
Pipelining 319

Instruction type Pipe Stages

Integer instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Integer instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Integer instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Integer instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

FIGURE 6.46 $uperscalar pipeline in operation. The integer and floating-point instructions are issued at the same
time, and each executes at its own pace through the pipeline. This scheme will only improve the performance of programs
with a fair amount of floating point.

By issuing an integer and a floating-point operation in parallel, the need for
additional hardware is minimized-integer and floating-point operations use dif
ferent register sets and different functional units. The only conflict arises when
the integer instruction is a floating-point load, store, or move. This creates con
tention for the floating-point register ports and may also create a hazard if the
floating-point operation uses the result of a floating-point load issued at the same
time. Both problems could be solved by detecting this contention as a structural
hazard and delaying the issue of the floating-point instruction. The contention
could also be eliminated by providing two additional ports, a read and a write,
on the floating-point register file. We would also need to add several additional
bypass paths to avoid performance loss.

There is another difficulty that may limit the effectiveness of a superscalar
pipeline. In our simple DLX pipeline, loads had a latency of one clock cycle;
this prevented one·· instructi.on from using the result without stalling. In the
superscalar pipeline, the result of a load instruction cannot be used on the same
clock cycle or on the next clock cycle. This means that the next three instruc
tions cannot use the load result without stalling; without extra ports, moves
between the register sets are similarly affected. The branch delay also becomes
three instructions. To effectively exploit the parallelism available in a super
scalar machine, more ambitious compiler-scheduling techniques, as well as more
complex instruction decoding, will need to be implemented. Loop unrolling
helps generate larger straightline fragments for scheduling; more powerful
compiler techniques are discussed near the end of this section.

Let's see how well loop unrolling and scheduling work on a superscalar ver
sion of DLX with the same delays in clock cycles.

Ex.1035.351DELL

320

Example

Answer

6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

How would the unrolled loop on page 317 be scheduled on a superscalar pipe
line for DLX? To schedule it without any delays, we will need to unroll it to
make five copies of the body.

The resulting code is shown in Figure 6.47.

Integer instruction FP instruction Clock cycle

Loop: LD FO,O(Rl) 1

LD F6,-8(Rl) 2

LD F10,-16(Rl) ADDD F4,FO,F2 3

LD F14,-24(Rl) ADDD F8,F6,F2 4

LD F18, -32 (Rl) ADDD Fl2,F10,F2 5

SD 0(Rl),F4 ADDD F16,F14,F2 6

SD -8(Rl),F8 ADDD F20,Fl8,F2 7

SD -16(Rl),F12 8

SD -24(Rl),F16 9

SUB Rl,Rl,#40 10

BNEZ Rl,LOOP 11

SD 8 (Rl) , F20 12

FIGURE 6.47 The unrolled and scheduled code as it would look on a superscalar
DLX.

This unrolled superscalar loop now runs in 12 clock cycles per iteration, or 2.4
clock cycles per element, versus 3.5 for the scheduled and unrolled loop on the
ordinary DLX pipeline. In this example, the performance of the superscalar
DLX is limited by the balance between integer and floating-point computation.
Every floating-point instruction is issued together with an integer instruction, but
there are not enough floating-point instructions to keep the floating-point
pipeline full. When scheduled, the original loop ran in 6 clock cycles per
iteration. We have improved on that by a factor of 2.5, more than half of which
came from loop unrolling, which took us from 6 to 3.5, with the rest coming
from issuing more than one instruction per clock cycle.

Ideally, our superscalar machine will pick up two instructions and issue them
both if the first is an integer and the second is a floating-point instruction. If they
do not fit this pattern, which can be quickly detected, then they are issued
sequentially. This points to one of the major advantages of a general superscalar
machine: There is little impact on code density, and even unscheduled programs
can be run. The number of issues and classes of instructions that can be issued
together are the major factors that differentiate superscalar processors.

Ex.1035.352DELL

Example

Pipelining

Multiple Instruction Issue with
Dynamic Scheduling

321

Multiple instruction issue can also be applied to dynamically scheduled
machines. We could start with either the scoreboard scheme or Tomasulo's
algorithm. Let's assume we want to extend Tomasulo's algorithm to support
issuing two instructions per clock cycle, one integer and one floating point. We
do not want to issue instructions in the queue out of order, since this makes the
bookkeeping in the register file impossible. Rather, by employing data structures
for the integer and floating-point registers, both types of instructions can be
issued to their respective reservation stations, as long as the two instructions at
the head of the instruction queue do not access the same register set.
Unfortunately, this approach bars issuing two instructions with a dependence in
the same clock cycle. This is, of course, true in the superscalar case, where it is
clearly the compiler's problem. There are three approaches that can be used to
achieve dual issue. First, we could use software scheduling to ensure that depen
dent instructions do not appear adjacent. However, this would require pipeline
scheduling software, thereby defeating one of the advantages of dynamically
scheduled pipelines.

A second approach is to pipeline the instruction-issue stage so that it runs
twice as fast as the basic clock rate. This permits updating the tables before pro
cessing the next instruction; then the two instructions can begin execution at
once.

The third approach is based on the observation that if multiple instructions
are not being issued to the same functional unit, then it will only be loads and
stores that will create dependences among instructions that we wish to issue
together. The need for reservation tables for loads and stores can be eliminated
by using queues for the result of a load and for the source operand of a store.
Since dynamic scheduling is most effective for loads and stores, while static
scheduling is highly effective in register-register code sequences, we could use
static scheduling to eliminate reservation stations completely and rely only on
the queues for loads and stores. This style of machine organization has been \,
called a decoupled architecture.

For simplicity, let us assume that we have pipelined the instruction issue logic
so that we can issue two operations that are dependent but use different
functional units. Let's see how this would work with our example.

Consider the execution of our simple loop on a DLX pipeline extended with
Tomasulo's algorithm and with multiple issue. Assume that both a floating-point
and an integer operation can be issued on every clock cycle, even if they are
related. The number of cycles of latency per instruction is the same. Assume that
issue and write results take one cycle each, and ·that there is dynamic branch
prediction hardware. Create a table showing when each instruction issues, begins
execution, and writes its result, for the first two iterations of the loop. Here is the
original loop:

Ex.1035.353DELL

322

Answer

6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

Loop: LD FO,O(Rl)

ADDD F4,FO,F2

SD 0(Rl),F4

SUB Rl,Rl,#8

BNEZ Rl,LOOP

The loop will be dynamically unwound and, whenever possible, instructions will

be issued in pairs. The result is shown in Figure 6.48. The loop runs in 4 + Z
n

clock cycles per result for n iterations. For large n this approaches 4 clock cycles
per result.

Iteration Instructions Issues at Executes at Writes
number clock-cycle clock-cycle result at

number number clock-cycle
number

1 LD FO,O(Rl) 1 2 4

1 ADDD F4,FO,F2 1 5 8

1 SD 0(Rl),F4 2 9

1 SUB Rl,Rl,#8 3 4 5

1 BNEZ Rl,LOOP 4 5

2 LD FO,O(Rl) 5 6 8

2 ADDD F4,FO,F2 5 9 12

2 SD 0(Rl),F4 6 13

2 SUB Rl,Rl,#8 7 8 9

2 BNEZ Rl,LOOP 8 9

FIGURE 6.48 The time of issue, execution, and writing result for a dual-issue
version of our Tomasulo pipeline. The write-result stage does not apply to either stores
or branches, since they do not write any registers.

The number of dual issues is small because there is only one floating-point
operation per iteration. The relative number of dual-issued instructions would be
helped by the compiler partially unwinding the loop to reduce the instruction
count by eliminating loop overhead. With that transformation, the loop would
run as fast as on a superscalar machine. We will return to this transformation in
Exercises 6.16 and 6.17.

The VLIW Approach

Our superscalar DLX machine can issue two instructions per clock cycle. That
could perhaps be extended to three or at most four, but it becomes difficult to

Ex.1035.354DELL

Example

Answer

Memory
reference 1

LD FO,O(Rl)

LD FlO, -16 (Rl)

LD F18, -32 (Rl)

LD F26, -48 (Rl)

SD 0(Rl),F4

SD -16(Rl),Fl2

SD -32(Rl),F20

SD -0(Rl),F28

Pipelining 323

determine whether three or four instructions can all issue simultaneously without
knowing what order the instructions could be in when fetched and what depen
dencies might exist among them. An alternative is an LIW (Long Instruction
Word) or VLIW (Very Long Instruction Word) architecture. VLIWs use multi
ple, independent functional units. Rather than attempting to issue multiple, inde
pendent instructions to the units, a VLIW packages the multiple operations into
one very long instruction, hence the name. A VLIW instruction might include
two integer operations, two floating-point operations, two memory references,
and a branch. An instruction would have a set of fields for each functional
unit-perhaps 16 to 24 bits per unit, yielding an instruction length of between
112 and 168 bits. To keep the functional units busy there must be enough work
in a straightline code sequence to keep the instructions scheduled. This is
accomplished by unrolling loops and scheduling code across basic blocks using
a technique called trace scheduling. In addition to eliminating branches by un
rolling loops, trace scheduling provides a method to move instructions across
branch points. We will discuss trace scheduling more in the next section. For
now, let's assume we have a technique to generate long, straightline code
sequences for building up VLIW instructions.

Suppose we have a VLIW that could issue two memory references, two FP
operations, and one integer operation or branch in every clock cycle. Show an
unrolled version of the vector sum loop for such a machine. Unroll as many
times as necessary to eliminate any stalls. Ignore the branch-delay slot.

The code is shown in Figure 6.49. The loop has been unrolled 6 times, which
eliminates stalls, and runs in 9 cycles. This yields a running rate of 7 results in 9
cycles, or 1.28 cycles per result.

Memory FP
operation 1

FP
operation 2

Integer operation
I branch reference 2

LD F6,-8(Rl)

LD Fl4,-24(Rl)

LD F22,-40(Rl)

SD -8(Rl),F8

SD -24(Rl),Fl6

SD -40(Rl),F24

ADDD F4,FO,F2

ADDD Fl2,Fl0,F2

ADDD F20,Fl8,F2

ADDD F28,F26,F2

ADDD F8,F6,F2

ADDD Fl6,Fl4,F2

ADDD F24,F22,F2

SUB Rl,Rl,#48

BNEZ Rl,LOOP

FIGURE 6.49 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes
nine cycles assuming no branch delay; normally the branch would also be scheduled. The issue rate is 23 operations in 9
clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of available slots that contained an operation, is
about 60%. To achieve this issue rate requires a much larger number of registers than DLX would normally use in this
loop.

Ex.1035.355DELL

324 6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

What are the limitations and costs of a VLIW approach? If we can issue 5
operations per clock cycle, why not 50? Three different limitations ar:e encoun
tered: limited parallelism, limited hardware resources, and code size explosion.
The first is the simplest:. There is a limited amount of parallelism available in in
struction sequences. Unless loops are unrolled very large numbers of times,
there may not be enough operations to fill the instructions. At first glance, it
might appear that 5 instructions that could be executed in parallel would be suf
ficient to keep our VLIW completely busy. This, however, is not the case. Sev
eral of these functional units-the memory, the branch, and the floating-point
units-will be pipelined, requiring a much larger number of operations that can
be executed in parallel. For example, if the floating-point pipeline has 8 steps,
the 2 operations being issued on a clock cycle cannot depend on any of the 14
operations already in the floating-point pipeline. Thus, we need to find a number
of independent operations roughly equal to the average pipeline depth times the
number of functional units. This means about 15 to 20 operations would be
needed to keep a VLIW with 5 functional units busy.

The second cost, the hardware resources for a VLIW, seem quite straight
forward; duplicating the floating-point and integer functional units is easy and
cost scales linearly. However, there is a large increase in the memory- and
register-file bandwidth. Even with a split floating-point and integer register file,
our VLIW will require 5 read ports and 2 write ports on the integer register file
and 4 read ports and 2 write ports on the floating-point register file. This
bandwidth cannot be supported without some substantial cost in the size of the
register file and possible degradation of clock speed. Our 5-unit VLIW also has
2 data memory ports. Furthermore, if we wanted to expand it, we would need to
continue adding memory ports. Adding only arithmetic units would not help,
since the machine would be starved for memory bandwidth. As the number of
data memory ports grows, so does the complexity of the memory system. To
allow multiple memory accesses in parallel, the memory must be broken into
banks containing different addresses with the hope that the operations in a single
instruction do not have conflicting accesses. A conflict will cause the entire
machine to stall, since all the functional units must be kept synchronized. This
same factor makes it extremely difficult to use data caches in a VLIW.

Finally, there is the problem of code size. There are two different elements
that combine to increase code size substantially. First, generating enough opera
tions in a straightline code fragment requires ambitiously unrolling loops, which
increases code size. Second, whenever instructions are not full, the unused func
tional units translate to wasted bits in the instruction encoding. In Figure 6.49,
we saw that only about 60% of the functional units were used; almost half of
each instruction was empty. To combat this problem, clever encodings are
sometimes used. For example, there may be only one large immediate field for
use by any functional unit. Another technique is to compress the instructions in
main memory and expand them when they are read into the cache or are
decoded.

Ex.1035.356DELL

Example

Pipelining 325

The major challenge for these machines is to try to exploit large amounts of
instruction-level parallelism. When the parallelism comes from unrolling simple
loops, the original loop probably could have been run efficiently on a vector
machine (see the next chapter). It is not clear that a VLIW is preferred over a
vector machine for such applications; the costs are similar, and the vector
machine is typically the same speed or faster. The open question in 19.90 is
whether there are large classes of applications that are not suitable for vector
machines, but still offer enough parallelism to justify the VLIW approach rather
than a simpler one, such as a superscalar machine.

Increasing Instruction-Level Parallelism with
Software Pipelining and Trace Scheduling

We have already seen that one compiler technique, loop unrolling, is used to
help exploit parallelism among instructions. Loop unrolling creates longer
sequences of straightline code, which can be used to exploit more instruction
level parallelism. There are two other more general techniques that have been
developed for this purpose: software pipelining and trace scheduling.

Software pipelining is a technique for reorganizing lo~ps such that each itera
tion in the software-pipelined code is made from instruction sequences chosen
from different iterations in the original code segment. This is most easily under
stood by looking at the scheduled code for the superscalar version of DLX. The
scheduler essentially interleaves instructions from different loop iterations,
putting together all the loads, then all the adds, then all the stores. A software
pipelined loop interleaves instructions from different iterations without unrolling
the loop. This technique is the software counterpart to what Tomasulo's algo
rithm does in hardware. The software-pipelined loop would contain one load,
one add, and one store, each from a different iteration. There is also some startup
code that is needed before the loop begins as well as code to finish up after the
loop is completed. We will ignore these in this discussion.

Show a software-pipelined version of this loop:

Loop: LD FO,O(Rl)

ADDD F4,FO,F2

SD 0(Rl),F4

SUB Rl,Rl,#8

BNEZ Rl,LOOP

You may omit the start-up and clean-up code.

Ex.1035.357DELL

326

Answer

6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

Given the vector Min memory, and ignoring the start-up and finishing code, we
have:

Loop: SD 0(Rl),F4 ;stores into M[i]
ADDD F4,FO,F2 ;adds to M[i-1]
LD F0,-16(Rl) ;loads M[i-2]
BNEZ Rl,LOOP
SUB Rl,Rl,#8 ;subtract in delay slot

This loop can be run at a rate of 5 cycles per result, ignoring the start-up and
clean-up portions. Because the load fetches two array elements beyond the
element count, the loop should run for two fewer iterations. This would be
accomplished by decrementing Rl by 16 prior to the loop.

Software pipelining can be thought of as symbolic loop unrolling. Indeed,
some of the algorithms for software pipelining use loop unrolling to figure out
how to software pipeline the loop. The major advantage of software pipelining
over straight loop unrolling is that software pipelining consumes less code space.
Software pipelining and loop unrolling, in addition to yielding a better scheduled
inner loop, each reduce a different type of overhead. Loop unrolling reduces the
overhead of the loop-the branch and counter-update code. Software pipelining
reduces the tim~ when the loop is not running at peak speed to once per loop at
the beginning and end. If we unroll a loop that does 100 iterations a constant
number of times, say 4, we pay the overhead 100/4 = 25 times-every time the
inner unrolled loop is reinitiated. Figure 6.50 shows this behavior graphically.
Because these techniques attack two different types of overhead, the best
performance comes from doing both.

The other technique used to generate additional parallelism is trace schedul
ing. This is particularly useful for VLIWs, for which the technique was origi
nally developed. Trace scheduling is a combination of two separate processes.
The first process, called trace selection tries to find the most likely sequence of
operations to put together into a small number of instructions; this sequence is
called a trace. Loop unrolling is used to generate long traces, since loop
branches are taken with high probability. Once a trace is selected, the second
process, called trace compaction, tries to squeeze the trace into a small number
of wide instructions. Trace compaction attempts to move operations as early as it
can in a sequence (trace), packing the operations into as few wide instructions as
possible.

There are two different considerations in compacting a trace: data depen
dences, which force a partial order on operations, and branch points, which cre
ate places across which code cannot be easily moved. In essence, the code wants
to be compacted into the shortest possible sequence that preserves the data
dependences; branches are the main impediment to this process. The major
advantage of trace scheduling over simpler pipeline-scheduling techniques is
that it includes a method to move code across branches. Figure 6.51 shows a
code fragment, which may be thought of as an iteration of an unrolled loop, and
the trace selected.

Ex.1035.358DELL

Pipelining

Number
of

overlapped
operations

Number
of

overlapped
operations

327

(a) Software pipelining Time

(b) Loop unrolling Time

FIGURE 6.50 This shows the execution pattern for (a) a software-pipelined loop and (b)
an unrolled loop. The shaded areas are the times when the loop is not running with
maximum overlap or parallelism among instructions. This occurs once at loop beginning

and once at the end for the software-pipelined loop. For the unroll~d loop it occurs m times
n

if the loop has a total of m executions and is unrolled n times. Each block represents an
unroll of n iterations. Increasing the number of unrolls will reduce the start-up and clean-up
overhead.

x

FIGURE 6.51 A code fragment and the trace selected shaded with gray. This trace
would be selected first, if the probability of the true branch being taken were much higher
than the probability of the false branch being taken. The branch from the decision (A[i]=O}
to X is a branch out of the trace, and the branch from X to the assignment to C is a branch
into the trace. These branches are what make compacting the trace difficult.

Ex.1035.359DELL

Pipelining 327

Number
of

overlapped
operations

(a) Software pipelining

overlapped
operations

(b) Loop unrolling

FIGURE 6.50 This showsthe execution pattern for (a) a software-pipelined loop and (b)
an unrolled loop. The shaded areas are the times whenthe loopis not running with
maximum overlap or parallelism among instructions. This occurs once at ioop beginning

and once at the end for the software-pipelined loop. For the unrolled loop it occurs = times
if the loop has a total of m executions and is unrolled n times. Each block represents an
unroll of n iterations. Increasing the numberof unrolls will reduce the start-up and clean-up
overhead.

FIGURE 6.51 A code fragmentand the trace selected shaded with gray. This trace
wouid be selectedfirst, if the probability of the true branch being taken were much higher
than the probability of the false branch being taken. The branch from the decision (A[i]=0)
to X is a branch out of the trace, and the branch from X to the assignmentto C is a branch
into the trace. These branches are what make compacting the tracedifficult.

DELL Ex.1035.359

328

6.9 I

6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

Once the trace is selected as shown in Figure 6.51, it must be compacted so as
to fill the wide instruction word. Compacting the trace involves moving the
assignments to variables B and C up to the block before the branch decision.
Let's first consider the problem of moving the assignment to B. If the assign
ment to Bis moved above the branch (and thus out of the trace), the code in X
would be affected if it used B, since moving the assignment would change the
value of B. Thus, to move the assignment to B, B must not be read in X. One
could imagine more clever schemes if B were read in X-for example, making a
shadow copy and updating B later. Such schemes are generally not used, both
because they are complex to implement and because they will slow down the
program if the trace selected is not optimal and the operations end up requiring
additional instructions. Also, because the assignment to B is moved before the if
test, for this schedule to be valid either X also assigns to B or B is not read after
the if statement.

Moving the assignment to Cup to before the first branch requires first mov
ing it over the branch from X into the trace. To do this, a copy is made of the
assignment to C on the branch into the trace. A check must still be done, as was
done for B, to make sure that the assignment can be moved over the branch out
of the trace. If C is successfully moved to before the first branch and the "false"
direction of the branch-the branch off the trace-is taken, the assignment to C
will have been done twice. This may be slower than the original code, depending
on whether this operation or other moved operations create additional work in
the main trace. Ironically, the more successful the trace-scheduling algorithm is
in moving code across the branch, the higher the penalty for misprediction.

Loop unrolling, trace scheduling, and software pipelining all aim at trying to
increase the amount of local instruction parallelism that can be exploited by a
machine issuing more than one instruction on every clock cycle. The effective
ness of each of these techniques and their suitability for various architectural
approaches are among the most significant open research areas in pipelined-pro
cessor design.

Putting It All Together: A Pipelined VAX

In this section we will examine the pipeline of the VAX 8600, a macropipelined
VAX. This machine is described in detail by DeRosa et al. [1985] and Troiani et
al. [1985]. The 8600 pipeline is a more dynamic structure than the DLX integer
pipeline. This is because the processing steps may take multiple cycles in one
stage of the pipeline. Additionally, the hazard detection is more complicated
because of the possibility that stages progress independently and because
instructions may modify registers before they complete. Techniques similar to
those used in the DLX FP pipeline to handle variable-length instructions are
used in the 8600 pipeline.

The 8600 is macropipelined-the pipeline understands the structure of VAX
instructions and overlaps their execution, checking the hazards on the instruction

Ex.1035.360DELL

Pipelining 329

operands. By comparison, the VAX 8800 is micropipelined-microinstructions
are overlapped and hazard detection occurs in the microprogram unit. A differ
ent issue of the Digital Technical Journal [Digital 1987] describes this machine,
and Clark [1987] describes the pipeline and its performance. The designs are
interesting to compare.

Figure 6.52 shows the 8600 partitioned into four major structural compo
nents. The MBox is responsible for address translation and memory access (see
Chapter 8). The IBox is the heart of the 8600 pipeline; it is responsible for
instruction fetch and decode, operand address calculation, and operand fetch.
The EBox and FBox are responsible for execution of integer and floating-point
operations, and their primary function is to implement the opcode portion of an
instruction. (Because the FBox is optional, the EBox also contains microcode to
do the floating point, albeit at much lower performance. The optional presence
of the FBox further complicates the operand processing in the EBox.) Since the
EBox and FBox are not pipelined, we will focus our attention primarily on the
IBox. In explaining the IBox function we will refer to the EBox occasionally;
usually the same comments apply to the FBox.

Figure 6.53 breaks the execution of a VAX instruction into four overlapped
steps. The number of clock cycles per step may vary widely, though each step in
the pipeline takes at least one clock.

A VAX instruction may take many clock cycles in a given step. For example,
with multiple memory operands, the instruction will take multiple clock cycles
in the Opfetch step. Because of this, an instruction that takes many cycles at a

EVA

Operand buses

WBus

FIGURE 6.52 The basic structure of the 8600 consists of an MBox {responsible for
memory access), IBox {handles instruction and operand processing), EBox {all
opcode interpretation except floating point), and FBox (performs floating-point
operations). These four units are connected by six major buses. The IVA and EVA carry
the address for a memory access to the MBox from the IBox and EBox. The MD bus
carries memory data to or from the MBox; all such data flows through the I Box. The EBox
initiates memory access directly with the MBox only under unusual conditions (e.g.,
misaligned references). The operand buses carry operands from the IBox (where they are
fetched from memory or registers) to the EBox and FBox. Finally, the W Bus carries results
to be written from the EBox and FBox to the GPRs and to memory, via the IBox.

Ex.1035.361DELL

Pipelining 329

operands. By comparison, the VAX 8800 is micropipelined—amicroinstructions
are overlapped and hazard detectionoccursin the microprogram unit. A differ-
ent issue of the Digital Technical Journal [Digital 1987] describes this machine,
and Clark [1987] describes the pipeline and its performance. The designs are
interesting to compare.

Figure 6.52 shows the 8600 partitioned into four major structural compo-
nents. The MBoxis responsible for address translation and memory access (see
Chapter 8). The [Box is the heart of the 8600 pipeline; it is responsible for
instruction fetch and decode, operand address calculation, and operand fetch.
The EBox and FBox are responsible for execution of integer and floating-point
operations, and their primary function is to implement the opcode portion of an
instruction. (Because the FBoxis optional, the EBox also contains microcode to
do the floating point, albeit at much lower performance. The optional presence
of the FBox further complicates the operand processing in the EBox.) Since the
EBox and FBox are not pipelined, we will focus our attention primarily on the
IBox. In explaining the [Box function we will refer to the EBox occasionally;
usually the same comments apply to the FBox.

Figure 6.53 breaks the execution of a VAX instruction into four overlapped
steps. The number of clock cycles per step may vary widely, though eachstep in
the pipeline takes at least one clock.

A VAX instruction may take many clock cycles in a given step. For example,
with multiple memory operands, the instruction will take multiple clock cycles
in the Opfetch step. Because of this, an instruction that takes many cycles at a

Operand buses
FIGURE 6.52 The basic structure of the 8600 consists of an MBox (responsible for
memory access), IBox (handles instruction and operand processing), EBox (all
opcodeinterpretation exceptfloating point), and FBox (performsfloating-point
operations). These four units are connected by six major buses. The IVA and EVAcarry
the address for a memory access to the MBox from the IBox and EBox. The MD bus
carries memory data to or from the MBox;all such data flows through the Box. The EBox
initiates memory accessdirectly with the MBox only under unusual conditions (e.g.,
misaligned references). The operand buses carry operands from the IBox (where they are
fetched from memory or registers) to the EBox and FBox. Finally, the W Bus carries results
to be written from the EBox and FBox to the GPRs and to memory, via the IBox.

DELL Ex.1035.361

330 6.9 Putting It All Together: A Pipelined VAX

Step Function Located in

1. If etch Prefetch instruction bytes and decode them !Box

2. Op fetch Operand address calculation and fetch !Box

3. Execution Execute opcode and write result EBox, FBox

4. Result store Write result to memory or registers EBox, !Box

FIGURE 6.53 The basic structure of the 8600 pipeline has four stages, each taking
from 1 to a large number of clock cycles. Up to four VAX instructions are being
processed at once.

stage may cause a back up in the pipeline; this back up may eventually reach the
!fetch step, where it will cause the pipeline to simply stop fetching instructions.
Additionally, several resources (e.g., the W Bus and GPR ports) are contended
for by multiple stages in the pipeline. In general, these problems are resolved on
the fly using a fixed-priority scheme.

Operand Decode and Fetch

Much of the work in interpreting a VAX instruction is in the operand specifier
and decode process, and this is the heart of the IBox. Substantial effort is de
voted to decoding and fetching operands as fast as possible to keep instructions
flowing through the pipeline. Figure 6.54 shows the number of cycles spent in
Opfetch under ideal conditions (no cache misses or other stalls from the memory
hierarchy) for each operand specifier. If the result is a register, the EBox stores

Specifier Cycles

Literal or immediate 1

Register 1

Deferred 1

Displacement 1

PC-relative and absolute 1

Autodecrement 1

Autoincrement 2

Autoincrement deferred 5

Displacement deferred 4

PC-relative deferred 4

FIGURE 6.54 The minimum number of cycles spent in Opfetch by operand specifier.
This shows the data for an operand of type byte, word, or longword that is read. Modified
and written operands take an additional cycle, except for register mode and immediate or
literal, where writes are not allowed. Quadword and octaword operands may take much
longer. If any stalls are encountered, the cycle count will increase.

Ex.1035.362DELL

Pipelining 331

the result. If the result is a memory operand, Opfetch calculates the address and
waits for the EBox to signal ready, then the IBox stores the result during the
Result store step. If an instruction result is to be stored in memory, the EB ox
signals to the IBox when it enters the last cycle of execution for the instruction.
This allows Opfetch to overlap the first cycle of a two-cycle memory write with
the last cycle of execution (even if the operation only takes one cycle).

To maximize the performance of the machine, there are three copies of the
GPRs-in the IBox, EBox, and FBox. A write is broadcast from the FBox,
EBox, or IBox (in the case of autoincrement or autodecrement addressing) to the
other two units, so that their copies of the registers can be updated.

Handling Data Dependences

Register hazards are tracked in Opfetch by maintaining a small table of registers
that will be written. Whenever an instruction passes through Opfetch, its result
register is marked as busy. If an instruction that uses that register arrives in
Opfetch and sees the busy flag set, it stalls until the flag is cleared. This prevents
RAW hazards. The busy flag is cleared when the register is written. Because
there are only two stages after Opfetch (execute and write memory result), the
busy flag can be implemented as a two-entry associative memory. Writes are
maintained in order and always at the end of the pipeline, and all reads are done
in Opfetch. This eliminates all explicit WA W and WAR hazards. The only
possible remaining hazards are those that can occur on implicit operands, such
as the registers written by a MOVC3. Hazards on implicit operands are prevented
by explicit control in the microcode.

Opfetch optimizes the case when the last operand specifier is a register by
processing the register operand specifier at the same time as the next-to-last
specifier. In addition, when the result register of an instruction is the source
operand of the next instruction, rather than stall the dependent instruction,
Opfetch merely signals this relationship to the EBox, allowing execution to
proceed without a stall. This is like the bypassing in our DLX pipeline.

Memory hazards between reads and writes are easily resolved because there
is a single memory port, and the IBox decodes all operand addresses.

Handling Control Dependences

There are two aspects to handling branches in a VAX: synchronizing on the
condition code and dealing with the branch hazard. Most of the branch process
ing is handled by the IBox. A predict-taken strategy is used; the following steps
are taken when the IBox sees a branch:

1. Compute the branch target address, send it to the MBox, and initiate a fetch
from the target address. Wait for the EBox to issue CCSYNC, which indi
cates that the condition codes will be available in the next clock cycle.

Ex.1035.363DELL

332 6.9 Putting It All Together: A Pipelined VAX

2. Evaluate the condition codes from the EBox to check the prediction. If the
prediction was incorrect, the access initiated in the MBox is aborted. The
current PC points at the next instruction or its first operand specifier.

3. Assuming the branch was taken, the IBox flushes the prefetch and decode
stages and begins loading the instruction register and processing the new tar
get stream. If the branch was not taken, the access to the potential target has
already been killed and the pipeline can continue just using what is in the
prefetch and decode stages.

Simple conditional branches (BEQL, BNEQ), the unconditional branches
(BRB, BRW), and the computed branches (e.g., AOBLEQ) are handled by the
IBox. The EBox handles more complex branches and also the instructions used
for calls and returns.

An Example

To really understand how this pipeline works, let's look at how a code sequence
executes. This example is somewhat simplified, but is sufficient to demonstrate
the major pipeline interactions. The code sequence we will consider is as follows
(remember that for consistency the result of the ADDL3 is given first):

ADDL3 Rl,R2,56(R3)

CMPL 45(Rl),@54(R2)

BEQL target

MOVL

target: SUBL3

Figure 6.55 shows an annotated pipeline diagram of how these instructions
would progress through the 8600 pipeline.

Dealing with Interrupts

The 8600 maintains three program counters so that instruction interruption and
restart are possible. These program counters and what they designate are:

• Current Program Counter-points to the next byte to be processed and
consumed in Opfetch.

• IBox Starting Address-points to the instruction currently in Opfetch.

• EBox Starting Address-points to the instruction executing in the EBox or
FBox.

In addition, the prefetch unit keeps an address to prefetch from (the VIBA,
Virtual Instruction Buffer Address), but this does not affect interrupt handling.
When an exception is caused by a prefetch operation, ihe byte in the instruction
buffer is marked. When Opfetch eventually asks fot the byte, it will see the
exception, and the Current Program Counter will have the address of the byte
that caused the exception.

Ex.1035.364DELL

Pipelining 333

Clock Cycle
Instr. 1 2 3 4 5 6 7 8 9

ADDL3 IF: Fetch IF: IF: IF: IF: OP: OP: Start WR:
ADDL. Continue Decode Decode Decode Compute write. Store.

pre fetch Rl. R2. 56 (R3). 56+ (R3) ·EX: Add.
if space OP: Fetch OP: EX: get
andMBox Rl. Fetch R2. first
available. operand.

CMPL IF: IF: De- OP: Fetch
Decode code 54 (R2).
45 (Rl). @54 (R2).

OP: Fetch
45 (Rl).

BEQL IF:
Decode
BEQL
displace.

SUBL

Clock Cycle
Instr. 10 11 12 13 14 15 16 17 18

ADDL3

CMPL OP: stall. OP: get OP: Fetch EX:

EX: get indirect @54 (R2). compare

first address. and set

operand. cc.

BEQL OP: Load OP: Fetch OP: Fetch
VA. branch target +4;

target. load
VIBA;
flush
!Buffer.

SUBL IF: OP: OP:
Decode Fetch first Fetch
SUBL3. operand. second

operand.

FIGURE 6.55 The VAX 8600 executing a code sequence. The top portion shows the events on clock ticks 1-9, while
the bottom portion shows the events on clock ticks 10-18. The pipeline stages are abbreviated as IF (Instruction Fetch),
OP (Opfetch), EX (Execution), and WR (Write Result) and are shown in bold. Each instruction passes through the 8600
pipeline as soon as the pipe stage is empty and the required data is available. Note that an instruction can be in both the
IF and OP stages at the same time. This figure assumes that at the beginning of cycle 1, the prefetch buffer is empty.
The prefetch in the IF stage continues to fetch instructions as long as there is room in the prefetch buffer and an available
MBox cycle. It is omitted from the diagram for simplicity. The action "stall" indicates a stall for a memory operand during
Opfetch. In total, the three VAX instructions executed take 15 cycles, assuming no stalls from the memory system. This
sequence was chosen to demonstrate the functioning of the pipeline-it is not necessarily typical.

Ex.1035.365DELL

334

&.10 I

6.9 Putting It All Together: A Pipelined VAX

These PCs are updated when an instruction enters the corresponding pipeline
stage. Hence, if an interrupt occurs in a given stage, the PC can be set back to
the beginning of that instruction. These PCs are needed because the length of
VAX instructions is variable and can only be determined by finding the opcode
byte.

In addition to restoring the starting address of the instruction that caused the
interrupt, we must unwind any register updates done by addressing modes pro
cessed in Opfetch for instructions that are after the instruction that interrupts the
processor. The IBox maintains a log of updates to the register file done on behalf
of multiple instructions, as we did in Section 5.6. The effects of any changes are
undone and the PC is restored. This allows the operating system to have a clean
machine state to work from.

Final Remarks

The 8600 uses a four-step pipeline. The theoretical peak performance with the
80-ns clock is 12.5 million VAX instructions per second. Some simple
sequences of instructions can actually attain this peak performance with a CPI of
1. Typically, the performance on integer code is about 1.75 million VAX
instructions per second for a CPI of about 7. This yields about 3.5 times the
performance of a V AX-11/780.

Fallacies and Pitfalls

Fallacy: Instruction set design has little impact on pipelining.

This is perhaps the most prominent misconception about pipelining and one that
was widely held until recently. Many of the difficulties of pipelining arise
because of instruction set complications. Here are some examples, many of
which are mentioned in the chapter:

• Variable instruction lengths and running times can lead to imbalance among
pipeline stages causing other stages to back up. They also severely compli
cate hazard detection and the maintenance of precise interrupts. Of course,
there are exceptions to every rule. For example, caches cause instruction run
ning times to vary when they miss; however, the performance advantages of
caches make the added complexity acceptable. To minimize the complexity,
most machines freeze the pipeline on a cache miss. Other machines try to
continue running parts of the pipeline; though this is very complex, it may
overcome some of the performance losses from cache misses.

• Sophisticated addressing modes can lead to different sorts of problems. Ad
dressing modes that update registers, such as post autoincrement, complicate

Ex.1035.366DELL

Pipelining 335

hazard detection. They also slightly increase the complexity of instruction
restart. Other addressing modes that require multiple memory accesses sub
stantially complicate pipeline control and make it difficult to keep the
pipeline flowing smoothly.

• Architectures that allow writes into the instruction space (self-modifying
code) can cause trouble for pipelining (as well as for cache designs). For
example, if an instruction in the pipeline can modify another instruction, we
must constantly check if the address being written to by an instruction cor
responds to the address of an instruction further on in the pipeline. If so, the
pipeline must be flushed or the instruction in the pipeline somehow updated.

• Implicitly set condition codes increase the difficulty of finding wh~n a branch
has been decided and the difficulty of scheduling branch delays. The former
problem occurs when the condition-code setting is not uniform, making it
difficult to decide which instruction sets the condition code last. The latter
problem occurs when the setting of the condition code is not under program
control. This makes it hard to find instructions that can be scheduled between
the condition evaluation and the branch. Many newer architectures avoid
condition codes or set them explicitly under program control to eliminate the
pipelining difficulties.

As a simple example, suppose the DLX instruction format were more com
plex, so that a separate, decode pipe stage were required before register fetch.
This would increase the branch delay to two clock cycles. At best, the second
branch-delay slot would be wasted at least as often as the first. Gross [1983]
found that a second delay slot was only used half as often as the first. This
would lead to a performance penalty for the second delay slot of more than 0.1
clock cycles per instruction.

Pitfall: Unexpected execution sequences may cause unexpected hazards.

At first glance, WA W hazards look like they should never occur because no
compiler would ever generate two writes to the same register without an inter
vening read. But they can occur when the sequence was unexpected. For exam
ple, the first write might be in the delay slot of a taken branch when the
scheduler thought the branch would not be taken. Here is the code sequence that
could cause this:

BNEZ

DIVD

foo: LD

Rl,foo

FO,F2,F4

FO,qrs

; moved into delay slot

from fall through

Ex.1035.367DELL

336 6.1 O Fallacies and Pitfalls

If the branch is taken, then before the D IVD can complete the LD will reach WB,
causing a WA W hazard. The hardware must detect this and may stall the issue
of the LD. Another way this can happen is if the second write is in a trap routine.
This occurs when an instruction that traps and is writing results continues and
completes after an instruction that writes the same register in the trap handler.
The hardware must detect and prevent this as well.

Fallacy: Increasing the depth of pipelining always increases performance.

Two factors combine to limit the performance improvement gained by pipe
lining. Data dependences in the code mean that increasing the pipeline depth
will increase the CPI, since aJarger percentage of the cycles will become stalls.
Second, clock skew and latch overhead combine to limit the decrease in clock
period obtained by further pipelining. Figure 6.56 shows the tradeoff between
pipeline depth and performance for the first 14 of the Livermore Loops (see
Chapter 2, page 43). The performance flattens out when the pipeline depth
reaches 4 and actually drops when the execution portion is pipelined 16 deep.

3.0

2.5

2.0

Relative
performance 1 ·5

1.0

0.5

0.0
2 4

Pipeline depth
8 16

FIGURE 6.56 The depth of pipelining versus the speedup obtained. This data is
based on Table 2 in Kunkel and Smith [1986]. The x axis shows the number of stages in
the EX portion of the floating-point pipeline. A single-stage pipeline corresponds to 32
levels of logic, which might be appropriate for a single FP operation.

Pitfall: Evaluating a scheduler on the basis of unoptimized code.

Unoptimized code-containing redundant loads, stores, and other operations that
might be eliminated by an optimizer-is much easier to schedule than "tight"
optimized code. In GCC running on a DECstation 3100, the frequency of idle
clock cycles increases by 18% from the unoptimized and scheduled code to the
optimized and scheduled code. TeX shows a 20% increase for the same
measurement. To fairly evaluate a scheduler you must use optimized code, since
in the real system you will derive a good performance from other optimizations
in addition to scheduling.

Ex.1035.368DELL

336 6.10. Fallacies andPitfalls

If the branch is taken, then before the DIVD can complete the LD will reach WB,
causing a WAW hazard. The hardware must detect this and maystall the issue
of the LD. Another way this can happenis if the second write is in a trap routine.
This occurs when an instruction that traps and is writing results continues and
completes after an instruction that writes the same register in the trap handler.
The hardware must detect and prevent this as well.

Fallacy: Increasing the depth ofpipelining always increases performance.

Two factors combine to limit the performance improvement gained by pipe-
lining. Data dependences in the code mean that increasing the pipeline depth
will increase the CPI, since alarger percentage of the cycles will becomestalls.
Second, clock skew and latch overhead combineto limit the decrease in clock
period obtained by further pipelining. Figure 6.56 showsthe tradeoff between
pipeline depth and performance for the first 14 of the Livermore Loops (see
Chapter 2, page 43). The performance flattens out when the pipeline depth
reaches 4 and actually drops when the execution portion is pipelined 16 deep.

Relative

performance

Pipeline depth

FIGURE 6.56 The depth of pipelining versus the speedup obtained. This data is
based on Table 2 in Kunkel and Smith [1986]. The x axis shows the numberofstagesin
the EX portion of the floating-point pipeline. A single-stage pipeline corresponds to 32
levels of logic, which might be appropriate for a single FP operation.

Pitfall: Evaluating a scheduler on the basis of unoptimized code.

Unoptimized code—containing redundantloads, stores, and other operations that
might be eliminated by an optimizer—is mucheasier to schedule than “tight”
optimized code. In GCC running on a DECstation 3100, the frequencyof idle
clock cycles increases by 18% from the unoptimized and scheduled code to the
optimized and scheduled code. TeX shows a 20% increase for the same
measurement. To fairlyevaluate a scheduler you must use optimized code, since
in the real system you will derive a good performance from other optimizations
in addition to scheduling.

DELL Ex.1035.368

6.11

Pipelining 337

Pitfall: Extensive pipelining can impact other aspects of a design, leading to
overall lower cost/performance.

The best example of this phenomenon comes from two implementations of the
VAX, the 8600 and the 8700. We discussed the instruction pipeline of the 8600
in Section 6.9. When the 8600 was initially delivered, it had a cycle time of 80
ns. Subsequently, a redesigned version, called the 8650, with a 55-ns clock was
introduced. The 8700 has a much simpler pipeline that operates at the
microinstruction level. The 8700 CPU is much smaller and has a faster clock
rate, 45 ns. The overall outcome is that the 8650 has a CPI advantage of about
20%, but the 8700 has a clock rate that is about 20% faster. Thus, the 8700
achieves the same performance with much less hardware.

Concluding Remarks

Figure 6.57 shows how the various pipelining approaches affect both clock
speed and CPI. This figure does not account for instruction-count differences.
Since performance is clock speed divided by CPI (ignoring instruction-count
differences), machines in the top left comer will be slowest, and machines in the
bottom right corner will be fastest. However, the machines that move towards
the lower right comer will probably achieve their maximum performance on the
narrowest range of applications.

Machines that are underpipelined lump multiple DLX pipestages into one.
The clock cannot be run as fast, and the CPI will be only marginally lower. The
DLX pipeline achieves a CPI very close to 1 (ignoring memory-system stalls) at
a reasonable clock speed. Architectural simplicity and efficient pipelining are
two of the most important attributes of the RISC (Reduced Instruction Set Com
puter) machines. DLX constitutes an example of such a machine. We have
chosen to use the term load/store architecture because the ideas apply to a broad
range of machines, and not just to the machines that identify themselves as
RISCs. Much of the discussion in the first part of this chapter centered around
the key ideas developed by the RISC projects.

Machines with higher clock rates and deeper pipelines have been called
superpipelined. Superpipelined machines are characterized by pipelining all
functional units. A superpipelined version of DLX might have a 10-stage
pipeline, rather than the 5-stage pipeline described earlier. Other than increasing
the complexity of pipeline scheduling and pipeline control, superpipelined
machines are not fundamentally different from the machines we have already
examined in/this chapter. Due to limited instruction-level parallelism, a super
pipelined machine will have a slightly higher CPI than a DLX-style pipeline, but
its advantage in clock cycle time should be larger than the disadvantage in CPI.

Superscalar processors can have clock cycle times very close to that of a
DLX pipeline and maintain a smaller CPI. The VLIW machines can have a

Ex.1035.369DELL

338 6.11 Concluding Remarks

substantially lower CPI, but tend to have a significantly higher clock cycle time
for the reasons discussed in this chapter. The vector machines effectively use
both techniques. They are usually superpipelined and have powerful vector
operations that can be considered equivalent to issuing multiple independent
operations on a machine like DLX. We will explore vector machines in detail in
the next chapter.

Going out from the top left comer on either axis in Figure 6.57, the require
ment to exploit more instruction-level parallelism increases; at the same time, of
course, fewer programs will run at maximum speed.

L
0

w
e
r

c
p
I

Faster clock rate

Superpipelined
Underpipelined DLX
machine pipeline

Superscalar

VLIW Vector Machines

FIGURE 6.57 Increasing the instruction-issue rate lowers the CPI, while a deeper
pipeline increases the clock rate. Various machines combine these techniques.

6.1 2 I Historical Perspective and References

This section describes some of the major advances in pipelining and ends with
some of the recent literature on high-performance pipelining.

The first general-purpose pipelined machine is considered to be Stretch, the
IBM 7030. Stretch followed on the IBM 704 and had a goal of being 100 times
faster than the 704. The goals were a stretch from the state of the art at that
time-hence the nickname. The plan was to obtain a factor of 1.6 from overlap
ping fetch, decode, and execute, using a 4-stage pipeline. Bloch [1959] and
Bucholtz [1962] describe the design and engineering tradeoffs, including the use
of ALU bypasses.

In 1964 CDC delivered the first CDC 6600. The CDC 6600 was unique in
many ways. In addition to introducing scoreboarding, the CDC 6600 was the
first machine to make extensive use of multiple functional units. It also had

Ex.1035.370DELL

Pipelining 339

peripheral processors that used a timeshared pipeline. The interaction between
pipelining and instruction set design was understood, and the instruction set was
kept simple to promote pipelining. The CDC 6600 also used an advanced pack
aging technology. Thornton [1964] describes the pipeline and I/0 processor
architecture, including the concept of out-of-order instruction execution.
Thornton's book [1970] provides an excellent description of the entire machine,
from technology to architecture, and includes a foreword by Cray.
(Unfortunately, this book is currently out of print.) The CDC 6600 also has an
instruction scheduler for the FORTRAN compilers, described by Thorlin [1967].

The IBM 360/91 introduced many new concepts, including tagging of data,
register renaming, dynamic detection of memory hazards, and generalized for
warding. Tomasulo's algorithm is described in his 1967 paper. Anderson,
Sparacio, and Tomasulo [1967] describe other aspects of the machine, including
the use of branch prediction. Patt and his colleagues have described an approach,
called HPSm, that is an extension of Tomasulo's algorithm [Hwu and Patt
1986].

A series of general pipelining descriptions that appeared in the late 1970s and
early 1980s provided most of the terminology and described most of the basic
techniques used in simple pipelines. These surveys include Keller [1975],
Ramamoorthy and Li [1977], Chen [1980], and Kogge's book [1981], devoted
entirely to pipelining. Davidson and his colleagues [1971, 1975] developed the
concept of pipeline reservation tables as a design methodology for multicycle
pipelines with feedback (also described in Kogge [1981]). Many designers use a
variation of these concepts, as we did in Figures 6.3 and 6.4.

The RISC machines refined the notion of compiler-scheduled pipelines in the
early 1980s. The concepts of delayed branches and delayed loads-common in
microprogramming-were extended into the high-level architecture. The Stan
ford MIP~ architecture made the pipeline structure purposely visible to the
compiler and allowed multiple operations per instruction. Schemes for schedul
ing the pipeline in the compiler were described by Sites [1979] for the Cray, by
Hennessy and Gross [1983], (and in Gross's thesis [1983]) and by Gibbons and
Muchnik [1986]. Rymarczyk [1982] describes the interlock conditions that pro
grammers should be aware of for a 360-like machine; this paper also shows the
complex interaction between pipelining and an instruction set not designed to be
pipelined.

J. E. Smith and his colleagues have written a number of papers examining
instruction issue, interrupt handling, and pipeline depth for high-speed scalar
machines. Kunkel and Smith [1986] evaluate the impact of pipeline overhead
and dependences on the choice of optimal pipeline depth; they also have an
excellent discussion of latch design and its impact on pipelining. Smith and
Plezkun [1988] evaluate a variety of techniques for preserving precise interrupts,
including the future file concept mentioned in Section 6.6. Weiss and Smith
[1984] evaluate a variety of hardware pipeline scheduling and instruction-issue
techniques.

Ex.1035.371DELL

340 6.12 Historical Perspective and References

Dynamic hardware branch-prediction schemes are described by J. E. Smith
[1981] and by A. Smith and Lee [1984]. Ditzel [1987] describes a novel branch
target buffer for CRISP. McFarling and Hennessy [1986] is a quantitative com
parison of a variety of compile-time and run-time branch-prediction schemes.

A series of early papers, including Tjaden and Flynn [1970] and Foster and
Riseman [1972], concluded that only small amounts of parallelism could be
available a~ the instruction level without investing an enormous amount of
hardware. These papers dampened the appeal of multiple instruction issue for
more than ten years. Nicolau and Fisher [1984] published a paper asserting the
presence of large amounts of potential instruction-level parallelism.

Charlesworth [1981] reports on the Floating Point Systems AP-120B, one of
the first wide-instruction machines containing multiple operations per instruc:.
tion. Floating Point Systems applied the concept of software pipelining-albeit
by hand, rather than with a compiler-by writing assembly language libraries to
use the machine efficiently. Weiss and J. E. Smith [1987] compare software
pipelining versus loop unrolling as techniques for scheduling code on a
pipelined machine. Lam [1988] presents algorithms for software pipelining and
evaluates their use on Warp, a wide-instruction-word machine. Along with his
colleagues at Yale, Fisher [1983] proposed creating a machine with a very wide
instruction (512 bits), and named this type of machine a VLIW. Code was
generated for the machine using trace scheduling, which Fisher [1981] had
developed originally for generating horizontal microcode. The implementation
of trace scheduling for the Yale machine is described by Fisher, et. al. [1984]
and by Ellis [1986]. The Multiflow machine (see Colwell et. al. [1987])
commercialized the concepts developed at Yale.

Several researchers proposed techniques for multiple instruction issue.
Agerwala and Cocke [1987] proposed this approach as an extension of the RISC
ideas, and coined the name "superscalar." IBM described a machine based on
these ideas in late 1989 (see Bakoglu et al. [1989]). In 1990, the IBM was
announced as the RS/6000. The implementation can issue up to four instructions
per clock. A good description of the machine, its background, and software
appears in IBM [1990]. The Apollo DN 10000 and the Intel i860 both offer
multiple instruction issue, though the requirements for multiple issue are rather
rigid. The Intel i860 should probably be considered a LIW machine because the
program must explicitly indicate whether instruction pairs should be dual issued.
Although the pairs are ordinary instructions, there are substantial limitations on
what can appear as a member of a dual-issued pair. The Intel 960CA and
Tandem Cyclone are examples of superscalar machines with complex instruction
sets.

J. E. Smith and his colleagues at Wisconsin [1984] proposed the decoupled
approach that included multiple issue with dynamic pipeline scheduling. The
Astronautics ZS-1 described by Smith et al. [1987] embodies this approach and
uses queues to connect the load/store unit and the operation units. J. E. Smith
[1989] also describes the advantages of dynamic scheduling and compares that
approach to static scheduling. Dehnert, Hsu, and Bratt [1989] explain the

Ex.1035.372DELL

Pipelining 341

architecture and performance of the Cydrome Cydra 5, a machine with a wide
instruction word that provides dynamic register renaming. The Cydra 5 is a
unique blend of hardware and software aimed at extracting instruction-level
parallelism.

Recently there have been a number of papers exploring the tradeoffs among
alternative pipelining approaches. Jouppi and Wall [1989] examine the perfor
mance differences between superpipelined and superscalar systems, concluding
that their performance is similar, but that superpipelined machines may require
less hardware to achieve the same performance. Sohi and Vajapeyam [1989]
give measurements of available parallelism for wide-instruction-word machines,
Smith, Johnson, and Horowitz [1989] recount studies of available instruction
level parallelism in nonscientific code using an ambitious hardware scheme that
allows multiple-instruction execution.

References

AGERWALA, T. AND J. COCKE [1987]. "High performance reduced instruction set processors,"
IBM Tech. Rep. (March).

ANDERSON, D. W., F. J. SPARACIO, AND R. M. TOMASULO [1967]. "The IBM 360 Model 91:
Machine philosophy and instruction handling," IBM J. of Research and Development 1I:1
(January) 8-24.

BAKOGLU, H.B., G. F. GROHOSKI, L. E. THATCHER, J. A. KAHLE, C.R. MOORE, D. P. TUTTLE:
W. E. MAULE, W. R. HARDELL, D. A. HICKS, M. NGUYEN PHU, R. K. MONTOYE, W. T.
GLOVER, ANDS. DHAWAN [1989]. "IBM second-generation RISC machine organization," Proc.

· lnt'l Conf. on Computer Design, IEEE (October) Rye, N.Y., 13~-142.

BLOCH, E. [1959]. "The engineering design of the Stretch computer," Proc. Fall Joint Computer
Conf, 48-59.

BUCHOLTZ, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New York.

CHARLESWORTH, A. E. [1981]. "An approach to scientific array processing: The architecture
design of the AP-120B/FPS-164 family," Computer 14:12 (December) 12-30.

CHEN, T. C. [1980]. "Overlap and parallel processing" in Introduction to Computer Architecture, H.
Stone, ed., Science Research Associates, Chicago, 427-486.

CLARK, D. W. [1987]. "Pipelining and performance in the VAX 8800 processor," Proc. Second
Conj. on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., 173-177.

COLWELL, R. P., R. P. NIX, J. J. O'DONNELL, D. B. PAPWORTH, AND B. K. RODMAN [1987]. "A
VLIW architecture for a trace scheduling compiler," Proc. Second Conf on Architectural Support
for Programming Languages and Operating Systems, IEEE/ACM (March), Palo Alto, Calif., 180-
192.

DAVIDSON, E. S. [1971]. "The design and control of pipelined function generators," Proc. Conj. on
Systems, Networks, and Computers, IEEE (January), Oaxtepec, Mexico, 19-21.

DAVIDSON, E. S., A. T. THOMAS, L. E. SHAR, AND J. H. PATEL [1975]. "Effective control for
pipelined processors," COMPCON, IEEE (March), San Francisco, 181-184.

DEHNERT, J.C., P. Y.-T. HSU, AND J.P. BRATT [1989]. "Overlapped loop support on the Cydra 5,"
Proc. Third Conf on Architectural Support for Programming Languages and Operating Systems
(April), IEEE/ACM, Boston, 26-39.

Ex.1035.373DELL

342 6.12 Historical Perspective and References

DEROSA, J., R. GLACKEMEYER, AND T. KNIGHT [I985]. "Design and implementation of the VAX
8600 pipeline," Computer I8:5 (May) 38-48.

DIGITAL EQUIPMENT CORPORATION [I987]. Digital Technical J. 4 (March), Hudson, Mass. (This
entire issue is devoted to the VAX 8800 processor.)

DITZEL, D.R. AND H. R. MCLELLAN [I987]. "Branch folding in the CRISP microprocessor:
Reducing the branch delay to zero," Proc. 14th Symposium on Computer Architecture (June),
Pittsburgh, 2-7.

EARLE, J. G. [1965]. "Latched carry-save adder," IBM Technical Disclosure Bull. 7 (March) 909-
910.

ELLIS, J. R., [1986]. Bulldog: A Compiler for VLIW Architectures, The MIT Press,I986.

EMER, J. S. AND D. W CLARK [1984]. "A characterization of processor performance in the VAX-
11/780," Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-310.

FISHER, J. A. [I98I]. "Trace Scheduling: A Technique for Global Microcode Compaction," IEEE
Trans. on Computers 30:7 (July), 478-490.

FISHER, J. A. [1983]. "Very long instruction word architectures and ELl-512," Proc. Tenth Sympo
sium on Computer Architecture (June), Stockholm, Sweden., I40-150.

FISHER J. A., J. R. ELLIS, J.C. RUTTENBERG, AND A. NICOLAU [1984]. "Parallel processing: A
smart compiler and a dumb machine," Proc. SJGPLAN Conj. on Compiler Construction (June),
Palo Alto, CA, 11-16.

FOSTER, C. C. AND E. M. RISEMAN [I972]. "Percolation of code to enhance parallel dispatching
and execution," IEEE Trans. on Computers C-2I:12 (December) 14I 1-I4I5.

GIBBONS, P. B. ANDS. S. MUCHNIK [1986]. "Efficient Instruction Scheduling for a Pipelined
Processor," SIGPLAN '86 Symposium on Compiler Construction, ACM (June), Palo Alto, CA,
1 I-I6.

GROSS, T. R. [1983]. Code Optimization of Pipeline Constraints, Ph.D. Thesis (December),
·Computer Systems Lab., Stanford Univ.

HENNESSY, J. L. AND T. R. GROSS [1983]. "Postpass code optimization of pipeline constraints,"
ACM Trans. on Programming Languages and Systems 5:3 (July) 422-448

HWU, W.-M. ANDY. PATT [1986]. "HPSm, a high performance restricted data flow architecture
having minimum functionality," Proc. 13th Symposium on Computer Architecture (June), Tokyo,
297-307.

IBM [1990]. "The IBM RISC System/6000 processor," collection of papers, IBM lour. of Research
and Development 34: 1, (January), I I 9 pages.

JOUPPI N. P. AND D. W. WALL [I989]. "Available instruction-level parallelism for superscalar and
superpipelined machines," Proc. Third Conj. on Architectural Support for Programming Lan
guages and Operating Systems, IEEE/ACM (April), Boston, 272-282.

KELLER R. M. [I975]. "Look-ahead processors," ACM Computing Surveys 7:4 (December) 177-
I95.

KOGGE, P. M. [I98I]. The Architecture of Pipelined Computers, McGraw-Hill, New York.

KUNKEL, S. R. AND J.E. SMITH [I986]. "Optimal pipelining in supercomputers," Proc. 13th Sym
posium on Computer Architecture (June), Tokyo, 404-4I4.

LAM, M. [I988]. "Software pipelining: An effective scheduling technique for VLIW machines,"
SIGPLAN Conj. on Programming Language Design and Implementation, ACM (June), Atlanta,
Ga., 3I8-328.

MCFARLING, S. AND J. HENNESSY [I986]. "Reducing the cost of branches," Proc. 13th Sym
posium on Computer Architecture (June), Tokyo, 396-403.

NICOLAU, A. AND J. A. FISHER [I984]. "Measuring the parallelism available for very long
instruction work architectures," IEEE Trans. on Computers C-33: I I (November) 968-976.

Ex.1035.374DELL

Pipelining 343

RAMAMOORTHY, C. V. AND H.F. LI [1977). "Pipeline architecture," ACM Computing Surveys 9:1
(March) 61-102.

RYMARCZYK, J. [1982). "Coding guidelines for pipelined processors," Proc. Symposium on Archi
tectural Support for Programming Languages and Operating Systems, IEEE/ACM (March), Palo
Alto, Calif., 12-I9.

SITES, R. [I979]. Instruction Ordering for the CRAY-I Computer, Tech. Rep. 78-CS-023 (July),
Dept. of Computer Science, Univ. of Calif., San Diego.

SMITH, A. AND J. LEE [1984). "Branch prediction strategies and branch target buffer design," Com
puter I7:I (January) 6-22.

SMITH, J. E. [I98I]. "A study of branch prediction strategies," Proc. Eighth Symposium on
Computer Architecture (May), Minneapolis, 135-I48.

SMITH, J.E. [I984]. "Decoupled access/execute computer architectures," ACM Trans. on Computer
Systems 2:4 (November), 289-308.

SMITH, J.E. [1989). "Dynamic instruction scheduling and the Astronautics ZS-1," Computer 22:7
(July) 21-35.

SMITH, J.E. AND A. R. PLEZKUN [1988). "Implementing precise interrupts in pipelined proces
sors," IEEE Trans. on Computers 37:5 (May) 562-573.

SMITH, J.E., G. E. DERMER, B. D. VANDERWARN, S. D. KLINGER, C. M. ROZEWSKI, D. L.
FOWLER, K. R. SCIDMORE, J.P. LAUDON [I987]. "The ZS-1 central processor," Proc. Second
Conf on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., I 99-204.

SMITH, M. D., M. JOHNSON, ANDM. A. HOROWITZ [1989). "Limits on multiple instruction issue,"
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Systems,
IEEE/ACM (April), Boston, Mass., 290-302.

SOHi, G. S., ANDS. VAJAPEYAM [I989]. "Tradeoffs in instruction format design for horizontal
architectures," Proc. Third Conf. on Architectural Support for Programming Languages and
Operating Systems, IEEE/ACM (April), Boston, Mass. I5-25.

THORLIN, J. F. [I967]. "Code generation for PIE (parallel instruction execution) computers," Spring
Joint Computer Conf. (April), Atlantic City, N.J.

THORNTON, J.E. [1964). "Parallel operation in the Control Data 6600," Proc. Fall Joint Computer
Conf. 26, 33-40.

THORNTON, J.E. [1970). Design of a Computer, the Control Data 6600, Scott, Foresman,
Glenview, Ill.

TJADEN, G. S. AND M. J. FLYNN [1970). "Detection and parallel execution of independent instruc
tions," IEEE Trans. on Computers C-19:10 (October) 889-895.

TOMASULO, R. M. [I967]. "An efficient algorithm for exploiting multiple arithmetic units," IBM J.
of Research and Development I I: I (January) 25-33.

TROIANI, M., S.S. CHING, N. N. QUA YNOR, J.E. BLOEM, AND F. C. COLON OSORIO [I985].
"The VAX 8600 I Box, a pipelined implementation of the VAX architecture," Digital Technical J.
1 (August) 4-I9.

WEISS, S. AND J.E. SMITH [I984]. "Instruction issue logic for pipelined supercomputers," Proc.
11th Symposium on Computer Architecture (June), Ann Arbor, Mich., l IO-I I8.

WEISS, S. AND J.E. SMITH [I987]. "A study of scalar compilation techniques for pipelined super
computers," Proc. Second Conf on Architectural Support for Programming Languages and
Operating Systems (March), IEEE/ACM, Palo Alto, Calif., I05-I09.

Ex.1035.375DELL

344 Exercises

EXERCISES

6.1 [12/12/15/20/15/15] <6.2-6.4> Consider an architecture with two instruction formats:
a register-register format and a register-memory format. There is a single memory
addressing mode (offset+ base register).

There is a set of ALU operations with format:

ALUop Rdest, Rsrc1, Rsrc2

or

ALUop Rdest, Rsrc 1, MEM

Where the ALU op is one of the following: Add~ Subtract, And, Or, Load (Rsrc1 ignored),
Store (Rdest ignored). Rsrc or Rdest are registers. MEM is a base register and offset pair
and is a source for any ALU op, except a store instruction where it is the destination.

Branches use a full compare of two registers and are PC-relative. Assume that this
machine is pipelined so that a new instruction is started every clock cycle. The following
pipeline structure-similar to that used in the VAX 8800 micropipeline-is used:

IF RF ALUl MEM ALU2 WB
IF RF ALUl MEM ALU2 WB

IF RF ALUl MEM ALU2 WB
IF RF

IF
ALUl MEM ALU2 WB
RF ALUl MEM ALU2 WB
IF RF ALUl MEM ALU2 WB

The first ALU stage is used for effective address calculation for memory references and
branches. The second ALU cycle is used for operations and branch comparison. RF is
both a decode and register-fetch cycle. Assume reading in RF and writing in WB occur as
in Figure 6.8 (page 262).

a. [12] Find the number of adders needed, counting any adder or incrementer; show a
combination of instructions and pipe stages that justify this answer. You need only
give one combination that maximizes the adder count.

b. [12] Find the number of register read and write ports and memory read and write ports
required. Show that your answer is correct by showing a combination of instructions
and pipeline stage indicating the instruction and the number of read ports and write .
ports required for that instruction.

c. [15] Determine any data forwarding between the two separate ALUs used for the
ALUl and ALU2 pipe stages. Put in all forwarding of ALU to ALU needed to avoid
or reduce stalls. Show the relationship between the two instructions involved in
forwarding.

d. [20] Show any other data-forwarding requirements for the units listed below by giving
an example of the source instruction and destination instruction of the forwarding.
Each example should show the maximum separation of the two instructions. How
many instructions can each example forward across? You need only consider the fol
lowing units: MDRin (memory data in register), MDRout (memory-data register for
outgoing data), ALU1, and ALU2. Include any forwarding that is required to prevent

or reduce stalls.

e. [15] Give an example of all remaining hazards after all forwarding of parts C and D
above has been implemented. What is the maximum number of stalls for each hazard?

Ex.1035.376DELL

Pipelining 345

f. (15] Show all control hazard types by example and state the length of the stall. The
control hazards should be resolved as early as possible (but not using a delayed
branch).

6.2 (12] <6.1-6.4> A machine is called "underpipelined" if additional levels of pipelining
can be added without changing the pipeline-stall behavior appreciably. Suppose that the
DLX pipeline was changed to four stages by merging ID and EX and lengthening the
clock cycle by 50%. How much faster would the convent~onal DLX pipeline be versus
the underpipelined DLX on integer code only? Make sure you include the effect of any
change in pipeline stalls using the data in Figure 6.24 (page 278).

6.3 (15] <6.2-6.4> We know that a four-deep pipelined implementation has the following
hazard frequencies and stall requirements between an instruction i and its successors:

i + 1 (and not on i + 2) 20% 2 cycle stall
i + 2 5% 1 cycle stall

Assume that the clock rate of the pipelined machine is four times the clock rate of the
nonpipelined implementation. What is the effective performance increase from pipelining
if we ignore the effect of hazards? What is the effective performance increase from
pipelining if we account for the effect of pipelining hazards?

6.4 (15] <6.3> Suppose the branch.frequencies (as percentages of all instructions) are as
follows:

Conditional branches
Jumps and calls
Conditional branches

20%
5%
60% are taken

We are examining a four-deep pipeline where the branch is resolved at the end of the
second cycle for unconditional branches, and at the end of the third cycle for conditional
branches. Assuming that only the first pipe stage can always be done independent of
whether the branch goes and ignoring other pipeline stalls, how much faster would the
machine be without any branch hazards?

6.S. [20] <6.4> Several designers have proposed the concept of canceling branches (also
called squashing or nullifying), as a way to improve the performance of delayed
branches. (Several of the machines discussed in Appendix E have this capability.) The
idea is to allow the branch to indicate that the instruction in the delay slot should be
aborted if the branch is mispredicted. The advantage of canceling branches is that the
delay slot can always be filled, since the branch can abort the contents of the delay slot if
mispredicted. The compiler need not worry about whether the instruction is OK to
execute when the branch is mispredicted.

A simple version of canceling branches cancels if the branch is not taken; assume this
type of canceling branch. Use the data in Figure 6.18 (page 272) for branch frequency.
Assume that 27% of the branch-delay slots are filled using strategy (a) of Figure 6.20
(page 274) with standard delayed branches, and that the rest of the slots are filled using
canceling branches and strategy (b). U~ing the taken/not taken data for Spice from Figure
3.22 on page 107, show the effectiveness of this scheme with canceling branches for
Spice using the same format as the graph in Figure 6.22 (page 276). How much faster on
Spice would a machine with canceling branches run, assuming there is no clock-speed
penalty compared to a machine with only delayed branches? Assume CPI without branch
stalls is 1.

6.6 [20/15/20] <6.2-6.4> Suppose that we have the following pipeline layout:

Ex.1035.377DELL

346 Exercises

Stage Function

1 Instruction fetch

2 Operand decode

3 Execution or memory access (branch resolution)

All data dependences are between the register written in Stage 3 of instruction i and a
register read in Stage 2 of instruction i + 1, before instruction i has completed. The
probability of such an interlock occurring is 1/p.

We are considering a change in the machine organization that would write back the result
of an instruction during an effective 4th pipe stage. This would decrease the length of the
clock cycle by d (i.e., if the length of the clock cycle was T, it is now T-d). The prob
ability of a dependence between instruction i and instruction i +2 is p-2. (Assume that
the value of p-I excludes instructions that would interlock on i +2.) The branch would
also be resolved during the fourth stage.

a. [20] Considering only the data hazard, find the lower bound on d that makes this a
profitable change. Assume that each result has exactly one use and that the basic
clock cycle has length T.

b. [15] Suppose that the probability of an interlock between i and i+n were 0.3 - O.ln
for l~n~3. What increase in the clock rate is needed so that this change improves per
formance?

c. [20] Now assume that we have used forwarding to eliminate the extra hazard intro
duced by the change. That is, for all data hazards the pipeline length is effectively 3.
This design may still not be worthwhile because of the impact of control hazards
coming from a four-stage versus a three-stage pipeline. Assume that only Stage 1 of
the pipeline can be safely executed before we decide whether a branch goes or not and
that all branches are conditional. We want to know what the impact of branch hazards
can be before this longer pipeline does not yield high performance. Find an upper
bound on the percent of conditional branches in programs in terms of the ratio of d to
the original clock-cycle time, so that the longer pipeline has better performance. What
if d is a 10% reduction, what is the maximum percentage of conditional branches,
before we lose with this longer pipeline? Assume the taken-branch frequency for
conditional branches is 60%.

