[FIP Transactions C:
Communication Systems

L

International Federation for Information Processing

Technical Committee 6

Communication Systems

IFIP Transactions Editorial Policy Board

The IFIP Transactions Editorial Policy Board is responsible for the overall scientific
quality of the IFIP Transactions through a stringent review and selection process.

Chairman 0. Spaniol (TC6)

G.J. Morris, UK P. Thoft-Christensen (TC7)
Members G.B. Davis (TC8)

D. Khakhar, Sweden K. Brunnstein (TC9)

Lee Poh Aun, Malaysia G.L. Reijns (TC10)

M. Tienari, Finland W.J. Caelli (TC11)

P.C. Poole (TC2) R. Meersman (TC12)

P. Bollerslev (TC3) B. Shackel (TC13)

M. Tomljanovich (TC5) J. Gruska (SG14)

IFIP Transactions Abstracted/Indexed in:
INSPEC Information Services

DELL Ex.1017.001

C-14

HIGH
PERFORMANCE
NETWORKING, IV

Proceedings of the IFIP TC6/WG6.4 Fourth International Conference on
High Performance Networking
Liege, Belgium, 14-18 December, 1992

Edited by
A. DANTHINE

Institut d'Electricité B28
Université de Liége
Liége, Belgium

0. SPANIOL
RWTH Aachen
Informatik IV

Aachen, Gerrnany

1 99;

NORTH-HOLLAND
AMSTERDAM « LONDON = NEW YORK = TOKYQ

DELL Ex.1017.002

CZ;-:’,?

TK

k¥ ELSEVIER SCIENCE PUBLISHERS B.V.
;}é"‘;;??/ ik Sara Burgerhartstraat 25
’ of X y 0. Box 211, 1000 AE Amsterdam, The Netherlands

1992

Keywords are chosen from the ACM Computing Reviews Classification System, ©1991, with permission.
Details of the full classification system are available from
ACM, 11 West 42nd St., New York, NY 10036, USA.

ISBN: 0 444 81481 7
ISSN: 0926-549X

© 19493 IFIP. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of
the publisher, Elsevier Science Publishers B.V., Copyright & Permissions Department, P.0. Box 521, 1000 AM
Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. - This publication has been registered with the Copyright Clearance

Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under

which photocaopies of parts of this publication may be made in the U.S.A. All other copyright questions, including

photocopying outside of the U.S.A., should be referred to the publisher, Elsevier Science Publishers B.V.. unless
otherwise specified.

No responsibility is assumed by the publisher or by IFIP for any injury and/or damage to persons or property
as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions or ideas contained in the material herein.
pp. 119-134, 199-218, 267-281, 367-381: Copyright not transferred
This book is printed on acid-free paper.

Printed in The Netherlands

DELL Ex.1017.003

vii

Table of Contents

hpn

Preface v
Program Committee xi
List of Reviewers xii
Session A: MAC Layer Enhancements 1

Chair: Harmen van As, IBM Research, Switzerland

DQDB for Time Constrained Services 3
Guven Mercankosk, Z.L. Budrikis, QPSX Communications Ltd, Australia,
A. Cantoni, Australian Telecommunications Research Institute, Australia

A New Reservation Scheme for CRMA High-Speed Networks 15
Nen-Fu Huang, Chung-Ching Chiou, Chiung-Shien Wu,
National Tsing Hua University, Republic of China

A Host Interface Architecture for High-Speed Networks 3
Peter A. Steenkiste, Brian D. Zill, H.T. Kung, Steven J. Schlick, Caregie
Mellon University, USA
Jim Hughes, Bob Kowalski, John Mullaney,

Network Systems Corporation, USA

Session B: Flow and Rate Control a7
Chair: Marjory Johnson, RIACS, USA

Dynamic Bandwidth Allocation and Access Control of Virtual Paths
in ATM Broadband Networks 49
Ibrahim Wahby Habib, Tarek N. Saadawi, City University of New York, USA

Congestion Control - Effective Bandwidth Allocation in ATM Networks 65

E.D. Sykas, K.M. Viakos, K.P. Tsoukatos, E.N. Protonotarios,
National Technical University of Athens, Greece

DELL Ex.1017.004

viii

A High Speed Data Link Control Protocol 81
Ahmed N.Tantawy, /BM Res. Div., T.J. Watson Research Center, USA,
Hanafy Meleis, DEC, Reading, UK

Session C: Parallel Implementation and Transport

Protocols 101
Chair: Guy Puijolle, Université P. et M. Curie, France

Parallel TCP/IP for Multiprocessor Workstations 103
Kurt Maly, S. Khanna, R. Mukkamala, C.M. Overstreet, R. Yerraballi,
E.C. Foudriat, B. Madan, Old Dominion University, USA

TCP/IP on the Parallel Protocol Engine 119
Erich Ritsche, Matthias Kaiserswerth,
IBM Research Division, Zurich Research Laboratory, Switzerland

A High-Speed Protocol Parallel Implementation: Design and Analysis 135
Thomas F. La Porta, AT&T Bell Laboratories, USA,
Mischa Schwartz, Columbia University, New York, USA

Session D: Multimedia Communication Systems 151
Chair: Radu Popescu-Zeletin, GMD FOKUS, Germany

Orchestration Services for Distributed Multimedia Synchronisation 153
Andrew Campbell, Geoff Coulson, Francisco Garcia, David Hutchison,
Lancaster University, UK

Towards an Integrated Quality of Service Architecture (Q0S-A) for
Distributed Multimedia Communications 169
Helmut Leopold, Alcatel ELIN Research, Austria
Andrew Campbell, David Hutchison, Lancaster University, UK,
Niklaus Singer, Alcatel ELIN Research, Austria

JVTOS - A Reference Model for a New Multimedia Service 183
Gabriel Dermler, University of Stuttgart, Germany
Konrad Froitzheim, University of Ulm, Germany

