 

0 
al 

Fig. 7-16. The bucket brigade attack. 

Now everybody does the modular arithmetic. Alice computes the secret key 
as gxz mod n, and so does Trudy (for messages to Alice). Bob computes 
gYz mod n and so does Trudy (for messages to Bob). Alice thinks she is talking to 
Bob so she establishes a session key (with Trudy). So does Bob. Every message 
that Alice sends on the encrypted session is captured by Trudy, stored, modified if 
desired, and then (optionally) passed on to Bob. Similarly in the other direction. 
Trudy sees everything and can modify all messages at will, while both Alice and 
Bob are under the illusion that they have a secure channel to one another. This 
attack is known as the bucket brigade attack, because it vaguely resembles an 
old-time volunteer fire department passing buckets along the line from the fire 
truck to the fire. It is also called the (wo)man-in-the-middle attack, which 
should not be confused with the meet-in-the-middle attack on block ciphers. For­
tunately, more complex algorithms can defeat this attack. 

Ex.1006.624DELL

606 THE APPLICATION LAYER CHAP. 7

Both of these are kept secret. Alice’s message to Bob is (47, 3, 28) because

38 mod 47 is 28. Bob’s message to Alice is (17). Alice computes 178 mod 47,
which is 4. Bob computes 2810 mod 47, which is 4. Alice and Bob have
independently determined that the secret key is now 4. Trudy has to solve the

equation 3x mod 47:28, which can be done by exhaustive search for small

numbers like this, but not when all the numbers are hundreds of bits long. All

currently-known algorithms simply take too long, even using a massively parallel

supercomputer.

Despite the elegance of the Diffie—Hellman algorithm, there is a problem:

when Bob gets the triple (47, 3, 28), how does he know it is from Alice and not

from Trudy? There is no way he can know. Unfortunately, Trudy can exploit this

fact to deceive both Alice and Bob, as illustrated in Fig. 7-16. Here, while Alice

and Bob are choosing x and y, respectively, Trudy picks her own random number,

z, Alice sends message 1 intended for Bob. Trudy intercepts it and sends mes—

sage 2 to Bob, using the correct 3 and n (which are public anyway) but with her

own z instead of x. She also sends message 3 back to Alice. Later Bob sends

message 4 to Alice, which Trudy again intercepts and keeps.

  
 

  
 
 
  

  
 

Alice Trudy Bob
picks x picks 2 picks y

1 __._
n, g, gX mod n ~———+

2 _7fi.i a,
a, > n,g,meodn——.—» Q
g 3 ) ,).. ,1. g 0
< <~——————— 92 mod n —— ,3: m

<————:L. gy mod n ,7 .7 ..#.,l__.*__
    

  

Fig. 7—16. The bucket brigade attack.

Now everybody does the modular arithmetic. Alice computes the secret key

as g“ mod n, and so does Trudy (for messages to Alice). Bob computes

gyz mod n and so does Trudy (for messages to Bob). Alice thinks she is talking to

Bob so she establishes a session key (with Trudy). So does Bob. Every message

that Alice sends on the encrypted session is captured by Trudy, stored, modified if

desired, and then (optionally) passed on to Bob. Similarly in the other direction.

Trudy sees everything and can modify all messages at will, while both Alice and

Bob are under the illusion that they have a secure channel to one another. This

attack is known as the bucket brigade attack, because it vaguely resembles an

old—time volunteer fire department passing buckets along the line from the fire
truck to the fire. it is also called the (wo)man-in-the-middle attack, which

should not be confused with the meet—in—the—rniddle attack on block ciphers. For—

tunately, more complex algorithms can defeat this attack.

DELL Ex.1006.624



SEC. 7.1 NETWORK SECURITY 607 

Authentication Using a Key Distribution Center 

Setting up a shared secret with a stranger almost worked, but not quite. On 
the other hand, it probably was not worth doing in the first place (sour grapes 
attack). To talk ton people this way, you would need n keys. For popular people, 
key management would become a real burden, especially if each key had to be 
stored on a separate plastic chip card. 

A different approach is to introduce a trusted key distribution center (KDC). 
In this model, each user has a single key shared with the KDC. Authentication 
and session key management now goes through the KDC. The simplest known 
KDC authentication protocol involving two parties and a trusted KDC is depicted 
in Fig. 7-17. 

(]) 

.2 
<i: 

A, KA (B, Ks) l;l~ ~~~2.~i~K-6 -(A-,-K8-)---,r-~~-• S 

Fig. 7-17. A first attempt at an authentication protocol using a KDC. 

The idea behind this protocol is simple: Alice picks a session key, Ks, and 
tells the KDC that she wants to talk to Bob using Ks. This message is encrypted 
with the secret key Alice shares (only) with the KDC, KA. The KDC decrypts this 
message, extracting Bob's identity and the session key. It then constructs a new 
message containing Alice's identity and the session key and sends this message to 
Bob. This encryption is done with K8 , the secret key Bob shares with the KDC. 
When Bob decrypts the message, he learns that Alice wants to talk to him, and 
which key she wants to use. 

The authentication here happens for free. The KDC knows that message 1 
must have come from Alice, since no one else would have been able to encrypt it 
with Alice's secret key. Simillarly, Bob knows that message 2 must have come 
from the KDC, whom he trusts, since no one else knows his secret key. 

Unfortunately, this protocol has a serious flaw. Trudy needs some money, so 
she figures out some legitimate service she can perform for Alice, makes an 
attractive offer, and gets the job. After doing the work, Trudy then politely 
requests Alice to pay by bank transfer. Alice then establishes a session key with 
her banker, Bob. Then she sends Bob a message requesting money to be 
transferred to Trudy's account. 

Meanwhile, Trudy is back to her old ways, snooping on the network. She 
copies both message 2 in Fig. 7-17, and the money-transfer request that follows it. 

Ex.1006.625DELL



608 THE APPLICATION LA YER CHAP. 7 

Later, she replays both of them to Bob. Bob gets them and thinks: "Alice must 
have hired Trudy again. She clearly does good work." Bob then transfers an 
equal amount of money from Alice's account to Trudy's. Some time after the 
50th message pair, Bob runs out of the office to find Trudy to offer her a big loan 
so she can expand her obviously successful business. This problem is called the 
replay attack. 

Several solutions to the replay attack are possible. The first one is to include 
a timestamp in each message. Then if anyone receives an obsolete message, it 
can be discarded. The trouble with this approach is that clocks are never exactly 
synchronized over a network, so there has to be some interval during which a 
timestamp is valid. Trudy can replay the message during this interval and get 
away with it. 

The second solution is to put a one-time, unique message number, usually 
called a nonce, in each message. Each party then has to remember all previous 
nonces and reject any message contqining a previously used nonce. But nonces 
have to be remembered forever, lest Trudy try replaying a 5-year-old message. 
Also, if some machine crashes and it loses its nonce list, it is again vulnerable to a 
replay attack. Timestamps and nonces can be combined to limit how long nonces 
have to be remembered, but clearly the protocol is going to get a lot more compli­
cated. 

A more sophisticated approach to authentication is to use a multiway 
challenge-response protocol. A well-known example of such a protocol is the 
Needham-Schroeder authentication protocol (Needham and Schroeder, 1978), 
one variant of which is shown in Fig. 7-18. 

-

31 
K8(A, Ks), Ks (RA2) I 

I I 

41 
Ks (RA2-1), Rs I 

I I 

51 
Ks (Rs -1) I 

I I 

Fig. 7-18. The Needham-Schroeder authentication protocol. 

The protocol begins with Alice telling the KDC that she wants to talk to Bob. 
This message contains a large random number, RA, as a nonce. The KDC sends 
back message 2 containing Alice's random number, a session key, and a ticket 
that she can send to Bob. The point of the random number, RA, is to assure Alice 
that message 2 is fresh, and not a replay. Bob's identity is also enclosed in case 
Trudy gets any funny ideas about replacing B in message 1 with her own identity 

Ex.1006.626DELL

608 THE APPLICATION LAYER CHAP. 7

Later, she replays both of them to Bob. Bob gets them and thinks: “Alice must

have hired Trudy again. She clearly does good work.” Bob then transfers an

equal amount of money from Alice’s account to Trudy’s. Some time after the

50th message pair, Bob runs out of the office to find Trudy to offer her a big loan

so she can expand her obviously successful business. This problem is called the

replay attack.

Several solutions to the replay attack are possible. The first one is to include

a timestamp in each message. Then if anyone receives an obsolete message, it

can be discarded. The trouble with this approach is that clocks are never exactly

synchronized over a network, so there has to be some interval during which a

timestamp is valid. Trudy can replay the message during this interval and get

away with it.

The second solution is to put a one—time, unique message number, usually

called a nonce, in each message. Each party then has to remember all previous

nonces and reject any message containing a previously used nonce. But nonces

have to be remembered forever, lest Trudy try replaying a 5—year—old message.

Also, if some machine crashes and it loses its nonee list, it is again vulnerable to a

replay attack. Timestamps and nonces can be combined to limit how long nonces

have to be remembered, but clearly the protocol is going to get a lot more compli-
cated.

A more sophisticated approach to authentication is to use a multiway

challenge-response protocol. A well-known example of such a protocol is the
Needham-Schroeder authentication protocol (Needham and Schroeder, 1978),

one variant of which is shown in Fig. 7-18.

1

RA: A, B "_'—__>

KA (RA! B, Ks, KB(A- Ks» *—

3

 

 

 

2     

  
 

Alice   
 

 

5 KS(RB 1) l »
 

 
 

 
 

Fig. 7-18. The Needham-Schroeder authentication protocol,

The protocol begins with Alice telling the KDC that she wants to talk to Bob.

This message contains a large random number, RA, as a nonce. The KDC sends

back message 2 containing Alice’s random number, a session key, and a ticket

that she can send to Bob. The point of the random number, RA, is to assure Alice

that message 2 is fresh, and not a replay. Bob’s identity is also enclosed in case

Trudy gets any funny ideas about replacing B in message 1 with her own identity

DELL Ex.1006.626



SEC. 7.1 NETWORK SECURITY 609 

so the KDC will encrypt the ticket at the end of message 2 with KT instead of Ks. 
The ticket encrypted with Ks is included inside the encrypted message to prevent 
Trudy from replacing it with something else on the way back to Alice. 

Alice now sends the ticket to Bob, along with a new random number, RAz, 
encrypted with the session key, Ks. In message 4, Bob sends back Ks(RAz - 1) to 
prove to Alice that she is talking to the real Bob. Sending back Ks(RA 2 ) would 
not have worked, since Trudy could just have stolen it from message 3. 

After receiving message 4, Alice is now convinced that she is talking to Bob, 
and that no replays could have been used so far. After all, she just generated RA 2 

a few milliseconds ago. The purpose of message 5 is to convince Bob that it is 
indeed Alice he is talking to, and no replays are being used here either. By having 
each party both generate a challenge and respond to one, the possibility of any 
kind of replay attack is eliminated. 

Although this protocol seems pretty solid, it does have a slight weakness. If 
Trudy ever manages to obtain an old session key in plaintext, she can initiate a 
new session with Bob replaying the message 3 corresponding to the compromised 
key and convince him that she is Alice (Denning and Sacco, 1981). This time she 
can plunder Alice's bank account without having to perform the legitimate service 
even once. 

Needham and Schroeder later published a protocol that corrects this problem 
(Needham and Schroeder, 1987). In the same issue of the same journal, Otway 
and Rees (1987) also published a protocol that solves the problem in a shorter 
way. Figure 7-19 shows a slightly modified Otway-Rees protocol. 

1-----------
1-1[ A, B, R, KA (A, B, R, RA) 

0 
0 ::.:: 

2 A, KA (A, 8, R, RA), 
, __ ---< B, K

8 
(A, B, R, R

8
) 

3~----

Fig. 7-19. The Otway-Rees authentication protocol (slightly simplified). 

.. 

.0 
0 en 

In the Otway-Rees protocol, Alice starts out by generating a pair of random 
numbers, R, which will be used as a common identifier, and RA which Alice will 
use to challenge Bob. When Bob gets this message, he constructs a new message 
from the encrypted part of Alice's message, and an analogous one of his own. 
Both the parts encrypted with KA and Ks identify Alice and Bob, contain the com­
mon identifier, and contain a challenge. 

The KDC checks to see if the R in both parts is the same. It might not be 
because Trudy tampered with R in message 1 or replaced part of message 2. If 

Ex.1006.627DELL

SEC. 7.1 NETWORK SECURITY 609

so the KDC will encrypt the ticket at the end of message 2 with KT instead of KB.

The ticket encrypted with KB is included inside the encrypted message to prevent

Trudy from replacing it with something else on the way back to Alice.

Alice now sends the ticket to Bob, along with a new random number, RAZ,

encrypted with the session key, Ks. In message 4, Bob sends back KS(RA2 — l) to

prove to Alice that she is talking to the real Bob. Sending back K5(RA 2) would

not have worked, since Trudy could just have stolen it from message 3.

After receiving message 4, Alice is now convinced that she is talking to Bob,

and that no replays could have been used so far. After all, she just generated RA2

a few milliseconds ago. The purpose of message 5 is to convince Bob that it is

indeed Alice he is talking to, and no replays are being used here either. By having

each party both generate a challenge and respond to one, the possibility of any

kind of replay attack is eliminated.

Although this protocol seems pretty solid, it does have a slight weakness. If

Trudy ever manages to obtain an old session key in plaintext, she can initiate a

new session with Bob replaying the message 3 corresponding to the compromised

key and convince him that she is Alice (Denning and Sacco, 1981). This time she

can plunder Alice’s bank account Without having to perform the legitimate service
even once.

Needham and Schroeder later published a protocol that corrects this problem

(Needham and Schroeder, 1987). In the same issue of the same journal, Otway

and Rees (1987) also published a protocol that solves the problem in a shorter

way. Figure 7—19 shows a slightly modified Otway-Rees protocol.

1

L__ A, B, R, KA (A, B, R, RA)

Alice  4  
Fig. 7-19. The Otway-Rees authentication protocol (slightly simplified).

In the Otway-Rees protocol, Alice starts out by generating a pair of random

numbers, R, which will be used as a common identifier, and RA which Alice will

use to challenge Bob. When lBob gets this message, he constructs a new message

from the encrypted part of Alice’s message, and an analogous one of his own.

Both the parts encrypted with KA and [(3 identify Alice and Bob, contain the c0m~

mon identifier, and contain a challenge.

The KDC checks to see if the R in both parts is the same. It might not be

because Trudy tampered with R in message 1 or replaced part of message 2. If

DELL Ex.1006.627



610 THE APPLICATION LA YER CHAP. 7 

the two Rs match, the KDC believes that the request message from Bob is valid. 
It then generates a session key and encrypts it twice, once for Alice and once for 
Bob. Each message contains the receiver's random number, as proof that the 
KDC, and not Trudy, generated the message. At this point both Alice and Bob are 
in possession of the same session key and can start communicating. The first time 
they exchange data messages, each one can see that the other one has an identical 
copy of Ks, so the authentication is then complete. 

Authentication Using Kerberos 

An authentication protocol used in many real systems is Kerberos, which is 
based on a variant of Needham-Schroeder. It is named for a multiheaded dog in 
Greek Mythology that used to guard the entrance to Hades (presumably to keep 
undesirables out). Kerberos was designed at M.I.T. to allow workstation users to 
access network resources in a secure way. Its biggest difference with Needham­
Schroeder is its assumption that all clocks are fairly-well synchronized. The pro­
tocol has gone through several iterations. V 4 is the version most widely used in 
industry, so we will describe it. Afterward, we will say a few words about its suc­
cessor, VS. For more information, see (Neuman and Ts'o, 1994; and Steiner et 
al., 1988). 

Kerberos involves three servers in addition to Alice (a client workstation): 

Authentication Server (AS): verifies users during login 
Ticket-Granting Server (TGS): issues "proof of identity tickets" 
Bob the server: actually does the work Alice wants performed 

AS is similar to a KDC in that it shares a secret password with every user. The 
TGS' s job is to issue tickets that can convince the real servers that the bearer of a 
TGS ticket really is who he or she claims to be. 

