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The Performance of TCP/IP for Networks with
High Bandwidth-Delay Products and Random Loss
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Abstract—This paper examines the performance of TCP/IP,
the Internet data transport protocol, over wide-area networks
(WANs) in which data traffic could coexist with real-time traffic
such as voice and video. Specifically, we attempt to develop a basic
understanding, using analysis and simulation, of the properties
of TCP/IP in a regime where: 1) the bandwidth-delay product of
the network is high compared to the buffering in the network
and 2) packets may incur random loss (e.g., due to transient
congestion caused by fluctuations in real-time traffic, or wireless
links in the path of the connection). The following key results
are obtained. First, random loss leads to significant throughput
deterioration when the product of the loss probability and the
squareof the bandwidth-delay product is larger than one. Second,
for multiple connections sharing a bottleneck link, TCP is grossly
unfair toward connections with higher round-trip delays. This
means that a simple first in first out (FIFO) queueing discipline
might not suffice for data traffic in WANs. Finally, while the
recent Reno version of TCP produces less bursty traffic than
the original Tahoe version, it is less robust than the latter when
successive losses are closely spaced. We conclude by indicating
modifications that may be required both at the transport and
network layers to provide good end-to-end performance over
high-speed WANs.

Index Terms—Flow control, congestion control, error recovery,
Internet, TCP/IP, transport protocols.

I. INTRODUCTION

M OST existing data transfer protocols have been de-
signed for local-area network (LAN) applications in

which buffer sizes far exceed the bandwidth-delay product.1

This assumption may not hold for the wide-area networks
(WANs) formed by the interconnection of LANs using high-
speed backbone networks. In addition, in the Internet of the
future, data traffic will share the network with voice and video
traffic. In this paper, we examine the impact of these changes
on the performance of the most popular data transfer protocol
in current use, TCP/IP. This is essential not only for network
provisioning in the short term (since the rapid growth of Web
applications has caused TCP traffic to grow correspondingly)
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1The bandwidth-delay productis loosely defined to be the product of the

round-trip delay for a data connection and the capacity of the bottleneck link
in its path.

but also for determining how TCP needs to be modified in
the longer term.

We study two versions of TCP: one is the popular Tahoe
version developed by Jacobson in 1988 [11] (henceforth called
TCP-tahoe); the other is the Reno version, which includes the
fast retransmit option together with a method for reducing the
incidence of slow start, suggested by Jacobson in 1990 [12]
(we will refer to this asTCP-reno). We attempt to develop a
basic understanding of these schemes by considering one-way
traffic over a single bottleneck link with FIFO transmission.
For LANs, the round-trip delay of the connection is small, so
that the bandwidth-delay product could be much smaller than
the buffering on the bottleneck link. We are more interested,
however, in WANs with large round-trip delays, so that the
buffering on the bottleneck link is typically of the same order
of magnitude as, or smaller than, the bandwidth-delay product
(this is what we mean byhigh bandwidth-delay products
throughout this paper). The bottleneck link may be shared by
several TCP connections. In addition, we also assume that each
packets may be lost randomly even after obtaining service at
the bottleneck link.

Random loss is a simple model for a scenario of particular
interest in the context of networks with multimedia traffic,
where transient fluctuations in real time traffic may cause
irregularly spaced losses for data traffic. This would occur,
for instance, for both the UBR and ABR service classes [1]
in ATM networks. The only difference is that for ATM ABR,
each connection would have a time-varying available rate de-
termined by feedback from the switches, so that most random
losses would occur at the interface of the source to the network,
since that is where the available rate would be enforced. In
addition to serving as a model for transient congestion, we
note that random loss on the Internet has been reported [3],
where it is conjectured to occur due to a variety of reasons,
including intermittent faults in hardware elements such as
Ethernet/FDDI adapters, and incorrect handling of arriving
packets by routers. Finally, with the anticipated emergence
of mobile computing over heterogeneous networks with both
wireless and wireline links, losses and time variations due
to wireless links in the path of the connection can also be
accommodated via a random loss model. Since our purpose
is to obtain a fundamental understanding of TCP, none of the
preceding situations are explicitly considered in this paper.
However, as discussed in Section VI, the results here should
provide a basis for further work on developing network level
design guidelines for supporting TCP.

