THE TRANSPORT LAYER

The transport layer is not just another layer. It is the heart of the whole proto-
col hierarchy. Its task is to provide reliable, cost-effective data transport from the
source machine to the destination machine, independent of the physical network
or networks currently in use. Without the transport layer, the whole concept of
layered protocols would make little sense. In this chapter we will study the trans-
port layer in detail, including its services, design, protocols, and performance.

6.1. THE TRANSPORT SERVICE

In the following sections we will provide an introduction to the transport ser-
vice. We look at what kind of service is provided to the application layer (or ses-
sion layer, if one exists), and especially how one can characterize the quality of
service. Then we will look at how applications access the transport service, that
is, what the interface is like.

6.1.1. Services Provided to the Upper Layers
The ultimate goal of the transport layer is to provide efficient, reliable, and

cost-effective service to its users, normally processes in the application layer. To
achieve this goal, the transport layer makes use of the services provided

479

DELL Ex.1006.497

480 THE TRANSPORT LAYER CHAP. 6

by the network layer. The hardware and/or software within the transport layer
that does the work is called the transport entity. The transport entity can be in
the operating system kernel, in a separate user process, in a library package bound
into network applications, or on the network interface card. In some cases, the
carrier may even provide reliable transport service, in which case the transport
entity lives on special interface machines at the edge of the subnet to which hosts
connect. The (logical) relationship of the network, transport, and application
layers is illustrated in Fig. 6-1.

Host 1 Host 2
Application Application
(or session) Application/transport (or session)
layer Transport | interface layer
~ address |,/ .
TPDU T
Transport [—— Transport
entity Transport entity
protocol
Network = A
address Transport/network
Network layer interface Network layer

Fig. 6-1. The network, transport, and application layers.

Just as there are two types of network service, connection-oriented and con-
nectionless, there are also the same two types of transport service. The
connection-oriented transport service is similar to the connection-oriented net-
work service in many ways. In both cases, connections have three phases: estab-
lishment, data transfer, and release. Addressing and flow control are also similar
in both layers. Furthermore, the connectionless transport service is also very
similar to the connectionless network service.

The obvious question is then: If the transport layer service is so similar to the
network layer service, why are there two distinct layers? Why is one layer not
adequate? The answer is subtle, but crucial, and goes back to Fig. 1-16. In this
figure we can see that the network layer is part of the communication subnet and
is run by the carrier (at least for WANs). What happens if the network layer
offers connection-oriented service but is unreliable? Suppose that it frequently
loses packets? What happens if routers crash from time to time?

Problems occur, that’s what. The users have no control over the subnet, so
they cannot solve the problem of poor service by using better routers or putting
more error handling in the data link layer. The only possibility is to put another

DELL Ex.1006.498

SEC. 6.1 THE TRANSPORT SERVICE 481

layer on top of the network layer that improves the quality of the service. If a
transport entity is informed halfway through a long transmission that its network
connection has been abruptly terminated, with no indication of what has happened
to the data currently in transit, it can set up a new network connection to the
remote transport entity. Using this new network connection, it can send a query to
its peer asking which data arrived and which did not, and then pick up from where
it left off.

In essence, the existence of the transport layer makes it possible for the trans-
port service to be more reliable than the underlying network service. Lost packets
and mangled data can be detected and compensated for by the transport layer.
Furthermore, the transport service primitives can be designed to be independent of
the network service primitives which may vary considerably from network to net-
work (e.g., connectionless LAN service may be quite different than connection-
oriented WAN service).

Thanks to the transport layer, it is possible for application programs to be
written using a standard set of primitives, and to have these programs work on a
wide variety of networks, without having to worry about dealing with different
subnet interfaces and unreliable transmission. If all real networks were flawless
and all had the same service primitives, the transport layer would probably not be
needed. However, in the real world it fulfills the key function of isolating the
upper layers from the technology, design, and imperfections of the subnet.

For this reason, many people have made a distinction between layers 1
through 4 on the one hand, and layer(s) above 4 on the other. The bottom four
layers can be seen as the transport service provider, whereas the upper layer(s)
are the transport service user. This distinction of provider versus user has a
considerable impact on the design of the layers and puts the transport layer in a
key position, since it forms the major boundary between the provider and user of
the reliable data transmission service.

6.1.2. Quality of Service

Another way of looking at the transport layer is to regard its primary function
as enhancing the QoS (Quality of Service) provided by the network layer. If the
network service is impeccable, the transport layer has an easy job. If, however,
the network service is poor, the transport layer has to bridge the gap between what
the transport users want and what the network layer provides.

While at first glance, quality of service might seem like a vague concept (get-
ting everyone to agree what constitutes “good” service is-a nontrivial exercise),
QoS can be characterized by a number of specific parameters, as we saw in Chap.
5. The transport service may allow the user to specify preferred, acceptable, and
minimum values for various service parameters at the time a connection is set up.
Some of the parameters also apply to connectionless transport. It is up to the
transport layer to examine these parameters, and depending on the kind of

DELL Ex.1006.499

482 THE TRANSPORT LAYER CHAP. 6

network service or services available to it, determine whether it can provide the
required service. In the remainder of this section we will discuss some possible
QoS parameters. They are summarized in Fig. 6-2. Note that few networks or
protocols provide all of these parameters. Many just try their best to reduce the
residual error rate and leave it at that. Others have elaborate QoS architectures
(Campbell et al., 1994).

Connection establishment delay

Connection establishment failure probability

Throughput

Transit delay

Residual error ratio

Protection

Priority

Resilience

Fig. 6-2. Typical transport layer quality of service parameters.

The Connection establishment delay is the amount of time elapsing between a
transport connection being requested and the confirmation being received by the
user of the transport service. It includes the processing delay in the remote trans-
port entity. As with all parameters measuring a delay, the shorter the delay, the
better the service.

The Connection establishment failure probability is the chance of a connec-
tion not being established within the maximum establishment delay time, for
example, due to network congestion, lack of table space somewhere, or other
internal problems.

The Throughput parameter measures the number of bytes of user data
transferred per second, measured over some time interval. The throughput is
measured separately for each direction.

The Transit delay measures the time between a message being sent by the
transport user on the source machine and its being received by the transport user
on the destination machine. As with throughput, each direction is handled
separately.

The Residual error ratio measures the number of lost or garbled messages as
a fraction of the total sent. In theory, the residual error rate should be zero, since
it is the job of the transport layer to hide all network layer errors. In practice it
may have some (small) finite value.

The Protection parameter provides a way for the transport user to specify
interest in having the transport layer provide protection against unauthorized third
parties (wiretappers) reading or modifying the transmitted data.

DELL Ex.1006.500

SEC. 6.1 THE TRANSPORT SERVICE 483

The Priority parameter provides a way for a transport user to indicate that
some of its connections are more important than other ones, and in the event of
congestion, to make sure that the high-priority connections get serviced before the
low-priority ones.