To start a session, Alice sits down at a arbitrary public workstation and types 
her name. The workstation sends her name to the AS in plaintext, as shown in 
Fig. 7-20. What comes back is a session key and a ticket, Krns(A, Ks), intended 
for the TGS. These items are packaged together and encrypted using Alice's 
secret key, so that only Alice can decrypt them. Only when message 2 arrives, 
does the workstation ask for Alice's password. The password is then used to gen­
erate KA, in order to decrypt message 2 and obtain the session key and TGS ticket 
inside it. At this point, the workstation overwrites Alice's password, to make sure 
that it is only inside the workstation for a few milliseconds at most. If Trudy tries 
logging in as Alice, the password she types will be wrong and the workstation will 
detect this because the standard part of message 2 will be incorrect. 

After she logs in, Alice may tell the workstation that she wants to contact Bob 
the file server. The workstation then sends message 3 to the TGS asking for a 
ticket to use with Bob. The key element in this request is Kros(A, Ks), which is 

Ex.1006.628DELL



SEC. 7.1 NETWORK SECURITY 

,__ ______ ___, A ~---------
2 ~-----~ ~ Login 

----; KA (Ks, Krns (A, Ks)) 

1---------
3
--ll Krns (A, Ks). B, Ks (t) 

4..-------------~ 
Ks (B, KAs). Ks (A, KAs) 

5 ..-------------, 
Ks (A, KAs ), KAs (t) 

6 
KAs(t+1) 

Fig. 7-20. The operation ofKerberos V4. 

(f) Get a 
~ ticket 

.. 

611 

Do the 
work 

encrypted with the TGS's secret key and is used as proof that the sender really is 
Alice. The TGS responds by creating a session key, KAB, for Alice to use with 
Bob. Two versions of it are sent back. The first is encrypted with only K5 , so 
Alice can read it. The second is encrypted with Bob's key, Ks, so Bob can read 
it. 

Trudy can copy message 3 and try to use it again, but she will be foiled by the 
encrypted timestamp, t, sent along with it. Trudy cannot replace the timestamp 
with a more recent one, because she does not know Ks, the session key Alice uses 
to talk to the TGS. Even if Trudy replays message 3 quickly, all she will get is 
another copy of message 4, which she could not decrypt the first time and will not 
be able to decrypt the second time either. 

Now Alice can send KAB to Bob to establish a session with him. This 
exchange is also timestamped. The response is proof to Alice that she is actually 
talking to Bob, not to Trudy. 

After this series of exchanges, Alice can communicate with Bob under cover 
of KAB. If she later decides she needs to talk to another server, Carol, she just 
repeats message 3 to the TGS, only now specifying C instead of B. The TGS will 
promptly respond with a ticket encrypted with Kc that Alice can send to Carol 
and that Carol will accept as proof that it came from Alice. 

The point of all this work is that now Alice can access servers all over the net­
work in a secure way, and her password never has to go over the network. In fact, 
it only had to be in her own workstation for a few milliseconds. However, note 
that each server does its own authorization. When Alice presents her ticket to 
Bob, this merely proves to Bob who sent it. Precisely what Alice is allowed to do 
is up to Bob. 

Since the Kerberos designers did not expect the entire world to trust a single 
authentication server, they made provision for having multiple realms, each with 
its own AS and TGS. To get a ticket for a server in a distant realm, Alice would 
ask her own TGS for a ticket accepted by the TGS in the distant realm. If the 

Ex.1006.629DELL

SEC. 7.1 NETWORK SECURITY 611

 

KA (Ks: KTGS (A1 Ksi)

3

w KTGS (A, Ks), B: Ks (l) Get a
'—

 
 

Alice 4

m)Ks (A: Km

5

|———-—-——IE(A. KAB in KA13 (l) '8 Do the
§———————6£ KAB(t+1) “3

Fig. 7-20. The operation of Kerberos V4.

 
encrypted with the TGS’s secret key and is used as proof that the sender really is

Alice. The TGS responds by creating a session key, KAB, for Alice to use with

Bob. Two versions of it are sent back. The first is encrypted with only KS, so

Alice can read it. The second is encrypted with Bob’s key, KB, so Bob can read
It.

Trudy can copy message 3 and try to use it again, but she will be foiled by the

encrypted timestamp, t, sent along with it. Trudy cannot replace the timestamp

with a more recent one, because she does not know KS, the session key Alice uses

to talk to the TGS. Even if Trudy replays message 3 quickly, all she will get is

another copy of message 4, which she could not decrypt the first time and will not

be able to decrypt the second time either.

Now Alice can send KAB to Bob to establish a session with him. This

exchange is also timestamped. The response is proof to Alice that she is actually

talking to Bob, not to Trudy.

After this series of exchanges, Alice can communicate with Bob under cover

of KAB. If she later decides she needs to talk to another server, Carol, she just

repeats message 3 to the TGS, only now specifying C instead of B. The TGS will

promptly respond with a ticket encrypted with KC that Alice can send to Carol

and that Carol will accept as proof that it came from Alice.

The point of all this work is that now Alice can access servers all over the net—

work in a secure way, and her password never has to go over the network. In fact,

it only had to be in her own workstation for a few milliseconds. However, note

that each server does its own authorization. When Alice presents her ticket to

Bob, this merely proves to Bob who sent it. Precisely what Alice is allowed to do

is up to Bob.

Since the Kerberos designers did not expect the entire world to trust a single

authentication server, they made provision for having multiple reahns, each with

its own AS and TGS. To get a ticket for a server in a distant realm, Alice would

ask her own TGS for a ticket accepted by the TGS in the distant realm. If the

DELL Ex.1006.629



612 THE APPLICATION LAYER CHAP. 7 

distant TGS has registered with the local TGS (the same way local servers do), 
the local TGS will give Alice a ticket valid at the distant TGS. She can then do 
business over there, such as getting tickets for servers in that realm. Note, how­
ever, that for parties in two realms to do business, each one must trust the other's 
TGS. 

Kerberos V5 is fancier than V4 and has more overhead. It also uses OSI 
ASN.1 (Abstract Syntax Notation 1) for describing data types and has small 
changes in the protocols. Furthermore, it has longer ticket lifetimes, allows tick­
ets to be renewed, and will issue postdated tickets. In addition, at least in theory, 
it is not DES dependent, as V 4 is, and supports multiple realms. 

Authentication Using Public-Key Cryptography 

Mutual authentication can also be done using public-key cryptography. To 
start with, let us assume Alice and Bob already know each other's public keys (a 
nontrivial issue). They want to establish a session, and then use secret-key cryp­
tography on that session, since it is typically 100 to 1000 times faster than public­
key cryptography. The purpose of the initial exchange then is to authenticate each 
other and agree on a secret shared session key. 

This setup can be done is various ways. A typical one is shown in Fig. 7-21. 
Here Alice starts by encrypting her identity and a random number, RA, using 
Bob's public (or encryption) key, Es. When Bob receives this message, he has no 
idea of whether it came from Alice or from Trudy, but he plays along and sends 
Alice back a message containing Alice's RA, his own random number, Rs, and a 
proposed session key, Ks. 

2~---~ 
, ___ __, EA (RA, Rs. Ks) r-----1 

r----3~ Ks~ 

.0 
0 
Ill 

Fig. 7-21. Mutual authentication using public-key cryptography. 

When Alice gets message 2, she decrypts it using her private key. She sees 
RA in it, which gives her a warm feeling inside. The message must have come 
from Bob, since Trudy has no way of determining RA. Furthermore, it must be 
fresh and not a replay, since she just sent Bob RA. Alice agrees to the session by 
sending back message 3. When Bob sees Rs encrypted with the session key he 
just generated, he knows Alice got message 2 and verified RA. 

What can Trudy do to try to subvert this protocol? She can fabricate message 
1 and trick Bob into probing Alice, but Alice will see an RA that she did not send 
and will not proceed further. Trudy cannot forge message 3 convincingly because 

Ex.1006.630DELL

612 THE APPLICATION LAYER CHAP. 7

distant TGS has registered with the local TGS (the same way local servers do),

the local TGS will give Alice a ticket valid at the distant TGS. She can then do

business over there, such as getting tickets for servers in that realm. Note, how—

ever, that for parties in two realms to do business, each one must trust the other’s
TGS.

Kerberos V5 is fancier than V4 and has more overhead. It also uses 081

ASN.1 (Abstract Syntax Notation 1) for describing data types and has small

changes in the protocols. Furthermore, it has longer ticket lifetimes, allows tick-

ets to be renewed, and will issue postdated tickets. in addition, at least in theory,

it is not DES dependent, as V4 is, and supports multiple realms.

Authentication Using Public-Key Cryptography

Mutual authentication can also be done using public—key cryptography. To

start with, let us assume Alice and Bob already know each other’s public keys (a

nontrivial issue). They want to establish a session, and then use secret—key cryp—

tography on that session, since it is typically 100 to 1000 times faster than public—

key cryptography. The purpose of the initial exchange then is to authenticate each

other and agree on a secret shared session key.

This setup can be done is various ways. A typical one is shown in Fig. 7—21.

Here Alice starts by encrypting her identity and a random number, RA, using

Bob’s public (or encryption) key, EB. When Bob receives this message, he has no

idea of whether it came from Alice or from Trudy, but he plays along and sends

Alice back a message containing Alice’s RA, his own random number, RB, and a

proposed session key, Ks-

T" 'l 1——“

2
.___ EA (RA‘ RB! Ks) ——

3 r7-i ,)_.,

flgfli—‘Q’

 Alice Bob
     

Fig. 7-21. Mutual authentication using public-key cryptography.

When Alice gets message 2, she decrypts it using her private key. She sees

RA in it, which gives her a warm feeling inside. The message must have come

from Bob, since Trudy has no way of determining RA. Furthermore, it must be

fresh and not a replay, since she just sent Bob RA. Alice agrees to the session by

sending back message 3. When Bob sees RB encrypted with the session key he

just generated, he knows Alice got message 2 and verified RA.

What can Trudy do to try to subvert this protocol? She can fabricate message

1 and trick Bob into probing Alice, but Alice will see an RA that she did not send

and will not proceed further. Trudy cannot forge message 3 convincingly because

DELL Ex.1006.630



SEC. 7.1 NETWORK SECURITY 613 

she does not know RB or Ks and cannot determine them without Alice's private 
key. She is out of luck. 

However, the protocol does have a weakness: it assumes that Alice and Bob 
already know each other's public keys. Suppose that they do not. Alice could 
just send Bob her public key in the first message and ask Bob to send his back in 
the next one. The trouble with this approach is that it is subject to a bucket bri­
gade attack. Trudy can capture Alice's message to Bob and send her own public 
key back to Alice. Alice will think she has a key for talking to Bob, when, in fact, 
she has a key for talking to Trudy. Now Trudy can read all the messages 
encrypted with what Alice thinks is Bob's public key. 

The initial public-key exchange can be avoided by having all the public keys 
stored in a public database. Then Alice and Bob can fetch each other's public 
keys from the database. Unfortunately, Trudy can still pull off the bucket brigade 
attack by intercepting the requests to the database and sending simulated replies 
containing her own public key. After all, how do Alice and Bob know that the 
replies came from the real data base and not from Trudy? 

Rivest and Shamir (1984) have devised a protocol that foils Trudy's bucket 
brigade attack. In their interlock protocol, after the public key exchange, Alice 
sends only half of her message to Bob, say, only the even bits (after encryption). 
Bob then responds with his even bits. After getting Bob's even bits, Alice sends 
her odd bits, then Bob does too. 

The trick here is that when Trudy gets Alice's even bits, she cannot decrypt 
the message, even though Trudy has the private key. Consequently, she is unable 
to reencrypt the even bits using Bob's public key. If she sends junk to Bob, the 
protocol will continue, but Bob will shortly discover that the fully assembled mes­
sage makes no sense and realized that he has been spoofed. 

7.1.6. Digital Signatures 

The authenticity of many legal, financial, and other documents is deteq:nined 
by the presence or absence of an authorized handwritten signature. And photo­
copies do not count. For computerized message systems to replace the physical 
transport of paper and ink documents, a solution must be found to these problems. 

The problem of devising a replacement for handwritten signatures is a diffi­
cult one. Basically, what is needed is a system by which one party can send a 
"signed" message to another party in such a way that 

1. The receiver can verify the claimed identity of the sender. 

2. The sender cannot later repudiate the contents of the message. 

3. The receiver cannot possibly have concocted the message himself. 

The first requirement is needed, for example, in financial systems. When a 
customer's computer orders a bank's computer to buy a ton of gold, the bank's 

Ex.1006.631DELL



614 THE APPLICATION LA YER CHAP. 7 

computer needs to be able to make sure that the computer giving the order really 
belongs to the company whose account is to be debited. 

The second requirement is needed to protect the bank against fraud. Suppose 
that the bank buys the ton of gold, and immediately thereafter the price of gold 
drops sharply. A dishonest customer might sue the bank, claiming that he never 
issued any order to buy gold. When the bank produces the message in court, the 
customer denies having sent it. 

The third requirement is needed to protect the customer in the event that the 
price of gold shoots up and the bank tries to construct a signed me~sage in which 
the customer asked for one bar of gold instead of one ton. 

Secret-Key Signatures 

One approach to digital signatures is to have a central authority that knows 
everything and whom everyone trusts, say Big Brother (BB). Each user then 
chooses a secret key and carries it by hand to BB's office. Thus only Alice and 
BB know Alice's secret, KA, and so on. 

When Alice wants to send a signed plaintext message, P, to her banker, Bob, 
she generates KA(B, RA, t, P) and sends it as depicted in Fig. 7-22. BB sees that 
the message is from Alice, decrypts it, and sends a message to Bob as shown. The 
message to Bob contains the plaintext of Alice's message and also the signed 
message K88 (A, t, P), where t is a timestamp. Bob now carries out Alice's 
request. 

co 
ro K8 (A, RA, t, P, K88 (A, t, P)) 

Fig. 7-22. Digital signatures with Big Brother. 

.a 
0 
al 

What happens if Alice later denies sending the message? Step 1 is that every­
one sues everyone (at least, in the United States). Finally, when the case comes to 
court and Alice vigorously denies sending Bob the disputed message, the judge 
will ask Bob how he can be sure that the disputed message came from Alice and 
not from Trudy. Bob first points out that BB will not accept a message from Alice 
unless it is encrypted with KA, so there is no possibility of Trudy sending BB a 
false message from Alice. 

Bob then dramatically produces Exhibit A, K88 (A, t, P). Bob says that this is 
a message signed by BB which proves Alice sent P to Bob. The judge then asks 

Ex.1006.632DELL

614 THE APPLICATION LAYER CHAP. 7

computer needs to be able to make sure that the computer giving the order really

belongs to the company whose account is to be debited.

The second requirement is needed to protect the bank against fraud, Suppose

that the bank buys the ton of gold, and immediately thereafter the price of gold

drops sharply. A dishonest customer might sue the bank, claiming that he never

issued any order to buy gold. When the bank produces the message in court, the

customer denies having sent it.

The third requirement is needed to protect the customer in the event that the

price of gold shoots up and the bank tries to construct a signed message in which

the customer asked for one bar of gold instead of one ton.

Secret-Key Signatures

One approach to digital signatures is to have a central authority that knows

everything and whom everyone trusts, say Big Brother (BB). Each user then

chooses a secret key and carries it by hand to BB’s office. Thus only Alice and

BB know Alice’s secret, KA, and so on.

When Alice wants to send a signed plaintext message, P, to her banker, Bob,

she generates KA (B, RA, I, P) and sends it as depicted in Fig. 7—22. BB sees that

the message is from Alice, decrypts it, and sends a message to Bob as shown. The

message to Bob contains the plaintext of Alice’s message and also the signed

message K8301, t, P), where t is a timestamp. Bob now carries out Alice’s

request.

r—‘v A, KA (B, RA, t, P) Eh»

 

  

~—~ KB (A, RA, t, P, KBB (A, t, P)) —~> Bob  Alice BB
      I

Fig. 7-22. Digital signatures with Big Brother.

What happens if Alice later denies sending the message? Step 1 is that every

one sues everyone (at least, in the United States). Finally, when the case comes to

court and Alice vigorously denies sending Bob the disputed message, the judge

will ask Bob how he can be sure that the disputed message came from Alice and

not from Trudy. Bob first points out that BB will not accept a message from Alice

unless it is encrypted with KA, so there is no possibility of Trudy sending BB a

false message from Alice.