Experiences with the Heidelberg Multimedia Communication System:
Multicast, Rate Enforcement and Performance 199
Andreas Cramer, Manny Farber, Brian McKellar, Ralf Steinmetz,
IBM European Networking Center , Germany

DELL Ex.1017.005

Session E: QoS Semantics and Management 219
Chair: Martina Zitterbart, IBM Res. Div., Watson Research Center, USA

Client-Network Interactions in Quality of Service Communication
Environments 221
Domenico Ferrari, Jean Ramaekers, Giorgio Ventre, International
Computer Science Institute, USA

The OSI 95 Connection-mode Transport Service: The Enhanced QoS 235
André Danthine, Yves Baguette, Guy Leduc, Luc Leonard,
University of Liége, Belgium

QoS : From Definition to Management 253
Noémie Simoni, Simon Znaty, TELECOM Paris, France

Session F: Evaluation of High Speed Communication

Systems 265
Chair: Otto Spaniol, Technical University Aachen, Germany

ISO OSI FTAM and High Speed File Transfer: No Contradiction 267
Martin Bever, Ulrich Schaffer, Claus Schottmiiller,
IBM European Networking Center, Germany

Analysis of a Delay Based Congestion Avoidance Algorithm 283
Walid Dabbous, INRIA, France

Performance Issues in Designing Network Interfaces : A Case Study 299
K.K. Ramakrishnan, Digital Equipment Corporation, USA

Session G: High Performance Protocol Mechanisms 31s
Chair: Craig Partridge, BBN, USA

Multicast Provision for High Speed Networks 317
A.G. Waters, University of Essex, UK

Transport Layer Multicast: An Enhancement for XTP Bucket
Error Control 333
Harry Santoso, MASI, Université P.et M. Curie, France,
Serge Fdida, MASI, Université Rene Descartes, France

A Performance Study of the XTP Error Control 351

Arne A. Nilsson, Meejeong Lee,
North Carolina State University, USA

DELL Ex.1017.006

Session H: Protocol Implementation 365
Chair: Samir Tohmé, EIN.S.T., France

ADAPTIVE An Object-Oriented Framework for Flexible and Adaptive
Communication Protocols 367
Donald F. Box, Douglas C. Schmidt, Tatsuya Suda,

University of California, Irvine, USA

HIPOD : An Architecture for High-Speed Protocol Implementations 383
A.S. Krishnakumar, J.G. Kneuer, A.J. Shaw, AT&T Bell Laboratories, USA

Parallel Transport System Design 397
Torsten Braun, University of Karlsruhe, Germany,
Martina Zitterbar, IBM Res. Div., T.J. Watson Research Center, USA

Session |: Network Interconnection 413
Chair: Augusto Casaca, INESC, Portugal

A Rate-based Congestion Avoidance Scheme for Interconnected
DQDB Metropolitan Area Networks 415
Nen-Fu Huang, Chiung-Shien Wu, Chung-Ching Chiou,
National Tsing Hua University, Rep.of China

Interconnection of LANs/802.6 Customer Premises Equipments (CPEs)
via SMDS on Top of ATM : a case description 431
W. Rozenblad, B. Li, R. Peschi,
Alcatel Bell Telephone, Research Centre, Belgium

Architectures for Interworking between B-ISDN and Frame Relay 443
J. Vozmediano, J. Berrocal, J. Vinyes,
ETSI Telecomunicacion, Spain

Author Index 455

DELL Ex.1017.007

High Performance Newworking, IV (C-14)

A, Danthine and O. Spaniol (Editors)

Elsevier Science Publishers B.Y. (North-Holland) 119
1993 IFIP.

TCP/IP on the Parallel Protocol Engine

Erich Riitsche and Matthias Kaiserswerth

IBM Research Division, Zurich Research Laboratory
Siaumerstrasse 4, 8803 Riischlikon, Switzerland

Abstract

In this paper. a parallel implementation of the TCP/IP protocol suite on the Parallel Protocol En-
ging (PPE). a multiprocessor-based communication subsystem, is described. The execution
times of the various protocol functions are used to analyze the system's performance in two sce-
nanios. In the first scenario we execute the test application on the PPE; in the second we evaluate
the potential performance of our TCP/IP implementation when it is driven by an application on
the workstation. For the second scenario, the end-to-end performance of our implementation on a
four-processor PPE system is more than 3300 TCP segments per second.

Keyword Codes: C.1.2; C.2.2; D.1.3
Keywords: Multiple Data Stream Architectures (Multiprocessors); Network Protocols;
Concurrent Programming

1. INTRODUCTION

Progress in high-speed networking technologies such as fiber optics have shifted the bottleneck
in communications from the limited bandwidth of the transmission media to protocol processing
and the operating system overhead in the workstation. So-called lighmweight protocols and proto-
col offload to programmable adapters are two approaches proposed to cope with this problem,
Protocols such as the Xpress Transfer Protocol (XTP)' [PE192] and VMTP [Cheriton 88] try to
simplify the control mechanisms and packet structures such that the protocol implementation be-
comes less complex and can possibly be done in hardware. We took the second approach in build-
ing the Parallel Protocol Engine (PPE) [Kaiserswerth 92], a multiprocessor-based
communication adapter, upon which protocol processing can be offloaded from a host system.
The Nectar CAB [Amould 89| and the VMP Network Adapter Board [Kanakia 88] are other pro-
grammable adapiers, each based on a single protocol processor. The XTP chipset [Chesson 87] is
a very specialized set of RISC processors designed 1o execute the XTP protocol. Our objective
Was 1o investigate and exploit parallelism in many different protocols. Therefore we decided to
develop a general-purpose communication subsystem capable of supporting standard protocols
efficiently in software.

I Xpress Transfer Protocol and XTP arc registered trademarks of XTP Forum

DELL Ex.1017.008

120

In this paper our goal is to demonstrate that a careful implementation of a standard transport pro-
tocol stack on a general-purpose multiprocessor architecture allows efficient use of the bang-
width available in today’s high-speed networks. As an example, we chose to implement the
TCP/IP protocol suite on our 4-processor prototype of the PPE.

