UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Intel Corporation
Petitioner
V.

Qualcomm Incorporated
Patent Owner
U.S. Patent No. 8, 698,558

Case IPR2018-01152
Case IPR2018-01153
Case IPR2018-01154
Case IPR2018-01240

DEPOSITION of ALYSSA B. APSEL, Ph.D.
Boston, Massachusetts
August 13, 2019

Reported by:
Dana Welch, CSR, RPR, CRR, CRC
Job \#165514

	Page 2		Page 3
1		1	APPEARANCES:
2		2	For the Patent Owner:
3		3	JONES DAY
4		4	BY: JOSEPH SAUER, ESQ.
5	August 13, 2019	5	North Point
6	9:23 a.m.	6	901 Lakeside Avenue
7		7	Cleveland, OH 44114
8		8	
9	Deposition of ALYSSA B. APSEL, Ph.D., held	9	
10	at the offices of WilmerHale, 60 State Street,	10	For the Petitioner:
11	Boston, Massachusetts 02109, before Dana Welch,	11	WILMERHALE
12	Certified Shorthand Reporter, Registered	12	BY: LOUIS TOMPROS, ESQ.
${ }^{13}$	Professional Reporter, Certified Realtime Reporter	13	RICHARD GOLDENBERG, ESQ.
14	and Notary Public of the Commonwealth of	14	60 State Street
15	Massachusetts.	15	Boston, MA 02109
16		16	
17		17	
18		18	
19		19	
20		20	
21		21	
22		22	
23		23	
24		24	
25		25	
	Page 4		Page 5
1	APSEL	1	APSEL
2	PROCEEDINGS	2	A. Yes. I don't remember the numbers,
3	ALYSSA B. APSEL, Ph.D.,	3	but --
4	having been first duly sworn on oath,	4	Q. That's fine.
5	was examined and testified as follows:	5	A. -- I believe you.
6	EXAMINATION	6	Q. I am handing you Intel Exhibit 1027 in
7	BY MR. SAUER:	7	IPR2018-01152.
8	Q. Please state your name for the record.	8	Do you recognize this as a copy of your
${ }^{9}$	A. Alyssa Apsel.	${ }^{9}$	supplemental declaration that you submitted in this
10	Q. And, Dr. Apsel, you understand you're	10	IPR?
11	under oath this morning?	11	A. Yes.
12	A. Yes.	12	Q. Did you write this document?
13	Q. And is there any reason that you can't	13	A. Yes.
14	testify fully and truthfully this morning?	14	Q. Are there any errors that you're aware of?
15	A. No.	15	A. There are not errors I'm aware of, but
16	Q. This deposition pertains to your	16	it's possible there are typos.
17	supplemental declaration testimony in four IPR	17	Q. Any opinions you'd like to change?
18	matters all pertaining to U.S. Patent Number	18	A. No.
19	8,698,558.	19	Q. Okay. You can set that one aside.
20	Is that your understanding?	20	MR. SAUER: I've now handed the witness
21	A. Yes.	21	Exhibit 1127 in IPR2018-0153.
22	MR. SAUER: And for the record those IPR	22	Q. Do you recognize this as a copy of your
23	matters are IPR2018-01154, IPR2018-01153,	23	reply declaration in this IPR?
24	IPR2018-01240 and IPR2018-01152.	24	A. Yes.
25	Does that meet your understanding?	25	Q. Did you write this one as well?