Bob then dramatically produces Exhibit A, K33M, t, P). Bob says that this is

a message signed by BB which proves Alice sent P to Bob. The judge then asks

DELL Ex.1006.632



SEC. 7.1 NETWORK SECURITY 615 

BB (whom everyone trusts) to decrypt Exhibit A. When BB testifies that Bob is 
telling the truth, the judge decides in favor of Bob. Case dismissed. 

One potential problem with the signature protocol of Fig. 7-22 is Trudy 
replaying either message. To minimize this problem, timestamps are used 
throughout. Furthermore, Bob can check all recent messages to see if RA was 
used in any of them. If so, the message is discarded as a replay. Note that Bob 
will reject very old messages based on the timestamp. To guard against instant 
replay attacks, Bob just checks the RA of every incoming message to see if such a 
message has been received from Alice in the past hour. If not, Bob can safely 
assume this is a new request. 

Public-Key Signatures 

A structural problem with using secret-key cryptography for digital signatures 
is that everyone has to agree to trust Big Brother. Furthermore, Big Brother gets 
to read all signed messages. The most logical candidates for running the Big 
Brother server are the government, the banks, or the lawyers. These organizations 
do not inspire total confidence in all citizens. Hence, it would be nice if signing 
documents did not require a trusted authority. 

Fortunately, public-key cryptography can make an important contribution 
here. Let us assume that the public-key encryption and decryption algorithms 
have the property that E(D(P)) = P in addition to the usual property that 
D(E(P)) = P. (RSA has this property, so the assumption is not unreasonable.) 
Assuming that this is the case, Alice can send a signed plaintext message, P, to 
Bob by transmitting EB(DA(P)). Note carefully that Alice knows her own 
(private) decryption key, DA, as well as Bob's public key, EB, so constructing this 
message is something Alice can do. 

When Bob receives the message, he transforms it using his private key, as 
usual, yielding DA(P), as shown in Fig. 7-23. He stores this text in a safe place 
and then decrypts it using EA to get the original plaintext. 

Transmission line 
Alice's computer 

j 
Bob's computer 

Moe' rn Bob's Alice's 
P - private key, - public key, private key, - public key, -P 

DA Es 

1 
Ds EA 

Fig. 7-23. Digital signatures using public-key cryptography. 

To see how the signature property works, suppose that Alice subsequently 
denies having sent the message P to Bob. When the case comes up in court, Bob 

Ex.1006.633DELL

SEC. 7.1 NETWORK SECURITY 615

BB (whom everyone trusts) to decrypt Exhibit A. When BB testifies that Bob is

telling the truth, the judge decides in favor of Bob. Case dismissed.

One potential problem with the signature protocol of Fig. 7-22 is Trudy

replaying either message. To minimize this problem, timestamps are used

throughout. Furthermore, Bob can check all recent messages to see if RA was

used in any of them. If so, the message is discarded as a replay. Note that Bob

will reject very old messages based on the timestamp. To guard against instant

replay attacks, Bob just checks the RA of every incoming message to see if such a

message has been received from Alice in the past hour. If not, Bob can safely

assume this is a new request.

Public-Key Signatures

A structural problem with using secret—key cryptography for digital signatures

is that everyone has to agree to trust Big Brother. Furthermore, Big Brother gets

to read all signed messages. The most logical candidates for running the Big

Brother server are the government, the banks, or the lawyers. These organizations

do not inspire total confidence in all citizens. Hence, it would be nice if signing

documents did not require a trusted authority.

Fortunately, public-key cryptography can make an important contribution

here. Let us assume that the public-key encryption and decryption algorithms

have the property that E(Di(P)) : P in addition to the usual property that

D(E(P)) =P. (RSA has this property, so the assumption is not unreasonable.)

Assuming that this is the case, Alice can send a signed plaintext message, P, to

Bob by transmitting EB(DA (P)). Note carefully that Alice knows her own

(private) decryption key, DA, as well as Bob’s public key, EB, so constructing this

message is something Alice can do.

When Bob receives the message, he transforms it using his private key, as

usual, yielding DA (P), as shown in Fig. 7—23. He stores this text in a safe place

and then decrypts it using EA to get the original plaintext.

Transmission line
  

  

     
  

Alice's computer Bob's computer

Alice‘s Bob's i Bob's Alice's
private key, PUb'iC‘ key, private key, fl PUb'iC key, ‘——’ P

DA EB [ DB I EA 
DA(P) EB (DAiPl) DA(F’)

Fig. 7-23. Digital signatures using public-key cryptography.

To see how the signature property works, suppose that Alice subsequently

denies having sent the message P to Bob. When the case comes up in court, Bob

DELL Ex.1006.633



616 THE APPLICATION LA YER CHAP. 7 

can produce both P and DA (P ). The judge can easily verify that Bob indeed has a 
valid message encrypted by DA by simply applying EA to it. Since Bob does not 
know what Alice's private key is, the only way Bob could have acquired a mes­
sage encrypted by it is if Alice did indeed send it. While in jail for perjury and 
fraud, Alice will have plenty of time to devise interesting new public-key algo­
rithms. 

Although using public-key cryptography for digital signatures is an elegant 
scheme, there are problems that are related to the environment in which they 
operate rather than with the basic algorithm. For one thing, Bob can prove that a 
message was sent by Alice only as long as DA remains secret. If Alice discloses 
her secret key, the argument no longer holds, because anyone could have sent the 
message, including Bob himself. 

The problem might arise, for example, if Bob is Alice's stockbroker. Alice 
tells Bob to buy a certain stock or bond. Immediately thereafter, the price drops 
sharply. To repudiate her message to Bob, Alice runs to the police claiming that 
her home was burglarized and her key was stolen. Depending on the laws in her 
state or country, she may or may not be legally liable, especially if she claims not 
to have discovered the break-in until getting home from work, several hours later. 

Another problem with the signature scheme is what happens if Alice decides 
to change her key. Doing so is clearly legal, and it is probably a good idea to do 
so periodically. if a court case later arises, as described above, the judge will 
apply the current EA to DA (P) and discover that it does not produce P. Bob will 
look pretty stupid at this point. Consequently, it appears that some authority is 
probably needed to record all key changes and their dates. 

In principle, any public-key algorithm can be used for digital signatures. The 
de facto industry standard is the RSA algorithm. Many security products use it. 
However, in 1991, NIST (National Institute of Standards and Technology) pro­
posed using a variant of the El Gamal public-key algorithm for their new Digital 
Signature Standard (DSS). El Gamal gets its security from the difficulty of 
computing discrete logarithms, rather than the difficulty of factoring large 
numbers. 

As usual when the government tries to dictate cryptographic standards, there 
was an uproar. DSS was criticized for being 

1. Too secret (NSA designed the protocol for using El Gamal). 

2. Too new (El Gamal has not yet been thoroughly analyzed). 

3. Too slow (10 to 40 times slower than RSA for checking signatures). 

4. Too insecure (fixed 512-bit key). 

In a subsequent revision, the fourth point was rendered moot when keys up to 
1024 bits were allowed. It is not yet clear whether DSS will catch on. For more 
details, see (Kaufman et al., 1995; Schneier, 1996; and Stinson, 1995). 

Ex.1006.634DELL



SEC. 7.1 NETWORK SECURITY 617 

Message Digests 

One criticism of signature methods is that they often couple two distinct func­
tions: authentication and secrecy. Often, authentication is needed but secrecy is 
not. Since cryptography is slow, it is frequently desirable to be able to send 
signed plaintext documents. Below we will describe an authentication scheme 
that does not require encrypting the entire message (De Jonge and Chaum, 1987). 

This scheme is based on the idea of a one-way hash function that takes an 
arbitrarily long piece of plaintext and from it computes a fixed-length bit string. 
This hash function, often called a message digest, has three important properties: 

1. Given P, it is easy to compute MD(P). 

2. Given MD(P), it is effectively impossible to find P. 

3. No one can generate two messages that have the same message digest. 

To meet criterion 3, the hash should be at least 128 bits long, preferably more. 
Computing a message digest from a piece of plaintext is much faster than 

encrypting that plaintext with a public-key algorithm, so message digests can be 
used to speed up digital signature algorithms. To see how this works, consider the 
signature protocol of Fig. 7-22 again. Instead of signing P with Kss(A, t, P), BB 
now computes the message digest by applying MD to P, yielding MD(P). BB 
then encloses Kss(A, t, MD(P)) as the fifth item in the list encrypted with Ks that 
is sent to Bob, instead of Kss(AL, t, P). 

If a dispute arises, Bob can produce both P and Kss(A, t, MD(P)). After Big 
Brother has decrypted it for the judge, Bob has MD(P), which is guaranteed to be 
genuine, and the alleged P. However, since it is effectively impossible for Bob to 
find any other message that gives this hash, the judge will easily be convinced that 
Bob is telling the truth. Using message digests in this way saves both encryption 
time and message transport and storage costs. 

Message digests work in public-key cryptosystems, too, as shown in Fig. 7-
24. Here, Alice first computes the message digest of her plaintext. She then signs 
the message digest and sends both the signed digest and the plaintext to Bob. If 
Trudy replaces P underway, Bob will see this when he computes MD(P) himself . 

P, DA (MD (P)) 
..c 
0 ro 

Fig. 7-24. Digital signatures using message digests. 

A variety of message digest functions have been proposed. The most widely 
used ones are MD5 (Rivest, 1992) and SHA (NIST, 1993). MDS is the fifth in a 

Ex.1006.635DELL

SEC. 7.1 NETWORK SECURITY 617

Message Digests

One criticism of signature methods is that they often couple two distinct func-

tions: authentication and secrecy. Often, authentication is needed but secrecy is

not. Since cryptography is slow, it is frequently desirable to be able to send

signed plaintext documents. Below we will describe an authentication scheme

that does not require encrypting the entire message (De Jonge and Chaum, 1987).

This scheme is based on the idea of a one-way hash function that takes an

arbitrarily long piece of plaintext and from it computes a fixed-length bit string.

This hash function, often called a message digest, has three important properties:

1. Given P, it is easy to compute MD (P).

2. Given MD(P), it is effectively impossible to find P.

3. No one can generate two messages that have the same message digest.

T0 meet criterion 3, the hash should be at least 128 bits long, preferably more.

Computing a message digest from a piece of plaintext is much faster than

encrypting that plaintext with a public—key algorithm, so message digests can be

used to speed up digital signature algorithms. To see how this works, consider the

signature protocol of Fig. 7-22 again. Instead of signing P with KBB (A, t, P), BB

now computes the message digest by applying MD to P, yielding MD(P). BB

then encloses KBB (A, t, MD (P )) as the fifth item in the list encrypted with KB that

is sent to Bob, instead of KBB(A, t, P).

If a dispute arises, Bob can produce both P and KBB (A, t, MD (P)). After Big

Brother has decrypted it for the judge, Bob has MD (P), which is guaranteed to be

genuine, and the alleged P. However, since it is effectively impossible for Bob to

find any other message that gives this hash, the judge will easily be convinced that

Bob is telling the truth. Using message digests in this way saves both encryption

time and message transport and storage costs.

Message digests work in public-key cryptosystems, too, as shown in Fig. 7-

24. Here, Alice first computes the message digest of her plaintext. She then signs

the message digest and sends both the signed digest and the plaintext to Bob. If

Trudy replaces P underway, Bob will see this when he computes MD (P) himself.

 

  
 P, DA (MD (P))Alice

Fig. 7-24. Digital signatures using message digests.

A variety of message digest functions have been proposed. The most widely

used ones are MDS (Rivest, 1992) and SHA (NIST, 1993). MD5 is the fifth in a

DELL Ex.1006.635



618 THE APPLICATION LAYER CHAP. 7 

series of hash functions designed by Ron Rivest. It operates by mangling bits in a 
sufficiently complicated way that every output bit is affected by every input bit. 
Very briefly, it starts out by padding the message to a length of 448 bits (modulo 
512). Then the original length of the message is appended as a 64-bit integer to 
give a total input whose length is a multiple of 512 bits. The last prccomputation 
step is initializing a 128-bit buffer to a fixed value. 

Now the computation starts. Each round takes a 512-bit block of input and 
mixes it thoroughly with the l 28-bit buffer. For good measure, a table con­
structed from the sine function is also thrown in. The point of using a known 
function like the sine is not because it is more random than a random number gen­
erator, but to avoid any suspicion that the designer built in a clever trapdoor 
through which only he can enter. IBM's refusal to disclose the principles behind 
the design of the S-boxes in DES led to a great deal of speculation about trap­
doors. Four rounds are performed per input block. This process continues until 
all the input blocks have been consumed. The contents of the 128-bit buffer form 
the message digest. The algorithm has been optimized for software implementa­
tion on 32-bit machines. As a consequence, it may not be fast enough for future 
high-speed networks (Touch, l 995). 

The other major message digest function is SHA (Secure Hash Algorithm), 
developed by NSA and blessed by NIST. Like MD5, it processes input data in 
512-bit blocks, only unlike MD5, it generates a 160-bit message digest. It starts 
out by padding the message, then adding a 64-bit length to get a multiple of 512 
bits. Then it initializes its 160-bit output buffer. 

For each input block, the output buffer is updated using the 512-bit input 
block. No table of random numbers (or sine function values) is used, but for each 
block 80 rounds are computed, resulting in a thorough mixing. Each group of 20 
rounds uses different mixing functions. 

Since SHA's hash code is 32 bits longer than MD5's, all other things being 
equal, it is a factor of 232 more secure than MD5. However, it is also slower than 
MD5, and having a hash code that is not a power of two might sometimes be an 
inconvenience. Otherwise, the two are roughly similar technically. Politically, 
MD5 is defined in an RFC and used heavily on the Internet. SHA is a govern­
ment standard, and used by companies that have to use it because the government 
tells them to, or by those that want the extra security. A revised version, SHA-1, 
has been approved as a standard by NIST. 

The Birthday Attack 

In the world of crypto, nothing is ever what it seems to be. One might think 
that it would take on the order of 2m operations to subvert an m-bit message dig­
est. In fact, 2ml2 operations will often do using the birthday attack, an approach 
published by Yuval (1979) in his now-classic paper "How to Swindle Rabin." 

Ex.1006.636DELL



SEC. 7.1 NETWORK SECURITY 619 

The idea for this attack comes from a technique that math professors often use 
in their probability courses. The question is: How many students do you need in a 
class before the probability of having two people with the same birthday exceeds 
1/2? Most students expect the answer to be way over 100. In fact, probability 
theory says it is just 23. Without giving a rigorous analysis, intuitively, with 23 
people, we can form (23 x 22)/2 = 253 different pairs, each of which has a proba­
bility of 1/365 of being a hit. In this light, it is not really so surprising any more. 

More generally, if there is some mapping between inputs and outputs with n 
inputs (people, messages, etc.) and k possible outputs (birthdays, message digests, 
etc.), there are n(n - 1)/2 input pairs. If n(n - 1)/2 > k, the chance of having at 
least one match is pretty good. Thus, approximately, a match is likely for n > "-{k. 
This result means that a 64-bit message digest can probably be broken by generat­
ing about 232 messages and looking for two with the same message digest. 

Let us look at a practical example. The Dept. of Computer Science at State 
University has one position for a tenured faculty member and two candidates, 
Tom and Dick. Tom was hired two years before Dick, so he goes up for review 
first. If he gets it, Dick is out of luck. Tom knows that the department chairper­
son, Marilyn, thinks highly of his work, so he asks her to write him a letter of 
recommendation to the Dean, who will decide on Tom's case. Once sent, all 
letters become confidential. 

Marilyn tells her secretary, Ellen, to write the Dean a letter, outlining what 
she wants in it. When it is ready, Marilyn will review it, compute and sign the 
64-bit digest, and send it to the Dean. Ellen can send the letter later by email. 

Unfortunately for Tom, Ellen is romantically involved with Dick and would 
like to do Tom in, so she writes the letter below with the 32 bracketed options. 

Dear Dean Smith, 
This [letter I message] is to give my [honest I frank] opinion of Prof. Tom 

Wilson, who is [a candidate I up] for tenure [now I this year]. I have [known I 
worked with] Prof. Wilson for [about I almost] six years. He is an [outstanding I 
excellent] researcher of great [talent I ability] known [worldwide I internationally] 
for his [brilliant I creative] insights into [many I a wide variety of] [difficult I chal­
lenging] problems. 