6.7 [12] <6.7> A shortcoming of the scoreboard approach occurs when multiple func
tional units that share input buses are waiting for a single result. The units cannot start
simultaneously, but must serialize. This is not true in Tomasulo's algorithm. Give a code
sequence that uses no more than 10 instructions and shows this problem. Use the FP
latencies from Figure 6.29 (page 289) and the same functional units in both examples.
Indicate where the Tomasulo approach can continue, but the scoreboard approach must
stall.

6.8 [15] <6.7> Tomasulo's algorithm also has a disadvantage versus the scoreboard: only
one result can complete per clock, due to the CDB. Using the FP latencies from Figure
6.29 (page 289) and the same functional units in both cases, find a code sequence of no
more than 10 instructions where scoreboard does not stall, but Tomasulo's algorithm
must. Indicate where this occurs in your sequence.

6.9 [15] <6.7> Suppose we have a deeply pipelined machine, for which we implement a
branch-target buffer for the conditional branches only. Assume that the misprediction

Ex.1035.378DELL

Pipelining 347

penalty is always 4 cycles and the buffer miss penalty is always 3 cycles. Assume 90%
hit rate and 90% accuracy, and the branch statistics in Figure 6.18 (page 272). How much
faster is the machine with the branch-target buffer versus a machine that has a fixed 2-
cycle branch penalty? Assume a base CPI without branch stalls of 1.

6.10 [15) <6.7> Some designers have proposed using branch-target buffers to obtain a
zero-delay unconditional branch (see Ditzel and McLellan [1987)). The buffer simply
caches the target instruction rather than the target PC. On an unconditional branch that
hits in the branch-target buffer, the target instruction is fetched and sent to the pipeline in
place of the unconditional branch. Assuming a 90% hit rate, a base CPI of 1, and the data
in Figure 6.18 (page 272), how much improvement is gained by this enhancement versus
a machine whose effective CPI is 1.1.

6.11-6.19 For these problems we will look at how a common vector loop runs on a
variety of pipelined versions of DLX. The loop is the so-called SAXPY loop (discussed
extensively in Chapter 7). The loop implements the vector operation Y = a*X+Y for a
vector of length 100. Here is the DLX code for the loop:

foo: LD Jo'.A(/L F2,0(Rl)f\ ;load X(i)

MULTD F4,F2,FO ;multiply a*X(i)

LD F6,0(R2) ;load Y(i)

ADDD F6,F4,F6 ;add aX(i) + Y(i)

SD
1

0(R2),F6\~ ;store Y(i)
I

ADD I ;,,,,,,.,ii Rl, Rl, 8 ;increment X index

ADDI R2,R2,8 ;increment Y index

SGTI R3,Rl,done ;test if done

BEQZ R3,foo ; loop if not done

For these problems, assume that the integer operations issue and complete in one clock
cycle and that their results are fully bypassed. Ignore the branch delay. You will use the
FP latencies shown in Figure 6.29 (page 289) unless stated otherwise. Assume the FP
units are not pipelined unless the problem states otherwise.

6.11 [20] <6.2-6.6> For this problem use the pipeline constraints shown in Figure 6.29
(page 289). Show the number of stall cycles for each instruction and what clock cycle the
instruction begins execution (i.e., enters its first EX cycle) on the first iteration of the
loop. How many clock cycles does each loop iteration take?

6.12 [22) <6.7> Using the DLX code for SAXPY above, show the state of the scoreboard
tables (as in Figure 6.32) when the SGTI instruction reaches Write result. Assume that
issue and read operands each take a cycle. Assume that there are three integer functional
units and they take only a single execution cycle (including loads and stores). Assume the
functional unit count described in Section 6.7 with the FP latencies of Figure 6.29. The
branch should not be included in the scoreboard.

6.13 [22) <6.7> Use the DLX code for SAXPY above and the latencies of Figure 6.29.
Assuming Tomasulo's algorithm for the hardware with the functional units described in
Section 6.7, show the state of the reservation stations and register-status tables (as in

Ex.1035.379DELL

348 Exercises

Figure 6.37) when the SGTI writes its result on the CDB. Make the same assumptions
about 'latencies and functional units as Exercise 6.12.

6.14 [22] <6.7> Using the DLX code for SAXPY above, assume a scoreboard with the
functional units described in the algorithm for the hardware, plus three integer functional
units (also used for load/store). Assume the following latencies in clock cycles:

FP multiply 10

FP add 6

FP load/store 2

All integer operations 1

Show the state of the scoreboard (as in Figure 6.32) when the branch issues for the
second time. Assume the branch was correctly predicted taken and took one cycle. How
many clock cycles does each loop iteration take? You may ignore any register port/bus
conflicts.

6.15 [25] <6.7> Use the DLX code for SAXPY above. Assume Tomasulo's algorithm for
the hardware using the functional-unit count shown in Section 6.7. Assume the following
latencies in clock cycles:

FP multiply 10

FP add 6

FP load/store 2

All integer operations 1

Show the state of the reservation stations and register status tables (as in Figure 6.37)
when the branch is executed for the second time. Assume the branch was correctly pre
dicted as taken. How many clock cycles does each loop iteration take?

6.16 [22] <6.8> Unwind the DLX code for SAXPY three times and schedule it for the
standard DLX pipeline. Assume the FP latencies of Figure 6.29. When unwinding, you
should optimize the code as in Section 6.8. Significant reordering of the code will be
needed to maximize performance. What is the speedup over the original loop?

6.17 [25] <6.8> Assume a superscalar architecture that can issue any two independent
operations in a clock cycle (including two integer operations). Unwind the DLX code for
SAXPY three times and schedule it assuming the FP latencies of Figure 6.29. Assume
one fully-pipelined copy of each functional unit (e.g., FP adder, FP multiplier). How
many clock cycles will each iteration on the original code take? When unwinding, you
should optimize the code as in Section 6.8. What is the speedup versus the original code?

6.18 [25] <6.8> In a superpipelined machine, rather than have multiple functional units,
we would fully pipeline all the units. Suppose we designed a superpipelined DLX that
had twice the clock rate of our standard DLX pipeline and could issue any two unrelated
operations in the same time that the normal DLX pipeline issued one operation. Unroll
the DLX SAXPY code three times and schedule it for this superpipelined machine
assuming the FP latencies of Figure 6.29. How many clock cycles does each loop
iteration take? Remember that these clock cycles are half as long as those on a standard
DLX pipeline or a superscalar DLX.

Ex.1035.380DELL

Pipelining 349

6.19 [20] <6.8> Start with the SAXPY code and the machine used in Figure 6.49. Unroll
the SAXPY loop three times, performing simple optimizations (as on page 315). Fill in a
table like Figure 6.49 for the unrolled loop. How many clock cycles does each loop
iteration take?

6.20 [35] <6.1-6.4> Change the DLX instruction simulator to be pipelined. Measure the
frequency of empty branch-delay slots, the frequency of load delays, and the frequency of
PP stalls for a variety of integer and PP programs. Also,' measure the frequency of for
warding operations. Determine what the performance impact of eliminating forwarding
and stalling would be.

6.21 [35] <6.6> Using a DLX simulator, create a DLX pipeline simulator. Explore the
impact of lengthening the PP pipelines, assuming both fully pipelined and nonpipelined
PP units. How does clustering of PP operations affect the results? Which PP units are
most susceptible to changes in the PP pipeline length?

6.22 [40] <6.4-6.6> Write an instruction scheduler for DLX that works on DLX
assembly language. Evaluate your scheduler using either profiles of programs or with a
pipeline simulator. If the DLX C compiler does optimization, evaluate your scheduler's
performance both with and without optimization.

6.23 [35] <6.4-6.6> Write a DLX pipeline simulator that uses Tomasulo's algorithm with
the functional units described. Evaluate the performance of this machine compared to the
straightforward DLX pipeline.

6.24 [Discussion] <6.7> Dynamic instruction scheduling requires a considerable invest
ment in hardware. In return, this capability allows the hardware to run programs that
could not be run at full speed with only compile-time, static scheduling. What tradeoffs
should be taken into account in trying to decide between a dynamically and a statically
scheduled scheme? What sort of situations in both hardware technology and program
characteristics are likely to favor one approach or the other?

6.25 [Discussion] <6.7> There is a subtle problem that must be considered when imple
menting Tomasulo's algorithm. It might be called the "two ships passing in the night
problem." What happens if an instruction is being passed to a reservation station during
the same clock period as one of its operands is going onto the common data bus? Before
an instruction is in a reservation station, the operands are fetched from the register file;
but once it is in the station, the operands are always obtained from the CDB. Since the
instruction and its operand tag are in transit to the reservation station, the tag cannot be
matched against the tag on the CDB. So there is a possibility that the instruction will then
sit in the reservation station forever waiting for its operand, which it just missed. How
might this problem be solved? You might consider subdividing one of the steps in the
algorithm into multiple parts. (This intriguing problem is courtesy of J.E. Smith.)

6.26 [Discussion] <6.8> Discuss the advantages and disadvantages of a superscalar
implementation, a superpipelined implementation, and a VLIW approach in the context
of DLX. What levels of instruction-level parallelism favor each approach? What other
concerns would you consider in choosing which type of machine to build?

Ex.1035.381DELL

I'm certainly not inventing vector machines. There are three kinds
that I know of existing today. They are represented by the
Illiac-IV, the (CDC) Star machine, and the TI (ASC) machine.
Those three were all pioneering machines One of the
problems of being a pioneer is you always make mistakes and
I never, never want to be a pioneer. It's always best to come
second when you can look at the mistakes the pioneers made.

7.1

7.2
7.3
7.4

7.5
7.6

7.7

7.8

7.9
7.10

· Seymour Cray, Public Lecture at Lawrence Livermore Laboratories on the
Introduction of the CRAY-I (1976)

Why Vector Machines? 351

Basic Vector Architecture 353

Two Real-World Issues: Vector Length and Stride 364

A Simple Model for Vector Performance 369

Compiler Technology for Vector Machines 371

Enhancing Vector Performance 37'.?'

Putting It All Together: Evaluating the
Performance of Vector Processors 383

Fallacies and Pitfalls 390

Concluding Remarks 392

Historical Perspective and References 393

Exercises 397

Ex.1035.382DELL

7

7.1

Vector Processors

Why Vector Machines?

In the last chapter we looked at pipelining in detail and saw that pipeline
scheduling, issuing multiple instructions per clock cycle, and more deeply
pipelining a processor could as much as double the performance of a machine.
Yet there are limits on the performance improvement that pipelining can
achieve. These limits are set by two primary factors:

• Clock cycle time-The clock cycle time can be decreased by making the
pipelines deeper, but a deeper pipeline will increase the pipeline dependences
and result in a higher CPI. At some point, each increase in pipeline depth has
a corresponding increase in CPI. As we saw in Section 6.10, very deep
pipelining can slow down a processor.

• Instruction fetch and decode rate-This limitation, sometimes called the
Flynn bottleneck (based on Flynn [1966]), prev--ents fetching and issuing of
more than a few instructions per clock cycle. We saw that for most pipelined
machines the average number of instruction issues per clock was less than
one.

The dual limitations imposed by deeper pipelines and issuing multiple instruc
tions can be viewed from the standpoint of either clock rate or CPI: It is just as

Ex.1035.383DELL

352 7.1 Why Vector Machines?

difficult to schedule a pipeline that is n times deeper as it is to schedule a
machine that issues n instructions per clock cycle.

High-speed, pipelined machines are particularly useful for large scientific and
engineering applications. A high-speed pipelined machine will usually use a
cache to avoid forcing memory reference instruct\ons to have very long latency.
However, big, long-running, scientific programs often have very large active
data sets that are often accessed with low locality, yielding poor performance
from the memory hierarchy. The resulting impact is a decrease in cache
performance. This problem could be overcome by not caching these structures if
it were possible to determine the memory-access patterns and pipeline the
accesses efficiently. Compiler assistance may help address this problem in the
future (see Section 10.7).

Vector machines provide high-level operations that work on vectors-linear
arrays of numbers. A typical vector operation might add two 64-entry, floating
point vectors to obtain a single 64-entry vector result. The vector instruction is
equivalent to an entire loop, with each iteration computing one of the 64
elements of the result, updating the indices, and branching back to the.
beginning.

Vector operations have several important properties that solve most of the
problems mentioned above:

• The computation of each result is independent of the computation of previous
results, allowing a very deep pipeline without generating any data hazards.
Essentially, the absence of data hazards was determined by the compiler or
programmer when they decided that a vector instruction could be used.

• A single vector instruction specifies a great deal of work-it is equivalent to
executing an entire loop. Thus, the instruction bandwidth requirement is
reduced, and the Flynn bottleneck is considerably mitigated.

• Vector instructions that access memory have a known access pattern. If the
vector's elements are all adjacent, then fetching the vector from a set of
heavily interleaved memory banks works very well. The high latency of
initiating a main memory access versus accessing a cache is amortized
because a single access is initiated for the entire vector rather than to a single
word. Thus, the cost of the latency to main memory is seen only once for the
entire vector, rather than once for each word of the vector.

• Because an entire loop is replaced by a vector instruction whose behavior is
predetermined, control hazards that would normally arise from the loop
branch are nonexistent.

For. these reasons, vector operations can be made faster than a sequence of scalar
operations on the same number of data items, and designers are motivated to
include vector units if the applications domain can use them frequently.

As mentioned above, vector machines pipeline the operations on the individ
ual elements of a vector. The pipeline includes not only the arithmetic operations
(multiplication, addition, and so on), but also memory accesses and effective

Ex.1035.384DELL

Vector Processors 353

address calculations. In addition, most high-end vector machines allow multiple
vector operations to be done at the same time, creating parallelism among the
operations on different elements. In this chapter, we focus on vector machines
that gain performance by pipelining and instruction overlap. In Chapter 10, we
discuss parallel machines that operate on many elements in parallel rather than
in pipelined fashion.

7 .21 Basic Vector Architecture

A vector machine typically consists of an ordinary pipelined scalar unit plus a
vector unit. All functional units within the vector unit have a latency of several
clock cycles. This allows a shorter clock cycle time and is compatible with long
running, vector operations that can be deeply pipelined without generating
hazards. Most vector machines allow the vectors to be dealt with as floating
point numbers (FP), as integers, or as logical data, though we will focus on
floating point. The scalar unit is basically no different from the type of pipelined
CPU discussed in Chapter 6.

There are two primary types of vector architectures: vector-register machines
and memory-memory vector machines. In a vector-register machine, all vector
operations-except load and store-are among the vector registers. These
machines are the vector counterpart of a load/store architecture. All major vector
machines being shipped in 1990 use a vector-register architecture; these include
the Cray Research machines (CRAY -1, CRA Y-2, X-MP, and Y-MP), the
Japanese supercomputers (NEC SX/2, Fujitsu VP200, and the Hitachi S820),
and the mini-supercomputers (Convex C-1 and C-2). In a memory-memory
vector machine all vector operations are memory to memory. The first vector
machines were of this type, as were CDC's machines. From this point on we will
focus on vector-register architectures only; we will briefly return to memory
memory vector architectures at the end of the chapter (Section 7 .8) to discuss
why they have not been as successful as vector-register architectures.

We begin with a vector-register machine consisting of the primary com
ponents shown in Figure 7.1 (page 354). This machine, which is loosely based
on the CRA Y-1, is the foundation for discussion throughout most of this chapter.
We will call it DLXV; its integer portion is DLX, and its vector portion is the
logical vector extension of DLX. The rest of this section examines how the basic
architecture of DLXV relates to other machines.

The primary components of the instruction set architecture of DLXV are:
-----.._./

• Vector registers-Each vector register is a fixed-length bank holding a single
vector. DLXV has eight vector registers, and each vector register holds 64
doublewords. Each vector register must have at least two read ports and one
write port in DLXV. This will allow a high degree of overlap among vector
operations to different vector registers. (The CRA Y-1 manages to implement
the register file with only a single port per register using some clever imple
mentation techniques.)

Ex.1035.385DELL

354 7.2 Basic Vector Architecture

Vector
registers,__ ___ __

Scalar
registers

FIGURE 7.1 The basic structure of a vector-register architecture, DLXV. This
machine has a scalar architecture just like DLX. There are also eight 64-element vector
registers, and all the functional units are vector functional units. Special vector operations
and vector loads and stores are defined. We show vector units for logical and intege,r oper
ations. These are included so that DLXV looks like a standard vector machine, which usu
ally includes these units. However, we will not be discussing these units except in the Exer
cises. In Section 7.6 we add chaining, which will require additional interconnect capability.

• Vector functional units-Each unit is fully pipelined and can start a new
operation on every clock cycle. A control unit is needed to detect hazards,
both on conflicts for the functional units (structural hazards) and on conflicts
for register accesses (data hazards). DLXV has five functional units, as
shown in Figure 7.1. For simplicity, we will focus exclusively on the floating
point functional units.

• Vector load/store unit-A vector memory unit that loads or stores a vector to
or from memory. The DLXV vector loads and stores are fully pipelined, so
that words can be moved between the vector registers and memory with a
bandwidth of one word per clock cycle, after an initial latency.

• A set of scalar registers-These can also provide data as input to the vector
functional units, as well as compute addresses to pass to the vector load/store
unit. These are the normal 32 general-purpose registers and 32 floating-point
registers of DLX.

Ex.1035.386DELL

354 7.2 Basic Vector Architecture

registers

FIGURE 7.1 The basic structure of a vector-register architecture, DLXV. This
machine has a scalar architecture just like DLX. There are also eight 64-element vector
registers, and all.the functional units are vector functional units. Special vector operations
and vector loads and stores are defined. We show vectorunits for logical and integer oper-
ations. These are included so that DLXV looks like a standard vector machine, which usu-
ally includes these units. However, we will not be discussing these units except in the Exer-
cises. In Section 7.6 we add chaining, which will require additional interconnect capability.

s Vector functional units—Each unit is fully pipelined and can start a new
operation on every clock cycle. A control unit is needed to detect hazards,
both on conflicts for the functional units (structural hazards) and on conflicts
for register accesses (data hazards). DLXV has five functional units, as
shown in Figure 7.1. For simplicity, we will focus exclusively on the floating-
point functional units.

= Vector load/store unit—A vector memory unit that loads or stores a vector to
or from memory. The DLXV vector loads andstores are fully pipelined, so
that words can be moved between the vector registers and memory with a
bandwidth of one word per clock cycle, after an initial latency.

« A Set of scalar registers—These can also provide data as input to the vector
functional units, as well as compute addresses to pass to the vector load/store
unit. These are the normal 32 general-purpose registers and 32 floating-point
registers of DLX.

DELL Ex.1035.386

Machine Year
announced

CRAY-1 1976

CRAYX-MP 1983
CRAYY-MP 1988

CRAY-2 1985

Fujitsu 1982
VPl00/200

Hitachi 1983
S810/820

Convex C-1 1985

NEC SX/2 1984

DLXV 1990

Vector Processors 355

Figure 7 .2 shows the characteristics of some typical vector machines, including
the size and count of the registers, the number and types of functional units, and
the number of load/store units.

In DLXV, the vector operation has the same name as the DLX name with the
letter "V" appended. These are double-precision, floating-point, vector opera
tions. (We have omitted single-precision FP operations and integer and logical
operations for simplicity.) Thus, ADDV is an add of two double-precision vec
tors. The vector operations take as their input either a pair of vector registers
(ADDV) or a vector register and a scalar register designated by appending "SV"
(ADDSV). In the latter case, the value in the scalar register is used as the input
for all operations-the operation ADDSV will add the contents of a scalar regis
ter to each element in a vector register. Vector operations always have a vector
destination register. The names LV and sv denote vector load and vector store,
and load or store an entire vector of double-precision data. One operand is

Vector Elements per Vector functional units Vector
registers vector register load I

(64-bit elements) store units

8 64 6: add, multiply, reciprocal, integer add, 1
logical, shift

8 64 8: FP add, FP multiply, FP reciprocal, integer 2 loads
add, 2 logical, shift, population count/parity 1 store

8 64 5: FP add, FP multiply, FP reciprocal/sqrt, 1
integer (add shift, population count), logical

8-256 32-1024 3: FP or integer add/logical, multiply, divide 2

32 256 4: 2 integer add/logical, 1 multiply-add and 1 4
multiply/divide-add unit

8 128 4: multiply, add, divide, integer/logical 1

8 + 8192 256 variable 16: 4 integer add/logical, 4 FP 8
multiply/divide, 4 FP add, 4 shift

8 64 5: multiply, divide, add, integer add, logical 1

FIGURE 7.2 Characteristics of several vector-register architectures. The vector functional units include all operation
units used by the vector instructions. The functional units are floating point unless stated otherwise. If the machine is a
multiprocessor, the entries correspond to the characteristics of o_ne proceSSQL,-Each vector load/store unit represents the
ability to do an independent, overlapped transfer to or from the vector registers. The Fujitsu VP200's vector registers are
configurable: The size and count of the BK 64-bit entries may be varied inversely to one another (e.g., B registers each 1 K
elements long, or 12B registers each 64 elements long). The NEC SX/2 has B fixed registers of length 256, plus BK of
configurable 64-bit registers. The reciprocal unit on the CRAY machines is used to do division (and square root on the
CRAY-2). Add pipelines perform floating-point add and subtract. The multiply/divide-add unit on the Hitachi SB10/200
performs an FP multiply or divide followed by an add or subtract (while the multiply-add unit performs a multiply followed
by an add or subtract). Note that most machines use th.e vector FP multiply and divide units for vector integer multiply and
divide, just like DLX, and.several of the machines use the same units for FP scalar and FP vector operations.

Ex.1035.387DELL

356

Vector instruction

ADDV

ADDSV

SUBV

SUB VS

SUBSV

MULTV

MULTSV

DIVV

DIVVS

DIVSV

LV

sv
LVWS

svws
LVI

SVI

CVI

s_v
s sv -

POP

CVM

MOVI2S

MOVS2I

MOVF2S

MOVS2F

7.2 Basic Vector Architecture

the vector register to be loaded or stored; the other operand, which is a DLX
general-purpose register, is the starting address of the vector in memory. Figure
7.3 lists the DLXV vector instructions. In addition to the vector registers, we
need two additional special-purpose registers: the vector-length and vector-mask
registers. We will discuss these registers and their purpose in Sections 7.3 and
7 .6, respectively.

Operands Function

Vl,V2,V3 Add elements of V2 and V3, then put each result in Vl.

Vl, FO, V2 Add FO to each' element of V2, then put each result in Vl.

Vl,V2,V3 Subtract elements of V3 from V2, then put each result in Vl.

Vl,V2,FO Subtract F 0 from elements of V2, then put each result in Vl.

Vl,FO,V2 Subtract elements of V2 from F 0, then put each result in Vl.

Vl,V2,V3 Multiply elements of V2 and V3, then put each result in Vl.

Vl,FO,V2 Multiply F 0 by each element of V2, then put each result in Vl.

Vl,V2,V3 Divide elements of V2 by V3, then put each result in Vl.

Vl,V2,FO Divide elements of V2 by F 0, then put each result in Vl.

Vl,FO,V2 Divide FO by elements of V2, then put each result in Vl.

Vl,Rl Load vector register Vl from memory starting at address Rl.

Rl,Vl Store vector register Vl into memory starting at address Rl.

Vl, (Rl, R2) Load Vl from address at Rl with stride in R2, i.e., Rl+i *R2.

(Rl, R2), Vl Store Vl from address at Rl with stride in R2, i.e., Rl+i *R2.

Vl, (Rl+V2) Load Vl with vector whose elements are at Rl +V2 (i) , i.e., V2 is an index.

(Rl+V2), Vl Store Vl with vector whose elements are at Rl + V2 (i) , i.e., V2 is an index.

Vl,Rl Create an index vector by storing the values 0, 1 *Rl, 2 *Rl, ... , 6 3 * Rl
into Vl.

Vl,V2 Compare (EQ, NE, GT, LT, GE, LE) the elements in Vl and V2. If condition is

FO,Vl true put a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit
vector in vector-mask register (VM). The instruction s_sv performs the same
compare but using a scalar value as one operand.

Rl,VM Count the ls in the vector-mask register and store count in Rl.

Set the vector-mask register to all ls.

VLR,Rl Move contents of Rl to the vector-length register.

Rl,VLR Move the contents of the vector-length register to Rl.

VM,FO Move contents of F 0 to the vector-mask register.

FO,VM Move contents of vector-mask register to F 0.

FIGURE 7.3 The DLXV vector instructions. Only the double-precision FP operations are shown. In addition to the
vector registers there are two special registers VLR (discussed in Section 7.3) and VM (discussed in Section 7.6). The
operations with stride are explained in Section 7.3, and the use of the index creation and indexed load/store operations
are explained in Section 7.6.

Ex.1035.388DELL

Example

Answer

Vector Processors 357

A vector machine is best understood by looking at a vector loop on DLXV.
Let's take a typical vector problem, which will be used throughout this chapter:

Y = a * X + Y

x and Y are vectors, initially resident in memory, and a is a scalar. This is the
so-called SAXPY or DAXPY (Single-precision or Double-precision A*X Plus
Y) loop that forms the inner loop of the Linpack benchmark. Linpack is a collec
tion of linear algrebra routines; the Gaussian elimination portion of Linpack is
the segment used as a benchmark. SAXPY represents a small piece of the
program, though it takes most of the time in the benchmark.

For now, let us assume that the number of elements, or length, of a vector
register (64) matches the length of the vector operation we are interested in.
(This restriction will be lifted shortly.)

Show the code for DLX and DLXV for the DAXPY loop. Assume that the start
ing addresses of X and Y are in Rx and Ry, respectively.

Here is the DLX code.

LD FO,a
ADDI R4,Rx,#512 ;last address to load

loop:
LD F2,0(Rx) ;load x (i)

MULTD F2,F0,F2 ;a*X(i)
LD F4, 0 (Ry) ;load Y(i)
ADDD F4,F2,F4 ;a*X(i) + Y(i)
SD F4,0(Ry) ; store into Y(i)

ADDI Rx,Rx,#8 ;increment index to x
ADDI Ry,Ry,#8 ;increment index to y

SUB R20,R4,Rx ;compute bound
BNZ R20,loop ;check if done

Here is the code for DLXV for DAXPY.

LD FO,a ;load scalar a

LV Vl,Rx ;load vector X

MULTSV V2,FO,Vl ;vector-scalar multiply
LV V3,Ry ;load vector Y.
ADDV V4,V2,V3 ';-add
sv Ry,V4 ;store the result

There are some interesting comparisons between the two code segments in
the example above. The most dramatic is that the vector machine greatly reduces
th_e dynamic instruction bandwidth, executing only 6 instructions versus almost
600 for DLX. This reduction occurs both because the vector operations work on

Ex.1035.389DELL

358

Example

Answer

7.2 Basic Vector Architecture

64 elements, and because the overhead instructions that constitute nearly half the
loop on DLX are not present in the DLXV code. .

Another important difference is the frequency of pipeline interlocks. In the
straightforward DLX code every ADDD must wait for a MULTD, and every SD

must wait for the ADDD. On the vector machine, each vector instruction operates
on all the vector elements independently. Thus, pipeline stalls are required only
once per vector operation, rather than once per vector element. In this example,
the pipeline-stall frequency on DLX will be about 64 times higher than it is on
DLXV. The pipeline; stalls can be eliminated on DLX by using software
pipelining or loop unrolling (as we saw in Chapter 6, Section 6.8). However, the
large difference in instruction bandwidth cannot be reduced.

Vector Start-up Time and Initiation Rate

Let's investigate the running time of this vector code on DLXV. The running
time of each vector operation in the loop has two components-the start-up time
and the initiation rate. The start-up time comes from the pipelining latency of
the vector operation and is principally determined by how deep the pipeline is
for the functional unit used. For example, a latency of 10 clock cycles means
both that the operation takes 10 clock cycles and that the pipeline is 10 deep. (In
discussions of the performance of vector operations, clock cycles are
customarily used as the metric.) The initiation rate is the time per result once a
vector instruction is running; this rate is usually one per clock cycle for
individual operations, though some supercomputers have vector operations that
can produce 2 or more results per clock, and others have units that may not be
fully pipelined. The completion rate must at least equal the initiation rate
otherwise there is no place to put results. Hence, the time to complete a single
vector operation of length n is:

Start-up time + n * Initiation rate

Suppose the start-up time for a vector multiply is 10 clock cycles. After start-up
the initiation rate is one per clock cycle. What is the number of clock cycles per
result (i.e., one element of the veGtor) for a 64-element vector?

Clock cycles per result
Total time

= Vector length

=
Start-up time+ 64 * Initiation rate

64

10+64 =
64

= 1.16 clock cycles.

Figure 7.4 shows the effect of start-up time and initiation rate on vector per
formance. The effect of increasing start-up time on a slow-running vector is

Ex.1035.390DELL

Vector Processors 359

small, while the same increase in start-up time on a system with an initiation rate
of one per clock decreases performance by a factor of nearly two.

325

300

275

250
Total clock
cycles for a 225
64-element

vector 200

175

150

125

100

75

50

25

6 1 0 14 18 22 26 30 34 38 42 46 50

Start-up cost in clock cycles

4 clock cycles
per result

2 clock cycles
per result

1 clock cycle
per result

FIGURE 7.4 Total running time increases with start-up cost from 2 to 50 clock cycles
per operation on the x axis. The impact of start-up time is much greater for fast-running
than for slow-running vectors. The operation running at one clock cycle per result increases
its run time by 75%, while the operation running at four clock cycles per result increases by
less than 20%.

What determines the start-up and initiation rates? Let's first consider the
operations that do not involve a memory access. For register-register operations
the start-up time (in clock cycles) is equal to the depth of the functional unit
pipeline, since this is the time to get the first result. In the earlier example, the
depth of 10 gave a start-up time of 10 clock cycles. In the next few sections, we
will see that there are other costs involved that increase the start-up time. The
initiation rate is determined by how often the corresponding vector functional
unit can accept an operand. If it is fully pipelined, then it can start an operation
on new operands every clock cycle, yielding an initiation rate of one per clock
(as in the earlier example). I

Start-up time for an operation comprises the \otal latency for the functional
unit implementing that operation. If the initiation rate is to be kept at 1 clock per
result, then

p· r d h l Total functional unit timel
ipe me ept = I Clock cycle time .

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock. Pipeline depth, then, is determined

Ex.1035.391DELL

Vector Processors 359

small, while the same increase in start-up time on a system with an initiation rate
of one per clock decreases performancebya factor of nearly two.

4 clock cycles
: per result

Total clock
cycles for a
64-element

vector

2 clock cycles
per result

1 clock cycle
perresult

18 22 26 30 34 38 42 46 50

Start-up cost in clock cycles

FIGURE 7.4 Total running time increases with start-up cost from 2 to 50 clock cycles
per operation on the x axis. The impact of start-up time is much greater for fast-running
than for slow-running vectors. The operation running at one clock cycle per result increases
its run time by 75%, while the operation running at four clock cycles perresult increases by
less than 20%.

What determines the start-up and initiation rates? Let’s first consider the
operations that do not involve a memory access. For register—register operations
the start-up time (in clock cycles) is equal to the depth of the functional unit
pipeline, since this is the time to get the first result. In the earlier example, the
depth of 10 gave a start-up time of 10 clock cycles. In the next few sections, we
will see that there are other costs involved that increase the start-up time. The
initiation rate is determinedby how often the corresponding vector functional
unit can accept an operand.If it is fully pipelined, then it can start an operation
on new operands every clock cycle, yielding an initiation rate of one per clock

(as in the earlier example). ; (Start-up time for an operation comprises the ‘total latency for the functional
unit implementing that operation.If the initiation rate is to be kept at 1 clock per
result, then

Total functional unit time|Pipeline depth = [Clock cycle time .
For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep
to achieve an initiation rate of one per clock. Pipeline depth, then, is determined

DELL Ex.1035.391

360

Example

Answer

7.2 Basic Vector Architecture

by the complexity of the operation and the clock cycle time of the machine. The
pipeline depths of functional units vary widely-from 2 to 20 stages is not
uncommon-though the most heavily used units have start-up times of 4 to 8
clocks.

For DLXV, we will choose the same pipeline depths as the CRAY-1. All
functional units are fully pipelined. Pipeline depths are six clock cycles for float
ing-point add and seven clock cycles for floating-point multiply. If a vector
computation depends on an uncompleted computation and will need to be
stalled, it adds an extra 4-clock-cycle start-up penalty. This penalty is typical on
vector machines and arises due to the lack of bypassing: the penalty is the time
to write and then read the operands and is only seen when there is a dependence.
Thus, back-to-back dependent vector operations will see the full latency of a
vector operation. On DLXV, as on most vector machines, independent vector
operations using different functional units can issue without any penalty or
delay. Independent vector operations may also be fully overlapped, and each
instruction issue only takes one clock. Thus, when the operations are indepen
dent and different, DLXV can overlap vector operations, just as DLX can over
lap integer and floating-point operations.

Because DLXV is fully pipelined, the initiation rate for a vector instruction is
always 1. However, a sequence of vector operations will not be able to run at
that rate, due to start-up costs. The term sustained rate is applied to this situation
and refers to the time per element for a collection of related vector operations.
Here an element is not the result of a single vector operation, but one result of a
series of vector operations. The time per element, then, is the time required for
each operation to produce an element. For example, in the SAXPY loop, the
sustained rate will be the time to compute and store one element of the result
vector Y.

For a vector length of 64 on DLXV and the following two vector instructions,
what is the sustained rate for the sequence, and the effective number of floating
point operations per clock for the sequence?

MULTV Vl,V2,V3
ADDV V4,V5,V6

Let's look at the start and completion times of these independent operations
(remember that the start-up times are 7 cycles for multiply and 6 cycles for add):

Operation

MULTV

ADDV

Start

0

1

Complete

7 + 64 = 71

1+6 + 64 =71

The sustained rate is one element per clock-remember that sustained rate
requires all vector operations to produce a result. The sequence executes 128

Ex.1035.392DELL

Vector Processors 361

FLOPs (FLoating-point OPerations) in 71 clock cycles, for a rate of 1.8 FLOPs
per clock. A vector machine can sustain a throughput of more than one operation
per clock cycle by issuing independent vector operations to different vector
functional units.

The behavior of the load/store vector unit is significantly more complicated.
The start-up time for a load is the time to get the first word from memory into a
register. If the rest of the vector can be supplied without stalling, then the vector
initiation rate is equal to the rate at which new words are fetched or stored.
Typically, penalties for start-ups on load/store units are higher than for
functional units-up to 50 clock cycles on some machines. For DLXV we will
assume a low start-up time of 12 clock cycles, since the CRAY-1 and CRAY X
MP have load/store start-up times of between 9 and 17 clock cycles. For stores,
we will not usually care about the start-up time, since stores do not directly
produce results. However, when an instruction must wait for a store to complete
(as a load might have to with only one memory pipeline), the load may see part
or all of the 12-cycle latency of a store. Figure 7.5 summarizes the start-up
penalties for DLXV vector operations.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

FIGURE 7.5 Start-up penalties on DLXV. These are the start-up penalties in clock
cycles for DLXV vector operations. When a vector instruction depends on another vector
instruction that has not completed at the time the second vector instruction issues, the
start-up penalty is increased by 4 clock cycles.

To maintain an initiation rate of one word fetchedJor stored per clock, the
memory system must be capable of producing or accepting this much data. This
is usually done by creating multiple memory banks. Each memory bank is like a
small, separate memory that can access different addresses in parallel with other
banks. The words are then transferred from the memory at the maximum rate
(one per clock in DLXV).

There are two possible implementation techniques for memory banks. One
approach is to synchronize all the banks and to access them in parallel, latching
the result in each bank. Once the result is latched, the next access can begin
while the words are transferred. An alternative implementation technique uses
independent bank phasing. On the first access, all the banks are accessed in
parallel, and then the words are transferred one at a time from the banks. Once a

Ex.1035.393DELL

362

Example

Answer

7.2 Basic Vector Architecture

bank has transmitted or stored its data, it begins the next access immediately.
The first approach (synchronized accesses) requires more latches, but has sim
pler control than an approach that uses independent bank phasing. The concept
of memory banks is similar to but not identical to interleaving, as we will see in
Figure 7.6. We discuss interleaving extensively in Chapter 8, Section 8.4.

Assuming each bank is one double-precision-word wide, if an initiation rate
of one per clock is to be maintained, the following must hold:

Number of memory banks;::: Memory-bank access time in clock cycles

To see why this relationship exists, think about a vector load of 64 double
precision words. Let the addresses of the vector elements be given by ki, where

ki =Starting address of the vector+ (i-1) * Distance between vector elements.

For doubJe-precision vector elements that are adjacent, the distance between
elements will be 8 bytes. The addresses of the vector elements to be accessed by
a bank will be the values of ki such that

ki mod number of banks = Bank number

Let's look at the first access by each bank. After a time equal to the memory
access time, all the memory banks will have fetched a double-precision word,
and the words can begin returning to the vector registers. (This requires, of
course, that the accesses be aligned on doubleword boundaries.) Words are sent
serially from the banks, starting with the bank fetching from the lowest address.
If the banks are synchronized, the next accesses start immediately; if the banks
are phased, then the next access begins after an element is transmitted from the
bank. In either case, a bank begins its next access at a byte address that is (8 *
number of banks) higher than the last byte address. Because the memory-access
time in clock cycles is less than the number of memory banks and because the
words are transferred from the banks in round-robin order at a rate of one trans
fer per clock cycle, a bank will complete the next access before its turn to trans
mit data comes again. To simplify addressing, the number of memory banks is
usually made a power of two. As we will see shortly, designers will probably
want to have more than the minimum number of required banks so as to mini
mize memory stalls.

Suppose we want to fetch a vector of 64 elements starting at byte address of 136,
and a memory access takes 6 clocks. How many memory banks must we have?
With what addresses are the banks accessed? When will the various elements
arrive at the CPU?

Six clocks per access require at least 6 banks, but because we want the number
of banks to be a power of two, we choose to have 8 banks. Figure 7.6 shows
what byte addresses each bank accesses within each time period. Remember that
a bank begins a new access as soon as it has completed the old access.

Ex.1035.394DELL

Vector Processors 363

Beginning Bank
at clock no. 0 1 2 3 4 5 6 7

0 192 136 144 152 160 168 176 184

6 256 200 208 216 224 232 240 248
14 320 264 272 280 288 296 304 312
22 384 328 336 344 352 360 368 376

FIGURE 7.6 Memory addresses (in bytes) by bank number and time slot at which
access begins. The exact time when a bank transmits its data is given by the address it
accesses minus the starting address divided by 8 plus the memory latency (6 clocks). It is
important to observe that Bank O accesses a word in the next block (i.e., it accesses 192
rather than 128 and then 256 rather than 192, and so on). If Bank O were to start at the
lower address we would require an extra cycle to transmit the data, and we would transmit
one value unnecessarily. While this problem is not severe for this example, if we had 64
banks, up to 63 unnecessary clock cycles and transfers could occur. The fact that Bank O
does not access a word in the same block of 8 distinguishes this type of memory system
from interleaved memory. Normally, interleaved memory systems combine the bank
address and the base starting address by concatenation rather than addition. Also, inter
leaved memories are almost always implemented with synchronized access. Memory
banks require address latches for each bank, which are not normally needed in a system
with only interleaving.

Figure 7. 7 shows the timing for the first few sets of accesses for an 8-bank
system with a 6-clock-cycle access latency. Two important observations about
these two figures are these: First, notice that the exact address fetched by a bank
is largely determined by the lower-order bits in the bank number; however, the
initial access to a bank is always within 8 doublewords of the initial address.
Second, notice that once the initial latency is overcome (6 clocks in this case),
the pattern is to access a bank every n clock cycles, where n is the total number
of banks (n=8 in this case).

Next access Next access
. Memory + deliver last

Action access 8 words
+ deliver last Last
8 words • • • access

Time •••
0 6 14 22 62 70

FIGURE 7.7 Access timing for the first 64 double-precision words of the load. After
the 6-clock-cycle initial latency, 8 double-precision words are returned every 8 clock cycles.

The number of banks in the memory system and the pipeline depth in the)
functional units are essentially counterparts, since they determine the initiation
rates for operations using these units. The processor cannot access memory
faster than the memory cycle time. Thus, if memory is built from DRAM, where
cycle time is about twice the access time, the processor will usually need twice
as_ many banks as the computations above would give. This characteristic of
DRAM is discussed further in Chapter 8, Section 8.4.

Ex.1035.395DELL

364 7.3 Two Real-World Issues: Vector Length and Stride

7 .3 I Two Real-World Issues:
Vector Length and Stride

This section deals with two issues that transpire in real programs. These are what
to do when the vector length in a program is not exactly 64, and how to deal
with nonadjacent elements in vectors when a matrix is laid out in memory. First,
let's deal with the issue of vector length.

Vector-Length Control

A vector-register machine has a natural vector length determined by the number
of elements in each vector register. This length, which is 64 for DLXV, is un
likely to match the real vector length in a program. Moreover, in a real program
the length of a particular vector operation is often unknown at compile time. In
fact, a single piece of code may require different vector lengths. For example,
consider this code:

do 10 i = 1,n
10 Y(i) =a* X(i) + Y(i)

The size of all the vector operations depends on n, which may not even be
known until run-time! The value of n might also be a parameter to the procedure
and therefore be subject to change during execution.

The solution to these problems is to create a vector-length register (VLR).
The VLR controls the length of any vector operation, including a vector load or
store. The value in the VLR, however, cannot be any greater than the length of
the vector registers. This solves our problem as long as the real length is less
than the maximum vector length (MVL) defined by the machine.

What if the value of n is not known at compile time, and thus may be greater
than MVL? To tackle this problem, a technique called strip mining is used. Strip
mining is the generation of code such that each vector operation is done for a
size less than or equal to the MVL. The strip-mined version of the SAXPY loop
written in FORTRAN, the major language used for scientific applications, is
shown with C-style comments:

low = 1

VL (n mod MVL) /*find the odd size piece*/

do 1 j = 0, (n I MVL) /*outer loop*/

do 10 i

y (i)

10 continue

low,low+VL-1 /*runs for length VL*/

a*X(i) + Y(i) /*main operation*/

low = low+VL /*start of next vector*/

VL = MVL /*reset the length to max*/

1 continue

Ex.1035.396DELL

Vector Processors 365

The term n I MVL represents truncating integer division (which is what
FORTRAN does) and is used throughout this section. The effect of this loop is
to block the vector into segments which are then processed by the inner loop.
The length of the first segment is (n mod MVL) and all subsequent segments are
of length MVL. This is depicted in Figure 7 .8.

Value of j 0 2

Range of i 1 .. m (m+1) .. (m+
m+MVL MVL+1)

.. m+2*
MVL

3

(m+2 *
MVL+1)
.. m+3 *

MVL

n/MVL

(n-MVL
+1) .. n

FIGURE 7.8 A vector of arbitrary length processed with strip mining. All blocks but
the first are of length MVL, utilizing the full power of the vector machine. In this figure, the
variable mis used for the expression (n mod MVL).

The inner loop of the code above is vectorizable with length VL, which is
equal to either (n mod MVL) or MVL. The VLR register must be set twice
once at each place where the variable VL in the code is assigned. With multiple
Vector operations executing in parallel, the hardware must copy the value of
VLR when a vector operation issues, in case VLR is changed for a subsequent
vector operation.

In the previous section, start-up overhead could be computed independently
for each vector operation. With strip mining, a significant percentage of the
start-up cost will be the strip-mining overhead itself; and, therefore, computing
the start-up overhead will be more complex.

Let's see how significant these added overheads are. Consider a simple loop:

dolOi 1,n

10 A (i) B(i)

The compiler will generate two nested loops for this code, just as our earlier
example does. The inner loop contains a sequence of two vector operations, L V

(load vector) followed by SV (store vector). Each loop iteration of the original
vector operation would require two clocks if there were no start-up penalties of
any kind. The start-up penalties consist of two types: vector start-up overhead
and strip-mining overhead. For DLXV the vector start-up overhead is 12 clock
cycles for the vector load plus a 4-clock-cycle delay because the store depends
on the load, for a total of 16 clock cycles. We can ignore the store latency, since
nothing depends on it. Figure 7 .9 (page 366) shows the impact of the vector
start-up cost alone as the vector grows from length 1 to length 64. This start-up
CQSt can decrease the throughput rate by a factor of as much as 9, depending on
the vector length.

Ex.1035.397DELL

Vector Processars 365

The term n / MVL represents truncating integer division (which is what
FORTRANdoes) and is used throughout this section. The effect of this loop is
to block the vector into segments which are then processed by the inner loop.
The length of the first segment is (2 mod MVL)andall subsequent segments are
of length MVL.This is depicted in Figure 7.8.

Value ofj 0

Range ofi 1.m (m+1).. (m+ (m+2 *
m+MVL=MVL+1)=MVL+1)

« M+2 * M+3 *
MVL MVL

FIGURE 7.8 A vectorof arbitrary length processed with strip mining.All blocks but
the first are of length MVL,utilizing the full power of the vector machine.In this figure, the

variable mis used for the expression (n mod MVL).

The inner loop of the code above is vectorizable with length VL, which is
equal to either (n mod MVL) or MVL. The VLR register must be set twice—
once at each place where the variable VL in the code is assigned. With multiple -
‘vector operations executing in parallel, the hardware must copy the value of
VLR when a vector operation issues, in case VLR is changed for a subsequent
vector operation.

In the previous section, start-up overhead could be computed independently
for each vector operation. With strip mining, a significant percentage of the
start-up cost will be the strip-mining overheaditself; and, therefore, computing
the start-up overhead will be more complex.

Let’s see how significant these added overheads are. Consider a simple loop:

do 10 i = I,n

10 A(i) = B(i)

The compiler will generate two nested loops for this code, just as our earlier
example does. The inner loop contains a sequence of two vector operations, LV
(load vector) followed by SV (store vector). Each loop iteration of the original
vector operation would require two clocksif there were nostart-up penaltiesof
any kind. The start-up penalties consist of two types: vector start-up overhead
and strip-mining overhead. For DLXV the vector start-up overhead is 12 clock
cycles for the vector load plus a 4-clock-cycle delay because the store depends
on the load, for a total of 16 clock cycles. We can ignore the store latency, since
nothing depends on it. Figure 7.9 (page 366) shows the impact of the vector
start-up cost alone as the vector grows from length 1 to length 64. This start-up
cost can decrease the throughputrate by a factor of as much as 9, depending on
the vector length.

DELL Ex.1035.397

366 7.3 Two Real-World Issues: Vector Length and Stride

Time 1 o +1·:··.:.:.·,::.;;:"'"'·"'·':'·i:'-·:·"·:::'··'':.-,-:·:;::.::··'·'.·:"·'·:,:.i:" .. :·'····:::,·: .. ; .. :,,c; ... :.,:,:,: ... ,,., • .,6'·'~'':.':".':·''""''':··, ... , .. ,,:·'·"'':·::'""'.'.·''.-.-:::,:.,.,: .. ::;.:., ... h,. ..

per
element a

6

4

2

5 9 13 17 21 2£1 29 33 37 41 45 49 53 57 61

Vector length

FIGURE 7.9 The impact of just the vector start-up cost on a loop consisting of a
vector assignment. For short vectors, the impact of the 16-cycle start-up cost is enor
mous, decreasing performance by up to nine times. The strip-mining overhead has not
been included.

In Section 7.4, we will see a unified performance model that incorporates all
the start-up and overhead costs. First, let's examine how to implement vectors
with nonsequential memory accesses.

Vector Stride

The second problem this section addresses is that the position in memory of
adjacent elements in a vector may not be sequential. Consider the straight
forward code for matrix multiply:

10

do 10 i = 1,100

do 10 j = 1,100

A(i,j) = 0.0

do 10 k = 1,100

A(i,j) = A(i,j)+B(i,k)*C(k,j)

At the statement labeled 10 we could vectorize the multiplication of each row of
B with each column of C and strip-mine the inner loop with k as the index vari
able. To do so, we must consider how adjacent elements in B and adjacent ele
ments in C are addressed. When an array is allocated memory it is linearized and
must be laid out in either row-major or column-major order. Row-major order,
used by most languages except FORTRAN, lays out the rows first, making ele
ments B(i,j) and B(i,j+ 1) adjacent. Column-major order, used by FORTRAN,

Ex.1035.398DELL

366 . 7.3. Two Real-World Issues: Vector Length and Stride

9 13 17 21 25 29 33 37 #41 45 49 53 57 61

Vectorlength

FIGURE 7.9 The impactof just the vector start-up cost on a loop consisting of a
vector assignment. For short vectors, the impact of the 16-cycle start-up cost is enor-
mous, decreasing performanceby up to nine times. The strip-mining overhead has not
been included.

In Section 7.4, we will see a unified performance model that incorporatesall
the start-up and overheadcosts. First, let’s examine how to implement vectors
with nonsequential memoryaccesses.

Vector Stride

The second problem this section addresses is that the position in memory of
adjacent elements in a vector may not be sequential. Consider the straight-
forward code for matrix multiply:

do 10 i = 1,100

do 10 3 = 1,100

A(i,j) = 0.0

| do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k)*C(k,3)

At the statement labeled 10 we could vectorize the multiplication of each row of
B with each columnofC andstrip-mine the inner loop with k as the index vari-
able. To do so, we must consider how adjacent elements in B and adjacentele-
ments in C are addressed. Whenan array is allocated memory it is linearized and
mustbe laid out in either row-major or column-major order. Row-major order,

used by most languages except FORTRAN,laysoutthe rowsfirst, making ele-
ments B(i,j) and BGi,j+1) adjacent. Column-major order, used by FORTRAN,

DELL Ex.1035.398

Vector Processors 367

makes B(i,j) and B(i+ 1,j) adjacent. Figure 7 .10 illustrates these two alternatives.
Let's look at the accesses to B and C in the inner loop of the matrix multiply. In
FORTRAN, the accesses to the elements of B will be nonadjacent in memory,
and each iteration will access an element that is separated by an entire row of the
array. In this case, the elements of B that are accessed by iterations in the inner ·
loop are separated by the row size times 8 (the number of bytes per entry) for a
total of 800 bytes.

Two-dimensional 100x100 array

1 2 3 4 5 6 7 100

Row-major layout

(1, 1) (1, 2) . . . (1, 100) (2, 1) (2, 2) (100, 1) (100, 2) (100, 100)

Increasing addresses

Column-major layout

(1, 1) (2, 1) . . . (100, 1) (1, 2) (2, 2) (1, 100) (2, 100) . .. (100, 100)

FIGURE 7.10 Matrix for a two-dimensional array and corresponding layouts in one
dimensional storage. In row-major order, successive row elements are adjacent in
storage, while in column-major order, successive column elements are adjacent. It is easy
to imagine extending this to arrays with more dimensions.

This distance separating elements that are to be merged into a single vector is
called the stride. In the current example, using column-major layout for the
matrices means that matrix Chas a stride of 1, or 1 doubleword (8 bytes), sepa
rating successive elements, and matrix B has a stride of 100, or 100 doublewords
(800 bytes).

Once a vector is loaded into a vector register it acts as if it had logically adja
cent elements. This enables a vector-register machine to handle strides greater
than one, called nonunit strides, by making more general vector-load and vector
store operations. For example, if we could load a row of B into a vector register,
we could then treat the row as logically adjacent.

Ex.1035.399DELL

Vector Processors 367

makes B(i,j) and BGi+1,j) adjacent. Figure 7.10 illustrates these two alternatives.
Let’s look at the accesses to B and C in the inner loop of the matrix multiply. In
FORTRAN,the accesses to the elements of B will be nonadjacent in memory,
and each iteration will access an elementthat is separated by an entire row of the
array. In this case, the elements of B that are accessed byiterations in the inner -
loop are separated by the row size times 8 (the numberofbytes per entry) for a
total of 800 bytes.

Two-dimensional 100x100 array
23 4567

Row-majorlayout

mapaaa,erpeaypam
Increasing addresses ;

Column-majorlayout

OCCEN)CC

FIGURE 7.10 Matrix for a two-dimensional array and correspondinglayouts in one-
dimensional storage. In row-major order, successive row elements are adjacentin
storage, while in column-major order, successive column elements are adjacent.It is easy
to imagine extending this to arrays with more dimensions.

This distance separating elements that are to be merged into a single vectoris
called the stride. In the current example, using column-major layout for the
matrices means that matrix C hasastride of 1, or 1 doubleword (8 bytes), sepa-
rating successive elements, and matrix B hasa stride of 100, or 100 doublewords
(800 bytes).

Once a vectoris loadedinto a vectorregister it acts as if it had logically adja-
cent elements. This enables a vector-register machine to handlestrides greater
than one, called nonunit strides, by making more general vector-load and vector-
store operations. For example, if we could load a row ofB into a vectorregister,
we could then treat the row as logically adjacent.

DELL Ex.1035.399

368

Example

Answer

7.3 Two Real-World Issues: Vector Length and Stride

Thus, it is desirable for the vector load and store operations to specify a stride
in addition to a starting address. On a DLXV, where the addressable unit is a
byte, the stride for our example would be 800. The value must be computed
dynamically, since the size of the matrix may not be known at compile time,
or-just like vector length-may change for different executions of the same
statement. The vector stride, like the vector starting address, can be put in a
general-purpose register, where it is used for the life of the vector operation.
Then the DLXV instruction L VW S (Load Vector With Stride) can be used to
fetch the vector into a vector register. Likewise, when a nonunit stride vector is
being stored, SVWS (Store Vector With Stride) can be used. In some vector
machines the loads and stores always have a stride value stored in a register, so
there is only a single instruction.

Memory-unit complications can occur from supporting strides greater than
one. Earlier, we saw that a vector-memory operation could proceed at full speed
if the number of memory banks was at least as large as the memory-access time
in clock cycles. However, once nonunit strides are introduced it becomes pos~
sible to request accesses from the same bank at a higher rate than the memory
access time. This situation is called memory-bank conflict and results in each
load seeing a larger portion of the memory-access time. A memory-bank conflict
occurs whenever the same bank is asked to do an access before it has completed
another. Thus, a bank conflict, and hence a stall, will occur if:

Least common multiple (Stride,Number of banks) M
1

S "d < emory-access atency tn e .

Suppose we have 16 memory banks with an access time of 12 clocks. How long
will it take to complete a 64-element vector load with a stride of 1? With a stride
of 32?

Since the number of banks is larger than the load latency, for a stride of 1, the
load will take 12 + 64 = 76 clock cycles, or 1.2 clocks per element. The worst
possible stride is a value that is a multiple of the number of memory banks, as in
this case with a stride of 32 and 16 memory banks. Every access to memory will
collide with the previous one. This leads to an access time of 12 clock cycles per
element and a total time for the vector load of 768 clock cycles.

Memory bank conflicts will not occur if the stride and number of banks are
relatively prime with respect to each other and there are enough banks to avoid
conflicts in the unit-stride case. Increasing the number of memory banks to a
number greater than the minimum to prevent stalls with a stride of length 1 will
decrease the stall frequency for some other strides. For example, with 64 banks,
a ,stride of 32 will stall on every other access, rather than every access. If we
originally had a stride of 8 and 16 banks, every other access would stall; while
with 64 banks, a stride of 8 will stall on every eighth access. If we have multiple
memory pipelines, we will also need more banks to prevent conflicts. In the

Ex.1035.400DELL

Vector Processors 369

1990s, most vector supercomputers have at least 64 banks, and some have as
many as 512.

7 .4 I A Simple Model for Vector Performance

This section presents a model for understanding the performance of a vectorized
loop. There are three key components of the running time of a strip-mined loop
whose body is a sequence of vector instructions:

1. The time for each .vector operation in the loop to process one element, ignor
ing the start-up costs, which we call Tetement· The vector sequence often has a
single result, in which case T element is the time to produce an element in that
result. If the vector sequence produces multiple results, T element is the time to
produce one element in each result. This time depends only on the execution of
vector instructions. We will see an example shortly.

2. The overhead for each strip-mined block of vector instructions. This over
head consists of the cost of executing the scalar code for strip mining of each
block, Ttoop• plus the vector start-up cost for each block, Tstart·

3. The overhead from computing the starting addresses and setting up the vec
tor control. This occurs once for the entire vector operation. This time, T base•

consists solely of scalar overhead instructions.

These components can be used to state the total running time for a vector
sequence operating on a vector of length n, which we will call Tn:

The values of Tstart and T100P are both compiler and machine dependent, while
the value of T element depends mainly on the hardware. The exact vector sequence
affects all three values; the effect on T element is probably the most pronounced,
with T start and T100P less affected.

For simplicity, we will use constant values for Tbase and for T1oop on DLXV.
Based on a variety of measurements of CRAY -1 vector execution, the values
chosen are 10 for Tbase and 15 for T1oop· At first glance, you might think that
these values, especially T1oop• are too small. The overhead in each loop requires:
setting up the vector starting addresses and the strides, incrementing counters,
and executing a loop branch. However, these scalar instructions can be over
lapped with the vector instructions, minimizing the time spent on these overhead
functions. The values of T base and T1oop of course depend on the loop structure,
but the dependence is slight compared to the connection between the vector code
and the values of T element and T start·

Ex.1035.401DELL

1.4

Vector Processors 369

1990s, most vector supercomputers have at least 64 banks, and some haveas
many as 512.

A Simple Model for Vector Performance

This section presents a model for understanding the performanceofa vectorized
loop. There are three key components of the running timeof a strip-mined loop
whose bodyis a sequence of vector instructions:

1. The time for each vector operation in the loop to process one element, ignor-
ing the start-up costs, which we call Tejemenz. The vector sequence often has a
single result, in which case Tejement is the time to produce an elementin that
result. If the vector sequence produces multiple results, Tejement is the time to
produce one element in each result. This time depends only on the execution of
vector instructions. We will see an example shortly.

2. The overhead for each strip-mined block of vector instructions. This over-
head consists of the cost of executing the scalar code for strip mining of each
block, Toop, plus the vector start-up cost for each block, Tsay.

3. The overhead from computing the starting addresses and setting up the vec-
tor control. This occurs once for the entire vector operation. This time, Tygse,

consists solely of scalar overhead instructions.

These components can be used to state the total running time for a vector
sequence operating on a vector of length 1, which we will call T,:

Tr = Thase +||: (Toop + Tstart) + 7 * Telement
Thevalues of Ty, and Too, are both compiler and machine dependent, while
the value of T.jement depends mainly on the hardware. The exact vector sequence
affects all three values; the effect on T.jement 18 probably the most pronounced,
With Tart ANd Tigop less affected. . |

For simplicity, we will use constant values for Tpase and for Tig9p on DLXV.
Based on a variety of measurements of CRAY-1 vector execution, the values
chosen are 10 for Tpase and 15 for Tjoop. At first glance, you mightthink that
these values, especially Tjoop, are too small. The overhead in each loop requires:
setting up the vector starting addresses and the strides, incrementing counters,
and executing a loop branch. However, these scalar instructions can be over-
lapped with the vector instructions, minimizing the time spent on these overhead
functions. The values of Thase and Tiggp of course depend on the loopstructure,
but the dependenceis slight compared to the connection between the vector code
and the values of Tejement and Tstart-

star’

DELL Ex.1035.401

370

Example

Answer

7.4 A Simple Model for Vector Performance

What is the execution time for the vector operation A = B * s, where s is a scalar
and the length of the vectors A and B is 200?

Here is the strip-mined DLXV code, assuming the addresses of A and B are
initially in Ra and Rb, and s is in F s:

ADDI R2,R0,#1600 ;no. bytes in vector
ADD R2,R2,Ra ;end of A vector
ADDI Rl,R0,#8 ;strip-mined length
MOVI2S VLR,Rl ;load vector length
ADDI Rl,R0,#64 ;length in bytes
ADDI R3,R0,#64 ;vector length of other pieces

loop: LV Vl,Rb ;load B
MULTSV V2,Fs,Vl ;vector * scalar
sv Ra,V2 ;store A
ADD Ra,Ra,Rl ;next segment of A
ADD Rb,Rb,Rl ;next segment of B
ADDI Rl,R0,#512 ;full vector length (bytes)
MOVI2S VLR,R3 ;set length to 64
SUB R4,R2,Ra ;at the end of A?
BNZ R4,LOOP ;if not, go back

From this code, we can see that: Telement = 3, for the load, multiply and store of
each value of the vector. Furthermore, our assumptions for DLXV are T1oop = 15
and Tbase =10. Let's use our basic formula:

Tn = Tbase + I M~L l* (T1oop + Tstart) + n * Telement

T200 = 10 + (4) * (15 + Tstart) + 200 * 3

T200 = 10 + 4 * (15 + Tstart) + 600 = 670 + 4 * Tstart

The value of T start is the sum of

• The vector load start-up of 12 clock cycles,

• The 4-clock-cycle stall due to the dependence between the load and multiply,

• A 7-clock-cycle start-up for the multiply, plus

• A 4-clock-cycle stall due to the dependence between the multiply and store.

Thus, the value of T start is given by:

Tstart = 12 + 4 + 7 + 4 = 27

So, the overall value becomes

T 200 = 670 + 4 * 27 = 778

Ex.1035.402DELL

Vector Processors 371

778
The execution time per element with all start-up costs is then

200
= 3.9,

compared with an ideal case of 3.

Figure 7.11 shows the overhead and effective rates per element for the above
example (A = B*s) with various vector lengths. Compared to the simpler model
of start-up, illustrated in Figure 7 .9 on page 366, we see that the overhead
accounting for all sources is higher. In this example, the vector start-up cost,
which is what is plotted in Figure 7.9, accounts for only about half the total
overhead per element.

9

8

7

6

5
Clock
cycles 4

3

2

30 50 70 90 110 130 150 170 190

Vector size

Total time
per element

Total
overhead
per element

FIGURE 7.11 This shows the total execution time per element and the total overhead
time per element, versus the vector length for the example on page 370. For short
vectors the total start-up time is more than one-half of the total time, while for long vectors it
reduces to about one-third of the total time. The sudden jumps occur when the vector
length crosses a multiple of 64, forcing another iteration of the strip-mining code and
execution of a set of vector instructions. These operations increase T n by T100P + Tstart·

7 .5 I Compiler Technology for Vector Machines

To make effective use of a vector machine a compiler must be able to recognize
that a loop (or part of a loop) is vectorizable and generate the appropriate vector
code. This involves determining what dependences exist among the operands in
the loop. For now, we will consider only dependences that occur when an
operand is written at one point and read at a later point. These correspond to
RAW (read after write-see page 264) hazards. Consider a loop like this one:

Ex.1035.403DELL

7.5

Vector Processors 371

, . . 78The execution time per element with all start-up costs is then 718 _ 3.9,
compared with an ideal caseof3. 200

Figure 7.11 shows the overhead and effective rates per element for the above
example (A = B*s) with various vector lengths. Compared to the simpler model
of start-up, illustrated in Figure 7.9 on page 366, we see that the overhead
accounting for all sources is higher. In this example, the vector start-up cost,
which is what is plotted in Figure 7.9, accounts for only about half the total
overhead per element.

Total time

per element

Total.
overhead

per element

70 90 110

Vector size

FIGURE 7.11 This showsthetotal execution time per element and the total overhead
time per element, versus the vector length for the example on page 370. For short
vectors the total start-up time is more than one-half of the total time, while for long vectorsit
reduces to about one-third of the total time. The sudden jumps occur whenthe vector
length crosses a multiple of 64, forcing anotheriteration of the strip-mining code and
execution of a set of vector instructions. These operations increase T,, by Tiggp + Tstant-

Compiler Technology for Vector Machines

To make effective use of a vector machine a compiler must be able to recognize
that a loop (orpart of a loop) is vectorizable and generate the appropriate vector
code. Thisinvolves determining what dependences exist among the operands in
the loop. For now, we will consider only dependences that occur when an
operand is written at one point and read at a later point. These correspond to
RAW (read after write—see page 264) hazards. Consider a loop like this one:

DELL Ex.1035.403

372 7.5 Compiler Technology for Vector Machines

1

2

10

do 10 i=l,100

A(i+l) A(i) + B(i)

B(i+l)

continue

B(i) + A.(i+l)

Call the numbered statements 1 and 2 in the loop body S 1 and S2, respectively.
The possible different types of dependences are

1. S 1 uses a value computed by S 1 in an earlier iteration. This is true for S 1
since iteration i+ 1 uses the value A (i) that was computed in iteration i as
A (i + 1) . The same is true of S2 for B (i) and B (i + 1) .

2. S 1 uses a value computed by S2 in an earlier iteration. This is true since
S 1 uses the value of B (i + 1) in iteration i+ 1 that is computed by S2 in
iteration i.

3. S2 uses a value computed by S 1 in the same iteration. This is true for the
value A (i + 1) .

Because the vector operations are pipelined and the latency may be quite long,
an early iteration may not complete before a later iteration begins: Thus, the
values that will be written by the early iteration may not have been written
before the later iteration begins. Consequently, if situation 1 or 2 exists, vectoriz
ing the loop will introduce a RAW hazard-a hazard that a vector machine does
not check for. This means that if any of the three dependences in situation 1 and
2 exist, the loop is not vectorizable, and the compiler will not generate vector
instructions for this code. In situation 3, the normal hazard-detection hardware
could handle the situation. A loop containing only dependences like those in
situation 3 can therefore be vectorized, as we will see soon. The dependences in
the first two situations, which involve the use of values computed on earlier loop
iterations, are called loop-carried dependences.

The first task of the compiler is to determine whether there are any loop-car
ried dependences within the loop body. The compiler accomplishes this with a
dependence-analysis algorithm. Because the statements in the loop body involve
arrays, dependence analysis is complex. (If there weren't arrays, there would be
nothing to vectorize.) The simplest case occurs when an array name appears
only on one side of an assignment statement. Take, for example, this variation of
our earlier loop:

do 10 i=l,100

A(i) B(i) + C(i)

D(i) = A(i) * E(i)

10 continue

If the arrays A, B, C, D, and E are different, then no loop-carried dependence can
exist. There is a dependence between the two statements for the vector A. If the
compiler realized that there were two accesses to A, it might try not to reload A

Ex.1035.404DELL

Vector Processors 373

the second statement, instead doing the vector multiply using the result register
from the vector add. In this case, the processor would see the potential RAW
hazard and stall the issue of the vector multiply. If the compiler stored A and
reloaded it, then the loads and stores would occur in order, yielding correct
execution.

Often the same name appears as both a source and destination within a loop,
as it did in the SAXPY loop. There, Y appears on both sides of the assignment:

do 10 i=l,100

Y(i) = a*X(i) + Y(i)

10 continue

In this case there is still no loop-carried dependence because the assignment to Y
does not depend on a value of Y computed in an earlier iteration. However, the
following loop, which is called a recurrence, does contain a loop-carried
dependence:

do 10 i=2,100

Y(i) = Y(i-1) + Y(i)

10 continue

The dependence can be seen by unwinding the loop: In iteration j the value of
Y(j-1) is used, but that element is stored in iterationj-1, creating a loop-carried
dependence.

How does the compiler detect dependences in general? Suppose we have
written to an array element with index value a * i + b and accessed with index
value c * i + d, where i is the for-loop index variable that runs from m ton. A
dependence exists if two conditions hold:

1. There are two iteration indices, j and k, both within the limits of the for loop.

2. The loop stores into an array element indexed by a* j+b and later fetches
from that same array element when it is indexed by c*k+d. That is, a*j+b =
c*k+d.

In general, we may not be able to determine whether a dependence exists at
compile time. For example, the values of a, b, c, and d may not be known,
making it impossible to tell if a dependence exists. In other cases, the depen
dence testing may be very expensive but decidable at compile time. For exam
ple, the accesses may depend on the iteration indices of multiply nested loops.
Many programs do not contain these complex structures, but instead contain
simple indices where a, b, c, and d are all constants. For these cases, it is
possible to devise reasonable tests for dependence.

