
Example

Answer

Input/Output 541

that resources can be used at 100% of their maximum rate without side effects
from interference. A later example takes a more realistic view.

Given the following performance and cost information:

a 50-MIPS CPU costing $50,000

an 8-byte-wide memory with a 200-ns cycle time

80 MB/sec 1/0 bus with room for 20 SCSI buses and controllers

SCSI buses that can transfer 4 MB/sec and support up to 7 disks per bus
(these are also called SCSI strings)

a $2500 SCSI controller that adds 2 milliseconds (ms) of overhead to perform
a disk 1/0

an operating system that uses 10,000 CPU instructions for a disk 1/0

a choice of a large disk containing 4 GB or a small disk containing 1 GB,
each costing $3 per MB

both disks rotate at 3600 RPM, have a 12-ms average seek time, and can
transfer 2MB/sec

the storage capacity must be 100 GB, and

the average 1/0 size is 8 KB

Evaluate the cost per 1/0 per second (IOPS) of using small or large drives.
Assume that every disk 1/0 requires an average seek and average rotational
delay. Use the optimistic assumption that all devices can be used at 100% of
capacity and that the workload is evenly divided between all disks.

1/0 performance is limited by the weakest link in the chain, so we evaluate the
maximum performance of each link in the 1/0 chain for each organization to
determine the maximum performance of that organization.

Let's start by calculating the maximum number of IOPS for the CPU, main
memory, and 1/0 bus. The CPU 1/0 performance is determined by the speed of
the CPU and the number of instructions to perform a disk 1/0:

. 50MIPS
Maximum IOPS for CPU= lOOOO . . l/O = 5000 mstructions per

The maximum performance of the memory system is determined by the memory
cycle time, the width of the memory, and the size of the 1/0 transfers:

. . (1/200 ns)*8
Maximum IOPS for mam memory = 8 KB per l/O ""' 5000

Ex.1035.573DELL

542 9.8 Designing an 1/0 System

The 1/0 bus maximum performance is limited by the bus bandwidth and the size
of the 1/0:

. 80 MB/sec
Maximum IOPS for the 1/0 bus = 8 KB per l/O :::: 10000

Thus, no matter which disk is selected, the CPU and main memory limits the
maximum performance to no more than 5000 IOPS.

Now its time to look at the performance of the next link in the 1/0 chain, the
SCSI controllers. The time to transfer 8 KB over the SCSI bus is

SCSI bus transfer time = 4 ~~fsec = 2 ms

Adding the 2-ms SCSI controller overhead means 4 ms per 1/0, making the
maximum rate per con.troller

Maximum IOPS per SCSI controller= -
4

1
= 250 IOPS

ms

All the organizations will use several controllers, so 250 IOPS is not the limit for
the whole system.

The final link in the chain is the disks themselves. The time for an average
disk 1/0 is

1/0 time= 12 ms+ 360~·~PM + 2 ~~fsec = 12+8.3+ 4 = 24.3 ms

so the disk performance is

Maximum IOPS (using average seeks) per disk= 24.~ ms:::: 41 IOPS

The number of disks in each organization depends on the size of each disk: 100
GB can be either 25 4-GB disks or 100 1-GB disks. The maximum number of
I/Os for all the disks is:

Maximum IOPS for 25 4-GB disks = 25 * 41=1025

Maximum IOPS for 100 1-GB disks = 100 * 41=4100

Thus, provided there are enough SCSI strings, the disks become the new limit to
maximum performance: 1025 IOPS for the 4-GB disks and 4100 for the 1-GB
disks.

While we have determined the performance of each link of the 1/0 chain, we
still have to determine how many SCSI buses and controllers to use and how
many disks to connect to each controller, as this may further limit maximum
performance. The 1/0 bus is limited to 20 SCSI controllers and the SCSI

Ex.1035.574DELL

Input/Output 543

standard limits disks to 7 per SCSI string. The minimum number of controllers is
for the 4-GB disks

Minimum number of SCSI strings for 25 4-GB disks = ;
5

or 4

and for 1-GB disks

Minimum number ofSCSI strings for 100 1-GB disks= l~O or 15

We can calculate the maximum IOPS for each configuration:

Maximum IOPS for 4 SCSI strings = 4 * 250 = 1000 IOPS

Maximum IOPS for 15 SCSI strings = 15 * 250 = 3750 IOPS

The maximum performance of this number of controllers is slightly lower
than the disk I/0 throughput, so let's also calculate the number of controllers so
they don't become a bottleneck. One way is to find the number of disks they can
support per string:

Number of disks per SCSI string at full bandwidth = ~~O = 6.1 or 6

and then calculate the number of strings:

Number of SCSI strings for full bandwidth 4-GB disks = ~5 = 4.1 or 5

Number of SCSI strings for full bandwidth 1-GB disks= l~O = 16.7 or 17

This establishes the performance of four organizations: 25 4-GB disks with 4
or 5 SCSI strings and 100 1-GB disks with 15 to 17 SCSI strings. The maximum
performance of each option is limited by the bottleneck (in boldface):

4-GB disks, 4 strings = Min(5000,5000,10000,1025,1000) = 1000 IOPS

4-GB disks, 5 strings = Min(5000,5000,10000,1025,1250) = 1025 IOPS

1-GB disks, 15 strings = Min(5000,5000,10000,4100,3750) = 3750 IOPS

•
1-GB disks, 17 strings = Min(5000,5000,10000,4100,4250) = 4100 IOPS

We can now calculate the cost for each organization:

Ex.1035.575DELL

544

Example

Answer

9.8 Designing an 1/0 System

4-GB disks, 4 strings = $50,000 + 4*$2,500 + 25 * (4096*$3) = $367,200

4-GB disks, 5 strings = $50,000 + 5*$2;500 + 25 * (4096*$3) = $369,700

1-GB disks, 15 strings = $50,000 + 15*$2,500 + 100 * (1024*$3) = $394,700

1-GB disks, 17 strings = $50,000 + 17*$2,500 + 100 * (1024*$3) = $399,700

Finally, the cost per IOPS for each of the four configurations is $367, $361,
$105, and $97, respectively. Calculating maximum number of average I/Os per
second assuming 100% utilization of the critical resources, the best
cost/performance is the organization with the small disks and the largest number
of controllers. The small disks have 3.4 to 3.8 times better cost/performance than
the large disks in this example. The only drawback is that the larger number of
disks will affect system availability unless some form of redundancy is added
(see pages 520-521).

This above example assumed that resources can be used 100%. It is
instructive to see what is the bottleneck in each organization.

For the organizations in the last example, calculate the percentage of utilization
of each resource in the computer system.

Figure 9.31 gives the answer.

Resource 4-GB disks, 4-GB disks, 1-GB disks, 1-GB disks,
4 strings 5 strings 15 strings 17 strings

CPU 20% 21% 75% 82%

Memory 20% 21% 75% 82%

1/0 bus 10% 10% 38% 41%

SCSI buses 100% 82% 100% 96%

Disks 98% 100% 91% 100%

FIGURE 9.31 The percentage of utilization of each resource given the four
organizations in the previous example. Either the SCSI buses or the disks are the
bottleneck.

In reality buses cannot deliver close to 100% of bandwidth without severe
increase in latency and reduction in throughput due to contention. A variety of
rules of thumb have been evolved to guide I/0 designs:

Ex.1035.576DELL

Example

Answer

Input/Output

No 1/0 bus should be utilized more than 75% to 80%;

No disk string should be utilized more than 40%;

No disk arm should be seeking more than 60% of the time.

545

Recalculate performance in the example above using these rules of thumb, and
show the utilization of each component. Are there other organizations that
follow these guidelines and improve performance?

Figure 9.31 shows that the 1/0 bus is far below the suggested guidelines, so we
concentrate on the utilization of seek and SCSI bus. The utilization of seek time
per disk is

Time of average seek
= Time between I/Os

12 ms = 12 = 5001
1 24

70

41 IOPS

which is below the rule of thumb. The biggest impact is on the SCSI bus:

Suggested IOPS per SCSI string = -
4

l * 40% = 100 IOPS.
ms

With this data we can recalculate IOPS for each organization:

4-GB disks, 4 strings = Min(5000,5000,7500,1025,400) = 400 IOPS

4-GB disks, 5 strings = Min(5000,5000,7500,1025,500) = 500 IOPS

1-GB disks, 15 strings = Min(5000,5000,7500,4100,1500) = 1500 IOPS

1-GB disks, 17 strings = Min(5000,5000,7500,4100,1700) = 1700 IOPS

Under these assumptions, the small disks have about 3.0 to 4.2 times the
performance of the large disks.

Clearly, the string bandwidth is the bottleneck now. The number of disks per
string that would not exceed the guideline is

Number of disks per SCSI string at full bandwidth= ~~O = 2.4 or 2

and the ideal number of strings is

Number of SCSI strings for full bandwidth 4-GB disks = ~ = 12.5 or 13

Number of SCSI strings for full bandwidth 1-GB disks= l~O = 50

Ex.1035.577DELL

546 9.8 Designing an 1/0 System

This suggestion is fine for 4-GB disks, but the I/O bus is limited to 20 SCSI
controllers and strings so that becomes the limit for 1-GB disks:

4-GB disks, 13 strings= Min(5000,5000,7500,1025,1300) = 1025 IOPS

1-GB disks, 20 strings= Min(5000,5000,7500,4100,2000) = 2000 IOPS

We can now calculate the cost for each organization:

4-GB disks, 13 strings= $50,000 + 13*$2,500 + 25 * (4096*$3) = $389,700

1-GB disks, 20 strings= $50,000 + 20*$2,500 + 100 * (1024*$3) = $407,200

In this case the small disks cost 5% more yet have about twice the performance
of the large disks. The utilization of each resource is shown in Figure 9.32. It
shows that following the rule of thumb of 40% string utilization sets the
performance limit in all but one case.

Resource 4-GB 4-GB 1-GB 1-GB 4-GB 1-GB
disks, 4 disks, 5 disks, 15 disks, 17 disks, 13 disks, 20
strings strings strings strings strings strings

CPU 8% 10% 30% 34% 21% 40%

Memory 8% 10% 30% 34% 21% 40%

I/O bus 5% 7% 20% 23% 14% 27%

SCSI buses 40% 40% 40% 40% 32% 40%

Disks 39% 49% 37% 41% 100% 49%

Seek utilization 19% 24% 18% 20% 49% 24%

IOPS 400 500 1500 1700 1025 2000

FIGURE 9.32 The percentage of utilization of each resource given the six
organizations in this example, which tries to limit utilization of key resources to the
rules of thumb given above.

Putting It All Together:
The IBM 3990 Storage Subsystem

If computer architects were polled to select the leading company in I/O design,
IBM would win hands down. A good deal of IBM's mainframe business is
commercial applications, known to be I/O intensive. While there are graphic
devices and networks that can be connected to an IBM mainframe, IBM's
reputation comes from disk performance. It is on this aspect that we concentrate
in this section.

Ex.1035.578DELL

546

9.9

9.8 Designing an I/O System

This suggestion is fine for 4-GB disks, but the I/O busis limited to 20 SCSI
controllers and strings so that becomesthe limit for 1-GB disks:

4-GBdisks, 13 strings = Min(5000,5000,7500,1025,1300) = 1025 IOPS

1-GB disks, 20 strings = Min(5000,5000,7500,4100,2000) = 2000 IOPS

Wecan now calculate the cost for each organization:

4-GBdisks, 13 strings = $50,000 + 13*$2,500 + 25 * (4096*$3) = $389,700

1-GB disks, 20 strings = $50,000 + 20*$2,500 + 100 * (1024*$3) = $407,200

In this case the small disks cost 5% more yet have about twice the performance
of the large disks. The utilization of each resource is shown in Figure 9.32.It
shows that following the rule of thumb of 40% string utilization sets the
performance limit in all but onecase.

Resource 4-GB 4-GB 1-GB 1-GB 4-GB 1-GB

disks,4 disks,5 disks,15 disks,17 disks,13 disks, 20
strings_strings strings strings strings strings

CPU 8% 10% 30% 34% 21% 40%

Memory 8% 10% 30% 34% ~ 21% 40%

I/O bus 5% 7% 20% 23% 14% 27%

SCSI buses 40% 40% 40% 40% 32% 40%

|Disks . 39% 49% 37% 41% 100% 49%
Seek utilization 19% 24% 18% 20% 49% 24%

|IOPS 400 500 1500 1700 1025 2000

FIGURE 9.32 The percentageofutilization of each resource given the six
organizations in this example, whichtries to limit utilization of key resources to the
rules of thumb given above.

Putting It All Together:
The IBM 3990 Storage Subsystem

If computer architects were polléd to select the leading company in I/O design,
IBM would win hands down. A good deal of IBM’s mainframe business is
commercial applications, known to be I/O intensive. While there are graphic
devices and networks that can be connected to an IBM mainframe, IBM’s

reputation comes from disk performance.It is on this aspect that we concentrate
in this section.

DELL Ex.1035.578

Input/Output 547

The IBM 360/370 I/O architecture has evolved over a period of 25 years.
Initially, the I/0 system was general purpose, and no special attention was paid
to any particular device. As it became clear that magnetic disks were the chief
consumers of I/0, the IBM 360 was tailored to support fast disk I/0. IBM's
dominant philosophy is to choose latency over throughput whenever it makes a
difference. IBM almost never uses a large buffer outside the CPU; their goal is
to set up a clear path from main memory to the I/O device so that when a device
is ready, nothing can get in the way. Perhaps IBM followed a corollary to the
quote on page 526: you can buy bandwidth, but you need to design for latency.
As a secondary philosophy, the CPU is unburdened as much as possible to allow
the CPU to continue with computation while others perform the desired I/O
activities.

The example for this section is the high-end IBM 3090 CPU and the 3990
Storage Subsystem. The IBM 3090, models 3090/100 to 3090/600, can contain
one to six CPUs. This 18.5-ns-clock-cycle machine has a 16-way interleaved
memory that can transfer eight bytes every clock cycle on each of two
(3090/100) or four (3090/600) buses. Each 3090 processor has a 64-K.B, 4-way
set-associative, write-back cache, and the cache supports pipelined access taking
two cycles. Each CPU is rated about 30 IBM MIPS (see page 78), giving at
most 180 MIPS to the IBM 3090/600. Surveys of IBM mainframe installations
suggest a rule of thumb of about 4 GB of disk storage per MIPS of CPU power
(see Section 9.12).

It is only fair warning to say that IBM terminology may not be self-evident,
although the ideas are not difficult. Remember that this I/O architecture has
evolved since 1964. While there may well be ideas that IBM wouldn't include if
they were to start anew, they are able to make this scheme work, and make it
work well.

The 3990 1/0 Subsystem Data-Transfer Hierarchy
and Control Hierarchy

The I/0 subsystem is divided into two hierarchies:

1. Control-This hierarchy of controllers negotiates a path through a maze of
possible connections between the memory and the I/O device and controls
the timing of the transfer.

2. Data-This hierarchy of connections is the path over which data flows
between memory and the I/O device.

After going over each of the hierarchies, we trace a disk read to help understand
the function of each component.

For simplicity, we begin by discussing the data-transfer hierarchy, shown in
Figure 9.33 (page 548). This figure shows one section of the hierarchy that con
tains up to 64 large IBM disks; using 64 of the recently announced IBM 3390
disks, this piece could connect to over one trillion bytes of storage! Yet this

Ex.1035.579DELL

548

3090 CPU
+cache

0

•
•
•

3090 CPU
+cache

5

Channel
controller

9.9 Putting It All Together: The IBM 3990 Storage Subsystem

piece represents only one-sixth of the capacity of the IBM 3090/600 CPU. This
ability to expand from a small I/0 system to hundreds of disks and terabytes of
storage is what gives IBM mainframes their reputation in the I/O world.

The best-known member of the data hierarchy is the channel. The channel is
nothing more than 50 wires that connect two levels on the 1/0 hierarchy
together. Only 18 of the 50 wires are used for transferring data (8 data plus 1
parity in each direction), while the rest are for control information. For years the
maximum data rate was 3 MB per second, but it recently was raised to 4.5 MB
per second. Up to 48 channels can be connected to a 3090/100 CPU, and up to

Main memory

bankO

•
•
•

Main memory

bank 15

N

~
Speed-matching

buffers
0

Speed-matching
buffers

•

Storage
director

Head of
string

Storage
director

Head of
string

•
•
•

Storage
director

Head of
string

•
• • • •

Storage
director

Head of
string

• • •

FIGURE 9.33 The data-transfer hierarchy in the IBM 3990 1/0 Subsystem. Note that all the channels are connected
to all the storage directors. The disks at the bottom represent the quad-ported IBM 3380 disk drives, with the maximum of
64 disks. The collection of disks on the same path to the head-of-string controller is called a string .

Ex.1035.580DELL

548 , 9.9 Putting It All Together: The IBM 3990 Storage Subsystem

piece represents only one-sixth of the capacity of the IBM 3090/600 CPU.This
ability to expand from a small I/O system to hundredsof disks and terabytes of
storage is what gives IBM mainframestheir reputation in the I/O world.

The best-known memberof the data hierarchy is the channel. The channelis
nothing more.than 50 wires that connect two levels on the I/O hierarchy
together. Only 18 of the 50 wires are used for transferring data (8 data plus 1
parity in each direction), while the rest are for control information. For years the
maximum data rate was 3 MB per second, but it recently was raised to 4.5 MB
per second. Up to 48 channels can be connected to a 3090/100 CPU, and up to

3090 CPU Main memory

+ cache bank 0

e
e

3090 CPU Main memory

teaches bank 15

Speed-matching Speed-matching
Channel buffers buffers
controller 0 5

SS
8 channels

a. —Ss

Storage Storage Storage Storage
director director director director |

Head of Head of
string string

FIGURE 9.33 The data-transfer hierarchy in the IBM 3990 I/O Subsystem. Note that all the channels are connected
to all the storage directors. The disks at the bottom represent the quad-ported IBM 3380 diskdrives, with the maximum of
64 disks. The collection of disks on the same path to the head-of-string controlleris called a string .

DELL Ex.1035.580

Input/Output 549

96 channels to a 3090/600. Because they are "multiprogrammed," channels can
actually service several disks. For historical reasons, IBM calls this block
multiplexing.

Channels are connected to the 3090 main memory via two speed-matching
·buffers, which funnel all the channels into a single port to main memory. Such
buffers simply match the bandwidth of the I/O device to the bandwidth of the
memory system. There are two 8-byte buffers per channel.

The next level down the data hierarchy is the storage director. This is an
intermediary device that allows the many channels to talk to many different I/0
devices. Four to sixteen channels go to the storage director depending on the
model, and two or four paths come out the bottom to the disks. These are called
two-path strings or four-path strings in IBM parlance. Thus, each storage
director can talk to any of the disks using one of the strings. At the top of each
string is the head of string, and all communication between disks and control
units must pass through it.

At the bottom of the datapath hierarchy are the disk devices themselves. To
increase availability, disk devices like the IBM 3380 provide four paths to
connect to the storage director; if one path fails, the device can still be
connected.

The redundant paths from main memory to the I/0 device not only improve
availability, but also can improve performance. Since the IBM philosophy is to
avoid large buffers, the path from the I/0 device to main memory must remain
connected until the transfer is complete. If there were a single hierarchical path
from devices to the speed-matching buffer, only one I/0 device in a subtree
could transfer at a time. Instead, the multiple paths allow multiple devices to
transfer simultaneously through the storage director and into memory.

The task of setting up the datapath connection is that of the control hierarchy.
Figure 9.34 shows both the control and data hierarchies of the 3990 1/0
subsystem. The new device is the I/0 processor. The 3090 channel controller
and 1/0 processor are load/store machines similar to DLX, except that there is no
memory hierarchy. In the next subsection we see how the two hierarchies work
together to read a disk sector.

Tracing a Disk Read in the IBM 3990 1/0
Subsystem

The 12 steps below trace a sector read from an IBM 3380 disk. Each of the 12
steps is labeled on a drawing of the full hierarchy in Figure 9.34 (page 550).

1. The user sets up a data structure in memory containing the operations that
should occur during this I/0 event. This data structure is termed an //0 control
block, or IOCB, which also points to a list of channel control words (CCWs).
This list is called a channel program. Normally, the operating system provides
the channel program, but some users write their own. The operating system
checks the IOCB for protection violations before the I/0 can continue.

Ex.1035.581DELL

550

3090 CPU
+cache

® • • •
3090 CPU
+cache

®

0

5

1/0

9.9 Putting It All Together: The IBM 3990 Storage Subsystem

2. The CPU executes a START SUBCHANNEL instruction. The actual request
is defined in the channel program. A channel program to read a record might
look like Figure 935.

CD
Main memory

bank O

•
• •

Main memory

bank 15

processor

®
®

Storage
director

©
Head of
string

©

Speed-matching
buffers

Storage
director

®
Head of
string

•
•
•

Storage
director

®

® Speed-matching
buffers

•
•

• • • •

Storage • • • director

Head of
string

5

FIGURE 9.34 The control and data hierarchies in the IBM 3990 1/0 Subsystem labeled with the 12 steps to read a
sector from disk. The only new box over Figure 9.33 (page 548) is the 1/0 processor.

Ex.1035.582DELL

550 - * 9,9 Putting It All Together: The IBM 3990 Storage Subsystem

2. The CPU executes a START SUBCHANNEL instruction. The actual request
is defined in the channelprogram. A channel program to read a record might
look like Figure 9,35.

@

3090 CPU . Main memory

+ cache . bank 0

@) ° °

3090 CPU Main memory

+ cache ; fw|bank 15

vo
processor

Speed-fers . Speed-matchingbuffers buffers

SX@ DB

Storage ; Storage
director director

FIGURE 9.34 The control and datahierarchiesin the IBM 3990 I/O Subsystem labeled with the 12 steps to read a
sector from disk. The only new box over Figure 9.33 (page 548)is the I/O processor.

DELL Ex.1035.582

Input/Output 551

Location ccw Comment

CCWl: Define Transfers a 16-byte parameter to the storage director. The
Extent channel sees this as a write data transfer.

CCW2: Locate Transfers a 16-byte parameter to the storage director as
Record above. The parameter identifies the operation (read in this

case) plus seek, sector number, and record ID. The channel
again sees this as a write data transfer.

CCW3: Read Data Transfers the desired disk data to the channel and then to
the main memory.

FIGURE 9.35 A channel program to perform a disk read, consisting of three channel
command words (CCWs). The operating system checks for virtual memory access
violations of CCWs by simulating them to check for violations. These instructions are linked
so that only one START SUBCHANNEL instruction is needed.

(

3. The I/O processor uses the control wires of one of the channels to tell the
storage director which disk is to be accessed and the disk address to be read. The
channel is then released.

4. The storage director sends a SEEK command to the head-of-string controller
and the head-of-string controller connects to the desired disk, telling it to seek to
the appropriate track, and then disconnects. The disconnect occurs between
CCW2 and CCW3 in Figure 9.35.

Upon completion of these first four steps of the read, the arm on the disk
seeks the correct track on the correct IBM 3380 disk drive. Other I/O operations
can use the control and data hierarchy while this disk is seeking and the data is
rotating under the read head. The I/O processor thus acts like a multipro
grammed system, working on other requests while waiting for an I/O event to
complete.

An interesting question arises: When there are multiple uses for a single disk,
what prevents another seek from screwing up the works before the original
request can continue with the I/O event in progress? The answer is the disk
appears busy to the programs in the 3090 between the time a s TART
SUBCHANNEL instruction starts a channel program (step 2) and the end of that
channel program. An attempt to execute another START SUBCHANNEL

instruction would receive busy status from the channel or from the disk device.
After both the seek completes and the disk rotates to the desired point relative

to the read head, the disk reconnects to a channel. To determine the rotational
position of the 3380 disk, IBM provides rotational positional sensing (RPS), a
feature that gives early warning when the data will rotate under the read head.
IBM essentially extends the seek time to include some of the rotation time,
thereby tying up the datapath as little as possible. Then the I/0 can continue:

5. When the disk completes the seek and rotates to the correct position, it
contacts the head-of-string controller.

Ex.1035.583DELL

552 9.9 Putting It All Together: The IBM 3990 Storage Subsystem

6. The head-of-string controller looks for a free storage director to send the
signal that the disk is on the right track.

7. The storage director looks for a free channel so that it can use the control
wires to tell the I/0 processor that the disk is on the right track.

8. The 1/0 processor simultaneously contacts the storage director and I/0
device (the IBM 3380 disk) to give the OK to transfer data, and tells the channel
controller where to put the information in main memory when it arrives at the
channel.

There is now a direct path between the I/0 device and memory and the
transfer can begin:

9. When the disk is ready to transfer, it sends the data at 3 megabytes per
second over a bit-serial line to the storage director.

10. The storage director collects 16 bytes in one of two buffers and sends the
information on to the channel controller.

11. The channel controller has a pair of 16-byte buffers per storage director and
sends 16 bytes over a 3-MB or 4.5-MB per second, 8-bit-wide datapath to the
speed-matching buffers.

12. The speed-matching buffers take the information corning in from all
channels. There are two 8-byte buffers per channel that send 8 bytes at a time to
the appropriate locations in main memory.

Since nothing is free in computer design, one might expect there to be a cost
in anticipating the rotational delay using RPS. Sometimes a free path cannot be
established in the time available due to other I/0 activity, resulting in an RPS
miss. An RPS miss means the 3990 I/0 Subsystem must either:

• Wait another full rotation-16.7 ms-before the data is back under the head,
or

• Break down the hierarchical datapath and start all over again!

Lots of RPS misses can ruin response times.
As mentioned above, the IBM 1/0 system evolved over many years, and

Figure 9.36 shows the change in response time for a few of those changes. The
first improvement concerns the path for data after reconnection. Before the
Systern/370-XA, the data path through the channels and storage director (steps 5
through 12) had to be the same as the path taken to request the seek (steps 1
through 4). The 370-XA allows the path after reconnection to be different, and
this option is called dynamic path reconnection (DPR). This change reduced the
time waiting for the channel path and the time waiting for disks (queueing
delay), yielding a reduction in the total average response time of 17%. The
second change in Figure 9.36 involved a new disk design. Improvements to the

Ex.1035.584DELL

Input/Output 553

microcode control of the 3380D made slight improvements in seek time plus
removed a restriction that disk arms that were on the same internal path were
prevented from operating at the same time. IBM calls this option Device Level
Select (DLS). This change reduced internal path delays to 0. This had little
impact since there was not much time waiting on internal delays because
customers intentionally placed data on disks trying to' avoid internal path delays.
This second change reduced response time another 9%. The final change was
addition of a 32-MB write-through disk cache to a 3380D, called the IBM 3880-
23. The disk cache reduced average rotational latency, seek time, and queueing·
delays, giving another 41 % reduction in response time.

One indication of the effectiveness of DPR is the number of disk devices
connected to a string. Studies of IBM systems using DPR, which average 16
disk devices per string versus 12 without DPR, suggest dynamic reconnect
allows

/
a higher I/O rate with comparable response time [Henly and McNutt

1989].

Summary of the IBM 3990 1/0 Subsystem

Goals for I/0 systems consist of supporting the following:

• Low cost

• A variety of types of I/0 devices

40

35

30

25
Response

time 20
(ms)

15

10

5

0
3380D . DPR

Changes to 3380D

DLS

• Queuing (wait for disk)
Ill Delay (channel path)
• Delay (internal path)
Ill Direct (channel working)
•Seek
Ill Rotational latency

Cache

FIGURE 9.36 Changes in response time with improvements in 33800 broken into six
categories [Friesenborg and Wicks 1985]. Queueing delay refers to the time when the
program waits for another program to finish with the disk. Channel-path delay is the time
the operation waits due to the channel path and storage director being busy with another
task. Internal-path delay is similar to channel-path delay except it refers to internal paths in
the 33800. Direct means the time the channel path is busy with the operation. Seek time
and rotational latency are the standard definitions. Robinson and Blount [1986] report in the
study of the 3880-23 that the read hit rate for the 32-MB write-through cache in some large
systems averages about 90%, with reads accounting for 92% of the disk accesses.

Ex.1035.585DELL

Input/Output 553

microcode control of the 3380D madeslight improvements in seek time plus
removed a restriction that disk arms that were on the same internal path were
prevented from operating at the same time. IBM calls this option Device Level
Select (DLS). This change reduced internal path delays to 0. This hadlittle
impact since there was not much time waiting on internal delays because
customers intentionally placed data on disks trying toavoid internal path delays.
This second change reduced response time another 9%. The final change was
addition of a 32-MB write-through disk cache to a 3380D,called the IBM 3880-
23. The disk cache reduced average rotational latency, seek time, and queueing -
delays, giving another 41% reduction in response time.

Oneindication of the effectiveness of DPR is the number of disk devices

connected to a string. Studies of IBM systems using DPR, which average 16
disk devices per string versus 12 without DPR, suggest dynamic reconnect
allows a higher I/O rate with comparable response time [Henly and McNutt
1989].

Summary of the IBM 3990 I/O Subsystem

Goals for I/O systemsconsist of supporting the following:

=» Low cost

» A variety of types of I/O devices

40

35

30

25 ’

Response 41%
time 20

(ms)
IB Queuing (wait for disk)
Fl Delay (channel path)
i Delay (internal path)
tf) Direct (channel working)

Eq Rotational latency
DPR DLS Cache

Changesto 3380D

FIGURE 9.36 Changesin responsetime with improvementsin 3380D brokeninto six
categories [Friesenborg and Wicks 1985]. Queueing delayrefers to the time when the
program waits for another program to finish with the disk. Channel-path delay is the time
the operation waits due to the channel path and storage director being busy with another
task. Internal-path delay is similar to channel-path delay exceptit refers to internal paths in
the 3380D. Direct meansthe time the channel path is busy with the operation. Seek time
and rotational latency are the standard definitions. Robinson and Blount [1986] report in the |
study of the 3880-23 that the read hit rate for the 32-MB write-through cache in somelarge
systems averages about 90%, with reads accounting for 92% of the disk accesses.

DELL Ex.1035.585

554 9.9 Putting It All Together: The IBM 3990 Storage Subsystem

• A large number of 1/0 devices at a time

• High performance

• Low latency

Substantial expendability and lower latency are hard to get at the same time.
IBM channel-based systems achieve the third and fourth goals by utilizing
hierarchical data paths to connect a large number of devices. The many devices
and parallel paths allow simultaneous transfers and, thus, high throughput. By
avoiding large buffers and providing enough extra paths to minimize delay from
congestion, channels offer low-latency 1/0 as well. To maximize use of the
hierarchy, IBM uses rotational positional sensing to extend the time that other
tasks can use the hierarchy during an 1/0 operation.

Therefore, a key to performance of the IBM 1/0 subsystem is the number of
rotational positional misses and congestion on the channel paths. A rule of
thumb is that the single-path channels should be no more than 30% utilized and
the quad-path channels should be no more than 60% utilized, or too many
rotational positional misses will result. This 1/0 architecture dominates the
industry, yet it would be interesting to see what, if anything, IBM would do
differently if given a clean slate.

9.10 I Fallacies and Pitfalls

Fallacy: 110 plays a small role in supercomputer design

The goal of the Illiac IV was to be the world's fastest. computer. It may not have
achieved that goal, but it showed 1/0 as the Achilles' Heel of high-performance
machines. In some tasks, more time was spent in loading data than in computing.
Amdahl's Law demonstrated the importance of high performance in all the parts
of a high-speed computer. (In fact, Amdahl made his comment in reaction to
claims for performance through parallelism made on behalf of the Illiac IV.) The
Illiac IV had a very fast transfer rate (60 MB/sec), but very small, fixed-head
disks (12-MB capacity). Since they were not large enough, more storage was
provided on a separate computer. This led to two ways of measuring 1/0
overhead:

Warm start-Assuming the data is on the fast, small disks, 1/0 overhead is
the time to load the Illiac IV memory from those disks.

Cold start-Assuming the data is in on the other computer, 1/0 overhead
must include the time to first transfer the data to the Illiac IV fast disks.

Figure 9.37 shows ten applications written for the Illiac IV in 1979. Assuming
warm starts, the supercomputer was busy 78% of the time and waiting for 1/0
22% of the time; assuming cold starts, it was busy 59% of the time and waiting
for 1/0 41 % of the time.

Ex.1035.586DELL

Input/Output

98%

99%

99%

98%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

• CPU % cold start Ill CPU % warm start

555

FIGURE 9.37 Feierback and Stevenson [1979] summarized the important llliac IV
applications and the percentage of time spent computing versus waiting for 1/0. The
arithmetic means of the 10 programs are 78% computing for warm start and 59%
computing for cold start.

Pitfall: Moving functions from the CPU to the 110 processor to improve
peiformance.

There are many examples of this pitfall, although 1/0 processors can enhance
performance. A problem inherent with a family of computers is that the mi
gration of an 1/0 feature usually changes the instruction set architecture or
system architecture in a programmer-visible way, causing all future machines to
have to live with a decision that made sense in the past. If CPUs are improved in
cost/performance more rapidly than the 1/0 processor (and this will likely be the
case) then moving the function may result in a slower machine in the next CPU.

Ex.1035.587DELL

Input/Output 555

0% 10% 20% 80% 40% 50% 60% 70% 80%.90% 100%

CPU %cold start CPU % warm start

FIGURE 9.37 Feierback and Stevenson [1979] summarized the importantIIliac IV
applications and the percentageof time spentcomputing versus waiting for I/O. The
arithmetic meansof the 10 programsare 78% computing for warm start and 59%
computing for cold start.

Pitfall: Moving functions from the CPU to the I/O processor to improve
performance.

There are many examplesof this pitfall, although I/O processors can enhance
performance. A problem inherent with a family of computers is that the mi-
gration of an I/O feature usually changes the instruction set architecture or
system architecture in a programmer-visible way, causing all future machines to
have to live with a decision that made sense in the past. If CPUs are improved in
cost/performance more rapidly than the J/O processor(andthis will likely be the
case) then moving the function may result in a slower machine in the next CPU.

DELL Ex.1035.587

556 9.1 O Fallacies and Pitfalls

The most telling example comes from the IBM 360. It was decided that the
performance of the ISAM system, an early database system, would improve if
some of the record searching occurred in the disk controller itself. A key field
was associated with each record, and the device searched each key as the disk
rotated until it found a match. It would then transfer the desired record. For the
disk to find the key, there had to be an extra gap in the track. This scheme is
applicable to searches through indices as well as data.

The speed a track can be searched is limited by the speed of the disk and of
the number of keys that can be packed on a track. On an IBM 3330 disk the key
is typically 10 characters, but the total gap between records is equivalent to 191
characters if there were a key. (The gap is only 135 characters if there is no key,
since there is no need for an extra gap for the key.) If we assume the data is also
10 characters and the track has nothing else on it, then a 13165-byte track can
contain

13165
191+lO+10 = 62 key-data records

This performance is

16.7 ms (1 revolution)_ 25 /k h
62

- . ms ey searc

In place of this scheme, we could put several key-data pairs in a single block and
have smaller inter-record gaps. Assuming there are 15 key-data pairs per block
and the track has nothing else on it, then

13165 13165 .
135+15*(l0+10) = 135+300 = 30 blocks of key-data parrs

The revised performance is then

16.7 ms (1 revolution) _ 04 /k h
30*15 - . ms ey searc

Yet as CPUs gotfaster, the CPU time for a search was trivial. While the strategy
made early machines faster, programs that use the search-key operation in the
I/0 processor run six times slower on today's machines!

Fallacy: Comparing the price of media versus the price of the packaged
system.

This happens most frequently when new memory technologies are compared to
magnetic disks. For example, comparing the DRAM-chip price to magnetic-disk
packaged price in Figure 9.16 (page 518) suggests the difference is less than a
factor of 10, but its much greater when the price of packaging DRAM is
included. A common mistake with removable media is to compare the media
cost not including the drive to read the media. For example, optical media: costs

Ex.1035.588DELL

Input/Output 557

only $1 per MB in 1990, but including the cost of the optical drive may bring the
price closer to $6 per MB.

Fallacy: The time of an average seek of a disk in a computer system is the
time for a seek of one-third the number of cylinders.

This fallacy comes from confusing the way manufacturers market disks with the
expected performance and with the false assumption that seek time~ are linear in
distance. The 1/3 distance rule of thumb comes from calculating the distance of
a seek from one random location to another random location, not including the
current cylinder and assuming there are a large number of cylinders. In the past,
manufacturers listed the seek of this distance to offer a consistent basis for
comparison. (As mentioned on page 516, today they calculate the "average" by
timing all seeks and dividing by the number.) Assuming (incorrectly) that seek
time is linear in distance, and using the manufacturers reported minimum and
"average" seek times, a common technique to predict seek time is:

T. T' Distance (T' T') 1meseek = 1meminimum + D' * 1meaverage - 1meminimum 1stanceaverage

The fallacy concerning seek time is twofold. First, seek time is not linear
with distance; the arm must accelerate to overcome inertia, reach its maximum
traveling speed, decelerate as it reaches the requested position, and then wait to
allow the arm to stop vibrating (settle time). Moreover, in recent disks
sometimes the arm must pause to control vibrations. Figure 9.38 (page 558)
plots time versus seek distance for an example disk. It also shows the error in
the simple seek-time formula above. For short seeks, the acceleration phase
plays a larger role than the maximum traveling speed, and this phase is typically
modeled as the square root of the distance. Figure 9.39 (page 558) shows
accurate formulas used to model the seek time versus distance for two disks.

The second problem is the average in the product specification would only be
true if there was no locality to disk activity. Fortunately, there is both temporal
and spatial locality (page 403 in Chapter 8): disk blocks get used more than once
and disk blocks near the current cylinder are more likely to be used than those
farther away. For example, Figure 9.40 (page 559) shows sample measurements
of seek distances for two workloads: a UNIX timesharing workload and a
business-processing workload. Notice the high percentage of disk accesses to the
same cylinder, labeled distance 0 in the graphs, in both workloads.

Thus, this fallacy couldn't be more misleading. The Exercises debunk this
fallacy in more detail.

Ex.1035.589DELL

558

IBM3380D
Ran2e for formula

;::: ::;

1 50

51 100

101 500

501 884

9.1 O Fallacies and Pitfalls

14

12

10

Time (ms)

8

6

Formula: T = T min+(DID avg)* (Tavg -T min)
4

2

0 20 40 60 80 100 120 140 160 180 200

Seek distance

FIGURE 9.38 Seek time versus seek distance for the first 200 cylinders. The
lmprimis Sabre 97209 contains 1.2 GB using 1635 cylinders and has the IPl-2 interface
[lmprimis 1989]. This is an 8-inch disk. Note that longer seeks can take less time than
shorter seeks. For example, a 40-cylinder seek takes almost 1 O ms, while a 50-cylinder
seek takes less than 9 ms.

IBM3380J
Formulas Ran2e for formula Formulas

;::: ::;

Distance 1 50 Distance
1.9 +~Distance - 2.48 + ~Distance -

50 20

8.1 + 0.044 * (Distance-50) 51 130 7 .28 + 0.0320 * (Distance-50)

10.3 + 0.025 * (Distance-100) 131 500 10.08 + 0.0166 * (Distance-130)

20.4 + 0.017 * (Distance-500) 501 884 16.00 + 0.0114 * (Distance-500)

FIGURE 9.39 Formulas for seek time in ms for two IBM disks. Thisquen [1988] measured these disks and proposed
these formulas to model them. The two columns on the left show the range of seek distances in cylinders to which each
formula applies. Each disk has 885 cylinders, so the maximum seek is 884.

Ex.1035.590DELL

558 9.10 Fallacies and Pitfalls

Measured
10

Time (ms)

Formula: T= Tmint(D/D avg)* (Tavg —Tmin)

40 60 80 100 120 140

Seek distance

FIGURE 9.38 Seek time versus seek distance for the first 200 cylinders. The
Imprimis Sabre 97209 contains 1.2 GB using 1635 cylinders and hasthe IPI-2 interface
{Imprimis 1989]. This is an 8-inch disk. Note that longer seeks can take less time than
shorter seeks. For example, a 40-cylinder seek takes almost 10 ms, while a 50-cylinder
seek takes less than 9 ms.

IBM 3380D IBM 3380]
Range for formula Formulas Rangefor formula Formulas

2 < , 2 < .

1 ; .

30 1.9 +VDistance — Distance | 30 2.48 + V Distance ~Pstance
51 100 8.1 + 0.044 * (Distance—50) 51 130 7.28 + 0.0320 * (Distance--50)

101 500=:10.3 + 0.025 * (Distance—100) 131 500=:10.08 + 0.0166 * (Distance—130)

501 884 20.4 + 0.017 * (Distance—500) 501 884 16.00 + 0.0114 * (Distance—500)

FIGURE 9.39 Formulas for seek time in ms for two IBM disks. Thisquen [1988] measured these disks and proposed
these formulas to model them. The two columnsonthe left show the range of seek distances in cylinders to which each
formula applies. Each disk has 885 cylinders, so the maximum seekis 884.

DELL Ex.1035.590

195

180

165

150

135

Seek 120

distance 105

90

75

60

45

30

15

0

Input/Output

8% •••llll 23%
24%

0% 10% 20% 30% 40% 50% 60% 70%

Percentage of seeks (UNIX timesharing workload)

Seek
distance

559

208 0%
192 0%
176 0%

160 0%

144

128

112

96

80

64

48

32

16 11%

0 61%

0% 10% 20% 30% 40% 50% 60% 70%

Percentage of seeks (business workload)

FIGURE 9.40 Sample measurements of seek distances for two systems. The left measurements were taken on a
UNIX timesharing system. The right measurements were taken from a business processing application in which the disk
seek activity was scheduled. Seek distance of O means the access was made to the same cylinder. The rest of the
numbers show the collective percentage for distances up between numbers on they axis. For example, 11% for the bar
labeled 16 in the business graph means that the percentage of seeks between 1 and 16 cylinders was 11 %. The UNIX
measurements stopped at 200 cylinders, but this captured 85% of the accesses. The total was 1000 cylinders. The
business measurements tracked all 816 cylinders of the disks. The only seek distances with 1 % or greater of the seeks
that are not in the graph are 224 with 4% and 304, 336, 512, and 624 each having 1 %. This total is 94%, with the
difference being small but nonzero distances in other categories. The measurements are courtesy of Dave Anderson of
lmprimis.

9.11 Concluding Remarks

1/0 systems are judged by the variety of 1/0 devices, the maximum number of
1/0 devices, cost, and performance, measured both in latency and in throughput.
These common goals lead to widely varying schemes, with some relying
extensively on buffering and some avoiding buffering at all costs. If one is
clearly better than the other, it is not obvious today. Perhaps this situation is like
the instruction set debates of the 1980s, and the strengths and weaknesses of the
alternatives will become apparent in the 1990s.

According to Amdahl's Law, ignorance of 1/0 will lead to wasted
performance as CPUs get faster. Disk performance is growing at 4% to 6% per
year, while CPUs are growing at a much faster rate. The future demands for 1/0
include better algorithms, better organizations, and more caching in a struggle to
keep pace.

Ex.1035.591DELL

Input/Output 559

Seek Seek
distance 105 distance

‘ 90
75 |

60

45
30

15

0

0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50% 60% 70%

Percentage of seeks (UNIX timesharing workload) Percentage of seeks (business workload)

FIGURE 9.40 Sample measurements of seek distances for two systems. The left measurements were taken on a
UNIX timesharing system. The right measurements were taken from a business processing application in which the disk
seek activity was scheduled. Seek distance of 0 means the access was madeto the samecylinder. Therest of the
numbers show the collective percentage for distances up between numbers on the y axis. For example, 11%for the bar
labeled 16 in the business graph meansthat the percentage of seeks between 1 and 16 cylinders was 11%. The UNIX
measurements stopped at 200 cylinders, but this captured 85%of the accesses. The total was 1000 cylinders. The
business measurementstrackedall 816 cylinders of the disks. The only seek distances with 1% or greaterofthe seeks
that are not in the graph are 224 with 4% and 304, 336, 512, and 624 each having 1%.Thistotal is 94%, with the
difference being small but nonzero distancesin other categories. The measurements are courtesy of Dave Andersonof
Imprimis.

9.1 1 | Concluding Remarks
I/O systems are judged by the variety of I/O devices, the maximum numberof
I/O devices, cost, and performance, measured both in latency and in throughput.
These common goals lead to widely varying schemes, with some relying
extensively on buffering and some avoiding buffering at all costs. If one is
clearly better than the other, it is not obvious today. Perhapsthis situation is like
the instruction set debates of the 1980s, and the strengths and weaknesses of the
alternatives will become apparentin the 1990s.

According to Amdahl’s Law, ignorance of I/O will lead to wasted
performance as CPUsget faster. Disk performance is growing at 4% to 6% per
year, while CPUs are growing at a muchfaster rate. The future demandsfor I/O
include better algorithms, better organizations, and more caching in a struggle to
keep pace.

DELL Ex.1035.591

560 9.12 Historical Perspective and References

9.1 2 I Historical Perspective and References

The forerunner of today's workstations was the Alto developed at Xerox Palo
Alto Research Center in 1974 [Thacker et al. 1982]. This machine reversed
traditional wisdom, making instruction set interpretation take back seat to .the
display: the display used half the memory bandwidth of the Alto. In addition to
the bit-mapped display, this historic machine had the first Ethernet [Metcalfe
and Boggs 1976] and the first laser printer. It also had a mouse, invented earlier
by Doug Engelhart of SRI, and a removable cartridge disk. The 16-bit CPU
implemented an instruction set similar to the Data General Nova and· offered
writable control store (see Chapter 5, Section 5.8). In fact, a single micropro
grammable engine drove the graphics display, mouse, disks, network, and, when
there was nothing else to do, interpreted the instruction set.

The attraction of a personal computer is that you don't have to share it with
anyone. This means response time is predictable, unlike timesharing systems.
Early experiments in the importance of fast response time were performed by
Doherty and Kelisky [1979]. They showed that if computer-system response
time increased a second that user think time did also. Thadhani [1981] showed a
jump in productivity as computer response times dropped to a second and
another jump as they dropped to a half-second. His results inspired a flock of
studies, and they supported his observations [IBM 1982]. In fact, some studies
were started to disprove his results! Brady [1986] proposed differentiating entry
time from think time (since entry time was becoming significant when the two
were lumped together) and provided a cognitive model to explain the more than
linear relationship between computer response time and user think time.

The ubiquitous microprocessor has inspired not only personal computers in
the 1970s, but the current trend to moving controller functions into 1/0 devices
in the late 1980s and 1990s. For example, microcoded routines in a central CPU
made sense for the Alto in 1975, but technological changes soon made separate
microprogrammable controller 1/0 devices economical. These were then
replaced by the application-specific integrated circuits. 1/0 devices continued
this trend by moving controllers into the devices themselves. These are called
intelligent devices, and some bus standards (e.g., IPI and SCSI) have been
created just for these devices. Intelligent devices can relax the timing constraints
by handling many of the low-level tasks and queuing the results. For example,
many SCSI-compatible disk drives include a track buffer on the disk itself,
supporting read ahead and connect/disconnect. Thus, on a SCSI string some
disks can be seeking and others loading their track buffer while one is
transferring data from its buffer over the SCSI bus.

Speaking of buses, the first multivendor bus may have been the PDP-11
Unibus in 1970. DEC encouraged other companies to build devices that would
plug into their bus, and many companies did. A more recent example is SCSI,

Ex.1035.592DELL

Input/Output 561

which stands for small computer systems interface. This bus, originally called
SASI, was invented by Shugart and was later standardized by the IEEE.
Sometimes buses are developed in academia; the NuBus was developed by Steve
Ward and his colleagues at MIT and used by several companies. Alas, this open
door policy on buses is in contrast to companies with proprietary buses using
patented interfaces, thereby preventing competition from plug-compatible
vendors. This practice also raises costs and lowers availability of 1/0 devices
that plug into proprietary buses, since such devices must have an interface
designed just for thatbus. Levy [1978] has a nice survey on issues in buses.

We must also give a few references to specific 1/0 devices. Readers
- interested in the ARPANET should see Kahn [1972]. As mentioned in one of
the section quotes, the father of computer graphics is Ivan Sutherland, who
received the ACM Turing Award in 1988. Sutherland's Sketchpad system
[1963] set the standard for today's interfaces and displays. See Foley and Van
Dam [1982] and Newman and Sproull [1979] for more on computer graphics.
Scranton, Thompson, and Hunter [1983] were among the first to report the
myths concerning seek times and distances for magnetic disks.

Comments on the future of disks can be found in several sources. Goldstein
[1987] projects the capacity. and 1/0 rates for IBM mainframe installations in
1995, suggesting that the ratio is no less than 3.7 GB per IBM mainframe MIPS
today, and that will grow to 4.5 GB per MIPS in 1995. Frank [1987] speculated
on the physical recording density, proposing the MAD formula on disk growth
that we used in Section 9.4. Katz, Patterson, and Gibson [1990] survey current
high-performance disks and 1/0 systems and speculate about future systems. The
possibility of achieving higher-performance 1/0 systems using collections of
disks is found in papers by Kim [1986], Salem _and Garcia-Molina [1986], and
Patterson, Gibson, and Katz [1987].

Looking backward rather than forward, the first machine to extend interrupts
from detecting arithmetic abnormalities to detecting asynchronous 1/0 events is
credited as the NBS DYSEAC in 1954 [Leiner and Alexander 1954]. The
following year the first machine with DMA was operational, the IBM SAGE.
Just as today's DMA, the SAGE had address counters that performed block
transfers in parallel with CPU operations. The first 1/0 channel may have been
on the IBM 709 in 1957 [Bashe et al. 1981 and 1986]. Smotherman [1989]
explores the history of 1/0 in more depth.

References

ANON ET AL. [1985]. "A measure of transaction processing power," Tandem Tech. Rep. TR 85.2.
Also appeared in Datamation, Aprill, 1985.

BASHE, C. J., W. BUCHHOLZ, G .V. HAWKINS, J .L. INGRAM, AND N. ROCHESTER [1981]. "The
architecture of IBM's early computers," IBM J. of Research and Development 25:5 (September)
363-375.

Ex.1035.593DELL

562 9.12 Historical Perspective and References

BASHE, C. J., L. R. JOHNSON, J. H. PALMER, AND E.W. PUGH [1986]. IBM's Early Computers,
MIT Press, Cambridge, Mass.

BORRILL, P. L. [1986]. "32-bit buses-An objective comparison," Proc. Buscon 1986 West, San Jose,
Calif., 138-145.

BRADY, J. T. [1986]. "A theory of productivity in the creative process," IEEE CG&A (May) 25-34.

BUCHER, I. V. ANDA. H. HAYES [1980]. "1/0 Performance measurement on Cray-1 and CDC 7000
computers," Proc. Computer Performance Evaluation Users Group, 16th Meeting, NBS 500-65,
245-254.

CHEN, P. [1989]. An Evaluation of Redundant Arrays of Inexpensive Disks Using an Amdahl 5890,
M. S. Thesis, Computer Science Division, Tech. Rep. UCB/CSD 89/506.

DOHERTY, W. J. AND R. P. KELISKY [1979]. "Managing VM/CMS systems for user effectiveness,"
IBM Systems]. 18:1, 143-166.

FEIERBACK, G AND D. STEVENSON [1979]. "The Illiac-IV," in Infotech State of the Art Report on
Supercomptuers, Maidenhead, England. This data also appears in D. P. Siewiorek, C. G. Bell, and
A. Newell, Computer Structures: Principles and Examples (1982), McGraw-Hill, New York, 268-
269.

FOLEY, J. D. AND A. VAN DAM [1982]. Fundamentals of Interactive Computer Graphics, Addison
Wesley, Reading, Mass.

FRANK, P. D. [1987]. "Advances in Head Technology," presentation at Challenges in Winchester
Technology (December 15), Santa Clara Univ.

FRIESENBORG, S. E. AND R. J. WICKS [1985]. "DASD expectations: The 3380, 3380-23, and
MVS(XA," Tech. Bulletin GG22-9363-02 (July 10), Washington Systems Center.

GOLDSTEIN, S. [1987]. "Storage performance-an eight year outlook," Tech. Rep. TR 03.308-1
(October), Santa Te.resa Laboratory, IBM, San Jose, Calif.

HENLY, M. AND B. MCNUTT [1989]. "DASD 1/0 characteristics: A comparison of MVS to VM,"
Tech. Rep. TR 02.1550 (May), IBM, General Products Division, San Jose, Calif.

HOWARD, J. H. ET AL. [1988]. "Scale and performance in a distributed file system," ACM Trans. on
Computer Systems 6:1, 51-81.

IBM [1982]. The Economic Value of Rapid Response Time, GE20-0752-0 White Plains, N.Y., 11-
82.

IMPRIMIS [1989]. "Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2
GB," Document No. 64402302 (May).

KAHN, R. E. [1972]. "Resource-sharing computer communication networks," Proc. IEEE 60:11
(November) 1397-1407.

KATZ, R.H., D. A. PATTERSON, AND G. A. GIBSON [1990]. "Disk system architectures for high
performance computing," Proc. IEEE 78:2 (February).

KIM, M. Y. [1986]. "Synchronized disk interleaving," IEEE Trans. on Computers C-35:11
(November).

LEINER, A. L. [1954]. "System specifications for the DYSEAC," J. ACM 1:2 (April) 57-81.

LEINER, A. L. ANDS. N. ALEXANDER [1954]. "System organization of the DYSEAC," IRE Trans.
of Electronic Computers EC-3:1(March)1-10.

LEVY, J. V. [1978]. "Buses: The skeleton of computer structures," in Computer Engineering: A DEC
View of Hardware Systems Design, C. G. Bell, J.C. Mudge, and J.E. McNamara, eds., Digital
Press, Bedford, Mass.

MABERLY, N. C. [1966]. Mastering Speed Reading, New American Library, Inc., New York.

METCALFE, R. M. AND D.R. BOGGS [1976]. "Ethernet: Distributed packet switching for local
computer networks," Comm. ACM 19:7 (July) 395-404.

Ex.1035.594DELL

Input/Output 563

NEWMAN, W. N. AND R. F. SPROULL [1979]. Principles of Interactive Computer Graphics, 2nd
ed., McGraw-Hill, New York.

OUSTERHOUT, J~ K. ET AL. [1985]. "A trace-driven analysis of the UNIX 4.2 BSD file system,"
Proc. Tenth ACM Symposium on Operating Systems Principles, Orcas Island, Wash., 15-24.

PATTERSON, D. A., G. A. GIBSON, AND R.H. KATZ [1987]. "A case for redundant arrays of
inexpensive disks (RAID)," Tech. Rep. UCB/CSD 87 /391, Univ. of Calif. Also appeared in ACM
SIGMOD Conj. Proc., Chicago, Illinois, June 1-3, 1988, 109-116.

ROBINSON, B. AND L. BLOUNT [1986]. "The VM!HPO 3880-23 performance results," IBM Tech.
Bulletin, GG66-0247-00 (April), Washington Systems Center, Gathersburg, Md.

SALEM, K. AND H. GARCIA-MOLINA [1986]. "Disk striping," IEEE I986 Int'! Conj. on Data
Engineering.

SCRANTON, R. A., D. A. THOMPSON, AND D. W. HUNTER [1983]. "The access time myth," Tech.
Rep. RC 10197 (45223) (September21), IBM, Yorktown Heights, N.Y.

SMITH, A. J. [1985]. "Disk cache-miss ratio analysis and design considerations," ACM Trans. on
Computer Systems 3:3 (August) 161-203.

SMOTHERMAN, M. [1989]. "A sequencing-based taxonomy ofl/0 systems and review of historical
machines," Computer Architecture News 17:5 (September) 5-15.

SUTHERLAND, I.E. [1963]. "Sketchpad: A man-machine graphical communication system," Spring
Joint Computer Conj. 329.

THACKER, C. P., E. M. MCCREIGHT, B. W. LAMPSON, R. F. SPROULL, AND D.R. BOGGS [1982].
"Alto: A personal computer," in Computer Structures: Principles and Examples, D. P. Siewiorek,
C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549-572.

THADHANI, A. J. [1981]. "Interactive user productivity," IBM Systems J. 20:4, 407--423.

THISQUEN, J. [1988]. "Seek time measurements," Amdahl Peripheral Products Division Tech. Rep.
(May).

EXERCISES

9.1 <9.10> [10/25/10] Using theformulas in Figure 9.39 (page 558):

a. [10] Calculate the seek time for moving the arm one-third of the cylinders for both
disks.

b. [25] Write a program to calculate the "average" seek time by estimating the time for
all possible seeks using these formulas and then dividing by the number of seeks.

c. [10] How close does (a) approximate (b)?

9.2 <9.10> [15/20] Using the formulas in Figure 9.39 (page 558) and the statistics in
Figure 9.40 (page 559), calculate the average seek distance and the average seek time on
the IBM 3380J. Use the midpoint of a range as the seek distance. For example, use 98 as
the seek distance for the entry representing 91-105 in Figure 9.40. For the business
workload, just ignore the missing 5% of the seeks. For the UNIX workload, assume the
missing 15% of the seeks have an average distance of 300 cylinders.

a. [15] If you were misled by the fallacy, you might calculate the average distance as
884/3. What is the measured distance for each workload?

Ex.1035.595DELL

564 Exercises

b. [20] The time to seek 884/3 cylinders on the IBM 3380J is about 12.8 ms. What is
the average seek time for each workload on the IBM 3380J using the measurements?

9.3 <1.4,8.4,9.4> [20/10/Discussion] Assume the improvements in density of DRAMs
and magnetic disks continue as predicted in Figure 1.5 (page 17). Assuming that the
improvement in cost per megabyte tracks the density improvements and that 1990 is the
start of the 4-megabit DRAM generation, when will the cost per megabyte of DRAM
equal the cost per megabyte of magnetic disk given:

• The cost difference in 1990 is that DRAM is 10 times more expensive.

• The cost difference in 1990 is that DRAM is 30 times more expensive.

a. [20] Which generation of DRAM chip-measured in bits per chip-will reach equity
for each cost difference assumption? What year will that occur?

b. [10] What will be the difference in cost in the previous generation?

c. [Discussion] Do you think the cost difference in the previous generation is sufficient
to prevent disks being replaced by DRAMs?

9.4 <9.2> [12/12/12] Assume a workload takes 100 seconds total, with the CPU taking
70 seconds and I/O taking 50 seconds.

a. [12] Assume that the floating-point unit is responsible for 25 seconds of the CPU
time. You are considering a floating-point accelerator that goes five times faster.
What is the time of the workload for maximum overlap, scaled overlap, and no
overlap? '

b. [12] Assume that seek and rotational delay of magnetic disks are responsible for 10
seconds of the I/0 time. You are considering replacing the magnetic disks with solid
state disks that will remove all the seek and rotational delay. What is the time of the
workload for maximum overlap, scaled overlap, and no overlap?

c. [12] What is the time of the workload for scaled overlap if you make both changes?

9.5-9.9 Transaction-processing performance. The I/0 bus and memory system of a
computer are capable of sustaining 100 MB/sec without interfering with the performance
of an 80-MIPS CPU (costing $50,000). Here are the assumptions about the software:

• Each transaction requires 2 disk reads plus 2 disk writes.

• The operating system uses 15,000 instructions for each disk read or write.

• The database software executes 40,000 instructions to process a transaction.

• The transfer size is 100 bytes.

You have a choice of two different types of disks:

• A 2.5-inch disk that stores 100 MB and costs $500.

• A 3.5-inch disk that stores 250 MB and costs $1250.

• Either disk in the system can support on average 30 disk reads or writes per second.

Ex.1035.596DELL

Input/Output 565

Answer the questions below using the TP-1 benchmark in Section 9.3. Assume that
the requests are spread evenly to all the disks, that there is no waiting time due to busy
disks, and that the account file must be large enough to handle 1000 TPS according to the
benchmark ground rules.

9.5 <9.3,9.4> [20] How many TP-1 transactions per second are possible with each disk
organization, assuming that each uses the minimum number of disks to hold the account
file?

9.6 <9.3,9.4> [15] What is the system cost per transaction per second of each alternative
for TP-1?

9.7 <9.3,9.4> [15] How fast a CPU makes the 100 MB/sec I/0 bus a bottleneck for TP-
1? (Assume that you can continue to add disks.)

9.8 <9.3,9.4> [15] As manager of MTP (Mega TP), you are deciding whether to spend
your development money building a faster CPU or improve the performance of the
software. The database group says they can reduce a transaction to 1 disk read and 1 disk
write and cut the database instructions per transaction to 30,000. The hardware group can
build a faster CPU that sells for the same amount of the slower CPU with the same
development budget. (Assume you can add as many disks as needed to get higher
performance.) How much faster does the CPU have to be to match the performance gain
of the software improvement?

9.9 <9.3,9.4> [15/15] The MTP I/0 group was listening at the door during the software
presentation. They argue that advancing technology will allow CPUs to get faster without
significant investment, but that the cost of the system will be dominated by disks if they
don't develop new faster 2.5-inch disks. Assume the next CPU is 100% faster at the same
cost and that the new disks have the same capacity as the old ones.

a. [15] Given the new CPU and the old software, what will be the cost of a system with
enough old 2.5-inch disks so_thatthey do not limit the.TPS of the system ?

b. [15] Now assume you have as many new di.sks as you had old 2.5 inch disks in the
original design. How fast must the new disks be (I/Os per second) to achieve the
same TPS rate with the new CPU as the system in part a? What will the system cost?

9.10 <9.4> [20/20/20] Assume that we have the following two magnetic-disk
configurations: a single disk and an array of four disks. Each disk has 20 surfaces, 885
tracks per surface with 16 sectors/track, each sector holds lK bytes, and it revolves at
3600 RPM. Using the seek-time formula, for the IBM 33800 in Figure 9.39 (page 558).
The time to switch between surfaces is the same as to move the arm one track. In the disk
array all the spindles are synchronized-sector 0 in every disk rotates under the head at
the exact same time-and the arms on all four disks are always over the same track. The
data is "striped" across all 4 disks, so four consecutive sectors on a single disk system
will be spread one sector per disk in the array. The delay of the disk controller is 2 ms per
transaction, either for a single disk or for the array. Assume the performance of the I/0
system is limited only by the disks and that there is a path to each disk in the artay.

Ex.1035.597DELL

566 Exercises

Compare the performance in both I/Os per second and megabytes per second of these two
disk organizations assuming the following request patterns:

a. [20] Random reads of 4 KB of sequential sectors. Assume the 4 KB are aligned
under the same arm on each disk in the array.

b. [20] Reads of 4 KB of sequential sectors where the average seek distance is 10 tracks.
Assume the 4 KB are aligned under the same arm on each disk in the array.

c. [20] Random reads of 1 MB of sequential sectors. (If it matters, assume the disk
controller allows the sectors to arrive in any order.)

9.11 [20] <9.4> Assume that we have one disk defined as in Exercise 9.9. Assume that
we read the next sector after any read and that all read requests are one sector in length.
We store the extra sectors that were read ahead in a disk cache. Assume that the
probability of receiving a request for the sector we read ahead at some time in the future
(before it must be discarded because the disk-cache buffer fills) is 0.1. Assume that we
must still pay the controller overhead on a disk-cache read hit, and the transfer time for
the disk cache is 250 ns per word. Is the read-ahead strategy faster? (Hint: Solve the
problem in the steady state by assuming that the disk cache contains the appropriate
information and a request has just missed.)

9.12-9.14 Assume the following information about our DLX machine:

Loads 2 cycles

Stores 2 cycles

All other instructions are 1 cycle. Use the summary instruction mix information in Figure
C.4 in Appendix C on DLX for GCC.

Here are the cache statistics for a write-through cache:

• Each cache block is four words, and the whole block is read on any miss.

• Cache miss takes 13 cycles.

• Write through takes 6 cycles to complete, and there is no write buffer.

Here are the cache statistics for a write-back cache:

•
•
•

Each cache block is four words, and the whole block is read on any miss .

Cache miss takes 13 cycles for a clean block and 21 cycles for a dirty block .

Assume that on a miss, 30% of the time the block is dirty .

Assume that the bus

• is only busy during transfers,

• transfers on average 1 word I clock cycle, and

• must read or write a single word at a time (it is not faster to read or write two at
once).

Ex.1035.598DELL

lnpuVOutput 567

9.12 [20/10/20/20] <9.4,9.5,9.6> Assume that DMA I/O can take place simultaneously
with CPU cache hits. Also assume that the operating system can guarantee that there will
be no stale-data problem in the cache due to I/O. The sector size is 1 KB.

a. [20] Assume the cache miss rate is 5%. On the average, what percentage of the bus is
used for each cache write policy? This measured is called the traffic ratio in cache
studies.

b. [10] If the bus can be loaded up to 80% of capacity without suffering severe
performance penalties, how much memory bandwidth is available for I/O for each
cache write policy? The cache miss rate is still 5%.

c. [20] Assume that a disk sector read takes 1000 clock cycles to initiate a read, 100,000
clock cycles to find the data on the disk, and 1000 clock cycles for the DMA to
transfer the data to memory. How many disk reads can occur per million instructions
executed for each write policy? How does this change if the cache miss rate is cut in
half?

d. [20] Now you can have any number of disks. Assuming ideal scheduling of disk
accesses, what is the maximum number of sector reads that can occur per million
instructions executed?

9.13 [20/20] <9.4,9.5> Most machines today have a separate frame buffer to update the
screen to avoid slowing down the memory system. An interesting issue.is the percentage
of the memory bandwidth that would be used if there were no frame buffer. Assume that
all accesses to the memory are the size of a full cache block and they all take the time of a
cache miss. The refresh rate is 60 Hz. Using the information in Section 9.4, calculate the
memory traffic for the following graphics devices:

I. A 340 by 540 black-and-white display.

2. A 1280 by 1024 color display with 24 bits of color.

3. A 1280 by 1024 color display using a 256-word cqlor map.

Assume the clock rate of the CPU is 60 MHz.

a. [20] What percentage of the memory/bus bandwidth do each of the three displays
consume?

b. [20] Suppose instead of the bus and main memory being 32 bits wide that both are
512 bits wide. How long should a memory access take now using the wider bus?
What percentage of memory bandwidth is now used by each display?

9.14 [20] <9.4,9.9> The IBM 3990 I/O Subsystem storage director can have a large cache
for reads and writes. Assume the cache costs the same as four 3380D disks. What hit rate
must the cache achieve to get the same performance as four more 3380D disks? (See
Figure 9.15 (page 517) for 3380 performance.) Assume the cache could support 5000 I/Os
per second if everything hit the cache.

9.15 [50] <9.3, 9.4> Take your favorite computer and write three programs that achieve
the following:

1. Maximum bandwidth to and from disks

Ex.1035.599DELL

568 Exercises

2. Maximum bandwidth to a frame buffer

3. Maximum bandwidth to and from the local area network

What is the percentage of the bandwidth that you achieve compared to what the I/0
device manufacturer claims? Also record CPU utilization in each case for the programs
running separately. Next run all three together and see what percentage of maximum
bandwidth you achieve for three I/0 devices as well as the CPU utilization. Try to
determine why one gets a larger percentage than the others.

9.16 [40] <9.2> The system speedup formulas are limited to one or two types of devices.
Derive simple to use formulas for unlimited numbers of devices, using as many different
assumptions on overlap that you can handle.

9.17 [Discussion] <9.2> What are arguments for predicting system performance using
maximum overlap, scaled overlap, and nonoverlap? Construct scenarios where each one
seems most likely and other scenarios where each interpretation is nonsensical.

9.18 [Discussion] <9.11> What are the advantages and disadvantages of a minimal buffer
I/0 system like that used by IBM versus a maximal buffer I/0 system on I/0 system
cost/performance?

Ex.1035.600DELL

Ex.1035.601DELLDELL Ex.1035.601

The turning away from the conventional organization came in
the middle 1960' s, when the law of diminishing returns began
to take effect in the effort to increase the operational speed of
a computer Electronic circuits are ultimately limited in
their speed of operation by the speed of light ... and many of
the circuits were already operating in the nanosecond range.

Bouknight et al. [1972]

... sequential computers are approaching a fundamental
physical limit on their potential computational power. Such a
limit is the speed of light ...

A. L. DeCegama, The Technology of Parallel Processing,
Volume I (1989)

... today's machines ... are nearing an impasse as technol
ogies approach the speed of light. Even if the components of
a sequential processor could be made to work this fast, the
best that could be expected is no more than a few million
instructions per second.

Mitchell [1989]

10.1 Introduction 571

10.2 Flynn Classification of Computers 572

10.3 SIMD Computers-Single Instruction
Stream, Multiple Data Streams 572

10.4 MIMD Computers-Multiple Instruction

Streams, Multiple Data Streams 574

10.5· The Roads to El Dorado 576

10.6 Special-Purpose Processors 580

10.7 Future Directions for Compilers 581

10.8 Putting It All Together: The Sequent Symmetry
Multiprocessor 582

10.9 Fallacies and Pitfalls 585

10.10 Concluding Remarks-Evolution Versus
Revolution in Computer Architecture 587

10.11 Historical Perspective and References 588

Exercises 592

Ex.1035.602DELL

10.1

Future Dire_ctions

Introduction

In the first nine chapters we limited ourselves to ideas that have proven
themselves in the marketplace. Yet the principles of these chapters can be found
in the first paper on stored-program computers. The quotes on the facing page
suggest that the days of the traditional computer are numbered. For a dated
model of computation it has surely demonstrated its viability! Today it is
improving in performance faster than at any time in its history, and the
improvement in cost and performance since 1950 has been five orders of
magnitude. Had the transportation industry kept pace with these advances, we
could travel from San Francisco to New York in one minute for one dollar!

In this last chapter we abandon our conservative perspective and speculate
about the future of computer architecture and compilers. The goal of innovative
designs is dramatic improvements in cost/performance, or highly scalable
performance with good cost/performance. Many of the ideas covered here have
led to machines that are beginning to compete in the computer marketplace
today. Some of them may not be around for the next edition of this book, while
others may need their own chapters.

Ex.1035.603DELL

O Future Directions

10.1 | Introduction
In the first nine chapters we limited ourselves to ideas that have proven
themselves in the marketplace. Yet the principles of these chapters can be found
in the first paper on stored-program computers. The quotes on the facing page
suggest that the days of the traditional computer are numbered. For a dated
model of computation it has surely demonstrated its viability! Today it is
improving in performance faster than at any time in its history, and the
improvement in cost and performance since 1950 has been five orders of
magnitude. Had the transportation industry kept pace with these advances, we
could travel from San Francisco to New York in one minute for one dollar!

In this last chapter we abandon our conservative perspective and speculate
about the future of computer architecture and compilers. The goal of innovative
designs is dramatic improvements in cost/performance, or highly scalable
performance with good cost/performance. Manyof the ideas covered here have
led to machines that are beginning to compete in the computer marketplace
today. Some of them may not be around for the next edition of this book, while
others may need their own chapters.

DELL Ex.1035.603

572 10.2 Flynn Classification of Computers

10.2 I Flynn Classification of Computers

Flynn [1966] proposed a simple model of categorizing all computers. He looked
at the parallelism in the instruction and data streams called for by the
instructions at the most constrained component of the machine, and placed all
computers in one of four categories:

1. Single instruction stream, single data stream (SISD, the uniprocessor)

2. Single instruction stream, multiple data streams (SIMD)

3. Multiple instruction streams, single data stream (MISD)

4. Multiple instruction streams, multiple data streams (MIMD)

This is a coarse model, as some machines are hybrids of these categories. Yet in
this chapter we stick with this classic model because it is simple, easy to
understand, gives a good first approximation, and-perhaps because of ease of
understanding-is also the most widely used scheme.

Your first question about the model should be, "Single or multiple compared
to what?" A machine that can add a 32-bit number in one clock cycle would
seem to have multiple data streams when compared to a bit-serial computer that
takes 32 clock cycles for the same operation. Flynn chose popular computers of
that day, the IBM 704 and IBM 7090, as the model of SISD, although today any
of the machines in Chapter 4 would serve as the example.

Having thus established the reference point for SISD, the next class is SIMD.

1 0.3 I SIMD Computers-Single Instruction Stream,
Multiple Data Streams

The cost of a general multiprocessor is, however, very high and further design
options were considered which would decrease the cost without seriously
degrading the power or efficiency of the system. The options consist of
recentralizing one of the three major components Centralizing the [control
unit] gives rise to the basic organization of [an]. .. array processor such as the
Illiac IV.

Bouknight et al. [1972)

We have already seen typical instructions for a SIMD machine, yet the machine
is not SIMD. The vector instructions of Chapter 7 operate on several data
elements within a single instruction, executing in pipelined fashion in a single
functional unit. Unlike SIMD, many functional units are not being invoked by a
single instruction. A true SIMD would have, say, 64 data streams simultaneously
going to 64 ALUs to form 64 sums within the same clock cycle.

Ex.1035.604DELL

Future Directions. 573

The virtues of SIMD are that all the parallel execution units are synchronized
and that they all respond to a single instruction from a single PC. From a
programmer's perspective, this is close to the already familiar SISD. The
original motivation for SIMD was to amortize the cost of the control unit over
dozens of execution units. A more recently observed advantage is the reduced
size of program memory-SIMD needs only one copy of the code being
simultaneously executed, while MIMD needs a copy in every processor. Hence,
the cost of program memory for a large number of execution units is less for
SIMD.

Like vector machines, real SIMD computers have a mixture of SISD and
SIMD instructions. There is a SISD host computer to perform operations such as
branches or address calculation that do not need massive parallelism. The SIMD
instructions are broadcast to all the execution units, each of which has its own
set of registers. Also, as in vector machines, individual execution units can be
disabled during a SIMD instruction. Unlike vector machines, massively parallel
SIMD machines rely on interconnection or communication networks to
exchange data between processing elements.

SIMD works best when vector instructions work best-in dealing with arrays
in for-loops. Hence, to have the opportunity for massive parallelism in SIMD
there must be massive amounts of data, or data parallelism. SIMD is at its
weakest in case statements, where each execution unit must perform a different
operation on its data, depending on what data it has. The execution units with the

. wrong data are disabled so that the proper units can continue. Such situations
essentially run at l/nth performance, where n is the number of cases.

The basic tradeoff in SIMD machines is performance of a processor versus
number of processors. The machines in the marketplace today emphasize a large
degree of parallelism over performance of the individual processors. The.
Connection Machine 2, for example, offers 65,536 single bit-wide processors
while the ILLIAC IV had 64 64-bit processors.

While MISD fills out Flynn's classification, it is difficult to envision. A
single instruction stream is simpler than multiple instruction streams, but
multiple instruction streams with multiple data str~ams are easier to imagine
than multiple instructions with a single data stream. A few of the architectures
we have covered might be considered MISD: superscalar and VLIW
architectures of Chapter 6 (Section 6.8) often have a single data stream and
multiple instructions, although these machines have a single program counter.
Perhaps closer to the mark are the decoupled architectures (pages 321-322),
which have two instruction streams with independent program counters and a
single data stream. Systolic architectures, covered in Section 10.6, might also be
considered MISD.

While we can find examples of SIMD and MISD, their number is dwarfed by
the multitude of MIMD machines.

Ex.1035.605DELL

574

10.4

10.4 MIMD Computers-Multiple Instruction Streams, Multiple Data Streams

MIMD Computers-Multiple Instruction
Streams, Multiple Data Streams

Multis are a new class of computers based on multiple microprocessors. The
small size, low cost, and high performance of microprocessors allow design and
construction of computer structures that offer significant advantages in
manufacture, price-performance ratio, and reliability over traditional computer
families Multis are likely to be the basis for the next, the fifth, generation of
computers.

Bell D985, 463]

Practically since the first working computer, architects have been striving for the
El Dorado of computer design: To compose a powerful computer by simply
connecting many existing smaller ones. The user orders as many CPUs as he can
afford and gets a commensurate amount of performance. Other advantages of
MIMD may be highest absolute performance, faster than the largest uniproces
sor, and highest reliability/availability (page 520) via redundancy.

For decades, computer designers have been looking for the missing piece of
the puzzle that allows this speedup to happen, as if by magic. People are heard
making statements that begin "Now that computers have dropped to such a low
price ... " or "This new interconnection scheme will overcome the scaling prob
lem, so ... " or "As this new programming language becomes widespread ... ," and
end with "MIMDs will (finally) dominate computing."

With so many attempts to use parallelism, there are a few terms that are
useful to know when discussing MIMDs. The principal division is that which
delineates how information is shared. Shared-memory processors offer the
programmer a single memory address that all processors can access; cache
coherent multiprocessors are shared-memory machines (see Sections 8.8 and
10.8). Processes communicate through shared variables in memory, with loads
and stores capable of accessing any memory location. Synchronization must be
available to coordinate processes. An alternative model to sharing data is where
processes communicate by sending messages. As an extreme example, processes
on different workstations communicate by sending messages over a local area
network. This communication distinction is so fundamental that Bell suggests
the term multiprocessor be limited to MIMDs that can communicate via shared
memory, while MIMDs that can only communicate via explicit message passing
should be called multicomputers. Since a portion of a shared memory could be
used for messages, most multiprocessors can efficiently execute message
passing software. A multicomputer might be able to simulate shared memory by
sending a message for every load or store, but presumably this would run
excruciatingly slowly. Thus, Bell's distinction is based on the underlying
hardware and program execution model, reflected in the performance of shared
memory communication, as opposed to the software that might run on a mach
ine. Message-passing docents question the scalability of multiprocessors, while

Ex.1035.606DELL

Future Directions 575

shared-memory advocates question the programmability of multicomputers. The
next section examines this debate further.