	Page 6		Page 7
1	APSEL	1	APSEL
2	A. Yes.	2	in this IPR?
3	Q. Any errors in this one or corrections?	3	A. Yes.
4	A. I found a typo. I can't remember exactly	4	Q. You wrote this one?
5	where it is. Oh -- no, I don't -- there is one	5	A. Yes.
6	typo in here that found, but I can't remember where	6	Q. Any corrections?
7	it is actually. I thought that was it. But for	7	A. No.
8	the most part this expresses my opinion.	8	Q. Okay. You can keep this one in front of
9	Q. And no opinions you'd like to change?	9	you if you don't mind. If you'll turn to page 13,
10	A. No.	10	paragraph 25.
11	Q. Okay. Set that one aside, too.	11	Are you there?
12	There you go. I'm now handing you	12	A. Yes.
13	Exhibit 1329 in IPR2018-01240.	13	Q. In paragraph 25 you state, first sentence:
14	Do you recognize this as a copy of your	14	"Second, any decrease in the linear amplifier
15	reply declaration in this IPR?	15	current, Ia, caused by Kwak's feedforward path is
16	A. Yes.	16	balanced by an identical increase in the inductor
17	Q. You wrote this one, too?	17	current Id," correct?
18	A. Yes.	18	Did I read that correctly?
19	Q. Any errors that you'd like to change,	19	A. Yes.
20	opinions you'd like to change?	20	Q. And then a couple of sentences later you
21	A. No.	21	state, "Therefore because Io=Ia+Id and because Io
22	Q. Okay. Set that one aside.	22	remains unchanged, if Ia decreases, Id must
23	One more. And now I've handed you	23	increase by the identical amount."
24	Exhibit 1228 in IPR2018-01154.	24	Is this your testimony?
25	Is this a copy of your reply declaration	25	A. Yes.
	Page 8		Page
1	APSEL	1	APSEL
2	Q. Okay.	2	Q. And Ia in the equation is the current
3	MR. SAUER: I'm handing the witness what's	3	shown at the bottom right portion of Figure 2,
4	been previously marked as Intel Exhibit 1011.	4	correct?
5	Q. Do you recognize this as a copy of the	5	A. Correct.
6	Kwak reference?	6	Q. And you refer to that in some places in
7	A. Yes.	7	your declaration as a linear amplifier, correct?
8	Q. Take a look at Figure 5.	8	A. Correct.
${ }^{9}$	Are you there?	9	Q. If you can flip back a page to Figure 2 in
10	A. Yeah.	10	Kwak, the equation that you refer to $\mathrm{I}=\mathrm{I}=+\mathrm{Id}$, it's
11	Q. The equation that you refer to in your	11	also reflected by the phase diagram in Figure 2(b),
12	declaration, Io equals Ia plus Id relates to the	12	correct?
13	operation of the circuits shown in Figure 5; is	13	A. Yes.
14	that right?	14	Q. And as we talked about in your last
15	A. Correct.	15	deposition, each of the currents in this equation
16	Q. And specifically Io is the output flowing	16	are complex variables both with a magnitude
17	through the load Zl at the bottom right-hand part	17	component and a phase component, correct?
18	of the circuit, correct?	18	A. Yes.
19	A. Correct.	9	Q. And in Figure 2(b) of Kwak, the magnitude
20	Q. And Id is the current flowing through the	20	components of the current variables are represented
21	inductor L, correct?	21	by the length of the arrows or vectors in the phase
22	A. Correct.	22	diagram; is that right?
23	Q. And you also refer to this current as the	23	A. That's correct.
24	inductor current in your declaration, correct?	24	Q. And then the phase components are
25	A. Correct.	25	represented in the phase diagram by the angle

APSEL
between the arrow and the x-axis; is that right?
A. Yes.
Q. And the equation $\mathrm{I}=\mathrm{I}=+\mathrm{Id}$, it could also be written in polar form showing the magnitude and phase components?
A. Yes.
Q. If I were to give you a piece of paper would you be able to write the equation in polar form?
A. Yes.
Q. All right. I'm handing you a blank sheet of paper that's been marked as Apsel Deposition Exhibit A and a pen.

Could you please write the equation $\mathrm{I}=\mathrm{I}=\mathrm{I}+\mathrm{Id}$ in polar form and make it big enough that I can see it without coming over there.
(Exhibit A, Hand drawn equation, marked for identification.)
A. So you want me to represent both the phase and the magnitude?
Q. Yes, please.
A. There are a couple of ways to do this. one is to say that --
Q. Maybe with the magnitude and phase angle?

APSEL
A. I have to change the way that I define it. So Io is going to be, I'll call it Io positive, Io E to the J theta O .
Q. Okay.
A. And I'll call Ia equal to Ia times E to the J theta A. And Id equals Id times E to the J theta D. Okay?

These can also be represented as combinations of sines and cosines. Each of these -- it's implied by that diagram that each of these is at a single frequency. This is a steady state. This pictures applies to single frequency. It's not a combination of frequencies. So each frequency has their own phaser.
Q. Okay.
A. And so this is also kind of implied that there is like A plus 0mega T term in there --
Q. And what's that term represent?
A. -- but we usually leave it out.

