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Chapter 2
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User Feedback
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Google, Inc., cothgoogle . com
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Cornell University, caruanans . cornell . edu

Andrew Kachites McCallum

University of Massachusetts, Amherst, mccallqucs .umass.edu

Abstract We present an approach to clustering based on the observa-

tion that “it is easier to criticize than to construct.” Our approach of semi-

superuised clustering allows a user to iteratively provide feedback to a clus-

tering algorithm. The feedback is incorporated in the form of constraints,

which the clustering algorithm attempts to satisfy on future iterations. These

constraints allow the user to guide the clusterer toward clusterings of the data

that the user finds more useful. We demonstrate semi-supervised clustering

with a system that learns to cluster news stories from a Reuters data set.1

2.1 Introduction

Consider the following problem: you are given 100,000 text documents (e.g.,

papers, newsgroup articles, or web pages) and asked to group them into classes

or into a hierarchy such that related documents are grouped together. You

are not told what classes or hierarchy to use or what documents are related.

Your job is simply. to create this taxonomy so that the documents can be

browsed and accessed efficiently, either by yourself or by other people. While

1This work was originally circulated as an unpublished manuscript [4] when all the authors
were at Justsystem Pittsburgh Research Center.
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you may have some criterion in mind, you would probably be hard-pressed to
express it algorithmically.

This problem is ubiquitous. The web has created a number of new examples

of it, but it can be found in many fields that don’t involve the web, as well as

with many different types of “documents.” Librarians, astronomers, biologists

— practically everyone tasked with creating a taxonomy from data faces this

problem in one form or another.

We propose the following iterative solution to this problem:

1. Give the 100,000 documents to an unsupervised clustering algorithm
and have it cluster them.

2. Browse the resulting clusters and tell the system which clusters you like,

and which clusters you don’t like. Don’t do this for all theiclusters, just '

for some of the ones you browsed. Provide feedback to the system by

saying “This document doesn’t belong in here,” “Move this document to

, that cluster, ” or “These two documents shouldn’t be {or should be) .in
the same cluster.”

Don’t do this for all, or even many, of the documents; only for the few

that look most out of place.

‘3. After your critique, re—cluster the documents, allowihg’the clustering
algorithm to modify the the distance metric parameters to try to find a

new clustering that satisfies the constraints you provided in the critique.

4. Repeat this until you are happy with the clustering.

This solution is distinct from both traditional supervised and unsupervised

learning. Unsupervised clustering takes an unlabeled collection of data and,

without intervention or additional knowledge, partitions it into sets of ex-

amples such that examples within clusters are more “similar” than examples

between clusters. Much work in unsupervised clustering is dedicated to the

problem of manually engineering similarity criteria that yield good partition-

ing of data for a given domain. .

Supervised learning, on the other hand, assumes that the class structure or
hierarchy already is known. It takes a set of examples with class labels, and

returns a function that maps examples to class labels. The goal of supervised

learning is to learn mappings that are accurate enough to be useful when

classifying new examples, and perhaps to learn mappings that allow users to

understand the relationships between the data and the labels, such as which

features are important.

Semi-supemised clustering falls between the extremes of totally unsuper-

vised clustering and totally supervised learning. The main goal of our ap—

proach to semi—supervised clustering is to allow a human to “steer” the clus—

tering process so that examples can be partitioned into a useful set of clusters

with minimum time and human effort. A secondary goal of semi-supervised
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clustering is to give the user a. way to interact and play with the data so that
they can understand it better.2

Our approach to semi-supervised clustering assumes that the human user

has in their mind criteria that enable them to evaluate the duality of a cluster-
ing. It does not assume that the user is conscious of what they think defines

a good clustering but that, as with art, they will “know it when they see it.”

Most importantly, semi-supervised clustering never expects a user to write a

function that defines the clustering criterion. Instead, the user interacts with

the clustering system, which attempts to learn a criterion that yields clusters

the user is satisfied with. As such, one of the primary challenges of semi—

supervised clustering is finding ways to elicit and make use of user' feedback

during clustering.