He is also a [highly I greatly] [respected I admired] [teacher I educator]. His 
students give his [classes I courses] [rave I spectacular] reviews. He is [our I the 
Department's] [most popular I best-loved] [teacher I instructor]. 

[In addition I Additionally] Prof. Wilson is a [gifted I effective] fund raiser. 
His [grants I contracts] have brought a [large I substantial] amount of money into 
[the I our] Department. [This money has I These funds have] [enabled I permitted] 
us to [pursue I carry out] many [special I important] programs, [such as I for 
example] your State 2000 program. Without these funds we would [be unable I 
not be able] to continue this program, which is so [important I essential] to both of 
us. I strongly urge you to grant him tenure. 

Ex.1006.637DELL



620 THE APPLICATION LA YER CHAP. 7 

Unfortunately for Tom, as soon as Ellen finishes composing and typing in this 
letter, she also writes a second one: 

Dear Dean Smith, 
This [letter I message] is to give my [honest I frank] opinion of Prof. Tom 

Wilson, ;who is [a candidate I up] for tenure [now I this year]. I have [known I 
worked with] Tom for [about I almost] six years. He is a [poor I weak] researcher 
not well known in his ffield I area]. His research [hardly ever I rarely] shows 
[insight in I understanding of] the [key I major] problems of [the I our] day. 

Furthermore, he is not a [respected I admired] [teacher I educator]. His stu­
dents give his [classes I courses] [poor I bad ] reviews. He is [our I the 
Department's] least popular [teacher I instructor], known [mostly I primarily] 
within [the I our] Department for his [tendency I propensity] to [ridicule I embar­
rass] students ffoolish I imprudent] enough to ask questions in his classes. 

[In addition I Additionally] Tom is a [poor I marginal] fund raiser. His [grants 
I contracts] have brought only a [meager I insignificant] amount of money into 
[the I our] Department. Unless new [money is I funds are] quickly located, we 
may have to cancel some essential programs, such as your State 2000 program. 
Unfortunately, under these [conditions I circumstances] I cannot in good [consci­
ence I faith] recommend him to you for [tenure I a permanent position]. 

Now Ellen sets up her computer to compute the 232 message digests of each letter 
overnight. Chances are, one digest of the first letter will match one digest of the 
second letter. If not, she can add a few more options and try again during the 
weekend. Suppose that she finds a match. Call the "good" letter A and the 
"bad" one B. 

Ellen now emails letter A to Marilyn for her approval. Marilyn, of course, 
approves, computes her 64-bit message digest, signs the digest, and emails the 
signed digest off to Dean Smith. Independently, Ellen emails letter B to the Dean. 

After getting the letter and signed message digest, the Dean runs the message 
digest algorithm on letter B, sees that it agrees with what Marilyn sent him, and 
fires Tom. (Optional ending: Ellen tells Dick what she did. Dick is appalled and 
breaks off with her. Ellen is furious and confesses to Marilyn. Marilyn calls the 
Dean. Tom gets tenure after all.) With MD5 the birthday attack is infeasible 
because even at 1 billion digests per second, it would take over 500 years to com­
pute all 264 digests of two letters with 64 variants each, and even then a match is 
not guaranteed. 

7.1.7. Social Issues 

The implications of network security for individual privacy and society in 
general are staggering. Below we will just mention a few of the salient issues. 

Governments do not like citizens keeping secrets from them. In some 

Ex.1006.638DELL



SEC. 7.1 NETWORK SECURITY 621 

countries (e.g., France) all nongovernmental cryptography is simply forbidden 
unless the government is given all the keys being used. As Kahn (1980) and Sel­
fridge and Schwartz (1980) point out, government eavesdropping has been prac­
ticed on a far more massive scale than most people could dream of, and govern­
ments want more than just a pile: of indecipherable bits for their efforts. 

The U.S. government has proposed an encryption scheme for future digital 
telephones that includes a special feature to allow the police to tap and decrypt all 
telephone calls made in the United States. The government promises not to use 
this feature without a court order, but many people still remember how former 
FBI Director J. Edgar Hoover illegally tapped the telephones of Martin Luther 
King, Jr. and other people in an attempt to neutralize them. The poiice say they 
need this power to catch criminals. The debate on both sides is vehement, to put 
it mildly. A discussion of the technology involved (Clipper) is given in (Kaufman 
et al., 1995). A way to circumvent this technology and send messages that the 
government cannot read is described in (Blaze, 1994; and Schneier, 1996). Posi­
tion statements on all sides are given in (Hoffman, 1995). 

The United States has a law (22 U.S.C. 2778) that prohibits citizens from 
exporting munitions (war materiel), such as tanks and jet fighters, without authori­
zation from the DoD. For purposes of this law, cryptographic software is classi­
fied as a munition. Phil Zimmermann, who wrote PGP (Pretty Good Privacy), an 
email protection program, has been accused of violating this law, even though the 
government admits that he did not export it (but he did give it to a friend who put 
it ort the Internet where foreigners could obtain it). Many people regarded this 
widely-publicized incident as a gross violation of the rights of an American 
citizen working to enhance people's privacy. 

Not being an American does not help. On July 9, 1986, three Israeli research­
ers working at the Weizmann Institute in Israel filed a U.S. patent application for 
a new digital signature scheme that they had invented. They spent the next 6 
months discussing their research at conferences all over the world. On Jan. 6, 
1987, the U.S. patent office told them to notify all Americans who knew about 
their results that disclosure of the research would subject them to two years in 
prison, a 10,000-dollar fine, or both. The pa.tent office also wanted a list of all 
foreign nationals who knew about the research. To find out how this story turned 
out, see (Landau, 1988). 

Patents are another hot topic. Nearly all public-key algorithms are patented. 
Patent protection lasts for 17 years. The RSA patent, for example, expires on 
Sept. 20, 2000. 

Network security is politicized to an extent few other technical issues are, and 
rightly so, since it relates to the difference between a democracy and a police state 
in the digital era. The March 1993 and November 1994 issues of Communica­
tions of the ACM have long sections on telephone and network security, respec­
tively, with vigorous arguments explaining and defending many points of view. 
Chapter 25 of Schneier' s security book deals with the politics of cryptography 

Ex.1006.639DELL



622 THE APPLICATION LA YER CHAP. 7 

(Schneier, 1996). Chapter 8 of his email book does too (Schneier, 1995). Privacy 
and computers are also discussed in (Adam, 1995). These references are highly 
recommended for readers who wish to pursue their study of this subject. 

7.2. DNS-Domain Name System 

Programs rarely refer to hosts, mailboxes, and other resources by their binary 
network addresses. Instead of binary numbers, they use ASCII strings, such as 
tana@art.ucsb.edu. Nevertheless, the network itself only understands binary 
addresses, so some mechanism is required to convert the ASCII strings to network 
addresses. In the following sections we will study how this mapping is accom­
plished in the Internet. 

Way back in the ARPANET, there was simply a file, hosts.txt, that listed all 
the hosts and their IP addresses. Every night, all the hosts would fetch it from the 
site at which it was maintained. For a network of a few hundred large timesharing 
machines, this approach worked reasonably well. 

However, when thousands of workstations were connected to the net, every­
one realized that this approach could not continue to work forever. For one thing, 
the size of the file would become too large. However, even more important, host 
name conflicts would occur constantly unless names were centrally managed, 
something unthinkable in a huge international network. To solve these problems, 
DNS (the Domain Name System) was invented. 

The essence of DNS is the invention of a hierarchical, domain-based naming 
scheme and a distributed database system for implementing this naming scheme. 
It is primarily used for mapping host names and email destinations to IP addresses 
but can also be used for other purposes. DNS is defined in RFCs 1034 and 1035. 

Very briefly, the way DNS is used is as follows. To map a name onto an IP 
address, an application program calls a library procedure called the resolver, 
passing it the name as a parameter. The resolver sends a UDP packet to a local 
DNS server, which then looks up the name and returns the IP address to the 
resolver, which then returns it to the caUer. Armed with the IP address, the pro­
gram can then establish a TCP connection with the destination, or send it UDP 
packets. 

7.2.1. The DNS Name Space 

Managing a large and constantly changing set of names is a nontrivial prob­
lem. In the postal system, name management is done by requiring letters to 
specify (implicitly or explicitly) the country, state or province, city, and street 
address of the addressee. By using this kind of hierarchical addressing, there is no 
confusion between the Marvin Anderson on Main St. in White Plains, N.Y. and 
the Marvin Anderson on Main St. in Austin, Texas. DNS works the same way. 

Ex.1006.640DELL



SEC. 7.2 DNS--Domain Name System 623 

Conceptually, the Internet is divided into several hundred top-level domains, 
where each domain covers many hosts. Each domain is partitioned into sub­
domains, and these are further partitioned, and so on. All these domains can be 
represented by a tree, as shown in Fig. 7-25. The leaves of the tree represent 
domains that have no subdomains (but do contain machines, of course) A leaf 
domain may contain a single host, or it may represent a company and contains 
thousands of hosts. 

Generic I-Countries ---

int com edu gov org net jp us nl 

I I /'\ /""'- /""'-sun yale acm 1eee ac co oce vu 

I /""'- /""'- I I I 
eng cs eng jack jill keio nee cs 

/""'- I I /""'-
ai linda cs csl flits flu it 

I I 
robot pc24 

Fig. 7-25. A portion of the Internet domain name space. 

The top-level domains come in two flavors: generic and countries. The gen­
eric domains are com (commercial), edu (educational institutions), gov (the U.S. 
federal government), int (certain international organizations), mil (the U.S. armed 
forces), net (network providers), and org (nonprofit organizations). The country 
domains include one entry for every country, as defined in ISO 3166. 

Each domain is named by the path upward from it to the (unna,med) root. The 
components are separated by periods (pronounced "dot"). Thus Sun Microsys­
tems engineering department might be eng.sun.com., rather than a UNIX-style 
name such as /com/sun/eng. Notice that this hierarchical naming means that 
eng.sun.com. does not conflict with a potential use of eng in eng.yale.edu., which 
might be used by the Yale English department. 

Domain names can be either absolute or relative. An absolute domain name 
ends with a period (e.g., eng.sun.com.), whereas a relative one does not. Relative 
names have to be interpreted in some context to uniquely determine their true 
meaning. In both cases, a named domain r~fers to a specific node in the tree and 
all the nodes under it. 

Domain names are case insensitive, so edu and EDU mean the same thing. 
Component names can be up to 63 characters long, and full path names must not 
exceed 255 characters. 

In principle, domains can be inserted into the tree in two different ways. For 
example, cs.yale.edu could equa,lly well be listed under the us country domain as 

Ex.1006.641DELL

SEC. 7.2 DNS-—Domain Name System 623

Conceptually, the Internet is divided into several hundred top-level domains,

where each domain covers many hosts. Each domain is partitioned into sub—

domains, and these are further partitioned, and so on. All these domains can be

represented by a tree, as shown in Fig. 7—25. The leaves of the tree represent
domains that have no subdomains (but do contain machines, of course) A leaf

domain may contain a single host, or it may represent a company and contains
thousands of hosts.

‘<—-——-——— Generic -———-—-——>i i<——-— Countries —-->

intmm/gw/mil org net in us nl
l | / \_ /\ /\

sun yale acm Ieee ac co oce vu

I /\ /\__ I l
eng cs eng jack jl" keio nec cs

./\ | | . /\ .

elm Imda cls cs! fllts flurt
robot pc24

Fig. 7-25. A portion of the Internet domain name space.

The top-level domains come in two flavors: generic and countries. The gen—

eric domains are com (commercial), edu (educational institutions), gov (the U.S.

federal government), in! (certain international organizations), mil (the U.S. armed

forces), net (network providers), and org (nonprofit organizations). The country

domains include one entry for every country, as defined in ISO 3166.

Each domain is named by the path upward from it to the (unnamed) root. The

components are separated by periods (pronounced “dot”). Thus Sun Microsys-

tems engineering department might be eng.sun.com., rather than a UNIX-style

name such as /com/sun/eng. Notice that this hierarchical naming means that

eng.sun.com. does not conflict with a potential use of eng in eng.yale.edu., which

might be used by the Yale English department.
Domain names can be either absolute or relative. An absolute domain name

ends with a period (e.g., eng.sun.com.), whereas a relative one does not. Relative

names have to be interpreted in some context to uniquely determine their true

meaning. In both cases, a named domain refers to a specific node in the tree and
all the nodes under it.

Domain names are case insensitive, so edu and EDU mean the same thing.

Component names can be up to 63 characters long, and full path names must not
exceed 255 characters.

In principle, domains can be inserted into the tree in two different ways. For

example, cs.yale.edu could equally well be listed under the us country domain as

DELL Ex.1006.641



624 THE APPLICATION LAYER CHAP. 7 

cs.yale.ct.us. In practice, however, nearly all organizations in the United States 
are under a generic domain, and nearly all outside the United States are under the 
domain of their country. There is no rule against registering under two top-level 
domains, but doing so might be confusing, so few organizations do it. 

Each domain controls how it allocates the domains under it. For example, 
Japan has domains ac.jp and co.jp that mirror edu and com. The Netherlands does 
not make this distinction and puts all organizations directly under nl. Thus all 
three of the following are university computer science departments: 

1. cs.yale.edu (Yale University, in the United States) 

2. cs. vu.nl (Vrije Universiteit, in The Netherlands) 

3. cs.keio.ac.jp (Keio University, in Japan) 

To create a new domain, permission is required of the domain in which it will 
be included. For example, if a VLSI group is started at Yale and wants to be 
known as vlsi.cs.yale.edu, it needs permission from whomever manages 
cs.yale.edu. Similarly, if a new university is chartered, say, the University of 
Northern South Dakota, it must ask the manager of the edu domain to assign it 
unsd.edu. In this way, name conflicts are avoided and each domain can keep 
track of all its subdomail1s. Once a new domain has been created and registered, 
it can create subdomains, such as cs.unsd.edu, without getting permission from 
anybody higher up the tree. 

Naming follows organizational boundaries, not physical networks. For exam­
ple, if the computer science and electrical engineering departments are located in 
the same building and share the same LAN, they can nevertheless have distinct 
domains. Similarly, even if computer science is split over Babbage Hall and Tur­
ing Hall, all the hosts in both buildings will normally belong to the same domain. 

7 .2.2. Resource Records 

Every domain, whether it is a single host or a top-level domain, can have a set 
of resource records associated with it. For a single host, the most common 
resource record is just its IP address, but many other kinds of resource records 
also exist. When a resolver gives a domain name to DNS, what it gets back are 
the resource records associated with that name. Thus the real function of DNS is 
to map domain names onto resource records. 

A resource record is a five-tuple. Although they are encoded in binary for 
efficiency, in most expositions resource records are presented as ASCII text, one 
line per resource record. The format we will use is as follows: 

Domain_name Time_to_live Type Class Value 

The DomainJlame tells the domain to which this record applies. Normally, many 
records exist for each domain and each copy of the database holds information 

Ex.1006.642DELL



SEC. 7.2 DNS-Domain Name System 625 

about multiple domains. This field is thus the primary search key used to satisfy 
queries. The order of the records in the database is not significant. When a query 
is made about a domain, all the matching records of the class requested are 
returned. 

The Time_to_live field gives an indication of how stable the record is. Infor­
mation that is highly stable is assigned a large value, such as 86400 (the number 
of seconds in 1 day). Information that is highly volatile is assigned a small value, 
such as 60 (1 minute). We will come back to this point later when we have dis­
cussed caching. 

The Type field tells what kind of record this is. The most important types are 
listed in Fig. 7-26. 

Type Meaning Value 

SOA Start of Authority Parameters for this zone 

A IP address of a host 32-Bit integer 

MX Mail exchange Priority, domain willing to accept email 

NS Name Server Name of a server for this domain 

CNAME Canonical name Domain name 

PTR Pointer Alias for an IP address 

HINFO Host description CPU and OS in ASCII 

TXT Text Uninterpreted ASCII text 

Fig. 7-26. The principal DNS resource record types. 

An SOA record provides the name of the primary source of information about 
the name server's zone (described below), the email address of its administrator, a 
unique serial number, and various flags and timeouts. 

