
Deterministic Clock Gating to Eliminate Wasteful Activity in Out-of-Order
Superscalar Processors due to Wrong-path Instructions1

1 This research was sponsored in part by a grant from the National Science Foundation.

Abstract - In this paper we present deterministic clock
gating schemes for various micro architectural blocks of
a modern out-of-order superscalar processor. We
propose to make use of 1) idle stages of the pipelined
function units (FUs) and 2) wrong-path instruction
execution during branch mis-prediction, in order to
clock gate various stages of FUs. The baseline Pipelined
Functional unit Clock Gating (PFCG), presented for
evaluation purpose only, disables the clock on idle stages
and thus results in 13.93% chip-wide energy saving.
Wrong-path instruction Clock Gating (WPCG) detects
wrong-path instructions in the event of branch mis-
prediction and prevents them from being issued to the
FUs, and subsequently, disables the clock of these FUs
along with reducing the stress on register file and cache.
Simulations demonstrate that more than 92% of all
wrong-path instructions can be detected and stopped
from being executed. The WPCG architecture results in
16.26% chip-wide energy savings which is 2.33% more
than that of the baseline PFCG scheme.

I. INTRODUCTION
Power dissipation and the resulting temperature rise have

become the dominant limiting factors to processor
performance and constitute a significant component of its
cost. Expensive packaging and heat removal techniques are
required to achieve acceptable substrate and interconnect
temperatures in high-performance microprocessors. The
total amount of power required to distribute the clock signal
across a microprocessor chip is as large as 20-40% of the
total power consumption [1].

Clock gating is a well known technique used to reduce
power dissipation in clock associated circuitry. The idea of
clock gating is to shut down the clock of any component
whenever it is not being used (accessed). It involves
inserting combinational logic along the clock path to prevent
the unnecessary switching of sequential elements. The
conditions under which the transition of a register may be
safely blocked should automatically be detected. This
problem is the target of our paper.

In out-of-order superscalar processors, branch miss-
predictions cause wrong-path instructions to be executed
since there is a lag between the branch prediction, actual

branch resolution, and subsequent commit of the branch.
The wrong-path instructions are of course never committed
to the actual state of the processor; however, because they
are issued and executed, they can give rise to two negative
effects: performance degradation and power waste.

Many researchers have worked on eliminating or reducing
the power consumed by wrong-path instructions. These
schemes are primarily probabilistic in nature. They rely on
some kind of branch history as explained next. The pipeline
gating technique of [2] assigns confidence levels about their
prediction accuracy to branches. When the number of low
confidence branches exceeds a preset threshold, the
instruction fetch and decode are stopped. This method
suffers from both performance overhead and lost energy
saving opportunities since some low confidence branches
may be predicted correctly while some high confidence
branches are in fact predicted wrongly. Reference [3]
improves on the all-or-nothing throttling mechanism of [2]
by having different types and degrees of throttling.

In [4] the authors propose a deterministic clock gating
approach which takes advantage of the resource utilization
information available in advance. When it is known ahead
of time that some of the processor resources will not be
used, clock gating signals are generated, at the issue stage,
to clock-gate these resources during their idle times.
Another approach, called transparent clock gating [5],
enhances the existing clock gating in latch-based pipelines
by keeping the latches transparent by default i.e., by not
clocking them. Latches are clocked only when there is a
need to avoid a data race condition. Register level clock
gating of [6] introduces the concept of clock gating parts of
stage registers i.e., when there are not enough instructions to
be issued, parts of stage register associated with the issue
stage are clock gated.

 Most of the previous work on clock gating either ignores
the fact that a noticeable fraction of the total power is
dissipated in executing wrong-path instructions during
branch misprediction or use a probabilistic approach to
avoid the resulting power waste. In this paper we take
branch misprediction as an opportunity for clock gating the
unnecessarily-used processor resources by deterministically
detecting the wrong-path instructions.