‘ The remainder of this chapter describes one simple, illustrative way in which
this may be accomplished. Other challenges that need to be addressed by

future research on semi-supervised clustering are briefly described in the dis-
cussion section.

2.1.1 Relation to Active Learning

Semi-supervised clustering with user feedback is closely related to active

learning [5]. In the most common form of active learning, a learning system

attempts to identify which data points, if labeled by a human, would be most

informative. In semi-supervised clustering, the human selects the data points,

and puts on them a wide array of possible constraints instead of labels. These

two key differences point toward some situations in which the semi-supervised

approach is preferable.

1. In some clustering problems the desired similarity metric may be so dif-

ferent from the default that traditional active learning would make many
inefficient queries. This problem also arises when there are many differ—

ent plausible clusterings. Although less automated, a human browsing

the data would do less work by selecting the feedback data points them-
self. ‘

2. The intuitive array of possible constraints are easier to apply than labels,

especially when the final clusters are not known in advance.

3. The very act of human browsing can lead to the discovery of what

clusters are desired. Semi—supervised learning can thus be seen as a

method of data exploration and pattern discovery, efficiently aided by
cluster—based summarization.

2Derniriz et a1. [7] independently introduced a. semi-supervised clustering model similar to
the one we describe here. The main distinction between our work and theirs is our use of

iterative feedback to acquire labelings; Demiriz et a1. assume that all available labels are
given a. priori.
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However, the distinction with active learning is subjective. As we will see

in Section 2.5.1, our system could easily be viewed as a practical application
of learning by counterexamples [1] — one of the earliest and most powerful

forms of active learning studied in the theory community.

Hybrid active—semi-supervised systems are also plausible. In situations with

a large number of data points and data types that are difficult to browse, one

could imagine a system that combines some of the automated selection of

active learning with the human browsing of semi-supervised clustering. The

active learner could make many disparate hypotheses about the underlying

labels and present the examples that would be most indicative of each.

2.2 Clustering

Formally, clustering is the process of partitioning a data set into subsets

such that all members of a given subset are “similar” according to some dis-

tance measure D. We will denote the distance between two examples m1 and

502 as D(:r1, :32). We can generalize this to refer to D(y1, 312), the distance be-

tween two cluster centers, or D(y1,a:1), the distance between a cluster center

and an example.

The two most popular approaches to clustering are agglomerative cluster—

ing and prototype-based clustering. In agglomerative clustering, each datum

is initially placed in its own cluster. The clusters that are most similar (ac-

cording to D) are iteratively merged, until the desired number of clusters

is reached, or some limit on data likelihood or distortion is exceeded (see

Hofmann and Buhmann [14] for an in—depth treatment of agglomerative clus-

tering). ’

In prototype-based clustering, the final number of clusters is usually set a

priori, and the corresponding prototypes are found using some form of Expec—

tation Maximization (EM) [8]. Each prototype is initialized to some position

- (in our case, a randomly weighted sample of the training points). Examples

are assigned to prototypes according to their similarity to each prototype (the

assignment may be 0-1 or fractional, depending on the algorithm). Prototypes

are then adjusted to maximize the data likelihood, or, equivalently, minimize _

the data distortion. The assignment/adjustment process .is repeated until no

significant changes result (see Meila and Heckerman [17} for concise review of

prototype—based clustering).

In the present chapter, we adopt a statistical prototype—based approach,

resulting from the naive Bayes model of document generation [16].3 Given a

3We reiterate that the approach described in this chapter is only for the point of exploration
and illustration; the approach is, in theory, applicable to almost any clustering algorithm.
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vocabulary V, a document is assumed to be a “bag of words” generated from

a multinomial distribution 0. In this model, the probability of document at is

P($) : H P(tj|9)N(t"’“),
tjEV

where P(t,- |6) is the parameterized probability of term tj being generated, and
N(tj, :12) is the number of times t, appears in the document. Each document
at forms an estimate ‘of a multinomial distribution 6x; likewise, each cluster of

documents 1r forms an estimate 6,, composed from the 03. of its constituent
documents.4 '