We implemented the socket interface and a test application directly on the PPE 1o facilitate our
performance measurements. In this test scenario we analyze the performance of TCP/IP and the
socket layer. We also examined a second scenario to understand how our implementation would
perform when integrated into a workstation, where protocol processing up to the transport layer is
performed on the PPE and applications can access the transport service via the socket interface on
the workstation,

In Section 2 our hardware platform, the PPE, is presented. Section 3 introduces TCP/IP. In the
following section we explain our approach to parallel protocol implementation. Section 5 pres-
ents the results and discusses the impact of the hardware and software architecture on perfor-
mance. The last section gives the conclusion and an outlook on our future work,

2. THE PARALLEL PROTOCOL ENGINE

The PPE is to be presented only briefly here. It is described in greater detail in [Wicki 90] and
[Kaiserswerth 91, 92]. We will first concentrate on the hardware and then present the program-
ming environment.

The PPE is a hybrid shared-memory/message-passing multiprocessor. Message passing is used
for synchronization, whereas shared memory is used to store service primitives and protocol
frames. Figure 1 shows the architecture of the PPE and its use as a communication subsystem.

The PPE uses two separate memories, one for transmitting, one for receiving data. Both of these
memories are mapped into the address space of the workstation. In our implementation, four
T425 transputers [INMOS K9] are used as protocol processors. On each side of the adapter, two
T425s have access to the shared memory. Each processor uses private memory (o store its pro-
gram and local data. We decided against using a single shared memory for storing both inbound
and outbound protocol dara, although this would make the adapter more flexible and facilitate
programming, for the following reason. High-speed network interfaces work in a synchronous
fashion, with data being clocked in and out of memory, possibly at the same time, at the transmis-
sion speed of the physical network. Splitting the adapter into separate receive and transmil parts
accommodates simultancous transmission and reception and only requires memory with half the
speed of that required for a single-memory solution. This architecture results in significant cost
savings, especially when transmission speeds exceed 100 Mb/s.

The network interface has read access to the transmit side and write access to the receive side of
the adapter. We emulate a physical network by means of an 8-bit wide parallel interface, which
allows a point-to-point connection between two PPE systems operating with a bidirectional
transmission rate of up to 120 Mby/s. The transputer links are used exclusively for signalling and
control message transfer within the PPE and to and from the host system.

The programming language which best describes the transputer's programming model is OC-
CAM |Pountain 88|, It is based on the theory of Communicating Sequential Processes (CSP) de-
veloped by Hoare [Hoare 78]. The structuring elements are processes that communicate and
synchronize via messages. Message transfer is unbuffered; communicating processes must reach

DELL Ex.1017.009

121

Application' Protocol Layers I Physical Layer

1 i
r\ ; Private Private]
v L_Memory leorial Memory :
' ! (¢ Message & :
: Protocol Link Protocol :
h Processor Processor ¢
i ! Q 5 ; (6] :
r . o ;
: | Shared TRANSMIT Memory | High-Speed
t ,__\Mlcrﬂ :-------..-------..-._-_-....-----! Network Ne e
] e) I , | Interface)
g |_/|interface ; '
‘ ! I Shared RECEIVE Memory I '
L] .
: [$) .
' Q QL '
\ ' Protocol Protocol '
Serial ' Processor [Processor !
Message O [4] .
)
Pt 4 Private Private 4
' Memory Memory i

- e £ Gy e R SR
Figure 1. Architecture of the PPE

a rendezvous before the message is copied directly from the sender’s to the receiver’s address
space, This behavior maps directly to the transputer’s register model and microcode, which sup-
port efficient context switches and transparent message passing via four external links and any
number of internal soff channels. However because OCCAM discourages the use of pointers and
shared memory between different processes and offers very little support of user-defined struc-
tured data types, we chose to do our implementation in the C programming language [LS-C 89].
Access 1o the transputer specific facilities, such as synchronous message passing and process
control, is provided through library functions, which can, in part, also be generated as more effi-
cient inline code by the compiler.

3. THE TCP/IP PROTOCOL STACK

We implemented the full TCP/IP protocol stack on the PPE. It consists of the /nzernet Protocol
(IP), the Internet Control Message Protocol (ICMP), and the Transmission Control Protocol
(TCP). Applications interface 10 the protocol implementation via sockets, similar to the BSD ver-
sion of Unix2.

2 Unix is a registered rademark of AT&T in the United States and other countries.

DELL Ex.1017.010

122

IP is a datagram protocol that implements functions similar to those of the OSI Connectionleyg
Network Protocol (CLNP). ICMP, which is an integral partof IP, is used to exchange control mes.
sages between internet clients, e.g., it generates a destination unreachable message when the ad.
dressing information in a received datagram does not allow forwarding or local delivery. TCp
which roughly implements the ISO Transport Layer functions, provides an error- and flow-con-
trolled end-to-end transport connection between applications. TCP thus builds reliable data trans-
mission services on top of the unreliable IP datagram service. A TCP connection is specified
through the pair of Internet addresses and the TCP port identifiers of the two communicating part-
ners. The socket is the local end point of a TCP/IP connection. The application program accesses
sockets through local identifiers, similar to file descriptors in Unix.

As we did not want to implement TCP/IP from scratch, we based our work on a version of TCP/IP
for MS/DOS from the University of Maryland [UM 90].

4. PARALLEL IMPLEMENTATION OF TCP/IP

Todevelop a parallel solution one needs to partition the problem into a setof subproblems that can
be executed in parallel. The algorithms solving these subproblems are typically encapsulated in
cooperating processes which are mapped to the parallel-processor hardware. Depending on the
underlying hardware and the implementation model chosen, these processes communicate and
synchronize via shared memory or message passing.