The most important record type is the A (Address) record. It holds a 32-bit IP 
address for some host. Every Internet host must have at least one IP address, so 
other machines can communicate with it. Some hosts have two or more network 
connections, in which case they will have one type A resource record per network 
connection (and thus per IP address). 

The next most important record type is the MX record. It specifies the name 
of the domain prepared to accept email for the specified domain. A common use 
of this record is to allow a machine that is not on the Internet to receive email 
from Internet sites. Delivery is accomplished by having the non-Internet site 
make an arrangement with some Internet site to accept email for it and forward it 
using whatever protocol the two of them agree on. 

For example, suppose that Cathy is a computer science graduate student at 
UCLA. After she gets her degree in AI, she sets up a company, Electrobrain 

Ex.1006.643DELL



626 THE APPLICATION LAYER CHAP. 7 

Corporation, to commercialize her ideas. She cannot afford an Internet connec­
tion yet, so she makes an arrangement with UCLA to allow her to have her email 
sent there. A few times a day she will call up and collect it. 

Next, she registers her company with the com domain and is assigned the 
domain electrobrain.com. She might then ask the administrator of the com 
domain to add an MX record to the com database as follows: 

electrobrain.com 86400 IN MX mailserver.cs.ucla.edu 

In this way, mail will be forwarded to UCLA where she can pick it up by logging 
in. Alternatively, UCLA could call her and transfer the email by any protocol 
they mutually agree on. 

The NS records specify name servers. For example, every DNS database nor­
mally has an NS record for each of the top-level domains, so email can be sent to 
distant parts of the naming tree. We will come back to this point later. 

CNAME records allow aliases to be created. For example, a person familiar 
with Internet naming in general wanting to send a message to someone whose 
login name is paul in the computer science department at M.I.T. might guess that 
paul@cs.mit.edu will work. Actually this address will not work, because the 
domain for M.I.T.'s computer science department is lcs.mit.edu. However, as a 
service to people who do not know this, M.I.T. could create a CNAME entry to 
point people and programs in the right direction. An entry like this one might do 
the job: 

cs.mit.edu 86400 IN CNAME lcs.mit.edu 

Like CNAME, PTR points to another name. However, unlike CNAME, which 
is really just a macro definition, PTR is a regular DNS datatype whose interpreta­
tion depends on the context in which it is found. In practice, it is nearly always 
used to associate a name with an IP address to allow lookups of the IP address and 
return the name of the corresponding machine. 

HINFO records allow people to find out what kind of machine and operating 
system a domain corresponds to. Finally, TXT records allow domains to identify 
themselves in arbitrary ways. Both of these record types are for user convenience. 
Neither is required, so programs cannot count on getting them (and probably can­
not deal with them if they do get them). 

Getting back to the general structure of resource records, the fourth field of 
every resource record is the Class. For Internet information, it is always IN. For 
non-Internet information, other codes can be used. 

Finally, we come to the Value field. This field can be a number, a domain 
name, or an ASCII string. The semantics depend on the record type. A short 
description of the Value fields for each of the principal records types is given in 
Fig. 7-26. 

As an example of the kind of information one might find in the DNS database 
of a domain, see Fig. 7-27. This figure depicts part of a (semihypothetical) 

Ex.1006.644DELL



SEC. 7.2 DNS--Domain Name System 627 

database for the cs.vu.nl domain shown in Fig. 7-25. The database contains seven 
types of resource records. 

; Authoritative data for cs.vu.nl 
cs.vu.nl. 86400 IN SOA 
cs.vu.nl. 86400 IN TXT 
cs.vu.nl. 86400 IN TXT 
cs.vu.nl. 86400 IN MX 
cs.vu.nl. 86400 IN MX 

flits.cs.vu.nl. 
flits.cs.vu.nl. 
flits.cs.vu.nl. 
flits.cs.vu.nl. 
flits.cs.vu.nl. 
flits.cs.vu.nl. 
www.cs.vu.nl. 
ftp.cs.vu.nl. 

rowboat 

little-sister 

laserjet 

86400 
86400 
86400 
86400 
86400 
86400 
86400 
86400 

IN HINFO 
IN A 
IN A 
IN MX 
IN MX 
IN MX 
IN CNAME 
IN CNAME 

IN A 
IN MX 
IN MX 
IN HINFO 

IN A 
IN HINFO 

IN A 
IN HINFO 

star boss (952771,7200,7200,2419200,86400) 
"Faculteit Wiskunde en Informatica." 
"Vrije Universiteit Amsterdam." 
1 zephyr.cs.vu.nl. 
2 top.cs.vu.nl. 

Sun Unix 
130.37.16.112 
192.31.231.165 
1 flits.cs.vu.nl. 
2 zephyr.cs.vu.nl. 
3 top.cs.vu.nl. 
star.cs.vu.nl 
zephyr.cs.vu.nl 

130.37.56.201 
1 rowboat 
2 zephyr 
Sun Unix 

130.37.62.23 
Mac MacOS 

192.31.231.216 
"HP Laserjet lllSi" Proprietary 

Fig. 7-27. A portion of a possible DNS database for cs. vu.nl 

The first noncomment line of Fig. 7-27 gives some basic information about 
the domain, which will not concern us further. The next two lines give textual 
information about where the domain is located. Then come two entries giving the 
first and second places to try to deliver email sent to person@cs.vu.nl. The 
zephyr (a specific machine) should be tried first. If that fails, the top should be 
tried next. 

After the blank line, added for readability, come lines telling that the flits is a 
Sun workstation running UNIX and giving both of its IP addresses. Then three 
choices are given for handling email sent to flits.cs. vu.nl. First choice is naturally 
the flits itself, but if it is down, the zephyr and top are the second and third 
choices. Next comes an alias, www.cs.vu.nl, so that this address can be used 
without designating a specific machine. Creating this alias allows cs. vu.nl to 
change its World Wide Web server without invalidating the address people use to 
get to it. A similar argument holds for ftp.cs. vu.nl. 

Ex.1006.645DELL



628 THE APPLICATION LA YER CHAP. 7 

The next four lines contain a typical entry for a workstation, in this case, 
rowboat.cs. vu.nl. The information provided contains the IP address, the primary 
and secondary mail drops, and information about the machine. Then comes an 
entry for a non-UNIX system that is not capable of receiving mail itself, followed 
by an entry for a laser printer. 

What is not shown (and is not in this file), are the IP addresses to use to look 
up the top level domains. These are needed to look up distant hosts, but since 
they are not part of the cs. vu.nl domain, they are not in this file. They are sup­
plied by the root servers, whose IP addresses are present in a system configuration 
file and loaded into the DNS cache when the DNS server is booted. They have 
very long timeouts, so once loaded, they are never purged from the cache. 

7.2.3. Name Servers 

In theory at least, a single name server could contain the entire DNS database 
and respond to all queries about it. In practice, this server would be so overloaded 
as to be useless. Furthermore, if it ever went down, the entire Internet would be 
crippled. 

To avoid the problems associated with having only a single source of informa-· 
tion, the DNS name space is divided up into nonoverlapping zones. One possible 
way to divide up the name space of Fig. 7-25 is shown in Fig. 7-28. Each zone 
contains some part of the tree and also contains name servers holding the authori­
tative information about that zone. Normally, a zone will have one primary name 
server, which gets its information from a file on its disk, and one or more secon­
dary name servers, which get their information from the primary name server. To 
improve reliability, some servers for a zone can be located outside the zone. 

I-·--- Generic ----~--1 1--· Countries -

pc24 

Fig. 7-28. Part of the DNS name space showing the division into zones. 

Where the zone boundaries are placed within a zone is up to that zone's 
administrator. This decision is made in large part based on how many name 

Ex.1006.646DELL



SEC. 7.2 DNS-Domain Name System 629 

servers are desired, and where. For example, in Fig. 7-28, Yale has a server for 
yale.edu that handles eng.yale.edu but not cs.yale.edu, which is a separate zone 
with its own name servers. Such a decision might be made when a department 
such as English does not wish to run its own name server, but a department such 
as computer science does. Consequently, cs.yale.edu is a separate zone but 
eng. yale. edu is not. 

When a resolver has a query about a domain name, it passes the query to one 
of the local name servers. If the domain being sought falls under the jurisdiction 
of the name server, such as ai.cs.yale.edu falling under cs.yale.edu, it returns the 
authoritative resource records. An authoritative record is one that comes from 
the authority that manages the record, and is thus always correct. Authoritative 
records are in contrast to cached records, which may be out of date. 

If, however, the domain is remote and no informatibn about the requested 
domain is available locally, the name server sends a query message to the top­
level name server for the domain requested. To make this process clearer, con­
sider the example of Fig. 7-29. Here, a resolver on flits.cs. vu.nl wants to know the 
IP address of the host linda.cs.yale.edu. In step 1, it sends a query to the local 
name server, cs.vu.nl. This que:ry contains the domain name sought, the type (A) 
and the class (JN). 

vu cs Edu Yale Yale CS 
Originator 

1 
name server 

2 
name server 

3 
name server 

4 
name server 

flits.cs.vu.nl ~;jedu-server.netl, 'I yale.edu 1. 'I cs.yale.edu I 
8 7 6 5 

Fig. 7-29. How a resolver looks up a remote name in eight steps. 

Let us suppose the local name server has never had a query for this domain 
before and knows nothing about it. It may ask a few other nearby name servers, 
but if none of them know, it sends a UDP packet to the server for edu given in its 
database (see Fig. 7-29), edu-server.net. It is unlikely that this server knows the 
address of linda.cs.yale.edu, and probably does not know cs.yale.edu either, but it 
must know all of its own children, so it forwards the request to the name server 
for yale.edu (step 3). In turn, this one forwards the request to cs.yale.edu (step 4), 
which must have the authoritative resource records. Since each request is from a 
client to a server, the resource record requested works its way back in steps 5 
through 8. 

Once these records get back to the cs. vu.nl name server, they will be entered 
into a cache there, in case they are needed later. However, this information is not 
authoritative, since changes made at cs.yale.edu will not be propagated to all the 
caches in the world that may know about it. For this reason, cache entries should 
not live too long. This is the reason that the Time_to_live field is included in each 
resource record. It tells remote name servers how long to cache records. If a 

Ex.1006.647DELL



630 THE APPLICATION LA YER CHAP. 7 

certain machine has had the same IP address for years, it may be safe to cache that 
information for 1 day. For more volatile information, it might be safer to purge 
the records after a few seconds or a minute. 

It is worth mentioning that the query method described here is known as a 
recursive query, since each server that does not have the requested information 
goes and finds it somewhere, then reports back. An alternative form is also possi­
ble. In this form, when a query cannot be satisfied locally, the query fails, but the 
name of the next server along the line to try is returned. This procedure gives the 
client more control over the search process. Some servers do not implement 
recursive queries and always return the name of the next server to try. 

It is also worth pointing out that when a DNS client fails to get a response 
before its timer goes off, it normally will try another server next time. The 
assumption here is that the server is probably down, rather than the request or 
reply got lost. 

7.3. SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 

In the early days of the ARPANET, if the delay to some host became unex­
pectedly large, the person detecting the problem would just run the Ping program 
to bounce a packet off the destination. By looking at the timestamps in the header 
of the packet returned, the location of the problem could usually be pinpointed 
and some appropriate action taken. In addition, the number of routers was so 
small, that it was feasible to ping each one to see if it was sick. 

When the ARPANET turned into the worldwide Internet, with multiple back­
bones and multiple operators, this solution ceased to be adequate, so better tools 
for network management were needed. Two early attempts were defined in RFC 
1028 and RFC 1067, but these were short lived. In May 1990, RFC 1157 was 
published, defining version 1 of SNMP (Simple Network Management Proto­
col). Along with a companion document (RFC 1155) on management informa­
tion, SNMP provided a systematic way of monitoring and managing a computer 
network. This framework and protocol were widely implemented in commercial 
products and became the de facto standards for network management. 

As experience was gained, shortcomings in SNMP came to light, so an 
enhanced version of SNMP (SNMPv2) was defined (in RFCs 1441 to 1452) and 
started along the road to become an Internet standard. In the sections to follow, 
we will give a brief discussion of the SNMP (meaning SNMPv2) model and pro­
tocol. 

Although SNMP was designed with the idea of its being simple, at least one 
author has managed to produce a 600-page book on it (Stallings, 1993a). For 
more compact descriptions (450-550 pages), see the books by Rose (1994) and 
Rose and McCloghrie (1995), both of whom were among the designers of SNMP. 
Other references are (Feit, 1995; and Hein and Griffiths, 1995). 

Ex.1006.648DELL



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 631 

7.3.1. The SNMP Model 

The SNMP model of a managed network cohsists of four components: 

1. Managed nodes. 

2. Management stations. 

3. Management information. 

4. A management protocol. 

These pieces are illustrated in Fig. 7-30 and discussed below. 

Management 
Management process 

Station Host Router 

D "'/ Managed 

Printer 

nTe 

SNMP protocol Agent 

LAN 

Bridge 

Fig. 7-30. Components of the SNMP management model. 

The managed nodes can be hosts, routers, bridges, printers, or any other dev­
ices capable of communicating status information to the outside world. To be 
managed directly by SNMP, a node must be capable of running an SNMP 
management process, called an SNMP agent. All computers meet this require­
ment, as do increasingly many bridges, routers, and peripheral devices designed 
for network use. Each agent maintains a local database of variables that describe 
its state and history and affect its operation. 

Network management is done from management stations, which are, in fact, 
general-purpose computers running special management software. The manage­
ment stations contain one or more processes that communicate with the agents 
over the network, issuing commands and getting responses. In this design, all the 
intelligence is in the management stations, in order to keep the agents as simple as 
possible and minimize their impact on the devices they are running on. Many 
management stations have a graphical user interface to allow the network 
manager to inspect the status of the network and take action when required. 

Most real networks are multivendor, with hosts from one or more manufactur­
ers, bridges and routers from other companies, and printers from still other ones. 

Ex.1006.649DELL

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 631

7.3.1. The SNMP Model

The SNMP model of a managed network consists of four components:

1. Managed nodes.

2. Management stations.

3. Management information.

4. A management protocol.

These pieces are illustrated in Fig. 7—30 and discussed below.

Management
Management process

Station Router

\/ Printer

Managed 6 2?
”Te A ’—

l Agent

  
 
 

 
El  

SNMP protocol   
Bridge

LAN

Fig. 7-30. Components of the SNMP management model.

The managed nodes can be hosts, routers, bridges, printers, or any other dev-

ices capable of communicating status information to the outside world. To be

managed directly by SNMP, a node must be capable of running an SNMP

management process, called an SNMP agent. All computers meet this require—
ment, as do increasingly many bridges, routers, and peripheral devices designed

for network use. Each agent maintains a local database of variables that describe

its state and history and affect its operation.
Network management is done from management stations, which are, in fact,

general-purpose computers running special management software. The manage-

ment stations contain one or more processes that communicate with the agents

over the network, issuing commands and getting responses. In this design, all the

intelligence is in the management stations, in order to keep the agents as simple as

possible and minimize their impact on the devices they are running on. Many

management stations have a graphical user interface to allow the network

manager to inspect the status of the network and take action when required.
Most real networks are multivendor, with hosts from one or more manufactur-

ers, bridges and routers from other companies, and printers from still other ones.

DELL Ex.1006.649



632 THE APPLICATION LA YER CHAP. 7 

In order to allow a management station (potentially from yet another supplier) to 
talk to all these diverse components, the nature of the information maintained by 
all the devices must be rigidly specified. Having the management station ask a 
router what its packet loss rate is of no use if the router does not keep track of its 
loss rate. Therefore, SNMP describes (in excruciating detail) the exact informa­
tion each kind of agent has to maintain and the format it has to supply it in. The 
largest portion of the SNMP model is the definition of who has to keep track of 
what and how this information is communicated. 

Very briefly, each device maintains one or more variables that describe its 
state. In the SNMP literature, these variables are called objects, but the term is 
misleading because they are not objects in the sense of an object-oriented system 
because they just have state and no methods (other than reading and writing their 
values). Nevertheless, the term is so ingrained (e.g., used in various reserved 
words in the specification language used) that we will use it here. The collection 
of all possible objects in a network is given in a data structure called the MIB 
(Management InformatioJ;J. Base). 