A simple and sufficient test used to detect dependences is the greatest com
mon divisor, or GCD. It is based on the observation that if a loop-carried depen
dence exists, then GCD (c,a) must divide (d-b). (Remember that an integer, x,

divides another integer, y, if there is no remainder when we do the division}'. and
x

Ex.1035.405DELL

374

Example

Answer

Example

Answer

7.5 Compiler Technology for Vector Machines

get an integer result.) The GCD test is sufficient to guarantee that no dependence
exists (see Exercise 7 .10); however, there are cases where the GCD test
succeeds, but no dependence exists. For example, this can arise because the
GCD test does not take the loop bounds into account. A more complex test is the
Banerjee test, named after U. Banerjee [1979], that accounts for loop bounds,
but is still not exact. An exact test can always be done by solving equations for
integer values, but this can be expensive for complex loop structures.

Use the GCD test to determine whether dependences exist in the following loop:

do 10 i=l,100

10 X(2*i+3) = X(2*i) * 5.0

Given the values a=2, b=3, c=2, and d=O, then GCD(a,c) = 2, and d-b = -3.
Since 2 does not divide -3, no dependence is possible.

A true data dependence arises from a RAW hazard and will prevent vector
ization of the loop as a single vector sequence. There are cases where the loop
can be vectorized as two separate vector sequences (see Exercise 7.11). There
are also dependences corresponding to a WAR (write after read) hazard, called
an antidependence, and to a WAW (write after write) hazard, called an output
dependence. Antidependences and output dependences are not true data
dependences. They are name conflicts and can be eliminated by renaming of
registers in the compiler in a method similar to how Tomasulo's algorithm
renames registers at run time (see Section 6.7 in Chapter 6). Vectorizing
compilers often use compile-time renaming to eliminate antidependences and
output dependences.

The following loop has an antidependence (WAR) and an output dependence
(WA W). Find all the true dependences, output dependences, and antidepen
dences, and eliminate the output dependences and antidependences by renaming.

do 10 i=l,100

1 y (i) x (i) I s

2 x (i) x (i) + s

3 z (i) y (i) + s

4 y (i) s - y (i)

10 continue

There are true dependences from statement 1 to statement 3 and from statement
1 to statement 4 because of Y (i) . These are not loop carried, so they will not
prevent vectorization. However, the dependences will force statements 3 and 4
to wait for statement 1 to complete, even though statements 3 and 4 use a differ
ent functional unit than statement 1. In the next section we will see a technique
for eliminating this serialization.

Ex.1035.406DELL

Vector Processors 375

There is an antidependence from statement 1 to statement 2, and an output
dependence from statement 1 to statement 4. The following version of the loop
eliminates these false (or pseudo) dependences.

c
1

c
2

3

4

10

do 10 i=l,100

Y renamed to T to remove output dependence

T(i) = X(i) Is
X renamed to Xl to remove antidependence

Xl(i) = X(i) + s

Z(i) T(i) + s

Y(i) s - T(i)

continue

After the loop the variable X has been renamed X 1. In code that follows the
loop, the compiler can simply replace. the name X by X 1. Renaming does not
require an actual copy operation; it can be done by substituting names or by reg
ister allocation.

Besides deciding which loops are vectorizable, the compiler must generate
strip-mining code and allocate vector registers. Most vectorization transforma
tions are done at the source level, although some optimizations involve coordi
nating high-level source transformations with lower-level, machine-dependent
transformations. Efficient allocation of vector registers is such an optimization
and is perhaps the most difficult optimization-one that many vectorizing com
pilers do not attempt.

Effectiveness of Vectorization Techniques

Two factors affect the success with which a program can be run in vector
mode. The first factor is the structure of the program itself: do the loops have
true data dependences, or can they be restructured so as not to have such depen
dences? This factor is influenced by the alg()rithms chosen and, to some extent,
how they are coded. The second factor is the capability of the compiler. While
no compiler can vectorize a loop where no parallelism among the loop iterations
exists, there is tremendous variation in the ability of compilers to determine
whether a loop can be vectorized.

As an indication of the level of vectorization that can be achieved in scientific
programs, let's look at the vectorization levels observed for the Perfect Club
benchmark~, discussed in Section 2. 7 of Chapter 2. These benchmarks are large,
real scientific applications. Figure 7.12 (page 376) shows the percentage of
floating-point operations in each benchmark and the percentage executed in
vector mode on the CRAY X-MP. The wide variation in level of vectorization
has been observed by several studies of the performance of applications on

Ex.1035.407DELL

376 7.5 Compiler Technology for Vector Machines

vector machines. While better compilers might improve the level of
vectorization in some of these programs, most will require rewriting to achieve
significant increases in vectorization. For example, let's look at our version of
the Spice benchmark in detail. In Spice with the input chosen we found that only
3.7% of the floating-point operations are executed in vector mode on the CRAY
X-MP, and the vector version runs only 0.5% faster than the scalar version.
Clearly, a new program or a significant rewrite will be needed to obtain the
benefits of a vector machine on Spice.

Benchmark name FP operations FP operations executed in
vector mode

.ADM 23% 68%

DYFESM 26% 95%

FL052 41% 100%

MDG 28% 27%

MG3D 31% 86%

OCEAN 28% 58%

QCD 14% 1%

SPICE 16% 7%

TRACK 9% 23%

TRFD 22% 10%

FIGURE 7.12 Level of vectorization among the Perfect Club benchmarks when
executed on the CRAY X-MP. The first column contains the percentage of operations that
are floating point, while the second contains the percentage of FP operations executed in
vector instructions. Note that this run of Spice with different inputs shows a higher
vectorization ratio.

There is also tremendous variation in how well compilers do in vectorizing
programs. As a summary of the state of vectorizing compilers, consider the data
in Figure 7.13, which shows the extent of vectorization for different machines
using a test suite of 100 hand-written FORTRAN kernels. The kernels were
designed to test vectorization capability and can all be vectorized by hand; we
will see several examples of these loops in the Exercises.

Ex.1035.408DELL

Vector Processors 377

Machine Compiler Completely Partially Not
vectorized vectorized vectorized

Ardent Titan- I FORTRAN Vl.O 62 6 32

CDCCYBER- VAST-2 V2.21 62 5 33
205

Convex C-series FC5.0 69 5 26

CRAYX-MP CFT77 V3.0 69 3 28

CRAYX-MP CFT Vl.15 50 1 49

CRAY-2 CFT2 V3.la 27 1 72

ETA-10 FTN 77 Vl.O 62 7 31

Hitachi FORT77/HAP 67 4 29
S810/820 V20-2B

IBM 3090/VF VS FORTRAN 52 4 44
V2.4

NECSX/2 FORTRAN77 I 66 5 29
SXV.040

Stellar GS 1000 F77 prerelease 48 11 41

FIGURE 7.13 Result of applying vectorizing compilers to the 100 FORTRAN test
kernels. For each machine we indicate how many loops were completely vectorized,
partially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. The machines shown are those mentioned at some point in this chapter.
Two different compilers for the CRAY X-MP show the large dependence on compiler
technology.

7 .6 I Enhancing Vector Performance

Three techniques for improving the performance of vector machines are
discussed in this section. The first deals with making a sequence of dependent
vector operations run faster. The other two deal with expanding the class of
loops that can be run in vector mode. The first technique, chaining, originated in
the CRA Y-1, but is now supported on many vector machines. The techniques
discussed in the second and third parts of this section are taken from a variety of
machines an'd are, in general, more extensive than the capabilities provided on
the CRAY-1 or CRAY X-MP architectures.

Chaining-The Concept of Forwarding Extended
to Vector Registers

Consider the simple vector sequence

MULTV
ADDV

Vl, V2, V3

V4,Vl,V5

Ex.1035.409DELL

378 7.6 Enhancing Vector Performance

In DLXV as it currently stands these two instructions run in time equal to

Telement *Vector length+ Start-up timeADDV +stall time+ Start-up timeMULTV

= 2 * Vector length + 6 + 4 + 7

= 2 *Vector length+ 17

Because of the dependence, the MULTV must complete before the ADDV can
begin. However, if the vector register, Vl in this case, is treated not as a single
entity but as a group of individual registers, then the pipelining concept of for
warding can be extended to work on individual elements of a vector. This idea,
which will allow the ADDV to start earlier in this example, is called chaining.
Chaining allows a vector operation to start as soon as the individual elements of
its vector source operand become available: The results from the first functional
unit in the chain are forwarded to the second functional unit. (Of course, they
must be gifferent units to avoid using the same unit twice per clock!) In a
chained sequence the initiation rate is equal to one per clock cycle if the func
tional units in the chained operations are all fully pipelined. Even though the
operations depend on one another, chaining allows the operations to proceed in
parallel on separate elements of the vector. A sustained rate (ignoring start-up)
of two floating-point operations per clock cycle can be achieved, even though
the operations are dependent!

The total running time for the above sequence becomes

Vector length+ Start-up timeADDV +Start-up timeMULTV

Figure 7 .14 shows the timing of a chained and an unchained version of the
above pair of vector instructions with a vector length of 64. In Figure 7 .14, the
total time for chained operation is 77 clock cycles. With 128 floating-point
operations done in that time, 1.7 FLOPs per clock cycle are obtained, versus a
total time of 145 clock cycles or 0.9 FLOPs per clock cycle for the unchained
version.

We will see in Section 7.7 that chaining plays a major role in boosting vector
performance.

7 64 46 64
Unchained ~t-----Ht-il....,lf-------il Total= 145

MULTV ADDV

Chained

FIGURE 7.14 Timings for a sequence of dependent vector operations ADDV and
MULTV, both unchained and chained. The 4-clock-cycle delay comes from a stall for
dependence, described earlier; the 6- and 7-clock-cycle delays are the latency of the
adder and multiplier.

Ex.1035.410DELL

 378 7.6 Enhancing Vector Performance

In DLXVasit currently stands these two instructions run in time equal to

Telement * Vector length + Start-up timeappvy+ Stall time + Start-up timeyyLtv

= 2 * Vector length+6+4+7

= 2 * Vector length + 17

Because of the dependence, the MULTV must complete before the ADDV can
begin. However, if the vector register, V1 in this case, is treated not as a single
entity but as a group of individual registers, then the pipelining concept of for-
warding can be extended to work on individual elements of a vector. This idea,
which will allow the ADDVto start earlier in this example, is called chaining.
Chaining allows a vectoroperation to start as soon as the individual elements of
its vector source operand becomeavailable: The results from the first functional
unit in the chain are forwarded to the second functional unit. (Of course, they
must be different units to avoid using the same unit twice per clock!) In a
chained sequencethe initiation rate is equal to one per clock cycle if the func-
tional units in the chained operationsare all fully pipelined. Even though the
operations depend on one another, chaining allows the operations to proceed in
parallel on separate elements of the vector. A sustained rate (ignoring start-up)
of two floating-point operations per clock cycle can be achieved, even though
the operations are dependent!

Thetotal running time for the above sequence becomes

Vector length + Start-up timeappy + Start-up timeyuLTy

Figure 7.14 shows the timing of a chained and an unchained version of the
above pair of vector instructions with a vector length of 64. In Figure 7.14, the
total time for chained operation is 77 clock cycles, With 128 floating-point
operations done in that time, 1.7 FLOPs per clock cycle are obtained, versus a
total time of 145 clock cycles or 0.9 FLOPs per clock cycle for the unchained
version.

Wewill see in Section 7.7 that chaining plays a majorrole in boosting vector
performance.

7 64 46 64

}{_____t{|__|total = 145Unchained MULTV ADDV
7 64

Chained MULTV

Total = 77
FIGURE 7.14 Timings for a sequence of dependent vector operations ADDV and
MULTV, both unchained and chained. The 4—clock-cycle delay comesfromastall for
dependence, described earlier; the 6— and 7—-clock-cycle delays are the latency of the
adder and multiplier.

DELL Ex.1035.410

Vector Processors

Conditionally Executed Statements
and Sparse Matrices

379

In the last section, we saw that many programs only achieved low to moderate
levels of vectorization. Because ·of Amdahl's Law, the speedup on such pro
grams will be very limited. Two reasons why higher levels of vectorization are
not achieved are the presence of conditionals (if statements) inside loops and the
use of sparse matrices. Programs that contain if statements in loops cannot be
run in vector mode using the techniques we have discussed so far because the if
statements introduce control flow into a loop. Likewise, sparse matrices cannot
be efficiently implemented using any of the capabilities we have seen so far; this
is a major factor in the lack of vectorization for Spice. This section discusses
techniques that allow programs with these structures to execute in vector mode.
Let's start with conditional execution.

Consider the following loop:

do 100 i = 1, 64

if (A(i) .ne. 0) then

A(i) = A(i) - B(i)

endif

100 continue

This loop cannot normally be vectorized because of the conditional execution of
the body. However, if the inner loop could be run for the iterations for which
A(i) t:. 0, then the subtraction could be vectorized.

Vector-mask control helps us do this. The vector-mask control takes a
Boolean vector of length MVL. When the vector-mask register is loaded with
the result of a vector test, any vector instructions to be executed operate only on
the vector elements whose corresponding entries in the vector-mask register are
1. The entries in the destination vector register that correspond to a 0 in the mask
register are unaffected by the vector operation. Clearing the vector-mask register
sets it to all ls, making subsequent vector instructions operate on all vector ele
ments. The following code can now be used for the above loop, assuming that
the starting addresses of A and B are in Ra and Rb respectively:

LV

LV

LD

Vl,Ra

V2,Rb

F0,#0

SNESV FO,Vl

SUBV Vl,Vl,V2

CVM

sv Ra,Vl

;load vector A into Vl

;load vector B

;load FP zero into FO

;sets the VM to 1 if Vl(i)t:.FO

;subtract under vector mask

;set the vector mask to all ls

;store the result in A

Ex.1035.411DELL

380 7.6 Enhancing Vector Performance

Most modem vector machines provide vector-mask control. The vector-mask
capability described here is available on some machines, but others allow the use
of the vector mask with only a small number of instructions.

Using a vector-mask register does, however, have disadvantages. First,
execution time is not decreased, even though some elements in the vector are not
operated on. Second, in some vector machines the vector mask serves only to
disable the storing of the result into the destination register, and the actual opera
tion still occurs. Thus, if the operation in the above example were a divide rather
than a subtract and the test was on B rather than A, false floating-point
exceptions might result since the operation was actually done. Machines that
mask the operation as well as the result store avoid this problem.

Now, let's tum to sparse matrices; later we will show another method for
handling conditional execution. We have dealt with vectors in which the ele
ments are separated by a constant stride. If an application called for a sparse
matrix, we might see code that looks like:

do 100 i = 1,n
10.0 A(K(i)) = A(K{i)) + C (M(i))

This code implements a sparse vector sum on the arrays A and C, using index
vectors K and M to designate to the nonzero elements of A and C. (A and C
must have the same number of nonzero elements-n of them.) Another common
representation for sparse matrices uses a bit vector to say which elements exist,
and often both representations exist in the same program. Sparse matrices are
found in many codes, and there are many ways to implement them, depending
on the data structure used in the program.

The primary mechanism for supporting sparse matrices is scatter-gather
operations using index vectors. A gather operation takes an index vector, and
fetches the vector whose elements are at the addresses given by adding a base
address to the offsets given in the index vector. The result is a nonsparse vector
in a vector register. After these elements are operated on in dense form, the
sparse vector can be stored in expanded form by a scatter store, using the same
index vector. Hardware support for such operations is called scatter-gather and
appeared on the CDC STAR-100. The instructions LVI (Load Vector Indexed)
and SVI (Store Vector Indexed) provide these operations in DLXV. For exam
ple, assuming that Ra, Re, Rk, and Rm contain the starting addresses of the vec
tors in the above sequence, the inner loop of the sequence can be coded with
vector instructions such as:

LV Vk,Rk ;load K

LVI Va, (Ra+Vk) ;load A(K(I))

LV Vm,Rm ;load M

LVI Ve, (Re+Vm) ;load C (M(I))

ADDV Va, Va, Ve ;add them

SVI (Ra+Vk), Va ;store A(K(I))

Ex.1035.412DELL

Vector Processors 381

This technique allows code with sparse matrices to be run in vector mode.
The source code above would never be automatically vectorized by a compiler
because the compiler cannot know that the elements of Kare distinct values, and
thus that no dependences exist. Instead, a programmer directive would tell the
compiler that it could run the loop in vector mode.

A scatter/gather capability is included on many of the newest super
computers. Such operations rarely run at one element per clock, but they are still
much faster than the alternative, which may be a scalar loop. If the sparsity
properties of a matrix change, a new index vector must be computed. Many
machines provide support for computing the index vector quickly. The CVI
(Create Vector Index) instruction in DLXV creates an index vector given a stride
(m), where the values in the index vector are O,m,2*m, ... ,63*m. Some machines
provide an instruction to create a compressed index vector whose entries cor
respond to the positions with a 1 in the mask register. Other vector architectures
provide a method to compress a vector. In DLXV, we define the CVI instruction

0 , to always create a compressed index vector using the vector mask. When the
vector mask is all ones a standard index vector will be created.

The indexed loads/stores and the CVI instruction provide an alternative
method to support conditional execution. Here is a vector sequence that imple
ments the loop we saw on page 379:

LV Vl,Ra
LD F0,#0
SNESV FO,Vl
ADDI

CVI
POP

Rc,#8
V2,Rc
Rl, VM

MOVI2S VLR,Rl
CVM

;load vector A into Vl
;load FP zero into FO
;sets the VM to 1 if Vl(i):;tFO

;generates indices in V2
;find the number of l's in VM
;load vector length register

LVI
LVI
SUBV
SVI

V3, (Ra+V2) ;load the nonzero A elements
V4, (Rb+V2) ;load corresponding B elements
V3,V3,V4 ;do the subtract
(Ra+V2),V3 ;store A back

Whether the implementation using scatter/gather is better than the condition
ally executed version depends on the frequency with which the condition holds
and the cost of the operations. Ignoring chaining, the running time of the first
version (on page 379) is Sn+ c1. The running time of the second version using
indexed loads and stores with a running time of one element per clock is 4n +
4*f*n + c2, where f is the fraction of elements for which the condition is true
(i.e., A :;t 0). If we assume that the values of c1 and c2 are comparable, or that
they are much smaller than,n, we can find when this second technique is better.

Time1 = Sn

Time2 = 4n + 4*f*n

Ex.1035.413DELL

382

Example

7.6 Enhancing Vector Performance

We want Time I ~ Time2, so

Sn ~ 4n + 4*f*n

l>f 4 -

That is, the second method is faster if less than one-quarter of the.elements are
nonzero. In many cases the frequency of execution is much lower. If the index
vector can be reused, or if the number of vector statements within ,the if state
ment grows, the advantage of the scatter/gather approach will increase sharply.

Vector Reduction

As we saw in Section 7 .5, some loop structures are not easily vectorized. One
common structure is a reduction-a loop that reduces an array to a single value
by repeated application of an operation. This is a special case of a recurrence. A
common example occurs in dot product:

dot = 0.0

do 10 i=l,64

10 dot =dot + A(i) * B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vec
torized in a straightforward fashion. The first thing a good vectorizing compiler
would do is split the loop to separate out the vectorizable portion and the recur
rence and perhaps rewrite the loop as:

do 10 i=l,64

10 dot (i) = A (i) * B (i)

do 20 i=2,64
20 dot(l) = dot(l) + dot(i)

The variable dot has been expanded into a vector; this transformation is called
scalar expansion.

One simple scheme for compiling the loop with the recurrence is to add ,
sequences of progressively shorter vectors-two 32-element vectors, then two
16-element vectors, and so on. This technique has been called recursive
doubling. It is faster than doing all the operations in scalar mode. Many vector
machines provide hardware assist for doing reductions, as we will see next.

Show how the FORTRAN code would look for execution of the second loop in
the code fragment above using recursive doubling.

Ex.1035.414DELL

Answer

Vector Processors 383 .

Here is the code:

len = 32

do 100 j=l,6

do 10 i=l,len

10 dot(i) = dot(i) + dot(i+len)

...
\

len

100 continue

len I 2

When the loop is done, the sum is in dot(l).

In some vector machines, the vector registers are addressable, and another
technique, sometimes called partial sums, can be used. This is discussed in
Exercise 7 .12. There is an important caveat in the use of vector techniques for

, reduction. To make reduction work, we are relying on the associativity of the
operator being used for the reduction. Because of rounding and finite range,
however, floating-point arithmetic is not strictly associative. For this reason,
most compilers require the programmer to indicate whether associativity can be
used to more efficiently compile reductions.

7. 7 I Putting It All Together: Evaluating the
Performance of Vector Processors

In this section we look at different measures of performance for vector machines
and what they tell us about the machine. To determine the performance of a
machine on a vector problem we must look at the start-up cost and the sustained
rate. The simplest and best way to report the performance of a vector machine
on a loop is to give the execution time of the vector loop. For vector loops peo
ple often give the MFLOPS (Millions FLoating point Operations Per Second)
rating rather than execution time. We use the notation Rn for the MFLOPS rating
on a vector of length n. Using the measurements T n (time) or Rn (rate) is equiva
lent if the number of FLOPs is agreed upon (see Chapter 2, Section 2.2, page 35
for an extensive discussion on MFLOPS). In any event, either measurement
should include the overhead.

In this section we examine the performance of DLXV on our SAXPY loop by
looking at performance from different viewpoints. We will continue to compute
the execution time of a vector loop using the equation developed in Section 7.4.
At the same time, we will look at different ways to measure performance using
the computed time. The constant values for T1oop and Tbase used in this section
introduce some small amount of error, which will be ignored.

Ex.1035.415DELL

384 7.7 Putting It All Together: Evaluating the Performance of Vector Processors

Measures of Vector Performance

Because vector length is so important in establishing the performance of a
machine, length-related measures are often applied in addition to time and
MFLOPs. These length-related measures tend to vary dramatically across differ
ent machines and are interesting to compare. (Remember, though, that time is
always the measure of interest when comparing the relative speed of two
machines.) Three of the most important length-related measures are:

R
00
-The MFLOPS rate on an infinite-length vector. Although this measure may

be of interest when estimating peak performance, real problems do not have un
limited vector lengths, and the overhead penalties encountered in real problems
will be larger. (Rn is the MFLOPS rate for a vector of length n.)

N 1;2-The vector length needed to reach one-half of R00 • This is a good measure
of the impact of overhead.

N v-The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors.

Let's look at these measures for our SAXPY problem running on DLXV.
When chained, the inner loop of the SAXPY code looks like this (assuming that
Rx and Ry hold starting addresses):

LV Vl,Rx ;load the vector X

MULTSV V2,Sl,Vl ;vector* scalar-chained to LV X

LV V3,Ry ;vector load y

ADDV V4,V2,V3 ;sum ax + Y, chained to LV Y

sv Ry,V4 ;store the vector Y

Recall our performance equation for the execution time of a vector loop with
n elements, Tn:

Tn= Tbase + r M~L l * (T1oop + Tsrart) + n * T element

Since there are three memory references and only one memory pipeline, the
value of Telement must be at least 3, and chaining allows it to be exactly 3. If
T element were a complete indication of performance, the loop would run at a

MFLOPS rate of ~ * clock rate (since there are 2 FLOPS per iteration). Thus,

based only on the Telement time, an 80-MHz DLXV would run this loop at 53
MFLOPS. But the Unpack benchmark, whose core is this computation, runs at
only 13 MFLOPS (without some sophisticated compiler optimization we discuss
in the Exercises) on an 80-MHz CRAY-1, DLXV's cousin! Let's see what
accounts for the difference.

Ex.1035.416DELL

Operation

LV Vl,Rx

MULTV a,Vl

LV V2,Ry

ADDV V3, Vl, V2 c_

sv Ry,V3

Vector Processors 385

The Peak Performance of DLXV on SAXPY

First, we should determine what the peak performance, R
00

, really is, since we
know it differs from the ideal 53-MFLOPS rate. Figure 7.15 shows the timing
within each block of strip-mined code.

Starts at clock Completes at clock Comment
number number

0 12 + 64 = 76 Simple latency

12 + 1=13 13 + 7 + 64 = 84 Chained to L v

76 + 1=77 77 + 12 + 64 = 153 Starts after first L v done (memory
contention)

77 + 1+12 = 90 90+6+64=160 Chained to MULTV and LV

160 + 1 + 4 = 165 165 + 12 + 64 = 241 Must wait on ADDV; not chained
(memory contention)

FIGURE 7.15 The SAXPY loop when chained in DLXV. There are three distinct types of delays: 4-clock-cycle delays
when a nonchained dependence occurs, latency delays that occur when waiting for a result for the pipeline (6 for add, 7
for multiply, and 12 for memory access), and delays due to contention for the memory pipeline. The last cause is what
makes the time per element at least 3 clocks.

From the data in Figure 7.15 and the value of Telement• we know that

Tstart = 241 - 64 * Telement = 241 - 192 = 49

This value is equal to the sum of the latencies of the functional units: 12 + 7 +
12 + 6 + 12 = 49.

Using MVL = 64, T1oop = 15, Tbase = 10, and Telement = 3 in the performance.
equation, the time for an n-element operation is

Tn = 10 + I :41*(15+49) + 3n

Tn = 10+n+64+3n=4n+74

The sustained rate is actually over 4 clock cycles per iteration, rather than the
theoretical rate of 3 clocks per iteration, which ignores overhead. The major part
of the difference is the cost of the overhead for each block of 64 elements. The

basic start-up overhead, Tbase• adds only
10

to the time for each element. This
n

overhead disappears with long vectors.
We can now compute R

00
for an 80-MHz clock as

R = lim (Operations per iteration * Clock rate)
00 n~= Clock cycles per iteration

Ex.1035.417DELL

386 7.7 Putting It All Together: Evaluating the Performance of Vector Processors

The numerator is indtrpendent of n, hence

R = Operations per iteration * Clock rate
00

lim (Clock cycles per iteration)
n-?oo

1. (Tn) l" (4n + 74) lim (Clock cycles per iteration) = im -;; = 1m n = 4
n-?oo n-?oo n-700

R = 2 * 80 MHz= 40 MFLOPS
00 4

Sustained Performance of Linpack on DLXV

The Linpack benchmark is a Gaussian elimination on a lOOx 100 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of length k is used
k times. Thus, the average vector length is given by:

99
I iz
i=l 99 =66.3

L,i
i=l

Now we can obtain an accurate estimate of the performance of SAXPY using a
vector length of 66.

T66 = 10 + 2 * (15 + 49) + 66 * 3 = 10 + 128 + 198 = 336

R66 =
2 * ~~6*

80
MFLOPS = 31.4 MFLOPS

In reality, Linpack does not spend all its time in the inner loop. The bench
mark's actual performance can be found by taking the weighted harmonic mean
of the MFLOPS ratings inside the inner loop (31.4 MFLOPS) and outside that
loop (about 0.5 MFLOPS). We can compute the weighting factors by knowing
the percentage of the time inside the inner loop after vectorization.

The percentage in the inner loop after vectorization can be obtained using
Amdahl's Law if we know the percentage in scalar and the speedup from vec
torization. In scalar mode, about 75% of the execution time is spent in the inner
loop, and the speedup from vectorization is about 5 times. With this information
the percentage of time in the inner loop after vectorization can be computed:

Total relative time after vectorization = 0.
75 + 0.25
5

= 0.15 + 0.25 = 0.40

Ex.1035.418DELL

Example

Answer

Example

Vector Processors

P f . . . 1 f . . O.l5 37 5m ercentage o time m mner oop a ter vectonzat1on = 0.40 = . -10

387

The remaining 62.5% of the time is spent outside the main loop. Thus, the
overall MFLOPS rating is

Percentageinner * MFLOPSinner + Percentage0 ther * MFLOPSother

= 37.5% * 31.4 + 62.5% * 0.5 = 12.1 MFLOPS

This is comparable to the rate at which the CRA Y-1 runs this benchmark.

What is N112 for just the inner loop of SAXPY for DLXV with an 80-MHz

clock?

Using R
00

as the peak rate, we want to know the vector length that will achieve

about 20 MFLOPS. So,

FLOPS *Clocks
Clock cycles Iteration Second

= Iteration FLOPS
Second

2 * 80MHz
= 20 MFLOPS = 8

Hence, a rate of 20 MFLOPS means that a loop iteration completes every 8

clock cycles on average, or that Tn = 8. Using our equation and assuming that n
n

S64,

T =10+1*64+3*n n

Substituting for T n in the first equation, we obtain

8 n = 74 + 3 * n

5n = 74

n = 14.8

So N 112 = 15; that is, a vector oflength 15 gives approximately one-half the peak

performance for the SAXPY loop on DLXV.

What is the vector length, Nv, such that the vector operation runs faster than the

scalar?

Ex.1035.419DELL

388

Answer

Example

Answer

Operation

LV Vl,Rx

MULTV a,Vl

LV V2,Ry

ADDV y3, Vl, V2

sv Ry,V3

7.7 Putting It All Together: Evaluating the Performance of Vector Processors

Again, we know that Nv < 64. The time to do one iteration in scalar mode can be

estimated as 10 + 12 + 12 + 7 + 6 = 47 clocks, where 10 is the estimate of the
loop overhead, known to be somewhat less than the strip-mining loop overhead.
In the last problem, we showed that this vector loop runs in vector mode in time
T n = 74 + 3*n clock cycles for a vector of length:::; 64. Therefore,

74 + 3n = 47n

74
n - 44

NV = 2

For the SAXPY loop, vector mode is faster than scalar as long as the vector has
at least two elements. This number is surprisingly small, as we will see in the
next section (Fallacies and Pitfalls).

SAXPY Performance on an Enhanced DLXV

SAXPY, like many vector problems, is memory limited. Consequently, per
formance could be improved by adding more memory-access pipelines. This is
the major architectural difference between the CRAY X-MP and the CRAY-1.
The CRAY X-MP has three memory pipelines, compared to the CRAY-l's sin
gle memory pipeline, and the X-MP has more flexible chaining. How does this
affect performance?

What would be the value of T 66 for SAXPY on DLXV if we added two more
memory pipelines?

Figure 7.16 is a version of Figure 7.15 (page 385), adjusted for multiple memory
pipelines.

Starts at clock number Completes at clock Comment
number

0 12 + 64 = 76 Simple latency

12 + 1=13 13 + 7 + 64 = 84 Chained to L v

2 2 + 12 + 64 = 78 Starts immediately

13 + 1+7 = 21 21+6 + 64 = 91 Chained to MULTV and LV

21+1+6 = 28 28 + 12 + 64 = 104 Chained to ADDV

FIGURE 7.16 The SAXPY loop when chained in DLXV with three memory pipelines. The only delays are latency
delays that occur when waiting for a result for the pipeline (6 for add, 7 for multiply, and 12 for each memory access).

Ex.1035.420DELL

Example

Answer

Vector Processors 389

With three memory pipelines, the performance is greatly improved. Here's
our standard performance equation:

Tn = Tbase + I M~L l * (T1oop + Tstart) + n * Telement

With three memory pipelines the value of T element becomes 1, so that

Tstart =104- 64 * Telement = 104- 64 = 40

The reduction in stalls reduces the start-up penalty for each sequence. The
values of T1oop and T base' 15 and 10, remain the same. Therefore, for an average
vector length of 66, we have:

T 66 = T base + I~~ l * (T1oop + T start) + 66 * T element

T66 = 10+2*(15+40)+66*1=186

With three memory pipelines, we have reduced the clock-cycle count for sus
tained performance from 336 to 186, a factor of 1.8. Note the effect of Amdahl's
Law: We improved the theoretical peak rate, as measured by Telement• by a factor
of 3, but only achieved an overall improvement of a factor of 1.8 in sustained
performance. Because the speedup outside the inner loop is likely to be less than
1.8, the overall improvement in run time for the benchmark will also be less.

Another improvement could come from allowing the start-up of one
loop iteration before another completes. This requires that one vector operation
be allowed to begin using a functional unit, before another operation has com
pleted. This complicates the instruction issue logic substantially, but has the ad
vantage that the start-up overhead will only occur once, independent of the vec
tor length. On a long vector the overhead per block (T1oop + T start) can be com
pletely amortized. In this way a machine with vector registers can have both low
start-up overhead for short vectors and high peak performance for very long
vectors.

What would be the values of R00 and T 66 for SAXPY on DLXV if we added two
more memory pipelines and allowed the strip-mining and start-up overhead to be
fully overlapped?

R = lim (Operations per iteration * Clock rate)
00 n-?oo Clock cycles per iteration

'· . (T)
lim (Clock cycles per iteration) = lim nn

n-?oo n-?oo

Ex.1035.421DELL

390 7.7 Putting It All Together: Evaluating the Performance of Vector Pn:>cessors

Since Tn = n + 40 + 10 + 15 = n + 65,

lim (Tn) = lim (n + 65) = 1
n~oo n n~oo n

R = 2 * 80 MHz= 160 MFLOPS
00 1

Thus, adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, T 66 = 131, so for
shorter vectors, the sustained performance improvement is about 40%.

In summary, we have examined several measures of vector performance.
Theoretical peak performance can be calculated based purely on the value of
Te1ement as

Number of FLOPS per iteration * Clock rate
Telement

By including the loop overhead, we can calculate values for peak performance
for an infinite-length vector (Roo), and also for sustained performance Rn for a
vector of length n, which is computed as:

Rn = Number of FLOPS per iteration * n * Clock rate
Tn

Using these measures we also can find N 1/2 and Nv, which give us another way
of looking at the start-up overhead for vectors and the ratio of vector to scalar
speed. A wide variety of measures of performance of vector machines are useful
in understanding the wide range of performance that applications may see on a
vector machine.

7 .8 J Fallacies and Pitfalls

Pitfall: Concentrating on peakpe1formance and ignoring start-up overhead.

Early vector machines such as the TI ASC and the CDC STAR-100 had long
start-up times. For some vector problems, Nv could be greater than 100! Today,

the Japanese supercomputers often have higher sustained rates than the Cray
Research machines. But with start-up overheads that are 50-100% higher, the
faster sustained rates often provide no real advantage. On the CYBER-205 the
start-up overhead for SAXPY is 158 clock cycles, substantially increasing the
break-even point. With a single vector unit, which contains 2 memory pipelines,
the CYBER-205 can sustain a rate of 2 clocks per iteration. The time for
SAXPY for a vector of length n is therefore roughly 158 + 2n. If the clock rates

Ex.1035.422DELL

Machine

MIPS M/120-5

Stardent-1500

Vector Processors 391

of the CRAY-1 and the CYBER-205 were identical, the CRAY-1 would be
faster until n > 64. Because the CRAY-1 clock is also faster (even though the
205 is newer), the crossover point is over 100. Comparing a four-vector-pipeline
CYBER-205 (the maximum-size machine) to the CRAY X-MP that was deliv
ered shortly after the 205, the 205 completes two results per clock cycle-twice
as fast as the X-MP. However, vectors must be longer than about 200 for the
CYBER-205 to be faster. The problem of start-up overhead has been the major
difficulty for the memory-memory vector architectures.

Pitfall: Increasing vector performance, without comparable increases in
scalar performance.

This is another area where Seymour Cray rewrote the rules. Many of the early
vector machines had comparatively slow scalar units (as well as large start-up
overheads). Even today, machines with higher peak vector performance, can be
outperformed by a machine with lower vector performance but better scalar
performance. Good scalar performance keeps down overhead costs (strip min
ing, for example) and reduces the impact of Amdahl's Law. A good example of
this comes from comparing a fast scalar machine and a vector machine with
lower scalar performance. The Livermore FORTRAN kernels are a collection of
24 scientific kernels with varying degrees of vectorization (see Chapter 2; Sec
tion 2.2). Figure 7.17 shows the performance of two different machines on this
benchmark. Despite the vector machine's higher peak performance, its low scalar
performance makes it slower than a fast scalar machine. The next fallacy is
closely related.

Minimum rate for any loop Maximum rate for any loop Harmonic mean of all 24 loops

0.80MFLOPS 3.89MFLOPS 1.85 MFLOPS

0.41 MFLOPS 10.08 MFLOPS l.72MFLOPS

FIGURE 7.17 Performance measurements for the Livermore FORTRAN kernels on two different machines. Both
the MIPS M/120-5 and the Stardent-1500 (formerly the Ardent Titan-1) use a 16. 7-MHz MIPS R2000 chip for the main
CPU. The Stardent-1500 uses its vector unit for scalar FP and has about half the scalar performance (as measured by the
minimum rate) of the MIPS M/120, which uses the MIPS R201 O FP chip. The vector machine is more than a factor of 2.5
times faster for a highly vectorizable loop (maximum rate). However, the lower scalar performance of the Stardent-1500
negates the higher vector performance when total performance is measured by the harmonic mean on all 24 loops.

Fallacy: The scalar performance of the best supercomputers is low.

The supercomputers from Cray Research have always had good scalar perfor
mance. Measurements of the CRAY Y-MP running (the nonvectorizable) Spice
benchmark sho'.w this. When our Spice benchmark is run on the CRAY Y-MP in
scalar mode it executes 665 million instructions, with a CPI of 4.1. By compari
son, the DECstation 3100 executes 738 million instructions with a CPI of 2.1.

Ex.1035.423DELL

392 7.8 Fallacies and Pitfalls

Although the DECstation uses fewer cycles, the Y-MP uses fewer instructions
and is much faster overall, since it has a clock cycle .one-tenth as long.

Fallacy: You can get vector performance without providing memory band
width.

As we saw with the SAXPY loop, memory bandwidth is quite impor
tant. SAXPY requires 1.5 memory references per floating-point operation, and
this ratio is typical of many scientific codes. Even if the floating-point operations
took no time, a CRAY -1 could not increase the performance of the vector
sequence used, since it is memory limited. Recently, the CRAY-1 performance
on Linpack has jumped because the compiler used clever transformations to
change the computation so that values could be kept in the vector registers. This
lowered the number of memory references per FLOP and improved the perfor
mance by nearly a factor of 2! Thus, the memory bandwidth on the CRA Y-1
became sufficient for a loop that formerly required more bandwidth.

7 .9 I Concluding Remarks

In the late 1980s rapid performance increases in efficiently pipelined scalar
machines lead to a dramatic closing of the gap between vector supercomputers,
costing millions of dollars, and fast, pipelined; VLSI microprocessors costing
less than $100,000. The basic reason for this was the rapidly decreasing CPI of
the scalar machines.

For scientific programs, an interesting counterpart to CPI is clock cycles per
FLOP, or CPF. We saw in this chapter that for vector machines this number was
typically in the range of 2 (for a CRAY X-MP style machine) to 4 (for a CRAY-
1 style machine). In the last chapter, we saw that the pipelined machine varied
from about 6 (for DLX) down to about 2.5 (for a superscalar DLX with no
memory system losses running a SAXPY-type loop).

Recent trends in vector machine design have focused on high peak-vector
performance and multiprocessing. Meanwhile, high-speed scalar machines con
centrate on keeping the ratio of peak to sustained performance near one. Thus, if
the peak rates advance comparably, the sustained rates of the scalar machines
will advance more quickly, and the scalar machines will continue to close the
CPF gap. These multiple-issue scalar machines can rival or exceed the perfor
mance of vector machines with comparable clock speeds, especially for levels of
vectorization below 70%. Furthermore, the differences in clock rate are largely
technology driven-the low-end, microprocessor-based vector machines have
clock rates comparable to the pipelined machines using microprocessor technol
ogy. (In fact, they often use the same microprocessors!) In the future, we can
expect high-speed pipelined scalar machines to be built with clock rates that will
rival those of the current vector supercomputers. However, the vector machines

Ex.1035.424DELL

Vector Processors 393

should retain a performance advantage for problems with very long vectors that
can use multiple memory pipelines and achieve performance close to the peak.

' The 1990s will be interesting as the pipelined scalar machines that exploit
more instruction-level parallelism and are usually much cheaper (because their
peak performance and hence total hardware is much less) begin to offer perfor
mance levels for many applications that are difficult to distinguish from those of
vector machines.

7. 1 0 I Historical Perspective and References

The first vector machines were the CDC STAR-100 (see Hintz and Tate [1972])
and the TI ASC (see Watson [1972]), both announced in 1972. Both were mem
ory-memory vector machines. They had relatively slow scalar units-the ST AR
used the same units for scalars and vectors-making the scalar pipeline
extremely deep. Both machines had high start-up overhead and worked on vec
tors of several hundred to several thousand elements. The crossover between
scalar and vector could be over 50 elements. It appears that not enough attention
was paid to the role of Amdahl's Law on these two machines.

Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Research
and introduced the CRAY-1in1976 (see Russell [1978]). The CRAY-1 used a
vector-register architecture to significantly lower start-up overhead. He also had
efficient support for nonunit stride and invented chaining. Most importantly, the
CRAY -1 was also the fastest scalar machine in the world at that time. This
matching of good scalar and vector performance was probably the most signifi
cant factor in making the CRA Y-1 a success. Some customers bought the
machine primarily for its outstanding scalar performance. Many subsequent vec
tor machines are based on the architecture of this first commercially successful
vector machine. Baskett and Keller [1977] is a good evaluation of the CRA Y-1.

In 1981, CDC started shipping the CYBER-205 (see Lincoln [1982]). The
205 had the same basic architecture as the STAR, but offered improved perfor
mance all around as well as expansibility of the vector unit with up to four vec
tor pipelines, each with multiple functional units and a wide load/store pipe that
provided multiple words per clock. The peak performance of the CYBER-205
greatly exceeded the performance of the CRA Y-1. However, on real programs,
the performance difference was much smaller.

/

The CDC STAR machine and its descendant, the CYBER-205, were mem
ory-memory vector machines. To keep the hardware simple and support the
high bandwidth requirements (up to 3 memory references per FLOP), these
machines did not efficiently handle nonunit stride. While most loops have unit
stride, a nonunit stride loop had poor performance on these machines because
memory-to.:memory data movements were required to gather together (and
scatter back) the nonadjacent vector elements.

Ex.1035.425DELL

394 7.10 Historical Perspective and References

Schneck [1987] described several of the early pipelined machines (e.g.,
Stretch) through the first vector machines including the 205 and CRA Y-1.
Dongarra [1986] did another good survey, focusing on more recent machines.

In 1983, Cray shipped the first CRAY X-MP (see Chen [1983]). With an
improved clock rate (9.5 ns versus 12.5 on the CRAY-1), better chaining sup
port, and multiple memory pipelines, this machine maintained the Cray Research
lead in supercomputers. The CRA Y-2, a completely new design configurable
with up to four processors, was introduced later. It has a much faster clock than
the X-MP, but also much deeper pipelines. The CRAY-2 lacks chaining, has an
enormous memory latency, and has only one memory pipe per processor. In
general, it is only faster than the CRAY X-MP on problems that require its very
large main memory.

In 1983, the Japanese computer vendors entered the supercomputer market
place, starting with the Fujitsu VPlOO and VP200 (Miura and Uchida [1983]),
and later expanding to include the Hitachi S810, and the NEC SX/2 (see
Watanabe [1987]). These machines have proved to be close to the CRAY X-MP
in performance. In general, these three machines have much higher peak per
formance than the CRAY X-MP, though because of large start-up overhead,
their typical performance is often lower than the CRAY X-MP (see Figure 2.24
in Chapter 2). The CRAY X-MP favored a multiple-processor approach, first
offering a two-processor version and_ later a four-processor machine. In contrast,
the three Japanese machines had expandable vector capabilities. In 1988, Cray
Research introduced the CRAY Y-MP-a bigger and faster version of the
X-MP. The Y-MP allows up to 8 processors and lowers the cycle time to 6 ns.
With a full complement of 8 processors, the Y-MP is generally the fastest super
computer, though the single-processor Japanese supercomputers may be faster
than a one-processor Y-MP. In late 1989 Cray Research was split into two
companies, both aimed at building high-end machines available in the early
1990s. Seymour Cray continues to head the spin-off, which is now called Cray
Computer Corporation.

In the early 1980s, CDC spun out a group, called ETA, to build a new super
computer, the ETA-10, capable of' 10 GigaFLOPs. The ETA machine delivered
in the late 1980s (see Fazio [1987]) used low-temperature CMOS in a configu
ration with up to 10 processors. Each processor retained the memory-memory
architecture based on the CYBER-205. Although the ETA-10 achieved enor
mous peak performance, its scalar speed was not comparable. In 1989 CDC, the
first supercomputer vendor, closed ETA and left the supercomputer design
business.

In 1986, IBM introduced the System/370 vector architecture (see Moore et al.
[1987]) and its first implementation in the 3090 Vector Facility. The architecture
extends the System/370 architecture with 171 vector instructions. The 3090NF
is integrated into the 3090 CPU. Unlike most other vector machines, the
3090NF routes its vectors through the cache.

The 1980s also saw the arrival of smaller-scale vector machines, called mini
supercomputers. Priced at roughly one-tenth the cost of a supercomputer ($0.5 to

Ex.1035.426DELL

Vector Processors 395

$1 million versus $5 to $10 million), these machines caught on quickly.
Although many companies joined the market, the two companies that have been
most successful are Convex and Alliant. Convex started with a uniprocessor
vector machine (C-1) and now offers a small multiprocessor (C-2); they
emphasize Cray software capability. Alliant [1987] has concentrated more on
the multiprocessor aspects; they build an eight-processor machine, with each
processor offering vector capability.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University
of Illinois. Banerjee [1979] developed the test named after him. Padua and Wolf
[1986] gave a good overview of vectorizing compiler technology.

Benchmark studies of various supercomputers including attempts to under
stand the performance differences have been undertaken by Lubeck, Moore and
Mendez [1985], Bucher [1983], and Jordan [1987]. In Chapter 2, we discussed
several benchmark suites aimed at scientific usage and often employed for
supercomputer benchmarking, including Linpack, the Lawrence Livermore
Laboratories FORTRAN kernels, and the Perfect Club suite.

In the late 1980s, graphics supercomputers arrived on the market from Stellar
[Sporer, Moss, and Mathais 1988] and Ardent [Miranker, Rubenstein, and
Sanguinetti 1988]. The Stellar machine used a timeshared pipeline to allow high
speed vector processing and efficient multitasking. This approach was used ear
lier in a machine designed by B. J. Smith [1981] called the HEP and built by
Denelcor in the mid-1980s. This approach does not yield high-speed scalar per
formance, as evident in the scalar benchmarks of the Stellar machine. The
Ardent machine combines a RISC processor (the MIPS R2000) with a custom
vector unit. These vector machines, which cost about $1 OOK, brought vector
capabilities to a new potential market. In late 1989, Stellar and Ardent wen"
merged to form Stardent, and the Ardent architecture is being shipped from the
combined company.

From this overview we can see the progress vector machines have made. In
less than 20 years they have gone from unproven, new architectures to playing a
significant role in the goal to provide engineers and scientists with ever larger
amounts of computing power.

References

ALLIANT COMPUTER SYSTEMS CORP. [1987]. Alliant FX!Series: Product Summary (June), Acton,
Mass.

BANERJEE, U. [1979]. Speedup of Ordinary Programs, Ph.D. Thesis, Dept. of Computer Science,
Univ. of Illinois at Urbana-Champaign (October).

BASKETT, F. AND T. W. KELLER [1977]. "An Evaluation of the CRAY-1 Computer," in High
Speed Computer and Algorithm Organization, Kuck, D. J., Lawrie, D. H. and A. H. Sameh, eds.,
Academic Press, 71-84.

BUCHER, I. Y. [1983]. "The computational speed of supercomputers," Proc. SIGMETRICS Conf on
Measuring and Modeling of Computer Systems, ACM (August) 151-165.

CALLAHAN, D., J. DONGARRA, AND D. LEVINE [1988]. "Vectorizing compilers: A test suite and
results," Supercomputing '88, ACM/IEEE (November), Orlando, Fla., 98-105.

Ex.1035.427DELL

396 7 .1 O Historical Perspective and References

CHEN, S. [1983]. "Large-scale and high-speed multiprocessor system for scientific applications,"
Proc. NATO Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed.,
"Supercomputers: Design and applications," IEEE (August) 1.984.

DONGARRA, J. J. [1986]. "A survey of high performance computers," COMPCON, IEEE (March)
8-11.

FAZIO, D. [1987]. "It's really much more fun building a supercomputer than it is simply inventing
one," COMPCON, IEEE (February) 102-105.

FLYNN, M. J. [1966]. "Very high-speed computing systems," Proc. IEEE 54:12 (December) 1901-
1909.

HINTZ, R. G. AND D. P. TATE [1972]. "Control data STAR-100 processor design," COMPCON,
IEEE (September) 1-4.

JORDAN, K. E. [1987]. "Performance comparison of large-scale scientific computers: Scalar main
frames, mainframes with vector facilities, and supercomputers," Computer 20:3 (March) 10-23.

KUCK, D., P. P. BUDNIK, S.-C. CHEN, D. H. LAWRIE, R. A. TOWLE, R. E. STREBENDT, E.W.
DAVIS, JR., J. HAN, P. W. KRASKA, Y. MURAOKA [1974]. "Measurements of parallelism in ordi
nary FORTRAN programs," Computer 7: 1 (January) 37-46.

LINCOLN, N. R. [1982]. "Technology and design trade offs in the creation of a modern super
computer," IEEE Trans. on Computers C-31 :5 (May) 363-376.

LUBECK, 0., J. MOORE, AND R. MENDEZ [1985]. "A benchmark comparison of three super
computers: Fujitsu VP-200, Hitachi S810/20, and CRAY X-MP/2," Computer 18:1 (January) 10-
29.

MIRANKER, G. S., J. RUBENSTEIN, AND J. SANGUINETTI [1988]. "Squeezing a Cray-class
supercomputer into a single-user package," COMPCON, IEEE (March) 452-456.

MIURA, K. AND K. UCHIDA [1983]. "FACOM vector processing system: VPl00/200," Proc. NATO
Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed.,
"Supercomputers: Design and applications," IEEE (August 1984) 59-73.

MOORE, B., A. PADEGS, R. SMITH, AND W. BUCHOLZ [1987]. "Concepts of the System/370 vector
architecture," Proc. 14th Symposium on Computer Architecture (June), ACM/IEEE, Pittsburgh,
Pa., 282-292. -

PADUA, D. AND M. WOLFE [1986]. "Advanced compiler optimizations for supercomputers,"
Comm. ACM 29:12 (December) 1184--1201.

RUSSELL, R. M. [1978]. "The CRA Y-1 computer system," Comm. of the ACM 21:1 (January)
63-72.

SCHNECK, P. B. [1987]. Supercomputer Architecture, Kluwer Academic Publishers, Norwell, Mass.

SMITH, B. J. [1981]. "Architecture and applications of the HEP multiprocessor system," Real-Time
Signal Processing N 298 (August) 241-248.

SPORER, M., F. H. MOSS AND C. J. MATHAIS [1988]. "An introduction to the architecture of the
Stellar Graphics supercomputer," COMPCON, IEEE (March) 464-467.

WATANABE, T. [1987]. "Architecture and performance of the NEC supercomputer SX system,"
Parallel Computing 5, 247-255.

WATSON, W. J. [1972]. "The TI ASC-A highly modular and flexible super computer architecture,"
Proc. AFIPS Fall Joint Computer Conj., 221-228.

Ex.1035.428DELL

Vector Processors 397

EXERCISES

In these Exercises assume DLXV has a clock rate of 80 MHz and that T base= 10 and
Tioop = 15. Also assume that the store latency is always included in the running time.

7.1 [10] <7.1-7.2> Write a DLXV vector sequence that achieves the peak MFLOPS
performance of the machine (use the functional unit and instruction description in Section
7.2). Assuming an 80-MHz clock rate, what is the peak MFLOPS?

7.2 [20/15/15] <7.1-7.6> Consider the following vector code run on an 80-MHz version
of DLXV for a fixed vector length of 64:

LV Vl,Ra

MULTV V2,Vl,V3

ADDV V4,Vl,V3

sv Rb,V2

sv Rc,V4

Ignore all strip-mining overhead, but assume that the store latency must be included in
the time to perform the loop. The entire sequence produces 64 results.

a. [20] Assuming no chaining and a single memory pipeline, how many clock cycles per
result (including both stores as one result) does this vector sequence require?

b. [15] If the vector sequence is chained, how many clock cycles per result does this
sequence require?

c. [15] Suppose DLXV had three memory pipelines and chaining. If there were no
bank conflicts in the accesses for the above loop, how many clock cycles are required
per result for this sequence?

7.3 [20/20/15/15/20/20/20] <7.2-7.7> Consider the following FORTRAN code:

do 10 i=l,n

A(i) A(i) + B(i)

B(i) x * B(i)

10 continue

Use the techniques of Section 7.7 to estimate performance throughout this exercise
assuming an 80-MHz version of DLXV.

a. [20] Write the best DLXV vector code for the inner portion of the loop. Assume x is
in PO and the addresses of A and B are in Ra and Rb, respectively.

b. [20] Find the total time for this loop on DLXV (T100). What is the MFLOP rating for
the loop (R 100)?

c. [15] Find R
00

for this loop.

d. [15] Find N 112 for this loop.

Ex.1035.429DELL

398 Exercises

e. [20) Find Nv for this loop. Assume the scalar code has been pipeline scheduled so
that each memory reference takes six cycles and each FP operation takes 3 cycles.
Assume the scalar overhead is also Tioop·

f. [20) Assume DLXV has two memory pipelines. Write vector code that takes advan
tage of the second memory pipeline.

g. [20) Compute T 100 andR100 for DLX with two memory pipelines.

7.4 [20/10) <7.3> Suppose we have a version of DLXV with eight memory banks (each a
doubleword wide) and a memory-access time of eight cycles.

a. [20) If a load vector of length 64 is executed with a stride of 20 doublewords, how
many cycles will the load take to complete?

b. [10) What percentage of the memory bandwidth do you achieve on a 64-element load
at stride 20 versus stride 1?

7.5 [12/12/20] <7.4-7.7> Consider the following loop:

c = 0.0

do 10 i=l,64

A(i) = A(i) + B(i)

C = C + A(i)

10 continue

a. [12) Split the loop into two loops: one with no dependence and one with a depen
dence. Write these loops in FORTRAN-as a source-to-source transformation. This
optimization is called loop fission.

b. [12) Write the DLXV vector code for the loop without a dependence.

c. [20) Write the DLXV code to evaluate the dependent loop using recursive doubling.

7.6 [20/15/20/20) <7.5-7.7> The compiled Linpack performance of the CRAY-1
(designed in 1976) was almost doubled by a better compiler in 1989. Let's look at a sim
ple example of how this might occur. Consider the "SAXPY-like" loop (where k is a
parameter to the procedure containing the loop): ·

do 10 i=l,64

do 10 j=l,64

Y(k,j) = a*X(i,j) + Y(k,j)

10 continue

a. [20) Write the straightforward code sequence for just the inner loop in DLXV vec
tor instructions.

b. [15) Using the techniques of Section 7.7, estimate the performance of this code on
DLXV by finding T 64 in clock cycles. You may assume that T base applies once and
Tioop of overhead is incurred for each iteration of the outer loop. What limits the per
formance?

Ex.1035.430DELL

Vector Processors 399

c. [20] Rewrite the DLXV code to reduce the performance limitation; show the
resulting inner loop in DLXV vector instructions. (Hint: think about what establishes
T element; can you affect it?) Find the total time for the resulting sequence.

d. [20] Estimate the performance of your new version using the techniques of Section
7. 7 and finding T 64 .

7.7 [15/15/25] <7.6> Consider the following code.

do 10 i=l,64

if (B(i) .ne. 0) then

A(i) = A(i) I B(i)

endif

10 continue

Assume that the addresses of A and B are in Ra and Rb, respectively, and that PO
contains 0.

a. [15] Write the DLXV code for this loop using the vector-mask capability.

b. [15] Write the DLXV code for this loop using scatter/gather.

c. [25] Estimate the performance (T100 in clock cycles) of these two vector loops
assuming a divide latency of 20 cycles. Assume that all vector instructions run at one
result per clock, independent of the setting of the vector-mask register. Assume that
50% of the entries of B are 0. Considering hardware costs, which would you build if
the above loop was typical?

7.8 [15/20/15/15] <7.1-7.7> In Figure 2.24 of Chapter 2 (page 75), we saw that the dif
ference between peak and sustained performance could be large: For one problem, a
Hitachi S810 had a peak speed twice as high as the CRAY X-MP, while for another more
realistic problem the CRAY X-MP was twice as fast as the Hitachi machine. Let's exam
ine why this might occur using two versions of DLXV and the following code sequences:

C Code sequence 1

do 10 i=l,10000

A(i) = x * A(i) + y * A(i)

10 continue

C Code sequence 2

do 10 i=l,100

A(i) = x * A(i)

10 continue

Assume there is a version of DLXV (call it DLXVII) that has two copies of every
floating-point functional unit with full chaining among them. Assume that both DLXV
and DLXVII have two load/store units. Because of the extra functional units and the
increased complexity of assigning operations to units, all the overheads (Tbase• T1oop• and
the start-up overheads per vector operation) are doubled.

Ex.1035.431DELL

400 Exercises

a. [15] Find the number of clock cycles for code sequence 1 on DLXV.

b. [20] Find the number of clock cycles on code sequence 1 for DLXVII. How does this
compare to DLXV?

c. [15] Find the number of clock cycles on code sequence 2 for DLXV.

d. [15] Find the number of clock cycles on code sequence 2 for DLXVII. How does this
compare to DLXV?

7.9 [15/15/20] <7.5> In this problem we will examine some of the vector loop tests dis
cussed in Section 7.5 and summarized in Figure 7.13 (page 377).

a. [15] Here is a simple code fragment:

do 400 i = 2,100,2

a(i-1) = a(50*i+l)

4 0 0 continue

To use the GCD test this loop must first be "normalized"-written so that the index
starts at 1 and increments by 1 on every iteration. Write a normalized version of the
loop (change the indices as needed), then use the GCD test to see if it vectorizes.

b. [15] Here is another loop:

do 400 i = 2,100,2

a(i) = a(i-1)

4 0 0 continue

Normalize the loop and use the GCD test to detect a dependence. Is there a real
dependence in this loop?

c. [20] Here is a tricky piece of code with two-dimensional arrays. Can it be
vectorized? If so, how? Rewrite the source code so that it is clear that the loop can
be vectorized, if possible.

do 290 j = 2,n

do 290 i = 2,j

aa(i,j)=aa(i-1,j)*aa(i-1,j)+bb(i,j)

290 continue

7.10 [25] <7.5> Show that if for two array elements A(a*i +b) and A(c*i+d) there is a
true dependence, then GCD(c,a) divides (d-b).

7.11 [12/15] <7.5> Consider the following loop:

do 10 i 2,n

10

A(i)

c (i)

B

A(i-1)

a. [12] Show there is a loop-carried dependence in this code fragment.

Ex.1035.432DELL

Vector Processors 401

b. [15) Rewrite the code in Fortran so that it can be vectorized as two separate vector
sequences.

7.12 [25] <7.6> Because the difference between vector and scalar modes is so large on a
supercomputer and the machines often cost tens of millions of dollars, programmers are
frequently willing to go to extraordinary effort to achieve good performance. This often
includes tricky assembly language programming. An interesting problem is to write a
vectorizable sort for floating-point numbers-a task sometimes required in scientific
code. Choose a sorting algorithm and write a version for DLXV that uses vector
operations as much as possible. (Hint: One good choice is quicksort where the vector
compares and compress/expand capability can be used.)

7.13 [25) <7.6> In some vector machines, the vector registers are addressable, and the
operands to a vector operation may be two different parts of the same vector register. This
allows another solution for the reduction shown on page 382. The key idea in partial sums
is to reduce the vector to m sums where m is the total latency through the vector
functional unit including the operand read and write times. Assume that the DLXV vector
registers are addressable (e.g., you can initiate a vector operation with the operand
V1(16), indicating that the input operand began with element 16). Also, assume that the
total latency for adds including operand read and write is eight cycles. Write a DLXV
code sequence that reduces the contents of Vl to eight partial sums. It can be done with
one vector operation.

7.14 [40] <7.2-7.6> Extend the DLX simulator to be a DLXV simulator including the
ability to count clock cycles. Write some short benchmark program~ in DLX and DLXV
assembly language. Measure the speedup on DLXV, the percentage of vectorization, and
usage of the functional units.

7.15 [50) <7.5> Modify the DLX compiler to include a dependence checker. Run some
scientific code and loops through it and measure what percentage of the statements could
be vectorized.

7.16 [Discussion] Some proponents of vector machines might argue that the vector pro
cessors have provided the best path to ever-increasing amounts of computer power by
focusing their attention on boosting peak vector performance. Others would argue that the
emphasis on peak performance is misplaced because an increasing percentage of the pro
grams are dominated by nonvector performance. (Remember Amdahl's Law?) The pro
ponents would respond that programmers should work to make their programs vectoriz
able. What do you think about this argument?

7.17 [Discussion] Consider the points raised in the Concluding Remarks (Section 7.9).
This topic-the relative advantages of pipelined scalar machines versus FP vector
machines-is the source of much debate in the early 1990s. What advantages do you see
for each side? What would you do in this situation?

Ex.1035.433DELL

Ideally one would desire an indefinitely large memory
capacity such that any particular ... word would be im-
mediately available We are ... forced to recognize the
possibility of constructing a hierarchy of memories, each of
which has greater capacity than the preceding but which is
less quickly accessible.

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

A. W. Burks, H. H. Goldstine, and J. von Neumann,
Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument (1946)

Introduction: Principle of Locality 403

General Principles of Memory Hierarchy 404

Caches 408

Main Memory 425

Virtual Memory 432

Protection and Examples of Virtual Memory 438

More Optimizations Based on Program Behavior 449

Advanced Topics-Improving Cache-Memory
Performance 454

Putting It All Together: The VAX·11n8o Memory
Hierarchy 475

Fallacies and Pitfalls 480

Concluding Remarks 484

Historical Perspective and References 485

Exercises 490

~

Ex.1035.434DELL

8.1

Memory-Hierarchy
Design

Introduction: Principle of Locality

Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. As the 90/10 rule in the first chapter predicts, most
programs fortunately do not access all code or data uniformly (see Section 1.3,
pages 8-12). The 90/10 rule can be restated as the principle of locality. This
hypothesis, which holds that all programs favor a portion of their address space
at any instant of time, has two dimensions:

• Temporal locality (locality in time)-If an item is referenced, it will tend to
be referenced again soon.

• Spatial locality (locality in space)-If an item is referenced, nearby items will
tend to be referenced soon.

A memory hierarchy is a natural reaction to locality and technology. The
principle of locality and the guideline that smaller hardware is faster yield the
concept of a hierarchy based on different speeds and sizes. Since slower memory
is cheaper, a memory hierarchy is organized into several levels--each smaller,
faster, and more expensive per byte than the level below. The levels of the
hierarchy subset one another; all data in one level is also found in the level
below, and all data in that lower level is found in the one below it, and so on
until we reach the bottom of the hierarchy.

Ex.1035.435DELL

8 Memory-Hierarchy
Design —

8.1 | Introduction: Principle of Locality
Computer pioneers correctly predicted that programmers would want unlimited
amounts of fast memory. As the 90/10 rule in the first chapter predicts, most
programs fortunately do not access all code or data uniformly (see Section 1.3,
pages 8-12). The 90/10 rule can be restated as the principle of locality. This
hypothesis, which holds that all programs favor a portion of their address space
at any instant of time, has two dimensions:

« Temporal locality (locality in time)—If an item is referenced, it will tend to
be referenced again soon.

s Spatial locality (locality in space)—If an item is referenced, nearby items will
tend to be referenced soon.

A memory hierarchy is a natural reaction to locality and technology. The
principle of locality and the guideline that smaller hardware is faster yield the
conceptof a hierarchy based on different speeds and sizes. Since slower memory
is cheaper, a memory hierarchy is organized into several levels—each smaller,
faster, and more expensive per byte than the level below. The levels of the
hierarchy subset one another; all data in one level is also found in the level
below, and all data in that lower level is found in the one below it, and so on
until we reach the bottom of the hierarchy.

c

DELL Ex.1035.435

404 8.1 Introduction: Principle of Locality

This chapter includes a half-dozen examples that demonstrate how taking
advantage of the principle of locality can improve performance. All these
strategies map addresses from a larger memory to a smaller but faster memory.
As part of address mapping, the memory hierarchy is usually given the
responsibility of address checking; protection schemes used for doing this are
covered in this chapter. Later we will explore advanced memory hierarchy topics
and trace a memory access through three levels of memory on the V AX-11/780.

8.2 I General Principles of Memory Hierarchy

Before proceeding with examples of the memory hierarchy, let's define some
general terms applicable to all memory hierarchies. A memory hierarchy
normally consists of many levels, but it is managed between two adjacent levels
at a time. The upper level-the one closer to the processor-is smaller and faster
than the lower level (see Figure 8.1). The minimum unit of information that can
be either present or not present in the two-level hierarchy is called a block. The
size of a block may be either fixed or variable. If it is fixed, the memory size is a
multiple of that block size. Most of this chapter will be concerned with fixed
block sizes, although a variable block design is discussed in Section 8.6.

Success or failure of an access to the upper level is designated as a hit or a
miss: A hit is a memory access found in the upper level, while a miss means it is
not found in that level. Hit rate, or hit ratio-like a batting average-is the
fraction of memory accesses found in the upper level. This is sometimes repre
sented as a percentage. Miss rate (1.0 - hit rate) is the fraction of memory
accesses not found in the upper level.

Upper
level

Lower
level

FIGURE 8.1 Every pair of levels in the memory hierarchy can be thought of as
having an upper and lower level. Within each level the unit of information that is present
or not is called a block.

Ex.1035.436DELL

404 ' 8.1 Introduction: Principle of Locality

This chapter includes a half-dozen examples that demonstrate how taking
advantage of the principle of locality can improve performance. All these
strategies map addresses from a larger memory to a smaller but faster memory.
As part of address mapping, the memory hierarchy is usually given the
responsibility of address checking; protection schemes used for doing this are
covered in this chapter. Later we will explore advanced memory hierarchy topics
and trace a memory access through three levels of memory on the VAX-11/780.

8.2 GeneralPrinciples of Memory Hierarchy

Before proceeding with examples of the memory hierarchy, let’s define some
general terms applicable to all memory hierarchies. A memory hierarchy
normally consists of many levels, but it is managed between twoadjacent levels
at a time. The upper level—the onecloser to the processor—is smaller and faster
than the lower level (see Figure 8.1). The minimum unit of information that can
be either present or not present in the two-level hierarchy is called a block. The
size of a block maybeeither fixed or variable. If it is fixed, the memory size is a
multiple of that block size. Most of this chapter will be concerned with fixed
block sizes, although a variable block design is discussed in Section 8.6.

Success or failure of an access to the upper level is designated as a hit or a
miss: A hit is a memory access found in the upperlevel, while a miss meansitis
not found in that level. Hit rate, or hit ratio—like a batting average—is the
fraction of memory accesses found in the upper level. This is sometimes repre-
sented as a percentage. Miss rate (1.0 — hit rate) is the fraction of memory
accesses not found in the upperlevel. ‘

Blocks
FIGURE 8.1 Every pair of levels in the memory hierarchy can be thought of as
having an upperand lowerlevel. Within eachlevel the unit of information that is present
or not is called a block.

DELL Ex.1035.436

Memory-Hierarchy Design 405

Since performance is the major reason for having a memory hierarchy, the
speed of hits and misses is important. Hit time is the time to access the upper
level of the memory hierarchy, which includes the time to determine whether the
access is a hit or a miss. Miss penalty is the time to replace a block in the upper
level with the corresponding block from the lower level, plus the time to deliver
this block to the requesting device (normally the CPU). The miss penalty is
further divided into two components: access time-the time to access the first
word of a block on a miss; and transfer time-the additional time to transfer the
remaining words in the block. Access time is related to the latency of the lower
level memory, while transfer time is related to the bandwidth between the lower
level and upper-level memories. (Sometimes access latency is used to mean
access time.)

The memory address is divided into pieces that access each part of the
hierarchy. The blockjrame address is the higher-order piece of the address that
identifies a block at that level of the hierarchy (see Figure 8.2). The block-offset
address is the lower-order piece of the address and identifies an item within a
block. The size of the block-offset address is log2 (size of block); the size of the
block-frame address is then the size of the full address at this level less the size
of the block-offset address.

Block-frame address Block-offset address

FIGURE 8.2 Example of the frame address and offset address portions of a 32-bit
lower-level memory address. In this case the block size is 512, making the size of the
offset address 9 bits and the size of the block-frame address 23 bits.