Application

Buffer user_task

Socket Layer

Transmission
Control Buffer
Protocol

Internet
Protocol

device interrupt Buffer
handler

Y Network Adapter]

[Procedure] (C Process)

Figure 2. MS/DOS_IP Process Structure

DELL Ex.1017.011

123

The source code, which served as a basis for this implementation, was already structured into
multiple processes that run on top of a simple, non-preemptive multitasking kemel. Figure 2
shows the original split into three processes and one interrupt service routine. Having such a pro-
¢ess structure allowed us to stay fairly close to the original source.

As we wanted to execute the IP layer on different processors than the TCP layer, we first isolated
the [P relevant functions from both tep_task and ip_task into separate processes. Because of the
functional division of the PPE into a transmit and receive side, we then split the remainder, i.e. the
core of the TCP protocol, of tep_task and Ip_task vertically into three processes (rtask,
tep_recv running on the receive side and xtask running on the transmit side). We will describe
the functions of the various protocol processes, that implement 1P, TCP and the socket layer in
rn. Figure 3 shows the high-level process structure we derived for our implementation.

Transmit Side Receive Side

Application

user_task

Socket Layer

Transmission
Control
Protocol

Internet
Protocol

Media
Access Control

Network Adapter

Figure 3. High-Level Process Structure

In the following we present our parallel solution in a top-down approach, first showing the high-
level process graph of the main processes in our implementation. These processes have access o
da_lu shared between the transmit and receive side and can interact with one another via high-level
Primitives such as remote procedure calls (RPC) and queues. In a second step, we will then show
how these services, in particular shared data between the receive and transmit side as well as
RPCs from the receive to the transmit side, have been realized on the PPE.

DELL Ex.1017.012

124

4.1 IP and ICMP

Because 1P is a datagram protocol, the normal flow of data through IP in an end-system requireg
no interaction between the receiving and transmitting part. Routing information and exception
handling, however, require a data exchange. The handling of exception and control messages is
the function of ICMP. We therefore partitioned IP into two independent processes icmp_demuyx
and ip_demux. To guarantee the timely handling of incoming packets, we dedicated a separae
process on the receive side of the PPE to the handling of the physical network interface.

The routing table is shared between both processes on the transmit and receive side of the PPE. An
RPC is used if icmp_demux needs to send out an ICMP message.

4.2TCP

Spliting the PPE hardware 1n10 a separate send and receive side had more impact on how we had
to deal with TCP, the socket layer, and application layer, than it had on IP.

We decided to split the finite state machine (FSM) responsible for implementing a TCP connec-
tion into two separate FSMs once the connection is in the data phase. The actions of these FSMs
are implemented on the receive side through two processes, rtask and tep_recv. On the transmit
side one process xtask implements the FSM., Owing to the duplex nature of TCP and the piggy-
backing of control information in data packets, these processes need to share the protocol's send
and receive state variables maintained in the transmission control block (TCB).

tep_recv demultiplexes incoming TCP segments, locates the appropriate TCB and executes the
required action for the FSM state. Header prediction is used to speed up packet handling for pack-
ets arriving consecutively on the same connection, Correctly received segments are appended
the receive queue and the application process waiting on this connection is then woken up lo move
the data 1o its own buffers. When the received data exceeds the acknowledgement threshold,
which is specified as a percentage of the advertised receive window, tcp_recv makes an RPC 10
the transmit side to generate an acknowledgement. The acknowledgement is sent as a separate
packet, unless this information can be piggybacked onto an oulgoing data segment.

rtask is driven by two timers, one responsible for delayed acknowledgements, the other for keep-
alive messages. In steady state data transmission, rtask should never generate an acknowledge-
ment, as tcp_recv already generates acknowledgements while data are received. Only when the
umer runs out and new unacknowledged data have been received since the last acknowledgement
will rtask generate un acknowledgement. Similarly, keep-alive messages are also sentonly when
no activity has taken place on a connection for some time. Again, both acknowledgements and
keep-alive messages are generated via RPCs to the transmit side.

On the transmit side the process xtask manages the transmit queue and the retransmission timers.
To send data, xtask creates the TCP header and fills in the necessary information from the TCB,
such as addresses and sequence numbers for the data and acknowledgements. The header and a
pointer to the data are then passed to the IP process (procedure ip_send), which embeds this in-
formation into an IP datagram.

4.3 Socket Layer and Application

To facilitate our experiments with TCP/IP, we decided as a first step to implement the entire sock-
et layer as well as the test application on the PPE. A detailed description of the interactions be-

DELL Ex.1017.013

125

ween an application on the host system and a protocol on the PPE can be found in [Kaiserswerth
92].

[nour implementation, the socket layer, although tightly coupled with TCP, is part of the applica-
gion process. It 1s accessed via a procedural interface, used to create a socket, bind an address to it
and establish a TCP connection with a remote socket. As the FSM logic to establish connections is
also partof tep_recv, we decided to place the socket and the application code on the receive side.
Because we wanted to avoid moving data to be sent from the receive side to the transmit side viaa
transputer link?, we also allow the application to use buffers on the transmit side of the PPE.
When data is to be transmitted, the send procedure simply makes an RPC with the buffer address
on the ransmit side, thus causing the write process to copy the data from this application buffer o
the TCP send queue. When the application wants to receive data, the receive procedure checks
the receive queue for this connection and blocks the application process if the queue is empty.

4.4 Low-Level Primitives

Before giving an example of how TCP data segments are sent and received, we describe how we
maintain shared TCBs and routing tables on the PPE, which does not have shared memory be-
tween its transmit and receive side, and how we realize RPCs from the receive to the transmit side.
Figure 4 shows the process graph of the additional processes required to implement these func-
tions.