One of the simplifications of the model used for our analysis
is that two-way traffic (and the accompanyingack compression
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[27]) is not considered. Feedback systems are notoriously
difficult to analyze, so that even our simple model is not
amenable to exact analysis. However, not only does our
approximate analysis match simulation results for the idealized
system model, but it also provides a close match to results for a
detailed simulation that includes two-way traffic for multiple
TCP-Reno connections over an ATM network (described in
Section V).

We obtain the following key results. Discussion of the
implications of these results for system design is postponed
to Section VI.

1) While TCP-reno produces less bursty traffic than TCP-
tahoe, it is much less robust toward “phase effects.”
The latter term refers to unpredictability in performance
resulting from very small differences in the relative tim-
ings of packet arrivals for different connections sharing
a link.

2) Both versions of TCP appear to have significant draw-
backs as a means of providing data services over mul-
timedia networks, because random loss resulting from
fluctuations in real-time traffic can lead to significant
throughput deterioration in the high bandwidth-delay
product regime. Roughly speaking, the performance is
degraded when the product of the loss probability and
the squareof the bandwidth-delay product is large (e.g.,
ten or more).

3) For high bandwidth-delay products, TCP is grossly un-
fair toward connections with higher propagation delays:
for multiple connections sharing a bottleneck link, the
throughput of a connection is inversely proportional to
(a power of) its propagation delay.

It is worth clarifying that random loss causes performance
deterioration in TCP because it does not allow the TCP
window to reach high enough levels to permit good link
utilization. On the other hand, when the TCP window is
already large and is causing congestion, random early drops of
packets when the link buffer gets too full can actually enhance
performance and alleviate phase effects [10].

Early simulation studies of TCP-tahoe include [24], [26],
[27]. Our model is similar to that used in [24], but the key
differences between our paper and previous studies are that:
1) the ratio of bandwidth-delay product to buffer size is much
higher in our study and 2) the effect of random loss due
to transient congestion (or other sources) is included. Thus,
some of the undesirable features of TCP-tahoe which arise
specifically for networks with high bandwidth-delay products
(such as excessive buffering requirements and vulnerability to
random loss) were not noticed in earlier studies. Furthermore,
in contrast to previous studies, we place more emphasis on
detailed analytical insight on the effects of various parameters
on performance.

The bias of TCP-tahoe against connections with large round-
trip delays and against connections traversing a large number
of congested gateways has been noticed in other studies of
TCP-tahoe [8], [9], [26]. A heuristic analysis in [8] shows
that, for multiple connections sharing a bottleneck link, the
throughput of a connection is inversely proportional to its

round-trip time. While we consider a similar system in Section
V, our analysis is more detailed, taking explicit account of
the buffer size and the bandwidth-delay product. Oscillatory
behavior and unfairness toward connections with larger prop-
agation delays have also been noticed in a previous analytical
study of feedback-based congestion control [2]. Other analyses
of flow control schemes include [20], [22], [23], but these
references do not address the specific concerns raised here in
any detail.

The system model is described in Section II. Analytical and
simulation results for the evolution of a single connection in
the absence of random loss are given in Section III. Section IV
considers the effect of random loss. Section V contains results
for multiple connections with and without random loss. We
give our conclusions in Section VI.

II. SYSTEM MODEL

We consider infinite data sources which always have packets
to send, so that the units of data are maximum sized packets
(in general, packet sizes in TCP may be variable). We consider
a single bottleneck link with capacitypackets per second and
a FIFO buffer of size packets. Any packet arriving when
the buffer is full is lost (random loss may cause additional
losses). The number of connections, or sources, sharing the
link is assumed to be constant. For each connection, all delays
except for service time and queueing at the bottleneck link
are lumped into a single “propagation delay,” which includes:
1) the time between the release of a packet from the source
and its arrival into the link buffer; 2) the time between the
transmission of the packet on the bottleneck link and its arrival
at its destination; and 3) the time between the arrival of the
packet at the destination and the arrival of the corresponding
acknowledgment at the source. The propagation delay for a
packet from the th connection is denoted by.