For clustering we assume that, instead of being produced by a single multi—

nomial distribution, each of the observed documents was drawn from one of

distributions raven, . . . ,BM, corresponding to the unknown distribution of

clusters 7r1,7r2, . . . ,7rk:

Pe) = Dam-weir» : 2 PM.) 11 P(tjl6m)”“j"‘)-
i i tj EV

Our task is to estimate values for P(7r,-) and 6,7,, which will in turn allow us
to estimate cluster memberships P(1r,-|a:) by Bayes rule:

P(1r,-|:1:) = P(m|1r,:)P(1r,:)/P(:c). - - (2.1)

We find estimates for P(1r,-) and 9,“. via the standard procedure for EM,

beginning with randomized estimates of 67,, drawn as a weighted sample from

the observations. Then, for each cluster 7r,- and document :12, we compute

P(:t:|9,,,) and apply Equation 2.1 to compute P(7r,:|:r). Each cluster is given

partial ownership of a document proportional to P(1r,-[:z:). The parameters
0,” are recomputed as the weighted sum of their component documents, and

the process is repeated. The algorithm is guaranteed to converge to a locally

optimal clustering (see, e.g., MacK-ay [15] or Meila and Heckerman [17] 'for
details).

2.3 Semi-Supervised Clustering

The goodness of any clustering depends on how well the metric D matches

the user’s (perhaps unknown) internal model of the target domain. We pro-

pose allowing the user to impose their model on the metric via the clustering

4The estimates for term probabilities are derived from the relative term frequencies in the

documents. Following McCallum and Nigam [16], we smooth with a LaPlaCean|prior to
avoid zero term probabilities.
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FIGURE 2.1: Illustration of semi-supervised clustering. Given an initial clus-
tering, the user specifies two points that should not have been placed in the

same cluster. The system warps its metric, allowing it to find a clustering

'that respects the constraint.

algorithm, by having the user provide the algorithm with feedback, and al-

lowing it to alter the metric so as to accommodate that feedback. Not only

is it easier to critique than to construct, but the user’s criticism can take

many forms —— specifying that a particular example does/doesn’t belong in a

particular cluster, that two examples do/don’t belong in the same cluster, or

that a particular cluster is good (and should be preserved) or bad (and should

be split up).

Feedback may be incorporated into the metric as constraints to be respected

by the clustering algorithm. Consider two examples, $1 and $2, that are con-

strained by the user feedback to be in separate clusters. When the clustering

algorithm attempts a partitioning which places 2:1 and 3:2 in the same cluster,

the metric may be altered to increase the distance between $1 and x2 until

one or the other of them falls in a different cluster (Figure 2.1). Other con-

straints may be implemented similarly, shrinking the distance between some

eXample and a cluster prototype, or increasing the distance between a cluster

prototype and all the examples assigned to it.

2.3.1 Implementing Pairwise Document Constraints

In this probabilistic setting, the natural measure of dissimilarity between

two documents, x1 and $2, is the probability that they were generated by the

same multinomial. From Pereira et a1. [19], this is proportional to the XL
divergence to the mean of their multinomial distributions:

DKLM(-’1?1,932) = lmllDKL(9:cl:0:1,zr2) + |$2|DKL(02216:1:1,$2):

where |a:| is the length of document :12, DKL (01, 02) is the standard Kullback—

Leibler divergence of 01 to 62, and 931,32 is a distribution such that

P(tjl9$1,$2) = (P(tjl021) +P(tjl0:cz)) /2'
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The advantage of this measure is that it is symmetric, unlike standard KL
divergence.

To implement our constraints, we augment the standard KL divergence

' Dwamfl62 ) with a weighting function

P(t-|0 )
, 0 = .. _ _J__€v_2_DKL( 31’03’2) lag/7'7 P(t]|6xl)log (P(tjl0x1)) '

where 7,— may be interpreted as indicating the importance of ti for distinguish-

ing 3:1 and :32. Then, given a constraint that :31 and 332 must be in separate

clusters, we can warp the metric by computing

aITIKLMCEI-iaa) _ P(t.'il0$1$2)

|x2lp(tjl6$2) log (W)
and hillclimbing over '7 to increase the effective distance between the two.