~ AnyProcess o peek_poke)
(peek_poke et -! - Any Process }

Transmit Side Receive Side
«a}—— dedicated Transputer Link <<}—— internal Channel

Figure 4. Low-Level Primitives

We implement distributed shared memory between the transmit and receive side by placing the
data structures that are to be shared at identical physical addresses in the local memories of the two
processors which access the data structure. Whenever a value is written onto the local copy of the
data structure, the address of the variable and its value are sent via a dedicated transputer link to a
server process, peek_poke, on the remote side. This process then updates the memory area iden-
tified through the address with the accompanying value. The peek_poke processes run at high
priority to ensure that the exchange of a message with a remote process takes place immediately
ind is not delayed by scheduling overhead, which would then also delay the remote process be-
Cause of the transputer’s synchronous message passing. Serializing write accesses to the shared
data structures is not necessary in our case. Each replicated data structure falls into two parts, one

Y We measured an effective throughput rate of approximalely 14 Mb/s across a transputer link, clearly much
lower than via our hugh-speed parallel interface.

DELL Ex.1017.014

126

written only from the receive side (e.g.. the updated transmit window), and the other written only
from the transmit side (e.g.. the last send sequence number).

Since we do not have a locking protocol for accessing shared data structures, it is possible that for
a brief period after the local update and before the remote update has been propagated, the samp
field in the shared data structure contains two different values, Because of the properties of TCp
and the way we have split the protocol onto the transmit and receive side of the PPE, this inconsis-
tency will only be of importance if it is the reason for the protocol state to change. As an example
consider the following: assume the retransmission timer (it is also maintained in the TCB) in
xtask cxpires and, because the acknowledgement field in the TCB does not indicate reception of
an acknowledgement, xtask decides to retransmit the unacknowledged TCP segments. On the
receive side, however, an acknowledgement has been received in the meantime which makes this
retransmission unnecessary®. To avoid this problem, before actually going to a retransmit state,
xtask will reread the acknowledgement field, now however with the value on the receive side, 1o
make sure that a retransmission is warranted. Reading a remote field is similar to writing; a mes-
sage with the address and size of the variable is sent to the remote peek_poke process, which then
returns the value of that field.

RPCs from the receive to the transmit side have been implemented as follows: any process on the
receive side can format an RPC message, which is then sent via a dedicated transputer link to the
rpc_process. This process will then execute the remote procedure, or in the case of ransmission
requests, pass the request via a local (internal) channel to the appropriate write process, one of
which exists for each TCP connection. Return values are sent, again via a dedicated transputer
link, back to the receive side to rpe_demux, which forwards these values over a local channel to
the process that had initiated the RPC. Upon receiving the return value, the caller becomes ready
again and can continue its execution.

4.5 Example

Sending a TCP data segment; The normal data flow is shown in Figure 3, The send data are in a
remotely allocated buffer on the transmit side. The application creates a socket and establishes a
TCP connection. The socket send call causes an RPC to the remote write process which in tum
copies the data into the TCP send buffer. xtask then controls the transmussion and eventual re-
transmissions of the data. The send procedure builds the TCP segment and forwards the pointer [0
the segment and the associated control block to ip_send. Here the IP header is placed in front of
the TCP segment and then the packet is sent to the network. The data is copied twice: first from the
application buffer to the send queue in shared memory and from there to the network.

Receiving a TCP data segment: Upon receipt the data is also copied twice: first from the network
to the receive queue and from there o the application buffer. The interrupt handler process serves
the physical interface and forwards pointers to received datagrams to ip_demux, which checks
the header and forwards the packet depending on its type to tcp_recv or icmp_demux.

tep_recv analyzes the TCP header and calls the appropriate handler function for a given protocol
state. To send an acknowledgement or 4 control packet, tep_recv uses RPCs to the transmit side.
Correctly received segments are appended to the receive queue. rtask wakes up the application
process which is blocked in the socket receive procedure. This procedure then fills the user buffer
with data from the receive queue.

4 Note: the logic of the protocol would allow for 4 retransmission in any case,

DELL Ex.1017.015

127

4.6 Configuration

On each side of the PPE only one of the two processors is physically able to control the interface to
the network. Thus we placed the device driver and the IP layer processes on those two processors.
TCP, the socket layer, and the application execute on the second processor on each side of the
PPE.

4.7 Memory Management

The buffer memory in the protocols and the socket is managed in an mbuf-like linked list. There is
only one buffer size 1o simplify these functions. The buffer size determines the maximum TCP
segment size. Provided there 1s sufficient physical memory (up to 4 MB on each side of the PPE)
large fixed-sized buffers help avoid costly memory management functions. Bufferqueues and the
free buffer list are protected by semaphores to serialize access to the data structures from different
processes on the same processor.

The data and control flow in the PPE is organized such that only one processor requests buffers
and the other only releases buffers. We ensure that one buffer element always remains in the
queue, thus one processor can always append to the end of the buffer queue and the other proces-
sor can consume the first element without requiring any additional queue access protocol between
the two processors,

5. PERFORMANCE

5.1 Test Setup

To measure the performance of the TCP/IP implementation we used a simple test driver running
on the PPE: a source process on one system that sends data over a socket and TCP/IP 1o a sink
process on the other system which receives the data, The setup is shown in Figure 5.