The good news is that after many assaults, MIMD has established a
beachhead. Today it is generally agreed that a multiprocessor may be more
effective for a timesharing workload than a SISD. No single program takes less
CPU time, but more independent tasks can be completed per hour-a throughput
versus latency argument. Not only are start-up companies like Encore and
Sequent selling small-scale multiprocessors •. but the high-end machines from
IBM, DEC, and Cray Research are multiprocessors. This means multiprocessors
now embody a significant market, responsible for a majority of the mainframes
and virtually all supercomputers. The only disappointment to computer archi
tects is that shared memory is practically irrelevant for user programs run on the
machine, with the operating system being the only benefactor. The development
of a multiprocessor~s operating system, particularly its resource manager, is
simplified by shared memory.

The bad news is that it remains to be seen how many important applications
run faster on MIMDs. The difficulty has not lain in the prices of SISDs, in flaws
in topologies of interconnection networks, or in programming languages; but in
the lack of applications software that have been reprogrammed to take advantage
of many processors to complete important tasks sooner. Since it has been even
harder to find applications that can take advantage of many processors, the
challenge is greater for large scale MIMDs. When the positive gains from
timesharing are combined with the scarcity of highly parallel applications, we
can appreciate the predicament fa~ing computer architects designing large-scale
MIMDs that do not support time~haring.

But why is this so? Why should it be so much harder to develop MIMD
programs than sequential programs? One reason is that it is hard to write MIMD
programs that achieve close to linear speedup as the number of processors
dedicated to the task increases. As an analogy, think of the communication
overhead for a task done by one person versus the overhead for a task done by a
committee, especially as the size of the group increases. While n people may
have the potential to finish any task n times faster, the communication overhead
for the group can prevent it from achieving this; this becomes especially hard as
n increases. (Imagine the change in communication overhead going from 10
people to 1,000 people to 1,000,000.) Another reason for the difficulty in writing
parallel programs is how much the programmer must know about the hardware.
On a uniprocessor, the high-level language programmer writes his program
ignoring the underlying machine organization-that's the job of the compiler.
For a multiprocessor today, the programmer had better know the underlying
hardware and organization if he is to write fast and. scalable programs. This
intimacy also makes portable parallel programs rate. Though this second
obstacle may lessen over time, it is now the biggest challenge facing computer
science. Finally, from Chapter 1 comes Amdahl's Law (page 8) to remind us
that even small parts of a program must be parallelized to reach the full

Ex.1035.607DELL

576

Example

Answer

10.s I

10.4 MIMD Computers-Multiple Instruction Streams, Multiple Data Streams

potential. Thus, coming close to linear speedup involves inventing new
algorithms that are inherently parallel.

Suppose you want to achieve linear speedup with 100 processors. What fraction
of the original computation can be sequential?

Amdahl's Law is

1
Speedup =

. Fractionenhanced
(l-Fract1onenhanced) + S d

pee UPenhanced

Substituting for the goal of linear speedup with 100 processors gives:

100 = 1
.

. Fractionenhanced
(1-Fractlonenhanced) + 100

Solving for percentage converted to enhanced mode:

100 - 100 * Fractionenhanced + 1 * Fractionenhanced = 1

-99 * Fractionenhanced = -99

Fractionenhanced = 1

Thus, to achieve linear speedup with 100 processors, none of the original
computation can be sequential. Put another way, to get a speedup of 99 from 100
processors means the sequential fraction of the original program had to be about
0.0001.

The example above demonstrates the need for new algorithms. This
underlines the authors' belief that major successes in using large-scale parallel
machines of the 1990s are possible for those who understand applications,
algorithms, and architecture.

The Roads to El Dorado

Figure 10.1 shows the state of the industry, plotting number of processors
versus performance of an individual processor. The massive parallelism question
is whether taking the high road or the low road in Figure 10.1 will get us to El
Dorado. Currently we don't know enough about parallel programming and
applications to be able to quantitatively trade-off number of processors versus
performance per processor to achieve the best cost/performance.

Ex.1035.608DELL

Future Directions

1000000

Number of
processors

1000

1

.001

577

1000

Performance per processor (MFLOPS)

FIGURE 10.1 Danny Hillis, architect of the Connection Machines, has used a figure
similar to this to illustrate the multiprocessor industry. (Hillis's x axis was processor
width rather than processor performance.) Processor performance on this graph is
approximated by the MFLOPS rating of a single processor for the DAXPY procedure of
the Unpack benchmark for a 1000 x 1000 matrix. Generally, it is easier tor programmers
when moving to the right , while moving up is easier tor the hardware designer because
there is more hardware replication. The massive parallelism question is, "Which is the
quickest path to the upper right corner?" The computer design question is, "Which has the
best cost/performance or is more scalable for equivalent cost/performance?"

It is interesting to note that very different changes are required to improve
performance depending on whether you talce the low road or the high road in this
figure. Since most programs are written in high-level languages, moving along
the horizontal direction (increasing performance per processor) is almost entirely
a matter of improving the hardware. The applications are unchanged, with
compilers adapting them to the more powerful processor. Hence, increasing
processor performance versus number of processors is easier for the applications
software. Improving performance by moving in the vertical direction (increasing
parallelism), on the other hand, may involve significant changes to applications,
since programming ten processors may be very different from programming a
thousand, and different yet again from programming a million. (But going from

Ex.1035.609DELL

Future Directions 577

1000000

Numberof
processors

1

Performance per processor (MFLOPS)

FIGURE 10.1 Danny Hillis, architect of the Connection Machines, has useda figure
similarto this to illustrate the multiprocessor industry. (Hillis’s x axis was processor
width rather than processor performance.) Processor performanceonthis graphis
approximated by the MFLOPSrating of a single processor for the DAXPY procedureof
the Linpack benchmark for a 1000 x 1000 matrix. Generally, it is easier for programmers
when moving to the right , while moving up is easier for the hardware designer because
there is more hardware replication. The massive parallelism question is, “Which is the
quickest path to the upperright corner?” The computer design questionis, “Which has the
best cost/performanceor is more scalable for equivalent cost/performance?”

It is interesting to note that very different changes are required to improve
performance depending on whether you take the low roador the high road in this
figure. Since most programs are written in high-level languages, moving along
the horizontal direction (increasing performance per processor) is almost entirely
a matter of improving the hardware. The applications are unchanged, with
compilers adapting them to the more powerful processor. Hence, increasing
processor performance versus numberof processors is easier for the applications
software. Improving performance by movingin the vertical direction (increasing
parallelism), on the other hand, may involve significant changes to applications,
since programming ten processors may be very different from programming a
thousand, and different yet again from programming a million. (But going from

DELL Ex.1035.609

578 10.5 The Roads to El Dorado

100 to 101 is probably not different.) An advantage of the vertical path to
performance is that the hardware may be simply replicated-the processors in
particular, but also the hardware of the interconnection switch. Hence,
increasing number of processors versus processor performance results in more
hardware replication. An advantage of the low road is that it is much more likely
that there will be a market at the various points along the way to El Dorado. In
addition, those who take the high road must grapple with Amdahl's Law.

This brings us to a fundamental debate about the organization of memory in
large-scale machines of the future. The debate unfortunately often centers on a
false dichotomy: shared memory versus distributed memory. Shared memory
means a single address space, implying implicit communication. The real
opposite to a shared address is multiple private address spaces, implying explicit
communication. Distributed memory refers to the location of the memory. If
physical memory is divided into modules with some placed near each processor
(which allows faster access time to that memory), then physical memory is
distributed. The real opposite of distributed memory is centralized memory,
where access time to a physical memory location is the ~ame for all processors.

Clearly shared address versus multiple address and distributed memory
versus centralized memory are orthogonal issues: SIMDs or MIMDs can have a
shared address and a distributed physical memory or multiple private address
spaces and a centralized physical memory (although this last combination would
be unusual). Figure 10.2 categorizes several machines by these axes. The proper
debates concerning the future are the pros and cons of a single address and the
pros and cons of distributed memory.

The single address debate is closely tied to the model of communication,
since shared-address machines must offer implicit communication (possibly

Distributed

Physical
memory
location

Centralized

' Intel Hypercube
Ncube
lnmos Transputer

l

Multiple
Addressing

CM-2
IBM RP3
Cedar

IBM 3090-600
Encore Multimax
Sequent Symmetry

Shared

FIGURE 10.2 Parallel processors placed according to centralized versus distributed
memory and shared versus multiple addressing. In general it is easier tor software for
machines on the shared side of the addressing axis and it is easier to build larger-scale
machines on the distributed end of the vertical access. These machines in the graph are
described in Section 10.11.

Ex.1035.610DELL

Future Directions 579

part of any memory access) and multiple-address machines must have explicit
communication. (It is not quite that simple since some shared-address machines
also offer explicit communication in various forms.) "Implicitists" knock
"explicitists" for advocating machines that are harder to program when it is
already hard to find applications: Why make the programmer's life more
difficult when software is the linchpin of large-scale parallelism? One reply is
that if memory is distributed, as processors get faster the time to remote memory
will be so long-· say 50 to 100 clock cycles-the compiler or programmer must
be aware he is writing for a large-scale parallel machine no matter which
communication scheme is used. Explicit communication also offers the
possibility of hiding the cost of communication by overlapping it with computa
tion. The implicitist reply is that using hardware rather than explicit instructions
reduces the overhead of communication. Moreover, a single address means pro
cesses can use pointers and communicate data only if the pointer is dereferenced,
while explicit communication means the data must be sent in the presence of
pointers since the data might be accessed. The explicitist rebuttal is the owner of
the data can send the data, traversing a properly designed network only once,
while in shared-memory machines a processor requests the data and then the
owner returns it, requiring two trips over the communications network.

Distributed-memory advocates argue that no matter how much caching is
placed in front of a single central memory, it has limited bandwidth, and thus,
limits the number of processors. Central-memory advocates raise the question of
efficiency: If there is not enough parallelism to use many processors, then why
distribute memory? Centralists also point out that distributed memory increases
the difficulty of programming, since now the programmer or the compiler must
decide how to lay out the data in the physical m~mory modules so as to reduce
communication. Hence, distributed memory introduces the concept of data
elements being near a processor (the module taking less time to access) or far (in
other memory modules).

We can now explain a difficulty of the distributed versus centralized dichot
omy. Every processor will likely have a cache, which is in some sense a distrib
uted memory no matter how main memory is organized. Even with caches, the
latency of a miss and the effective bandwidth for satisfying cache requests can
be improved if data is allocated to the memory module near the appropriate
cache. Hence, there is still a distinction between centralized and distributed main
memory in the presence of caches.

As you can imagine, these debates continue back and forth, practically
interminably. Fortunately, in computer architecture such disagreements are
settled by measurements rather than polemics. Thus, time will. be the judge of
these issues, but your authors will be the judge of a bet inspired by these
debates (see page 590 in 10.11).

The real issues for future machines are these: Do problems and algorithms
with sufficient parallelism exist? And can people be trained or compilers be
written to exploit such parallelism?

Ex.1035.611DELL

580

10.& I

10.6 Special-Purpose Processors

Special-Purpose Processors

In addition to exploring parallelism, many designers today are exploring special
purpose computers. With the increasing sophistication of computer-aided design
software and increasing capacity per chip comes the opportunity of quickly
building a chip that does one thing well at low cost. Real-time speech
recognition and image processing are examples. Such special-purpose devices,
or coprocessors, frequently act in conjunction with the CPU. There are two
types in the coprocessor trend: digital signal processors and systolic arrays.

Digital signal processors (or DSPs) are not derived from the traditional
model of computing, and tend to look like horizontal microprogrammed
machines (see page 212) orVLIW machines (see pages 322-325). They tend to
solve real-time problems, essentially having an infinite-input data stream. There
has been little emphasis on compiling from programming languages such as C,
but that is starting to change. As DSPs bend to the demands of programming
languages, it will be interesting to see how they differ from traditional
microprocessors.

Systolic arrays evolved from attempts to get more efficient computing
bandwidth from silicon. Systolic arrays can be thought of as a method for
designing special-purpose computers to balance resources, 1/0 bandwidth, and
computation. Relying on pipelining, data flows in stages from memory through
an array of computation units and back to memory, as suggested in Figure 10.3.
Recently, systolic-array research has moved away from many, dedicated special
purpose chips to fewer, more powerful chips that are programmable.

The authors expect an increasing role for special-purpose computers in the
1990s because they off er both higher performance and lower cost for dedicated
functions such as real-time speech recognition and image processing. The
consumer marketplace seems the most likely candidate, given its high volume
and sensitivity to cost.

,..... Processing - --+-
Processing Processing Processing Processing Processing

element element element element element element
,__

- Memory_ Memory -

Traditional computation model Systolic array computation model
(SISD) (MISD?)

FIGURE 10.3 The systolic architecture gets its name from the heart rhythmically
pumping blood. Data arrives at a processing element at regular intervals, where it is
modified and passed to the next element, and so on, until it circulates back to memory.
Some consider systolic arrays an example of MISD.

Ex.1035.612DELL

Future Directions 581

1 O. 7 I Future Directions for Compilers

Compilers of the future have two challenges on machines of the future:

• Lay out of data to reduce memory hierarchy and communication overhead,
and

• Exploitation of parallelism.

Programs of the future will spend a larger percentage of the execution time
waiting for the memory hierarchy as the gap grows between the clock cycle time
of processors and the access time of main memory (see Figure 8.18, page 427).
Compilers that arrange code and data so as to reduce cache misses may lead to
larger performance improvements than traditional optimizations of today.
Further improvements are possible with the possibility of prefetching data into a
cache before it is needed by the program. One interesting proposition is by
extending existing programming languages with array operations a programmer
can express parallelism with calculations on entire arrays at a time, leaving it up
to the compiler to lay out the data into processors to reduce the amount of
communication. For example, the proposed extension to FORTRAN 77 called
FORTRAN 8X includes array extensions. The hope is that the programmer's
task might even be simpler than with SISD machines where array operations
must be specified with loops. The range of programs that such a compiler can
handle efficiently and the number of hints a programmer must supply on where
to place data will determine the practical value of this proposal.

In addition to reducing the costs of memory access and communication,
compilers may change performance by factors of two or three by utilizing
parallelism available in the processor. Figure 2.25 (page 75) shows the Perfect
Club benchmarks operate at only 1 % of peak performance, clearly suggesting
many opportunities for software. More specifically, the superscalar machines of
Chapter 6 (pages 318-320) typically achieve a speedup of less than 2 using
today's compilers, even through the potential performance improvement of
executing 4 instructions at once is 4. From Chapter 7 we see that vector
machines typically achieve a vectorization rate of 40% to 70%, delivering a
speedup of 1.5 to 2.5, where a vectorization rate of 90% could achieve a speedup
over 5. And current compilers for multiprocessors are considered successful if
they achieve a speedup 3 for a single program when the potential from 8
processors is 8. Figure 10.4 (page 582) shows the potential improvement in
performance of a larger percentage of the work executing in the higher
performance mode for each of these categories. Since we can expect multiple
processors in machines where each processor has vector or superscalar features,
the potential speedup of these factors may be multiplied together.

While this opportunity exists for compilers, we do not want to belittie its
difficulty. Parallelizing compilers have been under development since 197 5 but
progress has been slow. These problems are hard, especially for the "dusty deck"

Ex.1035.613DELL

582

10

Vector 9
speedup

8

7

6

5

4

3

2

fo.7 Future Directions for Compilers

challenge of running existing programs. Success has been limited to programs
where the parallelism is available in the algorithm and expressed in the program
and to machines with a small number of processors. Significant progress may
eventually require new programming languages as well as smarter compilers!

0% 20% 40% 60% 80% 100%

Percentage of operations
executed in vector mode

4

Super
scalar
speedup

3

2

8

Multi- 7
processor
speedup

0% 20% 40% 60% 80% 100%

Percentage of extra
superscalar slots used

6

5

4

3

2

0% 20% 40% 60% 80% 100%

Percentage of extra
processors used

FIGURE 10.4 Potential for performance improvement by compilers transforming more of the computation into
the faster mode. The leftmost graph shows the percentage of operations executed in vector mode, while the other
graphs show the percentage of the potential speedup in use on average: percentage of four instructions used per cycle in
superscalar and percentage of time all eight processors were utilized in the multiprocessor. The gray area shows the
range of utilization typically found in programs using,current compilers.

10.a I Putting It All Together: The Sequent
Symmetry Multiprocessor

The high performance and low cost of the microprocessor inspired renewed
interest in multiprocessors in the 1980s. Several microprocessors can be placed
on a common bus because:

they are much smaller than multichip processors,

caches can lower bus traffic, and

coherency protocols can keep caches and memory consistent.

Traffic per processor and the bus bandwidth determine the number of processors
in such a multiprocessor.

Ex.1035.614DELL

582 10.7 Future Directions for Compilers

challenge of running existing programs. Success has been limited to programs
where the parallelism is available in the algorithm and expressed in the program
and to machines with a small numberof processors. Significant progress may
eventually require new programming languages as well as smarter compilers!

Multi- 7
processor
speedup 6

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

Percentage of operations Percentage of extra Percentageof extra
executed in vector mode superscalar slots used processors used

FIGURE 10.4 Potential for performance improvement by compilers transforming more of the computation into
the faster mode. The leftmost graph shows the percentage of operations executed in vector mode, while the other
graphs show the percentage of the potential speedup in use on average: percentageof four instructions used per cyclein
superscalar and percentageoftime all eight processors wereutilized in the multiprocessor. The gray area shows the
rangeofutilization typically found in programs using current compilers.

10.8 | Putting It All Together: The Sequent
Symmetry Multiprocessor

The high performance and low cost of the microprocessor inspired renewed
interest in multiprocessors in the 1980s. Several microprocessors can be placed
on a common bus because:

they are much smaller than multichip processors,

caches can lowerbustraffic, and

coherency protocols can keep caches and memory consistent.

Traffic per processor and the bus bandwidth determine the numberof processors
in such a multiprocessor.

DELL Ex.1035.614

Future Directions 583

Several research projects and companies investigated these shared-bus
multiprocessors. One example is Sequent Corporation, founded to build multi
processors based on standard microprocessors, and the UNIX operating system.
The first-generation system was the Balance 8000, offered in 1984 with 2 to 12
National 32032 microprocessors, a 32-bit split transaction bus that multiplexed
address and data, and one 8-KB, 2-way-set-associative, write-through cache per
processor. Each cache watched the bus to maintain coherency using write
through with invalidate. (See Sections 8.4, 8.8, and 9.4 for a review of these
terms.) The sustained bandwidth of the main memory and bus is 26.7 MB/sec.
Two years later Sequent upgraded to the Balance 21000, offering up to 30
National 32032 microprocessors with the same memory system and bus.

<

2 to 32 CPU/FPUs 1 to 6 Memory Modules

80386 CPU/
1167 FPU

t
64-,KB
write-
back
cache

t

t
Bus

adapter

t I System
console

Ethernet

SCSI bus

80386 CPU/
1167 FPU

64-KB
write
back

cache

Main memory Main memciry
(8 MB-40 MB) ' ' • (8 MB-40 MB)

t t
Memory Memory
controller controller

t t
System bus

Disk
controller

Bus
adapter

Multibus

Bus
adapter

t X.25 network

>

FIGURE 10.5 The Sequent Symmetry multiprocessor has up to 30 microprocessors,
each with 64 KB of 2-way set associative, write-back caches connected over the
shared system bus. Up to six memory controllers also talk to this 64-bit-wide bus, plus
some interfaces for 1/0. In addition to a special-purpose disk controller, there is an interface
for the system console, Ethernet network, and SCSI 1/0 bus (see Chapter 9), as well as
another interface for Multibus. 1/0 devices can be attached either to SCSI or to Multibus, as
the customer desires. (Although all interfaces are labeled "Bus adapter," each is a unique
design.)

Ex.1035.615DELL

Future Directions 583

Several research projects and companies investigated these shared-bus
multiprocessors. One example is Sequent Corporation, founded to build multi-
processors based on standard microprocessors, and the UNIX operating system.
Thefirst-generation system was the Balance 8000, offered in 1984 with 2 to 12
National 32032 microprocessors, a 32-bit split transaction bus that multiplexed
address and data, and one 8-KB, 2-way-set-associative, write-through cache per
processor. Each cache watched the bus to maintain coherency using write
through with invalidate. (See Sections 8.4, 8.8, and 9.4 for a review of these
terms.) The sustained bandwidth of the main memoryand bus is 26.7 MB/sec.
Two years later Sequent upgraded to the Balance 21000, offering up to 30
National 32032 microprocessors with the same memory system and bus.

2 to 32 CPU/FPUs 1 to 6 Memory Modules

80386 CPU/ 80386 CPU/ Main memory Main memory
1167 FPU “" "1 4167 FPU (8 MB- 40 MB)" * °](8 MB—40 MB)

Memory Memory
controller ** *1controller

Bus Disk : Bus
adapter controller adapter

System Multibus
console

Ethernet 1
adapter

SCSI bus

|network

FIGURE 10.5 The Sequent Symmetry multiprocessor has up to 30 microprocessors,
each with 64 KBof 2-way set associative, write-back caches connected over the
shared system bus.Up to six memory controllers also talk to this 64-bit-wide bus, plus
someinterfacesfor |/O. In addition to a special-purpose disk controller, there is an interface
for the system console, Ethernet network, and SCSI I/O bus (see Chapter9), as well as
-anotherinterface for Multibus. I/O devices can be attached either to SCSI or to Multibus, as
the customerdesires. (Although all interfaces are labeled “Bus adapter,” each is a unique
design.)

DELL Ex.1035.615

584 10.8 Putting It All Together: The Sequent Symmetry Multiprocessor

In 1986, Sequent began the design of the Symmetry multiprocessor, assuming
a microprocessor 300% to 400% faster than the 32032. The goal was to support
as many processors as possible using the I/O controllers developed for the
Balance system. This meant the bus had to remain compatible, though the new
memory and bus system had to deliver roughly 300% to 400% higher bandwidth
than the older system.

The goal of higher memory-system bandwidth with a similar bus was
attacked on four levels. First, the cache was increased to 64 KB, increasing the
hit rate and therefore the effective memory bandwidth as seen by the processor.
Second, the cache policy was changed from write through to write back to
reduce the number of write operations on the shared bus. To maintain cache
coherency with write back, Symmetry uses a write-invalidate scheme (see pages
468-469). The third change was to double the bus width to 64 bits, thereby
doubling the bus bandwidth to 53 MB/sec. The final change was to have each
memory controller interleave memory as two banks (see Section 8.8), allowing
the memory system to match the bandwidth of the wider bus. The memory
system can have up to six controllers with up to 240-MB total main memory.

The use of high-level languages and the portability of the UNIX operating
system allowed changing instruction sets to the faster Intel 80386. Running at a
higher clock rate, with the faster Weitek 1167 floating-point accelerator, and
with the improved memory system, a single 80386 ran from 214% to 776%
faster for floating-point benchmarks and about 375% faster for integer bench
marks. Figure 10.5 (page 583) shows the organization of the Symmetry.

One of the other design constraints was that the new Symmetry boards had to
work properly when put into the old Balance systems. Since the new system was
to use write back and the old system used write through, the hardware team
solved the problem by designing the new caches to support either write through
or write back. Lovett and Thakkar [1988] took advantage of that feature to run
parallel programs with both policies. Figure 10.6 shows bus utilization versus
the number of processors for four parallel programs.

As mentioned above, bus utilization directly corresponds to the number of
processors that can be used in such single-bus systems. Write-through caches
should have higher bus utilization for the same number of processors since every
write must go over the bus; or from a different perspective, the same bus should
be able to support more processors if they use write-back caches. Figure 10.6
fulfills our expectations; the buses saturate with fewer than 16 processors with
write through, but write back appears to scale to the full size.

There are two components to the bus traffic: normal misses and coherency
support. Uniprocessor misses (compulsory, capacity, and conflict) can be
reduced by larger caches and by better write policies, but the coherency traffic is
a function of the parallel program. The primary benefit of write back for the
programs in Figure 10.6 was simply reducing the number of writes on the bus
due to the write-back policy, for there were few writes to shared data in these
programs.

Ex.1035.616DELL

Future Directions

80%

70%

60%

50%

Bus 40%

utilization
30%

20%

10%

0%

585

Write back: 1

Write back: 2
Write back: 4

::;=:;:=;:::=;::::;=::;==;;:q:::::;:::::::;:::::;::::;:=;==;:::::;=::;;::::;::::;=:;:=;:::=;::::;=::;::::::;- Write back: 3

3 5 7 9 11 13 15 17 19 21 23 25 27

Number of processors

FIGURE 10.6 Comparing the impact of write-through versus write-back cache
coherency on bus utilization of the Sequent Symmetry multiprocessor for four
parallel benchmarks: (1) Butterfly Switch Simulator, (2) 20 Monte Carlo Simulation,
(3) Ray Tracing , and (4) Parallel Linpack Benchmark. Lovett and Thakkar [1988]
collected these data with a hardware performance monitor.

Another experiment evaluated the Symmetry as a timeshared (multiprogram
med) multiprocessor running ten independent programs. The experiment ran n
copies of the program on n processors. This study found about half the programs
started to stray from linearly increasing throughput at 6 to 8 processors with
write through, yet with write back it stayed near linear for all but one of the ten
programs for up to 28 processors. (The single dud was due to hot spots in the
operating system rather than write-back coherency protocol.)

1 O. 9 · 1 Fallacies and Pitfalls

Given the speculative nature of this chapter, it would seem that this section
would not be needed. In good conscience, however, we submit two warnings.

Pitfall: Measuring performance of multiprocessors by linear speedup versus
execution time.

"Mortar shot" graphs-plotting performance versus number of processors
showing linear speedup, a plateau, and then a falling off-have long been used
to judge the success of parallel processors. While scalability is one facet of a
parallel program, it is not a direct measure of performance. The first question is

Ex.1035.617DELL

Future Directions 585

80%

70%

60% Write back:1

50%

Bus 40%
utilization

30%

20%

Write back: 2 |
Write back: 4

& Write back: 3

11.13 15 #17 #19 21 23 25 27

10%

0%

Numberof processors

FIGURE 10.6 Comparing the impact of write-through versus write-back cache
coherency on busutilization of the Sequent Symmetry multiprocessorfor four
parallel benchmarks:(1) Butterfly Switch Simulator, (2) 2D Monte Carlo Simulation,
(3) Ray Tracing , and (4) Parallel Linpack Benchmark. Lovett and Thakkar [1988]
collected these data with a hardware performance monitor.

Another experiment evaluated the Symmetry as a timeshared (multiprogram-
med) multiprocessor running ten independent programs. The experiment ran n
copies of the program on 7 processors. This study found about half the programs
started to stray from linearly increasing throughput at 6 to 8 processors with
write through, yet with write back it stayed near linear for all but one of the ten
programs for up to 28 processors. (The single dud was due to hot spots in the .
operating system rather than write-back coherency protocol.)

1 0.9 | Fallacies andPitfalls

Given the speculative nature of this chapter, it would seem that this section
would not be needed. In good conscience, however, we submit two warnings.

Pitfall: Measuring performance of multiprocessors by linear speedup versus
execution time.

“Mortar shot” graphs—plotting performance versus number of processors
showinglinear speedup, a plateau, and then a falling off—have long been used
to judge the success of parallel processors. While scalability is one facet of a
parallel program, it is not a direct measure of performance. The first question is

DELL Ex.1035.617

586 10.9 Fallacies and Pitfalls

the power of the processors being scaled: A program that linearly improves
performance to equal 100 Intel 8080s may be slower than the sequential version
on a workstation. Be especially careful of floating-point-intensive programs, as
processing elements without hardware assist may scale wonderfully but have
poor collective performance.

Comparing execution times is only fair if you are comparing the best
algorithms on each machine. (Of course, you can't subtract time for idle
processors when evaluating a multiprocessor, so CPU time is inappropriate for
multiprocessors.) Comparing the identical code on two machines may seem fair,
but it is not; the parallel program may be slower on a uniprocessor than a
sequential version. Sometimes, developing a parallel program will lead to algo
rithmic improvements, so that comparing the previously best-known sequential
program with the parallel code-which seems fair-will not compare equivalent
algorithms. To reflect this issue, sometimes the terms relative speedup (same
program) and true speedup (best programs) are used. Results that suggest super
linear performance, when a program on n processors is more than n times faster
than the equivalent uniprocessor, give a clue to unfair comparisons.

Fallacy: Amdahl's Law doesn't apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl's Law (see
Section 1.3) had been broken by a MIMD machine. This hardly meant, however,
that the law has been overturned for parallel computers; the neglected portion of
the program will still limit performance. To try to understand the basis of the
media reports, let's see what Amdahl [1967] originally said:

A fairly obvious conclusion which can be drawn at this point is that the effort .
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the
same magnitude. [page 483]

One interpretation of the law was that since portions of every program must be
sequential, there is a limit to the useful economic number of processors-say
100. By showing linear speedup with 1000 processors, this interpretation of
Amdahl's Law was disproved.

The approach of the researchers was to change the input to the benchmark, so
that rather than going 1000 times faster, they essentially computed 1000 times
more work in comparable time. For their algorithm the sequential portion of the
program was constant independent of the size of the input, and the rest was fully
parallel-hence, linear speedup with 1000 processors.

Chapter 2 (see Section 2.2) describes the dangers of letting each experimenter
select his own input for benchmarks. We see no reason why varying input is safe
for evaluating performance of multiprocessors, nor why Amdahl's Law doesn't
apply. What this research does point out is the importance of having benchmarks
that are large enough to demonstrate performance of large-scale parallel
processors.

Ex.1035.618DELL

Future Directions

10.10 I Concluding Remarks-Evolution Versus
Revolution in Computer Architecture

587

Reading conference and journal articles from the last 20 years can leave one
discouraged; so much effort has been expended with so little impact.
Optimistically speaking, these papers act as gravel and, when placed logically
together, form the foundation for the next generation of computers. From a more
pessimistic point of view, if 90% of the ideas disappeared no one would notice.

One reason for this could be called the "von Neumann syndrome." By hoping
to invent a new model of computation that will revolutionize computing,
researchers are striving to become known as the von Neumann of the 21st
century. Another reason is taste: researchers often select problems that no one
else cares about. Even if important problems are selected, there is frequently a
lack of experimental evidence to convincingly demonstrate the value of the
solution. Moreover, when important problems are selected and the solutions are
demonstrated, the proposed solutions may be too expensive relative to their

User
compat·
iblllty

Example

Difference

U)
c:

""' .Q
i;_· 0
~ 2
Q) 'lii
E .5

~ >I >

! !
(.)
Cl)

a:

!
-- I I Evolutionary

Binary Upward Assembly High-level
binary language

VAX-11/780 IBM 360vs. MIPS 1000 Sun 3 vs.
vs. 8800 370 vs. 370-XA vs. Sun 4

vs. ESA/370 DECstation 3100

Microcode, Some new Byte order Full instruction
TLB, caches, instructions (Big vs. Little set (same
pipelining, Endian) data represen-
MIMD talion)

Q)

0 0 U)
0

::.? ::.? e-
Ci.i :i] :I

Q.

!!;? >. a; 0 ·u; c: ·c:;
U) Q) Q) ca j Q.

::.? Cl)

! ! !
Revolutionary

New programs,
extended or
newHLL, new
algorithms

SISD vs. CM-2

Algorithms,
extended HLL,
programs

FIGURE 10.7 The evolution-revolution spectrum of computer architecture. The first
four columns are distinguished from the last column in that applications and operating
systems can be ported from other computers rather than written from scratch. For example,
RISC is listed in the middle of the spectrum because user compatibility is only at the level
of high-level languages, while microprogramming allows binary compatibility, and latency
oriented MIMDs require changes to algorithms and extending HLLs. Time-shared MIMD
means MIMDs justified by running many independent programs at once, while latency
MIMD means MIMDs intended to run a single program faster.

Ex.1035.619DELL

Future Directions 587

1 O. 1 0 | Concluding Remarks—Evolution Versus
Revolution in Computer Architecture

Reading conference and journal articles from the last 20 years can leave one
discouraged; so much effort has been expended with so little impact.
Optimistically speaking, these papers act as gravel and, when placed logically
together, form the foundation for the next generation of computers. From a more
pessimistic point of view, if 90% of the ideas disappeared no one would notice.

One reason forthis could be called the “von Neumann syndrome.” By hoping
to invent a new model of computation that will revolutionize computing,
researchers are striving to become known as the von Neumann of the 21st
century. Another reason is taste: researchers often select problems that no one
else cares about. Even if important problems are selected, there is frequently a
lack of experimental evidence to convincingly demonstrate the value of the
solution. Moreover, when important problemsare selected and the solutions are
demonstrated, the proposed solutions may be too expensive relative to their

-~<«_——Virtualmemory ~«——-Vectorinstructions ~«——MassiveSIMD «——LatencyMIMD -«——Specialpurpose
Revolutionary.

User Assembly High-level New programs,
compat- language extended or
ibility new HLL, new

. algorithms

Example VAX-11/780 IBM 360 vs. MIPS 1000 Sun 3 vs. SISD vs. CM-2
vs. 8800 370 vs. 370-XA vs. Sun 4

vs. ESA/370 DECstation 3100

Difference Microcode, Some new Byte order Full instruction Algorithms,
TLB, caches,__instructions (Big vs.Little set (same extended HLL,
pipelining, Endian) data represen- programs _
MIMD tation)

FIGURE 10.7 The evolution-revolution spectrum of computer architecture. Thefirst
four columnsare distinguished from the last columnin that applications and operating
systems can be ported from other computers rather than written from scratch. For example,
RISCislisted in the middle of the spectrum because user compatibility is only at the level
of high-level languages, while microprogramming allows binary compatibility, and latency-
oriented MIMDs require changesto algorithms.and extending HLLs. Time-shared MIMD
means MIMDsjustified by running many independent programsat once, while latency
MIMD means. MIMDs intended to run a single program faster.

DELL Ex.1035.619

588

10.11

10.1 O Concluding Remarks-Evolution Versus Revolution in Computer Architecture

benefit. Sometimes this expense is measured as straightforward cost/perfor
mance-the performance enhancement does not merit the added cost. More
often the expense of innovation is that it is too disruptive to computer users.
Figure 10.7 shows what we mean by the evolution-revolution spectrum of
computer architecture innovation. To the left are ideas that are invisible to the
user (presumably excepting better cost, better performance, or both). This is the
evolutionary end of the spectrum. At the other end are revolutionary architecture
ideas. Those are the ideas that require new applications from programmers who
must learn new programming languages and models of computation, and must
invent new data structures and algorithms.

Revolutionary ideas are easier to publish than evolutionary ideas, but to be
adopted they must have a much higher payoff. Caches are an example of an
evolutionary improvement. Within five years after the first publication about
caches almost every computer company was designing a machine with a cache.
The RISC ideas were nearer to the middle of the spectrum, for it took closer to
ten years for most companies to have a RISC product. An example of a
revolutionary computer architecture is the Connection Machine. Every program
that runs efficiently on that machine was either substantially modified or written
especially for it, and programmers need to learn a new style of programming for
it. Thinking Machines was founded in 1983, but only a few companies offer that
style of machine.
, There is value in projects that do not affect the computer industry because of
lessons that they document for future efforts. The sin is not in having a novel
architecture that is not a commercial success; the sin is in not quantitatively
evaluating the strengths and weaknesses of the novel ideas. The next section
mentions several machines whose primary contribution is documentation of the
machine and experience using it.

When contemplating the future-and when inventing your own contributions
to the field-· remember the evolution-revolution spectrum. Also keep in mind
the laws and principles of computer architecture found in the early chapters;
these will surely guide computers of the future, just as they have guided
computers of the past.

Historical Perspective and References

For over a decade prophets have voiced the contention that the organization of
a single computer has reached its limits and that truly significant advances can
be made only by interconnection of a multiplicity of computers in such a manner
as to permit cooperative solution Demonstration is made of the continued
validity of the single processor approach ...

Amdahl [1967, 483]

The quotes at the chapter opening give the classic arguments for abandoning the
current form of computing, and Amdahl [1967] gives the classic reply.

Ex.1035.620DELL

Future Directions 589

Arguments for the advantages of parallel execution can be traced back to 19th
century [Menabrea 1842] ! Yet the effectiveness of the multiprocessor for
reducing latency of individual important programs is still being determined.

The earliest ideas on SIMD-style computers are from Unger [1958] and
Slotnick, Borek, and McReynolds [1962]. Slotnick's Solomon design formed the
basis of the Illiac IV, perhaps the most infamous of the supercomputer projects.
While successful in pushing several technologies useful in later projects, it failed
as a computer. Costs escalated from the $8 million estimate in 1966 to $31
million by 1972, despite constructing only a quarter of the planned machine.
Actual performance was at best 15 MFLOPS versus initial predictions of 1000
MFLOPS for the full system (see Hord [1982]). Delivered to NASA Ames
Research 1972, the computer took three more years of engineering before it was
usable. These events slowed investigation of SIMD, with Danny Hillis [1985]
resuscitating this style in the Connection Machine: The cost of a program
memory for each of 65,636 1-bit processors was prohibitive, and SIMD was the
solution.

It is difficult to distinguish the first multiprocessor. The first computer from
the Eckert-Mauchly Corporation, for example, had duplicate units to improve
availability. Holland [1959] gave early arguments for multiple processors. After
several laboratory attempts at multiprocessors, the 1980s first saw successful
commercial multiprocessors. Bell [1985] suggests the key was that the smaller
size of the microprocessor allowed the memory bus to replace the intercon
nection network hardware, and that portable operating systems meant multi
processor projects no longer required the invention of a new operating system.
This is the paper in which he defines the terms "multiprocessor" and "multi
computer." Two of the best-documented multiprocessor projects are the C.mmp
[Wulf and Bell 1972 and Wulf and Habrison 1978] and Cm* [Swan et al. 1977
and Gehringer, Siewiorek, and Segall 1987]. Recent commercial multiprocessors
include the Encore Multimax [Wilson 1987] and the Sequent Symmetry [Lovett
and Thakkar 1988]. The Cosmic Cube is an early multicomputer [Seitz 1985].
Recent commercial multicomputers are the Intel Hypercube and the Transputer
based machines [Whitby-Strevens 1985]. Attempts at building a scalable shared
memory multiprocessor include the IBM RP3 [Pfister, Brantley, George,
Harvey, Kleinfekder, McAuliffe, Melton, Norton, and Weiss 1985], the NYU
Ultracomputer [Schwartz 1980 and Elder, Gottlieb, Kruskal, McAuliffe,
Randolph, Snir, Teller, and Wilson 1985], and the University of Illinois Cedar
project [Gajksi, Kuck, Lawrie, and Sameh 1983].

There is unbounded information on multiprocessors and multicomputers:
Conferences, journal papers, and even books seem to be appearing faster than
any single person can absorb the ideas. One good source is the International
Conference on Parallel Processing, which has met annually since 1972. Two
recent books on parallel computing have been written by Almasi and Gottlieb
[1989] and Hockney and Jesshope [1988]. Eugene Miya of NASA Ames has
collected an on-line bibliography of parallel-processing papers that contains
more than 10,000 entries. To highlight a few papers, he sends out electronic

/

Ex.1035.621DELL

590 10.11 Historical Perspective and References

requests every January to ask which papers every serious student in the field
should read. After collecting the ballots, he picks the ten papers most frequently
recommended and publishes that list. Here is an alphabetical list of the winners:
Andrews and Schneider [1983]; Batcher [1974]; Dewitt, Finkel, and Solomon
[1984]; Kuhn and Padua [1981]; Lipovski and Tripathi [1977]; Russell [1978];
Seitz [1985]; Swan, Fuller, and Siewiorek [1977]; Treleaven, Brownbridge, and
Hopkins [1982]; and Wulf and Bell [1972].

Special-purpose computers predate the stored-program computer. Brodersen
[1989] gives a history of signal processing and its evolution to programmable
devices. H. T. Kung [1982] coined the term "systolic array" and has been one of
the leading proponents of this style of computer design. Recent research has
been in the direction of making programmable systolic-array elements and
providing a programming environment to simplify the programming task.

Its hard to predict the future, yet Gordon Bell has made two predictions for
1995. The first is that a computer capable of sustaining a TeraFLOPS-one
million MFLOPS-will be constructed by 1995, either using a multicomputer
with 4K to 32K nodes or a Connection Machine with several million processing
elements [Bell 1989]. To put this prediction in perspective, each year the Gordon
Bell Prize acknowledges advances in parallelism, including the fastest real
program (highest MFLOPS). In 1988, the winner achieved 400 MFLOPS using
a CRAY X-MP with four processors and 16 megawords and in 1989 the winner
used an eight-processor CRAY Y-MP to run at 1680 MFLOPS. Machines and
programs will have to improve by a factor of three each year for the fastest
program to achieve 1 TFLOPS in 1995.

The second Bell prediction concerns the number of data streams in super
computers shipped in 1995. Danny Hillis believes that while supercomputers
with a small number of data streams may be best sellers, the biggest machines
will be machines with many data streams, and these will perform the bulk of the
computations. Bell bet Hillis that in the last quarter of calendar year 1995 more
sustained MFLOPS will be shipped in machines using few data streams (SlOO)
rather than many data streams (;;:::1000). This bet concerns only supercomputers,
defined as machines costing more than $1,000,000 and used for scientific
applications. Sustained MFLOPS is defined for this bet as the number of
floating-point operations per month, so availability of machines affects their
rating. The loser must write and publish an article explaining why his prediction
failed; your authors will act as judge and jury.

References

ALMASI, G. S. AND A. GOTTLIEB [1989]. Highly Parallel Computing, Benjamin/Cummings,
Redwood City, Calif.

AMDAHL, G. M. [1967]. "Validity of the single processor approach to achieving large scale
computing capabilities," Proc. AF/PS Spring Joint Computer Conf. 30, Atlantic City, N. J. (April)
483-485.

Ex.1035.622DELL

Future Directions 591

ANDREWS, G. R. AND F. B. SCHNEIDER [1983]. "Concept and notations for concurrent
programming," Computing Surveys 15: 1 (March) 3-43.

BATCHER, K. E. [1974]. "STARAN parallel processor system hardware," Proc. AF/PS National
Computer Conference, 405-410.

BELL, C. G. [1985]. "Multis: A new class of multiprocessor computers," Science 228 (April 26)
462-467.

BELL, C. G. [1989]. "The future of high performance computers in science and engineering," Comm.
ACM 32:9 (September) 1091-1101.

BOUKNIGHT, W. J, S. A. DENEBERG, D. E. MCINTYRE, J. M. RANDALL, A. H. SAMEH, AND D. L.
SLOTNICK [1972]. "The ILLIAC IV system," Proc. IEEE 60:4, 369-379. Also appears in D. P.
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982), 306-
316.

BRODERSEN, R. W. [1989]. "Evolution of VLSI signal-processing circuits," Proc. Decennial
Caltech Conf on VLSI (March) 43-46, The MIT Press, Pasadena, Calif.

DEWITT, D. J., R. FINKEL, AND M. SOLOMON [1984]. "The CRYSTAL multicomputer: Design
and implementation experience, Computer Sciences Tech. Rep. No. 553, University of Wisconsin
Madison, September.

ELDER, J., A. GOTTLIEB, C. K. KRUSKAL, K. P. MCAULIFFE, L. RANDOLPH, M. SNIR, P.
TELLER, AND J. WILSON [1985]. "Issues related to MIMD shared-memory computers: The NYU
Ultracomputer approach," Proc. 12th Int'l Symposium on Computer Architecture (June), Boston,
Mass., 126-135.

FLYNN, M. J. [1966]. "Very high-speed computing systems," Proc. IEEE 54:12 (December) 1901-
1909.

GAJSKI, D., D. KUCK, D. LAWRIE, AND A. SAMEH [1983]. "CEDAR-A large scale multi
processor," Proc. Int' I Conf on Parallel Processing (August) 524-529.

GEHRINGER, E. F., D. P. SIEWIOREK, AND Z. SEGALL [1987]. Parallel Processing: The Cm*
Experience, Digital Press, Bedford, Mass.

HILLIS, W. D. [1985]. The Connection Machine, The MIT Press, Cambridge, Mass.

HOCKNEY, R. W. AND C.R. JESSHOPE [1988]. Parallel Computers-2, Architectures, Programming
and Algorithms, Adam Hilger Ltd., Bristol, England and Philadelphia.

HOLLAND, J. H. [1959]. "A universal computer capable of executing an arbitrary number of
subprograms simultaneously," Proc. East Joint Computer Conf 16, 108-113.

HORD, R. M. [1982]. The Illiac-IV, The First Supercomputer, Computer Science Press, Rockville,
Md.

KUHN, R.H. AND D. A. PADUA, EDS. [1981]. Tutorial on Parallel Processing, IEEE.

KUNG, H. T. [1982]. "Why systolic architectures?," IEEE Computer 15:1, 37-46.

LIPOVSKI, A.G. AND A. TRIPATHI [1977]. "A reconfigurable varistructure array processor," Proc.
1977 Int'! Conf of Parallel Processing (August), 165-174.

LOVETT, T. ANDS. THAKKAR [1988]. "The Symmetry multiprocessor system," Proc. 1988 Int' I
Conf of Parallel Processing, University Park, Pennsylvania, 303-310.

MENABREA, L. F. [1842]. "Sketch of the analytical engine invented by Charles Babbage,"
Bibiotheque Universelle de Geneve (October).

MITCHELL, D. [1989]. "The Transputer: The time is now," Computer Design, RISC supplement,
40-41 (November).

PFISTER, G. F., W. C. BRANTLEY, D. A. GEORGE, S. L. HARVEY, W. J. KLEINFEKDER, K. P.
MCAULIFFE, E. A. MELTON, V. A. NORTON, AND J. WEISS [1985]. "The IBM research parallel
processor prototype (RP3): Introduction and architecture," Proc. 12th Int' I Symposium on
Computer Architecture (June), Boston, Mass., 764-771.

Ex.1035.623DELL

592 1 O .11 Historical Perspective and References

RUSSELL, R. M. [1978]. "The Cray-1 computer system," Comm. ACM 21:1(January)63-72.

SEITZ, C. [1985]. "The Cosmic Cube," Comm. ACM 28:1(January)22-31.

SLOTNICK, D. L., W. C. BORCK, AND R. C. MCREYNOLDS [1962]. "The Solomon computer,"
Proc. Fall Joint Computer Conf (December), Philadelphia, 97-107.

SWAN, R. J., A. BECHTOLSHEIM, K. W. LAI, AND J. K. OUSTERHOUT [1977]. "The
implementation of the Cm* multi-microprocessor," Proc. AF/PS National Computing Conj., 645-
654.

SWAN, R. J., S. H. FULLER, AND D. P. SIEWIOREK (1977]. "Cm*-A modular, multi
microprocessor," Proc. AF/PS National Computer Conf 46, 637-644.

SWARTZ, J. T. (1980]. "Ultracomputers," ACM Transactions on Programming Languages and
Systems 4:2, 484-521

TRELEAVEN, P. C., D. R. BROWNBRIDGE, and R. P. HOPKINS (1982]. "Data-driven and demand
driven computer architectures," Computing Surveys, 14:1(March)93-143.

UNGER, S. H. [1958]. "A computer oriented towards spatial problems," Proc. Institute of Radio
Engineers 46:10 (October) 1744-1750.

VON NEUMANN, J. [1945]. "First draft of a report on the EDVAC." Reprinted in W. Aspray and A.
Burks, eds., Papers of John von Neumann on Computing and Computer Theory (1987), 17-82,
The MIT Press, Cambridge, Mass.

WHITBY-STREVENS C. [1985]. "The transputer," Proc. 12th Int'! Symposium on Computer
Architecture, Boston, Mass. (June) 292-300.

WILSON, A. W., JR. [1987]. "Hierarchical cache/bus architecture for shared memory
multiprocessors," Proc. 14th Int' l Symposium on Computer Architecture (June), Pittsburg, Penn.,
244-252.

WULF, W. AND C. G. BELL (1972]. "C.mmp-A multi-mini-processor," Proc. AF/PS Fall Joint
Computing Conf. 41, part 2, 765-777.

WULF, W. ANDS. P. HARBISON (1978]. "Reflections in a pool of processors-An experience report
on C.mmp/Hydra," Proc. AF/PS 1978 National Computing Conf 48 (June), Anaheim, Calif. 939-
951.

EXERCISES

10.1 [Discussion] <10.4> The weakness of SIMD for case statements, as well as the
failure of the first machine to popularize SIMD, prevented exploration of SIMD designs
while MIMD was still an open frontier. MIMD also has the advantage of riding the wave
of improvements in SISD processors. Now that MIMD programming has not succumbed
easily to assaults of computer scientists, the issue arises whether the simpler
programming model of SIMD might lead it to victory over MIMD for large numbers of
processors. It looks as if MIMD programs for thousands of processors will consist of
thousands of copies of one program rather than thousands of different programs. Thus,
the direction is toward a single program with multiple data streams, independent of
whether the machine itself is SIMD or MIMD. What trends favor MIMD over SIMD, and
vice versa? Be sure to consider utilization of memory and processors (including
communication and synchronization).

10.2 [Discussion] <10.3-10.5> It might take approximately 100 clocks to communicate
in a massively parallel SIMD or MIMD machine. What hardware techniques might

Ex.1035.624DELL

Future Directions 593

this time? How can you change the architecture or the programming model to make a
computer more immune to such delays?

10.3 [Discussion] <10.4,10.8> What must happen before latency-oriented MIMD
machines become commonplace?

10.4 [Discussion] <10.6> When do special-purpose processors make sense economically?

10.5 [Discussion] <10.8> Construct a scenario whereby a truly revolutionary
architecture-pick your favorite candidate-will play a significant role. Significant is
defined as 10% of the computers sold, 10% of the users, 10% of the money spent on
computers, or 10% of some other figure of merit.

10.6 [30] <10.2> The CM-2 uses 64K 1-bit processors in SIMD mode. Bit-serial
operations can easily be simulated 32 bits one step by a 32-bit-wide SISD, at least for
logical operations. The CM-2 takes about 500 ns for such operations. If you have access
to a fast SISD, calculate how long add and logical AND take on 64K 1-bit numbers.

10.7 [30] <10.2> Similar to the question above, a popular use of the CM-2 is to operate
on 32-bit data using multiple steps with the 64K 1-bit processors. The CM-2 takes about
16 microseconds for a 32-bit AND or add. Simulate this activity on a fast SISD; calculate
how long it takes to add and logical AND 64K 32-bit numbers.

10.8-10.12 <2.2,10.4> If you have access to a few different multiprocessors or
multicomputers, performance comparison is the basis of some projects.

10.8 [50] <2.2,10.4> One argument for super-linear speedup (pages 585-586) is that time
spent servicing interrupts or switching contexts is reduced when you have many
processors, since only one need service interrupts and there are more processors to be
shared by users. Measure the time spent on a workload in handling interrupts or context
switching on a uniprocessor versus a multiprocessor. This workload may be a mix of
independent jobs for a multiprogramming environment or a single large job. Does the
argument hold?

10.9 [50] <2.2,10.4> A multiprocessor or multicomputer is typically marketed using
programs that can scale performance linearly with the number of processors. The project
would be to port programs written for one machine to the others and measure their
absolute performance and how it changes as you change the number of processors. What
changes need to be made to improve performance of the ported programs on each
machine? What is the ratio of processor performance according to each program?

10.10 [50] <2.2,10.4> Instead of trying to create fair benchmarks, invent programs that
make one multiprocessor or multicomputer look terrible compared to the others, and also
programs that always make one look better than the others. It would be an interesting
result if you couldn't find a program that made one multiprocessor or mult~mputer look
worse than the others. What are the key performance characteristi/ organization?

Ex.1035.625DELL

594 Exercises

10.11 [50] <2.2,10.4> Multiprocessors and multicomputers usually show performance
increases as you increase the number of processors, with the ideal being n times speedup
for n processors. The goal of this biased benchmark is to make a program that gets worse
performance as you add processors. For example, this means that 1 processor on the
multiprocessor or multicomputer runs the program fastest, 2 is slower, 4 is slower than 2,
and so on. What are the key performance characteristics for each organization that give
inverse linear speedup?

10.12 [50] <10.4> Networked workstations can be considered multicomputers, albeit with
slow communication relative to computation. Port multicomputer benchmarks to a
network using remote procedure calls for communication. How well do the benchmarks
scale on the network versus the multicomputer? What are the practical differences
between networked workstations and a commercial multicomputer?

Ex.1035.626DELL

Ex.1035.627DELLDELL Ex.1035.627

The Fast drives out the Slow even if the Fast is wrong.

W. Kahan

by David Goldberg

(Xerox Palo Alto Research Center)

A.1 Introduction A·1

A.2 Basic Techniques of Integer Arithmetic A·2

A.3 Floating Point A·12

A.4 Floating-Point Addition A·16

A.5 Floating-Point Multiplication A·20

A.6 Division and Remainder A·23

A.7 Precisions and Exception Handling A·28

A.8 Speeding Up Integer Addition A·31

A.9 Speeding Up Integer Multiplication and Division A·39

A.10 Putting It All Together A·53

A.11 Fallacies and Pitfalls A·57

A.12 Historical Perspective and References A·58

Exercises A·63

Ex.1035.628DELL

A.1

Computer Arithmetic

Introduction

A tremendous variety of algorithms have been proposed for use in floating-point
accelerators. However, actual floating-point chips are usually based on refine
ments and variations of just a few basic algorithms. In this appendix, we focus
on those algorithms. In addition to choosing algorithms for addition, subtraction,
multiplication and division, the computer architect must decide whether to go
beyond the basics. Should square root be implemented in hardware or software?
Should extended precision be implemented? This appendix will give you the
background for making these and other decisions.

Our discussion of floating point will focus almost exclusively on the IEEE
floating-point standard (IEEE 754) because of its rapidly increasing acceptance.
Although floating-point arithmetic involves manipulating exponents and shifting
fractions, the bulk of the time in floating-point operations is spent operating on
fractions using integer algorithms (but not necessarily using the integer hard
ware). Thus, after our discussion of floating point, we will take a more detailed
look at integer algorithms.

Some good references on computer arithmetic, in order from least to most
detailed, are Chapter 7 of Hamacher, Vranesic, and Zaky [1984], Gosling
[1980], and Scott [1985].

Ex.1035.629DELL

 Computer Arithmetic

A.1 | Introduction
A tremendousvariety of algorithms have been proposedfor use in floating-point
accelerators. However, actual floating-point chips are usually based on refine-
ments and variations of just a few basic algorithms. In this appendix, we focus
on those algorithms. In addition to choosing algorithmsfor addition, subtraction,
multiplication and division, the computer architect must decide whether to go
beyondthe basics. Should square root be implemented in hardware or software?
Should extended precision be implemented? This appendix will give you the
background for making these and other decisions.

Our discussion of floating point will focus almost exclusively on the IEEE
floating-point standard (IEEE 754)because ofits rapidly increasing acceptance.
Althoughfloating-point arithmetic involves manipulating exponents and shifting
fractions, the bulk of the time in floating-point operations is spent operating on
fractions using integer algorithms (but not necessarily using the integer hard-
ware). Thus, after our discussion of floating point, we will take a more detailed
look at integer algorithms.

Some good references on computer arithmetic, in order from least to most
detailed, are Chapter 7 of Hamacher, Vranesic, and Zaky [1984], Gosling
[1980], and Scott [1985].

DELL Ex.1035.629

A·2 A.2 Basic Techniques of Integer Arithmetic

A.2 I Basic Techniques of Integer Arithmetic

A.2.1

A.2.2

Readers who have studied computer arithmetic before will find most of this sec
tion to be review.

Ripple-Carry Addition

The building blocks of an adder that can compute the sum of the n-bit numbers
an-r··a1a0 and bn_1···b1bo are half adders andfull adders. The half adder takes
two bits ai and bi as input and produces a sum bit si and a carry bit ci+l as output.
Mathematically, si = (ai +bi) mod 2, and ci+l = L (ai +bi)/2 J , where L J is the
floor function. As logic equations, si = aJii + aibi, and Ci+l = aibi, where aibi
means ai A bi and ai + bi means ai v bi. The half adder is also called a (2,2)
adder, since it takes two inputs and produces two outputs. The full adder is a
(3,2) adder and is defined by the logic equations

The input ci is called the carry in, while ci+l is the carry out. The principle

problem in building an adder for n-bit numbers is propagating the carries. The
most obvious way to solve this is with a ripple-carry adder, consisting of n full
adders, as illustrated in Figure A. l. (In the figures in this appendix the least sig
nificant bit is always on the right.) The ci+l output of the ith adder is fed into the
ci+I input of the next adder (the (i + 1)-th adder) with the lower order carry in c0
set to 0. Since the low-order carry in is zero, the low-order adder could be a half
adder. Later, however, we will see that setting the low-order carry-in bit to 1 is
useful for performing subtraction.

From Equation A.2.2, there are two levels of logic involved in computing
ci+I from ci. Thus, if the least significant bit generates a carry, and that carry gets

propagated all the way to the last adder, the a0 signal will pass through 2n levels
of logic before the final gate can determine whether there is a carry out of the
most significant place. In general, the time a circuit takes to produce an output is
proportional to the maximum number of logic levels through which a signal
travels. However, determining the exact relationship between logic levels and
timings is highly technology dependent. Therefore, when comparing adders we
will simply compare the number of logic levels in each one. For a ripple-carry
adder that operates on n bits, there are 2n logic levels. Typical values of n are 32
for integer arithmetic and 53 for double-precision floating point. The ripple
carry adder is the slowest adder, but also the cheapest. It can be built with only n
simple cells, connected in a simple, regular way.

Ex.1035.630DELL

A.2

A.2.1

A.2.2

A.2 Basic Techniques of Integer Arithmetic

Basic Techniquesof Integer Arithmetic

Readers who havestudied computer arithmetic before will find mostof this sec-
tion to be review.

Ripple-Carry Addition

The building blocks of an adder that can compute the sum of the n-bit numbers
Anag and by_1:-bbo are half adders andfull adders. The half adder takes
two bits a; and b; as input and produces a sum bit s; and a carrybit c;,, as output.
Mathematically, s; = (a; + b;)mod2, and c;,;=|(a;+ b;)/2| , where | | is the
floor function. As logic equations, s; = a;b; + a,b;, and c;41 = ajb;, where a;b;
means a; A b; and a;+ b; means a; Vv b;. The half adder is also called a (2,2)
adder, since it takes two inputs and produces two outputs. The full adder is a
(3,2) adder andis defined by the logic equations

S; ajb;C; + GbiCj + Fbjc; + a,b;

Cin = aj, + a,c; + DiC;

The input c; is called the carry in, while c;,, is the carry out. The principle
problem in building an adder for n-bit numbers is propagating the carries. The
most obvious wayto solvethis is with a ripple-carry adder, consisting of n full
adders, as illustrated in Figure A.1. (In the figures in this appendix theleast sig-
nificant bit is always on the right.) The c,,, output of the ith adder is fed into the
Cix1 input of the next adder (the (i + 1)-th adder) with the lowerordercarry in co
set to 0. Since the low-ordercarry in is zero, the low-order adder could be a half
adder. Later, however, we will see that setting the low-order carry-in bit to 1 is
useful for performing subtraction.

From Equation A.2.2, there are two levels of logic involved in computing
Ci+1 from c;. Thus, if the least significant bit generatesa carry, and that carry gets
propagatedall the way to the last adder, the ag signal will pass through 2n levels
of logic before the final gate can determine whether there is a carry out of the
most significant place. In general, the time a circuit takes to produce an outputis
proportional to the maximum number oflogic levels through which a signal
travels. However, determining the exact relationship between logic levels and
timings is highly technology dependent. Therefore, when comparing adders we
will simply compare the numberof logic levels in each one. For a ripple-carry
adderthat operates on n bits, there are 2n logic levels. Typical values of n are 32
for integer arithmetic and 53 for double-precision floating point. The ripple-
carry adderis the slowest adder, but also the cheapest. It can be built with only n
simple cells, connected in a simple, regular way.

DELL Ex.1035.630

Computer Arithmetic A·3

0

•••

FIGURE A.1 Ripple-carry adder, consisting of n full adders. The carry out of one full
adder is connected to the carry in of the adder for the next most significant bit. The carries
ripple from the least significant bit (on the right) to the most significant bit (on the left).

Because the ripple-carry adder is relatively slow compared to the designs dis
cussed in Section A.8, one might wonder why it is used at all. In technologies
like CMOS, even though ripple adders take time O(n), the constant factor is very
small. In such cases short ripple adders are often used as building blocks in
larger adders.

Radix·2 Multiplication and Division

The simplest multiplier operates on two unsigned numbers, one bit at a time, as
illustrated in Figure A.2(a) (page A-4). The numbers to be multiplied are
an_1an-r·ao and bn_1bn-r·b0, and they are placed in registers A and B, respec
tively. Register Pis initially zero. There are two parts in each multiply step.

L If the least significant bit of A is 1, then register B, containing bn_1bn_2···b0, is
added to P; otherwise 00···00 is added to P. The sum is placed back into P.

2. Registers P and A are shifted right, with the low-order bit of P being moved
into register A and the rightmost bit of A, which is not used in the rest of the
algorithm, being shifted out.

After n steps, the product appears in registers P and A, with A holding the
lower-order bits.

The simplest divider also operates on unsigned numbers and produces a bit at
a time. A hardware divider is shown in Figure A.2(b). To compute a/b, put a in
the A register, b in the B register, 0 in the P register, and then proceed as
follows:

1. ·Shift the register pair (P ,A) one bit left.

2. Subtract the content ofregister B (which is bn_1bn_2···b0) from register P.

3. If the result of step 2 is negative, set the low-order bit of A to 0, otherwise
to 1.

Ex.1035.631DELL

Computer Arithmetic A-3

FIGURE A.1_ Ripple-carry adder, consisting of n full adders. The carry outof onefull
adderis connecied to the carry in of the adderfor the next mostsignificant bit. The carries
ripple from the least significant bit (on the right) to the mostsignificant bit (on theleft).

Becausethe ripple-carry adderis relatively slow comparedto the designs dis-
cussed in Section A.8, one might wonder whyit is used at all. In technologies
like CMOS,even thoughripple adders take time O(7), the constant factor is very
small. In such cases short ripple adders are often used as building blocks in
larger adders.

Radix-2 Multiplication and Division

The simplest multiplier operates on two unsigned numbers, onebit ata time, as
illustrated in Figure A.2(a) (page A-4). The numbers to be multiplied are
An_1Gn_2°*°Ag and b,_1b,-2°*"bo, and they are placed in registers A and B, respec-
tively. Register P is initially zero. There are two parts in each multiply step.

1. [Ifthe least significant bit of A is 1, then register B, containing b,_1D,,5°--Do, is
added to P; otherwise 00---00 is added to P. The sum is placed backinto P.

2. Registers P and A are shifted right, with the low-orderbit of P being moved
into register A and the rightmostbit of A, which is not used in the rest of the
algorithm, being shifted out.

After n steps, the product appears in registers P and A, with A holding the
. lower-orderbits.

The simplest divider also operates on unsigned numbers and producesa bit at
a time. A hardware divider is shown in Figure A.2(b). To compute a/b, put a in
the A register, b in the B register, 0 in the P register, and then proceed as
follows:

1. -Shift the register pair (P,A) onebitleft.

2. Subtract the content of register B (whichis b,,1b,,9:-:Do) from register P.

3. If the result of step 2 is negative, set the low-order bit of A to 0, otherwise
to 1.

DELL Ex.1035.631

A·4 A.2 Basic Techniques of Integer Arithmetic

Carry out
Shift

I p

I
A

f-1-1 t----'" n I t----'"n

B

(a) i----n----1

Shift

p

1---- n+ 1 ------1

(b)

FIGURE A.2 Block diagram of simple multiplier (a) and divider (b) for n-bit unsigned
integers. Each multiplication step consists of adding the contents of P to either B or O
(depending on the low-order bit of A), replacing P with the sum, and then shifting both P
and A one bit right. Each division step involves first shifting P and A one bit left, subtracting
B from P, and if the difference is nonnegative, putting it into P. If the difference is nonnega
tive, the low-order bit of A is set to 1.

4. If the result of step 2 is negative, restore the old value of P by adding the
contents of register B back into P.

After repeating this n times, the A register will contain the quotient, and the P
register will contain the remainder. This algorithm is the binary version of the
paper-and-pencil method; a numerical example is illustrated in Figure A.3(a)
(page A-6).

Notice that the two block diagrams in Figure A.2 are very similar. The main
difference is that the register pair (P,A) shifts right when multiplying and left
when dividing. By allowing these registers to shift bidirectionally, the same
hardware can be shared between multiplication and division.

Ex.1035.632DELL

A-4 A.2 Basic Techniquesof Integer Arithmetic

Carry out

FIGURE A.2_ Block diagram of simple multiplier (a) and divider(b) for n-bit unsigned
integers. Each multiplication step consists of adding the contents of P to either B or 0
(depending on the low-orderbit of A), replacing P with the sum, and then shifting both P
and A onebit right. Each division step involvesfirst shifting P and A onebit left, subtracting
B from P,andif the difference is nonnegative, puitingit intoP.If the difference is nonnega-
tive, the low-orderbit of Ais set to 1.

4. If the result of step 2 is negative, restore the old value of P by adding the
contents of register B back into P.

After repeating this 1 times, the A register will contain the quotient, and the P
register will contain the remainder. This algorithm is the binary version of the
paper-and-pencil method; a numerical example is illustrated in Figure A.3(a)
(page A-6). ,

Notice that the two block diagrams in Figure A.2 are very similar. The main
difference is that the register pair (P,A) shifts right when multiplying andleft
when dividing. By allowing these registers to shift bidirectionally, the same
hardware can be shared between multiplication and division.

DELL Ex.1035.632

Computer Arithmetic A·S

The division algorithm illustrated in Figure A.3(a) (page A-6) is calle~
restoring, because if subtraction by b yields a negative result, the P register is
restored by adding b back in. The restoration step (4 above) can be easily
eliminated. To see why, let r be the contents of the (P,A) register pair, with a
binary point between the low-order bit of P and the high-order bit of A. Then
each step of the algorithm computes 2r - b, putting the high-order word of this
difference in P, and the low-order word in A. Suppose the result of a step is
negative. Normally, we would add b back in (giving 2r), shift (giving 4r), and
then subtract (obtaining 4r - b). Suppose we didn't restore, but continued with
the algorithm. First, shift the unrestored 2r - b, yielding 4r - 2b, then add b,
giving 4r - b. This is exactly what we would have obtained if we had restored!
Thus, the nonrestoring algorithm is

If P is negative,

la. Shift the register pair (P,A) one bit left.

2a. Add the contents of register B to P.

Else,

lb. Shift the register pair (P,A) one bit left.

2b. Subtract the contents of register B from P.

Finally,

3. If P is negative, set the low-order bit of A to 0, otherwise set it to 1.

After repeating this n times, the quotient is in A. If P is nonnegative, it is the
remainder. Otherwise, it needs to be restored (i.e., add b), and then it will be the
remainder. A numerical example is given in Figure A.3(b). Note that the sign of
P must be tested before shifting, since the sign bit can be lost when shifting.
However, because of two's complement arithmetic (discussed in the next sec
tion), the net result of shifting followed by the appropriate add/subtract operation
will be the correct value. This comes about because the result of each step is a
number r with Ir I ~ b.

If a and bare unsigned numbers in the range 0 ~ a,b ~ 2n - l, then the multi
plier in Figure A.2 will work if register Pis n bits long. However, for division, P
must be extended to n + 1 bits in order to detect the sign of P. Thus the adder
must also have n + 1 bits.

Why would anyone implement restoring division, which uses the same
hardware as nonrestoring division (the control is slightly different) but involves
an extra addition? In fact, the usual implementation for restoring division
doesn't literally perform an add in step 4. Rather, the sign resulting from the
subtraction is tested, and only if the sum is nonnegative is it loaded back into the
P register.

As a final point, before beginning to divide, the hardware must check to see if
the divisor is zero.

Ex.1035.633DELL

A-6 A.2 Basic Techniques of Integer Arithmetic

p A

00000 1110 Divide 14 = 111 O by 3 = 11. B always contains 0011

00001 110 step (1): shift

-00011 step (2): subtract

-00010 1100 step (3): result is negative, set quotient bit to 0

00001 1100 step (4): restore

00011 100 step (1): shift

-00011 step (2): subtract

00000 1001 step (3): result is nonnegative, set quotient bit to 1

00001 001 step (1): shift

-00011 step (2): subtract

-00010 0010 step (3): result is negative, set quotient bit O

00001 0010 step (4): restore

00010 010 step (1): shift

-00011 step (2): subtract

-00001 0100 step (3): result is negative, set quotient bit to O

00010 0100 step (4): restore. The quotient is 0100 and the remainder is 00010.

(a)

00000 1110 Divide 14 = 111 O by 3 = 11: B always contains 0011

00001 110 step (1b): shift

+11101 step (2b}: subtract b (add 2's complement)

11110 1100 step (3): P is negative, so set quotient bit to O

11101 100 step (1a): shift

+00011 step (2a): add b

00000 1001 step (3): P is nonnegative, so set quotient bit to 1

00001 001 step (1 b): shift

+11101 step (2b): subtract b

11110 0010 step (3): Pis negative, so set quotient bit to O

11100 010 step (1 a): shift

+00011 step (2a): add b

11111 0100 step (3): Pis negative, so set quotient bit to O

+00011 remainder is negative, so do final restore step

00010 The quotient is 0100 and the remainder is 0001 O

(b) ..._ _________________________ ..

FIGURE A.3 Numerical example of (a) restoring division and (b) nonrestoring
division.

Ex.1035.634DELL

Example:

Answer:

A.2.3

Computer Arithmetic A·7

Signed Numbers

There are four methods commonly used to represent signed n-bit numbers: sign
magnitude, two's complement, one's complement, and biased. In the sign-mag
nitude system, the high-order bit is the sign bit, and the low-order n - 1 bits are
the magnitude of the number. In the two's complement system, a number and its
negative add up to 2n. In one's complement, the negative of a number is ob
tained by complementing each bit. In a biased system, a fixed bias is picked so
that the sum of the bias and the number being represented will always be non
negative. A number is represented by first adding it to the bias, and then encod
ing the sum as an ordinary unsigned number.

How is -3 expressed in each of these formats?

The binary representation of 3 is 00112• In signed magnitude, -0011 = 1011. In
two's complement 0011 2 + 11012 = 8, so -0011 = 1101. In one's complement,
-0011=1100. Using a bias of 8, 3 is represented by 1011, and -3 by 0101.

The most widely used system for representing integers, two's complement, is
the system we will use here; one's complement is discussed in the Exercises.
One reason for the popularity of two's complement is that addition is extremely
simple: Simply discard the carry out from the high-order bit. To add 5 + -2, for
example, add 0101 and 1110 to obtain 0011, resulting in the correct value of 3.
A useful formula for the value of a two's complement number an_1an_2···a1a0 is

Overflow occurs when the result of the operation does not fit in the represen
tation being used. For example, if unsigned numbers are being represented using
four bits, then 6 = 01102, and 11 = 10112. Their sum (17) overflows because its
binary equivalent (100012) doesn't fit into four bits. For unsigned numbers,
detecting overflow is easy; it occurs exactly when there is a carry out of the most
significant bit. For two's complement, things are trickier: Overflow occurs
exactly when the carry into the high-order bit is different from the (to be dis
carded) carry out of the high-order bit. In the example of 5 + -2 above, a 1 is
carried both into and out of the leftmost bit, avoiding overflow.

Negating a two's complement number involves complementing each bit and
then adding 1. For instance, to negate 0011, complement it to get 1100 and then
add 1 to get 1101. Thus, to implement a-busing an adder, simply feed a and b
(where bis the number obtained by complementing each bit of b) into the adder,
and set the low-order, carry-in bit to 1. This explains why the rightmost adder in
Figure A.1 is a full adder.

Multiplying two's complement numbers is not quite as simple as adding
them. The obvious approach is to convert both operands to be nonnegative, do

Ex.1035.635DELL

ComputerArithmetic A-7

Signed Numbers

There are four methods commonly used to represent signed n-bit numbers: sign
magnitude, two’s complement, one’s complement, and biased. In the sign-mag-
nitude system, the high-orderbit is the sign bit, and the low-order n— 1 bits are
the magnitude of the number. In the two’s complement system, a numberandits
negative add up to 2”. In one’s complement, the negative of a numberis ob-
tained by complementing eachbit. In a biased system,a fixed bias is picked so
that the sum of the bias and the number being represented will always be non-
negative. A numberis represented by first adding it to the bias, and then encod-
ing the sum as an ordinary unsigned number.

 Howis —3 expressed in each of these formats?
Example:

Answer: The binary representation of 3 is 0011,. In signed magnitude, -0011 = 1011. In
two’s complement 0011, + 11012 = 8, so—0011 = 1101. In one’s complement,
~0011 = 1100. Using a bias of 8, 3 is represented by 1011, and ~3 by 0101.

The most widely used system for representing integers, two’s complement,is
the system we will use here; one’s complement is discussed in the Exercises.
Onereason for the popularity of two’s complementis that addition is extremely
simple: Simply discard the carry out from the high-order bit. To add 5 + —2,for
example, add 0101 and 1110 to obtain 0011, resulting in the correct value of 3.
A useful formula for the value of a two’s complement number @,_1@,_9:--@,d1S

A.2.3 —Ay2""! + Ay92”? ++ a2! + ag

Overflow occurs whenthe result of the operation does notfit in the represen-
tation being used. For example, if unsigned numbers are being represented using
four bits, then 6 = 01102, and 11 = 10115. Their sum (17) overflows becauseits
binary equivalent (100012) doesn’t fit into four bits. For unsigned numbers,
detecting overflow is easy; it occurs exactly whenthere is a carry out of the most
significant bit. For two’s complement, things are trickier: Overflow occurs
exactly when the carry into the high-orderbit is different from the (to be dis-
carded) carry out of the high-order bit. In the example of 5 + —2 above, a 1 is
carried both into and out of the leftmost bit, avoiding overflow.

Negating a two’s complement number involves complementing each bit and
then adding 1. For instance, to negate 0011, complementit to get 1100 and then
add 1 to get 1101. Thus, to implement a—b using an adder, simply feed a and b
(where b is the number obtained by complementingeach bit of b) into the adder,
and set the low-order, carry-in bit to 1. This explains why the rightmost adder in
Figure A.1 is a full adder.

' Multiplying two’s complement numbers is not quite as simple as adding
them. The obvious approach is to convert both operands to be nonnegative, do .

DELL Ex.1035.635

A-8

Example:

Answer:

A.2 Basic Techniques of Integer Arithmetic

an unsigned multiplication, and then (if the original operands were of opposite
signs) negate the result. Although this is conceptually simple, it requires extra
time and hardware. Here is a better approach: Suppose that we are multiplying a
times b using the hardware shown in Figure A.2(a) (page A-4). Register A is
loaded with the number a; Bis loaded with b. Since the contents of register Bis
always b, we will use B and b interchangeably. The first thing to do when
multiplying two's complementnumbers is to ensure that when Pis shifted, it is
shifted arithmetically; that is, the bit shifted into the high-order bit of P should
be the sign bit of P. Note that our n-bit-wide adder will now be adding n-bit
two's complement numbers between -2n-1 and 2n-1 _ 1.

Next, suppose a is negative. The method for handling this case is called
Booth recoding. Booth recoding is a very basic technique in computer arithmetic
and will play a key role in Section A. 9. Observe that multiplying by 01112 is the
same as multiplying by 10002 - 1. To perform this multiplication, subtract b
from register P in the first multiplication cycle. Add zero in the second and third
cycles. In the fourth cycle, add b. To apply this technique to a negative
multiplier like -4 = 11002, think of it as an unsigned number and write it as
100002 - 01002. If the multiplication algorithm only involves n steps (n = 4 in
this case), the 100002 term is ignored, and we end up subtracting 01002 = 4
times the multiplier-exactly the right answer. The advantage of Booth recoding
is that it works equally well for positive and negative multipliers. To deal with
negative values of a, then, all that is required is to sometimes subtract b from P,
instead of either adding b or 0 to P. Here are the precise rules: If the initial con
tent of A is an_1 .. ·a0, then at the ith multiply step, the low-order bit of register A
is ai, and

1. If ai = 0 and ai-l = 0 then add 0.

2. If ai = 0 and ai-l = 1 then add B.

3. If ai = 1 and ai-l = 0 then subtract B.

4. If ai = 1 and ai-l = 1 then add 0.

For the first step, when i = 0, take ai-l to be 0.

When multiplying -6 times -5, what is the sequence of values in the (P,A)
register pair?

Initially, Pis zero and A holds -6 = 10102. From Figure A.4, in the first step 0 is
added to P giving (P,A) = 0000 1010. After shifting (P,A) = 0000 0101. In the
next step, Figure A.4 shows that 0101 is added to P giving (P,A) = 0101 0101.
Continuing, (P,A) = 0010 1010, 1101 1010, 1110 1101, 0011 1101, and finally
00011110.

Ex.1035.636DELL

Computer Arithmetic A·9

The four cases above can be restated as saying that in the ith step you should add
(ai-l - a)B to P. With this observation, it is easy to verify that these rules work,
because the result of all the additions is

n-1
L,b(ai-I -aD2i = b(-an-I2n-I +an-22n- 2+ ... +a12+ao)
i=O

From Equation A.2.3 (page A-7), the quantity in parenthesis is the value of A as
a two's complement number.

The simplest way to implement the rules for Booth recoding is to extend the
A register one bit to the right so that this new bit will contain ai-l· Unlike the
naive method of inverting any negative operands, this technique doesn't require
extra steps or any special casing for negative operands. It has only a slightly
more complicated control logic. If the multiplier is being shared with a divider,
there will already be the capability for subtracting b, rather than adding it. To
summarize, a simple method for handling two's complement multiplication is to
pay attention to the sign of P when shifting it right, and to save the most recently
shifted off bit of A to use in deciding whether to add or subtract b from P.