Evaluating Performance of a Memory Hierarchy

Because instruction count is independent of the hardware, it is tempting to
evaluate CPU performance using that number. As we saw in Chapters 2 and 4,
however, such indirect performance measures have waylaid many a computer
designer. The corresponding temptation for evaluating memory-hierarchy
performance is to concentrate on miss rate, for it, too, is independent of the
speed of the hardware. As we shall see, miss rate can be just as misleading as
instruction count. A better measure of memory-hierarchy performance is the
average time to access memory:

Average memory-access time = Hit time + Miss rate * Miss penalty

The components of average access time can be measured either in absolute
~time-say, 10 nanoseconds on a hit-or in the number of clock cycles that the

/

Ex.1035.437DELL

Memory-Hierarchy Design 405

Since performance is the major reason for having a memoryhierarchy, the
speed of hits and misses is important. Hit time is the time to access the upper
level of the memory hierarchy, which includesthe time to determine whether the
access is a hit or a miss. Miss penalty is the time to replace a block in the upper
level with the corresponding block from the lowerlevel, plus the time to deliver
this block to the requesting device (normally the CPU). The miss penalty is
further divided into two components: access time—the time to access the first
word of a block on a miss; and transfer time—the additional tine to transfer the
remaining wordsin the block. Access timeis related to the latency of the lower-
level memory, while transfer time is related to the bandwidth between the lower-
level and upper-level memories. (Sometimes access latency is used to mean
access time.)

The memory address is divided into pieces that access each part of the
hierarchy. The block-frame address is the higher-order piece of the address that
identifies a block at that level of the hierarchy (see Figure 8.2). The block-offset
address is the lower-order piece of the address and identifies an item within a
block. The size of the block-offset address is log, (size of block); the size of the
block-frame address is then the size of the full address at this level less the size
of the block-offset address.

Block-frame address Block-offset address
FIGURE 8.2 Example of the frame address and offset addressportions of a 32-bit
lower-level memory address.In this case the block size is 512, making the size of the
offset address 9 bits and the size of the block-frame address 23bits.

Evaluating Performance of a Memory Hierarchy

Because instruction count is independent of the hardware, it is temptingto
evaluate CPU performance using that number. As we saw in Chapters 2 and 4,
however, such indirect performance measures have waylaid many a computer

designer. The corresponding temptation for evaluating memory-hierarchy
performance is to concentrate on miss rate, for it, too, is independent of the
speed of the hardware. As we shall see, miss rate can be just as misleading as
instruction count. A better measure of memory-hierarchy performanceis the
average time to access memory:

Average memory-access time = Hit time + Miss rate * Miss penalty

The components of average access time can be measured either in absolute
_time—say, 10 nanoseconds on a hit—or in the numberof clock cycles that the

DELL Ex.1035.437

406 8.2 General Principles of Memory Hierarchy

CPU waits for the memory-such as a miss penalty of 12 clock cycles.
Remember that average memory-access time is still an indirect measure of
performance; so while it is a better measure than miss rate, it is not a substitute
for execution time.

The relationship of block size to miss penalty and miss rate is shown
abstractly in Figure 8.3. These representations assume that the size of the upper
level memory does not change. The access-time portion of the miss penalty is
not affected by block size, but the transfer time does increase with block size. If
access time is large, initially there will be little additional miss penalty relative
to access time as block size increases. However, increasing block size means
fewer blocks in the upper-level memory. Increasing block size lowers the miss
rate until the reduced misses of larger blocks (spatial locality) are outweighed
by the increased misses as the number of blocks shrinks (temporal locality).

Miss
penalty

Block size

Miss
rate

Block size

FIGURE 8.3 Block size versus miss penalty and miss rate. The transfer-time portion of
the miss penalty obviously grows with increasing block size. For a fixed-size upper-level
memory, miss rates fall with increasing block size until so much of the block is not used that
it displaces useful information in the upper level, and miss rates begin to rise. The point on
the curve on the right where miss rates begin to rise with increasing block size is
sometimes called the pollution point.

Average
access

time

Block size

FIGURE 8.4 The relationship between average memory-access time and block size.

Ex.1035.438DELL

406 ' §.2 General Principles of Memory Hierarchy

CPU waits for the memory—such as a miss penalty of 12 clock cycles.
Remember that average memory-access time is still an indirect measure of
performance; so while it is a better measure than missrate, it is not a substitute
for execution time.

The relationship of block size to miss penalty and miss rate is shown
abstractly in Figure 8.3. These representations assumethat the size of the upper-
level memory does not change. The access-time portion of the miss penalty is
not affected by block size, but the transfer time does increase with block size. If
access timeis large, initially there will belittle additional miss penalty relative
to access time as block size increases. However, increasing block size means
fewer blocks in the upper-level memory. Increasing block size lowers the miss
rate until the reduced misses of larger blocks (spatial locality) are outweighed
by the increased misses as the numberof blocks shrinks (temporallocality),

Miss Transfer

penalty time

Block size Block size
FIGURE 8.3 Block size versus miss penalty and missrate. The transfer-time portion of
the miss penalty obviously grows with increasing block size. For a fixed-size upper-level
memory, miss rates fall with increasing block size until so much of the block is not used that
it displaces useful information in the upperlevel, and miss rates begin to rise. The point on
the curve on the right where miss rates begin to rise with increasing blocksize is
sometimes called the pollution point.

Average
access

time

Blocksize

FIGURE 8.4 Therelationship between average memory-accesstime and block size.

DELL Ex.1035.438

Memory-Hierarchy Design 407

The goal of a memory hierarchy is to reduce execution time, not misses.
Hence, computer designers favor a block size with the lowest average access
time rather than the lowest miss rate. This is related to the product of miss rate
and miss penalty, as Figure 8.4 shows abstractly. Of course, overall CPU
performance is the ultimate performance test, so care must be taken when re
ducing average memory-access time to be sure that changes to clock cycle time
and CPI improve overall performance as well as average memory-access time.

Implications of a Memory Hierarchy to the CPU

Processors designed without a memory hierarchy are simpler because memory
accesses always take the same amount of time. Misses in a memory hierarchy
mean that the CPU must be able to handle variable memory-access times. If the
miss penalty is on the order of tens of clock cycles, the processor normally waits
for the memory transfer to complete. On the other hand, if the miss penalty is
thousands of processor clock cycles, it is too wasteful to let the CPU sit idle; in
this case, the CPU is interrupted and used for another process during the miss
handling. Thus, avoiding the overhead of a long miss penalty means any
memory access can result in a CPU interrupt. This also means the CPU must be
able to recover any memory address that can cause such an interrupt, so that the
system can know what to transfer to satisfy the miss (see Section 5.6). When the
memory transfer is complete, the original process is restored, and the instruction
that missed is retried.

The processor must also have some mechanism to determine whether or not
information is in the top level of the memory hierarchy. This check happens on
every memory access and affects hit time; maintaining acceptable performance
usually requires the check to be implemented in hardware. The final implication
of a memory hierarchy is that the computer must have a mechanism to transfer
blocks between upper- and lower-level memory. If the block transfer is tens of
clock cycles, it is controlled by hardware; if it is thousands of clock cycles, it
can be controlled by software.

Four Questions for Classifying Memory Hierarchies

The fundamental principles that drive all memory hierarchies allow us to use
terms that transcend the levels we are talking about. These same principles allow
us to pose four questions about any level of the hierarchy:

Ql: Where can a block be placed in the upper level? (Block placement)

Q2: How is a block found if it is in the upper level? (Block identification)

Q3: Which block should be replaced on a miss? (Block replacement)

Q4: What happens on a write? (Write strategy)

These questions will help us gain an understanding of the different tradeoffs
_demanded by the relationships of memories at different levels of a hierarchy.

Ex.1035.439DELL

408

8.3 I

8.3 Caches

Caches

Cache: a safe place for hiding or storing things.

Webster's New World Dictionary of the American Language,
, Second College Edition (1976)

Cache is the name first chosen to represent the level of the memory hierarchy
between the CPU and main memory, and that is the dominant use of the term.
While the concept of caches is younger than the IBM 360 architecture, caches
appear today in every class of computer and in some computers more than once.
In fact, the word has become so popular that it has replaced "buff er" in many
computer-science circles.

The general terms defined in the prior section can be used for caches,
although the word line is often used instead of block. Figure 8.5 shows the
typical range of memory-hierarchy parameters for caches.

Block (line) size 4- 128 bytes

Hit time 1 - 4 clock cycles (normally 1)

Miss penalty 8 - 32 clock cycles

(Access time) (6 - 10 clock cycles)

(Transfer time) (2- 22 clock cycles)

Miss rate 1%-20%

Cache size 1 KB-256KB

FIGURE 8.5 Typical values of key memory~hierarchy parameters for caches in 1990
workstations and minicomputers.

Now let's examine caches in more detail by answering the four memory
hierarchy questions.

Ql: Where Can a Block Be Placed in a Cache?

Restrictions on where a block is placed create three categories of cache
organization:

• If each block has only one place it can appear in the cache, the cache is said
to be direct mapped. The mapping is usually (block-frame address) modulo
(number of blocks in cache).

• If a block can be placed anywhere in the cache, the cache is said to be fully
associative.

Ex.1035.440DELL

Memory-Hierarchy Design 409

• If a block can be placed in a restricted set of places in the cache, the cache is
said to be set associative. A set is a group of two or more blocks in the cache.
A block is first mapped onto a set, and then the block can be placed anywhere
within the set. The set is usually chosen by bit selection; that is, (block-frame
address) modulo (number of sets in cache). If there are n blocks in a set, the
cache placement is called n-way set associative.

The range of caches from direct mapped to fully associative is really a
continuum of levels of set associativity: Direct mapped is simply one-way set
associative and a fully associative cache with m blocks could be called m-way
set associative. Figure 8.6 shows where block 12 can be placed in a cache
according to the block-placement policy.

Fully associative:
block 12 can go
anywhere

Block 01234567 Block
no. no.

Block-frame address

Direct mapped:
block 12 can go
only into block 4
(12mod8)

0 1 2 3 4 5 6 7 Block
no.

Set associative:
block 12 can go
anywhere in set O
(12mod4)

0 1 2 3 4 5 6 7

Set Set Set Set
0 1 2 3

Block 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
n~ 01234567890123456789012345678901

FIGURE 8.6 The cache has 8 blocks, while memory has 32 blocks. The set
associative organization has 4 sets with 2 blocks per set, called two-way set associative.
(Real caches contain hundreds of blocks and real memories contain hundreds of thousands
of blocks.) Assume that there is nothing in the cache and that the block-frame address in
question identifies lower-level block 12. The three options for caches are shown left to right.
In fully associative, block 12 from the lower level can go into any of the 8 blocks of the
cache. With direct mapped, block 12 can only be placed into block 4 (12 modulo 8). Set
associative, which has some of both features, allows the block to be placed anywhere in set
o (12 modulo 4). With two blocks per set, this means block 12 can be placed either in block
O or block 1 of the cache.

/ ', I

Ex.1035.441DELL

Memory-Hierarchy Design 409

« Ifa block can be placed in a restricted set of places in the cache, the cacheis
. said to be set associative. A set is a group of two or more blocksin the cache.

A blockis first mapped onto a set, and then the block can be placed anywhere
within the set. The set is usually chosen by bit selection; that is, (block-frame
address) modulo (numberof sets in cache). If there are 7 blocksin a set, the
cache placementis called n-way set associative.

The range of caches from direct mapped to fully associative is really a
continuum of levels of set associativity: Direct mapped is simply one-wayset
associative and a fully associative cache with m blocks could be called m-way
set associative. Figure 8.6 shows where block 12 can be placed in a cache
according to the block-placementpolicy.

Set associative:Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

block 12 can go
anywherein set 0
(12 mod 4)

01234567 Block. 01234567 01234567

Set Set Set Set
Oo 61

no.

FIGURE 8.6 The cachehas & biocks, while memory has 32 biocks.Theset-
associative organization has 4 sets with 2 blocks perset, called two-way set associative.
(Real caches contain hundreds of blocks and real memories contain hundreds of thousands
of blocks.) Assume that there is nothing in the cache and that the block-frame addressin
question identifies lower-level block 12. The three options for caches are shownleft to right.
In fully associative, block 12 from the lower level can go into any of the 8 blocks of the
cache. With direct mapped, biock 12 can only be placed into block 4 (12 modulo 8). Set
associative, which has someof both features, ailows the block to be placed anywherein set
0 (12 modulo 4). With two blocks per set, this means block 12 can be placedeitherin block
0 or block 1 of the cache.

/

DELL Ex.1035.441

410 8.3 Caches

Q2: How Is a Block Found If It Is in the Cache?

Caches include an address tag on each block that gives the block-frame address.
The tag of every cache block that might contain the desired information is
checked to see if it matches the block-frame address from the CPU. Figure 8.7
gives an example. Because speed is of the essence, all possible tags are searched
in parallel; serial search would make set associativity counterproductive.

Fully associative Direct mapped Set associative

Block O 1 2 3 4 5 6 7 Block O 1 2 3 4 5 6 7 Block O 1 2 3 4 5 6 7
-no. no.

Data

•

-r--r-- r-- -r--r-- no.

Set Set Set Set
0 1 2 3

T~- - -
Search tttttttt t tt

FIGURE 8.7 In fully associative placement, the block for block-frame address 12 can
appear in any of the 8 blocks; thus, all 8 tags must be searched. The desired data is
found in cache block 6 in this example. In direct-mapped placement there is only one cache
block where memory block 12 can be found. In set-associative placement, with 4 sets,
memory block 12 must be in set O (12 mod 4); thus, the tags of cache blocks O and 1 are
checked. In this case the data is found in cache block 1. Speed of cache access dictates
that se.arching must be performed in parallel for fully associative and set-associative
mappings.

There must be a way to know that a cache block does not have valid
information. The most common procedure is to add a valid bit to the tag to say
whether or not this entry contains a valid address. If the bit is not set, there
cannot be a match on this address.

A common omission in finding the cost of caches is to forget the cost of the
tag memory. One tag is required for each block. An advantage of increasing
block sizes is that the tag overhead per cache entry becomes a smaller fraction of
the total cost of the cache.

I

Before proceeding to the next question, let's explore the relationship of a
CPU address to the cache. Figure 8.8 shows how an address is divided into three
fields to find data in a set-associative cache: the block-offset field used to select
the desired data from the block, the index field used to select the set, and the tag
field used for the comparison. While the comparison could be made on more of
the address than the tag, there is no need:

Ex.1035.442DELL

Memory-Hierarchy Design 411

• Checking the index would be redundant, since it was used to select the set to
be checked (an address stored in set 0, for example, must have 0 in the index
field or it couldn't be stored in set 0).

• The offset is unnecessary in the comparison because all block off sets match
and the entire block is present or not.

If the total size is kept the same, increasing associativity increases the number of
blocks per set, thereby decreasing the size of the index and increasing the size of
the tag. That is, the tag/index boundary in Figure 8.8 moves to the right with
increasing associativity.

Tag Index Block :
offset !

FIGURE 8.8 The 3 portions of an address in a set-associative or direct-mapped cache.
The tag is used to check all the blocks in the set and the index is used to select the set. The
block offset is the address of the desired data within the block.

Q3: Which Block Should Be Replaced on a Cache Miss?

If the choice were between a block that has valid data and a block that doesn't,
then it would be easy to select which block to replace. Alas, the high hit rate of
caches means that the overwhelming decision is between blocks that have valid
data.

A benefit of direct-mapped placement is that hardware decisions are
simplified. In fact, so simple that there is no choice: Only one block is checked
for a hit, and only that block can be replaced. With fully associative or set
associative placement, ·there are several blocks to choose from on a miss. There
are two primary strategies employed for selecting which block to replace:

• Random-To spread allocation uniformly, candidate blocks are randomly
selected. Some systems use a scheme for spreading data across a set of blocks
in a pseudorandomized manner to get reproducible behavior, which is
particularly useful during hardware debugging.

• Least-recently used (LRU)-To reduce the chance of throwing out informa
tion that .will be needed soon, accesses to blocks are recorded. The block
replaced is the one that has been unused for the longest time. This makes use
of a corollary of temporal locality: If recently used blocks are likely to be
used again, then the best candidate for disposal is the least recently used.
Figure 8.9 (page 412) shows which block is the least-recently used for a

~, sequence of block-frame addresses in a fully associative memory hierarchy.

Ex.1035.443DELL

412 8.3 Caches

A virtue of random is that it is simple to build in hardware. As the number of
blocks to keep track of increases, LRU becomes increasingly expensive and is
frequently only approximated. Figure 8.10 shows the difference in miss rates
between LRU and random replacement. Replacement policy plays a greater role
in smaller caches than in larger caches where there are more choices of what to
replace.

Block-frame addresses 3 2 1 0 0 2 3 1 3 0

LRU block number 0 0 0 0 3 3 3 1 0 0 2

FIGURE 8.9 Least-recently used blocks for a sequence of block-frame addresse~ in
a fully associative memory hierarchy. This assumes that there are 4 blocks and that in
the beginning the LRU block is number 0. The LRU block number is shown below each
new block reference. Another policy, First-in-first-out (FIFO), simply discards the block that
was used N unique accesses before, independent of its reference pattern in the last N - 1
references. Random replacement generally outperforms FIFO and it is easier to implement.

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random

16KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

64KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

FIGURE 8.10 Miss rates comparing least-recently used versus random replacement
for several sizes and associativities. This data was collected for a block size of 16 bytes
using one of the VAX traces containing user and operating system code (SAVEO). This
trace is included in the software supplement for course use. There is little difference
between LRU and random for larger size caches in this trace.

Q4: What Happens on a Write?

Reads dominate cache accesses. All instruction accesses are reads, and most
instructions don't write to memory. Figure 4.34 (page 181) suggests a mix of 9%
stores and 17% loads for four DLX programs, making writes less than 10% of
the memory traffic. Making the common case fast means optimizing caches for
reads, but Amdahl's Law reminds us that high-performance designs cannot
neglect the speed of writes.

Fortunately, the common case is also the easy case to make fast. The block
can be read at the same time that the tag is read and compared, so the block read
begins as soon as the block-frame address is available. If the read is a hit, the
block is passed on to the CPU immediately. If it is a miss, there is no benefit
but also no harm.

Ex.1035.444DELL

)

Memory-Hierarchy Design 413

Such is not the case for writes. The processor specifies the size of the write,
usually between 1 and 8 bytes; only that portion of a block can be changed. In
general this means a read-modify-write sequence of operations on the block:
read the original block, modify one portion, and write the new block value.
Moreover, modifying a block cannot begin until the tag is checked to see if it is
a hit. Because tag checking cannot occur in parallel, then, writes normally take
longer than reads.

Thus, it is the write policies that distinguish many cache designs. There are
two basic options when writing to the cache:

• Write through (or store through)-The information is written to both the
block in the cache and to the block in the lower-level memory.

• Write back (also called copy back or store in)-The information is written
only to the block in the cache. The modified cache block is written to main
memory only when it is replaced.

Write-back cache blocks are called clean or dirty, depending on whether the
information in the cache differs from that in lower-level memory. To reduce the
frequency of writing back blocks on replacement, a feature called the dirty bit is
commonly used. This status bit indicates whether or not the block was modified
while in the cache. If it wasn't, the block is not written, since the lower level has
the same information as the cache.

Both write back and write through have their advantages. With write back,
writes occur at the speed of the cache memory, and multiple writes within a
block require only one write to the lower-level memory. Since every write
doesn't go to memory, write back uses less memory bandwidth, making write
back attractive in multiprocessors. With write through, read misses don't result
in writes to the lower level, and write through is easier to implement than write
back. Write through also has the advantage that main memory has the most
current copy of the data. This is important in multiprocessors and for I/0, which
we shall examine in Section 8.8. Hence, multiprocessors want write back to
reduce the memory traffic per processor and write through to keep the cache and
memory consistent.

When the CPU must wait for writes to complete during write throughs, the
CPU is said to write stall. A common optimization to reduce write stalls is a
write buffer, which allows the processor to continue while the memory is
updated. As we shall see in Section 8.8, write stalls can occur even with write
buffers.

There are two options on a write miss:

• Write allocate (also called/etch on write)-The block is loaded, followed by
the write-hit actions above. This is similar to a read miss.

• No write allocate (also called write aro1&nd)-The block is modified in the
lower level and not loaded into the cache.

Ex.1035.445DELL

414 8.3 Caches

While either write-miss policy could be used with write through or write back,
generally write-back caches use write allocate (hoping that subsequent writes to
that block will be captured by the cache) and write-through caches often use no
write allocate (since subsequent writes to that block will still have to go to
memory).

An Example Cache: The VAX-11/780 Cache

To give substance to these ideas, Figure 8.11 shows the organization of the
cache on the VAX-11/780. The cache contains 8192 bytes of data in 8-byte
blocks with two-way-set-associative placement, random replacement, write
through with a one-word write buffer, and no write allocate on a write miss.

Let's trace a cache hit through the steps of a hit as labeled in Figure 8.11.
(The five steps are shown as circled numbers.) The address coming into the
cache is divided into two fields: the 29-bit block-frame address and 3-bit block
offset. The block-frame address is further divided into an address tag and cache
index. Step 1 shows this division.

The cache index selects the set to be tested to see if the block is in the cache.
(A set is one block from each bank in Figure 8.11.) The size of the index
depends on cache size, block size, and set associativity. In this case, a 9-bit
index results:

Blocks= Cache size = 8192 = 512 = 29
Bank Block size * Set associativity 8 * 2

In a two-way-set-associative cache, the index is sent to both banks. This is
step 2.

After reading an address tag from each bank, the tag portion of the block
frame address is compared to the tags. This is step 3 in the figure. To be sure the
tag contains valid information, the valid bit must be set, or the results of the
comparison are ignored.

Assuming one of the tags does match, a 2:1 multiplexer (step 4) is set to
select the block from the matching set. Why can't both tags match? It is the job
of the replacement algorithm to make sure that an address appears in only one
block. To reduce the hit time, the data is read at the same time as the address
tags; thus, by the time the block multiplexer is ready, the data is also ready.

This step is needed in set-associative caches, but it can be omitted from
direct-mapped caches since there is no selection to be made. The multiplexer
used in this step can be on the critical timing path, endangering the clock cycle
time of the CPU. (The example on pages 418-419 and the fallacy on page 481
explore the trade-off of lower miss rates and higher clock cycle time.)

In the final step the word is sent to the CPU. All five steps occur within a
single CPU clock cycle.

What happens on a miss? The cache sends a stall signal to the CPU telling it
to wait, and two words (eight bytes) are read from memory. That takes 6 clock
cycles on the VAX-11/780 (ignoring bus interference). When the data arrives,

Ex.1035.446DELL

)

Memory-Hierarchy Design 415

the cache must pick a block to replace; the VAX-11/780 selects one of the two
blocks at random. Replacing a block means updating the data, the address tag,
and the valid bit. Once this is done, the cache goes through a regular hit cycle
and returns the data to the CPU.

Writes are more complicated in the V AX-11/780, as they are in any cache. If
the word to be written is in the cache, the first four steps are the same. The next
step is to write the data in the block, then write the changed-data portion into the

Block-frame Block
address offset

<20> <9> <3> ...

I Tag I Index I

Valid Tag
<1> <20>

Data
1

<64> '

rs~~k o • @MMt&@llMfWM!mWWfnifl\til@ftffmliWM

blocks) •••
r-+-~1---~T"1--~~~~~~

Bank 1
(512
blocks)

• •
J__

- 2:1 . ~
-i-

1

I

CPU
address

Data Data
in out

Write
buffer

Memory

FIGURE 8.11 The organization of the VAX-11/780 cache. The 8-KB cache is two-way
set associative with 8-byte blocks. It has 512 sets with two blocks per set; the set is
selected by the 9-bit index. The five steps of a read hit, shown as circled numbers in order
of occurrence, label this organization. The line from memory to the cache is used on a miss
to load the cache. Multiplexing as found in step 4 is not needed in a direct-mapped cache.
Note that the offset is connected to chip select of the data SRAMs to allow the proper
words to be sent to the 2:1 multiplexer.

Ex.1035.447DELL

Memory-Hierarchy Design 415

the cache must pick a block to replace; the VAX-11/780 selects one of the two
blocks at random. Replacing a block means updating the data, the addresstag,
and the valid bit. Once this is done, the cache goes through a regular hit cycle
and returns the data to the CPU.

Writes are more complicated in the VAX-11/780, as they are in any cache.If
the word to be written is in the cache, the first four steps are the same. The next
step is to write the data in the block, then write the changed-data portion into the

CPU
address

Data Data
in out

address offset<20> . <9> <3>

Valid Tag
<l> <20>

(512
blocks)

(512
blocks)

FIGURE 8.11 The organization of the VAX-11/780cache. The 8-KB cacheis two-way
set associative with 8-byte blocks. It has 512 sets with two blocks perset; the setis
selected by the 9-bit index. The five steps of a read hit, shown as circled numbersin order
of occurrence, label this organization. The line from memory to the cache is used on a miss
to load the cache. Multiplexing as found in step 4 is not neededin a direct-mapped cache.
Note that the offset is connected to chip select of the data SRAMsto allow the proper
wordsto be sent to the 2:1 multiplexer.

DELL Ex.1035.447

416 8.3 Caches

cache. The VAX-11/780 uses no write allocate. Consequently, on a write miss
the CPU writes "around" the cache to lower-level memory and does not affect
the cache.

Since this is a write-through cache, the process isn't yet over. The word is
also sent to a one-word write buffer. If the write buffer is empty, the word and
full address are written in the buffer, and we are finished. The CPU continues
working while the write buffer writes the word to memory. If the buffer is full,
the cache (and CPU) must wait until the buffer is empty.

Cache Performance

CPU time can be divided into the clock cycles the CPU spends executing the
program and the clock cycles the CPU spends waiting for the memory system.
Thus,

CPU time= (CPU-execution clock cycles+ Memory-stall clock cycles)* Clock cycle time

To simplify evaluation of cache alternatives, sometimes designers assume
that all memory stalls are due to the cache. This is true for many machines; on
machines where this is not true, the cache still dominates stalls that are not
exclusively due to the cache. We use this simplifying assumption here, but it is
important to account for all memory stalls when calculating finai performance!

The formula above raises the question whether the clock cycles for a cache
access should be considered part of CPU-execution clock cycles or part of mem
ory-stall clock cycles. While either convention is defensible, the most widely
accepted is to include hit clock cycles in CPU-execution clock cycles.

Memory-stall clock cycles can then be defined in terms of the number of
memory accesses per progra"m, miss penalty (in clock cycles), and miss rate for
reads and writes:

Memory-stall clock cycles = p Reads * Read miss rate * Read miss penalty
rogram

Writes W . . W . . 1 + p * nte miss rate. * nte miss pena ty rogram ,

We simplify the complete formula by combining the reads and writes together:

Memory accessess . .
Memory-stall clock cycles = p * Miss rate * Miss penalty

rogram

Factoring instruction count (IC) from execution time and memory stall
cycles, we now get a CPU-time formula that includes memory accesses per
instruction, miss rate, and miss penalty:

(
Memory accesses . · .) .

CPU time = IC * CPIE . +
1

. . * Miss rate * Miss penalty * Clock cycle time
xecut10n nstructlon

Ex.1035.448DELL

'Example

Answer

Example

Answer

Memory-Hierarchy Design 417

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memory reference:

Misses Memory accesses M'
. = . * iss rate

Instruction Instruct10n

The advantage of this measure is that it is independent of the hardware
implementation. For example, the VAX-11/780 instruction unit can make
repeated references to a single byte (see Section 8.7), which can artificially
reduce the miss rate if measured as misses per memory reference rather than per
instruction executed. The drawback is that this measure is architecture
dependent, thus it is most popular with architects working with a single
computer family. They then use this version of the CPU-time formula:

CPU time = IC * (cPIE
1
. + I Misse~ * Miss penalty) * Clock cycle time

xecu ion nstruct10n

We can now explore the consequences of caches on performance.

Let's use the VAX-11/780 as a firstexample. The cache miss penalty is 6 clock
cycles, and all instructions normally take 8.5 clock cycles (ignoring memory
stalls). Assume the miss rate is 11 %, and there is an average of 3.0 memory
references per instruction. What is the impact on performance when behavior of
the cache is included?

CPU . , IC (cPI Memory-stall clock cycles) Cl k 1 time = * , . + . * oc eye e
Execution Instruction

time
The performance, including cache misses, is

CPU time 'th h =IC* (8.5 + 3.0 * 11 % * 6) *Clock cycle time
w1 cac e

= Instruction count * 10.5 * Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache, so CPU time increases with CPI from 8.5 to 10.5. Hence, the impact of
the memory hierarchy is to stretch the CPU time by 24%.

Let's now calculate the impact on performance when behavior of the cache is
included on a machine with a lower CPI. Assume that the cache miss penalty is
10 clock cycles and, on average, instructions take 1.5 clock cycles; the miss rate
is 11 %, and there is an average of 1.4 memory references per instruction.

CPU . -IC* (cPI Memory-stall clock cycles)* Cl k 1 . time - E
1
. + - I . oc eye e time]{ecu ion nstruction

Ex.1035.449DELL

418

Example

Answer

8.3 Caches

Making the same assumptions as in the previous example on cache hits, the per
formance, including cache misses, is

CPU time .th h =IC* (1.5 + 1.4*11 %*10) *Clock cycle time
w1 cac e

=Instruction count*3.0*Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache, so CPU time increases with CPI from 1.5 to 3.0. Including cache
behavior doubles execution time.

As these examples illustrate, cache-behavior penalties range from significant
to enormous. Furthermore, cache misses have a double-barreled impact on a
CPU with a low CPI and a fast clock:

1. The lower the CPI, the more pronounced the impact is.

2. Independent of the CPU, main memories have similar memory-access times,
since they are built from the same memory chips. When calculating CPI, the
cache miss penalty is measured in CPU clock cycles needed for a miss.
Therefore, a higher CPU clock rate leads to a larger miss penalty, even if
main memories are the same speed.

The importance of the cache for CPUs with low CPI and high clock rates is thus
greater; and, consequently, greater is the danger of neglecting cache behavior in
assessing performance of such machines.

While minimizing average memory-access time is a reasonable goal and we
will use it in much of this chapter, keep in mind that the final goal is to reduce
CPU execution time.

What is the impact of two different cache organizations on the performance of a
CPU? Assume that the CPI is normally 1.5 with a clock cycle time of 20 ns, that
there are 1.3 memory references per instruction, and that the size of both caches
is 64 KB. One cache is direct mapped and the other is two-way set associative.
Since the speed of the CI_U is tied directly to the speed of the caches, assume the
CPU clock cycle time mu-st be stretched 8.5% to accommodate the selection
multiplexer of the set-associative cache (step 4 in Figure 8.11 on page 415.) To
the first approximation, the cache miss penalty is 200 ns for either cache
organization. (In practice it must be rounded up or down to an integer number of
clock cycles.) First, calculate the average memory-access time, and then CPU
performance.

Figure 8.12 on page 421 shows that the miss rate of a direct-mapped 64-KB
cache is 3.9% and the miss rate for a two-way-set-associative cache of the same
size is 3.0%. Average memory-access time is

Average memory-access time = Hit time + Miss rate * Miss penalty

Ex.1035.450DELL

Memory-Hierarchy Design

Thus, the time for each organization is

Average memory-access time1-way = 20 + .039*200 = 27.8 ns

Average memory-access time2-way = 20*1.085 + .030*200 = 27.7 ns

419

The average memory-access time is better for the two-way-set-associative
cache.

CPU performance is

CPU time = IC * (cPIExecution + I Misse~ * Miss penalty) * Clock cycle time
nstruction

= IC * (CPIExecution * Clock cycle time +

Memory accesses . . .)
I t

. * Miss rate * Miss penalty * Clock cycle time
ns ruct10n

Substituting 200ns for (Miss penalty * Clock cycle time), the performance of
each cache organization is

CPU time1-way = IC*(l.5*20 + l.3*0.039*200) = 40.l*IC

CPU time2-way = IC*(l.5*20*1.085 + l.3*0.030*200) = 40.4* IC

and relative performance is

CPU time2-way _ 40.4 * Instruction count
CPU time1-way - 40.1 *Instruction count

In contrast to-the results of average access-time comparison, the direct-mapped
cache leads to slight!¥ better performance. Since CPU time is our bottom-line
evaluation (and direct mapped is simpler to build), the preferred cache is direct
mapped in this example. (See the fallacy on page 481 for more on this kind of
trade-off.)

The Three Sources of Cache Misses: Compulsory,
Capacity, and Conflicts

An intuitive model of cache behavior attributes all misses to one of three
sources:

• Compulsory-The first access to a block is not in the cache, so the block
must be brought into the cache. These are also called cold start misses or first
reference misses.

• Capacity-If the cache cannot-contain all the blocks needed during execution
of a program, capacity misses will occur due to blocks being discarded and
later retrieved.

Ex.1035.451DELL

420 8.3 Caches

• Conflict-If the block-placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will occur
because a block can be discarded and later retrieved if too many blocks' map
to its set. These are also called collision misses.

Figure 8.12 shows the relative frequency of cache misses, broken down by
the "three Cs." To show the benefit of associativity, conflict misses are divided
into misses caused by each decrease in associativity. The categories are labeled
n-way, meaning the misses caused by going to the lower level of associativity
from the next one above. Here are the four categories:

8-way: from fully associative (no conflicts) to 8-way associative

4-way: from 8-way associative to 4-way associative

2-way: from 4-way associative to 2-way associative

1-way: from 2-way associative to 1-way associative (direct mapped)

Figure 8.13 (page 422) presents the same data graphically. The top graph shows
absolute miss rates; the bottom graph plots percentage of all the misses by cache
size.

Having identified the three Cs, what can a computer designer do about them?
Conceptually, conflicts are the easiest: Fully associative placement avoids all
conflict misses. Associativity is expensive in hardware, however, and may slow
access time (see the example above or the second fallacy in Section 8.10),
leading to lower overall performance. There is little to be done about capacity
except to buy larger memory chips. If the upper-level memory is much smaller
than what is needed for a program, and a significant percentage of the time is
spent moving data between two levels in the hierarchy, the memory hierarchy is
said to thrash. Because so many replacements are required, thrashing means the
machine runs close to the speed of the lower-level memory, or maybe even
slower due to the miss overhead. Making blocks larger reduces the number of
compulsory misses, but it can increase conflict misses.

The three C's give insight into the cause of misses, but this simple model has
its limits. For example, increasing cache size reduces conflict misses as well as
capacity misses, since a larger cache spreads out references. Thus, a miss might
move from one category to the other as parameters change. Three C's ignore
replacement policy, since it is difficult to model and since, in general, it is of less
significance. In specific circumstances the replacement policy can actually lead
to anomalous behavior, such as poorer miss rates for larger associativity, which
is directly contradictory to the three C's model.

Ex.1035.452DELL

Memory-Hierarchy Design 421

Cache size Degree Total Miss-rate components (relative percent)
associative miss (Sum= 100% of total miss rate)

~ rate Compulsory Capacity Conflict

1 KB 1-way 0.191 0.009 5% 0.141 73% 0.042 22%

1 KB 2-way 0.161 0.009 6% 0.141 87% 0.012 7%

1 KB 4-way 0.152 0.009 6% 0.141 92% 0.003 2%

1 KB 8-way 0.149 0.009 6% 0.141 94% 0.000 0%

2KB 1-way 0.148 0.009 6% 0.103 70% 0.036 24%

2KB 2-way 0.122 0.009 7% 0.103 84% 0.010 8%

2KB 4-way 0.115 0.009 8% 0.103 90% 0.003 2%

2KB 8-way 0.113 0.009 8% 0.103 91% 0.001 1%

4KB 1-way 0.109 0.009 8% 0.073 67% 0.027 25%

4KB 2-way 0.095 0.009 9% 0.073 77% 0.013 14%

4KB 4-way 0.087 0.009 10% 0.073 84% 0.005 6%

4KB 8-way 0.084 0.009 11% 0.073 87% 0.002 3%

8KB 1-way 0.087 0.009 10% 0.052 60% 0.026 30%

8KB 2-way 0.069 0.009 13% 0.052 75% 0.008 12%

8KB 4-way 0.065 0.009 14% 0.052 80% 0.004 6%

8KB 8-way 0.063 0.009 14% 0.052 83% 0.002 3%

16KB 1-way 0.066 0.009 14% 0.038 57% 0.019 29%

16KB 2-way 0.054 0.009 17% 0.038 70% 0.007 13%

16KB 4-way 0.049 0.009 18% 0.038 76% 0.003 6%

16KB 8-way 0.048 0.009 19% 0.038 78% 0.001 3%

32KB 1-way 0.050 0.009 18% 0.028 55% 0.013 27%

32KB 2-way 0.041 0.009 22% 0.028 68% 0.004 11%

32KB 4-way 0.038 0.009 23% 0.028 73% 0.001 4%

32KB 8-way 0.038 0.009. 24% 0.028 74% 0.001 2%

64KB 1-way 0.039 0.009 23% 0.019 50% 0.011 27%

64KB 2-way 0.030 0.009 30% 0.019 65% 0.002 5%

64KB 4-way 0.028 0.009 32% 0.019 68% 0.000 0%

64KB 8-way 0.028 0.009 32% 0.019 68% 0.000 0%

128KB 1-way 0.029 0.009 34% 0.004 16% 0.013 50%

128KB 2-way 0.020 0.009 46% 0.004 21% 0.006 33%

128KB 4-way 0.016 0.009 55% 0.004 25% 0.003 20%

128KB 8-way 0.015 0.009 59% 0.004 27% 0.002 14%

FIGURE 8.12 Total miss rate for each size cache and percentage of each according to the "three Cs." Compul
sory misses are independent of cache size, while capacity misses decrease as capacity increases. Hill [1987) measured
this trace using 32-byte blocks and LRU replacement. It was generated on a VAX-11 running Ultrix by mixing three
systems' traces, using a multiprogramming workload and three user traces. The total length was just over a million
addresses; the largest piece of data referenced during the trace was 221 KB. Figure 8.13 (page 422) shows the same
information graphically. Note that the 2:1 cache rule-:-of thumb (inside front cover) is supported by the statistics in this
table: a direct-mapped cache of size N has about the same miss rate as a 2-way-set-associative cache of size N/2.

Ex.1035.453DELL

422 8.3 Caches

20%

18%
Conflict: 1-way

16% Conflict: 2-way

14%
Conflict: 4-way

Conflict: 8-way

12%

Miss 10%
rate
per

8%
miss
type

6%

4%
Capacity

2%

0%
2 4 8 16 32 64 128

Cache size in K bytes

100

90 Conflict:
1-way

80

70 Conflict:
2-way

60 Conflict:
4-way

Percentage 50
Conflict:

of direct-
8-way

mapped 40
misses

30

20

10

0
2 4 8 16 32 64 128

Cache size in K bytes

FIGURE 8.13 Total miss rate (top) and distribution of miss rate (bottom) for each
size cache according to three Cs for the data in Figure 8.12 (page 421). The top
diagram is the actual miss rates, while the bottom diagram is scaled to the direct-mapped
miss ratio.

Ex.1035.454DELL

422 8.3 Caches

90

80

70

60

Percentage 50
of direct-

mapped 40
misses

30

20

Conflict: 1-way

Conflict: 2-way

Conflict: 4-way

Conflict: 8-way

8 16 32

Cachesize in K bytes

 Conflict:

1-way

Conflict:
2-way
Conflict:
4-way
Conflict:
8-way

Capacity

8 16 32

Cachesize in K bytes

FIGURE8.13 Total miss rate (top) and distribution of miss rate (bottom) for each
size cache accordingto three Cs for the data in Figure 8.12 (page 421). The top
diagram is the actual miss rates, while the bottom diagram is scaled to the direct-mapped
miss ratio.

DELL Ex.1035.454

Memory-Hierarchy Design 423

Choices for Block Sizes in Caches

Figures 8.3 and 8.4 (page 406) showed the abstract tradeoff of block size versus
miss rate and memory-access time. Figures 8.14 and 8.15 (page 424) show the
specific numbers for a set of programs and cache sizes. Larger block sizes
reduce compulsory misses, as the principle of spatial locality suggests. At the
same time, larger blocks also reduce the number of blocks in the cache,
increasing conflict misses.

40%

35%

30%
1 KB

25%

Miss
rate 20%

15%

10%
8 KB

5% 16 KB

64KB
0% 256 KB

4 16 64 256

Block size (bytes)

FIGURE 8.14 Miss rate versus block size. Note that for a 1-KB cache, 256-byte
blocks have a higher miss rate than either 16- or 64-byte blocks. (The smallest block is
4 bytes.) In this particular example, the cache would have to be 256 KB in order for
increasing block size to always result in decreased misses. This data was collected for a
direct-mapped cache using one of the VAX traces containing user and operating system
code, which is distributed with this book (SAVEO).

Instruction-Only or Data-Only Caches Versus
Unified Caches

Unlike other levels of the memory hierarchy, caches are sometimes divided into
instruction-only and data-only caches. Caches that can contain either instructions
or data are unified caches, or mixed caches. The CPU knows whether it is issuing
an instruction address or a data address, so there can be separate ports for both,
thereby doubling the bandwidth between the cache arid the CPU. (Section 6.4 in
Chapter 6 shows the advantages of dual memory ports for pipelined execution.)
Separate caches also offers the opportunity of optimizing each cache separately:
different capacities, block sizes, and associativities may lead to better
performance. Splitting thus affects the cost and performance far beyond what is
indicated by the'-change in miss rates. We limit our discussion to that point now
simply to show how miss rates for instructions differ from miss rates for data. ·

Ex.1035.455DELL

Memory-Hierarchy Design 423

Choicesfor Block Sizes in Caches

Figures 8.3 and 8.4 (page 406) showedthe abstract tradeoff of block size versus
miss rate and memory-access time. Figures 8.14 and 8.15 (page 424) show the
specific numbers for a set of programs and cache sizes. Larger block sizes
reduce compulsory misses, as the principle of spatial locality suggests. At the
same time, larger blocks also reduce the number of blocks in the cache,
increasing conflict misses.

16 64

Black size (bytes)

FIGURE 8.14 Miss rate versusblock size. Note that for a 1-KB cache, 256-byte
blocks have a higher missrate than either 16- or 64-byte blocks. (The smallest block is
4 bytes.) In this particular example, the cache would have to be 256 KBin orderfor
increasing block size to always result in decreased misses. This data was collected for a
direct-mapped cache using one of the VAX traces containing user and operating system
code, which is distributed with this book (SAVEO).

Instruction-Only or Data-Only Caches Versus
Unified Caches

Unlike other levels of the memory hierarchy, caches are sometimes divided into
instruction-only and data-only caches. Caches that can contain either instructions
or data are unified caches, or mixed caches. The CPU knowswhetherit is issuing
an instruction address or a data address, so there can be separate ports for both,
thereby doubling the bandwidth between the cache and the CPU. (Section 6.4 in
Chapter 6 shows the advantages of dual memory ports for pipelined execution.)
Separate cachesalso offers the opportunity of optimizing each cache separately:
different capacities, block sizes, and associativities may lead to better
performance. Splitting thus affects the cost and performance far beyond whatis
indicated by the-change inmiss rates. We limit our discussion to that point now
simply to show how missratesfor instructions differ from missrates for data.

DELL Ex.1035.455

424 8.3 Caches

12

10
Average
memory- 8
access
time in 6
clock
cycles 4

2

4 16 64
Block size (bytes)