This gradient tells us the direction to move the 7’s in order to increase (or

decrease) the separation between two documents. (In the current experiments

we constrain the 1’s to be positive, but it might be interesting to relax this

and allow some 7’s to become negative.)

These 7’s are incorporated back into the E-step of clustering algorithm as

weights attached to the individual term frequencies:

P($l7r-;) =- H P(tj]0m)7jN(t,-,z)‘
tjEV

Intuitively, a small 71' reduces the effect of tj,S presence or absence on doc-
ument likelihood, effectiVely scaling its effect on the document’s divergence

from its cluster center. As such, we are able to inject a learned distance metric

directly into the clustering algorithm.

2.3.2 Other Constraints

Other constraints described in the previous section may be similarly im—

plemented by hillclimbing over the example-to—cluster and cluster—to-cluster

distance. Note that the linear warping we describe will not guarantee that

all constraints can be satisfied; some clusterings desired by the user may be

non—convex and unrealizable in the space of models supported by naive Bayes.

In this case, the hillclimbing will converge to a weighting that provides a local

minimum of constraint violations. Local or nonlinear warpings of the distance

metric, such as the ones described by Friedman [11] and Yianilos [21] may be
of use in these situations.
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2.4 Experiments

In this section, we illustrate the semi-supervised approach on a small docu—

‘ ment clustering problem. We use a. set of 25 documents each from five Reuters

topic areas: business, health, politics, sports, and tech. Starting from five ran—

domly initialized prototypes, the EM—based clustering algorithm described in '

the previous sections finds clusters that maximize data likelihood.

Each time clustering converges, we add a constraint. We simulate a human

user by identifying two documents from the same cluster whose sources are

different Reuters topics, and constrain them to be in different clusters.5 For
each unsatisfied constraint, we reweight the divergence by a fixed number

of hillclimbing steps, re—initialize the cluster prototypes, and repeat the EM

training.

2.4.1 Clustering Performance

Figure 2.2 compares the performance of supervised, unsupervised, and semi-

supervised learning. For unsupervised and semi-supervised learners, we plot

cluster purity: the fraction of examples that would be classified correctly
if all examples were assigned the majority label in each cluster. For the

supervised learner, we plot both. cluster purity and classification accuracy

(generalization) .

After only a few constraints have been added, cluster purity increases

sharply over that of unsupervised clustering. It is not clear, however, how

to fairly comparethe performance of semi—supervised clustering with that of

fully supervised clustering: constraints do not exactly correspond to labeled

examples, and it is uncertain what constitutes a proper test set. _In super-

vised learning, documents used for training are traditionally excluded-from

the test set, since their labels are already known. But the semi-supervised

model clusters (and is tested on) the entire corpus, so it is also reasonable to

gauge it against a supervised learner tested the same way. In the figure we

show the cluster purity of supervised learning on the training set as well as

its generalization to an independent test set. J

The semi-supervised learner reaches its asymptotic performance after about

10 constraints have been added; the supervised learners require between 3 and

6 times more labeled examples to reach that level of performance.6 It is in-

5A fully—operational semi—supervised clustering system would benefit from a graphical user
interface that permits efficient browsing of the current clusters and supports easy specifi-

cation of user constraints. See the discussion of Scatter/Gather later in this chapter.

6To assure ourselves that metric-warping alone wasn’t responsible for the performance dis-
parity, we also incorporated metric warping into the supervised clusterer, shrinking the

divergence between a document and its assigned cluster. The addition resulted in no sig-
nificant performance improvement.

10
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FIGURE 2.2: Learning curves for supervised, unsupervised, and semi—

supervised clustering. For supervised clustering, cluster purity (measured

on the train set) and generalization (measured on an independent test set)
are plotted against the number of labeled examples; for semi-supervised clus—

tering, purity is plotted against the number of constraints. Averages over 10

runs each, with the upper and lower lines indicating error bars at one standard
deviation. See text for details.

teresting to note that the performance of the semi—supervised learner actually

begins to decrease after roughly 20 constraints have been added. The Reuters

data set contains many documents that appear under more than one topic

(an identical article on Microsoft, for example, appears under both business

and tech). We hypothesize that, in an attempt to separate these unseparable

documents, the learner is pushing its term weightings to unhealthy extremes.