The management station interacts with the agents using the SNMP protocol. 
This protocol allows the management station to query the state of an agent's local 
objects, and change them if necessary. Most of SNMP consists of this query­
response type communication. 

However, sometimes events happen that are not planned. Managed nodes can 
crash and reboot, lines can go down and come back up, congestion can occur, and 
so on. Each significant event is defined in a MIB module. When an agent notices 
that a significant event has occurred, it immediately reports the event to all 
management stations in its configuration list. This report is called an SNMP trap 
(for historical reasons). The report usually just states that some event has 
occurred. It is up to the management station to then issue queries to find out all 
the gory details. Because communication from managed nodes to the manage­
ment station is not reliable (i.e., is not acknowledged), it is wise for the manage­
ment station to poll each managed node occasionally anyway, checking for 
unusual events, just in case. The model of polling at long intervals with accelera­
tion on receipt of a trap is called trap directed polling. 

This model assumes that each managed node is capable of running an SNMP 
agent internally. Older devices or devices not originally intended for use on a net­
work may not have this capability. To handle them, SNMP defines what is called 
a proxy agent, namely an agent that watches over one or more nonSNMP devices 
and communicates with the management station on their behalf, possibly com­
municating with the devices themselves using some nonstandard protocol. 

Finally, security and authentication play a major role in SNMP. A manage­
ment station has the capability of learning a great deal about every node under its 
control and also has the capability of shutting them all down. Hence it is of great 
importance that agents be convinced that queries allegedly coming from the 
management station, in fact, come from the management station. In SNMPvl, the 

Ex.1006.650DELL



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 633 

management station proved who it was by putting a (plaintext) password in each 
message. In SNMPv2, security was improved considerably using modern crypto­
graphic techniques of the type we have already studied. However, this addition 
made an already bulky protocol every bulkier, and it was later thrown out. 

7.3.2. ASN.1-Abstract Syntax Notation 1 

The heart of the SNMP model is the set of objects managed by the agents and 
read and written by the management station. To make multivendor communica­
tion possible, it is essential that these objects be defined in a standard and 
vendor-neutral way. Furthermore, a standard way is needed to encode them for 
transfer over a network. While definitions in C would satisfy the first require­
ment, such definitions do not define a bit encoding on the wire in such a way that 
a 32-bit two's complement little endian management station can exchange infor­
mation unambiguously with am agent on a 16-bit one's complement big endian 
CPU. 

For this reason, a standard object definition language, along with encoding 
rules, is needed. The one used by SNMP is taken from OSI and called ASN.1 
(Abstract Syntax Notation One). Like much of OSI, it is large, complex, and 
not especially efficient. (The author is tempted to say that by calling it ASN .1 
instead of just ASN, the designers implicitly admitted that it would soon be 
replaced by ASN.2, but he will politely refrain from saying this.) The one alleged 
strength of ASN.1 (the existence of unambiguous bit encoding rules) is now really 
a weakness, because the encoding rules are optimized to minimize the number of 
bits on the wire, at the cost of wasting CPU time at both ends encoding and 
decoding them. A simpler scheme, using 32-bit integers aligned on 4-byte boun­
daries would probably have been better. Nevertheless, for better or worse, SNMP 
is drenched in ASN. l, (albeit a simplified subset of it), so anyone wishing to truly 
understand SNMP must become fluent in ASN. l. Hence the following explana­
tion. 

Let us start with the data description language, described in International 
Standard 8824. After that we will discuss the encoding rules, described in Inter­
national Standard 8825. The ASN .1 abstract syntax is essentially a primitive data 
declaration language. It allows the user to define primitive objects and then com­
bine them into more complex ones. A series of declarations in ASN.1 is function­
ally similar to the declarations found in the header files associated with many C 
programs. 

SNMP has some lexical conventions that we will follow. These are not 
entirely the same as pure ASN.l uses, however. Built-in data types are written in 
uppercase (e.g., INTEGER). User-defined types begin with an uppercase letter 
but must contain at least one character other than an uppercase letter. Identifiers 
may contain upper and lowercase letters, digits, and hyphens, but must begin with 
a lowercase letter (e.g., counter). White space (tabs, carriage returns, etc.) is not 

Ex.1006.651DELL



634 THE APPLICATION LA YER CHAP. 7 

significant. Finally, comments start with -- and continue until the end of the line 
or the next occurrence of --. 

The ASN.l basic data types allowed in SNMP are shown in Fig. 7-31. (We 
will generally ignore features of ASN. l, such as BOOLEAN and REAL types, not 
permitted in SNMP.) The use of the codes will be described later. 

Primitive type Meaning Code 

INTEGER Arbitrary length integer 2 

BIT STRING A string of O or more bits 3 

OCTET STRING A string of O of more unsigned bytes 4 

NULL A place holder 5 

OBJECT IDENTIFIER An officially defined data type 6 

Fig. 7-31. The ASN. l primitive data types permitted in SNMP. 

A variable of type INTEGER may, in theory, take on any integral value, but 
other SNMP rules limit the range. As an example of how types are used, consider 
how a variable, count, of type INTEGER would be declared and (optionally) ini­
tialized to 100 in ASN.1: 

count INTEGER::= 100 

Often a subtype whose variables are restricted to specific values or to a specific 
range is required. These can be declared as follows: 

Status::= INTEGER { up(1), down(2), unknown(3)} 

PacketSize ::=INTEGER (0 .. 1023) 

Variables of type BIT STRING and OCTET STRING contain zero or more bits 
and bytes, respectively. A bit is either 0 or 1. A byte falls in the range 0 to 255, 
inclusive. For both types, a string length and an initial value may be given. 

OBJECT IDENTIFIERs provide a way of identifying objects. In principle, 
every object defined in every official standard can be uniquely identified. The 
mechanism that is used is to define a standards tree, and place every object in 
every standard at a unique location in the tree. The portion of the tree that 
includes the SNMP MIB is shown in Fig. 7-32. 

The top level of the tree lists all the important standards organizations in the 
world (in ISO's view), namely ISO and CCITT (now ITU), plus the combination 
of the two. From the iso node, four arcs are defined, one of which is for 
identified-organization, which is ISO's concession that maybe some other folks 
are vaguely involved with standards, too. The U.S. Dept. of Defense has been 
assigned a place in this subtree, and DoD has assigned the Internet number 1 in its 
hierarchy. Under the Internet hierarchy, the SNMP MIB has code 1. 

Ex.1006.652DELL



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 635 

standard (0) 

-----~ ccitt (0) iso (1) joint-iso-ccitt (2) 

registration­
authority (1) 

internet (1) 

member­
body (2) 

identified­
organization (3) 

I 
dod (6) 

directory (1) mgmt (2) experimental (3) private (4) security (5) snmpv2 (6) 

I 
mib-2 (1) 

~~:::::::::::::::::::::---
system (1) interface (2) ip (4) icmp (5) tcp (6) udp (7) egp (8) transmission (10) sample (11) 

Fig. 7-32. Part of the ASN.1 object naming tree. 

Every arc in Fig. 7-32 has both a label and a number, so nodes can be identi­
fied by a list of arcs, using label(number) or numbers. Thus all SNMP MIB 
objects are identified by a label of the form 

{iso identified-organization(3) dod(6) internet(1) mgmt(2) mib-2(1) ... } 

or alternatively { 1 3 6 1 2 1 ... } . Mixed forms are also permitted. For example, 
the above identification can also be written as 

{internet( 1) 2 1 ... } 

In this way, every object in every standard can be represented as an OBJECT 
IDENTIFIER. 

ASN .1 defines five ways to construct new types from the basic ones. 
SEQUENCE is an ordered list of types, similar to a structure in C and a record in 
Pascal. SEQUENCE OF is a one-dimensional array of a single type. SET and 
SET OF are analogous, but unordered. CHOICE creates a union from a given list 
of types. The two set constructors are not used in any of the SNMP documents. 

Another way to create new types is to tag old ones. Tagging a type is some­
what similar to the practice in C of defining new types, say time_t and size_t, both 
of which are longs, but which are used in different contexts. Tags come in four 

Ex.1006.653DELL



636 THE APPLICATION LA YER CHAP. 7 

categories: universal, application-wide, context-specific and private. Each tag 
consists of a label and an integer identifying the tag. For example, 

Counter32 ::=[APPLICATION 1] INTEGER (0 . .4294967295) 

Gauge32 ::=[APPLICATION 2] INTEGER (0 . .4294967295) 

define two different application-wide types, both of which are implemented by 
32-bit unsigned integers, but which are conceptually different. The former might, 
for example, wrap around when it gets to the maximum value, whereas the latter 
might just continue to return the maximum value until its is decreased or reset. 

A tagged type can have the keyword IMPLICIT after the closing square 
bracket when the type of what follows is obvious from the context (not true in a 
CHOICE, for example). Doing so allows a more efficient bit encoding since the 
tag does not have to be transmitted. In a type involving a CHOICE between two 
different types, a tag must be transmitted to tell the receiver which type is present. 

ASN.1 defines a complex macro mechanism, which is heavily used in SNMP. 
A macro can be used as a kind of prototype to generate a set of new types and 
values, each with its own syntax. Each macro defines some (possibly optional) 
keywords, that are used in the call to identify which parameter is which (i.e., the 
macro parameters are identified by keyword, not by position). The details of how 
ASN. l macros work is beyond the scope of this book. Suffice it to say that a 
macro is invoked by giving its name and then listing (some of) its keywords and 
their values for this invocation. Macros are expanded at compile time, not at run 
time. Some examples of macros will be cited below. 

ASN.1 Transfer Syntax 

An ASN.l transfer syntax defines how values of ASN.l types are unambigu­
ously converted to a sequence of bytes for transmission (and unambiguously 
decoded at the other end). The transfer syntax used by ASN. l is called BER 
(Basic Encoding Rules). ASN.l has other transfer syntaxes that SNMP does not 
use. The rules are recursive, so the encoding of a structured object is just the con­
catenation of the encodings of the component objects. In this way, all object 
encodings can be reduced to a well-defined sequence of encoded primitive 
objects. The encoding of these objects, in turn, is defined by the BER. 

The guiding principle behind the basic encoding rules is that every value 
transmitted, both primitive and constructed ones, consists of up to four fields: 

1. The identifier (type or tag). 

2. The length of the data field, in bytes. 

3. The data field. 

4. The end-of-contents flag, if the data length is unknown. 

Ex.1006.654DELL



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 637 

The last one is permitted by ASN.l, but specifically forbidden by SNMP, so we 
will assume the data length is always known. 

The first field identifies the item that follows. It, itself, has three subfields, as 
shown in Fig. 7-33. The high-order 2 bits identify the tag type. The next bit tells 
whether the value is primitive (0) or not (1). The tag bits are 00, 01, 10, and 11, 
for UNIVERSAL, APPLICATION, context-specific, and PRIVATE, respectively. 
The remaining 5 bits can be used to encode the value of the tag if it is in the range 
0 through 30. If the tag is 31 or more, the low-order 5 bits contain 11111, with the 
true value in the next byte or bytes. 

Bits 2 

Tag 

I 
00 Universal 

01 Application 

1 o Context specific 

11 Private 

5 

Number 

0 Primitive type 

1 Constructed type 

Fig. 7-33. The first byte of each data item sent in the ASN.1 transfer syntax. 

The rule used to encode tags greater than 30 has been designed to handle arbi­
trarily large numbers. Each identifier byte following the first one contains 7 data 
bits. The high-order bit is set to 0 in all but the last one. Thus tag values up to 
27 

- 1 can be handled in 2 bytes, and up to 214 - 1 can be handled in 3 bytes. 
The encoding of the UNIVERSAL types is straightforward. Each primitive 

type has been assigned a code, as given in the third column of Fig. 7-31. 
SEQUENCE and SEQUENCE OF share code 16. CHOICE does not have a code, 
since any actual value sent always has a specific type. The other codes are for 
types not used in SNMP. 

Following the I-byte identifier field comes a field telling how many bytes the 
data occupy. Lengths shorter than 128 bytes are directly encoded in 1 byte whose 
leftmost bit is 0. Those that are longer use multiple bytes, with first byte contain­
ing a 1 in the high-order bit and the length field (up to 127 bytes) in the low-order 
7 bits. For example, if the data length is 1000 bytes, the first byte contains 130 to 
indicate a two byte length field follows. Then come two bytes whose value is 
1000, with the high-order byte first. 

The encoding of the data field depends on the type of data present. Integers 
are encoded in two's complement. A positive integer below 128 requires 1 byte, a 
positive integer below 32,768 requires 2 bytes, and so forth. The most significant 
byte is transmitted first. 

Bit strings are encoded as themselves. The only problem is how to indicate 
the length. The length field tells how many bytes the value has, not how many 

Ex.1006.655DELL

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 637

The last one is permitted by ASN.1, but specifically forbidden by SNMP, so we

will assume the data length is always known.
The first field identifies the item that follows. It, itself, has three subfields, as

shown in Fig. 7-33. The high-order 2 bits identify the tag type. The next bit tells

whether the value is primitive (0) or not (1). The tag bits are 00, 01, 10, and 11,

for UNIVERSAL, APPLICATION, context-specific, and PRIVATE, respectively.

The remaining 5 bits can be used to encode the value of the tag if it is in the range

0 through 30. 1f the tag is 31 or more, the low-order 5 bits contain 11111, with the

true value in the next byte or bytes.

 

 

Bits 2 1 5

‘ Tag Jr I Number

00 Universal 0 Primitive type

01 Application 1 Constructed type

10 Context specific
11 Private

Fig. 7-33. The first byte of each data item sent in the ASN.1 transfer syntax.

The rule used to encode tags greater than 30 has been designed to handle arbi—

trarily large numbers. Each identifier byte following the first one contains 7 data

bits. The high—order bit is set to 0 in all but the last one. Thus tag values up to

27 — 1 can be handled in 2 bytes, and up to 214 — 1 can be handled in 3 bytes.
The encoding of the UNIVERSAL types is straightforward. Each primitive

type has been assigned a code, as given in the third column of Fig. 7—31.
SEQUENCE and SEQUENCE OF share code 16. CHOICE does not have a code,

since any actual value sent always has a specific type. The other codes are for

types not used in SNMP. '

Following the l—byte identifier field comes a field telling how many bytes the

data occupy. Lengths shorter than 128 bytes are directly encoded in 1 byte whose

leftmost bit is 0. Those that are longer use multiple bytes, with first byte contain-

ing a 1 in the high—order bit and the length field (up to 127 bytes) in the low-order

7 bits. For example, if the data length is 1000 bytes, the first byte contains 130 to

indicate a two byte length field follows. Then come two bytes whose value is

1000, with the high—order byte first.

The encoding of the data field depends on the type of data present. Integers

are encoded in two’s complement. A positive integer below 128 requires 1 byte, a

positive integer below 32,768 requires 2 bytes, and so forth. The most significant

byte is transmitted first. 1

Bit strings are encoded as themselves. The only problem is how to indicate

the length. The length field} tells how many bytes the value has, not how many

DELL Ex.1006.655



638 THE APPLICATION LA YER CHAP. 7 

bits. The solution chosen is to transmit I byte before the actual bit string telling 
how many bits (0 through 7) of the final byte are unused. Thus the encoding of 
the 9-bit string '010011111' would be 07, 4F, 80 (hexadecimal). 

Octet strings are easy. The bytes of the string are just transmitted in standard 
big endian style, left to right. 

The null value is indicated by setting the length field to 0. No numerical 
value is actually transmitted. 

An OBJECT IDENTIFIER is encoded as the sequence of integers it 
represents. For example; the Internet is {I, 3, 6, 1}. However, since the first 
number is always 0, 1, or 2, and the second is less than 40 (by definition-ISO 
simply will not recognize the 41 st category to show up on its doorstep), the first 
two numbers, a and b, are encoded as I byte having the value 40a + b. For the 
Internet, this number is 43. As usual, numbers exceeding 127 are encoded in mul­
tiple bytes, the first of which contains the high-order bit set to I and a byte count 
in the other 7 bits. 

Both sequence types are transmitted by first sending the type or tag, then the 
total length of the encoding for all the fields, followed by the fields themselves. 
The fields are sent in order. 

The encoding of a CHOICE value is the same as the encoding of the actual 
data structure being transferred. 