Source + Sink

Transmit Side |Socket /TCP || IP : \ P]SockeHTGF Transmit Side

Application o] '

licati 2
Receve Side | gockat TCP IP Asmklm f"I?EP Receive Side

Figure 5. Test Environment

Asthe final goal of this work is to offload protocol processing from the workstation to the adapter,
we examined the following two scenarios:

Scenario I: The complete socket layer is implemented on the subsystem. Upon receipt, a contigu-
ous block of data s copied from the socket layer 10 the test application. It is gathered from the
linked list of buffers that holds the received TCP segments. For sending, the write process copies
the data from the application’s buffer to the send queue. The application allocates and controls its
buffers on the receive and the transmit side of the PPE. In this scenario we can measure the
throughput between sockets on two PPEs,

Scenario 2: In the socket interface all copy calls are replaced by a null call. The test application is
merely used to drive the socket and the TCP/IP implementation. This scenario is used to evaluate

DELL Ex.1017.016

128

the possible performance in case the socket-based application programming interface (API) were
implemented on the workstation. The socket layer would then be split into two parts. The upper
half resides in the workstation. Calls to the API result in control flows to and from the lower hajf
of the socket layer, which runs on the PPE. Copying data to and from the TCP layer must be done
by the workstation processor, because the current PPE only functions as a bus slave. Therefore the
copy operations in the socket layer can be combined with the copy between the workstation apg
the PPE. In this scenario we measure the throughput between the lower half of the socket layer op
two PPEs. The results of scenario 2 provide an upper bound for the expected performance of such
anintegrated system. As such they are valid if one manages — as shown for our implementation of
the 1SO 8802.2 Logical Link Control protocol [Kaiserswerth 91] —to fully overlap the copy op-
erations and the exchange of control between the workstation and the PPE with the protocol
execution on the PPE.

We did not implement TCP checksumming, because it should really be done in hardware
| Lumley 92]. To do software checksum calculation on the transputer would cost 3 ps per 16-hit
word. We did, however, implement IP header checksumming

The Ziihlmonitor 4 (ZM4) | Dauphin 91| monitoring and tracing system was used to record execu-
tion traces of the PPE subsystem. ZM4 allows gathering of trace events from multiple processors.
These events are timestamped with a global ¢lock operating with a resolution of 100 ns. A power-
ful 1oolset [Mohr 91] provides trace analysis and visualization.

5.2 Measurements

Because we wanted to see the effects of pipelining and parallel execution of the protocol, we mea-
sured the time spent in the various parts of the device driver, IP, TCP and the socket layer. To judge
the performance of our implementation we measured the number of TCP segments the imple-
mentation can handle per second. Given the segment size, the expected maximum throughput can
easily be calculated.

us/Segment | us/32-bit word

Process (Procedure) on Receiver

tcp_recv 235

user_task (socket_recv/copy) 31 0.545

ip_intrsvc 9

ip_demux 23
Process (Procedure) on Transmitter

write 30 0.545

tcp_snd_data 147

ip_send 23)

driver_send 17 0.27
Access to Shared Memory (poke call) 18.6 2.4

Table 1. Measured Execution Times

Table 1 lists the execution times of the major processes of our implementation. We used segments
of 4096 bytes in these measurements. The times are reported for the first test scenario, The execu-
tion times per segment are approximately 4% lower for the second scenario because of reduc

contention for accesses to the shared memory. The times per 32-bit word for user_task and writé

DELL Ex.1017.017

129

are the duration of a 32-bit copy operation from shared memory to shared memory. If we assume
that for every n segments an acknowledgement must be sent, we can use the following formula 1o
calculate the execution time per TCP segment in a single processor implementation:

T = max [1 + 4%] INE + L
i € |receive procs| 1 € |transmit procs|) (¢ € [receive procs] 1 € [transmit procs|

The calculated worst case throughput for n=2 is 2150 segments/s in the second scenario.

To calculate the expected performance of our implementation in TCP segments/s from the num-
bers reported in Table 1 for scenario 1, we need to consider the sequence in which the processes
execute on the various processors of the PPE.

er1
SR | ¢ S Y W SR
-------- tcp_recv user_task(so_recv)
Transputer 2 N 235 612
------------------------- tcp_snd_data At ALl LA
Transputer 3
_ 147
™
Transputer 4 23

Figure 6. Pipelined Protocol Execution on Sink (Scenario 1) , Times in js

Figure 6, forexample, shows the pipelined handling of an incoming packet and the sending of the
acknowledgement which occurs because the acknowledgement threshold has been reached. The
time spent in tep_recv is 235 pis. The processing in user_task (612 us) dominates the sending of
the acknowledgement. These two processes sum up to 847 ps and form the most expensive pipe-
line stage, which limits the expected throughput to 1180 TCP segments/s. On the sender xtask,
lcp_snd_data, and write add up to 751 s’ in the limiting stage of the execution pipeline. The
transmitter is therefore expected to be able to send 1331 segments/s. The receiver is thus the bott-
leneck in our implementarion.

We verified these performance predictions by measuring the actual throughput for a mansfer of
several MB between our two test systems. We obtained a somewhat lower throughput of 1100
segments/s. The difference between the measurement and the expected 1180 segments/s is due to
the slow-start algorithm and the eventual retransmission of lost packets, and to process schedul-
g overhead not captured in our measurements.

——

3 16 15 (K188K) + 147 s tcp_snd_data) + 30 s (write) + 1024 0.545 s (copying 409 byt i wite) =
51 ps

DELL Ex.1017.018

130

For scenario 2 one can again apply the same model to analyze the expected performance. For ex.
ample, in Figure 7 we show the process execution on the sending PPE.

5 ‘:Ea-s;(7 tep_snd_data - ‘w-rn_té N -x‘tés-k tcp_snd_data
Transputer 3 e N
g] 1w 30 & wf]

...... 2 et 4
"“"""""I,:;;e_}ﬁd driver_send s
T *
e 23 17+ 274

send (4096 byles)
274

Figure 7. Send Pipelined on Source (Scenario 2), Times in ps

Depending on the segment size, either the TCP layer, which costs 163 us, or the IP layer® is the
limiting factor of our execution pipeline. In this example the segment size is 4096 bytes. There-
fore IP and the network interface are the limiting pipeline stage. ip_send and driver_send make
up 314 ps, which leads to an expected throughput of 3185 TCP segments/s. The time spent in
driver_send is the sum of the time to control the transmission process, i.e., 1o set up the DMA
transfer and wait for its completion (17 ps) and the actual transmission time, which depends on
the network speed. At 120 Mb/s the transmission of a 32-bit word takes 0.27 pus. When sending
4096 bytes the total time spent in driver_send adds up to 291 ps,

For the receiver, TCP handling remains the same. but the execution time of user_task dropsto 31
1s because we donot copy the received data on the PPE. tep_recv and user_task together add up
10 267 us, which means an expected performance of 3745 segments/s. Given the transmission rate
of 120 Mby/s the sender is the bottleneck in this case. The actual performance we measured was
3089 segments/s. The difference from the predicted performance is due again to process schedul-
ing overhead not captured in our measurements.