The are taken to be deterministic, which implicitly
assumes that deterministic propagation and processing delays
are more significant than random queueing delays at all nodes
and links other than the bottleneck link. Although such an
assumption is overly simplistic even for a relatively simple
system with two-way traffic [27], it suffices for our present
purpose of arriving at a basic understanding of the interaction
between different connections sharing a link.

Each connection is assumed to use a window flow control
protocol. At time , the window size for connectionis denoted
by , and is equal to the maximum allowed number of
unacknowledged packets (retransmissions are not counted). It
is assumed that each connection uses its allowable window to
the fullest extent, i.e., that at time, there are indeed
unacknowledged packets for connection. The window varies
dynamically in response to acknowledgment and detection
of packet loss. Upon receiving a packet, the destination is
assumed to send an acknowledgment back immediately. These
acknowledgments arecumulativeand indicate the next byte
expected by the receiver.

In the original version of TCP-tahoe, packet loss is detected
by maintaining a timer based on an estimate of the round-
trip time. When a packet is sent, a timeout value is computed
using the current round-trip time estimate and the timer is
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started. Expiry of this timer is taken to signal packet loss.
For each retransmission following a timer expiry, the timer
value used is twice the previous timer value. Estimates of the
round-trip time are obtained by measuring the round-trip time
upon receipt of unambiguous acknowledgment (i.e., ignoring
acknowledgment for retransmitted segments) and computing a
weighted average of the old and new estimates. Refer to [15],
[25] for a detailed description of round-trip time estimation.
We will refer to a timer based on this estimate as afine-grained
timer, in order to distinguish it from thecoarse-grained timers
used in practice, which are typically multiples of 500 ms. In
order to prevent a needlessly lengthy stoppage of transmission
upon expiry of a coarse-grained timer, most current versions
of both TCP-tahoe and TCP-reno incorporate afast retransmit
option: if the number ofduplicate acknowledgments(i.e.,
multiple acknowledgment with the same “next expected”
packet number ) exceeds a threshold, packetis assumed
to be lost. In this paper, we implement fine-grained timers
in our simulations, in order to study the dynamic evolution
of TCP (and to highlight possible shortcomings) in the most
ideal setting. The original version of TCP-tahoe, without fast
retransmit, is implemented. However, in simulation results not
reported here, we have checked that coarse-grained timers with
fast retransmit give virtually identical performance in most
cases of interest for TCP-tahoe (unless almost all packets in a
window are lost, fast retransmit detects loss very effectively).
For TCP-reno, we implement fast retransmit with a fine-
grained timer in our simulations. Because TCP-reno has a less
robust congestion control mechanism, we have found in later
work that the use of a coarse-grained timer does impact its
performance even with fast retransmit, unlike for TCP-tahoe.
Since either fine-grained timers or the fast retransmit option
provide almost perfect loss detection, it is assumed in our
analysis that packet losses are detected perfectly.

A simplified description of TCP-tahoe [11] and TCP-reno
[12] follows.

A. Description of TCP-tahoe

The algorithm followed by each connection has two param-
eters, current window size and a threshold , which are
updated as follows.

1) After every acknowledgment of a new
packet:
if , set ; Slow Start Phase
else set . Congestion Avoidance
Phase
( denotes the integer part of).
2) After a packet loss is detected:
set ;
set .

The algorithm typically evolves as follows (although, as
described in the next section, the evolution is somewhat
different for relatively small buffer size): when packet loss is
detected, the window is reduced to one. In the slow start phase
that follows, the window grows rapidly for every successfully
acknowledged packet until it reaches half of the window size

at the last packet loss. The algorithm then switches to the
congestion avoidance phase, probing for extra bandwidth by
incrementing the window size by one for every window’s
worth of acknowledged packets. This growth continues until
another packet loss is detected, at which point another cycle
begins. We use the termcycleto mean TCP evolution starting
from the end of one congestion avoidance phase to the end
of the next. In Section III, it turns out that, for our simple
model, TCP evolution is periodic if there is no random loss,
so that successive cycles are identical. In Section IV, on the
other hand, where we consider random loss, the duration of,
and window evolution within, different cycles is random.