Finally, the Resilience parameter gives the probability of the transport layer
itself spontaneously terminating a connection due to internal problems or conges-
tion.

The QoS parameters are specified by the transport user when a connection is
requested. Both the desired and minimum acceptable values can be given. In
some cases, upon seeing the QoS parameters, the transport layer may immediately
realize that some of them are unachievable, in which case it tells the caller that the
connection attempt failed, without even bothering to contact the destination. The
failure report specifies the reason for the failure.

In other cases, the transport layer knows. it cannot achieve the desired goal
(e.g., 600 Mbps throughput), but it can achieve a lower, but still acceptable rate
(e.g., 150 Mbps). It then sends the lower rate and the minimum acceptable rate to
the remote machine, asking to establish a connection. If the remote machine can-
not handle the proposed value, but it can handle a value above the minimum, it
may make a counteroffer. If it cannot handle any value above the minimum, it
rejects the connection attempt. Finally, the originating transport user is informed
of whether the connection was established or rejected, and if it was established,
the values of the parameters agreed upon.

This process is called option negotiation. Once the options have been nego-
tiated, they remain that way throughout the life of the connection. To keep custo-
mers from being too greedy, most carriers have the tendency to charge more
money for better quality service.

6.1.3. Transport Service Primitives

The transport service primitives allow transport users (e.g., application pro-
grams) to access the transport service. Each transport service has its own access
primitives. In this section, we will first examine a simple (hypothetical) transport
service and then look at a real example.

The transport service is similar to the network service, but there are also some
important differences. The main difference is that the network service is intended
to model the service offered by real networks, warts and all. Real networks can
lose packets, so the network service is generally unreliable.

The (connection-oriented) transport service, in contrast, is reliable. Of course,
real networks are not error-free, but that is precisely the purpose of the transport
layer—to provide a reliable service on top of an unreliable network.

As an example, consider two processes connected by pipes in UNIX. They
assume the connection between them is perfect. They do not want to know about
acknowledgements, lost packets, congestion, or anything like that. What they

DELL Ex.1006.501

484 THE TRANSPORT LAYER CHAP. 6

want is a 100 percent reliable connection. Process A puts data into one end of the
pipe, and process B takes it out of the other. This is what the connection-oriented
transport service is all about—hiding the imperfections of the network service so
that user processes can just assume the existence of an error-free bit stream.

As an aside, the transport layer can also provide unreliable (datagram) ser-
vice, but there is relatively little to say about that, so we will concentrate on the
connection-oriented transport service in this chapter.

A second difference between the network service and transport service is
whom the services are intended for. The network service is used only by the
transport entities. Few users write their own transport entities, and thus few users
or programs ever see the bare network service. In contrast, many programs (and
thus programmers) see the transport primitives. Consequently, the transport ser-
vice must be convenient and easy to use.

To get an idea of what a transport service might be like, consider the five
primitives listed in Fig. 6-3. This transport interface is truly bare bones but it
gives the essential flavor of what a connection-oriented transport interface has to
do. It allows application programs to establish, use, and release connections,
which is sufficient for many applications.

Primitive TPDU sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA TPDU arrives
DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection

Fig. 6-3. The primitives for a simple transport service.

To see how these primitives might be used, consider an application with a
server and a number of remote clients. To start with, the server executes a LISTEN
primitive, typically by calling a library procedure that makes a system call to
block the server until a client turns up. When a client wants to talk to the server,
it executes a CONNECT primitive. The transport entity carries out this primitive by
blocking the caller and sending a packet to the server. Encapsulated in the pay-
load of this packet is a transport layer message for the server’s transport entity.

A quick note on terminology is now in order. For lack of a better term, we
will reluctantly use the somewhat ungainly acronym TPDU (Transport Protocol
Data Unit) for messages sent from transport entity to transport entity. Thus
TPDUs (exchanged by the transport layer) are contained in packets (exchanged by
the network layer). In turn, packets are contained in frames (exchanged by the
data link layer). When a frame arrives, the data link layer processes the frame
header and passes the contents of the frame payload field up to the network entity.

DELL Ex.1006.502

SEC. 6.1 THE TRANSPORT SERVICE 485

The network entity processes the packet header and passes the contents of the
packet payload up to the transport entity. This nesting is illustrated in Fig. 6-4.

Frame Packet TPDU
header header header

TPDU payload

Packet payload

Frame payload —>

Fig. 6-4. Nesting of TPDUs, packets, and frames.

Getting back to our client-server example, the client’s CONNECT call causes a
CONNECTION REQUEST TPDU to be sent to the server. When it arrives, the trans-
port entity checks to see that the server is blocked on a LISTEN (i.e., is interested
in handling requests). It then unblocks the server and sends a CONNECTION
ACCEPTED TPDU back to the client. When this TPDU arrives, the client is
unblocked and the connection is established.

Data can now be exchanged using the SEND and RECEIVE primitives. In the
simplest form, either party can do a (blocking) RECEIVE to wait for the other party
to do a SEND. When the TPDU arrives, the receiver is unblocked. It can then pro-
cess the TPDU and send a reply. As long as both sides can keep track of whose
turn it is to send, this scheme works fine.

Note that at the network layer, even a simple unidirectional data exchange is
more complicated than at the transport layer. Every data packet sent will also be
acknowledged (eventually). The packets bearing control TPDUs are also
acknowledged, implicitly or explicitly. These acknowledgements are managed by
the transport entities using the network layer protocol and are not visible to the
transport users. Similarly, the transport entities will need to worry about timers
and retransmissions. None of this machinery is seen by the transport users. To
the transport users, a connection is a reliable bit pipe: one user stuffs bits in and
they magically appear at the other end. This ability to hide complexity is the rea-
son that layered protocols are such a powerful tool.

When a connection is no longer needed, it must be released to free up table
space within the two transport entities. Disconnection has two variants: asym-
metric and symmetric. In the asymmetric variant, either transport user can issue a
DISCONNECT primitive, which results in a DISCONNECT TPDU being sent to the
remote transport entity. Upon arrival, the connection is released.

In the symmetric variant, each direction is closed separately, independently of
the other one. When one side does a DISCONNECT, that means it has no more data

DELL Ex.1006.503

486 THE TRANSPORT LAYER CHAP. 6

to send, but it is still willing to accept data from its partner. In this model, a con-
nection is released when both sides have done a DISCONNECT.

A state diagram for connection establishment and release for these simple
primitives is given in Fig. 6-5. Each transition is triggered by some event, either a
primitive executed by the local transport user or an incoming packet. For simpli-
city, we assume here that each TPDU is separately acknowledged. We also
assume that a symmetric disconnection model is used, with the client going first.
Please note that this model is quite unsophisticated. We will look at more realis-
tic models later on.