Nasir Mohyuddin, Kimish Patel and Massoud Pedram
Department of Electrical Engineering (Systems)

University of Southern California, Los Angeles, CA, USA
E-mail: {mohyuddi,kimishpa,pedram}@usc.edu

Exhibit 1018
Apple v. Qualcomm

IPR2018-01249
1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

II. MOTIVATION
Many of the currently available state-of-the-art

microprocessors employ aggressive branch prediction in
order to boost performance. Although branch predictors help
increase the processor performance, when a branch is
mispredicted, many of the wrong-path instructions (i.e.,
instructions that are on the predicted path of the
mispredicted branch) are still executed. Due to the out-of-
order execution in modern processors, at the time when a
branch is resolved and found to be mispredicted, there can
be a mix of correct path and wrong-path instructions in the
execution pipelines and the instruction queue. Because of
the prohibitive complexity of selective squashing
mechanism, many processor architectures do not flush the
pipeline until the mispredicted branch reaches the head of
the ReOrder Buffer (ROB) so that one is assured that all the
instructions on the correct path have retired (Note that
instruction fetch and decode are stopped upon detecting a
branch misprediction). As a result many of the wrong-path
instructions are still executed only to be thrown away when
the pipeline is flushed. Figure 1 on the primary Y-axis (left)
shows the fraction of instructions that are executed but never
committed (retired), due to mispredicted branches with
respect to the total number of instructions executed. This
estimate is obtained from simplescalar simulation, using the
processor configuration that is described in detail in the
experimental results section, which shows that on average
around 8.29% of the executed instructions are due to
mispredicted branches. These instructions not only consume
power in functional units during their execution, but also
consume power in (i) register file (RF) by reading their
input operands; and (ii) caches by executing wrong-path
loads. The impact of these wrong-path instructions on power
dissipation is even more severe with deeper pipelines on
account of increased branch misprediction penalty.

As stated earlier, many of the wrong-path instructions are
executed even after the branch is resolved. More precisely,
when a branch is resolved to be mispredicted, there may
exist wrong-path instructions which a) have already been
issued and thus they either are in the pipeline or have been
completed (type (i)), or b) have not been issued yet, i.e.,
they are still in the issue queue (IQ) (type (ii)). By the time
the mispredicted branch reaches the head of the ROB, many
of the instructions which are still in IQ (type (ii)) could be
issued to execution units. It is quite expensive (from a
hardware cost and control point of view) to identify and
prune type (i) instructions. Fortunately, it is easy to stop the
second set of instructions from being issued, which in turn
can result in considerable power saving.

In Figure 1 on the secondary Y-axis (right), the bars on the
left within each set show the average number of type (i) +
type (ii) instructions when the mispredicted branch retires.
This number tells us the average number of wrong-path
instructions that could be prevented from being issued if we
had a perfect oracle that would tell us which instruction is or
will be in the wrong-path. The bars on the right within each

set show the average number of type (ii) instructions when
the mispredicted branch retires, i.e., the wrong instructions
issued after the branch is resolved to be mispredicted and
before it retires. These are the wrong-path instructions
which can actually be prevented from being issued and
executed. These results show that 92.63% of the wrong-path
instructions are issued after the branch is resolved, which
provides a great opportunity for power saving via clock
gating.

III. PROPOSED CLOCK GATING ARCHITECTURE
Based on the aforesaid observations, we present two clock

gating techniques that 1) make use of idle cycles in
pipelined functional units when some stage of the functional
unit is idle, and 2) prevent wrong-path instructions of type
(ii) from being issued.

The first clock gating technique, called Pipeline
Functional unit Clock Gating (PFCG), is straightforward
and is presented and implemented here only to serve as a
baseline against which the power efficiency of a second
technique i.e., WPCG, is compared.
A. Pipelined Functional Unit Clock Gating

Figure 2 depicts the PFCG technique at the architectural
level. The proposed architecture utilizes the idleness of
various stages of structurally-pipelined functional units in a
processor pipeline.

Note that different stages of a pipelined FU can be idle
due to any of a number of reasons:
o Typically the total number of FUs, including integer

and floating point functional units, is larger than the
processor’s issue width. Hence not all the FUs are used
in every cycle of the program’s execution.

o Different applications exhibit different degrees of
instruction level parallelism (ILP) and therefore the
FU’s usage varies across different programs.

o Different application programs exercise different sets of
FUs. For example, integer programs will be using
completely a different set of FUs (integer ones)
compared to the floating point programs.

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

BZIP
GCC

GZIP

CJP
EG

DJP
EG

APSI

EQUAKE
MESA

WUPW
IS

E

Ave
rag

e

P
er

ce
nt

ag
e

(%
)

0.00

5.00

10.00

15.00

20.00

25.00

N
um

be
r o

f I
ns

tru
ct

io
ns

Type(i)+Type(ii)
Type(ii)
Instructions

Figure 1. Percentage of wrong-path instruction over total
instructions executed and average number of wrong-path

instructions per mispredicted branch.