Experiments on a larger data set consisting of 20,000 USENET articles sug-

gest that semi-supervised clustering is just as effective with large data sets.

More importantly, these experiments show that semi-supervised clustering is

able to cluster the same data according to different orthogonal criteria. This

data set contains articles on four subjects: aviation simulators, real aviation,

auto simulators, and real autos. Semi-supervised clustering can cluster the

simulators and real groups together (e.g., aviation simulators and real avia-

tion) or the auto and aviation groups together (e.g., aviation simulators and

auto simulators) depending on the feedback provided by the user. In both

cases it does so at'about 80% accuracy with 10 constraints. When the dis—

tance metric is not adjusted, the same constraints give an average of only 64%

accuracy. (Purely unsupervised clustering achieves only about 50% acCuracy.)

11
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FIGURE 2.3: Fraction overlap of the top n weighted terms with top 12 terms

ranked by information gain on fully-supervised data. As the number of con-

straints increases, there is increasing correlation with terms that strongly

affect class conditional probabilities. Note that this overlap is achieved with

far fewer constraints than the number of labels in the fully—supervised data.

2.4.2 Learning Term Weightings

Adjusting .7]. warps the metric by adjusting the resolving power of term

15,-, essentially identifying which terms are most useful for distinguishing docu—

ments. If 'Yj is large, small disparities in the frequency of 15,- become important

and will tend to separate documents; if '73- is small, large disparities in fre-

quency will be ignored.

Empirically, this behavior is borne out on the Reuters experiments. Terms

that subjectively appear highly relevant for distinguishing topics, such as Iraq,

economy, weapons and council are given large weightings. We computed the

information gain of t,- using all document labels [18], and compared it with
39-. Figure 2.3 shows the overlap between the top—weighted n% terms in the

vocabulary with the same terms ranked by information gain. After about

a dozen constraints, semi-supervised clustering learns term weightings with

moderate overlap to the term weightings learned by supervised learning from
all 125 document labels.

12
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2.5 Discussion

This chapter only scratches the surface of semi—supervised clustering with

user feedback. There are still many issues to be addressed; we touch on a few
of these next.

2.5.1 Constraints vs. Labels

When applying supervised learning to classification problems, it is assumed

that the users know the target classes and have labeled examples from each

target class. In many interesting problems, this is an unrealistic assump-

tion. A semi-supervised system allows users to give label—like information to

the learner without having to know labels. Although user feedback in semi-

supervised clustering serves a similar role as class labels serve in supervised

learning, comparing supervised learning with semi-supervised clustering is an

apples—to—oranges comparison. Semi—supervised clustering usually will be ap—

plied to problems where labels are not readily available. However, evaluating

clustering systems is difficult and usually subjective. We compare the per—

formance of semi-supervised clustering to supervised learning using a labeled

data set principally to avoid this subjectivity.

The performance disparity between supervised and semi-supervised cluster—

ing is surprising. While we have argued that it is easier to provide constraints

than labels, constraints also provide less information than labels. Constraints

don’t require the user to know the correct label (or even what labels exist!) #

only the relationship among pairs or sets of labels. There are only 125 possible

labels in the small Reuters data set, but thousands of possible separation con—

straints. Yet empirically, even with very few constraints, the semi-supervised

learner is able to perform surprisingly well.

One explanation is in the connection to active learning. As a means of

user feedback, the addition of a constraint indicates a problem and effectively

acts as a counterexample for the present clustering. Counterexamples are a

powerful tool for doing active learning, which, in some situations, are much

more efiicient than learning from randomly labeled examples [1]. As such,

the user, by iteratively directing the clusterer’s attention toward points that

are incorrectly clustered, gives a semi-supervised clustering system the many

advantages of an active learning system.