Connection request Connect primitive
TPDU received executed
o m——————————— IDLE
')
1
¥
PASSIVE ACTIVE
ESTABLISHMENT ESTABLISHMENT
PENDING PENDING
: J
i
RS, +! ESTABLISHED
Connect primitive Connection accepted
executed . TPDU received
Disconnection request E Disconnect primitive
TPDU received executed
PASSIVE H ACTIVE
DISCONNECT |w~mmmmmmm e e v ! DISCONNECT
PENDING PENDING
E J
1
1
1
AY
. Semm e ——————————— - IDLE - .
Disconnect Disconnection request
primitive executed TPDU received

Fig. 6-5. A state diagram for a simple connection management scheme. Transi-
tions labeled in italics are caused by packet arrivals. The solid lines show the
client’s state sequence. The dashed lines show the server’s state sequence.

Berkeley Sockets

Let us now briefly inspect another set of transport primitives, the socket prim-
itives used in Berkeley UNIX for TCP. They are listed in Fig. 6-6. Roughly
speaking, they follow the model of our first example but offer more features and
flexibility. We will not look at the corresponding TPDUs here. That discussion
will have to wait until we study TCP later in this chapter.

The first four primitives in the list are executed in that order by servers. The
SOCKET primitive creates a new end point and allocates table space for it within

DELL Ex.1006.504

SEC. 6.1 THE TRANSPORT SERVICE 487

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections; give queue size
ACCEPT Block the caller until a connection attempt arrives

CONNECT | Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Fig. 6-6. The socket primitives for TCP.

the transport entity. The parameters of the call specify the addressing format to
be used, the type of service desired (e.g., reliable byte stream), and the protocol.
A successful SOCKET call returns an ordinary file descriptor for use in succeeding
calls, the same way an OPEN call does.

Newly created sockets do not have addresses. These are assigned using the
BIND primitive. Once a server has bound an address to a socket, remote clients
can connect to it. The reason for not having the SOCKET call create an address
directly is that some processes care about their address (e.g., they have been using
the same address for years and everyone knows this address), whereas others do
not care.

Next comes the LISTEN call, which allocates space to queue incoming calls for
the case that several clients try to connect at the same time. In contrast to LISTEN
in our first example, in the socket model LISTEN is not a blocking call.

To block waiting for an incoming connection, the server executes an ACCEPT
primitive, When a TPDU asking for a connection arrives, the transport entity
creates a new socket with the same properties as the original one and returns a file
descriptor for it. The server can then fork off a process or thread to handle the
connection on the new socket and go back to waiting for the next connection on
the original socket.

Now let us look at the client side. Here, too, a socket must first be created
using the SOCKET primitive, but BIND is not required since the address used does
not matter to the server. The CONNECT primitive blocks the caller and actively
starts the connection process. When it completes (i.e., when the appropriate
TPDU is received from the server), the client process is unblocked and the con-
nection is established. Both sides can now use SEND and RECEIVE to transmit and
receive data over the full-duplex connection.

Connection release with sockets is symmetric. When both sides have exe-
cuted a CLOSE primitive, the connection is released.

DELL Ex.1006.505

488 THE TRANSPORT LAYER CHAP. 6

6.2. ELEMENTS OF TRANSPORT PROTOCOLS

The transport service is implemented by a transport protocol used between
the two transport entities. In some ways, transport protocols resemble the data
link protocols we studied in detail in Chap. 3. Both have to deal with error con-
trol, sequencing, and flow control, among other issues.

However, significant differences between the two also exist. These differ-
ences are due to major dissimilarities between the environments in which the two
protocols operate, as shown in Fig. 6-7. At the data link layer, two routers com-
municate directly via a physical channel, whereas at the transport layer, this phy-
sical channel is replaced by the entire subnet. This difference has many important
implications for the protocols.

Router Router Subnet

/

\ Physical \

communication channel

Host

(@) (b)

Fig. 6-7. (a) Environment of the data link layer. (b) Environment of the trans-
port layer.

For one thing, in the data link layer, it is not necessary for a router to specify
which router it wants to talk to—each outgoing line uniquely specifies a particular
router. In the transport layer, explicit addressing of destinations is required.

For another thing, the process of establishing a connection over the wire of
Fig. 6-7(a) is simple: the other end is always there (unless it has crashed, in which
case it is not there). Either way, there is not much to do. In the transport layer,
initial connection establishment is more complicated, as we will see.

Another, exceedingly annoying, difference between the data link layer and the
transport layer is the potential existence of storage capacity in the subnet. When a
router sends a frame, it may arrive or be lost, but it cannot bounce around for a
while, go into hiding in a far corner of the world, and then suddenly emerge at an
inopportune moment 30 sec later. If the subnet uses datagrams and adaptive rout-
ing inside, there is a nonnegligible probability that a packet may be stored for a
number of seconds and then delivered later. The consequences of this ability of
the subnet to store packets can sometimes be disastrous and require the use of spe-
cial protocols.

A final difference between the data link and transport layers is one of amount
rather than of kind. Buffering and flow control are needed in both layers, but the
presence of a large and dynamically varying number of connections in the

DELL Ex.1006.506

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 489

transport layer may require a different approach than we used in the data link
layer. In Chap. 3, some of the protocols allocate a fixed number of buffers to each
line, so that when a frame arrives there is always a buffer available. In the trans-
port layer, the larger number of connections that must be managed make the idea
of dedicating many buffers to each one less attractive. In the following sections,
we will examine all of these important issues and others.

6.2.1. Addressing

When an application process wishes to set up a connection to a remote appli-
cation process, it must specify which one to connect to. (Connectionless transport
has the same problem: To whom should each message be sent?) The method nor-
mally used is to define transport addresses to which processes can listen for con-
nection requests. In the Internet, these end points are (IP address, local port)
pairs. In ATM networks, they are AAL-SAPs. We will use the neutral term
TSAP (Transport Service Access Point). The analogous end points in the net-
work layer (i.e., network layer addresses) are then called NSAPs. IP addresses
are examples of NSAPs.

Figure 6-8 illustrates the relationship between the NSAP, TSAP, network con-
nection, and transport connection for a connection-oriented subnet (e.g., ATM).
Note that a transport entity normally supports multiple TSAPs. On some net-
works, multiple NSAPs also exist, but on others each machine has only one NSAP
(e.g., one IP address). A possible connection scenario for a transport connection
over a connection-oriented network layer is as follows.

1. A time-of-day server process on host 2 attaches itself to TSAP 122 to
wait for an incoming call. How a process attaches itself to a TSAP is
outside the networking model and depends entirely on the local
operating system. A call such as our LISTEN might be used, for
example.

2. An application process on host 1 wants to find out the time-of-day,
S0 it issues a CONNECT request specifying TSAP 6 as the source and
TSAP 122 as the destination.