The reason for the term "recoding" is as follows. Consider representing num
bers using 1, 0, and 1 where 1 represents -1; as an example, this allows us to
also represent (recode) 0111 as 1001. Imagine a multiplication algorithm that
worked as follows: Put a recoded number into the A register. If the low-order bit
of A is l, then add-B. If it is 1, then subtract B. If the low-order bit is 0, then add
0. This imaginary algorithm has exactly the same effect as the Booth recoding
method given above.

Booth recoding is usually the best method for designing hardware that
operates on signed numbers. For hardware that doesn't directly implement it,
however, performing Booth recoding in software or microcode is usually too
slow, due to the conditional tests and branches. If the hardware supports
arithmetic shifts (so that negative b is handled correctly), then the following

1 O 1 O =a

x 1011 =b

a;=O,a;_
1
=0, so add O

a;=1,a
1
_

1
=0, so add -b =0101

a;=O,a;_
1
=1, so add b

O 1 O 1 a;=1,ai-1 =0, so add -b

0011110

FIGURE A.4. Multiplication of a= -6 by b = -5 to get 30 using Booth recoding. The

digits to the left of the jagged line are the sign-extended digits.

Ex.1035.637DELL

ComputerArithmetic A-9

The four cases above can berestated as saying thatin the ith step you should add
(a;_1 — @;)B to P. With this observation,it is easy to verify that these rules work,
becausethe result of all the additions is ©

n-l

2bG:-1 — a2! = b(-ay_12"-1 + a, 92"~7 + + +42 +.apy)i=

From Equation A.2.3 (page A-7), the quantity in parenthesis is the value of A as
a two’s complement number.

The simplest way to implement the rules for Booth recoding is to extend the
A register one bit to the right so that this new bit will contain a;_;. Unlike the
naive method of inverting any negative operands, this technique doesn’t require
extra steps or any special casing for negative operands.It has only a slightly
more complicated control logic. If the multiplier is being shared with a divider,
there will already be the capability for subtracting b, rather than adding it. To
summarize, a simple method for handling two’s complement multiplicationis to
pay attention to the signof P whenshiftingit right, and to save the most recently
shifted off bit of A to use in deciding whetherto add or subtract b from P.

The reason for the term “recoding”is as follows. Consider representing num-
bers using 1, 0, and 1 where I represents —1; as an example, this allows us to
also represent (recode) 0111 as 1001. Imagine a multiplication algorithm that
worked as follows: Put a recoded numberinto the A register. If the low-orderbit
of A is 1, then add B. Ifit is 1, then subtractB. If the low-order bit is 0, then add

' 0. This imaginary algorithm has exactly the same effect as the Booth recoding
method given above.

Booth recoding is usually. the best method for designing hardware that
operates on signed numbers. For hardware that doesn’t directly implementit,
however, performing Booth recoding in software or microcode is usually too
slow, due to the conditional tests and branches. If the hardware supports
arithmetic shifts (so that negative b is handled correctly), then the following

1010

X1011

000q;0000 a=0,a,_,=0, 0 add 0
0010101 azl 14,_,=0, so add ~b =0101

i011 a=0,a,_,=1,s80 add b

0101 a=1,a,_,=0, so add —b

00117110
FIGURE A.4. Multiplication of a = —6 by b = —5 to get 30 using Booth recoding. The
digits to the left of the jagged line are the sign-extendeddigits.

DELL Ex.1035.637

A·10 A.2 Basic Techniques of Integer Arithmetic

method can be used. Treat the multiplier a as if it were an unsigned number, and
perform n - 1 multiply steps. If a < 0 (in which case there will be a 1 in the low
order bit of the A register at this point), then subtract b from P; otherwise (a~ 0)
neither add nor subtract. In either case, do a final shift (for a total of n shifts) to
get the low-order bit of the product into the low-order position of A. This works
because it amounts to multiplying b by -an_ 12n-l + ··· + a 12 + a0, which is the
value of an_1 ···a0 as a two's complement number by Equation A.2.3. If the
hardware doesn't support arithmetic shift, then converting the operands to be
nonnegative is probably the best approach.

Two final remarks: A good way to test a signed-multiply routine is to try

-2n-l x -2n-l, since this is the only case that produces a 2n-1 bit result. Unlike
multiplication, division is usually performed in hardware by converting the
operands to be nonnegative and then doing an unsigned divide; because division
is substantially slower (and less frequent) than multiplication, the extra· time
used to manipulate the signs has less impact than it does on multiplication.

Systems Issues

When designing an instruction set, there are a number of issues related to integer
arithmetic that need to be resolved. Several of them are discussed here.

First, what should be done about integer overflow? This situation is compli
cated by the fact that detecting overflow is different depending on whether the
operands are signed or unsigned integers. Consider signed arithmetic first. There
are three approaches: Set a bit on overflow, trap on overflow, or do nothing on
overflow. In the last case, software has to check whether or not an overflow
occurred. The most convenient solution for the programmer is to have an enable
bit. If this bit is turned on, then overflow causes a trap. If it is turned off, then
overflow sets a bit. The advantage of this approach is that both trapping and
nontrapping operations require only one instruction. Furthermore, as we will see
in Section A.7, this is analogous to how the IEEE floating-point standard han
dles floating-point overflow. Figure A.5 shows how some common machines
treat overflow.

What about unsigned addition? Notice that none of the architectures in Figure
A.5 trap on unsigned overflow. The reason for this is that the primary use of
unsigned arithmetic is in manipulating addresses. It is convenient to be able to
subtract from an unsigned address by adding. For example, when n = 4, we can
subtract 2 from the unsigned address 10 = 10102 by adding 14 = 11102. Even
though 10102 + 11102 sums to the answer we wanted (10002 = 8), this operation
has an unsigned overflow. In other words, addresses are treated as both signed
and unsigned numbers, making an overflow trap useless for address calculations.

A second issue concerns multiplication. Should the result of multiplying two
n-bit numbers be a 2n-bit result, or should multiplication just return the low
order n bits, signaling overflow if the result doesn't fit inn bits? The argument
in favor of an n-bit result is that in virtually all high-level languages,

Ex.1035.638DELL

Machine

VAX

IBM 370

Intel 8086

MIPS R3000

SPARC

Computer Arithmetic A·11

multiplication is an operation whose arguments are integer variables and whose
result is an integer variable of the same type. Therefore, there is no way to
generate code that utilizes a double-precision result. The argument in favor of a
2n-bit result is that it can be used by an assembly language routine to speed up
multiplication of multiple-precision integers substantially (by about a factor of
3).

A third issue concerns machines that want to execute one instruction every
cycle. It is rarely practical to perform a multiplication or division in the same
amount of time that an addition or register-register move takes. There are three
possible approaches to this problem. The first is to have a single-cycle multiply
step instruction. This might do one step of the Booth algorithm. The second
approach is to do integer multiplication in the floating-point unit and have it be
part of the floating-point instruction set. (This is what DLX does.) The third
approach is to have an autonomous unit in the CPU do the multiplication. Iri this
case, the result can either be guaranteed to be delivered in a fixed number of
cycles-and the compiler charged with waiting the proper amount of time-or
there can be an interlock. The same comments apply to division as well. As
examples, the SPARC has a multiply-step instruction but no divide-step instruc
tion, and the MIPS R3000 has an autonomous unit that does multiplication and
division (see Section E-6 for new extensions to SPARC for arithmetic). The
designers of the HP Precision Architecture did an especially thorough job of ana
lyzing the frequency of the operands for multiplication and division, and based
their multiply and divide steps accordingly. (See Magenheimer et al. [1988] for
details.)

A potential pitfall worth mentioning concerns multiple-precision addition.
Many instruction sets offer a variant of the ADD instruction that adds three
operands: two n-bit numbers together with a third single-bit number. This third
number is the carry from the previous addition. Since the multiple-precision
number will typically be stored in an array, it is important to be able to incre
ment the array pointer without destroying the carry bit.

Trap on signed overflow? Trap on unsigned Set bit on signed Set bit on unsigned
overflow? overflow? overflow?

If enable is on No Yes. ADD sets V bit. Yes. ADD sets C bit.

If enable is on No Yes. ADD sets cond Yes. Logical ADD
code. sets cond code.

No No Yes. ADD sets V bit. Yes. ADD sets C bit.

There are 2 ADD No No. Software must deduce it from sign of
instructions: one always operands and result.
traps, the q_ther never does.

No No AD DCC sets v bit. ADD CC sets c bit.
ADD does not. ADD does not.

FIGURE A.5 Summary of how various machines handle integer overflow. Both the 8086 an.d SPARC have an
instruction that traps if the V bit is set, so the cost of trapping on overflow is one extra instruction.

Ex.1035.639DELL

A·12

A.3

A.3 Floating Point

Floating Point

Introduction

Many applications require numbers that aren't integers. There are a number of
ways that nonintegers can be represented. One is to use fixed point; that is, use
integer arithmetic and simply imagine the binary point somewhere other than
just to the right of the least significant digit. Adding two such numbers can be
done with an integer add, whereas multiplication requires some extra shifting.
Other representations that have been proposed involve storing the logarithm of a
number and doing multiplication by adding the logarithms, or using a pair of
integers (a,b) to represent the fraction a/b. However, there is only one noninteger
representation that has gained widespread use, and that is the floating-point
representation. In this system, a computer word is divided into two parts, an
exponent and a significand. As an example, an exponent of -2 and significand
of 1.5 might represent the number 1.5 x r 2 = 0.375. The advantages of
standardizing a particular representation are obvious. Numerical analysts can
build up high-quality software libraries, computer designers can develop tech
niques for implementing high-performance hardware, and hardware vendors can
build standard accelerators. Given the predominance of the floating-point repre
sentation, it appears unlikely that any other representation will come into
widespread use.

A key fact about floating-point instructions is that their semantics are not as
clear cut as the semantics of the rest of the instruction set, and in the past the
behavior of floating-point operations varied considerably from one computer
family to the next. The variations involved such things as the number of bits
allocated to the exponent and significand, the range of exponents, how rounding
was carried out, and the actions taken on exceptional conditions like underflow
and overflow. Computer architecture books used to dispense advice on how to
deal with all these details, but fortunately this is no longer necessary. That's
because the computer industry is rapidly converging on the format specified by
IEEE standard 754-1985. The advantages of using a standard variant of floating
point are similar to those for using floating point over other noninteger represen
tations. In this chapter we will discuss only the IEEE version of floating point.
For further reading see IEEE [1985], Cody et al. [1984], Cody [1988], and Gold
berg [1989].

Overview of the IEEE Standard

Probably the most notable feature of the standard is that it requires computation
to continue in the face of exceptional conditions, such as dividing by zero or tak
ing the square root of a negative number. The result of taking the square root of
a negative number is a NaN (Not a Number), a bit pattern that does not represent
an ordinary number. As an example of how NaNs might be useful, consider the

Ex.1035.640DELL

Computer Arithmetic A·13

code for a zero finder that talces a function F as an argument and evaluates F at
various points to determine a zero for it. If the zero finder accidentally probes
outside the valid values for F, F may well cause an exception. Writing a zero
finder that deals with this case is highly language and operating-system depen
dent, because it relies on how the operating system reacts to exceptions and how
this reaction is mapped back into the programming language. In IEEE arithmetic
it is easy to write a zero finder that handles this situation and runs on many
different system's. After each evaluation of F, it simply checks to see if F has
returned a NaN; if so, it knows it has probed outside the domain of F.

Because of the rules for performing arithmetic with NaNs, writing floating
point subroutines that can accept NaN as an argument rarely requires any special
case checks. Suppose that arccos is computed in terms of arctan, using the

formula arccos x = 2 arctan(V (1 - x)/(1 + x)). If arctan handles an argument of
NaN properly, arccos will automatically do so too. That's because the IEEE
standard specifies that when an argument of an operation is a NaN, the result
should be a NaN. Therefore if x is a NaN, 1 + x, 1-x, (1 + x)/(1 - x) and

-J (1-x)/(l + x) will also be NaNs. No checking for NaNs is required.

While the result of-v-=i is a NaN, the result of 1/0 is hot a NaN, but +oo,
which is another special value. The standard defines arithmetic on
infinities (including -oo) using rules such as l/oo = 0. The formula arccos x =
2 arctan(-J (1-x)/(l +x)) illustrates how infinity arithmetic can be used. Since

arctan x asymptotically approaches n/2 as x approaches 00, it is natural to define
arctan(oo) = n/2, in which case arccos(-1) will automatically be computed cor
rectly as 2 arctan(oo) = n.

Another feature of the IEEE standard with implications for hardware is the
rounding rule. When operating on two floating-point numbers, the result is usu
ally a number that cannot be exactly represented as another floating-point num
ber. For example, in a floating-point system using base 10 and two significant
digits, 2.1 x 0.5 = 1.05. This needs to be rounded to two digits. Should it be
rounded to 1.0 or 1.1? In the IEEE standard, such halfway cases are rounded to
the number whose low-order digit is even. That is, J;05 rounds to 1.0, not 1.1.
The standard actually has four rounding modes. The default is round to nearest,
which rounds to an even number in the case of ties. The other modes are round
toward 0, round toward +oo and round toward -oo, .

The standard specifies four precisions: single, single extended, double, and
double extended. The properties of these precisions are summarized in Figure
A.6 (page A-14). Implementations are not required to have all four precisions,
but are encouraged to support either the combination of single and single
extended or all of single, double, and double extended. Let us consider single
precision in more detail. Single-precision numbers are represented using 32 bits:
1 for the sign, 8 for the exponent, and 23 for the fraction. The exponent is a
signed number represented using the bias method (as explained in Section A.2
above) with a bias of 127. We will always use the term exponent field to mean
the unsigned number contained in bits one through nine and exponent to mean

Ex.1035.641DELL

A-14

Example:

Answer:

A.3 Floating Point

the power to which two is to be raised. (In the standard these are called the
"biased exponent" and the "unbiased exponent," respectively.) The fraction
represents a number less than one, but the significand of the floating-point
number is one plus the fraction part. In other words, if e is the value of the ex
ponent field andf is the value of the fraction field, the number being represented
is 1.fx 2e-127.

What single-precision number does the following 32-bit word represent?

1 10000001 01000000000000000000000

Considered as an unsigned number, the exponent field is 129, making the value
of the exponent 129 - 127 = 2. The fraction part is .012 = .25, making the
significand 1.25. Thus, this bit pattern represents the number -1.25 x 22 = -5.

The fractional part of a floating-point number (.25 in the example above)
must not be confused with the significand, which is one plus the fractional part.
The leading 1 in the significand l .f does not appear in the representation; that is,
the leading bit is implicit. When performing arithmetic on IEEE format numbers,
the fraction part normally needs to be unpacked, which is to say the implicit one
needs to be made explicit.

In Figure A.6, the range of exponents for single precision is -126 to 127;
accordingly, the exponent field ranges from 1 to 254. The exponent fields of 0
and 255 are used to represent special values. When the exponent field is 255, a
zero fraction field represents infinity, and a nonzero fraction field represents a
NaN. Thus, there is an entire family of NaNs. WheIJ. the exponent and fraction
fields are zero, then the number represented is zero. Because ordinary numbers
always have a significand greater than or equal to 1-and are thus never zero-a
special convention such as this is required to represent zero.

A zero exponent field and nonzero fraction part represent a denormal number,
also sometimes called a subnormal number. These numbers make up the most
controversial part of the standard. Later, in the discussion of multiplication, we
will see why they are difficult to implement in hardware. In many floating-point

systems if Emin is the smallest exponent, a number less than 1.0 x 2Emin

Single Single extended Double Double extended

p (bits of precision) 24 ;::: 32 53 ;:::64

Emax 127 ;::: 1023 1023 ;::: 16383

Emin -126 :S:-1022 -1022 :S:-16382

Exponent bias 127 1023

FIGURE A.6 Format parameters for the IEEE 754 floating-point standard. The first
row gives the number of bits in the significand. The blank boxes are unspecified
parameters.

Ex.1035.642DELL

Computer Arithmetic A·15

cannot be represented, and a floating-point operation that results in a number
less than this is simply flushed to zero. In the IEEE standard, on the other hand,

numbers less than 1.0 x 2Emin are represented by shifting their fraction part to
the right. This is called gradual underflow. Thus, as numbers decrease in magni

tude below 2Emin, they gradually lose their significance and are only represented
by zero when all their significance has been shifted out. For example, in base 10
with 4 significant figures, let x = 1.234 x 2Emin. Then x/10 = 0.123 x lOEmin,
having lost a digit of precision; x/l 00 and x/l 000 have even less precision, while
x/10000 is finally small enough to be rounded to zero. Denormalized numbers
are implemented by having a word with a zero exponent field represent the

number O.fx 2Emin. One of the advantages of gradual underflow is that when it
is used, if x ::f:. y, then x - y ::f:. 0. In a flush-to-zero system, this is not always true.

The primary reason why the IEEE standard, like most other floating-point
formats, uses biased exponents is that it means nonnegative numbers are ordered
in the same way as integers. That is, the magnitude of floating-point numbers
can be compared using an integer comparator. Another (related) advantage is
that zero is represented by a word of all zeros. The down side of biased expo
nents is that adding them is slightly awkward, because it requires that the bias be
subtracted from their sum.

As the IEEE standard becomes more widespread, it will become easier to port
software and to, write portable libraries that deal with floating-point exceptions.
But the standard also has some drawbacks:

1. It was originally intended for microprocessors, so the requirements of high
performance implementations ~ere not given high priority.

2. The standard contains optional parts. This results in difficult decisions for
implementors-which parts should they implement?-and for portable software
writers-should they avoid using any of the optional parts of the standard?

3. Gradual underflow has usually been implemented in a way that is orders of
magnitude slower than flush to zero, so users often disable it.

4. There is as yet no industrial-strength, public-domain, IEEE floating-point
test suite.

Although the standard may ultimately improve the quality of floating-point
libraries, this has yet to happen because of the large base of VAXes, IBM/370s,

, and Crays, as well as the fact that there is no corresponding standard for how to
access its features in software. On the other hand, both DEC and IBM have
recently introduced machines that use IEEE arithmetic.

Some final comments on the standard:

1. Unlike most standards, IEEE 754 did not ratify or refine any existing system.
Although most of the features of the standard appeared in at least one previous
computer system, it is substantially different from what was current practice at
the time.

Ex.1035.643DELL

A-16 A.3 Floating Point

2. The standard says nothing about integer arithmetic or about transcendental
functions (sin, cos, exp, and so forth). In particular, it says nothing about the
accuracy that transcendentals should have, and it says nothing about the excep
tional values of transcendentals, such as o0.

3. It is intended that a computer system-that is, some combination of hard
ware and software-will implement the standard. Thus, there is nothing wrong
with designing hardware that does not completely implement the standard, as
long as there is some way for software to provide what the hardware does not. In
fact, the best design may well involve having rare cases handled by software.

A.4 I Floating-Point Addition

There are two differences between floating-point arithmetic and integer arith
metic: An exponent field must be manipulated, in addition to the fraction field,
and the result of a floating-point operation usually has to be rounded in order to
be represented by another floating-point number of the same precision.

Rounding

The IEEE standard specifies that the result of an arithmetic operation should be
the same as it would be if computed exactly and then rounded using the current
rounding mode. The most difficult mode to implement is the default mode
round toward the neare~t value (and round halfway cases to even). The naive
approach to complying with the IEEE standard is to compute the sum exactly
and then round. This would be quite expensive, since it would require a very
long adder. To see how to satisfy the standard with less hardware, we will con
sider some examples.

There are two ways that rounding can occur during addition. For purposes of
illustration we will use base 10, which is more natural for humans, and three
significant digits. The first case requires rounding due to carry out on the left, as
illustrated in Figure A.7(a). The second case requires rounding due to unequal
exponents, as in Figure A.7(b). Figure A.7(c) shows that it is possible for both
situations to occur simultaneously. In each of these cases, the sum must be com
puted to more than three places in order to perform rounding. In one case-when
subtracting nearby numbers, as in Figure A.7(d)-the sum must be computed to
more than three places, even though no rounding occurs. By temporarily ignor
ing the round-to-even requirement, each of these examples can be implemented
with a four-digit-wide adder (that is, using one additional digit). Thus, in Figure
A.7(b) the rightmost 6 of 2.56 can simply be dropped before adding. But there is
one case, shown in Figure A.7(e), in which four digits are not enough. If the
low-order digit of .0376 were shifted off, the answer would have been .973
instead of .972. However, it is easy to check (disregarding round to even) that

Ex.1035.644DELL

Computer Arithmetic A·17

two extra digits are always enough. These extra digits are called the guard and
round digits.

The round-to-even rule introduces an extra complication. Figure A.7(f) shows
an example with five significant digits. It might appear at first that one needs to
keep double the number of digits to perform round to even, as the rightmost 1 in
2.5001 determines whether the result will be 4.5676 or 4.5677.

Upon a little reflection one can see that it is only necessary to know whether
or not there are any nonzero digits past the guard and round positions. This
information can be stored in a single bit, usually called the sticky bit, which is
implemented by examining each digit as it is shifted off. As soon as a nonzero
digit appears, the sticky bit is set on and remains stuck on. To implement round
to even, simply append the sticky bit to the right of the round digit just before
rounding.

2.34 x 10
2

a)
+8.51 x 10

2

10.85 x 10
2

rounds to 1.08 X 10
3

2.34 x 10
2

2.34 x 10
2

b)
+2.56 x 10° +.0256 x 10

2

2.3656 x 10
2

rounds to 2.37 x 10
2

gr

9.51 x 10
2

c)
+.642 x 10

2

10.152 x 10
2

rounds to 1.02 X 10
3

g

1.47 x 10
2

d)
-.876 x 10

2

.594 x 10
2

g

e)
1.01 x 10

2

-.0376 x 102

.9724 x 10
2

rounds to .972 X 10
2

gr

4.5674 x 10° 4.5674
f)

2.5001 x 10-4 +.00025001

4.56765001 rounds to 4.5677
gr

FIGURE A.7 Examples of rounding. In (a) there is rounding because of carry out on the
left and in (b) because of unequal exponents, whereas in (c) both occur. Example (d)
shows that one extra place must be kept even if there is no rounding, while (e) shows the
situation in which two extra digits are needed. Finally (f), where p = 5, illustrates why a
sticky bit is necessary to perform round to even. The letters g and rare placed under the
guard and round digits.

Ex.1035.645DELL

A·18

Example:

Answer:

A.4 Floating-Point Addition

The Addition Algorithm

The notations ei and si are used here for the exponent and significand fields of
the floating-point number ai. This means that the floating-point number has been
unpacked and that Si has an explicit leading bit. The basic procedure for adding
two floating-point numbers a 1 and a2 is straightforward and involves five steps.

1. If e1 < e2, swap the operands so that the difference of the exponents satisfies
d = e1 - e2 ;::: 0. Tentatively set the exponent of the result to ei.

2. Shift s2 by d = ei - e2 places to the right. More precisely, put s2 into a p-bit
register and then extend that register MIN(2,d) bits to the right. Shift s2 d places
to the right. If d > 2, set the sticky bit to the logical OR of the d - 2 bits that are
shifted out of the extended register. Of the two extended bits, the most signifi
cant is the guard bit; the least significant is the round bit.

3. Append the sticky bit to s2, and then add the two signed-magnitude fraction
fields in a p + 3 bit adder. Call this preliminary sum S.

4. If there was a carry out from the most significant place in the previous step,
shift the magnitude of S right by one. Otherwise, shift it left until it is normal
ized. Adjust the exponent of the result accordingly. The round bit is now set to
the (p + 1)-st bit of the magnitude of S, and the sticky bit to the logical OR of all
the bits to the right of the round bit.

5. Round the result using Figure A.8. If a table entry is nonempty, add 1 to the
magnitude of S. Thus, if S;::: 0, you will be computing S + 1, otherwise S-1.

The guard and round bits before shifting are marked in each of the examples
of Figure A.7 (page A-17).

Show how the addition algorithm proceeds on the operands of Figure A. 7 (f)
when round to nearest is in effect.

In step 1, e1 = 0 > e2 = -3, sod= 3 and no swapping is necessary. In step 2,
g = 5, r = 0, and sticky is the OR of 0, 0, and 1; hence, sticky is 1. In step 3 the
numbers to be added are 4.5674 and 0.0002501, so the preliminary sum is
S = 4.5676501. In step 4 there is no carry out, sod is still 3. The round bit is 5,
and the sticky bit is 1 = 0 v 1. In step 5, consulting the table tells us that because
round and sticky are both nonzero, we must add 1 to the fifth digit of S, chang
ing S from 45676 to 45676 + 1 = 45677.

Step 3 involves adding sign-magnitude numbers, and itself has three steps:

3a. Convert any negative numbers to two's complement.

3b. Perform a (p + 4)-bit two's complement addition (p + 3 bits of magnitude, 1
bit for the sign).

Ex.1035.646DELL

Computer Arithmetic A·19

3c. If the result is negative, perform another two's complementation to put the
result back into sign-magnitude form.

As is apparent from this, addition is quite a complicated operation. Here is
one trick that can speed it up. A pair of numbers will only need to be variably
shifted once, in either step 2 or step 4, but not in both. The reason is simple:
If I ei - e1 I > 1, then step 4 can require a shift of at most one place. And if

I ei - e1 I :::;; 1, then step 2 obviously requires a shift of at most one step. A non-

pipelined adder can exploit this and reduce the number of steps from five to four.
An adder that uses each of the above steps as a pipeline stage can also use this
reduction, though it requires duplicating the shifter and adder.

Step 3 can be time consuming, because it can involve as many as four addi
tions: two to negate both operands (two's complementation done by performing
a bitwise complementation followed by adding 1), a third for the addition itself,
and then a fourth to negate the result. There are a number of ways to speed up
this step. We have already seen that 1 can be added to a sum essentially for free
by setting the low-order, carry-in bit of the adder to 1. If both operands are neg
ative, we can set their sign bits to zero, remembering to negate the result. The
add required when negating the result can be combined with the rounding step
(which must be prepared to do an add anyway).

The rounding step requires a second full-precision add in addition to the one
in step 3. It is possible to combine these into a single add. Observe that at the
end of step 2, the g, r, ands bits are known; thus it is also known whether or not
to round up, adding 1 to the pth most significant bit. What is not known is the
position of the pth most significant bit, since its location depends on the result of
the add in step 3; when adding numbers of the same sign, that position is deter
mined by whether there is a carry out of the most significant bit. Therefore, the
way to eliminate step 5 is to add in the round-up bit (if necessary) as part of step
3. Because the position is unknown, two versions of step 3 must be performed
using two adders in parallel. Each adder assumes one of the two possibilities for
the position where the round-up bit goes. This technique for reducing the num
ber of addition steps is used on the Intel 860 [Kohn 1989]. When rounding, there
is one complication that can arise: The addition of 1 could cause a carry out of
the high-order bit. This case occurs only when the value of S is 11 .. · l 1.

Rounding mode s::::o S<O

-oo +lifrvs

+oo +lifrvs

0

Nearest + 1 if r /\ s /\ Po or r /\ s +1 ifr AS A Po or r As

FIGURE A.8 Rules for implementing the IEEE rounding modes. Blank boxes mean
that the p most significant bits of the preliminary sum Sare the actual sum bits. If the
condition in the box is true, add 1 to the pth most significant bit of S. The symbols rand s
represent the round and sticky bits, while p0 is the pth most significant bit of S.

Ex.1035.647DELL

A·20

A.5

A.4 Floating-Point Addition

Denormalized Numbers

Very little changes in the above description if one of the inputs is a denormal
number. There must be a test to see if the exponent field is 0. If it is, then when
unpacking the significand there will not be a leading 1. By setting the exponent
field to 1 when unpacking a denormal, the shifting rules in steps 1-5 are still
correct.

In order to deal with denormalized outputs, step 4 must be modified slightly.
The value in the P register is shifted left until P is normalized, or until the expo
nent becomes Emin (that is, the exponent field becomes 1). If the exponent is
Emin• and if after rounding, the high-order bit of P is 1, then the result is a nor
malized number and should be packed in the usual way, by omitting the 1. If, on

· the other hand, the high-order bit is 0, the result is denormal, and when the result
is unpacked the exponent field must be set to 0.

Incidentally, detecting overflow is very easy. It can only happen if step 4
involves a shift right, and if the exponent field at that point is bumped up to 255
in single precision (or 2047 for double precision), or if this occurs after round
ing.

Detecting underflow is complicated by the fact that it depends on whether
there is a user trap handler. The IEEE standard specifies that if user trap handlers
are enabled, the system must trap if the result is denormal. On the other hand, if
trap handlers are disabled, then the underflow flag is set only if there is a loss of
accuracy-that is, if the result must be rounded. The rationale for this is that if
no accuracy is lost on an underflow, there is no point in setting a warning flag.
But if a trap handler is enabled, the user might be trying to simulate flush-to
zero and should therefore be notified whenever a result.dips below 1.0 x 2Emin.
This discussion is relevant for addition in that an addition or subtraction result
ing in a denormal number will always be exact; because no accuracy can be lost
to underflow, there is no need to set the underflow flag.

Floating-Point Multiplication

Floating-point multiplication is much like integer multiplication. Because float
ing-point numbers are stored in sign-magnitude form, the multiplier need only
deal with unsigned numbers (although we have seen that Booth recoding handles
signed two's complement numbers painlessly). If the fractions are unsigned p-bit
numbers, then the product can have as many as 2p bits and must be rounded to a
p-bit number. Besides multiplying the fraction parts, the exponent fields must be
added, and the bias then subtracted from their sum.

Here is a straightforward method of handling rounding using the multiplier of
Figure A.2 (page A-4): Multiply the two fractions to obtain a 2p-bit product in
the (P,A) registers. During the multiplication, the first p - 2 times a bit is shifted
into the A register, OR it into the sticky bit. After the end of all the multiply

Ex.1035.648DELL

Computer Arithmetic A·21

steps, the high-order bit of A is the guard bit, and the second high-order bit is the
round bit. There are two cases:

1. The high-order bit of Pis 0. Shift P left 1 bit, shifting in the g bit from A.
Shifting the rest of A is not necessary.

2. The high-order bit of P is 1. Set s := s v r and r := g, and add 1 to the
exponent.

Now use the rules in Figure A.8 (page A-19) to round the result, adding the 1
(if necessary) into the low-order bit of P. The fraction (in unpacked form) is in
the P register. Recall that the rounding operation can cause a carry out of the
most significant bit. A good discussion of more efficient ways to implement
rounding is in Santoro, Bewick, and Horowitz [1989].

Detecting overflow and underflow is slightly tricky. Consider the case of sin
gle precision. The exponent fields must be added together with -127. If the addi
tion is done in a 10-bit adder, -127 = 11100000012, and overflow occurs when
the high-order bits of the sum are 01 or if the sum is 0011111111. Underflow
occurs when the high-order bits are 11 or the sum is 0000000000. Alternatively,
the addition can be done using only an 8-bit adder. Simply add both exponents
and -127 = 100000012. If the high-order bits of the exponent fields are different,
no over/underflow is possible. If the high-order bits are both 1, the result has
overflowed if it has 0 in the high-order bit or if it is 1111111. If both the expo
nents have high-order bits of zero, underflow has occurred if the sum has a high
order bit of 1, or if the sum is 00000000.

Denormals

From the description of the multiplication algorithm, one can see that after doing
an integer multiplication on the fractions, the final result is obtained with at most
one shift. With denormals, the situation changes completely. Suppose the input
is normalized, but the output is denormal, so that in single precision the product
has an exponent e with e < -126. Then the result must be shifted right by
-e - 126 places. This requires extra hardware (a barrel shifter that wouldn't
otherwise be needed) and extra time. The situation with denormal inputs isn't
any better, because even if the final result is a normalized number, a variable
shift is still required. Thus, high-performance, floating-point multipliers often do
not handle denormalized numbers, but instead trap, letting software handle them.
There are a few practical codes that generate many underflows, even when
working properly, and these programs usually run quite a bit slower on systems
that require denormals to be processed by a trap handler.

One procedure followed by some floating-point units is to have the multiplier
deliver denormalized outputs in wrapped form. That is, the fraction part is nor
malized, and the exponent is wrapped around to a large positive number. This is
exactly the res\llt when following the multiplication algorithm for normalized
numbers given above. Since the addition unit must have a barrel shifter, it is

Ex.1035.649DELL

A·22 A.5 Floating-Point Multiplication

usually straightforward to provide a way to convert wrapped numbers into their
correct denormalized form by passing them through the adder. However, if a
trap handler has to intervene in order to send wrapped numbers into the adder,
multiplication will still be slowed down substantially.

There are some fine points that occur when a multiplication results in a
denormal number. Consider the simple case of a base 2 floating-point system

with 3-bit significands (hence two bits of fraction). The exact result of 1.11 x r 2

multiplied by 1.11 x 2Emin is 0.110001 X 2Emin. If the rounding mode is round

toward plus infinity, the rounded result is the normal number 1.00 x 2Emin.

Should underflow be signaled? Signaling underflow means that one is using the
before rounding rule, because the result was denormal before rounding. Not
signaling underflow means that one is using the after rounding rule, because the
result is normalized after rounding. The IEEE standard provides for choosing
either rule; however, the one chosen must be used consistently for all operations.

As mentioned in the addition section, the trap handler, if there is one, should
be called whenever the result is denormal. If there is no trap handler, the under
flow exception is signaled only when the result is denormal and inexact. Nor
mally, inexact means there was a result that couldn't be represented exactly and

had to be rounded. Consider again the example of (1.11 x T 2) x (1.11 x 2Emin) =
0.110001 x 2Emin, with round to nearest in effect. The delivered result is 0.11 x

2Emin, which had to be rounded, causing inexact to be signaled. But is it correct
to also signal underflow? Gradual underflow loses significance because the
exponent range is bounded. If the exponent range were unbounded, the delivered

result would be 1.10 x 2Emin-l, exactly the same answer obtained with gradual
underflow. The fact that denormalized numbers have fewer bits in their signifi
cand than normalized numbers therefore doesn't make any difference in this
case. The commentary to the standard [Cody et al. 1984] encourages this as the
criterion for setting the underflow flag. That is, it should be set whenever the
delivered result is different from what would be delivered in a system with the
same fraction size, but with a very large exponent range. However, owing to the
difficulty of implementing this scheme, the standard allows setting the under
flow flag whenever the result is denormal and different from the infinitely pre
cise result.

Precision of Multiplication

In the discussion of integer multiplication, we mentioned that designers must
decide whether to deliver the low-order word of the product or the entire prod
uct. A similar issue arises in floating-point multiplication, where the exact prod
uct can be rounded to the precision of the operands or to the next higher preci
sion. In the case of integer multiplication, none of the standard high-level
languages contains a construct that would generate a "single times single gets
double" instruction. The situation is different for floating point. Not only do

Ex.1035.650DELL

Computer Arithmetic A·23

many languages allow assigning the product of two single-precision variables to
a double-precision one, but the construction can also be exploited by numerical
algorithms. The best-known case is using iterative refinement to solve linear
systems of equations.

A.6 I Division and Remainder

Iterative Division

We earlier discussed an algorithm for integer division. Converting it into a
floating-point division algorithm is similar to converting the integer multiplica
tion algorithm into floating point. If the numbers to be divided are s12e1 and
s22e2 then the divider will compute sifs2, and the final answer will be this quo
tient multiplied by 2e1-e2. Referring to Figure A.2(b) (page A-4), the alignment
of operands is slightly different from integer division. Load s2 into b and sif2
into P so that s1 is shifted right one bit. Then the integer algorithm for division
can be used, and the result will be of the form q0.q1 •·• • For floating-point
division, the A register is not needed to hold the operands. To round, simply
compute two additional quotient bits (guard and round) and use the remainder as
the sticky bit. The guard digit is necessary because the first quotient bit might be
zero. However, since the numerator and denominator are both normalized, it is
not possible for the two most significant quotient bits to be zero.

There is a different approach to division, based on iteration. An actual
machine that uses this algorithm will be discussed in Section A.10. First, we will
describe the two main iterative algorithms and then discuss the pros and cons of
iteration compared to the direct algorithms. There is a general technique for con
structing iterative algorithms, called Newton's iteration, shown in Figure A.9.

FIGURE A.9 Newton's iteration for zero finding. If X;is an estimate for a zero off, then X;+1
iS a better estimate. To compute x;+1, find the intersection of the x axis with the tangent line
to fat x;.

Ex.1035.651DELL

A.6

Computer Arithmetic A-23

many languages allow assigning the product of two single-precision variables to
a double-precision one, but the construction can also be exploited by numerical
algorithms. The best-known case is using iterative refinement to solve linear
systems of equations.

Division and Remainder

Iterative Division

Weearlier discussed an algorithm for integer division. Converting it into a
floating-point division algorithm is similar to converting the integer multiplica-
tion algorithm into floating point. If the numbers to be divided are s;2°! and
522°2 then the divider will compute s,/s2, and the final answerwill be this quo-
tient multiplied by 2°1-©2, Referring to Figure A.2(b) (page A-4), the alignment
of operandsis slightly different from integer division. Load sy into b and s,/2
into P so that s; is shifted right one bit. Then the integer algorithm for division
can be used, and the result will be of the form qp.q,--- . For floating-point
division, the A register is not needed to hold the operands. To round, simply
compute two additional quotient bits (guard and round) and use the remainder as -
the sticky bit. The guard digit is necessary becausethefirst quotient bit might be
zero. However, since the numerator and denominator are both normalized,it is
not possible for the two most significant quotient bits to be zero.

There is a different approach to division, based on iteration. An actual
machine that uses this algorithm will be discussed in Section A.10. First, we will
describe the two main iterative algorithms and then discuss the pros and cons of
iteration compared to the direct algorithms. There is a general technique for con-
structing iterative algorithms, called Newton's iteration, shown in Figure A.9.

FIGURE A.9 Newton’s iteration for zero finding.If x;is an estimate for a zero of f, then x;,,
is a better estimate. To compute x;,,, find the intersection of the x axis with the tangentline
to fat x; : ,

DELL Ex.1035.651

A·24

A.6.1

A.6.2

A.6 Division and Remainder

First, cast the problem in the form of finding the zero of a function. Then,
starting from a guess for the zero, approximate the function by its tangent at that
guess and form a new guess based on where the tangent has a zero. If xi is a
guess at a zero, then the tangent line has the equation

This equation has a z~ro at

To recast division as finding the zero of a function, consider f(x) = llx - b.
Since the zero of this function is at lib, applying Newton's iteration to it will
give an iterative method of computing lib from b. Usingf'(x) = -llx2, Equation
A.6.1 becomes

Thus, we could implement computation of alb using the following method:

1. Scale b to lie in the range 1 :::;; b < 2 and get an approximate value of lib (call
it x0) using a table lookup.

2. Iterate xi+ 1 = xi(2 - xib) until reaching an Xn that is accurate enough.

3. Compute axn and reverse the scaling done in step 1.

Here are some more details. How many times will step 2 have to be iterated?
To say that xi is accurate top bits means that (xi - llb)l(l/b) = 2-P, and a simple
algebraic manipulation shows (xi+l - llb)l(llb) = 2-2P. Thus the number of cor
rect bits doubles at each step. Newton's iteration is self-correcting in the sense
that making an error in xi doesn't really matter. That is, it treats Xi as a guess at
lib and returns xi+l as an improvement on it (roughly doubling the digits). One
thing that would cause xi to be-in error is rounding error. More importantly,
however, in the early iterations we can take advantage of the fact that we don't
expect many correct bits by performing the mult~plication in reduced precision,
thus gaining speed without sacrificing accuracy. Some other applications of
Newton's iteration are discussed in the Exercises.

The second iterative division method is sometimes called Goldschmidt' s
algorithm. It is based on the idea that to compute alb, you should multiply the
numerator and denominator by a number r with rb ::::: 1. In more detail, let x0 = a
and Yo= b. At each step compute xi+l = rixi and Yi+l = riYi· Then the quotient
Xi+ilYi+I = x/yi =alb is constant. If we pick ri so that Yi~ l, then Xi~ alb, so
the xi converge to the answer we want. This same idea can be used to compute

Ex.1035.652DELL

A-24 ‘ A.6 Division and Remainder

First, cast the problem in the form of finding the zero of a function. Then,
starting from a guess for the zero, approximate the function byits tangent at that
guess and form a new guess based on where the tangent hasazero. If x; is a
guessat a zero, then the tangentline has the equation

y-fGi) =f"OG -%)

This equation has a zeroat

_ I)
Ff’)

A.6.1 X HXj4, = Aj

To recast division as finding the zero of a function, consider f(x) = 1/x — b.
Since the zero of this function is at 1/b, applying Newton’s iteration to it will
give an iterative method of computing 1/b from b. Using f’(x) = -1/x*, Equation
A.6.1 becomes

1/x; -b 2
ae =Xj,+x;-X; b= x(2 — x;b)

A.6.2 Xie, = XT

Thus, we could implement computation of a/b using the following method:

1. Scale b to lie in the range 1 < b < 2 and get an approximate value of 1/b (call
it Xo) using a table lookup.

2. Iterate x;,, = x,(2 — x,b) until reaching an x, that is accurate enough.

3. Compute ax, and reverse the scaling donein step 1.

Here are some more details. How many times will step 2 have to be iterated?
To say that x; is accurate to p bits meansthat (x; ~ 1/b)/(1/b) = 27?, and a simple
algebraic manipulation shows (x,,;— 1/b)/(1/b) = 2-P. Thus the numberof cor-
rect bits doubles at each step. Newton’s iteration is self-correcting in the sense
that making an error in x; doesn’t really matter. That is, it treats x; as a guess at
1/b and returns x;,; aS an improvement on it (roughly doubling the digits). One
thing that would cause x; to be in error is rounding error. More importantly,
however, in the early iterations we can take advantage of the fact that we don’t
expect many correct bits by performing the multiplication in reducedprecision,
thus gaining speed withoutsacrificing accuracy. Some other applications of
Newton’s iteration are discussed in the Exercises.

The seconditerative division method is sometimes called Goldschmidt’ s

algorithm. It is based on the idea that to compute a/b, you should multiply the
numerator and denominator by a numberr with rb = 1. In more detail, let x9 = a
and yo = b. At each step compute x;,, = 7;x; and y,;,, = r,y;. Then the quotient
Xi41/Yin1 = Xj/y; = a/b is constant. If we pick r; so that y; 3 1, then x; > a/b, so
the x; converge to the answer we want. This same idea can be used to compute

DELL Ex.1035.652

A.6.3

Computer Arithmetic A·25

other functions. For example, to compute the square root of a, let x0 = a and Yo =
a, and at each step compute xi+l = ri2xi, Yi+ I = riYi· Then xi+ilYT+i = x/J? = 1/a,

so if the ri are chosen to drive Xi -7 1, then Yi -7 f;z. This technique is used to
compute square roots on the TI 8847.

Returning to Goldschmidt's division algorithm, set x0 =a and y0 = b, and
write b = 1 - 0, where I 0 I < 1. If we pick ro = 1 + 0, then Y1 = ToYo = 1 - 8 2.

We next pick r1 = 1 + 82, so that Y2 = r1Y1 = 1 - 84, and so on. Since I 81 < 1,

Yi-7 1. With this choice of ri, the Xj will be computed as Xi+ I = rixi = (1 + o 2i)Xi
= (1 + (1 - bi)xio or

Xi+l = a[l + (1- b)][l + (1- b)2][1 + (1 -b)4}··[1 + (1- b)2i]

There appear to be two problems with this algorithm. First, convergence is slow
when bis not near 1 (that is, o is not near O); and second, the formula isn't self
correcting-since the quotient is being computed as a product of independent
terms, an error in one of them won't get corrected. To deal with slow conver
gence, if you want to compute a/b, look up an approximate inverse to b (call it
b'), and run the algorithm on ab'/bb'. This will converge rapidly since
bb'""' 1.

To deal wit_h the self-correction problem, the computation should be run with
a few bits of extra precision to compensate for rounding errors. However, Gold
schmidt's algorithm does have a weak form of self-correction, in that the precise
value of the ri does not matter. Thus, in the first few iterations, you can choose ri
t~ be a truncation of 1 + 82i which may make these iterations run faster without
affecting the speed of convergence. If ri is truncated, then Yi is no longer exactly
1 - 82i, so Equation A.6.3 can no longer be used, but it is easy to organize the
computation so that it does not depend on the precise ·value of ri. With these
changes, Goldschmidt's algorithm is as follows (the notes in brackets show the
connection with our earlier formulas).

L Scale a and b so that 1 ::; b < 2.

2. Look up an approximation to 1/b (call it b') in a table.

3. Set x0 =ab' and Yo= bb'.

4. Iterate until Xi is close enough to a/b :

r""'2-y

y=yxr

x=xxr

[if Yi= 1 + Di, then r ""' 1 - Dd

[yi+l =Yi x r""' 1 - o?J

The two iteration methods are related~ Suppose in Newton's method that we
unroll the iteration and compute each term Xi+ 1 directly in terms of b, instead of
recursively in terms of Xi· By carrying out this calculation, we discover that

Ex.1035.653DELL

ComputerArithmetic A-25

other functions. For example, to compute the square root of a, let Xp = aand yo =a, and at each step compute ~;,, = 7;2x;, Viz = rjy;. Then XielVrut = x,/y? = La,

so if the r; are chosen to drive x; > 1, then y; ~ Va. This technique is used to

compute square roots on the TI 8847.
Returning to Goldschmidt’s division algorithm, set x9 = a and yo = b, and

write b = 1— 6, where |6| < 1. If we pick ro = 1 + 6, then y, = royp = 1 ~ 6%.
Wenext pick 7; = 1 + 62, so that yp = yy, = 1 — 54, andso on. Since |6| <1,
y;— 1. With this choice ofr;, the x; will be computed as xj.) = rj = (1 + 6?)x;
= (1+ (1-b)?)x,or

A.6.3 Xj = all +(1-D)][1+ Gd — 5) [1 +d —b)4}-[1+- b)2"]

There appear to be two problemswith this algorithm. First, convergence is slow
whenbis not near 1 (that is, 6 is not near 0); and second, the formula isn’t self-
correcting—since the quotient is being computed as a product of independent
terms, an error in one of them won’t get corrected. To deal with slow conver-
gence, if you want to compute a/b, look up an approximate inverse to b (call it
b’), and run the algorithm on ab’/bb’. This will converge rapidly since
bb’ = 1.

To deal with the self-correction problem, the computation should be run with
a few bits of extra precision to compensate for rounding errors. However, Gold-
schmidt’s algorithm does have a weak form ofself-correction, in that the precise
value of the r; does not matter. Thus,in the first few iterations, you can choose7;
to be a truncation of 1 + 62’ which may makethese iterations run faster without
affecting the speed of convergence.If r; is truncated, then y; is no longer exactly
1 — 57’, so Equation A.6.3 can no longer be used, but it is easy to organize the
computation so that it does not depend on the precise -value of 7;. With these

changes, Goldschmidt’s algorithm is as follows (the notes in brackets show the
connection with our earlier formulas).

1. Scale a and bso that 1<b<2.

2. Look up an approximation to I/b (call it b’) in a table.

3. Set xy =ab’ and yo = bb’.
4. Iterate until x;is close enough to a/b:

re2-y [if y= 1+ 6, thenr = 1 -6;]

y=yxr Dini = ix = 1-67]

xX=XXr [X44 =X; X 7]

The twoiteration methods are related. Suppose in Newton’s method that we
unroll the iteration and compute each term x;,1 directly in terms of b, instead of
recursively in terms of x;. By carrying out this calculation, we discover that

DELL Ex.1035.653

A·26 A.6 Division and Remainder

This formula is of a very similar form to Equation A.6.3 when a = 1. In fact, if
the iterations were done to infinite precision, the two methods would y.ield
exactly the same sequence xi.

The advantage of iteration is that it doesn't require special divide hardware,
but can instead use the multiplier (which, however, requires extra control). Fur
ther, on each step, it delivers twice as many digits as in the previous step
unlike ordinary division, which produces a fixed number of digits at every step.
There are two disadvantages with inverting by iteration. The first is that the
IEEE standard requires division to be correctly rounded, but iteration only
delivers a result .that is close to the correctly rounded answer. In the case of
Newton's iteration, which computes lib instead of alb directly, there is an addi
tional problem. Even if lib was correctly rounded, there is no guarantee that alb
will be. Take 5/7 as an example: To two digits of accuracy 1/7 is 0.14, and
5 x 0.14 is 0.70, but 5/7 is 0.71. The second ,disadvantage is that iteration does
not give a remainder. This _is especially troublesome if the floating-point divide
hardware is being used to perform integer division, since a remainder operation
is present in almost every high-level language.

Traditional folklore has held that the way to get a correctly rounded result
from iteration is to compute lib to slightly more than 2p bits, compute alb to
slightly more than 2p bits, and then round top bits. However, there is a faster
way, which apparently was first implemented on the TI 8847. In this method, alb
is computed to about six extra bits of precision, giving a preliminary quotient q.
By comparing qb with a (again with only six extra bits), it is possible to quickly
decide whether q is correctly rounded or whether it needs to be bumped up or
down by 1 in the least significant place. This algorithm is explored further in the
Exercises.

One factor to take into account when deciding on division algorithms is the
relative speed of division and multiplication. Since division is more complex
than multiplication, it will run more slowly. As a general rule of thumb, division
algorithms should try to achieve a speed that is about one-third that of multipli
cation. One argument in favor of this rule is that there are real programs (such as
some versions of Spice) where the ratio of division to multiplication is 1:3.
Another place where a factor of three arises is in the standard iterative method
for computing square root. This method involves one division per iteration, but
can be replaced by one using three multiplications. This is discussed in the
Exercises.

Floating-Point Remainder

For nonnegative integers, integer division and remainder satisfy

a = (a DIV b)b + a REM b, 0 ::; a REM b < b

Ex.1035.654DELL

A-26 a A.6 Division and Remainder

Nig = Xo(2 — HDL + Hp — 71 + Kqb — 14)+ (gb - 1)

This formula is of a very similar form to Equation A.6.3 when a=1. In fact, if
the iterations were done to infinite precision, the two methods would yield
exactly the same sequence <x;.

The advantage ofiteration is that it doesn’t require special divide hardware,
but can instead use the multiplier (which, however, requires extra control). Fur-
ther, on each step, it delivers twice as many digits as in the previous step—
unlike ordinary division, which producesa fixed numberof digits at every step.
There are two disadvantages with inverting by iteration. The first is that the
IEEE standard requires division to be correctly rounded, but iteration only
delivers a result that is close to the correctly rounded answer. In the case of
Newton’s iteration, which computes 1/b instead of a/b directly, there is an addi-
tional problem. Even if 1/b was correctly rounded, there is no guarantee that a/b
will be. Take 5/7 as an example: To twodigits of accuracy 1/7 is 0.14, and

5 x 0.14 is 0.70, but 5/7 is 0.71. The second disadvantageis that iteration does
not give a remainder. This is especially troublesomeif the floating-point divide
hardware is being used to perform integer division, since a remainder operation
is present in almost every high-level language.

Traditional folklore has held that the way to get a correctly rounded result
from iteration is to compute 1/b to slightly more than 2p bits, compute a/b to
slightly more than 2p bits, and then round to p bits. However, there is a faster
way, which apparently wasfirst implemented on the TI 8847. In this method, a/b
is computed to about six extra bits of precision, giving a preliminary quotient q.
By comparing gb with a (again with only six extra bits), it is possible to quickly
decide whether g is correctly rounded or whether it needs to be bumped up or
down by 1 in the least significant place. This algorithm is explored further in the
Exercises.

Onefactor to take into account when deciding on division algorithmsis the
relative speed of division and multiplication. Since division is more complex
than multiplication, it will ran more slowly. As a general rule of thumb, division
algorithms should try to achieve a speed that is about one-third that of multipli-
cation. One argumentin favorofthis rule is that there are real programs(such as
some versions of Spice) where the ratio of division to multiplication is 1:3.
Another place where a factor of three arises is in the standard iterative method
for computing square root. This method involves one division periteration, but
can be replaced by one using three multiplications. This is discussed in the
Exercises.

Floating-Point Remainder

For nonnegative integers, integer division and remaindersatisfy

a =(a DIV b)b +a REM b, 0S aREMb<b

DELL Ex.1035.654

Computer Arithmetic A·27

A floating-point remainder x REM y can be similarly defined as x = INT(xfy)y +
x REM y. How should x/y be converted to an integer? The IEEE remainder
function uses the round-to-even rule. That is, pick n =INT (x/y) so that lxfy-n I
~ 1/2. If two different n satisfy this relation, pick the even one. Then REM is
defined to be x - yn. Unlike integers where 0 ~ a REM b < b, for floating-point
numbers Ix REM y I ~ y/2. Although this defines REM precisely, it is not a

practical operational definition, because n can be huge. In single precision, n

could be as large as 212712-126 = 2253""' 1076.
There is a natural way to compute REM if a direct division algorithm is used.

Proceed as if you were computing x/y. If x = s12e1 and y = s22e2 and the divider
is as in Figure A.2(b) (page A-4), then load s1 into P and s2 into B. After e1 - e2

division steps, the P register will hold a number r of the form x- yn satisfying 0
~ r < y. The IEEE remainder is then either r or r- y. It is only necessary to keep
track of the last quotient bit produced, which is needed in order to resolve
halfway cases. Unfortunately, el - e2 can be a lot of steps, and floating-point
units typically have a maximum amount of time they are allowed to spend on
one instruction. Thus, it is usually not possible to implement REM directly.
None of the chips discussed in Section A.10 implement REM, but they could by
providing a remainder-step instruction-this is what is done on the Intel 8087
family. A remainder step takes as arguments two numbers x and y, and performs
divide steps until either the remainder is in P, or else n steps have been
performed, where n is a small number, such as the number of steps required for
division in the highest supported precision. The REM driver calls the REM-step
instruction L<e1 - e2)!nJ times, initially using x as the numerator, but then
replacing it with the remainder from the previous REM step. It is useful if the
REM-step instruction returns the low-order three bits of the quotient, since when
doing trigonometric argument reduction to the interval (0, rc/4), you need to
know the value of n mod 8 in order to know what quadrant you are in.

Currently, most of the fastest floating-point chips don't implement remainder,
even though it is a required part of the IEEE standard. Since the standard allows
implementations to be a combination of hardware and software, the REM opera
tion could be implemented entirely in software. However, availability of the
REM-step instruction would make computing REM much simpler. Is a REM
step instruction worth it? For two reasons this situation is difficult to decide on
the basis of frequency data. First, because REM is peculiar to the IEEE standard,
few people are currently using it. Testing the demand for REM is somewhat like
trying to estimate the demand for a new product. Second, the main benefit from
REM is not an increase in performance, but rather an increase in accuracy, and it
is not easy to quantify the value of accuracy. What we will do here is simply
present the primary application of REM, which is argument reduction for peri
odic functions, like sin and cos.

There are some subtle issues involved in argument reduction. To simplify
things, imagine that we are working in base 10 with 5 significant figures, and
consider computing sinx. Suppose that x = 7. Then we reduce by re= 3.1416

Ex.1035.655DELL

A·28 ..

·A.7

A.6 Division and Remainder

and compute sin(7) = sin(7 - 2x3.1416) = sin(0.7168) instead. But suppose we
want to compute sin(2.0 x 105). Then 2 x 105/3.1416 = 63661.8, which in our 5-
place system comes out to be 63662. Since multiplying 3.1416 times 63662
gives 200000.5392, which rounds to 2.0000 x 105, argument reduction reduces 2
x 105 to 0, which is not even close to being correct. The problem is that our 5-
place system does not have the precision to do correct argument reduction. Sup
pose we had the REM operator. Then we could compute 2 x 105 REM 3 .1416
and get -.5392. However, this is still not correct because we used 3.1416, which
is an approximation for n. The value of 2 x 105 REM n is -.071513. The
difficulty is that we subtracted two nearby numbers, 2 x 105 and 63662 x 3 .1416,
where 63662x3.1416 was slightly in error due to approximating n. Even though
REM has the effect of performing the subtraction exactly, all the significant
figures in 63662 x 3.1416 canceled, leaving behind only rounding error.

Traditionally, there have been two approaches to computing periodic func
tions with large arguments. The first is to return an error for their value when x
is large. The second is to store n to a very large number of places and do exact
argument reduction. The REM operator is not much help in either of these situa
tions. There is a third approach that has been used in some math libraries, such
as the Berkeley UNIX 4.3bsd release. In these libraries, n is computed to the
nearest floating-point number. Let's call this machine n, and denote it by n'.
Then when computing sinx, reduce x using x REM n'. As we saw in the above
example, x REM n' is quite different from x REM n, so that computing sinx as
sin(x REM n') will not give the exact value of sinx. However, computing
trigonometric functions in this fashion has the property that all familiar identities
(such as sin2 x + cos2 x = 1) are true to within a few rounding errors. Thus,
using REM together with machine n provides a simple method of computing
trigonometric functions that is accurate for small arguments and still useflil for
large arguments in most applications.

Precisions and Exception Handling

Precisions

Implementations of the IEEE standard are only required to support single
precision. Thus, the computer designer must make a choice about what other
precisions to support. Because of the widespread use of double precision in
scientific computing, double precision is almost always implemented.

Double-extended precision is more problematic. Although the Motorola
68882 and Intel 387 coprocessors implement extended precision, most of the
more recently designed, high-performance floating-point chips do not implement
extended precision. Among the reasons are that the 80-bit width of extended
precision is awkward for 64-bit buses and registers, and that many high-level
languages do not give the user access to extended precision. However, extended

Ex.1035.656DELL

Computer Arithmetic A·29

precision is very useful to writers of mathematical software. As an example,
consider writing a library routine to compute the length of a vector in the plane

-V x2 + y2. If x is larger than 2Emax
12, then computing this in the obvious way will

overflow. This means that either the allowable exponent range for this sub
routine will be cut in half, or a more complex algorithm using scaling will have
to be employed. But if extended precision is available, then the simple algorithm
will work. Computing the length of a vector is a simple task, and it is not diffi
cult to come up with an algorithm that doesn't overflow. However, there are
more complex problems for which extended precision means the difference
between a simple, fast algorithm and a much more complex one. One of the best
examples of this is binary/decimal conversion. An efficient algorithm for binary
to-decimal conversion that makes essential use of extended precision is very
readably presented in Coonen [1984]. This algorithm is also briefly sketched in
Goldberg [1989]. Computing accurate values for transcendental functions is
another example of a problem that is made much easier if extended precision is
present.

One very important fact about precision concerns double rounding. To illus
trate in decimal, suppose that we want to compute 1.9 x 0.66, and that single
precision is two digits, while extended precision is three digits. The exact result
of the product is 1.254. Rounded to extended precision, the result is 1.25. When
further rounded to single precision, we get 1.2. However, the result of 1.9 x 0.66
correctly rounded to single precision is 1.3. Thus, rounding twice may not pro
duce the same result as rounding once. Suppose you want to build hardware that
only does double-precision arithmetic. Can you simulate single precision by
computing first in double precision and then rounding to single? The above
example suggests that you can't. However, double rounding is not always dan
gerous. In fact, the following rule is true (although it is not easy to prove).

If x and y have p-bit significands, and x + y is computed exactly and
then rounded to q places, a second rounding to p places will not
change the answer if p ~ (q-1)12. This is true not only for addition,
but also for multiplicC!tion, division, and square root.

In our example above, q = 3, and p = 2, so 2 ~ (3 - 1)/2 is not true. On the
other hand, for IEEE arithmetic, double precison hasp = 53, and single precision
is p = 24 ~ (q-1)/2 = 26. Thus, single precision can be implemented by comput
ing in double precision (that is, computing the answer exactly and then rounding
to double) and then rounding to single precision.

The standard requires implementations to provide versions of addition, sub
traction, multiplication, division, and remainder that take two operands of the
same precision and produce a result of that precision. It also recommends that
implementations allow operations that take operands of two different precisions
and return a result whose precision is at least as wide as the widest operand. The
standard allows implementations to combine two operands and return a result in
a higher precision. Remember that the result of an operation is the exact result

Ex.1035.657DELL

A-30 A.7 Precisions and Exception Handling

rounded to the destination precision. What the standard does not allow is com
bining two operands and returning a result in a lower precision. Although at first
this may seem like a minor restriction, consider again the problem of computing

-.J x2 + y2 . If x and y are double, then you might like to compute x2 + y2 in
extended precision and then compute a square root that takes an extended-preci
sion argument and returns a double-precision answer. But this is not allowed by
the standard.

There is a related issue. The standard permits combining two extended vari
ables to produce a result that is stored in extended format, but rounded to double
precision. However, this doesn't help in the square root example, because the
result of the square root must still be explicitly converted from an extended for
mat to a double-precision format.

Exceptions

The IEEE standard defines five exceptions: underflow, overflow, divide by zero,
inexact, and invalid. By default, when these exceptions occur, they merely set a
flag and the computation continues. The flags are sticky, meaning that once set
they remain set until explicitly cleared. The standard strongly encourages imple
mentations to provide a trap-enable bit for each exception. When an exception
with an enabled trap handler occurs, a user trap handler is called, and the value
of the associated exception flag is undefined.

The underflow, overflow, and divide-by-zero exceptions are found in most
other systems. The inexact exception is peculiar to IEEE arithmetic and occurs
when either the result of an operation must be rounded or when it overflows. In
fact, since 1/0 and an operation that overflows both deliver oo, the exception
flags must be consulted to distinguish between them. The inexact exception is an
unusual "exception," in that it is not really an exceptional condition because it
occurs so frequently. Thus, enabling a trap handler for inexact will most likely
have a severe impact on performance. The invalid exception is for things like

"1=1, 0/0 or oo - oo, which don't have any natural value as a floating-point
number or as ±oo. Thus, 1/0 causes a divide by zero exception and delivers oo,
whereas 0/0 causes an invalid exception and delivers a NaN. There is a twist in
IEEE underflow, because it is not always signaled when numbers fall below

1.0 x 2Emin. If a user trap handler is not installed, then underflow is signaled only

if the result of an operation is below 2Emin and is inexact.
The IEEE standard assumes that when a trap occurs, it is possible to identify

the operation that trapped and its operands. On machines with pipelining, or
machines with multiple arithmetic units, when an exception occurs, it may not
be enough to simply have the trap handler examine the program counter. Hard
ware support may be necessary in order to identify exactly which operation
trapped. Another problem is illustrated by the following program fragment.

X Y * Z;
Z A + B;

Ex.1035.658DELL

Computer Arithmetic A·31

These two instructions might well be executed in parallel. If the multiply
traps, its argument z could already have been overwritten by the addition, espe
cially since addition is usually faster than multiplication. Computer systems that
support trapping in the IEEE standard must provide some way to save the value
of z, either in hardware or by having the compiler avoid such a situation in the
first place.

One approach to this problem, used in the MIPS R3010, is to treat floating
point exceptions similarly to page-fault exceptions. If an instruction that assigns
a memory location to a register causes a page fault, the execution of the instruc
tion must stall before it clobbers the register because (for example) that very
register might be used to reference the memory that faulted. The key to making
this work is that the memory address is computed early in the instruction cycle,
before the instruction actually writes anything. A similar trick can be done with
floating-point operations. An instruction that may cause an exception can be
identified early in the instruction cycle. For example, an addition can overflow
only if one of the operands has an exponent of Emax• and so on. This early check
is conservative: It might flag an operation that doesn't actually cause an excep
tion. However, if such false positives are rare, then this technique will have
excellent perfomiance. When an instruction is tagged as being possibly excep
tional, special code in a trap handler can compute it without destroying any state.
Remember that all these problems occur only when trap handlers are enabled.
Otherwise, setting the exception flags during normal processing is straight
forward.

There is a subtlety that should be mentioned that involves the underflow trap.
When there is no underflow trap handler, the result of an operation that involves
an underflow is a denormal number. When there is a trap handler, it is provided
with the result of the operation with the exponent wrapped around. Now there is
a potential double-rounding problem. If the rounding mode is round toward
nearest, when there is a trap handler the result is correctly rounded top signifi
cant bits. If there is no trap handler, the result is rounded to less than p bits,
depending on how many leading zeros the denormal number has. If the trap
handler wants to return the denormal result, it can't just round its argument,
because that might lead to a double-rounding error. Thus, the trap handler must
be passed at least one extra bit of information if it is to be able to deliver the
correctly rounded result.

A.8 I Speeding Up Integer Addition

The previous section showed that there are many steps that go into implementing
floating-point operations. However, each floating-point operation eventually
reduces to an integer operation. Thus, increasing the speed of integer operations
will also lead to faster floating point.

Ex.1035.659DELL

A·32

A.8.1

A.8.2

A.8.3

A.8 Speeding Up Integer Addition

Integer addition is the simplest operation and the most important. Even for
programs that don't do explicit arithmetic, addition must be performed to incre
ment the program counter and to do address calculations. Despite the simplicity
of addition, there isn't a single best way to perform high-speed addition. We will
discuss three techniques that are in current use: carry lookahead, carry skip, and
carry select.

Carry Lookahead

An n-bit adder is just a combinational circuit. It can therefore be written by a
logic formula whose form is a sum of products and can be computed by a circuit
with two levels of logic. How does one figure out what this circuit looks like?
Recall from Equation A.2.1 that. the formula for the ith sum bit is

The problem with this formula is that although we know the values of ai and
b1-they are inputs to the circuit-we don't know ci. So our goal is to write ci in
terms of ai and bi. To accomplish this, we first rewrite Equation A.2.2 (page
A-2) as

Here is the reason for the symbols p and g: If gi is true, then ci+I is certainly
true, so a carry is generated. Thus, g is for generate. If Pi is true, then if ci is true,

it is propagated to ci+I· Start with Equation A.8.1 and use Equation A.8.2 to
replace ci with gi-I +Pi-lei-I· Then, use Equation A.8.2 with i -1 in place of i, to
replace ci-1 with ci-2· and so on. This gives the result

ci + 1 = gi +Pi gi-I + PiPi-Igi-2 + ··· +Pi Pi-1 ... PI go + Pi Pi-I ... PIPoco

An adder that computes carries using Equation A.8.3 is called a carry-looka
head adder, or CLA adder. A CLA adder requires one logic level to form p and
g, two levels to form the carries, and two for the sum, for a grand total of five
logic levels. This is a vast improvement over the 2n levels required for the rip
ple-carry adder.

Unfortunately, as is evident from Equation A.8.3 or from Figure A.10, a
carry-lookahead adder on n bits requires a fan-in of n + 1 at the OR gate as well
as at the rightmost AND gate. Also, the Pn-1 signal must driven AND gates. In
addition, the rather irregular structure and many long wires of Figure A.10 make
it impractical to build a full C'!IT)'-lookahead adder when n is large.

However, we can use the carry-lookahead idea to build an adder that has
about log2n logic levels (substantially less than the 2n required by a ripple-carry
adder), and yet has a simple, regular structure. The idea is to build up the p's and
g's in steps. We have already seen that

Ex.1035.660DELL

A-32 ' A8& Speeding UpInteger Addition

Integer addition is the simplest operation and the most important. Even for
programsthat don’t do explicit arithmetic, addition must be performedto incre-
ment the program counter and to do address calculations. Despite the simplicity
of addition, there isn’t a single best way to perform high-speed addition. We will
discuss three techniques that are in current use: carry lookahead, carry skip, and
carry select.

Carry Lookahead

An n-bit adder is just a combinational circuit. It can therefore be written by a
logic formula whose form is a sum of products and can be computedby a circuit
with two levels of logic. How does one figure out what this circuit looks like?
Recall from Equation A.2.1 that the formula for the 7th sum bit is

A.8.1 5; = ajbjC; + ajbj cj + ajbjc; + a,b,c;

Theproblem with this formulais that although we know the values of a; and
b;—they are inputs to the circuit—we don’t know c,, So our goalis to write c; in
terms of a; and b;. To accomplish this, we first rewrite Equation A.2.2 (page
A-2) as

A.8.2 Cui =2it DiC» 8:= a:b, p; =a; + ;

Here is the reason for the symbols p andg:If g; is true, then c,,,; is certainly
true, so a carry is generated. Thus, g is for generate. If p; is true, then if c; is true,
it is propagated to ¢;,;. Start with Equation A.8.1 and use Equation A.8.2 to
replace c, with g;, + p;_1C;_-;. Then, use Equation A.8.2 with i — 1 in place ofi, to
replace c;_; with c;_2, and so on. This gives the result

A.8.3 Cia. = 8i + DiGi-t + DiDi-18i-2 ++ PiPi-1°"P180 + PiPi-s* PiPoCo

An adder that computes carries using Equation A.8.3 1s called a carry-looka-
head adder, or CLA adder. A CLA adderrequires one logic level to form p and
g, two levels to form the carries, and two for the sum, for a grandtotal of five
logic levels. This is a vast improvement over the 2n levels required for the rip-
ple-carry adder. .

Unfortunately, as is evident from Equation A.8.3. or from Figure A.10, a
carry-lookahead adder on n bits requires a fan-in of n+ 1 at the OR gate as well
as at the rightmost AND gate. Also, the p,_; signal must drive n AND gates. In
addition, the rather irregular structure and many long wires of Figure A.10 make
it impractical to build a full carry-lookahead adder whenznislarge.

However, we can use the carry-lookahead idea to build an adder that has
about log»n logic levels (substantially less than the 2 required by a ripple-carry
adder), and yet has a simple, regular structure. The idea is to build up the p’s and
g’s in steps. We havealready seen that

C1 = 80 + CoPo

DELL Ex.1035.660

A.8.4

A.8.5

A.8.6

Computer Arithmetic A·33

en

en= gn-1 + Pn-1 gn-2 + · · · + Pn-1 P n-2 ... p1 go + Pn-1 Pn-2 ... po Co

FIGURE A.10 Pure carry-lookahead circuit for computing the carry out Cn of an n-bit
adder.

This says there is a carry out of the 0th position (c1) if there is either a carry
generated in the 0th position, or if there is a carry into the 0th position and the
carry propagates. Similarly,

G01 means there is a carry generated out of the block consisting of the first
two bits. Poi means that a carry propagates through this block. P and G have the
following logic equations:

Go1 = gl + P1go

Poi = PlPo

More generally, for any j with i <j,j + 1 < k, we have the recursive relations

Ck+l = G·k+P·kc. l I I

Gik = Gj+l,k + Pj+l,kGij

pik = PijPj+l,k

Equation A.8.5 says that a carry is generated out of the block consisting of
bits i through k inclusive if it is generated in the high-order part of the block
(j + 1, k) or if it is generated in the low-order (i,j) part of the block and then
propagated through the high part. These equations will also hold for i :::;; j < k if
we set Gii = gi and Pii =Pi·

Ex.1035.661DELL

ComputerArithmetic A-33

In Pa Gn-2 Pho Ing

C= Gnat Phy Gn-o +++ + Para PpaP1490 + Pry Ph_a Po %

FIGURE A.10 Pure carry-lookaheadcircuit for computing the carry out c,, of an n-bit
adder.

This says there is a carry out of the Oth position (c;) if there is either a carry
generated in the Oth position, or if there is a carry into the Oth position and the
carry propagates. Similarly,

C2 = Go, + Poco

Go; means there is a carry generated out of the block consisting of the first
two bits. Pp; means that a carry propagates through this block. P and G havethe
following logic equations:

Gor = 81+P180

Po. = Pio

Moregenerally, for anyj with i <j, j + 1<k, we have the recursive relations

A.8.4 Cer = Git Pye;

A8.5 Gi = Gptet PasGi

A.8.6 Pip = PiPirie

Equation A.8.5 says that a carry is generated out of the block consisting of
bits i through k inclusive if it is generated in the high-order part of the block
(j + 1,4) or if it is generated in the low-order(i,j) part of the block and then
propagated through the high part. These equations will also hold for i<j <k if
we set Gj; = g; and P,; = p;.

DELL Ex.1035.661

A·34

Example:

Answer:

A.8 Speeding Up Integer Addition

Express P03 and G03 in terms of p's and g's.

Using A.8.6, P03 = Po1P23 = PooP11P22P33. Since Pu= Pi• P03 = PoPiP2fJ3. For
G03, Equation A.8.5 says G03 = G23 + P23Go1 = (G33 + P33G22) + (P22P33)(G11 +
P11Goo) = g3 + p3g2 + p3p2g1 + P3P2P1go.

With these preliminaries out of the way, we can now show the design of a
practical CLA adder. The adder consists of two parts. The first part computes
various values of P and G from Pi and gi, using Equations A.8.5 and A.8.6; the
second part uses these P and G values to compute all the carries via Equation
A.8.4. The first part of the design is in Figure A.11. At the top of the diagram,
input numbers ar·a0 and br .. bo are converted to p's and g's using cells of type
1. Then various P's and G's are generated by combining cells of type 2 in a
binary-tree structure. The second part of the design is shown in Figure A.12. By
feeding c0 in at the bottom of this tree, all the carry bits come out the top. Each
cell must know a pair of (P ,G) values in order to do the conversion, and the
value it needs is written inside the cells. Now compare Figure A.11 and Figure
A.12. There is a one-to-one correspondence between cells, and the value of
(P ,G) needed by the carry-generating cells is exactly the value known by the

2 2 2 2

Gs,1 Ps,1 G4,s P4,s G2,3 P2,3

2 2

G4.7 P4, 1 Go,3 Po,3

i
2

'

'
'

Go, 1 Po,1

Gi+1 k ~+1,k

2

P,,k= P,,/~+1,k

G,,k= Gi+1,k+ pi+1,k G,,i

FIGURE A.11 First part of carry-lookahead tree. As signals flow from the top to the
bottom, various values of P and Gare computed.

Ex.1035.662DELL

A-34 A.8 Speeding Up Integer Addition

 Express Po3 and Go3 in terms ofp’s and g’s.
Example:

Answer:|Using A.8.6, Po3 = PoP23 = PooP11P22P33- Since Pi = p;, Po3 = PoP pap3. For
Go3, Equation A.8.5 says Go3 = G23 + P23Gq; = (G33 + P33G22) + (Po2P33)(G1, +
P1,Goo) = 83 + P382 + P3P281 + P3 P2P180:

With these preliminaries out of the way, we can now show the design of a
practical CLA adder. The adder consists of two parts. The first part computes
various values of P and G from p; and g;, using Equations A.8.5 and A.8.6; the

second part uses these P and G values to computeall the carries via Equation
A.8.4. The first part of the design is in Figure A.11. At the top of the diagram,
input numbers a@7---dy and b7---bp are converted to p’s and g’s using cells of type
1. Then various P’s and G’s are generated by combining cells of type 2 in a
binary-tree structure. The secondpart of the design is shown in Figure A.12. By
feeding cg in at the bottom ofthis tree, all the carry bits come out the top. Each
cell must know a pair of (P,G) values in order to do the conversion, and the
value it needs is written inside the cells. Now compare Figure A.11 and Figure
A.12. There is a one-to-one correspondence between cells, and the value of
(P,G) needed by the carry-generating cells is exactly the value known by the

P.=P.P
9, = a,b; P, = a;+b, ik

Ge Girt Pisin Gstk i,j

FIGURE A.11_ First part of carry-lookahead tree. As signals flow from the top to the
bottom, various values of P and G are computed.

DELL Ex.1035.662

Computer Arithmetic A-35

C7 cs C5 C4 C3 C2 C1 Co

Pe P4 P2 Po

9s 94 92 9o

Cs C4 C2 Co

P4,5 Po,1

G4,5 Go,1

C4 Co

Po,3

Go,3

Co

FIGURE A.12 Second part of carry-lookahead tree. Signals flow from the bottom to the
top, combining with P and G to form the carries.

B

Cs

B

C4

B

B

C4

S; = a;<ii:) b/f) C;

P;= a;+ b;
9;= a;b;

B B

C2 Co

B

Pa.3 Co

FIGURE A.13 Complete carry-lookahead tree adder. This is the combination of Figures
A.11 and A.12. The numbers to be added enter at the top, flow to the bottom to combine
with c 0, and then flow back up to compute the sum bits.

Ex.1035.663DELL

Computer Arithmetic A-35

FIGURE A.12 Second part of carry-lookaheadtree. Signals flow from the bottom to the
top, combining with P and G to form the carries.

FIGURE A.13_ Complete carry-lookahead tree adder. This is the combination of Figures
A.11 and A.12. The numbers to be added enterat the top, flow to the bottom to combine
with cg, and then flow back up to compute the sum bits.

DELL Ex.1035.663

A·36 A.8 Speeding Up Integer Addition

FIGURE A.14 Combination of CLA adder and ripple-carry adder. In the top row,
carries ripple within each group of four boxes.

corresponding (P ,G) generating cells. The combined cell is shown in Figure
A.13. The numbers to be added flow into the top and downward through the
tree, combining with c0 at the bottom and flowing back up the tree to form the
carries. Note that there is one thing missing from Figure A.13: a small piece of
extra logic to compute c8 for the carry out of the adder.

-The bits in a CLA must pass through about log2 n logic levels, compared with
2n for a ripple-carry adder. This is a substantial speed improvement, especially
for a large n. Whereas the ripple-carry adder had n cells, however, the CLA
adder has 2n cells, although in our layout they will take n log n space. The point
is that a small investment in size pays off in a dramatic improvement in speed.

There are a number of technology-dependent modific~tions that can improve
CLA adders. For example, if each node of the tree has three inputs instead of
two, then the height of the tree will decrease from log2 n to log3 n. Of course,
the cells will be more complex and thus might operate more slowly, negating the
advantage of the decreased height. For technologies where rippling works well,
a hybrid design might be better. This is illustrated in Figure A.14. Carries ripple
between adders at the top level, while the "B" boxes are the same as in Figure
A.13. This design will be faster if the time to ripple between four adders is faster
than the time it takes to traverse a level of "B" boxes.