2.5.2 Types of User Feedback

As we have discussed, there are many different types of feedback that users

might provide to a semi-supervised clustering system. One type of feedback

is the constraints on individual data points and clusters we used earlier. But

many other forms of feedback might prove useful as well. For example, a user

13
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might tell the system that the current clustering is too coarse or too fine. Or

the user might point to a cluster and indicate that the cluster is bad without

saying how it is bad. Similarly, a user might indicate that a cluster is good,

suggesting that future re-clusterings of the data should attempt to maintain

this cluster. Users might also give feedback that is not cluster specific, such

as telling the system that the entire clustering looks bad and that the next

clustering should be very different.

Some types of user feedback may require adaptive clustering that cannot be

easily handled by the 'y weighting scheme we used above. For example, we con-

sidered an approach to finding good—but qualitatively different—w—clusterings

of the same data by exploiting EM’s weakness for getting trapped in local

minima. Different local minima may capture qualitatively different ways of

clustering the data, one of which may better match the user’s internal prefer—

ence function than the deepest minima the system can find. In the long run

we hope to develop a general framework for representing user feedback about
clusters.

2.5.3 Other Applications

We believe there are many applications of feedback-driven semi-supervised

clustering. Imagine a Yahoo! hierarchy for web pages that allows the user to

tailor the hierarchy to better match their own interests by providing feedback

while browsing. Similarly, consider an automatic e—mail system in which a user

allows the system to cluster e-mail into related mailboxes instead of manually

specifying the mailboxes. Semi-supervised feedback would allow the user to

tailor mailbox clusters to fit their (possibly changing) needs. As a different

example, consider a user clustering proteins into homology groups (groups of

proteins with similar structures). Large proteins have complex structures and

could be clustered many different ways. .A feedback-driven semi-supervised

clustering system would allow the user to explore many different ways the

proteins might be clustered and to find clusterings most suitable to their

purposes.

2.5.4 Related Work

The core operation of semi—supervised clustering involves learning a distance

metric, of which a great deal of work has been done for classification problems

(see Hastie and Tibshirani [13] for an overview); more recently, researchers
have begun applying these techniques to clustering and other forms of machine

learning (see, e.g., King et al. [20]).
As indicated earlier, our model is most similar to the work of Demirii et

a]. They report how a fixed set of labeled examples may be used to bias a

clustering algorithm; we investigate how a user, interacting with the system,

may efficiently guide the learner to a desired clustering.

In the time since this work was first presented, there has been a great deal

14
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of research in improving clusterings by the (semi—supervised) learning of a
distance measure. Instead of attempting a complete list of references here,

we refer the reader the references in Chapter 1 and to the other, more recent
contributions in this volume.

Our technique of incorporating user feedback is a cousin to relevance feed-

back, a technique for information retrieval [2]. Given a query and initial set

of retrieved documents, relevance feedback asks the user to tag documents

as being more or less relevant to the query being pursued. As the process is

iterated, the retrieval system builds an increasingly accurate model of what

the user is searching for.

The question of how a user (or teacher) may best select examples to help a
learner identify a target concept is the focus of much work in computational

learning theory. See Goldman and Kearns [12] for a detailed treatment of the

problem.

The Scatter/Gather algorithm [6] is an interactive clustering algorithm de-

signed for information retrieval. The system provides an initial clustering of
data. When the user selects a subset of the clusters for further examina—

tion, the system gathers their components and regroups them to form new

clusters. Scatter/Gather aims at pursuing and finding structure in a small

part of a corpus. This makes it an interesting complement to our approach:

Scatter/Gather may provide an effective means for browsing and focusing on

clusters of interest, and semi-supervised learning may be an effective means

of improving the quality of those clusters.

Note that we do not compare our performance to that of other purely unsu-

pervised clustering systems such as AutoClass [3], COBWEB [9], or Iterative

Optimization [10]. The contribution of our work is not to introduce a new

clustering algorithm, but an approach that allows user feedback to guide the

clustering. While we have illustrated our approach on a relatively simple

system, we believe it is equally applicable to more sophisticated algorithms,

and expect that it will provide similar improvements over the unsupervised
variants.
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