3. The transport entity on host 1 selects a network address on its
machine (if it has more than one) and sets up a network connection
between them. (With a connectionless subnet, establishing this net-
work layer connection would not be done.) Using this network con-
nection, host 1’s transport entity can talk to the transport entity on
host 2.

4. The first thing the transport entity on 1 says to its peer on 2 is:
“Good morning. 1 would like to establish a transport connection
between my TSAP 6 and your TSAP 122. What do you say?”’

DELL Ex.1006.507

490 THE TRANSPORT LAYER CHAP. 6

5. The transport entity on 2 then asks the time-of-day server at TSAP
122 if it is willing to accept a new connection. If it agrees, the trans-
port connection is established.

Note that the transport connection goes from TSAP to TSAP, whereas the net-
work connection only goes part way, from NSAP to NSAP.

Host 1 Host 2
Application TSAP 6 Application
rocess
p / layer ™ Server
Network 1T t ™
etwor ranspo i
connection | “connection Tr?nsport } TSAP 122
startshere | starts here ayer
1 1
T\ T\
' 1
1 NSAP Network i NSAP
! layer H
1]
1 1
1 1
1 !
! Data link 1
! layer 1
i I
1 1
? i
i Physical
; layer !
! Phys H
Y 7
N s

Fig. 6-8. TSAPs, NSAPs, and connections.

The picture painted above is fine, except we have swept one little problem
under the rug: How does the user process on host 1 know that the time-of-day
server is attached to TSAP 1227 One possibility is that the time-of-day server has
been attaching itself to TSAP 122 for years, and gradually all the network users
have learned this. In this model, services have stable TSAP addresses which can
be printed on paper and given to new users when they join the network.

While stable TSAP addresses might work for a small number of key services
that never change, in general, user processes often want to talk to other user
processes that only exist for a short time and do not have a TSAP address that is
known in advance. Furthermore, if there are potentially many server processes,
most of which are rarely used, it is wasteful to have each of them active and
listening to a stable TSAP address all day long. In short, a better scheme is
needed.

One such scheme, used by UNIX hosts on the Internet, is shown in Fig. 6-9 in a
simplified form. It is known as the initial connection protocol. Instead of every
conceivable server listening at a well-known TSAP, each machine that wishes to

DELL Ex.1006.508

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 491

offer service to remote users has a special process server that acts as a proxy for
less-heavily used servers. It listens to a set of ports at the same time, waiting for a
TCP connection request. Potential users of a service begin by doing a
CONNECT request, specifying the TSAP address (TCP port) of the service they
want. If no server is waiting for them, they get a connection to the process server,
as shown in Fig. 6-9(a).

Host 1 Host 2 Host 1

@ <Process @
Server

Layer

L
L
[]
L
L
L
[
®
[]
®

)y

(@) (0)

Fig. 6-9. How a user process in host 1 establishes a connection with a time-of-
day server in host 2.

After it gets the incoming request, the process server spawns off the requested
server, allowing it to inherit the existing connection with the user. The new server
then does the requested work, while the process server goes back to listening for
new requests, as shown in Fig. 6-9(b).

While the initial connection protocol works fine for those servers that can be
created as they are needed, there are many situations in which services do exist
independently of the process server. A file server, for example, needs to run on
special hardware (a machine with a disk) and cannot just be created on-the-fly
when someone wants to talk to it.

To handle this situation, an alternative scheme is often used. In this model,
there exists a special process called a name server or sometimes a directory
server. To find the TSAP address corresponding to a given service name, such as
“time-of-day,”’ a user sets up a connection to the name server (which listens to a
well-known TSAP). The user then sends a message specifying the service name,

DELL Ex.1006.509

492 THE TRANSPORT LAYER CHAP. 6

and the name server sends back the TSAP address. Then the user releases the
connection with the name server and establishes a new one with the desired ser-
vice.

In this model, when a new service is created, it must register itself with the
name server, giving both its service name (typically an ASCII string) and the
address of its TSAP. The name server records this information in its internal data-
base, so that when queries come in later, it will know the answers.

The function of the name server is analogous to the directory assistance
operator in the telephone system—it provides a mapping of names onto numbers.
Just as in the telephone system, it is essential that the address of the well-known
TSAP used by the name server (or the process server in the initial connection pro-
tocol) is indeed well known. If you do not know the number of the information
operator, you cannot call the information operator to find it out. If you think the
number you dial for information is obvious, try it in a foreign country some time.

Now let us suppose that the user has successfully located the address of the
TSAP to be connected to. Another interesting question is how does the local
transport entity know on which machine that TSAP is located? More specifically,
how does the transport entity know which network layer address to use to set up a
network connection to the remote transport entity that manages the TSAP
requested?

The answer depends on the structure of TSAP addresses. One possible struc-
ture is that TSAP addresses are hierarchical addresses. With hierarchical
addresses, the address consists of a sequence of fields used to disjointly partition
the address space. For example, a truly universal TSAP address might have the
following structure:

address = <galaxy> <star> <planet> <country> <network> <host> <port>

With this scheme, it is straightforward to locate a TSAP anywhere in the known
universe. Equivalently, if a TSAP address is a concatenation of an NSAP address
and a port (a local identifier specifying one of the local TSAPs), then when a
transport entity is given a TSAP address to connect to, it uses the NSAP address
contained in the TSAP address to reach the proper remote transport entity.

As a simple example of a hierarchical address, consider the telephone number
19076543210. This number can be parsed as 1-907-654-3210, where 1 is a coun-
try code (United States + Canada), 907 is an area code (Alaska), 654 is an end
office in Alaska, and 3210 is one of the “ports” (subscriber lines) in that end
office.

The alternative to a hierarchical address space is a flat address space. If the
TSAP addresses are not hierarchical, a second level of mapping is needed to
locate the proper machine. There would have to be a name server that took trans-
port addresses as input and returned network addresses as output. Alternatively,
in some situations (e.g., on a LAN), it is possible to broadcast a query asking the
destination machine to please identify itself by sending a packet.

DELL Ex.1006.510

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 493
6.2.2. Establishing a Connection

Establishing a connection sounds easy, but it is actually surprisingly tricky.
At first glance, it would seem sufficient for one transport entity to just send a CON-
NECTION REQUEST TPDU to the destination and wait for a CONNECTION
ACCEPTED reply. The problem occurs when the network can lose, store, and
duplicate packets.

Imagine a subnet that is so congested that acknowledgements hardly ever get
back in time, and each packet times out and is retransmitted two or three times.
Suppose that the subnet uses datagrams inside, and every packet follows a dif-
ferent route. Some of the packets might get stuck in a traffic jam inside the sub-
net and take a long time to arrive, that is, they are stored in the subnet and pop out
much later.