Carry-Skip Adders

A carry-skip adder sits midway between a ripple-carry adder and a carry
lookahead adder, both in terms of speed and cost. (A carry-skip adder is not
called a CSA, as that name is reserved for carry-save adders.) The motivation for
this adder comes from examining the equations for P and G. For example,

Ex.1035.664DELL

A-36 ' A.8 Speeding UpInteger Addition

FIGURE A.14 Combination of CLA adderand ripple-carry adder. In the top row,
carries ripple within each group of four boxes.

corresponding (P,G) generating cells. The combined cell is shown in Figure
A.13. The numbers to be added flow into the top and downward through the
tree, combining with cp at the bottom and flowing back up the tree to form the
carries. Note that there is one thing missing from Figure A.13: a small piece of
extra logic to compute cx for the carry out of the adder.

- The bits in a CLA must pass through about log, n logic levels, compared with
2n for a ripple-carry adder. This is a substantial speed improvement, especially
for a large n. Whereas the ripple-carry adder had n cells, however, the CLA
adder has 27 cells, although in our layout they will take n log n space. The point
is that a small investment in size pays off in a dramatic improvementin speed.

There are a number of technology-dependent modifications that can improve
CLA adders. For example, if each node of the tree has three inputs instead of
two, then the height of the tree will decrease from log,n to log;n. Of course,
the cells will be more complex and thus might operate more slowly, negating the
advantage of the decreased height. For technologies where rippling works well,
a hybrid design might be better. This is illustrated in Figure A.14. Carriesripple
between adders at the top level, while the “B” boxes are the same as in Figure
A.13. This design will be faster if the time to ripple between four adders is faster
than the timeit takes to traverse a level of “B” boxes.

Carry-Skip Adders

A carry-skip adder sits midway between a ripple-carry adder and a carry-
lookahead adder, both in terms of speed and cost. (A carry-skip adder is not
called a CSA,as that nameis reserved for carry-save adders.) The motivation for
this adder comes from examining the equations for P and G. For example,

DELL Ex.1035.664

Computer Arithmetic A·37

P03 = PoP1P2P3

G03 = g3 + P3 gz + P3P2 gl + P3P2P1 go

Computing Pis much simpler than computing G, and a carry-skip adder only
computes the P's. Such an adder is illustrated in Figure A.15. Carries begin
rippling simultaneously through each block. If any block generates a carry, then
the carry out of a block will be true, even though the carry in to the block may
not be correct yet. If at the start of each add operation the carry in to each block
is zero, then no spurious carry outs will be generated. Thus, the carry out of each
block can thus be thought of as if it were the G signal. Once the carry out from
the least significant block is generated, it not only feeds into the next block, but
is also fed through the AND gate with the P signal from that next block. If the
carry out and P signals are both true, then the carry skips the second block and
is ready to feed into the third block, and so on. The carry-skip adder is only
practical if the carry in signals can be easily cleared at the start of each
operation-for example by precharging in CMOS.

To analyze the speed of a carry-skip adder, let's assume that it takes on~ time
unit for a signal to pass through two logic levels. Then it will take k time units
for a carry to ripple across a block of size k, and it will take one time unit for a
carry to skip a block. The longest signal path in the carry-skip adder starts with a
carry being generated at the 0th position. Then it takes k time units to ripple
through the first block, n/k - 2 time units to skip blocks, and k more to ripple
through the last block. To be specific: If we have a 20-bit adder broken into
groups of 4 bits, it wili take 11 time units to perform an add. Suppose we keep
the least significant block at 4 bits, but combine the next two blocks into a single
8-bit block. Then the time of the adder drops to 10 time units. However, if we
had combined three blocks instead of two, then the time to ripple through this 3-
block unit (12 bits in all) would dominate the time to add. However, the general
principle is important: For a carry-skip adder, making the interior blocks larger
will speed up the adder. In fact, the same idea of varying the block sizes can
sometimes speed up other adder designs as well. Because of the large amount of
rippling, a carry-skip adder is most appropriate for technologies where rippling
is fast.

FIGURE A.15 Carry-skip adder.

Ex.1035.665DELL

ComputerArithmetic . A:37

Po3 = PoP1P2P3

Go3 = 83 + P3 82 + P3P2.81 + P3P2P1 80

Computing P is much simpler than computing G, and a carry-skip adder only
computes the P’s. Such an adderis illustrated in Figure A.15. Carries begin
rippling simultaneously through each block. If any block generates a carry, then
the carry out of a block will be true, even though the carry in to the block may
not be correct yet. If at the start of each add operation the carry in to each block
is Zero, then no spurious carry outs will be generated. Thus, the carry out of each
block can thus be thoughtof as if it were the G signal. Once the carry out from
the least significant block is generated, it not only feeds into the next block, but
is also fed through the AND gate with the P signal from that next block. If the
carry out and P signals are both true, then the carry skips the second block and
is ready to feed into the third block, and so on. The carry-skip adder is only
practical if the carry in signals can be easily cleared at the start of each
operation—for example by precharging in CMOS.

To analyze the speed of a carry-skip adder, let’s assumethatit takes one time
unit for a signal to pass through two logic levels. Then it will take k time units
for a carry to ripple across a block of size k, and it will take one time unit for a
carry to skip a block. The longest signal path in the carry-skip adderstarts with a
carry being generated at the Oth position. Then it takes k time units to ripple
through the first block, n/k — 2 time units to skip blocks, and k more to ripple
through the last block. To be specific: If we have a 20-bit adder broken into
groupsof 4 bits, it will take 11 time units to perform an add. Suppose we keep
the least significant block at 4 bits, but combine the next two blocksinto a single
8-bit block. Then the time of the adder drops to 10 time units. However, if we
had combined three blocks instead of two, then the time to ripple through this 3-
block unit (12 bits in all) would dominate the time to add. However, the general
principle is important: For a carry-skip adder, making the interior blocks larger
will speed up the adder. In fact, the same idea of varying the block sizes can
sometimes speed up other adder designs as well. Because of the large amount of
rippling, a carry-skip adder is most appropriate for technologies where rippling
is fast.

FIGURE A.15 Carry-skip adder.

DELL Ex.1035.665

A-38 A.8 Speeding Up Integer Addition

Carry-Select Adder

A carry-select adder works on the following principle: Two additions are per
formed in parallel, one assuming the carry in is zero and the other assuming the
carry in is one. When the carry in is finally known, the correct sum (which has
been precomputed) is simply selected. An example of such a design is shown in
Figure A.16. An 8-bit adder is divided into two halves, and the carry out from
the lower half is used to select the upper half. If each block is computing its sum
using rippling (a linear-time algorithm), then the design in Figure A.16 is twice

FIGURE A.16 Simple carry-select adder. At the same time that the sum of the low-order
four bits are being computed, the high-order bits are being computed twice in parallel: once
assuming that c4 = 0, and once assuming c4 = 1.

FIGURE A.17 Carry-select adder. As soon as the carry out of the rightmost block is
known, it is used to select the other sum bits.

Ex.1035.666DELL

A-38 , A.8 Speeding Up Integer Addition

Carry-Select Adder

A carry-select adder works on the following principle: Two additions are per-
formed in parallel, one assuming the carry in is zero and the other assuming the
carry in is one. Whenthe carry in is finally known, the correct sum (which has
been precomputed) is simply selected. An example of such a design is shown in
Figure A.16. An 8-bit adder is divided into two halves, and the carry out from
the lowerhalf is used to select the upper half. If each block is computing its sum
using rippling (a linear-time algorithm), then the design in Figure A.16 is twice

€,D, a,b, a,b, ayo,
FIGURE A.16 Simple carry-select adder. At the sametime that the sum of the low-order
four bits are being computed, the high-order bits are being computed twice in parallel: once
assuming that c4 = 0, and once assuming cq = 1.

Sig S17 S45 S15 Sta S13 Sto S44 Sig Sg Sg
FIGURE A.17 Carry-select adder. As soon as the carry out of the rightmost blockis
known,it is used fo select the other sum bits.

DELL Ex.1035.666

Computer Arithmetic A·39

as fast at 50% more cost. However, note that the c4 signal must drive many
muxes, which may be very slow in some technologies. Instead of dividing the
adder into halves, it could be divided into quarters for a still further speedup.
This is illustrated in Figure A.17. If it talces k time units for a block to add k-bit
numbers, and if it talces one time unit to compute the mux input from the two
carry-out signals, then for optimal operation each block should be one bit wider
than the next, as shown in Figure A.17. Therefore, as in the carry-skip adder, the
best design involves variable-sized blocks ..

As a summary of this section, the asymptotic time and space requirements for
the different adders are given in Figure A.18. These different adders shouldn't
be thought of as disjoint choices, but rather as building blocks to be used in con
structing an adder. The utility of these different building blocks is highly depen
dent on the technology used. For example, the carry-select adder works well
when a signal can drive many muxes, and the carry-skip adder is attractive in
technologies where signals can be cleared at the start of each operation. Know
ing the asymptotic behavior of adders is useful in understanding them, but rely
ing too much on that behavior is a pitfall. The reason is that asymptotic behavior
is only important as n grows very large. But n for an adder is the bits of preci
sion, and double precision today is the same as it was twenty years ago-about
53 bits. Although it is true that as computers get faster, computations get
longer-and thus have more rounding error, which in tum requires more preci
sion-this effect grows very slowly with time.

Time· Space

Ripple O(n) O(n)

CLA O(log n) O(n logn)

Carry skip O(Yn) O(n)

Carry select ocvn) O(n)

FIGURE A.18 Asymptotic time and space requirements for four different types of
adders.

Speeding Up Integer Multiplication and
Division

The multiplication and division algorithms presented in Section A.2 are fairly
slow, producing one bit per cycle (although that cycle might be a fraction of the
CPU instruction cycle time). In this section we discuss various techniques for
higher performance multiplication and division.

Ex.1035.667DELL

Computer Arithmetic A-39

as fast at 50% more cost. However, note that the c4 signal must drive many
muxes, which may be very slow in sometechnologies. Instead of dividing the
adder into halves, it could be divided into quarters for a still further speedup.
This is illustrated in Figure A.17. If it takes & time units for a block to add k-bit
numbers, and if it takes one time unit to compute the mux input from the two
carry-out signals, then for optimal operation each block should be one bit wider
than the next, as shown in Figure A.17. Therefore, as in the carry-skip adder, the
best design involves variable-sized blocks.

As a summaryof this section, the asymptotic time and space requirements for
the different adders are given in Figure A.18. These different adders shouldn’t
be thoughtofas disjoint choices, but rather as building blockstobe used in con--
structing an adder. Theutility of these different building blocks is highly depen-
dent on the technology used. For example, the carry-select adder works well
when a signal can drive many muxes, and the carry-skip adderis attractive in
technologies where signals can be cleared at the start of each operation. Know-
ing the asymptotic behavior of adders is useful in understanding them,butrely-
ing too much on that behavioris a pitfall. The reason is that asymptotic behavior
is only important as n grows very large. But » for an adderis the bits of preci-
sion, and double precision today is the same as it was twenty years ago—about
53 bits. Although it is true that as computers get faster, computations get
longer—and thus have more rounding error, which in turn requires more preci-
sion—this effect grows very slowly with time.

CLA O(log 7) O@ logn)

Carry skip OWn) O(n)

Carry select Own:) O(n)

FIGURE A.18 Asymptotic time and space requirementsfor four different types of
adders.

Speeding Up Integer Multiplication and
Division

The multiplication and division algorithms presented in Section A.2 are fairly
slow, producing one bit per cycle (although that cycle might be a fraction of the
CPUinstruction cycle time). In this section we discuss various techniques for
higher performance multiplication and division.

DELL Ex.1035.667

A0 40 A.9 Speeding Up Integer Multiplication and Division

Shifting Over Zeros

Shifting over zeros is a technique that is not currently used much, but is instruc
tive to consider. It is distinguished by the fact that its execution time is operand
dependent. Its lack of use is primarily attributable to its failure to offer enough
speedup over bit-at-a-time algorithms. In addition, pipelining, synchronization
with the CPU, and good compiler optimization are difficult with algorithms that
run in variable time. In multiplication, the idea behind shifting over zeros is to
add logic that detects when the low-order bit of the A register is zero (see Figure
A.2(a)) and, if so, skip the addition step and proceed directly to the shift step-
hence the term shifting over zeros. This technique becomes more useful if the
number of zeros in the A operand can be increased. The Exercises discuss how
well Booth recoding does in increasing zeros.

What about shifting for division? In nonrestoring division, an ALU operation
(either an addition or subtraction) is performed at every step, so that there
appears to be no opportunity for skipping an operation. But think about division
this way: To compute a/b, subtract multiples of b from a, and then report how
many subtractions were done. At each stage of the subtraction process the re
mainder must fit into the P register of Figure A.2(b) (page A-4). In the case
when the remainder is a small positive number, you normally subtract b; but
suppose instead you only shifted the remainder and subtracted b the next time.
As long as the remainder was sufficiently small (its high-order bit 0), after
shifting it still would fit into the P register, and no information would be lost.
However, this method does require changing the way we keep track of the num
ber of times b has been subtracted from a. This idea usually goes under the name
of SRT division, for Sweeney, Robertson, and Tocher, who independently
proposed algorithms of this nature. The main extra complication of SRT division
is that the quotient bits cannot be determined immediately from the sign of P at
each step, as it can be in ordinary nonrestoring division.

More precisely, to divide a by b where a and b are n-bit numbers, load a and
b into the A and B registers, respectively, of Figure A.2 (page A-4).

1. If B has k leading zeros when expressed using n bits, shift all the registers
left k bits. After this shift, since b has n + 1 bits, its most significant bit will be 0,
and its second-most-significant bit will be 1.

2. For i = 0, n - 1 do

If the top three bits of Pare equal, set qi= 0 and shift (P,A) one bit left.

If the top three bits of P are not all equal and P is negative, set qi =I,
shift (P,A) one bit left, and add B.

Otherwise set qi =1, shift (P,A) one bit left, and subtract B

Endloop

Ex.1035.668DELL

Computer Arithmetic A·41

3. If the final remainder is negative, correct the remainder by adding B, and
correct the quotient by subtracting 1 from q0• Finally, the remainder must be
shifted k bits right, where k is the initial shift.

A numerical example is given in Figure A.19. Although we are discussing
integer division, it helps in explaining the algorithm to move the binary point
from the right of the least significant bit to the left of the most significant bit.
Thus if n = 4 and the operation is 9/4, the A register holds 0.1001 and
(remembering that the B register has n + 1 bits), the B register holds 0.0100.

Since this changes the binary point in both the numerator and denominator,
the quotient is not affected. The remainder being a two's complement number, a
P register of 1.11102 represents -1/8. With this convention, the P register holds
numbers satisfying -1 :::;; P < 1. The first step of the algorithm shifts b so that
b ~ 1/2. As before, let r be the value of the (P,A) pair. Our rule for which ALU
operation to perform is this: If -1/4 :::;; r < 1/4 (true whenever the top three bits of
P are equal), then compute 2r by shifting (P,A) left one bit; else if r < 0 (and
hence r < -1/4, since otherwise it would have been eliminated by the first condi
tion), then compute 2r + b by shifting and then adding, else r ;;::: 1/4 and subtract
b from 2r. Using b ~ 1/2, it is easy to check that these rules keep-1/2:::;; r < 1/2.
For nonrestoring division, we only have Jr J ·:::;; b, and we need P to be n + 1 bits

wide. But for SRT division, the bound on r is tighter, namely -1/2 :::;; r < 1/2.
Thus, we can save a bit by eliminating the high-order bit of P (and b and the
adder). In particular, the test for equality of the top three bits of P becomes a test
on just two bits.

p A

00000 1000

00010 0000

00100 0000

01000 0000

±lQ.lQQ.

11100 0000

11000 0000

10000 0000

±QllQQ_

11100

±QllQQ_

01000

B contains 0011, so shift all registers left two places

B now contains 1100. Top bits of P are equal, so shift and set q 0= O

Top bits are not equal, so set q1 = 1

shift and

subtract B

Top bits equal, so shift and set q2 = O

Top bits are unequal, so set q3 = -1

shift and

add B

Remainder is negative, so restore it and subtract 1 from q
0

This must be shifted right two places to give remainder

Remainder= 10,q= 0101 -1 = 0010

FIGURE A.19 SRT division of 1000/0011.

Ex.1035.669DELL

A-42 A.9 Speeding Up Integer Multiplication and Division

The algorithm might change slightly in an implementation of SRT division.
After each ALU operation, the P register can be shifted as many places as neces
sary to make either P ;:::: 1/4 or P < -1/4. By shifting k places, k quotient bits are
set equal to zero all at once. For this reason SRT division is sometimes described
as one that keeps the remainder normalized to I r I ;:::: 1/4.

Notice that the value of the quotient bit computed in a given step is based on
which operation is performed in that step (which in tum depends on the result of
the operation from the previous step). This is in contrast to nonrestoring divi
sion, where the quotient bit computed in ith step depends on the result of the
operation in the same step. This difference is reflected in the fact that when the
final remainder is negative, the last quotient bit must be adjusted in SRT divi
sion, but not in nonrestoring division. However, the key fact about the quotient
.bits in SRT division is that they can include I. Therefore the quotient bits can't
be stored in the low-order bits of the A register; furthermore, the quotient must
be converted to ordinary two's complement in a full adder. A common way to
do this is to accumulate the positive quotient bits in one register and the negative
quotient bits in another, and then subtract the two registers after all the bits are
known. Because there is more than one way to write a number in terms of the
digits -1, 0, 1, SRT division is said to use a redundant quotient representation.

The differences between SR T division and ordinary nonrestoring division can
be summarized as follows:

1. ALU decision rule: In nonrestoring division, it is determined by the sign of
P; in SR T, it is determined by the two most significant bits of P.

2. Quotient determination: In nonrestoring division, it is immediate from the
signs of P; in SRT, it must be computed in a full n-bit adder.

3. Speed: SRT division will be faster on operands that produce zero quotient
bits.

Speeding Up Multiplication with a Single Adder

As mentioned before, shifting-over techniques are not used much in current
hardware. We now discuss some methods that are in more widespread use.
Methods that increase the speed of multiplication can be divided into two
classes: those that use a single adder and those that use multiple adders. Let's
first discuss techniques that use a single adder.

In the discussion of addition we noted that, because of carry propagation, it
is not practical to perform addition with two levels of logic. using the cells of
Figure A.13, adding two 64-bit numbers will require a trip through seven cells to
compute the P's and G's, and seven more to compute the carry bits, which will
require at least 28 logic levels. Each multiplication step will require a trip
through this adder. A way to avoid this computation ill each step is to use carry
save adders (CSA). A carry-save adder is simply n independent full adders. A

Ex.1035.670DELL

Computer Arithmetic

p
Carry bits

Sum bits

B

A·43

Shift

D D D D D D

,,~ a;t
bi

A

FIGURE A.20 Carry-save multiplier. Each circle represents a (3,2) adder working inde
pendently. At each step, the only bit of P that needs to be shifted is the low-order sum bit.

multiplier using such an adder is illustrated in Figure A.20. Each circle marked
"A" is a single-bit full adder, and each box represents one bit of a register. Each
addition operation results in a pair of bits, stored in the sum and carry parts of P.
Since each add is independent, only two logic levels are involved in the add-a
vast improvement over 28.

To operate the multiplier in Figure A.20, load the sum and carry bits of P
with zero and perform the first ALU operation. (If Booth recoding is used, it
might be a subtraction rather than an addition.) Then shift the low-order sum bit
of Pinto A, as well as shifting A itself. Then - 1 high-order bits of P don't need
to be shifted because on the next cycle the sum bits are fed into the next lower
order adder. Each addition step is dramatically increased in speed, since each
add cell is working independently of the others, and no carry is propagated.
There are two drawbacks to carry-save adders. First, they require more hardware
because there must be a copy of register P to hold the carry outputs of the adder.
Second, after the last step, the high-order word of the result must be fed into an
ordinary adder to combine the sum and carry parts. This could be accomplished
by feeding the output of P into the adder used to perform the addition operation.
Multiplying with a carry-save adder is sometimes called redundant multi
plication because P is represented using two registers. Since there are many
ways to represent P as the sum of two registers, this representation is redundant.
The term carry-propagate adder (CPA) is used to denote an adder that is not a
CSA. A propagate adder may propagate its carries using ripples, carry.
lookahead, or some other method.

Another way to speed up multiplication without using extra adders is to
examine k low-order bits of A at each step, rather than just one bit. This is often
called higher-radix rrir:tltiplication. As an example, suppose that k = 2. If the pair
of bits is 00, add 0 tO:P, and if it is 01, add B. If it is 10, simply shift bone bit
left before adding it to P. Unfortunately, if the pair is 11, it appears we would

Ex.1035.671DELL

ComputerArithmetic A-43

Carry bits

Sum bits
FIGURE A.20 Carry-save multiplier. Each circle represents a (3,2) adder working inde-
pendently. At each step, the only bit of P that needs to be shifted is the low-order sum bit.

multiplier using such an adderis illustrated in Figure A.20. Each circle marked
“A”is a single-bit full adder, and each box represents one bit of a register. Each
addition operation results in a pair of bits, stored in the sum and carry parts of P.
Since each add is independent, only twologic levels are involved in the add—a
vast improvementover 28.

To operate the multiplier in Figure A.20, load the sum and carry bits of P
with zero and perform the first ALU operation. (If Booth recoding is used,it
might be a subtraction rather than an addition.) Then shift the low-order sum bit
of P into A, as well as shifting A itself. The n — 1 high-order bits of P don’t need
to be shifted because on the next cycle the sum bits are fed into the next lower
order adder. Each addition step is dramatically increased in speed, since each
add cell is working independently of the others, and no carry is propagated.
There are two drawbacksto carry-save adders. First, they require more hardware
because there must be a copy. of register P to hold the carry outputs of the adder.
Second,after the last step, the high-order word of the result must be fed into an
ordinary adder to combine the sum and carry parts. This could be accomplished
by feeding the output of P into the adder used to perform the addition operation.
Multiplying with a carry-save adder is sometimes called redundant multi-
plication because P is represented using two registers. Since there are many
ways to represent P as the sum of tworegisters, this representation is redundant.
The term carry-propagate adder (CPA)is used to denote an adderthat is not a
CSA. A propagate adder may propagate its carries using ripples, carry.
lookahead, or some other method.

Another way to speed up multiplication without using extra adders is to
examine k low-orderbits of A at each step, rather than just one bit. This is often
called higher-radix multiplication. As an example, supposethat k = 2.If the pair
of bits is 00, add 0 to'P, andif it is 01, add B.If it is 10, simply shift b one bit
left before adding it to P. Unfortunately, if the pair is 11, it appears we would

DELL Ex.1035.671

A-44 A.9 Speeding Up Integer Multiplication and Division

have to compute b + 2b. But this can be avoided by using a higher-radix version
of Booth recoding. Imagine A as a base 4 number: When the digit 3 appears,
change it to I and add 1 to the next higher digit to compensate. The name for
this technique, overlapping triplets, comes from the fact that it looks at 3 bits to
determine what multiple of b to use, whereas ordinary Booth recoding looks at 2
bits.

The precise rules for overlapping triplets are given in Figure A.21. Besides
having more complex control logic, this technique also requires that the P regis
ter be one bit wider to accommodate the possibility of 2b or-2b being added to
it. It is also possible to use a radix-8 (or even higher) version of Booth recoding.
In that case, however, it will be necessary to use the multiple 3B as a potential
summand. Radix-8 multipliers normally compute 3B once and for all at the
beginning of a multiplication operation.

Current pair Previous Multiple

i + 1 i i -1

0 0 0 0

0 0 1 +b

0 1 0 +b

0 1 1 +2b

1 0 0 -2b

1 0 1 -b

1 1 0 -b

1 1 1 0

FIGURE A.21 Multiples of b to use for radix-4 Booth recoding. For example, if the two
low-order bits of the A register are both 1, and the last bit to be shifted out of the A register
was 0, then the correct multiple is -b, obtained from the second to last row of the table.

Faster Multiplication with Many Adders

If the space for many adders is available, then multiplication speed can be
improved. Figure A.22 shows a block diagram of a simple array multiplier for
multiplying two 8-bit numbers using seven CS As and one propagate adder; As it
still takes eight additions to compute the product, the latency of computing a
product is not dramatically different from using a single carry-save adder. How
ever, with the hardware in Figure A.22, multiplication can be pipelined, increas
ing the total throughput. On the other hand, although this level of pipelining is
sometimes used in array processors, it is not used in any of the single-chip,
floating-point accelerators discussed in Section A.10. Pipelining is discussed in
general in Chapter 6 and by Kogge [1981] in the context of multipliers.

Ex.1035.672DELL

Computer Arithmetic A-45

CSA

CSA

CSA

CSA

CSA

CSA

CSA

Propagate adder

FIGURE A.22 Block diagram of an array multiplier. The 8-bit number in A is multiplied
by b-,b6···bo. Each box marked "CSA" is a carry-save adder.

With the technology of 1990, it is not possible to fit an array large enough to
multiply two double-precision numbers on a single chip and have space left over
for the other arithmetic operations. Thus, a popular design is to use a two-pass
arrangement such as the one shown in Figure A.23 (page A-46). The first pass
through the array "retires" four bits of B. Then the result of this first pass is fed
back into the top to be combined with the next four summands. The result of this
second pass is then fed into a CPA. This design, however, loses the ability to be
pipelined.

If arrays require as many addition steps as the much cheaper arrangement in
Figure A.2, why are they so popular? First of all, using an array has a smaller
latency than using a single adder-because the array is a combinational circuit,
the signals flow through it directly without being clocked. Although the two
pass adder of Figure A.23 would normally still use a clock, the cycle time for
passing through k arrays can be less than k times the clock that would be needed
for a design like the one in Figure A.2. Secondly, the array is amenable to vari
ous schemes for further speedup. One of them is shown in Figure A.24 (page
A-47). The idea of this design is that two adds proceed in parallel or, to put it
another way, each stream passes through only half the adders. Thus, it runs at
almost twice the speed of the multiplier in Figure A.22. This even/odd multiplier

Ex.1035.673DELL

ComputerArithmetic A-45

b,A b,A b,A b,A b,A b,A b,A

Propagate adder

FIGURE A.22 Block diagram of an array multiplier. The 8-bit numberin A is multiplied
by b7bg:-by, Each box marked “CSA”is a carry-save adder.

With the technology of 1990, it is not possible to fit an array large enough to
multiply two double-precision numbers on a single chip and have spaceleft over
for the other arithmetic operations. Thus, a popular design is to use a two-pass
arrangement such as the one shown in Figure A.23 (page A-46). The first pass
through the array “retires” four bits of B. Then the result of this first pass is fed
back into the top to be combined with the next four summands.Theresult of this
second passis then fed into a CPA. This design, however, loses the ability to be
pipelined.

If arrays require as many addition steps as the much cheaper arrangement in
Figure A.2, why are they so popular? First of all, using an array has a smaller
latency than using a single adder—because the array is a combinationalcircuit,
the signals flow through it directly without being clocked. Although the two-
pass adder of Figure A.23 would normally still use a clock, the cycle time for
passing through & arrays can be less than k times the clock that would be needed
for a design like the one in Figure A.2. Secondly, the array is amenable to vari-
ous schemes for further speedup. One of them is shown in Figure A.24 (page
A-47). The idea of this design is that two adds proceed in parallel or, to put it

- another way, each stream passes through only half the adders. Thus, it runs at
almost twice the speed of the multiplier in Figure A.22. This even/odd multiplier

DELL Ex.1035.673

A·46 A.9 Speeding Up Integer Multiplication and Division

is popular in VLSI because of its regular structure. Arrays can also be speeded
up using asynchronous logic. One of the reasons why the multiplier of Figure
A.2 (page A-4) needs a clock is to keep the output of the adder from feeding
back into the input of the adder before the output has fully stabilized. Thus, if
the array in Figure A.23 is long enough so that no signal can propagate from the
top through the bottom in the time it takes for the first adder to stabilize, it may
be possible to avoid clocks altogether. Williams et al. [1987] discusses a design
using this idea, although it is for dividers instead of for multipliers.

The techniques of the previous paragraph still have a multiply time of O(n),
but the time can be reduced to log n using a tree. The simplest tree would com
bine pairs of summands b0A ··· bn_1A, cutting the number of summands from n
to n/2. Then these n/2 numbers would be added in pairs again, reducing to n/4,
and so on, and resulting in a single sum after log n steps. However, this simple
binary-tree idea doesn't map into full (3,2) adders, which reduce three inputs to
two rather than reducing two inputs to one. A tree that does use full adders,
known as a Wallace tree, is shown in Figure A.25. Wheri computer arithmetic
units were built out of MSI parts, a Wallace tree was the design of choice for
high-speed multipliers. There is, however, a problem with implementing them in
VLSI.

Figures A.22-A.24 are sufficiently concise that it may be hard to visualize all
the adders involved in an array multiplier. Figure A.26 (page A-49) shows each
individual adder in a 4-bit array multiplier. Figure A.26(b) shows the inputs to
the circuit, and Figure A.26(c) shows how those inputs are connected by adders.

b4 A

i
b5 A b0 A

i
b6 A b1 A CSA

i
b7 A b2 A CSA

i
b3 A CSA

CSA

CPA

FIGURE A.23 Multipass array multiplier. Multiplies two 8-bit numbers with about half the
hardware of that in Figure A.22. At the end of the second pass, the bits flow into the CPA.

Ex.1035.674DELL

A-46 , A.9 Speeding Up Integer Multiplication and Division

is popular in VLSI because ofits regular structure. Arrays can also be speeded
up using asynchronous logic. One of the reasons why the multiplier of Figure
A.2 (page A-4) needs a clock is to keep the output of the adder from feeding
back into the input of the adder before the output has fully stabilized. Thus,if
the array in Figure A.23 is long enoughso that no signal can propagate from the
top through the bottom in the timeit takes for the first adderto stabilize, it may
be possible to avoid clocks altogether. Williamset al. [1987] discusses a design
using this idea, althoughit is. for dividers instead of for multipliers.

The techniques of the previous paragraphstill have a multiply time of O(n),
but the time can be reduced to logn using a tree. The simplest tree would com-
bine pairs of summands boA :- b,_,A, cutting the number of summands from n
to n/2. Then these n/2 numbers would be added in pairs again, reducing to n/4,
and so on, and resulting in a single sum after logn steps. However, this simple
binary-tree idea doesn’t map into full (3,2) adders, which reduce three inputs to
two rather than reducing two inputs to one. A tree that does use full adders,
knownas a Wallace tree, is shown in Figure A.25. When computer arithmetic
units were built out of MSI parts, a Wallace tree was the design of choice for
high-speed multipliers. There is, however, a problem with implementing them in
VLSI.

Figures A.22—A.24 are sufficiently concise that it may be hard to visualize all
the adders involved in an array multiplier. Figure A.26 (page A-49) shows each
individual adder in a 4-bit array multiplier. Figure A.26(b) showsthe inputs to
the circuit, and Figure A.26(c) shows how those inputs are connected by adders.

FIGURE A.23 Multipass array multiplier. Multiplies two 8-bit numbers with about half the
hardwareofthat in Figure A.22. At the end of the second pass, the bits flow into the CPA.

DELL Ex.1035.674

Computer Arithmetic A·47

b2 A b1A b0 A

CSA

b5 A b4 A b3 A

CSA

b6 A

t
CSA

b7 A

CSA

CSA

CSA

CPA

FIGURE A.24 Even/odd array. The first two adders work in parallel. Their results are fed
into the third and fourth adders, which also work in parallel, and so on.

CSA CSA

CSA CSA

CSA

CSA

Propagate adder

FIGURE A.25 Wallace-tree multiplier.

Ex.1035.675DELL

ComputerArithmetic A-47

FIGURE A.24 Even/odd array. Thefirst two adders workin parallel. Their results are fed
into the third and fourth adders, which also work in parallel, and so on.

Propagate adder

FIGURE A.25 Wallace-tree multiplier.

DELL Ex.1035.675

A-48

Example:

Answer:

A.9 Speeding Up Integer Multiplication and Division

Each row of adders in A.26(c) corresponds to a single box in A.26(a). In actual
implementation the array w~uld be laid out as a square, not "twisted" as shown
in the picture. (Lining up bits of the same significance in the same column
makes the picture easier to understand.) If you try to fill in all the adders and
paths for the Wallace tree of Figure A.25 (page A-47), you will discover that it
does not have the nice, regular structure of Figure A.26. This is why VLSI
designers have often chosen to use other log n designs such as the binary-tree
multiplier, which is discussed next.

The problem with adding summands in a binary tree is that of corning up with
a (2,1) adder that combines two digits and produces a single-sum digit. Because
of carries, this isn't possible using binary notation, but it can be done with some
other representation. We will use the signed-digit representation l, T, and 0,
which we used previously to understand Booth's algorithm. This representation
has two costs. First, it takes two bits to represent each signed digit. Second, the
algorithm for adding two signed-digit numbers ai and bi is complex and requires
examining aiai-lai-2 and bibi-lbi-2· Although this means you must look two bits
back, in binary addition you might have to look an arbitrary number of bits back
(because of carries).

We can describe the algorithm for adding two signed-digit numbers as fol
lows. First, compute sum and carry bits si and ci+l using the table in Figure A.27.
Then compute the final sum as si + ci. The tables are set up so that this final sum
does not generate a carry.

What is the sum of the signed-digit numbers 1 To and 001 ?

The two low-order bits sum to 0 + 1=1 I, the next pair sums to 1+0 =OT, and
the high-order pair sums to 1 + 0 = 01, so the sum is 1T + 0 To + 0100 = 10 I.

This, then, defines a (2,1) adder. With this in hand, we can use a
straightforward binary tree to perform multiplication. In the first step it adds b0A
+ b 1A in parallel with b2A + b3A, .. ., bn_2A + bn_1A. The next step adds the
results of these sums in pairs, and so on. Although the final sum must be run
through a carry-propagate adder to convert it from signed-digit form to two's
complement, this final add step is necessary in any multiplier using CSAs.

To summarize, both Wallace trees and signed-digit trees are log n multipliers.
The Wallace tree uses the fewer gates but is harder to lay out. The signed-digit
tree has a more regular structure, but requires two bits to represent each digit and
has more complicated add logic. As with adders, it is possible to combine differ
ent multiply techniques. For example, Booth recoding and arrays can be com
bined. In Figure A.22 (page A-45) instead of having each input be bz'A, we could
have it be bibi_1A, and in order to avoid having to compute the multiple 3b, we
can use Booth recoding. ·

Ex.1035.676DELL

Computer Arithmetic A·49

b1A

CSA

CSA

CSA

(a)
Propagate adder

b0a 1 boao .. \ I. • b0A

• • • • b1A

• • • • b2A

• • • • b3A
I \

(b) b3a 1 b3ao

(c)

FIGURE A.26 Block diagram of an array multiplier (a); the inputs to the array (b); the
array expanded to show all the adders (c).

1 1 0 1 x 1 x
±J_ +1 +1 ±..Q. :!:..Q__t :!:..Q__t
1 0 00 fo 00 1 1 ifx;:::Oand y;::o o1 if x;:::o and y;::: o

0 1 otherwise 11 otherwise

FIGURE A.27 Signed-digit addition table. The leftmost sum shows that when computing
1 + 1, the sum bit is O and the carry bit is 1 .

Ex.1035.677DELL

ComputerArithmetic A499

P7 Ps Ps Pa Pa Po Py Po
(c)

FIGURE A.26 Block diagram of an array multiplier (a); the inputs to the array (b); the
array expandedto showall the adders (c).

1x

20¥+OyY
11 ifx>Oand y20 ifx20 and y20
01 otherwise otherwise

FIGURE A.27 Signed-digit addition table. The leftmost sum shows that when computing
1 +1, the sum bit is 0 and the carry bit is 1.

DELL Ex.1035.677

A·SO A.9 Speeding Up Integer Multiplication and Division

Faster Division with One Adder

The two techniques for speeding up multiplication with a single adder were
carry-save adders and higher-radix multiplication. There is a difficulty when try
ing to utilize these approaches to speed up nonrestoring division. The problem
with CSAs is that at the end of each cycle the value of P, since it is in carry-save
form, is not known exactly. In particular, the sign of Pis uncertain, yet it is the
sign of P that is used to compute the quotient digit and decide on the next ALU
operation. When a higher radix is used, the problem is deciding what value to
subtract from P. In the paper-and-pencil method, you have to guess the quotient
digit. In binary division there are only two possibilities; we were able to finesse
the problem by initially guessing one and then adjusting the guess based on the
sign of P. This doesn't work in higher radices because there are more than two
possible quotient digits, rendering quotient selection potentially quite compli
cated: You would have to compute all the multiples of b and compare them to P.

Both the carry-save technique and higher-radix division can be made to work
if we use a redundant quotient representation. Recall from our discussion of SRT
division that by allowing the quotient digits to be -1, 0, or 1, there is often a
choice of which one to pick. The idea in the previous algorithm was to choose
zero whenever possible because that meant an ALU operation could be skipped.
In carry-save division, the idea is that because the remainder (P register) is not
known exactly (being stored in carry-save form), the exact quotient digit is also
not known. But thanks to the redundant representation, the remainder doesn't
have to be known precisely in order to pick a quotient digit. This is illustrated in
Figure A.28, where the x axis represents ri, the contents of the (P,A) register pair
after i steps. The line labeled qi= 1 shows the value that ri+l would be if we
choose qi = 1, and similarly for the lines qi = 0 and qi = -1. We can choose any
value for qi, as long as ri+l = rPi- qiB satisfies I ri+i I :::; B. The allowable ranges
are shown in the right half of Figure A.28. Thus we only need to know r pre
cisely enough to decide in which range in Figure A.28 it lies.

-----<qi =-1
1------1 qi= 0

---q1=1
~-+----t---+--0

-b 0 b

FIGURE A.28 Quotient selection for· radix-2 division. The x axis represents the i th
remainder, which is the quantity in the (P,A) register pair. They axis shows the value of the
remainder after one additional divide step. Each bar on the right-hand graph gives the
range of 'i values for which it is permissible to select the associated value of qi.

Ex.1035.678DELL

A-50 , A.9 Speeding Up Integer Muitiptication and Division

Faster Division with One Adder

The two techniques for speeding up multiplication with a single adder were
carry-save adders and higher-radix multiplication. There is a difficulty when try-
ing to utilize these approaches to speed up nonrestoring division. The problem
with CSAsis that at the end of each cycle the value of P, since it is in carry-save
form, is not known exactly. In particular, the sign of P is uncertain, yet it is the
sign of P that is used to compute the quotient digit and decide on the next ALU
operation. When a higher radix is used, the problem is deciding what value to
subtract from P. In the paper-and-pencil method, you have to guess the quotient
digit. In binary division there are only two possibilities; we were able to finesse
the problem by initially guessing one and then adjusting the guess based on the
sign of P. This doesn’t work in higher radices because there are more than two
possible quotient digits, rendering quotient selection potentially quite compli-
cated: You would have to compute all the multiples of b and compare them to P.

Both the carry-save technique and higher-radix division can be made to work
if we use a redundant quotient representation. Recall from our discussion of SRT
division that by allowing the quotient digits to be —1, 0, or 1, there is often a
choice of which one to pick. The idea inthe previous algorithm was to choose
zero whenever possible because that meant an ALU operation could be skipped.
In carry-save division, the idea is that because the remainder(P register) is not
knownexactly (being stored in carry-save form), the exact quotient digit is also —
not known. But thanks to the redundant representation, the remainder doesn’t
have to be knownprecisely in order to pick a quotient digit. This is illustrated in
Figure A.28, where the x axis represents 7;, the contents of the (P,A) register pair
after i steps. The line labeled g; = 1 showsthe value that rj; would be if we |
choose g; = 1, and similarly for the lines g; = 0 and g; = —1. We can choose any
value for q;, as long as r;,, = rP;— q,B satisfies |7r;,,| < B. The allowable ranges
are shown in the right half of Figure A.28. Thus we only need to know r pre-
cisely enough to decide in which range in Figure A.28it lies.

FIGURE A.28 Quotient selection for radix-2 division. The x axis represents the /th
remainder, which is the quantity in the (P,A) register pair. The y axis showsthe valueof the
remainder after one additional divide step. Each bar on the right-hand graph gives the
range of rj values for whichit is permissible to select the associated value of qj.

DELL Ex.1035.678

Computer Arithmetic A-51

This is the basis for using carry-save adders. Look at the high-order bits of
the carry-save adder and sum them in a propagate adder. Then use this approxi
mation of r to compute qi, usually by means of a lookup table. The same tech-
nique works for higher-radix division (whether or not a carry-save adder is
used). The high-order bits P can be used to index a table that gives one of the al
lowable quotient digits.

The design challenge when building a high-speed SRT divider is figuring out
how many bits of P and B need to be examined. For example, suppose that we
take a radix of 4, use quotient digits of 2, 1, o,I, 2, but have a propagate adder.
How many bits of P and B need to be examined? Deciding this involves two
steps. For ordinary radix-2 nonrestoring division, because at each stage Ir I ::; b,
the P buffer won't overflow. But for radix 4, ri+I = 4ri- qib is computed at each
stage, and if ri is near b, then 4r; will be near 4b, and even the largest quotient
digit will not bring r back to the range I ri+I I ::; b. In other words, the remainder
might grow without bound. However, restricting I ri I ::; 2bl3 makes it easy to
check that ri will stay bounded.

After figuring out the bound that ri must satisfy, we can draw the diagram in
Figure A.29, which is analogous to Figure A.28. If r; is between (1112)b and
(5112)b, we can pick q = 11 and so on. Or to put it another way, if rib is between
1/12 and 5112, we can pick q = 1. Suppose we look at 4 bits of P and 4 bits of b,
and the high bits of P (not counting .the (n + 1)-st sign bit) are OOllxxx··., while
the high bits of b are lOOlxxX.·· . To simplify calculation, imagine the binary
point at the left end of each register. Since we truncated, r (the value of P con
catenated with A) could have a value from .0011 to .0100, and b could have a
value from .1001 to .1010. Thus rib could be as small as .0011/.1010 or as large
as .01001.1001. But .001lp/.10102=3110 < 113 would require a quotient bit of 1,
while .010021.10012 = 419 > 5112 would require a quotient bit of 2. In other
words, 4 bits of P and 4 bits of b aren't enough to pick a quotient bit. It turns out
that 5 bits of P and 4 bits of b are enough. This can be verified by writing a
simple program that checks all the cases.

--;---11>----+---+---t-----+---+--0
-g_Q

3

-g_Q
3

q;= 1
q;=2

----<-------+-+--+---+---+-+-<-+--+---0

1------t 0 .P. .P.
,__ __ _, q; = -1 12 6

q;=-2

.P. EQ
3 12

FIGURE A.29 Quotient selection for radix-4 division.

gg
3

Ex.1035.679DELL

Computer Arithmetic A-51

This is the basis for using carry-save adders. Look at the high-orderbits of
the carry-save adder and sum them in a propagate adder. Then use this approxi-
mation of r to compute g;, usually by meansof a lookup table. The same tech-
nique works for higher-radix division (whether or not a carry-save adder is
used), The high-order bits P can be used to indexatable that gives oneoftheal-
lowable quotientdigits.

The design challenge when building a high-speed SRT divideris figuring out
how many bits of P and B need to be examined. For example, suppose that we
take a radix of 4, use quotient digits of 2, 1, 0,1, 2, but have a propagate adder.
How manybits of P and B need to be examined? Deciding this involves two
steps. For ordinary radix-2 nonrestoring division, because at each stage |r| <b,
the P buffer won’t overflow. Butfor radix 4, r;,; = 4r; — g;b is computed at each
stage, and if r;is near b, then 4r; will be near 4b, and even the largest quotient
digit will not bring r back to the range |7;4; | <b. In other words, the remainder
Might grow without bound. However,restricting |r;| < 2b/3 makes it easy to
check that 7; will stay bounded.

After figuring out the bound that r; must satisfy, we can draw the diagram in
Figure A.29, which is analogous to Figure A.28. If r;is between (1/12)b and
(5/12)b, we can pick q = 1, and so on. Orto put it another way,if r/b is between
1/12 and 5/12, we can pick g = 1. Suppose welookat 4 bits of P and 4 bits of b,
and the high bits of P (not counting the (m + 1)-st sign bit) are 0011xxx--., while
the high bits of b are 1001xxx--- . To simplify calculation, imagine the binary
point at the left end of each register. Since we truncated, r (the value of P con-
catenated with A) could have a value from .0011 to .0100, and b could have a
value from .1001 to .1010. Thus 7/b could be as small as .0011/.1010 or as large
as .0100/.1001. But .0011/.10102 = 3/10 < 1/3 would require a quotient bit of 1,
while .01002/.10013 = 4/9 > 5/12 would require a quotient bit of 2. In other
words, 4 bits of P and 4 bits of b aren’t enoughto pick a quotientbit. It turns out
that 5 bits of P and 4 bits of b are enough. This can be verified by writing a
simple program that checksall the cases.

FIGURE A.29 Quotient selection for radix-4 division.

DELL Ex.1035.679

A·52

b

8

8

8

8

8

9

9

9

9

9

10

10

10

10

10

11

11

11

11

11

Example:

Answer:

A.9 Speeding Up Integer Multiplication and Division

Suppose that the radix is 4 and the quotient digits are 2, 1, OJ, 2, but this time a
CSA is used instead of a propagate adder. How many bits of the P and B
registers need to be examined?

Once again I ri I :::; 2b/3, and the ranges of the qi are still as in Figure A.29. If the

top 4 bits of the sum part and the carry part of Pare respectively 0010 and 0001,
then the sum part ranges from 0010 to 0011 and the carry part from 0001 to
0010. Accordingly, the true value of r ranges from 0010 + 0001=0011to0011
+ 0010 = 0101. Given, therefore, a CPA that adds the top 4 bits of the carry and
sum parts of P, and a sum of 0011, the true sum will be anywhere from 0011 to
0101. A program that checks all the cases will show that 6 bits of P and 4 bits of
b are needed to predict a quotient digit. The result of such a program is shown in
Figure A.30. For example, if bis 1001.x.xx ... and r is 001101.x.xx .. ., then the top 4
bits of bare 9 and the top 6 bits of rare 13, making the quotient digit 1. But if r
were 0011102 = 14, the quotient digit would have to be 2.

Range of P q b Range of P q

-21 -14 -2 12 -32 -20 -2
-13 -5 -1 12 -20 -7 -1

-5 3 0 12 -8 6 0

3 11 1 12 5 18 1

12 21 2 12 18 32 2

-24 -16 -2 13 -34 -21 -2

-15 -6 -1 13 -21 -7 -1

-6 4 0 13 -8 6 0

4 13 1 13 5 19 1

14 24 2 13 19 34 2

-26 -17 -2 14 -37 -22 -2

-16 -6 -1 14 -23 -7 -1

-6 4 0 14 -9 7 0

4 14 1 14 5 21 2

15 26 2 14 20 37 2

-29 -18 -2 15 -40 -24 -2

-18 -6 -1 15 -25 -8 -1

-7 5 0 15 -10 8 0

4 16 1 15 6 23 1

16 29 2 15 22 40 2

FIGURE A.30 Quotient digits for radix-4 SRT division with a CSA. The top row says that if the high-order 4 bits of b
are 10002 = 8, and if the top 6 bits of P are between 1100102 = -14 and 10101 2 = -21, then the quotient digit is -2.

Ex.1035.680DELL

A.10 I

Computer Arithmetic A·53

Although these are simple cases, all SRT analyses proceed in the same way.
First compute the range of ri, then plot ri against ri+I to find the quotient ranges,
and finally write a program to compute how many bits are necessary. (It is some
times also possible to compute the required number of bits analytically.) Two
final comments about high-radix SRT division are in order. First, Figure A.30 is
not symmetrical. Thus, for a radix-4 CSA divider, the lookup table needs not
only 6 bits of P, but also the sign of P. Second, the quotient lookup table has a
fairly regular structure. This means it is· usually cheaper to encode it as a PLA
rather than in ROM.

Putting It All Together

In this section, we will compare the Weitek 3364, the MIPS R3010, and the
Texas Instruments 8847 (see Figures A.31 and A.32, pages A-54-A-55). In
many ways, these are ideal chips to compare. They each implement the IEEE
standard for addition, subtraction, multiplication, and division on a single chip.
All were introduced in 1988 and run with a cycle time of about 40 nanoseconds.
However, as we will see, they use quite different algorithms. The Weitek chip is
well described in Birman et al. [1988], the MIPS chip is described in less detail
in Rowen, Johnson, and Ries [1988], and the details of the TI chip have yet to be
published.

There are a number of things that these three chips have in common. They
perform addition and multiplication in parallel, and they implement neither
extended precision nor the IEEE remainder operation. We discussed earlier how
an efficient REM could be provided in software if only chips would implement a
remainder-step function. The designers of these chips probably decided not to

MIPS R3010 Weitek 3364 Tl8847

Clock cycle time (ns) 40 50 30

Size (mil2) 114,857 147,600 156,180

Transistors 75,000 165,000 180,000

Pins 84 168 207

Power (watts) 3.5 1.5 1.5

Cycles/add 2 2 2

Cycles/mult 5 2 3

Cycles/divide 19 17 11

Cycles/sq root - 30 14

FIGURE A.31 Summary of the three floating-point chips discussed in this section.
The cycle times are for production parts available in June 1989. The cycle counts are for
double-precision operations.

Ex.1035.681DELL

A-54 A.1 O Putting It All Together

Pipeline register

Pipeline register
Normalizer

"' E
Signed digit converter

(/) Rounder

Sum register

Product register

Pads

Pads I Register
timing Register file

and
IEEE -decode

exception Conflict
and status detect Forward- Operand fowarding

register ing and staging
control

Extemal data bus

Instruction 32b H64b alignment

D -
Exponent

~
datapath

Shifter
decode Add

control Cl) - L

Pipeline
control Adder

and IEEE
interlock rounding

logic

i Divide
control Divider

Clocks

~ 1/0
control Multiply i d

loop control Multiplier

Pads

Ex.1035.682DELL

A-54 A.10 PuttingIt All Together

Pads

Input registers

Operand select
Operand select

Divide/squareroot
registers and
multiplexers

; Pre-alignment

Signed digit
multiplier .

Divide/squareroot statemachine Seedprogrammable logicarrary

Instructiondecoder
Pipeline register

joeline register -—

Product register

Register
timingand

IEEE decodeexception
and status Operand fowarding

register and staging

instruction

Exponent
datapath

control

Pipelinecontrol
and IEEE

interlock roundinglogic

Divide
control

vo

control Multiplycontrol

DELL Ex.1035.682

Computer Arithmetic

J
ALU

I

I
Reg. file

1/0 muxes

Divide/sqrt

I

Multiplier

FIGURE A.32 Chip layout. In the left-hand column are the photomicrographs; the right
hand column shows the corresponding floor plans. Top left is the Tl 8847, bottom left is the
MIPS R3010, and above is the Weitek 3364.

A-55

Pads

I

Control

I
'

Status
reg.

Pads

Ex.1035.683DELL

Computer Arithmetic A-55

Reg.file

VO muxes
4 Control

Divide/sqrt

Multiplier

Status
reg.

FIGURE A.32_ Chip layout.In the left-hand column are the photomicrographs; the right-
hand column showsthe correspondingfloor plans. Topleft is the Tl 8847, bottom left is the
MIPS R3010, and above is the Weitek 3364.

DELL Ex.1035.683

A·56 A.1 O Putting It All Together

provide extended precision because the most influential users are those who run
portable codes, which can't rely on extended precision. However, as we have
seen, extended precision can make for faster and simpler math libraries.

A summary of the three chips is given in Figures A.31 (page A-53) and A.32.
Note that a higher transistor count generally leads to smaller cycle counts.
Comparing the cycles/op numbers needs to be done carefully because the figures
for the MIPS chip are those for a complete system (R3000/3010 pair), while the
Weitek and TI numbers are for standalone chips, and are usually larger when
used in a complete system.

The MIPS chip has the fewest transistors of the three. This is reflected in the
fact that it is the only chip of the three that does not have any pipelining or
hardware square root. Further, the multiplication and addition operations are not
completely independent because they share the carry-propagate adder that
performs the final rounding (as well as the rounding logic). Addition on the
R3010 uses a mixture of ripple, CLA, and carry select. A carry-select adder is
used in the fashion of Figure A.16 (page A-38). Within each half, carries are
propagated using a hybrid ripple-CLA scheme of the type indicated in Figure
A.14. However, this is further tuned by varying the size of each block, rather
than having each fixed at four bits (as they are in Figure A)4 on page A-36).
The multiplier is midway between the designs of Figures A.2 (page A-4) and
A.22 (page A-45). It has an array just large enough so that output can be fed
back into the input without having to be clocked. Also, it uses radix-4 Booth
recoding and the even-odd technique of Figure A.24 (page A-47). The R3010
can do a divide and multiply in parallel (like the Weitek chip but unlike the TI
chip). The divider is a radix-4 SRT method with quotient digits -2, -1, 0, 1, and
2, and is similar to that described in Taylor [1985]. Double-precision division is
about four times slower than multiplication. The R3010 shows that for chips
using an O(n) multiplier, an SRT divider can operate fast enough to keep area
sonable ratio between multiply and divide.

The Weitek 3364 has independent add, multiply, and divide units, and also
uses radix-4 SRT division. However, the add and multiply operations on the
W eitek chip are pipelined. The three addition stages are (1) exponent compare,
(2) add followed by shift (or vice versa), and (3) final rounding. Stages (1) and
(3) take only a half-cycle, allowing the whole operation to be done in two cycles,
even though there are three pipline stages. The multiplier uses an array of the
style of Figure A.23 but uses radix-8 Booth recoding, which means it must com
pute 3 times the multiplier. The three multiplier pipeline stages are (1) compute
3b, (2) pass through array, and (3) final carry-propagation add and round. Single
precision passes through the array once, double precision twice. Like addition,
the latency is two cycles. The Weitek chip uses ,an interesting addition
algorithm. It is a variant on the carry-skip adder pictured in Figure A.15 (page
A-37). However Pij, which is the logical AND of many terms, is computed by
rippling, performing one AND per ripple. Thus, while the carries propagate left
within a block, the value of Pij is propagating right within the next block, and
the block sizes are chosen so that both waves complete at the same time. Unlike

Ex.1035.684DELL

A.11

Computer Arithmetic A·57

the MIPS chip, the 3364 has hardware square root, which shares the divide
hardware. The ratio of double-precision multiply to divide is 2: 17. The large
disparity between multiply and divide is due to the fact that multiplication uses
radix-8 Booth recoding, while division uses a radix-4 method. In the MIPS
R3010, multiplication and division use the same radix.

The notable feature of the TI 8847 is that it does division by iteration (using
the Goldschmidt algorithm discussed in Section A.6). This improves the speed
of division (the ratio of multiply to divide is 3: 11), but means that multiplication
and division cannot be done in parallel as on the other two chips. Addition has a
two-stage pipeline. Exponent compare, fraction shift, and fraction addition are
done in the first stage, normalization and rounding in the second stage. Multipli
cation uses a binary tree of signed-digit adders and has a three-stage pipeline.
The first stage passes through the array retiring half the bits, the second stage
passes through the array a second time, and the third stage converts from signed
digit form to two's complement. Since there is only one array, a new multiply
operation can only be initiated in every other cycle. However, by slowing down
the clock, two passes through the array can be made in a single cycle. In this
case, a new multiplication can be initiated in each cycle. The 8847 adder uses a
carry-select algorithm rather than carry lookahead. As mentioned in Section A.6,
the TI ·carries 60 bits of precision in order to do correctly rounded division.

These three chips illustrate the different tradeoffs made by designers with
similar constraints. One of the most interesting things about these chips is the
diversity of their algorithms. Each uses a different add algorithm, as well as a
different multiply algorithm. In fact, Booth recoding is the only technique that is
universally used by all the chips.

Fallacies and Pitfalls

Fallacy: Underflows rarely occur in actual floating-point application code.

Although most codes rarely underflow, there are actual codes that underflow
frequently. SDRWAVE [Kahaner 1988], which solves a one-dimensional wave
equation, is one such example. This program underflows quite frequently, even
when functioning properly. Measurements on one machine show that adding
hardware support for gradual underflow would cause SDRWA VE to run about
50% faster.

Fallacy: Conversions between integer and floating point are rare.

In fact, in Spice they are as frequent as divides. The assumption that conversions
are rare leads to a mistake in the SP ARC instruction set, which does not provide
an instruction to move from integer registers to floating-point registers.

Ex.1035.685DELL

A·58 A.11 Fallacies and Pitfalls

Pitfall: Don't increase the speed of a floating-point unit without increasing its
memory bandwidth.

A typical use of a floating-point unit is to add two vectors to produce a third
vector. If these vectors consist of double-precision numbers, then each floating
point add will use three operands of 64 bits each, or 24 bytes of memory. The
memory bandwidth requirements are even greater if the floating-point unit can
perform addition and multiplication in parallel (as most do).

Pitfall: -xis not the same as 0 -x.

This is a fine point in the IEEE standard that has tripped up some designers.
Because floating-point numbers use the sign/magnitude system, there are two
zeros, +O and -0. The standard says that 0 - 0 = +O, whereas -(0) = -0. Thus -x
is not the same as 0 - x when x = 0.

A.1 2 I Historical Perspective and References

The earliest computers used fixed point rather than floating point. In
"Preliminary Discussion of the Logical Design of an Electronic Computing In
strument," Burks, Goldstine, and von Neumann put it like this:

There appear to be two major purposes in a ''floating" decimal point system
both of which arise from the fact that the number of digits in a word is a con
stant fixed by design considerations for each particular machine. The first of
these purposes is to retain in a sum or product as many significant digits as pos
sible and the second of these is to free the human operator from the burden of
estimating and inserting into a problem "scale factors" - multiplicative con
stants which serve to keep numbers within the limits of the machine.

There is, of course, no denying the fact that human time is consumed in arrang
ing for the introduction of suitable scale factors. We only argue that the time so
consumed is a very small percentage of the total time we will spend in preparing
an interesting problem for our machine. The first advantage of the floating point
is, we feel, somewhat illusory. In order to have such a floating point, one must
waste memory capacity which could otherwise be used for carrying more digits
per word. It would therefore seem to us not at all clear whether the modest
advantages of a floating binary point offset the loss of memory capacity and the
increased complexity of the arithmetic and control circuits. [Bell and Newell
1971, 97]

This enables us to see things from the -perspective of early computer design
ers, who believed that saving computer time and memory were more important
than saving programmer time.

Ex.1035.686DELL

Computer Arithmetic A·59

The original papers introducing the Wallace tree, Booth recoding, SRT divi
sion, overlapped triplets, and so on, are reprinted in Swartzlander [1980]. A
good explanation of an early machine (the IBM 360/91) that used a pipelined
Wallace tree, Booth recoding, and iterative division is in Anderson et al. [1967].
A discussion of the average time for single-bit SRT division is in Freiman
[1961]; this is one of the few interesting historical papers that does not appear in
Swartzlander.

The standard book of Mead and Conway [1980] discouraged the use of CLAs
as not being cost effective in VLSI. Brent and Kung [1982] was an important
paper that helped combat that view. An example of a detailed layout for CLAs
can be found in Ngai and Irwin [1985] or in Weste and Eshraghian [1985].
Takagi, Yasuura, and Yajima [1985] provides a detailed description of a si~ned
digit-tree multiplier.

Although the IEEE standard is being widely adopted, there are still three
other important floating-point systems in use: the IBM/370, the DEC VAX, and
the Cray. We will briefly discuss these older formats. The VAX format is closest
to the IEEE standard. Its single-precision format (F format) is like IEEE single
precision in that it has a hidden bit, 8 bits of exponent, and 23 bits of fraction.
However, it does not have a sticky bit, which causes it to round halfway cases up
instead of to even. The VAX has a slightly different exponent range than IEEE
single: Emin is -128 rather than -126 as in IEEE, and Emax is 126 instead of 127.
The main differences between VAX and IEEE are the lack of special values and
gradual underflow. The VAX has a reserved operand, but it works like a signal
ing NaN: it traps whenever it is referenced. Originally, the VAX's double preci
sion (D format) also had 8 bits of exponent. However, as this is too small for
many applications, a G format was added; like the IEEE standard, this format
has 11 bits of exponent. The VAX also has an H format, which is 128 bits long.

The IBM/370 floating-point format uses base 16 rather than base 2. This
means it cannot use a hidden bit. In single precision, it has 7 bits of exponent
and 24 bits (6 hex digits) of fraction. Thus, the largest representable number is
162

7 = 24 x 27 = 229
, compared with 22

8
for IEEE. However, a number that is

' normalized in the hexadecimal sense only needs to have a nonzero leading digit.
When interpreted in binary, the three most significant bits could be zero. Thus,
there are potentially fewer than 24 bits of significance. The reason for using the
higher base was to minimize the amount of shifting required when adding
floating-point numbers. However, this is less significant in current machines,
where the floating-point add time is usually fixed independent of the operands.
Another difference between 370 arithmetic and IEEE arithmetic is that the 370
has neither a round digit nor a sticky digit, which effectively means that it
truncates rather than rounds. Thus, in many computations, the result will
systematically be too small. Unlike the VAX and IEEE arithmetic, every bit
pattern is a valid number. Thus, library routines must establish conventions for

what to return in case of errors. In the IBM FORTRAN library, for example, f=i.
returns 2!

Ex.1035.687DELL

A·60 A.12 Historical Perspective and References

Arithmetic on Cray computers is interesting because it is driven by a
motivation for the highest possiqle floating-point performance. It has a 15-bit
exponent field and a 48-bit fraction field. Addition on Cray computers does not
have a guard digit, and multiplication is even less accurate than addition.
Thinking of multiplication as a sum of p numbers, each 2p bits long, what Cray
computers do is to drop the low-order bits of each summand. Thus, analyzing the
exact error characteristics of the multiply operation is not easy. Reciprocals are
computed using iteration, and division of a by b is done by multiplying a times
l/b. The errors in multiplication and reciprocation combine to make the last
three bits of a divide operation unreliable. At least Cray computers serve to keep
numerical analysts on their toes!

The IEEE standardization process began in 1977, inspired mainly by W.
Kahan, and is based partly on Kahan's work with the IBM 7094 at the Univer
sity of Toronto [Kahan 1968]. The standardization process was a lengthy affair,
with gradual underflow causing the most controversy. (According to Cleve
Moler, visitors to the U.S. were advised that the sights not to be missed were Las

. Vegas, the Grand Canyon, and the IEEE standards committee meeting.) The
standard was finally approved in 1985. The Intel 8087 was the first major com
mercial IEEE implementation and appeared in 1981, before the standard was
finalized. It contains features that were eliminated in the final standard, such as
projective bits. According to Kahan, the length of double-extended precision
was based on what could be implemented in the 8087. Although the IEEE stan
dard was not based on any existing floating-point system, most of its features
were present in some other system. For example the CDC 6600 reserved special
bit patterns for INDEFINITE and INFINITY, while the idea of denormal num
bers appears in Goldberg [1967] as well as in Kahan [1968]. Kahan was awarded
the 1989 Turing prize in recognition of his work on floating point.

References

ANDERSON, S. F., J. G. EARLE, R. E. GOLDSCHMIDT, AND D. M. POWERS [1967]. "The IBM
System/360 Model 91: Floating-point execution unit," IBM J. Research and Development 11, 34-
53. Reprinted in [Swartzlander 1980).

Good description of an early high-performance floating-point unit that used a pipelined
Wallace-tree multiplier and iterative division.

ATKINS, D. E. [1968). "Higher-radix division using estimates of the divisor and partial remainders,"
IEEE Trans. on Computers C-17:10, 925-934. Reprinted in [Swartzlander 1980).

This is the standard reference for high-radix SRT division.

BELL, C. G. AND A. NEWELL, [1971). Computer Structures: Readings and Examples, McGraw
Hill, New York.

BIRMAN, M., G. CHU, L. HU, J. MCLEOD, N. BEDARD, F. WARE, L. TORBAN, AND C. M. LIM
[1988). "Design of a high-speed arithmetic datapath," Proc. ICCD: VLSI Computers and
Processors, 214-216.

Fairly detailed description of the Weitek 3364 floating-point chip.

Ex.1035.688DELL

Computer Arithmetic A-61

BRENT, R. P. AND H. T. KUNG [1982) "A regular layout for parallel adders," IEEE Trans. on
Computers C-31, 260-264.

This is the paper that popularized CLA adders in VLSI.

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN, [1946). Preliminary Discussion of the
Logical Design of an Electronic Computing Instrument.

CODY, W. J. [1988). "Floating point standards: Theory and practice," in Reliability in Computing:
The Role of Interval Methods in Scientific Computing, R. E. Moore, (ed.), Academic Press, Boston,
Mass., 99-107.

Presents a status of hardware and software implementations of the standard.

CODY, W. J., J. T. COONEN, D. M. GAY, K. HANSON, D. HOUGH, W. KAHAN, R. KARPINSKI,
J. PALMER, F. N. RIS, AND D. STEVENSON [1984). "A proposed radix- and word-length
independent standard for floating-point arithmetic," IEEE Micro 4:4, 86-100.

Contains a draft of the 854 standard, which is more general than 754. The significance of this
article is that it contains commentary on the standard, most of which is equally relevant to
754.

COONEN, J. [1984). Contributions to a Proposed Standard for Binary Floating-Point Arithmetic,
Ph.D. Thesis, Univ. of Calif., Berkeley.

The only detailed discussion of how rounding modes can be used to implement efficient binary
decimal conversion.

FREIMAN, C. V. [1961). "Statistical analysis of certain binary division algorithms," Proc. IRE 49:1,
91-103.

Contains an analysis of the performance of shifting-over-zeros SRT division algorithm.

GOLDBERG, D. [1989). "Floating-point and computer systems," Xerox Tech. Rep. CSL-89-9. A
version of this paper will appear in Computing Surveys.

Contains an in-depth tutorial on the IEEE standard from the software point of view.

GOLDBERG, I. B. [1967). "27 bits are not enough for 8-digit accuracy," Comm. ACM 10:2, 105-106.

This paper proposes using hidden bits and gradual underflow.

GOSLING, J. B. [1980). Design of Arithmetic Units for Digital Computers, Springer-Verlag
NewYork, Inc., New York.

A concise, well-written book, although itfocuses on MS! designs.

HAMACHER, V. C., Z. G. VRANESIC, ANDS. G. ZAKY [1984). Computer Organization, 2nd ed.,
McGraw-Hill, New York.

Introductory computer architecture book with a good chapter on computer arithmetic.

HWANG, K. [1979). Computer Arithmetic: Principles, Architecture, and Design, Wiley, New York.

This book contains the widest range of topics of the computer arithmetic books.

IEEE [1985). "IEEE standard for binary floating-point arithmetic," SIGPLAN Notices 22:2, 9-25.

IEEE 754 is reprinted here.

KAHAN, W. [1968). "7094-II system support for numerical analysis," SHARE Secretarial
Distribution SSD-159.

This system had many features that were incorporated into the IEEE floating-point standard.

KAHANER, D. K. [1988). "Benchmarks for 'real' programs," SIAM News (November).

The benchmark presented in this article turns out to cause many underflows.

KNUTH, D. [1981). The Art of Computer Programming, vol II, 2nd ed., Addison-Wesley, Reading,
Mass.

Has a section on the distribution of floating-point numbers.

KOGGE, P. [1981). The Architecture of Pipelined Computers, McGraw-Hill, New York.
Has brief discussion of pipelined multipliers.

Ex.1035.689DELL

A·62 A.12 Historical Perspective and References

KOHN, L. AND S.-W. FU, [1989). "A 1,000,000 transistor microprocessor," IEEE Int' l Solid-State
Circuits Conj., 54-55.

A brief overview of the Intel 860, whose floating-point addition algorithm is discussed in
Section A.4.

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS, AND D. ZURAS, [1988). "Integer multiplication
and division on the HP Precision Architecture," IEEE Trans. on Computers 37:8, 980-990.

Rationale for the integer- and divide-step instructions in the Precision architecture.

MEAD, C. AND L. CONWAY [1980). Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass.

NGA!, T-F. AND M. J. IRWIN [1985). "Regular, area-time efficient carry-lookahead adders," Proc.
Seventh IEEE Symposium on Computer Arithmetic, 9-15.

Describes a CLA adder like that of Figure A.13, where the bits flow up and then come back
down.

PENG, V., S. SAMUDRALA, AND M. GAVRIELOV [1987). "On the implementation of shifters,
multipliers, and dividers in VLSI floating point units," Proc. Eighth IEEE Symposium on
Computer Arithmetic, 95-102.

Highly recommended survey of different techniques actually used in VLSI designs.

ROWEN, C., M. JOHNSON, and P. RIES [1988). "The MIPS R3010 floating-point coprocessor,"
IEEE Micro 53-62 (June).

SANTORO, M. R., G. BEWICK, and M.A. HOROWITZ [1989). "Rounding algorithms for IEEE
multipliers," Proc. Ninth IEEE Symposium on Computer Arithmetic, 176-183.

A very readable discussion of how to efficiently implement rounding for floating-point
multiplication.

SCOTT, N. R. [1985). Computer Number Systems and Arithmetic, Prentice-Hall, Englewood Cliffs,
NJ.

SWARTZLANDER, E., ED. [1980). Computer Arithmetic, Dowden, Hutchison and Ross (distributed
by Van Nostrand, New York).

A collection of historical papers.

TAKAGI, N., H. YASUURA, ANDS. YAJIMA [1985)."High-speed VLSI multiplication algorithm
with a redundant binary addition tree," IEEE Trans. on Computers C-34:9, 789-796.

A discussion of the binary-tree signed multiplier that was the basis for the design used in the Tl
8847.

TAYLOR, G. S. [1981). "Compatible hardware for division and square root," Proc. Fifth IEEE
Symposium on Computer Arithmetic, 127-134.

Good discussion of a radix-4 SRT division algorithm.

TAYLOR, G. S. [1985). "Radix 16 SRT dividers with overlapped quotient selection stages," Proc.
Seventh IEEE Symposium on Computer Arithmetic, 64-71.

Describes a very sophisticated high-radix division algorithm.

WESTE, N. AND K. ESHRAGHIAN [1985). Principles of CMOS VLSI Design, Addison-Wesley,
Reading, Mass.

This textbook has a section on the layouts of various kinds of adders.

WILLIAMS, T. E., M. HOROWITZ, R. L. ALVERSON, AND T. S. YANG [1987). "A self-timed chip
for division," Advanced Research in VLSI, Proc. 1987 Stanford Conf, The MIT Press, Cambridge,
Mass.

Describes a divider that tries to get the speed of a combinational design without using the area
that would be required by one.

Ex.1035.690DELL

Computer Arithmetic A·63

EXERCISES

A.1 [15/15/20] <A.3> Represent the following numbers as single-precision and double
precision IEEE floating-point numbers.

a. [15] 10

b. [15] 10.5

c. [20] 0.1

A.2 [10/15/20] <A.8> Complete the details of the block diagrams for the following
adders.

a. [10] In Figure A.11, show how to implement the "l" and "2" boxes in terms of AND
and OR gates.

b. [15] In Figure A.14, what signals need to flow from the adder cells in the top row into
the "C" cells? Write the logic equations for the "C" box.

c. [20] Show how to extend the block diagram in A.13 so it will produce the carry-out
bit Cg.

A.3 [15/15] <A.4> Floating-point addition.

a. [15] In a decimal system with p = 5, compute -4.5673 + 4.9999 x 10-5 assuming
round to nearest. Give the value of the guard and round digits, and the sticky bit.

b. [15] What is the value of the sum for the other three rounding modes?

A.4 [15] <A.3> Show that if gradual underflow is not used, then it is no longer true that

x * y if and only if x - y * 0.

A.5 [25] <A.9> Write out the analogue of Figure A.21 for radix-8 Booth recoding.

A.6 [15] <A.3> Is the ordering of nonnegative floating-point numbers the same as
integers when denormalized numbers are also considered? What if the denormalized
numbers are represented using the wrapped representation mentioned in Section A.5?

A.7 [25/10] <A.2> One's complement.

a. [25] When adding two's complement numbers, you discard the carry out from the
most significant bit. Show that in one's complement, you must add the carry back
into the low.end.

b. [10] Find the rule for detecting overflow in one's complement.

A.8 [15] <A.2> Equations A.2.1 and A.2.2 are for adding two n-bit numbers. Derive
similar equations for subtraction, where there will be a borrow instead of a carry.

A.9 [15/20] <A.2> More one's complement.

Ex.1035.691DELL

A·64 Exercises

a. [15] A complication that arises with one's complement arithmetic is that zero has two
representations. Show that even if the negative form of zero is never an input, the
adder in Equation A.2.1 (with c0 the end around carry) can still produce a negative
zero.

b. [20] Use the fact that a+ b =a - (-b) together with the subtractor circuit of the
previous problem to derive a different one's complement adder. Can this adder ever
produce negative zero?

A.10 [20] <A.2> On a machine that doesn't detect integer overflow in hardware, show
how you would detect overflow on a signed addition operation in software.

A.11 [25] <A.9> In the array of Figure A.23, the fact that an array can be pipelined is not
exploited. Can you come up with a design that feeds the output of the bottom CSA into
the bottom CSAs instead of the top one, and that will run faster than the arrangement of
Figure A.23?

A.12 [15] <A.9> For ordinary Booth recoding, the multiple of b used in the ith step is
simply ai-l - ai. Can you find a similar formula for radix-4 Booth recoding (overlapped
triplets)?

A.13 [25/15/30] <A.9> Shifting-over-zeros multiplication.

a. [25] Does Booth recoding always increase the number of zeros in a number? Can it
ever decrease the number of zeros?

b. [15] Given the number an_1 .. ·ao, define co = 0, and define ci to be the carry out from
adding ai, ai-1' and ci-l· Then modified Booth recoding gives a number with digits
Ai= ai + ci - 2ci+l ·What is the recoding of 01101?

c. [30] Show that modified Booth recoding never decreases the number of zeros.

A.14 [20/15/20/15/20/15] <A.6> Iterative square root.

a. [20] Use Newton's method to derive an iterative algorithm for square root. The
formula will involve a division.

b. [15] What is the fastest way you can think of to divide a floating-point number by 2?

c. [20] If division is slow, then the iterative square root routine will also be slow. Use
Newton's method on/(x) = l/x2 - a to derive a method that doesn't use any divisions.

d. [15] Assume that the ratio division by 2 : floating-point add: floating-point multiply
is 1 :2:4. What ratios of multiplication time to divide time makes each iteration step
in the method of Part c faster than each iteration in the method of Part a?

e. [20] When using the method of Part a, how many bits need to be in the initial guess
in order to get double-precision accuracy after 3 iterations? (You may ignore round
ing error.)

f. [15] Suppose that when Spice runs on the TI 8847, it spends 16.7% of its time in the
square root routine (this percentage has been measured on other machines). Using the

Ex.1035.692DELL

Computer Arithmetic A·65

values in Figure A.31 and assuming 3 iterations, how much slower would Spice run if
square root was implemented in software using the method of Part a?

A.15 [30/1 O] <A.2> This problem presents an algorithm for adding signed-magnitude
numbers. If A and B are integers of opposite signs, let a and b be their magnitudes.

a. [30] Show that the following rules for manipulating the unsigned numbers a and b
gives A +B

1. Complement one of the operands.

2. Using end around carry (as in the one's complement adder of problem A.7) add
the complemented operand and the other (uncomplemented) one.

3. If there was a carry out, the sign of the result is the sign associated with the
uncomplemented operand.

4. Otherwise, if there was no carry out, complement the result, and give it the sign of
the complemented operand.

b. [10] <A.4> In our discussion of floating-point add, we suggested that when the result
is negative the +1 needed to do two's complement be done in the rounding unit. Use
the result of Part A to devise a floating-point adder that doesn't require this.

A.16 [15] <A.7> Our example that showed that double rounding can give a different
answer from rounding once used the round-to-even rule. If halfway cases are rounded up,
is double rounding still dangerous?

A.17 [15/30] <A.9> The text discussed radix-4 SRT division with quotient digits of -2,

-1, 0, 1, 2. Suppose that 3 and-3 are also allowed as quotient digits.

a. [15] What relation replaces I ri I :::; 2b/3?

b. [30] How many bits of b and P do you need to examine ?

A.18 [25] <A.6,A.9> The discussion of the remainder-step instruction assumed that
division was done using a bit-at-a-time algorithm. What would have to change if
division was implemented using a higher-radix method?

A.19 [20/20/25/25/20] <A.3> Signed-logarithm representation.

a. [20] Suppose you want to represent a number x by its sign and log Ix I . Then if

log Ix I is to be nonnegative, x must be ;::: 1. You can allow smaller x if you represent

x by log k Ix I for some constant k. Use 0 if k Ix I < 1. Now log k Ix I will not be an

integer, but it can be represented as a fixed-point number. If we put the binary point
m bits to the left of the least significant bit, write down formulas for converting x to
signed-logarithm form and back.

b. [20] Give the rules for multiplication and division.

Ex.1035.693DELL

A·66 Exercises

c. [25] Show that no matter what base of logs is used, this system cannot exactly
represent all of 1, 2, and 3.

d. [25] Show how to implement addition using a table containing 2P- l entries of p - 1
bits each, where the signed logarithm number is stored in a p-bit register.

e. [20] Show that for numbers which are exactly represe!'ltable in this system,
multiplication is exact, addition is not, but a(b + c) =ab+ ac exactly (when there is
no over/underflow).

A.20 [20/l 0] <A.8> Carry-skip adders.

a. [20] Assuming that time is proportional to logic levels, what (fixed) block size gives
the fastest addition for an adder of some fixed total length?

b. [10] Explain why the carry-skip adder takes time ~.

A.21 [Discussion] In the MIPS approach to exception handling, you need a test for
determining whether two floating-point operands could cause an exception. This should
be fast and also not have too many false positives. Can you come up with a practical test?
The performance cost of your design will depend on the distribution of floating-point
numbers. This is discussed in Knuth [1981] and Swartzlander [1980].