Scenario 1 Scenario 2

Segments/s Segments/s
Calculated Throughput Of Receiver 1180 3745 5
Calculated Throughput Of Sender 1331 3185
Measured Throughput 1100 3089

Table 2. Measured and Calculated Throughput for Both Scenarios Assuming a Segment Size
of 4096 Bytes

Table 2 summarizes the predicted and measured performance of our implementation and Figure 8
compares the performance of the two scenarios for different segment sizes.

For unidirectional transmission one observes a speedup of 1.4 when running on four processors
instead of one. The reason is uneven load balancing. IP and TCP run on two processors each. As
the processing requirements of TCP are much higher than those of 1P (8.3 1o 1 for reception and
4.4 10 1 for transmission) two of the four processors are only very lightly loaded. The parallelism
between the sending and the receiving side, however, can be fully utilized in duplex transmission.

& The time spent in the TP layer is 23 ps + 17 ps + 0.27 us X packel size (in 32-bit words)

DELL Ex.1017.019

131

The speedup is 2.15, because the sending and receiving sides of the PPE are equally loaded. An
(,p:jmui speedup of 1.7 could be expected for the TCP/IP implementation when only two proces-
sors, one for the transmit and one for the receive side of the PPE, were used in full duplex trans-

mission.

5000

4500 -

Senario 2: 4 Processors Network bandwidth

1500 -
1000} \ it . L
S,
500 - Scenario 1: 4 Processors v
0 I- L L L | i L A L L " 1 M
0 1024 2048 3072 4096 5120 6144 7168
Segment Size in Bytes

——— Unidirectional Traffic 4 Processors X
— Bidirectional Traffic 1 Processor #

Figure 8. Performance in Segments/s of the Two Scenarios

The impact of having implemented our distributed shared memory via the peek_poke process is
the same in absolute numbers in both scenarios, but different compared to the limiting pipeline
Stage. The peek_poke call costs (.6 s per byte plus a fixed overhead of 18.6 ps in an unloaded
system. A 20-byte call from the receiver only takes 30 ys because the transmitter is immediately
ready to handle the call. Handling the distributed shared memory costs about 12% of the 235 ps
spent in tep_recv. This overhead on the receiver is important in the second scenario, but it is
small compared to the copying costs in the first scenario, For the transmitter the poke call induces
an elapsed time of 57 us because of the system load and the context switches involved on the re-
Ceive processor. Although this is 46% of the tcp_snd_data, it has no impact on the throughput,
because either ip_send and driver_send or tcp_recv and user_task will be the limiting stages.

DELL Ex.1017.020

132

The prototype PPE interface to the workstation (IBM Risc System/6000) allows a copy through.
put of only 33 Mby/s”. If the application were to be executed on the workstation, all copying woylg
be done from the workstation’s processor and if we assume code similar to the second test scengy.
io running on the PPE, then the limited copy throughput rather than the protocol processing wilj
be the bottleneck and we should expect the performance of the integrated system to be around 3¢
Mby/s.

6. CONCLUSIONS

Our measurements show that a full implementation of TCP/IP on the PPE can cope with data rages
in the range of 100 Mb/s. The throughput is much higher than the bandwidth of our hardware
interface to the workstation.

It turns out, however, that using a total of four processors, two for IP and two for TCP offers only
very little improvement over a two-processor solution, because of the vastly different processing
requirements in the two protocol layers. For full duplex traffic. however, the split onto a receiver
and a transmitter processor improves protocol performance by a factor of 1.7. Pantitioning proto-
cols to obtain even load and linear speedup is a hard problem, in particular for protocols which 1
clearly were not designed with parallel execution in mind. [Zitterbart 91], for example, reports

even poorer speedup factors. With an B transputer implementation of the OSI CLNP she only
~ achieves a performance increase 3.73 over the single processor version.

Having used a DOS implementation of TCP/IP as the basis for our parallel implementation was a ‘
sound decision. Our implementation runs efficiently, when one compares it with other transport
protocol implementations. For example, Zitterbart describes a parallel implementation of OSI
TP4 written for a system of 8 transputers which was able to process 460 PDUs/s [Zitterbart 91]. In
[Braun 91] a parallel implementation of XTP is described, there the performance is 1330 PDUs/s.

Once new faster processors. such as the 100 MIPS T90) transputer, become available, the gains
for pipelined execution of protocols will have to be reevaluated. While the T9000 will be 10 times
as fast as the T425, the delays for interprocessor communication will not have shrunk by the same
factor, Therefore the relative overhead for pipelining the protocol execution within a layer and
even between layers will grow. We claim, however, that the parallel execution of transmit and
receive functions is still a suitable form of parallelism to increase protocol throughput. Distrib-
uted shared memory, implemented with transputer links easily allows protocol state information
10 be shared between the two sides of the adapter and impacts the performance of the transport
protocol much less than expected. First evaluations of 4 new architecture, which is based on two
T9000s supported by dedicated hardware for checksumming and extraction of header informa-
tion, indicate a performance of over 30000 TCP segments/s.