The worst possible nightmare is as follows. A user establishes a connection
with a bank, sends messages telling the bank to transfer a large amount of money
to the account of a not-entirely-trustworthy person, and then releases the connec-
tion. Unfortunately, each packet in the scenario is duplicated and stored in the
subnet. After the connection has been released, all the packets pop out of the sub-
net and arrive at the destination in order, asking the bank to establish a new con-
nection, transfer money (again), and release the connection. The bank has no way
of telling that these are duplicates. It must assume that this is a second, indepen-
dent transaction, and transfers the money again. For the remainder of this section
we will study the problem of delayed duplicates, with special emphasis on algo-
rithms for establishing connections in a reliable way, so that nightmares like the
one above cannot happen.

The crux of the problem is the existence of delayed duplicates. It can be
attacked in various ways, none of them very satisfactory. One way is to use
throwaway transport addresses. In this approach, each time a transport address is
needed, a new one is generated. When a connection is released, the address is dis-
carded. This strategy makes the process server model of Fig. 6-9 impossible.

Another possibility is to give each connection a connéction identifier (i.e., a
sequence number incremented for each connection established), chosen by the ini-
tiating party, and put in each TPDU, including the one requesting the connection.
After each connection is released, each transport entity could update a table listing
obsolete connections as (peer transport entity, connection identifier) pairs. When-
ever a connection request came in, it could be checked against the table, to see if
it belonged to a previously released connection.

Unfortunately, this scheme has a basic flaw: it requires each transport entity
to maintain a certain amount of history information indefinitely. If a machine
crashes and loses its memory, it will no longer know which connection identifiers
have already been used. ,

Instead, we need to take a different tack. Rather than allowing packets to live
forever within the subnet, we must devise a mechanism to kill off aged packets

DELL Ex.1006.511

494 THE TRANSPORT LAYER CHAP. 6

that are still wandering about. If we can ensure that no packet lives longer than
some known time, the problem becomes somewhat more manageable.

Packet lifetime can be restricted to a known maximum using one of the fol-
lowing techniques:

1. Restricted subnet design.
2. Putting a hop counter in each packet.

3. Timestamping each packet.

The first method includes any method that prevents packets from looping, com-
bined with some way of bounding congestion delay over the (now known) longest
possible path. The second method consists of having the hop count incremented
each time the packet is forwarded. The data link protocol simply discards any
packet whose hop counter has exceeded a certain value. The third method
requires each packet to bear the time it was created, with the routers agreeing to
discard any packet older than some agreed upon time. This latter method requires
the router clocks to be synchronized, which itself is a nontrivial task unless syn-
chronization is achieved external to the network, for example by listening to
WWYV or some other radio station that broadcasts the precise time periodically.

In practice, we will need to guarantee not only that a packet is dead, but also
that all acknowledgements to it are also dead, so we will now introduce 7, which
is some small multiple of the true maximum packet lifetime. The multiple is
protocol-dependent and simply has the effect of making 7 longer. If we wait a
time T after a packet has been sent, we can be sure that all traces of it are now
gone and that neither it nor its acknowledgements will suddenly appear out of the
blue to complicate matters.

With packet lifetimes bounded, it is possible to devise a foolproof way to
establish connections safely. The method described below is due to Tomlinson
(1975). Tt solves the problem but introduces some peculiarities of its own. The
method was further refined by Sunshine and Dalal (1978). Variants of it are
widely used in practice.

To get around the problem of a machine losing all memory of where it was
after a crash, Tomlinson proposed equipping each host with a time-of-day clock.
The clocks at different hosts need not be synchronized. Each clock is assumed to
take the form of a binary counter that increments itself at uniform intervals.
Furthermore, the number of bits in the counter must equal or exceed the number
of bits in the sequence numbers. Last, and most important, the clock is assumed
to continue running even if the host goes down.

The basic idea is to ensure that two identically numbered TPDUs are never
outstanding at the same time. When a connection is set up, the low-order k bits of
the clock are used as the initial sequence number (also k bits). Thus, unlike our
protocols of Chap. 3, each connection starts numbering its TPDUs with a different

DELL Ex.1006.512

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 495

sequence number. The sequence space should be so large that by the time
sequence numbers wrap around, old TPDUs with the same sequence number are
long gone. This linear relation between time and initial sequence numbers is
shown in Fig. 6-10.

_ T 2k

Forbidden |« | T

® message F==

g 120 o :

Re 1

: - |
[6] .

e 80 § i

= 70 /I ~~__ Restart after S i

& 60 crash with 70 = :

Z |

Actual sequence

0 . | | i | | numbers used
0 30 60 90 120 150 180
Time Time
(a) (b)

Fig. 6-10. (a) TPDUs may not enter the forbidden region. (b) The resynchroni-
zation problem.

Once both transport entities have agreed on the initial sequence number, any
sliding window protocol can be used for data flow control. In reality, the initial
sequence number curve (shown by the heavy line) is not really linear, but a stair-
case, since the clock advances in discrete steps. For simplicity we will ignore this
detail.

A problem occurs when a host crashes. When it comes up again, its transport
entity does not know where it was in the sequence space. One solution is to
require transport entities to be idle for 7" sec after a recovery to let all old TPDUs
die off. . However, in a complex internetwork, 7 may be large, so this strategy is
unattractive.

To avoid requiring T sec of dead time after a crash, it is necessary to introduce
a new restriction on the use of sequence numbers. We can best see the need for
this restriction by means of an example. Let 7, the maximum packet lifetime, be
60 sec and let the clock tick once per second. As shown in Fig. 6-10, the initial
sequence number for a connection opened at time x will be x. Imagine that at
t =30 sec, an ordinary data TPDU being sent on (a previously opened) connection
5 is given sequence number 80. Call this TPDU X. Immediately after sending
TPDU X, the host crashes and then quickly restarts. At ¢ = 60, it begins reopening
connections O through 4. At ¢=70, it reopens connection 5, using initial
sequence number 70 as required. Within the next 15 sec it sends data TPDUs 70
through 80. Thus at # =85, a new TPDU with sequence number 80 and connec-
tion 5 has been injected into the subnet. Unfortunately, TPDU X still exists. If it

DELL Ex.1006.513

496 THE TRANSPORT LAYER CHAP. 6

should arrive at the receiver before the new TPDU 80, TPDU X will be accepted
and the correct TPDU 80 will be rejected as a duplicate.

To prevent such problems, we must prevent sequence numbers from being
used (i.e., assigned to new TPDUs) for a time T before their potential use as initial
sequence numbers. The illegal combinations of time and sequence number are
shown as the forbidden region in Fig. 6-10(a). Before sending any TPDU on any
connection, the transport entity must read the clock and check to see that it is not
in the forbidden region.