A.22 [35] <A.8> The simplest carry-select adder replaces an n-bit adder with n/2 bit
adders and a mux. A more complex carry-select adder would use n/4-bit adders and more
muxes. Can you design an adder that uses muxes and 1-bit adders and runs in O(log n)
time? Such an adder is called a conditional-sum adder.

A.23 [10/15/20/15/15] <A.6> Correctly rounded iterative division. Let a and b be
floating-point numbers with p-bit significands (p = 53 in double precision). Let q be the
exact quotient q = a/b. Suppose that q is the result of an iteration process, that if has a
few extra bits of precision, and that 0 < q - if < 2-p .

a. [10] If x is a floating-point number, and 1 ~ x < 2, what is the next representable
number after x?

b. [15] Show how to compute q' from q, where q' hasp+ 1 bits of precision and

I q - q' I < 2-p ·

c. [20] Assuming round to nearest, show that the correctly rounded quotient is either q',

q' - 2-P, or q' + 2-P.

d. [15] Give rules for computing the correctly rounded quotient from q' based on the

low- order bit of q' and the sign of a - bq'.

e. [15] Solve Part c for the other three rounding modes.

Ex.1035.694DELL

Complete Instruction
Set Tables

8.1 VAX User Instruction Se.t
8.2 System/360 Instruction Set
8.3 8086 Instruction Set

8·2
8·6
8·9

Ex.1035.695DELL

B·2

B.1

B.1 VAX User Instruction Set

VAX User Instruction Set

The following tables include all the VAX user instructions; the system
instructions are not included.

The underscore following the instruction name implies that the instruction
will operate upon any data type contained in the parentheses following that
instruction. The data type abbreviations are:

B =byte (8 bits) F = F _floating (32 bits)

W =word (16 bits) D = D_floating (64 bits)

G = G_floating (64 bits)

H = H_floating (128 bits)

L =longword (32 bits)

Q =quadword (64 bits)

0 = octaword (128 bits)

Integer and Floating-Point Logical and Arithmetic
Instructions

Instruction Description

ADA WI Add aligned word interlocked

ADD_2 Add (B,W,L,F,D,G,H) 2 operand

ADD_3 Add (B,W,L,F,D,G,H) 3 operand

ADWC Add with carry

ASH_ Arithmetic shift (L,Q)

BIC_2 Bit clear (B,W,L) 2 operand

BIC_3 Bit clear (B,W,L) 3 operand

BICPSW Bit clear processor status word

BIS_2 Bit set (B,W,L) 2 operand

BIS_3 Bit set (B,W,L) 3 operand

BI SP SW Bit set processor status word

BIT - Bit test (B,W,L)

CLR_ Clear (B,W,L=F,Q=D=G,O=H)

CVT - Convert (B,W,L,F,D,G,H)(B,W,L,F,D,G,H) except BB,
WW, LL, FF, DD, GG, HH, DG, and GD

CVTR_L Convert rounded (F,D,G,H) to longword

CMP - Compare (B,W,L,F,D,G,H)

DEC - Decrement (B,W,L)

DIV_2 Divide (B,W,L,F,D,G,H) 2 operand

DIV_3 Divide (B,W,L,F,D,G,H) 3 operand

EDIV Extended divide

EMOD - Extended modulus (F,D,G,H)

EMUL Extended multiply

Ex.1035.696DELL

Appendix B: Complete Instruction Set Tables B·3

Instruction Description

INC - Increment (B,W,L)

INDEX Compute index

MCOM_ Move complemented (B,W,L)

MNEG_ Move negated (B,W,L,F,D,G,H)

MOVA_ Move address (B,W,L=F,Q=D=G,O=H)

MOV_* Move (B,W,L,F,D,G,H,Q,O)**-general move between
two operands

MOVPSL Move from processor status longword

MOVZ - Move zero-extended (BW,BL,WL)

MUL_2 Multiply (B,W,L,F,D,G,H) 2 operand

MUL_3 Multiply (B,W,L,F,D,G,H) 3 operand

POLY - Polynomial evaluation (F,D,G,~)

POPR Pop registers from stack

PUS HA_ Push address (B,W,L=F,Q=D=G,O=H) on stack

PUSHL Push longword on stack

PUS HR Push registers on stack

ROTL Rotate longword

SBWC Subtract with carry

SUB_2 Subtract (B,W,L,F,D,G,H) 2 operand

SUB_3 Subtract (B,W,L,F,D,G,H) 3 operand

TST - Test (B,W,L,F,D,G,H)

XOR_2 Exclusive or (B,W,L) 2 operand

XOR_3 Exclusive or (B,W,L) 3 operand

Branch, Jump, and Procedure Call Instructions

Instruction Description

ACB - Add, compare and branch (B,W,L.F,D,G,H)

AOBLEQ Add one and branch less than or equal

AOBLSS Add one and branch less than

BB - Branch on bit (set, clear)

BBS - Branch on bit (set, clear) and (set, clear) bit

BB_I Branch on bit set (clear) and set (clear) bit interlocked

BCC Branch carry cleared

BCS Branch carry set

BEQL Branch equal

BEQLU Branch equal unsigned

BGEQ Branch greater than or equal

BGEQU Branch greater than or equal unsigned

BGTR Branch greater than

Ex.1035.697DELL

9.4 B.1 VAX User Instruction Set

Instruction Description

BGTRU Branch greater than unsigned

BLB - Branch on low bit (set, clear)

BLEQ Branch less than or equal

BLEQU Branch less than or equal unsigned

BLSS Btranch less than

BLSSU Branch less than unsigned

BNEQ Branch not equal

BNEQU Branch not equal unsigned

BR_ Jump with (B,W) displacement

BSB - Branch to subroutine with (B,W) displacement

BV_ Branch overflow (set,clear)

CAL LG Call procedure with general argument list

CALLS Call procedure with stack argument list

CASE - Case on (B,W,L)

JMP Jump

JSB Jump to subroutine

RET Return from procedure

RSB Return from subroutine

SOBGEQ Subtract one and branch greater than or equal

SOBGTR Subtract one and branch greater than

Decimal and String Instructions

Instruction Description

ADDP4 Add packed 4 operand

ADDP6 Add packed 6 operand

ASHP Arithmetic shift packed and round

CMPC3 Compare characters 3 operand

CMPC5 Compare characters 5 operand

CMPP3 Compare packed 3 operand

CMPP4 Compare packed 4 operand

CRC Calculate cyclic redundancy check·

CVTLP Convert long to packed

CVTPL Convert packed to long

CVTPT Convert packed to trailing

CVTTP Convert trailing to packed

CVTPS Convert packed to separate

CVTSP Convert separate to packed

DIVP Divide packed

EDITPC Edit packed to character string

Ex.1035.698DELL

Appendix B: Complete Instruction Set Tables B·S

Instruction Description

LOCC Locate character

MATCHC Match characters

MOVC3 Move character 3 operand

MOVC5 Move character 5 operand

MOVP Move packed

MOVTC Move translated characters

MOVTUC Move translated until character

MULP Multiply packed

SCANC Scan characters

SKPC Skip character

SPANC Span characters

SUBP4 Subtract packed 4 operand

SUBP6 Subtract packed 6 operand

Variable-Length Bit Field Instructions

Instruction Description

CMPV Compare field

CMPZV Compare zero-extended field

EXTV Extract field

EXTZV Extract zero-extended field

INSV Insert field

FFS Find first set

FFC Find first clear

Queue Instructions

Instruction Description

INSQHI Insert entry into queue at head, interlocked

INS QT I Insert entry into queue at tail, interlocked

INS QUE Insert entry in queue

REMQHI Remove entry from queue at head, interlocked

REMQTI Remove entry from queue at tail, interlocked

REMQUE Remove entry from queue

Ex.1035.699DELL

B·& B.2 System/360 Instruction Set

8.2 I System/360 Instruction Set

The 360 instruction set is shown in the following tables, organized by instruction
type and format. System/370 contains 15 additional user instructions.

Integer/Logical and Floating-Point R-R
Instructions

The * indicates the instruction is floating point, and may be either D (double
precision) or E (single precision).

Instruction Description

ALR Add logical register

AR Add register

A*R FP addition

CLR Compare logical register

CR Compare register

C*R FPcompare

DR Divide register

D*R FP divide

H*R FP halve

LCR Load complement register

LC*R Load complement

LNR Load negative register

LN*R Load negative

LPR Load positive register

LP*R Load positive

LR Load register

L*R Load FP register

LTR Load and test register

LT*R Load and test FP register

MR Multiply register

M*R FP multiply

NR And register

OR Or register

SLR Subtract logical register

SR Subtract register

S*R FP subtraction

XR Exclusive or register

Ex.1035.700DELL

Appendix B: Complete Instruction Set Tables B·7

Branches and Status Setting R-R Instructions

These are R-R format instructions that either branch or set some system status;
several of them are privileged and legal only in supervisor mode.

Instruction Description

BALR Branch and link

BCTR Branch on count

BCR Branch/condition

ISK Insert key

SPM Set program mask

SSK Set storage key

SVC Supervisor call

Integer/Logical and Floating-Point Instructions
RX Format

These are all RX format instructions. The symbol "+" means either a word
operation (and then stands for nothing) or H (meaning halfword); for example,
A+ stands for the two opcodes A and AH. The symbol "*" is D or E standing for
double- or single-precision floating point.

Instruction Description

A+ Add

A* FPadd

AL Add logical

C+ Compare

C* PP compare

CL Compare logical

D Divide

D* FP divide

L+ Load

L* Load FP register

M+ Multiply

M* FP multiply

N And

0 Or

s+ Subtract

S* FP subtract

SL Subtract logical

ST+ Store

ST* Store FP register

x Exclusive or

Ex.1035.701DELL

B·B B.2 System/360 Instruction Set

Branches and Special Loads and Stores-RX format

Instruction Description

BAL Branch and link

BC Branch condition

BCT Branch on count

CVB Convert-binary

CVD Convert-decimal

EX Execute

IC Insert character

LA Load address

STC Store character

RS and SI Format Instructions

These are the RS and SI format instructions. The symbol "*" may be A

(arithmetic) or L (logical).

Instruction Description

BXH Branch/high

BXLE Branch/low-equal

CLI Compare logical immediate

HIO Haltl/O

LPSW LoadPSW

LM Load multiple

MVI Move immediate

NI And immediate

OI Or immediate

RDD Read direct

SIO Start 1/0

SL* Shift left AIL

SLD* Shift left double AIL
SR* Shift right AIL

SRD* Shift right double AIL

SSM Set system mask

STM Store multiple

TCH Test channel

TIO Test 1/0

TM Test under mask

TS Test and set
.,

WRD Write direct

XI Exclusive or immediate

Ex.1035.702DELL

Appendix B: Complete Instruction Set Tables B·9

SS Format Instructions

These are all decimal or string instructions.

Instruction Description

AP Add packed

CLC Compare logical chars

CP Compare packed

DP Divide packed

ED Edit

EDMK Edit and mark

MP Multiply packed

MVC Move character

MVN Move numeric

MVO Move with offset

MVZ Move zone

NC And characters

oc Or characters

PACK Pack (Character ~ decimal)

SP Subtract packed

TR Translate

TRT Translate and test

·uNPK Unpack

xc Exclusive or characters
~-

ZAP Zero and add packed

B.3 J 8086 Instruction Set

These charts contain the instruction set of the 8086; floating-point instructions
that are neither included nor used by the 8086 benchmarks are not included.

Ex.1035.703DELL

B-10 B.3 8086 Instruction Set

Arithmetic and Logical Instructions

Instruction Description

AAA ASCII adjust after addition

AAD ASCII adjust before division

AAM ASCII adjust after multiplication

AAS ASCII adjust after subtraction

ADC Add with carry

ADD Integer addition

AND Logical and

CBW/CWD/CDQ Convert byte to word/word to dword/dword to quad

CLC Clear the carry flag

CLD Clear the direction flag

CLI Clear the interrupt flag

CMC Complement the carry flag

CMP Compare

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction

DEC Decrement

DIV Unsigned divide

IDIV Signed divide

IMUL Signed multiplication

INC Increment

MUL Unsigned multiplication

NEG Negate

NOT Not

OR Inclusive or

RCL Rotate throµgh carry left

RCR Rotate through carry right

ROL Rotate left

ROR Rotate right

SAL/SHL Shift arithmetic left

SAR Shift arithmetic right

SBB Subtract with borrow

SHR Shift logical right

STC Set carry flag

STD Set direction flag

STI Set interrupt flag

SUB Subtract

TEST Logical compare

XOR Exclusive or

Ex.1035.704DELL

Appendix 8 B·11

Control Instructions

Instruction Description

CALL Call procedure (intrasegment)

CALL Call procedure (intersegment)

HLT Halt

INT Call to interrupt procedure

INTO On overflow call interrupt procedure

IRET Interrupt return .
JB/JNAE/JC Jump below

JBE/JNA Jump below or equal

JCXZ/JECXZ Jump CX/ECX zero

JE/JZ Jump equal

JL/JNGE Jump less

JLE/JNG Jump less or equal

JMP Jump (intrasegment)

JMPF Jump (intersegment)

JNB/JAE/JNC Jump not below

JNBE/JA Jump not below or equal

JNE/JNZ Jump not equal

JNL/JCE Jump not less

JNLE/JG Jump not less or equal

JNO Jump no overflow

JNP/JPO Jump not parity

JNS Jump not sign

JO Jump overflow

JP/JPE Jump parity

JS Jump sign

LOCK Bus lock

RET Return (intrasegment)

RETF Return (intersegrnent)

Ex.1035.705DELL

B·12 B.3 8086 Instruction Set

Data Transfer Instructions

Instruction Description

IN Input from a port

LAHF Load flags into AH register

LDS Load pointer to DS

LEA Load effective address

LES Load pointer to ES

LOCK Bus lock

MOV Move

OUT Output to a port

POP Pop off stack

POPF/POPFD Pop from stack into flags

PUSH Push onto stack

PUSH Push segment register onto the stack

PUSHF/PUSHFD Push flags onto stack

SAHF Store AH register into flags

XCHC Exchange

XLAT/XLATB Table lookup translation

String Instructions

Instruction Description

CMPS/CMPSB/CMPSW/CMPSD Compare string

LODS/LODSB/LODSW/LODSD Load string

MOVS/MOVSB/MOVSW/MOVSD Move string

REP Repeat

REPE/REPZ Repeat while equal

REPNE/REPNZ Repeat while not equal

SCAS/SCASB/SCASW/SCASD Scan string

STOS/STOSB/STOSW/STOSD Store string

Ex.1035.706DELL

Detailed Instruction Set
Measurements

C.1 VAX Detailed Measurements C·2
C.2 360 Detailed Measurements C·3
C.3 Intel 8086 Detailed Measurements C·4
C.4 DLX Detailed Instruction Set Measurements C·S

Ex.1035.707DELL

C-2 C.1 VAX Detailed Measurements

C.1 VAX Detailed Measurements

Instruction GCC Spice TeX COBOLX Average

Control 30% 18% 30% 25% 26%

Conditional Branch 20% 13% 19% 18% 17%
BRB,BRW 6% 3% 4% 5% 5%
CALLS,CALLG 2% 1% 4% 0% 2%
RET 2% 1% 4% 0% 2%
JMP 2% 1%
Arithmetic, logical 40% 23% 33% 24% 30%

CMP* 12% 5% 11% 9% 9%
ADDL_ 5% 12% 4% 5%
INCL 3% 3% 5% 3%
MOVA* 1% 3% 4% 2% 3%
TSTL 4% 2% 3% 2%
CLRL 3% 1% 2% 3% 2%
SUB*_ 3% 1% 3% 2%
CVT*L 6% 0% 2%
ASHL 3% 3% 0% 2%
MULL_ 0% 5% 1%
Data transfer 19% 15% 28% 4% 16%

MOVL 15% 9% 17% 4% 11%
PUSHL 3% 7% 2%
MOVQ 6% 1%
MOVZ*L 1% 4% 1%
Floating point 0% 23% 0% 0% 6%

MULD_ 9% 2%
SUBD_ 6% 1%
ADDD_ 6% 1%
DIVD_ 3% 1%
CMPD 2%
Decimal, string 0% 0% 1% 38% 10%

CVTTP,CVTPT 19% 5%
MOVC3,MOVC5 1% 9% 2%
ADDP4 6% 1%
CMPP_ 2% 1%
CMPC3 2% 1%
Totals 88% 79% 92% 88% 87%

FIGURE C.1 Instructions responsible for more than 1.5% of the dynamic executions in any benchmark. The
instructions are broken into five classes, printed in boldface. The data in those rows give the total frequency for the
operations in that class. Cells representing a contribution of 1 % or less are empty, except the average column can have
an entry of 1 %. Because of rounding, the average can differ from what might appear to be correct if based on the figures
in the individual columns.

Ex.1035.708DELL

Appendix C: Detailed Instruction Set Measurements C·3

c.21 360 Detailed Measurements

Instruction PLIC FORTGO PLIGO COBOLGO Average

Control 32% 13% 5% 16% 16%

BC,BCR 28% 13% 5% 14% 15%
BAL,BALR 3% 2% 1%

Arithmetic, logical 29% 35% 29% 9% 26%

A,AR 3% 17% 21% 10%
SR 3% 7% 3%
SLL 6% 3% 2%
LA 8% 1% 1% 2%
CLI 7% 2%
NI 7% 2%
c 5% 4% 4% 0% 3%
TM 3% 1% 3% 2%
MH 2% 1%

Data transfer 17% 40% 56% 20% 33%

L,LR 7% 23% 28% 19% 19%
MVI 2% 16% 1% 5%
ST 3% 7% 3%
LD 7% 2% 2%
STD 7% 2% 2%
LPDR 3% 1%
LH 3% 1%
IC 2% 1%
LTR 1% 0%

Floating point 7% 2%

AD 3% 1%
MDR 3% 1%

Decimal, string 4% 40% 11%

MVC 4% 7% 3%
AP 11% 3%
ZAP 9% 2%
CVD 5% 1%
MP 3% 1%
CLC 3% 1%
CP 2% 1%
ED 1% 0%

Total 82% 95% 90% 85% 88%

Ex.1035.709DELL

C-4 360 Detailed Measurements

FIGURE C.2 (See previous page.) Distribution of instruction execution frequencies for the four 360 programs. All
instructions with a frequency of execution greater than 1.5% are included. Immediate instructions, which operate on only a
single byte, are induded in the section that characterizes their operation, rather than with the long character-string
versions of the same operation. By comparison, the average frequencies for the major instruction classes of the VAX are
23% (control), 28% (arithmetic), 29% (data transfer), 7% (floating point), and 9% (decimal). Once again, a 1 % entry in the
average column can occur because of entries in the constituent columns.

C.31 Intel 8086 Detailed Measurements

Instruction TurboC MASM Lotus Average

Control 21% 20% 32% 24%

Conditional jumps 10% 12% 9% 10%
CALL,CALLF 4% 3% 5% 4%
RET,RETF 4% 3% 5% 4%
LOOP 12% 4%
JMP 3% 2% 2% 2%

Arithmetic, logical 23% 24% 26% 25%

CMP 8% 9% 5% 7%
SAL,SHR,RCR 2% 1% 11% 5%
ADD 3% 2% 3% 3%
OR, XOR 4% 2% 2% 3%
INC, DEC 3% 4% 3% 3%
SUB 2% 3% 2%
CBW 1% 1% 1%
TEST 2% 2% 1%

Data transfer 49% 46% 30% 42%

MOV 29% 31% 21% 27%
LES 6% 2% 3%
PUSH 10% 8% 4% 7%
POP 5% 6% 5% 5%
Totals 93% 90% 88% 90%

FIGURE C.3 The instructions responsible for more than 1.5% of the executions on
any of the three benchmarks Some very similar instructions were combined for
simplicity. Although MASM makes some use of string operations, the frequency is too low
to make the table.

Ex.1035.710DELL

Appendix C: Detailed Instruction Set Measurements C·5

C.4 j DLX Detailed Instruction Set Measurements

Instruction GCC Spice TeX US Steel Average

Control 21% 5% 7% 23% 14%

B--z 19% 2% 7% 16% 11%
J 2% 3% 3% 2%
JAL 2% 0%
JR 2% 0%

Arithmetic, logical 37% 28% 41% 49% 39%

ADDU,ADDUI 17% 16% 20% 27% 20%
LHI 2% 7% 10% 3% 5%
SLL 5% 5% 5% 4% 5%
LI 4% 4% 6% 4%
S--,S--I 5% 3% 3% 3%
AND,ANDI 2% 3% 1%
SRA 2% 2% 1%
OR, ORI 2% 1%

Data transfer 28% 35% 33% 10% 26%

LW 18% 8% 19% 5% 13%
SW 10% 2% 12% 5% 7%
LBU 2% 1%
LD 14% 4%
SD 6% 1%
MOVFP2I, MOVI2FP 5% 1%

Floating point 0% 15% 0% 0% 4%

FMUL 5% 1%
FADD 4% 1%
FSUB 3% 1%
FDIV 3% 1%
Totals 85% 83% 82% 82% 83%

FIGURE C.4 Instruction mixes for GCC, Spice, TeX, and the U.S. Steel COBOL benchmark. Some instructions were
combined, both in the interest of space and because the combined class more correctly reflects what the processor is
doing. The instruction class "B--Z" includes all conditional branches (which are all compares to zero). The class "S--,S--1"
includes all set conditional instructions, both immediate and register-register. Immediate operations have been combined
with the non-immediate class for all operations except loads, where they are distinctly different. Again, a blank space
means that the instruction is not responsible for more than 1.5% of the executions, and the average may appear at 1 % or
less because the instruction is not used by all benchmarks.

Ex.1035.711DELL

Ex.1035.712DELL

DELL Ex.1035.712

Time Versus Frequency
Measurements

D.1 Time Distribution on the VAX-11n80 D·2
D.2 Time Distribution on the IBM 370/168 D·4
D.3 Time Distribution on an 8086 in an IBM PC D·6
D.4 Time Distribution on a DLX Relative D·8

Ex.1035.713DELL

D·2

D.1

D.1 Time Distribution on the VAX-11/780

Time Distribution on the VAX-11/780

We know from Chapters 2 and 3 that measuring instruction counts alone can be
misleading. In this appendix we will examine the time distributions for some
programs running on these four machines. For the 360, the 8086, and DLX, we
will show the time distribution averaged over the three programs in the graph
format used earlier. For the VAX, we will use measurements reported in Clark
and Levy [1982] (see References in Chapter 4).

Figure D. l shows the distribution of instruction executions, both by time and
by frequency of occurrence. These data were measured by Erner and reported by
Clark and Levy for a VAX-11/780 running VMS with multiple users doing three
primary tasks:

1. Updating indexed files

2. Executing a matrix multiplication routine

3. Doing program development, including editing, compiling, and debugging

Figure D. l includes any user instruction that accounts for more than 1 % of the
instruction executions or more than 1 % of execution time. There are 26
instructions that fit this description, and together they account for 59% of the
executions and 58% of the time. The measured data include the operating system
and file system overhead.

Time distributions are particularly important on architectures like the VAX,
where the number of cycles for an instruction may vary from one or two up to
tens or hundreds.