1 KB

8 KB
16 KB

64KB
~~~~ 256KB 

256 

FIGURE 8.15 Average access time versus block size using the miss rates in Figure 
8.14. This assumes an 8-clock-cycle latency and that the memory and bus can transfer 4 
bytes per clock cycle. On a miss all the blocks are loaded into the cache before the requested 
word is sent to the CPU. The lowest average memory-access time is either for 16-byte or 64-
byte blocks, and 256-byte blocks are better than 4-byte blocks only for the largest cache. 

Figure 8.16 shows that instruction-only caches have lower miss rates than 
data-only caches. Separating instructions and data removes misses due to 
conflicts between instruction blocks and data blocks, but the split also fixes the 
cache space devoted to each type. A fair comparison of separate instruction and 
data caches to unified caches requires the total cache size to be the same. 
Therefore, a separate 1-KB instruction cache and 1-KB data cache should be 
compared to a unified 2-KB cache. Calculating the average miss rate with 
separate instruction-only and data-only caches necessitates knowing the 
percentage of memory references to each cache. 

Size Instruction only Data only Unified 

0.25 KB 22.2% 26.8% 28.6% 

0.50KB 17.9% 20.9% 23.9% 

lKB 14.3% 16.0% 19.0% 

2KB 11.6% 11.8% 14.9% 

4KB 8.6% 8.7% 11.2% 

8KB 5.8% 6.8% 8.3% 

16KB 3.6% 5.3% 5.9% 

32KB 2.2% 4.0% 4.3% 

64KB 1.4% 2.8% 2.9% 

128KB 1.0% 2.1% 1.9% 

256KB 0.9% 1.9% 1.6% 

FIGURE 8.16 Miss rates for instruction-only, data-only, and unified caches of different 
sizes. The data are for a 2-way-associative cache using LAU replacement with 16-byte 
blocks for an average of user/system traces on the VAX-11 and system traces on the IBM 
370 [Hill 1987]. The percentage of instruction references in these traces is about 53%. 

Ex.1035.456DELL

424 8.3 Caches

12

10

Average
memory- 8+
access :
timein 6-7,
clock

cycles

16 64

Block size (bytes)

 
FIGURE 8.15 Average accesstime versusblock size using the missrates in Figure
8.14. This assumes an 8-clock-cycle latency and that the memory and bus cantransfer 4
bytes per clock cycle. On a miss all the blocks are loaded into the cache before the requested
word is sent to the CPU. The lowest average memory-accesstimeis either for 16-byte or 64-
byte blocks, and 256-byte blocks are better than 4-byte blocksonly for the largest cache.

Figure 8.16 showsthat instruction-only caches have lower miss rates than
data-only caches. Separating instructions and data removes misses due to
conflicts between instruction blocks and data blocks, but the split also fixes the
cache space devoted to each type. A fair comparison of separate instruction and -
data caches to unified caches requires the total cache size to be the same.
Therefore, a separate 1-KB instruction cache and 1-KB data cache should be
compared to a unified 2-KB cache. Calculating the average miss rate with
separate instruction-only and data-only caches necessitates knowing the
percentage of memory references to each cache.

Size ‘ Instruction only Data only Unified

0.25 KB 22.2% 26.8% 28.6%

0.50 KB 17.9% 20.9% 23.9%

1KB 14.3% 16.0% 19.0%

2 KB 11.6% . 11.8% 14.9%

4 KB 8.6% 8.7% 11.2%

8 KB 5.8% 6.8% 8.3%

16 KB 3.6% 5.3% 5.9%

32 KB 2.2% | 4.0% 4.3%

64 KB 1.4% 2.8% 2.9%

128 KB 1.0% 2.1% 1.9%

256 KB 0.9% 1.9% 1.6%

 
FIGURE 8.16 Missrates for instruction-only, data-only, and unified cachesof different
sizes, The data are for a 2-way—associative cache using LRU replacement with 16-byte
blocks for an average of user/system traces on the VAX-11 and system traces on the IBM
370 [Hill 1987]. The percentageofinstruction references in these traces is about 53%.

DELL Ex.1035.456



Example 

Answer 

Memory-Hierarchy Design 425 

Which has the lower miss rate: a 16-KB instruction cache with a 16-KB data 
cache or a 32-KB unified cache? Assume 53% of the references are instructions. 

As stated in the legend of Figure 8.16, 53% of the memory accesses are 
instruction references. Thus, the overall miss rate for the split caches is 

53% * 3.6% + 47% * 5.3% = 4.4% 

A 32-KB unified cache has a slightly lower miss rate of 4.3%. 

Main Memory 

... the one single development that put computers on their feet was the invention 
of a reliable form of memory, namely, the core memory, ... Its cost was 
reasonable, it was reliable and, because it was reliable, it could in due course 
be made large. 

Maurice Wilkes, Memoirs of a Computer Pioneer (1985, p. 209) 

Provided there is only one level of cache, main memory is the next level down in 
the hierarchy. Main memory satisfies the demands of caches and vector units, 
and serves as the 1/0 interlace as it is the destination of input as well as the 
source for output. Unlike caches, performance measures of main memory 
emphasize both latency and bandwidth. Generally, main memory latency (which 
affects the cache miss penalty) is the primary concern of the cache, while main
memory bandwidth is the primary concern of 1/0 and vector units. As cache 
blocks grow from 4-8 bytes to 64--256 bytes, main memory bandwidth becomes 
important to · caches as well. The relationship of main memory and 1/0 is 
discussed in Chapter 9. 

Memory latency is traditionally quoted using two measures-access time and 
cycle time. Access time is the time between when a read is requested and when 
the desired word arrives, while cycle time is the minimum time between requests 
to memory. In the 1970s, as DRAMs grew in capacity the cost of a package with 
all the necessary address lines became an issue. The solution was to multiplex 
the address lines, thereby cutting the number of address pins in half. The top half 
of the address comes first, during the row-access strobe, or RAS. This is fol
lowed by the second half of the address during the column-access strobe, or 
CAS. These names come from the internal chip organization, for the memory is 
organized as a rectangular matrix addressed by rows and columns. 

An additional requirement of DRAMs derives from the property signified by 
its first letter, D, for dynamic. Every DRAM must have every row accessed 
within a certain time window, such as 2 milliseconds, or the information in the 
DRAM can be lost. This requirement means that the memory system is 

Ex.1035.457DELL

Memory-Hierarchy Design 425

Which has the lower miss rate: a 16-KB instruction cache with a 16-KB data

Example cache or a 32-KB unified cache? Assume 53% of the references are instructions.
 

Answer|Asstated in the legend of Figure 8.16, 53% of the memory accesses are
instruction references. Thus, the overall miss rate for the split cachesis

53% * 3.6% + 47% * 5.3% =4.4%

A 32-KB unified cache hasa slightly lower miss rate of 4.3%.

8.4 Main Memory

... the one single development that put computers on theirfeet was the invention
ofa reliable form ofmemory, namely, the core memory, ... Its cost was
reasonable, it was reliable and, because it was reliable, it could in due course

be madelarge.

Maurice Wilkes, Memoirs ofa Computer Pioneer(1985, p. 209)

Provided there is only one level of cache, main memory is the next level down in
the hierarchy. Main memory satisfies the demands of caches and vector units,
and serves as the I/O interface as it is the destination of input as well as the
source for output. Unlike caches, performance measures of main memory

emphasize both latency and bandwidth. Generally, main memory latency (which
affects the cache miss penalty) is the primary concern of the cache, while main-
memory bandwidth is the primary concern of I/O and vector units. As cache
blocks grow from 4-8 bytes to 64-256 bytes, main memory bandwidth becomes
important to caches as well. The relationship of main memory and J/O is
discussed in Chapter9.

’ Memory latencyis traditionally quoted using two measures—accesstime and
cycle time. Access time is the time between when a read is requested and when
the desired word arrives, while cycle time is the minimum time between requests
to memory. In the 1970s, as DRAMsgrew in capacity the cost of a package with
all the necessary address lines became an issue. The solution was to multiplex
the addresslines, thereby cutting the number of addresspins in half. The top half
of the address comesfirst, during the row-access strobe, or RAS. Thisis fol-
lowed by the second half of the address during the column-access strobe, or
CAS. These names come from the internal chip organization, for the memory is
organized as a rectangular matrix addressed by rows and columns.

An additional requirement of DRAMsderives from the property signified by
its first letter, D, for dynamic. Every DRAM musthave every row accessed
within a certain time window, such as 2 milliseconds, or the information in the

DRAM can be lost. This requirement means that the memory system is

DELL Ex.1035.457



426 8.4 Main Memory 

occasionally unavailable because it is sending a signal telling every chip to 
refresh. The cost of a refresh is typiCally a full memory access (RAS and CAS) 
for each row of the DRAM. Since the memory matrix in a DRAM is likely to be 
square, the number of steps in a refresh is usually the square root of the DRAM 
capacity. 

In contrast to DRAMs are SRAMs-the first letter standing for "static." The 
dynamic nature of the circuits for DRAM require data to be written back after 
being read, hence the difference between the access time and the cycle time and 
also the need to refresh. SRAMs use more circuits per bit to prevent the 
information from being disturbed when read. Thus, unlike DRAMs, there is no 
difference between access time and cycle time and there is no need to refresh 
SRAM. In DRAM designs the emphasis is on capacity, while SRAM designs are 
concerned with both capacity and speed. (Because of this concern, SRAM 
address lines are not multiplexed.) For memories designed in comparable 
technologies, the capacity of DRAMs is roughly 16 times that of SRAMs, and 
the cycle time of SRAMs is 8 to 16 times faster than DRAMs. 

The main memory of virtually every computer sold in the last decade is 
composed of semiconductor DRAMs (and virtually all caches use SRAM). 
Amdahl suggested a rule of thumb that memory capacity should grow linearly 
with CPU speed to keep a balanced system (see Section 1.4), and CPU designers 
rely on DRAMs to supply that demand: they expect a four-fold improvement in 
capacity every three years. Unfortunately, the performance of DRAMs is 
growing at a much slower rate. Figure 8.17 shows a performance improvement 
in row-access time of about 22% per generation, or 7% per year. As noted in 
Chapter 1, CPU performance improved 18% to 35% per year prior to 1985, and 
since that time has jumped to 50% to 100% per year. Figure 8.18 plots these 
optimistic and pessimistic CPU performance projections against the steady 7% 
performance improvement in DRAM speeds. 

Row access (RAS) Column 
Year of Chip size Slowest Fastest access Cycle 

introduction DRAM DRAM (CAS) time 

1980 64 Kbit 180 ns 150 ns 75 ns 250ns 

1983 256 Kbit 150 ns 120ns 50ns 220ns 

1986 1 Mbit 120 ns lOOns 25 ns 190ns 

1989 4Mbit 100 ns 80ns 20ns 165 ns 

1992? 16 Mbit ::::85 ns ::::65 ns ::::15 ns ::::140 ns 

FIGURE 8.17 Times of fast and slow DRAMs with each generation. The improvement 
by a factor of two in column access accompanied the switch from NMOS DRAMs to CMOS 
DRAMs. With three years per generation, the performance improvement of row access time 
is about 7% per year. Data in the last row represent predicted performance for 16-Mbit 
DRAMs, which are not yet available. 

Ex.1035.458DELL



Memory-Hierarchy Design 

p 
e 

100000% 

r 10000% 
f 
0 

r 
m 
a 1000% 
n 
c 
e 

427 

CPU (fast) 

CPU (slow) 

FIGURE 8.18 Starting with 1980 performance as a baseline, the performance of 
DRAMs and CPUs are plotted over time. The DRAM baseline is 64 KB in 1980, with 
three years to the next generation. The slow CPU line assumes a 19% improvement per 
year until 1985 and a 50% improvement thereafter. The fast CPU line assumes a 26% 
performance improvement between 1980 and 1985 and 100% per year thereafter. Note 
that the vertical axis must be on a logarithmic scale to record the size of the CPU-DRAM 
performance gap. 

The CPU-DRAM performance gap is clearly a problem on the horizon
Amdahl' s Law warns us what will happen if we ignore one portion of the 
computation while trying to speed up the rest. Section 8.8 will describe what can 
be done with cache organization to reduce this performance gap, but simply 
making caches larger cannot eliminate it. Innovative organizations of main 
memory are needed as well. In the rest of this section we will examine tech
niques for organizing memory to improve performance, including techniques 
especially for DRAMs. 

Organizations for Improving Main Memory 
Performance 

While it is generally easier to improve memory bandwidth with new organ
izations than it is to reduce latency, a bandwidth improvement does allow cache
block size to increase without a corresponding increase in the miss penalty. 

Let's illustrate these organizations with the case of satisfying a cache miss. 
Assume the performance of the basic memory organization is 

1 clock cycle to send the address 

6 clock cycles for the access time per word 

1 clock cycle to send a word of data 

Ex.1035.459DELL

Memory-Hierarchy Design 427

Oy

100000% CPU(fast)

10000%

CPU(slow)

P
e
r
f
°
r

m
a
n
c
e

00%
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

 
FIGURE 8.18 Starting with 1980 performanceasa baseline, the performanceof
DRAMs and CPUsare plotted over time. The DRAM baseline is 64 KB in 1980, with
three years to the next generation. The slow CPUline assumes a 19% improvement per
year until 1985 and a 50% improvementthereafter. The fast CPU line assumes a 26%
performance improvement between 1980 and 1985 and 100% peryearthereafter. Note
that the vertical axis must be on a logarithmic scale to record the size of the CPU-DRAM
performance gap.

The CPU-DRAM performance gap is clearly a problem on the horizon—
Amdahl’s Law warns us what will happen if we ignore one portion of the
computation while trying to speed up the rest. Section 8.8 will describe what can
be done with cache organization to reduce this performance gap, but simply
making caches larger cannot eliminate it. Innovative organizations of main
memory are needed as well. In the rest of this section we will examine tech-
niques for organizing memory to improve performance, including techniques
especially for DRAMs.

Organizations for Improving Main Memory
Performance

While it is generally easier to improve memory bandwidth with new organ-
izations than it is to reduce latency, a bandwidth improvementdoes allow cache-
block size to increase without a corresponding increase in the miss penalty.

Let’s illustrate these organizations with the case ofsatisfying a cache miss.
Assumethe performanceof the basic memory organization is

1 clock cycle to send the address

6 clock cycles for the access time per word

1 clock cycle to send a word of data

DELL Ex.1035.459



428 8.4 Main Memory 

Given a cache block of four words, the miss penalty is 32 clock cycles, with a 
memory bandwidth of one-half byte per clock cycle. 

Figure 8.19 shows some of the options to faster memory systems. The \ 
simplest approach to increasing memory bandwidth, then, is to make the 
memory wider. 

(a) One-word-wide (b) Wide memory organization (c} Interleaved 
memory organization memory organization 

Memory Memory Memory Memory Memory 
bank o bank 1 bank 2 bank 3 

Memory 

FIGURE 8.19 Three examples of bus width, memory width, and memory interleaving 
to achieve higher memory bandwidth. (a) is the simplest design, with everything the 
width of one word; (b) shows a wider memory, bus, and cache; while (c) shows a narrow 
bus and cache with an interleaved memory. 

Wider Main Memory 

Caches are often organized with a width of one word because most CPU 
accesses are that size. Main memory, in tum, is one word wide to match the 
width of the cache. Doubling or quadrupling the width of the memory will 
therefore double or quadruple the memory bandwidth. With a main memory 
width of two words the miss penalty in our example would drop from 4*8 or 32 
clock cycles to 2*8 or 16 clock cycles. At four words wide the miss penalty is 
just 1*8 clock cycles. The bandwidth is then one byte per clock cycle at two 
words wide and two bytes per clock cycle when the memory is four words wide. 

There is cost in the wider bus. The CPU will still access the cache a word at a 
time, so there now needs to be a multiplexer between the cache and the CPU
and that multiplexer may be on the critical timing path. (If the cache is faster 

Ex.1035.460DELL

428 ' 8.4 Main Memory

Given a cache block of four words, the miss penalty is 32 clock cycles, with a
memory bandwidth of one-half byte per clock cycle.

Figure 8.19 shows some of the options to faster memory systems. The
simplest approach to increasing memory bandwidth, then, is to make the
memory wider.

(a) One-word-wide (b) Wide memory organization (c) Interleaved
memory organization memory organization

Memory||Memory||Memory
bank1  

FIGURE 8.19 Three examplesof bus width, memory width, and memoryinterleaving
to achieve higher memory bandwidth.(a) is the simplest design, with everything the
width of one word; (b) shows a wider memory, bus, and cache; while (c) shows a narrow
bus and cachewith an interleaved memory.

Wider Main Memory

Caches are often organized with a width of one word because most CPU
accesses are that size. Main memory, in turn, is one word wide to match the
width of the cache. Doubling or quadrupling the width of the memory will
therefore double or quadruple the memory bandwidth. With a main memory
width of two words the miss penalty in our example would drop from 4*8 or 32
clock cycles to 2*8 or 16 clock cycles. At four words wide the miss penalty is
just 1*8 clock cycles. The bandwidth is then one byte per clock cycle at two
words wide and two bytes per clock cycle when the memory is four words wide.

There is cost in the wider bus. The CPU willstill access the cache a word at a

time, so there now needsto be a multiplexer between the cache and the CPU—
and that multiplexer may be on the critical timing path. (If the cache is faster

DELL Ex.1035.460



Example 
/ 

Memory-Hierarchy Design 429 

than the bus, however, the multiplexer can be placed between the cache and the 
bus.) Another drawback is that since main memory is traditionally expansible by 
the customer, the minimum increment is doubled or quadrupled. Finally, 
memories with error correction have difficulties with writes to a portion of the 
protected block (e.g., a write of a byte); the rest of the data must be read so that 
the new error correction code can be calculated and stored when the data is 
written. If the error correction is done over the full width, the wider memory will 
increase the frequency of such "read-modify-write" sequences because more 
writes become partial block writes. Many designs of wider memory have 
separate error correction every 32 bits since most writes are that size. One 
example of wider main memory was a computer whose cache, bus, and memory 
were all 512 bits wide. 

Interleaved Memory 

Memory chips can be organized in banks to read or write multiple words at a 
time rather than a single word. The banks are one word wide so that the width of 
the bus and the cache need not change, but sending addresses to several banks 
permits them all to read simultaneously. For example, sending an address to four 
banks (with access times shown on page 427) yields a miss penalty of 1+6+4*1 
or 11 clock cycles, giving a bandwidth of about 1.5 bytes per clock cycle. Banks 
'are also valuable on writes. While back-to-back writes would normally have to 
wait for earlier writes to finish, banks allow one clock cycle for each write, 
provided the writes are not destined to the same bank. 

The mapping of addresses to banks affects the behavior of the memory 
system. The example above assumes the addresses of the four banks are 
interleayed at the word level-bank 0 has all words whose address modulo 4 is 
0, bank 1 has all words whose address modulo 4 is 1, and so on. This mapping is 
referred to as the interleaving factor; interleaved memory normally means banks 
of memory that are word interleaved. This optimizes sequential memory 
accesses. A cache-read miss is an ideal match to word-interleaved memory, as 
the words in a block are read sequentially. Write-back caches make writes as 
well as reads sequential, getting even more efficiency from interleaved memory. 

What can. interleaving and a wide memory buy? Consider the following 
description of a machine arid its cache performance: 

Block size = 1 word 

Memory bus width = 1 word 

Miss rate = 15% 

Memory accesses per instruction = 1.2 

Ex.1035.461DELL



430 

Answer 

8.4 Main Memory 

Cache miss penalty= 8 cycles (as above) 

Average cycles per instruction (ignoring cache misses)= 2 

If we change the block size to two words, the miss rate falls to 10%, and a four
word block has a miss rate of 5%. What is the improvement in performance of 
interleaving two ways and four ways versus doubling the width of memory and 
the bus, assuming the access times on page 427. 

The CPI for the base machine using one-word blocks is 

2 + (l.2*15%*8) = 3.44 

Since the clock cycle time and instruction count won't change in this example, 
we can calculate performance improvement by just comparing CPI. 

Increasing the block size to two words· gives the following options: 

32-bit bus and memory, no interleaving = 2 + (l.2*10%*2*8) = 3.92 

32-bit bus and memory, interleaving = 2 + (l.2*10%*(1+6+2)) = 3.08 

64-bit bus and memory, no interleaving = 2 + (l.2*10%*1*8) = 2.96 

Thus, doubling the block size slows down the straightforward implementation 
(3.92 versus 3.44), while interleaving or wider memory is 12% or 16% faster, 
respectively. If we increase the block size to four, the following is obtained: 

32-bit bus and memory, no interleaving = 2 + (l.2*5%*4*8) = 3.92 

32-bit bus and memory, interleaving = 2 + (l.2*5%*(1 +6+4)) = 2.66 

64-bit bus and memory, no interleaving = 2 + (l.2*5%*2*8) = 2.96 

Again, the larger block hurts performance for the simple case, although the 
interleaved 32-bit memory is now fastest-29% versus 16% for the wider 
memory and bus. 

The original motivation for memory banks was interleaving sequential 
accesses. A further reason is to allow multiple independent accesses. Multiple 
memory controllers allow banks (or sets of word-interleaved banks) to operate 
independently. For example, an input device may use one controller and its 
memory, the cache may use another, and a vector unit may use a third. To 
reduce the chances of conflicts many banks are needed; the NEC SX/3, for 
instance, has up to 128 banks. 

As capacity per memory chip increases, there are fewer chips in the same
sized memory system, making multiple banks much more expensive. For exam
ple, a 16-MB main memory takes 512 memory chips of 256 K (262,144) x 1 
bits, easily organized into 16 banks of 32 memory chips. But it takes only 32 4-
M (4,194,304) x 1-bit memory chips for 16 MB, making one bank the limit. This 
is the main disadvantage of interleaved memory banks. Even though the 

Ex.1035.462DELL



Memory-Hierarchy Design 431 

Amdahl/Case rule of thumb for balanced computer systems recommends 
increasing memory capacity with increasing CPU performance, the 60% growth 
in DRAM capacity exceeded the rate of increase in CPU performance in the past 
(page 17 of Chapter 1). If the rate of increase of CPU speeds seen in the late 
1980s can be maintained (Figure 8.18, page 427) and these systems follow the 
Amdahl/Case rule of thumb, then the number of chips may not be reduced. 

A &econd disadvantage of interleaving is again the difficulty of main memory 
expansion. Since memory-control hardware will likely need equal-sized banks, 
doubling the main memory will probably be the minimum increment. 

DRAM-Specific Interleaving for Improving Main 
Memory Performance 

DRAM access times are divided into row access and column access. DRAMs 
buffer a row of bits inside the DRAM for the column access. This row is usually 
the square root of the DRAM size-1024 bits for 1 Mbit, 2048 for 4 Mbits, and 
so on. All DRAMs come with optional timing signals that allow repeated 
accesses to the buffer without a row-access time. There are three versions for 
this optimization: 

• Nibble mode-The DRAM can supply three extra bits from sequential 
· locations for every row access. 

• Page mode-The buffer acts like a SRAM; by changing column address, 
random bits can be accessed in the buffer until the next row access or refresh 
time. 

• Static column-Very similar to page mode, except that it's not necessary to 
hit the column-access strobe line every time the column address changes; this 
option has been nicknamed SCRAM, for static column DRAM. 

Starting with the 1-Mbit DRAMs, most dies can perform any of the three 
options, with the optimization selected at the time the die is packaged by 
choosing which pads to wire up. These operations change the definition of cycle 
time for DRAMs. Figure 8.20 (page 432) shows the traditional cycle time plus 
the fastest speed between accesses in the optimized mode. 

The advantage of these optimizations is that they use the circuitry already on 
the DRAMs, adding little cost to the system while achieving almost a fourfold 
improvement in bandwidth. For example, nibble mode was designed to take 

/ advantage of the same program behavior as interleaved memory. The chip reads 
four bits at a time internally, supplying four bits externally in the time of four 
optimized cycles. Unless the bus transfer time is faster than the optimized cycle 
time, the cost of four-way interleaved memory is only more complicated timing 
control. Page mode and static column could also be used to get even higher 
interleaving with slightly more complex control. DRAMs also tend to have weak 
tristate buffers, implying traditional interleaving with more memory chips must 
include buff er chips for each memory bank. 

Ex.1035.463DELL



432 

a.s I 

8.4 Main Memory 

Chip Row access Column Cycle Optimized 
size Slowest Fastest access time time nibble, 

DRAM DRAM page, static 
column 

64 Kbits 180ns 150 ns 75 ns 250ns 150 ns 

256 Kbits 150 ns 120ns 50ns ~ 220 'ns 100 ns 

1 Mbits 120ns 100 ns 25 ns 190 ns 50ns 

4 Mbits lOOns 80ns 20ns 165 ns 40ns 

16 Mbits =85 ns =65 ns =15 ns =140 ns =30ns 

FIGURE 8.20 DRAM cycle time for the optimized accesses. This is Figure 8.17 (page 
426) with a column added to show the optimized cycle time for the three modes. Starting 
with the 1-Mbit DRAM, optimized cycle time is about four times faster than unoptimized 
cycle time. It is so much faster that page mode was renamed fast page mode. The 
optimized cycle time is the same no matter which of the 3 optimized modes is selected. 

Thus, the authors expect that most main memory systems in the future will 
use such techniques to reduce the CPU-DRAM performance gap. Unlike 
traditional interleaved memories, there are no disadvantages using these DRAM 
modes as DRAMs scale upward in capacity, nor is there the problem of the 
minimum expansion increment in main memory. 

One possibility that recently arrived is DRAMs that do not multiplex the 
address lines. At the cost of a larger package, a full random access falls between 
a row-access time and a column-access time in Figure 8.20. If unencoded 
DRAMs can stay close to the price per bit of the high volume encoded DRAMs, 
the computer architect will have another option in his bag of tricks for memory 
design. 

Virtual Memory 

... a system has been devised to make the core drum combination appear to the 
programmer as a single level store, the requisite transfers taking place 
automatically. 

Kilburn et al. [1962] 

At any instant in time computers are running multiple processes, each with its 
own address space. (Processes are described in the next section.) It would be too 
expensive to dedicate a full-address-space worth of memory for each process, 
especially since many processes use only a small part of their address space. 
Hence, there must be a means of sharing a smaller amount of physical memory 
between many processes. One way to do this, virtual memory, divides physical 
memory into blocks and allocates them to different processes. Inherent in such 
an approach must be a protection scheme that restricts a process to the blocks 

Ex.1035.464DELL



Memory-Hierarchy Design 433 

belonging just to that process. Most forms of virtual memory also reduce the 
time to start a program, since not all code and data need be in physical memory 
before a program can begin. 

While virtual memory is essential for current computers, sharing is not the 
reason virtual memory was invented. In former days if a program became too 
large for physical memory, it was up to the programmer to make it fit. 
Programmers divided programs into pieces and then identified the pieces that 
were mutually exclusive. These overlays were loaded or unloaded under user 
program control during execution, with the programmer ensuring that the 
program never tried to access more physical main memory in the machine. As 
one can well imagine, this responsibility eroded programmer productivity. 
Virtual memory, invented to relieve programmers of this burden, automatically 
managed the two levels of the memory hierarchy represented by main memory 
and secondary storage. 

In addition to sharing protected memory space and automatically managing 
the memory hierarchy, virtual memory also simplifies loading the program for 
execution. Called relocation, this procedure allows the same program to run in 
any location in physical memory. (Prior to the popularity of virtual memory, 
machines would include a relocation register just for that purpose.) An 
alternative to a hardware solution would be software that changed all addresses 
in a program each time it was run. 

Several general memory-hierarchy terms from Section 8.3 apply to virtual 
memory, while some other terms are different. Page or segment is used for 
block, and page fault, or address fault, is used for miss. With virtual memory, 
the CPU produces virtual addresses that are translated by a combination of 
hardware and software to physical addresses, which can be used to access main 
memory. This process is called memory mapping or address translation. Today, 
the two memory hierarchy levels controlled by virtual memory are DRAMs and 
magnetic disks. Figure 8.21 shows a typical range of memory hierarchy 
parameters for virtual memory. 

Block (page) size 512- 8192 bytes 

Hit time 1-10 clock cycles 

Miss penalty 100,000 - 600,000 clock cycles 

(Access time) (100,000-500,000 clock cycles) 

(Transfer time) (10,000-100,000 clock cycles) 

Miss rate 0.00001 %-0.001 % 

Main memory size 4MB-2048MB 

FIGURE 8.21 Typical ranges of parameters for virtual memory. These figures, 
contrasted with the values for caches in Figure 8.5 (page 408), represent increases of 10 to 
100,000 times. 

Ex.1035.465DELL



434 8.5 Virtual Memory 

There are further differences between caches and virtual memory beyond 
those quantitative ones seen by comparing Figure 8.21 (page 433) to Figure 8.5 
(page 408): 

• Replacement on cache misses is primarily controlled by hardware, while 
virtual memory replacement is primarily controlled by the operating system; 
the longer miss penalty means the operating system can afford to get involved 
and spend more time deciding what to replace. 

• The size of the processor address determines the size of virtual memory, but 
the cache size is normally independent of the processor address. 

• In addition to acting as the lower-level memory for main memory in the 
hierarchy, secondary storage is also used for the file system that is not 
normally part of the address space; most of secondary storage is in fact taken 
up by the file system. 

Virtual memory encompasses several related techniques. Virtual memory 
systems can be categorized into. two classes: those with fixed-size blocks, called 
pages, and those with variable size blocks, called segments. Pages are typically 
fixed at 512 to 8192 bytes, while segment size varies. The largest segment 
supported on any machine ranges from 216 bytes up to 232 bytes; the smallest 
segment is one byte. 

The decision to use paged virtual memory versus segmented virtual memory 
affects the CPU. Paged addressing has a single, fixed-size address divided into 
page number and offset within a page, analogous to cache addressing. A single 
address does not work for segmented addresses; the variable size of segments 
requires one word for a segment number and one word for an offset within a 
segment, for a total of two words. An unsegmented address space is simpler for 
the compiler. 

The pros and cons of these two approaches have been well documented in 
operating systems textbooks; these are summarized in Figure 8.22. Because of 
the replacement problem (the third line of the figure), few machine~ today use 
pure segmentation. Some machines use a hybrid approach, called paged 
segments, in which a segment is an integral number of pages. This simplifies 
replacement because memory need not be contiguous, and the full segments 
need not be in main memory. 

We are now ready to answer the four memory-hierarchy questions for virtual 
memory. 

Ql: Where Can a Block Be Placed in Main Memory? 

The miss penalty for virtual memory involves access to a rotating magnetic 
storage device and is therefore quite high. Given the choice of lower miss rates 
or a simpler placement algorithm, operating systems designers always pick 
lower miss rates because of the horrendous cost of a miss. Thus, operating 
systems allow blocks to be placed anywhere in main memory. According to the 

Ex.1035.466DELL



Memory-Hierarchy Design 435 

terminology in Figure 8.6 (page 409), this strategy would be labeled fully 
associative. 

Q2: How Is a Block Found If It Is in Main Memory? 

Both paging and segmentation rely on a data structure that is indexed by the 
page or segment number. This data structure contains the physical address of the 
block. For paging, the offset is simply concatenated to this physical page address 
(see Figure 8.23, page 436). For segmentation, the offset is added to the 
segment's physical address to obtain the final virtual address. 

Page Segment 

Words per One Two (segment and offset) 
address 

Programmer Invisible to application May be visible to application 
visible? programmer programmer 

Replacing a Trivial (all blocks are the Hard (must find contiguous, 
block same size) variable-size, unused portion of 

main memory) 

Memory use Internal fragmentation External fragmentation (unused 
inefficiency (unused portion of page) pieces of main memory) 

Efficient disk Yes (adjust page size to Not always (small segments may 
traffic balance access time and transfer just a few bytes) 

transfer time) 

FIGURE 8.22 Paging versus segmentation. Both can waste memory, depending on the 
block size and how well the segments fit together in main memory. Programming 
languages with unrestricted pointers require both the segment and the address to be 
passed. A hybrid approach, called paged segments, shoots for the best of both worlds: 
segments are composed of pages, so replacing a block is easy, yet a segment may be 
treated as a logical unit. 

This data structure containing the physical page addresses usually takes the 
form of a page table. Indexed by the virtual page number, the size of the table is 
the number of pages in the virtual-address space. Given a 28-bit virtual address, 
4 KB pages, and 4 bytes per page-table entry, the size of the page table would be 
256 KB. To reduce the size of this data structure, some machines apply a 
hashing function to the virtual address so that the data structure need only be the 
size of the number of physical pages in main memory; this number would be 
much smaller than the number of virtual pages. Such a structure is called an 
inverted page table. Using the example above, a 64-MB physical memory would 
only need 64 KB (4*64 MB/4 KB) for an inverted page table. 

To reduce address translation time, computers use a cache dedicated to these 
address translations, called a translation-lookaside buffer, or simply translation 
buffer. They are described in more detail shortly. 

Ex.1035.467DELL



436 8.5 Virtual Memory 

Virtual address 

I Virtual page number 

Page 
table 

Page offset I 

Physical address 

Main 
memory 

FIGURE 8.23 The mapping of a virtual address to a physical address via a page 
table. 

Q3: Which Block Should Be Replaced on a Virtual Memory Miss? 

As mentioned above, the overriding operating system guideline is minimizing 
page faults. Consistent with this, almost all operating systems try to replace the 
least-recently used (LRU) block, because that is the one least likely to be 
needed. To help the operating system estimate LRU, many machines provide a 
use bit or reference bit, which is set whenever a page is accessed. The operating 
system periodically clears the use bits and later records them so it can determine 
which pages were touched during a particular time period. By keeping track in 
this way, the operating system can select a page that is among the least-recently 
referenced. 

Q4: What Happens on a Write? 

The level below main memory contains rotating magnetic disks that take 
hundreds of thousands of clock cycles to access. Because of the great 
discrepancy in access time, no one has yet built a virtual memory operating 
system that can write through main memory straight to disk on every store by 
the CPU. (This remark should not be interpreted as an opportunity to become 
famous by being the first to build one!) Thus, the write strategy is always write 
back. Since the cost of an unnecessary access to the next-lower level is so high, 
virtual memory systems include a dirty bit so that the only blocks written to disk 
are those that have been altered since they were loaded from the disk. 

Ex.1035.468DELL



Memory-Hierarchy Design 437 

Selecting a Page Size 

The most obvious architectural parameter is the page size. Choosing the page is 
a question of balancing forces that favor a larger page size versus those favoring 
a smaller size. The following favor a larger size: 

• The size of the page table is inversely proportional to the page size; memory 
(or other resources used for the memory map) can therefore be saved by 
making the pages bigger. 

• Transferring larger pages to or from secondary storage, possibly over a 
network, is more efficient than transferring smaller pages. 

(The larger page size may also help in address translation of cache addresses; 
see Section 8.8.) 

The main motivation for a smaller page size is conserving storage. A small 
page size will result in less wasted storage when a contiguous region of virtual 
memory is not equal in size to a multiple of the page size. The term for this 
unused memory in a page is internal fragmentation. Assuming that each process 
has three primary segments (text, heap, and stack), the average wasted storage 
per process will be 1.5 times the page size. This is negligible for machines with 
megabytes of memory and page sizes in the range of 2 KB to 8 KB. Of course, 
when the page sizes become very large (more than 32 KB), lots of storage (both 
main and secondary) may be wasted, as well as I/O bandwidth. A final concern 
is process start-up time; many processes are small, so larger page sizes would 
lengthen the time to invoke a process. 

Tech~iques for Fast Address Translation 

Page tables are usually so large that they are stored in main memory and often 
paged themselves. This means that every memory access takes at least twice as 
long, with one memory access to obtain the physical address and a second access 
to get the data. This cost is far too dear. 

One remedy is to remember the last translation, so that the mapping process 
is skipped if the current address refers to the same page as the last one. A more 
general solution is to again rely on the principle of locality; if the references 
have locality, then the address translations for the references must also have 
locality. Bye keeping these address translations in a special cache, a memory 
access rarely requires a second access to translate the data. This special address 
translation cache is referred to as a translation-lookaside buffer or TLB, also 
called a "translation buffer," or TB. A TLB entry is like a cache entry where the 
tag holds portions of the virtual address and the data portion holds a physical 
page-frame number, protection field, use bit, and dirty bit. To change the 
physical page-frame number or protection of an entry in the page table the 
operating system must make sure the old entry is not in the TLB; otherwise, the 

Ex.1035.469DELL



438 

a.& I 

8.5 Virtual Memory 

system won't behave properly. Note that this dirty bit means the corresponding 
page is dirty, not that the address translation in the TLB is dirty nor that a 
particular block in the data cache is dirty. Figure 8.24 shows typical parameters 
forTLBs. 

Block size 4 - 8 bytes (1 page-table entry) 

Hit time 1 clock cycle 

Miss penalty 10 - 30 clock cycles 

Miss rate 0.1%-2% 

TLB size 32- 8192 bytes 

FIGURE 8.24 Typical values of key memory-hierarchy parameters for TLBs. TLBs 
are simply caches for the virtual-to-physical address translations found in the page tables. 

One architectural challenge stems from the difficulty of combining caches 
with virtual memory. The virtual address must first go through the TLB before 
the physical address can access the cache, meaning that the cache hit time must 
be stretched to allow for address translation (or the pipeline could be stretched as 
in Chapter 6). One way to reduce hit time is to access the cache with the page 
offset, the portion of the virtual address that does not need to be translated. 
While the cache address tags are being read, the virtual portion of the address 
(the page-frame address) is sent to the TLB to be translated. The address 
comparison is then between the physical address from the TLB and the cache 
tag. Since the TLB is usually smaller and faster than the cache-address-tag 
memory, simultaneous TLB reading need not slow down cache hit times. The 
drawback with this scheme is that a direct-mapped cache can be no bigger than a 
page. Another option, virtually addressed caches, is discussed in Section 8.8. 

Protection and Examples of Virtual Memory 

The invention of multiprogramming led to new demands for protection and 
sharing between programs. These are closely tied to virtual memory in 
computers today, and so we cover the topic here along with two examples of 
virtual memory. 

Multiprogramming lead to the concept of a process. Metaphorically, a 
process is a program's breathing air and living space; that is, a running program 
plus any state needed to continue running the program. Timesharing means 
sharing the CPU and memory with several users at the same time to give the 
appearance that every user has his own machine. Thus, at any instant it must be 
possible to switch from one process to another. This is called a process switch or 
context switch. Figure 8.25 shows the frequency of these switches on the VAX 
8700. 

Ex.1035.470DELL



Memory-Hierarchy Design 439 

Instructions between process switches 19,353 

Clock cycles between process switches 170,113 

Time between process switches 7.7ms 

FIGURE 8.25 Frequency of process switches on VAX 8700 for timesharing 
workload. Most switching occurs on interrupts caused by 1/0 events or by the interval timer 
(see Figure 5.10, page 216). Since neither the latency of the 1/0 device nor the timer is af
fected by the speed of the CPU clock, faster machines generally execute more clock cycles 
and instructions between process switches. 

A process must operate correctly whether it executes continuously from start 
to finish or is interrupted repeatedly and switched with other proces'ses. The 
responsibility for maintaining correct process behavior is shared by the computer 
designer, who must ensure that the CPU portion of the process state can be 
saved and restored, and the operating system designer, who must guarantee that 
processes do not interfere with each others' computations. The safest way to 
protect the state of one process from another would be to copy the current 
information to disk. But a process switch would then take seconds-far too long 
for a timesharing environment. The problem is solved by operating systems 
partitioning main memory so that several different processes have their state in 
memory at the same time. This means that the operating system designer needs 
help from the computer designer to provide protection so that one process cannot 
modify another. Besides protection, the computers also provide for sharing of 
code and data between processes, to allow communication between processes or 
to save memory by reducing the number of copies of identical information. --
Protecting Processes 

The simplest protection mechanism is a pair of registers that checks every 
address to be sure that it falls between the two limits traditionally called base 
and bound. An address is valid if 

Base :5: Address :5: Bound 

In some systems the address is considered an unsigned number that is always 
added to the base, so the valid test is just 

(Base + Address) :5: Bound 

For user processes to be protected from each other, they can't change the base 
and bounds registers, yet the operating system must be able to change the 
registers so that it can switch processes. Hence, the computer designer has three 
more responsibilities in helping the operating system designer protect processes 
from each other: 

Ex.1035.471DELL



440 8.6 Protection and Examples of Virtual Memory 

1. Provide at least two modes indicating whether the running process is a user 
process or an operating system process, sometimes called a kernel process, a 
supervisor process or an executive process. 

2. Provide a portion of the CPU state that a user process can use but not write. 
This includes the base/bound registers, a user/supervisor mode bit(s), and the 
interrupt enable/disable bit. Users are prevented from writing this state because 
the operating system cannot control user processes if users can change the 
address-range checks, disable interrupts, or give themselves supervisor 
privileges. 

3. Provide mechanisms whereby the CPU can go from user mode to supervisor 
mode and vice versa. The first direction is typically accomplished by a system 
call, implemented as a special instruction that transfers control to a dedicated 
location in supervisor code space. The PC from the point of the system call is 
saved, and the CPU is placed in supervisor mode. The return to user mode is like 
a subroutine return that restores the previous user/supervisor mode. 

Base and bound constitute the minimum protection system. Virtual memory 
provides an alternative to this simple model. As we have seen, the CPU address 
must go through a mapping from virtual to physical address. This provides the 
opportunity for the hardware to check further for errors in the program or to 
protect processes from each other. The simplest way of doing this is to add 
access permission flags to each page or segment. For example, since few 
programs today intentionally modify their own code, an operating system can 
detect accidental writes to code by offering read-only protection to pages. This 
can be extended by adding a user/kernel bit to prevent a user program from 
trying to access pages that belong to the kernel. As long as the CPU provides a 
read/write signal and a user/kernel signal, it is easy for the address translation 
hardware to detect stray memory accesses before they can do damage. As seen 
in Section 5.6 of Chapter 5, such reckless behavior interrupts the CPU. Obvious
ly, user programs cannot be allowed to modify the page table. 

Protection can be escalated, depending on the apprehension of the computer 
designer or the purchaser. Rings added to the CPU-protection structure expand 
memory-access protection from two levels (user and kernel) to many more. Like 
a military classification system of top secret, secret, classified, and unclassified, 
concentric rings of security levels allow the most trusted to access anything, the 
second most trusted to access everything except the innermost level, and so on 
down to "civilian" programs which are the least trusted and, hence, have the 
most limited range of accesses. There may also be restrictions on the entrance 
point between the levels. The 80286 protection structure, which uses rings, is 
described later in this section. It is not clear today whether rings are an 
improvement on the simple system of user and kernel modes. 

As the designer's apprehension escalates to trepidation, these simple rings 
may not suffice. The fact that a program in the inner sanctum can access 
anything calls for a new classification system. Instead of a military model, the 

Ex.1035.472DELL



Memory-Hierarchy Design 441 

analogy of this next model is to keys and locks: A program can't unlock access 
to the data unless it has the key. For these keys, or capabilities, to be useful, the 
hardware and operating system must be able to explicitly pass them from one 
program to another without allowing a program itself to forge them. Such 
checking requires a great deal of hardware support. 

A Paged Virtual Memory Example: 
VAX·11 Memory Management and the VAX·11/780 TLB 

The VAX architecture uses a combination of segmentation and paging. This 
combination provides protection while minimizing page-table size. The address 
space is first divided into two segments: process (bit 31 = 0) and system (bit 
31=1). Every process has its own private space and shares system space with 
every other process. The process address space is further subdivided into two 
regions called PO and Pl, using bit 30 to distinguish them. Area PO (bit 30 = 0) 
grows from address 0 upward while Pl (bit 30 = 1) grows downward to 0. 
Figure 8.26 shows the layout of PO and Pl. The two segments can grow until 
one exceeds its 230 address-space size and its virtual memory is exhausted. 
Many systems today use some such combination of predivided segments and 
paging. The approach provides many advantages: Segmentation divides system 
and process address space and conserves page-table space, while paging 
provides virtual memory, relocation, and protection. 

FIGURE 8.26 The organization of PO and P1 in the VAX. This is the process half of the 
address space, selected with a O in bit 31 of a virtual address. Bit 30 of the address divides 
PO and P1. Operating systems put the text and heap areas into PO and a downward 
growing stack into P1. 

To conserve page-table space, each of the three regions-PO process, Pl 
process, and system-is provided with a pair of base-bound registers that 
indicate the start and limit of the page table for each region. The alternative 
would be to have a single page table that covers the full address space, 
independent of the program's actual size. The small size of the VAX pages-
512 bytes, yielding large page tables-makes such conservation especially 
important. 

Figure 8.27 (page 442) shows the mapping of a VAX address. The two most
significant bits of an address select which segment or base-bound-register pair 

Ex.1035.473DELL

Memory-Hierarchy Design 441

analogy of this next model is to keys and locks: A program can’t unlock access
to the data unless it has the key. For these Keys, or capabilities, to be useful, the
hardware and operating system must be able to explicitly pass them from one
program to another without allowing a program itself to forge them. Such
checking requires a great-deal of hardware support.

A Paged Virtual Memory Example:
VAX-11 Memory Managementand the VAX-11/780 TLB

The VAX architecture uses a combination of segmentation and paging. This
combination provides protection while minimizing page-table size. The address
space is first divided into two segments: process (bit 31 = 0) and system (bit
3i=1). Every process has its own private space and shares system space with
every other process. The process address space is further subdivided into two
regions called PO and P1, using bit 30 to distinguish them. Area PO (bit 30 = 0)
grows from address 0 upward while P1 (bit 30 = 1) grows downward to 0.
Figure 8.26 shows the layout of PO and Pl. The two segments can grow until
one exceeds its 239 address-space size and its virtual memory is exhausted.
Many systems today use some such combination of predivided segments and
paging. The approach provides many advantages: Segmentation divides system
and process address space and conserves page-table space, while paging
provides virtual memory, relocation, and protection.

 
FIGURE 8.26 The organization of PO and P1 in the VAX. This is the process half of the
address space, selected with a 0 in bit 31 of a virtual address. Bit 30 of the address divides
PO and P1. Operating systems put the text and heap areas into PO and a downward
growing stackinto P1.

To conserve page-table space, each of the three regions—P0 process, P1
process, and system—is provided with a pair of base-bound registers that
indicate the start and limit of the page table for each region. The alternative
would be to have a single page table that covers the full address space,
independent of the program’s actual size. The small size of the VAX pages—
512 bytes, yielding large page tables—makes such conservation especially
important.

Figure 8.27 (page 442) shows the mapping of a VAX address. The two most-
significant bits of an address select which segment or base-bound—register pair

DELL Ex.1035.473



442 8.6 Protection and Examples of Virtual Memory 

to use in selecting a page table and checking the reference. A one in the first bit 
selects the system page table, whose base and length are found respectively in 
the system base register and in the system length register. A zero in the first bit 
of an address (as in the figure) selects page table PO or Pl, found by the PO or Pl 
base registers and checked by the PO or Pl limit (bound) registers. The PO and 
Pl page tables are in the system-space virtual memory, while the system page 
table is in physical memory. 

This offers an interesting way to conserve physical memory. Since the PO and 
Pl page tables are also in virtual memory, this means the page tables can be 
paged. Just as some code and data can remain on disk during program execution, 
the page-table translation entries for that code and data can remain on disk until 
they are used. This is especially important for programs whose memory size 
varies dynamically during execution, as page tables can be increased as PO or Pl 
space grows. In the worst case, then, a process page fault can result in a second 
page fault bringing in the missing piece of the process page table needed to 
complete the address translation. What prevents all pages tables from being 

Virtual address 

21-page number 

System/user PO/P1 
bit selector 

PX page table 

Page-table entry 

9-page offset 

PX page-table base 

PX page-table limit 

Page index 
exceeds page

table size 

Physical address 

21-page-frame number 9-page offset 

Main memory 

FIGURE 8.27 The mapping of a VAX virtual address. PX refers to either PO or P1. 

Ex.1035.474DELL

8.6 Protection and Examplesof Virtual Memory 

to use in selecting a page table and checking the reference. A onein thefirst bit
selects the system page table, whose base and length are found respectively in
the system base register and in the system length register. A zero in thefirst bit
of an address(as in the figure) selects page table PO or P1, found by the PO or P1
base registers and checked by the PO or P1 limit (bound) registers. The PO and
P1 page tables are in the system-space virtual memory, while the system page
table is in physical memory.

This offers an interesting way to conserve physical memory. Since the PO and
Pl page tables are also in virtual memory, this means the page tables can be
paged. Just as some code and data can remain on disk during program execution,
the page-table translation entries for that code and data can remain on disk until
they are used. This is especially important for programs whose memorysize
varies dynamically during execution, as page tables can be increased as PO or P1
space grows.In the worst case, then, a process page fault can result in a second
page fault bringing in the missing piece of the process page table needed to
complete the address translation. What prevents all pages tables from being

Virtual address

of 21—page number 9—pageoffset

System/user PO/P1 |
bit selector PX page-table base

PX pagetable PX page-tablelimit

Page index
exceeds page-

table size
Page-table entry

Physical address

21—page-frame number 9—page offset

Main memory

 
FIGURE 8.27 The mapping of a VAX virtual address. PX refers to either PO or P1.

DELL Ex.1035.474



Memory-Hierarchy Design 443 

migrated to secondary storage? Some system page tables are loaded into 
physical memory when the operating system is booted and are prevented from 
migrating to disk. Thus, eventually a series of faults must cross an address stored 
in the system page table that is "frozen" into main memory. 

While this explains translation of legal addresses, what prevents the user from 
creatingjllegal address translations and getting into mischief? The page tables 
themselves are protected from being written to by user programs. Thus, the user 
can try any virtual address, but by controlling the page-table entries the 
operating system controls what physical memory is accessed. Sharing of 
memory between processes is accomplished by having a page-table entry in each 
address space point to the same physical-memory page. 

A page-table entry (PTE) on the VAX is straightforward. Other than the 
physical page-frame number these are the only architecture-defined fields: 

M-the modify bit indicating the page is dirty 

V-" the valid bit indicating this PTE has a valid address 

PR OT-four protection bits 

Note that there is no reference or use bit. Hence, a page-replacement 
algorithm such as LRU must rely on the modify bit or some software technique 
to measure usage. Rather than simply a kernel/user protection structure, th~ 
VAX uses a four-level structure consisting of kernel, executive, supervisor, and 
user. The four protection bits in the PTE contain 16 encodings of selected 
combinations of no access, read-only access, and read-write access, with the four 
security levels. For example, 1001 means read-write access for kernel and 
executive-level processes, read access for supervisor-level processes, and no 

...-access for user-level processes. To further isolate these four levels, each has its 
own stack and its own copy of the stack pointer (R15). • 

The first implementation of this architecture was the V AX-11/780, which 
employs a TLB to reduce address-translation time. Figure 8.28 shows the key 
parameters of this TLB. 

Block size 1 PTE (4 bytes) 

Hit time 1 clock cycle 

Miss penalty (average) 22 clock cycles 

Miss rate 1%-2% 

Cache size 128 PTEs (512 bytes) 

Block selection Random 

Write strategy (Not applicable) 

Block placement 2-way set associative 

FIGURE 8.28 Memory hierarchy parameters of the VAX-11/780 TLB. 

Ex.1035.475DELL



444 8.6 Protection and Examples of Virtual Memory 

Figure 8.29 shows the VAX-11/780 TLB organization, with each step of a 
translation labeled. The TLB uses two-way-set-associative placement; thus, the 
translation begins (steps 1 and 2) by sending a portion of the virtual address 
("index") to both sets to select the two tags that are to be compared. Of course, 
the tag must be marked valid to allow a match. At the same time, the type of 
memory access is checked for a violation (also in step 2) against protection 
information in the TLB. 

For reasons similar to those in the cache case, there is no need to include the 
9 bits of the VAX page offset in the TLB; nor is there reason to include the 6 
address bits to index the TLB. The remaining bits are used in the comparison 
(step 3). The matching address tag sends the corresponding physical address 
through the multiplexer (step 4). The page offset is then combined with the 
physical page frame to form a full physical address (step 5). 

System Page-frame Page 
process address offset 
<1> <17> <5> <9> 

Ta Index 

<1 x1 x1> <17> <21> 
V P M Tag Ph sical address 

I I 

<21> 

Banko 
(64 
blocks) 

(low-order 9 bits 
<9> of address) 

------ 30-bit 
• physical 

--------.address 

(high-order 21 bits 
of address) 

FIGURE 8.29 Operation of the VAX-11/780 TLB during address translation. The five 
steps of a TLB hit are shown as circled numbers. 

There is one unusual feature of the V AX-11/780 TLB: The TLB is further 
subdivided to make sure the process portion of the address occupies no more 
than 50% of the TLB entries. The top 32 entries of each bank are reserved for 
system space, and the bottom 32 are reserved for process space. The most 

Ex.1035.476DELL

444 8.6 Protection and Examples of Virtual Memory

Figure 8.29 shows the VAX-11/780 TLB organization, with each step of a
translation labeled. The TLB uses two-way-set-associative placement; thus, the
translation begins (steps 1 and 2) by sending a portion of the virtual address
(“index’’) to both sets to select the two tags that are to be compared. Of course,
the tag must be marked valid to allow a match. At the sametime, the type of
memory access is checked for a violation (also in step 2) against protection
information in the TLB.

For reasons similar to those in the cache case, there is no need to include the

9 bits of the VAX page offset in the TLB; nor is there reason to include the 6
address bits to index the TLB. The remaining bits are used in the comparison
(step 3). The matching address tag sends the corresponding physical address
through the multiplexer (step 4). The page offset is then combined with the
physical page frame to form a full physical address (step 5).

System Page-frame Page
process address offset
<I> <17> <5> <Q>

Tai Index

<Ixixl> <17> <21>
VP M_ Tag Physical address

Bank 0

(64
blocks)

(low-order 9 bits
<9> of address)

30-bit

. physical
2:1 address

(high-order 21 bits
of address)

Bank1

(64
blocks)

 
FIGURE 8.29 Operation of the VAX-11/780 TLB during address translation. The five
steps of a TLB hit are shown ascircled numbers.

There is one unusual feature of the VAX-11/780 TLB: The TLB is further

subdivided to make sure the process portion of the address occupies no more
than 50% of the TLB entries. The top 32 entries of each bank are reserved for
system space, and the bottom 32 are reserved for process space. The most

DELL Ex.1035.476



Memory-Hierarchy Design 445 

significant bit of the address is used to select the appropriate half of the TLB 
(step 1). Since the system portion of the address space is the same for all pro
cesses, a process switch invalidates only the lower 32 entries of each bank for 
the VAX-11/780 TLB. This restriction had two goals. The first was to reduce the 
process-switch time by reducing the number of TLB entries that had to be inval
idated; the second was to improve performance by preventing the system or user 
process from throwing out the other's translations when process switches were 
frequent. Splitting the TLB will usually lead to higher overall TLB miss rate, but 
may reduce the peak TLB miss rate in heavily process-switching environments. 

A Segmented Virtual Memory Example: Protection 
in the Intel 80286/80386 

The second system is the most dangerous system a man ever designs . ... The 
general tendency is to over-design the second system, using all the ideas and 
frills that were cautiously sidetracked on the first one. 

F. P. Brooks, Jr., The Mythical Man-Month (1975) 

The original 8086 used segments for addressing, yet it provided nothing for 
virtual memory or for protection. Segments had base registers but no bound 
registers and no access checks; and before a segment register could be loaded 
the corresponding segment had to be in physical memory. Intel's dedication to 
virtual memory and protection is evident in subsequent models, with a few fields 
extended to support larger addresses. 

Like the VAX, the 80286 has four levels of protection. The innermost level 
(0) corresponds to VAX kernel mode, and the outermost level (3) corresponds to 
VAX user mode. The 80286 also follows the VAX by having separate stacks for 
each level to avoid security breaches between the levels. There are also data 
structures analogous to VAX page tables that contain the physical addresses for 
segments, as well as a list of checks to be made on translated addresses. 

The Intel designers did not stop there. The 80286 divides the address space, 
allowing both the operating system and the user access to the full space. The 
80286 user can call an operating system routine in this space and even pass pa
rameters to it retaining full protection. This is not a trivial action, since the stack 
for the operating system is different from the user's stack. Moreover, the 80286 
allows the operating system to maintain the protection level of the called routine 
for the parameters that are passed to it. This potential loophole in protection is 
prevented by not allowing the user to ask the operating system to access 
something indirectly that he would not have been able to access himself. Such 
security loopholes are called Trojan horses. 

The 80286 designers were guided by the principle of trusting the operating 
system as little as possible, while supporting sharing and protection. As an 
example of the use of such protected sharing, suppose a payroll program writes 
checks and also updates the year-to-date information on total salary and benefits 
payments. Thus, we want to give the program the ability to read the salary and 

Ex.1035.477DELL



446 8.6 Protection and Examples of Virtual Memory 

year-to-date information and modify the year-to-date information but not the 
salary. We shall see the mechanism to support such features shortly. In the rest 
of this section we will look at the big picture of the 80286 protection and exam
ine its motivation. Readers interested in the detailed picture can find it in a com
prehensive book by Crawford and Gelsinger [1987]. 

Adding Bounds Checking and Memory Mapping 

The first step in enhancing the 80286 was getting the segmented addressing to 
check bounds as well as supply a base. Rather than a base address, as in the 
8086, segment registers in the 80286 contain an index to a virtual memory data 
structure called a descriptor table. Descriptor tables play the role of page tables 
in the VAX. On the 80286 the equivalent of a page-table entry is a segment 
descriptor. It contains fields found in PTEs: 

A present bit-equivalent to the PTE valid bit, used to indicate this is a valid 
translation 

A base field-equivalent to a page-frame address, containing the physical 
address of the first byte of the segment 

An access bit-like the reference bit or use bit in some architectures that is 
helpful for replacement algorithms 

An attributes field-like the protection field in the VAX PTE, which speci
fies the valid operations and protection levels for operations that use this 
segment 

There is also a limit field, not found in paged systems, which establishes the 
upper bound of valid offsets for this segment. Figure 8.30 shows examples of 
80286 segment descriptors. 

Adding Sharing and Protection 

The Intel designers' next step was to provide for protected sharing. Like the 
VAX, half of the address space is shared by all processes and half is unique to 
each process, called global address space and local address space, respectively. 
Each half is given a descriptor table with the appropriate name. A descriptor 
pointing to a shared segment is placed in the global-descriptor table, while a 
descriptor for a private segment is placed in the local-descriptor table. 

A program loads an 80286 segment register with an index to the table and a 
bit saying which table it desires. The operation is checked according to the 
attributes in the descriptor, the physical address being formed by adding the off
set in the CPU to the base in the descriptor, provided the offset is less than the 
limit field. Unlike the encoding of operations and levels in the VAX PTE, every 
segment descriptor has a separate two-bit field to give the legal access level of 
this segment. A violation occurs only if the program tries to use a segment with 
a lower protection level in the segment descriptor. 

Ex.1035.478DELL



Memory-Hierarchy Design 447 

We can now show how to invoke the payroll program to update the year-to
date information without allowing it to update salaries. The program could be 
given a descriptor to the information that has the writable field clear, meaning it 
can read but not write the data. A trusted program can then be supplied that will 
only write the year-to-date information and is given a descriptor with the 
writable field set (Figure 8.30). The payroll program invokes the trusted code 
using a code-segment descriptor with the conforming field set (Figure 8.30). 
This means the called program takes on the privilege level of the code being 
called rather than the privilege level of the caller. Hence, the payroll program 
can read the salaries and call a trusted program to update the year-to-date totals, 
yet the payroll program cannot modify the salaries. If a Trojan horse exists in 
this system, to be effective it must be located in the trusted code whose only job 
is to update the year-to-date information. The argument for this style of protec
tion is that limiting the scope of the vulnerability enhances security. 

8 bits 24bits 

Base 

Code segment 

Present DPL 11 Conforming 

Present DPL 1 O Expand down 

8 bits 8 bits 

Word 
count 

16 bits 

Destination selector 

Present DPL O 

16 bits 

Limit 

Readable Accessed 

Writable Accessed 

16 bits 

Destination offset 

00100 

FIGURE 8.30 The 80286 segment descriptors are all 48 bits long and are distin
guished by bits in the attributes field. Base, limit, present, readable, and writable are all 
self-explanatory. DPL means descriptor privilege level-this is checked against the code 
privilege level to see if the access will be allowed. Conforming says the code takes on the 
privilege level of the code being called rather than the privilege level of the caller; it is used 
for library routines. The expand-down field flips the check to let the base field be the high
water mark and the limit field be the low-water mark. As one might expect, this is used for 
stack segments that grow down. Word count controls the number of words copied from the 
current stack to the new stack on a call gate. The other two fields of the call-gate descriptor, 
destination selector and destination offset, select the descriptor of the destination of the call 
and the offset into it. There are many more than these three segment descriptors in the 
80286. The principal change in the 80386 was to lengthen the base by eight bits and the 
limit by four bits. 

Ex.1035.479DELL

Memory-Hierarchy Design 447 

We can now show howto invoke the payroll program to update the year-to-
date information without allowing it to update salaries. The program could be
given a descriptor to the information that has the writable field clear, meaning it
can read but not write the data. A trusted program can then be supplied that will
only write the year-to-date information and is given a descriptor with the
writable field set (Figure 8.30). The payroll program invokes the trusted code
using a code-segment descriptor with the conforming field set (Figure 8.30).
This means the called program takes on the privilege level of the code being
called rather than the privilege level of the caller. Hence, the payroll program
can read the salaries and call a trusted program to update the year-to-date totals,
yet the payroll program cannot modify the salaries. If a Trojan horse exists in
this system,to be effective it must be located in the trusted code whose only job
is to update the year-to-date information. The argumentforthis style of protec-
tion is that limiting the scope of the vulnerability enhancessecurity.

. 24 bits 16 bits

Attributes

Code segment

Data segment

8 bits 8 bits . 16 bits 16 bits

coun

Call gate

Ic
 
FIGURE 8.30 The 80286 segment descriptors are all 48 bits long and are distin-
guishedbybits in the attributes field. Base, limii, present, readable, and writable are all
self-explanatory. DPL means descriptor privilege level—this is checked against the code
privilege level to see if the accesswill be allowed. Conforming says the code takes on the
privilege level of the code being called rather than the privilege level of the caller; it is used
for library routines. The expand-downfield flips the check to let the base field be the high-
water mark andthe limit field be the low-water mark. As one might expect, this is used for
stack segments that grow down. Word count controls the number of words copied from the
current stack to the new stack on a call gate. The other twofields of the call-gate descriptor,
destination selector and destination offset, select the descriptor of the destination of the call
andthe offset into it. There are many more than these three segment descriptors in the
80286. The principal change in the 80386 wasto lengthen the base by eight bits and the
limit by tourbits.

DELL Ex.1035.479



448 8.6 Protection and Examples of Virtual Memory 

Adding Safe Calls from User to OS Gates and 
Inheriting Protection Level for Parameters 

Allowing the user to jump into the operating system is a bold step. How, then, 
can a hardware designer increase the chances of a safe system without trusting 
the operating system or any other piece of code? The 80286 approach is to 
restrict where the user can enter a piece of code, to safely place parameters on 
the proper stack, and to make sure the user parameters don't get the protection 
level of the called code. 

To restrict entry into others' code, the 80286 provides a special segment 
descriptor, or call gate, identified by a bit in the attributes field. Unlike other 
descriptors, call gates are full physical addresses of an object in memory; the 
offset supplied by the CPU is ignored. As stated above, their purpose is to pre
vent the user from randomly jumping anywhere into a protected or more- privi
leged code segment. In our programming example, this means the only place the 
payroll program can invoke the trusted code is at the proper boundary. This is 
needed to make conforming segments work as intended. 

What happens if caller and callee are "mutually suspicious," so that neither 
trusts each other? The solution is found in the word-count field in the bottom 
descriptor in Figure 8.30 (page 447). When a call instruction invokes a call-gate 
descriptor, the descriptor will copy the number of words specified in the 
descriptor from the local stack onto the stack corresponding to the level of this 
segment. This allows the user to pass parameters by first pushing them onto the 
local stack. The hardware then safely transfers them onto the correct stack. A 
return from a call gate will pop the parameters off both stacks and copy any 
return values to the proper stack. 

This still leaves open the potential loophole of having the operating system 
use the user's address, passed as parameters, with the operating system's secu
rity level, instead of with the user's level. The 80286 solves this problem by 
dedicating two bits in every CPU segment register to the requested protection 
level. When an operating system routine is invoked, it can execute an instruction 
that sets this two-bit field in all address parameters with the protection level of 
the user that called the routine. Thus, when these address parameters are loaded 
into the segment registers, they will set the requested protection level to the 
proper value. The 80286 hardware then uses the requested protection level to 
prevent any foolishness: No segment can be accessed from the system routine 
using those parameters if it has a more-privileged protection level than 
requested. 

Summary: Protection on the VAX Versus the 80286 

If the 80286 protection model looks harder to build than the VAX model, that's 
because it is. This effort must be especially frustrating for the 80286 engineers, 
since most customers just use the 80286 as a fast 8086 and don't exploit the 
elaborate protection mechanism. Also, the fact that the protection model is a 

Ex.1035.480DELL



Memory-Hierarchy Design 449 

mismatch for the simple paging protection of UNIX means it will be used only 
by someone writing an operating system specially for this computer. OS/2 from 
Microsoft is the best candidate, but only time will tell whether the performance 
cost of such protection is justified for a personal-computer operating system. 
Two questions remain: Will the considerable protection-engineering effort, 
which must be borne by each generation of the 80x86 family, be put to good use, 
and will it prove any safer in practice than a paging system? 

8. 7 I More Optimizations Based on 
Program Behavior 

Making the frequent case fast is the inspiration for almost all inventions aimed at 
improving performance. In this section are two more examples of hardware 
optimized to program behavior. The first fetches instructions before they are 
needed, and the second avoids saving registers to memory on procedure calls. 

lnstruction-Prefetch Buffers 

Many machines use an instruction-pref etch buffer to take advantage of the nor
mal sequential execution of instructions. Typically, an instruction buffer con
tains two to eight sequential instructions; as each instruction is consumed by the 
CPU, a subsequent instruction word is prefetched. Prefetching only makes sense 
if the memory system can deliver instructions much faster than the CPU can 
consume them; otherwise the buffer cannot get ahead of the CPU. This can be 
accomplished by having a wider path that fetches more than one instruction at a 
time, or by simply having a faster memory system than the CPU. The drawback 
to instruction buffers is that they increase memory traffic by requesting words of 
instructions that may never be needed by the CPU, as is the case when a branch 
is taken. Instruction-prefetch buffers are also useful for aligning variable-sized 
instructions. 

The 8-byte instruction-prefetch buffer (IB) of the VAX-11/780, shown in 
Figure 8.31 (page 450), will serve as an example. The opcode of the current 
instruction is in the high-order byte of the IB; as pieces of the instruction are 
consumed, the whole buffer is shifted to the left by the appropriate amount. The 
left-most byte can correspond to any byte address, while the rest of the bytes in 
the IB must be sequential. The Vs in the figure represent a valid bit per byte of 
the instruction buffer and indicate the sequential bytes that contain valid instruc
tions. 

The IB tries to stay ahead of the PC. Whenever at least one byte is free in the 
IB, a read is requested for an aligned 32-bit word that contains that byte; only 
32-bit words are prefetched from the memory. When the 32-bit prefetched word 
arrives, the IB loads as much of it as it has space for. A 32-bit instruction word 
therefore takes between one and four fetches from memory, depending on luck. 

Ex.1035.481DELL



450 8. 7 More Optimizations Based on Program Behavior 

When the PC changes due to a branch or interrupt, the IB may have 
prefetched one or two unneeded instructions. The PC change causes all the valid 
bits to be turned off, and the IB is reloaded. Section 8.9 examines the perfor-
mance impact of the IB. · 

PC 18 address 

\) 
v v v v v v v v 

Cache 

FIGURE 8.31 The VAX-11/780 instruction-prefetch buffer. Every byte has a valid bit to 
determine the number of consecutive bytes that have valid instructions. The instruction 
decoder can read the top four bytes of the buffer in a single clock cycle. 

Registers and Register Windows 

Figures 3.28 and 3.29 (pages 117-118) in Chapter 3 show that saving registers 
on procedure calls and restoring them on returns can account for 5% to 40% of 
the data memory references. As an alternative, several banks of registers can be 
used, with a new one allocated on each call. Although this could limit the depth 
of procedure calls, the limitation is avoided by operating the banks as a circular 
buffer, providing unlimited depth. !his technique has been termed register 
windows. 

Figure 8.32 shows the essence of the idea. On the x axis is time, measured in 
procedure calls or returns; on the y axis is the depth or nesting of procedure 
calls. Each call moves down the y axis, and each return moves up. The boxes 
show memory being accessed to save some of the buffer, either when it is full 
and is followed by a call (window overflow) or when it is empty and is followed 
by a return (window underflow). The figure shows eight window overflows and 
two window underflows during this section of program execution. Over the life 
of the program the number of overflows and underflows will equalize. 

One might well ask what the trade-off is between buffer size and overflows or 
underflows. Figure 8.33 shows the shape of the curve for several programs writ
ten in several programming languages. The knee of the curve seems to be six to 
eight banks. While this holds for most programs, the optimization is based on 

Ex.1035.482DELL

450 ‘8.7. More Optimizations Based on Program Behavior

When the PC changes due to a branch or interrupt, the IB may have
prefetched one or two unneededinstructions. The PC change causes all the valid
bits to be turned off, and the IB is reloaded. Section 8.9 examines the perfor-
mance impactofthe IB.

PC IB address

 
FIGURE 8.31 The VAX-11/780 instruction-prefetch buffer. Every byte has a valid bit to
determine the numberof consecutive bytes that have valid instructions. The instruction
decoder. can read the top four bytes of the buffer in a single clock cycle.

Registers and Register Windows

Figures 3.28 and 3.29 (pages 117-118) in Chapter 3 show that saving registers
on procedure calls and restoring them on returns can account for 5% to 40% of
the data memory references. As an alternative, several banks of registers can be
used, with a new oneallocated on each call. Although this could limit the depth
of procedure calls, the limitation is avoided by operating the banksas a circular
buffer, providing unlimited depth. This technique has been termed register
windows.

Figure 8.32 showsthe essence of the idea. On the x axis is time, measured in
procedure calls or returns; on the y axis is the depth or nesting of procedure
calls. Each call moves downthe y axis, and each return moves up. The boxes
show memory being accessed to save some of the buffer, either when it is full
and is followed by a call (window overflow) or whenit is empty andis followed
by a return (window underflow). The figure shows eight window overflows and
two window underflows during this section of program execution. Overthe life
of the program the numberof overflows and underflowswill equalize.

- One might well ask whatthe trade-off is between buffer size and overflows or
underflows. Figure 8.33 shows the shape of the curve for several programs writ-
ten in several programming languages. The knee of the curve seemsto be six to
eight banks. While this holds for most programs, the optimization is based on

DELL Ex.1035.482



Memory-Hierarchy Design 451 

t Time (in units of procedure call/returns) 

Return 

call 

i 
Nesting 
depth 

FIGURE 8.32 Change in procedure nesting depth over time. The boxes show proce
dure calls and returns inside the buffer before a window overflow or underflow. The pro
gram starts with three calls, a return, a call, a return, three calls, and then a window 
overflow. 

I 

Percentage of 
calls that 

60% 

50% 

40% 

overflow 30% 

20% 

10% 

0% 
2 4 6 8 10 12 14 16 

Number of register banks 

FIGURE 8.33 Number of banks or windows of registers versus overflow rate for 
several programs in C, LISP, and Smalltalk. The programs measured for C include a C 
compiler, a Pascal interpreter, troff, a sort program, and a few UNIX utilities [Halbert and 
Kessler 1980].The LISP measurements include a circuit simulator, a theorem prover, and 
several small LISP benchmarks [Taylor et al. 1986]. The Smalltalk programs come from the 
Smalltalk macro benchmarks [McCall 1983] which include a compiler, browser, and decom
piler [Blakken 1983 and Ungar 1987]. 

program-specific patterns of calls and returns that might be quite different in. 