The protocol can get itself into trouble in two different ways. If a host sends
too much data too fast on a newly opened connection, the actual sequence number
versus time curve may rise more steeply than the initial sequence number versus
time curve. This means that the maximum data rate on any connection is one
TPDU per clock tick. It also means that the transport entity must wait until the
clock ticks before opening a new connection after a crash restart, lest the same
number be used twice. Both of these points argue for a short clock tick (a few
milliseconds).

Unfortunately, entering the forbidden region from underneath by sending too
fast is not the only way to get into trouble. From Fig. 6-10(b), it should be clear
that at any data rate less than the clock rate, the curve of actual sequence numbers
used versus time will eventually run into the forbidden region from the left. The
greater the slope of the actual sequence number curve, the longer this event will
be delayed. As we stated above, just before sending every TPDU, the transport
entity must check to see if it is about to enter the forbidden region, and if so,
either delay the TPDU for T sec or resynchronize the sequence numbers.

The clock-based method solves the delayed duplicate problem for data
TPDUs, but for this method to be useful, a connection must first be established.
Since control TPDUs may also be delayed, there is a potential problem in getting
both sides to agree on the initial sequence number. Suppose, for example, that
connections are established by having host 1 send a CONNECTION REQUEST TPDU
containing the proposed initial sequence number and destination port number to a
remote peer, host 2. The receiver, host 2, then acknowledges this request by send-
ing a CONNECTION ACCEPTED TPDU back. If the CONNECTION REQUEST TPDU
is lost but a delayed duplicate CONNECTION REQUEST. suddenly shows up at host 2,
the connection will be established incorrectly.

To solve this problem, Tomlinson (1975) introduced the three-way
handshake. This establishment protocol does not require both sides to begin
sending with the same sequence number, so it can be used with synchronization
methods other than the global clock method. The normal setup procedure when
host 1 initiates is shown in Fig. 6-11(a). Host 1 chooses a sequence number, X,
and sends a CONNECTION REQUEST TPDU containing it to host 2. Host 2 replies
with a CONNECTION ACCEPTED TPDU acknowledging x and announcing its own
initial sequence number, y. Finally, host 1 acknowledges host 2’s choice of an
initial sequence number in the first data TPDU that it sends.

DELL Ex.1006.514

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 497

Host 1 Host 2 Host 1 Host 2

-« Time

REJEC
T(AC
K =
= y)

©

Fig. 6-11. Three protocol scenarios for establishing a connection using a three-
way handshake. CR and AcC denote CONNECTION REQUEST and CONNECTION AC-
CEPTED, respectively. (a) Normal operation. (b) Old duplicate CONNECTION RE-
QUEST appearing out of nowhere. (c) Duplicate CONNECTION REQUEST and dupli-
cate ACK.

Now let us see how the three-way handshake works in the presence of:delayed
duplicate control TPDUs. In Fig. 6-12(b), the first TPDU is a delayed duplicate
CONNECTION REQUEST from an old connection. This TPDU arrives at host 2
without host 1’s knowledge. Host 2 reacts to this TPDU by sending host 1 a CON-
NECTION ACCEPTED TPDU, in effect asking for verification that host 1 was indeed
trying to set up a new connection. When host 1 rejects host 2’s attempt to estab-
lish, host 2 realizes that it was tricked by a delayed duplicate and abandons the
connection. In this way, a delayed duplicate does no damage.

DELL Ex.1006.515

498 THE TRANSPORT LAYER CHAP. 6

The worst case is when both a delayed CONNECTION REQUEST and an
acknowledgement to a CONNECTION ACCEPTED are floating around in the subnet.
This case is shown in Fig. 6-11(c). As in the previous example, host 2 gets a
delayed CONNECTION REQUEST and replies to it. At this point it is crucial to real-
ize that host 2 has proposed using y as the initial sequence number for host 2 to
host 1 traffic, knowing full well that no TPDUs containing sequence number y or
acknowledgements to y are still in existence. When the second delayed TPDU
arrives at host 2, the fact that z has been acknowledged rather than y tells host 2
that this, too, is an old duplicate. The important thing to realize here is that there
is no combination of old CONNECTION REQUEST, CONNECTION ACCEPTED, or
other TPDUs that can cause the protocol to fail and have a connection set up by
accident when no one wants it.

An alternative scheme for establishing connections reliably in the face of
delayed duplicates is described in (Watson, 1981). It uses multiple timers to
exclude undesired events.

6.2.3. Releasing a Connection

Releasing a connection is easier than establishing one. Nevertheless, there are
more pitfalls than one might expect. As we mentioned earlier, there are two styles
of terminating a connection: asymmetric release and symmetric release. Asym-
metric release is the way the telephone system works: when one party hangs up,
the connection is broken. Symmetric release treats the connection as two separate
unidirectional connections and requires each one to be released separately.

Host 1 Host 2
\CR\‘
ACC
g \DATA
=
DATA
L /
No data are
delivered after
a disconnect
request

Fig. 6-12. Abrupt disconnection with loss of data.

Asymmetric release is abrupt and may result in data loss. Consider the
scenario of Fig. 6-12. After the connection is established, host 1 sends a TPDU

DELL Ex.1006.516

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 499

that arrives properly at host 2. Then host 1 sends another TPDU. Unfortunately,
host 2 issues a DISCONNECT before the second TPDU arrives. The result is that
the connection is released and data are lost.

Clearly, a more sophisticated release protocol is required to avoid data loss.
One way is to use symmetric release, in which each direction is released
independently of the other one. Here, a host can continue to receive data even
after it has sent a DISCONNECT TPDU.

Symmetric release does the job when each process has a fixed amount of data
to send and clearly knows when it has sent it. In other situations, determining that
all the work has been done and the connection should be terminated is not so obvi-
ous. One can envision a protocol in which host 1 says: “I am done. Are you done
t00?”” If host 2 responds: “I am done too. Goodbye.” the connection can be safely
released.

Unfortunately, this protocol does not always work. There is a famous prob-
lem that deals with this issue. It is called the two-army. problem. Imagine that a
white army is encamped in a valley, as shown in Fig. 6-13. On both of the sur-
rounding hillsides are blue armies. The white army: is larger than either of the
blue armies alone, but together they are larger than the white army. If either blue
army attacks by itself, it will be defeated, but if the two blue armies attack simul-
taneously, they will be victorious.

Blue Blue
h army

White army

Fig. 6-13. The two-army problem.

The blue armies want to synchronize their attacks. However, their only com-
munication medium is to send messengers on foot down into the valley, where
they might be captured and the message lost (i.e., they have to use an unreliable
communication channel). The question is: Does a protocol exist that allows the
blue armies to win?