Ex.1035.714DELL

Appendix D: Time Versus Frequency Measurements

MOVC3)1111illlllilllilllilllilllilllilllilllilllilll 13%

EXTZV

MULF3

CVTFD

ADDD2

MOVZBL, MOVZBW

MOVL

MOVAB

CLRL

INCL

TSTL

ADDL-

CMPB,CMPL

RSB

AOBLEQ

Conditional branch 9%

lll!lllllll~ll!J.16%
~~~RH 1~ 1~ 1~18 

Percentage of occurrence or time 

• Frequency of use Ill Time frequency I 

D·3 

FIGURE D.1 Time and frequency distribution for a multiuser workload on a VAX-
11/780 running VMS. This data includes all user instructions that are responsible for more 
than 1 % of either the instruction executions or the execution time. (Two operating system 
instructions (REI and MTPR), each of which accounts for about 1 % of the execution time, 
are not included.) The absence of an execution-frequency bar or time-frequency bar for an 
entry (such as MOVC3 or TSTL) means that the time frequency or execution-time frequency 
is below 1 % (not that it is O!). Clark and Levy [1982] commented that the large percentage 
of time consumed by the MOVC3 in the time distribution is somewhat abnormal for a 
nonbusiness workload and has not been observed in other measurements on the 11 /780. 

Ex.1035.715DELL

Appendix D: Time Versus Frequency Measurements . D-3

 

EXTZV  
  
 

MULF3

CVTFD

ADDD2

 
MOVZBL, MOVZBW

 MOVL

MOVAB

CLRL

INCL

TSTL

ADDL-

CMPB, CMPL

RSB

 RET

 
CALLS

 AOBLEQ

9% ditional branch
Conditional brane! 16%

2% 4% 6% 8% 10% 12% 14% 16%

Percentage of occurrenceor time

Hi Frequency of use [qj Time frequency

 
FIGURE D.1 Time and frequency distribution for a multiuser workload on a VAX-
11/780 running VMS. This data includes all user instructions that are responsible for more
than 1%of either the instruction executions or the execution time. (Two operating system
instructions (REI and MTPR), each of which accounts for about 1% of the execution time,
are not included.) The absence of an execution-frequency baror time-frequency barfor an
entry (such as MOVC3 or TSTL) meansthat the time frequency or execution-time frequency
is below 1%(notthatit is 0!). Clark and Levy [1982] commentedthat the large percentage
of time consumed by the Movc3 in the time distribution is somewhat abnormalfor a
nonbusiness workload and has not been observed in other measurements on the 11/780.

DELL Ex.1035.715



D·4 D.2 Time Distribution on the IBM 370/168 

D.2 I Time Distribution on the IBM 370/168 

Figure D.2 shows the time distribution on an IBM 370/168 for the same 
programs we discussed in Chapter 4 and included in Figure 4.28 (page 175). All 
instructions that are responsible for more than 1.5% of the execution frequency 
and the execution time for at least one program are included. Several 

ED 

GP 

CLC 

Decimal, MP 

string CVD 

ZAP 4% 

AP 4% 

MVC 6% 

Floating MOR, MD 7% 

point AD 5% 

STD 7% 

LO 3% 
Data 

transfer 
ST 

MVI 

L, LR 3% 

CLI 

LA 
Arithmetic, 

SLL 
logical 

SR 

A,AR 

Control, BAL,BALR 

procedure BC, BCR 16% 

0% 2% 4% 6% 8% 10% 12% 14% 16% 

Percentage of the execution time 

I • PLIC [ill FORTGO [ill PLIGO • COBOLGO I 

FIGURE D.2 Time distribution for the four programs discussed in Chapter 4 
running on an IBM 370/168. The corresponding data.on execution frequency appears in 
Figure 4.28 (page 175), or in table form in Figure C.2. Any instruction with greater than 
1.5% frequency in the time distribution and in the execution-count distribution is included in 
this chart. Shustek [1978] (see References in Chapter 4) computed these numbers using a 
model of the 370/168 CPU. The model predicts the execution time for the programs and 
has an overall accuracy for each program of about 99% except on PLIGO, where it has an 
8% error. 

Ex.1035.716DELL

  D.4 * D.2. Time Distribution on the IBM 370/168

D.2|TimeDistribution on the IBM 370/168

Figure D.2 shows the time distribution on an IBM 370/168 for the same
programswe discussed in Chapter 4 and included in Figure 4.28 (page 175). All
instructions that are responsible for more than 1.5% of the execution frequency
and the execution time for at least one program are included. Several

Decimal,

string

Floating

point

LD (2255
ST

MvVI

L, LR

Data

transter

CLI

LA

SLL

A, AR [aad

Arithmetic,

logical

Control, BAL, BALR

procedure BC, BCR
0% 2% 4% 6% 8% 10% 12% 14%

Percentage of the execution time

] FORTGO [] PLIGO J CoBOLGO

 
FIGURE D.2 Timedistribution for the four programs discussed in Chapter 4
running on an IBM 370/168. The corresponding data.on execution frequency appears in
Figure 4.28 (page 175), or in table form in Figure C.2. Anyinstruction with greater than
1.5% frequencyin the time distribution and in the execution-count distribution is included in
this chart. Shustek [1978] (see References in Chapter 4) computed these numbers using a
modelof the 370/168 CPU. The modelpredicts the execution time for the programs and
has an overall accuracy for each program of about 99% except on PLIGO, whereit has an
8% error.

DELL Ex.1035.716



Appendix D: Time Versus Frequency Measurements D·S 

instructions appeared in the time distribution that were not in the frequency 
distribution, where their occurrence was too low. These instructions, which are 
not in Figure 4.28, are 

TRT-Translate and test, a string instruction used by the PL/I compiler, most 
likely to scan the input source; takes 5.4% of the time in that program. 

DP-Divide packed, a low frequency but long-running instruction that takes 
18.7% of the time in COBOLGO. 

DDR-Divide double register, a floating-point divide, infrequent but long 
running at 5.2% of the FORTGO execution time. 

LM and s TM-Load multiple and store multiple, with frequencies just below 
1 %, are somewhat slower than the average instruction; thus, they take 3% to 
4% of the cycles in PLIGO. 

BCT,BXLE-Loop branches that involve incrementing counts or doing other 
compares; BCT consumes about 2% of the time in PLIC, and BXLE consumes 
3.5% in FORTGO. 

ED 2.9 
CP 

CLC 
Decimal, MP 5.0 

string CVD 1.0 
ZAP 1.8 

AP 1.4 
MVC 2.1 

Floating MOR, MD 8.1 

point AD 6.9 

STD 3.2 

Data 
LO 1.5 
ST 

transfer MVI 
L, LR 

CLI 

Arithmetic, LA 

logical 
SLL 
SR 

A,AR 

Control, BAL,BALR 

procedure BC, BCR 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

Ratio of time frequency/ 
dynamic frequency 

FIGURE D.3 Time frequency (percent of cycles doing this instruction as measured 
on an IBM 370/168) divided by dynamic frequency (percent of executions for this 
instruction). The programs are those in Chapter 4. This data is obtained directly from 
Figures 4.28 (page 175) and Figure D.2. This clearly shows that the floating-point 
instructions are the most expensive. 

Ex.1035.717DELL

Appendix D: Time Versus Frequency Measurements D-5 

instructions appeared in the time distribution that were not in the frequency
distribution, where their occurrence was too low. These instructions, which are

not in Figure 4.28, are

TRT—Translate andtest, a string instruction used by the PL/I compiler, most
likely to scan the input source; takes 5.4% of the time in that program.

DP—Divide packed, a low frequency but long-runninginstruction that takes
18.7% of the time in COBOLGO.

DDR—Divide double register, a floating-point divide, infrequent but long
running at 5.2% of the FORTGO execution time.

LM and STM—Load multiple and store multiple, with frequencies just below
1%, are somewhat slower than the average instruction; thus, they take 3% to
4% of the cycles in PLIGO.

BCT,BXLE—Loopbranchesthat involve incrementing counts or doing other
compares; BCT consumes about 2% ofthe time in PLIC, and BXLE consumes
3.5% in FORTGO.

 
Decimal,

string CvD
ZAP

AP

MVC

 

 
 
 
 
 

 

Floating MDR, MD

point AD

Data

transfer 

 

 
 Arithmetic,

logical 

 
  

 

 Control, BAL, BALR

procedure BC, BCR 
        000610 #20 30 40 50 60 70 80 9.0

Ratio of time frequency/
dynamic frequency
 

  
 

FIGURE D.3 Time frequency (percent of cycles doing this instruction as measured
on an IBM 370/168) divided by dynamic frequency (percent of executionsfor this
instruction). The programsare those in Chapter 4. This data is obtained directly from
Figures 4.28 (page 175) and Figure D.2. This clearly showsthat the floating-point
instructions are the most expensive.

DELL Ex.1035.717



D·6 D.2 Time Distribution on the IBM 370/168 

Several of the simpler but lower-frequency data transfer and ALU instructions 
that appeared in the frequency distribution do not appear in the time distribution 
because they constitute a very small percentage of the execution time. In total, 
the instructions shown in Figure D.2 account for 89% of the instruction 
executions and 72% of the execution time. 

Figure D.3 gives the average execution time divided by the average 
frequency for those instructions that appear in both distributions. This 
measurement is a ratio that indicates the relative cost of an instruction. For 
example, an instruction that is responsible for 10% of the executions and 10% of 
the execution time will have a ratio of 1: 1, or a cost factor of 1, and a CPI equal 
to the average CPI on the machine. 

D.3 J Time Distribution on an 8086 in an IBM PC 

Figure D.4 continues our examination of time distribution by looking at the top 
time-consuming instructions on the 8086 for the same programs as measured in 
Chapter 4. These curves look very similar to those in Figure 4.32 (page 178), the 
frequency distribution for the 8086 (shown in table form in Figure C.3, 
page C-4). Two arithmetic and logical instructions, CBW and SUB, that appeared 
in the frequency distribution do not appear in the top of the execution-time 
distribution. Additionally, there are four instructions that have a significant 
contribution to the time frequency but are not in the execution-frequency 
distribution: 

• String instructions SCAS (a string search) and MOVS (a string move). Both 
instructions are used in MASM, where they account for 8% and 7% of the 
execution time, respectively. MOVS is also used in Lotus, where it accounts 
for 6.6% of the program's execution time. 

• Integer multiply and divide MLl 6 and DVl 6. These are used in Lotus, where 
they respectively account for 10% and 4% of the program's execution time. 

Together, the instructions in Figure D.4 are responsible for 87% of the 
instruction executions and 85% of the execution time. 

Figure D.5 shows the ratio of execution time to execution frequency in the 
same fashion used for the IBM 360. Calls, returns, and loading a segment 
register consume a larger percentage of the execution time relative to their 
dynamic occurrence. However, the overall execution time profile of the 8086 is 
much closer to the execution frequency profile-the correspondence is often 1: 1, 
and never as high as 1 :2. This is primarily because the variation in CPI among 
instructions is small compared to an overall average CPI of 14.1. The long
running instructions that do not even appear in the frequency counts but are 
major consumers of execution time (and would have a high CPI) are the string 
instructions and integer multiply and divide. 

1 

Ex.1035.718DELL



Appendix D: Time Versus Frequency Measurements 

POP 

Data PUSH 7% 
transfer LES 

MOV 21% 

TEST 

INC, DEC 

Arithmetic, OR, XOR 

logical ADD 

SAL, SHR, RCR 

CMP 

JMP 

Control, 
LOOP 

procedure 
RET,RETF 

CALL, CALLF 

Conditional jump 7% 

0% 5% 10% 15% 20% 25% 

• TurboC D MASM II Lotus ~ 

FIGURE D.4 The 8086 time distribution as measured on an IBM PC running MS· 
DOS. The format and data are the same as in Figure 4.32 (page 178). 

Data 

transfer 

Arithmetic, 

logical 

Control, 

procedure 

t 
POP 0.6 

t 
PUSH 1.0 

LES 1. 7 

MOV 0.8 

TEST 1.1 
t 

INC, DEC 0.4 

OR, XOR ;... 0.2 

ADD 0.4 
t 

SAL, SHR, RCR 0.7 

CMP 0.8 

JMP 1.2 

LOOP 0.7 
t 

RET,RETF 1.4 

CALL, CALLF 1. 7 

Conditional jump 0.7 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

Ratio of time frequency/ 
dynamic frequency 

D·7 

FIGURE D.5 Time distribution divided by frequency distribution for the 8086. This 
data is directly derived from Figures 4.32 (page 178) and D.4. The distribution is 
remarkably flatter than that for the IBM 360 or the VAX. 

Ex.1035.719DELL

Appendix D: Time Versus Frequency Measurements D-7 

POP

Data PUSH
transfer LES

MOV

TEST

INC, DEC

Arithmetic, OR, XOR

logicat ADD
SAL, SHR, RCR

CMP

JMP

LOOP

RET, RETF

CALL, CALLF

Conditional jump

Control,

procedure

5% 10% 15% "20%

Mi Turboc [J] MAsm

 
FIGURE D.4 The 8086 time distribution as measured on an IBM PC running MS-
DOS.The format and data are the sameasin Figure 4.32 (page 178).

POP

Data PUSH

transfer LES

MOV

TEST

INC, DEC

Arithmetic, OR, XOR

logical ADD

SAL, SHR, RCR

CMP

JMP

LOOP

RET, RETF

CALL, CALLF

Control,

procedure

Conditional jump

0.0 02 04 06 08 10 12 14 1.6

Ratio of time frequency/
dynamic frequency

 
FIGURE D.5_ Time distribution divided by frequency distribution for the 8086. This
data is directly derived from Figures 4.32 (page 178) and 0.4. The distribution is
remarkably flatter than that for the IBM 360 or the VAX.

DELL Ex.1035.719



D·8 D.4 Time Distribution on a DLX Relative 

D.4 I Time Distribution on a DLX Relative 

To obtain a time distribution for DLX, we tum to the DECstation 3100, which 
has an instruction set architecture very similar to DLX (see Appendix E). The 
time distribution on the DECstation 3100 for the same programs measured in 
Chapter 4 (Figure 4.34 on page 181 and in table form in Figure C.4 is shown in 
Figure D.6. Figure D.6 includes all instructions that contribute more than 1 % to 
the execution time. In total, these instructions account for 81 % of all instruction 
executions and 97% of the execution time. 

This time distribution is by far the closest to the frequency distribution. This 
is because under ideal conditions almost all instructions in DLX can take one 
cycle; only the LD and SD instructions must take two cycles. Of course, these 
perfect conditions never arise. The average CPI using the DECstation 3100 as a 
base is about 1.6 for GCC, TeX, and COBOLX, and about 2.1 for Spice. 

FDIV 

Floating F$UB 

point FADD 

FMUL 

MOVEFP21,MOVE12FP 

SD 

Data LD 6% 

transfer LBU 

SW 11% 

LW 18% 

AND.ANDI 

S--,S--1 

Arithmetic, LI 4% 

logical SLL 4% 

LUI 5% 

ADDUl,ADDU 18% 

Control, B 

procedure B--Z 14% 

0% 2% 4% 6% 8% 10% 12% 14% 16% 

Total dynamic count 

•Gee 0 Spice. • TeX • US Steel I 
FIGURE D.6 The time distribution for our three benchmarks plus the US Steel 
COBOL benchmark as they would run on DLX using the CPI measurements from a 
DECstation 3100. 

Ex.1035.720DELL

D.4

D.4 Time Distribution on a DLX Relative

Time Distribution on a DLX Relative

To obtain a time distribution for DLX, we turn to the DECstation 3100, which

has an instruction set architecture very similar to DLX (see Appendix E). The
time distribution on the DECstation 3100 for the same programs measured in
Chapter 4 (Figure 4.34 on page 181 and in table form in Figure C.4 is shown in
Figure D.6. Figure D.6 includesall instructions that contribute more than 1% to
the execution time. In total, these instructions accountfor 81% ofall instruction
executions and 97% of the execution time.

This time distribution is by far the closest to the frequency distribution. This
is because under ideal conditions almostall instructions in DLX can take one

cycle; only the LD and SD instructions must take two cycles. Of course, these
perfect conditions never arise. The average CPI using the DECstation 3100 as a
base is about 1.6 for GCC, TeX, and COBOLX,and about 2.1 for Spice.

Floating

point

Data
transfer

Arithmetic,

logical

Control,

procedure 
FDIV;_] 2%

FSUB [__12%

MOVEFP2I,MOVEI2FP |__| 1%

AND,ANDI

S--,S-I
LI

SLL

LUI

ADDUI,ADDU

4% 6% B% 10% 12% 14% 16%

Total dynamic count

Miccc [Spice J Tex

FIGURE D.6_ The time distribution for our three benchmarks plus the US Steel
COBOLbenchmarkas they would run on DLX using the CPI measurements from a
DECstation 3100.

DELL Ex.1035.720



Appendix D: Time Versus Frequency Measurements D·9 

Figure D. 7 shows· contribution to execution time over contribution to 
execution frequency for the top instructions. Like the 360 and 8086 charts, a 
value above 1 indicates that .this instruction has a higher CPI than the average 
instruction. Remember, though, that the ratio does not indicate the CPI for the 
instruction. However, we can use this figure to find the CPI for an instruction, 
given the base CPI for a specific program. 

T 

FDIV 
t 

FSUB 
Floating FADD 

point 

t 

t 
FMUL 

t 
MOVFP21,MOVl2FP 

t 
SD 

t 
Data LD 

transfer LBU 

SW 

LW 

AND.ANDI 
Arithmetic, 

S--,S--1 logical 

LI 

SLL 

LUI 

ADDUl,ADDU 
t 

Control B 
t 

B--Z 

0.0 0.5 

0.9 

1.7 

1.7 

1.5 

1.5 

1.4 

1.0 

1.0 

1.0 

0.8 

0.8 

0.9 

1.1 

1.3 

1.0 1.5 

Ratio of time frequency/ 
dynamic frequency 

2.0 

2.2 

2.2 

2.2 

2.2 

2.5 

FIGURE D.7 Time frequency divided by execution frequency for DLX as measured 
using the time data from Figure D.6 and the frequency data from Figure 4.34 (page 
181). The integer register-floating-point register moves are inexpensive, since they are 
really register-register operations. Surprisingly, the double-precision memory references 
are not twice as expensive as the 32-bit loads and stores. Can you hypothesize why based 
on the discussions of pipelining and cache design? 

Ex.1035.721DELL



RISC: any computer announced after 1985. 

Steven Przybylski (a designer of the Stanford MIPS) 

E.1 Introduction E·1 

E.2 Addressing Modes and Instruction Formats E-2 

E.3 Instructions: The DLX Subset E·4 

E.4 Instructions: Common Extensions to DLX E·9 

E.5 Instructions Unique to MIPS E·12 

E.6 Instructions Unique to SPARC E·15 

E.7 Instructions Unique to M88000 E·17 

E.8 Instructions Unique to i860 E·19 

E.9 Concluding Remarks E·23 

E.10 References E·24 

Ex.1035.722DELL



E.1 

Survey of RISC 
Architectures 

Introduction 

We cover four examples of Reduced Instruction Set Computer (RISC) architec
tures in this appendix: 

• Intel 860; 

• MIPS R3000/R.3010 (plus a section on MIPS II, used in the R6000); 

• Motorola M88000; and 

• SPARC, developed originally by Sun Microsystems. 

We also include DLX, the instruction set architecture invented for this book. (A 
review of DLX can be found in the back inside cover or in pages 160-167 of 
Chapter 4.) Characteristics of these architectures are found in Figure E.1. 

There has never been another class of computers that were so similar. This 
similarity allows the presentation of four architectures at once, with DLX thrown 
in for good measure! After presenting the addressing modes and instruction for
mats, the instructions are presented in three steps: 

• Instructions found in DLX; 

• Instructions not found in DLX but found in two or more architectures; and 

• The unique instructions and characteristics of each architecture. 

We conclude with a speculation about .the future directions for RISCs. 

Ex.1035.723DELL

Survey of RISC
Architectures

E.1 | Introduction
Wecover four examples of Reduced Instruction Set Computer (RISC) architec-
tures in this appendix:

= Intel 860;

=» MIPS R3000/R3010 (plus a section on MIPS II, used in the R6000);

a Motorola M88000; and

us SPARC,developed originally by Sun Microsystems.

Wealso include DLX,the instruction set architecture invented for this book. (A

review of DLX can be found in the back inside cover or in pages 160-167 of
Chapter 4.) Characteristics of these architectures are found in Figure E.1.

There has never been another class of computers that were so similar. This
similarity allows the presentation of four architectures at once, with DLX thrown
in for good measure! After presenting the addressing modesandinstruction for-
mats, the instructions are presented in three steps:

» Instructions found in DLX;

= Instructions not found in DLX but found in two or more architectures; and

» The unique instructions and characteristics of each architecture.

Weconclude with a speculation about the future directions for RISCs.

DELL Ex.1035.723



E·2 E.1 Introduction 

QLX i860 MIPS MSSOOO SPARC 

Date announced 1990 1989 1986 1988 1987 

Instruction size (bits) 32 32 32 32 32 

Address space (size, model) 32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat 32 bits, flat 

Data alignment Aligned Aligned Aligned Aligned Aligned 

Data addressing modes 1 2 1 3 2 

Protection Page Page Page Page Page 

Page size 4KB 4KB 4KB 4KB 4-64KB 

1/0 Memory Memory Memory Memory Memory 
mapped mapped mapped mapped mapped 

Integer registers (size, model, 31 GPRx 31 GPRx 31 GPRx 31 GPRx 31 GPRx 
number) 32 bits 32 bits 32 bits 32 bits 32 bits 

Separate floating-point registers 32 x 32 or 30 x 32 or 16 x 32 or 0 32 x 32 or 
16 x 64 bits 15 x 64 bits 16 x 64 bits 16 x64 

Floating-point format IEEE 754 IEEE 754 IEEE 754 IEEE 754 IEEE 754 
single, double single, double single, double single, double single, double 

FIGURE E.1 Summary of five recent architectures. Except for number of data address modes and some instruction 
set details, the integer instruction sets of these architectures of the late 1980s are identical. Contrast this to Figure E.13, 
page E-23. 

E.21 Addressing Modes and Instruction Formats 

Addressing mode 

Figure E.2 shows the data addressing modes supported by each architecture. 
Since all have one register that always has the value 0-in fact, it is r 0 in every 
architecture-the absolute address mode with limited range can be synthesized 
using rO as the base in displacement addressing. Similarly, register-indirect 
addressing is synthesized by using displacement addressing with an offset of 0. 
Simplified addressing modes is one distinguishing feature between these and 
prior architectures. 

DLX i860 MIPS MSSOOO SPARC 

Register + offset (displacement or based) --J --J --J --J --J 

Register + register (indexed) -- --J -- --J --J 

Register+ scaled register (scaled) -- -- -- --J --

FIGURE E.2 Summary of data addressing modes. (These addressing modes are explained in Section 3.4, pages 94-
103) While the i860 does have indexed data addressing for all loads and floating-point stores, it is not available for integer 
stores. 

Ex.1035.724DELL



Appendix E: Survey of RISC Architectures E·3 

31 25 20 15 10 0 

DLX Rs15 Rs25 Rd5 

i860 Rs25 Rd5 Rs15 

Register- MIPS Rs15 Rs25 
register 

M88000 

SPARC Rs25 

31 18 1312 4 

DLX 

i860 
Register-
immediate MIPS 

M88000 

SPARC 

31 29 24 18 1312 0 
0 

DLX 

i860 

Branch 
MIPS 

M88000 

SPARC 

31 29 21 0 

31 25 0 

DLX 

i860 
Jump/Call 

MIPS 

M88000 

SPARC 

31 29 0 

•Opcode D Register Dconstant ' 
FIGURE E.3 Instruction formats for five architectures. These four formats are found in all five architectures. (The 
superscript notation in this figure means something different from our standard notation; it shows the width of a field in 
bits.) While the register fields are located in similar pieces of the instruction, beware that the destination and two source 
fields are scrambled. Here are the meanings of the abbreviations: Op = the main opcode, Opx =an opcode extension, Rd 
=the destination register, Rs1 =source register 1, Rs2 =source register 2, and Const= a constant (used as an 
immediate or as an address). The main variation for the M88000 is register-immediate format when the operation doesn't 
need a full 16-bit immediate: an opcode extension field is placed in the upper bits of the constant field. The variation for 
the i860 is using Rs1 in the Branch format to specify a 5-bit constant as well as a register. 

Ex.1035.725DELL

Appendix E: Survey of RISC Architectures E-3

DLX

ig60

Register— MIPS
register

M88000

SPARC

Register—
immediate

DLX

i860

Branch MIPS

M88000

SPARC

DLX

i860

Jump/Call
MIPS

M88000

SPARC

Opcode C) Register Constant

 
FIGURE E.3 Instruction formats for five architectures. These four formats are foundin ail five architectures. (The
superscript notation in this figure means something different from our standard notation; it shows the width of a field in
bits.) While the register fields are located in similar pieces of the instruction, beware that the destination and two source
fields are scrambled. Here are the meanings of the abbreviations: Op = the main opcode, Opx =an opcode extension, Rd
= the destination register, Rs1 = source register 1, Rs2 = source register 2, and Const = a constant (used as an
immediate or as an address). The main variation for the M88000 is register-immediate format when the operation doesn’t
need a full 16-bit immediate: an opcode extension field is placed in the upperbits of the constantfield. The variation for
the i860 is using Rs1 in the Branch format to specify a 5-bit constant as well as a register.

DELL Ex.1035.725



E·4 E.2 Addressing Modes and Instruction Formats 

References to code are normally PC-relative, although register indirect is 
supported for returning from procedures and for case statements. One variation 
is that PC-relative branch addresses in everything but DLX are shifted left 2 bits 
before being added to the PC, thereby increasing the branch distance. This works 
because the length of all instructions is one word and instructions must be word 
aligned in memory. 

Figure E.3 (page E-3) shows the format of instructions, which includes the 
size of the address in the instructions. Each instruction set architecture uses these 
four primary instruction formats. The primary differences are subtle, concerning 
how to extend constant fields to 32 bits. Figure E.4 shows the variations. 

Format: instruction category DLX i860 MIPS M88000 SPARC 

Branch: all Sign Sign Sign Sign Sign 

Jump/Call: all Sign Sign -- Sign Sign 

Register-immediate: data transfer Sign Sign Sign Zero Sign 

Register-immediate: arithmetic Sign Sign Sign Zero Sign 

Register-immediate: logical Sign Zero Zero Zero Sign 

FIGURE E.4 Summary of constant extension. The constant in the Jump and Call 
instructions of MIPS are not sign extended since they only replace the lower 28 bits of the 
PC, leaving the upper 4 bits unchanged. 

E.3 I instructions: The DLX Subset 

The similarities of each architecture allow simultaneous descriptions of the 
architectures, starting with the operations equivalent to DLX. 

DLX Instructions 

Almost every instruction found in DLX instructions is found in the other archi
tectures, as Figure E.5 shows. (For reference, definitions of the DLX instructions 
are found on pages 160 to 167 of Chapter 4 and the back inside cover.) Instruc
tions are listed under four categories: "Data transfer," "Arithmetic, logical," 
"Control," and "Floating point." A fifth category in the figure shows conven
tions for register usage and pseudoinstructions on each architecture. If a DLX 
instruction requires a short sequence of instructions, these instructions are 
separated by semicolons in Figure E.5. (To avoid confusion, the destination 
register will always be the leftmost operand in this appendix, independent of the 
notation normally used with each architecture.) 

Every architecture must have a scheme for compare and conditional branch, 
but even with all the similarities, each of these architectures has found a differ
ent way to perform the operation. The advantages and disadvantages of the 
general options are found on pages 105-109 of Chapter 3. 

Ex.1035.726DELL



Appendix E: Survey of RISC Architectures E-5 

Instruction name DLX i860 MIPS M88000 SPARC 

Data transfer 
(Instruction formats) R-1 R-1,R-R R-1 R-1,R-R R-1,R-R 

Load byte signed LB LD.B LB LD.B LDSB 

Load byte unsigned LBU LD.B; LBU LD.BU LDUB 
AND ... ,xOOFF, ... 

Load halfword signed LH LD.S LH LD.H LDSH 

Load halfword LHU LD.S; LHU LD.HU LDUH 
unsigned AND ... ,xFFFF ... 

Load word LW LD.L LW LD LD 

Load SP float LP FLD.L LWCl LD LDF 

Load DP float LD FLD.D LWCl Rd; LD.D LDDF 
(see E.5 for MIPS) LWCl Rd+l 

Store byte SB ST.B SB ST.B STB 

Store halfword SH ST.S SH ST.H STH 

Store word SW ST.L SW ST ST 

Store SP float SF FST.L SW Cl ST STF 

Store DP float SD FST.D SWCl Rd; ST.D STDF 
(see E.5 for MIPS) SWCl Rd+l 

Read, write special MOVS2I, LD.C, MF_, LDCR,FLDCR RD,LDFSR, 
registers MOVI2S ST.C MT_ STCR,FSTCR WR,STFSR 

Move int. to PP reg. MOVI2FP IXFR MFCl not applicable ST;LDF, 

Move PP to int. reg. MOVFP2I FXFR MTCl not applicable STF;LD 

Arithmetic, logical 
(Instruction formats) R-R, R-1 R-R,R-1 R-R,R-1 R-R,R-1 R-R,R-1 

Add ADDU,ADDUI ADD,ADDU ADDU,ADDIU ADDU ADD 

Add (trap if overflow) ADD,ADDI ADD;INTOVR ADD,ADDI ADD ADDcc; TVS 

Sub SUBU,SUBUI SUB,SUBU SUBU SUBU SUB 

Sub (trap if overflow) SUB,SUBI SUB; INTOVR SUB SUB SUBcc; TVS 

Multiply MULTU; FMLOW MULT, MUL MULScc; .... ; 
(see E.6 for SPARC) MULTUI MULTU MULScc 

Multiply (trap if ovf) MULT,MULTI -- -- -- -- (see E.6) 

Divide~ DIVU,DIVUI -- DIV,DIVU DIV,DIVU -- (see E.6) 

Divide (trap if ovf) DIV,DIVI -- -- -- -- (see E.6) 

And AND,ANDI AND AND,ANDI AND AND 

Or OR, ORI OR OR, ORI OR OR 

Xor XOR,XORI XOR XOR,XORI XOR XOR 

Load high part reg. LHI OR.H ... ,rO, ... LUI OR.U ... ,rO, ... SETHI (B fmt.) 

Shift left logical SLL,SLLI SHL SLLV,SLL MAK SLL 

Shift right logical SRL,SRLI SHR SRLV,SRL EXTU SRL 

Shift right arithmetic SRA,SRAI SHRA SRAV,SRA EXT SRA 

Compare S-( <,>,s,::::,=,:;t:) SUB rO, ... SLT,SLTU, CMP SUBcc rO, ... 
SLTI,SLTIU 

Ex.1035.727DELL



E-6 E.3 Instructions: The DLX Subset 

Instruction Name DLX i860 MIPS M88000 SPARC 

Control 
(Instruction formats) B,J/C B,J/C B,J/C B,J/C B,J/C 

Branch on integer BEQ,BNE BC.T,BNC.T, BEQ,BNE,B_Z BBl.N,BBO.N, Bice 
compare BTE,BTNE (<,>,5,~) BCND.N (<,>,5,~,==,:;t) 

Branch on floating- BFPT,BFPF BC.T,BNC.T BClT,BClF BBl.N,BBO.N, FBfcc 
point compare BCND.N (<,>,s,~.== •... ) 

Jump, jump register J,JR BR,BRI J,JR BR.N,JMP.N B,JMPLrO, ... 

Call, call register JAL,JALR CALL, CALLI JAL,JALR BSR.N ,JSR.N CALL,JMPL 

Trap TRAP TRAP BREAK TCND, TBO Tice 

Return from interrupt RFE BRI (trap bits:;tO) JR;RFE RTE RETT 

Floating point 
(Instruction formats) R-R R-R R-R R-R R-R 

Add single, double ADDF, FADD.SS, ADD.S, FADD.SSS, FADDS, 
ADDD FADD.DD ADD.D. FADD.DDD FADDD 

Sub single, double SUBF, FSUB.SS, SUB.S, FSUB.SSS, FSUBS, 
SUBD FSUB.DD SUB.D FSUB.DDD FSUBD 

Mult single, double MULF, FMUL.SS, MUL.S, FMUL.SSS, FMULS, 
MULD FMUL.DD MUL.D FMUL.DDD FMULD 

Div single, double DIVF, --
' 

DIV.S, FDIV.SSS, FD IVS, 
DIVD -- DIV.D FDIV.DDD FDIVD 

Compare _F, PF_.SS, c_.s, FCMP.SS, FCMPS, 
_D PF_.DD C_.D FCMP.DD FCMPD 
( <,> ,s,~.==, ... ) (>,5,==) (<,>,5,~,==, ... ) 

MoveR-R MOVF FIADD.SS ... ,fO, MOV.S ADD ... ,rO, ... FMOVS 
Convert CVTF2D, F ADD.SD . .fO .. , CVT.S.D, FADD.SSD rO, FSTOD, 
(single,double,integer) CVTD2F, F ADD.DS .. fO .. , CVT.D.S, --

' 
FDTOS, 

to CVTF21, FIX.SS, CVT.S.W, INT.SS, FSTOI, 
(single,double,integer) CVTD2I, FIX.DS, CVT.D.W, INT.SD, FDTOI, 

CVTI2F, --
' 

CVT.W.S, FLT.SS, FITOS, 
CVTI2D -- CVT.W.D FLT.DS FITOD 

Conventions 

Register with value 0 rO rO rO rO rO 

Return address reg. r31 rl r31 r1 r31 

Noop ADD rO,rO,rO SHL rO,rO,rO SLL rO,rO,rO OR rO,rO,rO SETHirO,O 

Move R-R integer ADD ... ,rO, ... SHL ... ,rO, ... ADD ... ,rO, ... OR ... ,rO, ... OR ... ~rO, ... 

Operand order OP Rd,Rs l ,Rs2 OP Rsl,Rs2,Rd OP Rd,Rs 1,Rs2 OP Rd,Rsl,Rs2 OP Rsl,Rs2,Rd 

FIGURE E.5 Instructions equivalent to DLX. Dashes mean the operation is not available in that architecture, or not 
synthesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several 
choices of instructions equivalent to DLX, they are separated by commas. Finally, "not applicable" means that while this 
operation is not directly available, other changes in the architecture means it wouldn't make sense. This later category is 
for the M88000, since integer and floating-point instructions sharing the same registers means separate floating-point 

· move instructions are unnecessary. Note that in the "Arithmetic, logical" category DLX and MIPS use separate instruction 
mnemonics to indicate an immediate operand, while the i860, M88000, and SPARC offer immediate versions of these 
instructions but use a single mnemonic. (Of course these are separate opcodes!) Both MIPS and SPARC have new 
instructions that were not implemented in the first machine and that apply to some of these cases: see Sections E.5 and 
E.6. 

Ex.1035.728DELL



Appendix E: Survey of RISC Architectures E·7 

Compare and Conditional Branch 

SPARC uses the traditional four condition code bits stored in the program status 
word: Negative, Zero, Carry, and Overflow. They can be set on any arithmetic 
or logical instruction, but unlike earlier architectures this setting is optional on 
each instruction. This leads to fewer problems in pipelined implementation 
(page 334 in Chapter 6). While condition codes can be set as a side effect of an 
operation, explicit compares are synthesized with a subtract using r 0 as the des
tination. Floating point uses separate condition codes to encode the IEEE 754 
conditions, requiring a floating-point compare instruction. SPARC conditional 
branches test condition codes to determine all possible unsigned and signed 
relations. 

MIPS uses the contents of registers to evaluate conditional branches. Any two 
registers can be compared for equality (BEQ) or inequality (BNE) and then the 
branch is taken if the condition holds. The set-on-less-than instructions 
(SLT,SLTI, SLTU,SLTIU) compare two operands and then set the destination 
register to 1 if less and to 0 otherwise. These instructions are enough to synthe
size the full set of relations. Because of the popularity of comparisons to 0, 
MIPS includes special compare-and-branch instructions for all such compar
isons: greater than or equal to zero (BGEZ), greater than zero (BGTZ), less than 
or equal to zero (BLEZ), and less than zero (BLTZ). Of course, equal and not 
equal to zero can be synthesized using rO with BEQ and BNE. Like SPARC, 
MIPS uses a condition code for floating point with separate floating-point com
pare and branch instructions. 

The M88000 also uses registers to evaluate conditions and optimizes compare 
to 0 with a separate set of compare-and-branch instructions (BCND. N). Compar
ison of arbitrary operands differs. MIPS offers several compare instructions to 
set the register to 0 or 1 depending on the selected condition, but the M88000 
uses a single instruction (CMP) and sets 10 bits of the destination register show
ing the relationship of the two operands. These bits represent equality(=, :t) plus 
all relations for signed ( <, :::;, >, 2::) and unsigned ( <, :::;, >, 2::) operands. Instruc
tions that branch if a bit in a register is 1 (BB 1 • N) or 0 (BB 0 . N) complete the 
conditional branch set. (Another option is using EXTU with CMP to set a register 
to 0 or 1 and then using BCND. N. Using EXT instead of EXTU sets a register to 
0 or -1, if so desired.) Since there is a common register set for integer and float
ing point, floating-point compare uses the same scheme: set bits of a register and 
branch based on the result using BB 1 . N or BB 0 . N. 

The Intel i860 uses condition codes for branches like SP ARC, except that the 
i860 condition codes are set implicitly as part of every integer arithmetic or logi
cal instruction. Also unlike SP ARC, the i860 uses just two bits of conditions: OF 

and CC. OF is set only by the integer add and subtract instructions, and is used to 
indicate overflow. There is no conditional branch instruction to test this bit, but 
the INTOVR instruction will cause a trap if the bit is set. The CC bit is set or 
cleared depending on the operation. The logical instructions (AND,OR,XOR) set 
CC if the result is 0. The unsigned arithmetic instructions (ADDU,SUBU) set CC 

Ex.1035.729DELL



E·S E.3 Instructions: The DLX Subset 

if there is a carry out of the most significant bit. Signed subtract (SUBS) sets CC 
if Rs2 > Rs 1, while signed add (ADD s) sets CC if Rs2 is less than the two's 
complement of Rsl. Floating-point comparison instructions set CC if the condi
tion tested is true: greater than (PFGT), less than or equal (PFLE), or equal 
(PFEQ). 

The i860 conditional branch instructions (BC. T and BNC. T) test CC and 
branch depending on whether CC is 1or0. The i860 also has conditional branch 
instructions based on equality of two operands: BTE jumps if they are equal and 
BTNE jumps if they are not. 

Figure E.6 summarizes the four schemes used for conditional branches. 

DLX i860 MIPS M88000 SPARC 

Number of condition code bits 1 FP 1 both, 1 FP -- 4 integer, 
(integer and FP) 1 integer 2FP 

Basic compare instructions 1 integer, 1 FP 1 integer, 1 integer, 1 FP 
(integer and FP) 1 FP 1 FP 1 FP 

Basic branch instructions 1 integer, 1 both, 2 integer, 1 both, 1 integer, 
(integer and FP) 1 FP 1 integer 1 FP 1 integer 1 FP 

Compare register with =;:F- =;:F- =;:;t. -- --
register/const and branch 

Compare register to zero and =;:F- =;:F- =;:;t.,<,::;,>,;::: =,:;t:,<,::;,>,;::: --
branch 

FIGURE E.6 Summary of five approaches to conditional branches. Integer compare on the i860 and SPARC is 
synthesized with an arithmetic instruction that sets the condition codes using rO as the destination. 

Integer Multiply and Divide 

Multiply and divide are usually implemented as multicycle instructions and are 
thus not a good match for the single-cycle execution goal of the rest of the inte
ger instructions, requiring separate integration into the pipeline. Each architec
ture takes a different approach to integer multiply and divide as well as condi
tional branch. The i860 uses the same scheme as DLX: there is a floating-point 
instruction (FMLOW) that treats the contents of two floating-point registers as 
integers, leaving a 32-bit result in the lower 32 bits of a double-precision pair of 
floating-point registers. Programs do integer divide using. i860 floating-point 
instructions. (Floating-point divide uses Newton-Raphson iteration; see pages 
E-19-E-20.) 

The combined integer and floating-point register file allows the M88000 to 
use the floating-point unit to perform integer multiply and divide, as the 
operands do not have to be moved to and from the floating-point registers. The 
one complication in the first version of the architecture, the MC88100, is a neg
ative dividend or negative divisor results in a trap. Software then makes the 
operands positive, uses the divide instruction, and then complements the quo
tient (if necessary). A zero divisor traps as well, as we would hope. 

Ex.1035.730DELL



Appendix E: Survey of RISC Architectures E·9 

In the MIPS architecture the 64-bit product of an integer multiply or the quo
tient/remainder of an integer divide is placed in a special registers HI and LO. 
This computation is treated as an independent unit executing in parallel with the 
integer and floating-point units. The appropriate result is transferred to the cor
rect register with a MFHI or MFLO instruction. Attempts to read the registers 
before the computation is complete stalls the processor. There is no trap for 
overflow or divide by zero. These are typically checked by explicit integer 
instructions that execute in parallel with the divide. (See Section E.5 for 
architectural extensions not implemented in the first MIPS machines.) 

SPARC provides a multiply step instruction. When used in a loop it calcu
lates a full 64-bit product using the special register Y. It is loaded with the multi
plier and receives the least significant word of the product. Magenheimer, 
Peters, Pettis, and Zuras [1988] measured the size of operands in multiplies and 
divides to show how well the multiply step would work. Using this data for C 
programs, Muchnick [1988] found that by making special cases the average 
multiply by a constant takes 6 clock cycles and multiply of variables takes 24 
clock cycles. There is no divide step in the SPARC. (See Section E.6 for 
architectural extensions not implemented in the first SPARC machines.) 

E.4 I instructions: Common Extensions to DLX 

Figure E.7 (pages E-10-E-11) lists instructions not found in Figure E.5 (pages 
E-5-E-6) in the same four categories. Instructions are put in this list if they 
appear in more than one of the four architectures. The instructions are defined 
using the hardware description language, which is described on the page facing 
the inside back cover and on pages 160-167 of Chapter 4. 

While most of the categories are self-explanatory, a few bear comment: 

• The "Atomic swap" row means a primitive that can exchange a register with 
memory without interruption. This is useful for operating system semaphores 
in uniprocessors as well as for multiprocessor synchronization (see pages 
471-473 of Chapter 8.) 

• In the "Endian" row, "Big or Little" means there is a bit in the program status 
register that allows the processor to act either as Big Endian or Little Endian. 
This can be accomplished by simply complementing some of the least signif
icant bits of the address in data transfer instructions. 

• The "Coprocessor operations" row lists several categories that allow for the 
processor to be extended with special-purpose hardware. 

• The "Implicit conversions" row under "Floating point" means that floating
point operands in these architectures do not have to all be the same size, and 
the floating-point unit performs a conversion as part of the operation. The 
i860 allows for two single-precision operands to produce a double-precision 

Ex.1035.731DELL



E·10 

Name 

Data transfer 

Atomic swap RIM 
(for semaphores) 

Load double 
integer 

Store double 
integer 

Load coprocessor 

Store coprocessor 

Endian 

Cache flush 

Arithmetic, logical 

Support for multi-
word integer add 

Support for multi-
word integer sub 

And not 

Or not 

Xornot 

E.4 Instructions: Common Extensions to DLX 

result while the M88000 allows for any combination of single and double 
precisions for each of the three operands. 

One difference that needs a longer explanation is the optimized branches. 
Figure E.8 (page E-12) shows the options. The i860 and M88000 offer branches 
that take effect immediately, like branches on earlier architectures. This avoids 
executing NOPs when there is no instruction to fill the delay slot. SP ARC 
provides a version of delayed branch that makes it easier to fill the delay slot. 
The "annulling" branch executes the instruction in the delay slot only if the 
branch is taken; otherwise the instruction is annulled. This means the instruction 
at the target of the branch can safely be copied into the delay slot since it will 
only be executed if the branch is taken. The restrictions are that the target is not 
another branch and that the target is known at compile time. SP ARC also offers 
a nondelayed jump because an unconditional branch with the annul bit set does 
not execute the following instruction. 

After covering the similarities, we will cover the unique features of each 
architecture, ordering them by length of description of the unique features from 
shortest to longest. 

Definition i860 MIPS MSSOOO SPARC 

Temp+-Rd; LOCK;LD.L; -- (see E.5) XMEM, SWAP 

Rd+- Mem[x]; UNLOCK; ST.L; XMEMBU 

Mem[x]+---Temp 

Rd+---Mem[x]; -- -- LD.D LDD 

Rd+ 1 +---Mem[x+4] 

Mem[x]+---Rd; -- -- ST.D STD 

Mem[x+4]+---Rd+ 1 

Coprocessor+---Mem[x] -- LWCi -- LDC 

Mem[ x ]+---Coprocessor -- SW Ci -- STC 

(Big/Little Endian?) Big or Little Big or Little Big or Little Big 

(Flush cache block at FLUSH -- (see E.5) -- FLUSH 

this address) 

CarryOut,Rd +--- Rs 1 + ADDU;BNC; ADDU;SLTU; ADDU.CIO ADDXcc 

Rs2 + OldCarrvOut ADDU ... , ... , #1 ADDU 

CarryOut,Rd +--- Rs 1 - SUBU;BNC; SUBU;SLTU; SUBU.CIO SUBXcc 

Rs2 + OldCarrvOut ADDU .... , ... , #1 SUBU 

Rd +--- Rs 1 & ! (Rs2) AND NOT -- AND .C (R-R) ANDN 

Rd +--- Rs 1 I ! (Rs2) -- -- OR. C (R-R) ORN 

Rd+--- Rsl "!(Rs2) -- -- XOR.C (R-R) XNOR 

Ex.1035.732DELL



Appendix E: Survey of RISC Architectures E·11 

Definition i860 MIPS M88000 SPARC 

Arithmetic, logical (continued) 

And high Rd0 .. 15~Rs10 . .15 & ANDH (R-1) -- AND. U (R-1) --
immediate (Const<<16); 

Rd16 .. 31~0 

Or high immediate Rd0 .. 15~Rs10 .. 15 I ORH (R-1) -- OR. U (R-1) --
(Const<<l6); Rd16 .. 31~0 

Xor high Rdo .. 15~Rslo .. 15" XORH (R-1) -- XOR. U (R-1) --
immediate (Const<<l6); 

Rd16 .. 31~0 
Coprocessor (Defined by coprocessor) -- COPi -- CPop 
operations 

Control 

Optimized delayed (Branch not always BC,BNC -- BBl,BBO, Bice, A 
branches delayed) BCND 
Optimized (Branch not always BC,BNC -- BBl,BBO, Bf cc, A 
floating-point delayed) BCND 
branches 

Conditional trap if(COND) -- -- (see E.5) TBl, TEO, Tice 
{R31~PC; PC ~O .. O#i} TCND 

Branch on if (CoProc COND) -- BCiT,BCiF -- Bccc 
coprocessor {PC ~PC+Const} 

No. control regs. Misc. regs (virtual 6 12 32 7 
memory, interrupts, ... ) 

Floating point 

Negate Fd ~ Fs " x80000000 -- NEG. S, XOR.U 8000 NEGS 
NEG.D 

Absolute value Fd ~ Fs & x7FFFFFFF -- ABS.S, AND.U 7FFF ABSS 
ABS.D 

Truncate to integer Fd ~ unrounded integer FTRUNC.SS, -- TRNC.SS, --
part of Fs FTRUNC.DS TRNC.SD 

Implicit (Convert as part of - .SD -- _.SSD,_.SDS, --
conversions operation) (2 single operands, _.SDD,_.DSS, 

1 double result) - .DSD._.DDS 
(all 
combinations) 

FIGURE E.7 Instructions not found in DLX but found in two or more of the four architectures. Both MIPS and 
SPARC have new instructions that were not implemented in the first machine and that apply to some of these cases: see 
Sections E.5 and E.6. 

Ex.1035.733DELL



E-12 E.4 Instructions: Common Extensions to DLX 

Delayed branch (Plain) Branch Annulling delayed branch 

Found in architectures All 5 RISCs i860, M88000 SPARC 

Execute following instruction Always Only if branch not taken Only if branch taken 

FIGURE E.8 When the instruction following the branch is executed for three types of branches. 

E.5 I instructions Unique to MIPS 

Starting with data transfer instructions, MIPS is unlike the others since the archi
tecture requires that the instruction following a load does not refer to the value 
being loaded. The MIPS Assembler inserts a NOOP instruction if this situation 
occurs. 

Nonaligned Data Transfers 

The other unique feature of MIPS data transfer is special instructions to handle 
misaligned words in memory. A rare event in most programs, it is included for 
COBOL programs where the programmer can force misalignment by declara
tions. While all these architectures trap if you try to load a word or store a word 
to a misaligned address, on all architectures misaligned words can be accessed 
without traps by using 4 load byte instructions and then assembling the result us
ing shifts and logical ORs. The MIPS load and store word left and right instruc
tions (LWL, LWR, SWL, SWR) allow this to be done in just 2 instructions: LWL 
loads the left portion of the register and LWR loads the right portion of the regis
ter. SWL and SWR do the corresponding stores. Figure E.9 shows how they work. 
Unlike other loads, a LWL followed by a LWR does not require a NOOP even 
though both will specify the same register since fields do not overlap. 

TLB Instructions 

TLB misses are handled in software in the MIPS R2000, so the instruction set 
also has instructions for manipulating the registers of the TLB (see pages 437-
438 and 443-445 in Chapter 8 for more on TLBs.) These registers are 
considered part of the "system coprocessor" and thus can be accessed by the 
instructions that move between coprocessor registers and integer registers. The 
contents of a TLB entry are read by loading via Read Indexed TLB Entry 
(TLBR) and written using either Write Indexed TLB Entry (TLBWI) or Write 
Random TLB Entry (TLBWR). The TLB contents are searched using Probe TLB 
for Matching Entry (TLBP). 

Ex.1035.734DELL



Appendix E: Survey of RISC Architectures 

Case 1 
Before 

M[100)D000 100 101 102 103 
M[104)0DDD 1 04 105 106 107 

After LWL R2, 101: 

After LWR R2, 104: 

R
2G000 

Case 2 
Before 

M[200)DDD0 200 201 202 203 
M[204)000D 204 205 206 207 

R4 0~00 

After LWL R4, 203: 

R4 G~00 
After LWR R4, 206: 

R
4 G0G0 

E·13 

FIGURE E.9 MIPS instructions for unaligned word reads. This figure assumes 
operating in Big Endian mode. Case (1) first loads the 3 bytes 101, 102, and 103 into the left 
of R2 leaving the least significant byte undisturbed. The following LWR simply loads byte 
104 into the least significant byte of R2 leaving the other bytes of the register unchanged 
using LWL. Case (2) first loads byte 203 into the most significant byte of R4 and the 
following LWR loads the other 3 bytes of R4 from memory bytes 204, 205, and 206. LWL 

reads the word with the first byte from memory, shifts to the left to discard the unneeded 
byte(s), and changes only those bytes in Rd. The byte(s) transferred are from the first byte 
until the lowest-order byte of the word. The following LWR addresses the last byte, right 
shifts to discard the unneeded byte(s), and finally changes only those bytes of Rd. The 
byte(s) transferred are from the last byte up to the highest-order byte of the word. Store 
word left (SWL) is simply the inverse of LWL, and store word right (swR) is the inverse of 
LWR. Changing to Little Endian mode flips which bytes are selected and discarded. (If 
big/little-lefVright-load/store seems confusing, don't worry, it works!) 

Remaining Instructions 

Below is a list of the remaining unique details of the MIPS architecture: 

• NOR: This logical instruction calculates !(Rsl I Rs2). 

• Constant shift amount: Nonvariable shifts use the 5-bit constant field shown 
in the register-register format in Figure E.3. 

• SYSCALL: This special trap instruction is used to invoke the operating 
system. 

• Move to/from control registers: CTCi and CFCi move between the integer 
registers and control registers. 

Ex.1035.735DELL

Appendix E: Survey of RISC Architectures

Case 1
Before

wea]
100 101 102 103

eT
104 105 106 107

[4[Lo lLe]Ls]

After LWL R2, 101:

re[offalivLy]
After LWR R2, 104:

[olLal[vle]

Case 2
Before

M[200]

200 201 202 203

fae
204 205 206 207

re[uJoe[Ly

After LWL R4, 203:

fo]ofLeLy
After LWR R4, 206:

m[olalyye]

E-13

 
FIGURE E£.9 MIPSinstructions for unaligned word reads.This figure assumes
operating in Big Endian mode. Case(71) first loads the 3 bytes 101,102, and 103 intotheleft
of R2 leaving the least significant byte undisturbed. The following LwR simply loads byte
104 into the least significant byte of R2 leaving the other bytes of the register unchanged
using LWL. Case (2) first loads byte 203 into the mostsignificant byte of R4 and the
following LWR loads the other 3 bytes of R4 from memory bytes 204, 205, and 206. LwL
reads the word with thefirst byte from memory,shifts to the left to discard the unneeded
byte(s), and changes only those bytes in Rd. The byte(s) transferred are from thefirst byte
until the lowest-order byte of the word. The following LwR addressesthelast byte, right
shifts to discard the unneeded byte(s), and finally changes only those bytes of Rd. The
byte(s) transferred are from the last byte up to the highest-order byte of the word. Store
word left (SWL) is simply the inverse of LWL, and store word right (SwR) is the inverse of
LWR. Changing to Little Endian modeflips which bytes are selected and discarded.(If
big/little—ieft/right—load/store seems confusing, don’t worry,it works!)

Remaining Instructions

Below is a list of the remaining unique details of the MIPS architecture:

= NOR: This logical instruction calculates !(Rs1 | Rs2).

= Constant shift amount: Nonvariable shifts use the 5-bit constant field shown
in the register—-register format in Figure E.3.

= SYSCALL: This special trap instruction is used to invoke the operating
system.

= Move tolfrom control registers: CTCi and CFCi move between the integer
registers and controlregisters.

DELL Ex.1035.735



E·14 E.5 Instructions Unique to MIPS 

• Limited single-precision registers: Although the 32 floating-point registers 
can be addressed individually for loads and stores, single-precision operands 
for floating-point operations can use only the 16 even floating-point registers. 

• Jump/Call not PC-relative: The 26-bit address of jumps and calls is not 
added to the PC. It is shifted left 2 bits and replaces the lower 28 bits of the 
PC. This would only make a difference if the program was located near a 
256-MB boundary. 

• Conditional procedure call instructions: BGE ZAL saves the return address 
and branches if the contents of Rs 1 is greater than or equal to zero, and 
BLT ZAL does the same for less than zero. The purpose of these instructions 
is to get a PC-relative call. 

There is no specific provision in the MIPS architecture for floating-point execu
tion to proceed in parallel with integer execution, but the MIPS implementations 
of floating point allow this to happen by checking to see if arithmetic interrupts 
are possible early in the cycle; normally interrupts are not possible and integer 
and floating point operate in parallel (see page A-31 in Appendix A). 

MIPS II 

With the announcement of the R6000 came a set of extensions to the original 
MIPS architecture described above. Here are the additions of MIPS II: 

• Interlocked loads: The MIPS II Assembler need not insert a NOP after a load 
if there is a dependency on the following instruction, as the hardware will 
automatically stall. 

• Branch likely: Equivalent to the SPARC annulled branches, this instruction 
executes the instruction in the delay slot only if the branch is taken. 

• Load double floating point and store double floating point: MIPS II takes a 
single instruction to-load or store double-precision floating-point numbers. 

• SQRT: Single- and double-precision floating-point square root are added to 
the floating-point operations. 

• Conditional trap instructions: These match the conditional branch instruc
tions, except they are not delayed: When the trap is taken, the following 
instruction is not executed. These instructions are useful for range checking, 
popular in Ada. 

Ex.1035.736DELL



Appendix E: Survey of RISC Architectures E-15 

E.6 I instructions Unique to SPARC 

Register Windows 

The primary unique feature of SP ARC is register windows (pages 450-453 of 
Chapter 8), used to reduce the register save/restore overhead of procedure calls 
and returns. SPARC can have between 2 and ~2 windows, using 8 registers each 
for the globals, locals, incoming parameters, and outgoing parameters (see Fig
ure 8.34 page 452.) (Given each window has 16 unique registers, an 
implementation of SPARC can have as few as 40 physical registers and as many 
as 520, although most have 128 to 136, so far.) Rather than tie window changes 
with call and return instructions, SP ARC has the separate instructions SA VE and 
RESTORE. SAVE is used to "save" the caller's window by pointing to the next 
window of registers in addition to performing an add instruction. The trick is 
that the source registers are from the caller's window of the addition operation 
while the destination register is in the callee's window. SPARC compilers typi
cally use this instruction for changing the stack pointer to allocate local variables 
in a new stack frame. RESTORE is the inverse of SAVE, bringing back the 
caller's window while acting as an add instruction, with the source registers 
from the callee's window and the destination register in the caller's window. 
This automatically deallocates the stack frame. Compilers can also make use of 
it for generating the callee's final return value. Unlike earlier register window 
architectures, SPARC uses a Window Invalid Mask, which is used in real-time 
applications, that allows the windows to be partitioned between different 
processes. 

Another data transfer feature is alternate space option for loads and stores. 
This simply allows the memory system to identify memory accesses to 
input/output devices, or to control registers for devices such as the cache and 
memory-management unit. 

Support for LISP and Smalltalk 

The primary remaining arithmetic feature is tagged addition and subtraction. The 
designers of SPARC spent some time thinking about languages like LISP and 
Smalltalk, and this influenced some of the features of SP ARC already discussed: 
register windows, conditional trap instructions, calls with 32-bit instruction 
addresses, and multiword arithmetic (see Taylor [1986] and Ungar [1984]). A 
small amount of support is offered for tagged data types with operations for 
addition, subtraction, and hence comparison. The two least significant bits indi
cate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc 

set the overflow bit if either operand is not tagged as integer or if the result is too 
large. A subsequent conditional branch or trap instruction can decide what to do. 
(If the operands are not integers, software recovers the operands, checks the 

Ex.1035.737DELL



E·16 E.6 Instructions Unique to SPARC 

types of the operands, and invokes the correct operation based on those types.) 
Two other versions of these instructions make the conditional trap unnecessary, 
as TADDccTV and TSUBccTV trap if the overflow is set. It turns out that the 
misaligned memory access trap can also be put to use for tagged data, since 
loading from a pointer with the wrong tag can be an invalid access. Figure E.10 
shows both types of tag support. 

(b) Loading via 
valid pointer 
(coded as 11) 

LD rD,r4,-3 

I 11 

3 

00 

(R4) 

(Word 
address) 

FIGURE E.10 SPARC uses the two least significant bits to encode different data 
types for the tagged arithmetic instructions. (a) shows integer arithmetic, which takes a 
single cycle as long as the operands and the result are integers. (b) shows that the mis
aligned trap can be used to catch invalid memory accesses, such as trying to use an inte
ger as a pointer. For languages with paired data like LISP, an offset of -3 can be used to 
access the even word of a pair (CAR) and + 1 can be used for the odd word of a pair (CDR). 

Overlapped Integer and Floating-Point Operations 

SPARC allows floating-point instructions to overlap execution with integer 
instructions. To recover from an interrupt during such a situation, SP ARC has a 
queue of pending floating-point instructions and their addresses. STDFQ allows 
the processor to empty the queue. The second floating-point feature is the 
inclusion of floating-point square root instructions FSQRTS and FSQRTD. 

Remaining Instructions 

The remaining unique features of SP ARC are: 

• JMP L uses Rd to specify the return address register, so specifying r 31 makes 
it similar to JALR in DLX and specifying rO makes it like JR. 

Ex.1035.738DELL



Appendix E: Survey of RISC Architectures E-17 

• LDSTUB loads the value of the byte into Rd and then stores FF16 into the 
addressed byte. This instruction can be used to implement a semaphore. 

• LDDC and STDC provide load double and store double for the coprocessor. 

• UNIMP causes an unimplemented instruction interrupt. Muchnick [1988] 
explains how this is used for proper execution of aggregate returning proce
dures in C. 

Finally, SPARC includes opcodes for instructions that are emulated in software 
on early implementations. SPARC application programs generally call dynami
cally linked library routines to perform these operations, but the opcodes would 
result in a trap if executed. The instructions are: 

• Signed and unsigned integer multiply and divide, with both operands and the 
results being integer registers. The extra 32 bits of a product and the 32-bit 
remainder of a divide are placed in the Y register. 

• Quadruple precision floating-point arithmetic, allowing the floating-point 
registers to act as eight 128-bit registers. 

• Multiple precision floating-point results for multiply, meaning two single
precision operands can result in a double-precision product and two double
precision operands can result in a quadruple-precision product: These instruc
tions can be useful in complex arithmetic and some models of floating-point 
calculations. 

E. 7 I instructions Unique to M88000 

The most distinguishing feature of the M88000 is the single set of 32 registers 
for both integer and floating-point operations. This simplifies the instruction set 
at the cost of fewer registers for floating-point programs. 

Bit Instructions 

The next feature unique to the M88000 is a full set of bit-field instructions, 
shown in Figure E.11 (page E-18). (While we usually number the most 
significant bit 0, in this table we follow Motorola's notation, which numbers the 
most significant bit 31 and the least significant bit 0.) Bit-field instructions need 
an extra operand to specify the width of the field in addition to the destination 
register, source register, and beginning of the bit field. This 5-bit width field is 
located next to the bit field in source 2. The M88000 encodes a width of 0 to 
mean the full 32-bit value, hence the traditional shift instructions (SLL, SRL, 

SRA) are simply the corresponding bit-field instructions (MAK, EXTU, EXT) with 
0 in the width field. 

Ex.1035.739DELL



E·18 E.7 Instructions Unique to M88000 

Name Instruction Notation 

CLR Clear bit field Rd (o+w) .. (o+l) f- ow 

SET Set bit field Rd (o+w) .. (o+l) f- 1 w 

EXT Extract signed if (w==O) {Rd f- Rs 131 ° ## (Rsl >> o) } 

bit field else {Rd f- (Rsl (o+w)) 0 ## (Rsl (o+w) .. (o+l) >> o) } 

EXTU Extract unsigned if (w==O) {Rd f- 0° ## (Rsl >> o) } 

bit field else {Rd f- 0° ## (Rsl (o+w) .. (o+l) >> o) } 

MAK Make bit field if (w==O) {Rd f- Rsl << o} 
else {Rd(o+w) .. (o+l) f-Rsl(w-1) .. 0 } 

ROT Rotate right Rd f-Rsl(o-l) .. 0 ## Rsl 31. .o 

FFO Find first bit clear for (i=3l;Rs2i==O 11 i<O;i f-i-1); /* loop until = O* I 
if (i<O) {Rd f- 32} else · {Rd f- i } 

FFl Find first bit set for (i=3l;Rs2i==l 1 I i<O; i f-i-1); /* loop until = 1 *I 
if(i<O) {Rd f- 32} else {Rd f- i} 

FIGURE E.11 The M88000 bit-field instructions. The bit offset, o, is the least significant five bits of the second operand 
and the bit-field width, w, is the five bits next to the offset. The subscript notation specifies a bit field while the superscript 
notation means replicate the bit that many times. Note that in this table, bit 31 refers to the most significant bit, and 0 
refers to the least significant bit. 

Remaining Instructions 

The final unique instructions are load address (LDA), MASK, round to nearest 
integer (NINT), trap on bounds (TBND), and exchange control register (XCR): 

• LDA loads Rd with the effective address rather than the data in memory. The 
only time this is different from ADDU is for scaled addressing of nonbyte 
data. 

• MASK is simply another case of logical AND immediate: This instruction 
clears the other half of the word while AND immediate leaves it undisturbed. 
Thus, ANDI in DLXis arguably closer to MASK than to AND immediate in the 
M88000. 

• NINT differs from INT in that it rounds to the nearest integer no matter how 
the rounding modes are set (see Appendix A, pages A-16 to A-17). 

• TBND traps if Rsl > Rs2, treating them as unsigned numbers (see page 239 in 
Chapter 5 for an explanation of how an unsigned comparison can check two 
signed bounds at once). 

• XCR exchanges a control register with an integer register. 

In addition to instructions, here are a few features that distinguish the M88000: 

Ex.1035.740DELL



Appendix E: SuNey of RISC Architectures E·19 

• Double-length operations use Rn and Rn+ 1 rather than an even-odd register 
pair. This gives the M88000 more flexibility in register allocation, which is 
important given the lack of floating-point registers. 

• The first implementation, the MC88100, allows all multicycle instructions to 
overlap execution with following instructions unless there is a data hazard 
(see pages 264-265 in Chapter 6). Also, all floating-point instructions except 
divide are pipelined, taking just one cycle to issue single-precision operations 
and two cycles to issue double-precision operations. The 88000 provides a set 
of shadow registers (see Section 5.6) for floating-point operands to help soft
ware handle both precise and imprecise interrupts (see Motorola [1988]). 

• There are special data transfers, identified by appending .USR to the instruc
tions, that allow access to the user's data while in supervisor mode. 

E.8 I 1nstructions Unique to i860 

The i860 has many unique features. Before covering the special extensions for 
graphics and high-performance floating point, let's cover the traditional areas. 

The unique data transfers are for floating point only. The i860 provides 128-
bit loads (FLD • Q) and stores (F ST • Q) of pairs of 64-bit floating-point registers. 
It also provides an optional addressing mode on all floating-point loads and 
stores: the effective address (sum of Rsl/Const and Rs2) is stored back into Rs2. 
One unique characteristic is that the i860 seems to run out of opcode bits for 
load instructions because it uses the least significant bit to distinguish load 
halfword from load word. This works fine for the register-register format since 
bit 0 is an opcode extension field in this format, but in register-immediate for
mat this is the least significant bit of the constant field. To avoid crazy address
ing problems, this bit is cleared when used as an address. This prevents having 
an odd value in an index register that is corrected by an odd byte address in the 
constant field for halfword and word data transfers (see E.lO(b) on page E-16 for 
a reason this is useful.) 

The only unique arithmetic logical instruction is a double-length shift-right 
logical (SHRD). Rsl and Rs2 are shifted right as a pair and then the 32 least sig
nificant bits are placed into Rd. Since there is no room in the instruction to spec
ify the shift amount, SHRD uses the shift amount from the last SHR instruction. 
This value is saved in the 5-bit SC field of the program status word. By the way, 
SHRD can be used to perform a 32-bit rotate by having Rsl and Rs2 specify the· 
same register. 

The i860 control instructions include a loop instruction called B LA. This 
instruction both performs an add and a conditional branch. Since it is likely that 
another instruction in the loop would change the condition code, the i860 has a 
special loop condition code (LCC) just for this instruction. BLA performs Rd~ 
Rs\l+Rs2 and branches if LCC equals 1. In addition, BLA sets the LCC for the 

Ex.1035.741DELL



E-20 E.8 Instructions Unique to i860 

next time through the loop if Rs2 ~-Rs 1 and clears it otherwise. (LCC is set just 
the opposite of how ADDS sets CC.) 

While i860 does not have floating-point divide, it does have a floating-point 
reciprocal instruction (FRCP). Used with Newton-Raphson iteration (pages 
A-23-A-24 of Appendix A), this calculates divide that disagrees with the IEEE 
floating-point standard (IEEE 754) in the 2 least significant bits. Intel offers 
software to produce the correctly rounded result at twice the cycle count. A 
similar instruction, FRSQR, calculates a reciprocal step for square root. The 
floating-point instructions also include 64-bit integer addition and subtraction 
(FIADD. DD and FI SUB. DD) using the floating-point registers. 

This covers the unique features in the traditional categories, so let's describe 
the new categories of the i860. 

Graphics Instructions 

The graphics or pixel instructions of i860 operate on 64 bits of data at a time, 
with each word representing several pixels. Pixel instructions are intended to be 
useful in graphics operations such as hidden surface elimination (see page 525 in 
Chapter 9), distance interpolation, and three-dimensional shading using intensity 
interpolation. These special-purpose instructions are not simple to understand, so 
interested readers should refer to the manual for details. 

The overview of the operations is that two bits in the program status word 
determine the size of the pixels in a 64-bit word. Pixels can be 8-, 16-, or 32-bits 
wide, with each size containing fields representing intensity of the primary 
colors red, blue, and green. Some pixel instructions work with a 64-bit accumu
lator called the MERGE register, useful in collecting the results of a series of 
calculations on pixels. In addition to "merge" instructions (FADDP and FADDZ), 

the i860 has instructions for z buffers (page 525) that compare two sets of four 
16-bit (F ZCHKS) or two 32-bit (F ZCHKL) values, storing the smaller values in 
the 64-bit destination register and setting bits indicating which was smaller in 
the program status word. Pixel-store instructions (P s T) then use those bits to 
selectively store only those pixels that were smaller. Finally, the F o RM 

instruction is used to move the MERGE register into a floating-point register and 
then clear MERGE. 

Pipelined Mode 

For higher performance, the i860 offers pipelined versions of all the floating
point and pixel instructions. One model for these instructions is to use them to 
build vector primitives, allowing procedures to be written to implement vector 
operations (see Chapter 7). The hope is that existing vectorizing compilers could 
invoke these more efficient procedures. Another model, used by compilers cur
rently under development at Intel's behest, tries to compile directly into these 
instructions for both vector and nonvector codes. 

Ex.1035.742DELL



Appendix E: Survey of RISC Architectures E-21 

In pipelined mode, an instruction is launched every cycle, but unlike other 
pipelined machines, there is no hardware to remember where the results are to be 
stored. Basically, the instruction issuing at the stage the pipeline completes 
specifies the destination! There are four independent pipelines in the i860, and 
each pipeline advances only when the next instruction of that type is executed. 
Figure E.12 shows the i860 pipelines, the number of pipeline stages, and instruc
tions that advance each pipeline. Thus, the source fields and opcode specify the 
operation to be launched while the destination field specifies the register to be 
loaded by an instruction of the same type that is in the final stage at this cycle. 

Pipeline No. of Stages Instructions using pipeline 

PP multiplier 3 (single operands) PFMUL 

2 (double operands) 

PP adder 3 PFADD, PF SUB, PFGT, PFLE, 
PFEQ, PFIX, PFTRUNC 

PP load 3 PFLD 

Graphics 1 PFIADD, PF I SUB, PFZCHKS, 
PFZCHKL, PFADDP, PFADDZ, 
PF ORM 

FIGURE E.12 i860 pipelines, including the number of pipeline stages and 
instructions. All adder and multiplier instructions allow single-precision operands with 
single-precision results (.SS), single operands with double results (.SD), and double
precision operands with double-precision results (.DD). Since the number of stages differs 
for multiply depending on single or double, Intel recommends not mixing precisions 
involving multiplication. 

For example, look at the sequence below for the floating-point adder pipeline 
(assume the operands are specified with the result on the left): 

PFADD.SS F4, F2, F3 ;Single Pree. Add 

PFSUB.DD FlO, F8, F6 ;Double Pree. Sub 

PFMUL.DD F16, F12, F14 ;Double Pree. Mul 

PFADD.SS F19, F17, F18 ;Single Pree. Add 

PFADD.SS F22, F20, F21 ;Single Pree. Add 

The floating-point adder pipeline is three stages, so the first instruction launches 
a floating-point add of F 2 and F 3, but F 4 is loaded from the operation in the 
adder pipeline launched three instructions earlier. The multiply in this sequence 
does not advance the adder pipeline, so the third adder pipeline instruction fol
lowing the first instruction (one subtract and two adds) is the final instruction in 
the sequence, meaning that F 2 2 f- F 2 + F 3. 

The load pipeline has an interesting interaction with the data cache. As long 
as the data is in the cache, it is fetched from the cache. On a miss the data is 
fetched from memory, but the cache is not updated with the new data. This 

Ex.1035.743DELL



E·22 E.8 Instructions Unique to i860 

policy prevents operations on large data structures from filling the cache with 
data that will not be reused and throwing out data that would be reused. The pro
grammer must decide on whether to use scalar loads (FLD) or pipelined loads 
(PFLD), depending on whether the data is likely to be reused or not. 

Scalar instructions will normally empty the pipeline. (The exception is the 
load pipeline because FLD or LD don't empty it.) Thus, before executing a scalar 
floating-point instruction there must be a sequence of dummy pipelined instruc
tions that store the results away. For example, there is no pipelined version of 
the floating-point instruction used for integer multiply (FMLOW), so the pipeline 
must be drained if an integer multiply is needed during a floating-point 
calculation. 

Summarizing pipelined mode on the i860, the advantages are 

• Pipeline control is simple (basically it is done in software). 

• It doesn't need many registers, since they are not reserved during the 
operation. 

The disadvantages are: 

• Operations must be performed to empty the pipeline. 

• The interrupt mechanism is complicated, taking longer to recover the state. 

• Sometimes the pipeline is hard to use. 

• Code size may mushroom (this has not yet been quantified). 

Add/Sub and Multiply 

To squeeze even more performance from the floating-point unit, the i860 has 
pipelined instructions that simultaneously perform an add and multiply (PFAM 

and PFMAM) or a subtract and multiply (PF SM and PFMSM), advancing the 
pipelines of both the add and multiply units. Since each instruction needs 4 
sources and 2 destinations, the i860 has three registers that can also be used in 
addition to the three floating-point registers specified in the instruction. The 
registers KI and KR, optionally loaded from Rsl, can be sources for the multi
plier, and register T can be a destination of the multiplier or a source for the ad
der. The final stage of adder pipeline and multiplier pipeline can also be sources. 
Four bits in each instruction specify a variety of combinations of the operands 
and the operations. 

Dual Instruction Mode 

Finally, the i860 allows an integer and a floating-point instruction to be fetched 
and executed simultaneously. This long instruction word or superscalar form of 
operation (pages 318-322 in Chapter 6) is called dual-instruction mode in the 
i860. Simultaneous execution occurs in this mode when the upper instruction of 

Ex.1035.744DELL



Appendix E: Survey of RISC Architectures E-23 

an aligned doubleword is an integer instruction and the lower is a floating-point 
instruction with the "D" bit set (bit 9 = 1). Entering or exiting the mode is 
delayed: When the i860 finds an instruction with the D bit set, it executes one 
more instruction before entering dual-instruction mode; and, similarly, when the 
i860 is in dual-instruction mode and finds a D bit not set, it executes one more 
pair before going to sequential execution. 

Clearly, highest performance comes when the i860 is in both dual-instruction 
and pipelined modes. 

E.9 I Concluding Remarks 

Date announced 

Instruction size(s) (bits) 

Addressing (size, model) 

Data aligned? 

Data addressing modes 

Protection 

Page size 

1/0 

Integer registers (size, 
model, number) 

Separate floating-point 
registers 

Floating-point format 

This appendix covers the addressing modes, instruction formats, and all 
instructions found in four recent architectures. While the later sections con
centrate on the differences, it would not be possible to cover four architectures in 
these few pages if there were not so many similarities. In fact, we would guess 
that more than 90% of the instructions executed for any of these architectures 
would be found in Figure E.3 (page E-3). To illustrate this homogeneity, Figure 
E.13 gives a summary for four architectures from the 1970s similar to Figure E.1 
(page E-2). (Imagine trying to write a single appendix in this style for those 
architectures.) In the history of computing, there has never been such 
widespread agreement on computer architecture. 

IBM360/370 Intel 8086 Motorola 68000 DEC VAX 

1964/1970 1978 1980 1977 

16,32,48 8,16,24,32, 40,48 16,32,48, 64,80 8,16,24,32, ... , 432 

24 bits, flat 4+16 bits, 24 bits, flat 32 bits, flat 
segmented 

Yes 360/No 370 No 16-bit aligned No 

4 5 9 ~ 14 

Page None Optional Page 

4KB -- 0.25 to 32 KB 0.5KB 

Opcode Opcode Memory mapped Memory mapped 

16 GPR x 32 bits 8 dedicated data x 8 data & 8 address 15 GPR x 32 bits 
16 bits x 32 bits 

4 x 64 bits Optional: Optional: 0 
8 x 80 bits 8 x 80 bits 

IBM IEEE 754 single, IEEE 754 single, DEC 
double, extended double, extended 

FIGURE E.13 Summary of four 1970s architectures. Unlike the architectures in Figure E.1 (page E-2), there is little 
agreement between these architectures in any category. (See Chapter 4 for more details on the 370, 8086, and VAX.) 

Ex.1035.745DELL



E·24 E.9 Concluding Remarks 

This style of architectures cannot remain static, however. One hard lesson is 
that address space must grow, so the 32-bit size of all these architectures must 
expand for them to survive. In terms of their implementation, we expect all to 
offer superscalar execution of 2 to 4 instructions per cycle. The hardware tech
nology will go beyond the current CMOS VLSI and ECL to BiCMOS, and 
possibly even Gallium Arsenide. Our guess is that all of them will grow beyond 
the current market of workstations and peripheral controllers to minicomputers, 
mainframes, and even supercomputers, with increasing numbers of processors 
per computer class. 

E.1 0 I References 

[1989]. i860 64-Bit Microprocessor Programmer's Reference Manual. 

KANE, G. [1988]. MIPS RISC Architecture, Prentice-Hall, Englewood Cliffs, N. J. 

MOTOROLA [1988]. MC88IOO RISC Microprocessor User's Manual. 

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS AND D. ZURAS [1988]. "Integer multiplication 
and division on the HP Precision Architecture," IEEE Trans. on Computers, 37:8, 980-990. 

MUCHNICK, S.S. [1988]. "Optimizing compilers for SPARC," Sun Technology (Summer) 1:3, 64-
77. 

SUN MICROSYSTEMS [1989]. The SPARC Architectural Manual, Version 8, Part No. 800-1399-09, 
August 25, 1989. 

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON, AND B. ZORN [1986]. "Evaluation of the 
SPUR LISP architecture," Proc. 13th Symposium on Computer Architecture (June), Tokyo. 

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. "Architecture of 
SOAR: Smalltalk on a RISC," Proc. 11th Symposium on Computer Architecture (June), Ann 
Arbor, Mich., 188-197. 

Ex.1035.746DELL



References R·1 

I References 

The following is a compilation of all the references listed in the reference section of each chapter. 
The page number of where each reference appears in the book is in parentheses after the reference. 

ADAMS, T. AND R. ZIMMERMAN [1989). "An analysis of 8086 instruction set usage in MS DOS 
programs," Proc. Third Symposium on Architectural Support for Programming Languages and 
Systems (April) Boston, 152-161. (p. 188) 

AGARWAL, A. [1987). Analysis of Cache Pe1formance for Operating Systems and 
Multiprogramming, Ph.D. Thesis, Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May). (p. 487) 

AGARWAL, A., R. L. SITES, AND M. HOROWITZ [1986). "ATUM: A new technique for capturing 
address traces using microcode," Proc. 13th Annual Symposium on Computer Architecture (June 
2-5), Tokyo, Japan, 119-127. (p. 486) 

AGERWALA, T. AND J. COCKE [1987). "High performance reduced instruction set processors," 
IBM Tech. Rep. (March). (p. 340) 

ALEXANDER, W. G. AND D. B. WORTMAN [1975). "Static and dynamic characteristics of XPL 
programs," Computer 8: 11 (November) 41-46. (pp. 130, 187) 

ALLIANT COMPUTER SYSTEMS CORP. [1987). Alliant PX/Series: Product Summary (June), Acton, 
Mass. (p. 395) 

ALMASI, G. S. AND A. GOTTLIEB [1989). Highly Parallel Computing, Benjamin/Cummings, 
Redwood City, Calif. (p. 589) 

AMDAHL, G. M. [1967). "Validity of the single processor approach to achieving large scale 
computing capabilities," Proc. AF/PS Spring Joint Computer Conf 30, Atlantic City, N. J. (April) 
483-485.(pp.26,588) 

AMDAHL, G. M., G. A. BLAAUW, AND F. P. BROOKS, JR. [1964). "Architecture of the IBM 
System/360," IBM J. Research and Development 8:2 (April) 87-101. (pp. 127, 186) 

ANDERSON, D. W., F. J. SPARACIO, AND R. M. TOMASULO [1967). "The IBM 360 Model 91: 
Machine philosophy and instruction handling," IBM J. of Research and Development 11: 1 
(January) 8-24. (p. 339) 

ANDERSON, S. F., J. G. EARLE, R. E. GOLDSCHMIDT, AND D. M. POWERS [1967). "The IBM 
System/360 Model 91: Floating-point execution unit," IBM J. Research and Development 11, 34-
53. Reprinted in [Swartzlander 1980). (p. A-59) 

ANDREWS, G. R. AND F. B. SCHNEIDER [1983). "Concept and notations for concurrent 
programming," Computing Surveys 15:1(March)3-43. (p. 590) 

ANON ET AL. [1985). "A measure of transaction processing power," Tandem Tech. Rep. TR 85.2. 
Also appeared in Datamation, April 1, 1985. (p. 511) 

ARCHIBALD, J. AND J.-L. BAER [1986). "Cache coherence protocols: Evaluation using a 
multiprocessor simulation model," ACM Trans. on Computer Systems 4:4 (November) 273-298. 
(p. 487) 

AT AN AS OFF, J. V. [ 1940). "Computing machine for the solution of large systems of linear 
equations," Internal Report, Iowa State University. (p. 24) 

Ex.1035.747DELL



R·2 Computer Architecture: A Quantitative Approach 

ATKINS, D. E. [1968]. "Higher-radix division using estimates of the divisor and partial remainders," 
IEEE Trans. on Computers C-17:10, 925-934. Reprinted in [Swartzlander 1980]. (p. A-60) 

BAER, J.-L. AND E.-H. WANG [1988]. "On the inclusion property for multi-level cache hierarchies," 
Proc. I 5th Annual Symposium on Computer Architecture (May-June), Honolulu, 73-80. (p. 487) 

BAKOGLU, H.B., G. F. GROHOSKI, L. E. THATCHER, J. A. KAHLE, C.R. MOORE, D. P. TUTTLE, 
W. E. MAULE, W. R. HARDELL, D. A. HICKS, M. NGUYEN PHU, R. K. MONTOYE, W. T. 
GLOVER, ANDS. DHAWAN [1989]. "IBM second-generation RISC machine organization," Proc. 
Int' l Conj. on Computer Design, IEEE (October) Rye, N.Y., 138-142. (p. 340) 

BANERJEE, U. [1979]. Speedup of Ordinary Programs, Ph.D. Thesis, Dept. of Computer Science, 
Univ. of Illinois at Urbana-Champaign (October). (p. 395) 

BARTON, R. S. [1961]. "A new approach to the functional design of a computer," Proc. Western 
Joint Computer Conj., 393-396. (p. 127) 

BASHE, C. J., L. R. JOHNSON, J. H. PALMER, AND E.W. PUGH [1986]. IBM's Early Computers, 
MIT Press, Cambridge, Mass. (p. 561) 

BASHE, C. J., W. BUCHHOLZ, G .V. HAWKINS, J .L. INGRAM, AND N. ROCHESTER [1981]. "The 
architecture of IBM's early computers," IBM J. of Research and Development 25:5 (September) 
363-375. (p. 561) 

BATCHER, K. E. [1974]. "STARAN parallel processor system hardware," Proc. AF/PS National 
Computer Conj., 405-410. (p. 590) 

BELL, C. G. AND W. D. STRECKER [1976]. "Computer structures: What have we learned from the 
PDP-11? ,"Proc. Third Annual Symposium on Computer Architecture (January), Pittsburgh, Penn., 
1-14. (p. 485) 

BELL, C. G. [1984]. "The mini and micro industries," IEEE Computer 17:10 (October) 14-30. (p. 
27) 

BELL, C. G. [1985]. "Multis: A new class of multiprocessor computers," Science 228 (April 26) 
462-467. (p. 589) 

BELL, C. G. [1989]. "The future of high performance computers in science and engineering," Comm. 
ACM 32:9 (September) 1091-1101. (p. 590) 

BELL, C. G. AND A. NEWELL, [1971]. Computer Structures: Readings and Examples, McGraw
Hill, New York. (p. A-58) 

BELL, C. G., J.C. MUDGE, AND J.E. MCNAMARA [1978]. A DEC View of Computer Engineering, 
Digital Press, Bedford, Mass. (p. 80) 

BELL, C. G., R. CADY, H. MCFARLAND, B. DELAGI, J. O'LAUGHLIN, R. NOONAN, AND W. 
WULF [1970]. "A new architecture for mini-computers: The DEC PDP-11," Proc. AF/PS SJCC, 
657-675. (p. 127) 

BERRY, M., D. CHEN, P. KOSS, D. KUCK [1988]. "The Perfect Club benchmarks: Effective 
performance evaluation of supercomputers," CSRD Report No. 827 (November), Center for 
Supercomputing Research and Development, University of Illinois at Urbana-Champaign:(p. 80) 

BIRMAN, M., G. CHU, L. HU, J. MCLEOD, N. BEDARD, F. WARE, L. TORBAN, AND C. M. LIM 
[1988]. "Design of a high-speed arithmetic datapath," Proc. ICCD: VLSI Computers and 
Processors, 214-216. (p. A-53) 

BLAKKEN, J. [1983]. "Register windows for SOAR," in Smalltalk On A RISC: Architectural 
Investigations, Proc. of CS 292R (April) 126-140. (p. 451) 

BLOCH, E. [1959]. "The engineering design of the Stretch computer," Proc. Fall Joint Computer 
Conj., 48-59. (p. 338) 

BORRILL, P. L. [1986]. "32-bit buses-An objective comparison," Proc. Buscon 1986 West, San 
Jose, Calif., 138-145. (p. 533) 

Ex.1035.748DELL



References R·3 

BOUKNIGHT, W. J, S. A. DENEBERG, D. E. MCINTYRE, J.M. RANDALL, A.H. SAMEH, AND D. L. 
SLOTNICK [1972]. "The Illiac IV system," Proc. IEEE 60:4, 369-379. Also appears in D. P. 
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982), 
306-316. (p. 570) 

BRADY, J. T. [1986]. "A theory of productivity in the creative process," IEEE CG&A (May) 25-34. 
(p. 560) 

BRENT, R. P. AND H. T. KUNG [1982] "A regular layout for parallel adders," IEEE Trans. on 
Computers C-31, 260--264. (p. A-59) 

BRODERSEN, R. W. [1989]. "Evolution of VLSI signal-processing circuits," Proc. Decennial 
Caltech Conf on VLSI (March) 43-46, The MIT Press, Pasadena, Calif. (p. 590) 

BUCHER, I. Y. [1983]. "The computational speed of supercomputers," Proc. SIGMETRICS Conf on 
Measuring and Modeling of Computer Systems, ACM (August) 151-165. (p. 395) 

BµCHER, I. Y. AND A.H. HA YES [1980]. "1/0 Performance measurement on Cray-1 and CDC 7000 
computers," Proc. Computer Performance Evaluation Users Group, 16th Meeting, NBS 500-65, 
245-254. (p. 562) 

BUCHOLTZ, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New York. 
(p. 338) 

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN [1946]. "Preliminary discussion of the 
logical design of an electronic computing instrument," Report to the U.S. Army Ordnance 
Department, p. 1; also appears in Papers of John von Neumann, W. Aspray and A. Burks, eds., 
The MIT Press, Cambridge, Mass. and Tomash Publishers, Los Angeles, Calif., 1987, 97-146. (p. 
24) 

CALLAHAN, D., J. DONGARRA, AND D. LEVINE [1988]. "Vectorizing compilers: A test suite and 
results;" Supercomputing '88, ACM/IEEE (November), Orlando, Fla., 98-105. (p. 377) 

CASE, R. P. AND A. PADEGS [1978]. "The architecture of the IBM System/370," Comm. ACM21:1, 
73-96. Also appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: 
Principles and Examples (1982), McGraw-Hill, New York, 830-855. (pp. 186, 485) 

CENSIER, L. M. AND P. FEAUTRIER [1978]. "A new solution to the coherence problem in 
multicache systems," IEEE Trans. on Computers C-27:12 (December) 1112-1118. (p. 487) 

CHAITIN, G. J., M.A. AUSLANDER, A. K. CHANDRA, J. COCKE, M. E. HOPKINS, AND P. W. 
MARKSTEIN [1982]. "Register allocation via coloring," Computer Languages 6, 47-57. (p. 130) 

CHARLESWORTH, A. E. [1981]. "An approach to scientific array processing: The architecture 
design of the AP-120B/FPS-164 family," Computer 14:12 (December) 12-30. (p. 340) 

CHEN, P. [1989]. An Evaluation of Redundant Arrays of Inexpensive Disks Using an Amdahl 5890, 
M. S. Thesis, Computer Science Division, Tech. Rep. UCB/CSD 89/506. (p. 507) 

CHEN, S. [1983]. "Large-scale and high-speed multiprocessor system for scientific applications," 
Proc. NATO Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed., 
"Supercqn'lputers: Design and applications," IEEE (August) 1984. (p. 394) 

CHEN, T. C. [1980]. "Overlap and parallel processing" in Introduction to Computer Architecture, H. 
Stone, ed., Science Research Associates, Chicago, 427-486. (p. 339) 

CHOW, F. C. [1983]. A Portable Machine-Independent Global Optimizer-Design and Measure