An example showing encoding of some values is given in Fig. 7-34. The 
values encoded are the INTEGER 49, the OCTET STRING '110', "xy", the only 
possible value for NULL, the OBJECT IDENTIFIER for the Internet { 1, 3, 6, 1}, 
and a Gauge32 value of 14. 

Tag Tag 
type Number 

\ l Length Value 

Integer 49 I o oioio o o 1 oi I o o o o o o o 1] Io o 1 1 o o o 1 i 

Bit String ·11 O' I o oioio o o 1 111 o o o o o o 1 o] Io o o o o 1 o 1 i i 1 1 o o o o o ~ 

Octet String 

NULL 

Internet object 

Gauge 32 14 

I o oiolo o 1 o oi Io o o o o o 1 o] Io 1 1 1 1 o o o 11 o 1 1 1 1 o o 1 I 

Io oioio o 1 o 1 i i o o o o o o o oi 

I o oioio o 1 1 oi i o o o o o o 1 1] i o o 1 o 1 o 1 111 o o o o o 1 1 o 11 o o o o o o o 1 i 

Io 1 ioio o o 1 ol Io o o o o o o 1 J Io o o o 1 1 1 o I 

Fig. 7-34. ASN. l encoding of some example values. 

Ex.1006.656DELL



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 639 

7.3.3. SMI-Structure of Management Information 

In the preceding section, we have discussed only those parts of ASN.l that are 
used in SNMP. In reality, the SNMP documents are organized differently. RFC 
1442 first says that ASN.1 will be used to describe SNMP data structures, then it 
goes on for 57 pages scratching out parts of the ASN.1 standard that it does not 
want and adding new definitions (in ASN.1) that are needed. In particular, RFC 
1442 defines four key macros and eight new data types that are heavily used 
throughout SNMP. It is this sub-super-set of ASN.1, which goes by the ungainly 
name of SMI (Structure of Management Information), that is really used to 
define the SNMP data structures. 

Although this approach is somewhat bureaucratic, some rules and regulations 
are necessary if products from hundreds of vendors are expected to talk to one 
another and actually understand what the others are saying. A few words about 
SMI are therefore now in order. 

At the lowest level, SNMP variabks are defined as individual objects. 
Related objects are collected together into groups, and groups are assembled into 
modules. For example, groups exist for IP objects and TCP objects. A router 
might support the IP group, since its manager cares about how many packets it 
has lost. On the other hand, a low-end router might not support the TCP group, 
since it need not use TCP to perform its routing functions. It is the intention that 
vendors supporting a group support all the objects in that group. However, a ven­
dor supporting a module need not support all of its groups, since not all may be 
applicable to the device. 

All MIB modules start with an invocation of the MODULE-IDENTITY macro. 
Its parameters provide the name and address of the implementer, the revision his­
tory, and other administrative information. Typically; this call is followed by an 
invocation of the OBJECT-IDENTITY macro, which tells where the module fits in 
the naming tree of Fig. 7-32. 

Later on come one or more invocations of the OBJECT-TYPE macro, which 
name the actual variables being managed and specify their properties. Grouping 
variables into groups is done by convention; there are no BEGIN-GROUP and 
END-GROUP statements in ASN. l or SMI. 

The OBJECT-TYPE macro has four required parameters and four (sometimes) 
optional ohes. The first required parameter is SYNTAX and defines the variable's 
data type from among the types listed in Fig. 7-35. For the most part, these types 
should be self explanatory, with the following comments. The suffix 32 is used 
when the implementer really wants a 32-bit number, even if all the machines in 
sight have 64-bit CPUs. Gauges differ from counters in that they do not wrap 
around when they hit their limits. They stick there. If a router has lost exactly 232 

packets, it is better to report this as 232 
- 1 than as 0. SMI also supports arrays, 

but we will not go into those here. For details, see (Rose, 1994). 
In addition to requiring a specification of the data type used by the variable 

Ex.1006.657DELL



640 THE APPLICATION LA YER CHAP. 7 

Name Type Bytes Meaning 

INTEGER Numeric 4 Integer (32 bits in current implementations) 

Counter32 Numeric 4 Unsigned 32-bit counter that wraps 

Gauge32 Numeric 4 Unsigned value that does not wrap 

lnteger32 Numeric 4 32 Bits, even on a 64-bit CPU 

Ulnteger32 Numeric 4 Like lnteger32, but unsigned 

Counter64 Numeric 8 A 64-bit counter 

Time Ticks Numeric 4 In hundredths of a second since some epoch 

BIT STRING String 4 Bit map of 1 to 32 bits 

OCTET STRING String ;:o: 0 Variable length byte string 

Opaque String ;:o: 0 Obsolete; for backward compatibility only 

OBJECT IDENTIFIER String >0 A list of integers from Fig. 7-32 

lpAddress String 4 A dotted decimal Internet address 

NsapAddress String <22 An OSI NSAP address 

Fig. 7-35. Data types used for SNMP monitored variables. 

being declared, the OBJECT TYPE macro also requires three other parameters. 
MAX-ACCESS contains information about the variable's access. The most com­
mon values are read-write and read-only. If a variable is read-write, the manage­
ment station can set it. If it is read-only, the management station can read it but 
cannot set it. 

The STATUS has three possible values. A current variable is conformant with 
the current SNMP specification. An obsolete variable is not conformant but was 
conformant with an older version. A deprecated variable is in between. It is 
really obsolete, but the committee that wrote the standard did not dare say this in 
public for fear of the reaction from vendors whose products use it. Nevertheless, 
the handwriting is on the wall. 

The last required parameter is DESCRIPTION, which is an ASCII string tell­
ing what the variable does. If a manager buys a nice new shiny device, queries it 
from the management station, and discovers that it keeps track of pktCnt, fetching 
the DESCRIPTION field is supposed to give a clue as to what kind of packets it is 
counting. This field is intended exclusively for human (as opposed to computer) 
consumption. 

A simple example of an OBJECT TYPE declaration is given in Fig. 7-36. The 
variable is called lostPackets and might be useful in a router or other device deal­
ing with packets. The value after the ::= sign places it in the tree. 

Ex.1006.658DELL



SEC. 7 .3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 641 

lostPackets OBJECT TYPE 
SYNTAX Counter32 
MAX-ACCESS read-only 
STATUS current 
DESCRIPTION 

-- use a 32-bit counter 
-- the management station may not change if 
-- this variable is not obsolete (yet) 

"The number of packets lost since the last boot" 
::={experimental 20} 

Fig. 7-36. An example SNMP variable. 

7 .3.4. The MIB-Management Information Base 

The collection of objects managed by SNMP is defined in the MIB. For con­
venience, these objects are (currently) grouped into ten categories, which 
correspond to the ten nodes under mib-2 in Fig. 7-32. (Note that mib-2 
corresponds to SNMPv2 and that object 9 is no longer present.) The ten 
categories are intended to provide a basis of what a management station should 
understand. New categories and objects will certainly be added in the future, and 
vendors are free to define additional objects for their products. The ten categories 
are summarized in Fig. 7-37. 

Group #Objects Description 

System 7 Name, location, and description of the equipment 

Interfaces 23 Network interfaces and their measured traffic 

AT 3 Address translation (deprecated) 

IP 42 IP packet statistics 

ICMP 26 Statistics about ICMP messages received 

TCP 19 TCP algorithms, parameters, and statistics 

UDP 6 UDP traffic statistics 

EGP 20 Exterior gateway protocol traffic statistics 

Transmission 0 Reserved for media-specific MIBs 

SNMP 29 SNMP traffic statistics 

Fig. 7-37. The object groups of the Internet MIB-II. 

Although space limitations prevent us from delving into the details of all 175 
objects defined in MIB-II, a few comments may be helpful. The system group 
allows the manager to find out what the device is called, who made it, what 
hardware and software it contains, where it is located, and what it is supposed to 
do. The time of the last boot and the name and address of the contact person are 

Ex.1006.659DELL



642 THE APPLICATION LAYER CHAP. 7 

also provided. This information means that a company can contract out system 
management to another company in a distant city and have the latter be able to 
easily figure out what the configuration being managed actually is and who should 
be contacted if there are problems with various devices. 

The interfaces group deals with the network adapters. It keeps track of the 
number of packets and bytes sent and received from the network, the number of 
discards, the number of broadcasts, and the current output queue size. 

The AT group was present in MIR-I and provided information about address 
mapping (e.g., Ethernet to IP addresses). This information was moved to 
protocol-specific MIBs in SNMPv2. 

The IP group deals with IP traffic into and out of the node. It is especially 
rich in counters keeping track of the number of packets discarded for each of a 
variety of reasons (e.g., no known route to the destination or lack of resources). 
Statistics about datagram fragmentation and reassembly are also available. All 
these items are particular important for managing routers. 

The ICMP group is about IP error messages. Basically, it has a counter for 
each ICMP message that records how many of that type have been seen. 

The TCP group monitors the current and cumulative number of connections 
opened, segments sent and received, and various error statistics. 

The UDP group logs the number of UDP datagrams sent and received, and 
how many of the latter were undeliverable due to an unknown port or some other 
reason. 

The EGP group is used for routers that support the exterior gateway protocol. 
It keeps track of how many packets of what kind went out, came in and were for­
warded correctly, and came in and were discarded. 

The transmission group is a place holder for media-specific MIBs. For exam­
ple, Ethernet-specific statistics can be kept here. The purpose of including an 
empty group in MIB-II is to reserve the identifier {internet 2 1 9} for such pur­
poses. 

The last group is for collecting statistics about the operation of SNMP itself. 
How many messages are being sent, what kinds of messages are they, and so on. 

MIB-II is formally defined in RFC 1213. The bulk of RFC 1213 consists of 
17 5 macro calls similar to those of Fig. 7-36, with comments delineating the ten 
groups. For each of the 175 objects defined, the data type is given along with an 
English text description of what the variable is used for. For further information 
about MIB-II, the reader is referred to this RFC. 

7.3.5. The SNMP Protocol 

We have now seen that the model underlying SNMP is a management station 
that sends requests to agents in managed nodes, inquiring about the 175 variables 
just alluded to, and many other vendor-specific variables. Our last topic is the 

Ex.1006.660DELL



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 643 

actual protocol that the management station and agents speak. The protocol itself 
is defined in RFC 1448. 

The normal way that SNMP is used is that the management station sends a 
request to an agent asking it for information or commanding it to update its state 
in a certain way. Ideally, the agent just replies with the requested information or 
confirms that it has updated its state as requested. Data are sent using the ASN.1 
transfer syntax. However, various errors can also be reported, such as No Such 
Variable. 

SNMP defines seven messages that can be sent. The six messages from an 
initiator are listed in Fig. 7-38 (the seventh message is the response message). 
The first three request variable values to be sent back. The first format names the 
variables it wants explicitly. The second one asks for the next variable, allowing 
a manager to step through the entire MIB alphabetically (the default is the first 
variable). The third is for large transfers, such as tables. 

Message Description 

Get-request Requests the value of one or more variables 

Get-next-request Requests the variable following this one 

Get-bulk-request Fetches a large table 

Set-request Updates one or more variables 

Inform-request Manager-to-manager message describing local MIB 

SnmpV2-trap Agent-to-manager trap report 

Fig. 7-38. SNMP message types. 

Then comes a message that allows the manager to update an agent's variables, 
to the extent that the object specification permits such updates, of course. Next is 
an informational request that allows one manager to tell another one which vari­
ables it is managing. Finally, comes the message sent from an agent to a manager 
when a trap has sprung. 

7.4. ELECTRONIC MAIL 

Having finished looking at some of the support protocols used in the applica­
tion layer, we finally come to real applications. When asked: "What are you 
going to do now?" few people will say: "I am going to look up some names with 
DNS." People do say they are going to read their email or news, surf the Web, or 
watch a movie over the net. In the remainder of this chapter, we will explain in a 
fair amount of detail how these four applications work. 

Ex.1006.661DELL



644 THE APPLICATION LA YER CHAP. 7 

Electronic mail, or email, as it is known to its many fans, has been around for 
over two decades. The first email systems simply consisted of file transfer proto­
cols, with the convention that the first line of each message (i.e., file) contained 
the recipient's address. As time went on, the limitations of this approach became 
more obvious. Some of the complaints were 

1. Sending a message to a group of people was inconvenient. Managers 
often need this facility to send memos to all their subordinates. 

2. Messages had no internal structure, making computer processing dif­
ficult. For example, if a forwarded message was included in the 
body of another message, extracting the forwarded part from the 
received message was difficult. 

3. The originator (sender) never knew if a message aITived or not. 

4. If someone was planning to be away on business for several weeks 
and wanted all incoming email to be handled by his secretary, this 
was not easy to aITange. 

5. The user interface was poorly integrated with the transmission sys­
tem requiring users first to edit a file, then leave the editor and 
invoke the file transfer program. 

6. It was not possible to create and send messages containing a mixture 
of text, drawings, facsimile, and voice. 

As experience was gained, more elaborate email systems were proposed. In 
1982, the ARPANET email proposals were published as RFC 821 (transmission 
protocol) and RFC 822 (message format). These have since become the de facto 
Internet standards. Two years later, CCITT drafted its X.400 recommendation, 
which was later taken over as the basis for OSI's MOTIS. In 1988, CCITT modi­
fied X.400 to align it with MOTIS. MOTIS was to be the flagship application for 
OSI, a system that was to be all things to all people. 

After a decade of competition, email systems based on RFC 822 are widely 
used, whereas those based on X.400 have disappeared under the horizon. How a 
system hacked together by a handful of computer science graduate students beat 
an official international standard strongly backed by all the PTTs worldwide, 
many governments, and a substantial part of the computer industry brings to mind 
the Biblical story of David and Goliath. The reason for RFC 822' s success is not 
that it is so good, but that X.400 is so poorly designed and so complex that nobody 
could implement it well. Given a choice between a simple-minded, but working, 
RFC 822-based email system and a supposedly truly wonderful, but nonworking, 
X.400 email system, most organizations chose the former. For a long diatribe on 
what is wrong with X.400, see Appendix C of (Rose, 1993). Consequently, our 
discussion of email will focus on RFC 82 l and RFC 822 as used in the Internet. 

Ex.1006.662DELL



SEC. 7.4 ELECTRONIC MAIL 645 

7.4.1. Architecture and Services 

In this section we will provide an overview of what email systems can do and 
how they are organized. They normally consist of two subsystems: the user 
agents, which allow people to read and send email, and the message transfer 
agents, which move the messages from the source to the destination. The user 
agents are local programs that provide a command-based, menu-based, or graphi­
cal method for interacting with the email system. The message transfer agents are 
typically system daemons that run in the background and move email through the 
system. 

Typically, email systems support five basic functions, as described below. 
Composition refers to the process of creating messages and answers. Although 
any text editor can be used for the body of the message, the system itself can pro­
vide assistance with addressing and the numerous header fields attached to each 
message. For example, when answering a message, the email system can extract 
the originator's address from the incoming email and automatically insert it into 
the proper place in the reply. 

Transfer refers to moving messages from the originator to the recipient. In 
large part, this requires establishing a connection to the destination or some inter­
mediate machine, outputting the message, and releasing the connection. The 
email system should do this automatically, without bothering the user. 

Reporting has to do with telling the originator what happened to the message. 
Was it delivered? Was it rejected? Was it lost? Numerous applications exist in 
which confirmation of delivery is important and may even have legal significance 
("Well, Your Honor, my emai.1 system is not very reliable, so I guess the elec­
tronic subpoena just got lost somewhere"). 

Displaying incoming messages is needed so people can read their email. 
Sometimes conversion is required or a special viewer must be invoked, for exam­
ple, if the message is a Postscript file or digitized voice. Simple conversions and 
formatting are sometimes attempted as well. 

Disposition is the final step and concerns what the recipient does with the 
message after receiving it. Possibilities include throwing it away before reading, 
throwing it away after reading, saving it, and so on. It should also be possible to 
retrieve and reread saved messages, forward them, or process them in other ways. 

In addition to these basic services, most email systems provide a large variety 
of advanced features. Let us just briefly mention a few of these. When people 
move, or when they are away for some period of time, they may want their email 
forwarded, so the system should be able to do this automatically. 