B. Description of TCP-reno

After the number of duplicate acknowledgments exceeds a
threshold (typically three), TCP-reno retransmits the packet.
However, instead of cutting the window back to one, it only
reduces it by a factor of two. Further, in order to prevent a burst
of packets from being transmitted when the retransmission is
finally acknowledged, it temporarily permits new packets to be
transmitted with each repeated acknowledgment until the “next
expected” number in the acknowledgment advances. While
these subtleties are essential to the working of the algorithm
(see [12] for details) and are implemented in our simulations,
the following simplified description is adequate for conveying
an understanding of the algorithm’s behavior.

1) After every nonrepeated acknowledgment,
the algorithm works as before:
if , set ; Slow Start Phase
else set . Congestion Avoidance
Phase.
2) When the duplicate acknowledgment
exceeds a threshold,
retransmit “next expected” packet;
set , then set (i.e., halve the
window);
resume congestion avoidance using new window
once retransmission is acknowledged.
3) Upon timer expiry, the algorithm goes into
slow start as before:
set ;
set .

In this case, after an initial slow start transient, the typical
cyclical evolution does not involve slow start, since the win-
dow size is halved upon loss detection. Each cycle begins when
a loss is detected via duplicate acknowledgment. Assuming
that loss occurs at window size , the window size at the
beginning of each cycle is . The algorithm resumes
probing for excess bandwidth in congestion avoidance mode
until the window size reaches again, at which point a
loss occurs and a new cycle with window size begins.
We will show that the throughput attained by this scheme is
higher than that of TCP-tahoe, especially when the buffer size
is small compared to the bandwidth-delay product. However,
this algorithm is almost as vulnerable to random loss.

For the remainder of this paper, we will use as a
generic notation for the window size at which congestion
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avoidance ends. The value of could therefore change
from cycle to cycle if loss occurs randomly, or could be the
same for all cycles if loss occurs periodically. It is worth
relating our notation to that usually used in TCP code (see
[24], for instance): is usually referred to as the congestion
window , and is denoted by . The actual
window for flow control purposes is taken to be the minimum
of and , where the latter is set by the receiver.
For the purpose of this paper, the window size is assumed to
be dictated by the capacity and buffering of the bottleneck link
(i.e., ), so the actual window size equals the
congestion window. Note that some form of window scaling
(i.e., increasing the window size in bytes while using the same
sequence number space, by scaling up the size of the data
segment referred to by a given number) may be required to
achieve this for large bandwidth-delay products [14].

III. EVOLUTION WITHOUT RANDOM LOSS

We consider the evolution of a single connection and derive
expressions for its long-term throughput. Define the normal-
ized buffer size , where denotes
the propagation delay for each packet of the connection and

denotes the propagation delay plus the service
time. Since we are concerned with large bandwidth-delay
products, we restrict attention to in this section. In
contrast, simulations in earlier work [24] consider , for
which the average throughput is close to the capacity of the
bottleneck link. For brevity, expressions for the latter case are
omitted.

The maximum window size that can be accommodated in
steady state in the bit pipe is

(1)

In this case, the buffer is always fully occupied and there
are packets in flight. The cyclical evolution of TCP-tahoe
consists of a slow start phase starting with and
continuing until the window size reaches ,
followed by congestion avoidance until . The
next increase in window size leads to buffer overflow, at
which point the window is reset to one and a new cycle
starts. We show that if the relative buffer size is not
large enough, buffer overflow may occur even in the slow
start phase, and the cyclical evolution is somewhat different
from the preceding description. For TCP-reno, if the scheme
functions as designed, slow start is eliminated from the cyclical
evolution. In each cycle, the algorithm starts from

, does congestion avoidance until , and
drops back to after a packet loss due to
buffer overflow is detected via duplicate acknowledgment.

In each case, if the number of packets successfully trans-
mitted during a cycle is and the duration of a cycle is ,
then the periodic evolution implies that the average throughput
is given by . In the following, we describe this
evolution more carefully, and compute these quantities in
sufficient detail to produce an excellent match with simulations
(see Table II).