ments, Ph.D. Thesis, Stanford Univ. (December). (p. 130) 

CHOW, F. C. AND J. L. HENNESSY [1984]. "Register allocation by priority-based coloring," Proc. 
SIGPLAN '84 Compiler Construction (ACM SIGPLAN Notices 19:6, June) 222-232. (p. 130) 

CHOW, F., M. HIMELSTEIN, E. KILLIAN, AND L. WEBER [1986]. "Engineering a RISC compiler 
system," Proc. COMPCON (March), San Francisco, 132-137. (p. 197) 

CLARK, D. W. [1983]. "Cache performance of the VAX-11/780," ACM Trans. on Computer 
Systems 1: l, 2~37. (p. 486) 

Ex.1035.749DELL



R·4 Computer Architecture: A Quantitative Approach 

CLARK, D. W. [ 1987]. "Pipelining and performance in the VAX 8800 processor," Proc. Second 
Conf on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM 
(March), Palo Alto, Calif., 173-177. (p. 272) 

CLARK, D. W. AND H. LEVY [1982]. "Measurement and analysis of instruction set use in the VAX-
11/780," Proc. Ninth Symposium on Computer Architecture (April), Austin, Tex., 9-17. (p. 188) 

CLARK, D. W. AND J. S. EMER [1985]. "Performance of the VAX-11/780 translation buffer: 
Simulation and measurement," ACM Trans. on Computer Systems 3:1, 31-62. (p. 486) 

CLARK, D. W. AND W. D. STRECKER [1980]. "Comments on 'the case for the reduced instruction 
set computer', " Computer Architecture News 8:6 (October) 34-38. (p. 130) 

CLARK, D. W., P. J. BANNON, AND J.B. KELLER [1988]. "Measuring VAX 8800 performance with 
a histogram hardware monitor," Proc. 15th Annual Sy0posium on Computer Architecture (May
June), Honolulu, Hawaii, 176-185. (pp. 213, 486) 

COCKE, J. AND J. T. SCHWARTZ [1970]. Programming Languages and Their Compilers, Courant 
Institute, New York Univ., New York City. (p. 130) 

COCKE, J., AND J. MARKSTEIN [1980]. "Measurement of code improvement algorithms," lnforma
tion Processing 80, 221-228. (p. 130) 

CODD, E. F. [1962]. "Multiprogramming," in F.L. Alt and M. Rubinoff, Advances in Computers, 
vol. 3, Academic Press, New York, 82. (p. 241) 

CODY, W. J. [1988]. "Floating point standards: Theory and practice," in Reliability in Computing: 
The Role of lnterval Methods in Scientific Computing, R. E. Moore, (ed.), Academic Press, Boston, 
Mass., 99-107. (p. A-12) 

CODY, W. J., J. T. COONEN, D. M. GAY, K. HANSON, D. HOUGH, W. KAHAN, R. KARPINSKI, 
J. PALMER, F. N. RIS, AND D. STEVENSON [1984]. "A proposed radix- and word-length
independent standard for floating-point arithmetic," JEEE Micro 4:4, 86-100. (p. A-12) 

COHEN, D. [1981]. "On holy wars and a plea for peace," Computer 14:10 (October) 48-54. (p. 95) 

COLWELL, R. P, C. Y. HITCHCOCK, III, E. D. JENSEN, H. M. B. SPRUNT, AND C. P. KOLLAR, 
[1985]. "Computers, complexity, and controversy," Computer 18:9 (September) 8-19. (p. 125) 

COLWELL, R. P., R. P. NIX, J. J. O'DONNELL, D. B. PAPWORTH, AND B. K. RODMAN [1987]. "A 
VLIW architecture for a trace scheduling compiler," Proc. Second Conj. on Architectural Support 
for Programming Languages and Operating Systems, IEEE/ACM (March), Palo Alto, Calif., 180-
192. (p. 340) 

CONTI, C., D. H. GIBSON, AND S. H. PITKOWSKY [1968). "Structural aspects of the System/360 
Model 85, part I: General organization," IBM Systems J. 7:1, 2-14. (pp. 77, 486) 

COONEN, J. [1984]. Contributions to a Proposed Standard for Binary Floating-Point Arithmetic, 
Ph.D. Thesis, Univ. of Calif., Berkeley. (p. A-29) 

CRAWFORD, J. HAND P. P. GELSINGER [1987]. Programming the 80386, Sybex, Alameda, Calif. 
(pp. 188, 446) 

CURNOW, H.J. AND B. A. WICHMANN [1976]. "A synthetic benchmark," The Computer J. 19:1. 
(p.77) 

DAVIDSON, E. S. [1971 ]. "The design and control of pipelined function generators," Proc. Conj. on 
Systems, Networks, and Computers, IEEE (January), Oaxtepec, Mexico, 19-21. (p. 339) 

DAVIDSON, E. S., A. T. THOMAS, L. E. SHAR, AND J. H. PATEL [1975]. "Effective control for 
pipelined processors," COMPCON, IEEE (March), San Francisco, 181-184. (p. 339) 

DEHNERT, J.C., P. Y.-T. HSU, AND J.P. BRATT [1989]. "Overlapped loop support on the Cydra 5," 
Proc. Third Conf on Architectural Support for Programming Languages and Operating Systems 
(April), IEEE/ACM, Boston, 26-39. (p. 340) 

DEROSA, J., R. GLACKEMEYER, AND T. KNIGHT [1985]. "Design and implementation of the VAX 
8600 pipeline," Computer 18:5 (May) 38-48. (p. 328) 

Ex.1035.750DELL



References R-5 

DEWITT, D. J., R. FINKEL, AND M. SOLOMON [1984]. "The CRYSTAL multicomputer: Design 
and implementation experience, Computer Sciences Tech. Rep. No. 553, University of Wisconsin
Madison, September. (p. 590) 

DIGITAL EQUIPMENT CORPORATION [1987]. Digital Technical]. 4 (March), Hudson, Mass. (This 
entire issue is devoted to the VAX 8800 processor.) (p. 341) 

DITZEL, D.R. [1981]. "Reflections on the high-level language Symbol computer system," Computer 
14:7 (July) 55-66. (p. 129) 

DITZEL, D.R. AND D. A. PATTERSON [1980]. "Retrospective on high-level language computer 
architecture," in Proc. Seventh Annual Symposium on Computer Architecture, La Baule, France 
(June) 97-104. (p. 130) 

DITZEL, D.R. AND H. R. MCLELLAN [1987]. "Branch folding in the CRISP microprocessor: 
Reducing the branch delay to zero," Proc. 14th Symposium on Computer Architecture (June), 
Pittsburgh, 2-7. (p. 339) 

DITZEL, D.R., AND H. R. MCLELLAN [1982]. "Register allocation for free: The C machine stack 
cache," Symposium on Architectural Support for Programming Languages and Operating Systems 
(March 1-3), Palo Alto, Calif., 48-56. (p. 487) 

DOHERTY, W. J. AND R. P. KELISKY [1979]. "Managing VM/CMS systems for user effectiveness," 
IBM Systems J. 18:1, 143-166. (p. 560) 

DONGARRA, J. J. [1986]. "A survey of high performance computers," COMPCON, IEEE (March) 
8-11. (p. 394) 

EARLE, J. G. [1965]. "Latched carry-save adder," IBM Technical Disclosure Bull. 7 (March) 909-. 
910. (p. 254) 

EGGERS, S. [1989]. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors, Ph.D. 
Thesis, Univ. of California, Berkeley, Computer Science Division Tech. Rep. UCB/CSD 89/501 
(April). (p. 487) 

ELDER, J., A. GOTTLIEB, C. K. KRUSKAL, K. P. MCAULIFFE, L. RANDOLPH, M. SNIR, P. 
TELLER, AND J. WILSON [1985]. "Issues related to MIMD shared-memory computers: The NYU 
Ultracomputer approach," Proc. 12th Int' l Symposium on Computer Architecture (June), Boston, 
Mass., 126-135. (p. 589) 

ELLIS, J. R., J. A. FISHER, J.C. RUTTENBERG, AND A. NICHOLAU [1984]. "Parallel processing: A 
smart compiler and a dumb machine," Proc. SIGPLAN Conj. on Compiler Construction (June), 
Montreal, Canada, 37-47. (p. 340) 

ELSHOFF, J. L. [1976]. "An analysis of some commercial PL/I programs," IEEE Trans. on Software 
Engineering SE-2 2 (June) 113-120. (p. 130) 

EMER, J. S. AND D. W CLARK [1984]. "A characterization of processor performance in the VAX-
11/780," Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-310. 
(pp. 189,213,342,486) 

E•SUN MICROSYSTEMS [1989]. The SPARC Architectural Manual, Version 8, Part No. 800-1399-
09, August 25, 1989. 

FABRY, R. S. [1974]. "Capability based addressing," Comm. ACM 17:7 (July) 403-412. (p. 485)· 

FAZIO, D. [1987]. "It's really much more fun building a supercomputer than it is simply inventing 
one," COMPCON, IEEE (February) 102-105. (p. 394) 

FEIERBACK, G AND D. STEVENSON [1979]. "The Illiac-IV," in Infotech State of the Art Report on 
Supercomptuers, Maidenhead, England. This data also appears in D. P. Siewiorek, C. G. Bell, and 
A. Newell, Computer Structures: Principles and Examples (1982), McGraw-Hill, New York, 268-
269. (p. 556) 

FISHER, J. A. [1983]. "Very long instruction word architectures and ELI-512," Proc. Temth Sympo
sium on Computer Architecture (June), Stockholm, Sweden. (p. 340) 

Ex.1035.751DELL



R·6 Computer Architecture: A Quantitative Approach 

FLEMMING, P. J. AND J. J. WALLACE [1986]. "How not to lie with statistics: The correct way to 
summarize benchmarks results," Comm. ACM 29:3 (March) 218-221. (p. 78) 

FLYNN, M. J. [1966]. "Very high-speed computing systems," Proc. IEEE 54:12 (December) 1901-
1909. (pp.351,591) 

FOLEY, J. D. AND A. VAN DAM [1982]. Fundamentals of Interactive Computer Graphics, Addison
Wesley, Reading, Mass. (p. 561) 

FOSTER, C. C. AND E. M. RISEMAN [1972]. "Percolation of code to enhance parallel dispatching 
and execution," IEEE Trans. on Computers C-21:12 (December) 1411-1415. (p. 340) 

FOSTER, C. C., R.H. GONTER, AND E. M. RISEMAN [1971]. "Measures of opcode utilization," 
IEEE Trans. on Computers 13:5 (May) 582-584. (p. 129) 

FRANK, P. D. [1987]. "Advances in Head Technology," presentation at Challenges in Winchester 
Technology (December 15), Santa Clara Univ. (p. 561) 

FRANK, S. J. [1984]. "Tightly coupled multiprocessor systems speed memory access times," 
Electronics 57:1(January)164-169. (p. 487) 

FREIMAN, C. V. [1961]. "Statistical analysis of certain binary division algorithms," Proc. IRE 49:1, 
91-103. (p. A-59) 

FRIESENBORG, S. E. AND R. J. WICKS [1985]. "DASD expectations: The 3380, 33?0-23, and 
MVS/XA," Tech. Bulletin GG22-9363-02 (July 10), Washington Systems Center. (p. 554) 

FULLER, S. H. [1976]. "Price/performance comparison of C.mmp and the PDP-11," Proc. Third 
Annual Symposium on Computer Architecture (Texas, January 19-21), 197-202. (p. 80) 

FULLER, S. H. AND W. E. BURR [1977]. "Measurement and evaluation of alternative computer 
architectures," Computer 10: 10 (October) 24-35. (p. 78) 

GAGLIARDI, U. 0. [1973]. "Report of workshop 4-software-related advances in computer hard
ware," Proc. Symposium on the High Cost of Software, Menlo Park, Calif., 99-120. (p. 129) 

GAJSKI, D., D. KUCK, D. LAWRIE, AND A. SAMEH [1983]. "CEDAR-A large scale multi
processor," Proc. Int' l Conf on Parallel Processing (August) 524-529. (p. 589) 

GARNER, R., A. AGARWAL, F. BRIGGS, E. BROWN, D. HOUGH, B. JOY, S. KLEIMAN, S. 
MUNCHNIK, M. NAMJOO, D. PATTERSON, J. PENDLETON, AND R. TUCK [1988]. "Scaleable 
processor architecture (SPARC)," COMPCON, IEEE (March), San Francisco, 278-283. (p. 190) 

GEHRINGER, E. F., D. P. SIEWIOREK, AND Z. SEGALL [1987]. Parallel Processing: The Cm* 
Experience, Digital Press, Bedford, Mass. (p. 587) 

GIBSON, D. H. [1967]. "Considerations in block-oriented systems design," AF/PS Conf Proc. 30, 
SJCC, 75-80. (p. 486) 

GIBSON, J.C. [1970]. "The Gibson mix," Rep. TR. 00.2043, IBM Systems Development Division, 
Poughkeepsie, N.Y. (Research done in 1959.) (p. 77) 

GOLDBERG, D. [1989]. "Floating-point and computer systems," Xerox Tech. Rep. CSL-89-9. A 
version of this paper will appear in Computing Surveys. (p. A-29) 

GOLDBERG, I. B. [1967]. "27 bits are not enough for 8-digit accuracy," Comm. ACM 10:2, 105-106. 
(p. A-60) 

GOLDSTEIN, S. [1987]. "Storage performance---,an eight year outlook," Tech. Rep. TR 03.308-1 
(October), Santa Teresa Laboratory, IBM, San Jose, Calif. (p. 561) 

GOLDSTINE, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton University 
Press, Princeton, N.J. (p. 25) 

GOODMAN, J. R. [1983]. "Using cache memory to reduce processor memory traffic," Proc. Tenth 
Annual Symposium on Computer Architecture (June 5-7), Stockholm, Sweden, 124-131. (p. 487) 

Ex.1035.752DELL



References R·7 

GOODMAN, J. R. and M.-C. Chiang [1984]. "The use of static column RAM as a memory 
hierarchy," Proc. 11th Annual Symposium on Computer Architecture (June 5-7), Ann Arbor, 
Mich., 167-174. (p. 488) 

GOSLING, J.B. [1980]. Design of Arithmetic Units for Digital Computers, Springer-Verlag 
NewYork, Inc., New York. (p. A-61) 

GRAY, W. P. [1989]. Memorandum of Decision, No. C-84-20799-WPG, U.S. District Court for the 
Northern District of California (February 7, 1989). (p. 244) 

GROSS, T. R. [1983]. Code Optimization of Pipeline Constraints, Ph.D. Thesis (December), 
Computer Systems Lab., Stanford Univ. (p. 342) 

HALBERT, D. C. AND P. B. KESSLER [1980]. "Windows of overlapping register frames," CS 292R 
Final Reports (June) 82-100. (p. 489) 

HAMACHER, V. C., Z. G. VRANESIC, ANDS. G. ZAKY [1984]. Computer Organization, 2nd ed., 
McGraw-Hill, New York. (p. A-61) 

HAUCK, E. A., AND B. A. DENT [1968]. "Burroughs' B6500/B7500 stack mechanism," Proc. 
AF/PS SJCC, 245-251. (p. 131) 

HENLY, M. AND B. MCNUTT [1989]. "DASD 1/0 characteristics: A comparison of MYS to VM," 
Tech. Rep. TR 02.1550 (May), IBM, General Products Division, San Jose, Calif. (pp. 80, 562) 

HENNESSY, J. [1984]. "VLSI processor architecture," IEEE Trans. on Computers C-33:11 
(December) 1221-1246. (p. 190) 

HENNESSY, J. [1985]. "VLSI RISC processors," VLSI Systems Design VI:lO (October) 22-32. (p. 
191) 

HENNESSY, J. L. AND T. R. GROSS [1983]. "Postpass code optimization of pipeline constraints," 
ACM Trans. on Programming Languages and Systems 5:3 (July) 422-448. (p. 342) 

HENNESSY, J., N. JOUPPI, F. BASKETT, AND J. GILL [1981]. "MIPS: A VLSI processor 
architecture," Proc. CMU Conf on VLSI Systems and Computations (October), Computer Science 
Press, Rockville, Md. (p. 191) 

HENNESSY, J. L., N. JOUPPI, F. BASKETT, T. R. GROSS, AND J. GILL [1982]. "Hardware/software 
tradeoffs for increased performance," Proc. Symposium on Architectural Support for 
Programming Languages and Operating Systems (March), 2-11. (p. 131) 

HENNESSY, J. [1984]. "VLSI processor architecture," IEEE Trans. on Computers C-33:11 
(December) 1221-1246. (p. 189) 

HILL, M. D. [1987]. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D. Thesis, 
Univ. of California at Berkeley Computer Science Division, Tech. Rep. UCB/CSD 87/381 
(November). (p. 489) 

HILL, M. D. [1988]. "A case for direct mapped caches," Computer 21:12 (December) 25-40. (p. 
489) 

HILLIS, W. D. [1985]. The Connection Machine, The MIT Press, Cambridge, Mass. (p. 591) 

HINTZ, R. G. AND D. P. TATE [1972]. "Control data STAR-100 processor design," COMPCON, 
IEEE (September) 1-4. (p. 396) 

HOCKNEY, R. W. AND C.R. JESSHOPE [1988]. Parallel Computers-2, Architectures, Programming 
and Algorithms, Adam Hilger Ltd., Bristol, England and Philadelphia. (p. 591) 

HOLLAND, J. H. [1959]. "A universal computer capable of executing an arbitrary number of 
subprograms simultaneously," Proc. East Joint Computer Conf 16, 108-113. (p. 591) 

HOLLINGSWORTH, W., H. SACHS AND A. J. SMITH [1989]. "The Clipper processor: Instruction set 
architecture and implementation," Comm. ACM 32:2 (February), 200-219. (p. 80) 

HORD, R. M. [1982]. The llliac-IV, The First Supercomputer, Computer Science Press, Rockville, 
Md. (p. 591) 

Ex.1035.753DELL



R·8 Computer Architecture: A Quantitative Approach 

HOWARD, J. H. ET AL. [1988]. "Scale and performance in a distributed file system," ACM Trans. on 
Computer Systems 6: 1, 51-81. (p. 512) 

HUGUET, M. AND T. LANG [1985]. "A reduced register file for RISC architectures," Computer 
Architecture News 13:4 (September) 22-31. (p. 489) 

HWANG, K. [1979]. Computer Arithmetic: Principles, Architecture, and Design, Wiley, New York. 
(p. A-61) 

Hwu, W.-M. ANDY. PATT [1986]. "HPSm, a high performance restricted data flow architecture 
having minimum functionality," Proc. 13th Symposium on Computer Architecture (June), Tokyo, 
297-307. (p. 339) 

IBM [1982]. The Economic Value of Rapid Response Time, GE20-0752-0 White Plains, N.Y, 11-
82. (p. 560) 

IEEE [1985]. "IEEE standard for binary floating-point arithmetic," SIGPLAN Notices 22:2, 9-25. (p. 
A-12) 

IMPRIMIS [1989]. "lmprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2 
GB," Document No. 64402302 (May). (p. 558) 

[1989]. i860 64-Bit Microprocessor Programmer's Reference Manual. (E-24) 

JORDAN, K. E. [1987]. "Performance comparison of large-scale scientific computers: Scalar main
frames, mainframes with vector facilities, and supercomputers," Computer 20:3 (March) 10-23. 
(p. 395) 

JOUPPI N. P. AND D. W. WALL [1989]. "Available instruction-level parallelism for superscalar and 
superpipelined machines," Proc. Third Conj. on Architectural Support for Programming Lan
guages and Operating Systems, IEEE/ACM (April), Boston, 272-282. (p. 340) 

KAHAN, W. [1968]. "7094-II system support for numerical analysis," SHARE Secretarial 
Distribution SSD-159. (p. A-60) 

KAHANER, D. K. [1988]. "Benchmarks for 'real' programs," SIAM News (November). (p. A-57) 

KAHN, R. E. [ 1972]. "Resource-sharing computer communication networks," Proc. IEEE 60: 11 
(November) 1397-1407. (p. 561) 

KANE, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J. (p. 190) 

KANE, G. [1988]. MIPS RISC Architecture, Prentice-Hall, Englewood Cliffs, N. J. (E-24) 

KATZ, R.H., D. A. PATTERSON, AND G. A. GIBSON [1990]. "Disk system architectures for high 
performance computing," Proc. IEEE 78:2 (February). (p. 561) 

KATZ, R.H., S. EGGERS, D. A. WOOD, C. PERKINS, AND R. G. SHELDON [1985]. "Implementing 
a cache consistency protocol," Proc. 12th Annual Symposium on Computer Architecture, 276--283. 
(p. 487) 

KELLER R. M. [1975]. "Look-ahead processors," ACM Computing Surveys 7:4 (December) 177-
195. (p. 339) 

KELLY, E. [1988]. "'SCRAM Cache' in Sun-4/110 beats traditional caches," Sun Technology 1:3 
(Summer) 19-21. (p. 487) 

KILBURN, T., D. B. G. EDWARDS, M. J. LANIGAN, F. H. SUMNER [1962]. "One-level storage 
system," IRE Transactions on Electronic Computers EC-11 (April) 223-235. Also appears in D. P. 
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982), 
McGraw-Hill, New York, 135-148. (pp. 26, 487) 

KIM, M. Y. [1986]. "Synchronized disk interleaving," IEEE Trans. on Computers C-35:11 
(November). (p. 561) 

KNUTH, D. [1981]. The Art of Computer Programming, vol II, 2nd ed., Addison-Wesley, Reading, 
Mass. (p. A-61) 

Ex.1035.754DELL



References R-9 

KNUTH, D. E. [1971]. "An empirical study of FORTRAN programs," Software Practice and 
Experience, Vol. 1, 105-133. (p. 27) 

KOGGE, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York. (pp. 
339, A-44) 

KOHN, L. AND S.-W. FU, [1989]. "A 1,000,000 transistor microprocessor," IEEE Int'l Solid-State 
Circuits Conf, 54-55. (p. A-19) 

KROFT, D. [1981]. "Lockup-free instruction fetch/prefetch cache organization," Proc. Eighth 
Annual Symposium on Computer Architecture (May 12-14), Minneapolis, Minn., 81-87. (p. 487) 

KUCK, D., P. P. BUDNIK, S.-C. CHEN, D. H. LAWRIE, R. A. TOWLE, R. E. STREBENDT, E.W . 
. DAVIS, JR., J. HAN, P. W. KRASKA, Y. MURAOKA [1974]. "Measurements of parallelism in ordi-

nary FORTRAN programs," Computer 7:1 (January) 37-46. (p. 395) 

KUHN, R.H. AND D. A. PADUA, EDS. [1981]. Tutorial on Parallel Processing, IEEE. (p. 590) 

KUNG, H. T. [1982]. "Why systolic architectures?," IEEE Computer 15:1, 37-46. (p. 590) 

KUNKEL, S. R. ANDJ. E. SMITH [1986]. "Optimal pipelining in supercomputers," Proc. 13th Sym
posium on Computer Architecture (June), Tokyo, 404-414. (p. 339) 

LAM, M. [1988]. "Software pipelining: An effective scheduling technique for VLIW machines," 
SIGPLAN Conf on Programming Language Design and Implementation, ACM (June), Atlanta, 
Ga., 318-328. (p. 340) 

LAMPSON, B. W. [1982]. "Fast procedure calls," Symposium on Architectural Support for 
Programming Languages and Operating Systems (March 1-3), Palo Alto, Calif., 66--75. (p. 487) 

LARSON, JUDGE E. R. [1973]. "Findings of Fact, Conclusions of Law, and Order for Judgment," 
File No. 4-67, Civ. 138, Honeywell v. Sperry Rand and Illinois Scientific Development, U.S. 
District Court for the District of Minnesota, Fourth Division (October 19). (p. 24) 

LEE, R. [1989]. "Precision architecture," Computer 22:1(January)78-91. (p. 190) 

LEINER, A. L. [1954]. "System specifications for the DYSEAC," J. ACM 1:2 (April) 57-81. (p. 561) 

LEINER, A. L. ANDS. N. ALEXANDER [1954]. "System organization of the DYSEAC," IRE Trans. 
of Electronic Computers EC-3:1 (March) 1-10. (p. 561) 

LEVY, H. M. AND R.H. ECKHOUSE, JR. [1989]. Computer Programming and Architecture: The 
VAX, 2nd ed., Digital Press, Bedford, Mass. 358-372. (pp. 188, 243) 

LEVY, J. V. [1978]. "Buses: The skeleton of computer structures," in Computer Engineering: A 
DEC View of Hardware Systems Design, C. G. Bell, J. C. Mudge, and J.E. McNamara, eds., 
Digital Press, Bedford, Mass. (p. 561) 

LINCOLN, N. R. [1982]. "Technology and design tradeoffs in the creation of a modern super
computer," IEEE Trans. on Computers C-31:5 (May) 363-376. (p. 393) 

LIPOVSKI, A.G. AND A. TRIPATHI [1977]. "A reconfigurable varistructure array processor," Proc. 
1977 Int' l Conf. of Parallel Processing (August), 165-174. (p. 590) 

LIPTA Y, J. S. [1968]. "Structural aspects of t'1e System/360 Model 85, part II: The cache," IBM 
Systems J. 7: 1, 15-21. (p. 486) 

LOVETT, T. ANDS. THAKKAR [1988]. "The Symmetry multiprocessor system," Proc. 1988 Int' l 
Conj. of Parallel Processing, University Park, Pennsylvania, 303-310. (p. 589) 

LUBECK, 0., J. MOORE, AND R. MENDEZ [1985]. "A benchmark comparison of three super
computers: Fujitsu VP-200, Hitachi S810/20, and CRAY X-MP/2," Computer 18: 12 (December) 
10-24.(pp. 75,395) 

LUNDE, A. [1977]. "Empirical evaluation of some features of instruction set processor architecture," 
Comm. ACM 20:3 (March) 143-152. (p. 129) 

MABERLY, N. C. [1966]. Mastering Speed Reading, New American Library, Inc., New York. (p. 
513) 

Ex.1035.755DELL



R·10 Computer Architecture: A Quantitative Approach 

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS AND D. ZURAS [1988). "Integer multiplication 
and division on the HP Precision Architecture," IEEE Trans. on Computers, 37:8, 980-990. (p. E-
9) 

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS, AND D. ZURAS, [1988). "Integer multiplication 
and division on the HP Precision Architecture," IEEE Trans. on Computers 37:8, 980-990. (p. A
ll) 

MCCALL, K. [1983). "The Smalltalk-80 benchmarks," Smalltalk 80: Bits of History, Words of 
Advice, G. Krasner, ed., Addison-Wesley, Reading, Mass., 153-174. (p. 451) 

MCCREIGHT, E. [1984). "The Dragon computer system: An early overview," Tech. Rep. Xerox 
Corp. (September). (p. 487) 

MCFARLING, S. [1989). "Program optimization for instruction caches," Proc. Third Int' l Conf on 
Architectural Support for Programming Languages and Operating Systems (April 3-6), Boston, 
Mass., 183-191. (p. 496) 

MCFARLING, S. AND J. HENNESSY [1986). "Reducing the cost of branches," Proc. "13th Sym
posium on Computer Architecture (June), Tokyo, 39~03. (p. 340) 

MCKEEMAN, W. M. [1967). "Language directed computer design," Proc.1967 Fall Joint Computer 
Conf, Washington, D.C., 413-417. (p. 128) 

MCKEVITT, J., ET AL. [1977). 8086 Design Report, internal memorandum. (p. 229) 

MCMAHON, F. M. [1986). "The Livermore FORTRAN kernels: A computer test of numerical 
performance range," Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of 
California, Livermore, Calif. (December). (p. 78) 

MEAD, C. AND L. CONWAY [1980). Introduction to VLSI Systems, Addison-Wesley, Reading, 
Mass. (p. A-59) 

MENABREA, L. F. [1842). "Sketch of the analytical engine invented by Charles Babbage," 
Bibiotheque Universelle de Geneve (October). (p. 589) 

METCALFE, R. M. AND D.R. BOGGS [1976). "Ethernet: Distributed packet switching for local 
computer networks," Comm. ACM 19:7 (July) 395-404. (p. 560) 

MEYERS, G. J. [1978). "The evaluation of expressions in a storage-to-storage architecture," Com
puter Architecture News 7:3 (October), 20-23. (p. 127) 

MEYERS, G. J. [1982). Advances in Computer Architecture, 2nd ed., Wiley, N.Y. (p. 129) 

MIRANKER, G. S., J. RUBENSTEIN, AND J. SANGUINETTI [1988). "Squeezing a Cray-class 
supercomputer into a single-user package," COMPCON, IEEE (March) 452-456. (p. 395) 

MITCHELL, D. [1989). "The Transputer: The time is now," Computer Design, RISC supplement, 
40-41 (November). (p. 570) 

MIURA, K. AND K. UCHIDA [1983). "FACOM vector processing system: VPl00/200," Proc. NATO 
Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed., 
"Supercomputers: Design and applications," IEEE (August 1984) 59-73. (p. 394) 

MOORE, B., A. PADEGS, R. SMITH, AND W. BUCHOLZ [1987). "Concepts of the System/370 vector 
architecture," Proc. 14th Symposium on Computer Architecture (June), ACM/IEEE, Pittsburgh, 
Pa., 282-292. (p. 394) 

MORSE, S., B. RA VENAL, S. MAZOR, AND W. POHLMAN [1980). "Intel Microprocessors-8008 to 
8086," Computer 13:10 (October). (p. 188) 

MOTOROLA [1988]. MC88100 RISC Microprocessor User's Manual. (E-19) 

MOUSSOURIS, J., L. CRUDELE, D. FREITAS, C. HANSEN, E. HUDSON, S. PRZYBYLSKI, T. 
RIORDAN, AND C. ROWEN [1986]. "A CMOS RISC processor with integrated system functions," 
Proc. COMPCON, IEEE (March), San Francisco. (p. 189) 

MUCHNICK, S.S. [1988). "Optimizing compilers for SPARC," Sun Technology (Summer) 1:3, 64-
77. (p. E-9) 

Ex.1035.756DELL



References R-11 

NEWMAN, W. N. AND R. F. SPROULL [1979]. Principles of Interactive Computer Graphics, 2nd 
ed., McGraw-Hill, New York. (p. 561) 

NGAI, T-F. AND M. J. IRWIN [1985]. "Regular, area-time efficient carry-lookahead adders," Proc. 
Seventh IEEE Symposium on Computer Arithmetic, 9-15. (p. A-59) 

NICHOLAU, A. AND J. A. FISHER [1984]. "Measuring the parallelism available for very long 
instruction word architectures," IEEE Trans. on Computers C-33: 11 (November) 968-976. (p. 
340) 

OUSTERHOUT, J. K. ET AL. [1985]. "A trace-driven analysis of the UNIX 4.2 BSD file system," 
Proc. Tenth ACM Symposium on Operating Systems Principles, Orcas Island, Wash., 15-24. (p. 
538) 

PADUA, D. AND M. WOLFE [1986]. "Advanced compiler optimizations for supercomputers," 
Comm. ACM 29:12 (December) 1184-1201. (p. 395) 

PAPAMARCOS, M. AND J. PATEL [1984]. "A low coherence solution for multiprocessors with 
private cache mei:nories," Proc. of the 11th Annual Symposium on Computer Architecture (June), 
Ann Arbor, Mich., 348-354. (p. 487) 

PATTERSON, D. A. [1983]. "Microprogramming," Scientific American 248:3 (March), 36-43. (p. 
244) 

PATTERSON, D. A. [1985]. "Reduced Instruction Set Computers," Comm. ACM 28:1 (January) 8-
21. (p. 189) 

PATTERSON, D. A. AND C.H. SEQUIN [1981]. "Lockup-free instruction fetch/prefetch cache 
organization," Proc. Eighth Annual Symposium on Computer Architecture (May 12-14), 
Minneapolis, Minn., 443-458. (p. 487) 

PATTERSON, D. A. AND D.R. DITZEL [1980]. "The case for the reduced instruction set computer," 
Computer Architecture News 8:6 (October), 25-33. (pp. 130, 189) 

PATTERSON, D. A., G. A. GIBSON, AND R.H. KATZ [1987]. "A case for redundant arrays of 
inexpensive disks (RAID)," Tech. Rep. UCB/CSD 87/391, Univ. of Calif. Also appeared in ACM 
SIGMOD Conj. Proc., Chicago, Illinois, June 1-3, 1988, 109-116. (p. 561) 

PENG, V., S. SAMUDRALA, AND M. GAVRIELOV [1987]. "On the implementation of shifters, 
multipliers, and dividers in VLSI floating point units," Proc. Eighth IEEE Symposium on 
Computer Arithmetic, 95-102. (p. A-62) 

PFISTER, G. F., W. C. BRANTLEY, D. A. GEORGE, S. L. HARVEY, W. J. KLEINFEKDER, K. P. 
MCAULIFFE, E. A. MELTON, V. A. NORTON, AND J. WEISS [1985]. "The IBM research paraUel 
processor prototype (RP3): Introduction and architecture," Proc. 12th Int' l Symposium on 
Computer Architecture (June), Boston, Mass., 764-771. (p. 589) 

PHISTER, M., JR. [1979]. Data Processing Technology and Economics, 2nd ed., Digital Press and 
Santa Monica Publishing Company. (p. 80) 

PRZYBYLSKI, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan Kaufmann 
Publishers, San Mateo, Calif. (p. 487) 

PRZYBYLSKI, S. A., M. HOROWITZ, AND J. L. HENNESSY [1988]. "Performance tradeoffs in cache 
design," Proc. 15th Annual Symposium on Computer Architecture (May-June), Honolulu, Hawaii, 
290-298. (p. 481) 

RADIN, G. [1982]. "The 801 minicomputer," Proc. Symposium Architectural Support for 
Programming Languages and Operating Systems (March), Palo Alto, Calif. 39-47. (p. 189) 

RAMAMOORTHY, C. V. AND H.F. LI [1977]. "Pipeline architecture," ACM Computing Surveys 9:1 
(March) 61-102. (p. 339) 

REDMOND, K. C. AND T. M. SMITH [1980]. Project Whirlwind-The History of a Pioneer 
Computer, Digital Press, Boston, Mass. (p. 25) 

Ex.1035.757DELL



R·12 Computer Architecture: A Quantitative Approach 

REIGEL, E.W., U. FABER, AND D. A. FISCHER, [1972]. "The Interpreter-a microprogrammable 
building block system," Proc. AF/PS 1972 Spring Joint Computer Conj. 40, 705-723. (p. 244) 

ROBERTS, D., G. TAYLOR, AND T. LAYMAN [1990]. "An ECL RISC microprocessor designed for 
two-level cache," IEEE COMPCON (February). (p. 487) 

ROBINSON, B. AND L. BLOUNT [1986]. "The VM/HPO 3880-23 performance results," IBM Tech. 
Bulletin, 0066-0247-00 (April), Washington Systems Center, Gathersburg, Md. (p. 553) 

ROWEN, C., M. JOHNSON, and P. RIES [1988]. "The MIPS R3010 floating-point coprocessor," 
IEEE Micro 53-62 (June). (p. A-53) 

RUSSELL, R. M. [1978]. "The CRAY-1 computer system," Comm. ACM 21:1 (January) 63-72. (pp. 
393, 590) 

RYMARCZYK, J. [1982]. "Coding guidelines for pipelined processors," Proc. Symposium on Archi
tectural Support for Programming Languages and Operating Systems, IEEE/ACM (March), Palo 
Alto, Calif., 12-19. (p. 339) 

SALEM, K. AND H. GARCIA-MOLINA [1986]. "Disk striping," IEEE 1986 Int'/ Conj. on Data 
Engineering. (p. 561) 

SAMPLES, A. D. AND P. N. HILFINGER [1988]. "Code reorganization for instruction caches," Tech. 
Rep. UCB/CSD 88/447 (October), Univ. of Calif., Berkeley. (p. 496) 

SANTORO, M. R., G. BEWICK, and M.A. HOROWITZ [1989]. "Rounding algorithms for IEEE 
multipliers," Proc. Ninth IEEE Symposium on Computer Arithmetic, 176-183. (p. A-21) 

SCHNECK, P. B. [1987]. Supercomputer Architecture, Kluwer Academic Publishers, Norwell, Mass. 
(p. 394) 

SCOTT, N. R. [1985]. Computer Number Systems and Arithmetic, Prentice-Hall, Englewood Cliffs, 
N.J. (p. A-1) 

SCRANTON, R. A., D. A. THOMPSON, AND D. W. HUNTER [1983]. "The access time myth," Tech. 
Rep. RC 10197 (45223) (September 21), IBM, Yorktown Heights, N.Y. (p. 561) 

SEITZ, C. [1985]. "The Cosmic Cube," Comm. ACM 28: 1 (January) 22-31. (p. 590) 

SHURKIN, J. [1984]. Engines of the Mind: A History of the Computer, W.W. Norton, New York. (p. 
25) 

SHUSTEK, L. J. [1978]. "Analysis and performance of computer instruction sets," Ph.D. Thesis 
(May), Stanford Univ., Stanford, Calif. (p. 187) 

SITES, R. [1919]. lnstruction Ordering for the CRAY-I Computer, Tech. Rep. 78-CS-023 (July), 
Dept. of Computer Science, Univ. of Calif., San Diego. (p. 339) 

SITES, R. L., [1979]. "How to use 1000 registers," Caltech Conj. on VLSI (January). (p. 487) 

SLATER, R. [1987]. Portraits in Silicon, The MIT Press, Cambridge, Mass. (p. 25) 

SLOTNICK, D. L., W. C. BORCK, AND R. C. MCREYNOLDS [1962]. "The Solomon computer," 
Proc. Fall Joint Computer Conj. (December), Philadelphia, 97-107. (p. 589) 

SMITH, A. AND J. LEE [1984]. "Branch prediction strategies and branch target buffer design," Com-
puter 11: 1 (January) 6-22. (p. 339) · 

SMITH, A. J. [1982]. "Cache memories," Computing Surveys 14:3 (September) 473-530. (p. 486) 

SMITH, A. J. [1985]. "Disk cache-miss ratio analysis and design considerations," ACM Trans. on 
Computer Systems 3:3 (August) 161-203. (p. 538) 

SMITH, A. J. [1986]. "Bibliography and readings on CPU cache memories and related topics," 
Computer Architecture News (January) 22-42. (p. 486) 

SMITH, B. J. [1981]. "Architecture and applications of the HEP multiprocessor system," Real-Time 
Signal Processing JV 298 (August) 241-248. (p. 395) 

SMITH, J. E. [1981]. "A study of branch prediction strategies," Proc. Eighth Symposium on 
Computer Architecture (May), Minneapolis, 135-148. (p. 339) 

Ex.1035.758DELL



References R-13 

SMITH, J.E. [1984]. "Decoupled access/execute computer architectures," ACM Trans. on Computer 
Systems 2:4 (November), 289-308. (p. 340) 

SMITH, J.E. [1988]. "Characterizing computer performance with a single number," Comm. ACM 
31:10 (October) 1202-1206. (p. 78) 

SMITH, J.E. [1989]. "Dynamic instruction scheduling and the Astronautics ZS-1," Computer 22:7 
(July) 21-35. (p. 340) 

SMITH, J.E. AND A. R. PLEZKUN [1988]. "Implementing precise interrupts in pipelined proces
sors," IEEE Trans. on Computers 37:5 (May) 562-573. (p. 339) 

SMITH, J.E. AND J. R. GOODMAN [1983]. "A study of instruction cache organizations and 
replacement policies," Proc. Tenth Annual Symposium on Computer Architecture (June 5-7), 
Stockholm, Sweden,, 132-137. (p. 490) 

SMITH, J.E., G. E. DERMER, B. D. VANDERWARN, S. D. KLINGER, C. M. ROZEWSKI, D. L. 
FOWLER, K. R. SCIDMORE, J.P. LAUDON [1987]. "The ZS-1 central processor," Proc. Second 
Conf on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM 
(March), Palo Alto, Calif., 199-204. (p. 340) 

SMITH, M. D., M. JOHNSON, AND M.A. HOROWITZ [1989]. "Limits on multiple instruction issue," 
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems, 
IEEE/ACM (April), Boston, Mass., 290-302. (p. 341) 

SMITH, W.R., R.R. RICE, G. D. CHESLEY, T. A. LALIOTIS, S. F. LUNDSTROM, M. A. 
CHALHOUN, L. D. GEROULD, AND T. C. COOK [1971]. "SYMBOL: A large experimental system 
exploring major hardware replacement of software,'.' Proc. AF/PS Spring Joint Computer Conf, 
601-616. (p. 129) 

SMOTHERMAN, M. [1989]. "A sequencing-based taxonomy ofl/0 systems and review of historical 
machines," Computer Architecture News 17:5 (September) 5-15. (pp. 241, 561) 

SOHi, G. S., ANDS. VAJAPEYAM [1989]. "Tradeoffs in instruction format design for horizontal 
architectures," Proc. Third Conf on Architectural Support for Programming Languages and 
Operating Systems, IEEE/ACM (April), Boston, Mass. 15-25. (p. 341) 

SPEC [1989]. "SPEC Benchmark Suite Release 1.0," October 2, 1989. (p. 48) 

SPORER, M., F. H. MOSS AND C. J. MATHAIS [1988]. "An introduction to the architecture of the 
Stellar Graphics supercomputer," COMPCON, IEEE (March) 464-467. (p. 395) 

STERN, N. [1980]. "Who invented the first electronic digital computer," Annals of the History of 
Computing 2:4 (October) 375-376. (p. 24) 

STRAPPER, C. H. [1989]. "Fact and fiction in yield modelling," Special Issue of the Micro
electronics Journal entitled Microelectronics into the Nineties, Oxford, UK; Elsevier (May). (p. 
80) 

STRAPPER, C.H., F. H. ARMSTRONG, AND K. SAJI [1983]. "Integrated circuit yield statistics," 
Proc. IEEE 71:4 (April) 453-470. (p. 80) 

STRECKER, W. D. [1976]. "Cache memories for the PDP-11 ?,"Proc. Third Annual Symposium on 
Computer Architecture (January), Pittsburgh, Penn., 1~5-158. (pp. 187, 486) 

STRECKER, W. D. [1978]. "VAX-111780: A virtual address extension to the PDP-11 family," Proc. 
AF/PS National Computer Conf 47, 967-980. (128, 187) 

STRECKER, W. D. AND C. G. BELL [1976]. "Computer structures: What have we learned from the 
PDP-11 ?,"Proc. Third Symposium on Computer Architecture~ (p. 187) 

SUTHERLAND, I.E. [1963]. "Sketchpad: A man-machine graphical communication system," Spring 
Joint Computer Conf 329. (p. 561) 

SW AN, R. J., A. BECHTOLSHEIM, K. W. LAI, AND J. K. OUSTERHOUT [1977]. "The 
implementation of the Cm* multi-microprocessor," Proc. AF/PS National Computing Conf, 645-
654. (p. 589) 

Ex.1035.759DELL



R-14 Computer Architecture: A Quantitative Approach 

SW AN, R. J., S. H. FULLER, AND D. P. SIEWIOREK [1977]. "Cm*-A modular, multi
microprocessor," Proc. AF/PS National Computer Conf. 46, 637-644. (p. 590) 

SWARTZ, J. T. [1980]. "Ultracomputers," ACM Transactions on Programming Languages and 
Systems 4:2, 484-521 (p. 592) 

SWARTZLANDER, E., ED. [1980]. Computer Arithmetic, Dowden, Hutchison and Ross (distributed 
by Van Nostrand, New York). (p. A-59) 

TAKAGI, N., H. YASUURA, ANDS. YAJIMA [1985]."High-speed VLSI multiplication algorithm 
with a redundant binary addition tree," IEEE Trans. on Computers C-34:9, 789-796. (p. A-59) 

TANENBAUM, A. S. [1978]. "Implications of structured programming for machine architecture," 
Comm. ACM 21:3 (March) 237-246. (p. 128) 

TANG, C. K. [1976]. "Cache system design in the tightly coupled multiprocessor system," Proc. 
1976 AF/PS National Computer Conf., 749-753. (p. 487) 

TAYLOR, G. S. [1981]. "Compatible hardware for division and square root," Proc. Fifth IEEE 
Symposium on Computer Arithmetic, 127-134. (p. A-62) 

TAYLOR, G. S. [1985]. "Radix 16 SRT dividers with overlapped quotient selection stages," Proc. 
Seventh IEEE Symposium on Computer Arithmetic, 64-71. (p. A-56) 

TAYLOR, G. S., P. N. HILFINGER, J. R. LARUS, D. A. PATTERSON, AND B. G. ZORN [1986]. 
"Evaluation of the SPUR Lisp architecture," Proc. 13th Annual Symposium on Computer 
Architecture (June 2-5), Tokyo, Japan, 444-452. (pp. 189, 451) 

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON, AND B. ZORN [1986]. "Evaluation of the 
SPUR LISP architecture," Proc. 13th Symposium on Computer Architecture (June), Tokyo. (p. E-
15) 

THACKER, C. P. AND L. C. STEWART [1987]. "Firefly: a multiprocessor workstation," Proc. 
Second Int' l Conf. on Architectural Support for Programming Languages and Operating Systems, 
Palo Alto, Calif., 164-172. (p. 487) 

THACKER, C. P., E. M. MCCREIGHT, B. W. LAMPSON, R. F. SPROULL, AND D.R. BOGGS [1982]. 
"Alto: A personal computer," in Computer Structures: Principles and Examples, D. P. Siewiorek, 
C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549-572. (p. 560) 

THADHANI, A. J. [1981]. "Interactive user productivity," IBM Systems J. 20:4, 407-423. (p. 560) 

THISQUEN, J. [1988]. "Seek time measurements," Amdahl Peripheral Products Division Tech. Rep. 
(May). (p. 558) 

THORLIN, J. F. [1967]. "Code generation for PIE (parallel instruction execution) computers," Spring 
Joint Computer Conf. (April), Atlantic City, N.J. (p. 339) 

THORNTON, J.E. [1964]. "Parallel operation in Control Data 6600," Proc. AF/PS Fall Joint Com
puter Conf. 26, part 2, 33-40. (pp. 128, 339) 

THORTON, J.E. [1970]. Design of a Computer, the Control Data 6600, Scott, Foresman, Glenview, 
Ill. (p. 339) 

TJADEN, G. S. AND M. J. FLYNN [1970]. "Detection and parallel execution of independent instruc
tion.s," IEEE Trans. on Computers C-19:10 (October) 889-895. (p. 340) 

TOM1SULO, R. M. [1967]. "An efficient algorithm for exploring multiple arithmetic units," IBM J. 
of Research and Development 11: 1 (January) 25-33. (p. 339) 

TRELEAVEN, P. C., D.R. BROWNBRIDGE, and R. P. HOPKINS [1982]. "Data-driven and demand
driven computer architectures," Computing Surveys, 14:1 (March) 93-143. (p. 590) 

TROIANI, M., S.S. CHING, N. N. QUA YNOR, J.E. BLOEM, AND F. C. COLON OSORIO [1985]. 
"The VAX 8600 I Box, a pipelined implementation of the VAX architecture," Digital Technical J. 
1 (August) 4-19. (p. 328) 

TUCKER, S. G. [1967]. "Microprogram control for the System/360," IBM Systems Journal 6:4, 222-
241. (p. 242) 

Ex.1035.760DELL



References R·15 

UNGAR, D. M. [1987). The Design of a High Performance Smalltalk System, The MIT Press 
Distinguished Dissertation Series, Cambridge, Mass. (p. 451) 

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984). "Architecture of 
SOAR: Smalltalk on a RISC," Proc. 11th Symposium on Computer Architecture (June), Ann 
Arbor, Mich., 188-197. (p. 189) 

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984). "Architecture of 
SOAR: Smalltalk on a RISC," Proc. 11th Symposium on Computer Architecture (June), Ann 
Arbor, Mich., 188-197. (p. E-15) 

UNGER, S. H. [1958). "A computer oriented towards spatial problems," Proc. Institute of Radio 
Engineers 46:10 (October) 1744-1750. (p. 589) 

VON NEUMANN, J. [ 1945). "First draft of a report on the EDY AC." Reprinted in W. Aspray and A. 
Burks, eds., Papers of John von Neumann on Computing and Computer Theory (1987), 17-82, 
The MIT Press, Cambridge, Mass. (p. 592) 

WAKERLY, J. [1989). Microcomputer Architecture and Programming, J. Wiley, New Y9rk. (p. 188) 

WANG, E.-H., J.-L. BAER, AND H. M. LEVY [1989). "Organization and performance of a two-level 
virtual-real cache hierarchy," Proc. 16th Annual Symposium on Computer Architecture (May 28-
June 1), Jerusalem, Israel, 140-148. (p. 487) 

WATANABE, T. [1987). "Architecture and performance of the NEC supercomputer SX system," 
Parallel Computing 5, 247-255. (p. 394) 

WATERS, F., ED. [1986). IBM RT Personal Computer Technology, IBM, Austin, Tex., SA 23-1057. 
(p. 190) 

WATSON, W. J. [1972). "The TI ASC-A highly modular and flexible super computer architecture," 
Proc. AF/PS Fall Joint Computer Conf., 221-228. (p. 393) 

WEICKER, R. P. [1984). "Dhrystone: A synthetic systems programming benchmark," Comm. ACM 
27:10 (October) 1013-1030. (p. 47) 

WEISS, S. AND J.E. SMITH [1984). "Instruction issue logic for pipelined supercomputers," Proc. 
11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 110-118. (p. 339) 

WEISS, S. AND J.E. SMITH [1987). "A study of scalar compilation techniques for pipelined super
computers," Proc. Second Conf. on Architectural Support for Programming Languages and 
Operating Systems (March), IEEE/ACM, Palo Alto, Calif., 105-109. (p. 340) 

WESTE, N. AND K. ESHRAGHIAN [1985). Principles of CMOS VLSI Design, Addison-Wesley, 
Reading, Mass. (p. A-59) 

WHITBY-STREVENS C. [1985). "The transputer," Proc. 12th Int'! Symposium on Computer 
Architecture, Boston, Mass. (June) 292-300. (p. 589) 

WICHMANN, B. A. [1973). Algol 60 Compilation and Assessment, Academic Press, New York. (p. 
46) 

WIECEK, C. [1982). "A case study of the VAX 11 instruction set usage for compiler execution," 
Proc. Symposium on Architectural Support for Programming Languages and Operating Systems 
(March), IEEE/ACM, Palo Alto, Calif., 177-184. (p. 188) 

WILKES, M. [1965). "Slave memories and dynamic storage allocation," IEEE Trans. Electronic 
Computers EC-14:2 (April) 270-271. (p. 486) 

WILKES, M. V. [1953). "The best way to design an automatic calculating machine," in Manchester 
University Computer Inaugural Conj., 1951, Ferranti, Ltd., London. (Not published until 1953.) 
Reprinted in "The Genesis of Microprogramming" in Annals of the History of Computing 8: 116. 
(p. 241) 

WILKES, M. V. [1982). "Hardware support for memory protection: Capability implementations," 
Proc. Symposium on Architectural Support for Programming Languages and Operating Systems 

(March 1-3), Palo Alto, Calif., 107-116. (pp. 107, 486) 

Ex.1035.761DELL



R·16 Computer Architecture: A Quantitative Approach 

WILKES, M. V. [1985]. Memoirs of a Computer Pioneer, The MIT Press, Cambridge, Mass. (pp. 25, 
241) 

WILKES, M. V. AND J. B. STRINGER [1953]. "Microprogramming and the design of the control 
circuits in an electronic digital computer," Proc. Cambridge Philosophical Society 49:230-238. 
Also reprinted in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and 
Examples (1982), McGraw-Hill, New York, 158-163, and in "The Genesis of Microprogramming" 
in Annals of the History of Computing 8:116. (p. 248) 

WILKES, M. V. AND W. RENWICK [1949]. Report of a Conj. on High Speed Automatic Calculating 
Machines, Cambridge, England. (p. 88) 

WILKES, M. V., D. J. WHEELER, ANDS. GILL [1951]. The Preparation of Programs for an 
Electronic Digital Computer, Addison-Wesley Press, Cambridge, Mass. (p. 24) 

WILLIAMS, T. E., M. HOROWITZ, R. L. ALVERSON, AND T. S. YANG [1987]. "A self-timed chip 
for division," Advanced Research in VLSI, Proc. 1987 Stanford Conj., The MIT Press, Cambridge, 
Mass. (p. A-46) 

WILSON, A. W., JR. [1987]. "Hierarchical cache/bus architecture for shared memory 
multiprocessors," Proc. 14th Int' l Symposium on Computer Architecture (June), Pittsburg, Penn., 
244-252. (p. 589) 

WULF, W. [1981]. "Compilers and computer architecture," Computer 14:7 (July) 41--47. (p. 130) 

WULF, W. A., R. LEVIN ANDS. P. HARBISON [1981]. Hydra/C.mmp: An Experimental Computer 
System, McGraw-Hill, New York. (p. 485) 

WULF, W. AND C. G. BELL [1972]. "C.mmp-A multi-mini-processor," Proc. AF/PS Fall Joint 
Computing Conj. 41, part 2, 765-777. (p. 590) 

WULF, W. AND S. P. HARBISON [1978]. "Reflections in a pool of processors-An experience 
report on C.mmp/Hydra," Proc. AF/PS 1978 National Computing Conj. 48 (June), Anaheim, Calif. 
939-951. (p. 589) 

Ex.1035.762DELL



Index 

Bold page numbers indicate term definitions. 

oo (see infinity) 
-oo (see infinity) 
+oo (see infinity) 
10000 (see Apollo DN 10000) 
11/780 (see Digital Equipment Corporation, V AX-11/780) 
11/785 (see Digital Equipment Corporation, VAX-11/785) 
2000 (see MIPS Computer Corporation, 2000; Digital 

Equipment Corporation, V AXstation) 
2: 1 cache rule, front endsheet 
2100 (see Sequent Corporation) 
29000 (see AMD 29000) 
3000 (see MIPS Computer Corporation, 3000) 
3010 (see MIPS Computer Corporation, 3010) 
3090 (see International Business Machines Corp.; disk, 

magnetic, IBM 3990 storage subsystem and) 
3090-600S (see International Business Machines Corp., IBM 

3090-600S) 
3100 (see Digital Equipment Corporation, DECstation; Digital 

Equipment Corporation, V AXstation) 
3364 (see Weitek 3364) 
360 (see International Business Machines Corp., IBM 360) 
360/85 (see International Business Machines Corp., IBM 

360/85) 
360/91 (see International Business Machines Corp., IBM 

360/91) 
370 (see International Business Machines Corp., IBM 370) 
370/158 (see International Business Machines Corp., IBM 

370/158) . 
370-XA (see International Business Machines Corp., IBM 370-

XA) 
3990 (see International Business Machines Corp.; disk, 

magnetic, IBM 3990 storage subsystem and) 
68000 (see Motorola Corporation, 68000) 
6809 (see Motorola Corporation, 6809) 
701 (see International Business Machines Corp., IBM 701) 
7030 (see International Business Machines Corp., IBM 7030) 
704 (see International Business Machines Corp., IBM 704) 
7090 (see International Business Machines Corp., IBM 7090) 
8000 (see Sequent Corporation) 
801 (see International Business Machines Corp., IBM 801) 
8012 (see International Business Machines Corp., IBM 8012) 
80186 (see Intel Corporation, 80x86, 80186) 
80286 (see Intel Corporation, 80x86, 80286) 
80386 (see Intel Corporation, 80x86, 80386) 
80486 (see Intel Corporation, 80x86, 80486) 
80x86 (see Intel Corporation, 80x86) 
8080 (see Intel Corporation, 8080) 
8086 (see Intel Corporation, 80x86, 8086) 

8088 (see Intel Corporation, 8088) 
8550 (see Digital Equipment Corporation, VAX) 
860 (see Intel Corporation, 860; Intel Corporation, i860) 
8600 (see Digital Equipment Corporation, VAX) 
8700 (see Digital Equipment Corporation, VAX) 
88000 (see Motorola Corporation, 88000) 
88100 (see Motorola Corporation, 88100) 
88200 (see Motorola Corporation, 88200) 
8847 (see Texas Instruments, 8847) 
90/10 rule, front endsheet (see also locality, principle of) 
90/50 branch-taken rule, front endsheet) (see also branch, 

taken) 

A 

aborts, 216 (see also interrupts) 
absolute addressing (see addressing mode, direct) 
access alignment (see data alignment) 
access authorization (see virtual memory, Intel 80286/80386 

and; virtual memory, protection schemes of) 
access bit, 446 (see also virtual memory, page table) 
access latency, 405 (see also memory hierarchy, access time; 

cache, access time) 
access time 19, 20, 405, 420 425 (see also memory hierarchy, 

access time; cache access time) 
access time gap, 518 (fig.), 519 
accumulator architecture (see architecture, accumulator) 
accumulator-based architecture (see architecture, accumulator) 
Adams, T., 188 · 
adders, A~39 (fig.) (see also arithmetic, integer, ripple-carry 

addition; arithmetic, integer, speeding up addition) 
addition (see arithmetic, addition, floating-point; arithmetic, 

integer, addition; arithmetic, integer, speeding up 
addition) 

address (see also addressing mode) 
consumption of, front endsheet, 16 
effective, 97-98 
fault, 433 (see also virtual memory, page fault) 
memory, 12, 18, 21, 93, 94-103, 115-117, 134 

shared versus multiple, 578-579 
space, 16, 19 (see also cache; memory; memory hierarchy; 

virtual memory; virtual memory, processes and) 
consequences of too small an, 480-481 
extensions of, 483 
on the Intel 80286, 445-446 
on the VAX-11/780, 441 

specifier, 102 (see also addressing mode) 
translation, 433 (see also virtual memory, address 

translation) 
address-consumption rate, front endsheet, 16, 480-481 

Ex.1035.763DELL



1·2 

addressing mode, 97-10~. 126, 134, 136 (see also Digital 
Equipment Corporation, VAX; DLX; Intel 
Corporation, Intel 80x86, 8086; International Business 
Machines Corp., IBM 360) 

autodecrement, 98 
autoincrement, 98 
encoding of, 102-103 
direct (absolute), 98 
displacement (based), 98-100, 105-106, 114, 133 

field, 100, 102-103, 106 
size, 100 
value, 100 

immediate (literal), 98-102 
field, 102 
value, 101 

indexed, 98, 136 
memory indirect (memory deferred), 98-99 
operand specifiers, 145 (fig.), 169 (fig.), 173 (fig.), 177 

(fig.), 180 (fig.) 
register deferred (indirect), 98, 136 
of RISC architectures, E-2 
scaled (index), 98, 126 

after rounding, A-20, A-22 (see also arithmetic, rounding and) 
Aileen, 24 
algorithm, 14 
Agarwal, A., 190 
Alexander, W. G., 130, 187 
aliased variables, 116-117 
aliases, 460 
alignment (see also data alignment; stack, alignment of) 

interrupts and, 215 
on the DLX, 221, 231 

alignment network, 96-97, 135 
Alto, 560 
ALU (see arithmetic logic unit) 
AMD 29000, 167, 190 
Amdahl, G. M., 17, 26, 127, 186, 242, 588 (see also Amdahl's 

Law) 
Amdahl/Case rule (see Case/Amdahl rule of thumb) 
Amdahl's Law, 8-11, 22, 26, 29, 575-576, 586 (see also 

Case/ Amdahl rule of thumb) 
CPU-DRAM performance gap and, 426, 427 (fig.), 432 
I/0 and, 500, 555, 559 

Amdahl's rule of thumb, 426 (see also Case/ Amdahl rule of 
thumb) 

Annual International Symposium on computer architecture (see 
architecture, Annual International Symposium on) 

anti-aliasing, 460 (see also virtual cache) 
antidependence, 374 (see also vector processor, 

antidependence) 
AP-120B (see Floating-Point Systems) 
Apollo DN 10000, 340 
Archibald, J., 471, 487, 488 
architecture, 3, 4, 5, 13, 128 (see also Digital Equipment 

Corporation, VAX; DLX; HLLCA; Intel Corporation, 
860; Intel Corporation, 80x86; International Business 
Machines Corp., IBM 360; MIPS Computer Corporation, 
R3000; Motorola Corporation; SP ARC) 

accumulator, 24, 90-92, 127 
Annual International Symposium on, 80 
decoupled (see decoupled architecture) 
definitions, front endsheet 
evolution-revolution spectrum of, 587-588 
evolution versus revolution, 587-588 
formualas, front endsheet 
general-purpose register (see general-purpose register 

architecture) 

architecture (continued) 
Harvard, 25 
instruction set (see instruction set, architecture) 
load/store (see load/store architecture) 
memory-memory (see memory-memory architecture) 
performance evaluation of, 78-80 
register-memory (see register-memory architecture) 
register-register (see register-register architecture) 
revolutionary, 593 
rules of thumb (see rules of thumb) 
simulator, 48 
stack (see stack architecture) 
systolic (see systolic architecture) 
trends of, 16 
trivia, front endsheet 
vector (see vector processor, architecture) 

Index 

areal density of disk, 518 (see also maximum areal density; 
disk, magnetic) 

arithmetic, 15, 201, A-1 
addition, floating-point, A-16-A-20 

algorithm for, A-18-A-19 
denormals and, A-20 
rounding in, A-16-A-17 (see also infinity) 

addition, integer, A-2-A-3 (see also arithmetic, integer) 
add, subtract and multiply instructions in Intel 860, E-22 
Booth recoding, A-8-A-9, A-20, A-40, A-43-A-44, A-48, 

A-56, A-59 
modified, A-64 

decimal, 15, 103, 109-110 (see also arithmetic, integer; 
arithmetic, floating-point) 

denormals, A-14-A-15, A-20, A-21-A-22, A-31, A-60 
division, integer, A-3-A-7 (see also arithmetic, integer) 

nonrestoring, A-5, A-6 (fig.), A-40-A-41, A-42 
speeding up, A-50 

restoring, A-5, A-6 (fig.) 
division, floating-point, A-23-A-26 
exceptions, A-30-A-31 

overflow, A-7, A-10, A-11 (fig.), A-30-A-31 
floating-point addition, A-20 
floating-point multiplication, A-21 
integer, A-10 

underflow, A-20, A-21-A-22, A-30, A-57 
gradual underflow, A-15, A-22, A-59-A-60, A-63 
underflow trap, A-31 

exponents and, A-1, A-12, A-13-A-14, A-15 
exponent field, A-13-A-14, A-20 

fallacies and pitfalls, A-57-A-58 
floating-point, A-12-A-3 l, A-57, A-58, A-59 (see also 

arithmetic, IEEE standard and) 
addition, A-16-A-20 (see also arithmetic, addition, 

floating-point) 
division, A-23-A-26 
exceptions, A-30-A-31 
multiplication, A-20-A-23 (see also arithmetic, 

multiplication, floating-point) 
precision, A-22-A-23, A-28-A-30 
remainder, A-26-A-28 

history of, A-58-A-60 
IEEE standard and, 109, A-1, A-12-A-16, A-60, E-2, E-23 
integer, A-2-A-11, A-57 

basic techniques of, A-2-A- l 1 
multiple-precision addition, A-11 
radix-2 multiplication and division, A-3-A-6 
ripple-carry addition, A-2-A-3, A-32, A-36 (fig.), A-39 

(fig.) 
signed number.sand, A-7-A-10 
speeding up addition, A-31-A39 

Ex.1035.764DELL



Index 

arithmetic, integer, speeding up addition (continued) 
carry-lookahead adder (CLA), A-32, A-36, A-39 (fig.) 

(see also carry) 
carry-select adder, A-38-A-39, A-39 (fig.), A-56, A-66 

(see also carry) 
carry-skip adder, A-36-A-37, A-39 (fig.) (see also 

carry) 
speeding up division, A-39-A-42, A-50-A-53 

shifting over zeros, A-40-A-42 
with a single adder, A-50-A-53 

speeding up multiplication, A-39-A-50 
shifting over zeros, A-40 
with a single adder, A-42-A-44 
with many adders, A-44-A-49 

systems issues of, A-10-A-ll 
multiplication and division, integer, A-3-A-7 (see also 

arithmetic, integer) 
multiplication, floating-point, A-20-A-23 

denormals and, A-21-A-2 
precision, A-22-A-23 

operations, 103 
precision, A-22-A-23, A-28-A-30 

double-extended, A-28, A-60 
multiple-precision addition, A-11 

remainder, A-4-A-5, A-40-A-42, A-50 
floating-point, A-26-A-28 
REM, A-26-A-28, A-53 (see also arithmetic, remainder) 

rounding and, A-13, A-16-A-17, A-18, A-19, A-20-A-21, 
A-23, A-26 (see also infinity) 

after rounding, A-20, A-22 
before rounding, A-17, A-22 
double rounding, A-29, A-64 
rounding errors, A-24, A-25 
rounding mode, A-13, A-22 

signed, A-7-A-10, A-58 
signed-digit representation, A-48 
signed-logarithm representation, A-65 

significand, A-12, A-14, A-18, A-22, A-29 
square root, A-25, A-26, A-29-A-30, A-64 

of a negative number, A-12-A-13 
systems and, A-10-A-l 1 (see also not a number; infinity) 

arithmetic and logical instructions, 92 
coprocessor operations, E-9, E-11 
in RISC architectures, E-5 

arithmetic and logical operators, 103 
arithmetic logic unit (ALU), 39-42, 201 

clock cycles per instruction and, 224-226, 235 
DLX states and, 222 (fig.), 225-226 
effect on rain forest from papers about, 201 
encoding and, 235-236 
instructions and operations of, 91, 93, 101, 103, 106, 120, 

123, 132, 133, 136, 202-203, 211, 213, 229-234 (figs.), 
237 (fig.) 

arithmetic mean (see mean, arithmetic) 
arithmetic operations, 103 (see also arithmetic; instruction set) 
arithmetic overflow (see interrupts, arithmetic overflow and) 
arm, 516 (see also disk, magnetic) 
Armstrong, F. H., 81 
ARPANET, 527, 528 (fig.), 561 (see also networks) 
array, A-45-A-46 (see also systolic arrays) 
array multiplier, A-44, A-45-A-47 (figs.), A-49 (fig.), A-56 

(see also arithmetic, integer, speeding up multiplication) 
array of disks (see disk array) 
array processor (see single instruction stream, multiple data 

stream computer) 
ASCII, 109 
ASP (see cost, average selling price) 

1-3 

ASPLOS (Architectural Support for Programming Languages 
and Operating Systems) conference, 130 

associativity, 420 (see also cache, fully associative; cache, set 
associative) 

asynchronous bus, 530 (see also bus) 
Atanasoff, J. V., 24 
Atlas computer, 26, 485 
atomic, 471 (see also cache, coherency, synchronization) 
atomic swap instruction (see data transfer) 
atomic swap operation, 471 (see also cache, coherency, 

synchronization) 
attributes field, 446 (see also virtual memory, page table; 

virtual memory; Intel 80286/80386 and) 
Auslander, M.A., 130 
autodecrement, 98 (see also addressing mode) 
autoincrement, 98 (see also addressing mode) 
availability, 520 (see also input/output, reliability) 
average instruction execution time, 228 
average memory-access time, 461 (see also memory hierarchy, 

access time; cache, access time; cache, two-level caches) 

B5000 (see Burroughs) 
B5500 (see Burroughs) 
B6500 (see Burroughs) 
Baer, J.-L., 471, 487, 488 

B 

Balance (see Sequent Corporation) 
balance (tradeoffs), 121, 131, 135, 140-141, 220 (see also 

design, computer; Case/ Amdahl rule of thumb) 
pipelining 

balance among stages, 252 
balance in issue, 320 

software and hardware, 14-16, 21, 28 
bandwidth, 5, 18, 19 (fig.), 29, 124, 135 

performance measures of main memory and, 425 
1/0 and (see input/output, performance, throughput) 

bandwidth, 1/0 (see input/output, performance, throughput) 
Banerjee test (see vector processor, data dependences, Banerjee 

test) 
Barton, R. S., 127 
base, 439 (see also virtual memory, protection schemes of; 

virtual memory, Intel 80286/80386 and) 
based addressing mode (see addressing mode, displacement) 
base field, 446 (see also virtual memory, page table) 
basic architecture of vector processor (see vector processors, 

architecture) 
basic block, 115 
Baskett, F., 130 
BCD (see binary-coded decimal) 
before rounding, A-17, A-22 (see also arithmetic, rounding) 
behavior, 512 (see also input/output, devices) 
Bell, C. G., 81, 127, 590 

bet with Hillis, 590 
W. D. Strecker and, 485, 488 

benchmark, 42, 43, 45-48, 53, 72, 75, 81, 82, 83, 85-86 (see 
also disk, magnetic, 1/0 benchmarks for; input/output, 
performance) 

file system 1/0, 512 (see also input/output, benchmarks) 
historical perspective, 77-80 
kernels, 45 
Unpack (see vector processor, Linpack benchmark) 
Perfect Club, 75, 79-80 

vectorization and, 375 
SPEC (System Performance Evaluation Cooperative), 48, 

72-73, 79, 81, 83 

Ex.1035.765DELL



1·4 

benchmark (continued) 
supercomputer 1/0, 510-511 (see also input/output, 

benchmarks) 
synthetic, 45-48, 73-74, 80, 86 

Dhrystone, 45, 47, 73-74, 81, 85, 86 
Whetstone, 45-46, 73-74, 77, 82, 83, 86 

toy, 45 
TP-1, 511, 511(fig.),565 
transaction processing I/0, 511-512 (see also input/output, 

transactions and) 
unfair, 490 

benchmark programs (see benchmark) 
Berkeley RISC (see reduced instruction set computer, 

Berkeley) 
Berry, M. D., 81 
biased exponent, A14, A-15 (see also arithmetic, exponents 

and) 
Big Endian, front endsheet, 95 
Bigelow, Julian, 24 
binary-coded decimal (BCD), 109 

packed,109 
unpacked, 109 

binary-tree multiplier, A-48 (see also arithmetic) 
bit block transfer, 521 (see also graphic displays) 
bitblts, 521 (see also graphics displays) 
bit-field instructions in Motorola 88000, E-17-E-18 
bit map, 521 (see also graphics displays) 
Blaauw, G. A., 127, 186 
Blau, R., 189 
block, 404 (see also memory hierarchy, blocks and; cache, 

blocks and; virtual memory, page; virtual memory, 
segment) 

block-frame address, 405 (see also memory hierarchy, blocks 
and; cache, block-frame address of) 

block identification, 407, 484 
caches and, 410-411 
virtual caches and, 459-460 
virtual memory and, 435-436 

block-offset address, 405 (see also memory hierarchy, blocks 
and) 

block-offset field, 410 (see also cache, blocks and) 
block placement, 407, 484 (see also conflict miss) 

caches and, 408-409, 420 (see also cache, fully associative; 
cache, set associative; cache, direct mapped) 

subblocks, 456-457 
VAX-11/780 cache and, 419 
virtual memory and, 434-435 

block replacement, 407, 484 
caches and, 411-412, 4 20 
early restart, 458 
first-in-first-out (FIFO), 412 
least-recently used (LRU), 411-412, 436 

versus random, 412 (fig.) 
on the V AX-11/780, 443 

out-of-order fetch, 458 
random, 411 

versus least-recently used, 412 (fig.) 
VAX-11/780 cache and, 411 
virtual memory, 436 

block size (see cache, blocks and, size; virtual memory, paged, 
page size) 

Boggs, D., 560, 562 
Booth recoding, A-8 (see also arithmetic, Booth recoding) 
bound, 439 (see also virtual memory, protection schemes of) 
bounds checking (see virtual memory, Intel 80286/80386 and) 
Brady, J., 509, 560, 562 

Index 

branch, 103, 104-109, 133 (see also jump; branch-prediction 
schemes) 

behavior, 272-273 
clock cycles and, 224-225, 237 
condition code (CC), 37, 106, 201, 282-283, 335 
conditional, 104-108, 203, 209 (see also branch instruction) 

of RISC architectures, E-8 
condition register, 106 
delay, 272, 273-277, 282, 335 (see also hazard, branch-delay 

slots; branch-prediction schemes) 
delayed, 274 (fig.), 275, 276-279, 339 
scheduling, 274-275 
DLX and (see branch instruction, of DLX) 
frequency,272 
hazard (see hazard, branch) 
instruction, 37-38, 104 

branch conditions of DLX, 203, 237 
conditional, 37-38, 104 
ofDLX, 203, 224 (fig.), 230 (fig.), 234-237 

loop, 108 
not taken, 270, 273 (see also branch-prediction schemes, 

predict-not-taken) 
offset, 105-106 

optimization, 114 (see also optimization) 
penalty, 271-272, 277 

determining, 313 
reduction, 273-278, 307-314 

on DLX, 276-277, 310 
optimization and, 114-115, 119-120 
PC (program-counter)-relative branches, 105 
pipelining and (see branch-prediction schemes) 
prediction (see branch-prediction schemes) 
scheduling, 274-275, 282 
schemes, 277 (see also branch-prediction schemes; dynamic 

hardware branch prediction) 
taken, 107-108, 270, 273 (see also branch-prediction 

schemes, predict-taken) 
90/50 branch-taken rule, front endsheet 
target, 105-106 
unconditional (see jump) 

branch-delay slots, 274, 275-276, 279, 335 
empty, 276 
filled,276 
scheduling, 274 (fig.), 276 (fig.), 345 

branch likely instruction, E-14 (see also delayed branch) 
branch-prediction buffer, 308-310 
branch-prediction schemes 273-277, 308-314, 339-340 (see 

also dynamic hardware branch prediction; misprediction 
penalty) 

prediction accuracy, 309-310, 313 
predict-not-taken, 273-274, 277 (fig.), 309, 312-313 
predict-taken, 274-275, 277 (fig.), 309, 312-313, 331-332 
reducing branch penalties with dynamic hardware prediction, 

307-314 
branch-target buffer, 310-312, 339-340 
bridge, 527 (see also networks) 
Briggs, F., 190 
Brooks,F.P., 127, 186,445 
Brown, E., 190 
bubble, 265 (see also pipeline stall) 
Burks, A. W., 24 
Burr, W. E., 79 
Burroughs 

B5000, 127 
B5500,71 
B6500, 127, 131 

Ex.1035.766DELL



Index 

bus, 528-532, 560 (see also memory bus) 
DLX, 200 (fig.), 201 
FutureBus, 532, 532 (fig.) 
IBM PC-AT bus, 531 
instructions on the DLX, 211, 230 
intelligent peripheral interface (IPI), 531, 532 (fig.), 560 
Multibus II, 532, 532 (fig.) 
NuBus, 15, 561 
options for, 530 (fig.), 531 (fig.) 
PDP-11 Unibus, 531, 560 . 
small computer systems interface (SCSI), 532 (fig.), 560-561 
standards for, 531-532 

comparison of five bus standards, 532 (fig.) 
transactions, 529 
VME bus, 532, 532 (fig.) 

bus error, 215 (fig.) 
bus masters, 529 (see also bus) 
bus transaction, 529 (see also bus) 
bus width, 428 (see also memory, organization of) 
busy-wait (see spin waiting) 
bypass, 261, 263, 292, 338 (see also forwarding) 
bypass registers, 263 
byte, 219 

alignment of on DLX, 221, 231 
load byte on DLX, 232, 235 

byte addressed machine, 95 
byte ordering, 95 (see also Little Endian and Big Endian) 

c 
cache,19-20,25,26,224,238,408-425,454-474,481,483, 

484 (fig.), 486-487 (see also memory; memory hierarchy; 
virtual memory; block identification; block placement; 
block replacement; write strategy) 

2: 1 cache rule, front end sheet 
access time and, 420 

average memory-access time, 418-419, 454 
block size versus, 423-424 (figs.) 
virtual cache, 459-460 

blocks and, 408, 420, 425, 454 
address tag, 410 
identification (see block identification, caches and) 
placement (see block placement, caches and) 
replacement (see block replacement, caches and) 
size, 420, 423, 454, 469 

versus memory access time, 423-424 (figs.) 
subblocks, 456-457 
vAx-11n80, 414 

block-frame address of, 410, 412 (fig.), 414 
coherency,466,467-474,487 

block size and, 469 
cache-coherency problem, 466 (fig.), 468 
cache-coherency protocols, 467-473 

directory based, 467-468 
example of, 469-471 
hits and, 471 
misses and, 468-471 
snooping, 467-474, 487 

summary of, 471 (fig.) 
write broadcast, 469-470 (fig.) 
write invalidate, 468-469, 470 (fig.) 

example, 473 (fig.) 
multilevel caches and, 468 
read hits and, 471 
read misses and, 469, 471 
sequential consistency, 474 
synchronization, 471-474 

cache, coherency, synchronization (continued') 
lock variable, 471, 472 (fig.), 473 
unlock, 472 (fig.) 

weak consistency, 474 
write hits and, 4 71 
write misses and, 469, 4 71 

data-only, 423-425 
differences between virtual memory and, 438 

1·5 

direct mapped, 408, 409 (fig.), 410 (fig.), 418-422, 456, 481, 
486 

2: 1 cache rule, front endsheet 
address portions of, 410 (fig.) 
conflict misses and, 420 

disk, 537, 566 (see also input/output, interfacing to an 
operating system) 

file, 537, 538 (fig.) (see also input/output, interfacing to an 
operating system) 

fully associative, 408, 409 (fig.), 410 (fig.), 418-422, 454 
block placement and, 410 (fig.) 
block replacement and, 411, 420 
misses and, 420 

hit, 412-413, 414, 460 
rate, 411 
read, 412 
reducing hit times by making writes faster, 455-457 
making cache hits faster with virtually addressed caches, 

459-460 
instruction-only, 423-425 
1/0 and, 466-467 
least-recently used block replacement (see block 

replacement, least-recently used) 
miss, 19, 412, 414, 418, 419-422, 429, 459 (see also cache, 

miss rate; cache, write miss) 
capacity, 419, 420, 421-422 (figs.) 
compulsory, 419, 420, 421-422 (figs.) 
conflict, 420, 421-422 (figs.) 
reducing miss penalty, 457-458 (see also cache, two-level 

caches) 
"three Cs" (capacity, compulsory, conflict), 420, 421-422 

(figs.), 484 
miss rate, 416, 418-419, 481 (see also cache, miss; cache, 

write miss) 
2: 1 cache rule, front endsheet 
compared to misses per instruction, 417 
data-only versus instruction-only miss rates, 424-425 

(fig.) 
for random vs. least-recently used block replacement, 412 
multiprocessors and, 468 (see cache, coherency) 
on DLX, 482 (fig.) 
on the V AX-11/780, 482 (fig.) 
reducing by reducing cache flushes, 466-467 
versus cache size, 455 (fig.) 

for two-level caches, 462 (fig.) 
using a process-identifier tag (PID), 459 (fig.) 

mixed cache (see cache, unified) 
multilevel (see cache, two-level caches) 
multiprocessors and (see cache, coherency) 
n-way set associative (see cache, set associative, n-way) 
parameters, typical, 408 (fig.) (see also parameters, typical 

ranges of) 
performance, 416-419, 454-474, 481, 483 
pipelined machines and, 334 
random (see block replacement, random) 
reads and, 412, 416 (see also cache, miss) 

read miss rate, 416 
register versus, speed of, 483 
set associative, 409, 409 (fig.), 410 (fig.), 454, 481 

Ex.1035.767DELL



1-6 

cache, set associative (continued) 
block-offset field, 410, 411 (fig.) 
conflict misses and, 420 
index field, 410, 411 (fig.) 
n-way, 409, 420-422 

SRAM relationship, 426 
stale data and (see stale data) 
subblocks, 456-457, 492 
summary of, 484 (fig.) 
synchronization (see cache, coherency) 
tag field, 410, 411 (fig.) 
two-level caches, 460-465, 484 (fig.), 487 

average memory-access time for, 461 
coherency, 468 (see also cache, coherency) 
parameters, typical for, 463 (fig.) (see also parameters, 

typical ranges·of) 
relative execution time, 463 (fig.), 465 (fig.) 
size of, 464 
summary of, 484 (fig.) 

valid bit, 410 
V AX-11/780 and, 414-416 (see also memory hierarchy, 

VAX-11/780 and; virtual memory, VAX-11/780 and) 
miss rates for, 482 (fig.) 

unified, 423 
vectors as an alternative to caches, 352 
virtual, 460 
virtual memory and, 434, 438 
write back, 413-414, 429, 469 

clean, 413 
dirty,413 
dirty bit, 413 

write buffer, 413, 457, 482-483 (see also cache, writes and) 
fallacy of, 482-483 
VAX-11/780 and, 413, 416, 477, 483 
write stalls and, 457-458 

write miss, 413-414, 416, 457-458 
no write allocate, 413-414, 416 
making faster, 457-458 (see also subblock placement) 
multiprocessors and, 468 
rate, 416 
write allocate, 413-414 

writes and, 413-414, 416 (see also cache, write miss) 
making writes faster, 455-457 
multiprocessor, 468 

write strategy (see write strategy, caches and) 
write through, 413-414, 416, 457, 477 

cache-coherency problem, 466 (see also cache, coherency) 
cache-coherency protocols, 467 (see also cache, coherency) 
cache-coherency example, 473 (fig.) (see also cache, 

coherency) 
cache machine, 334 (see also cache) 
Cady, R., 127 
call (see procedure calVretum) 
caller, 124-125 
callee-saving, 108-109, 124-125 
caller-saving, 108-109 
call gate, 448 (see also virtual memory, protection schemes of; 

virtual memory, Intel 80286/80386 and) 
Calls instruction, 122, 124-125, 137, 213 
capabilities, 441, 485 (see also virtual memory, protection 

schemes of) 
capacity miss, 420 (see also cache, miss, capacity) 
capacity 

of DRAMs (see dynamic random access memory) 
of SRAMs (see static random access memory) 

Index 

carry, A-2, A-11 (see also carry in; carry out; carry-lookahead 
adder; carry-propagate adder; carry-save adder; carry
select adder; carry-skip adder) 

carry in, A-2, A-3 (fig.), A-7, A-37, A-38 
carry-lookahead adder (CLA), A-32 (see also arithmetic, 

integer, speeding up addition) 
carry out, A-2, A-3 (fig.), A-7, A-15, A-16 (fig.), A-18-A-19, 

A-33, A-37 
carry-propagate adder (CPA), A-43, A-48, A-51, A-56 
carry-save adder (CSA), A-42-A-44, A-45 (fig.), A-51 
carry-select adder, A-38 (see also arithmetic, integer, speeding 

up integer addition) 
carry-skip adder, A-36 (see also arithmetic, integer, speeding 

up addition) 
CAS (see column-access strobe) 
Case, R., 17, 186 
Case/Amdahl rule of thumb, front endsheet, 17, 426 (see also 

balance, software and hardware; rules of thumb; 
performance) 

CPU-DRAM performance gap and, 426, 427 (fig.), 432 
cathode ray tube (CRT), 521 (see also graphics displays) 
CC (see branch, condition code) 
CD (see disk, optical) 
CDB (see common data bus) 
CDC (see Control Data Corporation) 
CD-ROM, 519 (see disk, optical) 
centralized memory (see memory, centralized) 
central processing unit (CPU), 8, 13, 90-92, 199 (see also 

datapath; processor) 
balance and, 17 
memory hierarchy and, 18-19 (see also memory hierarchy) 
system performance and, 11, 16 
CPU-DRAM performance gap, 426, 427 (fig.), 432 
idle time, 500-501 
interfacing to 1/0 (see input/output, interfacing to the CPU) 
CPU-execution clock cycles and caches, 416 
CPU-memory buses, 529 (see also bus) 
performance, 35, 36-40, 71 (see also performance) 
time, 35-40, 41, 67-69, 122 

caches and, 416, 418 
1/0 and, 499 
system CPU time, 35 
user CPU time, 35 

chaining, 378 (see also vector processor, chaining and) 
Chaitin, G. J., 130 
Chandra, A. K., 130 
character strings, 109 
channel, 548 (see also disk, magnetic, IBM 3990 storage 

subsystem and) 
channel controllers, 534 (see also input/output, interfacing to 

the CPU) 
channel program, 549 (see also disk, magnetic, IBM 3990 

storage subsystem and) 
Chow, F. C., 114-115, 117, 130 
CISC (complex instruction set computer) (see reduced 

instruction set computer; Digital Equipment Corporation, 
VAX) 

CLA (see carry-lookahead adder) 
Clark, D. W., 130, 171, 188, 189, 486, 488 
clean, 413 (see also cache, write back) 
clock, 36 

period (see clock cycle) 
tick (see clock cycle) 

clock cycle, 29, 36-38, 75, 77, 79, 81, 134, 201, 224, 228 (see 
. also clock cycle time; clock cycles per instruction) 

ALU and, 224-226, 235 
branches and, 224-225, 237-238 

Ex.1035.768DELL



Index 

clock cycle (continued) 
caches and, 416 
controland,204 
DLX and, 224, 235, 237-238 
microinstructions and, 211 
per instruction (CPI) (see clock cycles per instruction) 
pipelines and, 278 (fig.), 351 
reducing, 207 
register file and, 201 
stalls and, 213-214, 224 

clock cycles per floating-point operation (CPF), 360-361, 378, 
392 

clock cycles per instruction (CPI), 36-41, 71-72, 77, 82, 94, 
132, 134, 199, 224 

CPF versus, 392 
ALU and, 224-226, 235 
DLX and, 224, 225 (fig.), 235, 238 
performance and, 210 
pipelining and, 252, 258, 351 
reducing, 207 

by adding hardwired control, 213-214 
by parallelism, 214, 314-327 
by pipelining, 252, 258 
with special case microcode, 213 

clock cycle time, 5, 36-41, 81, 199, 201, 228 (see also clock 
rate) 

cachesand,416,481 
controland,210,227,240 
interrupts and, 214 
pipelined machines and, 251-255 

clock rate, 36-37, 41, 68, 71, 84, 135, 228 (see also clock cycle 
time) 

clock skew, 253-254, 336 
CM (see Connection Machine) 
Cm* multiprocessor, 589 (see also multiprocessor) 
C.mmp multiprocessor, 589 (see also multiprocessor) 
COBOL, 15 
Cocke, J., 130, 189, 340 
code,45 

condition (see branch, condition code) 
optimized, 41-42, 49, 73 
size, 70-71, 73, 78-79, 92, 103, 121, 135, 324 
source, 43, 48 
system, 35 
unoptimized, 41-42, 73 
user, 35 

code motion, 114 (see also optimization) 
coherency (see cache, coherency) 
cold start misses, 419 (see also cache, miss, compulsory) 
collision misses, 420 (see also cache, miss, conflict) 
coloring, graph, 113-114, 130 
color map, 523 (see also graphics displays) 
color table, 523 (see also graphics displays) 
column-access strobe (CAS), 425 
column-major order, 366, 367 (fig.) 
committed instruction, 280 
common case 

importance in design, 8 
common data bus (CDB), 300-307, 349 
common subexpression elimination, 114 (see also 

optimization) 
global, 112, 114 

communication, 573, 574, 592-593, 594 
explicit, 579 
implicit, 578-579 
overhead,575,581 

compare, 101, 103, 106-107 
macrocode improvement of, on V AX-11/780, 239 
in RISC architectures, E-7-E-8 

Comparability, of instruction sets (see object-code 
compatibility) 

compare and branch instruction, 106-107 
comparison (see compare) 
comparators 

for hazard detection, 263, 269 (see also hazard, detection) 
compiler, 5, 16, 17, 19, 21, 28, 92-94, 111-122 

complexity of, 111, 120-121 
future directions for, 581-582 
optimizing, 41, 47, 67, 73-74, 81, 111-120, 126, 130, 131, 

136 
performance and, 37, 42-48, 71-72, 79 
structure of, 111-115 

1·7 

vector processor and (see vector processor, compilers and) 
completion, out-of-order (see out-of-order completion) 
completion rate, 358 (see also vector processor) 
complex instruction set computer (CISC) (see reduced 

instruction set computer) 
compulsory miss, 419 (see also cache, miss, compulsory) 
computer architecture (see architecture, computer) 
Computer Museum, 25 
computer program, 243 
condition code (see branch, condition code) 
conditional branch (see branch, conditional) 
conditionally executed statements (see vector processor, 

conditionally executed statements and) 
conditional-sum adder, A-66 
conflict miss, 420 (see also cache, miss, conflict) 
connect/disconnect bus, 530 (see also bus) 
Connection Machine 

CM, 589-590, 591 
CM-2,573,577,593 

constant bit density, 516 (see also disk, magnetic) 
constant extension of RISC architectures (see reduced 

instruction set computer) 
constant propagation, 114 (see also optimization) 
context switch, 438 (see also virtual memory, processes and) 

virtual caches and, 459-460 (fig.) 
Conti, C. J., 78 
control 199, 201 (fig.) 

DLX and, 220-224, 228-234 (see also DLX, instruction set, 
control-flow instructions) 

flow (see also control-flow instructions) 
hardwired, 204-207, 210 

reducing CPI by adding hardwired control, 213-214 
improving DLX performance when control is hardwired, 

226-228 
performance of, 207, 224-225, 237 
reducing hardware costs of hardwired control, 205-206, 

213-214 
interrupts and, 217-218 
microprogrammed/microcoded 208-214, 238-243 

ABCs of microprogramming, 209-210 
microcoded control for DLX, 228-234 
performance of, 238, 240-241 
performance of microcoded control for DLX, 235 
reducing cost and improving performance of DLX when 

control is microcoded, 235-238 
reducing hardware costs by encoding control lines, 210-

211 
reducing hardware costs with multiple microinstruction 

formats, 211-212 
special case microcode, 213 
writable control store (WCS) and, 238-239 

Ex.1035.769DELL



1·8 

Control Data Corporation (CDC), 353, 394 
CDC 6600, 71, 128, 132, 292, 295, 299-300, 338-339 
ETA-10, 394 

control dependences (see hazard, branch) 
control-flow instructions, 104-109, 122 (see also DLX, 

instruction set, control-flow instructions) 
in RISC architectures, E-6 

control hazard (see hazard, control) 
controller, disk (see disk, magnetic) 
controller time, 516 (see also disk, magnetic) 
control operators, 103 
control store, 209, 210, 212-213, 235, 239 (see also writable 

control store) 
coprocessor, 580, A-28 
coprocessor operations (see arithmetic and logical instructions) 
copy back, 413 (see also cache, wri~e ~ac~) 
copy propagation, 114 (see also opt1m1zat1on) 
Cosmic Cube multicomputer, 589 
cost, 34, 53-54, 80 (see also die; integrated circuit; package; 

wafer; workstation) 
average selling price (ASP), 64, 66, 85 
average discount, 64-65, 84-85 
comparing price of media versus price of packaged system, 

556-557 
direct, 64-66, 85 
DRAM, 556-557 
indirect, 64 
list price, 64-66, 70, 84-85 
magnetic disk, 556-557 . . 
versus access time for SRAM, DRAM, and magnetic disks, 

518 (fig.) 
versus price, 61-64, 65 (fig.), 66 (fig.), 84-85. 

cost/performance, 11, 16, 21, 25, 76 (see also performance) 
design, 34 
fallacies, 70 
optimizing, 14 
price/performance, 47, 66-70, 80 

CPA (see carry-propagate adder) 
CPF (see clock cycles per floating-point operation) 
CPI (see clock cycles per instruction) 
CPU (see central processing unit) 
Crawford, J., 188 
Cray, Seymour, 71 
Cray Research machines, 34, 353, 390, 391, 393 

arithmetic on, A-60 
CRAY-1, 353, 377, 391, 392, 393 
CRA Y-2, 43, 353, 377 (fig.) 
CRAY X-MP, 74-75, 80, 353, 376-377, 391, 392, 394, 493 
CRAY Y-MP, 353, 391-392, 394 

critical section (see synchronization) 
CRT (see cathode ray tube; graphics displays) 
Crudele, L., 189 
CSA, A-42 (see also carry-save adder) 
Curnow, H.J., 78 
cycle time (see also clock cycle time) 

of DRAM (see dynamic random access memory) 
of SRAM (see static random access memory) 

Cydra 5 (see Cydrome Cydra 5) 
Cydrome Cydra 5, 340 
cylinder, 516 (see also disk, magnetic) 
Cypress Corporation 

Cypress CY7C601 microprocessor, 84, 493 

D 

DASD, 514 (see also direct-access storage device; disk, 
magnetic; input/output) 

data alignment; 95-96 
data antidependency (see antidependency) 
data area, global, 116 
data dependences (see hazard, data) 

Index 

vector processing and, 375 (see also vector processor, data 
dependences) 

Data General Nova, 560 
data hazard (see hazard, data) 
data integrity, 520 (see also input/output, reliability) 
datareferences, 123-124, 132-133 
data transfer, 79, 135 

atomic swap instruction, E-9-E-10 
Endian option, E-9-E-10 (see also Big Endian; Little 

Endian) 
non-aligned, E-12-E-13 
in RISC architectures, E-5 

data transfer operator, 103 
data trunks, 295 
data-only cache (see cache, data-only) 
data parallelism, 573 
datapath, 201 

control and, 227 
data from, 205, 206 (fig.) 
design, 204, 207 
DLX architecture and, 221 
microinstructions and, 208-209, 211, 214 

data rate, 511, 512 (see also input/output, devices) 
DAXPY (see vector processor, Unpack benchmark) 
DEC (see Digital Equipment Corporation) 
decimal arithmetic (see arithmetic, decimal) 
decimal operations, 15, 103 (see also arithmetic, decimal) 
decoupled architecture, 321 
defects per unit area, 59-60 . . . 
deferred addressing (see addressmg mode, memory mdtrect) 
deferred branching (see branch, delayed) 
definitions, front endsheet 
DeLagi, B., 127 
delay slot, 268 (see also branch-delay slot; load delay slot) 
delayed branch (see branch, delayed) 
delayed load, 268, 339 
denormal, A-14 (see also arithmetic, denormals and) 
Dent, B. A., 127 
dependences 264, 269 (fig.), 287 (see also hazard; vector 

processor, data dependences) 
anti- (see vector processor, antidependence) 
output (see vector processor, output dependence) 
true data (see vector processor, data dependences) 
vector processing and (see vector processor, data 

dependences) 
depth (see pipelining, depth of a pipeline) 
description language, 141-142, inside back cover 
descriptor table, 446 (see also virtual memory, page table; 

virtual memory, Intel 80286/80386 and) 
design, computer, 8, 13 

complexity and time, 15-16 
computer-aided, 580 
high-performance, 34 
low-cost, 34 
tradeoffs, 8, 14 
trends and, 16-17 

designer, computer (see architect, computer) 
detailed measurements (see instruction set, measurements) 
device level select (DLS), 553 (see also disk, magnetic, IBM 

3990 storage subsystem and) 

Ex.1035.770DELL



Index 

DG (see Data General) 
Dhrystone, 28, 45 (see also benchmarks, synthetic) 
die, 55-58 (see also wafer) 

area, 59-60, 61 
cost of, 55, 59-60, 62, 84, 85 
photographs of, 58 
testing, 60 

costof,55,60,62,84 
yield, 59-61, 62, 80 

difficulties in implementing pipelines (see pipelines, 
difficulties in implementation) 

Digital Equipment Corporation (DEC), 15 
DECstation, 19 
DECstation 3100, 68, 167, 190, D-8-D-9 
PDP-8, 91 
PDP-10, 93 
PDP-11, 93, 104, 127-128, 131-132, 142, 187, 480-481, 531, 

561 
bus of, 531 
Unibus and (see bus, Unibus) 

VAX, 25, 91, 93, 97, 101-102, 103-104, 123, 128-129, 140, 
147, 169-172, 187-188 

addressing modes, 144-147, 145 (fig.), 169 (fig.) 
usage, 169-171, 170 

condition codes, 147 
data types, 143 
floating-point arithmetic on, A-59 
instruction mixes, 171-172 
instruction set, 142-144, 146 (fig.), 147 (fig.) (see also 

Digital Equipment Corporation, VAX, user 
instruction set) 

format, 141, 144-145, 147 
instruction length, 145 (fig.), 147 (fig.) 
usage measurement, 140, 168, 169-172, 186 (fig.), C-2 

interrupts, 215 (fig.), 218 (fig.), 219 
operand specifiers (see Digital Equipment Corporation, 

VAX, addressing modes) 
operations on, 147 
registers, 143-144 
summary of, E-23 
user instruction set, B-2-B-5 

branch, jump, and procedure call instructions, B-3-B-4 
decimal and string instructions, B-4-B-5 
integer and floating-point logical and arithmetic 

instructions, B-1-B-2 
queue instructions, B-5 
variable-length bit field instructions, B-5 

VAX-11/780, 13, 19, 28, 29, 142, 187-188 
address space, 441 
cache in, 414-416 (see also cache, VAX-11/780 and) 
instruction-prefetch buffer in, 450 
memory hierarchy of (see memory hierarchy, VAX-

11/780 and) 
page-table entry of (see page-table entry) 
time distributions on, D-2-D-3 
translation-lookaside buffer (see virtual memory, 

translation-lookaside buffer) 
virtual memory in (see virtual memory, V AX-11/780 and) 
write buffers on, 413, 416, 477, 483 

V AX-11/785, 13 
VAX 8550, 28 
VAX 8600, 13, 28. 329. 337 (see also pipelining, VAX 8600 

and) 
EBox, 328-332 
FBox, 328-332 
IBox, 328-332, 334 
!Fetch, 230-238, 330 

Digital Equipment Corp., VAX 8600 (continued) 
MBox, 328-331, 333 
Opfetch, 329-334 

VAX8700 
frequency of process switches on, 439 (fig.) 

V AXstation 2000, 68 
V AXstation 3100, 68 

digital signal processor (DSP), 580 
direct (absolute) addressing, 98 (see also addressing mode) 
discount (see cost) 
display (see cathode ray tube; graphics displays) 
direct-access storage devices, 514 (see also disk, magnetic; 

input/output) 
direct mapped, 408 (see also cache, direct-mapped) 

1·9 

direct memory access (DMA), 534-535 (see also input/output, 
DMAand) 

directory based, 467-468 (see cache, coherency) 
dirty, 413 (see also cache, write back) 
dirty bit, 413 (see also cache, write back; virtual memory, dirty 

bits and) 
disk, 6, 19, 20, 29 (see also disk, magnetic; disk, optical) 

growth rule, front endsheet, 17 
storage, 3, 19 
technology, 17 

disk array, 520-521 
availability of, 520-521 
reliability of, 520-521 

disk cache, 537 (see also input/output, interfacing to an 
operating system) 

disk controller, 516 (see also disk, magnetic) 
disk drive (see disk, magnetic) 
disk-growth rule, front endsheet, 17 
disk, magnetic, 514-520, 561 

access time gap and, 518 (fig.), 519 
array of (see disk array) · 
capacity of, 517 (fig.), 518, 547 (see also maximum areal 

density) 
characteristics of, 515-516, 517 (fig.) 
comparison of four manufacturers, 517 (fig.) 
cost of, 556-557 
cost versus access time, 518 (fig.) 
data rate of, 514 (fig.), 517 (fig.) 
extended storage (ES), 519 
future of, 518-519, 561 
IBM 3990 storage subsystem and, 546-554, 567 

changes in response time with improvements in 3380D, 
553 (fig.) 

channels and, 548, 554 
channel program for, 549 
control hierarchy, 547-549 
data-transfer hierarchy, 547, 548 (fig.), 549 
DLS and, 552-553 
DPR and, 552-553 
head of string, 549, 552 
IOCB of, 549 
RPS, 551, 552, 554 
speed-matching buffers of, 549 
storage director of, 549 
summary of, 553-554 
tracing a disk read, 549-553 

1/0 benchmarks for, 5.10-512 (see also input/output, 
performance) 

file system, 512 
supercomputer, 510-511 
transaction processing, 511-512 
TP-1, 511, 511 (fig.) 

organization of, 515 (fig.) 

Ex.1035.771DELL



1-10 

disk magnetic (continued) 
seeks and, 516, 557-558 

average se~k time, 516, 557, 563 
formulas for, 557, 558 (fig.) 
seek distance measurements, 559 (fig.) 
versus seek distance, 558 (fig.) 

solid state disks (SSDs), 519 (see also dynamic random 
access memory)· 

disk, optical, 519-520 
write-once misperception, 519 

displacement (based) addressing mode (see addressing mode) 
Ditzel, D.R., 129, 130, 189 
division (see arithmetic, division, floating-point; arithmetic, 

division, integer) 
DLS (see device level select) 
DLX, 117, 122-123, 160-167, 179-183, 188 

addressing mode usage, 179-180 
alignment, 221, 231 
bus, 200 (fig.), 201, 211, 230 
control (see control, DLX and) 
datapath, 221 
instruction mixes, 180-183 
instruction set, 161-166, 165 (fig.). E-4-E-6 

arithmetical logical instructions, 163 
branch instructions, 203, 224 (fig.), 230 (fig.), 234-237 
common extensions to, E-9-E-12 
control-flow instructions, 163, 164 (fig.), 183 
format, 166 (fig.) 
jump instructions, 222-225 
load and store instructions in, 161-163, 203 
usage measurement, 179-183, 181(fig.),186'(fig.), C-5 

load byte, 232, 235 
machines related to, 166 
miss rates for, 482 (fig.) 
pipelining (see pipelining, DLX and) 
registers, 161-162 
register window benefits on, 453 (fig.) 
states, 205, 221-224 (figs.), 225-226 
summary of, E-2 
superscalar (see superscalar) 
time distribution on, D-8-D-9 
vector processing and (see vector processor, DLXV and) 

DLXV, 353 (see also vector processor, DLXV) 
DMA (see direct memory access) 
Doherty, W., 560, 562 
done bit, 534 (see also input/output) 
double precision (see arithmetic, precision) 
double-extended precision (see arithmetic, precision) 
double rounding, A-29 (see also arithmetic, rounding) 
doubleword, 95 
DPR (see dynamic path reconnection) 
DRAM (see dynamic random access memory; memory, 

DRAM) 
DRAM-growth rule, front endsheet 
DRAM-specific interleaving for improving main memory 

performance, 431-432 (see also memory, interleaved) 
drive (see disk, magnetic) 
dual instruction mode 

in Intel 860, E-22 
dual-issue, 322, 340 
dynamic address translation (see virtual memory, address 

translation) 
dynamic branch prediction (see dynamic hardware branch 

prediction) 
dynamic detection of memory hazard (see hazard, memory, 

dynamic detection of) 

Index 

dynamic hardware branch prediction, 307-314, 339-340 (see 
also branch-prediction schemes) 

dynamic measurements (see instruction set, measurements, 
dynamic) 

dynamic path reconnection (DPR), 552 (see also disk, 
magnetic, IBM 3990 storage subsystem and) 

dynamic random access memory (DRAM), 16, 17, 29, 425-
427, 431-432 (see also static random access memory; 
memory, DRAM; virtual memory) 

capacity of, 426, 431 
cost of, 556-557 
cost versus access time for, 518 (fig.) 
cycle time of, 426, 432 (fig.) 
growth rule, front endsheet, 17 
interleaving and, 431-432 
performance increase, 426 (fig.), 427 (fig.) 
static column, 431, 487 
solid state disk and, 519, 564 
times of, 426 (fig.) 
video, 523 (see also graphics displays) 

dynamic scheduling 291, 290-313, 321-322, 339-340 
multiple instruction issue and, 321-322 
reducing branch penalties with dynamic hardware prediction, 

307-314 (see also branch-prediction schemes; dynamic 