7 The reason why this interface is so slow, is that the clocks on the workstation and the PPE run asynchronously.
When arbitrating an access from the Micro Channel 1o the shared memory on the PPE we are forced w use
the Micro Channcl’s Asynchronous Extended cycle [TBM 90] of at least 300 ns. This eycle then may even need -
10 be extended by up o 487 ns w0 match it with the appropriate access cycle of the PPE shared memory. In
@ new design for the Micro Channel interface this problem would be addressed by buffering in the inerface
which would allow write-behind and rcad-ahead. For conseculive accesses, the arbitration cycle for the next
word access 1o the shared memory could then be overlapped with the current word access cycle, thus being
able to use regular Micro Channel cycles of 200 ns, and consequently increasing the throughput to more than
S0 Mby/s. A busmaster interface using the Micro Channel’s streaming mode would allow give higher through-
put,

DELL Ex.1017.021

133

Qurmeasurements are in line with Clark s observation [Clark 89] that the actual protocol proces-
 sing is not the reason for poor protocol performance. In the PPE, buffer copying and management
cost twice as much as the protocol processing, The second scenario shows how throughput can be
e if the user data were copied by the workstation processor overlapped to the protocol execu-
gion on the PPE. Ina future design of the PPE, we will concentrate on improving the interface to
the shared memory for the protocol processor® and the workstation.

‘We also plan to work on the design of efficient software interfaces between our subsystemand the
host system. As can be seen from results published for the Nectar CAB and our own work, cross-
ing the software interface between the host processor and the communication subsystem s a cost-
ly operation. Many researchers who advocate the offloading of protocol functions into a
- dedicated subsystem ignore this issue. For our TCP/IP implementation only a host API based on
sockets will be acceptable, as this interface has become the de-facto standard. These sockets must
be lightweight enough to provide efficient pipelined execution between the communication sub-
system and the host processor to exploit the full power of the PPE.

7. REFERENCES

|Arnould 89| Arnould. E. A, Bitz, E. I, Cooper, E. C., Kung, H. T, Sansom, R. D,,
Steenkiste, P. A,, The Design of Nectar: A Network Backplane for
Heterogeneous Multicomputers, Proceedings of ASPLOS-IIL, pp
205-216, April 1989,

| Braun 91] Braun, T., Zitterbart, M., A Parallel Implementation of XTP on
Transputers, Proc. 16th Annual Conf. on Local Computer Networks,
Minneapolis, Oct. 1991,

[Chesson 87) Chesson, G., The Protocol Engine Project, Unix Review, Vol.5 No.9,
} Sept. 1987, pp.70-77.
[Cheriton 88| Cheriton, D.R., VMTP: Versatile Message Transaction Protocol —

Protocol Specification. Network Working Group, Request For
Comments, RFC 1045, February 1988.

[Clark 89] Clark.D. Lambert, M.L., Romkey, J., Salwen, H., An Analysis of the
TCP Processing Overhead. IEEE Communications Magazine, Vol. 27,
No. 6 (June 1989), pp. 23-29.

|Clark 90 Clark, D., Tennenhouse, D., Architectural Considerations for a New
Generation of Protocols. Proceedings of the SIGCOMM'10 Symposium,
Sept 1990, pp. 200-208.

|Dauphin 91| Dauphin, P.. Hofmann, R., Klar, R., Mohr, B., Quick, A.,Siegle, M.,
l Soetz, F., ZM4/SIMPLE: A General Approach 1o
Performance-Measurement and -Evaluation of Distributed Systems.
Technical Report 1/91, Erlangen, January 1991.

[Hoare 78] Hoare, C.A.R., Communicating Sequential Processes. Communications
of the ACM,Vol.21, No 8, August 1978, pp. 666-677.

3 In the PPE a shared memory cycle of the ranspuler is iwice a local memory cycle

DELL Ex.1017.022

134

[1BM 90]

[INMOS 89|

|Kaiserswerth 91|

| Kaiserswerth 92|

| Kanakia 88|

[Lumley 92|

[LS-C 89|
[Mohr 91|

[PEI 92]

| Pountain 88|

[UM 90]

[Wicki 90]

| Ziterbart 91|

IBM RISC System/6000 POWERstation and POWERserver Hardware
Technical Reference — Micro Channel Architecture, 1990,

Inmos Limited, The Transputer Databook. First Ed. 1989, Document
No. 72 TRN 20300, pp. 23-43 and 113-179.

Kaiserswerth, M., A Parallel Implementation of the ISO 8802.2-2 LLC
Protocol, TEEE Tricomm 91 — Communications for Distributed
Applications and Systems, Chuapel Hill NC, April 17-19, 1991.

Kaiserswerth, M., The Parallel Protocol Engine. IBM Research Report,
RZ 2298 (#77818). March 1992,

Kanakia, H., Cheriton, D.R., The VMP Network Adapter Board (NAB):
High Performance Network Communication on Multiprocessors, ACM
SIGCOMM 88, pp. 175-187.

Lumley, I., A High-Throughput Network Interface to a RISC
Workstation, Proceedings of the IEEE Workshop on the Architecture
and Implementation of High Performances Communication Subsystems,
Tucson, AZ, Feb. 17-19, 1992,

Logical Systems, Transputer Toolset, Version 88.4 Feb. 1989,

Mohr, B., SIMPLE: A Performance Evaluation Tool Environment for
Parallel and Distributed Systems, in A. Bode, Editor, Distributed
Memory Computing, 2nd European Conference, EDMCC2, pp. 80-89,
Munich, Germany, April 1991, Springer Verlag Berlin LNCS 487.

Protocol Engines Incorporated, XTP Protocol Definition, Revision 3.6.,
Edited by Protocol Engines Mountain View, CA, January 11, 1992,

Pountain, D., May, D., A Tutorial on OCCAM2, BSP Professional
Books London 1988.

IBM Corporation, University of Maryland. Network Communications
Package. Milford 1990.

Wicki, T., A Multiprocessor -Based Controller Architecture for
High-Speed Communication Protocol Processing, Doctoral Thesis, IBM
Research Report, RZ 2033 (#72078), Vol 6, 1990.

Zitterbart, M., Funktionsbezogene Parallelitit in transportorientierten
Kommunikationsprotokollen, Dissertation, VDI-Reihe 10 Nr. 183,
Diisseldorf: VDI-Verlag 1991.

DELL Ex.1017.023