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

o Because of structurally pipelined FU with multi clock
cycle latencies (but throughput of 1 operation per
cycle), depending on the number of operations that are
concurrently being executed on the same functional
unit, one or more stages of the pipelined FU may be idle
at any given clock cycle.

Issue
Queue

Is
su

e
Lo

gi
c

…
…

..

……..

……..

D
at

a
B

us

To
 w

rit
eb

ac
k

n-wide
issue

Issue Port 0

Issue Port n-1

FU 0

FU n-1

Issued Bit

clk

CEBit Registers

Figure 2. PFCG Architecture.
In the modern processors, the decoded instructions, after

renaming, are stored in an issue queue (IQ), where they wait
for their input operands to become available (if these
operands are being produced by some instruction in the
pipeline). The issue logic examines all instructions that have
both of their operands ready and issues n instructions (for an
issue width of n) to appropriate FUs assuming that the
corresponding FUs are available. We define a pipeline stage
of an FU as an input register set plus the combinational
logic that succeeds it. In the presented clock gating (CG)
architecture, each stage register set of the FU is appended
with a one-bit register called Clock Enable Bit register
(CEBit). The CEBit of stage i of FU j controls the clock of
stage i+1 of that FU. (Note that since the last stage of the
FU will not be used to gate any clock signal, it is not
appended with the CEBit).

The clock fed to each stage register set, except for the
CEBit register which is never clock gated, goes through an
AND gate. The AND gate essentially takes the clock and the
CEBit of the previous stage and performs logical AND on
them to produce the clock that will be fed to the current
stage. Hence, during a particular clock cycle, if the CEBit of
the previous stage is ‘0’, the clock for the current stage is
masked for that cycle. As shown in the figure, the CEBit
propagates through subsequent stages at each clock cycle
thanks to the CEBit shift register structure.

The CEBit register of the first stage of each FU is set
either to ‘0’ or to ‘1’ by the issue logic via the issued bit (cf.
Figure 2). If, during a particular cycle m, no instruction is
issued to the FU, then the issued bit will be set to ‘0’,
indicating that no instruction is issued to this particular FU
during cycle m. The issued bit is also used to gate the clock
of the first stage. In the subsequent clock cycles as the
CEBit travels through the subsequent stages of an FU, it
appropriately gates the clock of those stages.

B. Wrong-Path instruction Clock Gating
We saw in section II that on average 8.29% of the total

executed instructions are never committed due to wrong-
path instructions on mispredicted branches. Figure 1 showed,
on average, how many wrong-path instructions can be
prevented from being issued when the branch is resolved
and is known to be mispredicted. As seen, when the branch
is mispredicted, majority of the issued wrong-path
instructions can be blocked since the majority of these
wrong-path instructions are still in IQ. Therefore, we
propose a clock gating technique that eliminates the
switching activity in the logic and the stage registers due to
wrong-path instructions.

Figure 3 shows the architecture of Wrong-Path
instructions Clock Gating (WPCG). Note that when a branch
is resolved to be mispredicted, the instructions in the IQ may
be correct path instructions (i.e., instructions that were
fetched before the mispredicted branch instruction) or
wrong-path instructions (i.e., instructions that have been
fetched after the mispredicted branch instruction).
Therefore, in the WPCG architecture, the IQ is augmented
with some logic to determine whether the instruction
selected by the issue logic is a wrong-path instruction or not.

As depicted in Figure 3, the misprediction bit is set to ‘0’
initially when the correct path instructions are being
executed and no branch misprediction has taken place.
When a branch is resolved to be mispredicted, the
mispredicted_branch_rob_id (MBR_id) register is updated
with the ROB ID of the branch (branch_rob_id) in the next
clock cycle. At the same time, the misprediction bit will be
set to ‘1’. This will enable the range comparator in front of
each issue port of the IQ, which will subsequently determine
whether the instruction being issued is a wrong-path
instruction or not.

Figure 3. The WPCG architecture.

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The AND gate in front of each issue port essentially takes
the ROB ID of the selected instruction and ANDs it with the
misprediction bit. This is necessary since we do not want
unnecessary switching activity in the comparator circuit
when the branch is predicted correctly. Hence, in the event
of misprediction, the ROB ID of the selected instruction is
available to the comparator. Furthermore the comparator
also receives the tail of the ROB as input to determine if the
selected instruction is between the mispredicted branch and
the tail of the ROB. If it is, then the comparator will output a
‘1’, indicating that the selected instruction is in the wrong-
path and thus it should not be executed. The inverted output
of the comparator goes to a 2-to-1 MUX controlled by the
misprediction bit.