some other programs. The worst case for register windows would be hundreds of 
calls followed by hundreds of returns. This would make Figure 8.32 look like 
seismograph output during an earthquake, and the performance impact would be 
just as devastating! 

Ex.1035.483DELL

Memory-Hierarchy Design 451

{ Time (in units of procedure call/returns)

 
FIGURE 8.32 Changein procedure nesting depth over time. The boxes show proce-
dure calls and returns inside the buffer before a window overflow or underflow. The pro-
gram starts with three calls,-a return, a call, a return, three calls, and then a window
overflow.

Percentage of
calls that
overflow

Numberof register banks

 
FIGURE 8.33 Numberof banks or windowsof registers versus overflow rate for
several programsin C, LISP, and Smalltalk. The programs measured for C include a C
compiler, a Pascal interpreter,troff, a sort program, and a few UNIXutilities [Halbert and
Kessler 1980].The LISP measurements includea circuit simulator, a theorem prover, and
several small LISP benchmarks [Taylor et al. 1986]. The Smailtalk programs come from the
Smalltalk macro benchmarks [McCall 1983] which include a compiler, browser, and decom-
piler [Blakken 1983 and Ungar 1987].

program-specific patterns of calls and returns that might be quite different in.
some other programs. The worst case for register windows would be hundreds of
calls followed by hundreds of returns. This would make Figure 8.32 look like
seismograph output during an earthquake, and the performance impact would be
just as devastating!

DELL Ex.1035.483



452 8.7 More Optimizations Based on Program Behavior 

Window 
number: 

n -1 

r31 

r26 

r25 

..... 
r16 
r15 

r10 

r9 

rO 

n 

r31 

r26 

r25 

..... 
r16 
r15 

r10 

r9 

rO 

n + 1 

Windown overlaps with caller 

Windown I ocals 

r31 Window n overlap with callee 

r26 

r25 

..... 
r16 
r15 

r10 

r9 
Globals 

rO 

FIGURE 8.34 Parameters can be passed in registers if there are common registers 
between two banks or windows. This scheme divides registers into globals, which don't 
change on a procedure call, and locals, which do change. By having an overlap between 
locals for adjacent procedure calls and renumbering the registers on a call, the outgoing 
parameters of the caller become the incoming parameters of the callee. For example, a 
value placed in register 15 before a call is in register 31 after the call. 

The difficulty of passing parameters in registers presents a drawback: If each 
procedure has its own unique set of registers, then nothing is common. This can 
be overcome by overlapping the register banks or windows such that there is a 
common area in which to pass parameter~. Figure 8.34 shows one such design. 
Six registers overlap each window, with R15 to RlO of the caller's registers 
]?ecoming R31 to R26 after the call. Ten registers are not included in the win
dows, so there are 16 (32 - 10 - 6) registers per window even though each 
procedure sees 32 registers at a time. 

From Figure 8.33 we can estimate the percentage of calls that overflow the 
windows or returns that underflow them, but to understand the impact on per
formance we must know the cost an overflow or underflow. With an overlapping 
register design, like the one on SP ARC, the cost is saving 16 registers on an 
overflow (or restoring 16 registers on an UIJ.derflow) plus the cost of interrupt. 
On the Sun 4 today it takes about 60 clock cycles for an overflow or underflow. 

Ex.1035.484DELL



I 

Memory-Hierarchy Design 453 

The Pros and Cons of Register Windows 

Depending on the application, programming language, and user practices, the 
compiler can close the gap between machines with and without register win
dows. Most machines, for example, have separate floating-point registers, which 
means that floating-point-intensive programs will be unaffected by register win
dows. Also, many data references are to objects that cannot be allocated in regis
ters, like arrays or structures (see Figures 3.28 and 3.29 on pages 117-118 of 
Chapter 3). 

An optimization called interprocedural register allocation allows more intel
ligent allocation of registers across procedure boundaries. Unfortunately, inter
procedural register allocation works best when procedures are compiled or 
linked at the same time. Long compilation and link time do not match the em
phasis on a rapid debug-edit-compile cycle in current dynamic languages like 
LISP and Smalltalk. Interprocedural register allocation is not generally appli
cable to object-oriented languages like Objective C and Smalltalk because in the 
dynamic equivalent of a procedure call the compiler doesn't know which proce
dure will be invoked on such calls. Register windows also simplify some com
piler decisions, since there is no extra cost in using a register that will not be 
saved or restored separately. 

GCC TeX 

Percentage of DLX instructions call or return 1.8% 3.6% 

Registers stored per call 2.3 3.2 

LoadsDLX 3,928,710 2,811,545 

Loads SPARC 3,313,317 2,736,979 

Ratio loads DLX I SP ARC 1.20 1.03 

Stores DLX 2,037,226 1,974,078 

Stores SP ARC 1,246,538 1,401,186 

Ratio stores DLX I SPARC 1.60 1.41 

FIGURE 8.35 Benefits of register windows on loads and stores for non-floating
point programs. The first row shows the percentage of DLX instructions executed that are 
calls or returns. The second row shows the average number of register saves and restores 
per call on the DLX architecture with optimization level 02. The following rows show the 
total number of loads and stores for each optimization and for the SPARC architecture, 
which has register windows. The data below includes the loads and stores due to window 
overflow and window underflow. GCC executes about 20% more loads and 60% more 
stores on DLX than on a machine with register windows, while TeX executes about 3% 
more loads and 41 % more stores. These savings correspond to about 7% of the instruction 
count for GCC and 5% for TeX. How this translates into memory-system performance 
depends on the details of the rest of the memory hierarchy. lnterprocedural register alloca
tion closes this gap. For example, using 03 optimization on TeX reduces the number of 
DLX loads by 5% to 2,671,631 and the number of stores by 10% to 1,791,831. Note that 
the inputs for these programs were not the same as those used in Chapters 2 or 4. (Spice 
was not included because register windows offer no benefit for floating-point programs.) 

Ex.1035.485DELL

Memory-Hierarchy Design 453

The Pros and Consof Register Windows
Depending on the application, programming language, and user practices, the
compiler can close the gap between machines with and without register win-
dows. Most machines, for example, have separate floating-point registers, which
meansthat floating-point-intensive programs will be unaffected by register win-
dows. Also, many data references are to objects that cannotbe allocated in regis-
ters, like arrays or structures (see Figures 3.28 and 3.29 on pages 117-118 of
Chapter3).

Anoptimization called interproceduralregister allocation allows more intel-
ligent allocation of registers across procedure boundaries. Unfortunately, inter-
procedural register allocation works best when procedures are compiled or
linked at the same time. Long compilation and link time do not match the em-
phasis on a rapid debug-edit-compile cycle in current dynamic languages like
LISP and Smalltalk. Interprocedural register allocation is not generally appli-
cable to object-oriented languageslike Objective C and Smalltalk because in the
dynamic equivalent of a procedure call the compiler doesn’t know which proce-
dure will be invoked on such calls. Register windowsalso simplify some com-
piler decisions, since there is no extra cost in using a register that will not be
saved or restored separately.

 
GCC —™~—=«S™TX

Percentage of DLX instructionscall or return 1.8% 3.6%

Registers stored per call 2.3 3.2

Loads DLX 3,928,710 2,811,545

Loads SPARC 3,313,317 2,736,979

Ratio loads DLX / SPARC 1.20 1.03

Stores DLX 2,037 ,226 1,974,078

Stores SPARC 1,246,538 1,401,186

Ratio stores DLX / SPARC 1.60 1.41

FIGURE 8.35 Benefits of register windows on loads and stores for non—floating-
point programs. Thefirst row shows the percentage of DLX instructions executed that are
calls or returns. The second row shows the average numberof register saves and restores
per call on the DLX architecture with optimization level O2. The following rows show the
total numberof loads and stores for each optimization and for the SPARC architecture,
which hasregister windows. The data below includes the loads and stores due to window
overflow and window underflow. GCC executes about 20% more loads and 60% more

stores on DLX than on a machine with register windows, while TeX executes about 3%
more loads and 41% more stores. These savings correspond to about 7% of the instruction
count for GCC and 5% for TeX. Howthis translates into memory-system performance
dependsonthe details of the rest of the memory hierarchy. Interprocedural register alloca-
tion closes this gap. For example, using O3 optimization on TeX reduces the numberof
DLX loads by 5% to 2,671,631 and the numberof stores by 10%to 1,791,831. Note that
the inputs for these programs were not the same as those used in Chapters 2 or 4. (Spice
was not included becauseregister windowsoffer no benefit for floating-point programs.)

DELL Ex.1035.485



454 8.7 More Optimizations Based on Program Behavior 

The danger of register windows is that the larger number of registers could 
slow down the clock rate. So far, this has not been the case for commercial 
machines. The SPARC architecture (with register windows) and the MIPS 
R2000 architecture (without) are contemporary machines built in several tech
nologies. The SP ARC clock rate has not been slower than MIPS for implementa
tions in similar technologies, probably because cache-access times dominate 
register-access times in implementations to date of either architecture. A second 
concern is the impact of register windows on process-switch time. Sun Micro
systems has found that UNIX operating system vagaries dominate process
switch time, and less than 20% of the process-switch time is spent on saving or 
restoring registers. Figure 8.35 (page 453) compares some measures of the 
benefits of register windows on our benchmark programs. 

8.8 I Advanced Topics-Improving Cache-Memory 
Performance 

This section covers advanced topics in cache memories, going through new 
ideas at a much quicker pace than previous sections. The central points of this 
chapter are not lost if this section is skipped; in fact, the Putting It All Together 
section that follows is independent of this material. 

The increasing gap between CPU and main memory speeds has attracted the 
attention of many architects. After making some easy decisions in the beginning, 
the architect faces a threefold dilemma when attempting to further reduce aver
age access time: 

• Increasing block size doesn't improve average access time; the lower miss 
rate doesn't offset the higher miss penalty. 

• Making the cache bigger would make it slower, jeopardizing the CPU clock 
rate. 

• Making the cache more associative would also make it slower, again jeopar-
dizing the CPU clock rate. 

Moreover, the miss rate calculated from user programs paints too rosy a picture. 
Figure 8.36 shows the real cache miss rate for a running program, including the 
operating system code invoked by the programs. This reveals the average access 
time to be worse than expected. 

This section covers a plethora of techniques for improving cache perfor
mance: subblock placement, write buffers, out-of-order fetching, virtually 
addressed caches, two-level caches, and issues relating to cache coherency. The 
cache-coherency sections include an example of the stale-data problem, a survey 
of coherency alternatives, an example cache protocol, a synchronization 
algorithm used in cache coherent multiprocessors, a timeline showing multi
processor synchronization, and comments about the impact of memory consis
tency on parallel processors. 

Ex.1035.486DELL



Memory-Hierarchy Design 

14% 

12% 

10% 

0% 

\ 

5.6% 

4K SK 16K 32K 64K 128K 256K 512K 1024K 

Cache size 

• System miss rate D System-user conflict lllJ User miss rate 
miss rate 

455 

FIGURE 8.36 The miss rate of a program, including the operating system code it 
invokes, versus cache size. The top category is what would be measured from a user 
trace; the bottom category is the miss rate for the operating system code; and the middle 
category is the miss rate due to conflicts between the user code and system code. Agarwal 
[1987] collected these statistics for the Ultrix operating system running on a VAX, assuming 
direct-mapped caches with a block size of 16 bytes. 

Reducing Hit Times-Making Writes Faster 

As mentioned before, writes usually take more than one clock cycle because the 
tag must be checked before writing the data. There are two ways to do faster 
writes. 

~ 
Ex.1035.487DELL

Memory-Hierarchy Design 455

0.9%} 1.1%

0.6%Ee0.9%
° 110.8%)=0.8%I 10.8%

0.3%0FEE 999,F|0.2961 10.2%

1.2% 1ofa 1.0%) 1.0%

32K 64K 128K 256K 512K 1024K

Cachesize

Bg System miss rate O System-userconflict [EI Usermiss rate
miss rate

 
FIGURE 8.36 The miss rate of a program, including the operating system codeit
invokes, versus cachesize. The top category is what would be measured from a user
trace; the bottom category is the miss rate for the operating system code; and the middle
category is the miss rate due to conflicts between the user code and system code. Agarwal
[1987] collected thesestatistics for the Ultrix operating system running on a VAX, assuming
direct-mapped cacheswith a block size of 16 bytes.

Reducing Hit Times—Making Writes Faster

_ As mentioned before, writes usually take more than one clock cycle because the
tag must be checked before writing the data. There are two waysto do faster
writes. ,

DELL Ex.1035.487



456 8.8 Advanced Topics-Improving Cache-Memory Performance 

The first, used on the VAX 8800, pipelines the writes for a write-through 
cache. Tags and data are split so that they can be addressed independently. As 
usual, the cache compares the tag with the current write address. The difference 
is that the memory access during this comparison uses the address and data from 
the previous write. Therefore, writes can be performed back to back at one per 
clock cycle because the CPU does not have to wait for the write to the cache if 
the first stage is a hit. The 8800 pipeline does not affect read hits-the second 
stage of the write occurs during the first stage of the next write or during a cache 
miss. 

Another way of reducing writes to one clock cycle involves caches that must 
be direct mapped, using a technique known as subblock placement. Like the 
V AX-11/780 instruction buffer, there is a valid bit on units smaller than the full 
block, called subblocks. The valid bits specify some parts of the block as valid 
and some parts as invalid. A match of the tag doesn't mean the word is necessar
ily in the cache, as the valid bits for that word must also be on. Figure 8.37 gives 
an example. Note that for caches with subblock placement a block can no longer 
be defined as the minimum unit transferred between cache and memory. For 
such caches a block is defined as the unit of information associated with an 
address tag. 

Tag v v v v 

100 

300 

200 

204 

FIGURE 8.37 In this example there are four subblocks per block. In the first block 
(top) all the valid bits are on, equivalent to the valid bit being on for a block in a normal 
cache. In the last block (bottom), the opposite is true; no valid bits are on. In the second 
block, locations 300 and 301 are valid and will be hits, while locations 302 and 303 will be 
misses. For the third block, locations 201 and 203 are hits. If, instead of this organization, 
there were 16 blocks the size of the subblock, 16 tags would be needed instead of 4. 

Subblock placement was invented to reduce the long miss penalty of large 
blocks (since only a part of a large block need be read) and to reduce the tag 
storage for small caches. It can also help write hits by always writing the word 
(no matter what happens with the tag match), turning the valid bit on, and then 
sending the word to memory. Let's look at the cases to see why this trick works: 

Ex.1035.488DELL

456 - 8.8 Advanced Topics—Improving Cache-Memory Performance 

The first, used on the VAX 8800, pipelines the writes for a write-through
cache. Tags and data are split so that they can be addressed independently. As
usual, the cache compares the tag with the current write address. The difference
is that the memory access during this comparison uses the address and data from
the previous write. Therefore, writes can be performed back to back at one per
clock cycle because the CPU does not have to wait for the write to the cache if
the first stage is a hit. The 8800 pipeline does not affect read hits—the second
stage of the write occurs duringthe first stage of the next write or during a cache
miss.

Another way of reducing writes to one clock cycle involves caches that must
be direct mapped, using a technique known as subblock placement. Like the
VAX-11/780 instruction buffer, there is a valid bit on units smaller than the full

block, called subblocks. The valid bits specify some parts of the block as valid
and someparts as invalid. A match of the tag doesn’t mean the word is necessar-
ily in the cache,as the valid bits for that word must also be on. Figure 8.37 gives
an example. Note that for caches with subblock placementa block can no longer
be defined as the minimum unit transferred between cache and memory. For
such caches a block is defined as the unit of information associated with an

addresstag.

Subblocks
 
FIGURE 8.37 In this example there are four subblocks perblock.In thefirst block
(top) all the valid bits are on, equivalent to the valid bit being on for a block in a normal
cache.In the last block (bottom), the oppositeis true; no valid bits are on. In the second
block, locations 300 and 301 are valid and will be hits, while locations 302 and 303 will be
misses. Forthe third block, locations 201 and 203 arehits.If, instead of this organization, .
there were 16 blocksthe size of the subblock, 16 tags would be neededinsteadof4.

Subblock placement was invented to reduce the long miss penalty of large
blocks (since only a part of a large block need be read) and to reduce the tag
storage for small caches.It can also help write hits by always writing the word
(no matter what happens with the tag match), turning the valid bit on, and then
sending the word to memory. Let’s look at the cases to see whythistrick works:

DELL Ex.1035.488



Example 

Answer 

Memory-Hierarchy Design 457 

• Tag match and valid bit already set. Writing the block was the proper action, 
and nothing was lost by setting the valid bit on again. 

• Tag match and valid bit not set. The tag match means that this is the proper 
block; writing the data into the block makes it appropriate to tum the valid bit 
on. 

• Tag mismatch. This is a miss and will modify the data portion of the block. 
However, as this is a write-through cache, no harm was done; memory still 
has an up-to-date copy of the old value. Only the tag to the address of the 
write need be changed because the valid bit has already been set. If the block 
size is one word and the store instruction is writing one word, then the write 
is complete. When the block is larger than a word or if the instruction is a 
byte or halfword store, then either the rest of the valid bits are turned off 
(allocating the subblock without fetching the rest of the block) or memory is 
requested to send the missing part of the block (write allocate). 

This trick isn't possible with a write-back cache because the only valid copy of 
the data may be in the block, and it could be overwritten before checking the tag. 

Reducing Miss Penalty-Making Write Misses 
Faster 

Now that we have seen how to make write hits faster, let's look at write misses. 
With a write-through cache the most important improvement is a write buffer 
(page 416) of the proper size (see the fallacy on page 482 in Section 8.10). Write 
buffers, however, do complicate things in that they might have the updated value 
of a location needed on a read miss. 

Look at this code sequence: 

SW 512 (RO) ,R3 ; M[512] f- R3 (cache index 0) 

LW Rl, 1024 (RO) ; Rl f-M[1024] (cache index 0) 

LW R2, 512 (RO) ; R2 f-M[512] (cache index 0) 

Assume a direct-mapped cache that maps 512 and 1024 to the same block, and a 
four-word write buffer. Will R3 always equal R2? 

Let's follow the cache to see the danger. The data in R3 is placed into the write 
buffer after the store. The following load uses the same cache index and is there
fore a miss. We then try to load the data from location 512 into register R2; this 
also results in a miss. If the write buffer hasn't completed writing to location 512 
in memory, the read of location 512 will put the old, wrong value into the cache 
block, and then into R2. Without proper precautions, R3 would not be equal to 
R2! 

Ex.1035.489DELL



458 8.8 Advanced Topics-Improving Cache-Memory Performance 

The simplest way out of this dilemma is for the read miss to wait until t11e 
write buffer is empty. However, a write buffer of a few words in a write-through 
cache will almost always have data in the buffer on a miss, thereby increasing 
the read miss penalty. The designers of the MIPS M/1000 estimated that waiting 
for a four-word buffer to empty would have increased the average read miss 
penalty by 50%. The alternative is to check the contents of the write buffer on a 
read miss, and if there are no conflicts and the memory system is available, let 
the read miss continue. 

The cost of writes in a write-back cache can also be reduced. By just adding a 
full block buffer to store a dirty block, the read can happen first. After the new 
data is loaded into the block, the CPU continues execution. The buffer then 
writes in parallel with the CPU. Similar to the situation above, if a read miss 
occurs the CPU can stall until the buffer is empty. 

Reducing Miss Penalty-Making Read Misses 
Faster 

Making writes faster is helpful, but it is reads that dominate cache accesses. The 
strategy to making read misses faster is to be impatient: Don't wait for the full 
block to be loaded before sending the requested word to the CPU. Here are two 
specific strategies: 

• Early restart-As soon as the requested word of the block arrives, send it to 
the CPU and let the CPU continue execution. 

• Out-of-order fetch-Request the missed word first from memory and send it 
to the CPU as soon as it arrives; let the CPU continue execution while filling 
the rest of the words in the block. Out-of-order fetch is also called wrapped 
fetch. 

Alas, these read tricks are not as important as they sound. Spatial locality-the 
reason for big blocks in the first place-dictates that the next cache request is 
likely to be to the same block. Also, handling another request while trying to fill 
the rest of a block quickly gets complicated. 

A more subtle reason why out-of-order fetch will not be as rewarding as one 
might think is that not all the words of a block have an equal likelihood of being 
accessed first. With a 16-word block in an instruction cache, for example, the 
average block entry point is 2.8 words from the left-most byte. If entries were 
evenly distributed, the average would be 8 words. The high-order word is the 
most likely one, due to sequential accesses from prior blocks on instruction 
fetches and sequentially stepping through arrays for data caches. 

For pipelined machines that allow out-of-order completion using a scoreboard 
or Tomasulo-style control (Section 6.7 of Chapter 6), the CPU need not stall on 
a cache miss, offering another way to reduce memory stalls. Spatial locality sug
gests this optimization (called a lock-up free cache) may be limited in praCtice, 
since again the next reference is likely to be to the same block. 

Ex.1035.490DELL



Memory-Hierarchy Design 459 

Making Cache Hits Faster-Virtually Addressed Caches 

Miss penalty is an important part of average access time, but hit time affects 
both the average access time and the clock rate of the CPU. Helping the hit time 
may therefore help everything. A solution mentioned earlier is to use the physi
cal part of the address to index the cache while sending the virtual address 
through the TLB. The limitation is that a direct-mapped cache can be no bigger 
than the page size. To allow large cache sizes with the 4-KB pages in the Sys
tem/370, IBM uses high associativity so that they can still access the cache with 
a physical index. The IBM 3033, for example, is 16-way set associative, even 
though studies show there is little benefit to miss rates above 4-way set 
associativity. 

20% 0.6% 
0.4% 

18% 

16% 

M 
14% 

s 
12% 

s 

R 10% 
a 
t 
e 8% 

6% 

4% 

2% 

0.3% 

0% 
0.3% 

2K 4K BK 1i3K 32K 64K 128K 256K 512K 1024K 

Cache size 

• Uniprocess DPIDs • Purge I 
FIGURE 8.38 Miss rate versus cache size of a program measured three ways: 
without process switches (uniprocess), with process switches using a process
identifier tag (PIDs), and with process switches but without PIDs (purge). PIDs 
increase the uniprocess absolute miss rate by 0.3 to 0.6 and save 0.6 to 4.3 over purging. 
Agarwal [1987] collected these statistics for the Ultrix operating system running on a VAX, 
assuming direct-mapped caches with a block size of 16 bytes. 

Ex.1035.491DELL

Memory-Hierarchy Design 459

Making CacheHits Faster—Virtually Addressed Caches

Miss penalty is an important part of average access time, but hit time affects
both the average access time and the clock rate of the CPU. Helping the hit time
may therefore help everything. A solution mentionedearlier is to use the physi-
cal part of the address to index the cache while sending the virtual address
through the TLB. The limitation is that a direct-mapped cache can be no bigger
than the page size. To allow large cache sizes with the 4-KB pagesin the Sys-
tem/370, IBM uses high associativity so that they can still access the cache with
a physical index. The IBM 3033, for example, is 16-way set associative, even
though studies show there is little benefit to miss rates above 4-way set
associativity. .

 
 

4K 8K 16K 32K 64K 128K 256K 512K =1024K

Cachesize

a Uniprocess

  
FIGURE 8.38 Miss rate versus cachesize of a program measured three ways:
without process switches (uniprocess), with process switches using a process-
identifier tag (PIDs), and with process switches but without PIDs (purge). PIDs
increase the uniprocess absolute miss rate by 0.3 to 0.6 and save 0.6 to 4.3 over purging.
Agarwal[1987] collected thesestatistics for the Ultrix operating system running on a VAX,
assuming direct-mapped caches with a block size of 16 bytes.

DELL Ex.1035.491



460 8.8 .Advanced Topics-Improving Cache-Memory Performance 

One scheme for fast cache hits without this size restriction is go to a more 
heavily pipelined memory access where the TLB is just one step of the pipeline. 
The TLB is a distinct unit that is smaller than the cache, and thus easily 
pipelined. This scheme doesn't change memory latency, but relies on the effi
ciency of the CPU pipeline to achieve higher memory bandwidth. 

Another alternative is to match on virtual addresses directly. Such caches are 
termed virtual caches. This eliminates the TLB translation time from a cache hit. 
Why doesn't everyone build virtually addressed caches? One reason is that 
every time a process is switched, the virtual addresses refer to different physical 
addresses, requiring the cache to be flushed. Figure 8.38 (page 459) shows the 
impact on miss rates of this flushing. One solution is to increase the width of the 
cache-address tag.with a process-identifier tag (PID). If the operating system 
assigns these tags to processes, it only need flush the cache when a PID is 
recycled (the PID provides protection). Figure 8.38 shows that improvement. 

Another reason why virtual caches are not more universally adopted has to do 
with operating systems and user programs that use two different virtual 
addresses for the same physical address. These duplicate addresses, called 
synonyms or aliases, could result in two copies of the same data in a virtual 
cache; if one is modified, the other will have the wrong value. With a physical 
cache this wouldn't happen, since the accesses would first be translated to the 
same physical cache block. There are hardware schemes, called anti-aliasing, 
that can guarantee every cache block a unique physical address, but software can 
make this much easier by forcing aliases to share some address bits. The version 
of UNIX from Sun Microsystems, for example, requires all aliases to be identi
cal in the last 18 bits of their addresses. Thus, a direct-mapped cache that is 218 

(256K) bytes or smaller can never have duplicate physical addresses for blocks. 
This requirement also simplifies anti-aliasing hardware for larger caches or for 
set-associative cach~s. (Of course, the best software solution from the hardware 
designers perspective is to do away with aliases!) 

The final area of concern with virtual addresses is 1/0. 1/0 typically uses 
physical addresses and thus would require mapping to virtual addresses to inter
act with a virtual cache. (The impact of 1/0 on caches is further discussed 
below.) 

Reducing Miss Penalty-Two-Level Caches 

Let's return our attention to miss penalty. CPUs are getting faster and main 
memories are getting larger, but slower relative to the faster CPUs. The question 
facing the architect is: Should I make the cache faster to keep pace with the 
speed of CPUs, or make the cache larger to overcome the widening gap between 
the CPU and main memory? One answer is: Both. By adding another level of 
cache between the original cache and memory, the first-level cache can be small 
enough to match the clock cycle time of the CPU while the second-level cache 
can be large enough to capture many accesses that would go to main memory. 

Ex.1035.492DELL



Example 

Answer 

Memory-Hierarchy Design 461 

Definitions for a second level of cache are not always straightforward. Let's 
start with the definition of average memory-access time for a two-level cache. 
Using the subscripts Ll and L2 to refer respectively to a first-level and a second
level cache, the original formula is 

Average memory-access time= Hit timeu +Miss rateu *Miss penaltyu 

and 

Miss penaltyu = Hit timeL2 + Miss rateL2 * Miss penaltyL2 
so 

Average memory-access time = Hit timeu + Miss rateu * 

(Hit timeL2 + Miss rateL2 * Miss penaltyL2) 

In this formula, the success of the second-level miss rate is measured on the left
overs from the first-level cache. To avoid ambiguity, these terms are adopted 
here for a two-level cache system: 

• Local miss rate-The number of misses in the cache divided by the total 
number of memory accesses to this cache; this is miss rateL2 above. 

• Global miss rate-The number of misses in the cache divided by the total 
number of memory accesses generated by the CPU; using the terms above, 
this is miss rateu *miss rateL2· 

Suppose that in 1000 memory references there are 40 misses in the first-level 
cache and 20 misses in the second-level cache. What are the various miss rates? 

\ 
The miss rate for the first-level cache is 40/1000 or 4%. The local miss rate for 
the second-level cache is 20/40 or 50%. The global miss rate of the second-level 
cache is 20/1000 or 2%. 

Figure 8.39 (page 462) and Figure 8.40 (page 463) show how miss rates and 
relative execution time change with the size of a second-level cache. Figure 8.41 
(page 463) shows typical parameters of second-level caches. 

With these definitions in place, we can consider the parameters of second
level caches. The foremost difference between the two levels is that the speed of 
the first-level cache affects the clock rate of the CPU, while the speed of the 
second-level cache only affects the miss penalty of the first-level cache. Thus, 
we can consider many alternatives in the second-level cache that would be ill 
chosen for the first-level cache. There is but one consideration for the design of 
the second-level cache: Will it lower the average memory-access-time portion 
of the CPI? 

Ex.1035.493DELL



462 8.8 Advanced Topics-Improving Cache-Memory Performance 

80.0% 

70.0% 

60.0% 
M 
i 50.0% 
s 
s 40.0% 

r 30.0% 
a 
t 20.0% 
e 

10.0% 

100.0% 

M 10.0% 
i 
s 
s 

r 
a 

t 1.0% 
e 

0.1% 

5% 
Local miss rate 

0 

Single cache miss rate 
64 128 256 512 1024 2048 4096 Global miss rate 

Cache size (KB) 

Local miss rate 

Single cache miss rate 
Global miss rate 

4 8 16 32 64 128 256 512 1024 2048 4096 

Cache size (KB) 

FIGURE 8.39 Miss rates versus cache size. The top graph shows the results plotted 
on a linear scale as we have done with earlier figures, while the bottom graph shows 
the results plotted on a log scale. As miss rates shrink the log scale makes the differ
ences easier to follow. The miss rate of a single-level cache versus size is plotted 
against the local miss rate and global miss rate of a second-level cache using a 32-KB 
first-level cache. Second-level caches smaller than the 32-KB first level have high miss 
rates (at least for similar block sizes), as this figure illustrates. After 256 KB the single 
cache and global miss rates are virtually identical. Przybylski [1990] collected these 
data using traces available with this book: four traces from the VAX system and user 
programs and four user programs from the MIPS R2000 that were randomly interleaved 
to duplicate the effect of process switches. 

Ex.1035.494DELL

462

 
8.8 Advanced Topics—improving Cache-Memory Performance

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

20.0% : 5%
Local miss rate

Ye .
” Single cache missrate

128 512 1024 2048 4096 Global miss rate

Cache size (KB)

100.0%

Local miss rate

Single cache miss rate
Global miss rate

32 64 512 1024 2048 4096

Cachesize (KB)

FIGURE 8.39 Miss rates versus cache size. The top graph showsthe results plotted
ona linear scale as we have donewith earlier figures, while the bottom graph shows
the results plotted on a log scale. As miss rates shrink the log scale makesthediffer-
ences easier to follow. The miss rate of a single-level cache versussize is plotted
against the local miss rate and global miss rate of a second-level cache using a 32-KB
first-level cache. Second-level caches smaller than the 32-KBfirst level have high miss
rates (at least for similar block sizes), asthis figure illustrates. After 256 KB the single
cache and global miss rates are virtually identical. Przybylski [1990] collected these
data using traces available with this book: four traces from the VAX system and user
programs and four user programs from the MIPS R2000 that were randomly interleaved
to duplicate the effect of process switches.

DELL Ex.1035.494



Memory-Hierarchy Design 

4096 

2048 

1024 

512 

Level two 
cache 256 
size 
(KB) 128 

64 

32 

16 

8 

4 

1.5 

1.62 

1.62 

1.62 • Level two hit = 4 clock cycles 

Ill Level two hit = 8 clock cycles 
1.64 

1.68 

1.75 

1.84 

2 

2.19 

2.69 

2 2.5 3.0 

Relative execution time 

463 

FIGURE 8.40 Relative execution time by second-level-cache size. Przybylski [1990) 
collected these data using a 32-KB, first-level, write-back cache, varying the size of the 
second-level cache. The two bars are for different clock cycles for a level two cache hit. 
The reference execution time of 1.00 is for a 4096-KB, second-level cache with a one
clock-cycle latency on a second-level hit. He used four traces from the VAX system and 
user programs (available with this book) and four user programs from the MIPS R2000 that 
were randomly interleaved to duplicate the effect of process switches. 

I 

Block (line) size 32 - 256 bytes 

Hit time 4 - 10 clock cycles 

Miss penalty 30 - 80 clock cycles 

(Access time) (14- 18 clock cycles) 

(Transfer time) ( 16 - 64 clock cycles) 

Local miss rate 15%-30% 

Cache size 256KB-4MB 

FIGURE 8.41 Typical values of key memory-hierarchy parameters for second-level 
caches. 

Ex.1035.495DELL

Memory-Hierarchy Design 463 .

 

HB Leveltwo hit = 4 clock cycles

 512 J Level two hit = 8 clock cycles
Level two
cache 256
size

(KB) 128

64

 
32     

  

 
   
 

 

1.5 2

Relative execution time

 
FIGURE 8.40 Relative execution time by second-level—-cachesize. Przybylski [1990]
collected these data using a 32-KB,first-level, write-back cache, varying the size of the
second-level cache. The two bars arefordifferent clock cycles for a level two cachehit.
The reference execution time of 1.00 is for a 4096-KB, second-level cache with a one—
clock-cycle latency on a second-level hit. He used four traces from the VAX system and
user programs(available with this book) and four user programs from the MIPS R2000that
were randomly interleaved to duplicate the effect of process switches.

Block(line) size 32 — 256 bytes

Hit time 4-10 clock cycles

Miss penalty 30 — 80 clock cycles

(Access time) (14 — 18 clock cycles) 

(Transfer time) (16 — 64 clock cycles)

Local miss rate 15% — 30%

Cachesize 256 KB —4 MB ©

  
FIGURE 8.41 Typical values of key memory-hierarchy parameters for second-level
caches.

DELL Ex.1035.495



464 

Example 

Answer 

8.8 Advanced Topics-Improving Cache-Memory Performance 

The initial choice for second-level caches is size. Since everything in the 
first-level cache is likely to be in the second-level cache, the second-level cache 
should be bigger. If second-level caches are just a little bigger, the local miss 
rate will be high. This observation inspires design of huge second-level caches
the size of main memory in recent computers! If the second-level cache is much 
larger than the first-level cache, then the global miss rate is about the same as a 
single-level cache of the same size (see Figure 8.39, page 462). Large size 
means that the second-level cache may have practically no capacity misses, 
leaving compulsory and a few conflict misses for our attention. One question is 
whether set associativity makes more sense for second-level caches. 

Given the data below, what is the impact of second-level-cache associativity on 
the miss penalty? 

• Two-way set associativity increases hit time by 10% of a CPU clock cycle 

• Hit timeL2 for direct mapped = 4 clock cycles 

• Local miss rateL2 for direct mapped = 25 % 

• Local miss rateL2 for two-way set associative= 20% 

• Miss penaltYL2 = 30 clock cycles 

For a direct-mapped, second-level cache, the first-level-cache miss penalty is 

Miss penaltyu = 4 + 25%*30 = 11.5 clock cycles 

Adding the cost of associativity increases the hit cost only 0.1 clock cycles, mak
ing the new first-level-cache miss penalty 

Miss penaltyu = 4.1 + 20%*30 = 10.1 clock cycles 

In reality, second-level caches are almost always synchronized with the first
level cache and CPU. Accordingly, the second-level hit time must be an integrak 
number of clock cycles. If we are lucky, we can shave the second-level hit time 
to four cycles; if not, we can round up to five cycles. Either choice is an im
provement over the direct-mapped, second-level cache: 

Miss penaltyu = 4 + 20%*30 = 10.0 clock cycles 

Miss penaltyu = 5 + 20%*30 = 11.0 clock cycles 

Ex.1035.496DELL



Memory-Hierarchy Design 465 

512 1.95 

256 

Block size of 
128 

second-level 
cache (bytes) 64 

32 

16 

1.00 1.25 1.50 1.75 2.00 

Relative CPU execution time 

FIGURE 8.42 Relative execution time by block size for a two-level cache. Przybylski 
[1990] collected these data using a 512-KB second-level cache. He used four traces from 
the VAX system and user programs (available with this book) and four user programs from 
the MIPS R2000 that were randomly interleaved to duplicate the effect of process switches. 

Higher associativity is worth considering because it has small impact on the 
second-level hit time and because so much of the average access time is due to 
misses. However, for these very large caches the benefits of associativity dimin
ish because larger size has eliminated many conflict misses. 

As long as spatial locality holds there may be a benefit in increasing block 
size. Increasing block size can increase conflict misses with small caches since 
there may ;not be enough places to put data, therefore increasing miss rate. 
Because this is not an issue in large, second-level caches, and because memory
access time is relatively longer, larger block sizes are popular. Figure 8.42 
shows the variation in execution time as the second-level block size changes. 

One final consideration concerns whether all data in the first-level cache is 
always in the second-level cache. If so, the second-level cache is said to have the 
multilevel inclusion property. Inclusion is desirable because consistency 
between 1/0 and caches (or between caches in a multiprocessor) can be deter
mined just by checking the second-level cache. 

The drawback to this natural inclusion is that the lower average memory
access times can suggest smaller blocks for the smaller first-level cache and 
larger blocks for the larger second-level cache. Inclusion can still be maintained 
in this case with a little extra work on a second-level miss: The second-level 
cache must invalidate all first-level blocks that map onto the second-level block 
to be replaced, causing a slightly higher first-level miss rate. 

Ex.1035.497DELL

Memory-Hierarchy Design . 465

Block size of
second-level

cache(bytes)

1.25 1.50 4.75

Relative CPU execution time

 
FIGURE 8.42 Relative execution time by block size for a two-level cache. Przybylski
[1990] collected these data using a 512-KB second-level cache. He used four traces from
the VAX system and user programs(available with this book) and four user programs from
the MIPS R2000 that were randomly interleaved to duplicate the effect of process switches.

Higherassociativity is worth considering because it has small impact on the
second-level hit time and because so much of the average access time is due to
misses. However, for these very large caches the benefits of associativity dimin-
ish because larger size has eliminated many conflict misses.

As long as spatial locality holds there may be a benefit in increasing block
size. Increasing block size can increase conflict misses with small caches since
there maymot be enough places to put data, therefore increasing miss rate.
Becausethis is not an issue in large, second-level caches, and because memory-
access time is relatively longer, larger block sizes are popular. Figure 8.42
showsthe variation in execution time as the second-level block size changes.

One final consideration concerns whetherall data in the first-level cache is

always in the second-level cache.If so, the second-level cacheis said to have the
multilevel inclusion property. Inclusion is desirable because consistency
between I/O and caches (or between caches in a multiprocessor) can be deter-
mined just by checking the second-level cache.

The drawback to this natural inclusion is that the lower average memory-
access times can suggest smaller blocks for the smaller first-level cache and
larger blocks for the larger second-level cache. Inclusion can still be maintained
in this case with a little extra work on a second-level miss: The second-level

cache must invalidateall first-level blocks that map onto the second-level block
to be replaced, causing a slightly higherfirst-level missrate.

DELL Ex.1035.497



466 8.8 Advanced Topics-Improving Cache-Memory Performance 

Reducing Miss Rate by Reducing Cache Flushes-1/0 

Although there is little more that can improve CPU execution time, there are 
issues in cache design to improve system performance, particularly for in
put/output. Because of caches, data can be found in memory or in the cache. As 
long as the CPU is the sole device changing or reading the data and the cache 
stands between the CPU and memory, there is little danger in the CPU seeing 
the old or stale copy. 1/0 means the opportunity exists for other devices to cause 
copies to be inconsistent or for other devices to read the stale copies. Figure 8.43 
illustrates the problem. This is generally referred to as the cache-coherency 
problem. 

A' 

B' 

A 

B 

[:.=J 
Cache 

100 

200 

Memory 

100 

200 

CJ 
(a) Cache and 
memory coherent: 
A'=A & B'= B 

A' 

B' 

A 

B 

[:.=J 
Cache 

550 

200 

Memory 

100 

200 

1/0 
Output A 
gives 100 

(b) Cache and 
memory incoherent: 
A'.:A (A stale) 

A' 

B' 

A 

B 

CPU 

Cache 

100 

200 

Memory 

100 

440 

1/0 
Input 

440 to B 

I 

(c) Cache and 
memo·ry incoherent: 
B'.:B (B' stale) 

FIGURE 8.43 The cache-coherency problem. A' and B' refer to the cached copies of A 
and B in memory. (a) shows cache and main memory in a coherent state. In (b) we assume 
a write-back cache when the CPU writes 550 into A. Now A' has the value but the value in 
memory has the old, stale value of 100. If an output used the value of A from memory, it 
would get the stale data. In (c) the 1/0 system inputs440 into the memory copy of B, so 
now B' in the cache has the old, stale data. 

Ex.1035.498DELL



Memory-Hierarchy Design 467 

The question is this: Where does the 1/0 occur in the computer-between the 
··· 1/0 device and the cache or between the 1/0 device and main memory? If input 

puts datainto the cache and output reads data from the cache, both 1/0 and the 
CPU see the same data, and the problem is solved. The difficulty in this 
approach is that it interferes with the CPU. 1/0 competing with the CPU for 
cache access will cause the CPU to stall for 1/0. Input will also interfere with the 
cache by displacing some information with the new data that is unlikely to be 
accessed by the CPU soon. For example, on a page fault the CPU may need to 
access a few words in a page, but a program is not likely to access every word of 
the page if it were loaded into the cache. 

The goal for the 1/0 system in a computer with a cache is to prevent the stale
data problem while interfering with the CPU as little as possible. Many systems, 
therefore, prefer that 1/0 occur directly to main memory, acting as an 1/0 buffer. 
If a write-through cache is used, then memory has an up-to-date copy of the 
information, and there is no stale-data issue for output. (This is the reason many 
machines use write through.) Input requires some extra work. The software solu
tion is to guarantee that no blocks of the 1/0 buff er designated for input are in 
the cache. In one approach, a buffer page is marked as noncacheable; the operat
ing system always inputs to such a page. In another approach, the operating sys
tem flushes the buffer addresses from the cache after the input occurs. A hard
ware solution is to check the 1/0 addresses on input to see if they are in the 
cache. If so, the cache entries are invalidated to avoid stale data. All these 
approaches can also be used for output with write-back caches. More about this 
is found in the next chapter. 

Reducing Bus Traffic-Multiprocessor Cache 
Coherency 

The cache-coherency problem applies to multiprocessors as well as 1/0. Unlike 
1/0, where multiple data copies is a rare event-one to be avoided whenever 
possible-a program running on multiple processors will want to have copies of 
the same data in several caches. Performance of a multiprocessor program 
depends on the performance of the system when sharing data. The protocols to 
maintain coherency for multiple processors are called cache-coherency proto
cols. There are two classes of protocols followed to maintain cache coherency: 

• Directory based-The information about one block of physical memory is 
kept in just one location. 

• Snooping-Every cache that has a copy of the data from a block of physical 
memory also has a copy of the information about it. These caches are usu
ally on a shared-memory bus, and all cache controllers monitor or snoop on 
the bus to determine whether or not they have a copy of the shared block. 

Ex.1035.499DELL



468 8.8 Advanced Topics-Improving Cache-Memory Performance 

In directory-based protocols there is logically a single directory that keeps the 
state of every block in main memory. Information in the directory can include 
which caches have copies of the block, whether it is dirty, and so on. Of course 
directory entries can be distributed so that different requests can go to different 
memories, thereby reducing contention. However, they retain the characteristic 
that the sharing status of a block is always in a single known location. 

Snooping protocols became popular with multiprocessors using microproces
sors and caches on a shared memory because they can use a preexisting physical 
connection: the bus to memory. Snooping has an edge over directory protocols 
in that the coherency information is proportional to the number of blocks in a 
cache rather than the number of blocks in main memory. Directories, on the 
other hand, do not require a single bus going to all caches and, hence, may scale 
to more processors. 

The coherency problem is for a processor to have exclusive access to write an 
object and to have the most recent copy when reading an object. Thus, both 
directory-based and snooping protocols must locate all the caches that share the 
object to be written. The consequence of a write to shared data is either to 
invalidate all other copies or to broadcast the write to the shared copies. Because 
of write-back caches, coherency protocols must also help read misses determine 
who has the most up-to-date value. 

For the remainder of this section we concentrate on snooping caches; the 
same ideas apply to directory-based caches except the state of the caches is 
tracked differently, and caches are involved only if the directory says they have 
a copy of a block whose status must change. 

Sharing information is added to the status bits already in a cache block for 
snooping protocols, and that information is used in monitoring bus activities. On 
a read miss all caches check to see if they have a copy of the requested block and 
take the appropriate action, such as supplying the data to the cache that missed. 
Similarly, on a write all caches check to see if they have a copy and then act, 
perhaps invalidating their copy or changing their copy to the new value. 

Since every bus transaction checks cache-address tags, one might assume that 
it interferes with the CPU. It would, were it not for duplicating the address-tag 
portion of the cache (not the whole cache) to get an extra read port for snooping. 
This way, snooping interferes with the CPU's access to the cache only when 
there is a coherency problem (although on a miss with snooping the CPU must 
arbitrate with the bus to change the snoop tags as well as the normal tags). When 
a coherency operation occurs in the cache the CPU will likely stall, since the 
cache is unavailable. In multilevel caches, if the coherency check can be limited 
to the lower cache because of multilevel inclusion, duplicating the address tags 
will probably not be necessary. 

Snooping protocols are of two types, depending on what happens on a write: 

• Write invalidate-The writing processor causes all copies in other caches to 
be invalidated before changing its local copy; it is then free to update the data 
until another processor asks for it. The writing processor issues an invalida-

Ex.1035.500DELL



Memory-Hierarchy Design 469 

tiori signal over the bus, and all caches check to see if they have a copy; if so, 
they must invalidate the block containing the word. Thus, this scheme allows 
multiple readers but only a single writer. 

• Write broadcast-Rather than invalidate every block that is shared, the writ
ing processor broadcasts the new data over the bus; all copies are then 
updated with the new value. This scheme continuously broadcasts writes to 
shared data while write invalidate deletes all other copies so that there is only 
one local copy for subsequent writes. Write-broadcast protocols usually allow 
blocks to be tagged as shared (broadcast) or private (local). One way to think 
of this protocol is it acts like a write-through cache for shared data 
(broadcasting to other caches) and a write-back cache for private data (the 
modified data leaves the cache only on a miss). 

Most cache-based multiprocessors use write back caches because it reduces 
bus traffic and thereby allows more processors on a single bus. Write-back 
caches use either invalidation or broadcast, and numerous variations exist for 
both alternatives (see the next section). So far, there is no consensus on which is 
the superior scheme. Some programs have less coherency overhead with write 
invalidate, and some with write broadcast. A later section shows how 
synchronization can be implemented in coherency-based multiprocessors; the 
accesses for synchronization seem to favor write broadcast. 

One early insight has been that block size plays an important role in cache 
coherency. Take, for example, the case of snooping on a second-level cache with 
a block size of eight words, and a single word is alternatively written and read -.... 
by two processors. Whether write invalidation or write broadcast is used, the 
protocol that only broadcasts or sends a word has an advantage over a scheme 
that transfers the full block. Another concern of large blocks is called false shar
ing: two different shared variables are located in the same cache block, causing 
the block to be exchanged between processors even though the processors are 
accessing different variables. Compiler research is working to reduce cache miss 
rates by allocating data with high processor locality to the same blocks. Success 
in this field could increase the desirability of large blocks for multiprocessors. 

Measurements to date indicate that shared data has lower spatial and temporal 
locality than observed for other types of data, independent of the coherency 
policy. 

An Example Protocol 

To illustrate the complexities of a cache-coherency protocol, Figure 8.44 (page 
470) shows a finite-state transition diagram for a write-invalidation protocol 
based on write- back policy. The three states of the protocol are duplicated to 
represent transitions based on CPU actions, as opposed to transitions based on 
bus operations. This is done only for purposes of this figure; there is only one 
finite-state machine per cache, with stimuli coming either from the attached 
CPU or from the bus. 

Ex.1035.501DELL



470 8.8 Advanced Topics-Improving Cache-Memory Performance 

CPU 
write 
miss 

CPU 
read 
miss 

Read miss or write 
miss on bus for block 
(write-back block) 

Read only 
(clean) 

Cache state transistions 
using signals from CPU 

Invalidate or 
write miss 
on bus for 
this block 

Cache state transitions 
using signals from bus 

FIGURE 8.44 A write-invalidate, cache-coherency protocol. The upper part of the 
diagram shows state transitions based on actions of the CPU associated with this cache; 
the lower part shows transitions based on operations on the bus. There is only one state 
machine in a cache, although there are two represented here to clarify when a transition 
occurs. The black arrows and states would be in a normal cache, with the gray arrows 
added to get cache coherency. In contrast to what is shown here, some protocols call 
writes to clean data a "write miss," so that there is no separate signal for invalidation. 

Ex.1035.502DELL

470

 
8.8 Advanced Topics—Improving Cache-Memory Performance

Invalid

(not valid Reeanycache block)

using signals from CPU

ReadMrite

(dirty)

Invalid Read only
(not valid “ ° = (clean)

cache block) Invalidate or
write miss
on busfor
this block

Read missor write
miss on bus for block Cachestatetransitions
(write-back block) using signals from bus

Read/Write

(dirty)

FIGURE 8.44 A write-invalidate, cache-coherency protocol. The upper part of the
diagram showsstate transitions based on actions of the CPU associated with this cache;
the lower part showstransitions based on operations.on the bus. There is only one state
machine in a cache, although there are two represented here to clarify when a transition
occurs. The black arrows and states would be in a normal cache,with the gray arrows
added to get cache coherency. In contrast to what is shown here, someprotocols call
writes to clean data.a “write miss,” so that there is no separate signal for invalidation.

DELL Ex.1035.502



Name 

Write Once 

Synapse N+l 

Berkeley 

Illinois 

Firefly 

Dragon 

Memory-Hierarchy Design 471 

Transitions happen on read misses, write misses, or write hits; read hits do 
not change cache state. When the CPU has a read miss, it will change the state of 
that block .to Read only and write back the old block if it was in the Read/Write 
state (dirty). All the caches snoop on the read miss to see if this block is in their 
cache. If one has a copy and it is in the Read/Write state, then the block is writ
ten to memory and that block is changed to the invalid state. (An optimization 
not shown in the figure would be to change the state of that block to Read only.) 
When a CPU writes into a block, that block goes to the Read/Write state. If the 
write was a hit, an invalidate signal goes out over the bus. Because caches 
monitor the bus, all check to see if they have a copy of that block; if they do, 
they invalidate it. If the write was a miss, all caches with copies go to the invalid 
state. 

\ As you might imagine, there are many variations on cache coherency that are 
much more complicated than this simple model. The variations include whether 
or not the other caches try to supply the block if they have a copy, whether or 
not the block must be invalidated on a read miss, as well as write invalidate ver
sus write broadcast as discussed above. Figure 8.45 summarizes several snoop
ing cache-coherency protocols. 

Category Memory~write policy Unique feature 

Write invalidate Write back after first write 

Write invalidate Write back Explicit memory ownership 

Write invalidate Write back Owned shared state 

Write invalidate Write back Clean private state; can supply data from 
any cache with a clean copy 

Write broadcast Write back for private, Memory updated on broadcast 
Write through for shared 

Write broadcast Write back for private, Memory not updated on broadcast 
Write through for shared 

FIGURE 8.45 Six snooping protocols summarized. Archibald and Baer [1986] use these names to describe the six 
protocols, and Eggers [1989] summarizes the similarities and differences as shown above. Figure 8.44 (page 470) is 
simpler than any of these protocols. 

Synchronization Using Coherency 

One of the major requirements of a shared-memory multiprocessor is being able 
to coordinate processes that are working on a common task. Typically, a pro
grammer will use lock variables to synchronize the processes. 

The difficulty for the architect of a multiprocessor is to provide a mechanism 
to decide which processor gets the lock and to provide the operation that locks a 
variable. Arbitration is easy for shared-bus multiprocessors, since the bus is the 
only path to memory: The processor that gets the bus locks out all other proces
sors from memory. If the CPU and bus provide an atomic swap operation, pro
grammers can create locks with the proper semantics. The adjective atomic is 

Ex.1035.503DELL



472 8.8 Advanced Topics-Improving Cache-Memory Performance 

key, for it means that a processor can both read a location and set it to the 
locked value in the same bus operation, preventing any other processor from 
reading or writing ,memory. 

Figure 8.46 shows a typical procedure for locking a variable using an atomic 
swap instruction. Assume that 0 means unlocked and 1 means locked. A proces
sor first reads the lock variable to test its state. A processor keeps reading and 
testing until the value indicates that the lock is unlocked. The processor then 
races against all other processes that were similarly "spin waiting" to see who 

No 

Load lock 
variable 

Try to lock variable using swap: 
Read lock variable and then set 

variable to locked value (1) 

No 

Enter critical 
section 

Exit critical 
section 

Unlock: 
Set lock variable to O 

FIGURE 8.46 Steps to acquire a lock to synchronize processes and then to release 
the lock on exit from the key section of code. 

Ex.1035.504DELL

472 8.8 Advanced Topics—Improving Cache-Memory Performance

key, for it means that a processor can both read a location andsetit to the
locked value in the same bus operation, preventing any other processor from
reading or writing memory.

Figure 8.46 showsa typical procedure for locking a variable using an atomic
swapinstruction. Assume that 0 means unlocked and 1 means locked. A proces-
sor first reads the lock variable to test its state. A processor keeps reading and
testing until the value indicates that the lock is unlocked. The processor then
races against all other processes that were similarly “spin waiting” to see who

Load lock
variable

Uniocked?

(= 0?)

Try to lock variable using swap:
Readlock variable and then set

variable to locked value (1)

Succeed?

(= 07)

Entercritical
section

Exit critical
section

Uniock:
Set lock variable to 0

FIGURE 8.46 Steps to acquire a lock to synchronize processes and thento release
the lock on exit from the key section of code.

 
DELL Ex.1035.504



Memory-Hierarchy Design 473 

Step Processor PO Processor Pl Processor P2 Bus activity 

1 Has lock Spins, testing if lock = 0 Spins, testing if lock = 0 None 

2 Set lock to 0 and Write invalidate of lock 
0 sent over bus variable from PO 

3 Cache miss Cache miss Bus decides to service P2 
cache miss 

4 (Waits while bus busy) Lock= 0 Cache miss for P2 satisfied 

5 Lock= 0 Swap: read lock and set Cache miss for Pl satisfied 
to 1 

6 Swap: read lock and set Value from swap = 0 and Write invalidate of lock 
to 1 1 sent over bus variable from P2 

7 Value from swap = 1 and Enter critical section Write invalidate of lock 
1 sent over bus variable from Pl 

8 Spins, testing if lock = 0 None 

FIGURE 8.47 Cache-coherency steps and bus traffic for three processors, PO, P1, and P2. This figure assumes 
write-invalidate coherency. PO starts with the lock (step 1 ). PO exits and unlocks the lock (step 2). P1 and P2 race to see 
which reads the unlocked value during the swap (steps 3-5). P2 wins and enters the critical section (steps 6 and 7), while 
P1 spins and waits (steps 7 and 8). 

can lock the variable first. All processes use a swap instruction that reads the old 
value and stores a 1 into the lock variable. The single winner will see the 0, and 
the losers will see a 1 that was placed there by the winner. (The losers will con
tinue to set the variable to the locked value, but that doesn't matter.) The win
ning processor executes the code after the lock and then stores a 0 into the lock 
variable when it exits, starting the race all over again. Testing the old value and 
then setting to a new value is why the atomic swap instruction is called test and 
set in some instruction sets. 

Let's examine how the "spin lock" scheme of Figure 8.46 works with bus
based cache coherency. One advantage of this algorithm is that it allows proces
sors to spin wait on a local copy of the lock in their caches. This reduces the 
amount of bus traffic versus lock algorithms that loop trying to perform a test 
and set. (Figure 8.47 shows the bus and cache operations for multiple processes 
trying to lock a variable.) Once the processor with the lock stores a 0 into the 
lock, all other caches see that store and invalidate their copy of the lock variable. 
They then get the new value for the lock of 0. (With write-broadcast cache 
coherency as on page 469, the caches would update their copy rather than first 
invalidate and then load from memory.) This new value starts the race to see 
who can set the lock first. The winner gets the bus and stores a 1 into the lock; 
the other caches replace their copy of the lock variable containing 0 with a 1. 
They read that the variable is already locked and must return to testing and 
spinning. This scheme has difficulty scaling up to many processors because of 
the communication traffic generated when the lock is released. 

Ex.1035.505DELL



474 8.8 Advanced Topics-Improving Cache-Memory Performance 

Models of Memory Consistency 

When we introduce cache coherency to maintain the consistency of multiple 
copies of an object, we raise a new question: How consistent must the values 
seen by two processors be kept? The problem is best understood with an exam
ple: Here are two code segments from processes Pl and P2 shown side by side: 

Pl: A = 0; P2: B = i'Q; 

A = 1; B = 1; 

Ll: if (B == 0) L2: if (A == 0) 

Assume the processes are running on different processors, and that locations A 

and B are originally cached by both processors with the initial value of 0. If 
memory is always consistent, it will be impossible for both if statements 
(labeled Ll and L2) to evaluate their conditions as true (either A=l or B=l). But 
suppose write invalidates have a delay, and the processor is allowed to continue 
during this delay, then it is possible that both Pl and P2 have not seen the inval
idations for B and A (respectively) before they attempt to read the values. The 
question that is raised by this example is: How consistent a picture of memory 
must different processors see? 

One approach, called sequential consistency, requires that ·the result of any 
execution is the same as if the accesses of each processor were kept in order and 
the accesses among different processors were arbitrarily interleaved. In this case, 
the apparent anomaly in the above example cannot occur. Implementing sequen
tial consistency usually requires a processor to delay any memory access until all 
the invalidations caused by all previous writes are completed. Although this 
model presents a simple programming paradigm, it reduces potential perfor
mance, especially in a machine with a large number of processors, or long inter
connect delays. 

Alternative models provide a weaker model of memory consistency. For 
example, the programmer may be required to use synchronization instructions to 
order memory accesses to the same variable. Now, instead of delaying all ac
cesses until invalidations complete, only synchronization accesses need to be 
delayed~ 

Whether programmers expect sequential consistency or some weaker form of 
consistency is still an open issue in 1990. The example above would work 
"correctly" with sequential consistency, but not with a weaker model. For weak 
consistency to produce the same results as sequential consistency, the program 
would have to be modified to include synchronization operations that order the 
accesses to variables A and B. It is natural to expect synchronization if you want 
processes to see the latest data independent of execution rates. Some machines 
choose to implement sequential consistency as the programming model, while 
others opt for a weaker consistency. In the future, as attempts are made to build 
larger multiprocessors, the issue of memory consistency will become 
increasingly performance critical. 

Ex.1035.506DELL



Memory-Hierarchy Design 

Putting It All Together: The VAX·11 /780 
Memory Hierarchy 

475 

The challenge for the memory-hierarchy designer is in choosing parameters that 
work well together, not in inventing new techniques or simulating a cache in a 
well-understood configuration. A full example using the VAX-11/780 memory 
hierarchy is presented here in detail to illuminate the interactions. Although 
V AX-11/780 is not a very recent machine, measurements and design documen
tation are available on all aspects of its memory hierarchy. Figure 8.48 gives the 
overall picture. 

Let's start with an instruction fetch just after a branch, when the instruction 
pre fetch buffer is empty. The virtual address in the PC is first sent to the TLB. 
The most significant bit and the lower five bits of the page-frame address index 
an entry in each bank of the TLB. Including the most-significant bit, used to dis
tinguish system space from process space, guarantees that half of each bank 
contains system translations and half contains process translations. The 
addresses in the tags are compared to see if the entry is a match to the page ad
dress requested by the TLB. If the valid bit of the entry is not set then there is no 
match no matter what the tag comparison says, and a miss is indicated. 

If there is a match, the physical address is formed by concatenating the phys
ical page-frame address of the TLB page-table entry with the page-offset portion 
of the address. To save time, the portion of the TLB containing the PTE is read 
at the same time as the tags, and a 2: 1 multiplexer controlled by the tag-match
ing logic picks the proper PTE. Whiie the address is being formed, the protection 
bits of the PTE are checked. Since this is an instruction fetch, there is no prob
lem as long as the page can be read by a process at this level. If there are no 
protection violations, this physical address is sent to the cache. 

At the same time the physical address is sent to the cache, two registers in the 
CPU instruction-prefetch buffer get the new values. The virtual-instruction
buffer address register (VIBA) is given the virtual page frame of the PC, and the 
physical-instruction-buffer address register (PIBA) is given the corresponding 
physical address. This trick, which was originally used in the first machine with 
virtual memory, avoids the instruction-prefetch buffer's accessing the TLB as 
long as the instructions are from the same page. The PIBA is actually given the 
PC address plus 4, so that it can begin prefetching the next instruction. It contin
ues trying to prefetch ahead of the PC until a jump (a frequent occurrence in the 
VAX) or until the PIBA tries to cross a page boundary; in either case the VIBA 
and PIBA are no longer used for translating instruction addresses. 

Meanwhile, the cache has just received the physical address of the instruc
tion. With 8-byte blocks, a two-way-set-associative cache, and 512 blocks per 
set, nine bits of the address are needed to index both banks simultaneously. The 
partial addresses in the tags are compared with the corresponding bits of the 
physical PC address to see if there is a match. Of course, there are valid bits in 
each tag that must be turned on, or there can be no match. 

Ex.1035.507DELL

Memory-Hierarchy Design 475 

8.9

 

Putting It All Together: The VAX-11/780
Memory Hierarchy

The challenge for the memory-hierarchy designeris in choosing parameters that
work well together, not in inventing new techniques or simulating a cache in a
well-understood configuration. A full example using the VAX-11/780 memory
hierarchy is presented here in detail to illuminate the interactions. Although
VAX-11/780 is not a very recent machine, measurements and design documen-
tation are available on all aspects of its memory hierarchy. Figure 8.48 gives the
overall picture.

Let’s start with an instruction fetch just after a branch, when the instruction
prefetch buffer is empty. The virtual address in the PC is first sent to the TLB.
The most significant bit and the lowerfive bits of the page-frame address index
an entry in each bankof the TLB. Including the most-significant bit, used to dis-
tinguish system space from process space, guarantees that half of each bank
contains system translations and half contains process translations. The
addresses in the tags are compared to see if the entry is a match to the page ad-
dress requested by the TLB.If the valid bit of the entry is not set then there is no
match no matter what the tag comparison says, and a miss is indicated.

If there is a match, the physical address is formed by concatenating the phys-
ical page-frame address of the TLB page-table entry with the page-offset portion
of the address. To save time, the portion of the TLB containing the PTE is read
at the same time as the tags, and a 2:1 multiplexer controlled by the tag-match-
ing logic picks the proper PTE. While the addressis being formed,the protection
bits of the PTE are checked. Since this is an instruction fetch, there is no prob-
lem as long as the page can be read by a processat this level. If there are no
protection violations, this physical address is sent to the cache.

At the same time the physical address is sent to the cache, two registers in the
CPU instruction-prefetch buffer get the new values. The virtual-instruction-
buffer address register (VIBA)is given the virtual page frame of the PC, and the
physical-instruction-buffer address register (PIBA) is given the corresponding
physical address. This trick, which was originally used in the first machine with
virtual memory, avoids the instruction-prefetch buffer’s accessing the TLB as
long as the instructions are from the same page. The PIBAis actually given the
PC address plus4, so that it can begin prefetching the next instruction.It contin-
ues trying to prefetch ahead of the PC until a jump (a frequent occurrencein the
VAX)or until the PIBAtries to cross a page boundary; in either case the VIBA
and PIBA are no longerusedfor translating instruction addresses.

Meanwhile, the cache has just received the physical address of the instruc-
tion. With 8-byte blocks, a two-way-set-associative cache, and 512 blocks per
set, nine bits of the address are needed to index both banks simultaneously. The
partial addresses in the tags are compared with the corresponding bits of the
physical PC addressto see if there is a match. Of course, there are valid bits in
each tag that must be turnedon, or there can be no match. .’

DELL Ex.1035.507



476 8.9 Putting It All Together: The VAX-11/780 Memory Hierarchy 

CPU 

Pref etch 

p~~ Data write 

Data Data 
Instr ti· 

'- Address t \/\/\/\/\/ /\/\/ 
- II I 11 I I Ill 

~ p Data read 

(Pref etch 
using PIBA) 

' TLB 
System Page-frame Page 
process address offset 

<1> <17> <5> <9> 
I Tan I lndexl -

<1 ><1 ><1 > <17> <21> 
VI ... Address 
' • 

I • Banko 

... ... (64 
I I I .. blocks) 

~-
J_ 
2:1 1<21> '-- 30-bit 

~ • M physical • u 
~ -+ 

address 

--
I . 
I Bank 1 

I I (64 
blocks) ... 

I I I ···1 I I 

Block-frame Block 
Cache 

address offset 
<20> <9> <3> 

I Tao I Index I .. 
<1> <20> <64> '" 

-
Data 

I write I 

Banko 
(512 I 1 Write buffer I 
blocks) I I .. Cache I 

"l;~ IG, 
miss • 

Main 
~ 

... M memory . Cache u 

lLt hit 

11 
11 

Bank 1 
(512 

I 

blocks) 
... ... 

I I ... 
• 

FIGURE 8.48 The overall picture of the VAX-11/780 memory hierarchy. Individual 
components can be seen in greater detail in Figures 8.11 (page 415), 8.29 (page 444), and 
8.31 (page 450). 

Ex.1035.508DELL



Memory-Hierarchy Design 477 

If there is a match, the lower bits of the physical PC address select the word 
from the cache block to be sent to the instruction-prefetch unit. Once again, 
reading data and tags together obviates any additional time delay. 

When the word arrives at the prefetch unit, it is placed in the high-order four 
bytes of the buffer, and those bytes are marked valid. The PIBA immediately 
begins accessing the cache with the PC address plus 4 to prefetch the next word. 
As mentioned above, as long as the page-frame address in the PC matches the 
VIBA, the PIBA bypasses the TLB and goes directly to the cache. 

Let's assume this instruction writes a register into memory.· The first step will 
be to send the effective memory address to the TLB for translation. Since this is 
a write, the modify bit of the matching PTE must also be turned on; this results 
in a microcode-level trap of the instruction storing the register if the modify bit 
isn't set already, taking another clock cycle to write the new value in the TLB. 
The physical address is then sent to the cache. We then go through the same pro
cess as before (excluding the read), except that this time it takes an extra clock 
cycle to modify the portion of the block selected by the write and to write it back 
into the cache. 

In a write-through cache the data must be written to main memory. To avoid 
the seven-cycle delay of main memory on every write, the V AX-11/780 uses a 
one-word write buffer. If the buffer is empty, the word is written and the CPU is 
given the signal to continue. If it is full, the CPU stalls until the buffer is empty. 

How well does the 780 work? The bottom line in this evaluation is the per
centage of time lost while the CPU is waiting for the memory hierarchy. In one 
timesharing workload the average number of clock cycles per 780 instruction is 
10.6 clock cycles. The breakdown by category is 

Compute: 7 .3 clock cycles 

Read: 0.8 clock cycles 

Read stall: 1.0 clock cycles 

Write: 0.4 clock cycles 

Write stall: 0.4 clock cycles 

Instruction-prefetch-buffer stall: 0.7 clock cycles 

About 20% of the time the V AX-11/780 stalls while waiting for memory. When 
the base CPI is 8.5 (compute+ read+ write), 2.1 clock cycles for the memory 
hierarchy (read stall + write stall + prefetch stall) may be satisfactory~ but it 
would devastate the performance of a machine with a CPI of 1 to 2. 

Let's analyze each unit of the 780 meinory hierarchy. An instruction
prefetch-buffer stall means that the buffer is empty, waiting for the cache to 
supply instructions because of a cache miss, a branch, too many data accesses 
(they have priority), not enough bytes to decode the instruction, or some com
bination of the above. The PIBA loadings due to branches versus page crossings 
vary with the benchmark, but branching is the cause 64% to 91 % of the time 

Ex.1035.509DELL



478 

Example 

Answer 

8.9 Putting It All Together: The VAX-11/780 Memory Hierarchy 

(median= 76% ). The prefetch unit references the cache 2.2 times on average per 
VAX instruction. The average instruction size is 3.8 bytes, making the effective 
size of the average prefetch just 1. 7 bytes. 

Figure 3.33 in Chapter 3 (page 123) shows that the VAX executes many fewer 
bytes of instructions than DLX. This ignores the instruction-prefetch buffer. 
How much should we increase the instruction bytes fetched from the cache to 
include the effect of prefetching? 

We can answer this in a couple of ways. Every prefetch access to the cache 
actually returns 4 bytes, and the average VAX instruction size is 3.8 bytes; the 
increase could therefore be 

2·~.; 4 
= 2.32 

since the prefetch unit references the cache 2.2 times per instruction. This sug
gests that the bytes fetched from the cache should be increased by 132%. 
Because the same code may be fetched multiple times by the prefetcher, how
ever, the bandwidth between the cache and memory may not change since the 
prefetcher cannot cause cache misses. 

The question can also be answered in terms of the number of bytes discarded 
because of a taken branch. About 25% of instructions change the PC on the 
VAX, and there could be from zero to eight bytes in the prefetch unit when a 
branch.is taken. Assuming an optimistic two bytes, we get a 13% increase: 

3.8 + J~i%*2) = 1.13 

Assuming six bytes, we get a 39% increase: 

3.8 + i~i%*6) = 1.39 

While the variable size of VAX instructions does improve the bytes fetched 
in comparison to DLX, a fairer evaluation of the VAX would increase the bytes 
fetched from the cache by at least 13% to 39%. 

With the instruction-prefetch buffer performing many translations via the 
PIBA and VIBA, how should TLB misses be measured? The TLB instruction 
and data-stream miss rates provide one definition: 

. . . Misses caused by IB 
TLB mstruction-stream miss rate = R 1 d' f PIBA e oa mgs o_ 

. Misses 
TLB data-stream miss rate = R t ""' 32 b' d f d eques s ior - it wor s o ata 

Ex.1035.510DELL



Memory-Hierarchy Design 479 

The data-stream definition means references to data objects larger than four 
bytes count as multiple accesses, as do accesses to unaligned data. Figure 8.49 
shows the TLB miss rates. 

TLB miss rates Instruction stream Data stream Total 

Process 0.7% 0.6% 0.7% 

System 15.4 % 5.4 % 7.2% 

Total 3.5 % 1.6 ~ 1.9 % 

FIGURE 8.49 Miss rates for the VAX-11/780 TLB, ignoring the impact of instructions 
not translated by the TLB. This data was measured on a different timesharing workload 
than earlier VAX measurements [Clark and Erner 1985]. 

Overall references to the TLB after filtering by the PIBA are divided into 
20% user instruction stream, 62% user data stream, 3% system instruction 
stream, and 15% system data stream. To account for the filtering of addresses by 
the PIBA optimization, TLB misses can also be counted as a rate per instruction 
executed, as in Figure 8.50. 

TLB misses per 100 Instruction stream Data stream Total 
instructions 

Process 0.18 0.50 0.68 

System 0.62 1.03 1.65 

Total 0.80 1.53 2.33 

FIGURE 8.50 Misses per hundred instructions for the VAX-11/780 TLB. Unlike Figure 
8.49, this overall TLB evaluation accounts for the effect of the PIBA. 

The VAX TLB spends on average 21.6 clock cycles on a miss (including 3.5 
clock cycles for cache misses for some page-table entries), adding a total of 0.7 
clock cycles per instruction for TLB misses to the average instruction. Thus, 
about a third of the memory-system stalls are due to TLB misses. 

The same study by Erner and Clark [1984] showed a significant variation on 
cache miss rates: 

• Data-stream, cache miss rates varied over the day from 12% to 25%, with a 
mean of 17%. 

• Instruction-buffer-stream, cache miss rates varied from 4% to 13%, with a 
meanof8%. 

• The distribution of accesses to the cache from the CPU was instruction
prefetch-buffer-stream reads, 68%, data-stream reads, 20%, and data-stream 
writes, 12%. Calculated per instruction, there are about 2.2 references from 
the instruction-prefetch buffer, 0.8 data reads per instruction, and 0.4 data 
writes per instruction. 

Ex.1035.511DELL



480 

Example 

Answer 

Example 

Answer 

8.9 Putting It All Together: The VAX-11/780 Memory Hierarchy 

According to the V AX-11/780 Architecture Handbook, for the workload mea
sured in 1978 the TLB miss rate was about 3%. What do the measurements say 
for the timesharing workload measured in 1984? 

Assuming just one memory reference to get the average VAX instruction of 3.8 
bytes, the miss rate is 1 %: 

2.3 TLB misses 
100 instructions 2 3 

-1 +-0-.-8+_0_.-4-re-£-er-e-nc_e_s_ = 100~2.2 = O.Ol 

Instruction 

Including the VIBA-PIBA, Figure 8.49 on page 479 shows a 1.9% miss rate. 

According to the V AX-11/780 Architecture Handbook, for the workload mea
sured in 1978 the cache miss rate was about 5%. What do the measurements say 
for the timesharing workload measured in 1984? 

The cache miss rate varies. The mean miss rate is 

68%*8% + 20%*17% + 12%*17% = 11% 

In the best case, the answer is 

68%*4% + 20%*12% + 12%*12% = 7% 

In the worst case, 

68%*13% + 20%*25% + 12%*25% = 17% 

8.10 1· Fallacies and Pitfalls 

As the most naturally quantitative of the computer architecture disciplines, 
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Yet 
the authors were limited here not by lack of warnings, but by space. 

Pitfall: Too small an address space. 

Just five years after DEC and Carnegie-Mellon University collaborated to design 
the new PDP-11 computer family, it was apparent that their creation had a fatal 
flaw. An architecture announced by IBM six years before the PDP-11 is still 
thriving, with minor modifications, 25 years later. And the DEC VAX, criticized 
for including unnecessary functions, has sold 100,000 units since the PDP-11 
went out of production. Why? 

Ex.1035.512DELL



Memory-Hierarchy Design 481 

The fatal flaw of the PDP-11 was the size of its addresses as compared to the 
IBM 360 and the VAX. Address size limits the program length, since the size of 
a program and the amount of data needed by the program must be less than 
2address size. The reason the address size is so hard to change is that it determines 
the minimum width of anything that can contain an address: PC, register, mem
ory word, and effective-address arithmetic. If there is no plan to expand the 
address from the start, then the chances of successfully changing address size are 
so slim that it normally means the end of that computer family. Bell and Strecker 
[1976] put it like this: 

There is only one mistake that can be made in computer design that is difficult to 
recover from-not having enough address bits for memory addressing and 
memory management. The PDP-11 followed the unbroken tradition of nearly 
every known computer. [p. 2] 

A partial list of successful machines that eventually starved to death for lack of 
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086, Intel 