Most systems allow users to create mailboxes to store incoming email. Com­
mands are needed to create and destroy mailboxes, inspect the contents of mail­
boxes, insert and delete messages from mailboxes, and so on. 

Corporate managers often need to send a message to each of their subordi­
nates, customers, or suppliers. This gives rise to the idea of a mailing list, which 

Ex.1006.663DELL



646 THE APPLICATION LA YER CHAP. 7 

is a list of email addresses. When a message is sent to the mailing list, identical 
copies are delivered to everyone on the list. 

Registered email is another important idea, to allow the originator to know 
that his message has arrived. Alternatively, automatic notification of undeliver­
able email may be desired. In any case, the originator should have some control 
over reporting what happened. 

Other advanced features are carbon copies, high-priority email, secret 
(encrypted) email, alternative recipients if the primary one is not available, and 
the ability for secretaries to handle their bosses' email. 

Email is now widely used within industry for intracompany communication. 
It allows far-flung employees to cooperate on complex projects, even over many 
time zones. By eliminating most cues associated with rank, age, and gender, 
email debates tend to focus on ideas, not on corporate status. With email, a brilli­
ant idea from a summer student can have more impact than a dumb one from an 
executive vice president. Some companies have estimated that email has 
improved their productivity by as much as 30 percent (Perry and Adam, 1992). 

A key idea in all modern email systems is the distinction between the 
envelope and its contents. The envelope encapsulates tqe message. It contains all 
the information needed for transporting the message, such as the destination 
address, priority, and security level, all of which are distinct from the message 
itself. The message transport agents use the envelope for routing, just as the post 
office does. 

The message inside the envelope contains two parts: the beader and the 
body. The header contains control information for the user agents. The body is 
entirely for the human recipient. Envelopes and messages are illustrated in 
Fig. 7-39. 

7.4.2. The User Agent 

Email systems have two basic parts, as we have seen: the user agents and the 
message transfer agents. In this section we will look at the user agents. A user 
agent is normally a program (sometimes called a mail reader) that accepts a 
variety of commands for composing, receiving, and replying to messages, as well 
as for manipulating mailboxes. Some user agents have a fancy menu- or icon­
driven interface that requires a mouse, while others expect I-character commands 
from the keyboard. Functionally, these are the same. 

Sending Email 

To send an email message, a user must provide the message, the destination 
address, and possibly some other parameters (e.g., the priority or security level). 
The message can be produced with a free-standing text editor, a word processing 

Ex.1006.664DELL



SEC. 7.4 ELECTRONIC MAIL 6417 

Envelope 

Message 

(a) (b) 

Fig. 7-39. Envelopes and messages. (a) Postal email. (b) Electronic email. 

program, or possibly with a text editor built into the user agent. The destination 
address must be in a format that the user agent can deal with. Many user agents 
expect DNS addresses of the form mailbox@location. Since we have studied 
these earlier in this chapter, we will not repeat that material here. 

However, it is worth noting that other forms of addressing exist. In partic;ular, 
X.400 addresses look radically different than DNS addresses. They are composed 
of attribute = value pairs, for example, 

/C=US/SP=MASSACHUSETTS/L=CAMBRIDGE/PA=360 MEMORIAL DR./CN=KEN SMITH/ 

This address specifies a country, state, locality, personal address and a common 
name (Tom Smith). Many other attributes are possible, so you can send email to 
someone whose name you do not know, provided you know enough other attri­
butes (e.g., company and job title). Many people feel that this form of naming is 
considerably less convenient than DNS names. 

In all fairness, however, the X.400 designers assumed that people would use 
aliases (short user-assigned strings) to identify recipients, so that they would 
never even see the full addresses. However, the necessary software was never 

Ex.1006.665DELL



648 THE APPLICATION LA YER CHAP. 7 

widely available, so people sending mail to users with X.400 addresses often had 
to type in strings like the one above. In contrast, most email systems for the Inter­
net have always allowed users to have alias files. 

Most email systems support mailing lists, so that a user can send the same 
message to a list of people with a single command. If the mailing list is main­
tained locally, the user agent can just send a separate message to each intended 
recipient. However, if the list is maintained remotely, then messages will be 
expanded there. For example, if a group of bird watchers have a mailing list 
called birders installed on meadowlark.arizona.edu, then any message sent to 
birders@meadowlark.arizona.edu will be routed to the University of Arizona and 
expanded there into individual messages to all the mailing list members, wherever 
in the world they may be. Users of this mailing list cannot tell that it is a mailing 
list. It could just as well be the personal mailbox of Prof. Gabriel 0. Birders. 

Reading Email 

Typically, when a user agent is started up, it will look at the user's mailbox 
for incoming email before displaying anything on the screen. Then it may 
announce the number of messages in the mailbox or display a one-line summary 
of each one and wait for a command. 

As an example of how a user agent works, let us take a look at a typical mail 
scenario. After starting up the user agent, the user asks for a summary of his 
email. A display like that of Fig. 7-40 then appears on the screen. Each line 
refers to one message. In this example, the mailbox contains eight messages. 

#I Flags ) Bytes ) Sender I Subject 

1 K 1030 asw Changes to MINIX 

2 KA 6348 radia Comments on material you sent me 

3 K F 4519 Amy N. Wong Request for information 

4 1236 bal Deadline for grant proposal 

5 103610 kaashoek Text of DCS paper 

6 1223 emily E. Pointer to WWW page 

7 3110 saniya Referee reports for the paper 

8 1204 dmr Re: My student's visit 

Fig. 7-40. An example display of the contents of a mailbox. 

Each display line contains several fields extracted from the envelope or 
header of the corresponding message. In a simple email system, the choice of 
fields displayed is built into the program. In a more sophisticated system, the user 
can specify which fields are to be displayed by providing a user profile, a file 

Ex.1006.666DELL



SEC. 7.4 ELECTRONIC MAIL 649 

describing the display format. In this example, the first field is the message 
number. The second field, Flags, can contain a K, meaning that the message is 
not new but was read previously and kept in the mailbox; an A, meaning that the 
message has already been answered; and/or an F, meaning that the message has 
been forwarded to someone else. Other flags are also possible. 

The third field tells how long the message is and the fourth one tells who sent 
the message. Since this field is simply extracted from the message, this field may 
contain first names, full names, initials, login names, or whatever else the sender 
chooses to put there. Finally, the Subject field gives a brief summary of what the 
message is about. People who fail to include a Subject field often discover that 
responses to their email tend not to get the highest priority. 

After the headers have been displayed, the user can perform any of the com­
mands available. A typical collection is listed in Fig. 7-41. Some of the com­
mands require a parameter. The # sign means that the number of a message (or 
perhaps several messages) is expected. Alternatively, the letter a can be used to 
mean all messages. 

Command Parameter Description 

h # Display header(s) on the screen 

c Display current header only 

t # Type message(s) on the screen 

s address Send a message 

f # Forward message(s) 

a # Answer message(s) 
-· 

d # Delete message(s) 

u # Undelete previously deleted message(s) 
m # Move message(s) to another mailbox 
k # Keep message(s) after exiting 
r mailbox Read a new mailbox 

n Go to the next message and display it 

b Backup to the previous message and display it 

g # Go to a specific message but do not display it 

e Exit the mail system and update the mailbox 

Fig. 7-41. Typical mail handling commands. 

Innumerable email programs exist. Our example email program is patterned 
after the one used by the UNIX Mmdf system, as it is quite straightforward. The h 
command displays one or more headers in the format of Fig. 7-40. The c com­
mand prints the current message's header. The t command types (i.e., displays on 
the screen) the requested message or messages. Possible commands are t 3, to 
type message 3, t 4-6, to type messages 4 through 6, and ta to type them all. 

Ex.1006.667DELL



650 THE APPLICATION LA YER CHAP. 7 

The next group of three commands deals with sending messages rather than 
receiving them. The s command sends a message by calling an appropriate editor 
(e.g., specified in the user's profile) to allow the user to compose the message. 
Spelling, grammar, and diction checkers can see if the message is syntactically 
correct. Unfortunately, the current generation of email programs do not have 
checkers to see if the sender knows what he is talking about. When the message 
is finished, it is prepared for transmission to the message transfer agent. 

The f command forwards a message from the mailbox, prompting for an 
address to send it to. The a command extracts the source address from the mes­
sage to be answered and calls the editor to allow the user to compose the reply. 

The next group of commands is for manipulating mailboxes. Users typically 
have one mailbox for each person with whom they correspond, in addition to the 
mailbox for incoming email that we have already seen. The d command deletes a 
message from the mailbox, but the u command undoes the delete. (The message 
is not actually deleted until the email program is exited.) Them command moves 
a message to another mailbox. This is the usual way to save important email after 
reading it. The k command keeps the indicated message in the mailbox even after 
it is read. If a message is read but not explicitly kept, some default action is taken 
when the email program is exited, such as moving it to a special default mailbox. 
Finally, the r command is used to finish up with the current mailbox and go read 
another one. 

The n, b, and g commands are for moving about in the current mailbox. It is 
common for a user to read message 1, answer, move, or delete it, and then type n 
to get the next one. The value of this command is that the user does not have to 
keep track of where he is. It is possible to go backward using b or to a given mes­
sage with g. 

Finally, the e command exits the email program and makes whatever changes 
are required, such as deleting some messages and marking others as kept. This 
command overwrites the mailbox, replacing its contents. 

In mail systems designed for beginners, each of these commands is typically 
associated with an on-screen icon, so that the user does not have to remember that 
a stands for answer. Instead, she has to remember that the little picture of a per­
son with his mouth open means answer and not display message. 

It should be clear from this example that email has come a long way from the 
days when it was just file transfer. Sophisticated user agents make managing a 
large volume of email possible. For people such as the author who (reluctantly) 
receive and send thousands of messages a year, such tools are invaluable. 

7.4.3. Message Formats 

Let us now turn from the user interface to the format of the email messages 
themselves. First we will look at basic ASCII email using RFC 822. After that, 
we will look at multimedia extensions to RFC 822 

Ex.1006.668DELL



SEC. 7.4 ELECTRONIC MAIL 651 

RFC 822 

Messages consist of a pnm1t1ve envelope (described in RFC 821), some 
number of header fields, a blank line, and then the message body. Each header 
field (logically) consists of a single line of ASCII text containing the field name, a 
colon, and, for most fields, a value. RFC 822 is an old standard, and does not 
clearly distinguish envelope from header fields, as a new standard would do. In 
normal usage, the user agent builds a message and passes it to the message 
transfer agent, which then uses some of the header fields to construct the actual 
envelope, a somewhat old-fashioned mixing of message and envelope. 

The principal header fields related to message transport are listed in Fig. 7-42. 
The To: field gives the DNS address of the primary recipient. Having multiple 
recipients is also allowed. The Cc: field gives the addresses of any secondary 
recipients.. In terms of delivery, there is no distinction between the primary and 
secondary recipients. It is entirely a psychological difference that may be impor­
tant to the people involved but is not important to the mail system. The term Cc: 
(Carbon copy) is a bit dated, since computers do not use carbon paper, but it is 
well established. The Bee: (Blind carbon copy) field is like the Cc: field, except 
that this lime is deleted from all the copies sent to the primary and secondary reci­
pients. This feature allows people to send copies to third parties without the pri­
mary and secondary recipients knowing this. 

Header Meaning 

To: Email address(es) of primary recipient(s) 

Cc: Email address(es) of secondary recipient(s) 

Bee: Email address(es) for blind carbon copies 

From: Person or people who created the message 

Sender: Email address of the actual sender 

Received: Line added by each transfer agent along the route 

Return-Path: Can be used to identify a path back to the sender 

Fig. 7-42. RFC 822 header fields related to message transport. 

The next two fields, From: and Sender: tell who wrote and sent the message, 
respectively. These may not be the same. For example, a business executive may 
write a message, but her secretary may be the one who actually transmits it. In 
this case, the executive would be listed in the From: field and the secretary in the 
Sender: field. The From: field is required, but the Sender: field may be omitted if 
it is the same as the From: field. These fields are needed in case the message is 
undeliverable and must be returned to the sender. 

A line containing Received: is added by each message transfer agent along the 

Ex.1006.669DELL



652 THE APPLICATION LA YER CHAP. 7 

way. The line contains the agent's identity, the date and time the message was 
received, and other information that can be used for finding bugs in the routing 
system. 

The Return-Path: field is added by the final message transfer agent and was 
intended to tell how to get back to the sender. In theory, this information can be 
gathered from all the Received: headers (except for the name of the sender's mail­
box), but it is rarely filled in as such and typically just contains the sender's 
address. 

In addition to the fields of Fig. 7-42, RFC 822 messages may also contain a 
variety of header fields used by the user agents or human recipients. The most 
common ones are listed in Fig. 7-43. Most of these are self-explanatory, so we 
will not go into all of them in detail. 

--

Header Meaning 

Date: The date and time the message was sent 

Reply-To: Email address to which replies should be sent 

Message-Id: Unique number for referencing this message later 

In-Reply-To: Message-Id of the message to which this is a reply 

References: Other relevant Message-Ids 

Keywords: User chosen keywords 

Subject: Short summary of the message for the one-line display 

Fig. 7-43. Some fields used in the RFC 822 message header. 

The Reply-To: field is sometimes used when neither the person composing the 
message nor the person sending the message wants to see the reply. For example, 
a marketing manager writes an email message telling customers about a new 
product. The message is sent by a secretary, but the Reply-To: field lists the head 
of the sales department, who can answer questions and take orders. 

The RFC 822 document explicitly says that users are allowed to invent new 
headers for their own private use, provided that these headers start with the string 
X-. It is guaranteed that no future headers will use names starting with X-, to 
avoid conflicts between official and private headers. Sometimes wiseguy under­
graduates include fields like X-Fruit-of-the-Day: or X-Disease-of-the-Week:, 
which are legal, although not always illuminating. 

After the headers comes the message body. Users can put whatever they want 
here. Some people terminate their messages with elaborate signatures, including 
simple ASCII cartoons, quotations from greater and lesser authorities, political 
statements, and disclaimers of all kinds (e.g., The ABC Corporation is not respon­
sible for my opinions; it cannot even comprehend them). 

Ex.1006.670DELL



SEC. 7.4 ELECTRONIC MAIL 653 

MIME-Multipurpose Interrnet Mail Extensions 

In the early days of the ARPANET, email consisted exclusively of text mes­
sages written in English and expressed in ASCII. For this environment, RFC 822 
did the job completely: it specified the headers but left the content entirely up to 
the users. Nowadays, on the worldwide Internet, this approach is no longer ade­
quate. The problems include sending and receiving 

1. Messages in languages with accents (e.g., French and German). 

2. Messages in nonLatin alphabets (e.g., Hebrew and Russian). 

3. Messages in languages without alphabets (e.g., Chinese and Japanese). 

4. Messages not containing text at all (e.g., audio and video). 

A solution was proposed in RFC 1341 and updated in RFC 1521. This solution, 
called MIME (Multipurpose Internet Mail Extensions) is now widely used. 
We will now describe it. For additional information about MIME, see RFC 1521 
or (Rose, 1993). 

The basic idea of MIME is to continue to use the RFC 822 format, but to add 
structure to the message body and define encoding rules for non-ASCII messages. 
By not deviating from 822, MIME messages can be sent using the existing mail 
programs and protocols. All that has to be changed are the sending and receiving 
programs, which users can do for themselves. 

MIME defines five new message headers, as shown in Fig. 7-44. The first of 
these simply tells the user agent receiving the message that it is dealing with a 
MIME message, and which version of MIME it uses. Any message not contain­
ing a MIME-Version: header is assumed to be an English plaintext message, and 
is processed as such. 

Header Meaning 

MIME-Version: Identifies the MIME version 

Content-Description: Human-readable string telling what is in the message 

Content-Id: Unique identifier 

Content-Transfer-Encoding: How the body is wrapped for transmission 

Content-Type: Nature of the message 

Fig. 7-44 .. RFC 822 headers added by MIME. 

The Content-Description: header is an ASCII string telling what is in the mes­
sage. This header is needed so the recipient will know whether it -is worth decod­
ing and reading the message. If the string says: "Photo of Barbara's gerbil" and 
the person getting the message is not a big gerbil fan, the message will probably 
be discarded rather than decoded into a high-resolution color photograph. 

Ex.1006.671DELL