Suppose that the commander of blue army #1 sends a message reading: “I
propose we attack at dawn on March 29. How about it?”” Now suppose that the

DELL Ex.1006.517

500 THE TRANSPORT LAYER CHAP. 6

message arrives, and the commander of blue army #2 agrees, and that his reply
gets safely back to blue army #1. Will the attack happen? Probably not, because
commander #2 does not know if his reply got through. If it did not, blue army #1
will not attack, so it would be foolish for him to charge into battle.

Now let us improve the protocol by making it a three-way handshake. The
initiator of the original proposal must acknowledge the response. Assuming no
messages are lost, blue army #2 will get the acknowledgement, but the com-
mander of blue army #1 will now hesitate. After all, he does not know if his
acknowledgement got through, and if it did not, he knows that blue army #2 will
not attack. We could now make a four-way handshake protocol, but that does not
help either.

In fact, it can be proven that no protocol exists that works. Suppose that some
protocol did exist. Either the last message of the protocol is essential or it is not.
If it is not, remove it (and any other unessential messages) until we are left with a
protocol in which every message is essential. What happens if the final message
does not get through? We just said that it was essential, so if it is lost, the attack
does not take place. Since the sender of the final message can never be sure of its
arrival, he will not risk attacking. Worse yet, the other blue army knows this, so it
will not attack either.

To see the relevance of the two-army problem to releasing connections, just
substitute “disconnect” for ‘“attack.” If neither side is prepared to disconnect
until it is convinced that the other side is prepared to disconnect too, the discon-
nection will never happen.

In practice, one is usually prepared to take more risks when releasing connec-
tions than when attacking white armies, so the situation is not entirely hopeless.
Figure 6-14 illustrates four scenarios of releasing using a three-way handshake.
While this protocol is not infallible, it is usually adequate.

In Fig. 6-14(a), we see the normal case in which one of the users sends a DR
(DISCONNECTION REQUEST) TPDU in order to initiate the connection release.
When it arrives, the recipient sends back a DR TPDU, too, and starts a timer, just
in case its DR is lost. When this DR arrives, the original sender sends back an ACK
TPDU and releases the connection. Finally, when the ACK TPDU arrives, the
receiver also releases the connection. Releasing a connection means that the
transport entity removes the information about the connection from its table of
open connections and signals the connection’s owner (the transport user)
somehow. This action is different from a transport user issuing a DISCONNECT
primitive.

If the final ACK TPDU is lost, as shown in Fig. 6-14(b), the situation is saved
by the timer. When the timer expires, the connection is released anyway.

Now consider the case of the second DR being lost. The user initiating the
disconnection will not receive the expected response, will time out, and will start
all over again. In Fig. 6-14(c) we see how this works, assuming that the second
time no TPDUs are lost and all TPDUs are delivered correctly and on time.

DELL Ex.1006.518

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 501

Host 1 Host 2 Host 1 Host 2
Send DR DR Send DR DR
+ start timer \ + start timer \
Send DR Send DR
% + start timer ‘V + start timer
Release Release .
connection connection .
L
L
Send ACK ACK .
Release Send ACK —2 .
connection (Timeout)
release
connection
(a) (b)
Host 1 Host 2 Host 1 Host 2

Send DR DR Send DR DR
rotatttmer| Send DR & + start timer i Send DR &

pR

* —— | starttimer : _—| starttimer
% . W .
(Timeout) . o
sendDR |——20 | ipRa (Timeout :
+ start timer start timer send DR \ .
‘y + start timer .
Release . :
connection . .
L] L[]
Send ACK . .

en
%‘ Release (N Timeouts) (Timeout)
connection release release
connection connection
(©) (d)

Fig. 6-14. Four protocol scenarios for releasing a connection. (a) Normal case
of three-way handshake. (b) Final ACK lost. (c) Response lost. (d) Response
lost and subsequent DRs lost.

Our last scenario, Fig. 6-14(d), is the same as Fig. 6-14(c) except that now we
assume all the repeated attempts to retransmit the DR also fail due to lost TPDUs.
After N retries, the sender just gives up and releases the connection. Meanwhile,
the receiver times out and also exits.

While this protocol usually suffices, in theory it can fail if the initial DR and
N retransmissions are all lost. The sender will give up and release the connection,
while the other side knows nothing at all about the attempts to disconnect and is
still fully active. This situation results in a half-open connection.

DELL Ex.1006.519

502 THE TRANSPORT LAYER CHAP. 6

We could have avoided this problem by not allowing the sender to give up
after N retries but forcing it to go on forever until it gets a response. However, if
the other side is allowed to time out, then the sender will indeed go on forever,
because no response will ever be forthcoming. If we do not allow the receiving
side to time out, then the protocol hangs in Fig. 6-14(b).

One way to kill off half-open connections is to have a rule saying that if no
TPDUs have arrived for a certain number of seconds, the connection is automati-
cally disconnected. That way, if one side ever disconnects, the other side will
detect the lack of activity and also disconnect. Of course, if this rule is intro-
duced, it is necessary for each transport entity to have a timer that is stopped and
then restarted whenever a TPDU is sent. If this timer expires, a dummy TPDU is
transmitted, just to keep the other side from disconnecting. On the other hand, if
the automatic disconnect rule is used and too many dummy TPDUs in a row are
lost on an otherwise idle connection, first one side, then the other side will
automatically disconnect.

We will not belabor this point any more, but by now it should be clear that
releasing a connection is not nearly as simple as it at first appears.

6.2.4. Flow Control and Buffering

Having examined connection establishment and release in some detail, let us
now look at how connections are managed while they are in use. One of the key
issues has come up before: flow control. In some ways the flow control problem
in the transport layer is the same as in the data link layer, but in other ways it is
different. The basic similarity is that in both layers a sliding window or other
scheme is needed on each connection to keep a fast transmitter from overrunning
a slow receiver. The main difference is that a router usually has relatively few
lines whereas a host may have numerous connections. This difference makes it
impractical to implement the data link buffering strategy in the transport layer.

In the data link protocols of Chap. 3, frames were buffered at both the sending
router and at the receiving router. In protocol 6, for example, both sender and
receiver are required to dedicate MaxSeq + 1 buffers to each line, half for input
and half for output. For a host with a maximum of, say, 64 connections, and a 4-
bit sequence number, this protocol would require 1024 buffers.

In the data link layer, the sending side must buffer outgoing frames because
they might have to be retransmitted. If the subnet provides datagram service, the
sending transport entity must also buffer; and for the same reason. If the receiver
knows that the sender buffers all TPDUs until they are acknowledged, the receiver
may or may not dedicate specific buffers to specific connections, as it sees fit.
The receiver may, for example, maintain a single buffer pool shared by all con-
nections. When a TPDU comes in, an attempt is made to dynamically acquire a
new buffer. If one is available, the TPDU is accepted; otherwise, it is discarded.
Since the sender is prepared to retransmit TPDUs lost by the subnet, no harm is

DELL Ex.1006.520

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 503

done by having the receiver drop TPDUs, although some resources are wasted.
The sender just keeps trying until it gets an acknowledgement.