That defines that it's a single -- that this is operating at a single frequency.

So based on that, then I can just plug in for these expressions and I can say Io=Ia+Id.

So these can be written either as

APSEL
combinations of sine and cosine. I can write that example, Io would be equal to Io times cosine omega t plus theta, right, plus J sine omega t plus theta naught. Okay?
(Clarification by the reporter.)
A. So I'm just writing the one term right now, expanding it out in Euler form, as I naught equals capital I naught times cosine omega t plus theta plus J times sine omega t plus theta.
Q. And what's theta in your equation?
A. That's the phase.
Q. The phase of what?
A. The phase of I naught of the combination.
Q. So each theta has a -- it's not just
theta. It's theta I or theta A or theta O ?
A. They're each -- each theta is different, right?
Q. Right.
A. That's why I gave them subscripts.
Q. Okay. Subscript, that's the word I was looking for.

So there are three theta variables in that equation?
A. Yes.

Page 12

APSEL
linear amplifier current Ia, correct?
A. Yes.
Q. But in your complex equation, that means a decrease in the magnitude component of Ia, correct?
A. Yes, that's correct.
Q. It doesn't necessarily mean a decrease in the phase component of Ia?
A. So this is -- I have a little bit of a problem with the way this is being posed.
Q. Okay. How so?
A. Just because that assumption when we're talking about the magnitude in phase of the sine waves, we're talking about a single frequency component, whereas the full signal, what is coming out of Io is very unlikely to be a single phaser, a single frequency component. It's likely to be a combination, a sum of sines and cosines at different frequencies with a broad range of frequency content.

So we can talk about a single frequency, like single component of that, that's saying that the phase and magnitude are changing in a certain way, but it's not exactly telling you how the current -- the sum of the currents, because they

Page 16

APSEL

Q. And it may increase in one place and decrease in another; is that what you're saying?
A. Yes. Or more likely increase more in some places and less in others; it's that sort of relationship.
Q. So in your equation, when the feedforward path is introduced into Kwak's Figure 3 --
Figure 5, we know the magnitude and phase components of the output current stay the same.
A. Yes.
Q. And we know that the magnitude component of the linear amplifier current decreases.
A. Yes.
Q. But there's still three unknown variables in that equation; isn't that right?
A. Im not sure I understand that.
Q. Well, based on the complex equations you've written, when the feedforward path is introduced into Figure 5, we don't know what happens to the magnitude and phase component of Id or the phase component of Ia; isn't that right? They're unknown variables.
A. I'm not sure that that can't be known. I don't look at the circuit immediately and know

APSEL
can add -- those sines and cosines can add in phase or out or phase, it's not exactly telling you how the sum of those currents is changing necessarily.
Q. So it would be fair to say that Figure 5 of Kwak just doesn't give you enough information to know what happens to the phase of Ia?

MR. TOMPROS: Object to form.
A. No. I don't think that that's correct either. I think that the -- talking about the phase of Ia is a little strange because it is a combination of sines and cosines with different phases, that's what I'm trying to say.
Q. Okay. But are you able to tell from Kwak or Figure 5 what happens to that combination of sines and cosines in Ia?
A. There is a goal in this circuit of speeding up the response of the switcher, which is -- we can talk about the phase increasing or decreasing, but it's difficult to say that it's a single phase or of a single component because it's really an aggregate signal.
Q. An aggregate of the phases of different components?
A. Yes.

Page 17

APSEL
exactly how much the phase is changing for one component versus the other, but I think it's certainly knowable.
Q. In any of your calculations with respect to Kwak, have you ever calculated any of those values from that equation?
A. I don't understand that question.
Q. You said it's knowable. Have you determined those values from Kwak? Have you determined what happens to those components when the feedforward path is introduced in Figure 5?
A. I can look at the circuit behavior and I can look at what the feedforward path is doing. So the feedforward path is adding to this summation block in Figure 5, and acts to change the signal going into this thresholding block. It increases it relative to -- it increases the negative input relative to the positive input, right? So it changes the output of this switching thresholding block, which we -- it's easy to see and understand that that changes the duty cycle of the switcher. And changing the duty cycle of the switcher changes the slope of the current of Id, which means that it will increase the current of Id.

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