80186, Intel 80286, AMI 6502, Zilog Z80, CRAY-1, and CRAY X-MP. 

Fallacy: Given the hardware resources, the computer designer who selects a 
set-associative cache over a direct-mapped cache of the same size will get a 
faster computer. 

The question here is whether the extra logic of the set-associative cache affects 
the hit time, and therefore possibly the CPU clock rate. (See Figure 8.11.) If it 
does affect hit time, then the question is whether the advantage in lower miss 
rate offsets the slower hit time. In the mid-1980s many recognized this danger 
and selected direct-mapped placement; for example, the MIPS M/500, Sun 
3/260, and VAX 8800. Hill [1988] makes an eloquent case for ditect-mapped 
caches, including lower costs, faster hit times, and therefore smaller average 
access times for large, direct-mapped caches. Direct-mapped caches also allow 
the data read to be sent to the CPU and used even before hit/miss is determined, 
particularly useful with a pipelined CPU. Hill found about a 10% difference in 
hit times for TTL or ECL board-level caches and 2% difference for custom 
CMOS caches, with an absolute change in the miss rates of less than 1 % for 
large caches. Since a direct-mapped cache hit can be accessed faster and hit time 
typically sets the clock cycle time of the processor, a CPU with a direct-mapped 
cache can be as fast as or faster than a CPU with a two-way-set-associative 
cache of the same size. Przybylski, Horowitz, and Hennessy [1988] show several 
examples of such tradeoffs. 

Fallacy: A memory system can be designed using traces from a different 
architecture. 

Figure 8.51 (page 482) shows instruction and data cache miss rates for the same 
programs on two different architectures. This data is from the first portion of 
execution of Spice on DLX and the VAX. The shift from data accesses in the 

Ex.1035.513DELL



482 8.1 O Fallacies and Pitfalls 

VAX to instruction accesses on DLX seen in Figure 3.33 (page 123) of Chapter 
3 is reflected here: 61 % of the VAX references and 52% of the misses are to 
data. Note that while DLX has only three-quarters of the absolute number of 
data misses, its data miss rate is three times higher. 

VAX DLX 

Instruction references 576,169 918,537 

Instruction misses 2,033 3,188 

Instruction miss rate 0.4% 0.3% 

Data references 923,831 264,453 

Data misses 2,200 1,595 

Data miss rate 0.2% 0.6% 

Total references 1,500,000 1,182,990 

Percentage of instructions of total 38% 78% 
references 

Total misses 4,233 4,782 

Percentage of instruction misses of 48% 67% 
total misses 

Average miss rate 0.3% 0.4% 

FIGURE 8.51 Miss rates for VAX and DLX for an initial phase of Spice. The simulation 
assumes separate instruction and data caches. Each cache is direct mapped, uses 16-byte 
blocks, and contains 64 KB. Both use write through with write allocate. (Note that unlike 
Chapter 2, this data was collected using the F77 compiler and was for a portion of the 
Spice program). 

Pitfall: Basing the size of the write buffer on the speed of memory and the 
average mix of writes. 

This seems like a reasonable approach: 

. . Memory references . . 
Wnte-buffer size= Cl k 

1 
* Wnte percentage* Clock cycles to wnte memory 

oc eye e 

If there is one memory reference per clock cycle, 10% of the memory references 
are writes, and Writing a word of memory takes 10 cycles, then a one-word 
buffer is added (1*10%*10=1). Calculating for the VAX-11/780 using data from 
the last section, 

3.4 memory references * 0.4 writes * 6 clock cycles= 
0 22 

10.6 clock cycles 3.4 memory references Write · 

Thus, a one-word buffer seems sufficient. 

Ex.1035.514DELL



Memory-Hierarchy Design 483 

The pitfall is that when writes come close together, the CPU must stall until 
the prior write is completed. The single-word write buffer of the VAX-11/780 is 
the major reason for its write stalling (about 20% of all stalls). The proper ques
tion to ask is how large a buffer is needed to keep CPU write stalls to a small 
amount. The impact of write-buffer size can be established by simulation or 
estimated with a queuing model. 

Pitfall: Extending an address space by adding segments on top of a flat 
address space. 

During the 1970s, many programs grew to the point they couldn't address all of 
the code and dat~ with just a 16-bit address. Machines were then revised to offer 
32-bit addresses, either through a flat 32-bit address space or by adding 16 bits 
of segment to the existing 16-bit address. From the point of view of marketing, 
adding segments solves the addressing problem. Unfortunately, there is trouble 
any time a programming language wants an address that is larger than one seg
ment, such as indices for large arrays, unrestricted pointers, or reference 
parameters. Moreover, adding segments can turn every address into two 
words-one for the segment number and one for the segment offset-causing 
problems in the use of addresses in registers. In the 1990s, 32-bit addresses will 
be exhausted, and it will be interesting to see if history will repeat itself on the 
consequences of going to larger flat addresses versus adding segments. 

Fallacy: Caches are as fast as registers. 

This fallacy is important, because if caches were as fast as registers, there would 
be no need for registers. Without registers there would be no need for a register 
allocator, and so compilers could be simpler. The fallacy is difficult to prove 
quantitatively, yet example after example can be cited. Lampson [1982] summa
rized this experience: 

A register bank is faster than a cache, both because it is smaller, and because 
the address mechanism is much simpler. Designers of high performance 
machines have typically found it is possible to read one register and write 
another in a single cycle, while two cycles [latency] are needed for a cache 
access . ... Also, since there are not too many registers it is feasible to duplicate 
or triplic.ate them, so that several registers can be read out simultaneously. 
[p. 74] 

As mentioned in Chapter 3, the short addresses of registers allow more compact 
instruction encoding. It seems to the authors that the deterministic access of 
multiported register banks will always offer lower latency or higher bandwidth, 
or both, when compared to the nondeterministic access of caches. 

Ex.1035.515DELL



484 8.11 Concluding Remarks 

8.11 Concluding Remarks 

Block size 

Hit time 

Miss penalty 

Miss rate 
(local) 

Size 

Backing 
store 

Ql: block 
placement 

Q2: block 
identification 

Q3: block re-
placement 

Q4: write 
strategy 

The difficulty of building a memory system to keep pace with faster CPUs is 
underscored by the fact that the raw material for main memory is the same as 
that found in the cheapest computer. It is the principle of locality that saves us 
here-its soundness is demonstrated at all levels of the memory hierarchy in 
current computers, from disks to instruction buffers. 

Register Instruction- TLB First-level Second-level Virtual 
windows pref etch cache cache memory 

buffer 

64 bytes 1 byte 4-8 4-128 bytes 32-256 512- 8192 
(1 PTE) bytes bytes 

1 clock cycle 1 clock cycle 1 clock cycle 1-4 clock 4-10 clock 1-10 clock 
cycles cycles cycles 

32-64 clock 2-6 clock 10-30 clock 8-32 clock 30-80 clock 100,000-
cycles cycles cycles cycles cycles 600,000 

clock cycles 

1%-3% 10%-25%. 0.1%-2% 1%-20% 15%-30% 0.00001%-
0.001% 

512 bytes 6-12 bytes 32-8192 1 KB- 256KB- 4MB-
(8-1024 256KB 4MB 2048 MB 
PTEs) 

First-level First-level First-level ,Second-level Static- Disks 
cache cache cache cache column 

DRAM 

Circular N.A. Set asso- Direct Set asso- Fully 
buffer (Queue) ciative mapped ciative associative 

2 registers: Valid bits+ Tag/ Tag/ Tag/ Table 
high and low 1 register block block block 

First in- N.A. Random N .A. (Direct Random LRU 
first out (Queue) mapped) 

Write back Flush on Flush on Write Write Write back 
write to in- write to page through or through or 
struction table write back write back 
buffer 
(if possible) 

FIGURE 8.52 Summary of the memory-hierarchy examples in this chapter. 

Misses in every level can be categorized by three causes-compulsory, 
capacity, and conflict-and different techniques work for each case. Figure 8.52 
summarizes the attributes of the memory-hierarchy examples described in this 
chapter. 

Ex.1035.516DELL



Memory-Hierarchy Design 485 

There tends to be a knee in the curve of memory-hierarchy cost/performance: 
Above that knee is wasted performance and below that knee is wasted hardware. 
Architects find that knee by simulation and quantitative analysis. 

8.1 2 I Historical Perspective and References 

While the pioneers of computing knew of the need for a memory hierarchy and 
coined the term, the automatic management of two levels was first proposed by 
Kilburn, et al. [1962] and demonstrated with the Atlas computer at the Univer
sity of Manchester. This was the year before the IBM 360 was announced. 
While IBM planned for its introduction with the next generation (System/370), 
the operating system wasn't up to the challenge in 1970. Virtual memory was 
announced for the 370 family in 1972, and it was for this machine that the term 
"translation-lookaside buffer" was coined (see Case and Padegs [1978]). The 
only computers today without virtual memory are a few supercomputers and 
personal computers. 

Both the Atlas and the IBM 360 provided protection on pages, and over time 
machines evolved more elaborate mechanisms. The most elaborate mechanism 
was capabilities, which reached its highest interest in the late 1970s and early 
1980s [Fabry 1974 and Wulf, Levin, and HariJison 1981]. Wilkes [1982], one of 
the early workers on capabilities, had this to say about capabilities: 

Anyone who has been concerned with an implementation of the type just 
described [capability system], or has tried to explain one to others, is likely to 
feel that complexity has got out of hand. It is particularly disappointing that the 
attractive idea of capabilities being tickets that can be freely handed around has 
become lost .... 

Compared with a conventional computer system, there will inevitably be a cost 
to be met in providing a system in which the domains of protection are small and 
frequently changed. This cost will manifest itself in terms of additional hard
ware, decreased runtime speed, and increased memory occupancy. It is at 
present an open question whether, by adoption of the capability approach, the 
cost can be reduced to reasonable proportions. 

Today there is little interest in capabilities either from the operating systems or 
the computer architecture communities, although there is growing interest in 
protection and security. 

Bell and Strecker [1976] reflected on the PDP-11 and identified a small 
address space as the only architectural mistake that is difficult to recover from. 
At the time of the creation of PDP-11, core memories were increasing at a very 
slow rate, and the competition from 100 other minicomputer companies meant 
that DEC might not have a cost-competitive product if every address had to go 
through the 16-bit datapath twice. Hence, the decision to add just 4 more address 

Ex.1035.517DELL



486 8.12 Historical Perspective and References 

bits than the predecessor of the PDP-11. The architects of the IBM 360 were 
aware of the importance of address size and planned for the architecture to 
extend to 32 bits of address. Only 24 bits were used in the IBM 360, however, 
because the low-end 360 models would have been ev.en slower with the larger 
addresses. Unfortunately, the architects didn't reveal their plans to the software 
people, and the expansion effort was foiled by programmers who stored extra 
information in the upper eight "unused" address bits. 

A few years after the Atlas paper, Wilkes published the first paper describing 
the concept of a cache (1965]: 

The use is discussed of a fast core memory of, say, 32,000 words as slave to a 
slower core memory of, say, one million words in such a way that in practical 
cases the effective access time is nearer that of the fast memory than that of the 
slow memory. [p. 270] 

This two-page paper describes a direct-mapped cache. While this is the first 
publication on caches, the first implementation was probably a direct-mapped 
instruction cache built at the University of Cambridge. It was based on tunnel 
diode memory, the fastest form of memory available at the time. Wilkes states 
that G. Scarott suggested the idea of a cache memory. 

Subsequent to that publication, IBM started a project that led to the first 
commercial machine with a cache, the IBM 360/85 [Liptay 1968]. Gibson 
(1967] describes how to measure program behavior as memory traffic as well as 
miss rate and shows how the miss rate varies between programs. Using a sample 
of 20 programs (each with 3,000,000 references!), Gibson also relied on average 
memory-access time to compare systems with and without caches. This was over 
20 years ago, and yet many used miss rates until recently. 

Conti, Gibson, and Pitkowsky [ 1968] describe the resulting performance of 
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the 11 programs in 
the paper, even though the 360/85 has a slower clock cycle time (80 ns versus 60 
ns), smaller memory interleaving (4 versus 16), and a slower main memory 
(1.04 µsec versus 0.75 µsec). This is the first paper to use the term "cache." 
Strecker (1976] published the first comparative cache-design paper examining 
caches for the PDP-11. Smith (1982] later published a thorough survey paper, 
using the terms "spatial locality" and "temporal locality"; this paper has served 
as a reference for many computer designers. While most studies have relied on 
simulations, Clark (1983] used a hardware monitor to record cache misses of the 
V AX-11/780 over several days. Section 8.9 reports these findings, along with 
the work Clark did with Erner on TLBs (1984, 1985]. A similar study was per
formed on the VAX 8800 [Clark et al. 1988]. Agarwal, Sites, and Horowitz 
[ 1986] changed the microcode of a VAX to make traces of system and user 
code. These traces are used in this book (and are available through the 
publisher). Hill (1987] proposed the three Cs used in Section 8.4 to explain 
cache misses. Caches remain an active area of research, as Smith (1986] has 
recorded in his extensive bibliography. 

Ex.1035.518DELL



Memory-Hierarchy Design 487 

Many of the ideas in the advanced cache section have only been tried 
recently. The inclusion of caches on microprocessors such as the Motorola 
68020 gave rise to two-level cache machines; the Sun 3/260 in 1986 was perhaps 
the first. In 1988, the Silicon Graphics 4D/240 had two levels of caches for data 
and instructions, with the second level added primarily for cache coherency to 
allow four-way multiprocessing. The MIPS RC 6280 is probably the first 
machine to go to two-level caches for the reasons given on page 465 [Roberts, 
Taylor, and Layman 1990]. Goodman and Chiang [1984] were the first to 
publish an investigation of static-column DRAM in a memory hierarchy, while 
Kelly [1988] refined the idea by using virtual addresses. Goodman [1987] 
showed that aliases can be handled at cache-miss time, and Wang, Baer, and 
Levy [1989] show that the extra control for this does not look too bad for two 
levels of cache. 

In comparison to the other ideas in the advanced section, cache-coherency 
research is much older. Tang [1976] published the first cache-coherency proto
col using directories, and this approach was implemented in the IBM 3081. 
Censier and Feautrier [1978] describe a technique with status tags in memory. 
The first machine to use snooping caches was the Synapse N+l [Frank 1984]; 
the first publication on snooping caches was by Goodman [1983]. Archibald and 
Baer [1986] survey the wide variety of schemes for cache coherency. References 
on the protocols mentioned in their paper and in Figure 8.45 are Frank [1984] 
for Synapse; Goodman [1983] for Write Once; Katz et al. [1985] for Berkeley; 
McCreight [1984] for Dragon; Papamarcos and Patel [1984] for Illinois; and 
Thacker and Stewart [1987] for Firefly. Baer and Wang [1988] discuss 
multilevel inclusion. Eggers' s [ 1989] nomenclature for categorizing snooping 
caches is adopted in this text. Chapter 10, Section 10.7 mentions the use of 
pre fetching to improve cache performance, and Kroft [ 1981] describes the 
design of a cache that allows the cache to service subsequent requests while the 
requested data is prefetched. Przybylski [ 1990] and the dissertations by Agarwal 
[1987], Eggers [1989], and Hill [1987] investigate many aspects of the advanced 
cache topics in more depth. 

Papers on another use of locality, register windows or stack caches, are by 
Patterson and Sequin [1981], Ditzel and McClellan [1982], and Lampson 
[1982]. Sites wrote an earlier paper [1979] suggesting one way to use the 
expanding resources of VLSI was to get higher performance by using a lot of 
registers, and these schemes are one interpretation of that recommendation. 

References 

AGARWAL, A. [1987]. Analysis of Cache Performance for Operating Systems and 
Multiprogramming, Ph.D. Thesis, Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May). 

AGARWAL, A., R. L. SITES, AND M. HOROWITZ [1986]. "ATUM: A new technique for capturing 
address traces using microcode," Proc. 13th Annual Symposium on Computer Architecture (June 
2-5), Tokyo, Japan, 119-127. 

Ex.1035.519DELL



488 8.12 Historical Perspective and References 

ARCHIBALD, J. AND J.-L. BAER [1986]. "Cache coherence protocols: Evaluation using a 
multiprocessor simulation model," ACM Trans. on Computer Systems 4:4 (November) 273-298. 

BAER, J.-L. AND W.-H. WANG [1988]. "On the inclusion property for multi-level cache hier
archies," Proc. 15th Annual Symposium on Computer Architecture (May-June), Honolulu, 73-80. 

BELL, C. G. AND W. D. STRECKER [1976]. "Computer structures: What have we learned from the 
PDP-11 ?,"Proc. Third Annual Symposium on Computer Architecture (January), Pittsburgh, Penn., 
1-14. 

BLAKKEN, J. [1983]. "Register windows for SOAR," in Smalltalk On A RISC: Architectural 
Investigations, Proc. of CS 292R (April) 126-140, University of California. 

CASE, R.P. AND A. PADEGS [1978]. "The architecture of the IBM System/370," Communications of 
the ACM 21:1, 73-96. Also appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer 
Structures: Principles and Examples (1982), McGraw-Hill, New York, 830--855. 

CENSIER, L. M. AND P. FEAUTRIER [1978]. "A new solution to the coherence problem in 
multicache systems," IEEE Trans. on Computers C-27:12 (December) 1112-1118. 

CLARK, D. W. [1983]. "Cache performance of the VAX-11/780," ACM Trans. on Computer 
Systems 1:1, 24-37. 

CLARK, D. W. AND J. S. EMER [1985]. "Performance of the VAX-11/780 translation buffer: 
Simulation and measurement," ACM Trans. on Computer Systems 3:1, 31-62. 

CLARK, D. W, P. J. BANNON, AND J.B. KELLER [1988]. "Measuring VAX 8800 Performance with 
a Histogram hardware monitor," Proc. 15th Annual Symposium on Computer Architecture (May
June), Honolulu, Hawaii, 176-185. 

CONTI, C., D. H. GIBSON, ANDS. H. PITOWSKY [1968]. "Structural aspects of the Systetn/360 
Model 85, part I: General organization," IBM Systems J. 7:1, 2-14. 

CRAWFORD, J. HAND P. P. GELSINGER [1987]. Programming the 80386, Sybex, Alameda, Calif. 

DITZEL, D.R., AND H.R. MCCLELLAN [1982]. "Register allocation for free: The C machine stack 
cache" Symposium on Architectural Support for Programming Languages and Operating Systems 
(March 1-3), Palo Alto, Calif., 48-56. 

EGGERS, S. [1989]. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors, Ph. 
D. Thesis, Univ. of California, Berkeley, Computer Science Division Tech. Rep. UCB/CSD 
89/501 (April). 

EMER, J. S. AND D. W. CLARK [1984]. "A characterization of processor performance of the VAX-
11/780," Proc. 11th Annual Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-
310. 

FABRY, R. S. [1974]. "Capability based addressing," Comm. ACM 17:7 (July) 403-412. 

FRANK, S. J. [1984].' "Tightly coupled multiprocessor systems speed memory access times," 
Electronics 57: 1 (January) 164-169. 

GIBSON, D. H. [1967]. "Considerations in block-oriented systems design," AF/PS Conf Proc. 30, 
SJCC, 75-80. 

GOODMAN, J. R. [1983]. "Using cache memory to reduce processor memory traffic," Proc. Tenth 
Annual Symposium on Computer Architecture (June 5-7), Stockholm, Sweden, 124-131. 

GOODMAN, J. R. and M.-C. Chiang [1984]. "The use of static column RAM as a memory 
hierarchy," Proc. 11th Annual Symposium on Computer Architecture (June 5-7), Ann Arbor, 
Mich., 167-174. 

GOODMAN, J. R. [1987]. "Coherency for multiprocessor virtual address caches," Proc. Second Int' l 
Con/. on Architectural Support for Programming Languages and Operating Systems, Palo Alto, 
Calif., 71-81. 

HALBERT, D. C. AND P. B. KESSLER [1980]. "Windows of overlapping register frames," CS 292R 
Final Reports (June) 82-100. 

Ex.1035.520DELL



Memory-Hierarchy Design 489 

HILL, M. D. [1987]. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D. Thesis, 
Univ. of California at Berkeley Computer Science Division, Tech. Rep. UCB/CSD 87/381 
(November). 

HILL, M. D. [1988]. "A case for direct mapped caches," Computer 21:12 (December) 25-40. 

HUGUET, M. AND T. LANG [1985]. "A reduced register file for RISC architectures," Computer 
Architecture News 13:4 (September) 22-31. 

KATZ, R., S. EGGERS, D. A. WOOD, C. PERKINS, AND R. G. SHELDON [1985]. "Implementing a 
cache consistency protocol," Proc. 12th Annual Symposium on Computer Architecture, 276-283. 

KELLY, E. [1988]. '"SCRAM Cache' in Sun-4/110 beats traditional caches," Sun Technology 1:3 
(Summer) 19-21. 

KILBURN, T., D. B. G. EDWARDS, M. J. LANIGAN, F. H. SUMNER [1962]. "One-level·storage 
system," IRE Transactions on Electronic Computers EC-11 (April) 223-235. Also appears in D. P. 
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982), 
McGraw-Hill, New York, 135-148. 

KROFT, D. [1981]. "Lockup-free instruction fetch/prefetch cache organization," Proc. Eighth 
Annual Symposium on Computer Architecture (May 12-14), Minneapolis, Minn., 81-87. 

LAMPSON, B. W. [1982). "Fast procedure calls," Symposium on Architectural Support for 
Programming Languages and Operating Systems (March 1-3), Palo Alto, Calif., 66-75. 

LIPTAY, J. S. [1968]. "Structural aspects of the System/360 Model 85, part II: The cache," IBM 
Systems J. 7:1, 15-21. 

MCCALL, K. [1983]. "The Smalltalk-80 benchmarks," Smalltalk 80: Bits of History, Words of 
Advice, G. Krasner, ed., Addison-Wesley, Reading, Mass., 153-174. 

MCCREIGHT, E. [1984]. "The Dragon computer system: An early overview," Tech. Rep. Xerox 
Corp. (September). 

MCFARLING, S. [1989]. "Program optimization for instruction caches," Proc. Third International 
Conj. on Architectural Support for Programming Languages and Operating Systems (April 3-6), 
Boston, Mass., 183-191. 

PAPAMARCOS, M. AND J. PATEL [1984]. "A low coherence solution for multiprocessors with 
private cache memories," Proc. of the 11th Annual Symposium on Computer Architecture (June), 
Ann Arbor, Mich., 348-354. 

PRZYBYLSKI, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan Kaufmann 
Publishers, San Mateo, Calif. 

PRZYBYLSKI, S. A., M. HOROWITZ, AND J. L. HENNESSY [1988]. "Performance tradeoffs in cache 
design," Proc. 15th Annual Symposium on Computer Architecture (May-June), Honolulu, Hawaii, 
290-298. 

ROBERTS, D., G. TAYLOR, AND T. LAYMAN [1990]. "An ECL RISC microprocessor designed for 
two-level cache," !!}EE Compean (February). 

SAMPLES, A. D. AND P. N. HILFINGER [1988]. "Code reorganization for instruction caches," Tech. 
Rep. UCB/CSD 88/447 (October), Univ. of Calif., Berkeley. 

SITES, R. L., [1979]. "How to use 1000 registers," Caltech Conf on VLSI (January). 

SMITH, A. J. [1982]. "Cache memories," Computing Surveys 14:3 (September) 473-530. 

SMITH, A. J. [1986]. "Bibliography and readings on CPU cache memories and related topics," 
Computer Architecture News (January) 22-42. 

SMITH, J. E. AND J. R. QOODMAN [1983). "A study of instruction cache organizations and 
replacement policies," Proc. Tenth Annual Symposium on Computer Architecture (June 5-7), 
Stockholm, Sweden,, 132-137. 

STRECKER, W. D. [1976]. "Cache memories for the PDP-11?," Proc. Third Annual Symposium on 
Computer Architecture (January), Pittsburgh, Penn., 155-158. 

Ex.1035.521DELL



490 8.12 Historical Perspective and References 

TANG, C. K. [1976). "Cache system design in the tightly coupled multiprocessor system," Proc. 
1976 AFJPS National Computer Conj., 749-753. 

TAYLOR, G. S., P. N. HILFINGER, J. R. LARUS, D. A. PATTERSON, AND B. G. ZORN [1986). 
"Evaluation of the SPUR Lisp architecture," Proc. 13th Annual Symposium on Computer 
Arc_hitecture (June 2-5), Tokyo, Japan, 444-452. 

THACKER, C. P. AND L. C. STEWART [1987). "Firefly: a multiprocessor workstation," Proc. 
Second Int' l Conj. on Architectural Support for Programming Languages and Operating Systems, 
Palo Alto, Calif., 164--172. 

UNGAR, D. M. [1987). The Design of a High Pe1formance Smalltalk System, The MIT Press 
Distinguished Dissertation Series, Cambridge, Mass. 

WANG, W.-H., J.-L. BAER, AND H. M. LEVY [1989). "Organization and performance of a two-level 
virtual-real cache hierarchy," Proc. 16th Annual Symposium on Computer Architecture (May 28-
June 1), Jerusalem, Israel, 140-148. 

WILKES, M. [1965). "Slave memories and dynamic storage allocation," IEEE Trans. Electronic 
Computers EC-14:2 (April) 270-271. 

WILKES, M. V. [1982). "Hardware support for memory protection: Capability implementations," 
Proc. Symposium on Architectural Support for Programming Languages and Operating Systems 

(March 1-3), Palo Alto, Calif., 107-116. 

WULF, W. A., R. LEVIN ANDS. P. HARBISON [1981). Hydra!C.mmp: An Experimental Computer 
System, McGraw-Hill, New York. 

EXERCISES 

8.1 [15/15/12/12] <2.2,8.4> Let's try to show how you can make unfair benchmarks. 
Here are two machines with the same processor and main memory but different cache 
organizations. Assume the miss time is 10 times a cache-hit time for both machines. 
Assume writing a 32-bit word takes 5 times as long as a cache hit (for the write-through 
cache), and that writing a whole 16-byte block takes 10 times as long as a cache-read hit. 
(for the write-back cache). The caches are unified; that is, they contain both instructions 
and data. 

Cache A: 64 sets, 2 elements per set, each block is 16 bytes, and it uses write through. 

Cache B: 128 sets, 1 element per set, each block is 16 bytes, and it uses write back. 

a. [15] Describe a program that makes machine A run as much faster as possible than 
machine B. (Be sure to state any further assumptions you need, if any.) 

b. [15] Describe a program that makes machine B run as much faster as possible than 
machine A. (Be sure to state any further assumptions you need, if any.) 

c. [12] Approximately how much faster is the program in Part a on machine A than 
machine B? 

d. [12] Approximately how much faster is the program in Part b on machine B than 
machine A? 

8.2 [20] <2.2,6.4,8.4> To simplify pipelined execution, some machines insert NOP 
instructions rather than interlock the pipeline (see pages 273-275 in Chapter 6). Ignoring 
cache misses, assume that the Spice code takes 2,000,000 clocks in either case (since the 
version without NOPS still interlocks, which takes an extra clock each time.) Figure 8.53 

Ex.1035.522DELL



Memory-Hierarchy Design 491 

shows data collected for a portion of Spice execution with a 64-KB, direct-mapped, 
instruction-only cache with one-word blocks. 

With NOPS Without NOPS Ratio with/without 

Total references 1,500,000 1,180,000 1.27 

Cache misses 34,153 24,908 1.37 

Miss rate 2.28 2.10 1.09 

FIGURE 8.53 Spice miss rates with and without NOPs. 

The conclusion of a study based on Figure 8.53 was that a 9% increase in the miss rate of 
the program with NOPS will have a small but measurable impact on performance. What 
is the actual impact on performance assuming a 10-clock miss penalty? 

8.3 [15/15] <8.4> You purchased an Acme computer with the following features: 

1. 90% of all memory accesses are found in the cache; 

2. Each cache block is two words, and the whole block is read on any miss; 

3. The processor sends references to its cache at the rate of 107 words per second; 

4. 25% of the references of (3) are writes; 

5. Assume that the bus can support 107 words per second, reads or writes; 

6. The bus reads or writes a single word at a time (the bus cannot read or write two 
words at once); 

7. Assume at any one time, 30% of the blocks in the cache have been modified; 

8. The cache uses write allocate on a write miss/r,;,):c ~" k-

You are considering adding a peripheral to the bus, and you want to know how much of 
the bus bandwidth is already used. Calculate the percentage of bus bandwidth used on the 
average in the two cases below. The percentage is called the traffic ratio in the literature. 
Be sure to state your assumptions. 

a. [15] The cache is write through. 

b. [15] The cache is write back. 

8.4 [20] <8.4> One drawback to the write-back scheme is that writes will probably take 
two cycles. During the first cycle, we detect whether a hit will occur, and during the 
second (assuming a hit) we actually write the data. Let's assume that 50% of the blocks 
are dirty for a write-back cache. Using statistics for loads and stores from DLX in Figure 
C.4 in Appendix C, estimate the performance of a write-through cache with a one-cycle 
write versus a write-back cache with a two-cycle write for each of the programs. For this 
question, assume that the write buffer for write through will never stall the CPU (no 
penalty). Assume a cache hit takes 1 clock cycle, the cache miss penalty is 10 clock 

Ex.1035.523DELL



492 Exercises 

cycles, and a block write from the cache to main memory takes 10 clock cycles. Finally, 
assume the instruction-cache miss rate is 2% and the data-cache miss rate is 4%. 

8.5 [15/20/10] <8.4> To save development time, the Sun 3/280 and the Sun 4/280 used 
identical memory systems, even though the CPUs were quite different. Assume the same 
case exists for a new machine, one board using a VAX CPU and the other a DLX CPU. 
For now assume the miss-rate information in Figure 8.12 and 8.16 (pages 421 and 424) 
apply to both architectures. Use the average column in Figure C.4 in Appendix C as 
needed for DLX instruction mix, and the caption of Figure 8.16 (page 424) for VAX 
instruction/data mix. Assume the following: 

Miss penalty is 12 clock cycles. 

A perfect write buffer that never stalls the CPU. 

The base CPI assuming a perfect memory system is 6.0 for the VAX and 1.5 for DLX. 

A unified cache adds 1 extra clock cycle to each load and store of DLX (since there is 
a single memory port) but not for the VAX. 

You are considering three options: 

1. A 4-way-set-associative unified cache of 64 KB. 

2. Two 2-way-set-associative caches of 32 KB each, one for instructions and one for 
data. 

3. A direct-mapped unified cache of 128 KB. Assume that clock rate is 10% faster in 
this case since the mapping is direct and the CPU address does not need to drive two 
caches, nor does the data bus need to be multiplexed. This faster clock rate increases the 
miss penalty to 13 clock cycles. 

a. [15] What is the average memory-access time in clock cycles for each organization? 

b. [20] What is the CPI for each machine and cache organization? 

c. [10] What cache organization gives the best average performance for the two CPUs? 

8.6 [25/15] <2.3,8.4,8.8> Some microprocessors have custom single-chip caches as 
companions to the CPU. For example, the Motorola 88100 CPU can have up to 8 of the 
88200 cache chips. These chips tend to be more expensive than off-the-shelf static RAM 
chips. The MIPS R3000 includes a comparator on the CPU chip so that cache tags and 
data can be built from off-the-shelf static RAMs. 

a. [25] Using the program that analyzes cache miss rates how many 16K-by-4 cache 
RAMs must the R3000 use to get the same performance as two 88200 chips? Both 
designs use separate instruction and data caches. The MIPS design assumes a block 
size of 16 bytes with subblock placement for each word. The cache is write through 
with a 4-word write buffer. The Motorola 88200 is 4-way set associative with 16 KB 
per chip and a 16-byte block using LRU replacement. 

b. [15] Here is the data on the price of each chip (quantity 1 as of 8/1/89): 

Motorola 88100: $697 

Motorola 88200: $875 

Ex.1035.524DELL



Memory-Hierarchy Design 

MIPS R3000 (25 MHz): $300 

MIPS R3010 FPU (25 MHz): $350 

16K by 4 SRAM (for 25 MHz R3000): $21 

Which system will be cheaper and by how much? 

493 

8.7 [15/25/15/15) <2.3,8.4> The Intel i860 has its caches on chip and its die size is 
1.2 cm* 1.2 cm. It has a 2-way-set-associative,_ 4-KB instruction cache and a 2-way-set
associative, 8-KB data cache using write through or write back. Both caches use 32-byte 
blocks. There are no write buffers or process identifiers to reduce cache flushing. The 
i860 also includes a 64-entry, 4-way-set-associative TLB to map its 4-KB pages. Address 
translation occurs before the caches are accessed. The Cypress 7C601 CPU chip size is 
0.8 cm by 0.7 cm and has no on-board cache-a cache controller chip (7C604) and two 
16K * 16 cache chips (7C157) are offered to form a 64-KB unified cache. The controller 
includes a TLB with 64 entries managed fully associatively with 4096 process identifiers 
to reduce flushing. It supports 32-byte blocks with direct-mapped placement, and either 
write through or write back. There is a one-block write buffer for write back and a four
word write buffer for write through. The chip sizes are 1.0 cm by 0.9 cm for the 7C604 
and 0.8 cm by 0.7 cm. for the 7C157. 

a. [15) Using the cost model of Chapter 2, what is the cost of the Cypress chip set 
versus the Intel chip? (Use Figure 2.11 on page 62 to determine chip costs by finding 
the closest die size in that table to the Intel and Cypress die area.) 

b. [25) Use the DLX cache traces and cache simulator to determine the average 
memory-access time for each cache organization. Assume a miss takes 6 clocks 
latency plus 1 clock for each 32-bit word. Assume both systems run at the same clock 
rate and use write allocate. 

c. [15) What is the comparative cost/performance of these chips using average memory
access time as the measure? 

d. [15) What is the percent increase in cost of a color workstation that uses the more 
expensive chips? 

8.8 [25/10/15) <8.4> The CRAY X-MP instruction buffers can be thought of as an 
instruction-only cache. The total size is 1 KB, broken into 4 blocks of 256 bytes per 
block. The cache is fully associative and uses a first-in/first-out replacement policy. The 
access time on a miss is 10 clock cycles, with the transfer time of 64 bytes every clock 
cycle. The X-MP takes 1 clock cycle on a hit. Use the cache simulator and the DLX 
traces to determine: 

a. [25) Instruction miss rate 

b. [10) Average instruction memory-access time measured in clock cycles 

c. [15) What does the CPI of the CRAY X-MP have to be for the portion due to 
instruction cache misses to be 10% or less? 

Ex.1035.525DELL



494 Exercises 

8.9 [25] <8.4> Traces from a single process give too-high estimates for caches used in a 
multiprocess environment. Write a program that merges the uniprocess DLX traces into a 
single reference stream. Use the process-switch statistics in Figure 8.25 (page 439) as the 
average process-switch rate with an exponential distribution about that mean. (Use 
number of clock cycles rather than instructions, and assume the CPI of DLX is 1.5.) Use 
the cache simulator on the original traces and the merged trace. What is the miss rate for 
each assuming a 64-KB direct-mapped cache with 16-byte blocks? (There is a process
identified tag in the cache tag so that the cache doesn't have to be flushed on each 
switch.) 

8.10 [25] <8.4> One approach to reducing misses is to prefetch the next block. A simple 
but effective strategy is when block i is referenced to make sure block i+ 1 is in the cache, 
and if not, to prefetch it. Do you think prefetching is more or less effective with 
increasing block size? Why? Is it more or less effective with increasing cache size? Why? 
Use statistics from the cache simulator and the traces to support your conclusion. 

8.11 [20/25] <8.4> Smith and Goodman [1983] found that for a small-instruction-only 
cache, a cache using direct mapping could consistently outperform one using fully 
associative with LRU replacement. 

a. [20] Explain why this would be possible. (Hint: you can't explain this with the 3C 
model because it ignores replacement policy.) 

b. [25] Use the cache simulator to see if their results hold for the traces. 

8.12 [Discussion] <8.4> If you look at conflict misses for a given associativity in Figure 
8.12, as capacity increases the conflict misses go up and down. For example, for 2-way
set-associative mapping the miss rate for 2-KB cache is .010, a 4-KB cache is .013, and 
an 8-KB cache is .008. Why in the world would this happen? 

8.13 [30l <8.5> Use the cache simulator and traces to calculate the effectiveness of a 4-
bank versus 8-bank interleaved memory. Assume each word transfer takes one clock on 
the bus and a random access is 8 clocks. Measure the bank conflicts and memory 
bandwidth for these cases: 

a. No cache and no write buffer. 

b. A 64-KB, direct-mapped, write-though cache with four-word blocks. 

c. A 64-KB, direct-mapped, write-back cache with four-word blocks. 

d. A 64-KB, direct-mapped, write-though cache with four-word blocks but the 
"interleaving" comes from a page-mode DRAM. 

e. A 64-KB, direct-mapped, write-back cache with four-word blocks but the 
"interleaving" comes from a page mode DRAM. 

8.14 [20] <8.6> If the base CPI with a perfect memory system is 1.5, what is the CPI for 
these cache organizations? Use Figure 8.12 (page 421): 

a. Direct-mapped, 16-KB unified cache using write back. 

Ex.1035.526DELL



Memory-Hierarchy Design 495 

b. Two-way-set-associative, 16-KB unified cache using write back. 

c. Direct-mapped, 32-KB unified cache using write back. 

Assume the memory latency is 6 clocks, the transfer rate is 4 bytes per clock cycle and 
that 50% of the transfers are dirty. There are 16 bytes per block and 20% of the 
instructions are data-transfer instructions. The caches fetch words of the block in address 
order and the CPUs stall until all words of the block arrive. There is no write buffer. Add 
to the assumptions above a TLB that takes 20 clock cycles on a TLB miss. A TLB does 
not slow down a cache hit. For the TLB, make the simplifying assumption that 1 % of all 
references aren't found in TLB, either when addresses come directly from the CPU or 
when addresses come from cache misses. What is the impact on performance of the TLB 
if the cache above is physical or virtual? 

8.15 [30] <3.8,8.9> The example in Section 8.9 (page 478) refines the instructions 
fetched into the CPU from the cache due to the instruction-prefetch buffer. How does this 
increase of 13% to 39% in instruction words fetched affect the difference in the 
instruction words fetched from DLX versus VAX? The extra instruction fetches of the 
VAX hurt only when they bring something into the cache that is not used before it is 
displaced, while DLX would seem to need a larger cache for its larger program. Write a 
simulator emulating the instruction-prefetch buffer to measure the increase in cache 
misses using the VAX address traces and see if prefetching is a significant increase in 
cache misses. 

8.16 [25-40] <8.7> Study the impact of adding register windows to DLX. This study can 
range from simply estimating the register-traffic savings to modifying the DLX compiler 
and simulator to measure costs and benefits directly. 

8.17 [10] <8.8> Data General described the design of a three-level cache for an ECL 
implementation of the 88000 architecture. What is the formula for average access time for 
a three-level cache? 

8.18 [20] <8.8> What is the performance loss for a four-way multiprocessor with I/O 
devices? Suppose 1 % of all data references to the cache cause invalidation to the other 
data caches and that all CPUs stall four clocks on an invalidation. Assume a 64-KB, 
direct-mapped cache for data and a 64-KB, direct-mapped cache for instructions with a 
block size of 32 bytes yields a 1 % miss rate for instructions and a 2% miss rate for data, 
with 20% of all CPU memory references being for data. The CPI of the CPU is 1.5 with a 
perfect memory system and it takes 10 clocks on a cache miss whether the data is dirty or 
clean. 

8.19 [25] <8.8> Use the traces to calculate the effectiveness of early restart and out-of
order fetch. What is the distribution of first accesses to a block as block size increases 
from 2 words to 64 words by factors of two for: 

a. A 64-KB, instruction-only cache? 

b. A 64-KB, data-only cache? 

c. A 128-KB unified cache? 

Assume direct-mapped placement. 

Ex.1035.527DELL



496 Exercises 

8.20 [30] <8.8> Use the cache simulator and traces with a program you write yourself to 
compare the effectiveness schemes for fast writes: 

a. 1-word buffer and the CPU stalls on a data-read cache miss with a write-through 
cache. 

b. 4-word buffer and the CPU stalls on a data-read cache miss with a write-through 
cache. 

c. 4-word buffer and the CPU stalls on a data-read cache miss only if there is a potential 
conflict in the addresses with a write-through cache. 

d. A write-back cache that writes dirty data first and then loads the missed block. 

e. A write-back cache with a one-block write buffer that loads the miss data first and 
then stalls the CPU on a clean miss if the write buffer is not empty. 

f. A write-back cache with a one-block write buffer that loads the miss data first and 
then stalls the CPU on a clean miss only if the write buffer is not empty and there is 
a potential conflict in the addresses. 

Assume a 64-KB, direct-mapped cache for data and a 64-KB, direct-mapped cache for 
instructions with a block size of 32 bytes. The CPI of the CPU is 1.5 with a perfect 
memory system and it takes 14 clocks on a cache miss and 7 clocks to write a single word 
to memory. 

8.21 [30] <8.8> Use the cache simulator and traces with a program you write yourself to 
create a two-level cache simulator. Use this program to see at what cache size is the 
global miss rate of a second-level cache approximately the same as a single-level cache of 
the same capacity. 

8.22 [Discussion] <8.6> Some people have argued that with increasing capacity of 
memory storage per chip, virtual memory is an idea whose time has passed, and they 
expect to see it dropped from future computers. Find reasons for and against this 
argument. 

8.23 [Discussion] <8.6> So far, few computer systems take advantage of the extra 
security available with gates and rings found in a machine like the Intel 80286. Construct 
some scenario whereby the computer industry would switch over to this model of 
protection. 

8.24 [Discussion] <8.4> Recent research has tried to use compilers to improve cache 
performance (see McFarling [1989] and Samples and Hilfinger [1988]): 

a. Which of the 3C's are compilers trying to improve and which are they not? Why? 

b. Which mapping is best for compiler improvement? Why? 

8.25 [Discussion] <8.3> Many times a new technology has been invented that is expected 
to make a major change to the memory hierarchy. For the sake of this question, let's 
suppose that biological computer technology becomes a reality. Suppose biological 

Ex.1035.528DELL



Memory-Hierarchy Design 497 

memory technology has an unusual characteristic: It is as fast as the fastest 
semiconductor DRAMs, and it can be randomly accessed; but it only costs as much as 
magnetic-disk memory. It has the further advantage of not being any slower no matter 
how big it is. The only drawback is that you can only Write it Once, but you can Read it 
Many times. Thus it is called a "WORM" memory. Because of the way it is 
manufactured, the WORM- memory module can be easily replaced. See if you can come 
up with several new ideas to take advantage of WORMs to build better computers using 
"bio-technology." 

Ex.1035.529DELL



110 certainly has been lagging in the last decade. 

Seymour Cray, Public Lecture (1976) 

Also, 110 needs a lot of work. 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

9.10 

David Kuck, Keynote Address, 
15th Annual Symposium on Computer Architecture (1988) 

Introduction 499 

Predicting System Performance 501 

1/0 Performance Measures 506 

Types of 1/0 Devices 512 

Buses-Connecting 1/0 Devices to CPU/Memory 528 

Interfacing to the CPU 533 

Interfacing to an Operating System 535 

Designing an 1/0 System 539 

Putting It All Together: 
The IBM 3990 Storage Subsystem 546 

Fallacies and Pitfalls 554 

9.11 Concluding Remarks 559 

9.12 Historical Perspective and References 560 

Exercises 563 

Ex.1035.530DELL



9.1 

Input/Output 

Introduction 

Input/output has been the orphan of computer architecture. Historically 
neglected by CPU enthusiasts, the prejudice against I/0 is institutionalized in the 
most widely used performance measure, CPU time (page 35). Whether a 
computer has the best or the worst I/O system in the world cannot be measured 
by CPU time, which by definition ignores I/O. The second class citizenship of 
I/0 is even apparent in the label "peripheral" applied to I/O devices. 

This attitude is contradicted by common sense. A computer without I/O 
devices is like a car without wheels-you can't get very far without them. And 
while CPU time is interesting, response time-the time between when the user 
types a command and when she gets results-is surely a better measure of 
performance. The customer who pays for a computer cares about response time, 
even if the CPU designer doesn't. Finally, as rapid improvements in CPU perfor
mance compress traditional classes of computers together, it is I/O that serves to 
distinguish them: 

• The difference between a mainframe computer and a minicomputer is that a 
mainframe can support many more terminals and disks. 

• The difference between a minicomputer and a workstation is that a 
workstation has a screen, a keyboard, and a mouse. 

Ex.1035.531DELL

9 Input/Output

9.1 Introduction

Input/output has been the orphan of computer architecture. Historically
neglected by CPU enthusiasts, the prejudice against I/O is institutionalized in the
most widely used performance measure, CPU time (page 35). Whether a
computer has the best or the worst I/O system in the world cannot be measured
by CPU time, which by definition ignores I/O. The secondclasscitizenship of
T/O is even apparentin the label “peripheral” applied to I/O devices.

This attitude is contradicted by common sense. A computer without I/O
devicesis like a car without wheels—you can’t get very far without them. And
while CPUtimeis interesting, response time—the time between when the user
types a command and whenshe gets results—is surely a better measure of
performance. The customer who pays for a computer cares about response time,
even if the CPU designer doesn’t. Finally, as rapid improvements in CPU perfor-
mance compresstraditional classes of computers together, it is I/O that serves to
distinguish them:

« The difference between a mainframe computer and a minicomputeris that :a
mainframe can support many more terminals and disks.

« The difference between a minicomputer and a workstation is that a
workstation has a screen, a keyboard, and a mouse.

DELL Ex.1035.531



500 9.1 Introduction 

• The difference between a file server and a workstation is that a file server has 
disks and tape units but no screen, keyboard, or mouse. 

• The difference between a workstation and a personal computer is that 
workstations are always GOnnected together on a network. 

It may come to pass that computers from high-end workstations to low-end 
supercomputers will use the same "super-microprocessors." Differences in cost 
and performance would be determined only by the memory and 1/0 systems 
(and the number of processors). 

I/O's revenge is at hand. Suppose we have a difference between CPU time 
and response time of 10%, and we speed up the CPU by a factor of 10, while 
neglecting 1/0. Amdahl's Law tells us that we will get a speedup of only 5 
times, with half the potential of the CPU wasted. Similarly, making the CPU 100 
times faster without improving the 1/0 would obtain a speedup of only 10 times, 
squandering 90% of the potential. If, as predicted in Chapter 1, performance of 
CPUs improves at 50% to 100% per year, and 1/0 does not improve, every task 
will become 1/0 bound. There would be no reason to buy faster CPUs-and no 
jobs for CPU designers. 

While this single chapter cannot fully vindicate 1/0, it may at least atone for 
some of the sins of the past and restore some balance. 

Are CPUs Ever Idle? 

Some suggest that the prejudice is well founded. 1/0 speed doesn't matter, they 
argue, since there is always another process to run while one process waits for a 
peripheral. · 

There are several points to make in reply. First, this is an argument that 
performance is measured as throughput-more tasks per hour-rather than as 
response time. Plainly, if users didn't care about response time,., interactive 
software never would have been invented, and there would be no workstations 
today. (The next section gives experimental evidence on the importance of 
response time.) It may also be expensive to rely on processes while waiting for 
1/0, since main memory must be larger or else the paging traffic from process 
switching would actually increase 1/0. Furthermore, with desktop computing 
there is only one person per CPU, and thus fewer processes than in timesharing; 
many times the only waiting process is the human being! And some 
applications, such as transaction processing (Section 9.3), place strict limits on 
response time as part of the performance analysis. 

But let's accept the argument at face value and explore it further. Suppose the 
difference between response time and CPU time today is 10%, and a CPU that is 
ten times faster can be achieved without changing 1/0 performance. A process 
will then spend 50% of its time waiting for 1/0, and two processes will have to 
be perfectly aligned to avoid CPU stalls while waiting for 1/0. Any further CPU 
improvement will only increase CPU idle time. 

Ex.1035.532DELL



Input/Output 501 

Thus, I/O throughput can limit system throughput, just as 1/0 response time 
limits system response time. Let's see how to predict performance for the whole 
system. 

9.2 I Predicting System Performance 

System performance is limited by the slowest part of the path between CPU and 
1/0 devices. The performance of a system can be limited by the speed of any of 
these pieces of the path, shown in Figure 9 .1: 

• TheCPU 

• The cache memory 

• The main memory 

• The memory-I/O bus 

• The 1/0 controller or 1/0 channel 

• The 1/0 device 

• The speed of the 1/0 software 

• The efficiency of the software's use of the 1/0 device 

Processor 
Interrupts 

1/0 1/0 1/0 

Main 
controller controller controller 

memory 

Graphics Network 

output 

FIGURE 9.1 Typical collection of 1/0 devices on a computer. 

Ex.1035.533DELL

Input/Output 501 

9.2

 

Thus, I/O throughput can limit system throughput, just as I/O response time
limits system response time. Let’s see how to predict performance for the whole
system.

Predicting System Performance

System performanceis limited by the slowest part of the path between CPU and
I/O devices. The performance of a system can be limited by the speed of any of
these pieces of the path, shown in Figure 9.1:

a» The CPU

= The cache memory

= The main memory

= The memory-I/O bus

# -The J/O controller or I/O channel

a The 1/0 device

= The speedof the I/O software

u The efficiency of the software’s use of the I/O device.

Interrupts|reese P

ort

vo
controller

Cr
 
FIGURE 9.1 Typical collection of I/O devices on a computer.

DELL Ex.1035.533



502 9.2 Predicting System Performance 

If the system is not balanced, the high performance of some components may be 
lost due to the low performance of one link in the chain. The art of 1/0 design is 
to configure a system such that the speeds of all components are matched. 

In earlier chapters we have assumed that the fastest CPU is the single object 
of our desire, but CPU performance is not the same as system performance. For 
example, suppose we have two workloads, A and B. Both workloads take 10 
seconds to run. Workload A does so little 1/0 that it is not worth mentioning. 
Workload B keeps 1/0 devices busy four seconds, and this time is completely 
overlapped with CPU activities. Suppose the CPU is replaced by a newer model 
with five times the performance. Intuitively, we realize that workload A takes 
two seconds-fully five times faster-but workload Bis 1/0 bound and cannot 
take less than four seconds. Figure 9.2 illustrates our intuition. 

Cid CPU, I/Clime 

workload A CPU time 10 

Cid CPU, I/Clime 

workload B CPU time 10 

New CPU, l/Olime 
workload A CPU lime 

New CPU, I/Clime 

workload B CPU lime 

0 2 3 4 5 6 7 8 9 10 
Time (secs) 

FIGURE 9.2 The overlapped execution of the two workloads with the original CPU 
and then a CPU with five times the performance. We can see that the elapsed time for 
workload A is indeed 1/5 of the time with the new CPU, but it is limited to four seconds in 
workload B because 1/0 speed is not improved. 

Determining the performance of such cases requires a new formula. The 
elapsed execution time of a workload can be broken into three pieces 

Timeworkload = Timecpu + Time110 - Time0verlap 

where Timecpu means the time the CPU is busy, Timel/o means the time the 
1/0 system is busy, and Time0 verlap means the time both the CPU and the 1/0 
system are busy. Using workload B with the old CPU in Figure 9.2 as an 
example, the times in seconds are: 

10 for Timeworkload• 

10 for Timecpu, 

Ex.1035.534DELL

502 "9.2 Predicting System Performance

If the system is not balanced, the high performance of some components may be
lost due to the low performance of onelink in the chain. Theart of I/O design is
to configure a system such that the speeds of all components are matched.

In earlier chapters we have assumedthat the fastest CPU is the single object
of our desire, but CPU performanceis not the same as system performance. For
example, suppose we have two workloads, A and B. Both workloads take 10
seconds to run. Workload A doessolittle I/O thatit is not worth mentioning.
Workload B keeps I/O devices busy four seconds, and this time is completely
overlapped with CPU activities. Suppose the CPU is replaced by a newer model
with five times the performance.Intuitively, we realize that workload A takes
two seconds—fully five times faster—but workload B is I/O bound and cannot
take less than four seconds. Figure 9.2 illustrates our intuition.

oidcpu, VOtime
workioadA==©6C PU time

Old CPU, VO time
workload B CPUtime

NewCPu,  /Otime
workloadA CPU time

New CPU, /O time
workioadB—CPU time

Time (secs)

 
FIGURE 9.2 The overlapped execution of the two workloads with the original CPU
and then a CPU with five times the performance. We.can seethat the elapsed time for
workloadAis indeed 1/5 of the time with the new CPU,butit is limited to four secondsin

workload B because I/O speedis not improved.

Determining the performance of such cases requires a new formula. The
elapsed execution time of a workload can be broken into three pieces

Timeworkload = Timecpy + Timeyo — Timeovertap

where Timecpy meansthe time the CPU is busy, Timey/o meansthe time the
I/O system is busy, and Timeoverlap means the time both the CPU andthe I/O
system are busy. Using workload B with the old CPU in Figure 9.2 as an
example, the times in secondsare:

10 for Timeworkload

10 for Timecpy,

DELL Ex.1035.534



Example 

Answer 

Input/Output 

4 for Time1;0. and 

4 for Time0 verlap· 

503 

Assuming we speed up only the CPU, one way to calculate the time to 
execute the workload is: 

Timecpu . Time0 verlap 
Timeworkload = S d + Time1;0 - d pee upcpu Spee upcpu 

Since the CPU time is shrunk, it stands to reason that the overlap time is also 
shrunk. The system speedup when we want to improve 1/0 is equivalent: 

. . Timeuo 
Timeworkload = Timecpu + s d 

pee UPif O 

Timeoverlap 
Speedup1;0 

Let's try an example before explaining a limitation of these formulas. 

One workload takes 50 seconds to run, with the CPU being busy 30 seconds and 
the 1/0 being busy 30 seconds. How much time will the workload take if we 
replace the CPU with one that has four times the performance? 

The total elapsed time is 50 seconds, yet the sum of CPU time and 1/0 time is 60 
seconds. Thus the overlap time must be 10 seconds. Plugging into the formula: 

. Timecpu . Timeoverlap 30 10 
Timeworkload = Speedupcpu + Time1;0 - Speedupcpu = 4 + 30 - 4 = 35 

This example uncovers a complication with this formula: How,much of the 
time that the workload is busy on the faster CPU is overlapped wit~ 1/0? Figure 
9 .3 (page 504) sho~s three options. Depending on the resulting overlap after 
speedup, the time for the workload varies from 30 to 37 .5 seconds. 

In reality we can't know which is correct without measuring the workload on 
the faster CPU to see what overlap occurs. The formulas above assume option 
(c) iri Figure 9.3; the overlap scales by the same speedup as the CPU, so we will 
call it Timescaled (rather than Timeworkload). Maximum overlap assumes that as 
much of the overlap as possible is maintained, but that the new overlap cannot 
be larger than the original overlap or the CPU time after speedup. Minimum 
overlap assumes that as much of the overlap as possible is eliminated, but that 
the overlap time will not shrink by more than the time removed from the CPU or 
1/0 time. If we introduce the abbreviations Newcpu = Timecpu I Speedupcpu 
and Newvo = Timevo I Speedup1;0, the time of the workload for maximum 
overlap (Timebest) and minimum overlap (Timeworst) can be written as: 

Timebest = Newcpu + Time1;0 - Minimum (Time0 verlap•Newcpu) 

Timeworst = Newcpu + Time1;0 - Maximum (O;Timeoverlap- (Timecpu-Newcpu)) 

Ex.1035.535DELL



504 

Example 

Answer 

9.2 Predicting System Performance 

(a) Before (50 secs) 

Time overlap 
Time 110 r-1 -...,..------,! I 

(c) After: "Scaled overlap" (35 secs) 

Time overlap 

Time 110 I ._ _ _.____,_l_ ... I 

(b) After: "Maximum overlap" (30 secs) 

Time overlap 

Time110 .-----.---,-,I I I 
.Timecpu 

(d) After: "Minimum overlap" (37.5 secs) 

Time 110 ..... I _......._____._ _ __. 

D Timecpu 

FIGURE 9.3 The original overlap in the example above (a) and three interpretations 
of overlap after speedup. Each block represents 1 O seconds, except that the block for the 
new CPU time is 7.5 seconds. The overlapped portions of Timecpu and Time110 are 
shaded. (b) shows the new Timecpu overlapping completely with 1/0, giving a time of the 
workload of 30 seconds. (c) shows the overlap of the Timecpu is scaled with SpeedupcPU• 
giving a total of 35 seconds, with 2.5 seconds of overlapped execution. (d) shows no 
overlap with 1/0, so the total is 37.5 seconds. 

Calculate the three time predictions for workload B in Figure 9 .2 

Timebest = ~O + 4 - Minimum (~O , 4) = 2 + 4-' 2 = 4 

. 10 4 . 
Timescaled = 5 + 4 - 5 = 2 + 4 - 0.8 = 5.2 

Timeworst = ~O + 4-Maximum (0,4-(10--'~0)) = 2 + 4-0 = 6 

Sometimes changes will be made to both the CPU and the 1/0 system. The 
formulas become: 

T
. N N . Timeoverlap 
1me al d = ewcpu + ewl/o - . sc e Max1mum(Speedupcpu,Speedupl/o) 

Timebest = Newcpu + Newl/o -Minimum(Time0verlap.Newcpu,Newlfo) 

Timeworst = Newcpu + New1;0 - Max (O,Time0 verlap-Max (Timecpu~Newcpu,Time1;0-New110)) 

Ex.1035.536DELL

504 9.2 Predicting System Performance

(a) Before (50 secs) ‘(b) After: “Maximum overlap” (30 secs)
Time overlap TiMeoverlap

Time yo || :

||Time cpy

 
 

 

(c) After: “Scaled overlap” (35 secs) @) After: “Minimum overlap” (37.5 secs)

Time[[TT|

Timecpy [| Timecpy

TIMEoveriap

Timeyo ||| 
FIGURE 9.3 Theoriginal overlap in the example above(a) and threeinterpretations
of overlap after speedup. Each block represents 10 seconds, except that the block for the
new CPUtimeis 7.5 seconds. The overlapped portions of Timecpy and Timejjo are
shaded. (b) shows the new Timeécpy overlapping completely with 1/O, giving a time of the
workload of 30 seconds. (c) showsthe overlap of the Timecpy is scaled with Speedupcpy,
giving a total of 35 seconds, with 2.5 seconds of overlapped execution. (d) shows no
overlap with I/O, so the total is 37.5 seconds.

 Calculate the three time predictions for workload B in Figure 9.2
Example

Answer Timepest = ® + 4— Minimum (2 , 4) =2+4-2=4

Timescatea="g +4— $= 2+4-08=5.2

Timeworst = * +4— Maximum 0,4-10-)) =2+4-0=6

Sometimes changes will be made to both the CPU andthe I/O system. The
formulas become:

Timeoverlap
Timescalea = Newcpu + Newyo ~ Maximum(Speedupcpy,Speedupyo)

Timepest = Newcpy + Newyo —Minimum(Timeoyertap.Newcpu,Newyo)

Timeworst = Newcpy + Newyo — Max (0,Timeoyeriap~Max (Timecpy-Newcpy,Timeyo—Newyo))

DELL Ex.1035.536



Example 

Answer 

Input/Output 505 

The formula for scaled overlap says that the overlap period is reduced by the 
larger of the two speedups. The formula for maximum overlap (Timebest) says 
that as much overlap as possible is retained, but the new overlap cannot be larger 
than the original overlap or the CPU or 1/0 time after speedup. Finally, the 
formula for minimum overlap (Timeworst) says that the overlap is reduced by 
the larger of the time removed from the CPU time and the time removed from 
the 1/0 time (but that the overlap time cannot be less than 0). Figure 9.4 shows 
the three examples of speedup where both the 1/0 and CPU are improved. 

(a) Before (50 secs) (b) After: "Maximum overlap" (15 secs) 

Time overlap 

Time11ol M Time 110 I.____._ _ _, 

,__.._ _ _._____.I TimecPu • Timecpu 

(c) After: "Scaled overlap" (20 secs) (d) After: "No overlap" (22.5 secs) 

Time overlap 

Time110 I 11 Time110 ._I -J........J 

IJ D TlmeCPU 
Time CPU 

FIGURE 9.4 Time for workload in Figure 9.3(a) with Speedupcpu = 4 and 
SpeedUP110 = 2. 

Let's look at a detailed example showing speedup of both the CPU and 1/0. 

Suppose a workload on the current systems takes 64 seconds. The CPU is busy 
the whole time, and the channels connecting the 1/0 devices to the CPU are busy 
36 seconds. The computer manager is considering two upgrade options: either a 
single CPU that has twice the performance, or two CPUs that have twice the 
throughput and twice as many channels. The time of the actual 1/0 devices is so 
small it can be ignored. For the dual CPU option assume that the workload can 
be evenly spread between the CPUs and channels. What is the performance 
improvement for each option? 

Since there ·is no change to the 1/0 system with the single faster CPU, time for 
the workload assuming scaled overlap is then simply 

Timecpu T. Time0 verlap 
Timescaled = S d + 1me1;0 - S d pee upcpu pee upcpu 

= 64 
+ 36 -

36 = 32 + 36 - 18 = 50 2 2 

Ex.1035.537DELL

Input/Output 505

The formula for scaled overlap says that the overlap period is reduced by the
larger of the two speedups. The formula for maximum overlap (Timepegt) says
that as much overlap as possible is retained, but the new overlap cannot be larger
than the original overlap or the CPU or I/O time after speedup. Finally, the
formula for minimum overlap (Timeworst) says that the overlap is reduced by

the larger of the time removed from the CPU time and the time removed from
the I/O time (but that the overlap time cannot be less than 0). Figure 9.4 shows
the three examples of speedup where both the I/O and CPU are improved.

(a) Before (50secs)

(d) After: “No overlap” (22.5 secs)

Timeyo[ |_|

[] Time cpy
 
FIGURE 9.4 Time for workload in Figure 9.3(a) with Speedupcpy = 4 and
Speedupyo = 2.

Let’s look at a detailed example showing speedup of both the CPU and I/O.

 Suppose a workload on the current systems takes 64 seconds. The CPU is busy
the whole time, and the channels connecting the I/O devices to the CPU are busy
36 seconds. The computer manageris considering two upgrade options: either a
single CPU that has twice the performance, or two CPUs that have twice the
throughput and twice as many channels. The time of the actual I/O devices is so
small it can be ignored. For the dual CPU option assume that the workload can
be evenly spread between the CPUs and channels. What is the performance
improvement for each option?

Example

Answer|Sincethere is no changeto the I/O system with the single faster CPU, time for
the workload assumingscaled overlap is then simply

. _ _Timecpy : Timeoverlap
Timéscaled = Speedupcpy * Timeyo— Speedupcpu

=o 36-9 = 32+ 36-18 =50

DELL Ex.1035.537



506 9.2 Predicting System Performance 

For the dual CPU with more channels, 

Timescaled = 
Timecpu Timel/o Time0 verlap 

+ Speedupcpu Speedup110 Maximum(Speedupcpu, Speeduplfo) 

64 36 36 = -2 + -2 - _M_a_x-im-um-(2-,-2-) = 32 + 18 - 18 = 32 

Assuming scaled overlap, the dual CPU is more than 50% faster. Using best
case scaling, the dual CPU is 13% faster, while worst-case scaling suggests it is 
39% faster. 

As these examples demonstrate, we need improvement in 1/0 performance to 
match the improvement in CPU performance if we are to achieve faster com
puter systems. We can now examine metrics of I/O devices to understand how to 
improve their performance and thus the whole system. 

9.3 I 110 Performance Measures 

I/0 performance has measures that have no counterparts in CPU design. One of 
these is diversity: Which I/0 devices can connect to the computer system? 
Another is capacity: How many I/O devices can connect to a computer system? 

In addition to these unique measures, the traditional measures of perfor
mance, response time and throughput also apply to I/0. (I/O throughput is 
sometimes called "1/0 bandwidth" and response time is sometimes called "la
tency.") The next two figures offer insight into how response time and 
throughput trade off against each other. Figure 9.5 shows the simple producer
server model. The producer creates tasks to be performed and places them in the 
queue; the server takes tasks from the queue and performs them. 

Queue 

1111 

FIGURE 9.5 The traditional producer-server model of response time and throughput. 
Response time begins when a task is placed in the queue and ends when it is completed by 
the server. Throughput is the number of tasks completed by the server in unit time. 

Ex.1035.538DELL

506 , 9.2 Predicting System Performance

For the dual CPU with more channels,

Timescaled =

Timecpy Timeyo Timeoverlap
Speedupcpy|Speedupyo Maximum(Speedupcpy, Speedupyo)

64 36 36

= "9 + 2 7 Maximum(2, 2) 722 *18~ 18 = 32
Assuming scaled overlap, the dual CPU is more than 50% faster. Using best-
case scaling, the dual CPU is 13% faster, while worst-casescaling suggests it is
39% faster.

As these examples demonstrate, we need improvementin I/O performance to
match the improvement in CPU performance if we are to achieve faster com-

puter systems, We can now examine metrics of I/O devices to understand how tto
improve their performance and thus the whole system.

9.3 1/O Performance Measures

I/O performance has measures that have no counterparts in CPU design. One of
these is diversity: Which I/O devices can connect to the computer system?
Anotheris capacity: How many I/O devices can connect to a computer system?

In addition to these unique measures, the traditional measures of perfor-
mance, response time and throughput also apply to I/O. (J/O throughputis
sometimescalled “I/O bandwidth” and response time is sometimescalled “la-
tency.”) The next two figures offer insight into how response time and
throughput trade off against each other. Figure 9.5 showsthe simple producer-
server model. The producer creates tasks to be performed and places them in the
queue; the server takes tasks from the queue and performs them.

 
FIGURE 9.5 Thetraditional producer-server model of response time and throughput.
Responsetime begins whena taskis placed in the queue and ends whenit is completed by
the server. Throughput is the numberof tasks completed by the server in unit time.

DELL Ex.1035.538



lnpuVOutput 507 

Response time is defined as the time a task takes from the moment it is placed 
in the queue until the server finishes the task. Throughput is simply the average 
number of tasks completed by the server over a time period, To get the highest 
possible throughput, the server should never be idle, and thus the queue should 
never be empty. Response time, on the other hand, counts time spent in the 

· queue and is therefore minimized by the queue being empty. 
Another measure of 1/0 performance is the interference of 1/0 with CPU 

execution. Transferring data may interfere with the execution of another process. 
There is also overhead due to handling 1/0 interrupts. Our concern here is how 
many more clock cycles a process will take because of 1/0 for another process. 

Throughput Versus Response Time 

Figure 9.6 shows throughput versus response time (or latency), for a typical 1/0 
system. The knee of the curve is the area where a little more throughput results 
in much longer response time or, conversely, a little shorter response time results 
in much lower throughput. 

Response time 
(latency) 
in ms 

0% 20% 40% 60% 80% 100o/o 

Percent of maximum throughput (bandwidth) 

FIGURE 9.6 Throughput versus response time. Latency is normally reported as 
response time. Note that absolute minimum response time achieves only 11 % of the 
throughput while the response time for 100% throughput takes seven times the minimum 
response time. Chen [1989] collected these data for an array of magnetic disks. 

Ex.1035.539DELL

Input/Output 507  

Responsetime is defined as the time a task takes from the momentit is placed
in the queue until the server finishes the task. Throughput is simply the average
number of tasks completed by the server over a time period. To get the highest
possible throughput, the server should never be idle, and thus the queue should
never be empty. Response time, on the other hand, counts time spent in the

" queue andis therefore minimized by the queue being empty.
Another measure of I/O performanceis the interference of I/O with CPU

execution. Transferring data may interfere with the execution of another process.
There is also overhead due to handling I/O interrupts. Our concern here is how
many more clock cycles a process will take because of I/O for another process.

Throughput Versus Response Time

Figure 9.6 shows throughput versus response time(or latency), for a typical I/O
system. The knee of the curve is the area wherea little more throughputresults
in much longer responsetimeor, conversely, a little shorter response time results
in much lower throughput.

Responsetime
(latency)
inms

20% 40% 60% 80% 100%

Percent of maximum throughput (bandwidth)

 
FIGURE 9.6 Throughput versus response time. Latency is normally reported as
responsetime. Note that absolute minimum response time achieves only 11% of the
throughput while the response time for 100% throughput takes seven times the minimum
responsetime. Chen [1989] collected these data for an array of magnetic disks.

DELL Ex.1035.539



508 9.3 1/0 Performance Measures 

Life would be simpler if improving performance always meant improvements 
in both response time and throughput. Adding more servers, as in Figure 9.7, 
increases throughput: By spreading data across two disks instead of one, tasks 
may be serviced in parallel. Alas, this does not help response time, unless the 
workload is held constant and the time in the queues is reduced because of more 
resources. 

Queue 

1111 

FIGURE 9.7 The single-producer, single-server model of Figure 9.5 is extended with 
another server and queue. This increases 1/0 system throughput and takes less time to 
service producer tasks. Increasing the number of servers is a common technique in 1/0 
systems. There is a potential imbalance problem with two queues; unless data is placed 
perfectly in the queues, sometimes one server will be idle with an empty queue while the 
other server is busy with many tasks in its queue. 

How does the architect balance these conflicting demands? If the computer is 
interacting with human beings, Figure 9.8 suggests an answer. This figure 
presents the results of two studies of interactive environments, one keyboard 
oriented and one graphical. An interaction or transaction with a computer is 
divided into three parts: 

1. Entry time: The time for the user to enter the command. In the graphics 
system in Figure 9.8 it took 0.25 seconds on average to enter the command 
versus 4.0 seconds for the conventional system. 

2. System response time: The time between when the user enters the command 
and the complete response is displayed. 

3. Think time: The time from the reception of the response until the user begins 
to enter the next command. 

The sum of these three parts is called the transaction time. Several studies report 
that user productivity is· inversely proportional to transaction time; transactions 
per hour measures the work completed per hour by the user. 

Ex.1035.540DELL

508 9.3 I/O Performance Measures

Life would be simpler if improving performance always meant improvements
in both response time and throughput. Adding more servers, as in Figure 9.7,
increases throughput: By spreading data across two disks instead of one, tasks
may be serviced in parallel. Alas, this does not help response time, unless the
workload is held constant and the time in the queues is reduced because of more
resources.

 
FIGURE9.7 The single-producer, single-server model of Figure 9.5 is extended with
another server and queue.This increases I/O system throughput and takesless time to
service producertasks. Increasing the numberof servers is a commontechniquein /O
systems. Thereis a potential imbalance problem with two queues;unless data is placed
perfectly in the queues, sometimes one serverwill be idle with an empty queue while the
other serveris busy with many tasks in its queue.

\

How doesthe architect balance these conflicting demands? If the computeris
interacting with human beings, Figure 9.8 suggests an answer. This figure
presents the results of two studies of interactive environments, one keyboard
oriented and one graphical. An interaction or transaction with a computeris
divided into three parts:

1. Entry time: The time for the user to enter the command. In the graphics
system in Figure 9.8 it took 0.25 seconds on average to enter the command
versus 4.0 seconds for the conventional system.

2. System response time: The time between when the user enters the command
and the complete responseis displayed.

3. Think time: The time from the reception of the response until the user begins
to enter the next command.

The sum of these three parts is called the transaction time. Several studies report
that user productivity is inversely proportional to transaction time; transactions
per hour measures the work completed per hour bythe user.

DELL Ex.1035.540



Input/Output 

Workload 

Conventional interactive workload 
(1.0 sec. system response time) 

Conventional interactive workload 
(0.3 sec. system response time) 

High-function graphics workload 
(1.0 sec. system response time) 

High-function graphics workload 
(0.3 sec. system response time) 

0 

~ 
-70%total 
(-81 % think) 

5 10 

Time (seconds) 

-34%total 
(-70% think) 

15 

• Entry time D System response time • Think time 

509 

FIGURE 9.8 A user transaction with an interactive computer divided into entry time, 
system response time, and user think time for a conventional system and graphics 
system. The entry times are the same independent of system response time. The entry 
time was 4 seconds for the conventional system and 0.25 seconds for the graphics system. 
(From Brady [1986].) 

The results in Figure 9.8 show that reduction in response time actually 
decreases transaction time by more than just the response time reduction: 
Cutting system response time by 0.7 seconds saves 4.9 seconds (34%) from the 
conventional transaction and 2.0 seconds (70%) froni the graphics transaction. 
This implausible result is explained by human nature; people need less time to 
think when given a faster response. 

Whether these results are explained as a better match to the human attention 
span or getting people "on a roll," several studies report this behavior. In fact, as 
computer responses drop below a second, productivity seems_ to make a more 
than linear jump. Figure 9.9 (page 510) compares transactions per hour (the 
inverse of transaction time) of a novice, an average engineer, and an expert 
performing physical design tasks at graphics displays. System response time 
magnified talent: a novice with subsecond response time was as productive as an 
experienced professional with slower response, and the experienced engineer in 
turn could outperform the expert with a similar advantage in response time. In 
all cases the number of transactions per hour jumps more than linearly with 
subsecond response time. 

Since humans may be able to get much more work done per day with better 
response time, it is possible to attach an economic benefit to the customer of 
lowering response time into the subsecond range [IBM 1982], thereby helping 
the architect decide how to tip the balance between response time and 
throughput. 

Ex.1035.541DELL

Input/Output 509 

Workload

Conventionalinteractive workload

(1.0 sec. system responsetime)

Conventional interactive workload

(0.3 sec. system responsetime) -34% total
(-70% think)

High-function graphics workload
(1.0 sec. system responsetime)

High-function graphics workload
(0.3 sec. system responsetime)

-70%total
(-81% think)

0

5 10

Time (seconds)

Bi entrytime O System response time

 
FIGURE 8.8 A user transaction with an interactive computer divided into entry time,
system responsetime, and user think time for a conventional system and graphics
system. The eniry times are the same independent of system response time. The entry
time was 4 secondsfor the conventional system and 0.25 secondsfor the graphics system.
(From Brady [1986].)

The results in Figure 9.8 show that reduction in response time actually
decreases transaction time by more than just the response time reduction:
Cutting system response time by 0.7 seconds saves 4.9 seconds (34%) from the
conventional transaction and 2.0 seconds (70%) from the graphics transaction.
This implausible result is explained by human nature; people need less time to
think when given a faster response.

Whether these results are explained as a better match to the humanattention
span or getting people “on a roll,” several studies report this behavior. In fact, as
computer responses drop below a second, productivity seemsto make a more
than linear jump. Figure 9.9 (page 510) compares transactions per hour (the
inverse of transaction time) of a novice, an average engineer, andan expert
performing physical design tasks at graphics displays. System response time
magnified talent: a novice with subsecond response time was as productive as an
experienced professional with slower response, and the experienced engineer in
turn could outperform the expert with a similar advantage in response time. In
all cases the number of transactions per hour jumps more than linearly with
subsecond response time.

Since humans may be able to get much more work done per day with better
response time, it is possible to attach an economic benefit to the customer of
lowering response time into the subsecond range [IBM 1982], thereby helping
the architect decide how to tip the balance between response time and
throughput.

DELL Ex.1035.541



510 9.3 1/0 Performance Measures 

4500 

4000 

3500 

3000 
Transactions 
per user 2500 
hour 
(productivity) 

2000 

1500 

1000 

500 

0 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 

System response time (secs) 

FIGURE 9.9 Transactions per hour versus computer response time for a novice, 
experienced engineer, and expert doing physical design on a graphics system. 
Transactions per hour is a measure of productivity. (From IBM (1982].) 

Examples of Measurements of 1/0 Performance
Magnetic Disks 

Benchmarks are needed to evaluate I/O performance, just as they are needed to 
evaluate CPU performance. We begin with benchmarks for magnetic disks. 
Three traditional applications of disks are with large-scale scientific problems, 
transaction processing, and file systems. 

Supercomputer 1/0 Benchmarks 

Supercomputer 1/0 is dominated by accesses to large files on magnetic disks. 
For example,. Bucher and Hayes [1980] benchmarked supercomputer 1/0 using 
8-MB sequential file transfers. Many supercomputer installations run batch jobs, 
each of which may last for hours. In these situations, 1/0 consists of one large 
read followed by writes to snapshot the state of the computation should the 
computer crash. As a result, supercomputer 1/0 in many cases consists of more 
output than input. Some models of Cray Research computers have such limited 
main memory that programmers must break their programs into overlays and 
swap them to disk (see Section 8.5 of Chapter 8), which also causes large 
sequential transfers. Thus, the overriding supercomputer I/0 measure is data 

Ex.1035.542DELL

510 "9,3. VO Performance Measures

Transactions
per user
hour

(productivity)

0.50 0.75

System responsetime (secs)

 
FIGURE 9.9 Transactions per hour versus computer responsetimefor a novice,
experienced engineer, and expert doing physical design ona graphics system.
Transactions per hour is a measure of productivity. (From IBM [1982].)

Examples of Measurements of I/O Performance—
Magnetic Disks

Benchmarks are needed to evaluate I/O performance,just as they are needed to
evaluate CPU performance. We begin with benchmarks for magnetic disks.
Three traditional applications of disks are with large-scale scientific problems,
transaction processing, and file systems.

Supercomputer I/O Benchmarks

Supercomputer I/O is dominated by accesses to large files on magnetic disks.
For example; Bucher and Hayes [1980] benchmarked supercomputer I/O using
8-MB sequential file transfers. Many supercomputerinstallations run batch jobs,
each of which may last for hours. In these situations, I/O consists of one large
read followed by writes to snapshot the state of the computation should the
computer crash. As a result, supercomputer I/O in many cases consists of more
output than input. Some models of Cray Research computers have such limited
main memory that programmers must break their programs into overlays and
swap them to disk (see Section 8.5 of Chapter 8), which also causes large
sequential transfers. Thus, the overriding supercomputer I/O measure is data

DELL Ex.1035.542



Input/Output 511 

throughput: number of bytes per second that can be transferred between 
supercomputer main memory and disks during large transfers. 

Transaction Processing 1/0 Benchmarks 

In contrast, transaction processing (TP) is chiefly concerned with //0 rate: the 
number of disk accesses per second, as opposed to data rate, measured as bytes 
of data per second. TP generally involves changes to a large body of shared 
information from many terminals, with the TP system guaranteeing proper be
havior on a failure. If, for example, a bank's computer fails when a customer 
withdraws money, the TP system would guarantee that the account is debited if 
the customer received the money and that the account is unchanged if the money 
was not received. Airline reservations systems as well as banks are traditional 
customers for TP. 

Two dozen members of the TP community conspired to form a benchmark 
for the industry and, to avoid the wrath of their legal departments, published the 
report anonymously [1985]. This benchmark, called DebitCredit, simulates bank 
tellers and has as its bottom line the number of debit/credit transactions per 
second (TPS); in 1990, the TPS for high-end machines is about 300. The 
DebitCredit performs the operation of a customer depositing or withdrawing 
money. The performance measurement is the peak TPS, with 95% of the 
transactions having less than a one-second response time. The DebitCredit 
computes the cost per TPS, based on the five-year cost of the computer-system 
hardware and software. Disk 1/0 for DebitCredit is random reads and writes of 
100-byte records along with occasional sequential writes. 

Depending on how cleverly the transaction-processing system is designed, 
each transaction results· in between two and ten disk I/Os and takes between 