In the event of a misprediction, the inverted output of the
comparator is chosen to set the value in the CEBit register of
the first stage of the FU. This output is also used to clock

gate the first stage register set of the FU. Note that when the
branch is not mispredicted, the added circuitry is
functionally equivalent to the PFCG architecture (cf. Figure
2) and consumes minimal power since there will be no
switching activity in the comparators.

When the head of the ROB reaches the mispredicted
branch, we will flush the ROB and the pipeline. At that
time, the misprediction bit will be reset so that starting with
the next clock cycle, the WPCG is disabled.

It is important to emphasize the fact that, in out-of-order
processors all types of instructions can be potentially
executed out of order, and therefore, branches can also be
executed out of order. Hence, once we detect a branch
misprediction and update the MBR_id register and set the
misprediction bit to ‘1’, it is possible that an older branch
gets executed and gets resolved to be mispredicted. An older

branch can still be issued and executed since it falls into the
correct path with respect to the mispredicted branch whose
ROB ID is stored in the MBR_id register. Therefore, if an
older branch is resolved to be mispredicted, we should
update the MBR_id register with the ROB ID of the just-
resolved older branch since updating the MBR_id register
with this new branch will cover more wrong-path
instructions. For the sake of completeness we mention that if
a younger branch gets resolved to be mispredicted, then we
do not alter the content of MBR_id register. Note however
that this scenario is not possible since if a branch is younger
than the branch whose ROB ID is in the MBR_id register,
then the younger branch will fall into the category of wrong-
path instructions with respect to the branch whose ROB ID
is in MBR_id register. Thus if a branch is resolved to be
mispredicted while the misprediction bit is set to ‘1’, then
this newly mispredicted branch must be older and we update
the MBR_id register. Since we update the MBR_id register
any time a branch is mispredicted, we are already taking
care of this scenario.

Furthermore, it is possible that more than one branch gets
resolved to be mispredicted in the same cycle. In this case,
ideally, we would like to select the branch that is the oldest
and update MBR_id register with the ROB ID of that
branch. But this would require comparison between the
ROB IDs of all the branches that are resolved to be
mispredicted in the same cycle. Our simulation results show
that, on average, only 6.25% of the total mispredicted
branches are resolved in the same cycle. Therefore, in order
to avoid the overhead of multiple range comparators, we
select only one of the mispredicted branches from one of the
Branch Execution Units with a predefined priority.

C. Hardware Overhead
Figure 4 shows the design of the range comparator block

used in the WPCG architecture. As shown in the figure we
actually need 3 comparators. This is because the ROB is a
circular queue where the head of the ROB points to the
earliest (oldest) instruction whereas the tail of the ROB
points to the latest (youngest) instruction.

Due to this circular queue structure, we must deal with
two different scenarios in order to determine whether the
instruction being issued is a wrong-path instruction or not.
For this purpose, we use three comparators. Comparator C1
compares the tail of the ROB with the ROB ID of the
mispredicted branch. Comparator C2 compares the ROB ID
of the instruction being issued (ROB_id) with the tail of the
ROB whereas comparator C3 compares the ROB ID of the
instruction being issued with the ROB ID of the
mispredicted branch. Essentially we want to determine if the
ROB ID of the instruction being issued is in between the
mispredicted branch and ROB_tail. If so, the ROB ID
belongs to the wrong-path instruction since the instructions
following the branch are from the mispredicted path. As
shown in the Figure 4 there are two possible scenarios:

Figure 4. Circuitry used to detect wrong-path instructions.

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

o Case 1: ROB_tail is larger than the mispredicted
branch’s ROB ID (mispredicted_branch_rob_id in
Figure 4). In this case the instruction being issued is on
the wrong-path exactly if its ROB ID is larger than the
mispredicted_branch_rob_id and smaller than the
ROB_tail. This task is accomplished by the AND gate
in the dotted rectangle.

o Case 2: ROB_tail is smaller than the
mispredicted_branch_rob_id. In this case the instruction
being issued is on the wrong-path exactly if its ROB ID
is larger than the mispredicted_branch_rob_id or it is
smaller than the ROB_tail. This task is accomplished by
the gates in dotted oval.

