NAVAL POSTGRADUATE SCHOOL Monterey, California

DISSERTATION

INERTIAL AND MAGNETIC TRACKING OF LIMB SEGMENT ORIENTATION FOR INSERTING HUMANS INTO SYNTHETIC ENVIRONMENTS

by

Eric Robert Bachmann

December 2000

Dissertation Supervisor:

Michael J. Zyda

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 2000	3. REPORT TYPE AND DATES COVERED Ph.D. Dissertation					
4. TITLE AND SUBTITLE Inertial and Magnetic Tracking of Limb Segme Synthetic Environments 6. AUTHOR(S)	5. FUNDING NUMBERS ARO Proposal No. 40410-MA N0003900WRDR053						
Bachmann, Eric R.							
7. PERFORMING ORGANIZATION NAME(S) AND AD Naval Postgraduate School Monterey, CA 93943-5000	8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING / MONITORING AGENCY NAME(S) U.S. Army Research Office (ARO) Research Tria U.S. Navy Modeling and Simulation Office (N6M)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER						
11. SUPPLEMENTARY NOTES							
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.							
12a. DISTRIBUTION / AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE				
Approved for public release; distribution is unlimit							

13. ABSTRACT (maximum 200 words)

Current motion tracking technologies fail to provide accurate wide area tracking of multiple users without interference and occlusion problems. This research proposes to overcome current limitations using nine-axis magnetic/angular rate/gravity (MARG) sensors combined with a quaternion-based complementary filter algorithm capable of continuously correcting for drift and following angular motion through all orientations without singularities.

Primarily, this research involves the development of a prototype tracking system to demonstrate the feasibility of MARG sensor body motion tracking. Mathematical analysis and computer simulation are used to validate the correctness of the complementary filter algorithm. The implemented human body model utilizes the world-coordinate reference frame orientation data provided in quaternion form by the complementary filter and orients each limb segment independently. Calibration of the model and the inertial sensors is accomplished using simple but effective algorithms. Physical experiments demonstrate the utility of the proposed system by tracking of human limbs in real-time using multiple MARG sensors.

The system is "sourceless" and does not suffer from range restrictions and interference problems. This new technology overcomes the limitations of motion tracking technologies currently in use. It has the potential to provide wide area tracking of multiple users in virtual environment and augmented reality applications.

14. SUBJECT TERMS Micromachined Sensors, Complementary Filtering, Quaternions, Motion Tracking, Networked Virtual Environments, Quaternion/Vector Pairs, Human Modeling, MARG Sensors, Inertial Sensors, Magnetic Sensors				
			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFI- CATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL	

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

INERTIAL AND MAGNETIC ANGLE TRACKING OF LIMB SEGMENTS FOR INSERTING HUMANS INTO SYNTHETIC ENVIRONMENTS

by

Eric Robert Bachmann B.A., University of Cincinnati, 1983 M.S., Naval Postgraduate School, 1995

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL December 2000

Author:	Eine R	Buch	nann			
Approved by:	Malent	ric R Bachman	3/			
	Michael J. Zyda,	Professor of C	Computer Science			
Pohent	B. W. Thee		<u>Ceiano</u>			
Ro	obert B. McGhee		Xiaoping Yun,			
Professo	or of Computer Science	e Pi	rofessor of Electrical Eng	gineering		
n	vej		SPR			
Man-7	Tak Shing, Associate		Donald P. Brutzman, As	sistant		
Professo	or of Computer Science		Professor of Applied Sc			
Approved by:	Dan	C Bog				
	Daniel Boger, Chair,	, Department o	Computer Science			
Approved by: <	Chithy	1 Dua	Les You			
Anthony Ciavarelli, Associate Provost of Instruction						

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