TABLE I
EVOLUTION DURING SLOW START PHASE

A. Slow Start Phase

The slow start phase must be considered in some detail
to understand the advantage of TCP-reno over TCP-tahoe.
Starting from with slow start threshold , the window
size is increased by one for every acknowledgment in this
phase, so that two packets are released into the buffer for
every acknowledgment. Table I shows the evolution of the
window size and the queue length in this phase. For every
acknowledgment, we indicate the number of the packet which
was acknowledged (for convenience, we number the packets
in increments of one rather than in increments equal to the
number of bytes per packet).

The evolution in Table I is best described by considering
mini-cyclesof duration equal to the round-trip time, where
the th mini-cycle refers to the time interval
(the mini-cycles are separated by lines in the table). The
acknowledgment for a packet released in mini-cyclearrives
in mini-cycle , and increases the window size by one.
This leads to a doubling of the window in each mini-cycle.
Further, acknowledgment for consecutive packets served in
mini-cycle arrive spaced by the service time during mini-
cycle , and two packets are released for each arriving
acknowledgment, leading to a buildup of queue size. The
preceding evolution assumes implicitly that the normalized
buffer size , so that the window size during the slow
start phase is smaller than and the queue empties out by
the end of each mini-cycle. Denoting the window size at time

by , we obtain that, during the th mini-cycle,

(2)

where we have assumed that . Similarly, letting
denote the queue length at time, the queue build-up

during the th mini-cycle is given by

(3)

The maximum queue length during the th mini-cycle
is therefore , which is approximately half the maximum
window size during that mini-
cycle. For a buffer size , we can use (2) and (3) to determine
the window size at which, the queue length exceeds the buffer
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Fig. 1. Window and buffer evolution for a single connection: Two slow
starts. Prop. delay= 1 ms; b =0.1.

size as follows. Define the integer , so
that . From (3), buffer overflow will
occur in the th mini-cycle (the largest queue length in the
previous cycle is , which is smaller than ), with

. From (2), the window size at which this
happens is , so that that

(4)

Buffer overflow during a slow start phase with threshold
thus occurs only if

(5)

A more explicit condition for buffer overflow can be derived
as follows. Assuming that the packet loss causing the slow
start phase occurred when the window size exceeds the value

, the slow start threshold equals
. Since , the

condition for buffer overflow (5) is approximately equivalent
to .

Fig. 1 shows the simulated congestion window and buffer
occupancy evolution for a single connection using TCP-tahoe
with , , and (i.e., ). The
congestion window size is shown by the solid line and the
buffer occupancy by the dotted line. As expected, the window
grows to and the next increase in
the window causes a packet to be dropped. Detection of this
loss (upon expiry of the associated timer) causes the window
to be reduced to one and initiation of the slow start phase. The

Fig. 2. Window and buffer evolution for a single connection: one slow start.
tau1 = 1; tau2 = 3; b = 0:8.

figure clearly shows the rapid growth in window size during
the slow start phase. However, since , buffer overflow
occurs when , and is detected by the time the
window size reaches (see the discussion
later in this section). A second slow start phase is initiated
at this point with threshold 25. This window size is reached
without further loss, at which point slower window growth
due to congestion avoidance commences. This lasts until the
window exceeds , after which a new cycle begins.

When is greater than 1/3 the window evolution for TCP-
tahoe is different. This is illustrated in Fig. 2, which shows the
evolution of window sizes and buffer occupancy for .
Here, packet loss is seen to occur when the window is of
size . As before, detection of this loss causes
the window size to be reduced to one and initiates slow start.
However, there is no packet loss in the slow start phase, which
terminates when the window reaches 91. In the congestion
avoidance phase that follows, the window grows linearly and
then more slowly (as explained in the next subsection) until the
window exceeds . This results in a packet loss causing
the cycle to repeat. The absence of the double slow start results
in much higher throughput, since the initial window size for
the congestion avoidance phase (which accounts for most of
the packets transmitted) is higher.

We now compute the duration and number of packets
transmitted during the slow start phase(s) in a given cycle
for TCP-tahoe. Even though many subtleties in timing are
glossed over, the computations are accurate enough to re-
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