Notice that the inputs of the comparators do not switch
when the branch is not mispredicted. This is due to the fact
that the ROB_tail and mispredicted_branch_rob_id registers
(cf. Figure 3) are updated only in the event of misprediction.
Therefore, they do not consume any power during the
correct path execution. We implemented this circuit in
Hspice and carried out the energy overhead analysis. The
results presented in experimental section account for this
overhead.
D. Timing Overhead

Potentially there can be a timing penalty for routing the
misprediction bit and the mispredicted_branch_rob_id from
the Execution stage back to the Issue stage. In the
conventional processor implementations the branch
misprediction information is sent to the Fetch and the
Commit stages and the additional routing cost to get it to the
Issue stage could be quite low. Hence we expect that this
additional reverse signal path to have little or no impact on
the clock cycle time. If, however, this becomes a concern,
then we can also pipeline the reverse routing path for the
misprediction bit signal from the Execution Unit to the Issue
Logic; this will allow some wrong-path instructions to be
issued into the pipeline, which reduces the energy savings of
the WPCG technique, but will have no other performance or
functional effects.

More generally, the WPCG architecture adds some logic
to determine if the instruction is a wrong-path instruction,
and thus, it adds some delay although the impact of this
delay on the clock cycle time depends on which pipeline
stage is the most timing critical one. In the worst case
scenario, we must pipeline the issue logic, resulting in an
extra clock cycle penalty for detecting wrong-path
instructions. This additional stage will be bypassed when the
branches are predicted correctly and therefore the penalty
reduces to the Mux delay without any extra clock cycle
penalty. In our simulations we pipelined this logic to
account for the worst case scenario when the delay of the
logic is too high to be accommodated within the same cycle
of the issue. Therefore simulation results account for the
associated performance penalty and are presented in
experimental section.

IV. EXPERIMENTAL RESULTS
To carry out the evaluation of the proposed clock gating

scheme, we used a simplescalar-based simulation platform.
The PFCG and WPCG methods were implemented in
simplescalar [7] with appropriate modifications to
simplescalar to implement realistic branch execution. The
processor model used for the evaluations is described in
Table 1 . The benchmarks used for the evaluation included a
few integer SPEC 2000 benchmarks (bzip, gzip, gcc) and a
few floating point SPEC 2000 benchmarks (wupwise, apsi,
mesa, equake) [8] along with a couple of multimedia
benchmarks (djpeg, cjpeg) [9] . A subset of benchmarks
was chosen which exhibits the same average branch
prediction rate as that of the full suite it is representing. All
benchmarks were run by fast forwarding 300M instructions
followed by cycle accurate out of order simulation of 1B
instructions. From simplescalar simulations, we obtained the
access counts for various structures such as the integer
functional units, RF, and caches.

Table 1 : Processor Model used for Evaluations.
Processor

id h
Fetch, Decode, Issue and Commit: 4

ROB 128/64
LSQ 64/32
Caches L1 I/D Cache 64KB 2-way, Hit Latency :

1-cycle, Unified L2 Cache of 2MB, 8-way,
Hit Latency : 12-cycles

Memory
Latency

100 cycles

Branch
Predictor

Gshare predictor with table size: 4096
BTB 1024 2

Functional Units Integer ALUs:4
Integer Multiplier/Dividers:2

To report the energy savings of the proposed clock gating
scheme (while accounting for the overhead of the added
circuitry), we used Hspice-based simulations using a 45nm
CMOS technology obtained from the predictive technology
models (PTM) [10]. Input registers of different stages of an
FU were modeled as master-slave Flip Flops, implemented
at the transistor-level, and simulated with Hspice to obtain
the energy consumption when the clock is not gated as well
as when the clock is gated. Furthermore to model a typical
integer ALU, we designed and implemented a 32-bit adder,
assuming for simplicity that an integer ALU consists of an
adder, at transistor level and simulated it with Hspice. In
order to obtain the energy consumption in the adder circuit,
we divided the average switching activity per bit of the
adder input operands into four ranges: [0, 25%), [25%,
50%), [50%, 75%) and [75%, 100%]. The corresponding
energy consumptions were obtained by Hspice by
performing Monte Carlo simulation of the adder circuit
under appropriate bit-level switching activities taken from
Simplescalar simulations. More precisely, we obtained the
average bit-level switching activities for inputs of various
integer ALUs in the target processor from simplescalar

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