hardware branch prediction) 

scoreboard approach (see scoreboard) 
Tomasulo algorithm (see Tomasulo algorithm) 

E 

Earle latch (see latches) 
early restart, 458 (see also cache, miss) 
EBCDIC, 109 
EBox (see Digital Equipment Corporation, VAX 8600) 
Eckhouse, R., 188 
Eckert, J.P., 23-25, 241 
Eckert-Mauchly Computer Corporation, 25 
EDSAC (Electronic Delay Storage Automatic Calculator), 24, 

241-242 
EDV AC (Electronic Discrete Variable Automatic Computer), 

23-24 
Edwards, D. B. G., 26 
Eggers, S., 471, 487, 488 
elapsed time, 35-36, 67, 69, 72 
Emer,J., 79 
emulation, 242 
empty slots (see delay slots) 
encoding, 210-211, 235 (see also addressing mode) 
Encore Multimax multiprocessor, 589 (see also 

multiprocessor) 
Endian option (see data transfer) 
Engelbart, D., 560 
ENIAC (Electronic Numerical Integrator And Calculator), 23-

24 
entry time, 508 (see also input/output, transactions and) 
error bit, 534 (see also input/output) 
ES (see extended storage) 
ESA/370 (see International Business Machines, IBM ESN370) 
ETA-10 (see Control Data Corporation, ETA-10) 
Ethernet, 526 (see also networks) 
evaluation of vector performance (see vector performance, 

analyzing) 
even/odd multiplier, A-45 (see also arithmetic) 
exceptions, 216 (see also arithmetic, exceptions; interrupts) 
execution, 252, 294, 301, 330 

in a pipeline, 252, 285, 294, 301, 330 
out-of-order (see out-of-order execution) 

1 

Ex.1035.772DELL



Index 

execution (continued) 
simulation, 289 
mode of, 8, 10, 29 

execution time, 5-7, 27, 35, 28, 29 (see also response time; 
performance; mean) 

average instruction, 77 
locality ofreference and, 11-12 (see also locality) 
normalized, 52-53, 83 
performance and, 6, 35, 40-45, 48-49, 71-72, 81 
speedup and, IO 
total, 50, 83 
weighted, 51, 84 

executive process, 440 (see also virtual memory, processes 
and) 

explicit communication (see communication, explicit) 
exponent, A-13 (see also arithmetic, exponents and) 
exponent field, A-13 (see also arithmetic, exponents and, 

exponent field) 
extended storage (ES), 519 

Fabry, R., 485, 488 

F 

false sharing, 469 (see also cache, coherency) 
fast page mode of DRAM, 432 
faults, 216 (see also interrupts) 
FBox (see Digital Equipment Corporation, VAX 8600) 
fetch on write, 413 (see also cache, write miss) 
fields, 209 
FIFO (see block replacement, first-in-first-out) 
file cache, 537 (see also input/output, interfacing to an 

operating system) 
file server 

versus workstation, 500 
file systems, 512 
file system 1/0 benchmark (see benchmark; input/output, 

performance; disk, magnetic, 1/0 benchmarks for) 
filled slots (see branch-delay slots) 
finite state diagram, 204, 206 

for the DLX, 205, 220 
interrupts and, 217 

firmware (see microprogramming) 
first-in-first-out (FIFO), 412 (see also block replacement, first-

in-first-out) 
first part done (FPD), 219-220 
first reference misses, 419 (see also cache, miss, compulsory) 
Fisher, J., 340 
fixed-field decoding, 202 
fixed point, A-12, A-58 (see also arithmetic, integer) 
Flemming, P. J., 79 
floating point (FP), 15, 19 (see also arithmetic, floating-point) 

arithmetic (see arithmetic, floating-point) ' 
CDC 6600 and, 291-293 
floating-point operations per second (FLOPS), 360-361 (see 

also vector processor, performance) 
IBM 360/91 and, 299-300 
millions of floating-point operations per second (MFLOPS), 

43-44, 74-75, 78, 83, 86, 383, 386 (see also vector 
processor, performance) 

native, 43-44, 81, 83 
normalized, 43-44, 83 

overflow (see arithmetic, exception, overflow) 
floating-point arithmetic, quadruple precision, E-17 
floating-point compares, 106-107 
floating-point format (see arithmetic, IEEE standard and) 
floating-point instructions (see floating-point operations) 

1·11 

floating-point operations, 14, 103, 284-290, 318-319 (see also 
pipelining, DLX and, floating-point) 

implicit conversions, E-9, E-11 
in RISC architectures, E-6 
overlapped, in SPARC, E-16 

floating-point operations per second (see floating point, 
floating-point operations per second) 

floating-point operator, 103 
floating-point references, 119 
floating-point pipeline (see pipelining, DLX and, floating-

point) 
floating-point register, 114, 118-119, 124 
floating-point stalls, 290 
floating-point standard, 109 
Floating-Point Systems AP-120B, 340 
FLOPS (see floating point, floating-point operations per 

second) 
Flynn bottleneck, 351, 352 (see also vector processor) 
Foley, P., 189 
format field, 211 
format of instructions (see instruction syntax) 
FORTRAN, 119, 130 

Absoft System V88 2.0a compiler 83 
F77 compiler, 126 
FORTRAN 8X, 581 
FORTRAN 77, 581 

forwarding, 261-265, 269, 286, 339 
Foster, C. C., 129 
FP (see floating point) 
FPD (see first part done) on VAX 
fraction, computation time, 10 

enhanced, 10 
fragmentation and reassembly, 527 (see also networks) 
frame address (see memory hierarchy, block) 
frame buffer, 521 (see also graphics displays) 
freezing the pipeline, 273, 334 
Freitas, D., 189 
frequency distributions (see instruction set, measurements) 
full adders, A-2 (see also arithmetic) 
Fuller, S. F., 78, 80 
fully associative, 408 (see also cache, fully associative) 
functional requirements (see requirements, functional) 
functional units, 255-258, 291-298, 300-305, 318-319, 323-

324, 338 
multiple, 284-285, 338, 346 
vector processing and (see vector processor, functional units) 

functional unit status, 295, 296-298 (figs.), 303-305 (figs.) 
FutureBus, 532, 532 (fig.) (see also bus) 
future file, 288 (see also out-of-order completion) 

Gagliardi, U. 0., 129 
Gajksi, D., 589 
Gamer, R., 190 

G 

gateway, 527 (see also networks) 
gather, 380 (see also vector processor, sparse matrices) 
GCD (see greatest common divisor) 
Gelsinger, P., 188 
general-purpose register (GPR) architecture (see register, 

general-purpose register architecture) 
generate, A-32 (see also arithmetic; carry) 
generation, computer, 26 
geometric mean (see mean, geometric) 
Gibson, D. H., 78 
Gibson, J.C., 77, 78, 80 
Gibson mix, 77, 78, 80 

Ex.1035.773DELL



1·12 

gigaflop (see floating point, millions of floating-point 
operations per second) 

Gill, J., 130 
Gill, S., 24 
global address space, 446 (see also virtual memory, processes 

and) 
global data area (see data area, global) 
global miss rate, 461 (see cache, miss; cache, two-level caches) 
Gnu C compiler, 67, 69-70, 79, 85 
Goldschmidt's algorithm, A'-24-A-25, A57 
Goldstine, H. H., 23-25 
Gonter, R.H., 129 • 
Goodman, J., 487, 488 
Gottlieb, A., 589 
GPR (see register, general-purpose register architecture) 
gradual underflow (see arithmetic, exceptions, underflow) 
graphics instructions in Intel 860, E-20 · 
graphics displays, 521-525, 560, 561 

color map, 523, 524 (fig.) 
cost of, 523-524 
frame buffer, 521, 522 (fig.) 
future directions in, 525-526 
hidden surface elimination, 525 

z-buffer approach to, 525 
performance demands of, 524-525 
tasks and their perfonnance requirements, 525 (fig.) 
video DRAMs, 524, 525 

gray-scale displays, 521 (see also graphics displays) 
greatest common divisor (GCD), 373 (see also vector 

processor, data dependences) 
growth rules (see disk, growth rule; dynamic random access 

memory, growth rule) 
Gross, T. R., 335, 339 

H 

half adders, A-2 (see also arithmetic) 
halfwords, 95 
Hansen, C., 189 
hard disk (see disk, magnetic) 
hard drive (see disk, magnetic) 
hardware branch prediction 291 (see also dynamic hardware 

branch prediction) 
hardware, 13 (see also balance, software and hardware) 

"smaller is faster," 18 
industry growth and, 21 

hardwired control (see control, hardwired) 
harmonic mean (see mean, hannonic) 
Harvard University, 24-25 
Hauck, E. A., 127 
hazard, 257-258, 278 (see also dependences; vector processor, 

data dependences) 
branch,270-272,280,307 

handling on VAX 8800, 331-332 
(see also branch, penalty) 

control, 257 (see also hazard, branch) 
data,257,260-269,282,283-284,286-290,291-298, 300-

306, 346 (see also vector processor, data dependences; 
pipelining) 

handling on VAX 8800, 331-332 
detection, 268-269, 334 (see also branch, penalty) 

VAX 8600 and, 328-329 
DLX and data hazard detection 268-269 
DLX and structural hazard detection, 292 
floating point and, 286 
overlapped integer and floating-point instructions and, 

285 
scoreboard and, 293-298 

Index 

hazard, detection (continued) 
Tomasulo algorithm and, 300, 302-306 

dynamic detection of memory hazards, 291-298, 300-306, 
339 

RAW, 264, 286, 294, 297, 301, 331 
vectors and (see vector processor, data dependences) 

memory, dynamic detection of, 339 
structural, 257, 258-259, 284, 286, 294, 300 

CPI and, 260 
DLX and, 289, 291-292, 300 
superscalar machine and, 319 

true data dependences (see vector processor, data 
dependences) 

vector processing and, 375 (see also vector processor, data 
dependences) 

WAR, 264, 286, 293-295, 304 
WAW,264,287,293-295,304 

hazards, reducing (see hazard, detection; branch, penalty, 
reduction) 

head of string, 549 (see also disk, magnetic, IBM 3990 storage 
subsystem and) 

Henly, M., 79 
Hennessy, J. L., 130, 189 
Hewlett-Packard 

Precision, 167, 190 
hidden surface elimination, 525 (see also graphics displays) 
higher-radix multiplication, A-43, A-50 (see also arithmetic, 

integer, speeding up multiplication) 
high-level language, 16,111, 115~116, 121, 124, 127-129, 131, 

135 
High-Level Language Computer Architecture (HLLCA), 129-

130 
high-perfonnance design (see design, high-performance) 
Bilfinger, P., 189 
Hill, M., 421, 424, 481, 486-487, 489 
Hillis, D., 577, 589, 590 

bet with Bell, 590 
history, computer, 23-27 
history file, 288 (see also out-of-order completion) 
hit, 404 (see also memory hierarchy, hit; cache, hit) 
Hitachi S810/20, 74 
hit rate, 404 (see also memory hierarchy, hit rate; cache, hit) 
hit time, 405 (see also memory hierarchy) 
Hopkins, M. E., 130 
horizontal microcode (see microcode, horizontal) 
horizontal microinstruction (see microcode, horizontal) 
Hough, D., 190 
How is a block found? (see block identification) 
HP (see Hewlett-Packard) 
Hudson, E., 189 

I 

i860 (see Intel Corporation, i860) 
IAS (Institute for Advanced Study) (see Princeton University) 
IBox (see Digital Equipment Corporation, VAX 8600) 
IBM (see International Business Machines Corporation) 
IC (see integrated circuit) 
ideal performance in pipelining, 258-259 
identification, block (see block identification) 
IEEE (see arithmetic, IEEE standard and) 
!fetch (see Digital Equipment Corporation, VAX 8600) 
Illiac IV, 554, 555 (fig.), 573, 589, 591 
immediate (literal) addressing mode (see addressing mode) 
IMP (see interface message processor; networks) 
implementation, 13 

hardware, 14, 21 

Ex.1035.774DELL



Index 

implementation (continued') 
performance evaluation and, 78-79 
software, 14 
technology of, 16 

implicit communication (see communication, implicit) 
implicit conversions (see floating-point instructions) 
imprecise interrupt (see interrupts, imprecise) 
improving performance of vector processors (see vector 

processor, improving performance) 
in-order instruction issue, 291 
index, 47, 98 
index addressing mode (see addressing mode, scaled) 
indexed addressing mode, 98 (see also addressing mode) 
index field, 410 (see also cache, set associative) 
index vector, 380 (see also vector processor, sparse matrices) 
indirect addressing mode (see also addressing mode, register 

deferred; addressing mode, memory indirect) 
induction variable elimination, 114 (see also optimization) 
inexact exception, A-30 (see also arithmetic, exceptions 
infinity, A-13, A-14, A-19 (fig.), A-22, A-30, A-60 (see also 

arithmetic, rounding and; not a number) 
infinite precision, A-22 

initiation rate, 358 (see also vector processor, initiation rate) 
input/output (1/0), 6, 11, 15 (fig.), 17, 22, 499-501, 554-561 

(see also disk, magnetic; graphics displays; networks; bus) 
bandwidth (see input/output, throughput) 
benchmarks (see input/output, performance; disk, magnetic, 

1/0 benchmarks for) 
CPU time and, 499 
DMA and, 534-535, 537, 561 

virtual, 537, 538 (fig.) 
IBM and, 546 
IBM 3990 storage subsystem (see disk, magnetic, IBM 3990 

storage subsystem and) 
idle time and, 500-501 (see also input/output, people and) 
designing a system for, 539-546 
devices, 512-514, 560-561 (see also disk, magnetic; graphics 

displays; networks; bus) 
categorized by behavior, partner, and data rate, 513 (fig.) 
data rate, 511, 512, 514 
examples of, 513 (fig.) 
keyboards, 513 

fallacies and pitfalls of, 554-559 
history of, 560-561 
importance of (see input/output, system performance and) 
interfacing to the CPU, 533-535 (see also input/output, 

DMAand) 
delegating 1/0 responsibility from the CPU, 534-535 
fallacy of moving functions from CPU to 1/0, 555-556 

interfacing to an operating system, 535-538 
caches causing problems with, 535-537 
caches helping with, 537-538 
disk cache, 537-538 

effectiveness of, 538 (fig.) 
stale data and, 535-536 
virtual memory and, 537 

latency (see input/output, response time) 
operating systems and, 535 (see also input/output, 

interfacing to an operating system) 
overlapping (see input/output, system performance and) 
people and, 508-509, 513, 560 

peak 1/0 rates for, 513 (fig.) 
transactions per hour versus computer response time, 510 

(fig.) 
performance, 506-512, 539-546, 555-556 (see also 

input/output, response time; input/output, throughput; 
benchmark; disk, magnetic, 1/0 benchmarks for) 

input/output, performance (continued') 
cost/performance, 539, 555 

1-13 

producer-server model of response time and throughput, 
506 (fig.), 508 (fig.) 

reliability, 520-521 
response time (latency), 506, 507, 509 (fig.), 560 

disk array and, 520 
graphics displays and, 522-524 
IBM 3380D and, 553 (fig.) 
magnetic disk and, 507 (fig.) 
networks and, 528 
transaction time and, 509 
versus throughput, 507 (fig.), 507-509 
versus transactions per hour, 510 (fig.) 

supercomputers and, 529, 564 
system performance and, 501-506, 555-556 

Amdahl's Law and, 500, 555, 559 
cost/performance, 555 
time formulas for, 502-506 
overlapped execution of 1/0, 502 (fig.), 502-506 

throughput (bandwidth), 506, 507, 544 
bus and, 532 
disk array and, 520 
graphics displays and, 522-524 
magnetic disk and, 507 (fig.) 
networks and, 528 
versus response time, 507 (fig.), 507-509 

transactions and, 508, 509 (fig.) 
transaction processing (TP), 511-512 
transaction time, 508 

entry time, 508, 509 (fig.), 560 
system response time, 508 (see also input/output, 

performance, response time) 
think time, 508. 509 (fig.), 560 

transactions per hour versus response time, 510 (fig.) 
user transaction, 509 (fig.) 

types (see input/output devices) 
Institute for Advanced Study (IAS) (see Princeton University 

Institute for Advanced Study) 
instruction (see also instruction set) 

architecture (see instruction set, architecture) 
average execution time, 77 
control (see control; control-flow instructions) 
count, 36-42, 72-73, 94, 99, 121, 123 

optimization and, 119-120 
density, 94 
encoding, 94, 102-103 
fetch and decode rate, 351 
format (see instruction set) 

of RISC architectures, E-3 
frequencies (see instruction set, measurements) 
interruption and restart, 279-282, 287-289, 332 
issue, 266, 286-289, 292-296, 300-306, 339-340 (see also 

dual-issue; multiple instruction issue) 
issue more than one instruction, 318-320 
multiple instruction issue with dynamic scheduling, 321-

325 
scoreboard and, 292-296, 293 (fig.) 
superscalar machines and, 318-320 
stalls and, 284 

measurements (see instruction set, measurements) 
mix, 39, 45, 73, 77 
path length, 36 (see also instruction count) 
parallelism, 314-328, 340-341 (see also vector processor) 

increasing with loop unrolling, 315-318 
increasing with software pipelining and trace scheduling, 

325-328 

Ex.1035.775DELL



1-14 

instruction (continued) 
reference, 124 
scheduling, 267-268, 274-278, 339 
set (see instruction set) 
size, 103 
static, 12 
status, 295, 296-298 (figs.), 303, 305 (fig.), 308 (fig.) 
syntax, 141 (see also instruction set, architecture) 

instruction-level parallelism (see instruction, parallelism) 
instruction-only cache (see cache, instruction-only) 
instruction-prefetch buffer, 449-450, 484 (fig.) 

summary of, 484 (fig.) 
VAX-11/780 and, 450 (fig.) 

instruction set (see also instruction; DLX; Intel Corporation, 
860; MIPS Computer Corporation, R3000; Motorola 
Corporation, 88000) 

architecture, 13, 16, 17, 37, 90-94 
comparison, 70 
complications (see pipelining, difficulties in implementation, 

instruction set complications) 
control (see control; control-flow instructions) 
frequencies (see instruction set, instruction frequencies; 

instruction set, measurements) 
instruction frequencies (see also instruction set, 

measurements) 
DEC VAX, 172 (fig.) 
DLX, 181 (fig.) 
IBM 360, 175 (fig.) 
Intel 8086, 178 (fig.) 

measurements, 139-141, 142, 167-168, 184, 185 (fig.), 186 
(fig.), D-2 

DEC VAX, 169-172, 172 (fig.) 
detailed measurements, C-2 

DLX, 179-183, 181 (fig.) 
detailed measurements, C-5 

dynamic, 90, 139, 140 (fig.) 
comparisons of, by architecture, 186 (fig.) 

frequency distributions, D-2, D-3 (fig.) 
IBM 360, 173-176, 175 (fig.), 185 (fig.), 186 (fig.) 

detailed measurements, C-3-C-4 
Intel 8086, 176-178 (fig.), 186 (fig.) 

detailed measurements, C-4 
static, 139 
time distributions, 139, 171, 184-185, D-2-D-9 

8086 in an IBM PC, D-6-D-8 
DLX relative, D-8-D-9 
IBM 370/168, D-4-D-6 
VAX-11/780, D-2-D-3 

performance and, 36-37, 39, 67 
processor (ISP) (see instruction set, architecture 
usage (see instruction set, measurements) 
user (see Digital Equipment Corporation, VAX, user 

instruction set) 
instruction set processor (ISP) (see instruction set, architecture) 
integer arithmetic (see arithmetic, integer) 
integer compares, 106-107 
integer multiply and divide 

in RISC architectures, E-8-E-9 
signed and unsigned, in SPARC, E-17 

integer operations, 15 
integer overflow (see arithmetic, exception, overflow) 
integer pipeline (see pipeline, DLX and, integer) 
integerregister, 114, 117-119, 124, 136 
integer variables, 109, 117 
integrated circuit (IC), 3, 5, 13, 17, 26 

cost of, 54-58 
yield, 59, 81 

Intel Corporation 
Intel 4004 and 8008, 188 
Intel 432, 125 
Intel 8080, 153, 188 
Intel 8088, 188 

Index 

Intel 80x86, front endsheet, 153, 188, 449 
Intel8086,91,97, 104, 141, 153-160, 176-179, 188,445 

addressing modes, 155-156 
usage, 177 (fig.) 

address space, 154 
compatibility mode, 153 
flaws, 184 
instruction mixes, 176-178 
instruction set, 153-160, 158 (fig.), B-9-B-12 

arithmetic and logical instructions, B-10 
control instructions, B-11 
data transfer instructions, B-12 
formats, 141, 157, 159 (fig.), 160 (fig.) 
string instructions, B-12 
usage measurement, 156 (fig.), 168, 176-179, 186 

(fig.), C-4 
interrupts, 215 (fig.) 
operations on, 156-160 
postbyte encoding, 160 (fig.) 
registers, 153-155, 154 (fig.) 
summary of, E-23 
time distribution on, D-6-D-7 

Intel 80186, 153, 188 
Intel 80286, 153, 188, 445-446, 448-449 

call gates on (see call gate) 
descriptor table, 446 (see also virtual memory, page 

table; virtual memory, Intel 80286/80386 and) 
protection on (see virtual memory, Intel 80286/80386 

and) 
virtual memory on (see virtual memory, Intel 

80286/80386 and) 
Intel 80386, 153, 188 

protection on (see virtual memory, Intel 80286/80386 
and) 

virtual memory on (see virtual memory, Intel 
80286/80386 and) 

Intel 80486, 56, 58, 84, 153, 188 
Intel 860, 84, 167, 190, 340, 493, E-2 

instruction set, E-5-E-6 
common extensions to DLX instructions, E-10-E-1 l 
unique, E-19-E-23 

Intel i860, 493 (see also Intel Corporation, Intel 860) 
Intel Hypercube multicomputer, 589 

intelligent devices, 560 (see also bus) 
intelligent peripheral interface (IPI), 531, 532 (fig.), 560 (see 

also bus) 
interface message processor (IMP), 527 (see also networks) 
interference graph, 113 
interleaved memory, 429 (see also memory, interleaved) 
interleaving factor, 429 (see also memory, interleaved) 
interlocked loads instruction (see load interlock) 
interlock (see pipeline interlock; hazard, data; load interlock) 
internal fragmentation, 437 (see virtual memory, page size and) 
internal storage, 90-92 
International Business Machines Corp. (IBM), front end sheet, 

15,25,80 
IBM 3090, 547 

storage (see disk, magnetic, IBM 3990 storage subsystem 
and) 

IBM 3090-600S, 75 
IBM 360, 16, 25, 77, 91, 93, 104, 127-128, 148-152, 172-

176, 186-187,242,485,557 

Ex.1035.776DELL



Index 

International Business Machines, IBM 360 (continued) 
addressing modes, 149-150 

usage, 173-174 
flaws, 183-184 
IBM 360/85 (see International Business Machines Corp., 

IBM 360/85 
instruction.mixes, 175-176 
instruction set, 148-150, 151 (fig.), 152 (fig.), B-6-B-9 

formats, 149-151 
usage, 174 (fig.) 

register-indexed (RX), 149-150, 174 
branches and special loads and stores, RX format, B-

8 
integer/logical and floating-point instructions, RX 

format, B-7 
register-register (RR), 149-150, 174 

branches and status setting R-R instructions, B-7 
integer/logical and floating-point R-R instructions, 

B-6 
register-storage (RS), 149-150, 174 

RS and SI format instructions, B-8 
storage-immediate (SI), 150, 174 

RS and SI format instructions, B-8 
storage-storage (SS), 150, 174, 177 

SS format instructions, B-9 
usage measurement, 172-176, 185 (fig.), 186 (fig.), C-

3-C-4 
Shustek's thesis on, 172-173, 185, 187 

interrupts, 215 (fig.), 219-220 
operations on, 151-152 
registers, 141, 149-150, 174, 177 
summary of, E-23 

IBM 360/85, 26, 80, 486 
IBM 360/91, 299-300, 339 
IBM 360/IBM 370 (see International Business Machines 

Corp., IBM 360; International Business Machines 
Corp., IBM 370) 

IBM 370, 148, 186-187, 394, 485 (see also International 
Business Machines Corp., IBM 360) 

floating-point system on, A-59 
IBM 370/158, 77, 78 
IBM 370/168, D-4-D-6 
IBM 370-XA, 148, 187 
IBM 3990 storage subsystem (see disk, magnetic, IBM 3990 

storage subsystem and) 
IBM 701, 25, 26 
IBM704, 338 
IBM 801, 189, 190 
IBM 7030, 104, 338 
IBM 7090, 129, 242 
IBM ESA/370, 148 
IBM PC, 34, 176, 184, 188, D-6-D-7 

bus of, 531 
IBMPC-AT,531 
IBM PL.8 compiler, 130 
IBM RP3 multiprocessor, 589 (see also multiprocessor) 
IBM RT-PC, 93, 190 
IBM Stretch (7030), 77 
IBM System/360 (see International Business Machines 

Corp., IBM 360) 
IBM System/370 (see International Business Machines 

Corp., IBM 370) 
MIPS definition and, 78 
Stretch (see International Business Machines Corp., IBM 

7030) 
interprocedural register allocation, 453 (see also register 

windows) 

1-15 

interrupt-driven I/0, 534 (see also input/output, interfacing to 
the CPU) 

interrupts, 214-220 
8600 and, 332-334 
arithmetic overflow and, 214-215, 217 (fig.), 218 (fig.), 241 
comparison on four computers, 215 (fig.) 
DLX and, 229, 235, 237 
history of, 241 
how control checks for interrupts, 217-218 
page faults and, 215, 217 (fig.), 218 (fig.) 
pipelining and, 261, 276, 279-282 (see also interrupts, 

imprecise; interrupts, precise) 
virtual memory and, 440 
what's hard about interrupts, 218-220 

interrupts, imprecise, 287-288 
interrupts, precise, 280, 334, 339 
invalid exception, A-30 (see also arithmetic, exceptions) 
inverted page table, 435 (see also virtual memory) 
I/0 (see input/output) 
I/0 bandwidth (see input/output, performance, throughput) 
I/0 bus, 529 (see also bus) 
IOCB (see I/0 control block) 
1/0 control block, 534-535, 549 (see also input/output, 

interfacing to the CPU; disk, magnetic, IBM 3990 storage 
subsystem and) 

I/0 controllers, 534 (see also input/output, interfacing to the 
CPU) 

1/0 latency (see input/output, performance, response time) 
I/O processor, 534 (see also input/output, interfacing to the 

CPU) 
I/O rate, 511 (see also input/output, transactions and) 
I/O response time (see input/output, performance, response 

time) 
I/0 throughput (see input/output, performance, throughput) 
Iowa State University, 24 
IPI (see intelligent peripheral interface; bus) 
ISP (instruction set processor) (see instruction set, architecture) 
issue (see instruction issue) 
issue more than one instruction (see instruction issue; 

superscalar) 
issued, 266 (see also instruction issue) 

J 

Japanese supercomputers (see supercomputers, Japanese) 
Jouppi, N., 130 
Joy, B., 190 
jump, 104-105, 120 (see also bran, h) 

conditional, 23 
on the DLX, 222-225 

Kahn, R., 561, 562 
Kane, G., 190 
Katz, R., 487, 488 
Kelisky, R. P., 560 

K 

kernel process, 440 (see also virtual memory, processes and) 
kernel programs, 43, 45-48, 77 

Livermore FORTRAN, 43, 77, 80 
Kilburn, T., 26, 432, 485, 489 
Kleiman, S., 190 
Knuth, D. E., 26-27 
Kuck, D., 589 
Kung, H. T., 590 

Ex.1035.777DELL



1-16 

L 

LAN (see local area network; networks) 
language 

assembly, 16 
high-level (see high-level language) 
programming, 17 

language-oriented architecture (see high-level language) 
Lanigan, M. J., 26 
Lams, J., 189 
latch delay, 253 
latches, 253-255, 339 

Earle latch, 254-255 
latch overhead, 336 

latency, 5, 18 (see also execution time, performance) 
access time, 425-426 
cycle time of, 425-426 
1/0 latency (see input/output, performance, response time) 
performance measures of main memory and, 425 
throughput and, 8 

latency, I/0 (see input/output, performance, response time) 
learning curve, 54, 55 (see also yield) 
least-recently used (LRU), 411 (see also block replacement, 

least-recently used) 
Lee, R., 190 
length of vector (see vector processor, vector length) 
Levy, H., 171, 188 
limit field, 446"(see also virtual memory, page table; virtual 

memory, Intel 80286/80386 and) 
line, 408 (see also cache, blocks and) 
linear speedup, 576, 585-586, 593, 594 
Linpack (see vector processor, Linpack benchmark; 

benchmarks), 28, 45 
LISP, support for in SPARC, E-15-E-16 
literal addressing mode (see addressing mode, immediate) 
Little Endian, front endsheet, 95 
LIW (see long instruction word) 
live ranges, 113 
load and store buffers, 301-303, 308 (fig.) 
load delay, 268, 278, 290 
load interlock, 267, 269 

in MIPS II architecture, E-14 
load/store architecture, 39-42, 93, 94, 124, 337 (see also 

reduced instmction set computer; DLX) 
local address space, 446 (see also virtual memory, processes 

and) 
local area networks (LAN), 526 (see also networks) 
locality (see also memory hierarchy, principle of locality and) 

principle of (90/10 locality rule), front endsheet, 11-12, 403 
program, 26 
ofreference, 11-12, 18, 20 
spatial, 12 (fig.), 29, 403 
temporal, 12, 403 

local miss rate, 461 (see cache, miss; cache, two-level caches) 
lock/unlock operations (see synchronization) 
lock variables, 471 (see also cache, coherency, 

synchronization) 
logic 

operations, 15 
technology, 17 (fig.) 

long-haul networks, 527 (see also networks) 
long instruction word (LIW), 323, 340 

in Intel 860, E-22-E-23 
loop, 114-115 (see also loop unrolling) 

branch (see branch, loop) 
software-pipelined (see pipelining, software-pipelined loop) 

loop-carried dependences, 372 (see also vector processor, data 
dependences) 

loop unrolling, 316, 325-326, 340 
increased instruction-level parallelism with, 315-318 
superscalar DLX and, 319-320 
unrolled loop, 316-318, 320, 326, 327 (fig.) 

loosely-coupled MIMD (see multicomputer) 
low-cost design (see design, low-cost) 
lower level, 404 (see memory hierarchy; cache; memory; 

virtual memory) 
Lunde, A., 129 
LRU (see block replacement, least-recently used) 

M 

M680x0 (see Motorola Corporation) 
M88000 (see Motorola Corporation, 88000) 
macro-, 208 
MAD (see maximum areal density) 
magnetic disk (see disk, magnetic) 
mainframe, 3-4 

versus minicomputer, 499 
main memory (see memory, main) 
Manchester, University of (see University of Manchester) 
margin, gross, 64-66, 76, 85 
Mark I (University of Manchester), 24 
Mark-I, -II, -III, -IV (Harvard University), 24-25 
market, computer 

effect on design, 4, 13, 14, 15 
marketplace (see market, computer) 
Markstein, J., 130 
Markstein, P. W., 130 
Mauchly, J., 23-25, 241 

Index 

maximally encoded, 212 (see also microcode, vertical) 
maximum areal density of disks (MAD), 518-519, 561 (see 

also disk, magnetic) 
MAD formula, 518, 561 

maximum vector length (MVL), 364 (see also vector 
processor, vector length) 

Mazor, S., 188 
MBox (see Digital Equipment Corporation, VAX 8600) 
McFarland, H., 127 
McKeeman, W. M., 128 
McMahon, F. M., 78, 79 
McNamara, J.E., 81 
McNutt, B., 79 
mean 

arithmetic, 50-53, 69-70, 78 
weighted, 51, 53, 84 

geometric, 52-53, 72, 78, 83-84 
harmonic, 50, 52, 75, 78, 81 

weighted, 51 
mean time to failure (MTTF), 520 (see also input/output, 

reliability) 
mean time to repair (MTTR), 520 (see also input/output, 

reliability) 
measurements, dynamic, 139 (see also instruction set, 

measurements) 
measurements of instruction set usage (see instruction set, 

measurements) 
measurements, static, 139 (see also instruction set, 

measurements) 
media price (see cost) 
megahertz (see clock rate) 
megaFLOPS (see MFLOPS) 
memory, 5, 13, 14, 15 (see also bandwidth cache; dynamic 

random access memory; static random access memory; 
memory hierarchy; virtual memory; block identification; 
block placement; block replacement; write strategy) 

Ex.1035.778DELL



Index 

memory (continued) 
bandwidth, 257, 260, 324, 329 (see also memory, 

organization of) , 
in vector machines, 361-363, 392 

banks, 361-363 (see also memory, interleaved) 
bus, 13, 15, 18 (fig.), 29 
cell, 18 
centralized, 578 

versus distributed, 578-579 
consistency, 474 (see also cache, coherency) 

sequential, 474 
weak, 474 

deferred addressing mode (see addressing mode, memory 
indirect) 

DRAMs and, 16, 17, 29, 425-427 (see also dynamic random 
access memory) 

interleaving, 431-432 (see also memory, interleaved) 
refresh cost, 426 

hazard (see hazard) 
hierarchy (see memory hierarchy) 
indirect (memory deferred) addressing, 98 (see also 

addressing mode) 
interleaved, 429-431 

disadvantage of, 430 
DRAM-specific, 431-432 
interleaving factor, 429 

latency, access time of, 425-426 (see also latency; memory 
hierarchy, access time) 

latency, cycle time, of, 425-426 (see also latency) 
magnetic core, 25, 425 
main, 19-20, 25, 425-432 

bandwidth, 425 (see also bandwidth) 
latency, 425 (see also latency) 

mapping, 433 (see virtual memory, address translation; 
virtual memory, Intel 80286/80386 and) 

memory-mapped 1/0, 533 (see also input/output, interfacing 
to the CPU) 

memory-memory architecture (see memory-memory 
architecture) 

memory-memory vector machine, 353 (see also vector 
processor, vector machines) 

organization of, 427, 428 (fig.) (see also memory, 
interleaved; memory, wider) 

performance, 485 
CPU-DRAM performance gap, 426, 427 (fig.), 432 
increasing with DRAM-specific interleaving, 431-432 

pipeline, 259 (see also pipelining; load delay; load and store 
buffers) 

read-only (ROM), 205, 208, 239, 241-242 
future of microprogramming and, 241 

reference, 93-97, 110, 116-119, 123, 129, 134, 260, 264 
CDC 6600 and, 293 
computed, 117 
IBM 360/91, 301-303 
save/restore, 116, 118-119 

register-memory architecture (see register-memory 
architecture) 

software and, 16 
stall clock cycles, 224 
stall cycle, 224 

caches and, 416 
static random access (SRAM) (see static random access 

memory) 
virtual (see virtual memory) 
wider, 428-429 

1-17 

memory hierarchy, 19, 18-20, 22, 29-30, 402, 403-407, 484 
(fig.) (see also cache; cache, two-level caches; memory; 
virtual memory; virtual memory, transfation-lookaside 
buffer; block identification; block placement; block 
replacement; write strategy; instruction pre-fetch buffer; 
register windows) 

access time, 405-406, 420, 425-426 (see also cache, access 
time) 

average memory-access time, 405, 407 (see also cache, 
access time; cache, two~level caches) 

blocks and, 404-407 (see also cache, blocks and; memory, 
block; virtual memory, paged; block) 
block-frame address, 405 
block-offset address, 405 
fixed block size, 404, 406 
miss penalty and block size, 406 (fig.), 423 (fig.) 
variable block size, 404, 434 (see also virtual memory, 

segmented) 
cache's relationship to, 408 (see also cache) 
fallacies and pitfalls of, 480-483 
history of, 485-487 
hit, 404 (see also cache, hit) 
hit rate, 404 (see also cache, hit) 
implications of, to CPU, 407 
levels (see memory hierarchy, lower level; cache; memory; 

virtual memory) 
lower level, 404 (see also cache; virtual memory; memory) 
main memory's relationship to, 425 (see also memory) 
miss, 404 (see also cache, miss; cache, write miss; virtual 

memory, page fault) 
performance, 405-407, 485 (see also cache, performance; 

virtual memory, performance) 
principle of locality and, 403-404, 484 (see also loaclity) 

address translation and, 437 (see also virtual memory, 
translation-lookaside buffer) 

spatial locality, 403, 406, 486 (see also locality) 
cache block size and, 422, 458, 465 (see also cache, 

blocks and) 
shared data and, 469 

temporal locality, 403, 406, 486 (see also locality) 
least-recently used and, 411 (see also block 

replacement, least-recently used) 
shared data and, 469 

summary of examples of, 484 (fig.) 
thrashes and, 420 
upper level, 404-407 (see also memory; cache; virtual 

memory) 
VAX-11/780 and, 475-480 (see also cache, VAX-11/780 

and; virtual memory, VAX-11/780 and) 
average number of clock cycles per 780 instruction, 477 
miss rates for, versus DLX, 482 (fig.) 
miss rates for the V AX-11/780 TLB, 479 (fig.) 
misses per hundred instructions for the V AX-11/780 

TLB, 479 (fig.) 
overall picture of, 476 (fig.) 
physical-instruction-buffer address (PIBA), 475 
virtual-instruction-buffer address (VIBA), 475 
write buffers, 413, 416, 477, 483 

virtual memory's relationship to, 433 (see also virtual 
memory) 

memory deferred addressing mode (see addressing mode, 
memory indirect) 

memory indirect (memory deferred) addressing, 98 (see also 
addressing mode) 

memory interleaving (see memory, interleaved) 
memory, main (see memory, main) 

Ex.1035.779DELL



1-18 

memory-mapped 1/0, 533 (see also input/output, interfacing to 
the CPU) 

memory-memory architecture, 93-94, 122-124, 128-29, 134 
memory-memory vector machine, 353 (see also vector 

processor, vector machines) 
memory width (see memory, wider) 
Metcalfe, R., 560, 562 
metric, computer, 14, 18 
MFLOPS (see floating point, millions of floating-point 

operations per second) 
MHz (megahertz) (see clock rate) 
micro-, 208 
micro-architecture (see organization) 
microcode, 208, 213 (see also control, 

microprogrammed/microcoded; microprogram) 
compared to macrocode, 238 
horizontal, 212, 214, 244 
legal status of, as program, 243 
vertical, 212, 244 

microcoded control (see control, 
microprogrammed/microcoded) 

microcomputer, 3-4 
microinstruction, 208, 228 (see also microcode; control, 

microprogrammed/microcoded) 
microinstruction format, 209 

on the DLX (see control, DLX and) 
reducing hardware costs with multiple microinstruction 

formats, 211-212 
microprocessor, 4, 16, 75 (see also Cypress Corporation; Intel 

Corporation; MIPS Computer Corporation; Motorola 
Corporation; National 32032 microprocessor) 

comparison of 188-190 
Intel 80x86 (see Intel Corporation, 80x86) 
MIPS R2000 (see MIPS Computer Corporation) 
MIPS R3000 (see MIPS Computer Corporation) 
Motorola 680x0 (see Motorola Corporation) 
Motorola 88000 (see Motorola Corporation) 
SPARC (see SPARC) 
"super-", 500 

microprogram, 208, 211 (see also microcode; control, 
microprogrammed/microcoded) 

counter, 228 
DLX microprogram (see control, DLX and) 
horizontal, 212, 214, 244 
legal status of, as program, 243 
microprogram memory (see control store) 
structure of, 209 
vertical, 212, 244 

microprogrammed control (see control, 
microprogrammed/microcoded) 

microprogramming, 208, 209 
ABCs of microprogramming, 209-210 
(see also control, microprogrammed/microcoded) 

millions of floating-point operations per second (MFLOPS) 
(see floating point, millions of floating-point operations 
per second) 

millions of instructions per second (MIPS), 17, 40-42, 44, 67 
native, 42, 71, 78 
relative, 42, 72, 77-78 

MIMD computer (see multiple instruction streams-multiple 
data streams computer) 

minicomputer, 3-4 
PDP-I I (see Digital Equipment Corporation, PDP-11) 
VAX-11/780 (see Digital Equipment Corporation, VAX-

11/780) 
V AX-8600 (see Digital Equipment Corporation, VAX 8600) 
VAX 8700 (see Digital Equipment Corporation, VAX 8700) 

minicomputer (COntinued) 
versus mainframe, 499 
versus workstation, 499 

minimally encoded, 212 (see also microcode, horizontal) 
minus infinity (see infinity) 
MIPS (see millions of instructions per second) 
MIPS (see also Stanford MIPS) 
MIPS Computer Systems, Inc., 41, 68, 93, 189, 339 

MIPS II architecture, E-14 
MIPSR2000, 104, 167, 179, 189-190,289,395 
MIPSR3000,84, 167, 179, 189-190,289,492,E-2 

instruction set, E-5-E-6 

Index 

common extensions to DLX instructions, E-1 O-E-11 
unique, E-12-E-14 

MIPS R3010, A-31, A-53 (fig.), A-56, E-5-E-6 (see also 
MIPS Computer Systems, Inc., MIPS R3000) 

mirroring, 521 
MISD computer (see multiple instruction streams-single data 

stream computer) 
mispredicted branch (see misprediction penalty) 
misprediction penalty, 277, 310, 311(fig.),312-313, 328 (see 

also branch-prediction schemes) 
miss, 404 (see also cache, miss; virtual memory, page fault; 

memory hierarchy, miss) 
misses per instruction, 417 (see also cache, miss) 
miss penalty, 405 (see also memory hierarchy, miss; memory 

hierarchy, block; cache, miss; virtual memory, miss 
penalty) 

miss rate, 404 (see also cache, miss) 
MIT (Massachusetts Institute of Technology), 25 
mixed cache, 423 (see also cache) 
model for vector performance (see vector processor, 

performance, model for) 
modify bit, 443 (see also virtual memory, page table; virtual 

memory, dirty bit) 
Morse, S., 188 
MOS, 59 
Motorola Corporation 

C88000 1.8.4m14 C compiler, 83 
6809,91 
68000,93, 188 

architecture of, E-23 
interrupts on, 215 (fig.) 

88000, 167, 190,495 
architecture of, E-2 
instruction set, E-5-E-6 

common extensions to DLX instructions, E-1 O-E-11 
unique, E-17-E-19 

88100,84,492 
88200,492 

Moussouris, J., 189 
MOVC3, 219, 245-246 
MTTF (see mean time to failure) 
MTTR (see mean time to repair) 
Muchnik, S., 190 
Mudge, J. C., 81 
Multibus II, 532, 532 (fig.) (see also bus) 
multicomputer, 589, 593-594 
multicycle operations, 283 

DLX and, 284-289 
Multiflow machine, 340 
multilevel cache (see cache, two-level caches) 
multilevel inclusion property, 465 (see also cache, two-level 

caches) 
multiple functional units (see functional units, multiple) 
multiple instruction issue, 318-320, 321-325, 340 

dynamic scheduling and, 321-322 

Ex.1035.780DELL



Index 

multiple instruction streams-multiple data streams (MIMD) 
computer, 574-576, 578, 587, 591, 592, 593 

loosely-coupled MIMD (see multicomputer) 
tightly-coupled MIMD (see multiprocessor) 

multiple instruction streams-single data stream (MISD) 
computer, 573, 580 

multiple operations per instruction, 323-325, 340 
multiple-precision addition, A-11 
multiple private address spaces, 578 
multiplication (see arithmetic, multiplication, floating-point; 

arithmetic, integer) 
multiply-step instruction, A-11 (see also arithmetic) 
multiprocessor, 72-73, 574-575, 581, 589, 593-594 

caches on (see cache, coherency) 
Cm* multiprocessor, 589 
C.mmp multiprocessor, 589 
Encore Multimax multiprocessor, 589 
IBM RP3 multiprocessor, 589 
measuring performance of, 585-586 
miss rate, 468 (see also cache, coherency) 
Symmetry multiprocessor, 582-585, 589 
writes and, 468 (see also cache, coherency) 

MVL (see maximum vector length; vector processor, vector 
length) 

N 

n-way set associative (see cache) 
NaN (see not a number) 
nano-, 244 
nanocode, 244-245 
nanoinstruction, 244-245 
Namjoo, M., 190 
National 32032 microprocessor, 583 
negative infinity (see infinity) 
networks, 15 (fig.), 526-528 

ARPANET, 527, 528 (fig.), 561 
Ethernet, 526, 528, 560 
hierarchy of, 528 (fig.) 
local area network (LAN), 526-527, 528 (fig.) 
range of characteristics, 526 (fig.) 
RS232, 526, 528 (fig.) 

Newton's iteration, A-23-A-24, A-25, A-26 
New York University (NYU) Ultracomputer, 589 
nibble mode, 431 (see also memory, DRAM) 
ninety/ten rule (see locality, principle of) 
nonrestoring division, A-5 (see also arithmetic, nonrestoring) 
nonunit strides, 367 (see also vector processor, stride) 
Noonan, R., 127 
no operation (NOP), 491 

Spice miss rates with and without, 491 (fig.) 
NOP (see no operation) 
not a number (NaN), A-12-A-14, A-30 (see also arithmetic) 
not taken, 270 (see also branch, not taken) 
Nova (see Data General) 
no write allocate, 413 (see also cache, write miss) 
NuBus, 15, 561 (see also bus) 
n-way set associative (see cache) 

0 

object-code compatibility, 4 
offset address (see memory hierarchy, block) 
O'Laughlin, J., 127 
one level store (see virtual memory) 
one's complement, A-7 (see also arithmetic, signed) 

operand specifier (see addressing mode) 
operand 

naming of, 90-92 
type and size, 109-111 

operand storage, 91-92 
in memory, 92-94 

operating system, 127-129 
operations, 103 
operators (see operations) 
operating system, 13, 15 (fig.), 19 (fig.) 
operand specifier, 330-332 
Opfetch (see Digital Equipment Corporation, Opfetch) 
optical disk (see disk, optical) 
optical compact disk, 519 (see also disk, optical) 
optical write-once disk (see disk, optical) 
optimization 

global, 112, 114-115, 131 
high-level, 112, 114 
local, 114-115 
machine-dependent, 114-115 

1-19 

organization, 13 (see also memory, organizations of; memory 
hierarchy) 

organizations for improving main memory performance (see 
memory, organizations of) 

effect on design time, 16 
out of order 

completion (see out-of-order completion) 
execution (see out-of-order completion) 
interrupts, 280-282 

out-of-order completion, 287-289, 291-293, 304 
out-of-order execution, 291-292, 299-300, 339 (see also 

scoreboard; Tomasulo algorithm) 
out-of-order fetch, 458 (see also cache, miss) 
output dependence, 374 (see also vector processor, output 

dependence) 
overflow, A· 7 (see also arithmetic, exception, overflow) 
overflow, window (see register windows) 
overlap (see pipelining) 
overlapped integer and floating-point instructions, 285 
overlapped loop iterations, 308 
overlapping . 

VO (see input/output, system performance and) 
triplets, A-44, A-59 (see also arithmetic, integer, speeding 

up multiplication) 
vector processing and, 360, 389-390 

overlays, 433 (see also virtual memory, overlays) 

p 

PO, 441 (see also virtual memory, V AX-11/780 and) 
Pl, 441 (see also virtual memory, VAX-11/780 and) 
package (see also cost) 

cost of, 55, 60-62, 84 
design and, 54 

packaged system price (see cost) 
packed (see also binary-coded decimal, packed) 
packet switched approach, 527 (see also networks) 
packets, 526 (see also networks) 
packing operation, 110 
Padegs, A., 186 
page, 19, 433, 434 (see also virtual memory, page; address, 

memory) 
paged segments, 434 (see also virtual memory, page; virtual 

memory, segment) 
page fault, 19, 433 (see also virtual memory, page fault; 

interrupts, page faults and) 

Ex.1035.781DELL



1·20 

page fault (continued) 
pipelining and, 279-282 

page mode for DRAMs, 431 (see also memory, DRAM) 
page size (see virtual memory, paged, page size) 
page table, 435 (see alsG virtual memory, page table) 
page-table entry (PTE), 443 (see also virtual memory, page 

table) 
on the Intel 80286/80386, 446 
on the VAX-11/780, 443, 475 

parallelism (see also instruction, parallelism) 
in pipelining, 252, 314 
instruction-level parallelism and pipelining, 314-328, 340-

341 (see also instruction, parallelism) 
parameters, typical ranges of 

cache, 408 (fig.) 
translation-lookaside buffers, 438 (fig.) 
two-level cache, 463 (fig.) 
V AX-11/780 TLB, 443 (fig.) 
virtual memory, 433 (fig.) 

partner, 512 (see also input/output, devices) 
pass, 111, 112, 114 
Patterson, David, 130, 189, 190 
PC (see program counter; branch) 
PC (personal computer) (see Intel Corporation, 80x86; Intel 

Corporation, 8088; International Business Machines 
Corp., IBM PC) 

PDP (see Digital Equipment Corporation) 
peak performance (see vector processor, performance, peak 

performance) 
Pegasus computer, 127 
penalty for misprediction (see misprediction penalty) 
Pendleton, J., 190 
Perfect Club benchmark (see benchmark) 
performance, 5-8, 35, 36-40, 71, 502 (see also input/output, 

system performance and; bandwidth; cost/performance; 
latency; response time; throughput) 

Amdahl's Law and, 8-11 
cache (see cache, performance) 
costand,22,26, 34 
CPU and, 11, 16 (see also central processing unit, 

performance) 
design requirements and, 13-17 
"faster than," 6-7, 28 
graphics display (see graphics displays, perfonnance 

demands of) 
growth of, 3, 4 (fig.), 5, 6, 21, 28 
improving, 502-506 (see also input/output, system 

performance and) 
input/output (see input/output, performance) 
locality of reference and, 18, 20 (see also locality) 
memory hierarchy (see memory hierarchy, performance; 

memory, performance; cache, performance; virtual 
memory, performance) 

peak, 71, 74-75 
pipelining performance improvement (see pipelining, DLX 

and, performance of) 
RISC performance advantage (see reduced instruction set 

computer, performance advantage of) 
"slower than," 7 
system, 35 (see also input/output, system performance and) 
vector processor (see vector processor, performance) 
virtual memory (see virtual memory, performance) 

peripheral, 499 (see also input/output, devices; disk, magnetic; 
graphics displays; networks; bus) 

personal computer (PC), 560 (see also Intel Corporation, 
80x86; Intel Corporation, 8088; International Business 
Machines Corp., IBM PC) 

personal computer (continued) 
versus workstation, 500 

Pfister, G. F., 589 
phase, 112 (see also pass) 
phase-ordering problem, 111-112 
Phister, M., 81 
physical addresses, 433 (see also virtual memory, address 

translation) 
physical-instruction-buffer address (PIBA), 475 (see also 

memory hierarchy, VAX-111780 and) 
PIBA (see physical-instruction-buffer address) 
PID, 460 (see also process-identifier tag) 
pin grid array (PGA), 60, 84 (see also package) 
pipeline, 8, 22, 25, 251 (see also pipelining) 
pipelined bus, 530 (see also bus) 
pipelined machines, 352 
pipelined mode, E-21 

in Intel 860, E-20-E-22 
pipeline hazard (see hazard, data) 
pipeline hazard detection (see hazard, detection) 
pipeline interlock, 265-267, 339 (see also load interlock) 

DLX and, 267-268 
pipeline reservation tables, 256, 339 

Index 

pipeline scheduling, 114, 119, 267-268, 315-317, 339 (see also 
optimization; dynamic scheduling) 

pipeline speedup, 258-259, 277 
pipeline stall, 257-259, 265-266, 278, 285, 290 (fig.) 

branch delay and, 273-278 
control hazard and, 269-27i, 270 (fig.) 
vector machines and, 352, 357-358 

pipeline throughput (see pipelining, speedup) 
pipelining, 251-349 

balance among stages, 252 
balance in issue, 320 
clock cycles and, 351 
depth of a pipeline, 253, 258, 336, 339 
difficulties in implementation, 278-284 

dealing with interrupts, 279-282 
instruction set complications, 282-284, 334-335 

DLX and, 252-257, 270, 252-257, 278-282, 300, 301 (fig.) 
floating-point, 260, 284-290, 299-300 
integer, 252-278 
performance of, 278, 290 
superscalar DLX (see superscalar) 

dynamic hardware prediction, 307-314 (see also branch
prediction schemes) 

multiple instruction issue and, 321-322 
dynamic scheduling, 291, 290-307, 340 

multiple instruction issue and, 321-322 
scoreboard approach (see scoreboard) 
Tomasulo algorithm (see Tomasulo algorithm) 

hazards of (see hazard) 
instruction-level parallelism, 314-328, 340-341 

dynamic scheduling and, 321-322 
loop unrolling and, 315-318 
software pipelining and, 325-328 
superscalar machines and, 318-320 
trace scheduling and, 325-328 
VLIW approach and, 322-325 

Intel 860 and, E-21 
making the pipeline work, 255-257 
performance of, 278, 290 
software for, 325-328, 340 
software-pipelined loop, 325, 327 (fig.) 
speedup,251-253,289 
superscalar DLX (see superscalar) 
timing of instructions, 254, 260 (see also pipeline speedup) 

Ex.1035.782DELL



Index 

pipelining (continued) 
VAX 8600 and, 328-334 

dealing with interrupts, 332-334 
handling data dependences, 331 
handling control dependences, 331-332 
operand decode and fetch, 330-331 

writes and (see write result in a pipeline) 
pipe segment, 251 
pipe stage, 251-253, 255-256, 285 
Pitkowsky, S. H., 78 
pixel instructions of Intel 860 (see graphics instructions) 
pixels, 521 (see also graphics displays) 
PLA (see programmed logic array) 
placement, block (see block placement) 
plastic quad flat pack (PQFP), 60 (see also package) 
plus infinity (see infinity) 
Pohlman, W., 188 
polling, 534 (see also input/output, interfacing to the CPU) 
pollution point, 406 (see also memory hierarchy, block; cache, 

blocks and) 
position-independence, 105 
positive infinity (see infinity) 
precise interrupts (see interrupts, precise) 
precision (see arithmetic, precision) 
Precision (see Hewlett-Packard, Precision) 
predicting system performance (see input/output) 
prediction of branching (see branch-prediction schemes) 
prediction accuracy (see branch-prediction schemes, prediction 

accuracy) 
predict-not-taken (see branch-prediction schemes, predict-not

taken) 
predict-taken (see branch-prediction schemes, predict-taken) 
present bit, 446 (see also virtual memory, page table; virtual 

memory, Intel 80286/80386 and) 
price (see cost) 
primitive, 121 
Princeton University Institute for Advanced Study (IAS), 24 
principle oflocality, 403 (see also locality; memory hierarchy, 

principle of locality and) 
procedure call/return, 73, 81, 103-105, 108-109, 114, 116, 137 

fallacies and pitfalls, 124-125 
procedure inlining (see procedure integration) 
procedure integration, 112, 114-115 
process, 438 (see also virtual memory, processes and) 
process-identifier tag (PID), 460 (see also cache) 
processing 

parallel, 22, 26 (see also parallelism) 
sequential, 26 

processor, 199, 211 (see also central processing unit) 
computation and, 201 
controland,201,204,214 
datapath and, 201 
special-purpose, 580 

processor-memory-switch level (see organization) 
process segments, 441 (see also virtual memory, V AX-11/780 

and) 
process switch, 438 (see also virtual memory, processes and) 
producer-server model (see input/output, performance) 
program 

behavior (see instruction-prefetch buffer; register windows) 
benchmarks (see benchmark) 
of channel (see channel program) 

program counter (PC), 105 
PC (program counter)-relative addressing, 97-98, 104-106 
PC (program-counter)-relative branches (see branch) 
VAX 8600 and, 332 

programmable read-only memory (PROM), 63 

programmed logic array (PLA), 205-206, 230, 232 
PROM (see programmable read-only memory) 
propagate, A-32-A-33 (see also carry-propagate adder; 

arithmetic) 
protection, 432 (see also virtual memory, protection schemes 

of; virtual memory, Intel 80286/80386 and) 
protocols 

coherency (see cache, coherency) 
networks and, 527 (see also networks) 
multiprocessors and (see cache, coherency) 

Przybylski, S., 189 
PTE (see page-table entry) 
Puzzle (see benchmarks, toy) 

Ql (see block placement) 
Q2 (see block identification) 
Q3 (see block replacement) 
Q4 (see write strategy) 

Q 

questions for classifying memory hierarchies (see block 
identification; block placement; block replacement; write 
strategy) 

Quicksort (see benchmarks, toy) 
queueing delay, 516 (see also disk, magnetic) 
queues,321,340 

R 

Radin, G., 189 
RAID (redundant arrays of inexpensive disks) (see disk array) 
random, 411 (see also block replacement, random) 
ranges of parameters (see parameters, typical ranges of) 
RAR (see read after read) 
RAS (see row-access strobe) 
raster, 521 (see also graphics displays) 
raster cathode ray tube (CRT) display, 521 (see also graphics 

displays) 
raster refresh buffer, 521 (see also graphics displays) 
Ravenal, B., 188 
RAW (see read after write) 
RAW hazard (see hazard, RAW) 
read after read (RAR), 265 
read after write (RAW), 264 (see also hazard, RAW) 
read miss rate, 416 (see also cache, reads and; cache, miss) 
read-only memory (ROM), 205, 208, 239, 241-242 

future of microprogramming and, 241 
read-only protection, 440 (see also virtual memory, protection 

schemes of) 
read-only storage (see read-only memory) 
read-write head, 516 (see also disk, magnetic) 
recurrence, 373 (see also vector processor, data dependences) 
recursive doubling, 382 (see also vector processor, vector 

reduction) 
reduced instruction set computer (RISC), 130, 131, 132, 188-

190, 337, 339-340 (see also International Business 
Machines Corp., IBM 801; MIPS Computer Corporation) 

architecture, survey of, E-l-E-24 
addressing mode, E-2 
arithmetic and logical instructions, E-5 
conditional branch of RISC, E-8 
constant extension, E-4 
control-flow instructions, E-6 
data transfer, E-5 
floating-point instructions, E-6 
instruction format, E-3 
integer multiply and divide, E-8-E-9 

Ex.1035.783DELL



1·22 

reduced instruction set, architecture (continued) 
Berkeley, 189 
performance advantage of, 189 

reducing branch penalties (see branch-prediction schemes) 
Redmond, K. C., 25 
reduction 382 (see also vector processor, vector reduction and) 
redundant, A-42 (see also arithmetic, integer, speeding up 

division, shifting over zeros) 
redundant arrays of inexpensive disks (see disk array) 
reference bit, 436 (see also block replacement, least-recently 

used) 
refresh, 426 (see also memory, DRAM) 
refresh rate, 521 (see also graphics displays) 
register, 19, 20, 22, 90-94 

allocation, 108-109, 112-144, 115-119, 130 
caches versus, speed of, 483 
DEC VAX, 143-144 
DLX, 161-162 
file, 324 
field, 102-103 
general-purpose register (GPR) architecture, 91-94, 127-128 

comparison of, 93-94 
hazard (see hazard, register) 
IBM 360, 148-150 
Intel 8086, 153-155, 154 (fig.) 
machine (see register, general-purpose register architecture) 
register-memory architecture (see register-memory 

architecture) 
renaming, 307, 339, 340 

antidependences and output dependences and, 374-375 
register deferred (indirect) addressing, 98 (see also 

addressing mode) 
register-indexed (RX) (see International Business Machines 

Corp., IBM 360, instruction set) 
register-register (RR) (see International Business Machines 

Corp., IBM 360, instruction set) 
register-register architecture (see register-register 

architecture) 
register-storage (RS) (see International Business Machines 

Corp., IBM 360, instruction set) 
result status, 295, 296 (fig.), 297 (fig.), 302-303 
set, 91, 118-119 
shadow (see shadow registers) 
tags, 303-306 
vector (see vector processor, registers) 
vector-length (see vector processor, vector length) 
vector-mask (see vector processor, vector-mask registers) 
windows (see register windows) 

register-memory architecture, 93-94, 128 
register-memory instruction, 39-40 

register-register architecture, 93-94 (see also load/store 
architecture) 

register-storage architecture (see register-memory architecture; 
International Business Machines Corp., IBM 360, 
instruction set) 

register windows, 450-454, 484 (fig.), 487, E-15 
benefits of, on DLX, 453 (fig.) 
load and store benefits, 453 (fig.) 
number of versus overflow rate, 451 (fig.) 
pros and cons of, 453-454 
summary of, 484 (fig.) 

reliability, 520 (see also input/output, reliability) 
relocation, 433 (see also virtual memory, relocation and) 
REM, A-26-A-28, A-53 (see also arithmetic, remainder) 
remainder (see arithmetic, remainder) 
Remington-Rand Corporation, 25 
replacement, block (see block replacement) 

Index 

requested protection level, 448 (see also virtual memory, 
protection schemes of; virtual memory, Intel 80286/80386 
and) 

requirements, functional, 13-14, 15 (fig.) 
reservation stations, 300-308, 321 
resources 

allocation of, 8, 11 
pipelines and, 255-257, 287 
VLIW approach and, 323 

response time, 6, 22, 506 (see also execution time; 
performance; input/output, performance, response time) 

definition of, 5 
restartable, 218-220, 240, 279-282 
restoring division (see arithmetic, division, integer, restoring) 
result buffer, 263 
result store, 330 (fig.), 331 
return (see procedure call/return) 
rings, 440 (see also virtual memory, protection schemes of) 
ripple-carry adder, A-2 (see also arithmetic, integer, ripple-

carry addition) 
Riordan, T., 189 
RISC (see reduced instruction set computer) 
RISC-I and RISC-II, 189, 190 
Riseman, E. M., 129 
ROM (see read only memory) 
rotational positional sensing (RPS), 551 (see also disk, 

magnetic, IBM 3990 storage subsystem and) 
rotation delay, 516 (see also disk, magnetic) 
rotation latency, 516 (see also disk, magnetic) 
rounding (see arithmetic, rounding and) 
rounding modes, A-13 (see also arithmetic, rounding and) 
row-access strobe (RAS), 425 
Rowan, C., 189 
row-major order, 366, 367 (fig.) 
RPS (see rotational positional sensing) 
RPS miss, 552 (see also disk, magnetic, IBM 3990 storage 

subsystem and) 
RR (see register-register) 
RS (see register-storage) 
RS232, 526 (see also networks) 
rules of thumb, front endsheet (see also Case/Amdahl rule of 

thumb) 
2: 1 cache rule, front endsheet 
90/l 0 locality rule, front endsheet 
90/50 branch-taken rule, front endsheet 
address-consumption rate, front endsheet 
Amdahl/Case rule, front endsheet 
disk-growth rate, front endsheet 
DRAM-growth rule, front endsheet 

RX (see register-indexed) 

s 
S810/20 (see Hitachi S810/20) 
safe calls from user to OS gates, 448 (see also virtual memory, 

Intel 80286/80386 and) 
Saji, K., 81 
Samples, D., 189 
SAXPY (see vector processor, Unpack benchmark) 
scalability, 574, 585 
scalar expansion, 382 (see also vector processor, vector 

reduction and) 
scalar variable, 116 

global, 116, 119 
scaled (index) addressing, 98 (see also addressing mode) 
scatter, 380 (see also vector processor, sparse matrices and) 

Ex.1035.784DELL



Index 

scatter-gather, 380 (see also vector processor, sparse matrices 
and) · 

scheduling, 268 (see also branch, scheduling, branch-delay 
scheduling; dynamic scheduling; instruction scheduling; 
pipeline scheduling) ' 

scheduling the branch-delay slot (see branch-delay slot) 
scheduling effectiveness, 268, 276, 278 
schemes for branch-prediction (see branch-prediction schemes) 
Schwartz, J. T., 130, 589 
scoreboard, 291-299, 398-399, 346 

components of, 296 (fig.) 
dynamic scheduling around hazards with a scoreboard, 291-

299 
hazard detection, 293 (see also hazard, detection) 
instruction issue, 293 (fig.) 
tables, 296-298 (figs.) 

scoreboard approach (see scoreboard) 
scoreboarding, 292 (see also scoreboard) 
SCRAM (see static column DRAM) 
SCSI (see small computer systems interface) 
sectors, 515 (see also disk, magnetic) 
seek, 516 (see also disk, magnetic, seeks and) 
seek time, 516 (see also disk, magnetic, seeks and) 
segment, 433, 434 (see also virtual memory, segment) 
segment descriptor, 446 (see also virtual memory, page-table) 
self-modifying code, 335 
semantic clash, 124 
semantic gap, 124, 129 
semaphore (see synchronization) 
set associative (see also cache, set associative) 
Sequent Corporation, 583 

Balance 8000, 583 
Balance 2100, 583 
Symmetry multiprocessor, 582-585, 589 (see also 

multiprocessor) 
sequential consistency, 474 (see also cache, coherency) 
sequential processing (see processing, sequential) 
shadow registers, 246 
shadowing, 521 
shared caches (see cache, coherency) 
shared memory (see virtual memory, shared; virtual memory, 

Intel 80286/80386 and) 
shared-memory processor, 574-575, 578-579, 589, 591, 592 
shifting over zeros, A-40 (see also arithmetic, integer, speeding 

up division, shifting over zeros) 
short-circuiting, 261 (see also forwarding) 
Shurkin, J., 25 
Shustek, L. J., 138, 172-173, 185, 187 
SI (see storage-immediate) 
Sieve Of Erastosthenes (see benchmarks, toy) 
signal 

delay, 18 
propagation, 18 

sign-magnitude, A-7 (see also arithmetic, signed) 
signed-digit representation, A-48 (see also arithmetic, signed) 
signed-logarithm representation, A-65 (see also arithmetic, 

signed) 
signed numbers (see arithmetic, signed) 
SIMD computer (see single instruction stream-multiple data 

stream computer) 
simulate the execution (see execution, simulation) 
single instruction stream-multiple data stream (SIMD) 

computer, 572-574, 578, 589, 592. 593 
single level store, 432 (see also virtual memory) 
Slater, R., 25 
Slotnick, D. L., 589 
slots (see branch-delay slots; load delay) 

1·23 

small computer systems interface (SCSI), 15, 532 (fig.), 560-
561 (see also bus) 

Smalltalk, support for in SP ARC, E-15-E-16 
Smith, A., 486, 489 
Smith, J. E., 79 
Smith, T. M., 25 
snoop, 467 (see also cache, coherency) 
snooping, 467 (see also cache, coherency) 
Snoopy cache (see cache, coherency) 
software, 16-17 (see also balance, software and hardware) 
software pipelining (see pipelining, software) 
software-pipelined loop (see pipelining, software-pipelined 

loop) 
solid state disks (SSDs), 519 (see also dynamic random access 

memory) 
source code (see code, source) 
SPARC, 167, 190 

architecture, 190 
instructions, E-5-E-6 

common extensions to DLX instructions, E-1 O-E-11 
unique, E-15-E-17 

summary of, E-2 
SPARCstation 1 (see SP ARC) 
sparse matrices (see vector processor, sparse matrices and) 
spatial locality, 403 (see also locality; memory hierarchy, 

principle of locality and; locality) 
SPEC (System Performance Evaluation Cooperative) (see 

benchmark programs) 
special-purpose processor (see processor, special-purpose) 
speed-matching buffer, 540, 549 (see also input/output) 
speedup,9-11,20,26,28,29 

definition of, 9 
enhanced, 10 
overall, IO 

Spice program, 12, 44, 45, 67, 69, 70, 72, 79, 83, 86 
spin lock, 473 (see also cache, coherency, synchronization) 
spin waiting, 472 (see also cache, coherency, synchronization) 
split transactions, 530 (see also bus) 
square root (see arithmetic, square root) 
SRAM (see static random access memory) 
SRT division, A-40, A-41, A-42, A-51, A-53, A-56, A-59 (see 

also arithmetic, integer, speeding up division, shifting 
over zeros) 

SS (see storage-storage) 
SSD (see solid state disks) 
stack, 98, 114, 116-118, 124-125, 127, 131, 134, 136 (see also 

stack architecture) 
alignment of, 124 
height reduction, 114 (see also optimization) 

stack architecture, 90-92, 127 
stale data, 466, 535-537 (see also cache; virtual memory; 

input/output) 
stall, 213-214 (see also memory stall cycles) 
stall, pipeline (see pipeline stall) 
standards 

bus (see bus, standards) 
Stanford MIPS, 189 (see also MIPS Computer Systems Inc.) 
start-up time 358 (see also vector processor, start-up time) 
state-assignment problem, 206 
states, 201, 204-206 (see also finite state diagram) 

clock cycles and, 224-225, 228 
DLX and, 205, 221-224 (figs.), 225 
interrupts and, 216, 218-219 
PLA and, 206 

static column DRAM, 431 (see also dynamic random access 
memory, static column; memory, DRAM) 

static measurements (see instruction set, measurements, static) 

Ex.1035.785DELL



.1·24 

static random access memory (SRAM), 426, 431 (see also 
dynamic random access memory; memory) 

capacity of, 426 
cost versus access time of, 518 (fig.) 
cycle time of, 426 

static scheduling, 267, 274-275, 290-291, 315-317 (see also 
dynamic scheduling) 

versus dynamic scheduling, 321, 340, 349 
versus Tomasulo algorithm, 307 

Stem, N., 24 
sticky, A-30 
sticky bit, A-17-A-18, A-23, A-59 
storage (see memory; disk; disk, magnetic; input/output) 
storage director, 549 (see also disk, magnetic, IBM 3990 

storage subsystem and) 
storage hierarchy (see memory hierarchy) 
storage-immediate (SI) (see International Business Machines 

Corp., IBM 360, instruction set) 
storage-storage (SS) (see International Business Machines 

Corp., IBM 360, instruction set) 
storage-storage architecture (see memory-memory architecture) 
storage subsystem, IBM (see disk, magnetic, IBM 3990 storage 

subsystem and) 
stored-program computer, 23-25 
store in, 413 (see also cache, write back) 
store through, 413 (see also cache, write through) 
Strapper, C.H., 81 
strategy for writes (see write strategy) 
Strecker, W.W., 130 
Strecker (see Bell, C. G. and W. D. Strecker) 
strength reduction, 114 (see also optimization) 
Stretch (see International Business Machines Corp. IBM 7030) 
stride, 367 (see also vector processor, stride) 
string operations, 15 
string operators, 103 
strip mining, 364-365 
subblock placement, 456 (see also cache, subblocks) 
subblocks, 456 (see also cache, subblocks) 
subexpression (see common subexpression elimination) 
summary of memory hierarchy examples, 484 (fig.) 
Sumner, F. H., 26 
Sun Microsystems (See also SP ARC) 

1.2 FORTRAN compiler, 83 
C compiler, 83 
FORTRAN 77 compiler, 82 

supercomputer, 3-4, 500 
CRA Y-1 (see Cray Research machines, CRA Y-1) 
CRA Y-2 (see Cray Research machines, CRAY-2) 
CRAY X-MP (see Cray Research machines, CRAY X-MP) 
CRAY Y-MP (see Cray Research machines, CRAY Y-MP) 
Fujitsu (see supercomputer, Japanese) 
l/O and (see input/output, supercomputers and; disk, 

magnetic, I/O benchmarks for) 
Japanese, 353, 390, 394 
NEC SX-2 (see supercomputer, Japanese) 

supercomputer I/0 benchmarks (see input/output, 
supercomputers and; disk, magnetic, I/0 benchmarks for) 

"super-microprocessor", 500 
superpipelined, 337, 340-~41 
superscalar DLX (see superscalar, DLX) 
superscalar 

DLX, 318-320, 325 
instruction issue, 318-320 
instruction level parallelism, 318-320 
in Intel 860, E-22-E-23 
loop unrolling and, 319-320 
machines, 318-320, 340-341, 573, 581 

pipeline on, 319 (fig.) 
processor, 337-338 
structural hazards and, 319 

superscalar machines, 318 (see also superscalar) 
superscalar pipeline (see superscalar) 
superscalar processor, 337 (see also superscalar) 

Index 

supervisor process, 440 (see also virtual memory, processes 
and) 

sustained performance (see vector processor, performance, 
sustained performance) 

sustained rate (see vector processor, sustained rate) 
Sutherland, I., 521, 561, 563 
SYMBOL Project, 129, 132 
Synapse N+l, 471, 487 
synchronization, 471 (see also cache, coherency) 
synchronous bus, 530 (see also bus) 
synonyms, 460 (see also aliases) 
synthetic benchmark (see benchmark, synthetic) 
system CPU time (see central processing unit, CPU time, 

system) 
system mode, 440 (see also virtual memory, protection 

schemes of) 
system operators, 103 
system performance, 35 (see also performance; input/output, 

system performance and) 
system response time, 508 (see also input/output, performance, 

response time) 
system segments, 441 (see also virtual memory, VAX-11/780 

and) 
systolic architecture, 580, 591 
systolic array, 580, 590 (see also array) 

T 

tag field, 410 (see also cache) 
Tagged architecture (see SP ARC) 
tagging of data, 307, 339 
taken branch, 270 (see also branch, taken) 
Taylor, G., 189 
technology (see design, computer; disk; implementation; logic) 
temporal locality, 403 (see also locality; memory hierarchy, 

principle of locality and) 
terminal network, 526 (see also networks) 
test and set, 473 (see cache, coherency, synchronization) 
TeX,45,67,69,70,79,80,86 
Texas Instruments 

8847, A-26, A-53 (fig.), A-57 
Thacker, C., 487, 490, 560, 563 
Thadhani, A., 560, 563 
think time, 508 (see also input/output, transactions and) 
thrash, 420 (see also memory hierarchy; cache) 
"three Cs" (see cache, miss) 
three-operand format, 93-94 
throughput, 5-6, 22 

latency and, 8 
I/0 and, 500-501 (see also input/output, performance, 

throughput) 
of pipeline (see also pipelining, speedup) 

TI (see Texas Instruments) 
ticks (see clock cycles) 
tightly-coupled MIMD (see multiprocessor) 
Timebest of CPU and l/O overlapped, 503-505 (see also 

input/output, system performance and) 
time distributions (see instruction set, measurements) 
Timescaled of CPU and I/O overlapped, 503-504 (see also 

input/output, system performance and) 
timesharing, 575 

Ex.1035.786DELL



Index 

Timeworst of CPU and 1/0 overlapped, 503-505 (see also 
input/output, system performance and) 

timing of instructions (see pipelining, timing of instructions) 
TLB (see virtual memory, translation-lookaside buffer) 
TLB instruction, E-12 
Tomasulo algorithm, 299-307, 339 (see also dynamic 

scheduling) 
DLX and, 301 (fig.)-307 
hazard detection and, 300, 304 (see also hazard, detection) 
versus static scheduling, 307 

toy benchmark (see benchmark, toy) 
TP (see transaction processing) 
TP-1, 510, 511 (fig.) (see also benchmark; disk, magnetic, 1/0 

benchmarks for) 
TPI (see clock cycles per instruction) 
trace, 326 
trace compaction, 326 
trace scheduling, 323, 326, 325-328, 340 

VLIW and, 326 
trace selection, 326 
tracks, 515 (see also disk, magnetic) 
tradeoffs (see balance) 
traffic ratio, 491, 567 
transaction, 508 (see also input/output, transactions and) 
transaction processing (TP), 14, 15, 511 (see also input/output, 

transaction; disk, magnetic, 1/0 benchmarks for) 
transaction processing 1/0 benchmarks (see also disk, 

magnetic, 1/0 benchmarks for) 
transaction time, 508 (see also input/output, transaction and) 
transfer, 104 (see also branch) 
transfer time, 516, 405 (see also memory hierarchy, miss; disk, 

magnetic) 
translation-lookaside buffer (TLB), 437 (see also virtual 

memory, translation-lookaside buffer) 
Transputer-based multicomputer, 589 
traps, 216 (see also interrupts) 
trivia, front endsheet 
Trojan horses, 445 (see also virtual memory, protection 

schemes of) 
true data dependence, 374 (see also vector processor, data 

dependences) 
Tuck, R., 190 
Tucker, S., 242 
two-bit prediction, 309-310 (see also branch-prediction 

schemes) 
two-level cache (see cache, two-level caches) 
two-operand format, 93 
two's complement, A-5, A-7-A-9, A-18-A-19 
two-to-one cache rule, front end sheet 
typical parameters (see parameters, typical ranges of) 
typical program, 183 

u 
Ultrix C compiler, 68 
unbiased exponents, A-14 (see also arithmetic, exponents and) 
unconditional branches (see jump) 
underflow (see arithmetic, exceptions, underflow) 
underflow trap (see arithmetic, exceptions, underflow) 
underflow, window (see wiµdow registers) 
underpipelined, 337, 344 
unfair benchmarks, 490 (see also benchmark) 
Ungar, D., 189 
Unibus (see bus, Unibus) 
unified, 423 (see also cache) 
uniprocessor, 72-73 
UNIVAC I, 241 

UNIVAC I, 25, 26 
University of Illinois Cedar project, 589 
University of Manchester, 24, 485 
University of Pennsylvania Moore School, 23-24 
UNIX, 4, 15 (see also operating system) 

1·25 

unlock, 472 (fig.) (see also cache, coherency, synchronization) 
unpacked, A-14 (see also binary-coded decimal, unpacked) 
unpacking operation, 110 
umolled loop (see loop umolling) 
untaken branch, 270 (see also branch, not taken) 
upper level, 404 (see also memory hierarchy; cache; memory; 

virtual memory) 
usage (see instruction set, measurements) 
use bit, 436 (see also block replacement, least-recently used) 
useful slots, 276 (see also branch-delay slots) 
user code (see code, user) 
user CPU time (see central processing unit, CPU time, user) 

v 
valid bit, 410, 443 (see also cache, blocks and; virtual memory, 

page table) 
VAX (see Digital Equipment Corporation, VAX) 
V AXstation (see Digital Equipment Corporation, VAX) 
VAX units of performance (VUP), 78 
vector, 352 (see also vector processor) 

mode, 28 
operations, in Intel 860, E-20 
processor, 25 
rate, 28 

vector architecture (see vector processor, architecture of) 
vector functional units (see vector processor, functional units) 
vectorization, percentage of, 28 
vector length (see vector processor, vector length) 
vector-length register (VLR), 364 (see also vector processor, 

vector length) 
vector-mask control, 379 (see also vector processor, vector

mask control) 
vector-mask register, 379 (see also vector processor, vector

mask register) 
, vector processor, 351-401 

advantage, 352 
antidependences, 374-375 
architecture, 353-358 
chaining and, 377-378 
compilers and, 371-377 (fig.) (see also hazard) 
completion rate, 358 
component, 353-354 
conditionally executed statements and, 379-382 
data dependences, 360, 371-377, 395 (see also 

antidependences; output dependences) 
Banerjee test, 374 
GCD test, 373 
loop-carried dependences, 372-373 
RAW hazard, 374 (see also vector processor, true data 

dependence) 
recurrence, 373 
sparse matrices and, 380-381, 382 
true data dependence, 374 
WAR hazard, 374 (see also antidependence) 
WA W hazard, 37 4 (see also output dependence) 

DAXPY (see vector processor, Linpack benchmark) 
dependences (see vector processor, antidependences; vector 

processor, data dependences; vector processor, output 
dependences) 

DLXV, 353-363, 383-390 
initiation rate, 358 

Ex.1035.787DELL



1·26 

vector processor, DLXV (continued) 
start-up time of, 358, 361 (fig.) 
stride and, 368 
vector instructions, 356 (fig.) 
vector length and, 364-365 

effectiveness (see ve<;tor processor, performance) 
fallacies and pitfalls of, 390-392 
functional units, 354 
Flynn bottleneck and, 351 
history of, 393-395 
improving performance, 377-382, 388-390 

by chaining, 377-378 
with conditionally executed statements and sparse 

matrices, 379-382 
by vector reduction, 382 
with multiple memory pipelines, 388-390 

initiation rate, 358-363 
chaining and, 378 

Linpack benchmark, 357 
DAXPY loop, 357 
SAXPY loop, 357, 360, 384, 388 

in FORTRAN, 364 
memory banks and, 361-363 

memory bank conflicts, 368 
mod bank number, 362 
output dependences, 374 
overlap, 360, 389-390 
peak (see vector processor, performance, peak performance) 
performance, 375-377 

improving (see vector processor, improving performance) 
analyzing, 369-371, 383-390 
evaluating (see virtual processor, performance, analyzing) 
model of, 369-371 
length-related measures, 384 
memory bandwidth and, 392 
peak performance, 385-386, 390-391 
SAXPY performance, 388-390 
scalar performance comparison, 391-392 
sustained performance, 386-388 

reduction (see vector processor, vector reduction) 
registers, 353, 354 

renaming, 374-375 
vector, 354 (fig.) 
vector-length register (see vector processor, vector length) 
vector-mask register (see vector processor, vector-mask 

register) 
SAXPY (see vector processor, Linpack benchmark) 
sparse matrices and, 380-382 

gather, 380, 393 
index vector, 380-381, 382 
scatter, 380, 393 
scatter-gather, 380, 381 

start-up time, 358-361, 390 
early vector machines and, 390 
start-up penalties on the DLXV, 361 (fig.) 

stride, 367, 366-369 
nonunit strides, 367, 393 

sustained rate, 360, 378, 385, 386-388 
scalar machines and, 392 
Japanese supercomputers and, 390 

vector reduction and, 382 
vector length 364-366, 384 

maximum vector length (MVL), 364, 379 
vector-length registers (VLR), 364 

vector machines, 22, 352-353, 355 (fig.), 390-395, 581 
memory-memory vector machine, 353, 390-391, 393 
start-up times and, 390 

vector processor, vector machines (continued) 
vector register machine, 353, 364 

vector-mask control, 379 
vector-mask register, 379-380 
vector reduction and, 382-383 

recursive doubling, 382-383 
scalar expansion, 382 

vector stride (see vector processor, stride) 

Index 

vector reduction (see vector processor, vector reduction and) 
vector register machine, 353 (see also vector processor, vector 

machines) 
vector registers (see vector processor, registers) 
vector stride (see vector processors, stride) 
vertical microcode (see microcode, vertical) 
vertical microinstruction (see microcode, vertical) 
very long instruction word (VLIW), 318, 323, 322-325, 337-

338, 573, 580 
instructions, 323 
trace scheduling and, 326 

VIBA (see virtual-instruction-address buffer) 
video DRAM, 524 (see also graphics displays) 
video look-up table, 523 (see also graphics displays) 
virtual addresses, 433 (see also virtual memory, address 

translation) 
virtual cache, 460 

anti-aliasing, 460 
virtual DMA, 537 (see also input/output, DMA and) 
virtualcinstruction-buffer address (VIBA), 475 (see also 

memory hierarchy, V AX-11/780 and) 
virtual memory, 14, 19, 26, 103, 127, 129, 432-449, 484 (fig.) 

(see also cache; memory; memory hierarchy; block 
identification; block placement; block replacement; write 
strategy) 

address translation, 433, 435, 436 (fig.), 440, 442-443, 460 
(see also virtual memory, translation-lookaside buffer) 

techniques for fast address translation, 437-438 
on the VAX-11/780, 442-443 

block (see virtual memory, page; virtual memory, segment) 
block information (see block information, virtual memory) 
block placement (see block placement, virtual memory) 
block replacement (see block replacement, virtual memory) 
cachesand,434,438 
differences between caches and, 434 
dirty bits and, 436, 438 
DMAand, 537 
Intel 80286/80386 and, 445-449 

attributes field, 446 
bounds checking on, 446 
memory mapping on, 446 
page-table entry of, 446 
protection on, 446, 448-449 
safe calls from user to OS gates, 448 
segment descriptor of, 447 (fig.) 
sharing on, 446-447 

miss penalty, 434 
overlays, 433 
paged,433,434 

internal fragmentation and, 437 
page size, 437 
versus segmentation, 434, 435 (fig.), 441 

page fault, 433, 434, 436 (see also cache, miss, "three Cs") 
page table, 435, 437 

conserving memory with, 442-443 
page-table entry (PTE) on the V AX-11/780, 443, 475 
page-table entry /segment descriptor of the Intel 

80286/80386, 446 

Ex.1035.788DELL



Index 

virtual memory (continued) 
parameters, typical, 433 (fig.) (see also parameters, typical 

ranges of) 
processes and, 438-439 (see also virtual memory, protection 

schemes of) 
address space, 432 
user, kernel and supervisor processes, 440 

protection schemes of, 432-433, 439-441, 443, 446-449 (see 
also virtual memory, Intel 80286/80386 and, protection 
on) 

base register, 439 
bound register, 439 
read-only protection, 439 
rings of security levels, 440 
Trojan horses and, 445, 447 

relocation and, 433, 434 
segmented, 433, 434 

fallacy of, 483 
versus paging, 434, 435 (fig.), 441 

shared,433,445-446 
stale data and (see stale data) 
summary of, 484 (fig.) 
translation-lookaside buffer (TLB), 437-438, 484 (fig.) 

parameters typical of, 438 (fig.) (see also parameters, 
typical ranges of) 

miss rates for the VAX-11/780 TLB, 479 
misses per hundred instructions on the V AX-11/780, 479 
on the V AX-11/780, 443 (fig.), 444-445, 475 
summary of, 484 (fig.) 
TLB instruction-stream miss rate, 478 

V AX-11/780 and, 441-445, 448-449 (see also cache, VAX-
11/780 and; memory hierarchy, V AX-11/780 and) 
area PO, 441 
area Pl, 441 
miss rates for the V AX-11/780 TLB, 479 
misses per hundred instructions on the V AX-11 /780, 4 79 
operation of the V AX-11/780 TLB, 444 (fig.) 
page-table entry (PTE) on the V AX-11/780, 443, 475 
parameters typical of, 443 (fig.) (see also parameters, 

typical ranges of) 
process segments of, 441 
system segments of, 441 

writes and (see write strategy, virtual memory and) 
VLIW (see very long instruction word) 
VLR (see vector-length register; vector processors, vector

length) 
VME bus, 532, 532 (fig.) (see also bus) 
VMS 

C compiler, 68 
fort (FORTRAN compiler), 68 

von Neumann, J., 23-24 
"von Neumann syndrome", 587 

wafer, 55-57, 59 
chips per, 59, 84 
cost of, 59-60, 62 
dies per, 59, 61-62 
photographs of, 56-57 
yield,59-60, 62, 84, 85 

wait states, 224 
Wakerly, J., 188 
Wallace, J. J., 79 

w 

Wallace tree, A-46, A-47, A-59 (see also array multiplier; 
arithmetic) 

WAR (see write after read) 

Ward, S., 561 
Waters, F., 190 
WA W (see write after write) 
WCS (see writable control store) 
weak consistency, 474 (see also cache, coherency) 
weighted means (see mean) 
Weitek 3364, A-53 (fig.), A-56-A-57 
What happens on a write? (see write strategy) 
Wheeler, D. J., 24 
Where can a block be placed? (see block placement) 
Whetstone (see benchmark programs, synthetic) 
Which block should be replaced on a miss? (see block 

replacement) 
Whirlwind, 25 
Wichmann, B. A., 78 
wider main memory (see memory, wider) 
width of memory (see memory, wider) 
width of bus (see memory, organization of) 
Wiecek, 169, 171, 188 
Wilkes, M., 24, 25, 425, 485, 486, 490 
window overflow, 450 (see also register windows) 
window underflow, 450 (see also register windows) 
word, 95 
word reads, unaligned, E-13 
workstation, 499-500, 560 

cost of, 61, 63, 86 
DECstation 3100 (see Digital Equipment Corporation, 

DECstation 3100) 
file server versus, 500 
minicomputer versus, 499 
personal computer versus, 500 
V AXstation 2000 (see Digital Equipment Corporation, 

V AXstation 2000) 
V AXstation 3100 (see Digital Equipment Corporation, 

V AXstation, 3100) 
SPARCstation I (see SPARC) 

workload, 45 
WORM (see write-once, read-many) 
Wortman, D. B., 130, 187 
wrapped form, A-21-A-22 
wrapped fetch, 458 (see cache, miss) 
writable control store (WCS), 239-240, 248 
write after read (WAR), 264 (see also hazard, WAR) 
write after write (WA W), 264 (see also hazard, WA W) 
write allocate, 413 (see also cache, write miss) 
write around, 413 (see also cache, write miss) 
write back, 413 (see also cache, write back) 

virtual memory and, 436 
write broadcast, 469 (see also cache, coherency) 
write buffer (see cache, write buffer; cache, writes and) 
write invalidate, 469 (see als.o cache, coherency) 
write miss rate, 416 (see also cache, write miss) 
write-once optical disk, 519 (see also disk, optical) 
write-once, read-many (WORM), 497 

1·27 

write result in a pipeline, 294, 296-298 (figs.), 301, 303 (fig.), 
305-306 (fig.), 308 (fig.), 333, 347 

write stall, 413 (see also cache, writes and; cache, write buffer; 
write stalls and) 

write strategy, 407, 484 
caches and, 412-414, 468 (see also cache, writes and) 
virtual memory and, 436 

write through, 413 (see also cache, write through) 
Wulf, W., 127, 485, 490 

x 
X-MP (see Cray Research machines) 

Ex.1035.789DELL



1-28 

y 

yield, 54-55, 80, 81 (see also die; integrated circuit; wafer) 
final test, 55, 60-62 
scrap and, 64 

Y-MP (see Cray Research machines) 

z 
z buffer, 525 (see also graphics displays) 
Zimmermann, R., 188 
Zorn, B., 191 
Zuse, 24 

Index 

Ex.1035.790DELL



QA 76.9/.A 73/H392/l 990 
Computer architecture : a quantitative 

approach J David A. Patterson, John L. 

crdd c. 1 SVO 

Ex.1035.791DELL



DLX Standard Instruction Set 

Instruction type I opcode Instruction meaning 

Data transfers Move data between registers and memory~ or between the integer and FP or 
special registers; only memory address mode is 16-bit displacement + 
contents of an integer register 

LB, LBU, SB Load byte, load byte unsigned, store byte 

LH, LHU, SH Load halfword, load halfword unsigned, store halfword 

LW, SW Load word, store word (to/from integer registers) 

LF, LD, SF, SD Load SP float, load DP float, store SP float, store DP float 

MOVI2S, MOVS2I Move from/to integer register to/from a special register 

MOVF, MOVD Copy one floating-point register or a DP pair to another register or pair 

MOVFP2I, MOVI2FP Move 32 bits from/to FP registers to/from integer registers 

Arithmetic, logical Operations on integer or logical data in integer registers; signed arithmetic 
instructions trap on overflow 

ADD, ADDI, ADDU, Add, add immediate (all immediates are 16 bits); signed and unsigned 
AD DUI 

SUB, SUBI, SUBU, Subtract, subtract immediate; signed and unsigned 
SUBUI 

MULT, MULTU, DIV, Multiply and divide, signed and unsigned; operands must be floating-point 
DIVU registers; all operations take and yield 32-bit values 

AND, ANDI And, and immediate 

OR, ORI, XOR, XORI Or, or immediate, exclusive or, exclusive or immediate 

LHI Load high immediate-loads upper half of register with immediate 

SLL, SRL, SRA, SLLI, Shifts: both immediate (S I) and variable form (S _); shifts are shift left 
SRLI, SRAI logical, right logical, right arithmetic 

s , s I Set conditional: " _"may be EQ, NE, LT, GT, LE, GE - -

Control Conditional branches and jumps; PC-relative or through register 

BEQZ, BNEZ Branch integer register equal/not equal to zero; 16-bit offset from PC 

BFPT, BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC 

J, JR Jumps: 26-bit offset from PC (J) or target in register (JR) 

JAL, JALR Jump and Link: save PC+4 to R3 l, target is 26-bit offset from PC (JAL) or a 
register (JALR) 

TRAP Transfer to operating system at a vectored address (see Chapter 5) 

RFE Return to user code from an exception; restore user mode (see Chapter 5) 

Floating point Floating-point operations on DP and SP formats 

ADDD, ADDF Add DP,SP numbers 

SUBD,SUBF Subtract DP,SP numbers 

MULTD, MULTF Multiply DP,SP floating point 

DIVD, DIVF Divide DP, SP floating point 

CVTF2D, CVTF2I, Convert instructions: CVTx2y converts from type x to type y, where x and y 
CVTD2F, CVTD2 I, are one of I (integer), D (double precision), or F (single precision); both 
CVTI2F, CVTI2D operands are in the FP registers 

D, F DP and SP compares:"_" may be EQ, NE, LT, GT, LE, GE; sets comparison - -
bit in FP status register 

Ex.1035.792DELL



Notation Meaning Example Meaning 

~ Data transfer. Length of the Rl~R2; Transfer contents of R2 to Rl. Registers 
transfer is given by the have a fixed length, so transfers shorter than 
destination's length; the length is the register size must indicate which bits 
specified when not clear. are used. 

M Array of memory accessed in Rl~M[x]; Place contents of memory location x into 
bytes. The starting address for a Rl. If a transfer starts at M [.i J and 
transfer is indicated as the index requires 4 bytes, the transferred bytes are 
to the memory array. M [ i ], M [ i + 1 ], M [ i + 2 ], and M [ i + 3 ] . 

~n Transfer an n-bit field, used M [y] ~16M [x]; Transfer 16 bits starting at memory location 
whenever length of transfer is not x to memory location y. The length of the 
clear. two sides should match. 

Xn Subscript selects a bit. Rlo~O; Change sign bit of Rl to 0. (Bits are 
numbered from MSB starting at 0.) 

Xm .. n Subscript selects a bit field. R324 .. 31 ~M [x]; Moves contents of memory location x into 
low-order byte of R3. 

xn Superscript replicates a field. R3o .. 23~024; Sets high-order three bytes of R3 to 0. 

## Concatenates two fields. R3~0 24 ## M (x] Moves contents of location x into low byte 
of R3; clears upper three bytes. 

F2##F3~64M [x]; 
Moves 64 bits from memory starting at 
location x; first 32 bits go into F2, second 
32 into F3. 

* , & Dereference a pointer; get the P*~&x; Assign to object pointed to by p the address 
address of a variable. of the variable x. 

<< >> C logical shifts (left,right) Rl << 5 Shift Rl left 5 bits. 

==, ! =, >, C relational operators: equal, not (Rl==R2) & True if the contents of Rl equal the contents 

<,>=,<= equal, greater, less, greater or (R3 ! =R4) of R2 and the contents of R3 do not equal 
equal, less or equal the contents of R 4. 

& , I , " ! C bitwise logical operations: and, (Rl & (R2 I R3)) Bitwise and of Rl and the bitwise or of R2 , 
or, exclusive or, and complement. and R3. 

DLX Pipeline Structure 

Stage ALU instruction Load or store instruction Branch instruction 

IF IR~Mem [PC J; IR~Mem[PC]; IR~Mem[PC]; 

PC~PC+4; PC~PC+4; PC~PC+4; 

ID A~Rsl; B~Rs2; PCl~PCA~Rsl; B~Rs2; PCl~PC A~Rsl; B~Rs2; PCl~PC 

IRl~IR IRl~IR IRl~IR 

EX ALUoutput~A op B; DMAR~A+ ALUoutput~PCl + 

or ( (IRl16) 16##IRl16 .. 31); ·( (IRl16) 16##IRl16 .. 31); 
ALUoutput~A op SMDR~ B; cond~ (Rsl op 0); 

( (IRl16) 16##IRl16 .. 31); 

MEM ALUoutputl~ ALU output LMDR~Mem [DMAR]; or if (cond) PC~ALUoutput, 

Mem[DMAR]~SMDR; 

WB Rd~ALUoutputl; Rd~LMDR; 

Ex.1035.793DELL