5,000 and 20,000 CPU instructions per disk 1/0. The variation largely depends 
on the efficiency of the transaction processing software, although in part it 
depends on the extent to which disk accesses can be avoided by keeping 
information in main memory. The benchmark requires that for TPS to increase, 
the number of tellers and the size of the account file must also increase. Figure 
9.10 shows this unusual relationship in which more TPS requires more users. 

TPS Number of A TMs Account-file size 

10 1,000 0.1 GB 

100 10,000 1.0GB 

1,000 100,000 10.0 GB 

10,000 1,000,000 100.0 GB 

FIGURE 9.10 Relationship among TPS, tellers, and account-file size. The DebitCredit 
benchmark requires that the computer system handle more tellers and larger account files 
before it can claim a higher transaction-per-second milestone. The benchmark is supposed 
to include "terminal handling" overhead, but this metric is sometimes ignored. 

Ex.1035.543DELL



512 9.3 1/0 Performance Measures 

This is to ensure that the benchmark really measures disk I/O; otherwise a large 
main memory dedicated to a database cache with a small number of accounts 
would unfairly yield a very high TPS. (Another perspective is the number of 
accounts must grow since a person is not likely to use the bank more frequently 
just because the bank has a faster computer! ) 

File System 1/0 Benchmarks 

File systems, for which disks are mainly used in timesharing systems, have a 
different access pattern. Ousterhout et al. [1985] measured a UNIX file system 
and found that 80% of accesses to files of less than 10 KB and 90% of all file 
accesses were sequential. The distribution by type of file access was 67% reads, 
27% writes, and 6% read:..write accesses. In 1988, Howard et al. [1988] proposed 
a file-system benchmark that is becoming popular. Their paper describes five 
phases of the benchmark, using 70 files with a total size of 200 KB: 

MakeDir-Constructs a target subtree that is identical in structure to the source 
subtree. 

Copy--Copies every file from the source subtree to the target subtree. 

ScanDir--R.ecursively traverses the target subtree and examines the status of 
every file in it. It does not actually read the contents of any file. 

ReadAll--Scans every byte of every file in the target subtree once. 

Make-Compiles and links all the files in the target subtree. [p. 55] 

The file-system measurements of Howard et al. [1988], like those of Ousterhout 
et al. [ 1985], found the ratio of disk reads to writes to be about 2: 1. This 
benchmark reflects that measure. 

9.4 I Types of 1/0 Devices 

Now that we have covered measurements of 1/0 performance, let's describe the 
devices themselves. While the computing model has changed little since 1950, 
1/0 devices have become rich and diverse. Three characteristics are useful in 
organizing this disparate conglomeration: 

• Behavior-input (read once), output (write only, cannot be read), or storage 
(can be reread and usually rewritten) 

• Partner-either a human or a machine is at the other end of the I/O device, 
either feeding data on input or reading data on output 

• Data rate-the peak rate at which data can be transferred between the 1/0 
device and the main memory or CPU 

Ex.1035.544DELL



Input/Output 513 

Using these characteristics, a keyboard is an input device used by a human with 
a peak data rate of about 10 bytes per second. Figure 9 .11 shows some of the 1/0 
devices connected to computers. 

The advantage of designing 1/0 devices for humans is that the performance 
target is fixed. Figure 9.12 shows the 1/0 performance of people. 

Device Behavior Partner Data rate 
(KB/sec) 

Keyboard Input Human 0.01 

Mouse Input Human 0.02 

Voice input Input Human 0.02 

Scanner Input Human 200.00 

Voice output Output Human 0.60 

Line printer Output Human 1.00 

Laser printer Output Human 100.00 

Graphics display Output Human 30,000.00 

(CPU to frame buffer) Output Human 200.00 

Network-terminal Input or output Machine 0.05 

Network-LAN Input or output Machine 200.00 

Optical disk Storage Machine 500.00 

Magnetic tape Storage Machine 2,000.00 

Magnetic disk Storage Machine 2,000.00 

FIGURE 9.11 Examples of 1/0 devices categorized by behavior, partner, and data 
rate. This is the raw data rate of the device rather than the rate an application would see. 
Storage devices can be further distinguished by whether they support sequential access 
(e.g., tapes) or random access (e.g., disks). Note that networks can act either as input or 
output devices but, unlike storage, cannot reread the same information. 

Human organ 1/0 rate (KB/sec) 1/0 latency (ms) 

Ear 8.000-60.000 10 

Eye-reading text 0.03~.375 10 

Eye-pattern recognition 125.000 10 

Hand-typing O.Ol~.020 100 

Voice. 0.003-0.015 100 

FIGURE 9.12 Peak 1/0 rates for people. Input via seeing patterns is our highest 1/0 rate; 
hence the popularity of graphic output devices. Maberly [1966] says the average reading 
speed is 28 bytes per second and the maximum is 375 bytes per second. The telephone 
company sets a 170-ms limit to the time between when an operator pushes a button to 
accept a call until a voice path must be established. The phone company transmits voice at 
8 KB per second. (None of these parameters are expected to change, unless anabolic 
steroids become a breakfast supplement!) 

Ex.1035.545DELL



514 9.4 Types of 1/0 Devices 

To put the data rates of each device into perspective, Figure 9.13 shows the 
relative peak memory bandwidth needed to support each device, assuming a 
computer had exactly one of each device transferring at its peak rate. 

Rather than discuss the characteristics of all I/0 devices, we will concentrate 
on the three devices with the highest data rates: magnetic disks, graphics 
displays, and local area networks. These are also the devices that have the 
highest leverage on user productivity. In this chapter we are not talking about 
floppy disks, but the original "hard" disks. These magnetic disks are what IBM 
calls DASDs, for Direct-Access Storage Devices. 

Magnetic Disks 

I t~ink Silicon Valley was misnamed. If you look back at the dollars shipped in 
products in the last decade there has been more revenue from magnetic disks 
than from silicon. They ought to rename the place Iron Oxide Valley. 

Al Hoagland, one of the pioneers of magnetic disks (1982) 

In spite of repeated attacks by new technologies, magnetic disks have dominated 
secondary storage since 1965. Magnetic disks play two roles in computer 
systems: 

• Long-term, nonvolatile storage for files, even when no programs are running 

• A level of the memory hierarchy below main memory used for virtual 
memory during program execution (see Section 8.5 in Chapter 8) 

Keyboard 0.01 
Mouse 0.02 

Voice input 0.02 
Network-terminal 0.05 

Voice output 0.60 
Line printer 1 

Laser printer 
Device Scanner 

Network-LAN 200 

Display (frame buffer) 200 
Optical disk 500 

Magnetic tape 

Magnetic disk 

0 1000 2000 

Data rate (KB/s) 

FIGURE 9.13 1/0 devices sorted from lowest data rate to highest. The data rate for the 
graphics display is from the CPU to the frame buffer b,ecause the CPU isn't involved in the 
transfer from the frame buffer to the display (see Graphics Displays subsection below). 

Ex.1035.546DELL

514 9.4 Typesof !/O Devices

To putthe data rates of each device into perspective, Figure 9.13 shows the
relative peak memory bandwidth needed to support each device, assuming a
computer had exactly one of each device transferring at its peak rate.

Rather than discuss the characteristics of all I/O devices, we will concentrate

on the three devices with the highest data rates: magnetic disks, graphics
displays, and local area networks. These are also the devices that have the
highest leverage on user productivity. In this chapter we are not talking about
floppy disks, but the original “hard” disks. These magnetic disks are what IBM
calls DASDs, for Direct-Access Storage Devices.

Magnetic Disks

I think Silicon Valley was misnamed.Ifyou look back at the dollars shipped in
products in the last decade there has been more revenue from magnetic disks
than from silicon. They ought to renamethe place Iron Oxide Valley.

Al Hoagland, oneofthe pioneers of magnetic disks (1982)

In spite of repeated attacks by new technologies, magnetic disks have dominated
secondary storage since 1965. Magnetic disks play two roles in computer
systems:

« Long-term, nonvolatile storage for files, even when no programsare running

s A level of the memory hierarchy below main memory used for virtual
memory during program execution (see Section 8.5 in Chapter 8)

Keyboard
Mouse

Voice input
Network-terminal

Voice output

Line printer

Laserprinter
Device Scanner

Network-LAN

Display (frame buffer)
Optical disk

Magnetic tape

 

   

 Magnetic disk

1000

Data rate (KB/s)

 
FIGURE 9.13 1/O devices sorted from lowest data rate to highest. The data rate for the
graphics display is from the CPU to the frame buffer. because the CPUisn’t involved in the
transfer from the frame buffer to the display (see Graphics Displays subsection below).

DELL Ex.1035.546



Input/Output 515 

As descriptions of magnetic disks can be found in countless books, we will 
only list the key characteristics with the terms illustrated in Figure 9.14. A mag
netic disk consists of a collection of platters (1 to 20), rotating on a spindle at 
about 3600 revolutions per minute (RPM). These platters are metal disks 
covered with magnetic recording material on both sides. Disk diameters vary by 
a factor of five, from 14 to 2.5 inches. Traditionally, the widest disks have the 
highest performance, and the smallest disks have the lowest cost per disk drive. 

:~p''""' 

Platter 

~Sectors 

I 
Track 

FIGURE 9.14 Disks are organized into platters, tracks, and sectors. Both sides of a 
platter are coated so that information can be stored on both surfaces. , 

Each disk surface is divided into concentric circles, designated tracks. There 
are typically 500 to 2000 tracks per surface. Each track in tum is divided into 
sectors that contain the information; each track might have 32 sectors. The 
sector is the smallest unit that can be read or written. The sequence recorded on 
the magnetic media is a sector number, a gap, the information for that sector 
including error correction code, a gap, the sector number of the next sector, and 
so on. Traditionally all tracks have the same number of sectors; the outer tracks, 
which are longer, record information at a lower density than the inner tracks. 
Recording more sectors on the outer tracks than on the inner tracks, called 

Ex.1035.547DELL

Input/Output 515 

As descriptions of magnetic disks can be found in countless books, we will
only list the key characteristics with the termsillustrated in Figure 9.14. A mag-
netic disk consists of a collection of platters (1 to 20), rotating on a spindle at
about 3600 revolutions per minute (RPM). These platters are metal disks
covered with magnetic recording material on both sides. Disk diameters vary by
a factor of five, from 14 to 2.5 inches. Traditionally, the widest disks have the
highest performance, and the smallest disks have the lowest cost per disk drive.

Platters

Platter

Sectors 
FIGURE 9.14 Disks are organized into platters, tracks, and sectors. Both sides of a
platter are coated so that information can be stored on both surfaces. ”

Each disk surface is divided into concentric circles, designated tracks. There
are typically 500 to 2000 tracks per surface. Each track in turn is divided into
sectors that contain the information; each track might have 32 sectors. The
sector is the smallest unit that can be read or written. The sequence recorded on
the magnetic media is a sector number, a gap, the information for that sector
including error correction code, a gap, the sector numberof the next sector, and
so on. Traditionally all tracks have the same numberof sectors; the outer tracks,
which are longer, record information at a lower density than the inner tracks.
Recording more sectors on the outer tracks than on the innertracks, called

DELL Ex.1035.547



516 9.4 Types of 1/0 Devices 

constant bit density, is becoming more widespread with the advent of intelligent 
interface standards such as SCSI (see Section 9.5). IBM mainframe disks allow 
users to select the size of the sectors, while almost all other systems fix the size 
of the sector. 

To read and write information into a sector, a movable arm containing a 
read/write head is located over each surface. Bits are recorded using a run
length limited code, which improves the recording density of the magnetic 
media. The arms for each surface are connected together and move in 
conjunction, so that every arm is over the same track of every surface. The term 
cylinder is used to refer to all the tracks under the arms at a given point on all 
surfaces. 

To read or write a sector, the disk controller sends a command to move the 
arm over the proper track. This operation is called a seek, and the time to move 
the arm to the desired track is called seek time. Average seek time is the subject 
of considerable misunderstanding. Disk manufacturers report minimum seek 
time, maximum seek time, and average seek time in the manuals. The first two 
are easy to measure, but average was open to wide interpretation. The industry 
decided to calculate average seek time as the sum of the time for all possible 
seeks divided by the number of possible seeks. Average seek times are 
advertised to be 12 ms to 20 ms, but depending on the application and operating 
system the actual average seek time may be only 25% to 33% of the advertised 
number, due to locality of disk references. Section 9.10 has a detailed example. 

The time for the requested sector to rotate under the head is the rotation 
latency or rotational delay. Most disks rotate at 3600 RPM, and an average 
latency to the desired information is halfway around the disk; the average 
rotation time for most disks is therefore 

Average rotation time= 360~~M= 0.0083 sec= 8.3 ms 

The next component of a disk access, transfer time, is the time to transfer a 
block of bits, typically a sector, under the read-write head. This is a function of 
the block size, rotation speed, recording density of a track, and speed of the 
electronics connecting disk to computer. Transfer rates in 1990 are typically 1 to 
4 MB per second. 

In addition to the disk drive, there is usually also a device called a disk 
controller. Between the disk controller and main memory is a hierarchy of 
controllers and data paths, whose complexity varies with the cost of the 
computer (see Section 9.9). Since the transfer time is often a small portion of a 
full disk access, the controller in higher performance systems disconnects the 
data paths from the disks while they are seeking so that other disks can transfer 
their data to memory. 

Thus, the final component of disk-access time is controller time, which is the 
overhead the controller imposes in performing an 1/0 access. When referring to 
performance of a disk in a computer system, the time spent waiting for a disk to 
become free (queueing delay) is added to this time. 

Ex.1035.548DELL



Example 

Answer 

lnpuVOutput 517 

What is the average time to read or write a 512-byte sector for a typical disk 
today? The advertised average seek time is 20 ms, the transfer rate is lMB/sec, 
and the controller overhead is 2 ms. Assume the disk is idle so that there is no 
queuing delay. 

Average disk access is equal to average seek time + average rotational delay + 
transfer time + controller overhead. Using the calculated, average seek time, the 
answer is 

0.5KB 
20 ms + 8.3 ms + l .O MB/sec + 2 ms = 20 + 8.3 + 0.5 + 2 = 30.8 ms 

Assuming the measured, average seek time is 25% of the calculated number, the 
answer is 

5 ms + 8.3 ms + 0.5 ms + 2 ms = 15.8 ms 

Figure 9.15 shows characteristics of magnetic disks for four manufacturers. 
Large-diameter drives have many more megabytes to amortize the cost of 
electronics, so the traditional wisdom was that they had the lowest cost per 
megabyte. But this advantage is offset for the small drives by the much higher 
sales volume, which lowers manufacturing costs: 1990 OEM prices are $2 to $3 

Characteristics IBM3380 Fujitsu Imprimis Conner 
M2361A Wren IV CP3100 

Disk diameter (inches) 14 10.5 5.25 3.5 

Formatted data capacity (MID 7500 600 344 100 
MTTF (hours) 52,000 20,000 40,000 30,000 

Number of arms/box 4 1 1 1 

Maximum I/Os/second/arm 50 40 35 30 

Typical I/Os/second/arm 30 24 28 20 

Maximum I/Os/second/box 200 40 35 30 

Typical I/Os/second/box 120 24 28 20 

Transfer rate (MB/sec) 3 2.5 1.5 1 

Power/box (W) 1,650 640 35 10 

MB/W 1.1 0.9 9.8 10.0 

Volume (cu. ft.) 24 3.4 0.1 .03 

MB/cu. ft. 310 180 3440 3330 

FIGURE 9.15 Characteristics of magnetic disks from four manufacturers. Compar
ison of IBM 3380 disk model AK4 for mainframe computers, Fujitsu M2361A "Super Eagle" 
disk for minicomputers, lmprimis Wren IV disk for workstations, and Conner Peripherals 
CP3100 disk for personal computers. Maximum I/Os/second signifies maximum number of 
average seeks and average rotates for a single sector access. (Table from Katz, Patterson, 
and Gibson [1990].) 

Ex.1035.549DELL



518 9.4 Types of 1/0 Devices 

per megabyte, almost independent of width. The small drives also have 
advantages in power and volume. The price of a megabyte of disk storage in 
1990 is 10 to 30 times cheaper than the price of a megabyte of DRAM in a 
system. 

The Future of Magnetic Disks 

The disk industry has concentrated on improving the capacity of disks. 
Improvement in capacity is customarily expressed as areal density, measured in 
bits per square inch: 

. Tracks . Bits 
Areal density = Inch on a disk surface * Inch on a track 

Areal density can be predicted according to the maximum areal density (MAD) 
formula: 

(year-1971)/10 . . . 
MAD = 10 million bits per square inch 

Thus, storage density improves by a factor of 10 every decade, doubling density 
every three years. 

Cost per megabyte has dropped consistently at 20% to 25% per year, with 
smaller drives playing the larger role in this improvement. Because it is easier to 

105' SAAM 
: (chip) DRAM 

1980 (board) 
[!] 1980 

104: • 1985 1
•

5 
DRAM [!] 

103' 
(chip) 

1990 1990 .1980 

Cost [!] • 
($/MB) .1985 

102: 
Access Time Gap Disk 

.1990 
01980 

101: 01985 

01990 

100 
"I "I "I "I "I '"I "I 

101 102 103 104 105 106 107 108 

Access time (ns) 

FIGURE 9.16 Cost versus access time for SAAM, DRAM, and magnetic disk in 1980, 
1985, and 1990. (Note the difference in cost between a DRAM chip and DRAM chips 
packaged on a board and ready to plug into a computer.) The two-order-of-magnitude gap 
in cost and five-order-of-magnitude gap in access times between semiconductor memory 
and rotating magnetic disk has inspired a host of competing technologies to try to fill it. So 
far, such attempts have been made obsolete before production by improvements in 
magnetic disks, DRAMs, or both. 

Ex.1035.550DELL



Input/Output 519 

spin the smaller mass, smaller diameter disks save power as well as volume. 
Smaller drives also have fewer cylinders so the seek distances are shorter. In 
1990, 5.25-inch or 3.5-inch drives are probably the leading technology, while 
the future may see even smaller drives. We can expect significant savings in 
volume and power, but little in speed. Increasing density (bits per inch on a 
track) has improved transfer times, and there has been some small improvement 
in seek speed. Rotation speeds have been steady at 3600 RPM for a decade, but 
some manufacturers plan to go to 5400 RPM in the early 1990s. 

As mentioned earlier, magnetic disks have been challenged many times for 
supremacy of secondary storage. One reason has been the fabled Access Time 
Gap as shown in Figure 9.16. Many a scientist has tried to invent a technology 
to fill that gap. Let's look at some of the recent attempts. 

Using DRAMs as Disks 

A current challenger to disks for dominance of secondary storage is solid state 
disks (SSDs), built from DRAMs with a battery to make the system nonvolatile; 
and expanded storage (ES), a large memory that allows only block transfers to 
or from main memory. ES acts like a software-controlled cache (the CPU stalls 
during the block transfer) while SSD involves the operating system just like a 
transfer from magnetic disks. The advantages of SSD and ES are trivial seek 
times, higher potential transfer rate, and possibly higher reliability. Unlike just a 
larger main memory, SSDs and ESs are autonomous: They require special 
commands to access their storage, and thus are "safe" from some software errors 
that write over main memory. The block-access nature of SSD and ES allows 
error correction to be spread over more words, which means lower cost or 
greater error recovery. For example, IBM's ES uses the greater error recovery to 
allow it to be constructed from less reliable (and less expensive) DRAMs 
without sacrificing product availability. SSDs, unlike main memory and ES, 
may be shared by multiple CPUs because they function as separat_e units. 
Placing DRAMs in an 1/0 device rather than memory is also one way to get 
around the address-space limits of the current 32-bit computers. The 
disadvantage of SSD and ES is cost, which is at least ten times per megabyte the 
cost of magnetic disks. · 

Optical Disks 

Another challenger to magnetic disks is optical compact disks or CDs. The 
CD/ROM is removable and inexpensive to manufacture, but it is a read-only 
media. The newer CD/writable is also removable, but has a high cost per 
megabyte and low performance. A common misperception about write-once 
optical disks is that once they are written, the information cannot be destroyed; 
in fact, write once means one reliable write and then a "fuzzy" bitwise ORing of 
the previous and new data. 

Ex.1035.551DELL



520 9.4 Types of 1/0 Devices 

So far, magnetic disk challengers have never had a product to market at the 
right time. By the time a new product ships, disks have made advances as pre
dicted by MAD formula, and costs have dropped accordingly. Optical disks, 
however, may have the potential to compete with new tape technologies for 
archival storage. 

Disk Arrays 

One other future candidate for optimizing storage is not a new technology, but a 
new organization of disk storage-arrays of small and inexpensive disks. The 
argument for arrays is that since price per megabyte is independent of disk size, 
potential throughput can be increased by having many disk drives and, hence, 
many disk arms. Simply spreading data over multiple disks automatically forces 
accesses to several disks. (While arrays improve throughput, latency is not 
necessarily improved.) The drawback to arrays, is that with more devices, 
reliability drops: N devices generally have l/N the reliability of a single device. 

Reliability and Availability 

This brings us to 'two terms that are often confused-reliability and availability. 
The term reliability is commonly used incorrectly to mean availability; if 
something breaks, but the user can still use the system, it seems as if the system 
still "works," and hence it seems more reliable. Here is the proper distinction: 

Reliability-is anything broken? 

Availability-is the system still available to the user? 

Adding hardware can therefore improve availability (for example, ECC on 
memory), but it cannot improve reliability (the DRAM is still broken). 
Reliability can only be improved by bettering environmental conditions, by 
building from more reliable components, or by building with fewer components. 
Another term, data integrity, refers to always reporting when information is lost 
when a failure occurs; this is very important to some applications. 

So, while a disk array can never be more reliable than a smaller number of 
larger disks when each disk has the same failure rate, availability can be 
improved by adding redundant disks. That is, if a single disk fails, the lost 
information can be reconstructed from redundant information. The only danger 
is in getting another disk failure between the time a disk fails and the time it is 
replaced (termed mean time to repair or MTTR). Since the mean time to failure 
(MTTF) of disks is three to five years, and the MTTR is measured in hours, 
redundancy can make the availability of 100 disks much higher than that of a 
single disk. 

Since disk failures are self-identifying, information can be reconstructed from 
just parity: The good disks plus the parity disk can be used to calculate the 
information that is on the failed disk. Hence, the cost of higher availability is 

Ex.1035.552DELL



Input/Output 521 

1/N, where N is the number of disks protected by parity. Just as direct-mapped 
associative placement in caches can be considered a special case of set
associative placement (see Section 8.4), the mirroring or shadowing of disks can 
be considered the special case of one data disk and one parity disk (N=l). Parity 
can be accomplished by duplicating the data, so mirrored disks have the 
advantage of simplifying parity calculation. Duplicating data also means that the 
controller can improve read performance by reading from the disk of the pair 
that has the shortest seek distance, although this optimization is at the cost of 
write performance because the arms of the pair of disks are no longer always 
over the same track. Of course, the redundancy of N = 1 has the highest 
overhead for increasing disk availability. 

The higher throughput, measured either as megabytes per second or as I/Os 
per second, and the ability to recover from failures make disk arrays attractive. 
When combined with the advantages of smaller volume and lower power of 
small-diameter drives, redundant arrays of small or inexpensive drives may play 
a larger role in future disk systems. The current drawback is the added 
complexity of a controller for disk arrays. 

Graphics Displays 

Through computer displays I have landed an airplane on the deck of a moving 
carrier, observed a nuclear particle hit a potential well,flown in a rocket at 
nearly the speed of light and watched a computer reveal its innermost workings. 

Ivan Sutherland (the "father" of computer graphics), quoted in 
"Computer Software for Graphics," Scientific American (1984) 

While magnetic disks may dominate throughput and cost of 1/0 devices, the 
most fascinating 1/0 device is the graphics display. Based on television 
technology, a raster cathode ray tube (CRT) display scans an image out one line 
at a time, 30 to 60 times per second. At this refresh rate the human eye doesn't 
notice a "flicker" on the screen. The image is composed of a matrix of picture 
elements, or pixels, which can be represented as a matrix of bits, called a bit 
map. Depending on size of screen and resolution, the display matrix consists of 
340*512 to 1560*1280 pixels. For black and white displays, often 0 is black and 
1 is white. For displays that support over 100 different shades of black and 
white, sometimes called gray-scale displays, 8 bits per pixel are required. A 
color display might use 8 bits for each of the three primary colors (red, blue, and 
green), for 24 bits per pixel. 

The hardware support for graphics consists mainly of a raster refresh buffer, 
or frame buffer, to store the bit map. The image to be represented on screen is 
stored into the frame buffer, and the bit pattern per pixel is read out to the 
graphics display at the refresh rate. Figure 9 .17 (page 522) shows a frame buffer 
with four bits per pixel and Figure 9.18 (page 522) shows how the buffer is 
connected to the bus. 

Ex.1035.553DELL



522 9.4 Types of 1/0 Devices 

Frame buffer 
Raster scan 
CRT display 

I 

Y1 ----1-· I I 
I 

FIGURE 9.17 Each coordinate in the frame buffer on the left determines the shade of 
the corresponding coordinate for the raster scan CRT display on the right. Pixel 
(x0,y0) contains the bit pattern 0011, which is a lighter shade of gray on the screen than the 
bit pattern 1101 in pixel (x1 .Y1 ). 

A 

/ 1/0 
bus 0.2MB 30MB 

/sec Frame /sec I CRT - buffer - I display 

"' 
FIGURE 9.18 The frame buffer is connected to both the 1/0 bus and the display. 
Because of the high data rate from the buffer to the display, the frame buffer is frequently 
dual ported. 

The goal of the bit map is to faithfully represent what is on the screen. As the 
computer switches from one image to another, the screen may look "splotchy" 
during the change. Here are two ways of dealing with this: 

• Change the frame buffer only during the "vertical blanking interval." This is 
the time the gun in the raster CRT display takes to go back to the upper-left
hand corner before starting to paint the pixels of the next image. This takes 1 
to 2 ms of every 16 ms at the 60-Hz refresh rate each time the screen is 
painted. 

Ex.1035.554DELL

522 ‘9.4 Typesof I/O Devices

Frame buffer
Raster scan

CRTdisplay 
FIGURE 9.17 Each coordinate in'the frame buffer on the left determines the shade of

the corresponding coordinate for the raster scan CRT display on theright. Pixe!
(Xg,¥o) contains the bit pattern 0011, which is a lighter shade of gray on the screen than the
bit pattern 1101 in pixel (x7,y4).

CRT

display 
FIGURE 9.18 The frame buffer is connected to both the i/O bus and thedisplay.
Becauseof the high data rate from the buffer to the display, the frame buffer is frequently
dual ported.

The goal of the bit mapis to faithfully represent what is on the screen. As the
computer switches from one image to another, the screen may look “splotchy”
during the change. Here are two waysof dealing withthis:

= Change the frame buffer only during the “vertical blanking interval.” This is
the time the gun in the raster CRT display takes to go back to the upper-left-
hand corner before starting to paint the pixels of the next image. This takes |
to 2 ms of every 16 ms at the 60-Hz refresh rate each time the screen is
painted.

DELL Ex.1035.554



Input/Output 523 

• If the vertical blanking interval is not long enough, the frame buffer can be 
double buffered, so that one is read while the other is being written. This way, 
images in sequence (as in animation) are drawn in alternate frame buffers. 
Double buffering, of course, doubles the cost of the memory in the frame 
buffer. 

From the point of view of the CPU, graphics is logically output only. But the 
frame buffer is capable of being read as .well as written, permitting operations to 
be performed directly on the screen images. These operations are called bit bits, 
for bit block transfer. Bit bits are commonly used for operations such as moving 
a window or changing the shape of the cursor. A current debate in graphics 
architecture is whether reading the frame buffer is limited to the operating 
system or should user programs be able to read it as well. 

Cost of Computer Graphics 

The CRT monitor itself is based on television technology and is sensitive to 
consumer demand. Today prices vary from $100 for a black-and-white monitor 
to $15,000 for a large studio color monitor, not including memory. The amount 
of memory in a frame buffer depends directly on the size of the screen and the 
bits per pixel: 

340*512*1 bits = 21.5 KB 

1280*1024*24 bits = 3840 KB 

(By the way, this bottom dimension is the proposed size for high-definition 
television.) Note that the memory cost is doubled if double buffering is used. 

To reduce costs of a color frame buffer, many systems use a two-level 
representation that takes advantage of the fact that few pictures need the full 
pallet of possible colors (see Figure 9.19 on page 524). 

The intermediate level contains the full color width of, say, 24 bits and a 
large collection of the possible colors that can appear on the screen-256 
different colors, for example. While this collection is large, it is still much 
smaller than 224. This intermediary table has been variously named a color map, 
color table, or video look-up table. Each pixel need have only enough bits to 
indicate a color in the color map. As a simple example, Figure 9.19 uses a 4-
word color map, which means the frame buffer needs only 2 bits per pixel. The 
savings for a full-sized color display with a 256-color map is 

1280*1024*24- (1280*1024*8 + 256*24) 

= 3,840 KB - (1280 KB + .75 KB) "" 2560 KB 

This amounts to a threefold reduction in memory size. In 1990 a 256- by 24-bit 
color map and an analog interface to a color CRT fit in a single chip. 

Ex.1035.555DELL



524 9.4 Types of 1/0 Devices 

Frame buffer Raster scan 
Color map CRT display 

Red Blue Green 

100 101 010 

Yo - 000 111 010 II 
100 101 010 Y1 • 110 111 011 

Xo Xi Xo Xi 

FIGURE 9.19 An example of a color map to reduce the cost of the frame buffer. 
Suppose only nine bits per color are needed. Rather than store the full nine bits per pixel in 
the frame buffer, just enough bits per pixel are stored to index the table containing the 
unique colors in a picture. Only the color map has the nine bits for the colors in the display. 
Near photographic color pictures can be produced with about 125 colors using the right 
shades of the color spectrum; but at least 24 bits are needed to get the right shades! The 
color map is loaded by the application program, offering each picture its own palette of 
colors to chose from. 

Performance Demands of Graphics Displays 

The performance of graphics is determined by the frequency an application 
needs new images and by the quality of those images. The amount of 
information transferred from memory to the frame buffer depends on complexity 
of image, with a full color display requiring almost four megabytes. The transfer 
rate depends on the speed with which the image should be changed as well as 
the amount of information. Animation requires at least 15 changes per second 
for movement to appear smooth on a screen. For interactive graphics, the time to 
update the frame buffer measures the effectiveness of the application; for people 
to feel comfortable the total reaction time must be less than a second (see Figure 
9.9, page 510). With a drawing system, the portion of the screen one is working 
on must change almost immediately, as human visual perception is on the order 
of 0.02 seconds. Figure 9.20 shows some sample graphics tasks and their 
performance requirements. Note that the frame buffer must have enough 
bandwidth to refresh the display and to allow the CPU to change the image 
being refreshed. 

The high data rate-and the large market of graphics displays-has made a 
dual-ported DRAM chip popular. This chip has a serial 1/0 port and internal 
shift register that is connected to the display in a graphics application in addition 
to the traditional randomly addressed data port. This chip is so widely used in 
frame buffers that it is called a video DRAM. 

Ex.1035.556DELL

524 ' 9.4 Types of I/O Devices

Framebuffer Raster scan
Color map , CRTdisplay

Red Blue Green

|000|111|o10  %o
Y 

FIGURE 9.19 An example of a color map to reduce the costof the frame buffer.
Supposeonly nine bits per color are needed. Rather than store the full nine bits per pixelin
the frame buffer, just enough bits per pixel are stored to index the table containing the
unique colors in a picture. Only the color map hasthe nine bits for the colors in the display.
Near photographic color pictures can be produced with about 125 colors using theright
shadesof the color spectrum; butat least 24 bits are needed to get the right shades! The
color mapis loaded by the application program, offering each picture its own palette of
colors to chose from.

Performance Demandsof Graphics Displays

The performance of graphics is determined by the frequency an application
needs new images and by the quality of those images. The amount of
information transferred from memory to the frame buffer depends on complexity
of image, with a full color display requiring almost four megabytes. The transfer
rate depends on the speed with which the image should be changed as well as
the amount of information. Animation requires at least 15 changes per second
for movement to appear smooth on a screen. For interactive graphics, the time to
update the frame buffer measures the effectiveness of the application; for people
to feel comfortable the total reaction time must be less than a second (see Figure
9.9, page 510). With a drawing system,the portion of the screen one is working
on must change almost immediately, as human visual perception is on the order
of 0.02 seconds. Figure 9.20 shows some sample graphics tasks and their
performance requirements. Note that the frame buffer must have enough
bandwidth to refresh the display and to allow the CPU to change the image
being refreshed.

The high data rate—and the large market of graphics displays—has made a
dual-ported DRAM chip popular. This chip has a serial I/O port and internal
shift register that is connected to the display in a graphics application in addition
to the traditional randomly addressed data port. This chip is so widely used in
frame buffers thatit is called a video DRAM.

DELL Ex.1035.556



Input/Output 525 

Graphics tasks Bandwidth requirements 

Text editor-Scrolling text in window means moving 0.8 MB/sec 
all bits in half the frame buff er about 10 times per 
second. 
VLSI design-Moving a portion of the design means 6.3 MB/sec 
moving all bits in half of a color frame buffer in less 
than 0.1 second. 

Television commercial-Showing movie-quality 90.0MB/sec 
images means changing 24 times per second. 

Visualization of scientific data-About the same as a 90.0MB/sec 
television commercial. 

FIGURE 9.20 Graphics tasks and their performance requirements. VLSI design uses 
8 bits of color while the television commercial and visualization use 24 bits. Bandwidth is 
measured at. the frame buffer. 

Future Directions in Graphics Displays 

It is safe to predict that people will want better pictures in the future. They will 
want, for example, more lines on a screen and more bits per inch on a line to 
make sharper images, more bits per color to make more colorful images, and 
more bandwidth to allow animation. 

To simplify the display of three-dimensional images, a z dimension per pixel 
can be added to the x and y coordinates. It says where the pixel is located from 
the viewer along a z axis (e.g., into the CRT). A 3D image starts with z set to the 
furthest possible location from the viewer and the color set to the background 
color. To get a proper 3D perspective, the z coordinate stored with the pixel in 
the frame buffer is checked before placing a color in a pixel. If the new color is 
closer, the old color is replaced and the z coordinate is updated; if it is further 
away, the new color is discarded. This scheme is called a z buffer approach to 
hidden surface elimination. It adds at least 8 bits per pixel, plus the performance 
cost of reading and comparing before writing a pixel. The Silicon Graphics 4D 
series of graphics workstations uses 16 bits for the z dimension in its pixels, 
meaning objects are assigned 3; 16-bit number to show how close they are to the 
viewer. 

The increasing number of bits per DRAM chip reduces the number of chips 
needed in the frame buffer, as well as the number of chips that can 
simultaneously transfer bits to the screen. This is why video DRAMS are so 
popular. As capacity increases, the serial ports of video DRAMs will have to 
become faster and wider to match the demands of future graphics systems. 

Ex.1035.557DELL



526 9.4 Types of 1/0 Devices 

Networks 

There is an old network saying: Bandwidth problems can be cured with money. 
Latency problems are harder because the speed of light is fixed-you can't bribe 
God. 

David Clark, M.I.T. 

Networks are the backbone of current computer systems; a new machine without 
an optional network interface would be ridiculed. By connecting computers 
electronically, networked computers have these advantages: 

• Communication-Information is exchanged between computers at high 
speeds. 

• Resource sharing-Rather than each machine having its own 1/0 devices, 
devices can be shared by computers on the network. 

• Nonlocal access-By connecting 1/0 devices over long distances, users need 
not be near the computer they are using. 

Figure 9.21 shows the characteristics of networks. These characteristics are 
illustrated below with three examples. 

Distance 0.01 to 10,000 kilometers 

Speed 0.001 MB/sec to 100 MB/sec 

Topology Bus, ring, star, tree 

Shared lines None (point-to-point) or shared (multidrop) 

FIGURE 9.21 Range of network characteristics. 

The RS232 standard provides a 0.3- to 19.2-Kbits-per-second terminal 
network. A central computer connects to many terminals over slow but cheap 
dedicated wires. These point-to-point connections form a star from the central 
computer, with each terminal ranging from 10 to 100 meters in distance from the 
computer. 

The local area network, or LAN, is what is commonly meant today when 
people mention a network, and Ethernet is what most people mean when they 
mention a LAN. (Ethernet has in fact become such a common term that it is 
often used as a generic term for LAN.) The Ethernet is essentially a 10,000 
Kbits-per-second bus that has no central control. Messages or packets are sent 
over the Ethernet in blocks that vary from 128 bytes to 1530 bytes and take 0.1 
ms and 1.5 ms to send, respectively. Since there is no central control, all nodes 
"listen" to see if there is a message for that node. Without a central arbiter to 
decide who gets the bus, a computer first listens to make sure it doesn't send a 
message while another message is on the network. If the network is idle the node 
tries to send. Of course, some other node may decide to send at the same instant. 
Luckily, the computer can detect any resulting collisions by listening to what is 

Ex.1035.558DELL



Input/Output 527 

sent. (Mixed messages will sound like garbage.) To avoid repeated head-on 
collisions, each node whose packet was trashed backs off a random time before 
resending. If Ethernets do not have high utilization, this simple approach to 
arbitration works well. Many LANs become overloaded through poor capacity 
planning, and response time and throughput can degrade rapidly at higher 
utilization. 

The success of LANs has led to multiples of them at a single site. Connecting 
computers to separate Ethernets becomes necessary at a certain point because 
there is a limit to the number of nodes that can be active on a bus if effective 
communication speeds are to be achieved; one limit is 1024 nodes per Ethernet. 
There is also a physical limit to the distance of an Ethernet, usually about 1 
kilometer. To allow Ethernets to work together, two kinds of devices have been 
created: 

• A bridge connects two Ethernets. There are still two independent buses that 
can simultaneously send messages, ,but the bridge acts as a filter, allowing 
only those messages from nodes on one bus to nodes on the other bus to cross 
over the bridge. 

• A gateway typically connects several Ethernets. It receives a message, looks 
up the destination address in a table, and then routes the message over the 
appropriate network to the proper node. This routing table can be changed 
during execution to reflect the state of the networks. Some use the term router 
instead of gateway since it is closer to the fonction performed. 

When Ethernets are connected together with gateways they form an Internet. 
Long-haul networks cover distances of 10 to 10,000 kilometers. The first and 

most famous long-haul network was the ARP ANET (named after its funding 
agency, the Advanced Research Projects Agency of the U.S. government). It 
transferred at 50 Kbits per second and used point-to-point dedicated lines leased 
from telephone companies. The host computer talked to an interface message 
processor (IMP), which communicated over the telephone lines. The IMP took 
information and broke it into 1-Kbit packets. At each hop the packet was stored 
and then forwarded to the proper IMP according to the address in the packet. 
The destination IMP reassembled the packets into a message and then gave it to 
the host. Fragmentation and reassembly, as it was called, was done to reduce the 
latency due to the store and forward delay. Most networks today use this packet 
switched approach, where packets are individually routed from source to 
destination. Figure 9.22 (page 528) summarizes the performance, distance, and 
costs of these various networks. 

While these networks have been presented here as alternatives, a computer 
system is really a hierarchy of networks, as Figure 9.23 (page 528) shows. To 
deal with this hierarchy of networks connecting machines that communicate 
differently, there must be a standard software interface to handle messages. 
These are called protocols, and are typically layered to interface with different 
levels of software in computer systems. The overhead of these protocols can eat 
up a significant portion of the network bandwidth. 

Ex.1035.559DELL



528 . 9.4 Types of 1/0 Devices 

Just as with disks in Figure 9.6 (page 507), there is a tradeoff of latency and 
throughput in networks. Small messages give the lowest latency in most 
networks, but they also result in lower network bandwidth; similarly, a network 
can achieve higher bandwidth at the cost of longer latency. 

Network Performance Distance Cable Connect to Connector to 
(Kbits I sec) (km) cost network cost computer cost 

RS232 19 0.1 $0.25 $1-$5 $5 
/foot /connector /serial port chip 

Ethernet 10,000 1 $1-$5 $100 $50 /Ethernet 
/foot /transceiver interlace chip 

ARPANET 50 10,000 $10,000 $50,000- $5 ,000-$10,000 
/month $100,000/ IMP /IMP connection 

FIGURE 9.22 The performance, maximum distance, and costs of three example 
networks. An Internet is simply multiple Ethernets and a bridge, which costs about $2,000 
to $5,000, or a gateway, which costs about $20,000 to $50,000. 

Computer 

Computer 

Computer 

FIGURE 9.23 A computer system today participates in a hierarchy of networks. 
Ideally, the user is not aware of what network is being used in performing tasks. The 
gateway routes packets to a particular network, a network routes packets to a particular 
host computer, and the host computer routes packets to a particular process. 

9.5 I Buses-Connecting 1/0 Devices to 
CPU/Memory 

In a computer system, the various subsystems must have interfaces to one 
another; for instance, the memory and CPU need to communicate, as well as the 
CPU and 1/0 devices. This is commonly done with a bus. The bus serves as a 

Ex.1035.560DELL

528 4 Types of I/O Devices  

Just as with disks in Figure 9.6 (page 507), there is a tradeoff of latency and
throughput in networks. Small messages give the lowest latency in most
networks, but they also result in lower network bandwidth; similarly, a network
can achieve higher bandwidth at the cost of longerlatency. .

Network Performance Distance Cable Connect to Connector to

(Kbits / sec) (km) cost network cost computer cost

RS232 19 0.1 $0.25 $1-$5 $5
/foot /connector /serial port chip

Ethernet 10,000 $1-$5 $100 $50 /Ethernet
/foot /transceiver interface chip

50 10,000 $10,000 $50,000-— $5,000-$10,000
/month $100,000/ TIMP /IMP connection

  
FIGURE 9.22 The performance, maximum distance, and costs of three example
networks.An Internet is simply multiple Ethernets and a bridge, which costs about $2,000
to $5,000, or a gateway, which costs about $20,000 to $50,000.

Pe oe [oehaul

Computer (ARPANET)

Computer
LAN

Computer

Computer 
FIGURE 9.23 A computer system today participates in a hierarchy of networks.
ideally, the user is not aware of what network is being used in performing tasks. The
gateway routes packets to a particular network, a network routes packets to a particular
host computer, and the host computer routes packets to a particular process.

9.5 Buses—Connecting VO Devices to
CPU/Memory

In a computer system, the various subsystems must have interfaces to one
another; for instance, the memory and CPU need to communicate, as well as the
CPU and I/O devices. This is commonly done with a bus. The bus serves as a

DELL Ex.1035.560



Input/Output 529 

shared communication link between the subsystems. The two major advantages 
of the bus organization are low cost and versatility. By defining a single 
interconnection scheme, new devices can easily be added, and peripherals may 
even be ported between computer systems that use a common bus. The cost is 
low, since a single set of wires is shared multiple ways. 

The major disadvantage of a bus is that it creates a communication bot
tleneck, possibly limiting the maximum 1/0 throughput. When I/0 must pass 
through a central bus this bandwidth limitation is as real as-and sometimes 
more severe than-memory bandwidth. In commercial systems, where 1/0 is 
very frequent, and in supercomputers, where the necessary I/O rates are very 
high because the CPU performance is high, designing a bus system capable of 
meeting the demands of the processor is a major challenge .. 

One reason bus design is so difficult is that the maximum bus speed is largely 
limited by physical factors: the length of the bus and the number of devices (and, 
hence, bus loading). These physical limits prevent arbitrary bus speedup. The 
desire for high I/0 rates (low latency) and high I/0 throughput can also lead to 
conflicting design requirements. 

Buses are traditionally classified as CPU-memory buses or 110 buses. I/0 
buses may be lengthy,,may have many types of devices connected to them, have 
a wide range in the data bandwidth of the devices connected to them (see Figure 
9.1 on page 501), and normally follow a bus standard. CPU-memory buses, on 
the other hand, are short, generally high speed, and matched to the memory 
system to maximize memory-CPU bandwidth. During the design phase, the de
signer of a CPU-memory bus knows all the types of devices that must connect 
together, while the I/0 bus designer must accept devices varying in latency and 
bandwidth capabilities. To lower costs, some computers have a single bus for 
both memory and I/0 devices. 

Let's consider a typical bus transaction. A bus transaction includes two parts: 
sending the address and receiving or sending the data. Bus transactions are 
usually defined by what they do to memory: A read transaction transfers data 
from memory (to either the CPU or an I/0 device), and a write transaction writes 
data to the memory. In a read transaction, the address is first sent down the bus 
to the memory, together with the appropriate control signals. indicating a read. 
The memory responds by returning the data on the bus with the appropriate 
control signals. A write transaction requires that the CPU or I/0 device send 
both address and data and requires no return of data. Usually the CPU must wait 
between sending the address and receiving the data on a read, but the CPU often 
does not wait on writes. 

The design of a bus presents several options, as Figure 9 .24 (page 530) 
shows. Like the rest of the computer system, decisions will depend on cost and 
performance goals. The first three options in the figure are clear choices
separate address and data lines, wider data lines, and multiple-word transfers all 
give higher performance at more cost. 

The next item in the table concerns the number of bus masters. These are 
devices that can initiate a read or write transaction; the CPU, for instance, is al-

Ex.1035.561DELL



530 

Option 

Bus width 

Data width 

Transfer size 

Bus masters 

Split 
transaction? 

Clocking 

9.5 Buses-Connecting 1/0 Devices to CPU/Memory 

ways a bus master. A bus has multiple masters when there are multiple CPUs or 
when 1/0 devices can initiate a bus transaction. If there are multiple masters, an 
arbitration scheme is required among the masters to decide who gets the bus 
next. Arbitration is often a fixed priority, as is the case with daisy-chained 
devices or an approximately fair scheme that randomly chooses which master 
gets the bus. 

With multiple masters a bus can offer higher bandwidth by going to packets, 
as opposed to holding the bus for the full transaction. This technique is 
designated split transactions. (Some systems call this ability connect/disconnect 
or a pipelined bus.) The read transaction is broken into a read-request transaction 
that contains the address, and a memory-reply transaction that contains the data. 
Each transaction must now be tagged so that the CPU and memory can tell what 
is what. Split transactions make the bus available for other masters while the 
memory reads the words from the requested address. It also normally means that 
the CPU must arbitrate for the bus to send the data and the memory must 
arbitrate for the bus to return the data. Thus, a split-transaction bus has higher 
bandwidth, but it usually has higher latency than a bus that is held during the 
complete transaction. 

The final item, clocking, concerns whether a bus is synchronous or 
asynchronous. If a bus is synchronous it includes a clock in the control lines and 
a fixed protocol for address and data relative to the clock. Since little or no logic 
is needed to decide what to do next, these buses can be both fast and inexpen
sive. However, they have two major disadvantages. Everything on the bus must 
run at the same clock rate, and because of clock-skew problems, synchronous 
buses cannot be long. CPU-memory buses are typically synchronous. 

An asynchronous bus, on the other hand, is not clocked. Instead, self-timed, 
handshaking protocols are used between bus sender and receiver. This scheme 
makes it much easier to accommodate a wide variety of devices and to lengthen 
the bus without worrying about clock skew or synchronization problems. If a 
synchronous bus can be used, it is usually faster than an asynchronous bus 
because of the overhead of synchronizing the bus for each transaction. The 
choice of synchronous versus asynchronous bus has implications not only for 
data bandwidth but also for an 1/0 system's capacity in terms of physical 

High performance Low cost 

Separate address and data lines Multiplex address and data lines 

Wider is faster (e.g., 32 bits) Narrower is cheaper (e.g., 8 bits) 

Multiple words has less bus overhead Single-word transfer is simpler 

Multiple (requires arbitration) Single master (no arbitration) 

Yes-separate Request and Reply packets gets No-continuous connection is cheaper and 
higher bandwidth (needs multiple masters) has lower latency 

Synchronous Asynchronous 

FIGURE 9.24 The main options for a bus. The advantage of separate address and data buses is primarily on writes. 

Ex.1035.562DELL



Input/Output 531 

distance and number of devices that can be connected to the bus; asynchronous 
buses scale better with technological changes. l/O buses are typically asynch
ronous. Figure 9 .25 suggests the relationship of when to use one over the other. 

Bus Standards 

The number and variety of I/0 devices are not fixed on most computer systems_, 
permitting customers to tailor computers to their needs. As the interface to 
which devices are connected, the I/0 bus can also be considered an expansion 
bus for adding I/0 devices over time. Standards that let the computer designer 
and 1/0-device designer work independently, therefore, play a large role in 
determining the choice of buses. As long as both the computer-system designer 
and the 1/0-device designer meet the requirements, any l/0 device can connect 
to any computer. In fact, an I/0 bus standard is the document that defines how to 
connect them. 

Machines sometimes grow to be so popular that their I/0 buses become de 
facto standards; examples are the PDP-11 Unibus and the IBM PC-AT Bus. 
Once many I/0 devices have been built for the popular machine, other computer 
designers will build their I/O interface so that those devices can plug into their 
machines as well. Sometimes standards also come from an explicit standards 
effort on the part of I/0 device makers. The intelligent peripheral interface (IPI) 

Long 

Clock skew 
(function of 
bus length) 

Short 

Asynchronous better 

Synchronous better 

Similar 
Mixture of 1/0 
device speeds 

Varied 

FIGURE 9.25 Preferred bus type as a function of length/clock skew and variation in 
1/0 device speed. Synchronous is best when the distance is short and the 1/0 devices on 
the bus all transfer at similar speeds. 

Ex.1035.563DELL



532 

Bus width (signals) 

Address/data multiplexed? 

Data width (primary) 

Transfer size 

Number of bus masters 

Split transaction? 

Clocking 

9.5 Buses-Connecting 1/0 Devices to CPU/Memory 

and Ethernet are examples of standards from cooperation of manufacturers. If 
standards are successful, they are eventually blessed by a sanctioning body like 
ANSI or IEEE. Occasionally, a bus standard comes top-down directly from a 
standards committee-the FutureBus is one example. 

Figure 9.26 summarizes characteristics of several bus standards. Note that the 
bandwidth entries in the figure are not listed as single numbers for the CPU
memory buses (VME, FutureBus, and Multibus II). Because of the bus 
overhead, the size of the transfer affects bandwidth significantly. Since the bus 
usually transfers to or from memory, the speed of the memory also affects the 
bandwidth. For example, with infinite transfer size and infinitely fast (0 ns) 
memory, FutureBus is 240% faster than VME, but FutureBus is only about 20% 
faster than VME for single-word transfers from a 150-ns memory. 

VMEbus FutureBus Multibus II IPI SCSI 

128 96 96 16 8 

Not multi- Multiplexed Multiplexed NIA NIA 
plexed 

16 to 32 bits 32 bits 32 bits 16 bits 8 bits 

Single or Single or Single or Single or Single or 
multiple multiple multiple multiple multiple 

Multiple Multiple Multiple Single Multiple 

No Optional Optional Optional Optional 

Asynchronous Asynchronous Synchronous Asynchronous Either 

Bandwidth, 0-ns access memory, 25.0MB/sec 37.0 MB/sec 20.0MB/sec 25.0MB/sec 5.0 MB/sec or 
single word 1.5 MB/sec 

Bandwidth, 150-ns access 12.9 MB/sec 15.5 MB/sec 10.0MB/sec 25.0 MB/sec 5.0 MB/sec or 
memory, single word 1.5 MB/sec 

Bandwidth, 0-ns access memory, 27.9 MB/sec 95.2MB/sec 40.0MB/sec 25.0 MB/sec 5.0 MB/sec or 
multiple words (infinite block 1.5 MB/sec 
length) 

Bandwidth, 150-ns access 13.6 MB/sec 20.8 MB/sec 13.3 MB/sec 25.0 MB/sec 5.0 MB/sec or 
memory, multiple words (infinite 1,5 MB/sec 
block length) 

Maximum number of devices 21 20 21 8 7 

Maximum bus length 0.5 meter 0.5 meter 0.5 meter 50 meters 25 meters 

Standard IEEE 1014 IEEE 896.1 ANSI/IEEE ANSIX3.129 ANSIX3.131 
1296 

FIGURE 9.26 Information on five bus standards. The first three were defined originally as CPU-memory buses and 
. the last two as 1/0 buses. For the CPU-memory buses the bandwidth calculations assume a fully loaded bus and are 
given for both single-word transfers and block transfers of unlimited length; measurements are shown both ignoring mem
ory latency and assuming 150-ns access time. Bandwidth assumes the average distance of a transfer is one-third of the 
backplane length. (Data in the first three columns is from Borrill [1986].) The bandwidth for the 1/0 buses is given as their 
maximum data-transfer rate. The SCSI standard offers either asynchronous or synchronous 1/0; the asynchronous 
version transfers at 1 .5 MB/sec and the synchronous at 5 MB/sec. 

Ex.1035.564DELL



Input/Output 533 

9.6 I interfacing to the CPU 

Having described I/0 devices and looked at some of the issues of the connecting 
bus, we are ready to discuss the CPU end of the interface. The first question is 
how the physical connection of the 1/0 bus should be made. The two choices are 
connecting it to memory or to the cache. In the following section we will discuss 
the pros and cons of connecting an I/0 bus directly to the cache; in this section 
we examine the more usual case in which the 1/0 bus is· connected to the main 
memory bus. Figure 9.27 shows a typical organization. In low-cost systems, the 
1/0 bus is the memory bus; this means an 1/0 command on the bus could 
interfere with a CPU instruction fetch, for example. 

Once the physical interface is chosen, the question becomes how does the 
CPU address an 1/0 device that it needs to send or receive data. The most 
common practice is called memory-mapped I/0. In this scheme, portions of the 
address space are assigned to I/0 devices. Reads and writes to those addresses 
may cause data to be transferred; some portion of the I/0 space may also be set 
aside for device control, so commands to the device are just accesses to those 
memory-mapped ap.dresses. The alternative practice is to use dedicated 1/0 
opcodes in the CPU. In this case, the CPU sends a signal that this address is for 
I/0 devices. Examples of computers with 1/0 instructions are the Intel 80x86 
and the IBM 370 computers. No matter which addressing scheme is selected, 
each I/0 device has registers to provide status and control information. Either 

CPU 

1/0 
controller 

1/0 
controller 

Graphics 
output 

1/0 
controller 

FIGURE 9.27 A typical interface of 1/0 devices and an 1/0 bus to the CPU-memory 
bus. 

Ex.1035.565DELL

9.6

Input/Output 533

Interfacing to the CPU

Having described I/O devices and looked at some of the issues of the connecting
bus, we are ready to discuss the CPU end of the interface. The first question is
how the physical connection of the I/O bus should be made. The two choices are
connecting it to memoryorto the cache.In the following section we will discuss
the pros and cons of connecting an I/O busdirectly to the cache; in this section
we examine the more usual case in which the I/O busis connected to the main

memory bus. Figure 9.27 showsa typical organization. In low-cost systems, the
I/O bus is the memory bus; this means an I/O command on the bus could
interfere with a CPU instruction fetch, for example.

Oncethe physical interface is chosen, the question becomes how does the
CPU address an I/O device that it needs to send or receive data. The most
common practice is called memory-mapped I/O.In this scheme,portions of the
addiess space are assigned to I/O devices. Reads and writes to those addresses
may cause data to be transferred; some portion of the I/O space may also beset
aside for device control, so commandsto the device are just accesses to those
memory-mapped addresses. The alternative practice is to use dedicated I/O
opcodes in the CPU.In this case, the CPU sends a signalthat this address is for
I/O devices. Examples of computers with I/O instructions are the Intel 80x86
and the IBM 370 computers. No matter which addressing schemeis selected,
each I/O device has registers to provide status and control information. Either

 

 
 

Bus

adapter

 
 
 

 
  

vo
controller

vo
controller

 Graphics
output

Neiwork

 
FIGURE9.27 A typical interface of I/O devices and an I/O bus to the CPU-memory
bus.

DELL Ex.1035.565



534 9.6 Interfacing to the CPU 

through loads and stores in memory-mapped 1/0 or through special instructions, 
the CPU sets flags to determine the operation the 1/0 device will perform. 

1/0 is rarely a single operation. For example, the DEC LPl 1 line printer has 
two 1/0 device registers: one for status information and one for data to be 
printed. The status register contains a done bit, set by the printer when it has 
printed a character, and an error bit, indicating that the printer is jammed or out 
of paper. Each byte of data to be printed is put into the data register; the CPU 
must then wait until the printer sets the done bit before it can place another 
character in the buffer. 

This simple interface, in which the CPU periodically checks status bits to see 
if it is time for the next 1/0 operation, is called polling. As one might expect, the 
fact that CPUs are so much faster than 1/0 devices means polling may waste a 
lot of CPU time. This was recognized long ago, leading to the invention of 
interrupts to notify the CPU when it is time to do something for the 1/0 device. 
Interrupt-driven 1/0, used by most systems for at least some devices, allows the 
CPU to work on some other process while waiting on the 1/0 device. For 
example, the LPl 1 has a mode that allows it to interrupt the CPU whenever the 
done bit or error bit is set. In general-purpose applications, interrupt driven 1/0 
is the key to multitasking operating systems and good response times. 

The drawback to interrupts is the operating system overhead on each event. In 
real-time applications with hundreds of 1/0 events per second, this overhead can 
be intolerable. One hybrid solution for real-time systems is to use a clock to 
periodically interrupt the CPU, at which time the CPU polls all 1/0 devices. 

Delegating 1/0 Responsibility from the CPU 

Interrupt-driven 1/0 relieves the CPU from waiting for every 1/0 event, but there 
are still many CPU cycles spent in transferring data. Transferring a disk block of 
2048 words, for instance, would require at least 2048 loads and 2048 stores, as 
well as the overhead for the interrupt. Since 1/0 events so often involve block 
transfers, direct memory access (DMA) hardware is added to many computer 
systems to allow transfers of numbers of words without intervention by the 
CPU. 

DMA is a specialized processor that transfers data between memory and an 
1/0 device, while the CPU goes on with other tasks. Thus, it is external to the 
CPU and must act as a master on the bus. The CPU first sets up the DMA 
registers, which contain a memory address and number of bytes to be 
transferred. Once the DMA transfer is complete, the controller interrupts the 
CPU. There may be multiple DMA devices in a computer system; for example, 
DMA is frequently part of the controller for an 1/0 device. 

Increasing the intelligence of the DMA device can further unburden the CPU. 
Devices called J/O processors, (or I/O controllers, or channel controllers) 
operate from either fixed programs or from programs downloaded by the 
operating system. The operating system typically sets up a queue of 110 control 

Ex.1035.566DELL



Input/Output 535 

blocks that contain information such as data location (source and destination) 
and data size. The I/O processor then takes items from the queue, doing 
everything requested and sending a single interrupt when the task specified in 
the I/O control blocks is complete. Whereas the LPl 1 line printer would cause 
4800 interrupts to print a 60-line by 80-character page, an I/0 processor could 
save 4799 of those interrupts. 

I/O processors can be compared to multiprocessors in that they facilitate 
several processes executing simultaneously in the computer system. I/O 
processors are less general than CPUs, however, since they have dedicated tasks, 
and thus parallelism is also much more limited. Also, an I/0 processor doesn't 
normally change information, as a CPU does, but just moves information from 
one place to another. 

Interfacing to an Operating System 

In a manner analogous to the way compilers use an instruction set (see Section 
3.7 of Chapter 3), operating systems control what I/0 techniques implemented 
by the hardware will actually be used. For example, many I/O controllers used in 
early UNIX systems were 16-bit microprocessors. To avoid problems with 16-
bit addresses in controllers, UNIX was changed to limit the maximum I/O 
transfer to 63 KB or less; at the time of this book's publication, that limit is still 
in effect. Thus, a new I/O controller designed to efficiently transfer 1-MB files 
would never see more than 63 KB at a time under UNIX, no matter how large 
the files. 

Caches Cause Problems for Operating Systems
Stale Data 

The prevalence of caches in computer systems has added to the responsibilities 
of the operating system. Caches imply the possibility of two copies of the data
one each for cache and main memory-while virtual memory can result in three 
copies-for cache, memory and disk. This brings up the possibility of stale data: 
the CPU or I/0 system could modify one copy without updating the other copies 
(see Section 8.8 in Chapter 8). Either the operating system or the hardware must 
make sure that the CPU reads the most recently input data and that I/0 outputs 
the correct data, in the presence of caches and virtual memory. Whether the 
stale-data problem arises depends in part on where the I/O is connected to the 
computer. If it is connected to the CPU cache, as shown in Figure 9.28 (page 

· 536), there is no stale-data problem; all I/O devices and the CPU see the most 
accurate version in the cache, and existing mechanisms in the memory hierarchy 
ensure that other copies of the data will be updated. The side effect is lost CPU 
performance, since I/0 will replace blocks in the cache with data that are 
unlikely to be needed by the process running in the CPU at the time of the 

Ex.1035.567DELL

9.7

Input/Output 535

blocks that contain information such as data location (source and destination)
and data size. The I/O processor then takes items from the queue, doing
everything requested and sending a single interrupt when the task specified in
the I/O control blocks is complete. Whereas the LP11 line printer would cause
4800 interrupts to print a 60-line by 80-character page, an I/O processor could
save 4799 of those interrupts.

I/O processors can be compared to multiprocessors in that they facilitate
several processes executing simultaneously in the computer system. I/O
processors are less general than CPUs, however, since they have dedicated tasks,
and thus parallelism is also much more limited. Also, an J/O processor doesn't
normally change information, as a CPU does, but just moves information from
one place to another.

Interfacing to an Operating System

In a manner analogousto the way compilers use an instruction set (see Section
3.7 of Chapter 3), operating systems control what I/O techniques implemented
by the hardware will actually be used. For example, many I/O controllers used in
early UNIX systems were 16-bit microprocessors. To avoid problems with 16-
bit addresses in controllers, UNIX was changed to limit the maximum I/O
transfer to 63 KB orless; at the time of this book’s publication,that limitis still
in effect. Thus, a new I/O controller designed to efficiently transfer 1-MB files
would never see more than 63 KB at a time under UNIX,no matter how large
the files.

Caches Cause Problems for Operating Systems—

Stale Data

The prevalence of caches in computer systems has addedto the responsibilities
of the operating system. Caches imply the possibility of two copies of the data—
one each for cache and main memory—while virtual memory can result in three
copies—for cache, memory and disk. This brings up the possibility of stale data:
the CPUor I/O system could modify one copy without updating the other copies
(see Section 8.8 in Chapter 8). Either the operating system or the hardware must
make sure that the CPU reads the most recently input data and that I/O outputs
the correct data, in the presence of caches and virtual memory. Whether the
stale-data problem arises depends in part on where the I/O is connected to the
computer. If it is connected to the CPU cache, as shown in Figure 9.28 (page

-536), there is no stale-data problem; all I/O devices and the CPU see the most
accurate version in the cache, and existing mechanisms in the memory hierarchy
ensure that other copies of the data will be updated. Theside effect is lost CPU
performance, since I/O will replace blocks in the cache with data that are
unlikely to be needed by the process running in the CPU at the time of the

DELL Ex.1035.567



536 9.7 Interfacing to an Operating System 

transfer. In other words, all 1/0 data goes through the cache but little of it is 
referenced. This arrangement also requires arbitration between CPU and 1/0 to 
decide who accesses the cache. If 1/0 is connected to memory, as in Figure 9.27 
(page 533), then it doesn't interfere with CPU, provided the CPU has a cache. In 
this situation, however, the stale-data problem occurs. Alternatively, 1/0 can just 
invalidate data-either all data that might match (no tag check) or only data that 
matches. 

There are two parts to the stale-data problem: 

1. The 1/0 system sees stale data on output because memory is not up to date. 

2 The CPU sees stale data in the cache on input after the 1/0 system has 
updated memory. 

The first dilemma is how to output correct data if there is a cache and 1/0 is 
connected to memory. A write-through cache solves this by ensuring that 
memory will have the same data as the cache. A write-back cache requires the 
operating system to flush output addresses to make sure they are not in the 
cache. This takes time, even if the data is not in the cache, since address checks 
are sequential. Alternatively, the hardware can check cache tags during output to 
see if they are in a write-back cache, and only interact with the cache if the 
output tries to read data that is in the cache. 

The second problem is ensuring that the cache won't have stale data after 
input. The operating system can guarantee that the input data area can't possibly 

CPU 

1/0 
controller 

1/0 
controller 

FIGURE 9.28 Example of 110 connected directly to the cache. 

Main 
memory 

1/0 
controller 

Ex.1035.568DELL

536 9,7 Interfacing to an Operating System  

transfer. In other words, all I/O data goes through the cache butlittle of it is
referenced. This arrangement also requires arbitration between CPU andI/O to
decide who accessesthe cache.If I/O is connected to memory,as in Figure 9.27
(page 533), then it doesn’t interfere with CPU, provided the CPU has a cache. In
this situation, however, the stale-data problem occurs. Alternatively, I/O can just

invalidate data—eitherall data that might match (no tag check) or only data that
matches.

There are two parts to the stale-data problem:

1. The I/O system sees stale data on output because memory is not up to date.

2 The CPUsees stale data in the cache on input after the I/O system has
updated memory.

The first dilemma is how to output correct data if there is a cache and I/O is
connected to memory. A write-through cache solves this by ensuring that
memory will have the same data as the cache. A write-back cache requires the
operating system to flush output addresses to make sure they are not in the
cache. This takes time, even if the data is not in the cache, since address checks

are sequential. Alternatively, the hardware can check cache tags during output to
see if they are in a write-back cache, and only interact with the cache if the
outputtries to read data that is in the cache.

The second problem is ensuring that the cache won’t have stale data after
input. The operating system can guarantee that the input data area can’t possibly

Bus

adapter

vo vo vo :
controller controlier controller

ES ics E Graphics 5 Network
output }

FIGURE 9.28 Example of I/O connected directly to the cache.

 
DELL Ex.1035.568



Input/Output 537 

be in the cache. If it can't guarantee this, the operating system flushes input 
addresses to make sure they are not in the cache. Again, this takes time, whether 
or not the input addresses are in the cache. As before, extra hardware can be 
added to check tags during an input and invalidate the data if there is a conflict. 
These problems are basically the same as cache coherency in a multiprocessor, 
discussed in Section 8.8 of Chapter 8; 1/0 can be thought of as a second 
dedicated processor in a multiprocessor. 

DMA and Virtual Memory 

Given the use of virtual memory, there is the matter of whether DMA should 
transfer using virtual addresses or physical addresses. Here are some problems 
with DMA using physically mapped I/0: 

• Transferring a buffer that is larger than one page will cause problems, since 
the pages in the buffer will not usually be mapped to sequential pages in 
physical memory. 

• Suppose DMA is ongoing between memory and a frame buffer, and the 
operating system removes some of the pages from memory (or relocates 
them). The DMA would then be transferring data to or from the wrong page 
of memory. 

One answer to these questions is virtual DMA. It allows the DMA to use 
virtual addresses that are mapped to physical addresses during the DMA. Thus, a 
buffer must be sequential in virtual memory but the pages can be scattered in 
physical memory. The operating system could update the address tables of a 
DMA if a process is moved using virtual DMA, or the operating system could 
"lock" the pages in memory until the DMA is complete. Figure 9.29 (page 538) 
shows address-translation registers added to the DMA device. 

Caches Helping Operating Systems
File or Disk Caches 

While the invention of caches made the life of the operating systems· designer 
more difficult, operating systems designers' concern for performance led them 
to cache-like optimizations, using main memory as a "cache" for disk traffic to 
improve I/O performance. The impact of using main memory as a buffer or 
cache for file or disk accesses is demonstrated in Figure 9.30 (page 538). It 
shows the change in disk I/Os for a cacheless system measured as miss rate (see 
Section 8.2 in Chapter 8). File caches or disk caches change the number of disk 
I/Os and the mix of reads and writes; depending on cache size and write policy, 
between 50% to 70% of all disk accesses could become writes with such caches. 
Without file or disk caches, between 15% and 33% of all accesses are writes, 
depending on the environment. 

Ex.1035.569DELL



538 9.7 Interfacing to an Operating System 

TLB 

CPU 

Address
translation 
registers 

Graphics 
output 

Main 
memory 

FIGURE 9.29 Virtual OMA requires a register for each page to be transferred in the 
OMA controller, showing the protection bits and the physical page corresponding to 
each virtual page. 

60% 

50% 

40% 
Disk/file 
cache 
miss rate 30% 

20% 

10% 

0% 

0 4 8 12 16 20 24 28 32 

Cache size (MB) 

FIGURE 9.30 The effectiveness of a file cache or disk cache on reducing disk I/Os 
versus cache size. Ousterhout et al. [1985] collected the VAX UNIX data on VAX-11/785s 
with 8 MB to 16 MB of main memory, running 4.2 BSD UNIX using a 16-KB block size. 
Smith [1985] collected the IBM SVS and IBM MVS traces on IBM 370/168 using a one
track block size (which varied from 7294 bytes to 19254 bytes, depending on the disk). The 
difference between a file cache and a disk cache is that the file cache uses logical block 
numbers while a disk cache uses addresses that have been mapped to the physical sector 
and track on a disk. This difference is similar to the difference between a virtually 
addressed and a physically addressed cache (see Section 8.8 in Chapter 8). 

Ex.1035.570DELL

538 9.7 Interfacing to an Operating System  

 

Cache , Address-
translation
registers Main

DMA

vO vo vO
controller controller controller

ost : Graphics E NetworkA output 3

FIGURE 9.29 Virtual DMA requires a register for each page to be transferred in the
DMAcontroller, showing the protection bits and the physical page corresponding to
eachvirtual page.

 
Disk/ile
cache
miss rate

12 16 20 24 28

Cache size (MB)

 
FIGURE 9.30 The effectivenessof a file cache or disk cache on reducing disk I/Os
versus cachesize. Ousterhoutet al. [1985] collected the VAX UNIX data on VAX-11/785s
with 8 MB to 16 MB of main memory, running 4.2 BSD UNIX using a 16-KB blocksize.
Smith [1985] collected the IBM SVS and IBM MVStraces on IBM 370/168 using a one-
track block size (which varied from 7294 bytes to 19254 bytes, depending on the disk). The
difference betweena file cache and a disk cacheis that the file cache uses logical block
numbers while a disk cache uses addresses that have been mappedto the physical sector
and track on a disk. This difference is similar to the difference betweena virtually
addressed and a physically addressed cache (see Section 8.8 in Chapter8).

DELL Ex.1035.570



9.8 I 
Input/Output 539 

Designing an 1/0 System 

The art of 1/0 is finding a design that meets goals for cost and variety of devices 
while avoiding bottlenecks to 1/0 performance. This means that components 
must be balanced between main memory and the I/O device because perfor
mance-and hence effective cost/performance-can only be as good as the 
weakest link in the I/0 chain. The architect must also plan for expansion so that 
customers can tailor the I/O to their applications. This expansibility, both in 
numbers and types of 1/0 devices, has its costs in longer backplanes, larger 
power supplies to support I/0 devices, and larger cabinets. 

In designing an I/0 system, analyze performance, cost, and capacity using 
varying 1/0 connection schemes and different numbers of 1/0 devices of each 
type. Here is a series of six steps to follow in designing an 1/0 system. The 
answers in each step may be dictated by market requirements or simply by 
cost/performance goals. 

1. List the different types of 1/0 devices to be connected to the machine, or a 
list of standard buses that the machine will support. 

2. List the physical requirements for each 1/0 device. This includes volume, 
power, connectors, bus slots, expansion cabinets, and so on. 

3. List the cost of each 1/0 device, including the portion of cost of any 
controller needed for this device. 

4. Record the CPU resource demands of each 1/0 device. This should include: 

Clock cycles for instructions used to initiate an 1/0, to support operation 
of an I/O device (such as handling interrupts), and complete 1/0 

CPU clock stalls due to waiting for I/O to finish using the memory, bus, or 
cache 

CPU clock cycles to recover from an I/0 activity, such as a cache flush 

5. List the memory and 1/0 bus resource demands of each 1/0 device. Even 
when the CPU is not using memory, the bandwidth of main memory and the 
1/0 bus are limited. 

6. The final step is establishing performance of the different ways to organize 
these 1/0 devices. Performance can only be properly evaluated with 
simulation, though it may be estimated using queuing theory. 

You then select the best organization, given your performance and cost goals. 
Cost and performance goals affect the selection of the 1/0 scheme and 

physical design. Performance can be measured either as megabytes per second 
or I/Os per second, depending on the needs of the application. For high per
formance, the only limits should be speed of 1/0 devices, number of 1/0 devices, 
and speed of memory and CPU. For low cost, the only expenses should be those 

Ex.1035.571DELL



540 

Example 

Answer 

9.8 Designing an 1/0 System 

for the 1/0 devices themselves and for cabling to the CPU. Cost/performance 
design, of course, tries for the best of both worlds. 

To make these ideas clearer, let's go through several examples. 

First, let's look at the impact on the CPU of reading a disk page directly into the 
cache. Make the following assumptions: 

Each page is 8 KB and the cache-block size is 16 bytes. 

The addresses corresponding to the new page are not in the cache. 

The CPU will not access any of the data in the new page. 

90% of the blocks that were displaced from the cache will be read in again, 
an.d each will cause a miss. 

The cache uses write back, and 50% of the blocks are dirty on average. 

The 1/0 system buffers a full cache block before writing to the cache (this is 
called a speed-matching buffer, matching transfer bandwidth of the 1/0 
system and memory). 

The accesses and misses are spread uniformly to all cache blocks. 

There is no other interference between the CPU and 1/0 for the cache slots. 

There are 15,000 misses every one million clock cycles when there is no 1/0. 

The miss penalty is 15 clock cycles, plus 15 more cycles to write the block if 
it was dirty. 

Assuming one page is brought in every one million clock cycles, what is the 
impact on performance? 

Each page fills 8192/16 or 512 blocks. 1/0 transfers do not cause cache misses 
on their own because entire cache blocks are transferred. However, they do 
displace blocks already in the cache. If half of the displaced blocks are dirty it 
takes 256*15 clock cycles to write them back to memory. There are also misses 
from 90% of the blocks displaced in the cache because they are referenced later, 
adding another 90%*512, or 461 misses. Since this data was placed into the 
cache from the 1/0 system, all these blocks are dirty and will need to be written 
back when replaced. Thus, the total is 256*15 + 461*30 more clock cycles than 
the original 1,000,000 + 15,000* 15. This turns into a 1 % decrease in 
performance: 

256*15 + 461*30 17670 
1000000+15000*15 = 1225000 = 0·

014 

Now let's look at the cost/performance of different 1/0 organizations. A 
simple way to perform this analysis is to look at maximum throughput assuming 

Ex.1035.572DELL