In summary, if the network service is unreliable, the sender must buffer all
TPDUs sent, just as in the data link layer. However, with reliable network ser-
vice, other trade-offs become possible. In particular, if the sender knows that the
receiver always has buffer space, it need not retain copies of the TPDUs it sends.
However, if the receiver cannot guarantee that every incoming TPDU will be
accepted, the sender will have to buffer anyway. In the latter case, the sender
cannot trust the network layer’s acknowledgement, because the acknowledgement
means only that the TPDU arrived, not that it was accepted. We will come back
to this important point later.

Even if the receiver has agreed to do the buffering, there still remains the
question of the buffer size. If most TPDUs are nearly the same size, it is natural
to organize the buffers as a pool of identical size buffers, with one TPDU per
buffer, as in Fig. 6-15(a). However, if there is wide variation in TPDU size, from
a few characters typed at a terminal to thousands of characters from file transfers,
a pool of fixed-sized buffers presents problems. If the buffer size is chosen equal
to the largest possible TPDU, space will be wasted whenever a short TPDU
arrives. If the buffer size is chosen less than the maximum TPDU size, multiple
buffers will be needed for long TPDUs, with the attendant complexity.

} TPDU 1

4

 TPDU 2
) TPDU 3
(a)
> TPDU 4
Unused
space

()
Fig. 6-15. (a) Chained fixed-size buffers. (b) Chained variable-size buffers.

(c) One large circular buffer per connection.

Another approach to the buffer size problem is to use variable-size buffers, as
in Fig. 6-15(b). The advantage here is better memory utilization, at the price of

DELL Ex.1006.521

504 THE TRANSPORT LAYER CHAP. 6

more complicated buffer management. A third possibility is to dedicate a single
large circular buffer per connection, as in Fig. 6-15(c). This system also makes
good use of memory, provided that all connections are heavily loaded but is poor
if some connections are lightly loaded.

The optimum trade-off between source buffering and destination buffering
depends on the type of traffic carried by the connection. For low-bandwidth
bursty traffic, such as that produced by an interactive terminal, it is better not to
dedicate any buffers, but rather to acquire them dynamically at both ends. Since
the sender cannot be sure the receiver will be able to acquire a buffer, the sender
must retain a copy of the TPDU until it is acknowledged. On the other hand, for
file transfer and other high-bandwidth traffic, it is better if the receiver does dedi-
cate a full window of buffers, to allow the data to flow at maximum speed. Thus
for low-bandwidth bursty traffic, it is better to buffer at the sender, and for high-
bandwidth, smooth traffic, it is better to buffer at the receiver.

As connections are opened and closed, and as the traffic pattern changes, the
sender and receiver need to dynamically adjust their buffer allocations. Conse-
quently, the transport protocol should allow a sending host to request buffer space
at the other end. Buffers could be allocated per connection, or collectively, for all
the connections running between the two hosts. Alternatively, the receiver, know-
ing its buffer situation (but not knowing the offered traffic) could tell the sender
“T have reserved X buffers for you.” If the number of open connections should
increase, it may be necessary for an allocation to be reduced, so the protocol
should provide for this possibility.

A reasonably general way to manage dynamic buffer allocation is to decouple
the buffering from the acknowledgements, in contrast to the sliding window pro-
tocols of Chap. 3. Dynamic buffer management means, in effect, a variable-sized
window. Initially, the sender requests a certain number of buffers, based on its
perceived needs. The receiver then grants as many of these as it can afford.
Every time the sender transmits a TPDU, it must decrement its allocation, stop-
ping altogether when the allocation reaches zero. The receiver then separately
piggybacks both acknowledgements and buffer allocations onto the reverse traffic.

Figure 6-16 shows an example of how dynamic window management might
work in a datagram subnet with 4-bit sequence numbers. Assume that buffer allo-
cation information travels in separate TPDUs, as shown, and is not piggybacked
onto reverse traffic. Initially, A wants eight buffers, but is granted only four of
these. It then sends three TPDUs, of which the third is lost. TPDU 6 acknowl-
edges receipt of all TPDUs up to and including sequence number 1, thus allowing
A to release those buffers, and furthermore informs A that it has permission to
send three more TPDUs starting beyond 1 (i.e., TPDUs 2, 3, and 4). A knows that
it has already sent number 2, so it thinks that it may send TPDUs 3 and 4, which it
proceeds to do. At this point it is blocked and must wait for more buffer alloca-
tion. Timeout induced retransmissions (line 9), however, may occur while
blocked, since they use buffers that have already been allocated. In line 10, B

DELL Ex.1006.522

SEC. 6.2

ELEMENTS OF TRANSPORT PROTOCOLS 505

acknowledges receipt of all TPDUs up to and including 4, but refuses to let A con-
tinue. Such a situation is impossible with the fixed window protocols of Chap. 3.
The next TPDU from B to A allocates another buffer and allows A to continue.

Message

Comments

1 < request 8 buffers> A wants 8 buffers
2 <ack = 15, buf = 4> B grants messages 0-3 only
3 <seq = 0, data = m0> A has 3 buffers left now
4 <seq =1, data=m1i> A has 2 buffers left now
5 <seq = 2, data = m2> Message lost but A thinks it has 1 left
6 <ack =1, buf=3> B acknowledges 0 and 1, permits 2-4
7 <seq = 3, data = m3> A has buffer left
8 <seq = 4, data = m4> A has 0 buffers left, and must stop
9 <seq = 2, data = m2> A times out and retransmits
10 <ack = 4, buf = 0> Everything acknowledged, but A still blocked
11 <ack = 4, buf = 1> A may now send 5
12 <ack = 4, buf = 2> B found a new buffer somewhere
13 <seq = 5, data = m5> A has 1 buffer left
14 <seq = 6, data = mé> A is now blocked again
15 <ack = 6, buf = 0> A is still blocked
16 <ack = 6, buf = 4> Potential deadlock

Fig. 6-16. Dynamic buffer allocation.

The arrows show the direction of

transmission. An ellipsis (...) indicates a lost TPDU.

Potential problems with buffer allocation schemes of this kind can arise in
datagram networks if control TPDUs can get lost. Look at line 16. B has now
allocated more buffers to A, but the allocation TPDU was lost. Since control
TPDUs are not sequenced or timed out, A is now deadlocked. To prevent this
situation, each host should periodically send control TPDUs giving the acknowi-
edgement and buffer status on each connection. That way, the deadlock will be
broken, sooner or later.

Up until now we have tacitly assumed that the only limit imposed on the
sender’s data rate is the amount of buffer space available in the receiver. As
memory prices continue to fall dramatically, it may become feasible to equip
hosts with so much memory that lack of buffers is rarely, if ever, a problem.

Wh